WorldWideScience

Sample records for unitary group su2n

  1. Remarks on unitary representations of Poincare group

    International Nuclear Information System (INIS)

    Burzynski, A.

    1979-01-01

    In this paper the elementary review of methods and notions using in the theory of unitary representations of Poincare group is included. The Poincare group is a basic group for relativistic quantum mechanics. Our aim is to introduce the reader into some problems of quantum physics, which are difficult approachable for beginners. (author)

  2. Multiqubit Clifford groups are unitary 3-designs

    Science.gov (United States)

    Zhu, Huangjun

    2017-12-01

    Unitary t -designs are a ubiquitous tool in many research areas, including randomized benchmarking, quantum process tomography, and scrambling. Despite the intensive efforts of many researchers, little is known about unitary t -designs with t ≥3 in the literature. We show that the multiqubit Clifford group in any even prime-power dimension is not only a unitary 2-design, but also a 3-design. Moreover, it is a minimal 3-design except for dimension 4. As an immediate consequence, any orbit of pure states of the multiqubit Clifford group forms a complex projective 3-design; in particular, the set of stabilizer states forms a 3-design. In addition, our study is helpful in studying higher moments of the Clifford group, which are useful in many research areas ranging from quantum information science to signal processing. Furthermore, we reveal a surprising connection between unitary 3-designs and the physics of discrete phase spaces and thereby offer a simple explanation of why no discrete Wigner function is covariant with respect to the multiqubit Clifford group, which is of intrinsic interest in studying quantum computation.

  3. Unitary Representations of Gauge Groups

    Science.gov (United States)

    Huerfano, Ruth Stella

    I generalize to the case of gauge groups over non-trivial principal bundles representations that I. M. Gelfand, M. I. Graev and A. M. Versik constructed for current groups. The gauge group of the principal G-bundle P over M, (G a Lie group with an euclidean structure, M a compact, connected and oriented manifold), as the smooth sections of the associated group bundle is presented and studied in chapter I. Chapter II describes the symmetric algebra associated to a Hilbert space, its Hilbert structure, a convenient exponential and a total set that later play a key role in the construction of the representation. Chapter III is concerned with the calculus needed to make the space of Lie algebra valued 1-forms a Gaussian L^2-space. This is accomplished by studying general projective systems of finitely measurable spaces and the corresponding systems of sigma -additive measures, all of these leading to the description of a promeasure, a concept modeled after Bourbaki and classical measure theory. In the case of a locally convex vector space E, the corresponding Fourier transform, family of characters and the existence of a promeasure for every quadratic form on E^' are established, so the Gaussian L^2-space associated to a real Hilbert space is constructed. Chapter III finishes by exhibiting the explicit Hilbert space isomorphism between the Gaussian L ^2-space associated to a real Hilbert space and the complexification of its symmetric algebra. In chapter IV taking as a Hilbert space H the L^2-space of the Lie algebra valued 1-forms on P, the gauge group acts on the motion group of H defining in an straight forward fashion the representation desired.

  4. Biased Monte Carlo algorithms on unitary groups

    International Nuclear Information System (INIS)

    Creutz, M.; Gausterer, H.; Sanielevici, S.

    1989-01-01

    We introduce a general updating scheme for the simulation of physical systems defined on unitary groups, which eliminates the systematic errors due to inexact exponentiation of algebra elements. The essence is to work directly with group elements for the stochastic noise. Particular cases of the scheme include the algorithm of Metropolis et al., overrelaxation algorithms, and globally corrected Langevin and hybrid algorithms. The latter are studied numerically for the case of SU(3) theory

  5. Generalized unitaries and the Picard group

    Indian Academy of Sciences (India)

    some explicit calculations of that type.) So the range of this .... when we restrict our attention to generalized unitaries and full modules, that is, to modules. E for which BE = B. For every ..... without dividing out equivalence classes. But there is no ...

  6. Theory of the unitary representations of compact groups

    International Nuclear Information System (INIS)

    Burzynski, A.; Burzynska, M.

    1979-01-01

    An introduction contains some basic notions used in group theory, Lie group, Lie algebras and unitary representations. Then we are dealing with compact groups. For these groups we show the problem of reduction of unitary representation of Wigner's projection operators, Clebsch-Gordan coefficients and Wigner-Eckart theorem. We show (this is a new approach) the representations reduction formalism by using superoperators in Hilbert-Schmidt space. (author)

  7. DU and UD-invariants of unitary groups

    International Nuclear Information System (INIS)

    Aguilera-Navarro, M.C.K.

    1977-01-01

    Four distint ways of obtaining the eigenvalues of unitary groups, in any irreducible representation, are presented. The invariants are defined according to two different contraction conventions. Their eigenvalue can be given in terms of two classes of special partial hooks associated with the young diagram characterizing the irreducible representation considered

  8. Introduction to orthogonal, symplectic and unitary representations of finite groups

    CERN Document Server

    Riehm, Carl R

    2011-01-01

    Orthogonal, symplectic and unitary representations of finite groups lie at the crossroads of two more traditional subjects of mathematics-linear representations of finite groups, and the theory of quadratic, skew symmetric and Hermitian forms-and thus inherit some of the characteristics of both. This book is written as an introduction to the subject and not as an encyclopaedic reference text. The principal goal is an exposition of the known results on the equivalence theory, and related matters such as the Witt and Witt-Grothendieck groups, over the "classical" fields-algebraically closed, rea

  9. Deformations of polyhedra and polygons by the unitary group

    Energy Technology Data Exchange (ETDEWEB)

    Livine, Etera R. [Laboratoire de Physique, ENS Lyon, CNRS-UMR 5672, 46 Allée d' Italie, Lyon 69007, France and Perimeter Institute, 31 Caroline St N, Waterloo, Ontario N2L 2Y5 (Canada)

    2013-12-15

    We introduce the set of framed (convex) polyhedra with N faces as the symplectic quotient C{sup 2N}//SU(2). A framed polyhedron is then parametrized by N spinors living in C{sup 2} satisfying suitable closure constraints and defines a usual convex polyhedron plus extra U(1) phases attached to each face. We show that there is a natural action of the unitary group U(N) on this phase space, which changes the shape of faces and allows to map any (framed) polyhedron onto any other with the same total (boundary) area. This identifies the space of framed polyhedra to the Grassmannian space U(N)/ (SU(2)×U(N−2)). We show how to write averages of geometrical observables (polynomials in the faces' area and the angles between them) over the ensemble of polyhedra (distributed uniformly with respect to the Haar measure on U(N)) as polynomial integrals over the unitary group and we provide a few methods to compute these integrals systematically. We also use the Itzykson-Zuber formula from matrix models as the generating function for these averages and correlations. In the quantum case, a canonical quantization of the framed polyhedron phase space leads to the Hilbert space of SU(2) intertwiners (or, in other words, SU(2)-invariant states in tensor products of irreducible representations). The total boundary area as well as the individual face areas are quantized as half-integers (spins), and the Hilbert spaces for fixed total area form irreducible representations of U(N). We define semi-classical coherent intertwiner states peaked on classical framed polyhedra and transforming consistently under U(N) transformations. And we show how the U(N) character formula for unitary transformations is to be considered as an extension of the Itzykson-Zuber to the quantum level and generates the traces of all polynomial observables over the Hilbert space of intertwiners. We finally apply the same formalism to two dimensions and show that classical (convex) polygons can be described in

  10. Minimal unitary realizations of exceptional U-duality groups and their subgroups as quasiconformal groups

    International Nuclear Information System (INIS)

    Gunaydin, Murat; Pavlyk, Oleksandr

    2005-01-01

    We study the minimal unitary representations of noncompact exceptional groups that arise as U-duality groups in extended supergravity theories. First we give the unitary realizations of the exceptional group E 8(-24) in SU*(8) as well as SU(6,2) covariant bases. E 8(-24) has E 7 x SU(2) as its maximal compact subgroup and is the U-duality group of the exceptional supergravity theory in d=3. For the corresponding U-duality group E 8(8) of the maximal supergravity theory the minimal realization was given. The minimal unitary realizations of all the lower rank noncompact exceptional groups can be obtained by truncation of those of E 8(-24) and E 8(8) . By further truncation one can obtain the minimal unitary realizations of all the groups of the 'Magic Triangle'. We give explicitly the minimal unitary realizations of the exceptional subgroups of E 8(-24) as well as other physically interesting subgroups. These minimal unitary realizations correspond, in general, to the quantization of their geometric actions as quasi-conformal groups. (author)

  11. An Informal Overview of the Unitary Group Approach

    International Nuclear Information System (INIS)

    Sonnad, V.; Escher, J.; Kruse, M.; Baker, R.

    2016-01-01

    The Unitary Groups Approach (UGA) is an elegant and conceptually unified approach to quantum structure calculations. It has been widely used in molecular structure calculations, and holds the promise of a single computational approach to structure calculations in a variety of different fields. We explore the possibility of extending the UGA to computations in atomic and nuclear structure as a simpler alternative to traditional Racah algebra-based approaches. We provide a simple introduction to the basic UGA and consider some of the issues in using the UGA with spin-dependent, multi-body Hamiltonians requiring multi-shell bases adapted to additional symmetries. While the UGA is perfectly capable of dealing with such problems, it is seen that the complexity rises dramatically, and the UGA is not at this time, a simpler alternative to Racah algebra-based approaches.

  12. The unitary-group formulation of quantum chemistry

    International Nuclear Information System (INIS)

    Campbell, L.L.

    1990-01-01

    The major part of this dissertation establishes group theoretical techniques that are applicable to the quantum-mechanical many-body atomic and molecular problems. Several matrix element evaluation methods for many-body states are developed. The generator commutation method using generator states is presented for the first time as a complete algorithm, and a computer implementation of the method is developed. A major result of this work is the development of a new method of calculation called the freeon tensor product (FTP) method. This method is much simpler and for many purposes superior to the GUGA procedure (graphical unitary group approach), widely used in configuration interaction calculations. This dissertation is also concerned with the prediction of atomic spectra. In principle spectra can be computed by the methods of ab initio quantum chemistry. In practice these computations are difficult, expensive, time consuming, and not uniformly successful. In this dissertation, the author employs a semi-empirical group theoretical analysis of discrete spectra is the exact analog of the Fourier analysis of continuous functions. In particular, he focuses on the spectra of atoms with incomplete p, d, and f shells. The formulas and techniques are derived in a fashion that apply equally well for more complex systems, as well as the isofreeon model of spherical nuclei

  13. Unitary group representations in Fock spaces with generalized exchange properties

    International Nuclear Information System (INIS)

    Liguori, A.

    1994-09-01

    The notion of second R-quantization is investigated, - a suitable deformation of the standard second quantization which properly takes into account the non-trivial exchange properties characterizing generalized statistics. The R-quantization of a class of unitary one-particle representations relevant for the description of symmetries is also performed. The Euclidean covariance of anyons is analyzed in this context. (author). 11 refs

  14. All unitary ray representations of the conformal group SU(2,2) with positive energy

    International Nuclear Information System (INIS)

    Mack, G.

    1975-12-01

    We find all those unitary irreducible representations of the infinitely - sheeted covering group G tilde of the conformal group SU(2,2)/Z 4 which have positive energy P 0 >= O. They are all finite component field representations and are labelled by dimension d and a finite dimensional irreducible representation (j 1 , j 2 ) of the Lorentz group SL(2C). They all decompose into a finite number of unitary irreducible representations of the Poincare subgroup with dilations. (orig.) [de

  15. Positive-definite functions and unitary representations of locally compact groups in a Hilbert space

    International Nuclear Information System (INIS)

    Gali, I.M.; Okb el-Bab, A.S.; Hassan, H.M.

    1977-08-01

    It is proved that the necessary and sufficient condition for the existence of an integral representation of a group of unitary operators in a Hilbert space is that it is positive-definite and continuous in some topology

  16. A unified approach to the minimal unitary realizations of noncompact groups and supergroups

    International Nuclear Information System (INIS)

    Guenaydin, Murat; Pavlyk, Oleksandr

    2006-01-01

    We study the minimal unitary representations of non-compact groups and supergroups obtained by quantization of their geometric realizations as quasi-conformal groups and supergroups. The quasi-conformal groups G leave generalized light-cones defined by a quartic norm invariant and have maximal rank subgroups of the form H x SL(2, R) such that G/H x SL(2, R) are para-quaternionic symmetric spaces. We give a unified formulation of the minimal unitary representations of simple non-compact groups of type A 2 , G 2 , D 4 , F 4 , E 6 , E 7 , E 8 and Sp(2n, R). The minimal unitary representations of Sp(2n, R) are simply the singleton representations and correspond to a degenerate limit of the unified construction. The minimal unitary representations of the other noncompact groups SU(m, n), SO(m, n), SO*(2n) and SL(m, R) are also given explicitly. We extend our formalism to define and construct the corresponding minimal representations of non-compact supergroups G whose even subgroups are of the form H x SL(2, R). If H is noncompact then the supergroup G does not admit any unitary representations, in general. The unified construction with H simple or Abelian leads to the minimal representations of G(3), F(4) and O Sp(n|2, R) (in the degenerate limit). The minimal unitary representations of O Sp(n|2, R) with even subgroups SO(n) x SL(2, R) are the singleton representations. We also give the minimal realization of the one parameter family of Lie superalgebras D(2, 1; σ)

  17. Gaussian elimination in split unitary groups with an application to public-key cryptography

    Directory of Open Access Journals (Sweden)

    Ayan Mahalanobis

    2017-07-01

    Full Text Available Gaussian elimination is used in special linear groups to solve the word problem. In this paper, we extend Gaussian elimination to split unitary groups. These algorithms have an application in building a public-key cryptosystem, we demonstrate that.

  18. Projective unitary-antiunitary representations of the Shubnikov space groups

    International Nuclear Information System (INIS)

    Broek, P.M. van den.

    1979-01-01

    Some mathematical aspects of the symmetry of a physical system in quantum mechanics are examined with special emphasis on the symmetry groups of charged particles in crystalline solids, the Shuknikov space groups. (Auth.)

  19. Topology of unitary groups and the prime orders of binomial coefficients

    Science.gov (United States)

    Duan, HaiBao; Lin, XianZu

    2017-09-01

    Let $c:SU(n)\\rightarrow PSU(n)=SU(n)/\\mathbb{Z}_{n}$ be the quotient map of the special unitary group $SU(n)$ by its center subgroup $\\mathbb{Z}_{n}$. We determine the induced homomorphism $c^{\\ast}:$ $H^{\\ast}(PSU(n))\\rightarrow H^{\\ast}(SU(n))$ on cohomologies by computing with the prime orders of binomial coefficients

  20. An Integral Representation of Standard Automorphic L Functions for Unitary Groups

    Directory of Open Access Journals (Sweden)

    Yujun Qin

    2007-01-01

    Full Text Available Let F be a number field, G a quasi-split unitary group of rank n. We show that given an irreducible cuspidal automorphic representation π of G(A, its (partial L function LS(s,π,σ can be represented by a Rankin-Selberg-type integral involving cusp forms of π, Eisenstein series, and theta series.

  1. Unitary representations of the fundamental group of orbifolds

    Indian Academy of Sciences (India)

    in Theorem 1.2 are topological, taking values in rational cohomological ..... this is the fundamental group defined using Galois theory of covering stacks of Y .... natural action of G := Z/mZ on T given by the action of Gm on L; by the choice of the.

  2. Matrix Elements of One- and Two-Body Operators in the Unitary Group Approach (I)-Formalism

    Institute of Scientific and Technical Information of China (English)

    DAI Lian-Rong; PAN Feng

    2001-01-01

    The tensor algebraic method is used to derive general one- and two-body operator matrix elements within the Un representations, which are useful in the unitary group approach to the configuration interaction problems of quantum many-body systems.

  3. Generalized spacetimes defined by cubic forms and the minimal unitary realizations of their quasiconformal groups

    International Nuclear Information System (INIS)

    Guenaydin, Murat; Pavlyk, Oleksandr

    2005-01-01

    We study the symmetries of generalized spacetimes and corresponding phase spaces defined by Jordan algebras of degree three. The generic Jordan family of formally real Jordan algebras of degree three describe extensions of the minkowskian spacetimes by an extra 'dilatonic' coordinate, whose rotation, Lorentz and conformal groups are SO(d-1), SO(d-1,1) x SO(1,1) and SO(d,2) x SO(2,1), respectively. The generalized spacetimes described by simple Jordan algebras of degree three correspond to extensions of minkowskian spacetimes in the critical dimensions (d = 3,4,6,10) by a dilatonic and extra commuting spinorial coordinates, respectively. Their rotation, Lorentz and conformal groups are those that occur in the first three rows of the Magic Square. The Freudenthal triple systems defined over these Jordan algebras describe conformally covariant phase spaces. Following hep-th/0008063, we give a unified geometric realization of the quasiconformal groups that act on their conformal phase spaces extended by an extra 'cocycle' coordinate. For the generic Jordan family the quasiconformal groups are SO(d+2,4), whose minimal unitary realizations are given. The minimal unitary representations of the quasiconformal groups F 4(4) , E 6(2) , E 7(-5) and E 8(-24) of the simple Jordan family were given in our earlier work

  4. A remark on the unitary group of a tensor product of n finite ...

    Indian Academy of Sciences (India)

    By using the method of quantum circuits in the theory of quantum computing as outlined in Nielsen and Chuang [2] and using a key lemma of Jaikumar [1] we show that every unitary operator on the tensor product H = H 1 ⊗ H 2 ⊗ … ⊗ H n can be expressed as a composition of a finite number of unitary operators living on ...

  5. Unitary group adapted state specific multireference perturbation theory: Formulation and pilot applications.

    Science.gov (United States)

    Sen, Avijit; Sen, Sangita; Samanta, Pradipta Kumar; Mukherjee, Debashis

    2015-04-05

    We present here a comprehensive account of the formulation and pilot applications of the second-order perturbative analogue of the recently proposed unitary group adapted state-specific multireference coupled cluster theory (UGA-SSMRCC), which we call as the UGA-SSMRPT2. We also discuss the essential similarities and differences between the UGA-SSMRPT2 and the allied SA-SSMRPT2. Our theory, like its parent UGA-SSMRCC formalism, is size-extensive. However, because of the noninvariance of the theory with respect to the transformation among the active orbitals, it requires the use of localized orbitals to ensure size-consistency. We have demonstrated the performance of the formalism with a set of pilot applications, exploring (a) the accuracy of the potential energy surface (PES) of a set of small prototypical difficult molecules in their various low-lying states, using natural, pseudocanonical and localized orbitals and compared the respective nonparallelity errors (NPE) and the mean average deviations (MAD) vis-a-vis the full CI results with the same basis; (b) the efficacy of localized active orbitals to ensure and demonstrate manifest size-consistency with respect to fragmentation. We found that natural orbitals lead to the best overall PES, as evidenced by the NPE and MAD values. The MRMP2 results for individual states and of the MCQDPT2 for multiple states displaying avoided curve crossings are uniformly poorer as compared with the UGA-SSMRPT2 results. The striking aspect of the size-consistency check is the complete insensitivity of the sum of fragment energies with given fragment spin-multiplicities, which are obtained as the asymptotic limit of super-molecules with different coupled spins. © 2015 Wiley Periodicals, Inc.

  6. On Parametrization of the Linear GL(4,C) and Unitary SU(4) Groups in Terms of Dirac Matrices

    Science.gov (United States)

    Red'Kov, Victor M.; Bogush, Andrei A.; Tokarevskaya, Natalia G.

    2008-02-01

    Parametrization of 4 × 4-matrices G of the complex linear group GL(4,C) in terms of four complex 4-vector parameters (k,m,n,l) is investigated. Additional restrictions separating some subgroups of GL(4,C) are given explicitly. In the given parametrization, the problem of inverting any 4 × 4 matrix G is solved. Expression for determinant of any matrix G is found: det G = F(k,m,n,l). Unitarity conditions G+ = G-1 have been formulated in the form of non-linear cubic algebraic equations including complex conjugation. Several simplest solutions of these unitarity equations have been found: three 2-parametric subgroups G1, G2, G3 - each of subgroups consists of two commuting Abelian unitary groups; 4-parametric unitary subgroup consis! ting of a product of a 3-parametric group isomorphic SU(2) and 1-parametric Abelian group. The Dirac basis of generators Λk, being of Gell-Mann type, substantially differs from the basis λi used in the literature on SU(4) group, formulas relating them are found - they permit to separate SU(3) subgroup in SU(4). Special way to list 15 Dirac generators of GL(4,C) can be used {Λk} = {μiÅνjÅ(μiVνj = KÅL ÅM )}, which permit to factorize SU(4) transformations according to S = eiaμ eibνeikKeilLeimM, where two first factors commute with each other and are isomorphic to SU(2) group, the three last ones are 3-parametric groups, each of them consisting of three Abelian commuting unitary subgroups. Besides, the structure of fifteen Dirac matrices Λk permits to separate twenty 3-parametric subgroups in SU(4) isomorphic to SU(2); those subgroups might be used as bigger elementary blocks in constructing of a general transformation SU(4). It is shown how one can specify the present approach for the pseudounitary group SU(2,2) and SU(3,1).

  7. Generic features of the dynamics of complex open quantum systems: statistical approach based on averages over the unitary group.

    Science.gov (United States)

    Gessner, Manuel; Breuer, Heinz-Peter

    2013-04-01

    We obtain exact analytic expressions for a class of functions expressed as integrals over the Haar measure of the unitary group in d dimensions. Based on these general mathematical results, we investigate generic dynamical properties of complex open quantum systems, employing arguments from ensemble theory. We further generalize these results to arbitrary eigenvalue distributions, allowing a detailed comparison of typical regular and chaotic systems with the help of concepts from random matrix theory. To illustrate the physical relevance and the general applicability of our results we present a series of examples related to the fields of open quantum systems and nonequilibrium quantum thermodynamics. These include the effect of initial correlations, the average quantum dynamical maps, the generic dynamics of system-environment pure state entanglement and, finally, the equilibration of generic open and closed quantum systems.

  8. Unitary unified field theories

    International Nuclear Information System (INIS)

    Sudarshan, E.C.G.

    1976-01-01

    This is an informal exposition of some recent developments. Starting with an examination of the universality of electromagnetic and weak interactions, the attempts at their unification are outlined. The theory of unitary renormalizable self-coupled vector mesons with dynamical sources is formulated for a general group. With masses introduced as variable parameters it is shown that the theory so defined is indeed unitary. Diagrammatic rules are developed in terms of a chosen set of fictitious particles. A number of special examples are outlined including a theory with strongly interacting vector and axial vector mesons and weak mesons. Applications to weak interactions of strange particles is briefly outlined. (Auth.)

  9. Evenly distributed unitaries: On the structure of unitary designs

    International Nuclear Information System (INIS)

    Gross, D.; Audenaert, K.; Eisert, J.

    2007-01-01

    We clarify the mathematical structure underlying unitary t-designs. These are sets of unitary matrices, evenly distributed in the sense that the average of any tth order polynomial over the design equals the average over the entire unitary group. We present a simple necessary and sufficient criterion for deciding if a set of matrices constitutes a design. Lower bounds for the number of elements of 2-designs are derived. We show how to turn mutually unbiased bases into approximate 2-designs whose cardinality is optimal in leading order. Designs of higher order are discussed and an example of a unitary 5-design is presented. We comment on the relation between unitary and spherical designs and outline methods for finding designs numerically or by searching character tables of finite groups. Further, we sketch connections to problems in linear optics and questions regarding typical entanglement

  10. Data structure techniques for the graphical special unitary group approach to arbitrary spin representations

    International Nuclear Information System (INIS)

    Kent, R.D.; Schlesinger, M.

    1987-01-01

    For the purpose of computing matrix elements of quantum mechanical operators in complex N-particle systems it is necessary that as much of each irreducible representation be stored in high-speed memory as possible in order to achieve the highest possible rate of computations. A graph theoretic approach to the representation of N-particle systems involving arbitrary single-particle spin is presented. The method involves a generalization of a technique employed by Shavitt in developing the graphical group approach (GUGA) to electronic spin-orbitals. The methods implemented in GENDRT and DRTDIM overcome many deficiencies inherent in other approaches, particularly with respect to utilization of memory resources, computational efficiency in the recognition and evaluation of non-zero matrix elements of certain group theoretic operators and complete labelling of all the basis states of the permutation symmetry (S N ) adapted irreducible representations of SU(n) groups. (orig.)

  11. Collective pairing states and non-unitary representations of the quasi-spin group

    International Nuclear Information System (INIS)

    Lorazo, B.

    1975-01-01

    Some months ago, a parameter-dependent (psub(i))-quasi-spin group was presented by the author. The interest for considering such a group was partly suggested by the possibility of describing, with a reasonable accuracy, the ground state of even spherical nuclei with one closed shell by a n-pair wave function [Σsub(i)psub(i)Ssub(+)sup(i)] sup(n)/0> depending upon the real parameters psub(i) (the operators Ssub(+)sup(i) are the one-orbit quasi-spin operators). It was stated that the formalism would provide the exact mathematical framework to discuss the generalized seniority quantum number. The relevance of this point of view has been vigorously questioned. For the author of the present paper, the arguments given are based on misinterpretation of some unconventional and possibly ambiguous aspects of the work. Proof is given below that group theoretical considerations can effectively be used in place of standard commutator techniques. (Auth.)

  12. Shape-driven graphical unitary group approach to the electron correlation problem. Application to the ethylene molecule

    International Nuclear Information System (INIS)

    Saxe, P.; Fox, D.J.; Schaefer, H.F. III; Handy, N.C.

    1982-01-01

    A new method for the approximate solution of Schroedinger's equation for many electron molecular systems is outlined. The new method is based on the unitary group approach (UGA) and exploits in particular the shape of loops appearing in Shavitt's graphical representation for the UGA. The method is cast in the form of a direct CI, makes use of Siegbahn's external space simplifications, and is suitable for very large configuration interaction (CI) wave functions. The ethylene molecule was chosen, as a prototype of unsaturated organic molecules, for the variational study of genuine many (i.e.,>2) body correlation effects. With a double zeta plus polarization basis set, the largest CI included all valence electron single and double excitations with respect to a 703 configuration natural orbital reference function. This variational calculation, involving 1 046 758 spin- and space-adapted 1 A/sub g/ configurations, was carried out on a minicomputer. Triple excitations are found to contribute 2.3% of the correlation energy and quadruple excitations 6.4%

  13. Coherent states of the real symplectic group in a complex analytic parametrization. I. Unitary-operator coherent states

    International Nuclear Information System (INIS)

    Quesne, C.

    1986-01-01

    In the present series of papers, the coherent states of Sp(2d,R), corresponding to the positive discrete series irreducible representations 1 +n/2> encountered in physical applications, are analyzed in detail with special emphasis on those of Sp(4,R) and Sp(6,R). The present paper discusses the unitary-operator coherent states, as defined by Klauder, Perelomov, and Gilmore. These states are parametrized by the points of the coset space Sp(2d,R)/H, where H is the stability group of the Sp(2d,R) irreducible representation lowest weight state, chosen as the reference state, and depends upon the relative values of lambda 1 ,...,lambda/sub d/, subject to the conditions lambda 1 > or =lambda 2 > or = x x x > or =lambda/sub d/> or =0. A parametrization of Sp(2d,R)/H corresponding to a factorization of the latter into a product of coset spaces Sp(2d,R)/U(d) and U(d)/H is chosen. The overlap of two coherent states is calculated, the action of the Sp(2d,R) generators on the coherent states is determined, and the explicit form of the unity resolution relation satisfied by the coherent states in the representation space of the irreducible representation is obtained. The Hilbert space of analytic functions arising from the coherent state representation is studied in detail. Finally, some applications of the formalism developed in the present paper are outlined

  14. Theory of discretely decomposable restrictions of unitary representations of semisimple lie groups and some applications

    CERN Document Server

    Kobayashi, T

    2002-01-01

    Based on an embedding formula of the CAR algebra into the Cuntz algebra ${\\mathcal O}_{2^p}$, properties of the CAR algebra are studied in detail by restricting those of the Cuntz algebra. Various $\\ast$-endomorphisms of the Cuntz algebra are explicitly constructed, and transcribed into those of the CAR algebra. In particular, a set of $\\ast$-endomorphisms of the CAR algebra into its even subalgebra are constructed. According to branching formulae, which are obtained by composing representations and $\\ast$-endomorphisms, it is shown that a KMS state of the CAR algebra is obtained through the above even-CAR endomorphisms from the Fock representation. A $U(2^p)$ action on ${\\mathcal O}_{2^p}$ induces $\\ast$-automorphisms of the CAR algebra, which are given by nonlinear transformations expressed in terms of polynomials in generators. It is shown that, among such $\\ast$-automorphisms of the CAR algebra, there exists a family of one-parameter groups of $\\ast$-automorphisms describing time evolutions of fermions, i...

  15. Loop-driven graphical unitary group approach to the electron correlation problem, including configuration interaction energy gradients

    International Nuclear Information System (INIS)

    Brooks, B.R.

    1979-09-01

    The Graphical Unitary Group Approach (GUGA) was cast into an extraordinarily powerful form by restructuring the Hamiltonian in terms of loop types. This restructuring allows the adoption of the loop-driven formulation which illuminates vast numbers of previously unappreciated relationships between otherwise distinct Hamiltonian matrix elements. The theoretical/methodological contributions made here include the development of the loop-driven formula generation algorithm, a solution of the upper walk problem used to develop a loop breakdown algorithm, the restriction of configuration space employed to the multireference interacting space, and the restructuring of the Hamiltonian in terms of loop types. Several other developments are presented and discussed. Among these developments are the use of new segment coefficients, improvements in the loop-driven algorithm, implicit generation of loops wholly within the external space adapted within the framework of the loop-driven methodology, and comparisons of the diagonalization tape method to the direct method. It is also shown how it is possible to implement the GUGA method without the time-consuming full (m 5 ) four-index transformation. A particularly promising new direction presented here involves the use of the GUGA methodology to obtain one-electron and two-electron density matrices. Once these are known, analytical gradients (first derivatives) of the CI potential energy are easily obtained. Several test calculations are examined in detail to illustrate the unique features of the method. Also included is a calculation on the asymmetric 2 1 A' state of SO 2 with 23,613 configurations to demonstrate methods for the diagonalization of very large matrices on a minicomputer. 6 figures, 6 tables

  16. Unitary symmetry, combinatorics, and special functions

    Energy Technology Data Exchange (ETDEWEB)

    Louck, J.D.

    1996-12-31

    From 1967 to 1994, Larry Biedenham and I collaborated on 35 papers on various aspects of the general unitary group, especially its unitary irreducible representations and Wigner-Clebsch-Gordan coefficients. In our studies to unveil comprehensible structures in this subject, we discovered several nice results in special functions and combinatorics. The more important of these will be presented and their present status reviewed.

  17. Unitary field theories

    International Nuclear Information System (INIS)

    Bergmann, P.G.

    1980-01-01

    A problem of construction of the unitary field theory is discussed. The preconditions of the theory are briefly described. The main attention is paid to the geometrical interpretation of physical fields. The meaning of the conceptions of diversity and exfoliation is elucidated. Two unitary field theories are described: the Weyl conformic geometry and Calitzy five-dimensioned theory. It is proposed to consider supersymmetrical theories as a new approach to the problem of a unitary field theory. It is noted that the supergravitational theories are really unitary theories, since the fields figuring there do not assume invariant expansion

  18. Bosonic construction of the Lie algebras of some non-compact groups appearing in supergravity theories and their oscillator-like unitary representations

    International Nuclear Information System (INIS)

    Guenaydin, M.; Saclioglu, C.

    1981-06-01

    We give a construction of the Lie algebras of the non-compact groups appearing in four dimensional supergravity theories in terms of boson operators. Our construction parallels very closely their emergence in supergravity and is an extension of the well-known construction of the Lie algebras of the non-compact groups Sp(2n,IR) and SO(2n) from boson operators transforming like a fundamental representation of their maximal compact subgroup U(n). However this extension is non-trivial only for n >= 4 and stops at n = 8 leading to the Lie algebras of SU(4) x SU(1,1), SU(5,1), SO(12) and Esub(7(7)). We then give a general construction of an infinite class of unitary irreducible representations of the respective non-compact groups (except for Esub(7(7)) and SO(12) obtained from the extended construction). We illustrate our construction with the examples of SU(5,1) and SO(12). (orig.)

  19. Leptonic unitary triangles and boomerangs

    International Nuclear Information System (INIS)

    Dueck, Alexander; Rodejohann, Werner; Petcov, Serguey T.

    2010-01-01

    We review the idea of leptonic unitary triangles and extend the concept of the recently proposed unitary boomerangs to the lepton sector. Using a convenient parametrization of the lepton mixing, we provide approximate expressions for the side lengths and the angles of the six different triangles and give examples of leptonic unitary boomerangs. Possible applications of the leptonic unitary boomerangs are also briefly discussed.

  20. Application of the graphical unitary group approach to the energy second derivative for CI wave functions via the coupled perturbed CI equations

    International Nuclear Information System (INIS)

    Fox, D.J.

    1983-10-01

    Analytic derivatives of the potential energy for Self-Consistent-Field (SCF) wave functions have been developed in recent years and found to be useful tools. The first derivative for configuration interaction (CI) wave functions is also available. This work details the extension of analytic methods to energy second derivatives for CI wave functions. The principal extension required for second derivatives is evaluation of the first order change in the CI wave function with respect to a nuclear perturbation. The shape driven graphical unitary group approach (SDGUGA) direct CI program was adapted to evaluate this term via the coupled-perturbed CI equations. Several iterative schemes are compared for use in solving these equations. The pilot program makes no use of molecular symmetry but the timing results show that utilization of molecular symmetry is desirable. The principles for defining and solving a set of symmetry adapted equations are discussed. Evaluation of the second derivative also requires the solution of the second order coupled-perturbed Hartree-Fock equations to obtain the correction to the molecular orbitals due to the nuclear perturbation. This process takes a consistently higher percentage of the computation time than for the first order equations alone and a strategy for its reduction is discussed

  1. On random unitary channels

    International Nuclear Information System (INIS)

    Audenaert, Koenraad M R; Scheel, Stefan

    2008-01-01

    In this paper, we provide necessary and sufficient conditions for a completely positive trace-preserving (CPT) map to be decomposable into a convex combination of unitary maps. Additionally, we set out to define a proper distance measure between a given CPT map and the set of random unitary maps, and methods for calculating it. In this way one could determine whether non-classical error mechanisms such as spontaneous decay or photon loss dominate over classical uncertainties, for example, in a phase parameter. The present paper is a step towards achieving this goal

  2. Optimal quantum learning of a unitary transformation

    International Nuclear Information System (INIS)

    Bisio, Alessandro; Chiribella, Giulio; D'Ariano, Giacomo Mauro; Facchini, Stefano; Perinotti, Paolo

    2010-01-01

    We address the problem of learning an unknown unitary transformation from a finite number of examples. The problem consists in finding the learning machine that optimally emulates the examples, thus reproducing the unknown unitary with maximum fidelity. Learning a unitary is equivalent to storing it in the state of a quantum memory (the memory of the learning machine) and subsequently retrieving it. We prove that, whenever the unknown unitary is drawn from a group, the optimal strategy consists in a parallel call of the available uses followed by a 'measure-and-rotate' retrieving. Differing from the case of quantum cloning, where the incoherent 'measure-and-prepare' strategies are typically suboptimal, in the case of learning the 'measure-and-rotate' strategy is optimal even when the learning machine is asked to reproduce a single copy of the unknown unitary. We finally address the problem of the optimal inversion of an unknown unitary evolution, showing also in this case the optimality of the 'measure-and-rotate' strategies and applying our result to the optimal approximate realignment of reference frames for quantum communication.

  3. Unitary Transformation in Quantum Teleportation

    International Nuclear Information System (INIS)

    Wang Zhengchuan

    2006-01-01

    In the well-known treatment of quantum teleportation, the receiver should convert the state of his EPR particle into the replica of the unknown quantum state by one of four possible unitary transformations. However, the importance of these unitary transformations must be emphasized. We will show in this paper that the receiver cannot transform the state of his particle into an exact replica of the unknown state which the sender wants to transfer if he has not a proper implementation of these unitary transformations. In the procedure of converting state, the inevitable coupling between EPR particle and environment which is needed by the implementation of unitary transformations will reduce the accuracy of the replica.

  4. Entanglement-continuous unitary transformations

    Energy Technology Data Exchange (ETDEWEB)

    Sahin, Serkan; Orus, Roman [Institute of Physics, Johannes Gutenberg University, 55099 Mainz (Germany)

    2016-07-01

    In this talk we present a new algorithm for quantum many-body systems using continuous unitary transformations (CUT) and tensor networks (TNs). With TNs we are able to approximate the solution to the flow equations that lie at the heart of continuous unitary transformations. We call this method Entanglement-Continuous Unitary Transformations (eCUT). It allows us to compute expectation values of local observables as well as tensor network representations of ground states and low-energy excited states. An implementation of the method is shown for 1d systems using matrix product operators. We show preliminary results for the 1d transverse-field Ising model to demonstrate the feasibility of the method.

  5. Piaget's Egocentrism: A Unitary Construct?

    Science.gov (United States)

    Ruthven, Avis J.; Cunningham, William L.

    In order to determine whether egocentrism can be conceptualized as a unitary construct, 100 children (51 four-year-olds, 37 five-year-olds, and 12 six-year-olds) were administered a visual/spatial perspective task, a cognitive/communicative task, and an affective task. All tasks were designed to measure different facets of egocentrism. The 50…

  6. Inclusion of orbital relaxation and correlation through the unitary group adapted open shell coupled cluster theory using non-relativistic and scalar relativistic Hamiltonians to study the core ionization potential of molecules containing light to medium-heavy elements

    Science.gov (United States)

    Sen, Sangita; Shee, Avijit; Mukherjee, Debashis

    2018-02-01

    The orbital relaxation attendant on ionization is particularly important for the core electron ionization potential (core IP) of molecules. The Unitary Group Adapted State Universal Coupled Cluster (UGA-SUMRCC) theory, recently formulated and implemented by Sen et al. [J. Chem. Phys. 137, 074104 (2012)], is very effective in capturing orbital relaxation accompanying ionization or excitation of both the core and the valence electrons [S. Sen et al., Mol. Phys. 111, 2625 (2013); A. Shee et al., J. Chem. Theory Comput. 9, 2573 (2013)] while preserving the spin-symmetry of the target states and using the neutral closed-shell spatial orbitals of the ground state. Our Ansatz invokes a normal-ordered exponential representation of spin-free cluster-operators. The orbital relaxation induced by a specific set of cluster operators in our Ansatz is good enough to eliminate the need for different sets of orbitals for the ground and the core-ionized states. We call the single configuration state function (CSF) limit of this theory the Unitary Group Adapted Open-Shell Coupled Cluster (UGA-OSCC) theory. The aim of this paper is to comprehensively explore the efficacy of our Ansatz to describe orbital relaxation, using both theoretical analysis and numerical performance. Whenever warranted, we also make appropriate comparisons with other coupled-cluster theories. A physically motivated truncation of the chains of spin-free T-operators is also made possible by the normal-ordering, and the operational resemblance to single reference coupled-cluster theory allows easy implementation. Our test case is the prediction of the 1s core IP of molecules containing a single light- to medium-heavy nucleus and thus, in addition to demonstrating the orbital relaxation, we have addressed the scalar relativistic effects on the accuracy of the IPs by using a hierarchy of spin-free Hamiltonians in conjunction with our theory. Additionally, the contribution of the spin-free component of the two

  7. Inclusion of orbital relaxation and correlation through the unitary group adapted open shell coupled cluster theory using non-relativistic and scalar relativistic Hamiltonians to study the core ionization potential of molecules containing light to medium-heavy elements.

    Science.gov (United States)

    Sen, Sangita; Shee, Avijit; Mukherjee, Debashis

    2018-02-07

    The orbital relaxation attendant on ionization is particularly important for the core electron ionization potential (core IP) of molecules. The Unitary Group Adapted State Universal Coupled Cluster (UGA-SUMRCC) theory, recently formulated and implemented by Sen et al. [J. Chem. Phys. 137, 074104 (2012)], is very effective in capturing orbital relaxation accompanying ionization or excitation of both the core and the valence electrons [S. Sen et al., Mol. Phys. 111, 2625 (2013); A. Shee et al., J. Chem. Theory Comput. 9, 2573 (2013)] while preserving the spin-symmetry of the target states and using the neutral closed-shell spatial orbitals of the ground state. Our Ansatz invokes a normal-ordered exponential representation of spin-free cluster-operators. The orbital relaxation induced by a specific set of cluster operators in our Ansatz is good enough to eliminate the need for different sets of orbitals for the ground and the core-ionized states. We call the single configuration state function (CSF) limit of this theory the Unitary Group Adapted Open-Shell Coupled Cluster (UGA-OSCC) theory. The aim of this paper is to comprehensively explore the efficacy of our Ansatz to describe orbital relaxation, using both theoretical analysis and numerical performance. Whenever warranted, we also make appropriate comparisons with other coupled-cluster theories. A physically motivated truncation of the chains of spin-free T-operators is also made possible by the normal-ordering, and the operational resemblance to single reference coupled-cluster theory allows easy implementation. Our test case is the prediction of the 1s core IP of molecules containing a single light- to medium-heavy nucleus and thus, in addition to demonstrating the orbital relaxation, we have addressed the scalar relativistic effects on the accuracy of the IPs by using a hierarchy of spin-free Hamiltonians in conjunction with our theory. Additionally, the contribution of the spin-free component of the two

  8. Teleportation of M-Qubit Unitary Operations

    Institute of Scientific and Technical Information of China (English)

    郑亦庄; 顾永建; 郭光灿

    2002-01-01

    We discuss teleportation of unitary operations on a two-qubit in detail, then generalize the bidirectional state teleportation scheme from one-qubit to M-qubit unitary operations. The resources required for the optimal implementation of teleportation of an M-qubit unitary operation using a bidirectional state teleportation scheme are given.

  9. Unitary Housing Regimes in Transition

    DEFF Research Database (Denmark)

    Bengtsson, Bo; Jensen, Lotte

    2013-01-01

    Path dependence is strong in housing institutions and policy. In both Denmark and Sweden, today’s universal and ‘unitary’ (Kemeny) housing regimes can be traced back to institutions that were introduced fifty years back in history or more. Recently, universal and unitary housing systems...... in Scandinavia, and elsewhere, are under challenge from strong political and economic forces. These challenges can be summarized as economic cutbacks, privatization and Europeanization. Although both the Danish and the Swedish housing system are universal and unitary in character, they differ considerably...... in institutional detail. Both systems have corporatist features, however in Denmark public housing is based on local tenant democracy and control, and in Sweden on companies owned and controlled by the municipalities, combined with a centralized system of rent negotiations. In the paper the present challenges...

  10. Unitary Root Music and Unitary Music with Real-Valued Rank Revealing Triangular Factorization

    Science.gov (United States)

    2010-06-01

    AFRL-RY-WP-TP-2010-1213 UNITARY ROOT MUSIC AND UNITARY MUSIC WITH REAL-VALUED RANK REVEALING TRIANGULAR FACTORIZATION (Postprint) Nizar...DATES COVERED (From - To) June 2010 Journal Article Postprint 08 September 2006 – 31 August 2009 4. TITLE AND SUBTITLE UNITARY ROOT MUSIC AND...UNITARY MUSIC WITH REAL-VALUED RANK REVEALING TRIANGULAR FACTORIZATION (Postprint) 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA8650-05-D-1912-0007 5c

  11. On Investigating GMRES Convergence using Unitary Matrices

    Czech Academy of Sciences Publication Activity Database

    Duintjer Tebbens, Jurjen; Meurant, G.; Sadok, H.; Strakoš, Z.

    2014-01-01

    Roč. 450, 1 June (2014), s. 83-107 ISSN 0024-3795 Grant - others:GA AV ČR(CZ) M100301201; GA MŠk(CZ) LL1202 Institutional support: RVO:67985807 Keywords : GMRES convergence * unitary matrices * unitary spectra * normal matrices * Krylov residual subspace * Schur parameters Subject RIV: BA - General Mathematics Impact factor: 0.939, year: 2014

  12. A unitary correlation operator method

    International Nuclear Information System (INIS)

    Feldmeier, H.; Neff, T.; Roth, R.; Schnack, J.

    1997-09-01

    The short range repulsion between nucleons is treated by a unitary correlation operator which shifts the nucleons away from each other whenever their uncorrelated positions are within the repulsive core. By formulating the correlation as a transformation of the relative distance between particle pairs, general analytic expressions for the correlated wave functions and correlated operators are given. The decomposition of correlated operators into irreducible n-body operators is discussed. The one- and two-body-irreducible parts are worked out explicitly and the contribution of three-body correlations is estimated to check convergence. Ground state energies of nuclei up to mass number A=48 are calculated with a spin-isospin-dependent potential and single Slater determinants as uncorrelated states. They show that the deduced energy-and mass-number-independent correlated two-body Hamiltonian reproduces all ''exact'' many-body calculations surprisingly well. (orig.)

  13. New unitary affine-Virasoro constructions

    International Nuclear Information System (INIS)

    Halpern, M.B.; Kiritsis, E.; Obers, N.A.; Poratti, M.; Yamron, J.P.

    1990-01-01

    This paper reports on a quasi-systematic investigation of the Virasoro master equation. The space of all affine-Virasoro constructions is organized by K-conjugation into affine-Virasoro nests, and an estimate of the dimension of the space shows that most solutions await discovery. With consistent ansatze for the master equation, large classes of new unitary nests are constructed, including quadratic deformation nests with continuous conformal weights, and unitary irrational central charge nests, which may dominate unitary rational central charge on compact g

  14. The unitary space of particle internal states

    International Nuclear Information System (INIS)

    Perjes, Z.

    1978-09-01

    A relativistic theory of particle internal properties has been developed. Suppressing space-time information, internal wave functions and -observables are constructed in a 3-complex-dimensional space. The quantum numbers of a spinning point particle in this unitary space correspond with those of a low-mass hadron. Unitary space physics is linked with space-time notions via the Penrose theory of twistors, where new flavors may be represented by many-twistor systems. It is shown here that a four-twistor particle fits into the unitary space picture as a system of two points with equal masses and oppositely pointing unitary spins. Quantum states fall into the ISU(3) irreducible representations discovered by Sparling and the author. Full details of the computation involving SU(3) recoupling techniques are given. (author)

  15. Chiral unitary theory: Application to nuclear problems

    Indian Academy of Sciences (India)

    Chiral unitary theory: Application to nuclear problems ... Physics Department, Nara Women University, Nara, Japan. 5 ... RCNP, Osaka University, Osaka, Japan ...... We acknowledge partial financial support from the DGICYT under contract ...

  16. Non-unitary probabilistic quantum computing

    Science.gov (United States)

    Gingrich, Robert M.; Williams, Colin P.

    2004-01-01

    We present a method for designing quantum circuits that perform non-unitary quantum computations on n-qubit states probabilistically, and give analytic expressions for the success probability and fidelity.

  17. Quantum unitary dynamics in cosmological spacetimes

    International Nuclear Information System (INIS)

    Cortez, Jerónimo; Mena Marugán, Guillermo A.; Velhinho, José M.

    2015-01-01

    We address the question of unitary implementation of the dynamics for scalar fields in cosmological scenarios. Together with invariance under spatial isometries, the requirement of a unitary evolution singles out a rescaling of the scalar field and a unitary equivalence class of Fock representations for the associated canonical commutation relations. Moreover, this criterion provides as well a privileged quantization for the unscaled field, even though the associated dynamics is not unitarily implementable in that case. We discuss the relation between the initial data that determine the Fock representations in the rescaled and unscaled descriptions, and clarify that the S-matrix is well defined in both cases. In our discussion, we also comment on a recently proposed generalized notion of unitary implementation of the dynamics, making clear the difference with the standard unitarity criterion and showing that the two approaches are not equivalent.

  18. Quantum unitary dynamics in cosmological spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Cortez, Jerónimo, E-mail: jacq@ciencias.unam.mx [Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, México D.F. 04510 (Mexico); Mena Marugán, Guillermo A., E-mail: mena@iem.cfmac.csic.es [Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, 28006 Madrid (Spain); Velhinho, José M., E-mail: jvelhi@ubi.pt [Departamento de Física, Faculdade de Ciências, Universidade da Beira Interior, R. Marquês D’Ávila e Bolama, 6201-001 Covilhã (Portugal)

    2015-12-15

    We address the question of unitary implementation of the dynamics for scalar fields in cosmological scenarios. Together with invariance under spatial isometries, the requirement of a unitary evolution singles out a rescaling of the scalar field and a unitary equivalence class of Fock representations for the associated canonical commutation relations. Moreover, this criterion provides as well a privileged quantization for the unscaled field, even though the associated dynamics is not unitarily implementable in that case. We discuss the relation between the initial data that determine the Fock representations in the rescaled and unscaled descriptions, and clarify that the S-matrix is well defined in both cases. In our discussion, we also comment on a recently proposed generalized notion of unitary implementation of the dynamics, making clear the difference with the standard unitarity criterion and showing that the two approaches are not equivalent.

  19. Probabilistic implementation of Hadamard and unitary gates

    International Nuclear Information System (INIS)

    Song Wei; Yang Ming; Cao Zhuoliang

    2004-01-01

    We show that the Hadamard and unitary gates could be implemented by a unitary evolution together with a measurement for any unknown state chosen from a set A={ vertical bar Ψi>, vertical bar Ψ-bar i>} (i=1,2) if and only if vertical bar Ψ1>, vertical bar Ψ2>, vertical bar Ψ-bar 1>, vertical bar Ψ-bar 2> are linearly independent. We also derive the best transformation efficiencies

  20. Entanglement quantification by local unitary operations

    Energy Technology Data Exchange (ETDEWEB)

    Monras, A.; Giampaolo, S. M.; Gualdi, G.; Illuminati, F. [Dipartimento di Matematica e Informatica, Universita degli Studi di Salerno, CNISM, Unita di Salerno, and INFN, Sezione di Napoli-Gruppo Collegato di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy); Adesso, G.; Davies, G. B. [School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)

    2011-07-15

    Invariance under local unitary operations is a fundamental property that must be obeyed by every proper measure of quantum entanglement. However, this is not the only aspect of entanglement theory where local unitary operations play a relevant role. In the present work we show that the application of suitable local unitary operations defines a family of bipartite entanglement monotones, collectively referred to as ''mirror entanglement.'' They are constructed by first considering the (squared) Hilbert-Schmidt distance of the state from the set of states obtained by applying to it a given local unitary operator. To the action of each different local unitary operator there corresponds a different distance. We then minimize these distances over the sets of local unitary operations with different spectra, obtaining an entire family of different entanglement monotones. We show that these mirror-entanglement monotones are organized in a hierarchical structure, and we establish the conditions that need to be imposed on the spectrum of a local unitary operator for the associated mirror entanglement to be faithful, i.e., to vanish in and only in separable pure states. We analyze in detail the properties of one particularly relevant member of the family, the ''stellar mirror entanglement'' associated with the traceless local unitary operations with nondegenerate spectra and equispaced eigenvalues in the complex plane. This particular measure generalizes the original analysis of S. M. Giampaolo and F. Illuminati [Phys. Rev. A 76, 042301 (2007)], valid for qubits and qutrits. We prove that the stellar entanglement is a faithful bipartite entanglement monotone in any dimension and that it is bounded from below by a function proportional to the linear entropy and from above by the linear entropy itself, coinciding with it in two- and three-dimensional spaces.

  1. Entanglement quantification by local unitary operations

    Science.gov (United States)

    Monras, A.; Adesso, G.; Giampaolo, S. M.; Gualdi, G.; Davies, G. B.; Illuminati, F.

    2011-07-01

    Invariance under local unitary operations is a fundamental property that must be obeyed by every proper measure of quantum entanglement. However, this is not the only aspect of entanglement theory where local unitary operations play a relevant role. In the present work we show that the application of suitable local unitary operations defines a family of bipartite entanglement monotones, collectively referred to as “mirror entanglement.” They are constructed by first considering the (squared) Hilbert-Schmidt distance of the state from the set of states obtained by applying to it a given local unitary operator. To the action of each different local unitary operator there corresponds a different distance. We then minimize these distances over the sets of local unitary operations with different spectra, obtaining an entire family of different entanglement monotones. We show that these mirror-entanglement monotones are organized in a hierarchical structure, and we establish the conditions that need to be imposed on the spectrum of a local unitary operator for the associated mirror entanglement to be faithful, i.e., to vanish in and only in separable pure states. We analyze in detail the properties of one particularly relevant member of the family, the “stellar mirror entanglement” associated with the traceless local unitary operations with nondegenerate spectra and equispaced eigenvalues in the complex plane. This particular measure generalizes the original analysis of S. M. Giampaolo and F. Illuminati [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.76.042301 76, 042301 (2007)], valid for qubits and qutrits. We prove that the stellar entanglement is a faithful bipartite entanglement monotone in any dimension and that it is bounded from below by a function proportional to the linear entropy and from above by the linear entropy itself, coinciding with it in two- and three-dimensional spaces.

  2. Entanglement quantification by local unitary operations

    International Nuclear Information System (INIS)

    Monras, A.; Giampaolo, S. M.; Gualdi, G.; Illuminati, F.; Adesso, G.; Davies, G. B.

    2011-01-01

    Invariance under local unitary operations is a fundamental property that must be obeyed by every proper measure of quantum entanglement. However, this is not the only aspect of entanglement theory where local unitary operations play a relevant role. In the present work we show that the application of suitable local unitary operations defines a family of bipartite entanglement monotones, collectively referred to as ''mirror entanglement.'' They are constructed by first considering the (squared) Hilbert-Schmidt distance of the state from the set of states obtained by applying to it a given local unitary operator. To the action of each different local unitary operator there corresponds a different distance. We then minimize these distances over the sets of local unitary operations with different spectra, obtaining an entire family of different entanglement monotones. We show that these mirror-entanglement monotones are organized in a hierarchical structure, and we establish the conditions that need to be imposed on the spectrum of a local unitary operator for the associated mirror entanglement to be faithful, i.e., to vanish in and only in separable pure states. We analyze in detail the properties of one particularly relevant member of the family, the ''stellar mirror entanglement'' associated with the traceless local unitary operations with nondegenerate spectra and equispaced eigenvalues in the complex plane. This particular measure generalizes the original analysis of S. M. Giampaolo and F. Illuminati [Phys. Rev. A 76, 042301 (2007)], valid for qubits and qutrits. We prove that the stellar entanglement is a faithful bipartite entanglement monotone in any dimension and that it is bounded from below by a function proportional to the linear entropy and from above by the linear entropy itself, coinciding with it in two- and three-dimensional spaces.

  3. Unitary representations of basic classical Lie superalgebras

    International Nuclear Information System (INIS)

    Gould, M.D.; Zhang, R.B.

    1990-01-01

    We have obtained all the finite-dimensional unitary irreps of gl(mvertical stroken) and C(n), which also exhaust such irreps of all the basic classical Lie superalgebras. The lowest weights of such irreps are worked out explicitly. It is also shown that the contravariant and covariant tensor irreps of gl(mvertical stroken) are unitary irreps of type (1) and type (2) respectively, explaining the applicability of the Young diagram method to these two types of tensor irreps. (orig.)

  4. Unitary transformations in solid state physics

    International Nuclear Information System (INIS)

    Wagner, M.

    1986-01-01

    The main emphasis of this book is on the practical application of unitary transformations to problems in solid state physics. This is a method used in the field of nonadiabatic electron-phonon phenomena where the Born-Oppenheimer approximation is no longer applicable. The book is intended as a tool for those who want to apply unitary transformations quickly and on a more elementary level and also for those who want to use this method for more involved problems. The book is divided into 6 chapters. The first three chapters are concerned with presenting quick applications of unitary transformations and chapter 4 presents a more systematic procedure. The last two chapters contain the major known examples of the utilization of unitary transformations in solid state physics, including such highlights as the Froehlich and the Fulton-Gouterman transformations. The book is supplemented by extended tables of unitary transformations, whose properties and peculiarities are also listed. This tabulated material is unique and will be of great practical use to those applying the method of unitary transformations in their work. (Auth.)

  5. On relevant boundary perturbations of unitary minimal models

    International Nuclear Information System (INIS)

    Recknagel, A.; Roggenkamp, D.; Schomerus, V.

    2000-01-01

    We consider unitary Virasoro minimal models on the disk with Cardy boundary conditions and discuss deformations by certain relevant boundary operators, analogous to tachyon condensation in string theory. Concentrating on the least relevant boundary field, we can perform a perturbative analysis of renormalization group fixed points. We find that the systems always flow towards stable fixed points which admit no further (non-trivial) relevant perturbations. The new conformal boundary conditions are in general given by superpositions of 'pure' Cardy boundary conditions

  6. Random unitary operations and quantum Darwinism

    International Nuclear Information System (INIS)

    Balaneskovic, Nenad

    2016-01-01

    We study the behavior of Quantum Darwinism (Zurek, Nature Physics 5, 181-188 (2009)) within the iterative, random unitary operations qubit-model of pure decoherence (Novotn'y et al, New Jour. Phys. 13, 053052 (2011)). We conclude that Quantum Darwinism, which describes the quantum mechanical evolution of an open system from the point of view of its environment, is not a generic phenomenon, but depends on the specific form of initial states and on the type of system-environment interactions. Furthermore, we show that within the random unitary model the concept of Quantum Darwinism enables one to explicitly construct and specify artificial initial states of environment that allow to store information about an open system of interest and its pointer-basis with maximal efficiency. Furthermore, we investigate the behavior of Quantum Darwinism after introducing dissipation into the iterative random unitary qubit model with pure decoherence in accord with V. Scarani et al (Phys. Rev. Lett. 88, 097905 (2002)) and reconstruct the corresponding dissipative attractor space. We conclude that in Zurek's qubit model Quantum Darwinism depends on the order in which pure decoherence and dissipation act upon an initial state of the entire system. We show explicitly that introducing dissipation into the random unitary evolution model in general suppresses Quantum Darwinism (regardless of the order in which decoherence and dissipation are applied) for all positive non-zero values of the dissipation strength parameter, even for those initial state configurations which, in Zurek's qubit model and in the random unitary model with pure decoherence, would lead to Quantum Darwinism. Finally, we discuss what happens with Quantum Darwinism after introducing into the iterative random unitary qubit model with pure decoherence (asymmetric) dissipation and dephasing, again in accord with V. Scarani et al (Phys. Rev. Lett. 88, 097905 (2002)), and reconstruct the corresponding

  7. Multiple multicontrol unitary operations: Implementation and applications

    Science.gov (United States)

    Lin, Qing

    2018-04-01

    The efficient implementation of computational tasks is critical to quantum computations. In quantum circuits, multicontrol unitary operations are important components. Here, we present an extremely efficient and direct approach to multiple multicontrol unitary operations without decomposition to CNOT and single-photon gates. With the proposed approach, the necessary two-photon operations could be reduced from O( n 3) with the traditional decomposition approach to O( n), which will greatly relax the requirements and make large-scale quantum computation feasible. Moreover, we propose the potential application to the ( n- k)-uniform hypergraph state.

  8. Unitary information ether and its possible applications

    International Nuclear Information System (INIS)

    Horodecki, R.

    1991-01-01

    The idea of information ether as the unitary information field is developed. It rests on the assumption that the notion of information is a fundamental category in the description of reality and that it can be defined independently from the notion of probability itself. It is shown that the information ether provides a deterministic background for the nonlinear wave hypothesis and quantum cybernetics. (orig.)

  9. Diagrammatic group theory in quark models

    International Nuclear Information System (INIS)

    Canning, G.P.

    1977-05-01

    A simple and systematic diagrammatic method is presented for calculating the numerical factors arising from group theory in quark models: dimensions, casimir invariants, vector coupling coefficients and especially recoupling coefficients. Some coefficients for the coupling of 3 quark objects are listed for SU(n) and SU(2n). (orig.) [de

  10. Optimal unitary dilation for bosonic Gaussian channels

    International Nuclear Information System (INIS)

    Caruso, Filippo; Eisert, Jens; Giovannetti, Vittorio; Holevo, Alexander S.

    2011-01-01

    A general quantum channel can be represented in terms of a unitary interaction between the information-carrying system and a noisy environment. In this paper the minimal number of quantum Gaussian environmental modes required to provide a unitary dilation of a multimode bosonic Gaussian channel is analyzed for both pure and mixed environments. We compute this quantity in the case of pure environment corresponding to the Stinespring representation and give an improved estimate in the case of mixed environment. The computations rely, on one hand, on the properties of the generalized Choi-Jamiolkowski state and, on the other hand, on an explicit construction of the minimal dilation for arbitrary bosonic Gaussian channel. These results introduce a new quantity reflecting ''noisiness'' of bosonic Gaussian channels and can be applied to address some issues concerning transmission of information in continuous variables systems.

  11. Black hole thermodynamics based on unitary evolutions

    International Nuclear Information System (INIS)

    Feng, Yu-Lei; Chen, Yi-Xin

    2015-01-01

    In this paper, we try to construct black hole thermodynamics based on the fact that the formation and evaporation of a black hole can be described by quantum unitary evolutions. First, we show that the Bekenstein–Hawking entropy S BH may not be a Boltzmann or thermal entropy. To confirm this statement, we show that the original black hole's ‘first law’ may not simply be treated as the first law of thermodynamics formally, due to some missing metric perturbations caused by matter. Then, by including those (quantum) metric perturbations, we show that the black hole formation and evaporation can be described effectively in a unitary manner, through a quantum channel between the exterior and interior of the event horizon. In this way, the paradoxes of information loss and firewall can be resolved effectively. Finally, we show that black hole thermodynamics can be constructed in an ordinary way, by constructing statistical mechanics. (paper)

  12. Unitary evolution between pure and mixed states

    International Nuclear Information System (INIS)

    Reznik, B.

    1996-01-01

    We propose an extended quantum mechanical formalism that is based on a wave operator d, which is related to the ordinary density matrix via ρ=dd degree . This formalism allows a (generalized) unitary evolution between pure and mixed states. It also preserves much of the connection between symmetries and conservation laws. The new formalism is illustrated for the case of a two-level system. copyright 1996 The American Physical Society

  13. Unitary Evolution as a Uniqueness Criterion

    Science.gov (United States)

    Cortez, J.; Mena Marugán, G. A.; Olmedo, J.; Velhinho, J. M.

    2015-01-01

    It is well known that the process of quantizing field theories is plagued with ambiguities. First, there is ambiguity in the choice of basic variables describing the system. Second, once a choice of field variables has been made, there is ambiguity concerning the selection of a quantum representation of the corresponding canonical commutation relations. The natural strategy to remove these ambiguities is to demand positivity of energy and to invoke symmetries, namely by requiring that classical symmetries become unitarily implemented in the quantum realm. The success of this strategy depends, however, on the existence of a sufficiently large group of symmetries, usually including time-translation invariance. These criteria are therefore generally insufficient in non-stationary situations, as is typical for free fields in curved spacetimes. Recently, the criterion of unitary implementation of the dynamics has been proposed in order to select a unique quantization in the context of manifestly non-stationary systems. Specifically, the unitarity criterion, together with the requirement of invariance under spatial symmetries, has been successfully employed to remove the ambiguities in the quantization of linearly polarized Gowdy models as well as in the quantization of a scalar field with time varying mass, propagating in a static background whose spatial topology is either of a d-sphere (with d = 1, 2, 3) or a three torus. Following Ref. 3, we will see here that the symmetry and unitarity criteria allows for a complete removal of the ambiguities in the quantization of scalar fields propagating in static spacetimes with compact spatial sections, obeying field equations with an explicitly time-dependent mass, of the form ddot φ - Δ φ + s(t)φ = 0 . These results apply in particular to free fields in spacetimes which, like e.g. in the closed FRW models, are conformal to a static spacetime, by means of an exclusively time-dependent conformal factor. In fact, in such

  14. Unitary relation for the time-dependent SU(1,1) systems

    International Nuclear Information System (INIS)

    Song, Dae-Yup

    2003-01-01

    The system whose Hamiltonian is a linear combination of the generators of SU(1,1) group with time-dependent coefficients is studied. It is shown that there is a unitary relation between the system and a system whose Hamiltonian is simply proportional to the generator of the compact subgroup of SU(1,1). The unitary relation is described by the classical solutions of a time-dependent (harmonic) oscillator. Making use of the relation, the wave functions satisfying the Schroedinger equation are given, for a general unitary representation, in terms of the matrix elements of a finite group transformation (Bargmann function). The wave functions of the harmonic oscillator with an inverse-square potential is studied in detail, and it is shown that through an integral, the model provides a way of deriving the Bargmann function for the representation of positive discrete series of SU(1,1)

  15. Nonunitary Lagrangians and Unitary Non-Lagrangian Conformal Field Theories

    Science.gov (United States)

    Buican, Matthew; Laczko, Zoltan

    2018-02-01

    In various dimensions, we can sometimes compute observables of interacting conformal field theories (CFTs) that are connected to free theories via the renormalization group (RG) flow by computing protected quantities in the free theories. On the other hand, in two dimensions, it is often possible to algebraically construct observables of interacting CFTs using free fields without the need to explicitly construct an underlying RG flow. In this Letter, we begin to extend this idea to higher dimensions by showing that one can compute certain observables of an infinite set of unitary strongly interacting four-dimensional N =2 superconformal field theories (SCFTs) by performing simple calculations involving sets of nonunitary free four-dimensional hypermultiplets. These free fields are distant cousins of the Majorana fermion underlying the two-dimensional Ising model and are not obviously connected to our interacting theories via an RG flow. Rather surprisingly, this construction gives us Lagrangians for particular observables in certain subsectors of many "non-Lagrangian" SCFTs by sacrificing unitarity while preserving the full N =2 superconformal algebra. As a by-product, we find relations between characters in unitary and nonunitary affine Kac-Moody algebras. We conclude by commenting on possible generalizations of our construction.

  16. Nonunitary Lagrangians and Unitary Non-Lagrangian Conformal Field Theories.

    Science.gov (United States)

    Buican, Matthew; Laczko, Zoltan

    2018-02-23

    In various dimensions, we can sometimes compute observables of interacting conformal field theories (CFTs) that are connected to free theories via the renormalization group (RG) flow by computing protected quantities in the free theories. On the other hand, in two dimensions, it is often possible to algebraically construct observables of interacting CFTs using free fields without the need to explicitly construct an underlying RG flow. In this Letter, we begin to extend this idea to higher dimensions by showing that one can compute certain observables of an infinite set of unitary strongly interacting four-dimensional N=2 superconformal field theories (SCFTs) by performing simple calculations involving sets of nonunitary free four-dimensional hypermultiplets. These free fields are distant cousins of the Majorana fermion underlying the two-dimensional Ising model and are not obviously connected to our interacting theories via an RG flow. Rather surprisingly, this construction gives us Lagrangians for particular observables in certain subsectors of many "non-Lagrangian" SCFTs by sacrificing unitarity while preserving the full N=2 superconformal algebra. As a by-product, we find relations between characters in unitary and nonunitary affine Kac-Moody algebras. We conclude by commenting on possible generalizations of our construction.

  17. Solution of problem of determining spin properties of molecules in unitary formalism of quantum chemistry

    International Nuclear Information System (INIS)

    Klimko, G.T.; Luzanov, A.V.

    1988-01-01

    An analysis has been made of the problem of calculating one- and two-particle spin densities, which are needed in calculations of spin-orbit and spin-spin coupling. The proposed solution is oriented toward the application of computational algorithms using unitary group representations; the solution consists of explicit expressions for the matrix elements of spin density operators in terms of the means of products of spin-free generators. This has eliminated a serious problem encountered previously in determining spin characteristics of molecules within the framework of unitary formalism

  18. Quantum reading of unitary optical devices

    International Nuclear Information System (INIS)

    Dall'Arno, Michele; Bisio, Alessandro; D'Ariano, Giacomo Mauro

    2014-01-01

    We address the problem of quantum reading of optical memories, namely the retrieving of classical information stored in the optical properties of a media with minimum energy. We present optimal strategies for ambiguous and unambiguous quantum reading of unitary optical memories, namely when one's task is to minimize the probability of errors in the retrieved information and when perfect retrieving of information is achieved probabilistically, respectively. A comparison of the optimal strategy with coherent probes and homodyne detection shows that the former saves orders of magnitude of energy when achieving the same performances. Experimental proposals for quantum reading which are feasible with present quantum optical technology are reported

  19. Unitary Transformations in 3 D Vector Representation of Qutrit States

    Science.gov (United States)

    2018-03-12

    ARL-TR-8330 ● MAR 2018 US Army Research Laboratory Unitary Transformations in 3- D Vector Representation of Qutrit States by...return it to the originator. ARL-TR-8330 ● MAR 2018 US Army Research Laboratory Unitary Transformations in 3- D Vector...2018 2. REPORT TYPE Technical Report 3. DATES COVERED June–December 2017 4. TITLE AND SUBTITLE Unitary Transformations in 3- D Vector

  20. Meditations on the unitary rhythm of dying-grieving.

    Science.gov (United States)

    Malinski, Violet M

    2012-07-01

    When someone faces loss of a loved one, that person simultaneously grieves and dies a little, just as the one dying also grieves. The author's personal conceptualization of dying and grieving as a unitary rhythm is explored based primarily on her interpretation of Rogers' science of unitary human beings, along with selected examples from related nursing literature and from the emerging focus on continuing bonds in other disciplines. Examples from contemporary songwriters that depict such a unitary conceptualization are given along with personal examples. The author concludes with her description of the unitary rhythm of dying-grieving.

  1. Moduli spaces of unitary conformal field theories

    International Nuclear Information System (INIS)

    Wendland, K.

    2000-08-01

    We investigate various features of moduli spaces of unitary conformal field theories. A geometric characterization of rational toroidal conformal field theories in arbitrary dimensions is presented and discussed in relation to singular tori and those with complex multiplication. We study the moduli space M 2 of unitary two-dimensional conformal field theories with central charge c = 2. All the 26 non-exceptional non-isolated irreducible components of M 2 are constructed that may be obtained by an orbifold procedure from toroidal theories. The parameter spaces and partition functions are calculated explicitly. All multicritical points and lines are determined, such that all but three of these 26 components are directly or indirectly connected to the space of toroidal theories in M 2 . Relating our results to those by Dixon, Ginsparg, Harvey on the classification of c = 3/2 superconformal field theories, we give geometric interpretations to all non-isolated orbifolds discussed by them and correct their statements on multicritical points within the moduli space of c = 3/2 superconformal field theories. In the main part of this work, we investigate the moduli space M of N = (4, 4) superconformal field theories with central charge c = 6. After a slight emendation of its global description we give generic partition functions for models contained in M. We explicitly determine the locations of various known models in the component of M associated to K3 surfaces

  2. Random unitary maps for quantum state reconstruction

    International Nuclear Information System (INIS)

    Merkel, Seth T.; Riofrio, Carlos A.; Deutsch, Ivan H.; Flammia, Steven T.

    2010-01-01

    We study the possibility of performing quantum state reconstruction from a measurement record that is obtained as a sequence of expectation values of a Hermitian operator evolving under repeated application of a single random unitary map, U 0 . We show that while this single-parameter orbit in operator space is not informationally complete, it can be used to yield surprisingly high-fidelity reconstruction. For a d-dimensional Hilbert space with the initial observable in su(d), the measurement record lacks information about a matrix subspace of dimension ≥d-2 out of the total dimension d 2 -1. We determine the conditions on U 0 such that the bound is saturated, and show they are achieved by almost all pseudorandom unitary matrices. When we further impose the constraint that the physical density matrix must be positive, we obtain even higher fidelity than that predicted from the missing subspace. With prior knowledge that the state is pure, the reconstruction will be perfect (in the limit of vanishing noise) and for arbitrary mixed states, the fidelity is over 0.96, even for small d, and reaching F>0.99 for d>9. We also study the implementation of this protocol based on the relationship between random matrices and quantum chaos. We show that the Floquet operator of the quantum kicked top provides a means of generating the required type of measurement record, with implications on the relationship between quantum chaos and information gain.

  3. Compactifications of the Heterotic string with unitary bundles

    Energy Technology Data Exchange (ETDEWEB)

    Weigand, T.

    2006-05-23

    In this thesis we investigate a large new class of four-dimensional supersymmetric string vacua defined as compactifications of the E{sub 8} x E{sub 8} and the SO(32) heterotic string on smooth Calabi-Yau threefolds with unitary gauge bundles and heterotic five-branes. The first part of the thesis discusses the implementation of this idea into the E{sub 8} x E{sub 8} heterotic string. After specifying a large class of group theoretic embeddings featuring unitary bundles, we analyse the effective four-dimensional N=1 supergravity upon compactification. From the gauge invariant Kaehler potential for the moduli fields we derive a modification of the Fayet-Iliopoulos D-terms arising at one-loop in string perturbation theory. From this we conjecture a one-loop deformation of the Hermitian Yang-Mills equation and introduce the idea of {lambda}-stability as the perturbatively correct stability concept generalising the notion of Mumford stability valid at tree-level. We then proceed to a definition of SO(32) heterotic vacua with unitary gauge bundles in the presence of heterotic five-branes and find agreement of the resulting spectrum with the S-dual framework of Type I/Type IIB orientifolds. A similar analysis of the effective four-dimensional supergravity is performed. Further evidence for the proposed one-loop correction to the stability condition is found by identifying the heterotic corrections as the S-dual of the perturbative part of {pi}-stability as the correct stability concept in Type IIB theory. After reviewing the construction of holomorphic stable vector bundles on elliptically fibered Calabi-Yau manifolds via spectral covers, we provide semi-realistic examples for SO(32) heterotic vacua with Pati-Salam and MSSM-like gauge sectors. We finally discuss the construction of realistic vacua with flipped SU(5) GUT and MSSM gauge group within the E{sub 8} x E{sub 8} framework, based on the embedding of line bundles into both E{sub 8} factors. Some of the appealing

  4. Territory in the Constitutional Standards of Unitary States

    Directory of Open Access Journals (Sweden)

    Marina V. Markhgeym

    2017-06-01

    Full Text Available The article is based on the analysis of the constitutions of seven European countries (Albania, Hungary, Greece, Spain, Malta, Poland, Sweden. The research allows to reveal general and specific approaches to consolidation of norms on territories in a state and give the characteristic of the corresponding constitutional norms. Given the authors ' comprehensive approach to the definition of the territory of the state declared constitutional norms were assessed from the perspective of the fundamental principles and constituent elements of the territory. Considering the specifics of the constitutional types of state territories authors suggest typical and variative models and determine the constitutions of unitary states, distinguished by their originality in the declared group of legal relations. The original constitutional language areas associated with the introduction at the state level, these types of areas that are not typical for other countries.

  5. The flexible focus: whether spatial attention is unitary or divided depends on observer goals.

    Science.gov (United States)

    Jefferies, Lisa N; Enns, James T; Di Lollo, Vincent

    2014-04-01

    The distribution of visual attention has been the topic of much investigation, and various theories have posited that attention is allocated either as a single unitary focus or as multiple independent foci. In the present experiment, we demonstrate that attention can be flexibly deployed as either a unitary or a divided focus in the same experimental task, depending on the observer's goals. To assess the distribution of attention, we used a dual-stream Attentional Blink (AB) paradigm and 2 target pairs. One component of the AB, Lag-1 sparing, occurs only if the second target pair appears within the focus of attention. By varying whether the first-target-pair could be expected in a predictable location (always in-stream) or not (unpredictably in-stream or between-streams), observers were encouraged to deploy a divided or a unitary focus, respectively. When the second-target-pair appeared between the streams, Lag-1 sparing occurred for the Unpredictable group (consistent with a unitary focus) but not for the Predictable group (consistent with a divided focus). Thus, diametrically different outcomes occurred for physically identical displays, depending on the expectations of the observer about where spatial attention would be required.

  6. Equivalence of quantum states under local unitary transformations

    International Nuclear Information System (INIS)

    Fei Shaoming; Jing Naihuan

    2005-01-01

    In terms of the analysis of fixed point subgroup and tensor decomposability of certain matrices, we study the equivalence of quantum bipartite mixed states under local unitary transformations. For non-degenerate case an operational criterion for the equivalence of two such mixed bipartite states under local unitary transformations is presented

  7. Perfect state transfer in unitary Cayley graphs over local rings

    Directory of Open Access Journals (Sweden)

    Yotsanan Meemark

    2014-12-01

    Full Text Available In this work, using eigenvalues and eigenvectors of unitary Cayley graphs over finite local rings and elementary linear algebra, we characterize which local rings allowing PST occurring in its unitary Cayley graph. Moreover, we have some developments when $R$ is a product of local rings.

  8. Unitary Quantum Relativity. (Work in Progress)

    Science.gov (United States)

    Finkelstein, David Ritz

    2017-01-01

    A quantum universe is expressed as a finite unitary relativistic quantum computer network. Its addresses are subject to quantum superposition as well as its memory. It has no exact mathematical model. It Its Hilbert space of input processes is also a Clifford algebra with a modular architecture of many ranks. A fundamental fermion is a quantum computer element whose quantum address belongs to the rank below. The least significant figures of its address define its spin and flavor. The most significant figures of it adress define its orbital variables. Gauging arises from the same quantification as space-time. This blurs star images only slightly, but perhaps measurably. General relativity is an approximation that splits nature into an emptiness with a high symmetry that is broken by a filling of lower symmetry. Action principles result from self-organization pf the vacuum.

  9. Quantum Entanglement Growth under Random Unitary Dynamics

    Science.gov (United States)

    Nahum, Adam; Ruhman, Jonathan; Vijay, Sagar; Haah, Jeongwan

    2017-07-01

    Characterizing how entanglement grows with time in a many-body system, for example, after a quantum quench, is a key problem in nonequilibrium quantum physics. We study this problem for the case of random unitary dynamics, representing either Hamiltonian evolution with time-dependent noise or evolution by a random quantum circuit. Our results reveal a universal structure behind noisy entanglement growth, and also provide simple new heuristics for the "entanglement tsunami" in Hamiltonian systems without noise. In 1D, we show that noise causes the entanglement entropy across a cut to grow according to the celebrated Kardar-Parisi-Zhang (KPZ) equation. The mean entanglement grows linearly in time, while fluctuations grow like (time )1/3 and are spatially correlated over a distance ∝(time )2/3. We derive KPZ universal behavior in three complementary ways, by mapping random entanglement growth to (i) a stochastic model of a growing surface, (ii) a "minimal cut" picture, reminiscent of the Ryu-Takayanagi formula in holography, and (iii) a hydrodynamic problem involving the dynamical spreading of operators. We demonstrate KPZ universality in 1D numerically using simulations of random unitary circuits. Importantly, the leading-order time dependence of the entropy is deterministic even in the presence of noise, allowing us to propose a simple coarse grained minimal cut picture for the entanglement growth of generic Hamiltonians, even without noise, in arbitrary dimensionality. We clarify the meaning of the "velocity" of entanglement growth in the 1D entanglement tsunami. We show that in higher dimensions, noisy entanglement evolution maps to the well-studied problem of pinning of a membrane or domain wall by disorder.

  10. Quantum Entanglement Growth under Random Unitary Dynamics

    Directory of Open Access Journals (Sweden)

    Adam Nahum

    2017-07-01

    Full Text Available Characterizing how entanglement grows with time in a many-body system, for example, after a quantum quench, is a key problem in nonequilibrium quantum physics. We study this problem for the case of random unitary dynamics, representing either Hamiltonian evolution with time-dependent noise or evolution by a random quantum circuit. Our results reveal a universal structure behind noisy entanglement growth, and also provide simple new heuristics for the “entanglement tsunami” in Hamiltonian systems without noise. In 1D, we show that noise causes the entanglement entropy across a cut to grow according to the celebrated Kardar-Parisi-Zhang (KPZ equation. The mean entanglement grows linearly in time, while fluctuations grow like (time^{1/3} and are spatially correlated over a distance ∝(time^{2/3}. We derive KPZ universal behavior in three complementary ways, by mapping random entanglement growth to (i a stochastic model of a growing surface, (ii a “minimal cut” picture, reminiscent of the Ryu-Takayanagi formula in holography, and (iii a hydrodynamic problem involving the dynamical spreading of operators. We demonstrate KPZ universality in 1D numerically using simulations of random unitary circuits. Importantly, the leading-order time dependence of the entropy is deterministic even in the presence of noise, allowing us to propose a simple coarse grained minimal cut picture for the entanglement growth of generic Hamiltonians, even without noise, in arbitrary dimensionality. We clarify the meaning of the “velocity” of entanglement growth in the 1D entanglement tsunami. We show that in higher dimensions, noisy entanglement evolution maps to the well-studied problem of pinning of a membrane or domain wall by disorder.

  11. Universal Superspace Unitary Operator and Nilpotent (Anti-)Dual-BRST Symmetries: Superfield Formalism

    International Nuclear Information System (INIS)

    Malik, R. P.; Srinivas, N.; Bhanja, T.

    2016-01-01

    We exploit the key concepts of the augmented version of superfield approach to Becchi-Rouet-Stora-Tyutin (BRST) formalism to derive the superspace (SUSP) dual unitary operator and its Hermitian conjugate and demonstrate their utility in the derivation of the nilpotent and absolutely anticommuting (anti-)dual-BRST symmetry transformations for a set of interesting models of the Abelian 1-form gauge theories. These models are the one (0+1)-dimensional (1D) rigid rotor and modified versions of the two (1+1)-dimensional (2D) Proca as well as anomalous gauge theories and 2D model of a self-dual bosonic field theory. We show the universality of the SUSP dual unitary operator and its Hermitian conjugate in the cases of all the Abelian models under consideration. These SUSP dual unitary operators, besides maintaining the explicit group structure, provide the alternatives to the dual horizontality condition (DHC) and dual gauge invariant restrictions (DGIRs) of the superfield formalism. The derivations of the dual unitary operators and corresponding (anti-)dual-BRST symmetries are completely novel results in our present investigation.

  12. Operator entanglement of two-qubit joint unitary operations revisited: Schmidt number approach

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Hui-Zhi; Li, Chao; Yang, Qing; Yang, Ming, E-mail: mingyang@ahu.edu.cn [Key Laboratory of Opto-electronic Information Acquisition and Manipulation, Ministry of Education, School of Physics and Material Science, Anhui University Hefei (China); Cao, Zhuo-Liang [School of Electronic Information Engineering, Hefei Normal University (China)

    2012-08-15

    The operator entanglement of two-qubit joint unitary operations is revisited. The Schmidt number, an important attribute of a two-qubit unitary operation, may have connection with the entanglement measure of the unitary operator. We find that the entanglement measure of a two-qubit unitary operators is classified by the Schmidt number of the unitary operators. We also discuss the exact relation between the operator entanglement and the parameters of the unitary operator. (author)

  13. Gauging the graded conformal group with unitary internal symmetries

    International Nuclear Information System (INIS)

    Ferrara, S.; Townsend, P.K.; Kaku, M.; Nieuwenhuizen Van, P.

    1977-06-01

    Gauge theories for extended SU(N) conformal supergravity are constructed which are invariant under local scale, chiral, proper conformal, supersymmetry and internal SU(N) transformations. The relation between intrinsic parity and symmetry properties of their generators of the internal vector mesons is established. These theories contain no cosmological constants, but technical problems inherent to higher derivative actions are pointed out

  14. Weyl calculus in QED I. The unitary group

    Science.gov (United States)

    Amour, L.; Lascar, R.; Nourrigat, J.

    2017-01-01

    In this work, we consider fixed 1/2 spin particles interacting with the quantized radiation field in the context of quantum electrodynamics. We investigate the time evolution operator in studying the reduced propagator (interaction picture). We first prove that this propagator belongs to the class of infinite dimensional Weyl pseudodifferential operators recently introduced in Amour et al. [J. Funct. Anal. 269(9), 2747-2812 (2015)] on Wiener spaces. We give a semiclassical expansion of the symbol of the reduced propagator up to any order with estimates on the remainder terms. Next, taking into account analyticity properties for the Weyl symbol of the reduced propagator, we derive estimates concerning transition probabilities between coherent states.

  15. Unitary 4-point correlators from classical geometries

    Energy Technology Data Exchange (ETDEWEB)

    Bombini, Alessandro; Galliani, Andrea; Giusto, Stefano [Universita di Padova, Dipartimento di Fisica ed Astronomia ' ' Galileo Galilei' ' , Padua (Italy); I.N.F.N. Sezione di Padova, Padua (Italy); Moscato, Emanuele; Russo, Rodolfo [Queen Mary University of London, Centre for Research in String Theory, School of Physics and Astronomy, London (United Kingdom)

    2018-01-15

    We compute correlators of two heavy and two light operators in the strong coupling and large c limit of the D1D5 CFT which is dual to weakly coupled AdS{sub 3} gravity. The light operators have dimension two and are scalar descendants of the chiral primaries considered in arXiv:1705.09250, while the heavy operators belong to an ensemble of Ramond-Ramond ground states. We derive a general expression for these correlators when the heavy states in the ensemble are close to the maximally spinning ground state. For a particular family of heavy states we also provide a result valid for any value of the spin. In all cases we find that the correlators depend non-trivially on the CFT moduli and are not determined by the symmetries of the theory; however, they have the properties expected for correlators among pure states in a unitary theory, in particular they do not decay at large Lorentzian times. (orig.)

  16. About the unitary discretizations of Heisenberg equations of motion

    International Nuclear Information System (INIS)

    Vazquez, L.

    1986-01-01

    In a recent paper Bender et al. (1985) have used a unitary discretization of Heisenberg equations for a one-dimensional quantum system in order to obtain information about the spectrum of the underlying continuum theory. The method consists in comparing the matrix elements between adjacent Fock states of the operators and at two steps. At the same time a very simple variational approach must be made. The purpose of this paper is to show that with unitary schemes, accurate either to order τ or τ 2 , we obtain the same spectrum results in the framework of the above method. On the other hand the same eigenvalues are obtained with a non-unitary scheme (Section II). In Section III we discuss the construction of the Hamiltonian associated to the unitary discretizations. (orig.)

  17. Constructing a unitary title regime for the European Patent System

    NARCIS (Netherlands)

    Rodriguez, V.F.

    2011-01-01

    The European Patent System without any unitary title allows Member States to retain institutional arrangements within their borders and to prevent any moves to delegate responsibility outside the national sphere. This intergovernmental patent regime suffers from fragmentation due to national

  18. Elegant Coercion and Iran: Beyond the Unitary Actor Model

    National Research Council Canada - National Science Library

    Moss, J. C

    2005-01-01

    .... At its core, then, coercion is about state decision-making. Most theories of coercion describe states as if they were unitary actors whose decision-making results from purely rational cost-benefit calculations...

  19. Method for the determination of Clebsch-Gordan coefficients of finite magnetic groups

    NARCIS (Netherlands)

    van den Broek, P.M.; Horowitz, L.P.; Ne'eman, Y.

    1980-01-01

    A recent method for the determination of Clebsch-Gordan coefficients of finite magnetic groups is generalised to magnetic groups. Discussion is restricted to unitary-anti-unitary representations of type I.

  20. Operator Spreading in Random Unitary Circuits

    Science.gov (United States)

    Nahum, Adam; Vijay, Sagar; Haah, Jeongwan

    2018-04-01

    Random quantum circuits yield minimally structured models for chaotic quantum dynamics, which are able to capture, for example, universal properties of entanglement growth. We provide exact results and coarse-grained models for the spreading of operators by quantum circuits made of Haar-random unitaries. We study both 1 +1 D and higher dimensions and argue that the coarse-grained pictures carry over to operator spreading in generic many-body systems. In 1 +1 D , we demonstrate that the out-of-time-order correlator (OTOC) satisfies a biased diffusion equation, which gives exact results for the spatial profile of the OTOC and determines the butterfly speed vB. We find that in 1 +1 D , the "front" of the OTOC broadens diffusively, with a width scaling in time as t1 /2. We address fluctuations in the OTOC between different realizations of the random circuit, arguing that they are negligible in comparison to the broadening of the front within a realization. Turning to higher dimensions, we show that the averaged OTOC can be understood exactly via a remarkable correspondence with a purely classical droplet growth problem. This implies that the width of the front of the averaged OTOC scales as t1 /3 in 2 +1 D and as t0.240 in 3 +1 D (exponents of the Kardar-Parisi-Zhang universality class). We support our analytic argument with simulations in 2 +1 D . We point out that, in two or higher spatial dimensions, the shape of the spreading operator at late times is affected by underlying lattice symmetries and, in general, is not spherical. However, when full spatial rotational symmetry is present in 2 +1 D , our mapping implies an exact asymptotic form for the OTOC, in terms of the Tracy-Widom distribution. For an alternative perspective on the OTOC in 1 +1 D , we map it to the partition function of an Ising-like statistical mechanics model. As a result of special structure arising from unitarity, this partition function reduces to a random walk calculation which can be

  1. Toward a self-consistent and unitary reaction network for big bang nucleosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Paris, Mark W.; Brown, Lowell S.; Hale, Gerald M.; Hayes-Sterbenz, Anna C.; Jungman, Gerard; Kawano, Toshihiko, E-mail: mparis@lanl.gov [Los Alamos National Laboratory, Los Alamos, New Mexico (United States); Fuller, George M.; Grohs, Evan B. [Department of Physics, University of California, San Diego, La Jolla, CA (United States); Kunieda, Satoshi [Nuclear Data Center, Japan Atomic Energy Agency, Tokai-mura Naka-gun, Ibaraki (Japan)

    2014-07-01

    Unitarity, the mathematical expression of the conservation of probability in multichannel reactions, is an essential ingredient in the development of accurate nuclear reaction networks appropriate for nucleosynthesis in a variety of environments. We describe our ongoing program to develop a 'unitary reaction network' for the big-bang nucleosynthesis environment and look at an example of the need and power of unitary parametrizations of nuclear scattering and reaction data. Recent attention has been focused on the possible role of the {sup 9}B compound nuclear system in the resonant destruction of {sup 7}Li during primordial nucleosynthesis. We have studied reactions in the {sup 9}B compound system with a multichannel, two-body unitary R-matrix code (EDA) using the known elastic and reaction data, in a four-channel treatment. The data include elastic {sup 6}Li({sup 3}He,{sup 3}He){sup 6}Li differential cross sections from 0.7 to 2.0 MeV, integrated reaction cross sections for energies from 0.7 to 5.0 MeV for {sup 6}Li({sup 3}He,p){sup 8}Be* and from 0.4 to 5.0 MeV for the {sup 6}Li({sup 3}He,γ){sup 7}Be reaction. Capture data have been added to the previous analysis with integrated cross section measurements from 0.7 to 0.825 MeV for {sup 6}Li({sup 3}He,γ){sup 9}B. The resulting resonance parameters are compared with tabulated values from TUNL Nuclear Data Group analyses. Previously unidentified resonances are noted and the relevance of this analysis and a unitary reaction network for big-bang nucleosynthesis are emphasized. (author)

  2. Toward a self-consistent and unitary reaction network for big bang nucleosynthesis

    International Nuclear Information System (INIS)

    Paris, Mark W.; Brown, Lowell S.; Hale, Gerald M.; Hayes-Sterbenz, Anna C.; Jungman, Gerard; Kawano, Toshihiko; Fuller, George M.; Grohs, Evan B.; Kunieda, Satoshi

    2014-01-01

    Unitarity, the mathematical expression of the conservation of probability in multichannel reactions, is an essential ingredient in the development of accurate nuclear reaction networks appropriate for nucleosynthesis in a variety of environments. We describe our ongoing program to develop a 'unitary reaction network' for the big-bang nucleosynthesis environment and look at an example of the need and power of unitary parametrizations of nuclear scattering and reaction data. Recent attention has been focused on the possible role of the 9 B compound nuclear system in the resonant destruction of 7 Li during primordial nucleosynthesis. We have studied reactions in the 9 B compound system with a multichannel, two-body unitary R-matrix code (EDA) using the known elastic and reaction data, in a four-channel treatment. The data include elastic 6 Li( 3 He, 3 He) 6 Li differential cross sections from 0.7 to 2.0 MeV, integrated reaction cross sections for energies from 0.7 to 5.0 MeV for 6 Li( 3 He,p) 8 Be* and from 0.4 to 5.0 MeV for the 6 Li( 3 He,γ) 7 Be reaction. Capture data have been added to the previous analysis with integrated cross section measurements from 0.7 to 0.825 MeV for 6 Li( 3 He,γ) 9 B. The resulting resonance parameters are compared with tabulated values from TUNL Nuclear Data Group analyses. Previously unidentified resonances are noted and the relevance of this analysis and a unitary reaction network for big-bang nucleosynthesis are emphasized. (author)

  3. Robust Learning Control Design for Quantum Unitary Transformations.

    Science.gov (United States)

    Wu, Chengzhi; Qi, Bo; Chen, Chunlin; Dong, Daoyi

    2017-12-01

    Robust control design for quantum unitary transformations has been recognized as a fundamental and challenging task in the development of quantum information processing due to unavoidable decoherence or operational errors in the experimental implementation of quantum operations. In this paper, we extend the systematic methodology of sampling-based learning control (SLC) approach with a gradient flow algorithm for the design of robust quantum unitary transformations. The SLC approach first uses a "training" process to find an optimal control strategy robust against certain ranges of uncertainties. Then a number of randomly selected samples are tested and the performance is evaluated according to their average fidelity. The approach is applied to three typical examples of robust quantum transformation problems including robust quantum transformations in a three-level quantum system, in a superconducting quantum circuit, and in a spin chain system. Numerical results demonstrate the effectiveness of the SLC approach and show its potential applications in various implementation of quantum unitary transformations.

  4. Joule-Thomson Coefficient for Strongly Interacting Unitary Fermi Gas

    International Nuclear Information System (INIS)

    Liao Kai; Chen Jisheng; Li Chao

    2010-01-01

    The Joule-Thomson effect reflects the interaction among constituent particles of macroscopic system. For classical ideal gas, the corresponding Joule-Thomson coefficient is vanishing while it is non-zero for ideal quantum gas due to the quantum degeneracy. In recent years, much attention is paid to the unitary Fermi gas with infinite two-body scattering length. According to universal analysis, the thermodynamical law of unitary Fermi gas is similar to that of non-interacting ideal gas, which can be explored by the virial theorem P = 2E/3V. Based on previous works, we further study the unitary Fermi gas properties. The effective chemical potential is introduced to characterize the nonlinear levels crossing effects in a strongly interacting medium. The changing behavior of the rescaled Joule-Thomson coefficient according to temperature manifests a quite different behavior from that for ideal Fermi gas. (general)

  5. Consciousness, intentionality, and community: Unitary perspectives and research.

    Science.gov (United States)

    Zahourek, Rothlyn P; Larkin, Dorothy M

    2009-01-01

    Consciousness and intentionality often have been related and studied together. These concepts also are readily viewed and understood for practice, research, and education in a unitary paradigm. How these ideas relate to community is less known. Considering the expansion of our capacity for communication through the World Wide Web and other technologic advances and appreciating recent research on the nonlocal character of intentionality and consciousness, it is more apparent how concepts of community can be seen in the same unitary context. The authors address these issues and review relevant nursing research.

  6. Non-unitary probabilistic quantum computing circuit and method

    Science.gov (United States)

    Williams, Colin P. (Inventor); Gingrich, Robert M. (Inventor)

    2009-01-01

    A quantum circuit performing quantum computation in a quantum computer. A chosen transformation of an initial n-qubit state is probabilistically obtained. The circuit comprises a unitary quantum operator obtained from a non-unitary quantum operator, operating on an n-qubit state and an ancilla state. When operation on the ancilla state provides a success condition, computation is stopped. When operation on the ancilla state provides a failure condition, computation is performed again on the ancilla state and the n-qubit state obtained in the previous computation, until a success condition is obtained.

  7. Cogeneration Power Plants: a Proposed Methodology for Unitary Production Cost

    International Nuclear Information System (INIS)

    Metalli, E.

    2009-01-01

    A new methodology to evaluate unitary energetic production costs in the cogeneration power plants is proposed. This methodology exploits the energy conversion factors fixed by Italian Regulatory Authority for Electricity and Gas. So it allows to settle such unitary costs univocally for a given plant, without assigning them a priori subjective values when there are two or more energy productions at the same time. Moreover the proposed methodology always ensures positive values for these costs, complying with the total generation cost balance equation. [it

  8. Classification of delocalization power of global unitary operations in terms of LOCC one-piece relocalization

    Directory of Open Access Journals (Sweden)

    Akihito Soeda

    2010-06-01

    Full Text Available We study how two pieces of localized quantum information can be delocalized across a composite Hilbert space when a global unitary operation is applied. We classify the delocalization power of global unitary operations on quantum information by investigating the possibility of relocalizing one piece of the quantum information without using any global quantum resource. We show that one-piece relocalization is possible if and only if the global unitary operation is local unitary equivalent of a controlled-unitary operation. The delocalization power turns out to reveal different aspect of the non-local properties of global unitary operations characterized by their entangling power.

  9. Harmonic Analysis and Group Representation

    CERN Document Server

    Figa-Talamanca, Alessandro

    2011-01-01

    This title includes: Lectures - A. Auslander, R. Tolimeri - Nilpotent groups and abelian varieties, M Cowling - Unitary and uniformly bounded representations of some simple Lie groups, M. Duflo - Construction de representations unitaires d'un groupe de Lie, R. Howe - On a notion of rank for unitary representations of the classical groups, V.S. Varadarajan - Eigenfunction expansions of semisimple Lie groups, and R. Zimmer - Ergodic theory, group representations and rigidity; and, Seminars - A. Koranyi - Some applications of Gelfand pairs in classical analysis.

  10. A remark on the unitary part of contractions

    International Nuclear Information System (INIS)

    Duggal, B.P.

    1992-07-01

    Considering operators on a complex infinite dimensional Hilbert space H and denoting by T * a construction with C .O completely non-unitary part, it is proved that A T is projection which commutes with T and H (u) T = A T H. 3 refs

  11. Establishing the Unitary Classroom: Organizational Change and School Culture.

    Science.gov (United States)

    Eddy, Elizabeth M.; True, Joan H.

    1980-01-01

    This paper examines the organizational changes introduced in two elementary schools to create unitary (desegregated) classrooms. The different models adopted by the two schools--departmentalization and team teaching--are considered as expressions of their patterns of interaction, behavior, and values. (Part of a theme issue on educational…

  12. Microscopic description and excitation of unitary analog states

    Energy Technology Data Exchange (ETDEWEB)

    Kisslinger, L S [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA); Van Giai, N [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire

    1977-12-05

    A microscopic investigation in a self-consistent particle-hole model reveals approximate unitary analog states in spite of large symmetry breaking. The K-nucleus elastic scattering and (K/sup -/, ..pi../sup -/) excitation of these states are studied, showing strong surface effects.

  13. Renormalization of the Abelian–Higgs model in the Rξ and Unitary gauges and the physicality of its scalar potential

    Directory of Open Access Journals (Sweden)

    Nikos Irges

    2017-11-01

    Full Text Available We perform an old school, one-loop renormalization of the Abelian–Higgs model in the Unitary and Rξ gauges, focused on the scalar potential and the gauge boson mass. Our goal is to demonstrate in this simple context the validity of the Unitary gauge at the quantum level, which could open the way for an until now (mostly avoided framework for loop computations. We indeed find that the Unitary gauge is consistent and equivalent to the Rξ gauge at the level of β-functions. Then we compare the renormalized, finite, one-loop Higgs potential in the two gauges and we again find equivalence. This equivalence needs not only a complete cancellation of the gauge fixing parameter ξ from the Rξ gauge potential but also requires its ξ-independent part to be equal to the Unitary gauge result. We follow the quantum behavior of the system by plotting Renormalization Group trajectories and Lines of Constant Physics, with the former the well known curves and with the latter, determined by the finite parts of the counter-terms, particularly well suited for a comparison with non-perturbative studies.

  14. Unitary or Non-Unitary Nature of Working Memory? Evidence from Its Relation to General Fluid and Crystallized Intelligence

    Science.gov (United States)

    Dang, Cai-Ping; Braeken, Johan; Ferrer, Emilio; Liu, Chang

    2012-01-01

    This study explored the controversy surrounding working memory: whether it is a unitary system providing general purpose resources or a more differentiated system with domain-specific sub-components. A total of 348 participants completed a set of 6 working memory tasks that systematically varied in storage target contents and type of information…

  15. A mapping from the unitary to doubly stochastic matrices and symbols on a finite set

    Science.gov (United States)

    Karabegov, Alexander V.

    2008-11-01

    We prove that the mapping from the unitary to doubly stochastic matrices that maps a unitary matrix (ukl) to the doubly stochastic matrix (|ukl|2) is a submersion at a generic unitary matrix. The proof uses the framework of operator symbols on a finite set.

  16. On the algebra of local unitary invariants of pure and mixed quantum states

    International Nuclear Information System (INIS)

    Vrana, Peter

    2011-01-01

    We study the structure of the inverse limit of the graded algebras of local unitary invariant polynomials using its Hilbert series. For k subsystems, we show that the inverse limit is a free algebra and the number of algebraically independent generators with homogenous degree 2m equals the number of conjugacy classes of index m subgroups in a free group on k - 1 generators. Similarly, we show that the inverse limit in the case of k-partite mixed state invariants is free and the number of algebraically independent generators with homogenous degree m equals the number of conjugacy classes of index m subgroups in a free group on k generators. The two statements are shown to be equivalent. To illustrate the equivalence, using the representation theory of the unitary groups, we obtain all invariants in the m = 2 graded parts and express them in a simple form both in the case of mixed and pure states. The transformation between the two forms is also derived. Analogous invariants of higher degree are also introduced.

  17. Random unitary evolution model of quantum Darwinism with pure decoherence

    Science.gov (United States)

    Balanesković, Nenad

    2015-10-01

    We study the behavior of Quantum Darwinism [W.H. Zurek, Nat. Phys. 5, 181 (2009)] within the iterative, random unitary operations qubit-model of pure decoherence [J. Novotný, G. Alber, I. Jex, New J. Phys. 13, 053052 (2011)]. We conclude that Quantum Darwinism, which describes the quantum mechanical evolution of an open system S from the point of view of its environment E, is not a generic phenomenon, but depends on the specific form of input states and on the type of S-E-interactions. Furthermore, we show that within the random unitary model the concept of Quantum Darwinism enables one to explicitly construct and specify artificial input states of environment E that allow to store information about an open system S of interest with maximal efficiency.

  18. Prenominal and postnominal reduced relative clauses: arguments against unitary analyses

    Directory of Open Access Journals (Sweden)

    Petra Sleeman

    2007-01-01

    Full Text Available These last years, several analyses have been proposed in which prenominal and postnominal reduced relatives are merged in the same position. Kayne (1994 claims that both types of reduced relative clauses are the complement of the determiner. More recently, Cinque (2005 has proposed that both types are merged in the functional projections of the noun, at the left edge of the modifier system. In this paper, I argue against a unitary analysis of prenominal and postnominal participial reduced relatives.

  19. Unitary Application of the Quantum Error Correction Codes

    International Nuclear Information System (INIS)

    You Bo; Xu Ke; Wu Xiaohua

    2012-01-01

    For applying the perfect code to transmit quantum information over a noise channel, the standard protocol contains four steps: the encoding, the noise channel, the error-correction operation, and the decoding. In present work, we show that this protocol can be simplified. The error-correction operation is not necessary if the decoding is realized by the so-called complete unitary transformation. We also offer a quantum circuit, which can correct the arbitrary single-qubit errors.

  20. Effective hamiltonian within the microscopic unitary nuclear model

    International Nuclear Information System (INIS)

    Avramenko, V.I.; Blokhin, A.L.

    1989-01-01

    Within the microscopic version of the unitary collective model with the horizontal mixing the effective Hamiltonian for 18 O and 18 Ne nuclei is constructed. The algebraic structure of the Hamiltonian is compared to the familiar phenomenological ones with the SU(3)-mixing terms which describe the coupled rotational and vibrational spectra. The Hamiltonian, including central nuclear and Coulomb interaction, is diagonalized on the basis of three SU(3) irreducible representations with two orbital symmetries. 32 refs.; 2 figs.; 4 tabs

  1. Unitary-matrix models as exactly solvable string theories

    Science.gov (United States)

    Periwal, Vipul; Shevitz, Danny

    1990-01-01

    Exact differential equations are presently found for the scaling functions of models of unitary matrices which are solved in a double-scaling limit, using orthogonal polynomials on a circle. For the case of the simplest, k = 1 model, the Painleve II equation with constant 0 is obtained; possible nonperturbative phase transitions exist for these models. Equations are presented for k = 2 and 3, and discussed with a view to asymptotic behavior.

  2. Complex projection of unitary dynamics of quaternionic pure states

    International Nuclear Information System (INIS)

    Asorey, M.; Scolarici, G.; Solombrino, L.

    2007-01-01

    Quaternionic quantum mechanics has been revealed to be a very useful framework to describe quantum phenomena. In the case of two qubit compound systems we show that the complex projection of quaternionic pure states and quaternionic unitary maps permits the description of interesting phenomena such as decoherence and optimal entanglement generation. The approach, however, presents severe limitations for the case of multipartite or higher dimensional bipartite quantum systems as we point out

  3. Information-disturbance tradeoff in estimating a unitary transformation

    International Nuclear Information System (INIS)

    Bisio, Alessandro; D'Ariano, Giacomo Mauro; Perinotti, Paolo; Chiribella, Giulio

    2010-01-01

    We address the problem of the information-disturbance tradeoff associated to the estimation of a quantum transformation and show how the extraction of information about a black box causes a perturbation of the corresponding input-output evolution. In the case of a black box performing a unitary transformation, randomly distributed according to the invariant measure, we give a complete solution of the problem, deriving the optimal tradeoff curve and presenting an explicit construction of the optimal quantum network.

  4. Primary fields in a unitary representation of Virasoro algebras

    International Nuclear Information System (INIS)

    Sasaki, R.; Yamanaka, I.

    1985-08-01

    A unitary representation of Virasoro algebras with the central charge c = 1 - 6/(N + 1)(N + 2) is constructed explicitly in terms of a colored (two color) coset space (the complex projective space CP sup(N-1)) quark model. By utilizing the explicit forms of the Virasoro generators Lsub(m), we derive a general method of constructing the primary fields (fields with well-defined conformal transformation properties) of the above Virasoro algebras. (author)

  5. Efficient learning algorithm for quantum perceptron unitary weights

    OpenAIRE

    Seow, Kok-Leong; Behrman, Elizabeth; Steck, James

    2015-01-01

    For the past two decades, researchers have attempted to create a Quantum Neural Network (QNN) by combining the merits of quantum computing and neural computing. In order to exploit the advantages of the two prolific fields, the QNN must meet the non-trivial task of integrating the unitary dynamics of quantum computing and the dissipative dynamics of neural computing. At the core of quantum computing and neural computing lies the qubit and perceptron, respectively. We see that past implementat...

  6. Entanglement entropy of non-unitary integrable quantum field theory

    Directory of Open Access Journals (Sweden)

    Davide Bianchini

    2015-07-01

    Full Text Available In this paper we study the simplest massive 1+1 dimensional integrable quantum field theory which can be described as a perturbation of a non-unitary minimal conformal field theory: the Lee–Yang model. We are particularly interested in the features of the bi-partite entanglement entropy for this model and on building blocks thereof, namely twist field form factors. Non-unitarity selects out a new type of twist field as the operator whose two-point function (appropriately normalized yields the entanglement entropy. We compute this two-point function both from a form factor expansion and by means of perturbed conformal field theory. We find good agreement with CFT predictions put forward in a recent work involving the present authors. In particular, our results are consistent with a scaling of the entanglement entropy given by ceff3log⁡ℓ where ceff is the effective central charge of the theory (a positive number related to the central charge and ℓ is the size of the region. Furthermore the form factor expansion of twist fields allows us to explore the large region limit of the entanglement entropy and find the next-to-leading order correction to saturation. We find that this correction is very different from its counterpart in unitary models. Whereas in the latter case, it had a form depending only on few parameters of the model (the particle spectrum, it appears to be much more model-dependent for non-unitary models.

  7. Higher dimensional unitary braid matrices: Construction, associated structures and entanglements

    International Nuclear Information System (INIS)

    Abdesselam, B.; Chakrabarti, A.; Dobrev, V.K.; Mihov, S.G.

    2007-03-01

    We construct (2n) 2 x (2n) 2 unitary braid matrices R-circumflex for n ≥ 2 generalizing the class known for n = 1. A set of (2n) x (2n) matrices (I, J,K,L) are defined. R-circumflex is expressed in terms of their tensor products (such as K x J), leading to a canonical formulation for all n. Complex projectors P ± provide a basis for our real, unitary R-circumflex. Baxterization is obtained. Diagonalizations and block- diagonalizations are presented. The loss of braid property when R-circumflex (n > 1) is block-diagonalized in terms of R-circumflex (n = 1) is pointed out and explained. For odd dimension (2n + 1) 2 x (2n + 1) 2 , a previously constructed braid matrix is complexified to obtain unitarity. R-circumflexLL- and R-circumflexTT- algebras, chain Hamiltonians, potentials for factorizable S-matrices, complex non-commutative spaces are all studied briefly in the context of our unitary braid matrices. Turaev construction of link invariants is formulated for our case. We conclude with comments concerning entanglements. (author)

  8. Unitary Supermultiplets of $OSp(8^{*}|4)$ and the $AdS_{7}/CFT_{6}$ Duality

    CERN Document Server

    Günaydin, M; Gunaydin, Murat; Takemae, Seiji

    2000-01-01

    We study the unitary supermultiplets of the N=4 d=7 anti-de Sitter (AdS_7) superalgebra OSp(8^*|4), with the even subalgebra SO(6,2) X USp(4), which is the symmetry superalgebra of M-theory on AdS_7 X S^4. We give a complete classification of the positive energy doubleton and massless supermultiplets of OSp(8^*|4) . The ultra-short doubleton supermultiplets do not have a Poincaré limit in AdS_7 and correspond to superconformal field theories on the boundary of AdS_7 which can be identified with d=6 Minkowski space. We show that the six dimensional Poincare mass operator vanishes identically for the doubleton representations. By going from the compact U(4) basis of SO^*(8)=SO(6,2) to the noncompact basis SU^*(4)XD (d=6 Lorentz group times dilatations) one can associate the positive (conformal) energy representations of SO^*(8) with conformal fields transforming covariantly under the Lorentz group in d=6. The oscillator method used for the construction of the unitary supermultiplets of OSp(8^*|4) can be given ...

  9. A unitary ESPRIT scheme of joint angle estimation for MOTS MIMO radar.

    Science.gov (United States)

    Wen, Chao; Shi, Guangming

    2014-08-07

    The transmit array of multi-overlapped-transmit-subarray configured bistatic multiple-input multiple-output (MOTS MIMO) radar is partitioned into a number of overlapped subarrays, which is different from the traditional bistatic MIMO radar. In this paper, a new unitary ESPRIT scheme for joint estimation of the direction of departure (DOD) and the direction of arrival (DOA) for MOTS MIMO radar is proposed. In our method, each overlapped-transmit-subarray (OTS) with the identical effective aperture is regarded as a transmit element and the characteristics that the phase delays between the two OTSs is utilized. First, the measurements corresponding to all the OTSs are partitioned into two groups which have a rotational invariance relationship with each other. Then, the properties of centro-Hermitian matrices and real-valued rotational invariance factors are exploited to double the measurement samples and reduce computational complexity. Finally, the close-formed solution of automatically paired DOAs and DODs of targets is derived in a new manner. The proposed scheme provides increased estimation accuracy with the combination of inherent advantages of MOTS MIMO radar with unitary ESPRIT. Simulation results are presented to demonstrate the effectiveness and advantage of the proposed scheme.

  10. Quench of non-Markovian coherence in the deep sub-Ohmic spin–boson model: A unitary equilibration scheme

    International Nuclear Information System (INIS)

    Yao, Yao

    2015-01-01

    The deep sub-Ohmic spin–boson model shows a longstanding non-Markovian coherence at low temperature. Motivating to quench this robust coherence, the thermal effect is unitarily incorporated into the time evolution of the model, which is calculated by the adaptive time-dependent density matrix renormalization group algorithm combined with the orthogonal polynomials theory. Via introducing a unitary heating operator to the bosonic bath, the bath is heated up so that a majority portion of the bosonic excited states is occupied. It is found in this situation the coherence of the spin is quickly quenched even in the coherent regime, in which the non-Markovian feature dominates. With this finding we come up with a novel way to implement the unitary equilibration, the essential term of the eigenstate-thermalization hypothesis, through a short-time evolution of the model

  11. Multiscale differential phase contrast analysis with a unitary detector

    KAUST Repository

    Lopatin, Sergei; Ivanov, Yurii P.; Kosel, Jü rgen; Chuvilin, Andrey

    2015-01-01

    A new approach to generate differential phase contrast (DPC) images for the visualization and quantification of local magnetic fields in a wide range of modern nano materials is reported. In contrast to conventional DPC methods our technique utilizes the idea of a unitary detector under bright field conditions, making it immediately usable by a majority of modern transmission electron microscopes. The approach is put on test to characterize the local magnetization of cylindrical nanowires and their 3D ordered arrays, revealing high sensitivity of our method in a combination with nanometer-scale spatial resolution.

  12. Configurable unitary transformations and linear logic gates using quantum memories.

    Science.gov (United States)

    Campbell, G T; Pinel, O; Hosseini, M; Ralph, T C; Buchler, B C; Lam, P K

    2014-08-08

    We show that a set of optical memories can act as a configurable linear optical network operating on frequency-multiplexed optical states. Our protocol is applicable to any quantum memories that employ off-resonant Raman transitions to store optical information in atomic spins. In addition to the configurability, the protocol also offers favorable scaling with an increasing number of modes where N memories can be configured to implement arbitrary N-mode unitary operations during storage and readout. We demonstrate the versatility of this protocol by showing an example where cascaded memories are used to implement a conditional cz gate.

  13. Implementing controlled-unitary operations over the butterfly network

    Energy Technology Data Exchange (ETDEWEB)

    Soeda, Akihito; Kinjo, Yoshiyuki; Turner, Peter S. [Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo (Japan); Murao, Mio [Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo, Japan and NanoQuine, The University of Tokyo, Tokyo (Japan)

    2014-12-04

    We introduce a multiparty quantum computation task over a network in a situation where the capacities of both the quantum and classical communication channels of the network are limited and a bottleneck occurs. Using a resource setting introduced by Hayashi [1], we present an efficient protocol for performing controlled-unitary operations between two input nodes and two output nodes over the butterfly network, one of the most fundamental networks exhibiting the bottleneck problem. This result opens the possibility of developing a theory of quantum network coding for multiparty quantum computation, whereas the conventional network coding only treats multiparty quantum communication.

  14. A model of diffraction scattering with unitary corrections

    International Nuclear Information System (INIS)

    Etim, E.; Malecki, A.; Satta, L.

    1989-01-01

    The inability of the multiple scattering model of Glauber and similar geometrical picture models to fit data at Collider energies, to fit low energy data at large momentum transfers and to explain the absence of multiple diffraction dips in the data is noted. It is argued and shown that a unitary correction to the multiple scattering amplitude gives rise to a better model and allows to fit all available data on nucleon-nucleon and nucleus-nucleus collisions at all energies and all momentum transfers. There are no multiple diffraction dips

  15. Non-unitary neutrino propagation from neutrino decay

    Energy Technology Data Exchange (ETDEWEB)

    Berryman, Jeffrey M., E-mail: jeffreyberryman2012@u.northwestern.edu [Northwestern University, Department of Physics & Astronomy, 2145 Sheridan Road, Evanston, IL 60208 (United States); Gouvêa, André de; Hernández, Daniel [Northwestern University, Department of Physics & Astronomy, 2145 Sheridan Road, Evanston, IL 60208 (United States); Oliveira, Roberto L.N. [Northwestern University, Department of Physics & Astronomy, 2145 Sheridan Road, Evanston, IL 60208 (United States); Instituto de Física Gleb Wataghin Universidade Estadual de Campinas, UNICAMP 13083-970, Campinas, São Paulo (Brazil)

    2015-03-06

    Neutrino propagation in space-time is not constrained to be unitary if very light states – lighter than the active neutrinos – exist into which neutrinos may decay. If this is the case, neutrino flavor-change is governed by a handful of extra mixing and “oscillation” parameters, including new sources of CP-invariance violation. We compute the transition probabilities in the two- and three-flavor scenarios and discuss the different phenomenological consequences of the new physics. These are qualitatively different from other sources of unitarity violation discussed in the literature.

  16. Non-unitary neutrino propagation from neutrino decay

    International Nuclear Information System (INIS)

    Berryman, Jeffrey M.; Gouvêa, André de; Hernández, Daniel; Oliveira, Roberto L.N.

    2015-01-01

    Neutrino propagation in space-time is not constrained to be unitary if very light states – lighter than the active neutrinos – exist into which neutrinos may decay. If this is the case, neutrino flavor-change is governed by a handful of extra mixing and “oscillation” parameters, including new sources of CP-invariance violation. We compute the transition probabilities in the two- and three-flavor scenarios and discuss the different phenomenological consequences of the new physics. These are qualitatively different from other sources of unitarity violation discussed in the literature

  17. Experiments with Highly-Ionized Atoms in Unitary Penning Traps

    Directory of Open Access Journals (Sweden)

    Shannon Fogwell Hoogerheide

    2015-08-01

    Full Text Available Highly-ionized atoms with special properties have been proposed for interesting applications, including potential candidates for a new generation of optical atomic clocks at the one part in 1019 level of precision, quantum information processing and tests of fundamental theory. The proposed atomic systems are largely unexplored. Recent developments at NIST are described, including the isolation of highly-ionized atoms at low energy in unitary Penning traps and the use of these traps for the precise measurement of radiative decay lifetimes (demonstrated with a forbidden transition in Kr17+, as well as for studying electron capture processes.

  18. A Unitary-Transformative Nursing Science: From Angst to Appreciation.

    Science.gov (United States)

    Cowling, W Richard

    2017-10-01

    The discord within nursing regarding the definition of nursing science has created great angst, particularly for those who view nursing science as a body of knowledge derived from theories specific to its unique concerns. The purpose of this brief article is to suggest a perspective and process grounded in appreciation of wholeness that may offer a way forward for proponents of a unitary-transformative nursing science that transcends the discord. This way forward is guided by principles of fostering dissent without contempt, generating a well-imagined future, and garnering appreciatively inspired action for change.

  19. Multiscale differential phase contrast analysis with a unitary detector

    KAUST Repository

    Lopatin, Sergei

    2015-12-30

    A new approach to generate differential phase contrast (DPC) images for the visualization and quantification of local magnetic fields in a wide range of modern nano materials is reported. In contrast to conventional DPC methods our technique utilizes the idea of a unitary detector under bright field conditions, making it immediately usable by a majority of modern transmission electron microscopes. The approach is put on test to characterize the local magnetization of cylindrical nanowires and their 3D ordered arrays, revealing high sensitivity of our method in a combination with nanometer-scale spatial resolution.

  20. Global unitary fixing and matrix-valued correlations in matrix models

    International Nuclear Information System (INIS)

    Adler, Stephen L.; Horwitz, Lawrence P.

    2003-01-01

    We consider the partition function for a matrix model with a global unitary invariant energy function. We show that the averages over the partition function of global unitary invariant trace polynomials of the matrix variables are the same when calculated with any choice of a global unitary fixing, while averages of such polynomials without a trace define matrix-valued correlation functions, that depend on the choice of unitary fixing. The unitary fixing is formulated within the standard Faddeev-Popov framework, in which the squared Vandermonde determinant emerges as a factor of the complete Faddeev-Popov determinant. We give the ghost representation for the FP determinant, and the corresponding BRST invariance of the unitary-fixed partition function. The formalism is relevant for deriving Ward identities obeyed by matrix-valued correlation functions

  1. Tunable arbitrary unitary transformer based on multiple sections of multicore fibers with phase control.

    Science.gov (United States)

    Zhou, Junhe; Wu, Jianjie; Hu, Qinsong

    2018-02-05

    In this paper, we propose a novel tunable unitary transformer, which can achieve arbitrary discrete unitary transforms. The unitary transformer is composed of multiple sections of multi-core fibers with closely aligned coupled cores. Phase shifters are inserted before and after the sections to control the phases of the waves in the cores. A simple algorithm is proposed to find the optimal phase setup for the phase shifters to realize the desired unitary transforms. The proposed device is fiber based and is particularly suitable for the mode division multiplexing systems. A tunable mode MUX/DEMUX for a three-mode fiber is designed based on the proposed structure.

  2. On the equivalence of massive qed with renormalizable and in unitary gauge

    International Nuclear Information System (INIS)

    Abdalla, E.

    1978-03-01

    In the framework of BPHZ renormalization procedure, we discuss the equivalence between 4-dimensional renormalizable massive quantum electrodynamics (Stueckelberg lagrangian), and massive QED in the unitary gauge

  3. The universal sound velocity formula for the strongly interacting unitary Fermi gas

    International Nuclear Information System (INIS)

    Liu Ke; Chen Ji-Sheng

    2011-01-01

    Due to the scale invariance, the thermodynamic laws of strongly interacting limit unitary Fermi gas can be similar to those of non-interacting ideal gas. For example, the virial theorem between pressure and energy density of the ideal gas P = 2E/3V is still satisfied by the unitary Fermi gas. This paper analyses the sound velocity of unitary Fermi gases with the quasi-linear approximation. For comparison, the sound velocities for the ideal Boltzmann, Bose and Fermi gas are also given. Quite interestingly, the sound velocity formula for the ideal non-interacting gas is found to be satisfied by the unitary Fermi gas in different temperature regions. (general)

  4. First unitary, then divided: the temporal dynamics of dividing attention.

    Science.gov (United States)

    Jefferies, Lisa N; Witt, Joseph B

    2018-04-24

    Whether focused visual attention can be divided has been the topic of much investigation, and there is a compelling body of evidence showing that, at least under certain conditions, attention can be divided and deployed as two independent foci. Three experiments were conducted to examine whether attention can be deployed in divided form from the outset, or whether it is first deployed as a unitary focus before being divided. To test this, we adapted the methodology of Jefferies, Enns, and Di Lollo (Journal of Experimental Psychology: Human Perception and Performance 40: 465, 2014), who used a dual-stream Attentional Blink paradigm and two letter-pair targets. One aspect of the AB, Lag-1 sparing, has been shown to occur only if the second target pair appears within the focus of attention. By presenting the second target pair at various spatial locations and assessing the magnitude of Lag-1 sparing, we probed the spatial distribution of attention. By systematically manipulating the stimulus-onset-asynchrony between the targets, we also tracked changes to the spatial distribution of attention over time. The results showed that even under conditions which encourage the division of attention, the attentional focus is first deployed in unitary form before being divided. It is then maintained in divided form only briefly before settling on a single location.

  5. The Schur algorithm for generalized Schur functions III : J-unitary matrix polynomials on the circle

    NARCIS (Netherlands)

    Alpay, Daniel; Azizov, Tomas; Dijksma, Aad; Langer, Heinz

    2003-01-01

    The main result is that for J = ((1)(0) (0)(-1)) every J-unitary 2 x 2-matrix polynomial on the unit circle is an essentially unique product of elementary J-unitary 2 x 2-matrix polynomials which are either of degree 1 or 2k. This is shown by means of the generalized Schur transformation introduced

  6. The SNARC effect is not a unitary phenomenon.

    Science.gov (United States)

    Basso Moro, Sara; Dell'Acqua, Roberto; Cutini, Simone

    2018-04-01

    Models of the spatial-numerical association of response codes (SNARC) effect-faster responses to small numbers using left effectors, and the converse for large numbers-diverge substantially in localizing the root cause of this effect along the numbers' processing chain. One class of models ascribes the cause of the SNARC effect to the inherently spatial nature of the semantic representation of numerical magnitude. A different class of models ascribes the effect's cause to the processing dynamics taking place during response selection. To disentangle these opposing views, we devised a paradigm combining magnitude comparison and stimulus-response switching in order to monitor modulations of the SNARC effect while concurrently tapping both semantic and response-related processing stages. We observed that the SNARC effect varied nonlinearly as a function of both manipulated factors, a result that can hardly be reconciled with a unitary cause of the SNARC effect.

  7. Construction of unitary matrices from observable transition probabilities

    International Nuclear Information System (INIS)

    Peres, A.

    1989-01-01

    An ideal measuring apparatus defines an orthonormal basis vertical strokeu m ) in Hilbert space. Another apparatus defines another basis vertical strokeυ μ ). Both apparatuses together allow to measure the transition probabilities P mμ =vertical stroke(u m vertical strokeυ μ )vertical stroke 2 . The problem is: Given all the elements of a doubly stochastic matrix P mμ , find a unitary matrix U mμ such that P mμ =vertical strokeU mμ vertical stroke 2 . The number of unknown nontrivial phases is equal to the number of independent equations to satisfy. The problem can therefore be solved provided that the values of the P mμ satisfy some inequalities. (orig.)

  8. The Science of Unitary Human Beings in a Creative Perspective.

    Science.gov (United States)

    Caratao-Mojica, Rhea

    2015-10-01

    In moving into a new kind of world, nurses are encouraged to look ahead and be innovative by transcending to new ways of using nursing knowledge while embracing a new worldview. "We need to recognize that we're going to have to use our imagination more and more" (Rogers, 1994). On that note, the author in this paper explicates Rogers' science of unitary human beings in a creative way relating it to painting. In addition, the author also explores works derived from Rogers' science such as Butcher's (1993) and Cowling's (1997), which are here discussed in light of an artwork. A painting is presented with the unpredictability, creativity, and the "dance of color and light" (Butcher, 1993) is appreciated through comprehending essence, pandimensionality, and wholeness. © The Author(s) 2015.

  9. Qubit transport model for unitary black hole evaporation without firewalls*

    Science.gov (United States)

    Osuga, Kento; Page, Don N.

    2018-03-01

    We give an explicit toy qubit transport model for transferring information from the gravitational field of a black hole to the Hawking radiation by a continuous unitary transformation of the outgoing radiation and the black hole gravitational field. The model has no firewalls or other drama at the event horizon, and it avoids a counterargument that has been raised for subsystem transfer models as resolutions of the firewall paradox. Furthermore, it fits the set of six physical constraints that Giddings has proposed for models of black hole evaporation. It does utilize nonlocal qubits for the gravitational field but assumes that the radiation interacts locally with these nonlocal qubits, so in some sense the nonlocality is confined to the gravitational sector. Although the qubit model is too crude to be quantitatively correct for the detailed spectrum of Hawking radiation, it fits qualitatively with what is expected.

  10. Mesoscopic Fluctuations for the Thinned Circular Unitary Ensemble

    Science.gov (United States)

    Berggren, Tomas; Duits, Maurice

    2017-09-01

    In this paper we study the asymptotic behavior of mesoscopic fluctuations for the thinned Circular Unitary Ensemble. The effect of thinning is that the eigenvalues start to decorrelate. The decorrelation is stronger on the larger scales than on the smaller scales. We investigate this behavior by studying mesoscopic linear statistics. There are two regimes depending on the scale parameter and the thinning parameter. In one regime we obtain a CLT of a classical type and in the other regime we retrieve the CLT for CUE. The two regimes are separated by a critical line. On the critical line the limiting fluctuations are no longer Gaussian, but described by infinitely divisible laws. We argue that this transition phenomenon is universal by showing that the same transition and their laws appear for fluctuations of the thinned sine process in a growing box. The proofs are based on a Riemann-Hilbert problem for integrable operators.

  11. Unitary pole approximations and expansions in few-body systems

    International Nuclear Information System (INIS)

    Casel, A.; Haberzettl, H.; Sandhas, W.

    1982-01-01

    The unitary pole approximations or expansions of the two-body subsystem operators are well known, and particularly efficient and practical, methods to reduce the three-body problem to an effective two-body theory. In the present investigation we develop generalizations of these approximation techniques to the subsystem amplitudes of problems with higher particle numbers. They are based on the expansion of effective potentials which, in contrast to the genuine two-body interactions, are now energy dependent. Despite this feature our generalizations require only energy independent form factors, thus preserving one of the essential advantages of the genuine two-body approach. The application of these techniques to the four-body case is discussed in detail

  12. Nonclassicality by Local Gaussian Unitary Operations for Gaussian States

    Directory of Open Access Journals (Sweden)

    Yangyang Wang

    2018-04-01

    Full Text Available A measure of nonclassicality N in terms of local Gaussian unitary operations for bipartite Gaussian states is introduced. N is a faithful quantum correlation measure for Gaussian states as product states have no such correlation and every non product Gaussian state contains it. For any bipartite Gaussian state ρ A B , we always have 0 ≤ N ( ρ A B < 1 , where the upper bound 1 is sharp. An explicit formula of N for ( 1 + 1 -mode Gaussian states and an estimate of N for ( n + m -mode Gaussian states are presented. A criterion of entanglement is established in terms of this correlation. The quantum correlation N is also compared with entanglement, Gaussian discord and Gaussian geometric discord.

  13. Isometric and unitary phase operators: explaining the Villain transform

    International Nuclear Information System (INIS)

    Hemmen, J L van; Wreszinski, Walter F

    2007-01-01

    The Villain transform plays a key role in spin-wave theory, a bosonization of elementary excitations in a system of extensively many Heisenberg spins. Intuitively, it is a representation of the spin operators in terms of an angle and its canonically conjugate angular momentum operator and, as such, has a few nasty boundary-condition twists. We construct an isometric phase representation of spin operators that conveys a precise mathematical meaning to the Villain transform and is related to both classical mechanics and the Pegg-Barnett-Bialynicki-Birula boson (photon) phase operators by means of suitable limits. In contrast to the photon case, unitary extensions are inadequate because they describe the wrong physics. We also discuss in some detail the application to spin-wave theory, pointing out some examples in which the isometric representation is indispensable

  14. Factorization of J-unitary matrix polynomials on the line and a Schur algorithm for generalized Nevanlinna functions

    NARCIS (Netherlands)

    Alpay, D.; Dijksma, A.; Langer, H.

    2004-01-01

    We prove that a 2 × 2 matrix polynomial which is J-unitary on the real line can be written as a product of normalized elementary J-unitary factors and a J-unitary constant. In the second part we give an algorithm for this factorization using an analog of the Schur transformation.

  15. Linking the Unitary Paradigm to Policy through a Synthesis of Caring Science and Integrative Nursing.

    Science.gov (United States)

    Koithan, Mary S; Kreitzer, Mary Jo; Watson, Jean

    2017-07-01

    The principles of integrative nursing and caring science align with the unitary paradigm in a way that can inform and shape nursing knowledge, patient care delivery across populations and settings, and new healthcare policy. The proposed policies may transform the healthcare system in a way that supports nursing praxis and honors the discipline's unitary paradigm. This call to action provides a distinct and hopeful vision of a healthcare system that is accessible, equitable, safe, patient-centered, and affordable. In these challenging times, it is the unitary paradigm and nursing wisdom that offer a clear path forward.

  16. Symmetric mixed states of n qubits: Local unitary stabilizers and entanglement classes

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, David W.; Walck, Scott N. [Lebanon Valley College, Annville, Pennsylvania 17003 (United States)

    2011-10-15

    We classify, up to local unitary equivalence, local unitary stabilizer Lie algebras for symmetric mixed states of n qubits into six classes. These include the stabilizer types of the Werner states, the Greenberger-Horne-Zeilinger state and its generalizations, and Dicke states. For all but the zero algebra, we classify entanglement types (local unitary equivalence classes) of symmetric mixed states that have those stabilizers. We make use of the identification of symmetric density matrices with polynomials in three variables with real coefficients and apply the representation theory of SO(3) on this space of polynomials.

  17. A unitary model of the black hole evaporation

    Science.gov (United States)

    Feng, Yu-Lei; Chen, Yi-Xin

    2014-12-01

    A unitary effective field model of the black hole evaporation is proposed to satisfy almost the four postulates of the black hole complementarity (BHC). In this model, we enlarge a black hole-scalar field system by adding an extra radiation detector that couples with the scalar field. After performing a partial trace over the scalar field space, we obtain an effective entanglement between the black hole and the detector (or radiation in it). As the whole system evolves, the S-matrix formula can be constructed formally step by step. Without local quantum measurements, the paradoxes of the information loss and AMPS's firewall can be resolved. However, the information can be lost due to quantum decoherence, as long as some local measurement has been performed on the detector to acquire the information of the radiation in it. But unlike Hawking's completely thermal spectrum, some residual correlations can be found in the radiations. All these considerations can be simplified in a qubit model that provides a modified quantum teleportation to transfer the information via an EPR pairs.

  18. The unitary conformal field theory behind 2D Asymptotic Safety

    Energy Technology Data Exchange (ETDEWEB)

    Nink, Andreas; Reuter, Martin [Institute of Physics, PRISMA & MITP, Johannes Gutenberg University Mainz,Staudingerweg 7, D-55099 Mainz (Germany)

    2016-02-25

    Being interested in the compatibility of Asymptotic Safety with Hilbert space positivity (unitarity), we consider a local truncation of the functional RG flow which describes quantum gravity in d>2 dimensions and construct its limit of exactly two dimensions. We find that in this limit the flow displays a nontrivial fixed point whose effective average action is a non-local functional of the metric. Its pure gravity sector is shown to correspond to a unitary conformal field theory with positive central charge c=25. Representing the fixed point CFT by a Liouville theory in the conformal gauge, we investigate its general properties and their implications for the Asymptotic Safety program. In particular, we discuss its field parametrization dependence and argue that there might exist more than one universality class of metric gravity theories in two dimensions. Furthermore, studying the gravitational dressing in 2D asymptotically safe gravity coupled to conformal matter we uncover a mechanism which leads to a complete quenching of the a priori expected Knizhnik-Polyakov-Zamolodchikov (KPZ) scaling. A possible connection of this prediction to Monte Carlo results obtained in the discrete approach to 2D quantum gravity based upon causal dynamical triangulations is mentioned. Similarities of the fixed point theory to, and differences from, non-critical string theory are also described. On the technical side, we provide a detailed analysis of an intriguing connection between the Einstein-Hilbert action in d>2 dimensions and Polyakov’s induced gravity action in two dimensions.

  19. Conditional mutual information of bipartite unitaries and scrambling

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Dawei; Hayden, Patrick; Walter, Michael [Stanford Institute for Theoretical Physics, Department of Physics, Stanford University,382 Via Pueblo, Stanford, CA 94305 (United States)

    2016-12-28

    One way to diagnose chaos in bipartite unitary channels is via the tripartite information of the corresponding Choi state, which for certain choices of the subsystems reduces to the negative conditional mutual information (CMI). We study this quantity from a quantum information-theoretic perspective to clarify its role in diagnosing scrambling. When the CMI is zero, we find that the channel has a special normal form consisting of local channels between individual inputs and outputs. However, we find that arbitrarily low CMI does not imply arbitrary proximity to a channel of this form, although it does imply a type of approximate recoverability of one of the inputs. When the CMI is maximal, we find that the residual channel from an individual input to an individual output is completely depolarizing when the other input is maximally mixed. However, we again find that this result is not robust. We also extend some of these results to the multipartite case and to the case of Haar-random pure input states. Finally, we look at the relationship between tripartite information and its Rényi-2 version which is directly related to out-of-time-order correlation functions. In particular, we demonstrate an arbitrarily large gap between the two quantities.

  20. Correlation functions in unitary minimal Liouville gravity and Frobenius manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Belavin, V. [I.E. Tamm Department of Theoretical Physics, P.N. Lebedev Physical Institute,Leninsky prospect 53, 119991 Moscow (Russian Federation); Department of Quantum Physics, Institute for Information Transmission Problems,Bolshoy Karetny per. 19, 127994 Moscow (Russian Federation); Department of Theoretical Physics, National Research Nuclear University MEPhI,Kashirskoe shosse 31, 115409 Moscow (Russian Federation)

    2015-02-10

    We continue to study minimal Liouville gravity (MLG) using a dual approach based on the idea that the MLG partition function is related to the tau function of the A{sub q} integrable hierarchy via the resonance transformations, which are in turn fixed by conformal selection rules. One of the main problems in this approach is to choose the solution of the Douglas string equation that is relevant for MLG. The appropriate solution was recently found using connection with the Frobenius manifolds. We use this solution to investigate three- and four-point correlators in the unitary MLG models. We find an agreement with the results of the original approach in the region of the parameters where both methods are applicable. In addition, we find that only part of the selection rules can be satisfied using the resonance transformations. The physical meaning of the nonzero correlators, which before coupling to Liouville gravity are forbidden by the selection rules, and also the modification of the dual formulation that takes this effect into account remains to be found.

  1. Implementability of two-qubit unitary operations over the butterfly network and the ladder network with free classical communication

    Energy Technology Data Exchange (ETDEWEB)

    Akibue, Seiseki [Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo (Japan); Murao, Mio [Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo, Japan and NanoQuine, The University of Tokyo, Tokyo (Japan)

    2014-12-04

    We investigate distributed implementation of two-qubit unitary operations over two primitive networks, the butterfly network and the ladder network, as a first step to apply network coding for quantum computation. By classifying two-qubit unitary operations in terms of the Kraus-Cirac number, the number of non-zero parameters describing the global part of two-qubit unitary operations, we analyze which class of two-qubit unitary operations is implementable over these networks with free classical communication. For the butterfly network, we show that two classes of two-qubit unitary operations, which contain all Clifford, controlled-unitary and matchgate operations, are implementable over the network. For the ladder network, we show that two-qubit unitary operations are implementable over the network if and only if their Kraus-Cirac number do not exceed the number of the bridges of the ladder.

  2. Implementability of two-qubit unitary operations over the butterfly network and the ladder network with free classical communication

    International Nuclear Information System (INIS)

    Akibue, Seiseki; Murao, Mio

    2014-01-01

    We investigate distributed implementation of two-qubit unitary operations over two primitive networks, the butterfly network and the ladder network, as a first step to apply network coding for quantum computation. By classifying two-qubit unitary operations in terms of the Kraus-Cirac number, the number of non-zero parameters describing the global part of two-qubit unitary operations, we analyze which class of two-qubit unitary operations is implementable over these networks with free classical communication. For the butterfly network, we show that two classes of two-qubit unitary operations, which contain all Clifford, controlled-unitary and matchgate operations, are implementable over the network. For the ladder network, we show that two-qubit unitary operations are implementable over the network if and only if their Kraus-Cirac number do not exceed the number of the bridges of the ladder

  3. Minimal unitary representation of D(2,1;λ) and its SU(2) deformations and d=1, N=4 superconformal models

    International Nuclear Information System (INIS)

    Govil, Karan; Gunaydin, Murat

    2013-01-01

    Quantization of the geometric quasiconformal realizations of noncompact groups and supergroups leads directly to their minimal unitary representations (minreps). Using quasiconformal methods massless unitary supermultiplets of superconformal groups SU(2,2|N) and OSp(8 ⁎ |2n) in four and six dimensions were constructed as minreps and their U(1) and SU(2) deformations, respectively. In this paper we extend these results to SU(2) deformations of the minrep of N=4 superconformal algebra D(2,1;λ) in one dimension. We find that SU(2) deformations can be achieved using n pair of bosons and m pairs of fermions simultaneously. The generators of deformed minimal representations of D(2,1;λ) commute with the generators of a dual superalgebra OSp(2n ⁎ |2m) realized in terms of these bosons and fermions. We show that there exists a precise mapping between symmetry generators of N=4 superconformal models in harmonic superspace studied recently and minimal unitary supermultiplets of D(2,1;λ) deformed by a pair of bosons. This can be understood as a particular case of a general mapping between the spectra of quantum mechanical quaternionic Kähler sigma models with eight super symmetries and minreps of their isometry groups that descends from the precise mapping established between the 4d, N=2 sigma models coupled to supergravity and minreps of their isometry groups.

  4. Unitary three-body calculation of nucleon-nucleon scattering

    International Nuclear Information System (INIS)

    Tanabe, H.; Ohta, K.

    1986-07-01

    We calculate nucleon-nucleon elastic scattering phase parameters based on a unitary, relativistic, pion-exchange model. The results are highly dependent on the off-shell amplitudes of πN scattering. The isobar-dominated model for the P 33 interaction leads to too small pion production rates owing to its strong suppression of off-shell pions. We propose to expand the idea of the Δ-isobar model in such a manner as to incorporate a background (non-pole) interaction. The two-potential model, which was first applied to the P 11 partial wave by Mizutani and Koltun, is applied also to the P 33 wave. Our phenomenological model for πN interaction in the P 33 partial wave differs from the conventional model only in its off-shell extrapolation, and has two different variants for the πN → Δ vertex. The three-body approach of Kloet and Silbar is extended such that the background interactions can be included straightfowardly. We make detailed comparisons of the new model with the conventional one and find that our model adequately reproduces the 1 D 2 phase parameters as well as those of peripheral partial waves. We also find that the longitudinal total cross section difference Δσ L (pp → NNπ) comes closer to the data compared to Kloet and Silbar. We discuss about the backward pion propagation in the three-body calculation, and the Pauli-principle violating states for the background P 11 interaction. (author)

  5. Diagram Techniques in Group Theory

    Science.gov (United States)

    Stedman, Geoffrey E.

    2009-09-01

    Preface; 1. Elementary examples; 2. Angular momentum coupling diagram techniques; 3. Extension to compact simple phase groups; 4. Symmetric and unitary groups; 5. Lie groups and Lie algebras; 6. Polarisation dependence of multiphoton processes; 7. Quantum field theoretic diagram techniques for atomic systems; 8. Applications; Appendix; References; Indexes.

  6. Analytical and unitary approach in mesons electromagnetic form factor applications

    International Nuclear Information System (INIS)

    Liptaj, A.

    2010-07-01

    In the dissertation thesis we address several topics related to the domain of particle physics. All of them represent interesting open problems that can be connected to the elastic or transition electromagnetic form factors of mesons, the form factors being the main objects of our interest. Our ambition is to contribute to the solution of these problems and use for that purpose known analytic properties of the form factors and the unitarity condition. These two tools are very powerful in the low energy domain (such as bound states of partons), where the perturbative QCD looses its validity. This is the motivation for construction of the unitary and analytic (U and A) models of studied form factors, that enable us to get the majority of our results. We use the U and A model to evaluate the contribution of the processes e"+e"- → Pγ, P = π"0, η, η to the muon magnetic anomaly a_μ in the lowest order of the hadronic vacuum polarization. For the contribution a_μ"h"a"d","L"O (π"+π"-) we demonstrate, that the use of the model leads to a dramatic error reduction with respect to the results of other authors. We also get a shift in the central value in the 'correct' direction, that brings the theoretical value closer to the experimental one. This results encourages us to use the model also for the evaluation of a_μ"h"a"d","L"O (P_γ). These contributions are smaller, however the precision of the experiment makes their evaluation necessary. We further use the U and A model of the transition form factors of π"0, η and η"' mesons to predict the partial decay widths of these particles Γ_π_"0_→_γ_γ and Γ_η_→_γ_γ and Γ_η_"'_→_γ_γ. In this way we make an independent cross check of the PDG table values. We find an agreement in the case of Γ_η_→_γ_γ and Γ_η_"'_→_γ_γ, even a smaller uncertainty for Γ_η_"'_→_γ_γ. In the case of Γ_π_"0_→_γ_γ we find a disagreement that points to an interesting problem. We wonder whether it could be

  7. Probing non-unitary CP violation effects in neutrino oscillation experiments

    Science.gov (United States)

    Verma, Surender; Bhardwaj, Shankita

    2018-05-01

    In the present work, we have considered minimal unitarity violation scheme to obtain the general expression for ν _{μ }→ ν _{τ } oscillation probability in vacuum and matter. For this channel, we have investigated the sensitivities of short baseline experiments to non-unitary parameters |ρ _{μ τ }| and ω _{μ τ } for normal as well as inverted hierarchical neutrino masses and θ _{23} being above or below maximality. We find that for normal hierarchy, the 3σ sensitivity of |ρ _{μ τ }| is maximum for non-unitary phase ω _{μ τ }=0 whereas it is minimum for ω _{μ τ }=± π . For inverted hierarchy, the sensitivity is minimum at ω _{μ τ }=0 and maximum for ω _{μ τ }=± π . We observe that the sensitivity to measure non-unitarity remains unaffected for unitary CP phase δ =0 or δ =π /2 . We have, also, explored wide spectrum of L/E ratio to investigate the possibilities to observe CP-violation due to unitary (δ ) and non-unitary (ω _{μ τ } ) phases. We find that the both phases can be disentangled, in principle, from each other for L/E<200 km/GeV.

  8. Treating experimental data of inverse kinetic method by unitary linear regression analysis

    International Nuclear Information System (INIS)

    Zhao Yusen; Chen Xiaoliang

    2009-01-01

    The theory of treating experimental data of inverse kinetic method by unitary linear regression analysis was described. Not only the reactivity, but also the effective neutron source intensity could be calculated by this method. Computer code was compiled base on the inverse kinetic method and unitary linear regression analysis. The data of zero power facility BFS-1 in Russia were processed and the results were compared. The results show that the reactivity and the effective neutron source intensity can be obtained correctly by treating experimental data of inverse kinetic method using unitary linear regression analysis and the precision of reactivity measurement is improved. The central element efficiency can be calculated by using the reactivity. The result also shows that the effect to reactivity measurement caused by external neutron source should be considered when the reactor power is low and the intensity of external neutron source is strong. (authors)

  9. The finite-temperature thermodynamics of a trapped unitary Fermi gas within fractional exclusion statistics

    International Nuclear Information System (INIS)

    Qin Fang; Chen Jisheng

    2010-01-01

    We utilize the fractional exclusion statistics of the Haldane and Wu hypothesis to study the thermodynamics of a unitary Fermi gas trapped in a harmonic oscillator potential at ultra-low finite temperature. The entropy per particle as a function of the energy per particle and energy per particle versus rescaled temperature are numerically compared with the experimental data. The study shows that, except the chemical potential behaviour, there exists a reasonable consistency between the experimental measurement and theoretical attempt for the entropy and energy per particle. In the fractional exclusion statistics formalism, the behaviour of the isochore heat capacity for a trapped unitary Fermi gas is also analysed.

  10. Comparison of the unitary pole and Adhikari-Sloan expansions in the three nucleon system

    International Nuclear Information System (INIS)

    Afnan, I.R.; Birrell, N.D.

    1977-01-01

    The binding energy of 3 H, percentage S-, S'- and D-state probability, and charge form factor of 3 He are calculated using the unitary pole and Adhikari-Sloan separable expansions to the Reid soft core potential. Comparison of the results for the two separable expansions show that the expansion of Adhikari and Sloan has the better convergence property, and the lowest rank expansion considered (equivalent to the unitary pole approximation) gives a good approximation to the binding energy of 3 H and the charge form factor of 3 He, even at large momentum transfer (K 2 -2 ). (Author)

  11. Polynomial approximation of non-Gaussian unitaries by counting one photon at a time

    Science.gov (United States)

    Arzani, Francesco; Treps, Nicolas; Ferrini, Giulia

    2017-05-01

    In quantum computation with continuous-variable systems, quantum advantage can only be achieved if some non-Gaussian resource is available. Yet, non-Gaussian unitary evolutions and measurements suited for computation are challenging to realize in the laboratory. We propose and analyze two methods to apply a polynomial approximation of any unitary operator diagonal in the amplitude quadrature representation, including non-Gaussian operators, to an unknown input state. Our protocols use as a primary non-Gaussian resource a single-photon counter. We use the fidelity of the transformation with the target one on Fock and coherent states to assess the quality of the approximate gate.

  12. How many invariant polynomials are needed to decide local unitary equivalence of qubit states?

    International Nuclear Information System (INIS)

    Maciążek, Tomasz; Oszmaniec, Michał; Sawicki, Adam

    2013-01-01

    Given L-qubit states with the fixed spectra of reduced one-qubit density matrices, we find a formula for the minimal number of invariant polynomials needed for solving local unitary (LU) equivalence problem, that is, problem of deciding if two states can be connected by local unitary operations. Interestingly, this number is not the same for every collection of the spectra. Some spectra require less polynomials to solve LU equivalence problem than others. The result is obtained using geometric methods, i.e., by calculating the dimensions of reduced spaces, stemming from the symplectic reduction procedure

  13. Matrix elements and few-body calculations within the unitary correlation operator method

    International Nuclear Information System (INIS)

    Roth, R.; Hergert, H.; Papakonstantinou, P.

    2005-01-01

    We employ the unitary correlation operator method (UCOM) to construct correlated, low-momentum matrix elements of realistic nucleon-nucleon interactions. The dominant short-range central and tensor correlations induced by the interaction are included explicitly by an unitary transformation. Using correlated momentum-space matrix elements of the Argonne V18 potential, we show that the unitary transformation eliminates the strong off-diagonal contributions caused by the short-range repulsion and the tensor interaction and leaves a correlated interaction dominated by low-momentum contributions. We use correlated harmonic oscillator matrix elements as input for no-core shell model calculations for few-nucleon systems. Compared to the bare interaction, the convergence properties are dramatically improved. The bulk of the binding energy can already be obtained in very small model spaces or even with a single Slater determinant. Residual long-range correlations, not treated explicitly by the unitary transformation, can easily be described in model spaces of moderate size allowing for fast convergence. By varying the range of the tensor correlator we are able to map out the Tjon line and can in turn constrain the optimal correlator ranges. (orig.)

  14. Matrix elements and few-body calculations within the unitary correlation operator method

    International Nuclear Information System (INIS)

    Roth, R.; Hergert, H.; Papakonstantinou, P.; Neff, T.; Feldmeier, H.

    2005-01-01

    We employ the unitary correlation operator method (UCOM) to construct correlated, low-momentum matrix elements of realistic nucleon-nucleon interactions. The dominant short-range central and tensor correlations induced by the interaction are included explicitly by an unitary transformation. Using correlated momentum-space matrix elements of the Argonne V18 potential, we show that the unitary transformation eliminates the strong off-diagonal contributions caused by the short-range repulsion and the tensor interaction and leaves a correlated interaction dominated by low-momentum contributions. We use correlated harmonic oscillator matrix elements as input for no-core shell model calculations for few-nucleon systems. Compared to the bare interaction, the convergence properties are dramatically improved. The bulk of the binding energy can already be obtained in very small model spaces or even with a single Slater determinant. Residual long-range correlations, not treated explicitly by the unitary transformation, can easily be described in model spaces of moderate size allowing for fast convergence. By varying the range of the tensor correlator we are able to map out the Tjon line and can in turn constrain the optimal correlator ranges

  15. Experimental implementation of optimal linear-optical controlled-unitary gates

    Czech Academy of Sciences Publication Activity Database

    Lemr, K.; Bartkiewicz, K.; Černoch, Antonín; Dušek, M.; Soubusta, Jan

    2015-01-01

    Roč. 114, č. 15 (2015), "153602-1"-"153602-5" ISSN 0031-9007 R&D Projects: GA ČR GAP205/12/0382 Institutional support: RVO:68378271 Keywords : two-qubit gates * optimal linear-optical controlled-unitary gates * quantum computing Subject RIV: BH - Optics, Masers, Lasers Impact factor: 7.645, year: 2015

  16. Unitary eikonal formalism for multiproduction of isovector mesons at high energy

    CERN Document Server

    Redei, L B

    1973-01-01

    Unitary eikonal models for multiproduction of isovector mesons are discussed in general terms. A closed analytic expression is derived for the partial production cross sections and for the meson multiplicity moments. A simple class of models is discussed in more detail. (11 refs).

  17. Point transformations and renormalization in the unitary gauge. III. Renormalization effects

    International Nuclear Information System (INIS)

    Sherry, T.N.

    1976-06-01

    An analysis of two simple gauge theory models is continued using point transformations rather than gauge transformations. The renormalization constants are examined directly in two gauges, the renormalization (Landau) and unitary gauges. The result is that the individual coupling constant renormalizations are identical when calculated in each of the above two gauges, although the wave-function and proper vertex renormalizations differ

  18. Beyond the Tipping Point: Issues of Racial Diversity in Magnet Schools Following Unitary Status

    Science.gov (United States)

    Smrekar, Claire

    2009-01-01

    This article uses qualitative case study methodology to examine why the racial composition of magnet schools in Nashville, Tennessee, has shifted to predominantly African American in the aftermath of unitary status. The article compares the policy contexts and parents' reasons for choosing magnet schools at two points in time--under court order…

  19. J(l)-unitary factorization and the Schur algorithm for Nevanlinna functions in an indefinite setting

    NARCIS (Netherlands)

    Alpay, D.; Dijksma, A.; Langer, H.

    2006-01-01

    We introduce a Schur transformation for generalized Nevanlinna functions and show that it can be used in obtaining the unique minimal factorization of a class of rational J(l)-unitary 2 x 2 matrix functions into elementary factors from the same class. (c) 2006 Elsevier Inc. All rights reserved.

  20. Unitary-model-operator approach to Λ17O and lambda-nucleon effective interaction

    International Nuclear Information System (INIS)

    Fujii, Shinichiro; Okamoto, Ryoji; Suzuki, Kenji

    1998-01-01

    The unitary-model-operator approach (UMOA) is applied to Λ 17 O. A lambda-nucleon effective interaction is derived, taking the coupling of the sigma-nucleon channel into account. The lambda single-particle energies are calculated for the Os 1/2 , Op 3/2 and Op 1/2 states employing the Nijmegen soft-core potential. (author)

  1. Effective Hamiltonian within the microscopic unitary nuclear model

    International Nuclear Information System (INIS)

    Filippov, G.F.; Blokhin, A.L.

    1989-01-01

    A technique of projecting the microscopic nuclear Hamiltonian on the SU(3)-group enveloping algebra is developed. The approach proposed is based on the effective Hamiltonian restored from the matrix elements between the coherent states of the SU(3) irreducible representations. The technique is displayed for almost magic nuclei within the mixed representation basis, and for arbitrary nuclei within the single representation. 40 refs

  2. Non-binary unitary error bases and quantum codes

    Energy Technology Data Exchange (ETDEWEB)

    Knill, E.

    1996-06-01

    Error operator bases for systems of any dimension are defined and natural generalizations of the bit-flip/ sign-change error basis for qubits are given. These bases allow generalizing the construction of quantum codes based on eigenspaces of Abelian groups. As a consequence, quantum codes can be constructed form linear codes over {ital Z}{sub {ital n}} for any {ital n}. The generalization of the punctured code construction leads to many codes which permit transversal (i.e. fault tolerant) implementations of certain operations compatible with the error basis.

  3. Continuous unitary transformation approach to pairing interactions in statistical physics

    Directory of Open Access Journals (Sweden)

    T.Domański

    2008-06-01

    Full Text Available We apply the flow equation method to the study of the fermion systems with pairing interactions which lead to the BCS instability signalled by the appearance of the off-diagonal order parameter. For this purpose we rederive the continuous Bogoliubov transformation in a fashion of renormalization group procedure where the low and high energy sectors are treated subsequently. We further generalize this procedure to the case of fermions interacting with the discrete boson mode. Andreev-type interactions are responsible for developing a gap in the excitation spectrum. However, the long-range coherence is destroyed due to strong quantum fluctuations.

  4. Geometric characterization of separability and entanglement in pure Gaussian states by single-mode unitary operations

    Science.gov (United States)

    Adesso, Gerardo; Giampaolo, Salvatore M.; Illuminati, Fabrizio

    2007-10-01

    We present a geometric approach to the characterization of separability and entanglement in pure Gaussian states of an arbitrary number of modes. The analysis is performed adapting to continuous variables a formalism based on single subsystem unitary transformations that has been recently introduced to characterize separability and entanglement in pure states of qubits and qutrits [S. M. Giampaolo and F. Illuminati, Phys. Rev. A 76, 042301 (2007)]. In analogy with the finite-dimensional case, we demonstrate that the 1×M bipartite entanglement of a multimode pure Gaussian state can be quantified by the minimum squared Euclidean distance between the state itself and the set of states obtained by transforming it via suitable local symplectic (unitary) operations. This minimum distance, corresponding to a , uniquely determined, extremal local operation, defines an entanglement monotone equivalent to the entropy of entanglement, and amenable to direct experimental measurement with linear optical schemes.

  5. Dynamics of Three-Body Correlations in Quenched Unitary Bose Gases

    Science.gov (United States)

    Colussi, V. E.; Corson, J. P.; D'Incao, J. P.

    2018-03-01

    We investigate dynamical three-body correlations in the Bose gas during the earliest stages of evolution after a quench to the unitary regime. The development of few-body correlations is theoretically observed by determining the two- and three-body contacts. We find that the growth of three-body correlations is gradual compared to two-body correlations. The three-body contact oscillates coherently, and we identify this as a signature of Efimov trimers. We show that the growth of three-body correlations depends nontrivially on parameters derived from both the density and Efimov physics. These results demonstrate the violation of scaling invariance of unitary bosonic systems via the appearance of log-periodic modulation of three-body correlations.

  6. Geometric characterization of separability and entanglement in pure Gaussian states by single-mode unitary operations

    International Nuclear Information System (INIS)

    Adesso, Gerardo; Giampaolo, Salvatore M.; Illuminati, Fabrizio

    2007-01-01

    We present a geometric approach to the characterization of separability and entanglement in pure Gaussian states of an arbitrary number of modes. The analysis is performed adapting to continuous variables a formalism based on single subsystem unitary transformations that has been recently introduced to characterize separability and entanglement in pure states of qubits and qutrits [S. M. Giampaolo and F. Illuminati, Phys. Rev. A 76, 042301 (2007)]. In analogy with the finite-dimensional case, we demonstrate that the 1xM bipartite entanglement of a multimode pure Gaussian state can be quantified by the minimum squared Euclidean distance between the state itself and the set of states obtained by transforming it via suitable local symplectic (unitary) operations. This minimum distance, corresponding to a, uniquely determined, extremal local operation, defines an entanglement monotone equivalent to the entropy of entanglement, and amenable to direct experimental measurement with linear optical schemes

  7. The solution space of the unitary matrix model string equation and the Sato Grassmannian

    International Nuclear Information System (INIS)

    Anagnostopoulos, K.N.; Bowick, M.J.; Schwarz, A.

    1992-01-01

    The space of all solutions to the string equation of the symmetric unitary one-matrix model is determined. It is shown that the string equations is equivalent to simple conditions on points V 1 and V 2 in the big cell Gr (0) of the Sato Grassmannian Gr. This is a consequence of a well-defined continuum limit in which the string equation has the simple form [P, 2 - ]=1, with P and 2 - 2x2 matrices of differential operators. These conditions on V 1 and V 2 yield a simple system of first order differential equations whose analysis determines the space of all solutions to the string equation. This geometric formulation leads directly to the Virasoro constraints L n (n≥0), where L n annihilate the two modified-KdV τ-functions whose product gives the partition function of the Unitary Matrix Model. (orig.)

  8. Non-unitary neutrino mixing and CP violation in the minimal inverse seesaw model

    International Nuclear Information System (INIS)

    Malinsky, Michal; Ohlsson, Tommy; Xing, Zhi-zhong; Zhang He

    2009-01-01

    We propose a simplified version of the inverse seesaw model, in which only two pairs of the gauge-singlet neutrinos are introduced, to interpret the observed neutrino mass hierarchy and lepton flavor mixing at or below the TeV scale. This 'minimal' inverse seesaw scenario (MISS) is technically natural and experimentally testable. In particular, we show that the effective parameters describing the non-unitary neutrino mixing matrix are strongly correlated in the MISS, and thus, their upper bounds can be constrained by current experimental data in a more restrictive way. The Jarlskog invariants of non-unitary CP violation are calculated, and the discovery potential of such new CP-violating effects in the near detector of a neutrino factory is discussed.

  9. Equivalence of the Weyl, Coulomb, unitary, and covariant gauges in the functional Schrodinger picture

    International Nuclear Information System (INIS)

    Namgung, W.

    1991-01-01

    The well known requirement that physical theories should be gauge independent is not so apparent in the actual calculation of gauge theories, especially in the perturbative approach. In this paper the authors show that the Weyl, Coulomb, and unitary gauges of the scalar QED are manifestly equivalent in the context of the functional Schrodinger picture. Further, the three gauge conditions are shown equivalent to the covariant gauge in the way that they correspond to some specific cases of the latter

  10. Kondo lattice model: Unitary transformations, spin dynamics, strongly correlated charged modes, and vacuum instability

    OpenAIRE

    Prats, J. M.; Lopez-Aguilar, F.

    1996-01-01

    Using unitary transformations, we express the Kondo lattice Hamiltonian in terms of fermionic operators that annihilate the ground state of the interacting system and that represent the best possible approximations to the actual charged excitations. In this way, we obtain an effective Hamiltonian which, for small couplings, consists in a kinetic term for conduction electrons and holes, an RKKY-like term, and a renormalized Kondo interaction. The physical picture of the system implied by this ...

  11. High-energy properties of a class of unitary eikonal models for multiproduction

    CERN Document Server

    Redei, L B

    1974-01-01

    The high-energy properties of a simple class of unitary, crossing- symmetric eikonal models of multiproduction are discussed on the basis of the general closed expression given for the S-matrix elements in a previous publication. In particular, the high-energy behaviour of the multiplicity moments is discussed and it is shown that the KNO scaling relation emerges in a very natural fashion in this class of models. (8 refs).

  12. On the reconstruction of a unitary matrix from its moduli. Existence of continuous ambiguities

    International Nuclear Information System (INIS)

    Auberson, G.

    1989-01-01

    It is shown that, for an n x n unitary matrix with n ≥ 4, the knowledge of the moduli of its elements is not always sufficient to determine this matrix up to 'trivial' or 'discrete' ambiguities. Using a parametrization a la Kobayashi-Maskawa in the case n=4, we exhibit various configurations of the moduli for which a continuous ambiguity appears (i.e., some non-trivial phase remains free). (orig.)

  13. Entanglement Capacity of Two-Qubit Unitary Operator with the Help of Auxiliary System

    International Nuclear Information System (INIS)

    Hu Baolin; Di Yaomin

    2007-01-01

    The entanglement capacity of general two-qubit unitary operators is studied when auxiliary systems are allowed, and the analytical results based on linear entropy when input states are disentangled are given. From the results the condition for perfect entangler, α 1 = α 2 = π/4, is obtained. Contrary to the case without auxiliary system, the parameter α 3 may play active role to the entanglement capacity when auxiliary systems are allowed.

  14. Massless scalar field in de Sitter spacetime: unitary quantum time evolution

    International Nuclear Information System (INIS)

    Cortez, Jerónimo; Blas, Daniel Martín-de; Marugán, Guillermo A Mena; Velhinho, José M

    2013-01-01

    We prove that, under the standard conformal scaling, a free scalar field in de Sitter spacetime admits an O(4)-invariant Fock quantization such that time evolution is unitarily implemented. Since this applies in particular to the massless case, this result disproves previous claims in the literature. We discuss the relationship between this quantization with unitary dynamics and the family of O(4)-invariant Hadamard states given by Allen and Folacci, as well as with the Bunch–Davies vacuum. (paper)

  15. Optimal control landscape for the generation of unitary transformations with constrained dynamics

    International Nuclear Information System (INIS)

    Hsieh, Michael; Wu, Rebing; Rabitz, Herschel; Lidar, Daniel

    2010-01-01

    The reliable and precise generation of quantum unitary transformations is essential for the realization of a number of fundamental objectives, such as quantum control and quantum information processing. Prior work has explored the optimal control problem of generating such unitary transformations as a surface-optimization problem over the quantum control landscape, defined as a metric for realizing a desired unitary transformation as a function of the control variables. It was found that under the assumption of nondissipative and controllable dynamics, the landscape topology is trap free, which implies that any reasonable optimization heuristic should be able to identify globally optimal solutions. The present work is a control landscape analysis, which incorporates specific constraints in the Hamiltonian that correspond to certain dynamical symmetries in the underlying physical system. It is found that the presence of such symmetries does not destroy the trap-free topology. These findings expand the class of quantum dynamical systems on which control problems are intrinsically amenable to a solution by optimal control.

  16. Unitary W-algebras and three-dimensional higher spin gravities with spin one symmetry

    International Nuclear Information System (INIS)

    Afshar, Hamid; Creutzig, Thomas; Grumiller, Daniel; Hikida, Yasuaki; Rønne, Peter B.

    2014-01-01

    We investigate whether there are unitary families of W-algebras with spin one fields in the natural example of the Feigin-Semikhatov W_n"("2")-algebra. This algebra is conjecturally a quantum Hamiltonian reduction corresponding to a non-principal nilpotent element. We conjecture that this algebra admits a unitary real form for even n. Our main result is that this conjecture is consistent with the known part of the operator product algebra, and especially it is true for n=2 and n=4. Moreover, we find certain ranges of allowed levels where a positive definite inner product is possible. We also find a unitary conformal field theory for every even n at the special level k+n=(n+1)/(n−1). At these points, the W_n"("2")-algebra is nothing but a compactified free boson. This family of W-algebras admits an ’t Hooft limit. Further, in the case of n=4, we reproduce the algebra from the higher spin gravity point of view. In general, gravity computations allow us to reproduce some leading coefficients of the operator product.

  17. On the complete classification of unitary N=2 minimal superconformal field theories

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Oliver

    2009-08-03

    Aiming at a complete classification of unitary N=2 minimal models (where the assumption of space-time supersymmetry has been dropped), it is shown that each candidate for a modular invariant partition function of such a theory is indeed the partition function of a minimal model. A family of models constructed via orbifoldings of either the diagonal model or of the space-time supersymmetric exceptional models demonstrates that there exists a unitary N=2 minimal model for every one of the allowed partition functions in the list obtained from Gannon's work. Kreuzer and Schellekens' conjecture that all simple current invariants can be obtained as orbifolds of the diagonal model, even when the extra assumption of higher-genus modular invariance is dropped, is confirmed in the case of the unitary N=2 minimal models by simple counting arguments. We nd a nice characterisation of the projection from the Hilbert space of a minimal model with k odd to its modular invariant subspace, and we present a new simple proof of the superconformal version of the Verlinde formula for the minimal models using simple currents. Finally we demonstrate a curious relation between the generating function of simple current invariants and the Riemann zeta function. (orig.)

  18. Unitary assessment of economical efficiency of the energy resources for electricity production in Romania

    International Nuclear Information System (INIS)

    Luca, Gheorghe

    2004-01-01

    In our country, within the studies, on which the development strategies of power output are based on, the assessment of the economical efficiency of the use of two main energetic resources, the fuel used in cogeneration thermal power plants and the water used in hydropower plants respectively, was made in compliance with non-unitary specific norms. In contradiction with the degree of utilization of hydroelectric resources, realized all over the world in the developed countries (80-90%) resulted that in our country, where the degree of utilization is only 40%, the use of hydroelectric potential is not yet justified from technical-economical point of view. This anomaly was determined by the cause of non-unitary assessment of the economic efficiency for the cogeneration thermo-power plants and hydropower plants. This paper presents comparatively the elements, which were to the basis of the assessment of the economic efficiency for two types of electrical power plants, and one presents a proposal in the aim to perform a unitary assessment of the economical efficiency by applying efficiently the laws in force. (author)

  19. On the complete classification of unitary N=2 minimal superconformal field theories

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Oliver

    2009-08-03

    Aiming at a complete classification of unitary N=2 minimal models (where the assumption of space-time supersymmetry has been dropped), it is shown that each candidate for a modular invariant partition function of such a theory is indeed the partition function of a minimal model. A family of models constructed via orbifoldings of either the diagonal model or of the space-time supersymmetric exceptional models demonstrates that there exists a unitary N=2 minimal model for every one of the allowed partition functions in the list obtained from Gannon's work. Kreuzer and Schellekens' conjecture that all simple current invariants can be obtained as orbifolds of the diagonal model, even when the extra assumption of higher-genus modular invariance is dropped, is confirmed in the case of the unitary N=2 minimal models by simple counting arguments. We nd a nice characterisation of the projection from the Hilbert space of a minimal model with k odd to its modular invariant subspace, and we present a new simple proof of the superconformal version of the Verlinde formula for the minimal models using simple currents. Finally we demonstrate a curious relation between the generating function of simple current invariants and the Riemann zeta function. (orig.)

  20. On the complete classification of unitary N=2 minimal superconformal field theories

    International Nuclear Information System (INIS)

    Gray, Oliver

    2009-01-01

    Aiming at a complete classi cation of unitary N=2 minimal models (where the assumption of space-time supersymmetry has been dropped), it is shown that each candidate for a modular invariant partition function of such a theory is indeed the partition function of a minimal model. A family of models constructed via orbifoldings of either the diagonal model or of the space-time supersymmetric exceptional models demonstrates that there exists a unitary N=2 minimal model for every one of the allowed partition functions in the list obtained from Gannon's work. Kreuzer and Schellekens' conjecture that all simple current invariants can be obtained as orbifolds of the diagonal model, even when the extra assumption of higher-genus modular invariance is dropped, is confirmed in the case of the unitary N=2 minimal models by simple counting arguments. We nd a nice characterisation of the projection from the Hilbert space of a minimal model with k odd to its modular invariant subspace, and we present a new simple proof of the superconformal version of the Verlinde formula for the minimal models using simple currents. Finally we demonstrate a curious relation between the generating function of simple current invariants and the Riemann zeta function. (orig.)

  1. Construction of Non-Perturbative, Unitary Particle-Antiparticle Amplitudes for Finite Particle Number Scattering Formalisms

    International Nuclear Information System (INIS)

    Lindesay, James V

    2002-01-01

    Starting from a unitary, Lorentz invariant two-particle scattering amplitude, we show how to use an identification and replacement process to construct a unique, unitary particle-antiparticle amplitude. This process differs from conventional on-shell Mandelstam s,t,u crossing in that the input and constructed amplitudes can be off-diagonal and off-energy shell. Further, amplitudes are constructed using the invariant parameters which are appropriate to use as driving terms in the multi-particle, multichannel nonperturbative, cluster decomposable, relativistic scattering equations of the Faddeev-type integral equations recently presented by Alfred, Kwizera, Lindesay and Noyes. It is therefore anticipated that when so employed, the resulting multi-channel solutions will also be unitary. The process preserves the usual particle-antiparticle symmetries. To illustrate this process, we construct a J=0 scattering length model chosen for simplicity. We also exhibit a class of physical models which contain a finite quantum mass parameter and are Lorentz invariant. These are constructed to reduce in the appropriate limits, and with the proper choice of value and sign of the interaction parameter, to the asymptotic solution of the nonrelativistic Coulomb problem, including the forward scattering singularity , the essential singularity in the phase, and the Bohr bound-state spectrum

  2. Massive and massless supersymmetry: Multiplet structure and unitary irreducible representations

    International Nuclear Information System (INIS)

    Jarvis, P.D.

    1976-01-01

    UIR's of the supersymmetry algebra for the massive and massless cases are analyzed covariantly (without the use of induced representations) in terms of their component spins. For the massive case normalized basis vectors vertical-barp 2 >0, j 0 ; sigma; pjlambda> are constructed, where j 0 is the ''superspin'' and sigma is an additional quantum number serving to distinguish the different vertical-barpjlambda>, the constituent p 2 >0, spin-j UIR's of the Poincare group. For the massless case, normalized basis vectors vertical-barp 2 =0, lambda 0 ; plambda> are similarly constructed, where lambda 0 is the ''superhelicity.'' Matrix elements of the supersymmetry generators, in these bases, are explicitly given. The ''sigma basis'' is used to define weight diagrams for the massive UIR's of supersymmetry, and their properties are briefly described. Eigenfunctions ω/sub sigma/(theta) are also defined, and their connection with the reduction of higher spin massive superfields PHI/subJ/(x,theta) is discussed. Finally, it is shown how gauge dependence necessarily arises with certain massless superfields. The massless scalar superfield, both gauge-dependent and gauge-independent, is discussed as an example

  3. The Weyl group of the Cuntz algebra

    DEFF Research Database (Denmark)

    Conti, Roberto; Hong, Jeong Hee; Szymanski, Wojciech

    2012-01-01

    The Weyl group of the Cuntz algebra O_n is investigated. This is (isomorphic to) the group of polynomial automorphisms lambda_u of O_n, namely those induced by unitaries u that can be written as finite sums of words in the canonical generating isometries S_i and their adjoints. A necessary...

  4. Non-unitary boson mapping and its application to nuclear collective motions

    International Nuclear Information System (INIS)

    Takada, Kenjiro

    2001-01-01

    First, the general theory of boson mapping for even-number many-fermion systems is surveyed. In order to overcome the confusion concerning the so-called unphysical or spurious states in the boson mapping, the correct concept of the unphysical states is precisely given in a clear-cut way. Next, a method to apply the boson mapping to a truncated many-fermion Hilbert space consisting of collective phonons is proposed, by putting special emphasis on the Dyson-type non-unitary boson mapping. On the basis of this method, it becomes possible for the first time to apply the Dyson-type boson mapping to analyses of collective motions in realistic nuclei. This method is also extended to be applicable to odd-number-fermion systems. As known well, the Dyson-type boson mapping is a non-unitary transformation and it gives a non-Hermitian boson Hamiltonian. It is not easy (but not impossible) to solve the eigenstates of the non-Hermitian Hamiltonian. A Hermitian treatment of this non-Hermitian eigenvalue problem is discussed and it is shown that this treatment is a very good approximation. using this Hermitian treatment, we can obtain the normal-ordered Holstein-Primakoff-type boson expansion in the multi-collective-phonon subspace. Thereby the convergence of the boson expansion can be tested. Some examples of application of the Dyson-type non-unitary boson mapping to simplified models and realistic nuclei are also shown, and we can see that it is quite useful for analysis of the collective motions in realistic nuclei. In contrast to the above-mentioned ordinary type of boson mapping, which may be called a a 'static' boson mapping, the Dyson-type non-unitary self-consistent-collective-coordinate method is discussed. The latter is, so to speak, a 'dynamical' boson mapping, which is a dynamical extension of the ordinary boson mapping to be capable to include the coupling effects from the non-collective degrees of freedom self-consistently.Thus all of the Dyson-type non-unitary boson

  5. Representations of the symmetric group as special cases of the boson polynomials in U(n)

    International Nuclear Information System (INIS)

    Biedenharn, L.C.; Louck, J.D.

    1978-01-01

    The set of all real, orthogonal irreps of S/sub n/ are realized explicitly and nonrecursively by specializing the boson polynomials carrying irreps of the unitary group. This realization makes use of a 'calculus of patterns', which is discussed

  6. Smooth vectors and Weyl-Pedersen calculus for representations of nilpotent Lie groups

    OpenAIRE

    Beltita, Ingrid; Beltita, Daniel

    2009-01-01

    We present some recent results on smooth vectors for unitary irreducible representations of nilpotent Lie groups. Applications to the Weyl-Pedersen calculus of pseudo-differential operators with symbols on the coadjoint orbits are also discussed.

  7. Realization of a unique time evolution unitary operator in Klein Gordon theory

    International Nuclear Information System (INIS)

    Balasubramanian, T.S.; Bhatia, S.Kr.

    1986-01-01

    The scattering theory for the Klein Gordon equation, with time-dependent potential and in a non-static space-time, is considered. Using the Klein Gordon equation formulated in the Hilbert space L 2 (R 3 ) and the Einstein's relativistic equation in the space L 2 (R 3 ,dx) and establishing the equivalence of the vacuum states of their linearized forms in the Hilbert space L 2 (R 3 ) with the help of unique symmetric symplectic operator, the time evolution unitary operator U(t) has been fixed for the Klein Gordon eqution, incorporating either the positive or negative frequencies, in the infinite dimensional Hilbert space L 2 (R 3 ). (author)

  8. A new derivation of the highest-weight polynomial of a unitary lie algebra

    International Nuclear Information System (INIS)

    P Chau, Huu-Tai; P Van, Isacker

    2000-01-01

    A new method is presented to derive the expression of the highest-weight polynomial used to build the basis of an irreducible representation (IR) of the unitary algebra U(2J+1). After a brief reminder of Moshinsky's method to arrive at the set of equations defining the highest-weight polynomial of U(2J+1), an alternative derivation of the polynomial from these equations is presented. The method is less general than the one proposed by Moshinsky but has the advantage that the determinantal expression of the highest-weight polynomial is arrived at in a direct way using matrix inversions. (authors)

  9. A gauge-invariant chiral unitary framework for kaon photo- and electroproduction on the proton

    International Nuclear Information System (INIS)

    Borasoy, B.; Bruns, P.C.; Nissler, R.; Meissner, U.G.

    2007-01-01

    We present a gauge-invariant approach to photoproduction of mesons on nucleons within a chiral unitary framework. The interaction kernel for meson-baryon scattering is derived from the chiral effective Lagrangian and iterated in a Bethe-Salpeter equation. Within the leading-order approximation to the interaction kernel, data on kaon photoproduction from SAPHIR, CLAS and CBELSA/TAPS are analyzed in the threshold region. The importance of gauge invariance and the precision of various approximations in the interaction kernel utilized in earlier works are discussed. (orig.)

  10. On Parseval Wavelet Frames with Two or Three Generators via the Unitary Extension Principle

    DEFF Research Database (Denmark)

    Christensen, Ole; Kim, Hong Oh; Kim, Rae Young

    2014-01-01

    The unitary extension principle (UEP) by A. Ron and Z. Shen yields a sufficient condition for the construction of Parseval wavelet frames with multiple generators. In this paper we characterize the UEP-type wavelet systems that can be extended to a Parseval wavelet frame by adding just one UEP......-type wavelet system. We derive a condition that is necessary for the extension of a UEP-type wavelet system to any Parseval wavelet frame with any number of generators and prove that this condition is also sufficient to ensure that an extension with just two generators is possible....

  11. Pore dimensions and the role of occupancy in unitary conductance of Shaker K channels

    Science.gov (United States)

    Díaz-Franulic, Ignacio; Sepúlveda, Romina V.; Navarro-Quezada, Nieves; González-Nilo, Fernando

    2015-01-01

    K channels mediate the selective passage of K+ across the plasma membrane by means of intimate interactions with ions at the pore selectivity filter located near the external face. Despite high conservation of the selectivity filter, the K+ transport properties of different K channels vary widely, with the unitary conductance spanning a range of over two orders of magnitude. Mutation of Pro475, a residue located at the cytoplasmic entrance of the pore of the small-intermediate conductance K channel Shaker (Pro475Asp (P475D) or Pro475Gln (P475Q)), increases Shaker’s reported ∼20-pS conductance by approximately six- and approximately threefold, respectively, without any detectable effect on its selectivity. These findings suggest that the structural determinants underlying the diversity of K channel conductance are distinct from the selectivity filter, making P475D and P475Q excellent probes to identify key determinants of the K channel unitary conductance. By measuring diffusion-limited unitary outward currents after unilateral addition of 2 M sucrose to the internal solution to increase its viscosity, we estimated a pore internal radius of capture of ∼0.82 Å for all three Shaker variants (wild type, P475D, and P475Q). This estimate is consistent with the internal entrance of the Kv1.2/2.1 structure if the effective radius of hydrated K+ is set to ∼4 Å. Unilateral exposure to sucrose allowed us to estimate the internal and external access resistances together with that of the inner pore. We determined that Shaker resistance resides mainly in the inner cavity, whereas only ∼8% resides in the selectivity filter. To reduce the inner resistance, we introduced additional aspartate residues into the internal vestibule to favor ion occupancy. No aspartate addition raised the maximum unitary conductance, measured at saturating [K+], beyond that of P475D, suggesting an ∼200-pS conductance ceiling for Shaker. This value is approximately one third of the maximum

  12. Quantum entanglement: the unitary 8-vertex braid matrix with imaginary rapidity

    International Nuclear Information System (INIS)

    Chakrabarti, Amitabha; Chakraborti, Anirban; Jedidi, Aymen

    2010-01-01

    We study quantum entanglements induced on product states by the action of 8-vertex braid matrices, rendered unitary with purely imaginary spectral parameters (rapidity). The unitarity is displayed via the 'canonical factorization' of the coefficients of the projectors spanning the basis. This adds one more new facet to the famous and fascinating features of the 8-vertex model. The double periodicity and the analytic properties of the elliptic functions involved lead to a rich structure of the 3-tangle quantifying the entanglement. We thus explore the complex relationship between topological and quantum entanglement. (fast track communication)

  13. Scalar ΛN and ΛΛ interaction in a chiral unitary approach

    International Nuclear Information System (INIS)

    Sasaki, K.; Oset, E.; Vacas, M. J. Vicente

    2006-01-01

    We study the central part of the ΛN and ΛΛ potential by considering the correlated and uncorrelated two-meson exchange in addition to the ω exchange contribution. The correlated two-meson exchange is evaluated within a chiral unitary approach. We find that a short-range repulsion is generated by the correlated two-meson potential, which also produces an attraction in the intermediate-distance region. The uncorrelated two-meson exchange produces a sizable attraction in all cases that is counterbalanced by the ω exchange contribution

  14. Cold dilute neutron matter on the lattice. II. Results in the unitary limit

    International Nuclear Information System (INIS)

    Lee, Dean; Schaefer, Thomas

    2006-01-01

    This is the second of two articles that investigate cold dilute neutron matter on the lattice using pionless effective field theory. In the unitary limit, where the effective range is zero and scattering length is infinite, simple scaling relations relate thermodynamic functions at different temperatures. When the second virial coefficient is properly tuned, we find that the lattice results obey these scaling relations. We compute the energy per particle, pressure, spin susceptibility, dineutron correlation function, and an upper bound for the superfluid critical temperature

  15. Fortran code for generating random probability vectors, unitaries, and quantum states

    Directory of Open Access Journals (Sweden)

    Jonas eMaziero

    2016-03-01

    Full Text Available The usefulness of generating random configurations is recognized in many areas of knowledge. Fortran was born for scientific computing and has been one of the main programming languages in this area since then. And several ongoing projects targeting towards its betterment indicate that it will keep this status in the decades to come. In this article, we describe Fortran codes produced, or organized, for the generation of the following random objects: numbers, probability vectors, unitary matrices, and quantum state vectors and density matrices. Some matrix functions are also included and may be of independent interest.

  16. A genetic-algorithm-based method to find unitary transformations for any desired quantum computation and application to a one-bit oracle decision problem

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Jeongho [Seoul National University, Seoul (Korea, Republic of); Hanyang University, Seoul (Korea, Republic of); Yoo, Seokwon [Hanyang University, Seoul (Korea, Republic of)

    2014-12-15

    We propose a genetic-algorithm-based method to find the unitary transformations for any desired quantum computation. We formulate a simple genetic algorithm by introducing the 'genetic parameter vector' of the unitary transformations to be found. In the genetic algorithm process, all components of the genetic parameter vectors are supposed to evolve to the solution parameters of the unitary transformations. We apply our method to find the optimal unitary transformations and to generalize the corresponding quantum algorithms for a realistic problem, the one-bit oracle decision problem, or the often-called Deutsch problem. By numerical simulations, we can faithfully find the appropriate unitary transformations to solve the problem by using our method. We analyze the quantum algorithms identified by the found unitary transformations and generalize the variant models of the original Deutsch's algorithm.

  17. 2-D unitary ESPRIT-like direction-of-arrival (DOA) estimation for coherent signals with a uniform rectangular array.

    Science.gov (United States)

    Ren, Shiwei; Ma, Xiaochuan; Yan, Shefeng; Hao, Chengpeng

    2013-03-28

    A unitary transformation-based algorithm is proposed for two-dimensional (2-D) direction-of-arrival (DOA) estimation of coherent signals. The problem is solved by reorganizing the covariance matrix into a block Hankel one for decorrelation first and then reconstructing a new matrix to facilitate the unitary transformation. By multiplying unitary matrices, eigenvalue decomposition and singular value decomposition are both transformed into real-valued, so that the computational complexity can be reduced significantly. In addition, a fast and computationally attractive realization of the 2-D unitary transformation is given by making a Kronecker product of the 1-D matrices. Compared with the existing 2-D algorithms, our scheme is more efficient in computation and less restrictive on the array geometry. The processing of the received data matrix before unitary transformation combines the estimation of signal parameters via rotational invariance techniques (ESPRIT)-Like method and the forward-backward averaging, which can decorrelate the impinging signalsmore thoroughly. Simulation results and computational order analysis are presented to verify the validity and effectiveness of the proposed algorithm.

  18. Efficient Nonlocal M-Control and N-Target Controlled Unitary Gate Using Non-symmetric GHZ States

    Science.gov (United States)

    Chen, Li-Bing; Lu, Hong

    2018-03-01

    Efficient local implementation of a nonlocal M-control and N-target controlled unitary gate is considered. We first show that with the assistance of two non-symmetric qubit(1)-qutrit(N) Greenberger-Horne-Zeilinger (GHZ) states, a nonlocal 2-control and N-target controlled unitary gate can be constructed from 2 local two-qubit CNOT gates, 2 N local two-qutrit conditional SWAP gates, N local qutrit-qubit controlled unitary gates, and 2 N single-qutrit gates. At each target node, the two third levels of the two GHZ target qutrits are used to expose one and only one initial computational state to the local qutrit-qubit controlled unitary gate, instead of being used to hide certain states from the conditional dynamics. This scheme can be generalized straightforwardly to implement a higher-order nonlocal M-control and N-target controlled unitary gate by using M non-symmetric qubit(1)-qutrit(N) GHZ states as quantum channels. Neither the number of the additional levels of each GHZ target particle nor that of single-qutrit gates needs to increase with M. For certain realistic physical systems, the total gate time may be reduced compared with that required in previous schemes.

  19. A self-consistency check for unitary propagation of Hawking quanta

    Science.gov (United States)

    Baker, Daniel; Kodwani, Darsh; Pen, Ue-Li; Yang, I.-Sheng

    2017-11-01

    The black hole information paradox presumes that quantum field theory in curved space-time can provide unitary propagation from a near-horizon mode to an asymptotic Hawking quantum. Instead of invoking conjectural quantum-gravity effects to modify such an assumption, we propose a self-consistency check. We establish an analogy to Feynman’s analysis of a double-slit experiment. Feynman showed that unitary propagation of the interfering particles, namely ignoring the entanglement with the double-slit, becomes an arbitrarily reliable assumption when the screen upon which the interference pattern is projected is infinitely far away. We argue for an analogous self-consistency check for quantum field theory in curved space-time. We apply it to the propagation of Hawking quanta and test whether ignoring the entanglement with the geometry also becomes arbitrarily reliable in the limit of a large black hole. We present curious results to suggest a negative answer, and we discuss how this loss of naive unitarity in QFT might be related to a solution of the paradox based on the soft-hair-memory effect.

  20. Regarding the unitary theory of agonist and antagonist action at presynaptic adrenoceptors.

    Science.gov (United States)

    Kalsner, S; Abdali, S A

    2001-06-01

    1. The linkage between potentiation of field stimulation-induced noradrenaline release and blockade of the presynaptic inhibitory effect of exogenous noradrenaline by a presynaptic antagonist was examined in superfused rabbit aorta preparations. 2. Rauwolscine clearly potentiated the release of noradrenaline in response to 100 pulses at 2 Hz but reduced the capacity of noradrenaline to inhibit transmitter release to a questionable extent, and then only when comparisons were made with untreated, rather then to rauwolscine-treated, controls. 3. Aortic preparations exposed for 60 min to rauwolscine followed by superfusion with antagonist-free Krebs for 60 min retained the potentiation of stimulation-induced transmitter release but no antagonism of the noradrenaline-induced inhibition could be detected at either of two noradrenaline concentrations when comparisons were made with rauwolscine treated controls. 4. Comparisons of the inhibitory effect of exogenous noradrenaline (1.8 x 10-6 M) on transmitter efflux in the presence and absence of rauwolscine pretreatment revealed that the antagonist enhanced rather than antagonized the presynaptic inhibition by noradrenaline. 5 It is concluded that the unitary hypothesis that asserts that antagonist enhancement of transmitter release and its blockade of noradrenaline induced inhibition are manifestations of a unitary event are not supportable.

  1. Radio-Frequency-Controlled Cold Collisions and Universal Properties of Unitary Bose Gases

    Science.gov (United States)

    Ding, Yijue

    This thesis investigates two topics: ultracold atomic collisions in a radio-frequency field and universal properties of a degenerate unitary Bose gas. One interesting point of the unitary Bose gas is that the system has only one length scale, that is, the average interparticle distance. This single parameter determines all properties of the gas, which is called the universality of the system. We first introduce a renormalized contact interaction to extend the validity of the zero-range interaction to large scattering lengths. Then this renormalized interaction is applied to many-body theories to determined those universal relations of the system. From the few-body perspective, we discuss the scattering between atoms in a single-color radio-frequency field. Our motivation is proposing the radio-frequency field as an effective tool to control interactions between cold atoms. Such a technique may be useful in future experiments such as creating phase transitions in spinor condensates. We also discuss the formation of ultracold molecules using radio-freqency fields from a time-dependent approach.

  2. The virial equation of state for unitary fermion thermodynamics with non-Gaussian correlations

    International Nuclear Information System (INIS)

    Chen Jisheng; Li Jiarong; Wang Yanping; Xia Xiangjun

    2008-01-01

    We study the roles of the dynamical high order perturbation and statistically non-linear infrared fluctuation/correlation in the virial equation of state for the Fermi gas in the unitary limit. Incorporating the quantum level crossing rearrangement effects, the spontaneously generated entropy departing from the mean-field theory formalism leads to concise thermodynamical expressions. The dimensionless virial coefficients with complex non-local correlations are calculated up to the fourth order for the first time. The virial coefficients of unitary Fermi gas are found to be proportional to those of the ideal quantum gas with integer ratios through a general term formula. Counterintuitively, contrary to those of the ideal bosons (a (0) 2 =-(1/4√2)) or fermions (a (0) 2 =(1/4√2)), the second virial coefficient a 2 of Fermi gas at unitarity is found to be equal to zero. With the vanishing leading order quantum correction, the BCS–BEC crossover thermodynamics manifests the famous pure classical Boyle's law in the Boltzmann regime. The non-Gaussian correlation phenomena can be validated by studying the Joule–Thomson effect

  3. Three-body unitary transformations, three-body forces, and trinucleon bound state properties

    International Nuclear Information System (INIS)

    Haftel, M.I.

    1976-01-01

    A three-body unitary transformation method for the study of three-body forces is presented. Starting with a three-body Hamiltonian with two-body forces, unitary transformations are introduced to generate Hamiltonians that have both two- and three-body forces. For cases of physical interest, the two-body forces of the altered Hamiltonians are phase equivalent (for two-body scattering) to the original and the three-body force vanishes when any interparticle distance is large. Specific examples are presented. Applications for studying the possible role of three-body forces in accounting for trinucleon bound state properties are examined. Calculations of the 3 He and 3 H charge form factors and Coulomb energy difference with hyperspherical radial transformations and with conventional N-N potentials are performed. The form factor calculations demonstrate how the proposed method can help obtain improved agreement with experiment by the introduction of appropriate three-body forces. Calculations of the Coulomb energy difference confirm previous estimates concerning charge symmetry breaking in the N-N interaction

  4. Reconstitutable nuclear reactor fuel assembly with unitary removable top nozzle subassembly

    International Nuclear Information System (INIS)

    Shallenberger, J.M.

    1987-01-01

    A reconstitutable fuel assembly is described having at least one control rod guide thimble and a top nozzle, the guide thimble including an upper extension, the top nozzle including at least one hold-down spring, an upper hold-down plate and a lower adapter plate, an improved attaching structure removably mounting the top nozzle as a unitary subassembly on the guide thimble. The attaching structure comprises: (a) a coupling member interfitting the lower adapter plate, the upper hold-down plate and the hold-down spring disposed between the plates so as to capture and retain the plates and spring together as a unitary subassembly in which the upper plate is slidably moveable along the coupling member relative to the lower plate with the spring biasing the upper plate away from the lower plate. The coupling member has spaced apart upper and lower portions with a central passageway extending for slidably receiving the upper extension of the guide thimble in a nonattached relationship in which the coupling member is slidably movable relative to the guide thimble extension for respectively inserting and removing the coupling member on and from the guide thimble extension

  5. Reflection Positive Stochastic Processes Indexed by Lie Groups

    Science.gov (United States)

    Jorgensen, Palle E. T.; Neeb, Karl-Hermann; Ólafsson, Gestur

    2016-06-01

    Reflection positivity originates from one of the Osterwalder-Schrader axioms for constructive quantum field theory. It serves as a bridge between euclidean and relativistic quantum field theory. In mathematics, more specifically, in representation theory, it is related to the Cartan duality of symmetric Lie groups (Lie groups with an involution) and results in a transformation of a unitary representation of a symmetric Lie group to a unitary representation of its Cartan dual. In this article we continue our investigation of representation theoretic aspects of reflection positivity by discussing reflection positive Markov processes indexed by Lie groups, measures on path spaces, and invariant gaussian measures in spaces of distribution vectors. This provides new constructions of reflection positive unitary representations.

  6. Universal and Deterministic Manipulation of the Quantum State of Harmonic Oscillators: A Route to Unitary Gates for Fock State Qubits

    International Nuclear Information System (INIS)

    Santos, Marcelo Franca

    2005-01-01

    We present a simple quantum circuit that allows for the universal and deterministic manipulation of the quantum state of confined harmonic oscillators. The scheme is based on the selective interactions of the referred oscillator with an auxiliary three-level system and a classical external driving source, and enables any unitary operations on Fock states, two by two. One circuit is equivalent to a single qubit unitary logical gate on Fock states qubits. Sequences of similar protocols allow for complete, deterministic, and state-independent manipulation of the harmonic oscillator quantum state

  7. Discrimination of unitary transformations in the Deutsch-Jozsa algorithm: Implications for thermal-equilibrium-ensemble implementations

    International Nuclear Information System (INIS)

    Collins, David

    2010-01-01

    A general framework for regarding oracle-assisted quantum algorithms as tools for discriminating among unitary transformations is described. This framework is applied to the Deutsch-Jozsa problem and all possible quantum algorithms which solve the problem with certainty using oracle unitaries in a particular form are derived. It is also used to show that any quantum algorithm that solves the Deutsch-Jozsa problem starting with a quantum system in a particular class of initial, thermal equilibrium-based states of the type encountered in solution-state NMR can only succeed with greater probability than a classical algorithm when the problem size n exceeds ∼10 5 .

  8. Structure of N = 2 superconformally invariant unitary ''minimal'' theories: Operator algebra and correlation functions

    International Nuclear Information System (INIS)

    Kiritsis, E.B.

    1987-01-01

    N = 2 superconformal-invariant theories are studied and their general structure is analyzed. The geometry of N = 2 complex superspace is developed as a tool to study the correlation functions of the theories above. The Ward identities of the global N = 2 superconformal symmetry are solved, to restrict the form of correlation functions. Advantage is taken of the existence of the degenerate operators to derive the ''fusion'' rules for the unitary minimal systems with c<1. In particular, the closure of the operator algebra for such systems is shown. The c = (1/3 minimal system is analyzed and its two-, three-, and four-point functions as well as its operator algebra are calculated explicitly

  9. Gap probabilities for edge intervals in finite Gaussian and Jacobi unitary matrix ensembles

    International Nuclear Information System (INIS)

    Witte, N.S.; Forrester, P.J.

    1999-01-01

    The probabilities for gaps in the eigenvalue spectrum of the finite dimension N x N random matrix Hermite and Jacobi unitary ensembles on some single and disconnected double intervals are found. These are cases where a reflection symmetry exists and the probability factors into two other related probabilities, defined on single intervals. Our investigation uses the system of partial differential equations arising from the Fredholm determinant expression for the gap probability and the differential-recurrence equations satisfied by Hermite and Jacobi orthogonal polynomials. In our study we find second and third order nonlinear ordinary differential equations defining the probabilities in the general N case, specific explicit solutions for N = 1 and N = 2, asymptotic expansions, scaling at the edge of the Hermite spectrum as N →∞ and the Jacobi to Hermite limit both of which make correspondence to other cases reported here or known previously. (authors)

  10. Some new aspects of the unitary and analytic VMD model for electromagnetic structure of hadrons

    International Nuclear Information System (INIS)

    Dubnickova, A.Z.; Dubnicka, S.

    1991-01-01

    Recent J/φ→π + π - data analyzed along with all existing pion form factor data by means of the unitary and analytic vector dominance model manifest a strong evidence of the third excited state of the ρ(770) meson with resonance parameters m ρ ''' =2169±46 MeV and Γ ρ ''' =319±136 MeV. A simultaneous analysis of all reliable proton and neutron form factor data in the space-like region along with data on the total cross section of electron-positron annihilation into a proton-antiproton pair by the same model predicts an unexpected inequality σ tot (e e- +→nn-bar)>>σ tot (e + e - →pp-bar) just above the nucleon-antinucleon threshold and also surprisingly large one-photon electromagnetic corrections to the strong J/φ→pp-bar and J/φ→nn-bar decay amplitudes. 21 refs.; 5 figs.; 1 tab

  11. First and second sound of a unitary Fermi gas in highly oblate harmonic traps

    International Nuclear Information System (INIS)

    Hu, Hui; Dyke, Paul; Vale, Chris J; Liu, Xia-Ji

    2014-01-01

    We theoretically investigate first and second sound modes of a unitary Fermi gas trapped in a highly oblate harmonic trap at finite temperatures. Following the idea by Stringari and co-workers (2010 Phys. Rev. Lett. 105 150402), we argue that these modes can be described by the simplified two-dimensional two-fluid hydrodynamic equations. Two possible schemes—sound wave propagation and breathing mode excitation—are considered. We calculate the sound wave velocities and discretized sound mode frequencies, as a function of temperature. We find that in both schemes, the coupling between first and second sound modes is large enough to induce significant density fluctuations, suggesting that second sound can be directly observed by measuring in situ density profiles. The frequency of the second sound breathing mode is found to be highly sensitive to the superfluid density. (paper)

  12. Stability of the Zagreb realization of the Carnegie-Mellon-Berkeley coupled-channels unitary model

    Science.gov (United States)

    Osmanović, H.; Ceci, S.; Švarc, A.; Hadžimehmedović, M.; Stahov, J.

    2011-09-01

    In Hadžimehmedović [Phys. Rev. CPRVCAN0556-281310.1103/PhysRevC.84.035204 84, 035204 (2011)] we have used the Zagreb realization of Carnegie-Melon-Berkeley coupled-channel, unitary model as a tool for extracting pole positions from the world collection of partial-wave data, with the aim of eliminating model dependence in pole-search procedures. In order that the method is sensible, we in this paper discuss the stability of the method with respect to the strong variation of different model ingredients. We show that the Zagreb CMB procedure is very stable with strong variation of the model assumptions and that it can reliably predict the pole positions of the fitted partial-wave amplitudes.

  13. Stability of the Zagreb realization of the Carnegie-Mellon-Berkeley coupled-channels unitary model

    International Nuclear Information System (INIS)

    Osmanovic, H.; Hadzimehmedovic, M.; Stahov, J.; Ceci, S.; Svarc, A.

    2011-01-01

    In Hadzimehmedovicet al.[Phys. Rev. C 84, 035204 (2011)] we have used the Zagreb realization of Carnegie-Melon-Berkeley coupled-channel, unitary model as a tool for extracting pole positions from the world collection of partial-wave data, with the aim of eliminating model dependence in pole-search procedures. In order that the method is sensible, we in this paper discuss the stability of the method with respect to the strong variation of different model ingredients. We show that the Zagreb CMB procedure is very stable with strong variation of the model assumptions and that it can reliably predict the pole positions of the fitted partial-wave amplitudes.

  14. 11 Foot Unitary Plan Tunnel Facility Optical Improvement Large Window Analysis

    Science.gov (United States)

    Hawke, Veronica M.

    2015-01-01

    The test section of the 11 by 11-foot Unitary Plan Transonic Wind Tunnel (11-foot UPWT) may receive an upgrade of larger optical windows on both the North and South sides. These new larger windows will provide better access for optical imaging of test article flow phenomena including surface and off body flow characteristics. The installation of these new larger windows will likely produce a change to the aerodynamic characteristics of the flow in the Test Section. In an effort understand the effect of this change, a computational model was employed to predict the flows through the slotted walls, in the test section and around the model before and after the tunnel modification. This report documents the solid CAD model that was created and the inviscid computational analysis that was completed as a preliminary estimate of the effect of the changes.

  15. Life-cycle cost and payback period analysis for commercial unitary air conditioners

    Energy Technology Data Exchange (ETDEWEB)

    Rosenquist, Greg; Coughlin, Katie; Dale, Larry; McMahon, James; Meyers, Steve

    2004-03-31

    This report describes an analysis of the economic impacts of possible energy efficiency standards for commercial unitary air conditioners and heat pumps on individual customers in terms of two metrics: life-cycle cost (LCC) and payback period (PBP). For each of the two equipment classes considered, the 11.5 EER provides the largest mean LCC savings. The results show how the savings vary among customers facing different electricity prices and other conditions. At 11.5 EER, at least 80% of the users achieve a positive LCC savings. At 12.0 EER, the maximum efficiency analyzed, mean LCC savings are lower but still positive. For the {ge} $65,000 Btu/h to <135,000 Btu/h equipment class, 59% of users achieve a positive LCC savings. For the $135,000 Btu/h to <240,000 Btu/h equipment class, 91% of users achieve a positive LCC savings.

  16. Multiply-ionized atoms isolated at low energy in a unitary Penning trap

    International Nuclear Information System (INIS)

    Tan, Joseph N.; Hoogerheide, Shannon Fogwell; Guise, Nicholas D.; Brewer, Samuel M.

    2015-01-01

    Ions extracted from the EBIT at NIST are slowed and captured in a Penning trap that is made very compact (< 150 cm 3 ) by a unitary architecture [1]. Measurements after 1 ms of ion storage indicate that the isolated ions are distributed with 5.5(5) eV of energy spread, which is roughly 2 orders of magnitude lower than expected in the ion source, without implementing any active cooling [2]. Some experiments are discussed. One goal is to produce one-electron ions in high angular momentum states for studying optical transitions between Rydberg states that could potentially enable new tests of quantum electrodynamics (QED) and determinations of fundamental constants [3

  17. Penning traps with unitary architecture for storage of highly charged ions

    International Nuclear Information System (INIS)

    Tan, Joseph N.; Guise, Nicholas D.; Brewer, Samuel M.

    2012-01-01

    Penning traps are made extremely compact by embedding rare-earth permanent magnets in the electrode structure. Axially-oriented NdFeB magnets are used in unitary architectures that couple the electric and magnetic components into an integrated structure. We have constructed a two-magnet Penning trap with radial access to enable the use of laser or atomic beams, as well as the collection of light. An experimental apparatus equipped with ion optics is installed at the NIST electron beam ion trap (EBIT) facility, constrained to fit within 1 meter at the end of a horizontal beamline for transporting highly charged ions. Highly charged ions of neon and argon, extracted with initial energies up to 4000 eV per unit charge, are captured and stored to study the confinement properties of a one-magnet trap and a two-magnet trap. Design considerations and some test results are discussed.

  18. Penning traps with unitary architecture for storage of highly charged ions.

    Science.gov (United States)

    Tan, Joseph N; Brewer, Samuel M; Guise, Nicholas D

    2012-02-01

    Penning traps are made extremely compact by embedding rare-earth permanent magnets in the electrode structure. Axially-oriented NdFeB magnets are used in unitary architectures that couple the electric and magnetic components into an integrated structure. We have constructed a two-magnet Penning trap with radial access to enable the use of laser or atomic beams, as well as the collection of light. An experimental apparatus equipped with ion optics is installed at the NIST electron beam ion trap (EBIT) facility, constrained to fit within 1 meter at the end of a horizontal beamline for transporting highly charged ions. Highly charged ions of neon and argon, extracted with initial energies up to 4000 eV per unit charge, are captured and stored to study the confinement properties of a one-magnet trap and a two-magnet trap. Design considerations and some test results are discussed.

  19. A geometric quantization of the Kostant-Sekiguchi correpondence for scalar type unitary highest weight representations

    DEFF Research Database (Denmark)

    Möllers, Jan

    2013-01-01

    (\\pi)\\subseteq\\mathfrak{p}_{\\mathbb{C}}^*$. The associated variety $Ass(\\pi)$ is the closure of a single nilpotent $K_{\\mathbb{C}}$-orbit $\\mathcal{O}^{K_{\\mathbb{C}}}\\subseteq\\mathfrak{p}_{\\mathbb{C}}^*$ which corresponds by the Kostant-Sekiguchi correspondence to a nilpotent coadjoint $G$-orbit $\\mathcal{O}^G\\subseteq\\mathfrak{g}^*$. The known Schr\\"odinger...... model of $\\pi$ is a realization on $L^2(\\mathcal{O})$, where $\\mathcal{O}\\subseteq\\mathcal{O}^G$ is a Lagrangian submanifold. We construct an intertwining operator from the Schr\\"odinger model to the new Fock model, the generalized Segal-Bargmann transform, which gives a geometric quantization...... and as integral kernel of the Segal-Bargmann transform. As a corollary to our construction we also obtain the integral kernel of the unitary inversion operator in the Schr\\"odinger model in terms of a multivariable $J$-Bessel function....

  20. Unitary evolution and uniqueness of the Fock quantization in flat cosmologies

    International Nuclear Information System (INIS)

    Marugán, G A Mena; Błas, D Martín-de; Gomar, L Castelló

    2013-01-01

    We study the Fock quantization of scalar fields with a time dependent mass in cosmological scenarios with flat compact spatial sections. This framework describes physically interesting situations like, e.g., cosmological perturbations in flat Friedmann-Robertson-Walker spacetimes, generally including a suitable scaling of them by a background function. We prove that the requirements of vacuum invariance under the spatial isometries and of a unitary quantum dynamics select (a) a unique canonical pair of field variables among all those related by time dependent canonical transformations which scale the field configurations, and (b) a unique Fock representation for the canonical commutation relations of this pair of variables. The proof is generalizable to any compact spatial topology in three or less dimensions, though we focus on the case of the three-torus owing to the especially relevant implications.

  1. On the ratio probability of the smallest eigenvalues in the Laguerre unitary ensemble

    Science.gov (United States)

    Atkin, Max R.; Charlier, Christophe; Zohren, Stefan

    2018-04-01

    We study the probability distribution of the ratio between the second smallest and smallest eigenvalue in the Laguerre unitary ensemble. The probability that this ratio is greater than r  >  1 is expressed in terms of an Hankel determinant with a perturbed Laguerre weight. The limiting probability distribution for the ratio as is found as an integral over containing two functions q 1(x) and q 2(x). These functions satisfy a system of two coupled Painlevé V equations, which are derived from a Lax pair of a Riemann-Hilbert problem. We compute asymptotic behaviours of these functions as and , as well as large n asymptotics for the associated Hankel determinants in several regimes of r and x.

  2. Unitary input DEA model to identify beef cattle production systems typologies

    Directory of Open Access Journals (Sweden)

    Eliane Gonçalves Gomes

    2012-08-01

    Full Text Available The cow-calf beef production sector in Brazil has a wide variety of operating systems. This suggests the identification and the characterization of homogeneous regions of production, with consequent implementation of actions to achieve its sustainability. In this paper we attempted to measure the performance of 21 livestock modal production systems, in their cow-calf phase. We measured the performance of these systems, considering husbandry and production variables. The proposed approach is based on data envelopment analysis (DEA. We used unitary input DEA model, with apparent input orientation, together with the efficiency measurements generated by the inverted DEA frontier. We identified five modal production systems typologies, using the isoefficiency layers approach. The results showed that the knowledge and the processes management are the most important factors for improving the efficiency of beef cattle production systems.

  3. Moving towards an Educational Policy for Inclusion? Main Reform Stages in the Development of the Norwegian Unitary School System

    Science.gov (United States)

    Nilsen, Sven

    2010-01-01

    The purpose of the article is to study the development of educational policy in Norway in the field of the unitary school system and to analyse whether the development can be seen as a move towards increasing inclusion. The educational policy, when seen over a long time span, has progressively aimed towards the development of a common compulsory…

  4. The effect of unconditional cash transfers on adult labour supply: A unitary discrete choice model for the case of Ecuador

    NARCIS (Netherlands)

    Mideros, A.; O'Donoghue, C.

    2014-01-01

    We examine the effect of unconditional cash transfers by a unitary discrete labour supply model. We argue that there is no negative income effect of social transfers in the case of poor adults because leisure could not be assumed to be a normal good under such conditions. Using data from the

  5. 47 CFR 65.102 - Petitions for exclusion from unitary treatment and for individual treatment in determining...

    Science.gov (United States)

    2010-10-01

    ... granted for a period of two years if the cost of capital for interstate exchange service is so low as to... required rate of return for interstate exchange access services. (b) A petition for exclusion from unitary... and for individual treatment in determining authorized return for interstate exchange access service...

  6. Quantum E(2) group and and its Pontryagin dual

    International Nuclear Information System (INIS)

    Woronowicz, S.L.

    1991-01-01

    The quantum deformation of the group of motions of the plane and its Pontryagin dual are described in detail. It is shown that the Pontryagin dual is a quantum deformation of the group of transformations of the plane generated by translations and dilations. An explicit expression for the unitary bicharacter describing the Pontryagin duality is found. The Heisenberg commutation relations are written down. (orig.)

  7. Conformal group actions and Segal's cosmology

    International Nuclear Information System (INIS)

    Werth, J.-E.

    1984-01-01

    A mathematical description of Segal's cosmological model in the framework of conformal group actions is presented. The relation between conformal and causal group actions on time-orientable Lorentzian manifolds is analysed and several examples are discussed. A criterion for the conformality of a map between Lorentzian manifolds is given. The results are applied to Segal's 'conformal compactification' of Minkowski space. Furthermore, the 'unitary formulation' of Segal's cosmology is regarded. (Author) [pt

  8. Interpolation between Airy and Poisson statistics for unitary chiral non-Hermitian random matrix ensembles

    International Nuclear Information System (INIS)

    Akemann, G.; Bender, M.

    2010-01-01

    We consider a family of chiral non-Hermitian Gaussian random matrices in the unitarily invariant symmetry class. The eigenvalue distribution in this model is expressed in terms of Laguerre polynomials in the complex plane. These are orthogonal with respect to a non-Gaussian weight including a modified Bessel function of the second kind, and we give an elementary proof for this. In the large n limit, the eigenvalue statistics at the spectral edge close to the real axis are described by the same family of kernels interpolating between Airy and Poisson that was recently found by one of the authors for the elliptic Ginibre ensemble. We conclude that this scaling limit is universal, appearing for two different non-Hermitian random matrix ensembles with unitary symmetry. As a second result we give an equivalent form for the interpolating Airy kernel in terms of a single real integral, similar to representations for the asymptotic kernel in the bulk and at the hard edge of the spectrum. This makes its structure as a one-parameter deformation of the Airy kernel more transparent.

  9. C{sub T} for non-unitary CFTs in higher dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Osborn, Hugh [Department of Applied Mathematics and Theoretical Physics, Wilberforce Road,Cambridge CB3 0WA, England (United Kingdom); Stergiou, Andreas [Department of Physics, Yale University,New Haven, CT 06520 (United States)

    2016-06-13

    The coefficient C{sub T} of the conformal energy-momentum tensor two-point function is determined for the non-unitary scalar CFTs with four- and six-derivative kinetic terms. The results match those expected from large-N calculations for the CFTs arising from the O(N) non-linear sigma and Gross-Neveu models in specific even dimensions. C{sub T} is also calculated for the CFT arising from (n−1)-form gauge fields with derivatives in 2n+2 dimensions. Results for (n−1)-form theory extended to general dimensions as a non-gauge-invariant CFT are also obtained; the resulting C{sub T} differs from that for the gauge-invariant theory. The construction of conformal primaries by subtracting descendants of lower-dimension primaries is also discussed. For free theories this also leads to an alternative construction of the energy-momentum tensor, which can be quite involved for higher-derivative theories.

  10. Local unitary versus local Clifford equivalence of stabilizer and graph states

    International Nuclear Information System (INIS)

    Zeng, Bei; Chung, Hyeyoun; Cross, Andrew W.; Chuang, Isaac L.

    2007-01-01

    The equivalence of stabilizer states under local transformations is of fundamental interest in understanding properties and uses of entanglement. Two stabilizer states are equivalent under the usual stochastic local operations and classical communication criterion if and only if they are equivalent under local unitary (LU) operations. More surprisingly, under certain conditions, two LU-equivalent stabilizer states are also equivalent under local Clifford (LC) operations, as was shown by Van den Nest et al. [Phys. Rev. A 71, 062323 (2005)]. Here, we broaden the class of stabilizer states for which LU equivalence implies LC equivalence (LU LC) to include all stabilizer states represented by graphs with cycles of length neither 3 nor 4. To compare our result with Van den Nest et al.'s, we show that any stabilizer state of distance δ=2 is beyond their criterion. We then further prove that LU LC holds for a more general class of stabilizer states of δ=2. We also explicitly construct graphs representing δ>2 stabilizer states which are beyond their criterion: we identify all 58 graphs with up to 11 vertices and construct graphs with 2 m -1 (m≥4) vertices using quantum error-correcting codes which have non-Clifford transversal gates

  11. Anatomy of the Higgs Boson Decay into Two Photons in the Unitary Gauge

    Directory of Open Access Journals (Sweden)

    Athanasios Dedes

    2013-01-01

    Full Text Available We review and clarify computational issues about the W -gauge boson one-loop contribution to the H → γ γ decay amplitude, in the unitary gauge and in the Standard Model. We find that highly divergent integrals depend upon the choice of shifting momenta with arbitrary vectors. One particular combination of these arbitrary vectors reduces the superficial divergency down to a logarithmic one. The remaining ambiguity is then fixed by exploiting gauge invariance and the Goldstone Boson Equivalence Theorem. Our method is strictly realised in four dimensions. The result for the amplitude agrees with the “famous” one obtained using dimensional regularisation (DR in the limit d → 4 , where d is the number of spatial dimensions in Euclidean space. At the exact equality d = 4 , a three-sphere surface term appears that renders the Ward Identities and the equivalence theorem inconsistent. We also examined a recently proposed four-dimensional regularisation scheme and found agreement with the DR outcome.

  12. Crossover between the Gaussian orthogonal ensemble, the Gaussian unitary ensemble, and Poissonian statistics.

    Science.gov (United States)

    Schweiner, Frank; Laturner, Jeanine; Main, Jörg; Wunner, Günter

    2017-11-01

    Until now only for specific crossovers between Poissonian statistics (P), the statistics of a Gaussian orthogonal ensemble (GOE), or the statistics of a Gaussian unitary ensemble (GUE) have analytical formulas for the level spacing distribution function been derived within random matrix theory. We investigate arbitrary crossovers in the triangle between all three statistics. To this aim we propose an according formula for the level spacing distribution function depending on two parameters. Comparing the behavior of our formula for the special cases of P→GUE, P→GOE, and GOE→GUE with the results from random matrix theory, we prove that these crossovers are described reasonably. Recent investigations by F. Schweiner et al. [Phys. Rev. E 95, 062205 (2017)2470-004510.1103/PhysRevE.95.062205] have shown that the Hamiltonian of magnetoexcitons in cubic semiconductors can exhibit all three statistics in dependence on the system parameters. Evaluating the numerical results for magnetoexcitons in dependence on the excitation energy and on a parameter connected with the cubic valence band structure and comparing the results with the formula proposed allows us to distinguish between regular and chaotic behavior as well as between existent or broken antiunitary symmetries. Increasing one of the two parameters, transitions between different crossovers, e.g., from the P→GOE to the P→GUE crossover, are observed and discussed.

  13. Macroscopicity of quantum superpositions on a one-parameter unitary path in Hilbert space

    Science.gov (United States)

    Volkoff, T. J.; Whaley, K. B.

    2014-12-01

    We analyze quantum states formed as superpositions of an initial pure product state and its image under local unitary evolution, using two measurement-based measures of superposition size: one based on the optimal quantum binary distinguishability of the branches of the superposition and another based on the ratio of the maximal quantum Fisher information of the superposition to that of its branches, i.e., the relative metrological usefulness of the superposition. A general formula for the effective sizes of these states according to the branch-distinguishability measure is obtained and applied to superposition states of N quantum harmonic oscillators composed of Gaussian branches. Considering optimal distinguishability of pure states on a time-evolution path leads naturally to a notion of distinguishability time that generalizes the well-known orthogonalization times of Mandelstam and Tamm and Margolus and Levitin. We further show that the distinguishability time provides a compact operational expression for the superposition size measure based on the relative quantum Fisher information. By restricting the maximization procedure in the definition of this measure to an appropriate algebra of observables, we show that the superposition size of, e.g., NOON states and hierarchical cat states, can scale linearly with the number of elementary particles comprising the superposition state, implying precision scaling inversely with the total number of photons when these states are employed as probes in quantum parameter estimation of a 1-local Hamiltonian in this algebra.

  14. Unitary Transformations in the Quantum Model for Conceptual Conjunctions and its Application to Data Representation

    Directory of Open Access Journals (Sweden)

    Tomas eVeloz

    2015-11-01

    Full Text Available Quantum models of concept combinations have been successful in representing various experimental situations that cannot be accommodated by traditional models based on classical probability or fuzzy set theory. In many cases, the focus has been on producing a representation that fits experimental results to validate quantum models. However, these representations are not always consistent with the cognitive modeling principles. Moreover, some important issues related to the representation of concepts such as the dimensionality of the realization space, the uniqueness of solutions, and the compatibility of measurements, have been overlooked.In this paper, we provide a dimensional analysis of the realization space for the two-sector Fock space model for conjunction of concepts focusing on the first and second sectors separately. We then introduce various representation of concepts that arise from the use of unitary operators in the realization space. In these concrete representations, a pair of concepts and their combination are modeled by a single conceptual state, and by a collection of exemplar-dependent operators. Therefore, they are consistent with cognitive modeling principles. %Moreover, we show that each representation is unique up to change of basis. This framework not only provides a uniform approach to model an entire data set, but, because all measurement operators are expressed in the same basis, allows us to address the question of compatibility of measurements. In particular, we present evidence that it may be possible to predict non-commutative effects from partial measurements of conceptual combinations.

  15. Unitary Transformations in the Quantum Model for Conceptual Conjunctions and Its Application to Data Representation.

    Science.gov (United States)

    Veloz, Tomas; Desjardins, Sylvie

    2015-01-01

    Quantum models of concept combinations have been successful in representing various experimental situations that cannot be accommodated by traditional models based on classical probability or fuzzy set theory. In many cases, the focus has been on producing a representation that fits experimental results to validate quantum models. However, these representations are not always consistent with the cognitive modeling principles. Moreover, some important issues related to the representation of concepts such as the dimensionality of the realization space, the uniqueness of solutions, and the compatibility of measurements, have been overlooked. In this paper, we provide a dimensional analysis of the realization space for the two-sector Fock space model for conjunction of concepts focusing on the first and second sectors separately. We then introduce various representation of concepts that arise from the use of unitary operators in the realization space. In these concrete representations, a pair of concepts and their combination are modeled by a single conceptual state, and by a collection of exemplar-dependent operators. Therefore, they are consistent with cognitive modeling principles. This framework not only provides a uniform approach to model an entire data set, but, because all measurement operators are expressed in the same basis, allows us to address the question of compatibility of measurements. In particular, we present evidence that it may be possible to predict non-commutative effects from partial measurements of conceptual combinations.

  16. Invariance of the Berry phase under unitary transformations: application to the time-dependent generalized harmonic oscillator

    International Nuclear Information System (INIS)

    Kobe, D.H.

    1989-01-01

    The Berry phase is derived in a manifestly gauge-invariant way, without adiabatic or cyclic requirements. It is invariant under unitary transformations, contrary to recent assertions. A time-dependent generalized harmonic oscillator is taken as an example. The energy of the system is not in general the Hamiltonian. An energy, the time derivative of which is the power, is obtained from the equation of motion. When the system is quantized, the Berry phase is zero, and is invariant under unitary transformations. If the energy is chosen incorrectly to be the Hamiltonian, a nonzero Berry phase is obtained. In this case the total phase, the sun of the dynamical and Berry phases, is equal to the correct total phase through first order in perturbation theory. (author)

  17. Symmetry Groups for the Decomposition of Reversible Computers, Quantum Computers, and Computers in between

    Directory of Open Access Journals (Sweden)

    Alexis De Vos

    2011-06-01

    Full Text Available Whereas quantum computing circuits follow the symmetries of the unitary Lie group, classical reversible computation circuits follow the symmetries of a finite group, i.e., the symmetric group. We confront the decomposition of an arbitrary classical reversible circuit with w bits and the decomposition of an arbitrary quantum circuit with w qubits. Both decompositions use the control gate as building block, i.e., a circuit transforming only one (qubit, the transformation being controlled by the other w−1 (qubits. We explain why the former circuit can be decomposed into 2w − 1 control gates, whereas the latter circuit needs 2w − 1 control gates. We investigate whether computer circuits, not based on the full unitary group but instead on a subgroup of the unitary group, may be decomposable either into 2w − 1 or into 2w − 1 control gates.

  18. Power, trust, and Science of Unitary Human Beings influence political leadership: a celebration of Barrett's power theory.

    Science.gov (United States)

    Wright, Barbara W

    2010-01-01

    The importance of nurses' participation in health policy leadership is discussed within the context of Rogers' science of unitary human beings, Barrett's power theory, and one nurse-politician's experience. Nurses have a major role to play in resolving public policy issues that influence the health of people. A brief review of the history of nurses in the political arena is presented. Research related to power and trust is reviewed. Suggested strategies for success in political situations are offered.

  19. Determining the best forecasting method to estimate unitary charges price indexes of PFI data in central region Peninsular Malaysia

    Science.gov (United States)

    Ahmad Kamaruddin, Saadi Bin; Md Ghani, Nor Azura; Mohamed Ramli, Norazan

    2013-04-01

    The concept of Private Financial Initiative (PFI) has been implemented by many developed countries as an innovative way for the governments to improve future public service delivery and infrastructure procurement. However, the idea is just about to germinate in Malaysia and its success is still vague. The major phase that needs to be given main attention in this agenda is value for money whereby optimum efficiency and effectiveness of each expense is attained. Therefore, at the early stage of this study, estimating unitary charges or materials price indexes in each region in Malaysia was the key objective. This particular study aims to discover the best forecasting method to estimate unitary charges price indexes in construction industry by different regions in the central region of Peninsular Malaysia (Selangor, Federal Territory of Kuala Lumpur, Negeri Sembilan, and Melaka). The unitary charges indexes data used were from year 2002 to 2011 monthly data of different states in the central region Peninsular Malaysia, comprising price indexes of aggregate, sand, steel reinforcement, ready mix concrete, bricks and partition, roof material, floor and wall finishes, ceiling, plumbing materials, sanitary fittings, paint, glass, steel and metal sections, timber and plywood. At the end of the study, it was found that Backpropagation Neural Network with linear transfer function produced the most accurate and reliable results for estimating unitary charges price indexes in every states in central region Peninsular Malaysia based on the Root Mean Squared Errors, where the values for both estimation and evaluation sets were approximately zero and highly significant at p Malaysia. The estimated price indexes of construction materials will contribute significantly to the value for money of PFI as well as towards Malaysian economical growth.

  20. A Poisson type formula for Hardy classes on Heisenberg's group

    Directory of Open Access Journals (Sweden)

    Lopushansky O.V.

    2010-06-01

    Full Text Available The Hardy type class of complex functions with infinite many variables defined on the Schrodinger irreducible unitary orbit of reduced Heisenberg group, generated by the Gauss density, is investigated. A Poisson integral type formula for their analytic extensions on an open ball is established. Taylor coefficients for analytic extensions are described by the associatedsymmetric Fock space.

  1. Group and representation theory

    CERN Document Server

    Vergados, J D

    2017-01-01

    This volume goes beyond the understanding of symmetries and exploits them in the study of the behavior of both classical and quantum physical systems. Thus it is important to study the symmetries described by continuous (Lie) groups of transformations. We then discuss how we get operators that form a Lie algebra. Of particular interest to physics is the representation of the elements of the algebra and the group in terms of matrices and, in particular, the irreducible representations. These representations can be identified with physical observables. This leads to the study of the classical Lie algebras, associated with unitary, unimodular, orthogonal and symplectic transformations. We also discuss some special algebras in some detail. The discussion proceeds along the lines of the Cartan-Weyl theory via the root vectors and root diagrams and, in particular, the Dynkin representation of the roots. Thus the representations are expressed in terms of weights, which are generated by the application of the elemen...

  2. Technical skills assessment toolbox: a review using the unitary framework of validity.

    Science.gov (United States)

    Ghaderi, Iman; Manji, Farouq; Park, Yoon Soo; Juul, Dorthea; Ott, Michael; Harris, Ilene; Farrell, Timothy M

    2015-02-01

    The purpose of this study was to create a technical skills assessment toolbox for 35 basic and advanced skills/procedures that comprise the American College of Surgeons (ACS)/Association of Program Directors in Surgery (APDS) surgical skills curriculum and to provide a critical appraisal of the included tools, using contemporary framework of validity. Competency-based training has become the predominant model in surgical education and assessment of performance is an essential component. Assessment methods must produce valid results to accurately determine the level of competency. A search was performed, using PubMed and Google Scholar, to identify tools that have been developed for assessment of the targeted technical skills. A total of 23 assessment tools for the 35 ACS/APDS skills modules were identified. Some tools, such as Operative Performance Rating System (OSATS) and Objective Structured Assessment of Technical Skill (OPRS), have been tested for more than 1 procedure. Therefore, 30 modules had at least 1 assessment tool, with some common surgical procedures being addressed by several tools. Five modules had none. Only 3 studies used Messick's framework to design their validity studies. The remaining studies used an outdated framework on the basis of "types of validity." When analyzed using the contemporary framework, few of these studies demonstrated validity for content, internal structure, and relationship to other variables. This study provides an assessment toolbox for common surgical skills/procedures. Our review shows that few authors have used the contemporary unitary concept of validity for development of their assessment tools. As we progress toward competency-based training, future studies should provide evidence for various sources of validity using the contemporary framework.

  3. Group representations, error bases and quantum codes

    Energy Technology Data Exchange (ETDEWEB)

    Knill, E

    1996-01-01

    This report continues the discussion of unitary error bases and quantum codes. Nice error bases are characterized in terms of the existence of certain characters in a group. A general construction for error bases which are non-abelian over the center is given. The method for obtaining codes due to Calderbank et al. is generalized and expressed purely in representation theoretic terms. The significance of the inertia subgroup both for constructing codes and obtaining the set of transversally implementable operations is demonstrated.

  4. Identical particles, exotic statistics and braid groups

    International Nuclear Information System (INIS)

    Imbo, T.D.; Sudarshan, E.C.G.; Shah Imbo, C.

    1990-01-01

    The inequivalent quantizations of a system of n identical particles on a manifold M, dim M≥2, are in 1-1 correspondence with irreducible unitary representations of the braid group B n (M). The notion of the statistics of the particles is made precise. We give various examples where all the possible statistics for the system are determined, and find instances where the particles obey statistics different from the well-studied Bose, Fermi para- and θ-statistics. (orig.)

  5. Unitary gauge calculation of K0/sub L/ → μ+μ- in the Weinberg SU(2)'/sub L/ x U(1) gauge theory

    International Nuclear Information System (INIS)

    Olenick, R.P.

    1979-01-01

    The rare weak decay K 0 /sub L/ → μ + μ - is calculated in the unitary gauge of the Weinberg SU(2)/sub L/ x U(1) model of weak and electromagnetic interactions. A historical development of gauge theories is presented first; this indicates the need for extension of the hadron symmetry group to SU(4). The GIM mechanism, which extends this group by introducing the charmed quark, is incorporated into Weinberg theory. Explicit calculations of the fourth-order Feynman diagrams representing W + W - , Z 0 , γ, and Higgs scalar intermediate states are performed. Through the technique of dimensional regularization the divergent amplitudes are evaluated, and the calculation is shown to be renormalizable by counterterms generated from the original Lagrangian. The Higgs scalar contribution to the effective Lagrangian is found to be greatly suppressed compared to the W + W - and Z 0 contributions, which are used to estimate the charmed quark mass. Analysis reveals that a charmed quark mass less than or equal to 5 GeV will suppress the decay rate to the experimentally observed value. Concluding remarks are made

  6. Wigner functions for a class of semi-direct product groups

    International Nuclear Information System (INIS)

    Krasowska, Anna E; Ali, S Twareque

    2003-01-01

    Following a general method proposed earlier, we construct here Wigner functions defined on coadjoint orbits of a class of semidirect product groups. The groups in question are such that their unitary duals consist purely of representations from the discrete series and each unitary irreducible representation is associated with a coadjoint orbit. The set of all coadjoint orbits (hence UIRs) is finite and their union is dense in the dual of the Lie algebra. The simple structure of the groups and the orbits enables us to compute the various quantities appearing in the definition of the Wigner function explicitly. A large number of examples, with potential use in image analysis, is worked out

  7. Spectral properties of embedded Gaussian unitary ensemble of random matrices with Wigner's SU(4) symmetry

    International Nuclear Information System (INIS)

    Vyas, Manan; Kota, V.K.B.

    2010-01-01

    For m fermions in Ω number of single particle orbitals, each fourfold degenerate, we introduce and analyze in detail embedded Gaussian unitary ensemble of random matrices generated by random two-body interactions that are SU(4) scalar [EGUE(2)-SU(4)]. Here the SU(4) algebra corresponds to the Wigner's supermultiplet SU(4) symmetry in nuclei. Embedding algebra for the EGUE(2)-SU(4) ensemble is U(4Ω) contains U(Ω) x SU(4). Exploiting the Wigner-Racah algebra of the embedding algebra, analytical expression for the ensemble average of the product of any two m particle Hamiltonian matrix elements is derived. Using this, formulas for a special class of U(Ω) irreducible representations (irreps) {4 r , p}, p = 0, 1, 2, 3 are derived for the ensemble averaged spectral variances and also for the covariances in energy centroids and spectral variances. On the other hand, simplifying the tabulations of Hecht for SU(Ω) Racah coefficients, numerical calculations are carried out for general U(Ω) irreps. Spectral variances clearly show, by applying Jacquod and Stone prescription, that the EGUE(2)-SU(4) ensemble generates ground state structure just as the quadratic Casimir invariant (C 2 ) of SU(4). This is further corroborated by the calculation of the expectation values of C 2 [SU(4)] and the four periodicity in the ground state energies. Secondly, it is found that the covariances in energy centroids and spectral variances increase in magnitude considerably as we go from EGUE(2) for spinless fermions to EGUE(2) for fermions with spin to EGUE(2)-SU(4) implying that the differences in ensemble and spectral averages grow with increasing symmetry. Also for EGUE(2)-SU(4) there are, unlike for GUE, non-zero cross-correlations in energy centroids and spectral variances defined over spaces with different particle numbers and/or U(Ω) [equivalently SU(4)] irreps. In the dilute limit defined by Ω → ∞, r >> 1 and r/Ω → 0, for the {4 r , p} irreps, we have derived analytical

  8. Proceedings of the Conference of the young specialists of the Federal State Unitary Enterprise GIDROPRESS Special Designers' Office 2002

    International Nuclear Information System (INIS)

    Dragunov, Yu.G.; Banyuk, G.F.; Denisov, V.P.; Sorokin, S.R.; Safonova, M.A.; Prodon, D.G.

    2002-01-01

    The texts of the reports at the Conference of the young specialists of the Federal State Unitary Enterprise GIDROPRESS Special Designers' Office (January 24-25, 2002, Podolsk) are presented. The subject field of the reports is related to the 0NPPs designing and operation. In particular, the following problems are discussed: the operational safety of the reactors and containers for the radioactive waste storage and transport; the analysis of the WWER-type reactor behavior under different emergency situations; the possibilities of increasing the service life of the reactors at the NPPs [ru

  9. Lucian tries out the scenes-novel: episodic appearance and unitary structure of the Dialogues of the Dead

    Directory of Open Access Journals (Sweden)

    Lluís Gonzàlez Julià

    2011-12-01

    Full Text Available Lucian’s Dialogues of the Dead belong to a very specific genre and their order in manuscript transmission is very confused. For those reasons, they have been usually considered as individual scenes without interrelation to each other, apart from their main characters or the world they move in. Nevertheless, a detailed examination of their inner allusions and their typical structure in travel-novels allows us to reconsider all of them as belonging to a unitary and close wholeness, to propose an order change and even to point three of these dialogues as possible interpolations in the series.

  10. Model Deformation and Optical Angle of Attack Measurement System in the NASA Ames Unitary Plan Wind Tunnel

    Science.gov (United States)

    Kushner, Laura K.; Drain, Bethany A.; Schairer, Edward T.; Heineck, James T.; Bell, James H.

    2017-01-01

    Both AoA and MDM measurements can be made using an optical system that relies on photogrammetry. Optical measurements are being requested by customers in wind tunnels with increasing frequency due to their non-intrusive nature and recent hardware and software advances that allow measurements to become near real time. The NASA Ames Research Center Unitary Plan Wind Tunnel is currently developing a system based on photogrammetry to measure model deformation and model angle of attack. This paper describes the new system, its development, its use on recent tests and plans to further develop the system.

  11. Unitary representations of some infinite-dimensional Lie algebras motivated by string theory on AdS3

    International Nuclear Information System (INIS)

    Andreev, Oleg

    1999-01-01

    We consider some unitary representations of infinite-dimensional Lie algebras motivated by string theory on AdS 3 . These include examples of two kinds: the A,D,E type affine Lie algebras and the N=4 superconformal algebra. The first presents a new construction for free field representations of affine Lie algebras. The second is of a particular physical interest because it provides some hints that a hybrid of the NSR and GS formulations for string theory on AdS 3 exists

  12. Management of storm water in unitary sewer systems; Gestion de las aguas de tormenta en las redes de alcantarillado unitarias

    Energy Technology Data Exchange (ETDEWEB)

    Rayos, C.

    1999-08-01

    A brief review is provided of the general problems of storm waters and how they are dealt with in Directive 91/27/EEC. An experiment in Asturias, Spain, is reported in which storm water storage tanks were designed to reduce the number and impact of discharges from the unitary sewer systems. The criteria for calculating the design flows in accordance with the guidelines of Spain`s Northern Hydrographic Confederation, the procedures used in determining the size of the overflows and the different elements employed in the equipment, control systems and safety systems are all described. (Author) 31 refs.

  13. Fourier transform and the Verlinde formula for the quantum double of a finite group

    NARCIS (Netherlands)

    Koornwinder, T.H.; Schroers, B.J.; Slingerland, J.K.; Bais, F.A.

    1999-01-01

    We define a Fourier transform $S$ for the quantum double $D(G)$ of a finite group $G$. Acting on characters of $D(G)$, $S$ and the central ribbon element of $D(G)$ generate a unitary matrix representation of the group $SL(2,Z)$. The characters form a ring over the integers under both the algebra

  14. High-Threshold Low-Overhead Fault-Tolerant Classical Computation and the Replacement of Measurements with Unitary Quantum Gates.

    Science.gov (United States)

    Cruikshank, Benjamin; Jacobs, Kurt

    2017-07-21

    von Neumann's classic "multiplexing" method is unique in achieving high-threshold fault-tolerant classical computation (FTCC), but has several significant barriers to implementation: (i) the extremely complex circuits required by randomized connections, (ii) the difficulty of calculating its performance in practical regimes of both code size and logical error rate, and (iii) the (perceived) need for large code sizes. Here we present numerical results indicating that the third assertion is false, and introduce a novel scheme that eliminates the two remaining problems while retaining a threshold very close to von Neumann's ideal of 1/6. We present a simple, highly ordered wiring structure that vastly reduces the circuit complexity, demonstrates that randomization is unnecessary, and provides a feasible method to calculate the performance. This in turn allows us to show that the scheme requires only moderate code sizes, vastly outperforms concatenation schemes, and under a standard error model a unitary implementation realizes universal FTCC with an accuracy threshold of p<5.5%, in which p is the error probability for 3-qubit gates. FTCC is a key component in realizing measurement-free protocols for quantum information processing. In view of this, we use our scheme to show that all-unitary quantum circuits can reproduce any measurement-based feedback process in which the asymptotic error probabilities for the measurement and feedback are (32/63)p≈0.51p and 1.51p, respectively.

  15. Bounds on the entanglement attainable from unitary transformed thermal states in liquid-state nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Yu, Terri M.; Brown, Kenneth R.; Chuang, Isaac L.

    2005-01-01

    The role of mixed-state entanglement in liquid-state nuclear magnetic resonance (NMR) quantum computation is not yet well understood. In particular, despite the success of quantum-information processing with NMR, recent work has shown that quantum states used in most of those experiments were not entangled. This is because these states, derived by unitary transforms from the thermal equilibrium state, were too close to the maximally mixed state. We are thus motivated to determine whether a given NMR state is entanglable - that is, does there exist a unitary transform that entangles the state? The boundary between entanglable and nonentanglable thermal states is a function of the spin system size N and its temperature T. We provide bounds on the location of this boundary using analytical and numerical methods; our tightest bound scales as N∼T, giving a lower bound requiring at least N∼22 000 proton spins to realize an entanglable thermal state at typical laboratory NMR magnetic fields. These bounds are tighter than known bounds on the entanglability of effective pure states

  16. The real symplectic groups quantum mechanics and optics

    International Nuclear Information System (INIS)

    Arvind; Mukunda, N.

    1995-01-01

    We present a utilitarian review of the family of matrix groups Sp(2n,R), in a form suited to various applications both in optics and quantum mechanics. We contrast these groups and their geometry with the much more familiar Euclidean and unitary geometries. Both the properties of finite group elements and of the Lie algebra are studied, and special attention is paid to the so-called unitary metaplectic representation of Sp(2n,R). Global decomposition theorems, interesting subgroups and their generators are described. Turning to n-mode quantum systems, we define and study their variance matrices in general states, the implications of the Heisenberg uncertainty principles, and developed a U(n)-invariant squeezing criterion. The particular properties of Wigner distributions and Gaussian pure state wavefunctions under Sp(2n,R) action are delineated. (author). 22 refs

  17. The Fourier U(2 Group and Separation of Discrete Variables

    Directory of Open Access Journals (Sweden)

    Kurt Bernardo Wolf

    2011-06-01

    Full Text Available The linear canonical transformations of geometric optics on two-dimensional screens form the group Sp(4,R, whose maximal compact subgroup is the Fourier group U(2_F; this includes isotropic and anisotropic Fourier transforms, screen rotations and gyrations in the phase space of ray positions and optical momenta. Deforming classical optics into a Hamiltonian system whose positions and momenta range over a finite set of values, leads us to the finite oscillator model, which is ruled by the Lie algebra so(4. Two distinct subalgebra chains are used to model arrays of N^2 points placed along Cartesian or polar (radius and angle coordinates, thus realizing one case of separation in two discrete coordinates. The N^2-vectors in this space are digital (pixellated images on either of these two grids, related by a unitary transformation. Here we examine the unitary action of the analogue Fourier group on such images, whose rotations are particularly visible.

  18. 2D Unitary ESPRIT Based Super-Resolution Channel Estimation for Millimeter-Wave Massive MIMO with Hybrid Precoding

    KAUST Repository

    Liao, Anwen

    2017-11-01

    Millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) with hybrid precoding is a promising technique for the future 5G wireless communications. Due to a large number of antennas but a much smaller number of radio frequency (RF) chains, estimating the high-dimensional mmWave massive MIMO channel will bring the large pilot overhead. To overcome this challenge, this paper proposes a super-resolution channel estimation scheme based on two-dimensional (2D) unitary ESPRIT algorithm. By exploiting the angular sparsity of mmWave channels, the continuously distributed angle of arrivals/departures (AoAs/AoDs) can be jointly estimated with high accuracy. Specifically, by designing the uplink training signals at both base station (BS) and mobile station (MS), we first use low pilot overhead to estimate a low-dimensional effective channel, which has the same shift-invariance of array response as the high-dimensional mmWave MIMO channel to be estimated. From the low-dimensional effective channel, the superresolution estimates of AoAs and AoDs can be jointly obtained by exploiting the 2D unitary ESPRIT channel estimation algorithm. Furthermore, the associated path gains can be acquired based on the least squares (LS) criterion. Finally, we can reconstruct the high-dimensional mmWave MIMO channel according to the obtained AoAs, AoDs, and path gains. Simulation results have confirmed that the proposed scheme is superior to conventional schemes with a much lower pilot overhead.

  19. 2D Unitary ESPRIT Based Super-Resolution Channel Estimation for Millimeter-Wave Massive MIMO with Hybrid Precoding

    KAUST Repository

    Liao, Anwen; Gao, Zhen; Wu, Yongpeng; Wang, Hua; Alouini, Mohamed-Slim

    2017-01-01

    Millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) with hybrid precoding is a promising technique for the future 5G wireless communications. Due to a large number of antennas but a much smaller number of radio frequency (RF) chains, estimating the high-dimensional mmWave massive MIMO channel will bring the large pilot overhead. To overcome this challenge, this paper proposes a super-resolution channel estimation scheme based on two-dimensional (2D) unitary ESPRIT algorithm. By exploiting the angular sparsity of mmWave channels, the continuously distributed angle of arrivals/departures (AoAs/AoDs) can be jointly estimated with high accuracy. Specifically, by designing the uplink training signals at both base station (BS) and mobile station (MS), we first use low pilot overhead to estimate a low-dimensional effective channel, which has the same shift-invariance of array response as the high-dimensional mmWave MIMO channel to be estimated. From the low-dimensional effective channel, the superresolution estimates of AoAs and AoDs can be jointly obtained by exploiting the 2D unitary ESPRIT channel estimation algorithm. Furthermore, the associated path gains can be acquired based on the least squares (LS) criterion. Finally, we can reconstruct the high-dimensional mmWave MIMO channel according to the obtained AoAs, AoDs, and path gains. Simulation results have confirmed that the proposed scheme is superior to conventional schemes with a much lower pilot overhead.

  20. Fermionic counting of RSOS states and Virasoro character formulas for the unitary minimal series M(ν,ν+1): Exact results

    International Nuclear Information System (INIS)

    Berkovich, Alexander

    1994-01-01

    The Hilbert space of an RSOS model, introduced by Andrews, Baxter, and Forrester, can be viewed as a space of sequences (paths) {a 0 ,a 1 ,.s, a L }, with a j -integers restricted by 1≤qslanta j ≤qslantν,vertical stroke a j -a j+1 vertical stroke =1,a 0 ≡s, a L ≡r. In this paper we introduce different basis which, as shown here, has the same dimension as that of an RSOS model. This basis appears naturally in the Bethe ansatz calculations of the spin (ν-1)/2 XXZ model. Following McCoy et al., we call this basis fermionic (FB).Our first theorem Dim(FB)=Dim(RSOS-basis) can be succinctly expressed in terms of some identities for binomial coefficients. Remarkably, these binomial identities can be q-deformed. Here, we give a simple proof of these q-binomial identities in the spirit of Schur's proof of the Rogers-Ramanujan identities. Notably, the proof involves only the elementary recurrences for the q-binomial coefficients and a few creative observations.Finally, taking the limit L→∞ in these q-identities, we derive an expression for the character formulas of the unitary minimal series M(ν,ν+1) ''Bosonic Sum ≡ Fermionic Sum''. Here, Bosonic Sum denotes Rocha-Caridi representation (χ r,s=1 ν,ν+1 (q)) and Fermionic Sum stands for the companion representation recently conjectured by the McCoy group. ((orig.))

  1. Poincare group and relativistic wave equations in 2+1 dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Gitman, Dmitri M. [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, SP (Brazil); Shelepin, A.L. [Moscow Institute of Radio Engenering, Electronics and Automation, Moscow (Russian Federation)

    1997-09-07

    Using the generalized regular representation, an explicit construction of the unitary irreducible representations of the (2+1)-Poincare group is presented. A detailed description of the angular momentum and spin in 2+1 dimensions is given. On this base the relativistic wave equations for all spins (including fractional) are constructed. (author)

  2. Connection-based and object-based grouping in multiple-object tracking: A developmental study

    NARCIS (Netherlands)

    R.E.R. van der Hallen (Ruth); Reusens, J. (Julie); Evers, K. (Kris); L. de-Wit (Lee); J. Wagemans (Johan)

    2018-01-01

    textabstractDevelopmental research on Gestalt laws has previously revealed that, even as young as infancy, we are bound to group visual elements into unitary structures in accordance with a variety of organizational principles. Here, we focus on the developmental trajectory of both connection-based

  3. Collective pairing states and nonunitary representations of the quasi-spin group

    International Nuclear Information System (INIS)

    Lorazo, B.

    1975-06-01

    A mathematical proof is given of the intimate connection of the physical generalized seniority states (i.e. states the excitation energy spectra of which does not depend upon the number of particles) with states transforming according to non-unitary representations of the quasi-spin group [fr

  4. Asymptotical representation of discrete groups

    International Nuclear Information System (INIS)

    Mishchenko, A.S.; Mohammad, N.

    1995-08-01

    If one has a unitary representation ρ: π → U(H) of the fundamental group π 1 (M) of the manifold M then one can do may useful things: 1. To construct a natural vector bundle over M; 2. To construct the cohomology groups with respect to the local system of coefficients; 3. To construct the signature of manifold M with respect to the local system of coefficients; and others. In particular, one can write the Hirzebruch formula which compares the signature with the characteristic classes of the manifold M, further based on this, find the homotopy invariant characteristic classes (i.e. the Novikov conjecture). Taking into account that the family of known representations is not sufficiently large, it would be interesting to extend this family to some larger one. Using the ideas of A.Connes, M.Gromov and H.Moscovici a proper notion of asymptotical representation is defined. (author). 7 refs

  5. Genuine multipartite entanglement of symmetric Gaussian states: Strong monogamy, unitary localization, scaling behavior, and molecular sharing structure

    Science.gov (United States)

    Adesso, Gerardo; Illuminati, Fabrizio

    2008-10-01

    We investigate the structural aspects of genuine multipartite entanglement in Gaussian states of continuous variable systems. Generalizing the results of Adesso and Illuminati [Phys. Rev. Lett. 99, 150501 (2007)], we analyze whether the entanglement shared by blocks of modes distributes according to a strong monogamy law. This property, once established, allows us to quantify the genuine N -partite entanglement not encoded into 2,…,K,…,(N-1) -partite quantum correlations. Strong monogamy is numerically verified, and the explicit expression of the measure of residual genuine multipartite entanglement is analytically derived, by a recursive formula, for a subclass of Gaussian states. These are fully symmetric (permutation-invariant) states that are multipartitioned into blocks, each consisting of an arbitrarily assigned number of modes. We compute the genuine multipartite entanglement shared by the blocks of modes and investigate its scaling properties with the number and size of the blocks, the total number of modes, the global mixedness of the state, and the squeezed resources needed for state engineering. To achieve the exact computation of the block entanglement, we introduce and prove a general result of symplectic analysis: Correlations among K blocks in N -mode multisymmetric and multipartite Gaussian states, which are locally invariant under permutation of modes within each block, can be transformed by a local (with respect to the partition) unitary operation into correlations shared by K single modes, one per block, in effective nonsymmetric states where N-K modes are completely uncorrelated. Due to this theorem, the above results, such as the derivation of the explicit expression for the residual multipartite entanglement, its nonnegativity, and its scaling properties, extend to the subclass of non-symmetric Gaussian states that are obtained by the unitary localization of the multipartite entanglement of symmetric states. These findings provide strong

  6. Quantum Groups, Property (T), and Weak Mixing

    Science.gov (United States)

    Brannan, Michael; Kerr, David

    2018-06-01

    For second countable discrete quantum groups, and more generally second countable locally compact quantum groups with trivial scaling group, we show that property (T) is equivalent to every weakly mixing unitary representation not having almost invariant vectors. This is a generalization of a theorem of Bekka and Valette from the group setting and was previously established in the case of low dual by Daws, Skalski, and Viselter. Our approach uses spectral techniques and is completely different from those of Bekka-Valette and Daws-Skalski-Viselter. By a separate argument we furthermore extend the result to second countable nonunimodular locally compact quantum groups, which are shown in particular not to have property (T), generalizing a theorem of Fima from the discrete setting. We also obtain quantum group versions of characterizations of property (T) of Kerr and Pichot in terms of the Baire category theory of weak mixing representations and of Connes and Weiss in terms of the prevalence of strongly ergodic actions.

  7. Generalizations of the BMS group and results

    International Nuclear Information System (INIS)

    Melas, E

    2006-01-01

    The ordinary Bondi-Metzner-Sachs (BMS) group B is the common asymptotic symmetry group of all radiating, asymptotically flat, Lorentzian space-times. As such, B is the best candidate for the universal symmetry group of General Relativity. However, in studying quantum gravity, space-times with signatures other than the usual Lorentzian one, and complex space-times, are frequently considered. Generalisations of B appropriate to these other signatures have been defined earlier. In particular, the generalization B(2, 2) appropriate to the ultrahyperbolic signature (+, +, -, -) has been described in detail, and the study of its irreducible unitary representations (IRs) has been initiated. The infinite little groups of B(2, 2) have been given explicitly but its finite little groups have only been partially described. All the information needed in order to construct the finite little groups is given. Possible connections with gravitational instantons are being put forward

  8. Quantum groups in hadron phenomenology

    International Nuclear Information System (INIS)

    Gavrilik, A.M.

    1997-01-01

    We show that application of quantum unitary groups, in place of ordinary flavor SU(n f ), to such static aspects of hadron phenomenology as hadron masses and mass formulas is indeed fruitful. So-called q-deformed mass formulas are given for octet baryons 1/2 + and decuplet baryons 3/2 + , as well as for the case of vector mesons 1 - involving heavy flavors. For deformation parameter q, rigid fixation of values is used. New mass sum rules of remarkable accuracy are presented. As shown in decuplet case, the approach accounts for effects highly nonlinear in SU(3)-breaking. Topological implication (possible connection with knots) for singlet vector mesons and the relation q ↔ Θ c (Cabibbo angle) in case of baryons are considered

  9. On the representations of Poincare group associated with unstable particles

    International Nuclear Information System (INIS)

    Exner, RP.

    1983-01-01

    The problem of relativistically-covariant description of unstable particles is reexamined. We follow the approach which associates a unitary reducible representation of Poincare group with a larger isolated system, and compare it with the one ascribing a non-unitary irreducible representation to the unstable particle alone. It is shown that the problem roots in choice of the subspace Hsub(u) of the state Hilbert space which could be related to the unstable particle. Translational invariance of Hsub(u) is proved to be incompatible with unitarity of the boosts. Further we propose a concrete choice of Hsub(u) and argue that in most cases of the actual experimental arrangements, this subspace is effectively one-dimensional. A correct slow-down for decay of a moving particle is obtained

  10. A Unitary and Renormalizable Theory of the Standard Model in Ghost-Free Light-Cone Gauge

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.

    2002-02-15

    Light-front (LF) quantization in light-cone (LC) gauge is used to construct a unitary and simultaneously renormalizable theory of the Standard Model. The framework derived earlier for QCD is extended to the Glashow, Weinberg, and Salam (GWS) model of electroweak interaction theory. The Lorentz condition is automatically satisfied in LF-quantized QCD in the LC gauge for the free massless gauge field. In the GWS model, with the spontaneous symmetry breaking present, we find that the 't Hooft condition accompanies the LC gauge condition corresponding to the massive vector boson. The two transverse polarization vectors for the massive vector boson may be chosen to be the same as found in QCD. The non-transverse and linearly independent third polarization vector is found to be parallel to the gauge direction. The corresponding sum over polarizations in the Standard model, indicated by K{sub {mu}{nu}}(k); has several simplifying properties similar to the polarization sum D{sub {mu}{nu}}(k) in QCD. The framework is ghost-free, and the interaction Hamiltonian of electroweak theory can be expressed in a form resembling that of covariant theory, except for few additional instantaneous interactions which can be treated systematically. The LF formulation also provides a transparent discussion of the Goldstone Boson (or Electroweak) Equivalence Theorem, as the illustrations show.

  11. Unitary Dynamics of Strongly Interacting Bose Gases with the Time-Dependent Variational Monte Carlo Method in Continuous Space

    Science.gov (United States)

    Carleo, Giuseppe; Cevolani, Lorenzo; Sanchez-Palencia, Laurent; Holzmann, Markus

    2017-07-01

    We introduce the time-dependent variational Monte Carlo method for continuous-space Bose gases. Our approach is based on the systematic expansion of the many-body wave function in terms of multibody correlations and is essentially exact up to adaptive truncation. The method is benchmarked by comparison to an exact Bethe ansatz or existing numerical results for the integrable Lieb-Liniger model. We first show that the many-body wave function achieves high precision for ground-state properties, including energy and first-order as well as second-order correlation functions. Then, we study the out-of-equilibrium, unitary dynamics induced by a quantum quench in the interaction strength. Our time-dependent variational Monte Carlo results are benchmarked by comparison to exact Bethe ansatz results available for a small number of particles, and are also compared to quench action results available for noninteracting initial states. Moreover, our approach allows us to study large particle numbers and general quench protocols, previously inaccessible beyond the mean-field level. Our results suggest that it is possible to find correlated initial states for which the long-term dynamics of local density fluctuations is close to the predictions of a simple Boltzmann ensemble.

  12. An analytical study of the improved nonlinear tolerance of DFT-spread OFDM and its unitary-spread OFDM generalization.

    Science.gov (United States)

    Shulkind, Gal; Nazarathy, Moshe

    2012-11-05

    DFT-spread (DFT-S) coherent optical OFDM was numerically and experimentally shown to provide improved nonlinear tolerance over an optically amplified dispersion uncompensated fiber link, relative to both conventional coherent OFDM and single-carrier transmission. Here we provide an analytic model rigorously accounting for this numerical result and precisely predicting the optimal bandwidth per DFT-S sub-band (or equivalently the optimal number of sub-bands per optical channel) required in order to maximize the link non-linear tolerance (NLT). The NLT advantage of DFT-S OFDM is traced to the particular statistical dependency introduced among the OFDM sub-carriers by means of the DFT spreading operation. We further extend DFT-S to a unitary-spread generalized modulation format which includes as special cases the DFT-S scheme as well as a new format which we refer to as wavelet-spread (WAV-S) OFDM, replacing the spreading DFTs by Hadamard matrices which have elements +/-1 hence are multiplier-free. The extra complexity incurred in the spreading operation is almost negligible, however the performance improvement with WAV-S relative to plain OFDM is more modest than that achieved by DFT-S, which remains the preferred format for nonlinear tolerance improvement, outperforming both plain OFDM and single-carrier schemes.

  13. Estimated general population control limits for unitary agents in drinking water, milk, soil, and unprocessed food items

    Energy Technology Data Exchange (ETDEWEB)

    Watson, A.P.; Adams, J.D.; Cerar, R.J.; Hess, T.L.; Kistner, S.L.; Leffingwell, S.S.; MacIntosh, R.G.; Ward, J.R.

    1992-01-01

    In the event of an unplanned release of chemical agent during any stage of the Chemical Stockpile Disposal Program (CSDP), the potential exists for contamination of drinking water, forage crops, grains, garden produce, and livestock. Persistent agents such as VX or sulfur mustard pose the greatest human health concern for reentry. This White Paper has been prepared to provide technical bases for these decisions by developing working estimates of agent control limits in selected environmental media considered principal sources of potential human exposure. To date, control limits for public exposure to unitary agents have been established for atmospheric concentrations only. The current analysis builds on previous work to calculate working estimates of control limits for ingestion and dermal exposure to potentially contaminated drinking water, milk, soil, and unprocessed food items such as garden produce. Information characterizing agent desorption from, and detection on or in, contaminated porous media are presently too developed to permit reasonable estimation of dermal exposure from this source. Thus, dermal contact with potentially contaminated porous surfaces is not considered in this document.

  14. Examining the validity of the unitary theory of clinical relationships: comparison of observed and experienced parent-doctor interaction.

    Science.gov (United States)

    Young, Bridget; Ward, Jo; Forsey, Mary; Gravenhorst, Katja; Salmon, Peter

    2011-10-01

    We explored parent-doctor relationships in the care of children with leukaemia from three perspectives simultaneously: parents', doctors' and observers'. Our aim was to investigate convergence and divergence between these perspectives and thereby examine the validity of unitary theory of emotionality and authority in clinical relationships. 33 audiorecorded parent-doctor consultations and separate interviews with parents and doctors, which we analysed qualitatively and from which we selected three prototype cases. Across the whole sample doctors' sense of relationship generally converged with our observations of consultation, but parents' sense of relationship diverged strongly from each. Contrary to current assumptions, parents' sense of emotional connection with doctors did not depend on doctors' emotional behaviour, and parents did not feel disempowered by doctors' authority. Moreover, authority and emotionality were not conceptually distinct for parents, who gained emotional support from doctors' exercise of authority. The relationships looked very different from the three perspectives. These divergences indicate weaknesses in current ideas of emotionality and authority in clinical relationships and the necessity of multisource datasets to develop these ideas in a way that characterises clinical relationships from all perspectives. Methodological development will be needed to address the challenges posed by multisource datasets. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  15. Perturbative expansion of Chern-Simons theory with non-compact gauge group

    International Nuclear Information System (INIS)

    Bar-Natan, D.; Witten, E.

    1991-01-01

    Naive imitation of the usual formulas for compact gauge group in quantizing three dimensional Chern-Simons gauge theory with non-compact gauge group leads to formulas that are wrong or unilluminating. In this paper, an appropriate modification is described, which puts the perturbative expansion in a standard manifestly 'unitary' format. The one loop contributions (which differ from naive extrapolation from the case of compact gauge group) are computed, and their topological invariance is verified. (orig.)

  16. Analysis of SPECTROX method of multigroup spectra calculation in unitary reactor cells

    International Nuclear Information System (INIS)

    Leite, Sergio de Q. Bogado

    2005-01-01

    The thermal neutron spectrum in a lattice cell is strongly space-dependent. In addition, in many situations, as for example in core design calculations, a more precise energetic and spatial representation of the flux is needed, which cannot be provided by few group diffusion theory. In such cases, the well-known SPECTROX method, employing diffusion theory in the moderator, where it is supposed sufficiently accurate, and collision probability theory in the fuel, together with appropriate interface current relations for assuring neutron conservation, has been widely used by WIMS as well as other codes. In this work, the approximations leading to the SPECTROX equations are reviewed and the calculated average fluxes in the fuel are compared with accurate values obtained from the solution of the transport equation by the FN method. (author)

  17. Four-level and two-qubit systems, subalgebras, and unitary integration

    International Nuclear Information System (INIS)

    Rau, A.R.P.; Selvaraj, G.; Uskov, D.

    2005-01-01

    Four-level systems in quantum optics, and for representing two qubits in quantum computing, are difficult to solve for general time-dependent Hamiltonians. A systematic procedure is presented which combines analytical handling of the algebraic operator aspects with simple solutions of classical, first-order differential equations. In particular, by exploiting su(2)+su(2) and su(2)+su(2)+u(1) subalgebras of the full SU(4) dynamical group of the system, the nontrivial part of the final calculation is reduced to a single Riccati (first-order, quadratically nonlinear) equation, itself simply solved. Examples are provided of two-qubit problems from the recent literature, including implementation of two-qubit gates with Josephson junctions

  18. May a unitary autonomic index help assess autonomic cardiac regulation in elite athletes? Preliminary observations on the national Italian Olympic committee team.

    Science.gov (United States)

    Sala, Roberto; Malacarne, Mara; Tosi, Fabio; Benzi, Manuela; Solaro, Nadia; Tamorri, Stefano; Spataro, Antonio; Pagani, Massimo; Lucini, Daniela

    2017-12-01

    Long term endurance training, as occurring in elite athletes, is associated to cardiac neural remodeling in favor of cardioprotective vagal mechanisms, resulting in resting bradycardia and augmented contribution of cardiac parasympathetic nerve activity. Autonomic assessment can be performed by way of heart rate variability. This technique however provides multiple indices, and there is not yet complete agreement on their specific significance. Purpose of the study was to assess whether a rank transformation and radar plot could provide a unitary autonomic index, capable to show a correlation between intensity of individual work and quality of autonomic regulation. We studied 711 (23.6±6.2 years) elite athletes that took part in the selection procedure for the 2016 Rio Olympic Games for the National Italian Olympic Committee (CONI). Indices from Heart Rate Variability HRV obtained at rest, during standing up and during recovery from an exercise test were used to compute a percent ranked unitary autonomic index for sport (ANSIs), taken as proxy of quality of autonomic regulation. Within the observed wide range of energy expenditure, the unitary autonomic index ANSIs appears significantly correlated to individual and discipline specific training workloads (r=0.25, P<0.001 and r=0.78, P<0.001, respectively), correcting for possible age and gender bias. ANSIs also positively correlates to lipid profile. Estimated intensity of physical activity correlates with quality of cardiac autonomic regulation, as expressed by a novel unitary index of cardiac autonomic regulation. ANSIs could provide a novel and convenient approach to individual autonomic evaluation in athletes.

  19. On the unitary transformation between non-quasifree and quasifree state spaces and its application to quantum field theory on curved spacetimes

    International Nuclear Information System (INIS)

    Gottschalk, Hanno; Hack, Thomas-Paul

    2009-12-01

    Using *-calculus on the dual of the Borchers-Uhlmann algebra endowed with a combinatorial co-product, we develop a method to calculate a unitary transformation relating the GNS representations of a non-quasifree and a quasifree state of the free hermitian scalar field. The motivation for such an analysis and a further result is the fact that a unitary transformation of this kind arises naturally in scattering theory on non-stationary backgrounds. Indeed, employing the perturbation theory of the Yang-Feldman equations with a free CCR field in a quasifree state as an initial condition and making use of extended Feynman graphs, we are able to calculate the Wightman functions of the interacting and outgoing fields in a φ p -theory on arbitrary curved spacetimes. A further examination then reveals two major features of the aforementioned theory: firstly, the interacting Wightman functions fulfil the basic axioms of hermiticity, invariance, spectrality (on stationary spacetimes), perturbative positivity, and locality. Secondly, the outgoing field is free and fulfils the CCR, but is in general not in a quasifree state in the case of a non-stationary spacetime. In order to obtain a sensible particle picture for the outgoing field and, hence, a description of the scattering process in terms of particles (in asymptotically flat spacetimes), it is thus necessary to compute a unitary transformation of the abovementioned type. (orig.)

  20. On the unitary transformation between non-quasifree and quasifree state spaces and its application to quantum field theory on curved spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Gottschalk, Hanno [Bonn Univ. (Germany). Inst. fuer Angewandte Mathematik; Hack, Thomas-Paul [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2009-12-15

    Using *-calculus on the dual of the Borchers-Uhlmann algebra endowed with a combinatorial co-product, we develop a method to calculate a unitary transformation relating the GNS representations of a non-quasifree and a quasifree state of the free hermitian scalar field. The motivation for such an analysis and a further result is the fact that a unitary transformation of this kind arises naturally in scattering theory on non-stationary backgrounds. Indeed, employing the perturbation theory of the Yang-Feldman equations with a free CCR field in a quasifree state as an initial condition and making use of extended Feynman graphs, we are able to calculate the Wightman functions of the interacting and outgoing fields in a {phi}{sup p}-theory on arbitrary curved spacetimes. A further examination then reveals two major features of the aforementioned theory: firstly, the interacting Wightman functions fulfil the basic axioms of hermiticity, invariance, spectrality (on stationary spacetimes), perturbative positivity, and locality. Secondly, the outgoing field is free and fulfils the CCR, but is in general not in a quasifree state in the case of a non-stationary spacetime. In order to obtain a sensible particle picture for the outgoing field and, hence, a description of the scattering process in terms of particles (in asymptotically flat spacetimes), it is thus necessary to compute a unitary transformation of the abovementioned type. (orig.)

  1. The BMS group and generalized gravitational instantons

    International Nuclear Information System (INIS)

    Melas, Evangelos

    2004-01-01

    The ordinary Bondi-Metzner-Sachs (BMS) group B is the best candidate for the fundamental symmetry group of General Relativity. It has been shown that B admits generalizations to real space-times of any signature, and also to complex space-times. It has been suggested that certain continuous unitary irreducible representations (IRs) of B and of its generalizations correspond to gravitational instantons. Here I make this correspondence more precise and I take this suggestion one step further by arguing that a subclass of IRs of B and of its generalizations correspond to generalized gravitational instantons. Some of these generalized gravitational instantons involve in their definition certain subgroups of the Cartesian product group C n xC m , where C r is the cyclic group of order r. With this motivation, I give the subgroups of C n xC m explicitly

  2. Icezones instead of firewalls: extended entanglement beyond the event horizon and unitary evaporation of a black hole

    International Nuclear Information System (INIS)

    Hutchinson, John; Stojkovic, Dejan

    2016-01-01

    We examine the basic assumptions in the original setup of the firewall paradox. The main claim is that a single mode of the lathe radiation is maximally entangled with the mode inside the horizon and simultaneously with the modes of early Hawking radiation. We argue that this situation never happens during the evolution of a black hole. Quantum mechanics tells us that while the black hole exists, unitary evolution maximally entangles a late mode located just outside the horizon with a combination of early radiation and black hole states, instead of either of them separately. One of the reasons for this is that the black hole radiation is not random and strongly depends on the geometry and charge of the black hole, as detailed numerical calculations of Hawking evaporation clearly show. As a consequence, one can not factor out the state of the black hole. However, this extended entanglement between the black hole and modes of early and late radiation indicates that, as the black hole ages, the local Rindler horizon is modified out to macroscopic distances from the black hole. Fundamentally non-local physics nor firewalls are not necessary to explain this result. We propose an infrared mechanism called icezone that is mediated by low energy interacting modes and acts near any event horizon to entangle states separated by long distances. These interactions at first provide small corrections to the thermal Hawking radiation. At the end of evaporation however the effect of interactions is as large as the Hawking radiation and information is recovered for an outside observer. We verify this in an explicit construction and calculation of the density matrix of a spin model. (paper)

  3. Icezones instead of firewalls: extended entanglement beyond the event horizon and unitary evaporation of a black hole

    Science.gov (United States)

    Hutchinson, John; Stojkovic, Dejan

    2016-07-01

    We examine the basic assumptions in the original setup of the firewall paradox. The main claim is that a single mode of the lathe radiation is maximally entangled with the mode inside the horizon and simultaneously with the modes of early Hawking radiation. We argue that this situation never happens during the evolution of a black hole. Quantum mechanics tells us that while the black hole exists, unitary evolution maximally entangles a late mode located just outside the horizon with a combination of early radiation and black hole states, instead of either of them separately. One of the reasons for this is that the black hole radiation is not random and strongly depends on the geometry and charge of the black hole, as detailed numerical calculations of Hawking evaporation clearly show. As a consequence, one can not factor out the state of the black hole. However, this extended entanglement between the black hole and modes of early and late radiation indicates that, as the black hole ages, the local Rindler horizon is modified out to macroscopic distances from the black hole. Fundamentally non-local physics nor firewalls are not necessary to explain this result. We propose an infrared mechanism called icezone that is mediated by low energy interacting modes and acts near any event horizon to entangle states separated by long distances. These interactions at first provide small corrections to the thermal Hawking radiation. At the end of evaporation however the effect of interactions is as large as the Hawking radiation and information is recovered for an outside observer. We verify this in an explicit construction and calculation of the density matrix of a spin model.

  4. The representation theory of the symmetry group of lattice fermions as a basis for kinematics in lattice QCD

    International Nuclear Information System (INIS)

    Joos, H.; Schaefer, M.

    1987-01-01

    The symmetry group of staggered lattice fermions is discussed as a discrete subgroup of the symmetry group of the Dirac-Kaehler equation. For the representation theory of this group, G. Mackey's generalization of E.P. Wigner's procedure for the construction of unitary representations of groups with normal subgroups is used. A complete classification of these irreducible representations by ''momentum stars'', ''flavour orbits'' and ''reduced spins'' is given. (orig.)

  5. Connection-based and object-based grouping in multiple-object tracking: A developmental study

    OpenAIRE

    Hallen, Ruth; Reusens, J. (Julie); Evers, K. (Kris); de-Wit, Lee; Wagemans, Johan

    2018-01-01

    textabstractDevelopmental research on Gestalt laws has previously revealed that, even as young as infancy, we are bound to group visual elements into unitary structures in accordance with a variety of organizational principles. Here, we focus on the developmental trajectory of both connection-based and object-based grouping, and investigate their impact on object formation in participants, aged 9-21 years old (N = 113), using a multiple-object tracking paradigm. Results reveal a main effect o...

  6. Elementary particles as representations of the covariance group in the presence of an external electromagnetic field

    International Nuclear Information System (INIS)

    Giovannini, N.

    1977-01-01

    A complete description of the projective unitary/antiunitary representations of the general covariance group for a charged (relativistic) particle moving in an external (classical), e.m. field is given. This group was derived in a previous paper, independently of any equation of motion, on the basis of some simple physical assumptions. The physical consequences of these results are then discussed and it is shown how they open some new perspectives. (Auth.)

  7. Harmonic analysis on exponential solvable Lie groups

    CERN Document Server

    Fujiwara, Hidenori

    2015-01-01

    This book is the first one that brings together recent results on the harmonic analysis of exponential solvable Lie groups. There still are many interesting open problems, and the book contributes to the future progress of this research field. As well, various related topics are presented to motivate young researchers. The orbit method invented by Kirillov is applied to study basic problems in the analysis on exponential solvable Lie groups. This method tells us that the unitary dual of these groups is realized as the space of their coadjoint orbits. This fact is established using the Mackey theory for induced representations, and that mechanism is explained first. One of the fundamental problems in the representation theory is the irreducible decomposition of induced or restricted representations. Therefore, these decompositions are studied in detail before proceeding to various related problems: the multiplicity formula, Plancherel formulas, intertwining operators, Frobenius reciprocity, and associated alge...

  8. Endomorphisms of the Cuntz algebras and the Thompson groups

    DEFF Research Database (Denmark)

    Barlak, Selcuk; Hong, Jeong Hee; Szymanski, Wojciech

    2017-01-01

    We investigate the relationship between endomorphisms of the Cuntz algebra O_2 and endomorphisms of the Thompson groups F, T and V represented inside the unitary group of O_2. For an endomorphism λ_u of O_2, we show that λ_u(V) is contained in V if and only if uεV. If λ_u is an automorphism of O_2...... then uεV is equivalent to the containment of λ_u(F) in V. Our investigations are facilitated by introduction of the concept of modestly scaling endomorphism of O_n, whose properties and examples are investigated....

  9. The dual algebra of the Poincare group on Fock space

    International Nuclear Information System (INIS)

    Klink, W.H.; Iowa Univ., Iowa City, IA

    1989-01-01

    The Lie algebra of operators commuting with the Poincare group on the Fock space appropriate for a massive spinless particle is constructed in terms of raising and lowering operators indexed by a Lorentz invariant function. From the assumption that the phase operator is an element of this Lie algebra, it is shown that the scattering operator can be written as a unitary representation operator of the group associated with the Lie algebra. A simple choice of the phase operator shows that the Lorentz invariant function can be interpreted as a basic scattering amplitude, in the sense that all multiparticle scattering amplitudes can be written in terms of this basic scattering amplitude. (orig.)

  10. Diffeomorphism Group Representations in Relativistic Quantum Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Goldin, Gerald A. [Rutgers Univ., Piscataway, NJ (United States); Sharp, David H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-12-20

    We explore the role played by the di eomorphism group and its unitary representations in relativistic quantum eld theory. From the quantum kinematics of particles described by representations of the di eomorphism group of a space-like surface in an inertial reference frame, we reconstruct the local relativistic neutral scalar eld in the Fock representation. An explicit expression for the free Hamiltonian is obtained in terms of the Lie algebra generators (mass and momentum densities). We suggest that this approach can be generalized to elds whose quanta are spatially extended objects.

  11. A generalized Wigner function on the space of irreducible representations of the Weyl-Heisenberg group and its transformation properties

    International Nuclear Information System (INIS)

    Ibort, A; Man'ko, V I; Marmo, G; Simoni, A; Ventriglia, F

    2009-01-01

    A natural extension of the Wigner function to the space of irreducible unitary representations of the Weyl-Heisenberg group is discussed. The action of the automorphisms group of the Weyl-Heisenberg group onto Wigner functions and their generalizations and onto symplectic tomograms is elucidated. Some examples of physical systems are considered to illustrate some aspects of the characterization of the Wigner functions as solutions of differential equations

  12. Pairing-gap, pseudogap, and no-gap phases in the radio-frequency spectra of a trapped unitary 6Li gas

    International Nuclear Information System (INIS)

    Pieri, P.; Perali, A.; Strinati, G. C.; Riedl, S.; Altmeyer, A.; Grimm, R.; Wright, M. J.; Kohstall, C.; Sanchez Guajardo, E. R.; Hecker Denschlag, J.

    2011-01-01

    Radio frequency spectra of a trapped unitary 6 Li gas are reported and analyzed in terms of a theoretical approach that includes both final-state and trap effects. The different strength of the final-state interaction across the trap is crucial for evidencing two main peaks associated with two distinct phases residing in different trap regions. These are the pairing-gap and pseudo-gap phases below the critical temperature T c , which evolve into the pseudo-gap and no-gap phases above T c . In this way, a long standing puzzle about the interpretation of rf spectra for 6 Li in a trap is solved.

  13. On unitary representations of the exceptional non-linear N=7 and N=8 superconformal algebras in terms of free fields

    International Nuclear Information System (INIS)

    Ketov, S.V.

    1996-01-01

    The simplest free-field realizations of the exceptional non-linear (quadratically generated, or W-type) N=8 and N=7 superconformal algebras with Spin(7) and G 2 affine currents, respectively, are investigated. Both the N=8 and N=7 algebras are found to admit unitary and highest-weight irreducible representations in terms of a single free boson and free fermions in 8 of Spin(7) or 7 of G 2 , respectively, at level k=1 and the corresponding central charges c 8 =26/5 and c 7 =5. (orig.)

  14. PRINCIPLES OF HYDROGEOMORPHOLOGY AS A BASIC PRECONDITION FOR SOLUTION OF TERRITORIAL STRUCTURE OF UNITARY SYSTEM OF AGRICULTURAL, FOREST AND WATER MANAGEMENT

    Directory of Open Access Journals (Sweden)

    K KUDRNA

    2007-07-01

    Full Text Available In the presented work, the laws of hydrogeomorfhology have been defi ned on the principle of symmetry and invariance, which are to be respected at solution of territorial structure of Unitary System of Agricultural, Forest and Water Management (USAFWM. The principle of the solution is a dominant position of the geomorphologic formation Gh of a given sea-level altitude in the analyzed part of territory, which determines control and regulation of all components of water balance. The newly formed territory unit, delimited around the geomorphologic formation by water streams, was called a hydrogeomorphologic region of the third order (HGR-3.

  15. Characterization of separability and entanglement in (2xD)- and (3xD)-dimensional systems by single-qubit and single-qutrit unitary transformations

    International Nuclear Information System (INIS)

    Giampaolo, Salvatore M.; Illuminati, Fabrizio

    2007-01-01

    We investigate the geometric characterization of pure state bipartite entanglement of (2xD)- and (3xD)-dimensional composite quantum systems. To this aim, we analyze the relationship between states and their images under the action of particular classes of local unitary operations. We find that invariance of states under the action of single-qubit and single-qutrit transformations is a necessary and sufficient condition for separability. We demonstrate that in the (2xD)-dimensional case the von Neumann entropy of entanglement is a monotonic function of the minimum squared Euclidean distance between states and their images over the set of single qubit unitary transformations. Moreover, both in the (2xD)- and in the (3xD)-dimensional cases the minimum squared Euclidean distance exactly coincides with the linear entropy [and thus as well with the tangle measure of entanglement in the (2xD)-dimensional case]. These results provide a geometric characterization of entanglement measures originally established in informational frameworks. Consequences and applications of the formalism to quantum critical phenomena in spin systems are discussed

  16. Stochastic local operations and classical communication (SLOCC) and local unitary operations (LU) classifications of n qubits via ranks and singular values of the spin-flipping matrices

    Science.gov (United States)

    Li, Dafa

    2018-06-01

    We construct ℓ -spin-flipping matrices from the coefficient matrices of pure states of n qubits and show that the ℓ -spin-flipping matrices are congruent and unitary congruent whenever two pure states of n qubits are SLOCC and LU equivalent, respectively. The congruence implies the invariance of ranks of the ℓ -spin-flipping matrices under SLOCC and then permits a reduction of SLOCC classification of n qubits to calculation of ranks of the ℓ -spin-flipping matrices. The unitary congruence implies the invariance of singular values of the ℓ -spin-flipping matrices under LU and then permits a reduction of LU classification of n qubits to calculation of singular values of the ℓ -spin-flipping matrices. Furthermore, we show that the invariance of singular values of the ℓ -spin-flipping matrices Ω 1^{(n)} implies the invariance of the concurrence for even n qubits and the invariance of the n-tangle for odd n qubits. Thus, the concurrence and the n-tangle can be used for LU classification and computing the concurrence and the n-tangle only performs additions and multiplications of coefficients of states.

  17. Flow characteristics analysis of purge gas in unitary pebble beds by CFD simulation coupled with DEM geometry model for fusion blanket

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Youhua [University of Science and Technology of China, Hefei, Anhui, 230027 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); Chen, Lei [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); Liu, Songlin, E-mail: slliu@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); Luo, Guangnan [University of Science and Technology of China, Hefei, Anhui, 230027 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China)

    2017-01-15

    Highlights: • A unitary pebble bed was built to analyze the flow characteristics of purge gas based on DEM-CFD method. • Flow characteristics between particles were clearly displayed. • Porosity distribution, velocity field distribution, pressure field distribution, pressure drop and the wall effects on velocity distribution were studied. - Abstract: Helium is used as the purge gas to sweep tritium out when it flows through the lithium ceramic and beryllium pebble beds in solid breeder blanket for fusion reactor. The flow characteristics of the purge gas will dominate the tritium sweep capability and tritium recovery system design. In this paper, a computational model for the unitary pebble bed was conducted using DEM-CFD method to study the purge gas flow characteristics in the bed, which include porosity distribution between pebbles, velocity field distribution, pressure field distribution, pressure drop as well as the wall effects on velocity distribution. Pebble bed porosity and velocity distribution with great fluctuations were found in the near-wall region and detailed flow characteristics between pebbles were displayed clearly. The results show that the numerical simulation model has an error with about 11% for estimating pressure drop when compared with the Ergun equation.

  18. Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, paranoid personality disorder diagnosis: a unitary or a two-dimensional construct?

    Science.gov (United States)

    Falkum, Erik; Pedersen, Geir; Karterud, Sigmund

    2009-01-01

    This article examines reliability and validity aspects of the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) paranoid personality disorder (PPD) diagnosis. Patients with personality disorders (n = 930) from the Norwegian network of psychotherapeutic day hospitals, of which 114 had PPD, were included in the study. Frequency distribution, chi(2), correlations, reliability statistics, exploratory, and confirmatory factor analyses were performed. The distribution of PPD criteria revealed no distinct boundary between patients with and without PPD. Diagnostic category membership was obtained in 37 of 64 theoretically possible ways. The PPD criteria formed a separate factor in a principal component analysis, whereas a confirmatory factor analysis indicated that the DSM-IV PPD construct consists of 2 separate dimensions as follows: suspiciousness and hostility. The reliability of the unitary PPD scale was only 0.70, probably partly due to the apparent 2-dimensionality of the construct. Persistent unwarranted doubts about the loyalty of friends had the highest diagnostic efficiency, whereas unwarranted accusations of infidelity of partner had particularly poor indicator properties. The reliability and validity of the unitary PPD construct may be questioned. The 2-dimensional PPD model should be further explored.

  19. Contribution to the study of non-lethal whole-body gamma irradiation effects on the unitary activities of the dorsal hippocampus in rabbits

    International Nuclear Information System (INIS)

    Bassant, M.-H.

    1976-01-01

    The effects of non-lethal whole-body gamma irradiation on the spontaneous activity of the dorsal hippocampus pyramidal cells were studied in rabbits. First of all the unitary activity of the CA 1 and CA 4 pyramidal cells was recorded extracellularly in the reference animal. The results were analyzed by a statistical method. By classifying the various cell functioning modes observed, and measuring the frequency with which they appear as a function of the state of vigilance, an attempt was made to characterize precisely the spontaneous activity of the hippocampal neurons. Recording were then made under identical experimental conditions on animals totally irradiated to mean absorbed doses of 250 and 450 rads (delivered at a constant rate of 14 rads/mn). The electroencephalographic activity of the hippocampus shows many anomalies (slow waves, wave-points, theta rythm deformation) as a function of which several pathological states were distinguished and used to classify the data, then processed by the methods already used for the reference data. The results obtained prove that the statistical characteristics of the unitary activity are changed by irradiation [fr

  20. Path integral quantization of the Symplectic Leaves of the SU(2)*Poisson-Lie Group

    International Nuclear Information System (INIS)

    Morariu, B.

    1997-01-01

    The Feynman path integral is used to quantize the symplectic leaves of the Poisson-Lie group SU(2)*. In this way we obtain the unitary representations of Uq(su(2)). This is achieved by finding explicit Darboux coordinates and then using a phase space path integral. I discuss the *-structure of SU(2)* and give a detailed description of its leaves using various parameterizations and also compare the results with the path integral quantization of spin

  1. Analytic vectors and irreducible representations of nilpotent Lie groups and algebras

    International Nuclear Information System (INIS)

    Arnal, D.

    1978-01-01

    Let U be a unitary irreducible locally faithful representation of a nilpotent Lie group G, V the universal enveloping algebra of G, M a simple module on V with kernel ker dU, then there exists an automorphism of V keeping ker dU invariant such that, after transport of structure, M is isomorphic to a submodule of the space of analytic vectors for U. (Auth.)

  2. Introduction to sofic and hyperlinear groups and Connes' embedding conjecture

    CERN Document Server

    Capraro, Valerio

    2015-01-01

    This monograph presents some cornerstone results in the study of sofic and hyperlinear groups and the closely related Connes' embedding conjecture. These notions, as well as the proofs of many results, are presented in the framework of model theory for metric structures. This point of view, rarely explicitly adopted in the literature, clarifies the ideas therein, and provides additional tools to attack open problems. Sofic and hyperlinear groups are countable discrete groups that can be suitably approximated by finite symmetric groups and groups of unitary matrices. These deep and fruitful notions, introduced by Gromov and Radulescu, respectively, in the late 1990s, stimulated an impressive amount of research in the last 15 years, touching several seemingly distant areas of mathematics including geometric group theory, operator algebras, dynamical systems, graph theory, and quantum information theory. Several long-standing conjectures, still open for arbitrary groups, are now settled for sofic or hyperlinear ...

  3. Orbitally invariant internally contracted multireference unitary coupled cluster theory and its perturbative approximation: theory and test calculations of second order approximation.

    Science.gov (United States)

    Chen, Zhenhua; Hoffmann, Mark R

    2012-07-07

    A unitary wave operator, exp (G), G(+) = -G, is considered to transform a multiconfigurational reference wave function Φ to the potentially exact, within basis set limit, wave function Ψ = exp (G)Φ. To obtain a useful approximation, the Hausdorff expansion of the similarity transformed effective Hamiltonian, exp (-G)Hexp (G), is truncated at second order and the excitation manifold is limited; an additional separate perturbation approximation can also be made. In the perturbation approximation, which we refer to as multireference unitary second-order perturbation theory (MRUPT2), the Hamiltonian operator in the highest order commutator is approximated by a Mo̸ller-Plesset-type one-body zero-order Hamiltonian. If a complete active space self-consistent field wave function is used as reference, then the energy is invariant under orbital rotations within the inactive, active, and virtual orbital subspaces for both the second-order unitary coupled cluster method and its perturbative approximation. Furthermore, the redundancies of the excitation operators are addressed in a novel way, which is potentially more efficient compared to the usual full diagonalization of the metric of the excited configurations. Despite the loss of rigorous size-extensivity possibly due to the use of a variational approach rather than a projective one in the solution of the amplitudes, test calculations show that the size-extensivity errors are very small. Compared to other internally contracted multireference perturbation theories, MRUPT2 only needs reduced density matrices up to three-body even with a non-complete active space reference wave function when two-body excitations within the active orbital subspace are involved in the wave operator, exp (G). Both the coupled cluster and perturbation theory variants are amenable to large, incomplete model spaces. Applications to some widely studied model systems that can be problematic because of geometry dependent quasidegeneracy, H4, P4

  4. Quantum theory, groups and representations an introduction

    CERN Document Server

    Woit, Peter

    2017-01-01

    This text systematically presents the basics of quantum mechanics, emphasizing the role of Lie groups, Lie algebras, and their unitary representations. The mathematical structure of the subject is brought to the fore, intentionally avoiding significant overlap with material from standard physics courses in quantum mechanics and quantum field theory. The level of presentation is attractive to mathematics students looking to learn about both quantum mechanics and representation theory, while also appealing to physics students who would like to know more about the mathematics underlying the subject. This text showcases the numerous differences between typical mathematical and physical treatments of the subject. The latter portions of the book focus on central mathematical objects that occur in the Standard Model of particle physics, underlining the deep and intimate connections between mathematics and the physical world. While an elementary physics course of some kind would be helpful to the reader, no specific ...

  5. K-theory for group C*-algebras and semigroup C*-algebras

    CERN Document Server

    Cuntz, Joachim; Li, Xin; Yu, Guoliang

    2017-01-01

    This book gives an account of the necessary background for group algebras and crossed products for actions of a group or a semigroup on a space and reports on some very recently developed techniques with applications to particular examples. Much of the material is available here for the first time in book form. The topics discussed are among the most classical and intensely studied C*-algebras. They are important for applications in fields as diverse as the theory of unitary group representations, index theory, the topology of manifolds or ergodic theory of group actions.

  6. Local unitary transformation method for large-scale two-component relativistic calculations: case for a one-electron Dirac Hamiltonian.

    Science.gov (United States)

    Seino, Junji; Nakai, Hiromi

    2012-06-28

    An accurate and efficient scheme for two-component relativistic calculations at the spin-free infinite-order Douglas-Kroll-Hess (IODKH) level is presented. The present scheme, termed local unitary transformation (LUT), is based on the locality of the relativistic effect. Numerical assessments of the LUT scheme were performed in diatomic molecules such as HX and X(2) (X = F, Cl, Br, I, and At) and hydrogen halide clusters, (HX)(n) (X = F, Cl, Br, and I). Total energies obtained by the LUT method agree well with conventional IODKH results. The computational costs of the LUT method are drastically lower than those of conventional methods since in the former there is linear-scaling with respect to the system size and a small prefactor.

  7. Path-Integral Monte Carlo Determination of the Fourth-Order Virial Coefficient for a Unitary Two-Component Fermi Gas with Zero-Range Interactions.

    Science.gov (United States)

    Yan, Yangqian; Blume, D

    2016-06-10

    The unitary equal-mass Fermi gas with zero-range interactions constitutes a paradigmatic model system that is relevant to atomic, condensed matter, nuclear, particle, and astrophysics. This work determines the fourth-order virial coefficient b_{4} of such a strongly interacting Fermi gas using a customized ab initio path-integral Monte Carlo (PIMC) algorithm. In contrast to earlier theoretical results, which disagreed on the sign and magnitude of b_{4}, our b_{4} agrees within error bars with the experimentally determined value, thereby resolving an ongoing literature debate. Utilizing a trap regulator, our PIMC approach determines the fourth-order virial coefficient by directly sampling the partition function. An on-the-fly antisymmetrization avoids the Thomas collapse and, combined with the use of the exact two-body zero-range propagator, establishes an efficient general means to treat small Fermi systems with zero-range interactions.

  8. Mono-Heteromeric Configurations of Gap Junction Channels Formed by Connexin43 and Connexin45 Reduce Unitary Conductance and Determine both Voltage Gating and Metabolic Flux Asymmetry

    Directory of Open Access Journals (Sweden)

    Guoqiang Zhong

    2017-05-01

    Full Text Available In cardiac tissues, the expression of multiple connexins (Cx40, Cx43, Cx45, and Cx30.2 is a requirement for proper development and function. Gap junctions formed by these connexins have distinct permeability and gating mechanisms. Since a single cell can express more than one connexin isoform, the formation of hetero-multimeric gap junction channels provides a tissue with an enormous repertoire of combinations to modulate intercellular communication. To study further the perm-selectivity and gating properties of channels containing Cx43 and Cx45, we studied two monoheteromeric combinations in which a HeLa cell co-transfected with Cx43 and Cx45 was paired with a cell expressing only one of these connexins. Macroscopic measurements of total conductance between cell pairs indicated a drastic reduction in total conductance for mono-heteromeric channels. In terms of Vj dependent gating, Cx43 homomeric connexons facing heteromeric connexons only responded weakly to voltage negativity. Cx45 homomeric connexons exhibited no change in Vj gating when facing heteromeric connexons. The distributions of unitary conductances (γj for both mono-heteromeric channels were smaller than predicted, and both showed low permeability to the fluorescent dyes Lucifer yellow and Rhodamine123. For both mono-heteromeric channels, we observed flux asymmetry regardless of dye charge: flux was higher in the direction of the heteromeric connexon for MhetCx45 and in the direction of the homomeric Cx43 connexon for MhetCx43. Thus, our data suggest that co-expression of Cx45 and Cx43 induces the formation of heteromeric connexons with greatly reduced permeability and unitary conductance. Furthermore, it increases the asymmetry for voltage gating for opposing connexons, and it favors asymmetric flux of molecules across the junction that depends primarily on the size (not the charge of the crossing molecules.

  9. Mono-Heteromeric Configurations of Gap Junction Channels Formed by Connexin43 and Connexin45 Reduce Unitary Conductance and Determine both Voltage Gating and Metabolic Flux Asymmetry

    Science.gov (United States)

    Zhong, Guoqiang; Akoum, Nazem; Appadurai, Daniel A.; Hayrapetyan, Volodya; Ahmed, Osman; Martinez, Agustin D.; Beyer, Eric C.; Moreno, Alonso P.

    2017-01-01

    In cardiac tissues, the expression of multiple connexins (Cx40, Cx43, Cx45, and Cx30.2) is a requirement for proper development and function. Gap junctions formed by these connexins have distinct permeability and gating mechanisms. Since a single cell can express more than one connexin isoform, the formation of hetero-multimeric gap junction channels provides a tissue with an enormous repertoire of combinations to modulate intercellular communication. To study further the perm-selectivity and gating properties of channels containing Cx43 and Cx45, we studied two monoheteromeric combinations in which a HeLa cell co-transfected with Cx43 and Cx45 was paired with a cell expressing only one of these connexins. Macroscopic measurements of total conductance between cell pairs indicated a drastic reduction in total conductance for mono-heteromeric channels. In terms of Vj dependent gating, Cx43 homomeric connexons facing heteromeric connexons only responded weakly to voltage negativity. Cx45 homomeric connexons exhibited no change in Vj gating when facing heteromeric connexons. The distributions of unitary conductances (γj) for both mono-heteromeric channels were smaller than predicted, and both showed low permeability to the fluorescent dyes Lucifer yellow and Rhodamine123. For both mono-heteromeric channels, we observed flux asymmetry regardless of dye charge: flux was higher in the direction of the heteromeric connexon for MhetCx45 and in the direction of the homomeric Cx43 connexon for MhetCx43. Thus, our data suggest that co-expression of Cx45 and Cx43 induces the formation of heteromeric connexons with greatly reduced permeability and unitary conductance. Furthermore, it increases the asymmetry for voltage gating for opposing connexons, and it favors asymmetric flux of molecules across the junction that depends primarily on the size (not the charge) of the crossing molecules. PMID:28611680

  10. On irreducible representations of the ultrahyperbolic BMS group

    International Nuclear Information System (INIS)

    McCarthy, Patrick J.; Melas, Evangelos

    2003-01-01

    The ordinary Bondi-Metzner-Sachs (BMS) group B is the common asymptotic symmetry group of all asymptotically flat Lorentzian space-times. As such, B is the best candidate for the universal symmetry group of General Relativity. However, in studying quantum gravity, space-times with signatures other than the usual Lorentzian one, and complex space-times, are frequently considered. Generalisations of B appropriate to these other signatures have been defined earlier. Here, the generalisation B(2,2) appropriate to the ultrahyperbolic signature (+,+,-,-) is described in detail, and the irreducible unitary representations (IRs) of B(2,2) are analysed. It is proved that all induced IRs of B(2,2) arise from IRs of compact 'little groups'. These little groups, which are closed subgroups of K=SO(2)xSO(2), are classified here in detail, with particular attention paid to those of infinite order

  11. Dynamics of infinite-dimensional groups the Ramsey-Dvoretzky-Milman phenomenon

    CERN Document Server

    Pestov, Vladimir

    2006-01-01

    The "infinite-dimensional groups" in the title refer to unitary groups of Hilbert spaces, the infinite symmetric group, groups of homeomorphisms of manifolds, groups of transformations of measure spaces, etc. The book presents an approach to the study of such groups based on ideas from geometric functional analysis and from exploring the interplay between dynamical properties of those groups, combinatorial Ramsey-type theorems, and the phenomenon of concentration of measure. The dynamics of infinite-dimensional groups is very much unlike that of locally compact groups. For instance, every locally compact group acts freely on a suitable compact space (Veech). By contrast, a 1983 result by Gromov and Milman states that whenever the unitary group of a separable Hilbert space continuously acts on a compact space, it has a common fixed point. In the book, this new fast-growing theory is built strictly from well-understood examples up. The book has no close counterpart and is based on recent research articles. At t...

  12. Three particle Poincare states and SU(6) x SU(3) as a classification group for baryons

    International Nuclear Information System (INIS)

    Buccella, F.; Sciarrino, A.; Sorba, P.

    1975-05-01

    A complete set of democratic quantum numbers is introduced to classify the states of an irreducible unitary representation (IUR) of the Poincare group obtained from the decomposition of the direct products of three I.U.R. Such states are identified with the baryon states constituted of three free relativistic quarks. The transformation from current to constituent quarks is then easily reobtained. Moreover, the group SU(6) x SU(3) appears naturally as a collinear classification group for baryons. Results similar to those of the symmetric harmonic oscillator quark model are obtained [fr

  13. Quantization and harmonic analysis on nilpotent Lie groups

    International Nuclear Information System (INIS)

    Wildberger, N.J.

    1983-01-01

    Weyl Quantization is a procedure for associating a function on which the canonical commutation relations are realized. If G is a simply-connected, connected nilpotent Lie group with Lie algebra g and dual g/sup */, it is shown how to inductively construct symplectic isomorphisms between every co-adjoint orbit O and the bundle in Hilbert Space for some m. Weyl Quantization can then be used to associate to each orbit O a unitary representation rho 0 of G, recovering the classification of the unitary dual by Kirillov. It is used to define a geometric Fourier transform, F : L 1 (G) → functions on g/sup */, and it is shown that the usual operator-valued Fourier transform can be recovered from F, characters are inverse Fourier transforms of invariant measures on orbits, and matrix coefficients are inverse Fourier transforms of non-invariant measures supported on orbits. Realizations of the representations rho 0 in subspaces of L 2 (O) are obtained.. Finally, the kernel function is computed for the upper triangular unipotent group and one other example

  14. Extreme covariant quantum observables in the case of an Abelian symmetry group and a transitive value space

    International Nuclear Information System (INIS)

    Haapasalo, Erkka Theodor; Pellonpaeae, Juha-Pekka

    2011-01-01

    We represent quantum observables as normalized positive operator valued measures and consider convex sets of observables which are covariant with respect to a unitary representation of a locally compact Abelian symmetry group G. The value space of such observables is a transitive G-space. We characterize the extreme points of covariant observables and also determine the covariant extreme points of the larger set of all quantum observables. The results are applied to position, position difference, and time observables.

  15. Uniformly bounded representations of the Lorentz groups

    International Nuclear Information System (INIS)

    Brega, A.O.

    1982-01-01

    For the Lorentz group G = SO/sub e/(n + 1, 1)(ngreater than or equal to 2) the author constructs a family of uniformly bounded representations by means of analytically continuing a certain normalization of the unitary principal series. The method the author uses relies on an analysis of various operators under a Mellin transform and extends earlier work of E.N. Wilson. In a series of papers Kunze and Stein initiated the theory of uniformly bounded representations of semisimple Lie groups; the starting point is the unitary principal series T(sigma,s) obtained in a certain subgroup M of G and a purely imaginary number s. From there Kunze and Stein constructed families of representations R(sigma,s) depending analytically on a parameter s in a domain D of C containing the imaginary axis which are unitarily equilvalent to T(sigma,s) for s contained in the set of imaginary numbers and whose operator norms are uniformly bounded for each s in D. In the case of the Lorentz groups SO/sub e/(n + 1, 1)(ngreater than or equal to2) and the trivial representation 1 of M, E.N. Wilson obtained such a family R(1,s) for the domain D = [s contained in the set of C: absolute value Re(s) Vertical Bar2]. For this domain D and for any representation sigma of M the author provides a family R(sigma,s) of uniformly bounded representations analytically continuing T(sigma,s), thereby generalizing Wilson's work. The author has also investigated certain symmetry properties of the representations R(sigma,s) under the action of the Weyl group. The trivial representation is Weyl group invariant and the family R(1,s) obtained by Wilson satisfies R(1,s) = R(1,-s) reflecting this. Obtained was the analogous result R(sigma,s) = R(sigma,-s) for some well known representations sigma that are Weyl group invariant. This involves the explicit computation of certain constants arising in the Fourier transforms of intertwining operators

  16. Symmetries and groups in particle physics

    International Nuclear Information System (INIS)

    Scherer, Stefan

    2016-01-01

    The aim of this book consists of a didactic introduction to the group-theoretical considerations and methods, which have led to an ever deeper understanding of the interactions of the elementary particles. The first three chapters deal primarily with the foundations of the representation theory of primarily finite groups, whereby many results are also transferable to compact Lie groups. In the third chapter we discuss the concept of Lie groups and their connection with Lie algebras. In the remaining chapter it is mainly about the application of group theory in physics. Chapter 4 deals with the groups SO(3) and SU(2), which occur in connection with the description of the angular momentum in quantum mechanics. We discuss the Wigner-Eckar theorem together with some applications. In chapter 5 we are employed to the composition properties of strongly interacting systems, so called hadrons, and discuss extensively the transformation properties of quarks with relation to the special unitary groups. The Noether theorem is generally treated in connection to the conservation laws belonging to the Galilei group and the Poincare group. We confine us in chapter 6 to internal symmetries, but explain for that extensively the application to quantum field theory. Especially an outlook on the effect of symmetries in form of so called Ward identities is granted. In chapter 7 we turn towards the gauge principle and discuss first the construction of quantum electrodynamics. In the following we generalize the gauge principle to non-Abelian groups (Yang-Mills theories) and formulate the quantum chromodynamics (QCD). Especially we take a view of ''random'' global symmetries of QCD, especially the chiral symmetry. In chapter 8 we illuminate the phenomenon of spontaneous symmetry breaking both for global and for local symmetries. In the final chapter we work out the group-theoretical structure of the Standard Model. Finally by means of the group SU(5) we take a view to

  17. Group X

    Energy Technology Data Exchange (ETDEWEB)

    Fields, Susannah

    2007-08-16

    This project is currently under contract for research through the Department of Homeland Security until 2011. The group I was responsible for studying has to remain confidential so as not to affect the current project. All dates, reference links and authors, and other distinguishing characteristics of the original group have been removed from this report. All references to the name of this group or the individual splinter groups has been changed to 'Group X'. I have been collecting texts from a variety of sources intended for the use of recruiting and radicalizing members for Group X splinter groups for the purpose of researching the motivation and intent of leaders of those groups and their influence over the likelihood of group radicalization. This work included visiting many Group X websites to find information on splinter group leaders and finding their statements to new and old members. This proved difficult because the splinter groups of Group X are united in beliefs, but differ in public opinion. They are eager to tear each other down, prove their superiority, and yet remain anonymous. After a few weeks of intense searching, a list of eight recruiting texts and eight radicalizing texts from a variety of Group X leaders were compiled.

  18. Group Flow and Group Genius

    Science.gov (United States)

    Sawyer, Keith

    2015-01-01

    Keith Sawyer views the spontaneous collaboration of group creativity and improvisation actions as "group flow," which organizations can use to function at optimum levels. Sawyer establishes ideal conditions for group flow: group goals, close listening, complete concentration, being in control, blending egos, equal participation, knowing…

  19. Elevated false recognition in patients with frontal lobe damage is neither a general nor a unitary phenomenon.

    Science.gov (United States)

    Verfaellie, Mieke; Rapcsak, Steven Z; Keane, Margaret M; Alexander, Michael P

    2004-01-01

    This study examined verbal recognition memory in amnesic patients with frontal lesions (AF), nonamnesic patients with frontal lesions (NAF), and amnesic patients with medial temporal lesions (MT). To examine susceptibility to false alarms, the number of studied words drawn from various categories was varied. The AF and MT groups demonstrated reduced hits and increased false alarms. False alarms were especially elevated when item-specific recollection was strongest in control participants. The NAF group performed indistinguishably from control participants, but several patients showed excessive false alarms in the context of normal hit rates. These patients exhibited impaired monitoring and verification processes. The findings demonstrate that elevated false recognition is not characteristic of all frontal patients and may result from more than 1 underlying mechanism. ((c) 2004 APA, all rights reserved)

  20. Quantum groups, orthogonal polynomials and applications to some dynamical systems; Groupes quantiques, polynomes orthogonaux et applications a quelques systemes dynamiques

    Energy Technology Data Exchange (ETDEWEB)

    Campigotto, C

    1993-12-01

    The first part is concerned with the introduction of quantum groups as an extension of Lie groups. In particular, we study the case of unitary enveloping algebras in dimension 2. We then connect the quantum group formalism to the construction of g CGC recurrent relations. In addition, we construct g-deformed Krawtchouck and Meixner orthogonal polynomials and list their respective main characteristics. The second part deals with some dynamical systems from a classical, a quantum and a gp-analogue point of view. We investigate the Coulomb Kepler system by using the canonical namical systems which contain as special cases some interesting systems for nuclear of atomic physics and for quantum chemistry, such as the Hartmann system, the ring-shaped oscillator, the Smarodinsky-Winternitz system, the Aharonov-Bohen system and the dyania of Dirac and Schroedinger. (author). 291 refs.

  1. Permutation groups

    CERN Document Server

    Passman, Donald S

    2012-01-01

    This volume by a prominent authority on permutation groups consists of lecture notes that provide a self-contained account of distinct classification theorems. A ready source of frequently quoted but usually inaccessible theorems, it is ideally suited for professional group theorists as well as students with a solid background in modern algebra.The three-part treatment begins with an introductory chapter and advances to an economical development of the tools of basic group theory, including group extensions, transfer theorems, and group representations and characters. The final chapter feature

  2. The multi-reference retaining the excitation degree perturbation theory: A size-consistent, unitary invariant, and rapidly convergent wavefunction based ab initio approach

    International Nuclear Information System (INIS)

    Fink, Reinhold F.

    2009-01-01

    The retaining the excitation degree (RE) partitioning [R.F. Fink, Chem. Phys. Lett. 428 (2006) 461(20 September)] is reformulated and applied to multi-reference cases with complete active space (CAS) reference wave functions. The generalised van Vleck perturbation theory is employed to set up the perturbation equations. It is demonstrated that this leads to a consistent and well defined theory which fulfils all important criteria of a generally applicable ab initio method: The theory is proven numerically and analytically to be size-consistent and invariant with respect to unitary orbital transformations within the inactive, active and virtual orbital spaces. In contrast to most previously proposed multi-reference perturbation theories the necessary condition for a proper perturbation theory to fulfil the zeroth order perturbation equation is exactly satisfied with the RE partitioning itself without additional projectors on configurational spaces. The theory is applied to several excited states of the benchmark systems CH 2 , SiH 2 , and NH 2 , as well as to the lowest states of the carbon, nitrogen and oxygen atoms. In all cases comparisons are made with full configuration interaction results. The multi-reference (MR)-RE method is shown to provide very rapidly converging perturbation series. Energy differences between states of similar configurations converge even faster

  3. Bidirectional quantum teleportation of unknown photons using path-polarization intra-particle hybrid entanglement and controlled-unitary gates via cross-Kerr nonlinearity

    Science.gov (United States)

    Heo, Jino; Hong, Chang-Ho; Lim, Jong-In; Yang, Hyung-Jin

    2015-05-01

    We propose an arbitrary controlled-unitary (CU) gate and a bidirectional quantum teleportation (BQTP) scheme. The proposed CU gate utilizes photonic qubits (photons) with cross-Kerr nonlinearities (XKNLs), X-homodyne detectors, and linear optical elements, and consists of the consecutive operation of a controlled-path (C-path) gate and a gathering-path (G-path) gate. It is almost deterministic and feasible with current technology when a strong coherent state and weak XKNLs are employed. Based on the CU gate, we present a BQTP scheme that simultaneously teleports two unknown photons between distant users by transmitting only one photon in a path-polarization intra-particle hybrid entangled state. Consequently, it is possible to experimentally implement BQTP with a certain success probability using the proposed CU gate. Project supported by the Ministry of Science, ICT&Future Planning, Korea, under the C-ITRC (Convergence Information Technology Research Center) Support program (NIPA-2013-H0301-13-3007) supervised by the National IT Industry Promotion Agency.

  4. Local unitary transformation method for large-scale two-component relativistic calculations. II. Extension to two-electron Coulomb interaction.

    Science.gov (United States)

    Seino, Junji; Nakai, Hiromi

    2012-10-14

    The local unitary transformation (LUT) scheme at the spin-free infinite-order Douglas-Kroll-Hess (IODKH) level [J. Seino and H. Nakai, J. Chem. Phys. 136, 244102 (2012)], which is based on the locality of relativistic effects, has been extended to a four-component Dirac-Coulomb Hamiltonian. In the previous study, the LUT scheme was applied only to a one-particle IODKH Hamiltonian with non-relativistic two-electron Coulomb interaction, termed IODKH/C. The current study extends the LUT scheme to a two-particle IODKH Hamiltonian as well as one-particle one, termed IODKH/IODKH, which has been a real bottleneck in numerical calculation. The LUT scheme with the IODKH/IODKH Hamiltonian was numerically assessed in the diatomic molecules HX and X(2) and hydrogen halide molecules, (HX)(n) (X = F, Cl, Br, and I). The total Hartree-Fock energies calculated by the LUT method agree well with conventional IODKH/IODKH results. The computational cost of the LUT method is reduced drastically compared with that of the conventional method. In addition, the LUT method achieves linear-scaling with respect to the system size and a small prefactor.

  5. Radiological protection regulation during spent nuclear fuel and radioactive waste management in the western branch of the Federal State Unitary Enterprise 'SevRAO'.

    Science.gov (United States)

    Simakov, A V; Sneve, M K; Abramov, Yu V; Kochetkov, O A; Smith, G M; Tsovianov, A G; Romanov, V V

    2008-12-01

    The site of temporary storage of spent nuclear fuel and radioactive waste, situated at Andreeva Bay in Northwest Russia, was developed in the 1960s, and it has carried out receipt and storage of fresh and spent nuclear fuel, and solid and liquid radioactive waste generated during the operation of nuclear submarines and nuclear-powered icebreakers. The site is now operated as the western branch of the Federal State Unitary Enterprise, SevRAO. In the course of operation over several decades, the containment barriers in the Spent Nuclear Fuel and Radioactive Waste storage facilities partially lost their containment effectiveness, so workshop facilities and parts of the site became contaminated with radioactive substances. This paper describes work being undertaken to provide an updated regulatory basis for the protection of workers during especially hazardous remediation activities, necessary because of the unusual radiation conditions at the site. It describes the results of recent survey work carried out by the Burnasyan Federal Medical Biophysical Centre, within a programme of regulatory cooperation between the Norwegian Radiation Protection Authority and the Federal Medical-Biological Agency of Russia. The survey work and subsequent analyses have contributed to the development of special regulations setting out radiological protection requirements for operations planned at the site. Within these requirements, and taking account of a variety of other factors, a continuing need arises for the implementation of optimisation of remediation at Andreeva Bay.

  6. Estimated general population control limits for unitary agents in drinking water, milk, soil, and unprocessed food items. For use in reentry decision-making

    Energy Technology Data Exchange (ETDEWEB)

    Watson, A.P.; Adams, J.D.; Cerar, R.J.; Hess, T.L.; Kistner, S.L.; Leffingwell, S.S.; MacIntosh, R.G.; Ward, J.R.

    1992-01-01

    In the event of an unplanned release of chemical agent during any stage of the Chemical Stockpile Disposal Program (CSDP), the potential exists for contamination of drinking water, forage crops, grains, garden produce, and livestock. Persistent agents such as VX or sulfur mustard pose the greatest human health concern for reentry. This White Paper has been prepared to provide technical bases for these decisions by developing working estimates of agent control limits in selected environmental media considered principal sources of potential human exposure. To date, control limits for public exposure to unitary agents have been established for atmospheric concentrations only. The current analysis builds on previous work to calculate working estimates of control limits for ingestion and dermal exposure to potentially contaminated drinking water, milk, soil, and unprocessed food items such as garden produce. Information characterizing agent desorption from, and detection on or in, contaminated porous media are presently too developed to permit reasonable estimation of dermal exposure from this source. Thus, dermal contact with potentially contaminated porous surfaces is not considered in this document.

  7. Switched 4-to-1 Transimpedance Combining Amplifier for Receiver Front-End Circuit of Static Unitary Detector-Based LADAR System

    Directory of Open Access Journals (Sweden)

    Eun-Gyu Lee

    2017-07-01

    Full Text Available Laser detection and ranging (LADAR systems are commonly used to acquire real-time three-dimensional (3D images using the time-of-flight of a short laser pulse. A static unitary detector (STUD-based LADAR system is a simple method for obtaining real-time high-resolution 3D images. In this study, a switched 4-to-1 transimpedance combining amplifier (TCA is implemented as a receiver front-end readout integrated circuit for the STUD-based LADAR system. The 4-to-1 TCA is fabricated using a standard 0.18 μm complementary metal-oxide-semiconductor (CMOS technology, and it consists of four independent current buffers, a two-stage signal combiner, a balun, and an output buffer in one single integrated chip. In addition, there is a switch on each input current path to expand the region of interest with multiple photodetectors. The core of the TCA occupies an area of 92 μm × 68 μm, and the die size including I/O pads is 1000 μm × 840 μm. The power consumption of the fabricated chip is 17.8 mW for a supplied voltage of 1.8 V and a transimpedance gain of 67.5 dBΩ. The simulated bandwidth is 353 MHz in the presence of a 1 pF photodiode parasitic capacitance for each photosensitive cell.

  8. Group devaluation and group identification

    NARCIS (Netherlands)

    Leach, C.W.; Rodriguez Mosquera, P.M.; Vliek, M.L.W.; Hirt, E.

    2010-01-01

    In three studies, we showed that increased in-group identification after (perceived or actual) group devaluation is an assertion of a (preexisting) positive social identity that counters the negative social identity implied in societal devaluation. Two studies with real-world groups used order

  9. Lie groups and algebraic groups

    Indian Academy of Sciences (India)

    We give an exposition of certain topics in Lie groups and algebraic groups. This is not a complete ... of a polynomial equation is equivalent to the solva- bility of the equation ..... to a subgroup of the group of roots of unity in k (in particular, it is a ...

  10. Group Work

    Science.gov (United States)

    Wilson, Kristy J.; Brickman, Peggy; Brame, Cynthia J.

    2018-01-01

    Science, technology, engineering, and mathematics faculty are increasingly incorporating both formal and informal group work in their courses. Implementing group work can be improved by an understanding of the extensive body of educational research studies on this topic. This essay describes an online, evidence-based teaching guide published by…

  11. Reflection groups

    International Nuclear Information System (INIS)

    Eggermont, G.

    2006-01-01

    In 2005, PISA organised proactive meetings of reflection groups on involvement in decision making, expert culture and ethical aspects of radiation protection.All reflection group meetings address particular targeted audiences while the output publication in book form is put forward

  12. Current algebras, measures quasi-invariant under diffeomorphism groups, and infinite quantum systems with accumulation points

    Science.gov (United States)

    Sakuraba, Takao

    The approach to quantum physics via current algebra and unitary representations of the diffeomorphism group is established. This thesis studies possible infinite Bose gas systems using this approach. Systems of locally finite configurations and systems of configurations with accumulation points are considered, with the main emphasis on the latter. In Chapter 2, canonical quantization, quantization via current algebra and unitary representations of the diffeomorphism group are reviewed. In Chapter 3, a new definition of the space of configurations is proposed and an axiom for general configuration spaces is abstracted. Various subsets of the configuration space, including those specifying the number of points in a Borel set and those specifying the number of accumulation points in a Borel set are proved to be measurable using this axiom. In Chapter 4, known results on the space of locally finite configurations and Poisson measure are reviewed in the light of the approach developed in Chapter 3, including the approach to current algebra in the Poisson space by Albeverio, Kondratiev, and Rockner. Goldin and Moschella considered unitary representations of the group of diffeomorphisms of the line based on self-similar random processes, which may describe infinite quantum gas systems with clusters. In Chapter 5, the Goldin-Moschella theory is developed further. Their construction of measures quasi-invariant under diffeomorphisms is reviewed, and a rigorous proof of their conjectures is given. It is proved that their measures with distinct correlation parameters are mutually singular. A quasi-invariant measure constructed by Ismagilov on the space of configurations with accumulation points on the circle is proved to be singular with respect to the Goldin-Moschella measures. Finally a generalization of the Goldin-Moschella measures to the higher-dimensional case is studied, where the notion of covariance matrix and the notion of condition number play important roles. A

  13. Group theory

    CERN Document Server

    Scott, W R

    2010-01-01

    Here is a clear, well-organized coverage of the most standard theorems, including isomorphism theorems, transformations and subgroups, direct sums, abelian groups, and more. This undergraduate-level text features more than 500 exercises.

  14. Group Grammar

    Science.gov (United States)

    Adams, Karen

    2015-01-01

    In this article Karen Adams demonstrates how to incorporate group grammar techniques into a classroom activity. In the activity, students practice using the target grammar to do something they naturally enjoy: learning about each other.

  15. Computer group

    International Nuclear Information System (INIS)

    Bauer, H.; Black, I.; Heusler, A.; Hoeptner, G.; Krafft, F.; Lang, R.; Moellenkamp, R.; Mueller, W.; Mueller, W.F.; Schati, C.; Schmidt, A.; Schwind, D.; Weber, G.

    1983-01-01

    The computer groups has been reorganized to take charge for the general purpose computers DEC10 and VAX and the computer network (Dataswitch, DECnet, IBM - connections to GSI and IPP, preparation for Datex-P). (orig.)

  16. Group learning

    DEFF Research Database (Denmark)

    Pimentel, Ricardo; Noguira, Eloy Eros da Silva; Elkjær, Bente

    The article presents a study that aims at the apprehension of the group learning in a top management team composed by teachers in a Brazilian Waldorf school whose management is collective. After deciding to extend the school, they had problems recruiting teachers who were already trained based...... on the Steiner´s ideas, which created practical problems for conducting management activities. The research seeks to understand how that group of teachers collectively manage the school, facing the lack of resources, a significant heterogeneity in the relationships, and the conflicts and contradictions......, and they are interrelated to the group learning as the construction, maintenance and reconstruction of the intelligibility of practices. From this perspective, it can be said that learning is a practice and not an exceptional phenomenon. Building, maintaining and rebuilding the intelligibility is the group learning...

  17. Group technology

    International Nuclear Information System (INIS)

    Rome, C.P.

    1976-01-01

    Group Technology has been conceptually applied to the manufacture of batch-lots of 554 machined electromechanical parts which now require 79 different types of metal-removal tools. The products have been grouped into 7 distinct families which require from 8 to 22 machines in each machine-cell. Throughput time can be significantly reduced and savings can be realized from tooling, direct-labor, and indirect-labor costs

  18. Abelian groups

    CERN Document Server

    Fuchs, László

    2015-01-01

    Written by one of the subject’s foremost experts, this book focuses on the central developments and modern methods of the advanced theory of abelian groups, while remaining accessible, as an introduction and reference, to the non-specialist. It provides a coherent source for results scattered throughout the research literature with lots of new proofs. The presentation highlights major trends that have radically changed the modern character of the subject, in particular, the use of homological methods in the structure theory of various classes of abelian groups, and the use of advanced set-theoretical methods in the study of undecidability problems. The treatment of the latter trend includes Shelah’s seminal work on the undecidability in ZFC of Whitehead’s Problem; while the treatment of the former trend includes an extensive (but non-exhaustive) study of p-groups, torsion-free groups, mixed groups, and important classes of groups arising from ring theory. To prepare the reader to tackle these topics, th...

  19. Group dynamics.

    Science.gov (United States)

    Scandiffio, A L

    1990-12-01

    Group dynamics play a significant role within any organization, culture, or unit. The important thing to remember with any of these structures is that they are made up of people--people with different ideas, motivations, background, and sometimes different agendas. Most groups, formal or informal, look for a leader in an effort to maintain cohesiveness of the unit. At times, that cultural bond must be developed; once developed, it must be nurtured. There are also times that one of the group no longer finds the culture comfortable and begins to act out behaviorally. It is these times that become trying for the leader as she or he attempts to remain objective when that which was once in the building phase of group cohesiveness starts to fall apart. At all times, the manager must continue to view the employee creating the disturbance as an integral part of the group. It is at this time that it is beneficial to perceive the employee exhibiting problem behaviors as a special employee, as one who needs the benefit of your experience and skills, as one who is still part of the group. It is also during this time that the manager should focus upon her or his own views in the area of power, communication, and the corporate culture of the unit that one has established before attempting to understand another's point of view. Once we understand our own motivation and accept ourselves, it is then that we may move on to offer assistance to another. Once we understand our insecurities recognizing staff dysfunction as a symptom of system dysfunction will not be so threatening to the concept of the manager that we perceive ourselves to be. It takes a secure person to admit that she or he favors staff before deciding to do something to change things. The important thing to know is that it can be done. The favored staff can find a new way of relating to others, the special employee can find new modes of behavior (and even find self-esteem in the process), the group can find new ways

  20. Group representations

    CERN Document Server

    Karpilovsky, G

    1994-01-01

    This third volume can be roughly divided into two parts. The first part is devoted to the investigation of various properties of projective characters. Special attention is drawn to spin representations and their character tables and to various correspondences for projective characters. Among other topics, projective Schur index and projective representations of abelian groups are covered. The last topic is investigated by introducing a symplectic geometry on finite abelian groups. The second part is devoted to Clifford theory for graded algebras and its application to the corresponding theory

  1. Lego Group

    DEFF Research Database (Denmark)

    Møller Larsen, Marcus; Pedersen, Torben; Slepniov, Dmitrij

    2010-01-01

    The last years’ rather adventurous journey from 2004 to 2009 had taught the fifth-largest toy-maker in the world - the LEGO Group - the importance of managing the global supply chain effectively. In order to survive the largest internal financial crisis in its roughly 70 years of existence......, the management had, among many initiatives, decided to offshore and outsource a major chunk of its production to Flextronics. In this pursuit of rapid cost-cutting sourcing advantages, the LEGO Group planned to license out as much as 80 per cent of its production besides closing down major parts...

  2. Informal groups

    NARCIS (Netherlands)

    E. van den Berg; P. van Houwelingen; J. de Hart

    2011-01-01

    Original title: Informele groepen Going out running with a group of friends, rather than joining an official sports club. Individuals who decide to take action themselves rather than giving money to good causes. Maintaining contact with others not as a member of an association, but through an

  3. Unitary four-body model

    International Nuclear Information System (INIS)

    Fonseca, A.C.; Shanley, P.E.

    1976-01-01

    A field-theoretic model describing nonrelativistic four-body scattering processes is developed. The model is related to Bronzan's extended Lee model, but the allowed interactions are restricted so that the resulting dynamical equations are as simple as possible, yet still exact. Two elementary particles n and a are introduced with the couplings n + n in equilibrium D and a + a in equilibrium. Three-particle processes are generated by the additional coupling D + a in equilibrium α, leading to the possible three-body reactions D + a → D + a and D + a → n + n + a. The four-body sector then involves the 2 → 2 reactions aα → aα and aα → CD, the 2 → 3 reactions aα → Daa and aα → Cnn, and the 2 → 4 reaction aα → nnaa. Off-shell integral equations are obtained for the 2 → 2 amplitudes, and from these, expressions for the 2 → 3 and 2 → 4 amplitudes are constructed. Possible applications and generalizations of the model are discussed

  4. COMMUNICATIONS GROUP

    CERN Multimedia

    L. Taylor

    2011-01-01

    The CMS Communications Group, established at the start of 2010, has been busy in all three areas of its responsibility: (1) Communications Infrastructure, (2) Information Systems, and (3) Outreach and Education. Communications Infrastructure There are now 55 CMS Centres worldwide that are well used by physicists working on remote CMS shifts, Computing operations, data quality monitoring, data analysis and outreach. The CMS Centre@CERN in Meyrin, is the centre of the CMS offline and computing operations, hosting dedicated analysis efforts such as during the CMS Heavy Ion lead-lead running. With a majority of CMS sub-detectors now operating in a “shifterless” mode, many monitoring operations are now routinely performed from there, rather than in the main Control Room at P5. The CMS Communications Group, CERN IT and the EVO team are providing excellent videoconferencing support for the rapidly-increasing number of CMS meetings. In parallel, CERN IT and ...

  5. Group therapy

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Full text: In his review 'Genesis of Unified Gauge Theories' at the symposium in Honour of Abdus Salam (June, page 23), Tom Kibble of Imperial College, London, looked back to the physics events around Salam from 1959-67. He described how, in the early 1960s, people were pushing to enlarge the symmetry of strong interactions beyond the SU(2) of isospin and incorporate the additional strangeness quantum number. Kibble wrote - 'Salam had students working on every conceivable symmetry group. One of these was Yuval Ne'eman, who had the good fortune and/or prescience to work on SU(3). From that work, and of course from the independent work of Murray Gell- Mann, stemmed the Eightfold Way, with its triumphant vindication in the discovery of the omega-minus in 1964.' Yuval Ne'eman writes - 'I was the Defence Attaché at the Israeli Embassy in London and was admitted by Salam as a part-time graduate student when I arrived in 1958. I started research after resigning from the Embassy in May 1960. Salam suggested a problem: provide vector mesons with mass - the problem which was eventually solved by Higgs, Guralnik, Kibble,.... (as described by Kibble in his article). I explained to Salam that I had become interested in symmetry. Nobody at Imperial College at the time, other than Salam himself, was doing anything in groups, and attention further afield was focused on the rotation - SO(N) - groups. Reacting to my own half-baked schemes, Salam told me to forget about the rotation groups he taught us, and study group theory in depth, directing me to Eugene Dynkin's classification of Lie subalgebras, about which he had heard from Morton Hamermesh. I found Dynkin incomprehensible without first learning about Lie algebras from Henri Cartan's thesis, which luckily had been reproduced by Dynkin in his 1946 thesis, using his diagram method. From a copy of a translation of Dynkin's thesis which I found in the British Museum Library, I

  6. Surveying the quantum group symmetries of integrable open spin chains

    Science.gov (United States)

    Nepomechie, Rafael I.; Retore, Ana L.

    2018-05-01

    Using anisotropic R-matrices associated with affine Lie algebras g ˆ (specifically, A2n(2), A2n-1 (2) , Bn(1), Cn(1), Dn(1)) and suitable corresponding K-matrices, we construct families of integrable open quantum spin chains of finite length, whose transfer matrices are invariant under the quantum group corresponding to removing one node from the Dynkin diagram of g ˆ . We show that these transfer matrices also have a duality symmetry (for the cases Cn(1) and Dn(1)) and additional Z2 symmetries that map complex representations to their conjugates (for the cases A2n-1 (2) , Bn(1) and Dn(1)). A key simplification is achieved by working in a certain "unitary" gauge, in which only the unbroken symmetry generators appear. The proofs of these symmetries rely on some new properties of the R-matrices. We use these symmetries to explain the degeneracies of the transfer matrices.

  7. Neural activity reveals perceptual grouping in working memory.

    Science.gov (United States)

    Rabbitt, Laura R; Roberts, Daniel M; McDonald, Craig G; Peterson, Matthew S

    2017-03-01

    There is extensive evidence that the contralateral delay activity (CDA), a scalp recorded event-related brain potential, provides a reliable index of the number of objects held in visual working memory. Here we present evidence that the CDA not only indexes visual object working memory, but also the number of locations held in spatial working memory. In addition, we demonstrate that the CDA can be predictably modulated by the type of encoding strategy employed. When individual locations were held in working memory, the pattern of CDA modulation mimicked previous findings for visual object working memory. Specifically, CDA amplitude increased monotonically until working memory capacity was reached. However, when participants were instructed to group individual locations to form a constellation, the CDA was prolonged and reached an asymptote at two locations. This result provides neural evidence for the formation of a unitary representation of multiple spatial locations. Published by Elsevier B.V.

  8. COMMUNICATIONS GROUP

    CERN Multimedia

    L. Taylor

    2010-01-01

    The CMS Communications Group, established at the start of 2010, has been strengthening the activities in all three areas of its responsibility: (1) Communications Infrastructure, (2) Information Systems, and (3) Outreach and Education. Communications Infrastructure The Communications Group has invested a lot of effort to support the operations needs of CMS. Hence, the CMS Centres where physicists work on remote CMS shifts, Data Quality Monitoring, and Data Analysis are running very smoothly. There are now 55 CMS Centres worldwide, up from just 16 at the start of CMS data-taking. The latest to join are Imperial College London, the University of Iowa, and the Università di Napoli. The CMS Centre@CERN in Meyrin, which is now full repaired after the major flooding at the beginning of the year, has been at the centre of CMS offline and computing operations, most recently hosting a large fraction of the CMS Heavy Ion community during the lead-lead run. A number of sub-detector shifts can now take pla...

  9. Group play

    DEFF Research Database (Denmark)

    Tychsen, Anders; Hitchens, Michael; Brolund, Thea

    2008-01-01

    Role-playing games (RPGs) are a well-known game form, existing in a number of formats, including tabletop, live action, and various digital forms. Despite their popularity, empirical studies of these games are relatively rare. In particular there have been few examinations of the effects of the v......Role-playing games (RPGs) are a well-known game form, existing in a number of formats, including tabletop, live action, and various digital forms. Despite their popularity, empirical studies of these games are relatively rare. In particular there have been few examinations of the effects...... of the various formats used by RPGs on the gaming experience. This article presents the results of an empirical study, examining how multi-player tabletop RPGs are affected as they are ported to the digital medium. Issues examined include the use of disposition assessments to predict play experience, the effect...... of group dynamics, the influence of the fictional game characters and the comparative play experience between the two formats. The results indicate that group dynamics and the relationship between the players and their digital characters, are integral to the quality of the gaming experience in multiplayer...

  10. COMMUNICATIONS GROUP

    CERN Multimedia

    L. Taylor

    2011-01-01

    The CMS Communications Group has been busy in all three areas of its responsibility: (1) Communications Infrastructure, (2) Information Systems, and (3) Outreach and Education. Communications Infrastructure The 55 CMS Centres worldwide are well used by physicists working on remote CMS shifts, Computing operations, data quality monitoring, data analysis and outreach. The CMS Centre@CERN in Meyrin, is the centre of the CMS Offline and Computing operations, and a number of subdetector shifts can now take place there, rather than in the main Control Room at P5. A new CMS meeting room has been equipped for videoconferencing in building 42, next to building 40. Our building 28 meeting room and the facilities at P5 will be refurbished soon and plans are underway to steadily upgrade the ageing equipment in all 15 CMS meeting rooms at CERN. The CMS evaluation of the Vidyo tool indicates that it is not yet ready to be considered as a potential replacement for EVO. The Communications Group provides the CMS-TV (web) cha...

  11. Block generators for the similarity renormalization group

    Energy Technology Data Exchange (ETDEWEB)

    Huether, Thomas; Roth, Robert [TU Darmstadt (Germany)

    2016-07-01

    The Similarity Renormalization Group (SRG) is a powerful tool to improve convergence behavior of many-body calculations using NN and 3N interactions from chiral effective field theory. The SRG method decouples high and low-energy physics, through a continuous unitary transformation implemented via a flow equation approach. The flow is determined by a generator of choice. This generator governs the decoupling pattern and, thus, the improvement of convergence, but it also induces many-body interactions. Through the design of the generator we can optimize the balance between convergence and induced forces. We explore a new class of block generators that restrict the decoupling to the high-energy sector and leave the diagonalization in the low-energy sector to the many-body method. In this way one expects a suppression of induced forces. We analyze the induced many-body forces and the convergence behavior in light and medium-mass nuclei in No-Core Shell Model and In-Medium SRG calculations.

  12. Exceptional gauge groups and quantum theory

    International Nuclear Information System (INIS)

    Horwitz, L.P.; Biedenharn, L.C.

    1979-01-01

    It is shown that a Hilbert space over the real Clifford algebra C 7 provides a mathematical framework, consistent with the structure of the usual quantum mechanical formalism, for models for the unification of weak, electromagnetic and strong interactions utilizing the exceptional Lie groups. In particular, in case no further structure is assumed beyond that of C 7 , the group of automorphisms leaving invariant a minimal subspace acts, in the ideal generated by that subspace, as G 2 , and the subgroup of this group leaving one generating element (e 7 ) fixed acts, in this ideal, as the color gauge group SU(3). A generalized phase algebra AcontainsC 7 is defined by the requirement that quantum mechanical states can be consistently constructed for a theory in which the smallest linear manifolds are closed over the subalgebra C(1,e 7 ) (isomorphic to the complex field) of C 7 . Eight solutions are found for the generalized phase algebra, corresponding (up to an overall sign), in effect, to the use of +- e 7 as imaginary unit in each of four superselection sectors. Operators linear over these alternative forms of imanary unit provide distinct types of ''lepton--quark'' and ''quark--quark'' transitions. The subgroup in A which leaves expectation values of operators linear over A invariant is its unitary subgroup U(4), and is a realization (explicitly constructed) of the U(4) invariance of the complex scalar product. An embedding of the algebraic Hilbert space into the complex space defined over C(1,e 7 ) is shown to lead to a decomposition into ''lepton and ''quark'' superselection subspaces. The color SU(3) subgroup of G 2 coincides with the SU(3) subgroup of the generalized phase U(4) which leaves the ''lepton'' space invariant. The problem of constructing tensor products is studied, and some remarks are made on observability and the role of nonassociativity

  13. COMMUNICATIONS GROUP

    CERN Multimedia

    L. Taylor

    2010-01-01

    The recently established CMS Communications Group, led by Lucas Taylor, has been busy in all three of its main are areas of responsibility: Communications Infrastructure, Information Systems, and Outreach and Education Communications Infrastructure The damage caused by the flooding of the CMS Centre@CERN on 21st December has been completely repaired and all systems are back in operation. Major repairs were made to the roofs, ceilings and one third of the floor had to be completely replaced. Throughout these works, the CMS Centre was kept operating and even hosted a major press event for first 7 TeV collisions, as described below. Incremental work behind the scenes is steadily improving the quality of the CMS communications infrastructure, particularly Webcasting, video conferencing, and meeting rooms at CERN. CERN/IT is also deploying a pilot service of a new videoconference tool called Vidyo, to assess whether it might provide an enhanced service at a lower cost, compared to the EVO tool currently in w...

  14. COMMUNICATIONS GROUP

    CERN Multimedia

    L. Taylor

    2011-01-01

    Communications Infrastructure The 55 CMS Centres worldwide are well used by physicists working on remote CMS shifts, Computing operations, data quality monitoring, data analysis and outreach. The CMS Centre@CERN in Meyrin is particularly busy at the moment, hosting about 50 physicists taking part in the heavy-ion data-taking and analysis. Three new CMS meeting room will be equipped for videoconferencing in early 2012: 40/5B-08, 42/R-031, and 28/S-029. The CMS-TV service showing LHC Page 1, CMS Page 1, etc. (http://cmsdoc.cern.ch/cmscc/projector/index.jsp) is now also available for mobile devices: http://cern.ch/mcmstv. Figure 12: Screenshots of CMS-TV for mobile devices Information Systems CMS has a new web site: (http://cern.ch/cms) using a modern web Content Management System to ensure content and links are managed and updated easily and coherently. It covers all CMS sub-projects and groups, replacing the iCMS internal pages. It also incorporates the existing CMS public web site (http:/...

  15. COMMUNICATIONS GROUP

    CERN Multimedia

    L. Taylor

    2012-01-01

      Outreach and Education We are fortunate that our research has captured the public imagination, even though this inevitably puts us under the global media spotlight, as we saw with the Higgs seminar at CERN in December, which had 110,000 distinct webcast viewers. The media interest was huge with 71 media organisations registering to come to CERN to cover the Higgs seminar, which was followed by a press briefing with the DG and Spokespersons. This event resulted in about 2,000 generally positive stories in the global media. For this seminar, the CMS Communications Group prepared up-to-date news and public material, including links to the CMS results, animations and event displays [http://cern.ch/go/Ch8thttp://cern.ch/go/Ch8t]. There were 44,000 page-views on the CMS public website, with the Higgs news article being by far the most popular item. CMS event displays from iSpy are fast becoming the iconic media images, featuring on numerous major news outlets (BBC, CNN, MSN...) as well as in the sci...

  16. Wigner functions for noncommutative quantum mechanics: A group representation based construction

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, S. Hasibul Hassan, E-mail: shhchowdhury@gmail.com [Chern Institute of Mathematics, Nankai University, Tianjin 300071 (China); Department of Mathematics and Statistics, Concordia University, Montréal, Québec H3G 1M8 (Canada); Ali, S. Twareque, E-mail: twareque.ali@concordia.ca [Department of Mathematics and Statistics, Concordia University, Montréal, Québec H3G 1M8 (Canada)

    2015-12-15

    This paper is devoted to the construction and analysis of the Wigner functions for noncommutative quantum mechanics, their marginal distributions, and star-products, following a technique developed earlier, viz, using the unitary irreducible representations of the group G{sub NC}, which is the three fold central extension of the Abelian group of ℝ{sup 4}. These representations have been exhaustively studied in earlier papers. The group G{sub NC} is identified with the kinematical symmetry group of noncommutative quantum mechanics of a system with two degrees of freedom. The Wigner functions studied here reflect different levels of non-commutativity—both the operators of position and those of momentum not commuting, the position operators not commuting and finally, the case of standard quantum mechanics, obeying the canonical commutation relations only.

  17. Investigations of the 0.020-scale 88-OTS Integrated Space Shuttle Vehicle Jet-Plume Model in the NASA/Ames Research Center 11 by11-Foot Unitary Plan Wind Tunnel (IA80). Volume 1

    Science.gov (United States)

    Nichols, M. E.

    1976-01-01

    The results are documented of jet plume effects wind tunnel test of the 0.020-scale 88-OTS launch configuration space shuttle vehicle model in the 11 x 11 foot leg of the NASA/Ames Research Center Unitary Plan Wind Tunnel. This test involved cold gas main propulsion system (MPS) and solid rocket motor (SRB) plume simulations at Mach numbers from 0.6 to 1.4. Integrated vehicle surface pressure distributions, elevon and rudder hinge moments, and wing and vertical tail root bending and torsional moments due to MPS and SRB plume interactions were determined. Nozzle power conditions were controlled per pretest nozzle calibrations. Model angle of attack was varied from -4 deg to +4 deg; model angle of sideslip was varied from -4 deg to +4 deg. Reynolds number was varied for certain test conditions and configurations, with the nominal freestream total pressure being 14.69 psia. Plotted force and pressure data are presented.

  18. Induced representations of the affine group and intertwining operators: I. Analytical approach

    International Nuclear Information System (INIS)

    Elmabrok, Abdelhamid S; Hutník, Ondrej

    2012-01-01

    We analyze the construction and origin of unitary operators describing the structure of the space of continuous wavelet transforms inside the space L 2 (G,dν L ) of all square-integrable functions on the affine group G with respect to the left-invariant Haar measure from the viewpoint of induced representations of G. We show that these operators are, in fact, intertwining operators among pairs of induced representations of the affine group G. A characterization of the space of wavelet transforms using the Cauchy–Riemann-type equations is given. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’. (paper)

  19. Which finite simple groups are unit groups?

    DEFF Research Database (Denmark)

    Davis, Christopher James; Occhipinti, Tommy

    2014-01-01

    We prove that if G is a finite simple group which is the unit group of a ring, then G is isomorphic to either (a) a cyclic group of order 2; (b) a cyclic group of prime order 2^k −1 for some k; or (c) a projective special linear group PSLn(F2) for some n ≥ 3. Moreover, these groups do all occur a...

  20. Towards a Complete Classification of Symmetry-Protected Topological Phases for Interacting Fermions in Three Dimensions and a General Group Supercohomology Theory

    Science.gov (United States)

    Wang, Qing-Rui; Gu, Zheng-Cheng

    2018-01-01

    The classification and construction of symmetry-protected topological (SPT) phases in interacting boson and fermion systems have become a fascinating theoretical direction in recent years. It has been shown that (generalized) group cohomology theory or cobordism theory gives rise to a complete classification of SPT phases in interacting boson or spin systems. The construction and classification of SPT phases in interacting fermion systems are much more complicated, especially in three dimensions. In this work, we revisit this problem based on an equivalence class of fermionic symmetric local unitary transformations. We construct very general fixed-point SPT wave functions for interacting fermion systems. We naturally reproduce the partial classifications given by special group supercohomology theory, and we show that with an additional B ˜H2(Gb,Z2) structure [the so-called obstruction-free subgroup of H2(Gb,Z2) ], a complete classification of SPT phases for three-dimensional interacting fermion systems with a total symmetry group Gf=Gb×Z2f can be obtained for unitary symmetry group Gb. We also discuss the procedure for deriving a general group supercohomology theory in arbitrary dimensions.

  1. Group Cohesion in Experiential Growth Groups

    Science.gov (United States)

    Steen, Sam; Vasserman-Stokes, Elaina; Vannatta, Rachel

    2014-01-01

    This article explores the effect of web-based journaling on changes in group cohesion within experiential growth groups. Master's students were divided into 2 groups. Both used a web-based platform to journal after each session; however, only 1 of the groups was able to read each other's journals. Quantitative data collected before and…

  2. Group Work Publication-1991.

    Science.gov (United States)

    Zimpfer, David G.

    1992-01-01

    Lists 21 new publications in group work, of which 9 are reviewed. Those discussed include publications on group counseling and psychotherapy, structured groups, support groups, psychodrama, and social group work. (Author/NB)

  3. Quantum isometry groups

    Indian Academy of Sciences (India)

    Jyotishman Bhowmick

    2015-11-07

    Nov 7, 2015 ... Classical. Quantum. Background. Compact Hausdorff space. Unital C∗ algebra. Gelfand-Naimark. Compact Group. Compact Quantum Group. Woronowicz. Group Action. Coaction. Woronowicz. Riemannian manifold. Spectral triple. Connes. Isometry group. Quantum Isometry Group. To be discussed.

  4. Group typicality, group loyalty and cognitive development.

    Science.gov (United States)

    Patterson, Meagan M

    2014-09-01

    Over the course of childhood, children's thinking about social groups changes in a variety of ways. Developmental Subjective Group Dynamics (DSGD) theory emphasizes children's understanding of the importance of conforming to group norms. Abrams et al.'s study, which uses DSGD theory as a framework, demonstrates the social cognitive skills underlying young elementary school children's thinking about group norms. Future research on children's thinking about groups and group norms should explore additional elements of this topic, including aspects of typicality beyond loyalty. © 2014 The British Psychological Society.

  5. Path integral for coherent states of the dynamical U2 group and U2/1 supergroup

    International Nuclear Information System (INIS)

    Kochetov, E.A.

    1992-01-01

    A part-integral formulation in the representation of coherent states for the unitary U 2 group and U 2/1 supergroup is introduced. U 2 and U 2/1 path integrals are shown to be defined on the coset spaces U 2 /U 1 xU 1 and U 2/1 /U 1/1 xU 1 , respectively. These coset appears as curved classical phase spaces. Partition functions are expressed as path integrals over these spaces. In the case when U 2 and U 2/1 are the dynamical groups, the corresponding path integrals are evaluated with the help of linear fractional transformations that appear as the group (supergroup) action in the coset space (superspace). Possible applications for quantum models are discussed. 9 refs

  6. In-Medium Similarity Renormalization Group Approach to the Nuclear Many-Body Problem

    Science.gov (United States)

    Hergert, Heiko; Bogner, Scott K.; Lietz, Justin G.; Morris, Titus D.; Novario, Samuel J.; Parzuchowski, Nathan M.; Yuan, Fei

    We present a pedagogical discussion of Similarity Renormalization Group (SRG) methods, in particular the In-Medium SRG (IMSRG) approach for solving the nuclear many-body problem. These methods use continuous unitary transformations to evolve the nuclear Hamiltonian to a desired shape. The IMSRG, in particular, is used to decouple the ground state from all excitations and solve the many-body Schrödinger equation. We discuss the IMSRG formalism as well as its numerical implementation, and use the method to study the pairing model and infinite neutron matter. We compare our results with those of Coupled cluster theory (Chap. 8), Configuration-Interaction Monte Carlo (Chap. 9), and the Self-Consistent Green's Function approach discussed in Chap. 11 The chapter concludes with an expanded overview of current research directions, and a look ahead at upcoming developments.

  7. AREVA group overview; Presentation du groupe AREVA

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-02-08

    This document presents the Group Areva, a world nuclear industry leader, from a financial holding company to an industrial group, operating in two businesses: the nuclear energy and the components. The structure and the market of the group are discussed, as the financial assets. (A.L.B.)

  8. Overgroups of root groups in classical groups

    CERN Document Server

    Aschbacher, Michael

    2016-01-01

    The author extends results of McLaughlin and Kantor on overgroups of long root subgroups and long root elements in finite classical groups. In particular he determines the maximal subgroups of this form. He also determines the maximal overgroups of short root subgroups in finite classical groups and the maximal overgroups in finite orthogonal groups of c-root subgroups.

  9. Interagency mechanical operations group numerical systems group

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    This report consists of the minutes of the May 20-21, 1971 meeting of the Interagency Mechanical Operations Group (IMOG) Numerical Systems Group. This group looks at issues related to numerical control in the machining industry. Items discussed related to the use of CAD and CAM, EIA standards, data links, and numerical control.

  10. Quantum groups, non-commutative differential geometry and applications

    International Nuclear Information System (INIS)

    Schupp, P.; California Univ., Berkeley, CA

    1993-01-01

    The topic of this thesis is the development of a versatile and geometrically motivated differential calculus on non-commutative or quantum spaces, providing powerful but easy-to-use mathematical tools for applications in physics and related sciences. A generalization of unitary time evolution is proposed and studied for a simple 2-level system, leading to non-conservation of microscopic entropy, a phenomenon new to quantum mechanics. A Cartan calculus that combines functions, forms, Lie derivatives and inner derivations along general vector fields into one big algebra is constructed for quantum groups and then extended to quantum planes. The construction of a tangent bundle on a quantum group manifold and an BRST type approach to quantum group gauge theory are given as further examples of applications. The material is organized in two parts: Part I studies vector fields on quantum groups, emphasizing Hopf algebraic structures, but also introducing a ''quantum geometric'' construction. Using a generalized semi-direct product construction we combine the dual Hopf algebras A of functions and U of left-invariant vector fields into one fully bicovariant algebra of differential operators. The pure braid group is introduced as the commutant of Δ(U). It provides invariant maps A → U and thereby bicovariant vector fields, casimirs and metrics. This construction allows the translation of undeformed matrix expressions into their less obvious quantum algebraic counter parts. We study this in detail for quasitriangular Hopf algebras, giving the determinant and orthogonality relation for the ''reflection'' matrix. Part II considers the additional structures of differential forms and finitely generated quantum Lie algebras -- it is devoted to the construction of the Cartan calculus, based on an undeformed Cartan identity

  11. Quantum groups, roots of unity and particles on quantized Anti-de Sitter space

    International Nuclear Information System (INIS)

    Steinacker, H.

    1997-01-01

    Quantum groups in general and the quantum Anti-de Sitter group U q (so(2,3)) in particular are studied from the point of view of quantum field theory. The author shows that if q is a suitable root of unity, there exist finite-dimensional, unitary representations corresponding to essentially all the classical one-particle representations with (half) integer spin, with the same structure at low energies as in the classical case. In the massless case for spin ≥ 1, open-quotes naiveclose quotes representations are unitarizable only after factoring out a subspace of open-quotes pure gaugesclose quotes, as classically. Unitary many-particle representations are defined, with the correct classical limit. Furthermore, the author identifies a remarkable element Q in the center of U q (g), which plays the role of a BRST operator in the case of U q (so(2,3)) at roots of unity, for any spin ≥ 1. The associated ghosts are an intrinsic part of the indecomposable representations. The author shows how to define an involution on algebras of creation and anihilation operators at roots of unity, in an example corresponding to non-identical particles. It is shown how nonabelian gauge fields appear naturally in this framework, without having to define connections on fiber bundles. Integration on Quantum Euclidean space and sphere and on Anti-de Sitter space is studied as well. The author gives a conjecture how Q can be used in general to analyze the structure of indecomposable representations, and to define a new, completely reducible associative (tensor) product of representations at roots of unity, which generalizes the standard open-quotes truncatedclose quotes tensor product as well as many-particle representations

  12. Quantum groups, roots of unity and particles on quantized Anti-de Sitter space

    Energy Technology Data Exchange (ETDEWEB)

    Steinacker, Harold [Univ. of California, Berkeley, CA (United States). Dept. of Physics

    1997-05-23

    Quantum groups in general and the quantum Anti-de Sitter group Uq(so(2,3)) in particular are studied from the point of view of quantum field theory. The author shows that if q is a suitable root of unity, there exist finite-dimensional, unitary representations corresponding to essentially all the classical one-particle representations with (half) integer spin, with the same structure at low energies as in the classical case. In the massless case for spin ≥ 1, "naive" representations are unitarizable only after factoring out a subspace of "pure gauges", as classically. Unitary many-particle representations are defined, with the correct classical limit. Furthermore, the author identifies a remarkable element Q in the center of Uq(g), which plays the role of a BRST operator in the case of Uq(so(2,3)) at roots of unity, for any spin ≥ 1. The associated ghosts are an intrinsic part of the indecomposable representations. The author shows how to define an involution on algebras of creation and anihilation operators at roots of unity, in an example corresponding to non-identical particles. It is shown how nonabelian gauge fields appear naturally in this framework, without having to define connections on fiber bundles. Integration on Quantum Euclidean space and sphere and on Anti-de Sitter space is studied as well. The author gives a conjecture how Q can be used in general to analyze the structure of indecomposable representations, and to define a new, completely reducible associative (tensor) product of representations at roots of unity, which generalizes the standard "truncated" tensor product as well as many-particle representations.

  13. Results of investigations of an 0.010-scale 140A/B configuration (model 72-OTS) of the Rockwell International space shuttle orbiter in the NASA/Langley Research Center unitary plan wind tunnel

    Science.gov (United States)

    Petrozzi, M. T.; Milam, M. D.

    1975-01-01

    Experimental aerodynamic investigations were conducted in the NASA/Langley unitary plan wind tunnel on a sting mounted 0.010-scale outer mold line model of the 140A/B configuration of the Rockwell International Space Shuttle Vehicle. The primary test objectives were to obtain: (1) six component force and moment data for the mated vehicle at subsonic and transonic conditions, (2) effects of configuration build-up, (3) effects of protuberances, ET/orbiter fairings and attach structures, and (4) elevon deflection effects on wing bending moment. Six component aerodynamic force and moment data and base and balance cavity pressures were recorded over Mach numbers of 1.6, 2.0, 2.5, 2.86, 3.9, and 4.63 at a nominal Reynolds number of 20 to the 6th power per foot. Selected configurations were tested at angles of attack and sideslip from -10 deg to +10 deg. For all configurations involving the orbiter, wing bending, and torsion coefficients were measured on the right wing.

  14. Theory of Lie groups

    CERN Document Server

    Chevalley, Claude

    2018-01-01

    The standard text on the subject for many years, this introductory treatment covers classical linear groups, topological groups, manifolds, analytic groups, differential calculus of Cartan, and compact Lie groups and their representations. 1946 edition.

  15. Introduction to Sporadic Groups

    Directory of Open Access Journals (Sweden)

    Luis J. Boya

    2011-01-01

    Full Text Available This is an introduction to finite simple groups, in particular sporadic groups, intended for physicists. After a short review of group theory, we enumerate the 1+1+16=18 families of finite simple groups, as an introduction to the sporadic groups. These are described next, in three levels of increasing complexity, plus the six isolated ''pariah'' groups. The (old five Mathieu groups make up the first, smallest order level. The seven groups related to the Leech lattice, including the three Conway groups, constitute the second level. The third and highest level contains the Monster group M, plus seven other related groups. Next a brief mention is made of the remaining six pariah groups, thus completing the 5+7+8+6=26 sporadic groups. The review ends up with a brief discussion of a few of physical applications of finite groups in physics, including a couple of recent examples which use sporadic groups.

  16. Results of a jet plume effects test on Rockwell International integrated space shuttle vehicle using a vehicle 5 configuration 0.02-scale model (88-OTS) in the 11 by 11 foot leg of the NASA/Ames Research Center unitary plan wind tunnel (IA19), volume 1

    Science.gov (United States)

    Nichols, M. E.

    1975-01-01

    Results are presented of jet plume effects test IA19 using a vehicle 5 configuration integrated space shuttle vehicle 0.02-scale model in the NASA/Ames Research Center 11 x 11-foot leg of the unitary plan wind tunnel. The jet plume power effects on the integrated vehicle static pressure distribution were determined along with elevon, main propulsion system nozzle, and solid rocket booster nozzle effectiveness and elevon hinge moments.

  17. Group Work: How to Use Groups Effectively

    Science.gov (United States)

    Burke, Alison

    2011-01-01

    Many students cringe and groan when told that they will need to work in a group. However, group work has been found to be good for students and good for teachers. Employers want college graduates to have developed teamwork skills. Additionally, students who participate in collaborative learning get better grades, are more satisfied with their…

  18. Free Boolean Topological Groups

    Directory of Open Access Journals (Sweden)

    Ol’ga Sipacheva

    2015-11-01

    Full Text Available Known and new results on free Boolean topological groups are collected. An account of the properties that these groups share with free or free Abelian topological groups and properties specific to free Boolean groups is given. Special emphasis is placed on the application of set-theoretic methods to the study of Boolean topological groups.

  19. Small Group Research

    Science.gov (United States)

    McGrath, Joseph E.

    1978-01-01

    Summarizes research on small group processes by giving a comprehensive account of the types of variables primarily studied in the laboratory. These include group structure, group composition, group size, and group relations. Considers effects of power, leadership, conformity to social norms, and role relationships. (Author/AV)

  20. Geometric group theory

    CERN Document Server

    Druţu, Cornelia

    2018-01-01

    The key idea in geometric group theory is to study infinite groups by endowing them with a metric and treating them as geometric spaces. This applies to many groups naturally appearing in topology, geometry, and algebra, such as fundamental groups of manifolds, groups of matrices with integer coefficients, etc. The primary focus of this book is to cover the foundations of geometric group theory, including coarse topology, ultralimits and asymptotic cones, hyperbolic groups, isoperimetric inequalities, growth of groups, amenability, Kazhdan's Property (T) and the Haagerup property, as well as their characterizations in terms of group actions on median spaces and spaces with walls. The book contains proofs of several fundamental results of geometric group theory, such as Gromov's theorem on groups of polynomial growth, Tits's alternative, Stallings's theorem on ends of groups, Dunwoody's accessibility theorem, the Mostow Rigidity Theorem, and quasiisometric rigidity theorems of Tukia and Schwartz. This is the f...

  1. Profinite graphs and groups

    CERN Document Server

    Ribes, Luis

    2017-01-01

    This book offers a detailed introduction to graph theoretic methods in profinite groups and applications to abstract groups. It is the first to provide a comprehensive treatment of the subject. The author begins by carefully developing relevant notions in topology, profinite groups and homology, including free products of profinite groups, cohomological methods in profinite groups, and fixed points of automorphisms of free pro-p groups. The final part of the book is dedicated to applications of the profinite theory to abstract groups, with sections on finitely generated subgroups of free groups, separability conditions in free and amalgamated products, and algorithms in free groups and finite monoids. Profinite Graphs and Groups will appeal to students and researchers interested in profinite groups, geometric group theory, graphs and connections with the theory of formal languages. A complete reference on the subject, the book includes historical and bibliographical notes as well as a discussion of open quest...

  2. On the Representation Theory of the Ultrahyperbolic BMS group UHB(2, 2). I. General Results

    International Nuclear Information System (INIS)

    Melas, Evangelos

    2015-01-01

    The Bondi-Metzner-Sachs (BMS) group B is the common asymptotic group of all asymptotically flat (lorentzian) space-times, and is the best candidate for the universal symmetry group of General Relativity (G.R.). B admits generalizations to real space-times of any signature, to complex space-times, and supersymmetric generalizations for any space- time dimension. With this motivation McCarthy constructed the strongly continuous unitary irreducible representations (IRs) of B some time ago, and he identified B(2,2) as the generalization of B appropriate to the to the 'ultrahyperbolic signature' (+,+,−,−) and asymptotic flatness in null directions. We continue this programme by introducing a new group UHB(2, 2) in the group theoretical study of ultrahyperbolic G.R. which happens to be a proper subgroup of B(2, 2). In this short paper we report on the first general results on the representation theory of UHB(2, 2). In particular the main general results are that the all little groups of UHB(2, 2) are compact and that the Wigner-Mackey's inducing construction is exhaustive despite the fact that UHB(2, 2) is not locally compact in the employed Hilbert topology. At the end of the paper we comment on the significance of these results

  3. First results on the representation theory of the Ultrahyperbolic BMS group UHB(2, 2)

    International Nuclear Information System (INIS)

    Melas, Evangelos

    2016-01-01

    The Bondi–Metzner–Sachs (BMS) group B is the common asymptotic group of all asymptotically flat (lorentzian) space–times, and is the best candidate for the universal symmetry group of General Relativity (G.R.). B admits generalizations to real space–times of any signature, to complex space–times, and supersymmetric generalizations for any space— time dimension. With this motivation McCarthy constructed the strongly continuous unitary irreducible representations (IRs) of B some time ago, and he identified B(2,2) as the generalization of B appropriate to the to the ultrahyperbolic signature (+,+,−,−) and asymptotic flatness in null directions. We continue this programme by introducing a new group UHB(2, 2) in the group theoretical study of ultrahyperbolic G.R. which happens to be a proper subgroup of B(2, 2). We report on the first general results on the representation theory of UHB(2, 2). In particular the main general results are that the all little groups of UHB(2, 2) are compact and that the Wigner–Mackeys inducing construction is exhaustive despite the fact that UHB(2, 2) is not locally compact in the employed Hilbert topology. (paper)

  4. Representations of the ultrahyperbolic BMS group UHB(2, 2). I. General Results

    International Nuclear Information System (INIS)

    Melas, Evangelos

    2015-01-01

    The ordinary Bondi—Metzner—Sachs (BMS) group B is the common asymptotic symmetry group of all radiating, asymptotically flat, Lorentzian space—times. As such, B is the best candidate for the universal symmetry group of General Relativity (G.R.). However, in studying quantum gravity, space—times with signatures other than the usual Lorentzian one, and complex space-times, are frequently considered. Generalisations of B appropriate to these other signatures have been defined earlier. In particular, the generalisation B(2, 2) appropriate to the ultrahyperbolic signature (+,+, —,—) has been described in detail, and the study of its irreducible unitary representations (IRs) of B(2, 2) has been initiated. We continue this programme by introducing a new group UHB(2, 2) in the group theoretical study of ultrahyperbolic G.R. which happens to be a proper subgroup of B(2, 2). In this paper we report on the first general results on the representation theory of UHB(2, 2). In particular the main general results are that the all little groups of UHB(2, 2) are compact and that the Wigner—Mackey's inducing construction is exhaustive despite the fact that UHB(2, 2) is not locally compact in the employed Hilbert topology. (paper)

  5. Group purchasing: an overview.

    Science.gov (United States)

    Wetrich, J G

    1987-07-01

    The various types and operational methods of purchasing groups are described, and evaluation of groups is discussed. Since group purchasing is increasing in popularity as a method of controlling drug costs, community and hospital pharmacy managers may need to evaluate various groups to determine the appropriateness of their services. Groups are categorized as independent, system based, or alliance or association based. Instead of "purchasing," some groups develop contracts for hospitals, which then purchase directly from the vendor. Aside from this basic difference between groups that purchase and groups that contract, comparisons among groups are difficult because of the wide variation in sizes and services. Competition developing from diversification among groups has led to "super groups," formed from local and regional groups. In evaluating groups, advantages and disadvantages germane to accomplishing the member's objectives must be considered. To ensure a group's success, members must be committed and support the group's philosophies; hospital pharmacists must help to establish a strong formulary system. To select vendors, groups should develop formal qualification and selection criteria and should not base a decision solely on price. The method of solicitation (bidding or negotiating), as well as the role of the prime vendor, should be studied. Legal implications of group purchasing, especially in the areas of administrative fees and drug diversion, must also be considered. The most advantageous group for each organization will include members with common missions and will be able to implement strategies for future success.

  6. Ordered groups and infinite permutation groups

    CERN Document Server

    1996-01-01

    The subjects of ordered groups and of infinite permutation groups have long en­ joyed a symbiotic relationship. Although the two subjects come from very different sources, they have in certain ways come together, and each has derived considerable benefit from the other. My own personal contact with this interaction began in 1961. I had done Ph. D. work on sequence convergence in totally ordered groups under the direction of Paul Conrad. In the process, I had encountered "pseudo-convergent" sequences in an ordered group G, which are like Cauchy sequences, except that the differences be­ tween terms of large index approach not 0 but a convex subgroup G of G. If G is normal, then such sequences are conveniently described as Cauchy sequences in the quotient ordered group GIG. If G is not normal, of course GIG has no group structure, though it is still a totally ordered set. The best that can be said is that the elements of G permute GIG in an order-preserving fashion. In independent investigations around that t...

  7. ALIGNMENTS OF GROUP GALAXIES WITH NEIGHBORING GROUPS

    International Nuclear Information System (INIS)

    Wang Yougang; Chen Xuelei; Park, Changbom; Yang Xiaohu; Choi, Yun-Young

    2009-01-01

    Using a sample of galaxy groups found in the Sloan Digital Sky Survey Data Release 4, we measure the following four types of alignment signals: (1) the alignment between the distributions of the satellites of each group relative to the direction of the nearest neighbor group (NNG); (2) the alignment between the major axis direction of the central galaxy of the host group (HG) and the direction of the NNG; (3) the alignment between the major axes of the central galaxies of the HG and the NNG; and (4) the alignment between the major axes of the satellites of the HG and the direction of the NNG. We find strong signal of alignment between the satellite distribution and the orientation of central galaxy relative to the direction of the NNG, even when the NNG is located beyond 3r vir of the host group. The major axis of the central galaxy of the HG is aligned with the direction of the NNG. The alignment signals are more prominent for groups that are more massive and with early-type central galaxies. We also find that there is a preference for the two major axes of the central galaxies of the HG and NNG to be parallel for the system with both early central galaxies, however, not for the systems with both late-type central galaxies. For the orientation of satellite galaxies, we do not find any significant alignment signals relative to the direction of the NNG. From these four types of alignment measurements, we conclude that the large-scale environment traced by the nearby group affects primarily the shape of the host dark matter halo, and hence also affects the distribution of satellite galaxies and the orientation of central galaxies. In addition, the NNG directly affects the distribution of the satellite galaxies by inducing asymmetric alignment signals, and the NNG at very small separation may also contribute a second-order impact on the orientation of the central galaxy in the HG.

  8. Citizens' action group

    International Nuclear Information System (INIS)

    Andritzky, W.

    1978-01-01

    For the first empirical study of citizens' action groups 331 such groups were consulted. Important information was collected on the following aspects of these groups: their self-image, areas and forms of activities, objectives and their extent, how long the group has existed, successes and failures and their forms of organisation. (orig.) [de

  9. Communication in Organizational Groups

    OpenAIRE

    Monica RADU

    2007-01-01

    Organizational group can be defined as some persons between who exist interactive connections (functional, communication, affective, normative type). Classification of these groups can reflect the dimension, type of relationship or type of rules included. Organizational groups and their influence over the individual efficiency and the efficiency of the entire group are interconnected. Spontaneous roles in these groups sustain the structure of the relationship, and the personality of each indi...

  10. [Social crisis, spontaneous groups and group order].

    Science.gov (United States)

    Edelman, Lucila; Kordon, Diana

    2002-12-01

    Argentina has gone through very difficult times during the last years and, in particularly, new kinds of social practices have emerged in order to cope with the crisis. This situation demands and urges a new type of reflection upon the double role of groups, as tools to transform reality and as a way to elaborate those processes regarding subjectivity. In this paper we analyse some topics regarding the groupal field (considering spontaneous groups as well as groupal devices that allow to elaborate the crisis). We consider social bond to be the condition of possibility for the existence of the psyche and of time continuity, and that it also makes possible personal and social elaboration of trauma, crisis and social catastrophe. We develop some aspects of an specific device (the reflection group), which we have already depicted in another moment, showing it's usefulness to cope with social crisis and to promote the subjective elaboration of crisis.

  11. Symmetries and groups in particle physics; Symmetrien und Gruppen in der Teilchenphysik

    Energy Technology Data Exchange (ETDEWEB)

    Scherer, Stefan [Mainz Univ. (Germany)

    2016-07-01

    The aim of this book consists of a didactic introduction to the group-theoretical considerations and methods, which have led to an ever deeper understanding of the interactions of the elementary particles. The first three chapters deal primarily with the foundations of the representation theory of primarily finite groups, whereby many results are also transferable to compact Lie groups. In the third chapter we discuss the concept of Lie groups and their connection with Lie algebras. In the remaining chapter it is mainly about the application of group theory in physics. Chapter 4 deals with the groups SO(3) and SU(2), which occur in connection with the description of the angular momentum in quantum mechanics. We discuss the Wigner-Eckar theorem together with some applications. In chapter 5 we are employed to the composition properties of strongly interacting systems, so called hadrons, and discuss extensively the transformation properties of quarks with relation to the special unitary groups. The Noether theorem is generally treated in connection to the conservation laws belonging to the Galilei group and the Poincare group. We confine us in chapter 6 to internal symmetries, but explain for that extensively the application to quantum field theory. Especially an outlook on the effect of symmetries in form of so called Ward identities is granted. In chapter 7 we turn towards the gauge principle and discuss first the construction of quantum electrodynamics. In the following we generalize the gauge principle to non-Abelian groups (Yang-Mills theories) and formulate the quantum chromodynamics (QCD). Especially we take a view of ''random'' global symmetries of QCD, especially the chiral symmetry. In chapter 8 we illuminate the phenomenon of spontaneous symmetry breaking both for global and for local symmetries. In the final chapter we work out the group-theoretical structure of the Standard Model. Finally by means of the group SU(5) we take a view to

  12. Asymptotic expansions for the Gaussian unitary ensemble

    DEFF Research Database (Denmark)

    Haagerup, Uffe; Thorbjørnsen, Steen

    2012-01-01

    Let g : R ¿ C be a C8-function with all derivatives bounded and let trn denote the normalized trace on the n × n matrices. In Ref. 3 Ercolani and McLaughlin established asymptotic expansions of the mean value ¿{trn(g(Xn))} for a rather general class of random matrices Xn, including the Gaussian U...

  13. Unitary tridiagonalization in M(4, C)

    Indian Academy of Sciences (India)

    Springer Verlag Heidelberg #4 2048 1996 Dec 15 10:16:45

    Abstract. A question of interest in linear algebra is whether all n × n complex matrices can be unitarily ... passing, we also provide another elementary proof for the n = 3 case. 2. Some Lemmas. We need ... also use the letter A to denote the unique linear transformation determined by the matrix. A = [aij ] (satisfying Aej = ∑n.

  14. Unitary and Dual Models of Phenomenal Consciousness

    Czech Academy of Sciences Publication Activity Database

    Marvan, Tomáš; Polák, M.

    -, č. 56 (2017), s. 1-12 ISSN 1053-8100 Institutional support: RVO:67985955 Keywords : phenomenal consciousness * David Rosenthal * what it is like * unconscious mind * theories fo consciousness Subject RIV: AA - Philosophy ; Religion OBOR OECD: Philosophy, History and Philosophy of science and technology Impact factor: 2.144, year: 2016

  15. The speed limit of quantum unitary evolution

    International Nuclear Information System (INIS)

    Giovannetti, Vittorio; Lloyd, Seth; Maccone, Lorenzo

    2004-01-01

    How fast can a quantum system evolve? In this paper we study the relation between entanglement and the time it takes for a composite system to perform a given evolution. In particular, we analyse how the order of the interactions shapes the dynamics

  16. Fast Unitary Transforms - Benefits and Restrictions.

    Science.gov (United States)

    1980-04-01

    transformation kernel, and u assumes values in the range 0, 1, ... , N-i. Similarly, the inverse transform is given by the relation N-1 f(x) E T(u)h(x...function to obtain T(u,v). Similar comments hold for the inverse transform if h(x,y,u,v) is separable. If the kernel g(xy,u,v) is separable and symmetric...the forward transform can be used directly to obtain the inverse transform simply by multiplying the result of the algorithm by N. 12 The forward and

  17. Unitary Quantum Lattice Algorithms for Turbulence

    Science.gov (United States)

    2016-05-23

    we chose as an initial condition a winding number nw = 6 singular line vortex core. This is a highly unstable initial condition since the energy of...the 6-fold degenerate line vortex is greater than 6 times the energy of a winding -number-1 line vortex. One finds vortex reconnection and...with coreless vortices consisting of a vortex ring and a straight line vortex that closes on itself on a toridal manifold. Under period DISTRIBUTION A

  18. Applications of unitary symmetry and combinatorics

    CERN Document Server

    Louck, James D

    2011-01-01

    This monograph is a synthesis of the theory of the pairwise coupling of the angular momenta of arbitrarily many independent systems to the total angular momentum in which the universal role of doubly stochastic matrices and their quantum-mechanical probabilistic interpretation is a major theme. A uniform viewpoint is presented based on the structure of binary trees. This includes a systematic method for the evaluation of all 3n-j coefficients and their relationship to cubic graphs. A number of topical subjects that emerge naturally are also developed, such as the algebra of permutation matrice

  19. Introduction to topological groups

    CERN Document Server

    Husain, Taqdir

    2018-01-01

    Concise treatment covers semitopological groups, locally compact groups, Harr measure, and duality theory and some of its applications. The volume concludes with a chapter that introduces Banach algebras. 1966 edition.

  20. MSUD Family Support Group

    Science.gov (United States)

    ... The Treatment Of MSUD The MSUD Family Support Group has provided funds to Buck Institute for its ... of the membership of the MSUD Family Support Group, research for improved treatments and potential cure was ...

  1. Nilpotent -local finite groups

    Science.gov (United States)

    Cantarero, José; Scherer, Jérôme; Viruel, Antonio

    2014-10-01

    We provide characterizations of -nilpotency for fusion systems and -local finite groups that are inspired by known result for finite groups. In particular, we generalize criteria by Atiyah, Brunetti, Frobenius, Quillen, Stammbach and Tate.

  2. UPIN Group File

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Group Unique Physician Identifier Number (UPIN) File is the business entity file that contains the group practice UPIN and descriptive information. It does NOT...

  3. Group Decision Process Support

    DEFF Research Database (Denmark)

    Gøtze, John; Hijikata, Masao

    1997-01-01

    Introducing the notion of Group Decision Process Support Systems (GDPSS) to traditional decision-support theorists.......Introducing the notion of Group Decision Process Support Systems (GDPSS) to traditional decision-support theorists....

  4. Gestalt Interactional Groups

    Science.gov (United States)

    Harman, Robert L.; Franklin, Richard W.

    1975-01-01

    Gestalt therapy in groups is not limited to individual work in the presence of an audience. Describes several ways to involve gestalt groups interactionally. Interactions described focus on learning by doing and discovering, and are noninterpretive. (Author/EJT)

  5. Group B streptococcus - pregnancy

    Science.gov (United States)

    ... medlineplus.gov/ency/patientinstructions/000511.htm Group B streptococcus - pregnancy To use the sharing features on this page, please enable JavaScript. Group B streptococcus (GBS) is a type of bacteria that some ...

  6. Multicultural group work

    DEFF Research Database (Denmark)

    Hansen, Annette Skovsted

    2014-01-01

    Motivation for the activity I use this strategy for forming groups to ensure diverse/multicultural groups that combine a variety of different strengths and resources based on student's academic, disciplinary, linguistic, national, personal and work backgrounds.......Motivation for the activity I use this strategy for forming groups to ensure diverse/multicultural groups that combine a variety of different strengths and resources based on student's academic, disciplinary, linguistic, national, personal and work backgrounds....

  7. The Areva Group; Le groupe Areva

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-08-01

    This document provides information on the Areva Group, a world nuclear industry leader, offering solutions for nuclear power generation, electricity transmission and distribution and interconnect systems to the telecommunications, computer and automotive markets. It presents successively the front end division including the group business lines involved in producing nuclear fuel for electric power generation (uranium mining, concentration, conversion and enrichment and nuclear fuel fabrication); the reactors and services division which designs and builds PWR, BWR and research reactors; the back end division which encompasses the management of the fuel that has been used in nuclear power plants; the transmission and distribution division which provides products, systems and services to the medium and high voltage energy markets; the connectors division which designs and manufactures electrical, electronic and optical connectors, flexible micro circuitry and interconnection systems. Areva is implemented in Europe, north and south america, africa and asia-pacific. (A.L.B.)

  8. Groups, combinatorics and geometry

    CERN Document Server

    Ivanov, A A; Saxl, J

    2003-01-01

    Over the past 20 years, the theory of groups in particular simplegroups, finite and algebraic has influenced a number of diverseareas of mathematics. Such areas include topics where groups have beentraditionally applied, such as algebraic combinatorics, finitegeometries, Galois theory and permutation groups, as well as severalmore recent developments.

  9. Working Group 7 Summary

    Energy Technology Data Exchange (ETDEWEB)

    Nagaitsev S.; Berg J.

    2012-06-10

    The primary subject of working group 7 at the 2012 Advanced Accelerator Concepts Workshop was muon accelerators for a muon collider or neutrino factory. Additionally, this working group included topics that did not fit well into other working groups. Two subjects were discussed by more than one speaker: lattices to create a perfectly integrable nonlinear lattice, and a Penning trap to create antihydrogen.

  10. AREVA group overview

    International Nuclear Information System (INIS)

    2002-01-01

    This document presents the Group Areva, a world nuclear industry leader, from a financial holding company to an industrial group, operating in two businesses: the nuclear energy and the components. The structure and the market of the group are discussed, as the financial assets. (A.L.B.)

  11. Group Psychotherapy in Denmark.

    Science.gov (United States)

    Jørgensen, Lars Bo; Thygesen, Bente; Aagaard, Søren

    2015-10-01

    This is a short article on the history and training standards in the Institute of Group Analysis in Copenhagen (IGA-CPH). We describe theoretical orientations and influences in the long-term training program and new initiatives, like courses in mentalization-based group treatment and a dynamic short-term group therapy course, as well as research in group psychotherapy in Denmark. Some group analytic initiatives in relation to social issues and social welfare are presented, as well as initiatives concerning the school system and unemployment.

  12. Group theory I essentials

    CERN Document Server

    Milewski, Emil G

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Group Theory I includes sets and mapping, groupoids and semi-groups, groups, isomorphisms and homomorphisms, cyclic groups, the Sylow theorems, and finite p-groups.

  13. Lectures on Chevalley groups

    CERN Document Server

    Steinberg, Robert

    2016-01-01

    Robert Steinberg's Lectures on Chevalley Groups were delivered and written during the author's sabbatical visit to Yale University in the 1967-1968 academic year. The work presents the status of the theory of Chevalley groups as it was in the mid-1960s. Much of this material was instrumental in many areas of mathematics, in particular in the theory of algebraic groups and in the subsequent classification of finite groups. This posthumous edition incorporates additions and corrections prepared by the author during his retirement, including a new introductory chapter. A bibliography and editorial notes have also been added. This is a great unsurpassed introduction to the subject of Chevalley groups that influenced generations of mathematicians. I would recommend it to anybody whose interests include group theory. -Efim Zelmanov, University of California, San Diego Robert Steinberg's lectures on Chevalley groups were given at Yale University in 1967. The notes for the lectures contain a wonderful exposition of ...

  14. E-groups training

    CERN Multimedia

    HR Department

    2012-01-01

    There will be an e-groups training course on 16 March 2012 which will cover the main e-groups functionalities i.e.: creating and managing e-groups, difference between static and dynamic e-groups, configuring posting restrictions and archives, examples of where e-groups can be used in daily work. Even if you have already worked with e-groups, this may be a good opportunity to learn about the best practices and security related recommendations when using e-groups. You can find more details as well as enrolment form for the training (it’s free) here. The number of places is limited, so enrolling early is recommended.   Technical Training Tel. 72844

  15. Group Psychotherapy in Italy.

    Science.gov (United States)

    Giannone, Francesca; Giordano, Cecilia; Di Blasi, Maria

    2015-10-01

    This article describes the history and the prevailing orientations of group psychotherapy in Italy (psychoanalytically oriented, psychodrama, CBT groups) and particularly group analysis. Provided free of charge by the Italian health system, group psychotherapy is growing, but its expansion is patchy. The main pathways of Italian training in the different group psychotherapy orientations are also presented. Clinical-theoretical elaboration on self development, psychopathology related to group experiences, and the methodological attention paid to objectives and methods in different clinical groups are issues related to group therapy in Italy. Difficulties in the relationship between research and clinical practice are discussed, as well as the empirical research network that tries to bridge the gap between research and clinical work in group psychotherapy. The economic crisis in Italy has led to massive cuts in health care and to an increasing demand for some forms of psychological treatment. For these reasons, and because of its positive cost-benefit ratio, group psychotherapy is now considered an important tool in the national health care system to expand the clinical response to different forms of psychological distress.

  16. Results of an investigation to determine local flow characteristics at the air data probe locations using an 0.030-scale model (45-0) of the space shuttle vehicle orbiter configuration 140A/B (modified) in the NASA Ames Research Center unitary plan wind tunnel (OA161, A, B, C), volume 1

    Science.gov (United States)

    Nichols, M. E.

    1976-01-01

    Results are presented of wind tunnel test 0A161 of a 0.030-scale model 45-0 of the configuration 140A/B (modified) space shuttle vehicle orbiter in the NASA Ames Research Center Unitary Plan Wind Tunnel facilities. The purpose of this test was to determine local total and static pressure environments for the air data probe locations and relative effectiveness of alternate flight-test probe configurations. Testing was done in the Mach number range from 0.30 to 3.5. Angle of attack was varied from -8 to 25 degrees while sideslip varied between -8 and 8 degrees.

  17. Geometric group theory

    CERN Document Server

    Bestvina, Mladen; Vogtmann, Karen

    2014-01-01

    Geometric group theory refers to the study of discrete groups using tools from topology, geometry, dynamics and analysis. The field is evolving very rapidly and the present volume provides an introduction to and overview of various topics which have played critical roles in this evolution. The book contains lecture notes from courses given at the Park City Math Institute on Geometric Group Theory. The institute consists of a set of intensive short courses offered by leaders in the field, designed to introduce students to exciting, current research in mathematics. These lectures do not duplicate standard courses available elsewhere. The courses begin at an introductory level suitable for graduate students and lead up to currently active topics of research. The articles in this volume include introductions to CAT(0) cube complexes and groups, to modern small cancellation theory, to isometry groups of general CAT(0) spaces, and a discussion of nilpotent genus in the context of mapping class groups and CAT(0) gro...

  18. CLASSIFICATION OF CRIMINAL GROUPS

    OpenAIRE

    Natalia Romanova

    2013-01-01

    New types of criminal groups are emerging in modern society.  These types have their special criminal subculture. The research objective is to develop new parameters of classification of modern criminal groups, create a new typology of criminal groups and identify some features of their subculture. Research methodology is based on the system approach that includes using the method of analysis of documentary sources (materials of a criminal case), method of conversations with themembers of the...

  19. Group therapy for adolescents

    OpenAIRE

    Nada Hribar

    2001-01-01

    The group included adolescents from secondary school and some students. The group had weekly sessions or twice on mounth. The adolescents had varied simptoms: depressive, anxiety, psychosomatic disorders, learning difficulties, cunduct problems. All of adolescents were common on many problems in social interactions. The goal of therapeutic work were: to increase assertiveness skills and to reduce the anxious in social situations. The adolescents in group raised a self-esteem and developed som...

  20. Presentations of groups

    CERN Document Server

    Johnson, D L

    1997-01-01

    The aim of this book is to provide an introduction to combinatorial group theory. Any reader who has completed first courses in linear algebra, group theory and ring theory will find this book accessible. The emphasis is on computational techniques but rigorous proofs of all theorems are supplied. This new edition has been revised throughout, including new exercises and an additional chapter on proving that certain groups are infinite.

  1. Group-Server Queues

    OpenAIRE

    Li, Quan-Lin; Ma, Jing-Yu; Xie, Mingzhou; Xia, Li

    2017-01-01

    By analyzing energy-efficient management of data centers, this paper proposes and develops a class of interesting {\\it Group-Server Queues}, and establishes two representative group-server queues through loss networks and impatient customers, respectively. Furthermore, such two group-server queues are given model descriptions and necessary interpretation. Also, simple mathematical discussion is provided, and simulations are made to study the expected queue lengths, the expected sojourn times ...

  2. Environmental groups in politics

    International Nuclear Information System (INIS)

    Lowe, P.; Goyder, J.

    1983-01-01

    The subject is covered in chapters, entitled: introduction; (Part I) the environmental movement (environmental groups and the attentive public; the episodic development of the environmental movement; the underlying values of environmentalism; the roots of environmental concern; the social limits to growth; elite manipulation of values); the organisation of environmental groups; environmental groups in national politics; environmental groups in local politics; (Part II) the Henley Society; Friends of the Earth; the National Trust; the Royal Society for Nature Conservation; the European Environmental Bureau. (U.K.)

  3. Complex quantum groups

    International Nuclear Information System (INIS)

    Drabant, B.; Schlieker, M.

    1993-01-01

    The complex quantum groups are constructed. They are q-deformations of the real Lie groups which are obtained as the complex groups corresponding to the Lie algebras of type A n-1 , B n , C n . Following the ideas of Faddeev, Reshetikhin and Takhtajan Hopf algebras of regular functionals U R for these complexified quantum groups are constructed. One has thus in particular found a construction scheme for the q-Lorentz algebra to be identified as U(sl q (2,C). (orig.)

  4. Explosive Technology Group

    Data.gov (United States)

    Federal Laboratory Consortium — The Explosive Technology Group (ETG) provides diverse technical expertise and an agile, integrated approach to solve complex challenges for all classes of energetic...

  5. Study Groups in Denmark

    DEFF Research Database (Denmark)

    Hjorth, Poul G.

    2007-01-01

    Since 1998 European Study Groups have been held in Denmark, and Danish companies from LEGO and NOVO to very small high-tech firms have participated. I briefly describe the history, the organisation and the format of the Danish Study Groups, and highlight a few problem solutions.......Since 1998 European Study Groups have been held in Denmark, and Danish companies from LEGO and NOVO to very small high-tech firms have participated. I briefly describe the history, the organisation and the format of the Danish Study Groups, and highlight a few problem solutions....

  6. Lie groups for pedestrians

    CERN Document Server

    Lipkin, Harry J

    2002-01-01

    According to the author of this concise, high-level study, physicists often shy away from group theory, perhaps because they are unsure which parts of the subject belong to the physicist and which belong to the mathematician. However, it is possible for physicists to understand and use many techniques which have a group theoretical basis without necessarily understanding all of group theory. This book is designed to familiarize physicists with those techniques. Specifically, the author aims to show how the well-known methods of angular momentum algebra can be extended to treat other Lie group

  7. The normal holonomy group

    International Nuclear Information System (INIS)

    Olmos, C.

    1990-05-01

    The restricted holonomy group of a Riemannian manifold is a compact Lie group and its representation on the tangent space is a product of irreducible representations and a trivial one. Each one of the non-trivial factors is either an orthogonal representation of a connected compact Lie group which acts transitively on the unit sphere or it is the isotropy representation of a single Riemannian symmetric space of rank ≥ 2. We prove that, all these properties are also true for the representation on the normal space of the restricted normal holonomy group of any submanifold of a space of constant curvature. 4 refs

  8. Trajectory grouping structure

    Directory of Open Access Journals (Sweden)

    Maike Buchin

    2015-03-01

    Full Text Available The collective motion of a set of moving entities like people, birds, or other animals, is characterized by groups arising, merging, splitting, and ending. Given the trajectories of these entities, we define and model a structure that captures all of such changes using the Reeb graph, a concept from topology. The trajectory grouping structure has three natural parameters that allow more global views of the data in group size, group duration, and entity inter-distance. We prove complexity bounds on the maximum number of maximal groups that can be present, and give algorithms to compute the grouping structure efficiently. We also study how the trajectory grouping structure can be made robust, that is, how brief interruptions of groups can be disregarded in the global structure, adding a notion of persistence to the structure. Furthermore, we showcase the results of experiments using data generated by the NetLogo flocking model and from the Starkey project. The Starkey data describe the movement of elk, deer, and cattle. Although there is no ground truth for the grouping structure in this data, the experiments show that the trajectory grouping structure is plausible and has the desired effects when changing the essential parameters. Our research provides the first complete study of trajectory group evolvement, including combinatorial,algorithmic, and experimental results.

  9. Magnetic translation groups in an n-dimensional torus and their representations

    International Nuclear Information System (INIS)

    Tanimura, Shogo

    2002-01-01

    A charged particle in a uniform magnetic field in a two-dimensional torus has a discrete noncommutative translation symmetry instead of a continuous commutative translation symmetry. We study topology and symmetry of a particle in a magnetic field in a torus of arbitrary dimensions. The magnetic translation group (MTG) is defined as a group of translations that leave the gauge field invariant. We show that the MTG in an n-dimensional torus is isomorphic to a central extension of a cyclic group Z ν 1 x···xZ ν 2l xT m by U(1) with 2l+m=n. We construct and classify irreducible unitary representations of the MTG in a three-torus and apply the representation theory to three examples. We briefly describe a representation theory for a general n-torus. The MTG in an n-torus can be regarded as a generalization of the so-called noncommutative torus

  10. Computational methods working group

    International Nuclear Information System (INIS)

    Gabriel, T.A.

    1997-09-01

    During the Cold Moderator Workshop several working groups were established including one to discuss calculational methods. The charge for this working group was to identify problems in theory, data, program execution, etc., and to suggest solutions considering both deterministic and stochastic methods including acceleration procedures.

  11. GroupFinder

    DEFF Research Database (Denmark)

    Bøgh, Kenneth Sejdenfaden; Skovsgaard, Anders; Jensen, Christian S.

    2013-01-01

    . Such groups are relevant to users who wish to conveniently explore several options before making a decision such as to purchase a specific product. Specifically, we demonstrate a practical proposal for finding top-k PoI groups in response to a query. We show how problem parameter settings can be mapped...

  12. Toleration, Groups, and Multiculturalism

    DEFF Research Database (Denmark)

    Lægaard, Sune

    2014-01-01

    have the ability to interfere with the group’s activities, an object of dislike or disapproval, an agent enjoying non-interference or a moral patient. This means that 'toleration of groups' can mean quite different things depending on the exact meaning of 'group' in relation to each component...

  13. Group B Strep Infection

    Science.gov (United States)

    ... IV) to kill the germs. If you take antibiotics while you’re in labor, the chances are very good that your baby won’t get this infection. What if my baby has group B strep? If your baby gets group B strep, he or she will be treated with IV antibiotics to kill the bacteria. Your baby will stay ...

  14. Group Process as Drama.

    Science.gov (United States)

    McLeod, John

    1984-01-01

    Suggests that drama, as well as training or therapy, may be employed as a useful research and practice paradigm in working with small groups. The implications of this view for group development as a whole, and for member and leader participation, are explored. (JAC)

  15. Group Work. Research Brief

    Science.gov (United States)

    Walker, Karen

    2010-01-01

    According to Johnson and Johnson, group work helps increase student retention and satisfaction, develops strong oral communication and social skills, as well as higher self-esteem (University of Minnesota, n.d.). Group work, when planned and implemented deliberately and thoughtfully helps students develop cognitive and leadership skills as well as…

  16. Physically detached 'compact groups'

    Science.gov (United States)

    Hernquist, Lars; Katz, Neal; Weinberg, David H.

    1995-01-01

    A small fraction of galaxies appear to reside in dense compact groups, whose inferred crossing times are much shorter than a Hubble time. These short crossing times have led to considerable disagreement among researchers attempting to deduce the dynamical state of these systems. In this paper, we suggest that many of the observed groups are not physically bound but are chance projections of galaxies well separated along the line of sight. Unlike earlier similar proposals, ours does not require that the galaxies in the compact group be members of a more diffuse, but physically bound entity. The probability of physically separated galaxies projecting into an apparent compact group is nonnegligible if most galaxies are distributed in thin filaments. We illustrate this general point with a specific example: a simulation of a cold dark matter universe, in which hydrodynamic effects are included to identify galaxies. The simulated galaxy distribution is filamentary and end-on views of these filaments produce apparent galaxy associations that have sizes and velocity dispersions similar to those of observed compact groups. The frequency of such projections is sufficient, in principle, to explain the observed space density of groups in the Hickson catalog. We discuss the implications of our proposal for the formation and evolution of groups and elliptical galaxies. The proposal can be tested by using redshift-independent distance estimators to measure the line-of-sight spatial extent of nearby compact groups.

  17. Introduction to quantum groups

    International Nuclear Information System (INIS)

    Sudbery, A.

    1996-01-01

    These pedagogical lectures contain some motivation for the study of quantum groups; a definition of ''quasi triangular Hopf algebra'' with explanations of all the concepts required to build it up; descriptions of quantised universal enveloping algebras and the quantum double; and an account of quantised function algebras and the action of quantum groups on quantum spaces. (author)

  18. Beam dynamics group summary

    International Nuclear Information System (INIS)

    Peggs, S.

    1994-01-01

    This paper summarizes the activities of the beam dynamics working group of the LHC Collective Effects Workshop that was held in Montreux in 1994. It reviews the presentations that were made to the group, the discussions that ensued, and the consensuses that evolved

  19. Our Deming Users' Group.

    Science.gov (United States)

    Dinklocker, Christina

    1992-01-01

    After training in the Total Quality Management concept, a suburban Ohio school district created a Deming Users' Group to link agencies, individuals, and ideas. The group has facilitated ongoing school/business collaboration, networking among individuals from diverse school systems, mentoring and cooperative learning activities, and resource…

  20. Asymmetry within social groups

    DEFF Research Database (Denmark)

    Barker, Jessie; Loope, Kevin J.; Reeve, H. Kern

    2016-01-01

    Social animals vary in their ability to compete with group members over shared resources and also vary in their cooperative efforts to produce these resources. Competition among groups can promote within-group cooperation, but many existing models of intergroup cooperation do not explicitly account...... of two roles, with relative competitive efficiency and the number of individuals varying between roles. Players in each role make simultaneous, coevolving decisions. The model predicts that although intergroup competition increases cooperative contributions to group resources by both roles, contributions...... are predominantly from individuals in the less competitively efficient role, whereas individuals in the more competitively efficient role generally gain the larger share of these resources. When asymmetry in relative competitive efficiency is greater, a group's per capita cooperation (averaged across both roles...

  1. Supervision and group dynamics

    DEFF Research Database (Denmark)

    Hansen, Søren; Jensen, Lars Peter

    2004-01-01

     An important aspect of the problem based and project organized study at Aalborg University is the supervision of the project groups. At the basic education (first year) it is stated in the curriculum that part of the supervisors' job is to deal with group dynamics. This is due to the experience...... that many students are having difficulties with practical issues such as collaboration, communication, and project management. Most supervisors either ignore this demand, because they do not find it important or they find it frustrating, because they do not know, how to supervise group dynamics...... as well as at Aalborg University. The first visible result has been participating supervisors telling us that the course has inspired them to try supervising group dynamics in the future. This paper will explore some aspects of supervising group dynamics as well as, how to develop the Aalborg model...

  2. Summary of group discussions

    International Nuclear Information System (INIS)

    2009-01-01

    A key aspect of the workshop was the interaction and exchange of ideas and information among the 40 participants. To facilitate this activity the workshop participants were divided into five discussions groups. These groups reviewed selected subjects and reported back to the main body with summaries of their considerations. Over the 3 days the 5 discussion groups were requested to focus on the following subjects: the characteristics and capabilities of 'good' organisations; how to ensure sufficient resources; how to ensure competence within the organisation; how to demonstrate organisational suitability; the regulatory oversight processes - including their strengths and weaknesses. A list of the related questions that were provided to the discussion groups can be found in Appendix 3. Also included in Appendix 3 are copies of the slides the groups prepared that summarised their considerations

  3. Natural analogue working group

    International Nuclear Information System (INIS)

    Come, B.; Chapman, N.

    1986-01-01

    A Natural Analogue Working Group was established by the Commission of the European Communities in 1985. The purpose of this group is to bring together modellers with earth scientists and others, so that maximum benefit can be obtained from natural analogue studies with a view to safe geological disposal of radioactive waste. The first meeting of this group was held in Brussels from November 5 to 7, 1985. The discussions mainly concerned the identification of the modellers' needs and of the earth scientists' capacity to provide for them. Following the debates, a written statement was produced by the Group; this document forms the core of the present Report. Notes and outlines of many of the presentations made are grouped in four appendixes. The valuable contribution of all those involved in the meeting is gratefully acknowledged

  4. Ordered groups and topology

    CERN Document Server

    Clay, Adam

    2016-01-01

    This book deals with the connections between topology and ordered groups. It begins with a self-contained introduction to orderable groups and from there explores the interactions between orderability and objects in low-dimensional topology, such as knot theory, braid groups, and 3-manifolds, as well as groups of homeomorphisms and other topological structures. The book also addresses recent applications of orderability in the studies of codimension-one foliations and Heegaard-Floer homology. The use of topological methods in proving algebraic results is another feature of the book. The book was written to serve both as a textbook for graduate students, containing many exercises, and as a reference for researchers in topology, algebra, and dynamical systems. A basic background in group theory and topology is the only prerequisite for the reader.

  5. Group prenatal care.

    Science.gov (United States)

    Mazzoni, Sara E; Carter, Ebony B

    2017-06-01

    Patients participating in group prenatal care gather together with women of similar gestational ages and 2 providers who cofacilitate an educational session after a brief medical assessment. The model was first described in the 1990s by a midwife for low-risk patients and is now practiced by midwives and physicians for both low-risk patients and some high-risk patients, such as those with diabetes. The majority of literature on group prenatal care uses CenteringPregnancy, the most popular model. The first randomized controlled trial of CenteringPregnancy showed that it reduced the risk of preterm birth in low-risk women. However, recent meta-analyses have shown similar rates of preterm birth, low birthweight, and neonatal intensive care unit admission between women participating in group prenatal care and individual prenatal care. There may be subgroups, such as African Americans, who benefit from this type of prenatal care with significantly lower rates of preterm birth. Group prenatal care seems to result in increased patient satisfaction and knowledge and use of postpartum family planning as well as improved weight gain parameters. The literature is inconclusive regarding breast-feeding, stress, depression, and positive health behaviors, although it is theorized that group prenatal care positively affects these outcomes. It is unclear whether group prenatal care results in cost savings, although it may in large-volume practices if each group consists of approximately 8-10 women. Group prenatal care requires a significant paradigm shift. It can be difficult to implement and sustain. More randomized trials are needed to ascertain the true benefits of the model, best practices for implementation, and subgroups who may benefit most from this innovative way to provide prenatal care. In short, group prenatal care is an innovative and promising model with comparable pregnancy outcomes to individual prenatal care in the general population and improved outcomes in some

  6. Critical groups - basic concepts

    International Nuclear Information System (INIS)

    Carter, M.W.

    1992-01-01

    The potential exposure pathways from the land application site to man are presented. It is emphasised that the critical group is not necessary the population group closest to the source. It could be the group impact by the most significant pathways(s). Only by assessing the importance of each of these pathways and then combining them can a proper choice of critical group be made. It would be wrong to select a critical group on the basis that it seems the most probable one, before the pathways have been properly assessed. A calculation in Carter (1983) suggested that for the operating mine site, the annual doses to an Aboriginal person, a service worker and a local housewife, were all about the same and were in the range 0.1 to 0.2 mSv per year. Thus it may be that for the land application area, the critical group turns out to be non-Aboriginal rather than the expected Aboriginal group. 6 refs., 3 figs

  7. Groups - Modular Mathematics Series

    CERN Document Server

    Jordan, David

    1994-01-01

    This text provides an introduction to group theory with an emphasis on clear examples. The authors present groups as naturally occurring structures arising from symmetry in geometrical figures and other mathematical objects. Written in a 'user-friendly' style, where new ideas are always motivated before being fully introduced, the text will help readers to gain confidence and skill in handling group theory notation before progressing on to applying it in complex situations. An ideal companion to any first or second year course on the topic.

  8. Introduction to quantum groups

    CERN Document Server

    Chaichian, Masud

    1996-01-01

    In the past decade there has been an extemely rapid growth in the interest and development of quantum group theory.This book provides students and researchers with a practical introduction to the principal ideas of quantum groups theory and its applications to quantum mechanical and modern field theory problems. It begins with a review of, and introduction to, the mathematical aspects of quantum deformation of classical groups, Lie algebras and related objects (algebras of functions on spaces, differential and integral calculi). In the subsequent chapters the richness of mathematical structure

  9. Group key management

    Energy Technology Data Exchange (ETDEWEB)

    Dunigan, T.; Cao, C.

    1997-08-01

    This report describes an architecture and implementation for doing group key management over a data communications network. The architecture describes a protocol for establishing a shared encryption key among an authenticated and authorized collection of network entities. Group access requires one or more authorization certificates. The implementation includes a simple public key and certificate infrastructure. Multicast is used for some of the key management messages. An application programming interface multiplexes key management and user application messages. An implementation using the new IP security protocols is postulated. The architecture is compared with other group key management proposals, and the performance and the limitations of the implementation are described.

  10. Group therapy for adolescents

    Directory of Open Access Journals (Sweden)

    Nada Hribar

    2001-03-01

    Full Text Available The group included adolescents from secondary school and some students. The group had weekly sessions or twice on mounth. The adolescents had varied simptoms: depressive, anxiety, psychosomatic disorders, learning difficulties, cunduct problems. All of adolescents were common on many problems in social interactions. The goal of therapeutic work were: to increase assertiveness skills and to reduce the anxious in social situations. The adolescents in group raised a self-esteem and developed some assertiveness skills: eye contact" and effective communication skills, persistence, refusing and requesting, giving and receiving critism, etc. The methods of work and techniques were based on principles of cognitive-behaviour therapy.

  11. Matrix groups for undergraduates

    CERN Document Server

    Tapp, Kristopher

    2005-01-01

    Matrix groups touch an enormous spectrum of the mathematical arena. This textbook brings them into the undergraduate curriculum. It makes an excellent one-semester course for students familiar with linear and abstract algebra and prepares them for a graduate course on Lie groups. Matrix Groups for Undergraduates is concrete and example-driven, with geometric motivation and rigorous proofs. The story begins and ends with the rotations of a globe. In between, the author combines rigor and intuition to describe basic objects of Lie theory: Lie algebras, matrix exponentiation, Lie brackets, and maximal tori.

  12. A Comparison of Conflicts of Laws on Inter - regional Inheritance in China -A Unitary System or A Scission System%我国区际继承法律适用之比较——同一制抑或区别制

    Institute of Scientific and Technical Information of China (English)

    梅傲

    2012-01-01

    我国区际继承法律制度存在诸多差异,在法律适用方面亦然,其中最主要的冲突是关于同一制和区别制的采用,这为解决我国区际继承纠纷带来了障碍。通过比较四个法域有关继承法律适用的规定,为协调我国区际继承法律冲突,四地应签订协议,对于区际继承法律适用采取同一制。%Application of law is one of the conflicts as to China' s interregional inheritance laws. The major difference lies in whether to adopt the unitary system or the scission system, which is a barrier to solve interregional inheritance disputes in China. Based on comparison of conflicts in interregional inheritance laws, this paper suggests that the four jurisdictions should conclude an agreement and adopt the unitary system so as to coordinate and solve the conflicts of inter-regional inheritance law.

  13. UnitedHealth Group

    Science.gov (United States)

    UnitedHealth Group provides accessible and affordable services, improved quality of care, coordinated health care efforts, and a supportive environment for shared decision making between patients and their physicians.

  14. Homogeneous group, research, institution

    Directory of Open Access Journals (Sweden)

    Francesca Natascia Vasta

    2014-09-01

    Full Text Available The work outlines the complex connection among empiric research, therapeutic programs and host institution. It is considered the current research state in Italy. Italian research field is analyzed and critic data are outlined: lack of results regarding both the therapeutic processes and the effectiveness of eating disorders group analytic treatment. The work investigates on an eating disorders homogeneous group, led into an eating disorder outpatient service. First we present the methodological steps the research is based on including the strong connection among theory and clinical tools. Secondly clinical tools are described and the results commented. Finally, our results suggest the necessity of validating some more specifical hypothesis: verifying the relationship between clinical improvement (sense of exclusion and painful emotions reduction and specific group therapeutic processes; verifying the relationship between depressive feelings, relapses and transition trough a more differentiated groupal field.Keywords: Homogeneous group; Eating disorders; Institutional field; Therapeutic outcome

  15. Color transparency study group

    International Nuclear Information System (INIS)

    Appel, J.A.; Pordes, S.; Botts, J.; Bunce, G.; Farrar, G.

    1990-01-01

    The group studied the relatively new notion of color transparency, discussed present experimental evidence for the effect, and explored several ideas for future experiments. This write-up summarizes these discussions. 11 refs., 1 fig

  16. Generalized quantum groups

    International Nuclear Information System (INIS)

    Leivo, H.P.

    1992-01-01

    The algebraic approach to quantum groups is generalized to include what may be called an anyonic symmetry, reflecting the appearance of phases more general than ±1 under transposition. (author). 6 refs

  17. Groups – Additive Notation

    Directory of Open Access Journals (Sweden)

    Coghetto Roland

    2015-06-01

    Full Text Available We translate the articles covering group theory already available in the Mizar Mathematical Library from multiplicative into additive notation. We adapt the works of Wojciech A. Trybulec [41, 42, 43] and Artur Korniłowicz [25].

  18. Groups – Additive Notation

    OpenAIRE

    Coghetto Roland

    2015-01-01

    We translate the articles covering group theory already available in the Mizar Mathematical Library from multiplicative into additive notation. We adapt the works of Wojciech A. Trybulec [41, 42, 43] and Artur Korniłowicz [25].

  19. Creativity and group innovation

    NARCIS (Netherlands)

    Nijstad, B.A.; de Dreu, C.K.W.

    2002-01-01

    Comments on M. West's article regarding the validity of an integrative model of creativity and innovation implementation in work groups. Variables affecting the level of team innovation; Relationship between predictors and team innovation; Promotion of constructive conflict.

  20. Truck shovel users group

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, J. [Surface Mining Association for Research and Technology, AB (Canada)

    2008-07-01

    The Truck Shovel Users Group (TSUG) was developed as part of the Surface Mining Association for Research and Technology (SMART), an association of companies that meet to coordinate technology developments for the mining industry. The TSUG meet regularly to discuss equipment upgrades, maintenance planning systems, and repair techniques. The group strives to maximize the value of its assets through increased safety, equipment performance and productivity. This presentation provided administrative details about the TSUG including contact details and admission costs. It was concluded that members of the group must be employed by companies that use heavy mining equipment, and must also be willing to host meetings, make presentations, and support the common goals of the group. tabs., figs.

  1. The theory of groups

    CERN Document Server

    Hall, Marshall

    2018-01-01

    This 1959 text offers an unsurpassed resource for learning and reviewing the basics of a fundamental and ever-expanding area. "This remarkable book undoubtedly will become a standard text on group theory." - American Scientist.

  2. Radiation Protection Group

    CERN Document Server

    2006-01-01

    The Radioactive Waste Section of the Radiation Protection Group wishes to inform you that the Radioactive Waste Treatment Centre will be closed on the afternoon of Tuesday 19 December 2006. Thank-you for your understanding.

  3. The Military Cooperation Group

    National Research Council Canada - National Science Library

    Renzi, Jr, Alfred E

    2006-01-01

    .... This thesis will describe a structure to assist with both those needs. The premise is that an expanded and improved network of US Military Groups is the weapon of choice for the war on terror, and beyond...

  4. Symmetric group: Algebraic formulas for some S/sub f/ 6j symbols and S/sub f/containsS/sub f/1 x S/sub f/2 3jm symbols

    International Nuclear Information System (INIS)

    Haase, R.W.; Dirl, R.

    1986-01-01

    Explicit rank-dependent expressions have been obtained for some symmetric group (S/sub f/) 6j symbols and some S/sub f/containsS/sub f/ 1 x S/sub f/ 2 3jm symbols using Butler's recursion method. A key point in deriving these results is the use of the reduced notation introduced by Murnaghan to label irreps. Various symmetries of the 6j and 3jm symbols have been imposed. These include the complex conjugation, permutation, and transpose conjugation. We incorporate a new symmetry that arises from the occurrence of the two isomorphic direct product groups S/sub f/ 1 x S/sub f/ 2 and S/sub f/ 2 x S/sub f/ 1 as subgroups of S/sub f/. In relation to the tables of 6j and 3jm symbols presented, a discussion is given of the symmetric group-unitary group duality

  5. Introduction to group theory

    Directory of Open Access Journals (Sweden)

    Canals B.

    2012-03-01

    Full Text Available This chapter is a concise mathematical introduction into the algebra of groups. It is build up in the way that definitions are followed by propositions and proofs. The concepts and the terminology introduced here will serve as a basis for the following chapters that deal with group theory in the stricter sense and its application to problems in physics. The mathematical prerequisites are at the bachelor level.1

  6. Groups, rings, modules

    CERN Document Server

    Auslander, Maurice

    2014-01-01

    This classic monograph is geared toward advanced undergraduates and graduate students. The treatment presupposes some familiarity with sets, groups, rings, and vector spaces. The four-part approach begins with examinations of sets and maps, monoids and groups, categories, and rings. The second part explores unique factorization domains, general module theory, semisimple rings and modules, and Artinian rings. Part three's topics include localization and tensor products, principal ideal domains, and applications of fundamental theorem. The fourth and final part covers algebraic field extensions

  7. Focus Group Guide

    Science.gov (United States)

    2017-07-01

    home for the arrival of school- aged children. TIP: Do not conduct focus groups in a command conference room in the command group area. Doing so...organizational effectiveness and equal opportunity/equal employment opportunity/fair treatment and sexual assault and response factors (which are listed on the... Sexual Harassment (C) Sex Harassment Retaliation (D) Discrimination - Sex (E) Discrimination - Race (F) Discrimination - Disability (G

  8. Choice Shifts in Groups

    OpenAIRE

    Kfir Eliaz; Debraj Ray

    2004-01-01

    The phenomenon of "choice shifts" in group decision-making is fairly ubiquitous in the social psychology literature. Faced with a choice between a ``safe" and ``risky" decision, group members appear to move to one extreme or the other, relative to the choices each member might have made on her own. Both risky and cautious shifts have been identified in different situations. This paper demonstrates that from an individual decision-making perspective, choice shifts may be viewed as a systematic...

  9. Group Capability Model

    Science.gov (United States)

    Olejarski, Michael; Appleton, Amy; Deltorchio, Stephen

    2009-01-01

    The Group Capability Model (GCM) is a software tool that allows an organization, from first line management to senior executive, to monitor and track the health (capability) of various groups in performing their contractual obligations. GCM calculates a Group Capability Index (GCI) by comparing actual head counts, certifications, and/or skills within a group. The model can also be used to simulate the effects of employee usage, training, and attrition on the GCI. A universal tool and common method was required due to the high risk of losing skills necessary to complete the Space Shuttle Program and meet the needs of the Constellation Program. During this transition from one space vehicle to another, the uncertainty among the critical skilled workforce is high and attrition has the potential to be unmanageable. GCM allows managers to establish requirements for their group in the form of head counts, certification requirements, or skills requirements. GCM then calculates a Group Capability Index (GCI), where a score of 1 indicates that the group is at the appropriate level; anything less than 1 indicates a potential for improvement. This shows the health of a group, both currently and over time. GCM accepts as input head count, certification needs, critical needs, competency needs, and competency critical needs. In addition, team members are categorized by years of experience, percentage of contribution, ex-members and their skills, availability, function, and in-work requirements. Outputs are several reports, including actual vs. required head count, actual vs. required certificates, CGI change over time (by month), and more. The program stores historical data for summary and historical reporting, which is done via an Excel spreadsheet that is color-coded to show health statistics at a glance. GCM has provided the Shuttle Ground Processing team with a quantifiable, repeatable approach to assessing and managing the skills in their organization. They now have a common

  10. Parton Distributions Working Group

    International Nuclear Information System (INIS)

    Barbaro, L. de; Keller, S. A.; Kuhlmann, S.; Schellman, H.; Tung, W.-K.

    2000-01-01

    This report summarizes the activities of the Parton Distributions Working Group of the QCD and Weak Boson Physics workshop held in preparation for Run II at the Fermilab Tevatron. The main focus of this working group was to investigate the different issues associated with the development of quantitative tools to estimate parton distribution functions uncertainties. In the conclusion, the authors introduce a Manifesto that describes an optimal method for reporting data

  11. Renormalization Group Theory

    International Nuclear Information System (INIS)

    Stephens, C. R.

    2006-01-01

    In this article I give a brief account of the development of research in the Renormalization Group in Mexico, paying particular attention to novel conceptual and technical developments associated with the tool itself, rather than applications of standard Renormalization Group techniques. Some highlights include the development of new methods for understanding and analysing two extreme regimes of great interest in quantum field theory -- the ''high temperature'' regime and the Regge regime

  12. Independents' group posts loss

    International Nuclear Information System (INIS)

    Sanders, V.; Price, R.B.

    1992-01-01

    Low oil gas prices and special charges caused the group of 50 U.S. independent producers Oil and Gas Journal tracks to post a combined loss in first half 1992. The group logged a net loss of $53 million in the first half compared with net earnings of $354 million in first half 1991, when higher oil prices during the Persian Gulf crisis buoyed earnings in spite of crude oil and natural gas production declines. The combined loss in the first half follows a 45% drop in the group's earnings in 1991 and compares with the OGJ group of integrated oil companies whose first half 1992 income fell 47% from the prior year. Special charges, generally related to asset writedowns, accounted for most of the almost $560 million in losses posted by about the third of the group. Nerco Oil and Gas Inc., Vancouver, Wash., alone accounted for almost half that total with charges related to an asset writedown of $238 million in the first quarter. Despite the poor first half performance, the outlook is bright for sharply improved group earnings in the second half, assuming reasonably healthy oil and gas prices and increased production resulting from acquisitions and in response to those prices

  13. Assessment of Group Preferences and Group Uncertainty for Decision Making

    Science.gov (United States)

    1976-06-01

    the individ- uals. decision making , group judgments should be preferred to individual judgments if obtaining group judgments costs more. -26- -YI IV... decision making group . IV. A. 3. Aggregation using conjugate distribution. Arvther procedure for combining indivi(jai probability judgments into a group...statisticized group group decision making group judgment subjective probability Delphi method expected utility nominal group 20. ABSTRACT (Continue on

  14. Cyclic Soft Groups and Their Applications on Groups

    Directory of Open Access Journals (Sweden)

    Hacı Aktaş

    2014-01-01

    Full Text Available In crisp environment the notions of order of group and cyclic group are well known due to many applications. In this paper, we introduce order of the soft groups, power of the soft sets, power of the soft groups, and cyclic soft group on a group. We also investigate the relationship between cyclic soft groups and classical groups.

  15. Connection-based and object-based grouping in multiple-object tracking: A developmental study.

    Science.gov (United States)

    Van der Hallen, Ruth; Reusens, Julie; Evers, Kris; de-Wit, Lee; Wagemans, Johan

    2018-03-30

    Developmental research on Gestalt laws has previously revealed that, even as young as infancy, we are bound to group visual elements into unitary structures in accordance with a variety of organizational principles. Here, we focus on the developmental trajectory of both connection-based and object-based grouping, and investigate their impact on object formation in participants, aged 9-21 years old (N = 113), using a multiple-object tracking paradigm. Results reveal a main effect of both age and grouping type, indicating that 9- to 21-year-olds are sensitive to both connection-based and object-based grouping interference, and tracking ability increases with age. In addition to its importance for typical development, these results provide an informative baseline to understand clinical aberrations in this regard. Statement of contribution What is already known on this subject? The origin of the Gestalt principles is still an ongoing debate: Are they innate, learned over time, or both? Developmental research has revealed how each Gestalt principle has its own trajectory and unique relationship to visual experience. Both connectedness and object-based grouping play an important role in object formation during childhood. What does this study add? The study identifies how sensitivity to connectedness and object-based grouping evolves in individuals, aged 9-21 years old. Using multiple-object tracking, results reveal that the ability to track multiple objects increases with age. These results provide an informative baseline to understand clinical aberrations in different types of grouping. © 2018 The Authors. British Journal of Developmental Psychology published by John Wiley & Sons Ltd on behalf of British Psychological Society.

  16. Coordinating Group report

    International Nuclear Information System (INIS)

    1994-01-01

    In December 1992, western governors and four federal agencies established a Federal Advisory Committee to Develop On-site Innovative Technologies for Environmental Restoration and Waste Management (the DOIT Committee). The purpose of the Committee is to advise the federal government on ways to improve waste cleanup technology development and the cleanup of federal sites in the West. The Committee directed in January 1993 that information be collected from a wide range of potential stakeholders and that innovative technology candidate projects be identified, organized, set in motion, and evaluated to test new partnerships, regulatory approaches, and technologies which will lead to improve site cleanup. Five working groups were organized, one to develop broad project selection and evaluation criteria and four to focus on specific contaminant problems. A Coordinating Group comprised of working group spokesmen and federal and state representatives, was set up to plan and organize the routine functioning of these working groups. The working groups were charged with defining particular contaminant problems; identifying shortcomings in technology development, stakeholder involvement, regulatory review, and commercialization which impede the resolution of these problems; and identifying candidate sites or technologies which could serve as regional innovative demonstration projects to test new approaches to overcome the shortcomings. This report from the Coordinating Group to the DOIT Committee highlights the key findings and opportunities uncovered by these fact-finding working groups. It provides a basis from which recommendations from the DOIT Committee to the federal government can be made. It also includes observations from two public roundtables, one on commercialization and another on regulatory and institutional barriers impeding technology development and cleanup

  17. Linear algebraic groups

    CERN Document Server

    Springer, T A

    1998-01-01

    "[The first] ten chapters...are an efficient, accessible, and self-contained introduction to affine algebraic groups over an algebraically closed field. The author includes exercises and the book is certainly usable by graduate students as a text or for self-study...the author [has a] student-friendly style… [The following] seven chapters... would also be a good introduction to rationality issues for algebraic groups. A number of results from the literature…appear for the first time in a text." –Mathematical Reviews (Review of the Second Edition) "This book is a completely new version of the first edition. The aim of the old book was to present the theory of linear algebraic groups over an algebraically closed field. Reading that book, many people entered the research field of linear algebraic groups. The present book has a wider scope. Its aim is to treat the theory of linear algebraic groups over arbitrary fields. Again, the author keeps the treatment of prerequisites self-contained. The material of t...

  18. Summary report: injection group

    International Nuclear Information System (INIS)

    Simpson, J.; Ankenbrandt, C.; Brown, B.

    1984-01-01

    The injector group attempted to define and address several problem areas related to the SSC injector as defined in the Reference Design Study (RDS). It also considered the topic of machine utilization, particularly the question of test beam requirements. Details of the work are given in individually contributed papers, but the general concerns and consensus of the group are presented within this note. The group recognized that the injector as outlined in the RDS was developed primarily for costing estimates. As such, it was not necessarily well optimized from the standpoint of insuring the required beam properties for the SSC. On the other hand, considering the extraordinary short time in which the RDS was prepared, it is an impressive document and a good basis from which to work. Because the documented SSC performance goals are ambitious, the group sought an injector solution which would more likely guarantee that SSC performance not be limited by its injectors. As will be seen, this leads to a somewhat different solution than that described in the RDS. Furthermore, it is the consensus of the group that the new, conservative approach represents only a modest cost increase of the overall project well worth the confidence gained and the risks avoided

  19. Matrix groups for undergraduates

    CERN Document Server

    Tapp, Kristopher

    2016-01-01

    Matrix groups touch an enormous spectrum of the mathematical arena. This textbook brings them into the undergraduate curriculum. It makes an excellent one-semester course for students familiar with linear and abstract algebra and prepares them for a graduate course on Lie groups. Matrix Groups for Undergraduates is concrete and example-driven, with geometric motivation and rigorous proofs. The story begins and ends with the rotations of a globe. In between, the author combines rigor and intuition to describe the basic objects of Lie theory: Lie algebras, matrix exponentiation, Lie brackets, maximal tori, homogeneous spaces, and roots. This second edition includes two new chapters that allow for an easier transition to the general theory of Lie groups. From reviews of the First Edition: This book could be used as an excellent textbook for a one semester course at university and it will prepare students for a graduate course on Lie groups, Lie algebras, etc. … The book combines an intuitive style of writing w...

  20. Frailty Across Age Groups.

    Science.gov (United States)

    Pérez-Zepeda, M U; Ávila-Funes, J A; Gutiérrez-Robledo, L M; García-Peña, C

    2016-01-01

    The implementation of an aging biomarker into clinical practice is under debate. The Frailty Index is a model of deficit accumulation and has shown to accurately capture frailty in older adults, thus bridging biological with clinical practice. To describe the association of socio-demographic characteristics and the Frailty Index in different age groups (from 20 to over one hundred years) in a representative sample of Mexican subjects. Cross-sectional analysis. Nationwide and population-representative survey. Adults 20-years and older interviewed during the last Mexican National Health and Nutrition Survey (2012). A 30-item Frailty Index following standard construction was developed. Multi-level regression models were performed to test the associations of the Frailty Index with multiple socio-demographic characteristics across age groups. A total of 29,504 subjects was analyzed. The 30-item Frailty Index showed the highest scores in the older age groups, especially in women. No sociodemographic variable was associated with the Frailty Index in all the studied age groups. However, employment, economic income, and smoking status were more consistently found across age groups. To our knowledge, this is the first report describing the Frailty Index in a representative large sample of a Latin American country. Increasing age and gender were closely associated with a higher score.