WorldWideScience

Sample records for unit telescope antu

  1. VLT Unit Telescopes Named at Paranal Inauguration

    Science.gov (United States)

    1999-03-01

    General, speeches were delivered by the President of the ESO Council and the President of Chile. The speakers praised the great achievement of bringing the very complex, high-technology VLT project this far so successfully and also the wonderful new opportunities for front-line research with this new facility. This would not have been possible without excellent cooperation between the many parties to this project, individuals as well as research institutes, companies and governments, all working towards a common goal. The ceremony was concluded with a discourse on "Understanding the Universe" by Physics Nobel Prize winner, Professor Carlo Rubbia, former Director of CERN. At the end of the day, the President of the ESO Council, the ESO Director General and the Heads of Delegations had the opportunity to witness an observing session with the UT1 from the VLT Control Room. The 300 other guests followed this event via internal video broadcast. Mapuche names for the Unit Telescopes It had long been ESO's intention to provide "real" names to the four VLT Unit Telescopes, to replace the current, somewhat dry and technical designations as UT1 to UT4. Four meaningful names of objects in the sky in the Mapuche language were chosen. This indigeneous people lives mostly in the area south of Santiago de Chile. An essay contest was arranged in this connection among schoolchildren of the Chilean II Region of which Antofagasta is the capital to write about the implications of these names. It drew many excellent entries dealing with the rich cultural heritage of ESO's host country. The jury was unanimous in its choice of the winning essay. This was submitted by 17-year old Jorssy Albanez Castilla from Chuquicamata near the city of Calama. She received the prize, an amateur telescope, during the Paranal Inauguration. Henceforth, the four Unit Telescopes will be known as ANTU (UT1; pronounced an-too ; The Sun), KUEYEN (UT2; qua-yen , like in "quake"; The Moon), MELIPAL (UT3; me-li-pal ; The

  2. Two VLT 8.2-m Unit Telescopes in Action

    Science.gov (United States)

    1999-04-01

    Visitors at ANTU - Astronomical Images from KUEYEN The VLT Control Room at the Paranal Observatory is becoming a busy place indeed. From here, two specialist teams of ESO astronomers and engineers now operate two VLT 8.2-m Unit Telescopes in parallel, ANTU and KUEYEN (formerly UT1 and UT2, for more information about the naming and the pronunciation, see ESO Press Release 06/99 ). Regular science observations have just started with the first of these giant telescopes, while impressive astronomical images are being obtained with the second. The work is hard, but the mood in the control room is good. Insiders claim that there have even been occasions on which the groups have had a friendly "competition" about which telescope makes the "best" images! The ANTU-team has worked with the FORS multi-mode instrument , their colleagues at KUEYEN use the VLT Test Camera for the ongoing tests of this new telescope. While the first is a highly developed astronomical instrument with a large-field CCD imager (6.8 x 6.8 arcmin 2 in the normal mode; 3.4 x 3.4 arcmin 2 in the high-resolution mode), the other is a less complex CCD camera with a smaller field (1.5 x 1.5 arcmin 2 ), suited to verify the optical performance of the telescope. As these images demonstrate, the performance of the second VLT Unit Telescope is steadily improving and it may not be too long before its optical quality will approach that of the first. First KUEYEN photos of stars and galaxies We present here some of the first astronomical images, taken with the second telescope, KUEYEN, in late March and early April 1999. They reflect the current status of the optical, electronic and mechanical systems, still in the process of being tuned. As expected, the experience gained from ANTU last year has turned out to be invaluable and has allowed good progress during this extremely delicate process. ESO PR Photo 19a/99 ESO PR Photo 19a/99 [Preview - JPEG: 400 x 433 pix - 160k] [Normal - JPEG: 800 x 866 pix - 457k] [High

  3. The Cepheid distance to NGC 5236 (M83) with the ESO Very Large Telescope

    NARCIS (Netherlands)

    Thim, F; Tammann, GA; Saha, A; Dolphin, A; Sandage, A; Tolstoy, E; Labhardt, L

    2003-01-01

    Cepheids have been observed in NGC 5236 (M83) using the Antu (Unit Telescope 1) 8.2 m telescope of the ESO Very Large Telescope with the Focal Reducer/Low Dispersion Spectrograph 1. Repeated imaging observations have been made between 2000 January and 2001 July. Images were obtained in 34 epochs in

  4. The optical detection unit for Baikal-GVD neutrino telescope

    Directory of Open Access Journals (Sweden)

    Avrorin A.D.

    2016-01-01

    Full Text Available The first stage of the GVD-cluster composed of five strings was deployed in April 2014. Each string consists of two sections with 12 optical modules per section. A section is the basic detection unit of the Baikal neutrino telescope. We will describe the section design, review its basic elements – optical modules, FADC readout units, slow control and calibration systems, and present selected results for section in-situ tests in Lake Baikal.

  5. A 200-GHz telescope unit for the QUIJOTE CMB Experiment

    Science.gov (United States)

    Sanquirce, Rubén.; Etxeita, Borja; Murga, Gaizka; Fernandez, Esther; Sainz, Iñaki; Sánchez, Vicente; Viera-Curbelo, Teodora A.; Gómez, María. F.; Aguiar-Gonzalez, Marta; Hoyland, Roger J.; Pérez de Taoro, Ángeles R.; Vega, Afrodisio; Rebolo-López, Rafael; Rubiño, Jose Alberto

    2014-07-01

    Experiment QUIJOTE (Q-U-I JOint TEnerife) is a scientific collaboration, leaded by the Instituto de Astrofísica de Canarias (IAC), which can measure the polarization of the Cosmic Microwave Background (CMB) in the range of frequency up to 200 GHz, at angular scales of 1°. The project is composed of 2 telescopes and 3 instruments, located in Teide Observatory (Tenerife, Spain). After the successful delivery of the first telescope (operative since 2012), Idom is currently involved on the turn key supply of the second telescope (phase II). The work started in June 2013 and it will be completed in a challenging period of 12 months (operative at the beginning of July 2014), including design, factory assembly and testing, transport and final commissioning on site. This second unit will improve the opto-mechanical performance and maintainability. The telescope will have an unlimited rotation capacity in azimuth axis and a range of movement between 25°-95° in elevation axis. An integrated rotary joint will transmit fluid, power and signal to the rotary elements. The pointing and tracking accuracy will be significantly below to specification: 1.76 arcmin and 44 arcsec, respectively. This project completes Idoḿs contribution during phase I, which also comprises the integration and functional tests for the 5 polarimeters of the first instrument in Bilbao headquarters, and the design and supervision of the building which protects both telescopes, including the installation and commissioning of the mechanism for shutters aperture.

  6. A new Cassegrain calibration lamp unit for the Blanco Telescope

    Science.gov (United States)

    Points, S. D.; James, D. J.; Tighe, R.; Montané, A.; David, N.; Martínez, M.

    2016-08-01

    The f/8 RC-Cassegrain Focus of the Blanco Telescope at Cerro Tololo Inter-American Observatory, hosts two new instruments: COSMOS, a multi-object spectrograph in the visible wavelength range (350 - 1030nm), and ARCoIRIS, a NIR cross-dispersed spectrograph featuring 6 spectral orders spanning 0.8 - 2.45μm. Here we describe a calibration lamp unit designed to deliver the required illumination at the telescope focal plane for both instruments. These requirements are: (1) an f/8 beam of light covering a spot of 92mm diameter (or 10 arcmin) for a wavelength range of 0.35μm through 2.5μm and (2) no saturation of flat-field calibrations for the minimal exposure times permitted by each instrument, and (3) few saturated spectral lines when using the wavelength calibration lamps for the instruments. To meet these requirements this unit contains an adjustable quartz halogen lamp for flat-field calibrations, and one hollow cathode lamp and four penray lamps for wavelength calibrations. The wavelength calibration lamps are selected to provide optimal spectral coverage for the instrument mounted and can be used individually or in sets. The device designed is based on an 8-inch diameter integrating sphere, the output of which is optimized to match the f/8 calibration input delivery system which is a refractive system based on fused-silica lenses. We describe the optical design, the opto-mechanical design, the electronic control and give results of the performance of the system.

  7. 安图县旅游业规划策略研究%The Study of Tourism Planning Strategy in Antu County

    Institute of Scientific and Technical Information of China (English)

    许鹏; 韩聪; 王红春; 吴向向

    2015-01-01

    Tourism in Antu County has become the pillar industry. But Autu County is a small-medium city, its tourism planning consciousness was weak for a long time. It has rarely mentioned planning in their master planning and leads to a weakened effect of tourism on the economy. In this paper, through describing the relationship between Antu County tourism planning and the master planning, it draws up the tourism planning strategy in Antu County. It provides an important reference for tourism planning design and master planning design of Antu County and other small-medium tourist cities.%安图县的旅游产业已经成为其支柱型产业,但作为中小城市的安图县长期以来对于旅游业规划意识淡薄,在城市总体规划中鲜有提及,严重弱化了旅游业对于经济的推动作用。文章通过阐述安图县旅游业规划与总体规划之间的关系,制定了安图县旅游业规划策略,对安图县的总体规划设计、旅游业规划设计具有参考价值。

  8. VLT 8.2-m Unit Telescope no. 1 (as on September 7, 1995)

    Science.gov (United States)

    1995-09-01

    ESO Press Photos 28-30/95; 13 September 1995 The construction of the ESO Very Large Telescope (VLT) advances rapidly, both in Europe and in Chile. These three photos show some of the main mechanical parts of the first 8.2-metre telescope, as they presented themselves in Milan (Italy) on Thursday, September 7, 1995. Two versions of these photos, one smaller and one larger and with better image resolution, are accessible for convenient transfer over the networks. The mechanical structure of VLT Unit Telescope no. 1 is now in the process of being mounted at the Ansaldo Energia premises in Milan (Italy). The so-called main structure (i.e., telescope azimuth and altitude mechanical structure, including hydrostatic bearing system, direct drives and direct mounted encoding system) was designed and is being built by the Italian consortium AES, composed of Ansaldo Energia (Genova), SOIMI (Milan) and EIE (Venice). Already two months from now, in November 1995, the complete, enormous mechanical structures of this telescope will be moving on the azimuth hydrostatic bearing tracks, using the direct drive system designed and built by the PHASE Company (Genova, Italy). The thorough testing phase will start by the end of December 1995 or at the beginning of January 1996. ESO Press Photo 28/95 [54K] [248K] shows the lower part of the azimuth structure of the telescope (the fork) on the concrete pier on which the azimuth tracks (hydrostatic bearing journal) are mounted. The very high accuracy of this enormous structure (compare with the persons in the photo!) is illustrated by the fact that the "run-out" of the azimuth axis of the fork has been measured as only 80 microns (0.08 millimetres) on 90 degrees turning angle. This is a remarkable result, especially since the centering of the axis is done on a radial journal with a diameter of no less than 9 metres. When the fork is equipped with all auxiliary systems, it will weigh about 320 t, will be 18 metres long and 8 metres wide. It

  9. United Kingdom Infrared Telescope's Spectrograph Observations of Human-Made Space Objects

    Science.gov (United States)

    Buckalew, Brent; Abercromby, Kira; Lederer, Susan; Frith, James; Cowardin, Heather

    2017-01-01

    Presented here are the results of the United Kingdom Infrared Telescope (UKIRT) spectral observations of human-made space objects taken from 2014 to 2015. The data collected using the UIST infrared spectrograph cover the wavelength range 0.7-2.5 micrometers. Overall, data were collected on 18 different orbiting objects at or near the geosynchronous (GEO) regime. Thirteen of the objects are spacecraft, one is a rocket body, and four are cataloged as debris pieces. The remotely collected data are compared to the laboratory-collected reflectance data on typical spacecraft materials; thereby general materials are identified but not specific types. These results highlight the usefulness of observations in the infrared by focusing on features from hydrocarbons and silicon. The spacecraft show distinct features due to the presence of solar panels. Signature variations between rocket bodies, due to the presence of various metals and paints on their surfaces, show a clear distinction from those objects with solar panels, demonstrating that one can distinguish most spacecraft from rocket bodies through infrared spectrum analysis. Finally, the debris pieces tend to show featureless, dark spectra. These results show that the laboratory data in its current state give excellent indications as to the nature of the surface materials on the objects. Further telescopic data collection and model updates to include more materials, noise, surface roughness, and material degradation are necessary to make better assessments of orbital object material types. A comparison conducted between objects observed previously with the NASA Infrared Telescope Facility (IRTF) shows similar materials and trends from the two telescopes and from the two distinct data sets. However, based on the current state of the model, infrared spectroscopic data are adequate to classify objects in GEO as spacecraft, rocket bodies, or debris.

  10. United Kingdom Infrared Telescope's Spectrograph Observations of Human-Made Space Objects

    Science.gov (United States)

    Buckalew, Brent; Abercromby, Kira; Lederer, Susan; Cowardin, Heather; Frith, James

    2017-01-01

    Presented here are the results of the United Kingdom Infrared Telescope (UKIRT) spectral observations of human-made space objects taken from 2014 to 2015. The data collected using the UKIRT 1-5 micron Imager Spectrometer (UIST) cover the wavelength range 0.7-2.5 micrometers. Overall, data were collected on 18 different orbiting objects at or near geosynchronous orbit (GEO). Two of the objects are controlled spacecraft, twelve are non-controlled spacecraft, one is a rocket body, and three are cataloged as debris. The remotely collected data are compared to the laboratory-collected reflectance data on typical spacecraft materials; thereby general materials are identified but not specific types. These results highlight the usefulness of observations in the infrared by focusing on features from hydrocarbons and silicon. The spacecraft, both the controlled and non-controlled, show distinct features due to the presence of solar panels whereas the rocket bodies do not. Signature variations between rocket bodies, due to the presence of various metals and paints on their surfaces, show a clear distinction from those objects with solar panels, demonstrating that one can distinguish most spacecraft from rocket bodies through infrared spectrum analysis. Finally, the debris pieces tend to show featureless, dark spectra. These results show that the laboratory data in its current state give well-correlated indications as to the nature of the surface materials on the objects. Further telescopic data collection and model updates to include noise, surface roughness, and material degradation are necessary to make better assessments of orbital object material types. A comparison conducted between objects observed previously with the NASA Infrared Telescope Facility (IRTF) shows similar materials and trends from the two telescopes and different times. However, based on the current state of the model, infrared spectroscopic data are adequate to classify objects in GEO as spacecraft

  11. KOALA, a wide-field 1000 element integral-field unit for the Anglo-Australian Telescope: assembly and commissioning

    Science.gov (United States)

    Zhelem, Ross; Brzeski, Jurek; Case, Scott; Churilov, Vladimir; Ellis, Simon; Farrell, Tony; Green, Andrew; Heng, Anthony; Horton, Anthony; Ireland, Michael; Jones, Damien; Klauser, Urs; Lawrence, Jon; Miziarski, Stan; Orr, David; Pai, Naveen; Staszak, Nick; Tims, Julia; Vuong, Minh; Waller, Lew; Xavier, Pascal

    2014-07-01

    The KOALA optical fibre feed for the AAOmega spectrograph has been commissioned at the Anglo-Australian Telescope. The instrument samples the reimaged telescope focal plane at two scales: 1.23 arcsec and 0.70 arcsec per image slicing hexagonal lenslet over a 49x27 and 28x15 arcsec field of view respectively. The integral field unit consists of 2D hexagonal and circular lenslet arrays coupling light into 1000 fibres with 100 micron core diameter. The fibre run is over 35m long connecting the telescope Cassegrain focus with the bench mounted spectrograph room where all fibres are reformatted into a one-dimensional slit. Design and assembly of the KOALA components, engineering challenges encountered, and commissioning results are discussed.

  12. Observations of Lick Standard Stars Using the SCORPIO Multi-Slit Unit at the SAO 6-m Telescope

    CERN Document Server

    Sharina, M E; Puzia, T

    2006-01-01

    We present Lick line-index measurements of standard stars from the list of Worthey. The spectra were taken with the multi-slit unit of the SCORPIO spectrograph at the 6-m Special Astrophysical observatory telescope. We describe in detail our method of analysis and explain the importance of using the Lick index system for studying extragalactic globular clusters. Our results show that the calibration of our instrumental system to the standard Lick system can be performed with high confidence.

  13. Research on the strategies to optimize traditional Korean nationality village residential environment -- Taking the transformation of Chatiao Village in Antu County, Yanbian Korean Nationality Autonomous Prefecture as example

    Science.gov (United States)

    Chaoyang, Sun; Xin, Sui; Mo, Li; Yongqiang, Wang

    2017-04-01

    This research is aimed to make an in-depth research into the strategies and methods to protect and develop the residential environment in the villages and towns with minority group characteristics. In the research on the construction mode and optimization strategy of the residential environment of the original residents in Chatiao Village, Antu County, Korean Nationality Autonomous Prefecture, the contents of architecture and planning were used comprehensively with the philosophy of green design, sociology and economics being combined simultaneously to drive the humanistic and economic development in the minority areas at the same time of providing new employment opportunities and a comfortable residential environment for people, thus realizing the complete development of the characteristic villages in Chinese minority areas.

  14. Information About Low Cloud Amount Recorded in δ 13 C Series of Tree Ring Cellulose of Pinus Koraiensis in Antu Area, Jilin

    Institute of Scientific and Technical Information of China (English)

    徐海; 洪业汤; 朱咏喧; 刘广深

    2003-01-01

    Relationship between the δ 13C of tree ring cellulose from Pinus Koraiensis and climate parameters was investigated. A significantly negative correlation between δ 13C and meanlow-cloud amount from May to July was discovered, which contributes to reconstructing the meanlow-cloud amount from May to July at Antu in recent 200 years. Periodicals of quasi-8-year,quasi-4-year and quasi-2-year were detected both in δ 13 C series and in the reconstructed lowcloud amount series with 95% confidence level. Quasi-8-year period may reflect the integratedinfluence of solar activity, monsoon activity and local regional factors. Quasi-4-year and quasi-2-year periods indicate the influences of ENSO and Quasi Biennial Oscillation (QBO) of EastAsian monsoon, respectively.

  15. Design, fabrication, integration and commissioning of an upgraded guiding probe for the VLT unit telescope 4

    Science.gov (United States)

    Frank, Christoph; Hammersley, Peter; Buzzoni, Bernard; Manescau, Antonio; Arsenault, Robin; Madec, Pierre-Yves; Birkmann, Martin; Mueller, Michael; Salgado, Fernando; Guisard, Stephane; Kroedel, Matthias

    2014-07-01

    As part of the preparation for the arrival of the MUSE instrument to the VLT, it was required to adapt the hosting telescope (UT4) guide probe, to increase its back focal length. This is to allow enough space for the later deployment of the MUSE Adaptive Optics module GALACSI, in-between the telescope adapter rotator and the instrument itself. The UT guide probe is a critical component for the successful operation of the telescope, so its modification to increase the telescope's back focal length, while maintaining full compatibility with the existing operation model and other hardware, was rather demanding. The design, manufacture, assembly and test for the new supporting arm in the UT guiding probe is presented. It mixes the use of novel materials (HB-CESIC® for the mirrors substrates) and state of the art manufacturing techniques (3D printing mould production and rapid casting for the support structure), which allow producing easily a high performance subsystem. Characterization of the system prior delivery to the telescope, its integration in the UT and results after commissioning is presented. Its successful implementation has validated new manufacturing techniques that may prove very useful for future instruments development.

  16. Final acceptance of the 200 GHz telescope unit for the QUIJOTE CMB experiment

    Science.gov (United States)

    Sanquirce-García, R.; Sainz-Pardo, I.; Etxeita-Arriaga, B.; Murga-Llano, Gaizka; Fernandez-Santos, E.; Sánchez-de-la-Rosa, V.; Viera-Curbelo, T. A.; Gómez-Reñasco, F.; Aguiar-González, M.; Pérez de Taoro, M. R.; Rubiño-Martín, J. A.

    2016-07-01

    The QUIJOTE (Q-U-I JOint TEnerife) experiment is a scientific collaboration, led by the Instituto de Astrofísica de Canarias (IAC), with the aim of measuring the polarization of the Cosmic Microwave Background (CMB) in the frequency range 10-40 GHz and at large angular scales (around 1°). The project is composed of 2 telescopes and 3 instruments, located in Teide Observatory (Tenerife, Spain). Idoḿs contribution for this project is divided in two phases. Phase I consisted on the design, assembly and factory testing of the first telescope (2008), the integration and functional tests for the 5 polarimeters of the first instrument (2009), and the design and construction supervision of the building which protects both telescopes (2009), including the installation and commissioning of the mechanism for domes apertures. Phase II comprised the design, factory assembly and testing, transport and final commissioning on site of the second telescope, which finished in January 2015. The optical design of both telescopes should allow them to reach up to 200 GHz. The required opto-mechanical performance was checked under nominal conditions, reaching a pointing and tracking accuracy lower than 5 arcsec in both axes, 8 times better than specified. Particular inspections and tests were carried out for critical systems, as the rotary joint that transmits fluid, power and signal to the rotary elements, or for the safety system to ensure personnel and hardware protection under emergency conditions. This paper contains a comprehensive description of the power electronics and acquisition/control design required for safely operation under nominal and emergency conditions, as well as a detailed description of the factory and observatory tests required for the final acceptance of the telescope

  17. Las élites empresariales y la independencia económica de México. : Estevan de Antuñano o las vicisitudes del fundador de la industria textil moderna (1792-1847)

    OpenAIRE

    2013-01-01

    International audience; This book presents, from the biography of Antuñano Estevan, entrepreneur, founder of the first modern textile factory in Latin America, economic thinking and strategies that were necessary to drive the first phase of industrialization of the Mexico newly created. From a micro-history that rests largely on the analysis of the social networks of the entrepreneur, stresses the interaction of social, economic and political sectors to implement a policy of industrialization...

  18. Ten years maintaining MACAO-VLTI units in operation in the Very Large Telescope at Paranal Observatory

    Science.gov (United States)

    Salgado, F.; Hudepohl, G.

    2016-07-01

    More than 10 years have already passed since the first Multiple Application Curvature Adaptive Optics (MACAO) facilities got the first light in UT2 the 18th of April, 2003, in the Very Large Telescope (VLT) at Paranal Observatory. The achievable image sharpness of a ground-based telescope is normally limited by the effect of atmospheric turbulence. However, with Adaptive Optics (AO) techniques, this major drawback can be overcome so that the telescope produces images that are as sharp as theoretically possible, i.e., as if they were taken from space. [1] The intention of this document is summarize in few pages some highlights related with the activities needed to keep MACAO units in operation. Some statistics of problems based in Action Remedy tool is included, showing how through these years the number of problems has been reduced, even when there are still some unsolved ones. Some lessons have been learned and there are others one to learn. Corrective and predictive maintenance performed are shown too like the current measurements, transfer functions measurements, thermography pictures, health checks measuring interaction matrix and flat vectors to detect dead APDs or short circuits in the DM, etc. Some forced interventions are included as well like the removal of the cabinets from Coude rooms to avoid that acoustic noise and vibrations perturb the operations, the deformable mirrors reached by cooling leaks and a mirror that got rusty are shown too. Well knowledge of the system, good interaction between different disciplines groups to perform corrective and preventive maintenance seems to be key aspects of keeping it under control and operative during all these years leading to this good result.

  19. Athermal laser launch telescopes

    NARCIS (Netherlands)

    Kamphues, F.G.; Henselmans, R.; Rijnveld, N.; Lemmen, M.H.J.; Doelman, N.J.; Nijkerk, M.D.

    2011-01-01

    ESO has developed a concept for a compact laser guide star unit for use in future Adaptive Optics (AO) systems. A small powerful laser is combined with a telescope that launches the beam, creating a single modular unit that can be mounted directly on a large telescope. This approach solves several

  20. Athermal laser launch telescopes

    NARCIS (Netherlands)

    Kamphues, F.G.; Henselmans, R.; Rijnveld, N.; Lemmen, M.H.J.; Doelman, N.J.; Nijkerk, M.D.

    2011-01-01

    ESO has developed a concept for a compact laser guide star unit for use in future Adaptive Optics (AO) systems. A small powerful laser is combined with a telescope that launches the beam, creating a single modular unit that can be mounted directly on a large telescope. This approach solves several o

  1. VLTI First Fringes with Two Auxiliary Telescopes at Paranal

    Science.gov (United States)

    2005-03-01

    ESO Video Newsreel 15, released on March 14, 2005. It provides an introduction to the VLT Interferometer (VLTI) and the two Auxiliary Telescopes (ATs) now installed at Paranal. ESO PR Photo 07a/05 shows the impressive ensemble at the summit of Paranal. From left to right, the enclosure of VLT Antu, Kueyen and Melipal, AT1, the VLT Survey Telescope (VST) in the background, AT2 and VLT Yepun. Located at the summit of the 2,600-m high Cerro Paranal in the Atacama Desert (Chile), ESO's Very Large Telescope (VLT) is at the forefront of astronomical technology and is one of the premier facilities in the world for optical and near-infrared observations. The VLT is composed of four 8.2-m Unit Telescope (Antu, Kueyen, Melipal and Yepun). They have been progressively put into service together with a vast suite of the most advanced astronomical instruments and are operated every night in the year. Contrary to other large astronomical telescopes, the VLT was designed from the beginning with the use of interferometry as a major goal. The href="/instruments/vlti">VLT Interferometer (VLTI) combines starlight captured by two 8.2- VLT Unit Telescopes, dramatically increasing the spatial resolution and showing fine details of a large variety of celestial objects. The VLTI is arguably the world's most advanced optical device of this type. It has already demonstrated its powerful capabilities by addressing several key scientific issues, such as determining the size and the shape of a variety of stars (ESO PR 22/02, PR 14/03 and PR 31/03), measuring distances to stars (ESO PR 25/04), probing the innermost regions of the proto-planetary discs around young stars (ESO PR 27/04) or making the first detection by infrared interferometry of an extragalactic object (ESO PR 17/03). "Little Brothers" ESO PR Photo 07b/05 ESO PR Photo 07b/05 [Preview - JPEG: 597 x 400 pix - 47k] [Normal - JPEG: 1193 x 800 pix - 330k] [HiRes - JPEG: 5000 x 3354 pix - 10.0M] ESO PR Photo 07c/05 ESO PR Photo 07c/05

  2. The MaNGA Integral Field Unit Fiber Feed System for the Sloan 2.5 m Telescope

    CERN Document Server

    Drory, N; Bershady, M A; Bundy, K; Gunn, J; Law, D R; Smith, M; Stoll, R; Tremonti, C A; Wake, D A; Yan, R; Weijmans, A M; Byler, N; Cherinka, B; Cope, F; Eigenbrot, A; Harding, P; Holder, D; Huehnerhoff, J; Jaehnig, K; Jansen, T C; Klaene, M; Paat, A M; Percival, J; Sayres, C

    2014-01-01

    We describe the design, manufacture, and performance of bare-fiber integral field units (IFUs) for the SDSS-IV survey MaNGA (Mapping Nearby Galaxies at APO) on the the Sloan 2.5 m telescope at Apache Point Observatory (APO). MaNGA is a luminosity-selected integral-field spectroscopic survey of 10,000 local galaxies covering 360-1030 nm at R ~ 2200. The IFUs have hexagonal dense packing of fibers with packing regularity of 3 um (RMS), and throughput of 96+/-0.5% from 350 nm to 1 um in the lab. Their sizes range from 19 to 127 fibers (3-7 hexagonal layers) using Polymicro FBP 120:132:150 um core:clad:buffer fibers to reach a fill fraction of 56%. High throughput (and low focal-ratio degradation) is achieved by maintaining the fiber cladding and buffer intact, ensuring excellent surface polish, and applying a multi-layer AR coating of the input and output surfaces. In operations on-sky, the IFUs show only an additional 2.3% FRD-related variability in throughput despite repeated mechanical stressing during plate ...

  3. SparsePak: A Formatted Fiber Field Unit for The WIYN Telescope Bench Spectrograph. I. Design, Construction, and Calibration

    CERN Document Server

    Bershady, M A; Harker, J; Ramsey, L W; Verheijen, M A W

    2004-01-01

    We describe the design and construction of a formatted fiber field-unit, SparsePak, and characterize its optical and astrometric performance. This array is optimized for spectroscopy of low-surface brightness, extended sources in the visible and near-infrared. SparsePak contains 82, 4.7" fibers subtending an area of 72"x71" in the telescope focal plane, and feeds the WIYN Bench spectrograph. Together, these instruments are capable of achieving spectral resolutions of lambda/dlambda ~ 20000 and an area--solid-angle product of ~140 arcsec^2 m^2 per fiber. Laboratory measurements of SparsePak lead to several important conclusions on the design of fiber termination and cable curvature to minimize focal ratio degradation. SparsePak itself has throughput >80% redwards of 5200 A, and 90-92% in the red. Fed at f/6.3, the cable delivers an output 90% encircled energy at nearly f/5.2. This has implications for performance gains if the WIYN Bench Spectrograph had a faster collimator. Our approach to integral-field spect...

  4. Deployable Integral Field Units, Multislits, and Image Slicer for the Goodman Imaging Spectrograph on the SOAR Telescope

    Science.gov (United States)

    Cecil, Gerald N.; Moffett, A. J.; Cui, Y.; Eckert, K. D.; McBride, J.; Kannappan, S.; Keller, K.; Barlow, B. N.; Dunlap, B.; Bland-Hawthorn, J.

    2010-01-01

    The Goodman Imager-Spectrograph on the 4.1m SOAR telescope has operated on Cerro Pachon, Chile with volume-phase holographic gratings in long-slit mode since its commissioning in 2008. Recently, UNC graduate students played key roles to implement robust upgrades for multi-object spectroscopy that will soon be available to US astronomers through the NOAO time share on SOAR: • Multislits over 3x5 arcmin, generated on PCB solder stencils with exceptional sharpness compared to conventional laser cuts, initially to survey globular clusters for pulsating hot sub-dwarfs • An image slicer to obtain 3 simultaneous parallel spectra 70-arcsec long, 1- or 2-arcsec wide, spanning 320-750 nm to map stellar and gaseous emission and mass over the 1500 galaxies in the RESOLVE survey underway on SOAR • Four integral field units, each composed of 5-arcsec diameter, fused bundles of 0.5-arcsec diameter thin-clad optical fiber, independently deployed over a 10x5 arcmin field targeted by an EMCCD also used for Lucky Imaging. Initially will study aperture effects in single fiber surveys, extragalactic globular clusters, and demonstrate technology prior to deployment on larger telescopes • New wheels supporting a large set of existing narrow-band and Sloan filters • A trombone-style atmospheric dispersion compensator that corrects the full 12-arcmin diameter science field down to 30 deg elevation. Working in UNC's Goodman Laboratory for Astronomical Instrumentation, students employed SolidWorks and ZEMAX to design parts for in-house CAM on CNC machines and a 3D printer. All motors are controlled by LabVIEW as is the SOAR TCS. The deployable IFU axes are controlled by Quicksilver Controls Inc. intelligent servos and $80 model robot (Firgelli Corp.) actuators driven by a PIC-microcontroller and a student designed custom PCB. Upgrades and students were supported by $200K from SOAR Corporation, Research Corporation, NSF, and UNC competitive funds, and NC NASA Space Grant, Sigma Xi

  5. Space Telescope.

    Science.gov (United States)

    National Aeronautics and Space Administration, Huntsville, AL. George C. Marshall Space Flight Center.

    This pamphlet describes the Space Telescope, an unmanned multi-purpose telescope observatory planned for launch into orbit by the Space Shuttle in the 1980s. The unique capabilities of this telescope are detailed, the major elements of the telescope are described, and its proposed mission operations are outlined. (CS)

  6. The MaNGA integral field unit fiber feed system for the Sloan 2.5 m telescope

    Energy Technology Data Exchange (ETDEWEB)

    Drory, N. [McDonald Observatory, The University of Texas at Austin, 1 University Station, Austin, TX 78712 (United States); MacDonald, N.; Byler, N. [Department of Astronomy, University of Washington, Box 351580 Seattle, WA 98195 (United States); Bershady, M. A.; Smith, M.; Tremonti, C. A.; Wake, D. A.; Eigenbrot, A.; Jaehnig, K. [Department of Astronomy, University of Wisconsin, 475 N. Charter St., Madison, WI 53706 (United States); Bundy, K. [Kavli Institute for the Physics and Mathematics of The Universe (Kavli IPMU, WPI), Todai Institutes for Advanced Study, The University of Tokyo, Kashiwa, Japan 277-8583 (Japan); Gunn, J. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Law, D. R.; Cherinka, B. [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George St, Toronto, ON M5S 3H4 (Canada); Stoll, R. [C Technologies, Inc., 757 Route 202/206, Bridgewater, NJ 08807 (United States); Yan, R. [Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky, 40506-0055 (United States); Weijmans, A. M. [School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom); Cope, F.; Holder, D.; Huehnerhoff, J. [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349 (United States); Harding, P., E-mail: drory@astro.as.utexas.edu [Department of Astronomy, Case Western Reserve University, Cleveland, OH 44106 (United States); and others

    2015-02-01

    We describe the design, manufacture, and performance of bare-fiber integral field units (IFUs) for the SDSS-IV survey Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) on the the Sloan 2.5 m telescope at Apache Point Observatory. MaNGA is a luminosity-selected integral-field spectroscopic survey of 10{sup 4} local galaxies covering 360–1030 nm at R∼2200. The IFUs have hexagonal dense packing of fibers with packing regularity of 3 μm (rms), and throughput of 96 ± 0.5% from 350 nm to 1 μm in the lab. Their sizes range from 19 to 127 fibers (3–7 hexagonal layers) using Polymicro FBP 120:132:150 μm core:clad:buffer fibers to reach a fill fraction of 56%. High throughput (and low focal-ratio degradation (FRD)) is achieved by maintaining the fiber cladding and buffer intact, ensuring excellent surface polish, and applying a multi-layer anti-reflection (AR) coating of the input and output surfaces. In operations on-sky, the IFUs show only an additional 2.3% FRD-related variability in throughput despite repeated mechanical stressing during plate plugging (however other losses are present). The IFUs achieve on-sky throughput 5% above the single-fiber feeds used in SDSS-III/BOSS, attributable to equivalent performance compared to single fibers and additional gains from the AR coating. The manufacturing process is geared toward mass-production of high-multiplex systems. The low-stress process involves a precision ferrule with a hexagonal inner shape designed to lead inserted fibers to settle in a dense hexagonal pattern. The ferrule ID is tapered at progressively shallower angles toward its tip and the final 2 mm are straight and only a few microns larger than necessary to hold the desired number of fibers. Our IFU manufacturing process scales easily to accommodate other fiber sizes and can produce IFUs with substantially larger fiber counts. To assure quality, automated testing in a simple and inexpensive system enables complete characterization of

  7. The MaNGA Integral Field Unit Fiber Feed System for the Sloan 2.5 m Telescope

    Science.gov (United States)

    Drory, N.; MacDonald, N.; Bershady, M. A.; Bundy, K.; Gunn, J.; Law, D. R.; Smith, M.; Stoll, R.; Tremonti, C. A.; Wake, D. A.; Yan, R.; Weijmans, A. M.; Byler, N.; Cherinka, B.; Cope, F.; Eigenbrot, A.; Harding, P.; Holder, D.; Huehnerhoff, J.; Jaehnig, K.; Jansen, T. C.; Klaene, M.; Paat, A. M.; Percival, J.; Sayres, C.

    2015-02-01

    We describe the design, manufacture, and performance of bare-fiber integral field units (IFUs) for the SDSS-IV survey Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) on the the Sloan 2.5 m telescope at Apache Point Observatory. MaNGA is a luminosity-selected integral-field spectroscopic survey of 104 local galaxies covering 360-1030 nm at R˜ 2200. The IFUs have hexagonal dense packing of fibers with packing regularity of 3 μm (rms), and throughput of 96 ± 0.5% from 350 nm to 1 μm in the lab. Their sizes range from 19 to 127 fibers (3-7 hexagonal layers) using Polymicro FBP 120:132:150 μm core:clad:buffer fibers to reach a fill fraction of 56%. High throughput (and low focal-ratio degradation (FRD)) is achieved by maintaining the fiber cladding and buffer intact, ensuring excellent surface polish, and applying a multi-layer anti-reflection (AR) coating of the input and output surfaces. In operations on-sky, the IFUs show only an additional 2.3% FRD-related variability in throughput despite repeated mechanical stressing during plate plugging (however other losses are present). The IFUs achieve on-sky throughput 5% above the single-fiber feeds used in SDSS-III/BOSS, attributable to equivalent performance compared to single fibers and additional gains from the AR coating. The manufacturing process is geared toward mass-production of high-multiplex systems. The low-stress process involves a precision ferrule with a hexagonal inner shape designed to lead inserted fibers to settle in a dense hexagonal pattern. The ferrule ID is tapered at progressively shallower angles toward its tip and the final 2 mm are straight and only a few microns larger than necessary to hold the desired number of fibers. Our IFU manufacturing process scales easily to accommodate other fiber sizes and can produce IFUs with substantially larger fiber counts. To assure quality, automated testing in a simple and inexpensive system enables complete characterization of throughput and

  8. Neutrino telescopes

    CERN Document Server

    Carr, J

    2002-01-01

    This review presents the scientific objectives and status of Neutrino Telescope Projects. The science program of these projects covers: neutrino astronomy, dark matter searches and measurements of neutrino oscillations. The two neutrino telescopes in operation: AMANDA and BAIKAL will be described together with the ANTARES neutrino telescope being built in the Mediterranean. (18 refs).

  9. Space Telescopes

    Science.gov (United States)

    2010-01-01

    Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 166 9. Space telescopes Figure 9.1: Paraboloid telescope. In the following sections, NI...planets nearby a brighter star. Normal-incidence telescopes One-mirror telescope The one-mirror telescope (mostly an off-axis paraboloid ; Figure 9.1) has...rotation of the whole instrument (see SUMER/SOHO, Wilhelm et al (1995) and EIS/Hinode, Culhane et al (2007)). The paraboloid field curvature (Petzval

  10. Southern Fireworks above ESO Telescopes

    Science.gov (United States)

    1999-05-01

    New Insights from Observations of Mysterious Gamma-Ray Burst International teams of astronomers are now busy working on new and exciting data obtained during the last week with telescopes at the European Southern Observatory (ESO). Their object of study is the remnant of a mysterious cosmic explosion far out in space, first detected as a gigantic outburst of gamma rays on May 10. Gamma-Ray Bursters (GRBs) are brief flashes of very energetic radiation - they represent by far the most powerful type of explosion known in the Universe and their afterglow in optical light can be 10 million times brighter than the brightest supernovae [1]. The May 10 event ranks among the brightest one hundred of the over 2500 GRB's detected in the last decade. The new observations include detailed images and spectra from the VLT 8.2-m ANTU (UT1) telescope at Paranal, obtained at short notice during a special Target of Opportunity programme. This happened just over one month after that powerful telescope entered into regular service and demonstrates its great potential for exciting science. In particular, in an observational first, the VLT measured linear polarization of the light from the optical counterpart, indicating for the first time that synchrotron radiation is involved . It also determined a staggering distance of more than 7,000 million light-years to this GRB . The astronomers are optimistic that the extensive observations will help them to better understand the true nature of such a dramatic event and thus to bring them nearer to the solution of one of the greatest riddles of modern astrophysics. A prime example of international collaboration The present story is about important new results at the front-line of current research. At the same time, it is also a fine illustration of a successful collaboration among several international teams of astronomers and the very effective way modern science functions. It began on May 10, at 08:49 hrs Universal Time (UT), when the Burst

  11. Configurable slit-mask unit of the Multi-Object Spectrometer for Infra-Red Exploration for the Keck telescope: integration and tests

    Science.gov (United States)

    Spanoudakis, Peter; Giriens, Laurent; Henein, Simon; Lisowski, Leszek; O'Hare, Aidan; Onillon, Emmanuel; Schwab, Philippe; Theurillat, Patrick

    2008-07-01

    A Configurable Slit Unit (CSU) has been developed for the Multi-Object Spectrometer for Infra-Red Exploration (MOSFIRE) instrument to be installed on the Keck 1 Telescope on Mauna Kea, Hawaii. MOSFIRE will provide NIR multi-object spectroscopy over a field of view of 6.1' x 6.1'. The reconfigurable mask allows the formation of 46 optical slits in a 267 x 267 mm2 field of view. The mechanism is an evolution of a former prototype designed by CSEM and qualified for the European Space Agency (ESA) as a candidate for the slit mask on NIRSpec for the James Webb Space Telescope (JWST). The CSU is designed to simultaneously displace masking bars across the field-of-view (FOV) to mask unwanted light. A set of 46 bar pairs are used to form the MOSFIRE focal plane mask. The sides of the bars are convoluted so that light is prevented from passing between adjacent bars. The slit length is fixed (5.1 mm) but the width is variable down to 200 μm with a slit positioning accuracy of +/- 18 μm. A two-bar prototype mechanism was designed, manufactured and cryogenically tested to validate the modifications from the JWST prototype. The working principle of the mechanism is based on an improved "inch-worm" stepping motion of 92 masking bars forming the optical mask. Original voice coil actuators are used to drive the various clutches. The design makes significant use of flexure structures.

  12. Development and utilization prospect of Yili quarry in Antu County Wanbao Town, Jilin Province%吉林省安图县万宝镇伊利石矿及开发利用前景

    Institute of Scientific and Technical Information of China (English)

    卢秉龙; 姜福平; 付涛

    2014-01-01

    文章介绍了万宝镇伊利石矿床的地质特征、矿石品质及矿床规模。经化验分析确定了矿物成分及它们的质量分数。矿床水文地质条件简单,开采容易,据此提出了开发该矿床的思路,即通过聚群发展、广泛招商、强化吸纳功能力、提升产业层次等措施将安图县万宝镇的伊利石矿打造成特色园区。%In this paper, the authors introduce the geological features, ore quality and deposit scale of Yili quarry in Wanbao Town. By test analysis, we confirmed mineral composition and their mass fraction. Simple hydrogeological conditions and mining easy, we put forward the idea of develop this deposit, that is by bunching development, extensive investment, strengthen the absorbing power, upgrade the industry level measures, to make Yili quarry of Antu County Wanbao Town into characteristic zone.

  13. Design and development of control unit and software for the ADFOSC instrument of the 3.6 m Devasthal optical telescope

    Science.gov (United States)

    Kumar, T. S.

    2016-08-01

    In this paper, we describe the details of control unit and GUI software for positioning two filter wheels, a slit wheel and a grism wheel in the ADFOSC instrument. This is a first generation instrument being built for the 3.6 m Devasthal optical telescope. The control hardware consists of five electronic boards based on low cost 8-bit PIC microcontrollers and are distributed over I2C bus. The four wheels are controlled by four identical boards which are configured in I2C slave mode while the fifth board acts as an I2C master for sending commands to and receiving status from the slave boards. The master also communicates with the interfacing PC over TCP/IP protocol using simple ASCII commands. For moving the wheels stepper motors along with suitable amplifiers have been employed. Homing after powering ON is achieved using hall effect sensors. By implementing distributed control units having identical design modularity is achieved enabling easier maintenance and upgradation. A GUI based software for commanding the instrument is developed in Microsoft Visual C++. For operating the system during observations the user selects normal mode while the engineering mode is available for offering additional flexibility and low level control during maintenance and testing. A detailed time-stamped log of commands, status and errors are continuously generated. Both the control unit and the software have been successfully tested and integrated with the ADFOSC instrument.

  14. MEGARA optical design: the new integral field unit and multi-object spectrograph for the GTC 10m telescope

    Science.gov (United States)

    García-Vargas, María. Luisa; Sánchez-Blanco, Ernesto; Carrasco, Esperanza; Gil de Paz, Armando; Páez, Gonzalo; Pérez, Ana; Gallego, Jesús; Sánchez, Francisco; Vílchez, José M.

    2012-12-01

    We describe the optical design of MEGARA, the future optical Integral Field Unit (IFU) and Multi-Object Spectrograph (MOS) for the 10.4-m Gran Telescopio CANARIAS (GTC). MEGARA is being built by a Consortium of public research institutions led by the Universidad Complutense de Madrid (UCM, Spain) that also includes INAOE (Mexico), IAA-CSIC (Spain) and UPM (Spain).

  15. SNAP telescope

    Energy Technology Data Exchange (ETDEWEB)

    Lampton, Michael L.; Akerlof, C.W.; Aldering, G.; Amanullah, R.; Astier, P.; Barrelet, E.; Bebek, C.; Bergstrom, L.; Bercovitz, J.; Bernstein, G.; Bester, M.; Bonissent, A.; Bower, C.; Carithers Jr., W.C.; Commins, E.D.; Day, C.; Deustua, S.E.; DiGennaro, R.; Ealet, A.; Ellis,R.S.; Eriksson, M.; Fruchter, A.; Genat, J.-F.; Goldhaber, G.; Goobar,A.; Groom, D.; Harris, S.E.; Harvey, P.R.; Heetderks, H.D.; Holland,S.E.; Huterer, D.; Karcher, A.; Kim, A.G.; Kolbe, W.; Krieger, B.; Lafever, R.; Lamoureux, J.; Levi, M.E.; Levin, D.S.; Linder, E.V.; Loken,S.C.; Malina, R.; Massey, R.; McKay, T.; McKee, S.P.; Miquel, R.; Mortsell, E.; Mostek, N.; Mufson, S.; Musser, J.; Nugent, P.; Oluseyi,H.; Pain, R.; Palaio, N.; Pankow, D.; Perlmutter, S.; Pratt, R.; Prieto,E.; Refregier, A.; Rhodes, J.; Robinson, K.; Roe, N.; Sholl, M.; Schubnell, M.; Smadja, G.; Smoot, G.; Spadafora, A.; Tarle, G.; Tomasch,A.; von der Lippe, H.; Vincent, R.; Walder, J.-P.; Wang, G.; Wang, G.

    2002-07-29

    The SuperNova/Acceleration Probe (SNAP) mission will require a two-meter class telescope delivering diffraction limited images spanning a one degree field in the visible and near infrared wavelength regime. This requirement, equivalent to nearly one billion pixel resolution, places stringent demands on its optical system in terms of field flatness, image quality, and freedom from chromatic aberration. We discuss the advantages of annular-field three-mirror anastigmat (TMA) telescopes for applications such as SNAP, and describe the features of the specific optical configuration that we have baselined for the SNAP mission. We discuss the mechanical design and choice of materials for the telescope. Then we present detailed ray traces and diffraction calculations for our baseline optical design. We briefly discuss stray light and tolerance issues, and present a preliminary wavefront error budget for the SNAP Telescope. We conclude by describing some of tasks to be carried out during the upcoming SNAP research and development phase.

  16. KOALA: a wide-field 1000 element integral-field unit for the Anglo-Australian Telescope

    Science.gov (United States)

    Ellis, S. C.; Ireland, M.; Lawrence, J. S.; Tims, J.; Staszak, N.; Brzeski, J.; Parker, Q. A.; Sharp, R.; Bland-Hawthorn, J.; Case, S.; Colless, M.; Croom, S.; Couch, W.; De Marco, O.; Glazebrook, K.; Saunders, W.; Webster, R.; Zucker, D. B.

    2012-09-01

    KOALA, the Kilofibre Optimised Astronomical Lenslet Array, is a wide-field, high efficiency integral field unit being designed for use with the bench mounted AAOmega spectrograph on the AAT. KOALA will have 1000 fibres in a rectangular array with a selectable field of view of either 1390 or 430 sq. arcseconds with a spatial sampling of 1.25" or 0.7" respectively. To achieve this KOALA will use a telecentric double lenslet array with interchangeable fore-optics. The IFU will feed AAOmega via a 31m fibre run. The efficiency of KOALA is expected to be ≍ 52% at 3700A and ≍ 66% at 6563°Å with a throughput of > 52% over the entire wavelength range.

  17. The science case of WISH-Spec, an Integral-field unit for the WISH telescope to study the first populations of galaxies in the universe

    Science.gov (United States)

    Burgarella, Denis

    2015-08-01

    WISH is a new space science mission concept whose primary goal is to study the first galaxies in the early universe. WISH will be a 1.5m telescope equipped with a 1000 arcmin2 wide-field Near-IR camera that would fly in ~2020 in order to conduct unique ultra-deep and wide-area sky surveys in the wavelength range 1-5 micron. A spectroscopic mode (Integral-Field Unit) in the same Near-IR range is also planned. The primary science goal of WISH mission is to push the high-redshift frontier beyond the epoch of reionization by utilizing its unique imaging capability and the dedicated survey strategy. Which spectral range should we select to optimize the detection of very high-redshift (i.e., z > 5) galaxies ? In the rest-frame Far-UV or in the rest-frame Far-IR? In a recent paper, Burgarella et al. (2013) showed that the Far-UV dust attenuation (AFUV) reaches the same level at z ~ 3 than at z = 0 . This suggest that the early universe would be better studied in the rest-frame Far-UV. At z > 5, this Far-UV range moves into the Near-IR (1 - 5um) which is WISH’s preferred spectral range. The baseline of WISH-Spec is a 1x1 arcmin2 Integral-Field Unit (IFU) using slicers. WISH-Spec could observe in a parallel mode which translates into spectroscopic exposure times as long as the telescope lifetime. WISH features two 100-deg2 and 1000-deg2 surveys. However, WISHSpec will allow to acquire very large samples of high-redshift and primordial galaxies by combining spectroscopic detections within total (non contiguous) 1-deg2 and 10-deg2 fields of views. Therefore, the first strong advantage of WISHSpec wrt JWST is that 10^4 - 10^5 faint emission-line galaxies in 1 deg2 and 10^3 - 10^6 bright emission-line galaxies in 10 deg2 in the redshift range 3 < z < 8 will be detected.

  18. Selecting Your First Telescope.

    Science.gov (United States)

    Harrington, Sherwood

    1982-01-01

    Designed for first-time telescope purchasers, provides information on how a telescope works; major telescope types (refractors, reflectors, compound telescopes); tripod, pier, altazimuth, and equatorial mounts; selecting a telescope; visiting an astronomy club; applications/limitations of telescope use; and tips on buying a telescope. Includes a…

  19. Robotic Telescopes

    Science.gov (United States)

    Akerlof, C. W.

    2001-05-01

    Since the discovery of gamma-ray bursts, a number of groups have attempted to detect correlated optical transients from these elusive objects. Following the flight of the BATSE instrument on the Compton Gamma-Ray Observatory in 1991, a prompt burst coordinate alert service, BACODINE (now GCN) became available to ground-based telescopes. Several instruments were built to take advantage of this facility, culminating in the discovery of a bright optical flash associated with GRB990123. To date, that single observation remains unique - no other prompt flashes have been seen for a dozen or so other bursts observed with comparably short response times. Thus, GRB prompt optical luminosities may be considerably dimmer than observed for the GRB990123 event or even absent altogether. A new generation of instruments is prepared to explore these possibilties using burst coordinates provided by HETE-2, Swift, Ballerina, Agile and other satellite missions. These telescopes have response times as short as a few seconds and reach limiting magnitudes, m_v 20, guaranteeing a sensitivity sufficient to detect the afterglow many hours later. Results from these experiments should provide important new data about the dynamics and locale of GRBs.

  20. Holographic telescope

    Science.gov (United States)

    Odhner, Jefferson E.

    2016-07-01

    Holographic optical elements (HOEs) work on the principal of diffraction and can in some cases replace conventional optical elements that work on the principal of refraction. An HOE can be thinner, lighter, can have more functionality, and can be lower cost than conventional optics. An HOE can serve as a beam splitter, spectral filter, mirror, and lens all at the same time. For a single wavelength system, an HOE can be an ideal solution but they have not been widely accepted for multispectral systems because they suffer from severe chromatic aberration. A refractive optical system also suffers from chromatic aberration but it is generally not as severe. To color correct a conventional refractive optical system, a flint glass and a crown glass are placed together such that the color dispersion of the flint and the crown cancel each other out making an achromatic lens (achromat) and the wavelengths all focus to the same point. The color dispersion of refractive lenses and holographic lenses are opposite from each other. In a diffractive optical system, long wavelengths focus closer (remember for HOEs: RBM "red bends more") than nominal focus while shorter wavelengths focus further out. In a refractive optical system, it is just the opposite. For this reason, diffractives can be incorporated into a refractive system to do the color correction and often cut down on the number of optical elements used [1.]. Color correction can also be achieved with an all-diffractive system by combining a holographic optical element with its conjugate. In this way the color dispersion of the first holographic optical element can be cancelled by the color dispersion of the second holographic optic. It is this technique that will be exploited in this paper to design a telescope made entirely of holographic optical elements. This telescope could be more portable (for field operations) the same technique could be used to make optics light enough for incorporation into a UAV.

  1. NESTOR Neutrino Telescope Status Report

    Science.gov (United States)

    Grieder, P. K. F.; NESTOR Collaboration; Aloupis, A.; Anassontzis, E. G.; Arvanitis, N.; Babalis, A.; Ball, A.; Bourlis, G.; Butkevich, A. V.; Chinowsky, W.; Christopoulos, P. E.; Darsaklis, A.; Dedenko, L. G.; Elistrup, D.; Fahrun, E.; Gialis, J.; Goudis, Ch.; Grammatikakis, G.; Green, C.; Karaevsky, S. K.; Katrivanos, P.; Keussen, U.; Kiskiras, J.; Knutz, Th.; Kolostelov, D.; Komlev, K.; Kontaxis, J.; Koske, P.; Learned, J. G.; Ledenev, V. V.; Leisos, A.; Limberopoulos, G.; Ludvig, J.; Makris, J.; Manousakis-Katsikakis, A.; Markopoulos, E.; Matsuno, S.; Mielke, J.; Mihos, Th.; Minkowski, P.; Mironovich, A. A.; Mitiguy, R.; Nounos, S.; Nygren, D. R.; Papageorgiou, K.; Passera, M.; Politis, C.; Preve, P.; Przybylski, G. T.; Rathlev, J.; Resvanis, L. K.; Rosen, M.; Schmidt, N.; Schmidt, Th.; Siotis, I.; Sopher, J.; Staveris, T.; Stavrakakis, G.; Stokstad, R.; Surin, N. M.; Tsagli, V.; Tsirigotis, A.; Tsirmpas, J.; Tzamarias, S.; Vasiliev, O.; Vaskine, O.; Voigt, W.; Vougioukas, A.; Voulgaris, G.; Zacharov, L. M.; Zheleznykh, I. M.; Zhukov, A.

    2003-07-01

    The first so-called flo or with 12 detector modules of the NESTOR deep sea high energy muon and neutrino telescope had been deployed successfully this March (2003) together with its electronics system. Since that data the system and the associated environmental monitoring units are operating properly and data

  2. Spectroradiometry with Space Telescopes

    CERN Document Server

    Pauluhn, Anuschka; Smith, Peter L; Colina, Luis

    2015-01-01

    Radiometry has been of fundamental importance in astronomy from the early beginnings. Initially, astronomers had their own radiometric system, based on extraterrestrial standards, namely the irradiance of stars expressed in visual magnitudes. Observing and comparing magnitudes in specific spectral bands then led to the astronomical spectrophotometry. The advent of astronomical high-resolution spectroscopy offered the possibility to interpret observations through physical models of stellar atmospheres. Such models had to be constructed based on physics-related units, and such units, rather than magnitudes, were then used for observational tests of the models. In this review, we provide an overview of how to achieve a valid laboratory calibration, and discuss ways to reliably extend this calibration to the spectroscopic telescope's performance in space. Recently, the quest for independent calibrations traceable to laboratory standards has become a well-supported aim, and has led to plans for now also launching ...

  3. Apollo Telescope Mount Spar Assembly

    Science.gov (United States)

    1969-01-01

    The Apollo Telescope Mount (ATM), designed and developed by the Marshall Space Flight Center, served as the primary scientific instrument unit aboard the Skylab. The ATM contained eight complex astronomical instruments designed to observe the Sun over a wide spectrum from visible light to x-rays. This image shows the ATM spar assembly. All solar telescopes, the fine Sun sensors, and some auxiliary systems are mounted on the spar, a cruciform lightweight perforated metal mounting panel that divides the 10-foot long canister lengthwise into four equal compartments. The spar assembly was nested inside a cylindrical canister that fit into the rack, a complex frame, and was protected by the solar shield.

  4. The SOFIA Telescope

    CERN Document Server

    Krabbe, A

    2000-01-01

    The SOFIA telescope as the heart of the observatory is a major technological challenge. I present an overview on the astro-nomical and scientific requirements for such a big airborne observatory and demonstrate the impact of these requirements on the layout of SOFIA, in particular on the telescope design as it is now. Selected components of the telescope will be de-scribed in their context and functionality. The current status of the telescope is presented.

  5. High-Flying Telescope

    Institute of Scientific and Technical Information of China (English)

    1995-01-01

    Scientists at the Space Telescope Science Institute,which operates the Hubble Space Telescope,have proposed a new telescope that would have twice the resolution of Hubble at about one-tenth the cost. It would hover seven miles above Earth,dangling below a football-field-size helium balloon

  6. Auto Adjusting Astronomical Telescope

    Directory of Open Access Journals (Sweden)

    Rohit R. Ghalsasi

    2014-04-01

    Full Text Available Astronomical telescope is powerful and basic tool for star or celestial observation. Here we proposed integrated system using Raspberry Pi for auto adjusting astronomical telescope. This integrated circuit helps to control stellar monitoring, stellar targeting, and tracking functions of telescope. Astro compass gives the direction of the celestial objects.

  7. ATST telescope mount: telescope of machine tool

    Science.gov (United States)

    Jeffers, Paul; Stolz, Günter; Bonomi, Giovanni; Dreyer, Oliver; Kärcher, Hans

    2012-09-01

    The Advanced Technology Solar Telescope (ATST) will be the largest solar telescope in the world, and will be able to provide the sharpest views ever taken of the solar surface. The telescope has a 4m aperture primary mirror, however due to the off axis nature of the optical layout, the telescope mount has proportions similar to an 8 meter class telescope. The technology normally used in this class of telescope is well understood in the telescope community and has been successfully implemented in numerous projects. The world of large machine tools has developed in a separate realm with similar levels of performance requirement but different boundary conditions. In addition the competitive nature of private industry has encouraged development and usage of more cost effective solutions both in initial capital cost and thru-life operating cost. Telescope mounts move relatively slowly with requirements for high stability under external environmental influences such as wind buffeting. Large machine tools operate under high speed requirements coupled with high application of force through the machine but with little or no external environmental influences. The benefits of these parallel development paths and the ATST system requirements are being combined in the ATST Telescope Mount Assembly (TMA). The process of balancing the system requirements with new technologies is based on the experience of the ATST project team, Ingersoll Machine Tools who are the main contractor for the TMA and MT Mechatronics who are their design subcontractors. This paper highlights a number of these proven technologies from the commercially driven machine tool world that are being introduced to the TMA design. Also the challenges of integrating and ensuring that the differences in application requirements are accounted for in the design are discussed.

  8. The Cherenkov Telescope Array Large Size Telescope

    CERN Document Server

    Ambrosi, G; Baba, H; Bamba, A; Barceló, M; de Almeida, U Barres; Barrio, J A; Bigas, O Blanch; Boix, J; Brunetti, L; Carmona, E; Chabanne, E; Chikawa, M; Colin, P; Conteras, J L; Cortina, J; Dazzi, F; Deangelis, A; Deleglise, G; Delgado, C; Díaz, C; Dubois, F; Fiasson, A; Fink, D; Fouque, N; Freixas, L; Fruck, C; Gadola, A; García, R; Gascon, D; Geffroy, N; Giglietto, N; Giordano, F; Grañena, F; Gunji, S; Hagiwara, R; Hamer, N; Hanabata, Y; Hassan, T; Hatanaka, K; Haubold, T; Hayashida, M; Hermel, R; Herranz, D; Hirotani, K; Inoue, S; Inoue, Y; Ioka, K; Jablonski, C; Kagaya, M; Katagiri, H; Kishimoto, T; Kodani, K; Kohri, K; Konno, Y; Koyama, S; Kubo, H; Kushida, J; Lamanna, G; Flour, T Le; López-Moya, M; López, R; Lorenz, E; Majumdar, P; Manalaysay, A; Mariotti, M; Martínez, G; Martínez, M; Mazin, D; Miranda, J M; Mirzoyan, R; Monteiro, I; Moralejo, A; Murase, K; Nagataki, S; Nakajima, D; Nakamori, T; Nishijima, K; Noda, K; Nozato, A; Ohira, Y; Ohishi, M; Ohoka, H; Okumura, A; Orito, R; Panazol, J L; Paneque, D; Paoletti, R; Paredes, J M; Pauletta, G; Podkladkin, S; Prast, J; Rando, R; Reimann, O; Ribó, M; Rosier-Lees, S; Saito, K; Saito, T; Saito, Y; Sakaki, N; Sakonaka, R; Sanuy, A; Sasaki, H; Sawada, M; Scalzotto, V; Schultz, S; Schweizer, T; Shibata, T; Shu, S; Sieiro, J; Stamatescu, V; Steiner, S; Straumann, U; Sugawara, R; Tajima, H; Takami, H; Tanaka, S; Tanaka, M; Tejedor, L A; Terada, Y; Teshima, M; Totani, T; Ueno, H; Umehara, K; Vollhardt, A; Wagner, R; Wetteskind, H; Yamamoto, T; Yamazaki, R; Yoshida, A; Yoshida, T; Yoshikoshi, T

    2013-01-01

    The two arrays of the Very High Energy gamma-ray observatory Cherenkov Telescope Array (CTA) will include four Large Size Telescopes (LSTs) each with a 23 m diameter dish and 28 m focal distance. These telescopes will enable CTA to achieve a low-energy threshold of 20 GeV, which is critical for important studies in astrophysics, astroparticle physics and cosmology. This work presents the key specifications and performance of the current LST design in the light of the CTA scientific objectives.

  9. The Africa Millimetre Telescope

    Science.gov (United States)

    Backes, M.; Müller, C.; Conway, J. E.; Deane, R.; Evans, R.; Falcke, H.; Fraga-Encinas, R.; Goddi, C.; Klein Wolt, M.; Krichbaum, T. P.; MacLeod, G.; Ribeiro, V. A. R. M.; Roelofs, F.; Shen, Z. Q.; van Langevelde, H. J.

    It is believed that supermassive black holes are found in the centres of galaxies, including the Milky Way. Still, only indirect evidence has been gathered for the existence of these enigmatic objects that are predicted by the general theory of relativity. With the Event Horizon Telescope, a Very Long Baseline Interferometry network of millimetre-wave (radio) telescopes, it will be possible to directly image the 'shadow' of the event horizon of the black hole at the centre of the Milky Way, Sgr A*. Although the Event Horizon Telescope utilises an extensive network of telescopes, there is a huge gap in the coverage of the u-v-plane for these observations across Africa. We discuss the benefits of adding the Africa Millimetre Telescope to the Event Horizon Telescope and present Mt. Gamsberg in Namibia as the best site for this new and first mm-wave telescope in Africa.

  10. Liverpool Telescope and Liverpool Telescope 2

    Science.gov (United States)

    Copperwheat, C. M.; Steele, I. A.; Barnsley, R. M.; Bates, S. D.; Clay, N. R.; Jermak, H.; Marchant, J. M.; Mottram, C. J.; Piascik, A.; Smith, R. J.

    2016-12-01

    The Liverpool Telescope is a fully robotic optical/near-infrared telescope with a 2-metre clear aperture, located at the Observatorio del Roque de los Muchachos on the Canary Island of La Palma. The telescope is owned and operated by Liverpool John Moores University, with financial support from the UK's Science and Technology Facilities Council. The telescope began routine science operations in 2004 and is a common-user facility with time available through a variety of committees via an open, peer reviewed process. Seven simultaneously mounted instruments support a broad science programme, with a focus on transient follow-up and other time domain topics well suited to the characteristics of robotic observing. Development has also begun on a successor facility, with the working title `Liverpool Telescope 2', to capitalise on the new era of time domain astronomy which will be brought about by the next generation of survey facilities such as LSST. The fully robotic Liverpool Telescope 2 will have a 4-metre aperture and an improved response time. In this paper we provide an overview of the current status of both facilities.

  11. The Solar Telescope GREGOR

    Science.gov (United States)

    Volkmer, R.

    2008-09-01

    During the last years the new 1.5m solar telescope GREGOR was assembled at Izania on Tenerife, Spain. The telescope is designed for high-precision measurements of the magnetic field in the solar photosphere and chromosphere with a resolution of 70km on the Sun. The telescope concept offers also high resolution stellar spectroscopy. The telescope is build by a consortium of the Kiepenheuer-Institut für Sonnenphysik, the Astrophysikalische Institut Potsdam, the Institut für Astrophysik Göttingen, Max-Plank-Institut für Sonnensystemforschung and additional international Partners. The telescope is a complete open structure with active cooled main mirror. High performance post-focus instruments in the visible and near IR wavelength acquire high resolution spectra with 2 dimensional spatial resolution and polarimetric information. The commissioning of the telescope will start in 2008 to allow first science observations at the end of 2009.

  12. JWST Pathfinder Telescope Integration

    Science.gov (United States)

    Matthews, Gary W.; Kennard, Scott H.; Broccolo, Ronald T.; Ellis, James M.; Daly, Elizabeth A.; Hahn, Walter G.; Amon, John N.; Mt. Pleasant, Stephen M.; Texter, Scott; Atkinson, Charles B.; McKay, Andrew; Levi, Joshua; Keski-Kuha, Ritva; Feinberg, Lee

    2015-01-01

    The James Webb Space Telescope (JWST) is a 6.5m, segmented, IR telescope that will explore the first light of the universe after the big bang. In 2014, a major risk reduction effort related to the Alignment, Integration, and Test (AI&T) of the segmented telescope was completed. The Pathfinder telescope includes two Primary Mirror Segment Assemblies (PMSA's) and the Secondary Mirror Assembly (SMA) onto a flight-like composite telescope backplane. This pathfinder allowed the JWST team to assess the alignment process and to better understand the various error sources that need to be accommodated in the flight build. The successful completion of the Pathfinder Telescope provides a final integration roadmap for the flight operations that will start in August 2015.

  13. The great Melbourne telescope

    CERN Document Server

    Gillespie, Richard

    2011-01-01

    Erected at Melbourne Observatory in 1869, the telescope was the second largest in the world, designed to explore the nature of the nebulae in the southern skies. Richard Gillespie, head of the History and Technology department at the Melbourne museum has written an entertaining account of the telescope's extraordinary history and tells the story through an amazing cast of characters whose lives intersected with the telescope.

  14. Pointing a solar telescope

    Science.gov (United States)

    Wallace, Patrick

    2016-07-01

    As far as pointing is concerned, a solar telescope is merely an ordinary astronomical telescope but with enhancements for observing solar and coronal features. The paper discusses the additional coordinate systems that need to be supported, shows how to generate the required solar ephemerides (both orbital and physical), and sets out a suitable application programming interface for the telescope control system to use when making solar observations.

  15. The First VERITAS Telescope

    CERN Document Server

    Holder, J; Badran, H M; Blaylock, G; Bradbury, S M; Buckley, J H; Byrum, K L; Carter-Lewis, D A; Celik, O; Chow, Y C K; Cogan, P; Cui, W; Daniel, M K; De la Calle-Perez, I; Dowdall, C; Dowkontt, P; Duke, C; Falcone, A D; Fegan, S J; Finley, J P; Fortin, P; Fortson, L F; Gibbs, K; Gillanders, G; Glidewell, O J; Grube, J; Gutíerrez, K J; Gyuk, G; Hall, J; Hanna, D; Hays, E; Horan, D; Hughes, S B; Humensky, T B; Imran, A; Jung, I; Kaaret, Philip; Kenny, G E; Kieda, D; Kildea, J; Knapp, J; Krawczynski, H; Krennrich, F; Lang, M J; Le Bohec, S; Linton, E; Little, E K; Maier, G; Manseri, H; Milovanovic, A; Moriarty, P; Mukherjee, R; Ogden, P A; Ong, R A; Perkins, J S; Pizlo, F; Pohl, M; Quinn, J; Ragan, K; Reynolds, P T; Roache, E T; Rose, H J; Schroedter, M; Sembroski, G H; Sleege, G A; Steele, D; Swordy, S P; Syson, A; Toner, J A; Valcarcel, L; Vasilev, V V; Wagner, R; Wakely, S P; Weekes, T C; White, R J; Williams, D A

    2006-01-01

    The first atmospheric Cherenkov telescope of VERITAS (the Very Energetic Radiation Imaging Telescope Array System) has been in operation since February 2005. We present here a technical description of the instrument and a summary of its performance. The calibration methods are described, along with the results of Monte Carlo simulations of the telescope and comparisons between real and simulated data. The analysis of TeV $\\gamma$-ray observations of the Crab Nebula, including the reconstructed energy spectrum, is shown to give results consistent with earlier measurements. The telescope is operating as expected and has met or exceeded all design specifications.

  16. LUTE telescope structural design

    Science.gov (United States)

    Ruthven, Gregory

    1993-01-01

    The major objective of the Lunar Ultraviolet Transit Experiment (LUTE) Telescope Structural Design Study was to investigate the feasibility of designing an ultralightweight 1-m aperture system within optical performance requirements and mass budget constraints. This study uses the results from our previous studies on LUTE as a basis for further developing the LUTE structural architecture. After summarizing our results in Section 2, Section 3 begins with the overall logic we used to determine which telescope 'structural form' should be adopted for further analysis and weight estimates. Specific telescope component analysis showing calculated fundamental frequencies and how they compare with our derived requirements are included. 'First-order' component stress analyses to ensure telescope optical and structural component (i.e. mirrors & main bulkhead) weights are realistic are presented. Layouts of both the primary and tertiary mirrors showing dimensions that are consistent with both our weight and frequency calculations also form part of Section 3. Section 4 presents our calculated values for the predicted thermally induced primary-to-secondary mirror despace motion due to the large temperature range over which LUTE must operate. Two different telescope design approaches (one which utilizes fused quartz metering rods and one which assumes the entire telescope is fabricated from beryllium) are considered in this analysis. We bound the secondary mirror focus mechanism range (in despace) based on these two telescope configurations. In Section 5 we show our overall design of the UVTA (Ultraviolet Telescope Assembly) via an 'exploded view' of the sub-system. The 'exploded view' is annotated to help aid in the understanding of each sub-assembly. We also include a two view layout of the UVTA from which telescope and telescope component dimensions can be measured. We conclude our study with a set of recommendations not only with respect to the LUTE structural architecture

  17. Water-filled telescopes

    CERN Document Server

    Antonello, E

    2014-01-01

    In this short note we discuss the case of the thought experiments on water-filled telescopes and their realizations during 18th and 19th century. The story of those instruments shows that the scientific progress occurs in a curious way, since there was no stringent reason for the construction of a water-filled telescope.

  18. Observing the Sun with Coronado telescopes telescopes

    CERN Document Server

    Pugh, Philip

    2007-01-01

    The Sun provides amateur astronomers with one of the few opportunities for daytime astronomy. In order to see the major features of our nearest star, special telescopes that have a very narrow visible bandwidth are essential. The bandwidth has to be as narrow as 1 A- 10-10 m (1 Angstrom) and centred on the absorption line of neutral hydrogen. This makes many major features of the Suna (TM)s chromosphere visible to the observer. Such narrow-band "Fabry-Perot etalon filters" are high technology, and until the introduction of the Coronado range of solar telescopes, were too expensive for amateur use. The entry-level Coronado telescope, the PST (Personal Solar Telescope) costs under 500. Solar prominences (vast columns of plasma, best seen at the edge of the solar disk), filaments, flares, sunspots, plage and active regions are all visible and can be imaged to produce spectacular solar photographs. Philip Pugh has assembled a team of contributors who show just how much solar work can be done with Coronado telesco...

  19. Two Easily Made Astronomical Telescopes.

    Science.gov (United States)

    Hill, M.; Jacobs, D. J.

    1991-01-01

    The directions and diagrams for making a reflecting telescope and a refracting telescope are presented. These telescopes can be made by students out of plumbing parts and easily obtainable, inexpensive, optical components. (KR)

  20. The James Webb Space Telescope

    Science.gov (United States)

    Gardner, Jonathan P.

    2011-01-01

    The James Webb Space Telescope is the scientific successor to the Hubble and Spitzer Space Telescopes, and is currently the largest scientific project under construction in the United States. It will be a large (6.6m) cold (50K) telescope launched into orbit around the second Earth-Sun Lagrange point. It is a partnership of NASA with the European and Canadian Space Agencies. Science with the James Webb Space Telescope falls into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and black holes within them evolved from the epoch of reionization to the present. The Birth of Stars and Protoplanetary Systems theme seeks to unravel the birth and early evolution of stars, from infall onto dust-enshrouded protostars, to the genesis of planetary systems. The Planetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and investigate the potential for life in those systems. Webb will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. I will conclude the talk with a description of recent technical progress in the construction of the observatory.

  1. The AMANDA neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Andres, E.C.; Askebjer, P.; Barwick, S.W.; Bay, R.C.; Bergstrom,L.; Biron, A.; Booth, J.; Botner, O.; Bouchta, A.; Carius, S.; Carlson,M.; Chinowsky, W.; Chirkin, D.; Conrad,J.; Costa, C.G.S.; Cowen, D.; Dalberg, E.; DeYoung, T.; Edsjo, J.; Ekstrom, P.; Goobar, A.; Gray, L.; Hallgren, A.; Halzen, F.; Hardtke, R.; Hart, S.; He, Y.; de, los, Heros,C.P.; Hill, G.; Hulth, PO.; Hundertmark, S.; Jacobsen, J.; Jones, A.; Kandhadai, V.; Karle, A.; Kim, J.; Leich, H.; Leuthold, M.; Lindahl, P.; Liubarsky, I.; Loaiza, P.; Lowder, D.; Marciniewski, P.; Miller, T.C.; Miocinovic, P.; Mock, P.C.; Morse, R.; Newcomer, M.; Niessen, P.; Nygren,D.; Porrata, R.; Potter, D.; Price, P.B.; Przybylski, G.; Rhode, W.; Richter, S.; Rodriguez, J.; Romenesko, P.; Ross, D.; Rubinstein, H.; Schmidt, T.; Schneider, E.; Schwarz, R.; Schwendicke, U.; Smoot, G.; Solarz, M.; Sorin, V.; Spiering, C.; Steffen, P.; Stokstad, R.; Streicher, O.; Taboada, I.; Thon, T.; Tilav, S.; Walck, C.; Wiebusch,C.H.; Wischnewski, R.; Woschnagg, K.; Wu, W.; Yodh, G.; Young, S.; AMANDACollaboration

    1999-04-01

    With an effective telescope area of order 10(4) m(2) for TeVneutrinos, a threshold near similar to 50 GeV and a pointing accuracy of2.5 degrees per muon track, the AMANDA detector represents the first of anew generation of high energy neutrino telescopes, reaching a scaleenvisaged over 25 years ago. We describe early results on the calibrationof natural deep ice as a particle detector as well as on AMANDA'sperformance as a neutrino telescope.

  2. The AMANDA neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Andres, E.C.; Askebjer, P.; Barwick, S.W.; Bay, R.C.; Bergstroem, L.; Biron, A.; Booth, J.; Botner, O.; Bouchta, A.; Carius, S.; Carlson, M.; Chinowsky, W.; Chirkin, D.; Conrad, J.; Costa, C.G.S.; Cowen, D.; Dalberg, E.; DeYoung, T.; Edsjoe, J.; Ekstroem, P.; Goobar, A.; Gray, L.; Hallgren, A.; Halzen, F.; Hardtke, R.; Hart, S.; He, Y.; Heros, C.P. de los; Hill, G.; Hulth, P.O.; Hundertmark, S.; Jacobsen, J.; Jones, A.; Kandhadai, V.; Karle, A.; Kim, J.; Leich, H.; Leuthold, M.; Lindahl, P.; Liubarsky, I.; Loaiza, P.; Lowder, D.; Marciniewski, P.; Miller, T.C.; Miocinovic, P.; Mock, P.C.; Morse, R.; Newcomer, M.; Niessen, P.; Nygren, D.; Porrata, R.; Potter, D.; Price, P.B.; Przybylski, G.; Rhode, W.; Richter, S.; Rodriquez, J.; Romenesko, P.; Ross, D.; Rubinstein, H.; Schmidt, T.; Schneider, E.; Schwartz, R.; Schwendicke, U.; Smoot, G.; Solarz, M.; Sorin, V.; Spiering, C.; Steffen, P.; Stokstad, R.; Streicher, O.; Taboada, I.; Thon, T.; Tilav, S.; Walck, C.; Wiebusch, C.H.; Wischnewski, R.; Woschnagg, K.; Wu, W.; Yodh, G.; Young, S

    1999-05-01

    With an effective telescope area of order 10{sup 4} m{sup 2} for TeV neutrinos, a threshold near {approx}50 GeV and a pointing accuracy of 2.5 degrees per muon track, the AMANDA detector represents the first of a new generation of high energy neutrino telescopes, reaching a scale envisaged over 25 years ago. We describe early results on the calibration of natural deep ice as a particle detector as well as on AMANDA's performance as a neutrino telescope.

  3. Modular assembled space telescope

    Science.gov (United States)

    Feinberg, Lee D.; Budinoff, Jason; MacEwen, Howard; Matthews, Gary; Postman, Marc

    2013-09-01

    We present a new approach to building a modular segmented space telescope that greatly leverages the heritage of the Hubble Space Telescope and the James Webb Space Telescope. The modular design in which mirror segments are assembled into identical panels allows for economies of scale and for efficient space assembly that make a 20-m aperture approach cost effective. This assembly approach can leverage NASA's future capabilities and has the power to excite the public's imagination. We discuss the science drivers, basic architecture, technology, and leveraged NASA infrastructure, concluding with a proposed plan for going forward.

  4. Goddard Robotic Telescope (GRT)

    Data.gov (United States)

    National Aeronautics and Space Administration — Since it is not possible to predict when a Gamma-Ray Burst (GRB) occurs, the follow-up ground telescopes must be distributed as uniform as possible all over the...

  5. Parabolic Strip Telescope

    CERN Document Server

    Chadzitaskos, Goce

    2013-01-01

    We present a proposal of a new type of telescopes using a rotating parabolic strip as the primary mirror. It is the most principal modification of the design of telescopes from the times of Galileo and Newton. In order to demonstrate the basic idea, the image of an artificial constellation observed by this kind of telescope was reconstructed using the techniques described in this article. As a working model of this new telescope, we have used an assembly of the primary mirror---a strip of acrylic glass parabolic mirror 40 cm long and 10 cm wid shaped as a parabolic cylinder of focal length 1 m---and an artificial constellation, a set of 5 apertures in a distance of 5 m illuminated from behind. In order to reconstruct the image, we made a series of snaps, each after a rotation of the constellation by 15 degrees. Using Matlab we reconstructed the image of the artificial constellation.

  6. The Dark Matter Telescope

    CERN Document Server

    Tyson, J A; Angel, J R P; Wittman, David

    2001-01-01

    Weak gravitational lensing enables direct reconstruction of dark matter maps over cosmologically significant volumes. This research is currently telescope-limited. The Dark Matter Telescope (DMT) is a proposed 8.4 m telescope with a 3 degree field of view, with an etendue of 260 $(m. degree)^2$, ten times greater than any other current or planned telescope. With its large etendue and dedicated observational mode, the DMT fills a nearly unexplored region of parameter space and enables projects that would take decades on current facilities. The DMT will be able to reach 10-sigma limiting magnitudes of 27-28 magnitude in the wavelength range .3 - 1 um over a 7 square degree field in 3 nights of dark time. Here we review its unique weak lensing cosmology capabilities and the design that enables those capabilities.

  7. Large Binocular Telescope Project

    Science.gov (United States)

    Hill, John M.

    1997-03-01

    The large binocular telescope (LBT) project have evolved from concepts first proposed in 1985. The present partners involved in the design and construction of this 2 by 8.4 meter binocular telescope are the University of Arizona, Italy represented by the Osservatorio Astrofisico di Arcetri and the Research Corporation based in Tucson, Arizona. These three partners have committed sufficient funds to build the enclosure and the telescope populated with a single 8.4 meter optical train -- approximately 40 million dollars (1989). Based on this commitment, design and construction activities are now moving forward. Additional partners are being sought. The next mirror to be cast at the Steward Observatory Mirror Lab in the fall of 1996 will be the first borosilicate honeycomb primary for LBT. The baseline optical configuration of LBT includes wide field Cassegrain secondaries with optical foci above the primaries to provide a corrected one degree field at F/4. The infrared F/15 secondaries are a Gregorian design to allow maximum flexibility for adaptive optics. The F/15 secondaries are undersized to provide a low thermal background focal plane which is unvignetted over a 4 arcminute diameter field-of-view. The interferometric focus combining the light from the two 8.4 meter primaries will reimage two folded Gregorian focal planes to a central location. The telescope elevation structure accommodates swing arms which allow rapid interchange of the various secondary and tertiary mirrors. Maximum stiffness and minimal thermal disturbance continue to be important drivers for the detailed design of the telescope. The telescope structure accommodates installation of a vacuum bell jar for aluminizing the primary mirrors in-situ on the telescope. The detailed design of the telescope structure will be completed in 1996 by ADS Italia (Lecco) and European Industrial Engineering (Mestre). The final enclosure design is now in progress at M3 Engineering (Tucson), EIE and ADS Italia

  8. The Multiple-Mirror Telescope

    Science.gov (United States)

    Carleton, Nathaniel P.; Hoffmann, William F.

    1978-01-01

    Describes the basic design and principle of operating an optical-infrared telescope, the MMT. This third largest telescope in the world represents a new stage in telescope design; it uses a cluster of six reflecting telescopes, and relies on an automatic sensing and control system. (GA)

  9. Robotic and Survey Telescopes

    Science.gov (United States)

    Woźniak, Przemysław

    Robotic telescopes are revolutionizing the way astronomers collect their dataand conduct sky surveys. This chapter begins with a discussion of principles thatguide the process of designing, constructing, and operating telescopes andobservatories that offer a varying degree of automation, from instruments remotelycontrolled by observers to fully autonomous systems requiring no humansupervision during their normal operations. Emphasis is placed on designtrade-offs involved in building end-to-end systems intended for a wide range ofscience applications. The second part of the chapter contains descriptions ofseveral projects and instruments, both existing and currently under development.It is an attempt to provide a representative selection of actual systems thatillustrates state of the art in technology, as well as important ideas and milestonesin the development of the field. The list of presented instruments spans the fullrange in size starting from small all-sky monitors, through midrange robotic andsurvey telescopes, and finishing with large robotic instruments and surveys.Explosive growth of telescope networking is enabling entirely new modesof interaction between the survey and follow-up observing. Increasingimportance of standardized communication protocols and software is stressed.These developments are driven by the fusion of robotic telescope hardware,massive storage and databases, real-time knowledge extraction, and datacross-correlation on a global scale. The chapter concludes with examplesof major science results enabled by these new technologies and futureprospects.

  10. The South Pole Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Ruhl, J.E.; Ade, P.A.R.; Carlstrom, J.E.; Cho, H.M.; Crawford,T.; Dobbs, M.; Greer, C.H.; Halverson, N.W.; Holzapfel, W.L.; Lanting,T.M.; Lee, A.T.; Leitch, E.M.; Leong, J.; Lu, W.; Lueker, M.; Mehl, J.; Meyer, S.S.; Mohr, J.J.; Padin, S.; Plagge, T.; Pryke, C.; Runyan, M.C.; Schwan, D.; Sharp, M.K.; Spieler, H.; Staniszewski, Z.; Stark, A.A.

    2004-11-04

    A new 10 meter diameter telescope is being constructed for deployment at the NSF South Pole research station. The telescope is designed for conducting large-area millimeter and sub-millimeter wave surveys of faint, low contrast emission, as required to map primary and secondary anisotropies in the cosmic microwave background. To achieve the required sensitivity and resolution, the telescope design employs an off-axis primary with a 10 m diameter clear aperture. The full aperture and the associated optics will have a combined surface accuracy of better than 20 microns rms to allow precision operation in the submillimeter atmospheric windows. The telescope will be surrounded with a large reflecting ground screen to reduce sensitivity to thermal emission from the ground and local interference. The optics of the telescope will support a square degree field of view at 2mm wavelength and will feed a new 1000-element micro-lithographed planar bolometric array with superconducting transition-edge sensors and frequency-multiplexed readouts. The first key project will be to conduct a survey over 4000 degrees for galaxy clusters using the Sunyaev-Zeldovich Effect. This survey should find many thousands of clusters with a mass selection criteria that is remarkably uniform with redshift. Armed with redshifts obtained from optical and infrared follow-up observations, it is expected that the survey will enable significant constraints to be placed on the equation of state of the dark energy.

  11. The Travelling Telescope

    Science.gov (United States)

    Murabona Oduori, Susan

    2015-08-01

    The telescope has been around for more than 400 years, and through good use of it scientists have made many astonishing discoveries and begun to understand our place in the universe. Most people, however, have never looked through one. Yet it is a great tool for cool science and observation especially in a continent and country with beautifully dark skies. The Travelling Telescope project aims to invite people outside under the stars to learn about those curious lights in the sky.The Travelling Telescope aims to promote science learning to a wide range of Kenyan schools in various locations exchanging knowledge about the sky through direct observations of celestial bodies using state of the art telescopes. In addition to direct observing we also teach science using various hands-on activities and astronomy software, ideal for explaining concepts which are hard to understand, and for a better grasp of the sights visible through the telescope. We are dedicated to promoting science using astronomy especially in schools, targeting children from as young as 3 years to the youth, teachers, their parents and members of the public. Our presentation focuses on the OAD funded project in rural coastal Kenya.

  12. The South Pole Telescope

    CERN Document Server

    Ruhl, J E; Carlstrom, J E; Cho, H M; Crawford, T; Dobbs, M; Greer, C H; Halverson, W; Holzapfel, W L; Lanting, T M; Lee, A T; Leong, J; Leitch, E M; Lu, W; Lueker, M; Mehl, J; Meyer, S S; Mohr, J J; Padin, S; Plagge, T; Pryke, C L; Schwan, D; Sharp, M K; Runyan, M C; Spieler, H; Staniszewski, Z; Stark, A A

    2004-01-01

    A new 10 meter diameter telescope is being constructed for deployment at the NSF South Pole research station. The telescope is designed for conducting large-area millimeter and sub-millimeter wave surveys of faint, low contrast emission, as required to map primary and secondary anisotropies in the cosmic microwave background. To achieve the required sensitivity and resolution, the telescope design employs an off-axis primary with a 10m diameter clear aperture. The full aperture and the associated optics will have a combined surface accuracy of better than 20 microns rms to allow precision operation in the submillimeter atmospheric windows. The telescope will be surrounded with a large reflecting ground screen to reduce sensitivity to thermal emission from the ground and local interference. The optics of the telescope will support a square degree field of view at 2mm wavelength and will feed a new 1000-element micro-lithographed planar bolometric array with superconducting transition-edge sensors and frequency...

  13. LSST telescope modeling overview

    Science.gov (United States)

    Sebag, J.; Andrew, J.; Angeli, G.; Araujo, C.; Barr, J.; Callahan, S.; Cho, M.; Claver, C.; Daruich, F.; Gressler, W.; Hileman, E.; Liang, M.; Muller, G.; Neill, D.; Schoening, W.; Warner, M.; Wiecha, O.; Xin, B.; Orden Martinez, Alfredo; Perezagua Aguado, Manuel; García Marchena, Luis; Ruiz de Argandoña, Ismael

    2016-08-01

    During this early stage of construction of the Large Synoptic Survey Telescope (LSST), modeling has become a crucial system engineering process to ensure that the final detailed design of all the sub-systems that compose the telescope meet requirements and interfaces. Modeling includes multiple tools and types of analyses that are performed to address specific technical issues. Three-dimensional (3D) Computeraided Design (CAD) modeling has become central for controlling interfaces between subsystems and identifying potential interferences. The LSST Telescope dynamic requirements are challenging because of the nature of the LSST survey which requires a high cadence of rapid slews and short settling times. The combination of finite element methods (FEM), coupled with control system dynamic analysis, provides a method to validate these specifications. An overview of these modeling activities is reported in this paper including specific cases that illustrate its impact.

  14. Telescopes and Techniques

    CERN Document Server

    Kitchin, C R

    2013-01-01

    Telescopes and Techniques has proved itself in its first two editions, having become probably one of the most widely used astronomy texts, both for amateur astronomers and astronomy and astrophysics undergraduates. Both earlier editions of the book were widely used for introductory practical astronomy courses in many universities. In this Third Edition the author guides the reader through the mathematics, physics and practical techniques needed to use today's telescopes (from the smaller models to the larger instruments installed in many colleges) and how to find objects in the sky. Most of the physics and engineering involved is described fully and requires little prior knowledge or experience. Both visual and electronic imaging techniques are covered, together with an introduction to how data (measurements) should be processed and analyzed. A simple introduction to radio telescopes is also included. Brief coverage of the more advanced topics of photometry and spectroscopy are included, but mainly to enable ...

  15. Integrated Modeling of Telescopes

    CERN Document Server

    Andersen, Torben

    2011-01-01

    With increasingly complex and costly opto-mechanical systems, there is a growing need for reliable computer modeling and simulation. The field of integrated modeling, combining optics, mechanics, control engineering, and other disciplines, is the subject of this book. Although the book primarily focuses on ground-based optical telescopes, the techniques introduced are applicable also to other wavelengths and to other opto-mechanical applications on the ground or in space. Basic tools of integrated modeling are introduced together with concepts of ground-based telescopes. Modeling of optical systems, structures, wavefront control systems with emphasis on segmented mirror control, and active and adaptive optics are described together with a variety of noise sources; many examples are included in this book. Integrated Modeling of Telescopes is a text for physicists and engineers working in the field of opto-mechanical design and wavefront control, but it will also be valuable as a textbook for PhD students.

  16. The Discovery Channel Telescope

    Science.gov (United States)

    Millis, R. L.; Dunham, E. W.; Sebring, T. A.; Smith, B. W.; de Kock, M.; Wiecha, O.

    2004-11-01

    The Discovery Channel Telescope (DCT) is a 4.2-m telescope to be built at a new site near Happy Jack, Arizona. The DCT features a large prime focus mosaic CCD camera with a 2-degree-diameter field of view especially designed for surveys of KBOs, Centaurs, NEAs and other moving or time-variable targets. The telescope can be switched quickly to a Ritchey-Chretien configuration for optical/IR spectroscopy or near-IR imaging. This flexibility allows timely follow-up physical studies of high priority objects discovered in survey mode. The ULE (ultra-low-expansion) meniscus primary and secondary mirror blanks for the telescope are currently in fabrication by Corning Glass. Goodrich Aerospace, Vertex RSI, M3 Engineering and Technology Corp., and e2v Technologies have recently completed in-depth conceptual design studies of the optics, mount, enclosure, and mosaic focal plane, respectively. The results of these studies were subjected to a formal design review in July, 2004. Site testing at the 7760-ft altitude Happy Jack site began in 2001. Differential image motion observations from 117 nights since January 1, 2003 gave median seeing of 0.84 arcsec FWHM, and the average of the first quartile was 0.62 arcsec. The National Environmental Policy Act (NEPA) process for securing long-term access to this site on the Coconino National Forest is nearing completion and ground breaking is expected in the spring of 2005. The Discovery Channel Telescope is a project of the Lowell Observatory with major financial support from Discovery Communications, Inc. (DCI). DCI plans ongoing television programming featuring the construction of the telescope and the research ultimately undertaken with the DCT. An additional partner can be accommodated in the project. Interested parties should contact the lead author.

  17. Pointing the SOFIA Telescope

    CERN Document Server

    Gross, Michael A K; Moore, Elizabeth M

    2010-01-01

    SOFIA is an airborne, gyroscopically stabilized 2.5m infrared telescope, mounted to a spherical bearing. Unlike its predecessors, SOFIA will work in absolute coordinates, despite its continually changing position and attitude. In order to manage this, SOFIA must relate equatorial and telescope coordinates using a combination of avionics data and star identification, manage field rotation and track sky images. We describe the algorithms and systems required to acquire and maintain the equatorial reference frame, relate it to tracking imagers and the science instrument, set up the oscillating secondary mirror, and aggregate pointings into relocatable nods and dithers.

  18. Reflecting telescope optics

    CERN Document Server

    Wilson, Raymond N

    2004-01-01

    R.N. Wilson's two-volume treatise on reflecting telescope optics has become a classic in its own right. It is intended to give a complete treatment of the subject, addressing professionals in research and industry as well as students of astronomy and amateur astronomers. This first volume, Basic Design Theory and its Historical Development, is devoted to the theory of reflecting telescope optics and systematically recounts the historical progress. The author's approach is morphological, with strong emphasis on the historical development. The book is richly illustrated including spot-diagrams a

  19. New Vacuum Solar Telescope

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    With its pure aperture up to 985mm, the New Vacuum Solar Telescope of China (NVST) has become the world's biggest vacuum solar telescope. The main science task of NVST is the high-resolution observation of photosphere and chromosphere including their fine structure of magnetic field on the sun. The NVST was equipped with many new technologies and powerful instruments, such as an adaptive optical system, a polarization analyzer, two vertical spectrographs, a high-resolution image system and a very narrow Ha filter (0.125A).

  20. MROI Array telescopes: the relocatable enclosure domes

    Science.gov (United States)

    Marchiori, G.; Busatta, A.; Payne, I.

    2016-07-01

    The MROI - Magdalena Ridge Interferometer is a project which comprises an array of up to 10 1.4m diameter mirror telescopes arranged in a "Y" configuration. Each of these telescopes will be housed inside a Unit Telescope Enclosure (UTE) which are relocatable onto any of 28 stations. EIE GROUP Srl, Venice - Italy, was awarded the contract for the design, the construction and the erection on site of the MROI by the New Mexico Institute of Mining and Technology. The close-pack array of the MROI - including all 10 telescopes, several of which are at a relative distance of less than 8m center to center from each other - necessitated an original design for the Unit Telescope Enclosure (UTE). This innovative design enclosure incorporates a unique dome/observing aperture system to be able to operate in the harsh environmental conditions encountered at an altitude of 10,460ft (3,188m). The main characteristics of this Relocatable Enclosure Dome are: a Light insulated Steel Structure with a dome made of composites materials (e.g. glass/carbon fibers, sandwich panels etc.), an aperture motorized system for observation, a series of louvers for ventilation, a series of electrical and plants installations and relevant auxiliary equipment. The first Enclosure Dome is now under construction and the completion of the mounting on site id envisaged by the end of 2016. The relocation system utilizes a modified reachstacker (a transporter used to handle freight containers) capable of maneuvering between and around the enclosures, capable of lifting the combined weight of the enclosure with the telescope (30tons), with minimal impacts due to vibrations.

  1. THE LARGE MILLIMETER TELESCOPE

    Directory of Open Access Journals (Sweden)

    D. H. Hughes

    2009-01-01

    Full Text Available This paper, presented on behalf of the Large Millimeter Telescope (LMT project team, describes the status and near-term plans for the telescope and its initial instrumentation. The LMT is a bi-national collaboration between M xico and the USA, led by the Instituto Nacional de Astrof sica, ptica y Electr nica (INAOE and the University of Massachusetts at Amherst, to construct, commission and operate a 50 m diameter millimeterwave radio telescope. Construction activities are nearly complete at the LMT site, at an altitude of 4600 m on the summit of Sierra Negra, an extinct volcano in the Mexican state of Puebla. Full movement of the telescope, under computer control in both azimuth and elevation, has been achieved. First-light at centimeter wavelengths on astronomical sources was obtained in November 2006. Installation of precision surface segments for millimeter-wave operation is underway, with the inner 32 m diameter of the surface now complete and ready to be used to obtain rst-light at millimeter wavelengths in 2008. Installation of the remainder of the re ector will continue during the next year and be completed in 2009 for nal commissioning of the antenna. The full LMT antenna, out ted with its initial complement of scienti c instruments, will be a world-leading scienti c research facility for millimeter-wave astronomy.

  2. A Simple "Tubeless" Telescope

    Science.gov (United States)

    Straulino, S.; Bonechi, L.

    2010-01-01

    Two lenses make it possible to create a simple telescope with quite large magnification. The set-up is very simple and can be reproduced in schools, provided the laboratory has a range of lenses with different focal lengths. In this article, the authors adopt the Keplerian configuration, which is composed of two converging lenses. This instrument,…

  3. Exploring Galileo's Telescope

    Science.gov (United States)

    Straulino, Samuele; Terzuoli, Alessandra

    2010-01-01

    In the first months of 2009, the International Year of Astronomy, the authors developed an educational project for middle-level students connected with the first astronomical discoveries that Galileo Galilei (1564-1642) made 400 years ago. The project included the construction of a basic telescope and the observation of the Moon. The project, if…

  4. NRAO Green Bank Telescope (GBT)

    Data.gov (United States)

    Federal Laboratory Consortium — The largest fully steerable telescope in the world - the Robert C. Byrd Green Bank Telescope, began observations in Green Bank, West Virginia in 2000and is a wonder...

  5. Optical Space Telescope Assembly Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Optical Space Telescope Assembly (OSTA) task is to demonstrate the technology readiness of assembling large space telescopes on orbit in 2015. This task is an...

  6. Progress in Space Solar Telescope

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In this paper we will summarize the progress in the development of the Chinese Space Solar Telescope (SST) during the past few years. The main scientific objective of SST is to observe the fundamental structure of solar magnetic field with its 1-m optical telescope. The success of 1-m Swedish Solar Telescope and Hinode underscores the importance of this 1-m space telescope. In addition, some key technical problems have been solved.

  7. Uzaybimer Radio Telescope Control System

    Science.gov (United States)

    Balbay, R.; Öz, G. K.; Arslan, Ö.; Özeren, F. F.; Küçük, İ.

    2016-12-01

    A 13 meters former NATO radar is being converted into a radio telescope. The radio telescope is controlled by a system which has been developed at UZAYBİMER. The Telescope Control System(TCS) has been designed using modern industrial systems. TCS has been developed in LabView platform in which works Windows embedded OS. The position feedback used on radio telescopes is an industrial EtherCAT standard. ASCOM library is used for astronomical calculations.

  8. Comparing NEO Search Telescopes

    CERN Document Server

    Myhrvold, Nathan

    2015-01-01

    Multiple terrestrial and space-based telescopes have been proposed for detecting and tracking near-Earth objects (NEOs). Detailed simulations of the search performance of these systems have used complex computer codes that are not widely available, which hinders accurate cross- comparison of the proposals and obscures whether they have consistent assumptions. Moreover, some proposed instruments would survey infrared (IR) bands, whereas others would operate in the visible band, and differences among asteroid thermal and visible light models used in the simulations further complicate like-to-like comparisons. I use simple physical principles to estimate basic performance metrics for the ground-based Large Synoptic Survey Telescope and three space-based instruments - Sentinel, NEOCam, and a Cubesat constellation. The performance is measured against two different NEO distributions, the Bottke et al. distribution of general NEOs, and the Veres et al. distribution of earth impacting NEO. The results of the comparis...

  9. The ANTARES Neutrino Telescope

    CERN Document Server

    Perrina, Chiara

    2015-01-01

    At about 40 km off the coast of Toulon (France), anchored at 2475 m deep in the Mediterranean Sea, there is ANTARES: the first undersea neutrino telescope and the only one currently operating. The detector consists of 885 photomultiplier tubes arranged into 12 strings of 450-metres high, with the aim to detect the Cherenkov light induced by the charged superluminal interaction products of neutrinos. Its main scientific target is the search for high-energy (TeV and beyond) neutrinos from cosmic accelerators, as predicted by hadronic interaction models, and the measurement of the cosmic neutrino diffuse flux, focusing in particular on events coming from below the horizon (up-going events) in order to significantly reduce the atmospheric muons background. Thanks to the development of a strategy for the identification of neutrinos coming from above the horizon (down-going events) the field of view of the telescope will be extended.

  10. Telescopic limiting magnitudes

    Science.gov (United States)

    Schaefer, Bradley E.

    1990-01-01

    The prediction of the magnitude of the faintest star visible through a telescope by a visual observer is a difficult problem in physiology. Many prediction formulas have been advanced over the years, but most do not even consider the magnification used. Here, the prediction algorithm problem is attacked with two complimentary approaches: (1) First, a theoretical algorithm was developed based on physiological data for the sensitivity of the eye. This algorithm also accounts for the transmission of the atmosphere and the telescope, the brightness of the sky, the color of the star, the age of the observer, the aperture, and the magnification. (2) Second, 314 observed values for the limiting magnitude were collected as a test of the formula. It is found that the formula does accurately predict the average observed limiting magnitudes under all conditions.

  11. Everyday Radio Telescope

    CERN Document Server

    Mandal, Pranshu; Kumar, Pratik; Yelikar, Anjali; Soni, Kanchan; T, Vineeth Krishna

    2016-01-01

    We have developed an affordable, portable college level radio telescope for amateur radio astronomy which can be used to provide hands-on experience with the fundamentals of a radio telescope and an insight into the realm of radio astronomy. With our set-up one can measure brightness temperature and flux of the Sun at 11.2 GHz and calculate the beam width of the antenna. The set-up uses commercially available satellite television receiving system and parabolic dish antenna. We report the detection of point sources like Saturn and extended sources like the galactic arm of the Milky way. We have also developed python pipeline, which are available for free download, for data acquisition and visualization.

  12. Origins Space Telescope

    Science.gov (United States)

    Cooray, Asantha R.; Origins Space Telescope Study Team

    2017-01-01

    The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. Origins is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum. Its spectrographs will enable 3D surveys of the sky that will discover and characterize the most distant galaxies, Milky-Way, exoplanets, and the outer reaches of our Solar system. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. The Science and Technology Definition Team (STDT) would like to hear your science needs and ideas for this mission. The team can be contacted at firsurveyor_info@lists.ipac.caltech.edu. I will summarize the OST STDT, mission design and instruments, key science drivers, and the study plan over the next two years.

  13. The Cherenkov Telescope Array

    Science.gov (United States)

    Connaughton, Valerie

    2014-03-01

    The Cherenkov Telescope Array (CTA) is a large collaborative effort dedicated to the design and operation of the next-generation ground-based very high-energy gamma-ray observatory. CTA will improve by about one order of magnitude the sensitivity with respect to the current major arrays (VERITAS, H.E.S.S., and MAGIC) in the core energy range of 100 GeV to 10 TeV, and will extend the viability of the imaging atmospheric Cherenkov technique (IACT) down to tens of GeV and above 100 TeV. In order to achieve such improved performance at both a northern and southern CTA site, four 23m diameter Large Size Telescopes (LST) optimized for low energy gamma rays will be deployed close to the centre of the array. A larger number of Medium Size Telescopes (MST) will be optimized for the core IACT energy range. The southern site will include 25 12m single-mirror MSTs and a US contribution of up to 24 novel dual-mirror design Schwarzschild-Couder (SC) type MSTs with a primary mirror of 9.5m diameter, and will also include an array of Small Size Telescopes (SST) to observe the highest-energy gamma rays from galactic sources. The SSTs can be smaller and more widely separated because more energetic gamma rays produce a larger Cherenkov light pool with many photons. The SSTs achieve a large collection area by covering a wide (10 sq km) footprint on the ground. The CTA project is finishing its preparatory phase, and the pre-production phase will start this year. I will review the status and the expected performance of CTA as well as the main scientific goals for the observatory.

  14. [Galileo and his telescope].

    Science.gov (United States)

    Strebel, Christoph

    2006-01-01

    Galileo's publication of observations made with his newly reinvented telescope provoked a fierce debate. In April 1610 Martinus Horky, a young Bohemian astronomer, had an opportunity to make his own observations with Galileo's telescope in the presence of Antonio Magini and other astronomers. Horky and the other witnesses denied the adequacy of Galileo's telescope and therefore the bona fides of his discoveries. Kepler conjectured Horky as well as all his witnesses to be myopic. But Kepler's objection could not stop the publication of Horky's Peregrinatio contra nuncium sidereum (Modena, 1610), the first printed refutation of Galileo's Sidereus nuncius. In his treatise, Horky adresses four questions: 1) Do the four newly observed heavenly bodies actually exist? Horky denies their existence on various grounds: a) God, as every astronomer teaches, has created only seven moveable heavenly bodies and astronomical knowledge originates in God, too. b) Heavenly bodies are either stars or planets. Galileo's moveable heavenly bodies fit into neither category. c) If they do exist, why have they not already been observed by other scholars? Horky concludes that there are no such heavenly bodies. 2) What are these phenomena? They are purely artefactual, and produced by Galileo's telescope. 3) How are they like? Galileo's "stars" are so small as to be almost invisible. Galileo claims that he has measured their distances from each other. This however is impossible due to their diminutive size and other observational problems. Hence, Galileo's claim is a further proof that he is a fraud. 4) Why are they? For Galileo they are a chance to earn money but for astronomers like Horky they are a reason to offer thanks and honour to God. Horky's treatise was favourably received by the enemies of Galileo. But Kepler's critique was devastating. After calling on Kepler in Prague, Horky had to revoke the contents of his book.

  15. Fast Fourier transform telescope

    Science.gov (United States)

    Tegmark, Max; Zaldarriaga, Matias

    2009-04-01

    We propose an all-digital telescope for 21 cm tomography, which combines key advantages of both single dishes and interferometers. The electric field is digitized by antennas on a rectangular grid, after which a series of fast Fourier transforms recovers simultaneous multifrequency images of up to half the sky. Thanks to Moore’s law, the bandwidth up to which this is feasible has now reached about 1 GHz, and will likely continue doubling every couple of years. The main advantages over a single dish telescope are cost and orders of magnitude larger field-of-view, translating into dramatically better sensitivity for large-area surveys. The key advantages over traditional interferometers are cost (the correlator computational cost for an N-element array scales as Nlog⁡2N rather than N2) and a compact synthesized beam. We argue that 21 cm tomography could be an ideal first application of a very large fast Fourier transform telescope, which would provide both massive sensitivity improvements per dollar and mitigate the off-beam point source foreground problem with its clean beam. Another potentially interesting application is cosmic microwave background polarization.

  16. Hubble Space Telescope satellite

    Science.gov (United States)

    Mitchell, R. E.

    1985-01-01

    The Hubble Space Telescope, named for the American astronomer Edwin Powell Hubble, will be the largest and most powerful astronomical instrument ever orbited. Placed above the obscuring effects of the earth's atmosphere in a 600-km orbit, this remotely-controlled, free-flying satellite observatory will expand the terrestrial-equivalent resolution of the universe by a factor of seven, or a volumetric factor of 350. This telescope has a 2.4-m primary mirror and can accommodate five scientific instruments (cameras, spectrographs and photometers). The optics are suitable for a spectral range from 1100 angstrom to 1 mm wavelength. With a projected service life of fifteen years, the spacecraft can be serviced on-orbit for replacement of degraded systems, to insert advanced scientific instruments, and to reboost the telescope from decayed altitudes. The anticipated image quality will be a result of extremely precise lambda/20 optics, stringent cleanliness, and very stable pointing: jitter will be held to less than 0.01 arcsecond for indefinite observation periods, consistent with instrument apertures as small as 0.1 arcsecond.

  17. SOAR Telescope Progress Report

    Science.gov (United States)

    Sebring, T.; Cecil, G.; Krabbendam, V.

    1999-12-01

    The 4.3m SOAR telescope is fully funded and under construction. A partnership between the country of Brazil, NOAO, Michigan State University, and the University of North Carolina at Chapel Hill, SOAR is being designed for high-quality imaging and imaging spectroscopy in the optical and near-IR over a field of view up to 12' diameter. US astronomers outside MSU and UNC will access 30% of the observing time through the standard NOAO TAC process. The telescope is being designed to support remote and synoptic observations. First light is scheduled for July 2002 at Cerro Pachon in Chile, a site with median seeing of 2/3" at 500 nm. The telescope will be operated by CTIO. Corning Inc. has fused the mirror blanks from boules of ULE glass. RSI in Richardson, Texas and Raytheon Optical Systems Inc. in Danbury, Conn. are designing and will fabricate the mount and active optics systems, respectively. The mount supports an instrument payload in excess of 5000 kg, at 2 Nasmyth locations and 3 bent Cass. ports. The mount and facility building have space for a laser to generate an artificial AO guide star. LabVIEW running under the Linux OS on compactPCI hardware has been adopted to control all telescope, detector, and instrument systems. The primary mirror is 10 cm thick and will be mounted on 120 electro-mechanical actuators to maintain its ideal optical figure at all elevations. The position of the light-weighted secondary mirror is adjusted to maintain collimation through use of a Shack-Hartmann wavefront sensor. The tertiary mirror feeds instruments and also jitters at up to 50 Hz to compensate for telescope shake and atmosphere wavefront tilt. The dome is a steel framework, with fiberglass panels. Air in the observing volume will be exchanged with that outside every few minutes by using large fans under computer control. All systems will be assembled and checked at the manufacturer's facility, then shipped to Chile. A short integration period is planned, and limited science

  18. ALMA telescope reaches new heights

    Science.gov (United States)

    2009-09-01

    the electromagnetic spectrum. Light at these wavelengths comes from some of the coldest, but also from some of the most distant objects in the cosmos. These include cold clouds of gas and dust where new stars are being born and remote galaxies towards the edge of the observable universe. The Universe is relatively unexplored at submillimetre wavelengths, as the telescopes need extremely dry atmospheric conditions, such as those at Chajnantor, and advanced detector technology. More information The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. ESO is the European partner in ALMA. ALMA, the largest astronomical project in existence, is a revolutionary telescope, comprising an array of 66 giant 12-metre and 7-metre diameter antennas observing at millimetre and submillimetre wavelengths. ALMA will start scientific observations in 2011. ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a

  19. Flasher and muon-based calibration of the GCT telescopes proposed for the Cherenkov Telescope Array

    CERN Document Server

    Brown, Anthony M; Chadwick, Paula M; Daniel, Michael; White, Richard

    2015-01-01

    The GCT is a dual-mirror Small-Sized-Telescope prototype proposed for the Cherenkov Telescope Array. Calibration of the GCT's camera is primarily achieved with LED-based flasher units capable of producing $\\sim4$ ns FWHM pulses of 400 nm light across a large dynamic range, from 0.1 up to 1000 photoelectrons. The flasher units are housed in the four corners of the camera's focal plane and illuminate it via reflection from the secondary mirror. These flasher units are adaptable to allow several calibration scenarios to be accomplished: camera flat-fielding, linearity measurements (up to and past saturation), and gain estimates from both single pe measurements and from the photon statistics at various high illumination levels. In these proceedings, the performance of the GCT flashers is described, together with ongoing simulation work to quantify the efficiency of using muon rings as an end-to-end calibration for the optical throughput of the GCT.

  20. The Planck Telescope reflectors

    Science.gov (United States)

    Stute, Thomas

    2004-09-01

    The mechanical division of EADS-Astrium GmbH, Friedrichshafen is currently engaged with the development, manufacturing and testing of the advanced dimensionally stable composite reflectors for the ESA satellite borne telescope Planck. The objective of the ESA mission Planck is to analyse the first light that filled the universe, the cosmic microwave background radiation. Under contract of the Danish Space Research Institute and ESA EADS-Astrium GmbH is developing the all CFRP primary and secondary reflectors for the 1.5-metre telescope which is the main instrument of the Planck satellite. The operational frequency ranges from to 25 GHz to 1000 GHz. The demanding high contour accuracy and surface roughness requirements are met. The design provides the extreme dimensional stability required by the cryogenic operational environment at around 40 K. The elliptical off-axis reflectors display a classical lightweight sandwich design with CFRP core and facesheets. Isostatic mounts provide the interfaces to the telescope structure. Protected VDA provides the reflecting surface. The manufacturing is performed at the Friedrichshafen premises of EADS-Space Transportation GmbH, the former Dornier composite workshops. Advanced manufacturing technologies like true angle lay-up by CNC fibre placement and filament winding are utilized. The protected coating is applied at the CAHA facilities at the Calar Alto Observatory, Spain. The exhaustive environmental testing is performed at the facilities of IABG, Munich (mechanical testing) and for the cryo-optical tests at CSL Liege. The project is in advanced state with both Qualification Models being under environmental testing. The flight models will be delivered in 2004. The paper gives an overview over the requirements and the main structural features how these requirements are met. Special production aspects and available test results are reported.

  1. The Cherenkov Telescope Array

    CERN Document Server

    Bigongiari, Ciro

    2016-01-01

    The Cherenkov Telescope Array (CTA) is planned to be the next generation ground based observatory for very high energy (VHE) gamma-ray astronomy. Gamma-rays provide a powerful insight into the non-thermal universe and hopefully a unique probe for new physics. Imaging Cherenkov telescopes have already discovered more than 170 VHE gamma-ray emitters providing plentiful of valuable data and clearly demonstrating the power of this technique. In spite of the impressive results there are indications that the known sources represent only the tip of the iceberg. A major step in sensitivity is needed to increase the number of detected sources, observe short time-scale variability and improve morphological studies of extended sources. An extended energy coverage is advisable to observe far-away extragalactic objects and improve spectral analysis. CTA aims to increase the sensitivity by an order of magnitude compared to current facilities, to extend the accessible gamma-ray energies from a few tens of GeV to a hundred o...

  2. Large Size Telescope Report

    CERN Document Server

    Mazin, D; Teshima, M

    2016-01-01

    The Cherenkov Telescope Array (CTA) observatory will be deployed over two sites in the two hemispheres. Both sites will be equipped with four Large Size Telescopes (LSTs), which are crucial to achieve the science goals of CTA in the 20-200 GeV energy range. Each LST is equipped with a primary tessellated mirror dish of 23 m diameter, supported by a structure made mainly of carbon fibre reinforced plastic tubes and aluminum joints. This solution guarantees light weight (around 100 tons), essential for fast repositioning to any position in the sky in <20 seconds. The camera is composed of 1855 photomultiplier tubes and embeds the control, readout and trigger electronics. The detailed design is now complete and production of the first LST, which will serve as a prototype for the remaining seven, is ongoing. The installation of the first LST at the Roque de los Muchachos Observatory on the Canary island of La Palma (Spain) started in July 2016. In this paper we will outline the technical solutions adopted to f...

  3. Magellan Telescopes operations 2008

    Science.gov (United States)

    Osip, David J.; Phillips, Mark M.; Palunas, Povilas; Perez, Frank; Leroy, M.

    2008-07-01

    The twin 6.5m Magellan Telescopes have been in routine operations at the Las Campanas Observatory in the Chilean Andes since 2001 and 2002 respectively. The telescopes are owned and operated by Carnegie for the benefit of the Magellan consortium members (Carnegie Institution of Washington, Harvard University, the University of Arizona, Massachusetts Institute of Technology, and the University of Michigan). This paper provides an up to date review of the scientific, technical, and administrative structure of the 'Magellan Model' for observatory operations. With a modest operations budget and a reasonably small staff, the observatory is operated in the "classical" mode, wherein the visiting observer is a key member of the operations team. Under this model, all instrumentation is supplied entirely by the consortium members and the various instrument teams continue to play a critical support role beyond initial deployment and commissioning activities. Here, we present a critical analysis of the Magellan operations model and suggest lessons learned and changes implemented as we continue to evolve an organizational structure that can efficiently deliver a high scientific return for the investment of the partners.

  4. Large size telescope report

    Science.gov (United States)

    Mazin, D.; Cortina, J.; Teshima, M.

    2017-01-01

    The Cherenkov Telescope Array (CTA) observatory will be deployed over two sites in the two hemispheres. Both sites will be equipped with four Large Size Telescopes (LSTs), which are crucial to achieve the science goals of CTA in the 20-200 GeV energy range. Each LST is equipped with a primary tessellated mirror dish of 23 m diameter, supported by a structure made mainly of carbon fibre reinforced plastic tubes and aluminum joints. This solution guarantees light weight (around 100 tons), essential for fast repositioning to any position in the sky in <20 seconds. The camera is composed of 1855 photomultiplier tubes and embeds the control, readout and trigger electronics. The detailed design is now complete and production of the first LST, which will serve as a prototype for the remaining seven, is ongoing. The installation of the first LST at the Roque de los Muchachos Observatory on the Canary island of La Palma (Spain) started in July 2016. In this paper we will outline the technical solutions adopted to fulfill the design requirements, present results of element prototyping and describe the installation and operation plans.

  5. Deep space telescopes

    CERN Document Server

    CERN. Geneva

    2006-01-01

    The short series of seminars will address results and aims of current and future space astrophysics as the cultural framework for the development of deep space telescopes. It will then present such new tools, as they are currently available to, or imagined by, the scientific community, in the context of the science plans of ESA and of all major world space agencies. Ground-based astronomy, in the 400 years since Galileo’s telescope, has given us a profound phenomenological comprehension of our Universe, but has traditionally been limited to the narrow band(s) to which our terrestrial atmosphere is transparent. Celestial objects, however, do not care about our limitations, and distribute most of the information about their physics throughout the complete electromagnetic spectrum. Such information is there for the taking, from millimiter wavelengths to gamma rays. Forty years astronomy from space, covering now most of the e.m. spectrum, have thus given us a better understanding of our physical Universe then t...

  6. Upgrade of the MAGIC telescopes

    CERN Document Server

    Mazin, Daniel; Garczarczyk, Markus; Giavitto, Gianluca; Sitarek, Julian

    2014-01-01

    The MAGIC telescopes are two Imaging Atmospheric Cherenkov Telescopes (IACTs) located on the Canary island of La Palma. With 17m diameter mirror dishes and ultra-fast electronics, they provide an energy threshold as low as 50 GeV for observations at low zenith angles. The first MAGIC telescope was taken in operation in 2004 whereas the second one joined in 2009. In 2011 we started a major upgrade program to improve and to unify the stereoscopic system of the two similar but at that time different telescopes. Here we report on the upgrade of the readout electronics and digital trigger of the two telescopes, the upgrade of the camera of the MAGIC I telescope as well as the commissioning of the system after this major upgrade.

  7. National Large Solar Telescope of Russia

    Science.gov (United States)

    Demidov, Mikhail

    One of the most important task of the modern solar physics is multi-wavelength observations of the small-scale structure of solar atmosphere on different heights, including chromosphere and corona. To do this the large-aperture telescopes are necessary. At present time there several challenging projects of the large (and even giant) solar telescopes in the world are in the process of construction or designing , the most known ones among them are 4-meter class telescopes ATST in USA and EST in Europe. Since 2013 the development of the new Large Solar Telescope (LST) with 3 meter diameter of the main mirror is started in Russia as a part (sub-project) of National Heliogeophysical Complex (NHGC) of the Russian Academy of Sciences. It should be located at the Sayan solar observatory on the altitude more then 2000 m. To avoid numerous problems of the off-axis optical telescopes (despite of the obvious some advantages of the off-axis configuration) and to meet to available financial budget, the classical on-axis Gregorian scheme on the alt-azimuth mount has been chosen. The scientific equipment of the LST-3 will include several narrow-band tunable filter devices and spectrographs for different wavelength bands, including infrared. The units are installed either at the Nasmyth focus or/and on the rotating coude platform. To minimize the instrumental polarization the polarization analyzer is located near diagonal mirror after M2 mirror. High order adaptive optics is used to achieve the diffraction limited performances. It is expected that after some modification of the optical configuration the LST-3 will operate as an approximately 1-m mirror coronograph in the near infrared spectral lines. Possibilities for stellar observations during night time are provided as well.

  8. Grid Integration of Robotic Telescopes

    CERN Document Server

    Breitling, F; Enke, H

    2008-01-01

    Robotic telescopes and grid technology have made significant progress in recent years. Both innovations offer important advantages over conventional technologies, particularly in combination with one another. Here, we introduce robotic telescopes used by the Astrophysical Institute Potsdam as ideal instruments for building a robotic telescope network. We also discuss the grid architecture and protocols facilitating the network integration that is being developed by the German AstroGrid-D project. Finally, we present three user interfaces employed for this purpose.

  9. Near Earth Object Survey Telescope

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The Near Earth Object Survey Telescope (NEOST), located at the Xuyi station of the Purple Mountain Observatory, is a telescope with the most powerful detection capacity, the highest efficiency and the best performance in the fields of near Earth object survey and optical imaging in China. NEOST is an 171.8 Schmidt type telescope with a 1.20 meter primary mirror and a 1.04 meter corrector,

  10. Gamma-Ray Telescopes: 400 Years of Astronomical Telescopes

    Science.gov (United States)

    Gehrels, Neil; Cannizzo, John K.

    2010-01-01

    The last half-century has seen dramatic developments in gamma-ray telescopes, from their initial conception and development through to their blossoming into full maturity as a potent research tool in astronomy. Gamma-ray telescopes are leading research in diverse areas such as gamma-ray bursts, blazars, Galactic transients, and the Galactic distribution of Al-26.

  11. Building Medium Size Telescope Structures for the Cherenkov Telescope Array

    CERN Document Server

    Schulz, A; Oakes, L; Schlenstedt, S; Schwanke, U

    2016-01-01

    The Cherenkov Telescope Array (CTA) is the future instrument in ground-based gamma-ray astronomy in the energy range from 20 GeV to 300 TeV. Its sensitivity will surpass that of current generation experiments by a factor $\\sim$10, facilitated by telescopes of three sizes. The performance in the core energy regime will be dominated by Medium Size Telescopes (MST) with a reflector of 12 m diameter. A full-size mechanical prototype of the telescope structure has been constructed in Berlin. The performance of the prototype is being evaluated and optimisations, among others, facilitating the assembly procedure and mass production possibilities are being implemented. We present the current status of the developments from prototyping towards pre-production telescopes, which will be deployed at the final site.

  12. The neutrino telescope ANTARES

    Directory of Open Access Journals (Sweden)

    Gleixner Andreas

    2014-04-01

    Full Text Available The ANTARES neutrino telescope is currently the largest neutrino detector in the Northern Hemisphere. The detector consists of a three-dimensional array of 885 photomultiplier tubes, distributed along 12 lines, located at a depth of 2500 m in the Mediterranean Sea. The purpose of the experiment is the detection of high-energy cosmic neutrinos. The detection principle is based on the observation of Cherenkov-Light emitted by muons resulting from charged-current interactions of muon neutrinos in the vicinity of the detection volume. The main scientific targets of ANTARES include the search for astrophysical neutrino point sources, the measurement of the diffuse neutrino flux and the indirect search for dark matter.

  13. The ANTARES neutrino telescope

    CERN Document Server

    Zornoza, Juan de Dios

    2012-01-01

    The ANTARES collaboration completed the installation of the first neutrino detector in the sea in 2008. It consists of a three dimensional array of 885 photomultipliers to gather the Cherenkov photons induced by relativistic muons produced in charged-current interactions of high energy neutrinos close to/in the detector. The scientific scope of neutrino telescopes is very broad: the origin of cosmic rays, the origin of the TeV photons observed in many astrophysical sources or the nature of dark matter. The data collected up to now have allowed us to produce a rich output of physics results, including the map of the neutrino sky of the Southern hemisphere, search for correlations with GRBs, flaring sources, gravitational waves, limits on the flux produced by dark matter self-annihilations, etc. In this paper a review of these results is presented.

  14. Composite telescope technology

    Science.gov (United States)

    Chen, Peter C.; Rabin, Douglas

    2014-07-01

    We report the development of optical mirrors based on polymer matrix composite materials. Advantages of this technology are low cost and versatility. By using appropriate combinations of polymers and various metallic and nonmetallic particles and fibers, the properties of the materials can be tailored to suit a wide variety of applications. We report the fabrication and testing of flat and curved mirrors made with metal powders, multiple mirrors replicated with high degree of uniformity from the same mandrels, cryogenic testing, mirrors made of ferromagnetic materials that can be actively or adaptively controlled by non-contact actuation, optics with very smooth surfaces made by replication, and by spincasting. We discuss development of a new generation of ultra-compact, low power active optics and 3D printing of athermal telescopes.

  15. Telescopes for the 1980s

    Science.gov (United States)

    Neugebauer, G.

    In the last decades, astronomy has been changed in a number of significant ways. The number of large optical telescopes with diameters on the order of or larger than 2.3 m has increased from 3 shortly after World War II to about 20 at the present time. Whereas prewar astronomy was largely devoted to the visual wavelengths (0.3-0.8 μm), astronomical observations currently span the range from γ ray wavelengths to the longest radio wavelengths. Most significantly, astronomy outside conventional optical astronomy has developed into sophisticated disciplines rather than experimental explorations. Many of the observational advances at the forefront of astronomy now come from other than visual observations. Along with these changes have come fundamental changes in visual astronomy itself. Observations with photographic plates are the exception rather than the rule at most large observatories. Instead, electronic cameras are in common use. A second change, especially in the United States, is that the funding has gone from largely private funding (e.g., the Carnegie Institution of Washington) to funding with the government providing a main share of the support. Indeed, the government has provided the total funding for those disciplines, like X ray astronomy, which use space-borne platforms. These changes have also affected the character of doing astronomy, and astronomers have become much more politically active on the national science scene.

  16. The next generation Cherenkov Telescope Array observatory: CTA

    CERN Document Server

    Vercellone, Stefano

    2014-01-01

    The Cherenkov Telescope Array (CTA) is a large collaborative effort aimed at the design and operation of an observatory dedicated to the VHE gamma-ray astrophysics in the energy range 30 GeV-100 TeV, which will improve by about one order of magnitude the sensitivity with respect to the current major arrays (H.E.S.S., MAGIC, and VERITAS). In order to achieve such improved performance, for both the northern and southern CTA sites, four units of 23m diameter Large Size Telescopes (LSTs) will be deployed close to the centre of the array with telescopes separated by about 100m. A larger number (about 25 units) of 12m Medium Size Telescopes (MSTs, separated by about 150m), will cover a larger area. The southern site will also include up to 24 Schwarzschild-Couder dual-mirror medium-size Telescopes (SCTs) with the primary mirror diameter of 9.5m. Above a few TeV, the Cherenkov light intensity is such that showers can be detected even well outside the light pool by telescopes significantly smaller than the MSTs. To a...

  17. A novel fully differential telescopic operational transconductance amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Li Tianwang; Jiang Jinguang [Department of Integrated Circuits and Communication Software, International School of Software, Wuhan University, Wuhan 430079 (China); Ye Bo, E-mail: jgjiang95@yahoo.com.c [Faculty of Computer and Information Engineering, Shanghai University of Electric Power, Shanghai 200090 (China)

    2009-08-15

    A novel fully differential telescopic operational transconductance amplifier (OTA) is proposed. An additional PMOS differential pair is introduced to improve the unit-gain bandwidth of the telescopic amplifier. At the same time, the slew rate is enhanced by the auxiliary slew rate boost circuits. The proposed OTA is designed in a 0.18{mu}m CMOS process. Simulation results show that there is a 49% improvement in the unit-gain bandwidth compared to that of a conventional OTA; moreover, the DC gain and the slew rate are also enhanced. (semiconductor integrated circuits)

  18. Infrared up-conversion telescope

    DEFF Research Database (Denmark)

    2014-01-01

    There is presented to an up-conversion infrared telescope (110) arranged for imaging an associated scene (130), wherein the up-conversion infrared telescope (110) comprises a non-linear crystal (120) arranged for up-conversion of infrared electromagnetic radiation, and wherein a first optical...

  19. European Solar Telescope: Progress status

    NARCIS (Netherlands)

    Collados, M.; Bettonvil, F.C.M.; Cavaller, L.; Ermolli, I.; Gelly, B.; Pérez, A.; Socas-Navarro, H.; Soltau, D.; Volkmer, R.

    2010-01-01

    In this paper, the present status of the development of the design of the European Solar Telescope is described. The telescope is devised to have the best possible angular resolution and polarimetric performance, maximizing the throughput of the whole system. To that aim, adaptive optics and multi-c

  20. Seismic Imager Space Telescope

    Science.gov (United States)

    Sidick, Erkin; Coste, Keith; Cunningham, J.; Sievers,Michael W.; Agnes, Gregory S.; Polanco, Otto R.; Green, Joseph J.; Cameron, Bruce A.; Redding, David C.; Avouac, Jean Philippe; Ampuero, Jean Paul; Leprince, Sebastien; Michel, Remi

    2012-01-01

    A concept has been developed for a geostationary seismic imager (GSI), a space telescope in geostationary orbit above the Pacific coast of the Americas that would provide movies of many large earthquakes occurring in the area from Southern Chile to Southern Alaska. The GSI movies would cover a field of view as long as 300 km, at a spatial resolution of 3 to 15 m and a temporal resolution of 1 to 2 Hz, which is sufficient for accurate measurement of surface displacements and photometric changes induced by seismic waves. Computer processing of the movie images would exploit these dynamic changes to accurately measure the rapidly evolving surface waves and surface ruptures as they happen. These measurements would provide key information to advance the understanding of the mechanisms governing earthquake ruptures, and the propagation and arrest of damaging seismic waves. GSI operational strategy is to react to earthquakes detected by ground seismometers, slewing the satellite to point at the epicenters of earthquakes above a certain magnitude. Some of these earthquakes will be foreshocks of larger earthquakes; these will be observed, as the spacecraft would have been pointed in the right direction. This strategy was tested against the historical record for the Pacific coast of the Americas, from 1973 until the present. Based on the seismicity recorded during this time period, a GSI mission with a lifetime of 10 years could have been in position to observe at least 13 (22 on average) earthquakes of magnitude larger than 6, and at least one (2 on average) earthquake of magnitude larger than 7. A GSI would provide data unprecedented in its extent and temporal and spatial resolution. It would provide this data for some of the world's most seismically active regions, and do so better and at a lower cost than could be done with ground-based instrumentation. A GSI would revolutionize the understanding of earthquake dynamics, perhaps leading ultimately to effective warning

  1. Operating a heterogeneous telescope network

    Science.gov (United States)

    Allan, Alasdair; Bischoff, Karsten; Burgdorf, Martin; Cavanagh, Brad; Christian, Damien; Clay, Neil; Dickens, Rob; Economou, Frossie; Fadavi, Mehri; Frazer, Stephen; Granzer, Thomas; Grosvenor, Sandy; Hessman, Frederic V.; Jenness, Tim; Koratkar, Anuradha; Lehner, Matthew; Mottram, Chris; Naylor, Tim; Saunders, Eric S.; Solomos, Nikolaos; Steele, Iain A.; Tuparev, Georg; Vestrand, W. Thomas; White, Robert R.; Yost, Sarah

    2006-06-01

    In the last few years the ubiquitous availability of high bandwidth networks has changed the way both robotic and non-robotic telescopes operate, with single isolated telescopes being integrated into expanding "smart" telescope networks that can span continents and respond to transient events in seconds. The Heterogeneous Telescope Networks (HTN)* Consortium represents a number of major research groups in the field of robotic telescopes, and together we are proposing a standards based approach to providing interoperability between the existing proprietary telescope networks. We further propose standards for interoperability, and integration with, the emerging Virtual Observatory. We present the results of the first interoperability meeting held last year and discuss the protocol and transport standards agreed at the meeting, which deals with the complex issue of how to optimally schedule observations on geographically distributed resources. We discuss a free market approach to this scheduling problem, which must initially be based on ad-hoc agreements between the participants in the network, but which may eventually expand into a electronic market for the exchange of telescope time.

  2. Why systems engineering on telescopes?

    Science.gov (United States)

    Swart, Gerhard P.; Meiring, Jacobus G.

    2003-02-01

    Although Systems Engineering has been widely applied to the defence industry, many other projects are unaware of its potential benefits when correctly applied, assuming that it is an expensive luxury. It seems that except in a few instances, telescope projects are no exception, prompting the writing of this paper. The authors postulate that classical Systems Engineering can and should be tailored, and then applied to telescope projects, leading to cost, schedule and technical benefits. This paper explores the essence of Systems Engineering and how it can be applied to any complex development project. The authors cite real-world Systems Engineering examples from the Southern African Large Telescope (SALT). The SALT project is the development and construction of a 10m-class telescope at the price of a 4m telescope. Although SALT resembles the groundbreaking Hobby-Eberly Telescope (HET) in Texas, the project team are attempting several challenging changes to the original design, requiring a focussed engineering approach and discernment in the definition of the telescope requirements. Following a tailored Systems Engineering approach on this project has already enhanced the quality of decisions made, improved the fidelity of contractual specifications for subsystems, and established criteria testing their performance. Systems Engineering, as applied on SALT, is a structured development process, where requirements are formally defined before the award of subsystem developmental contracts. During this process conceptual design, modeling and prototyping are performed to ensure that the requirements were realistic and accurate. Design reviews are held where the designs are checked for compliance with the requirements. Supplier factory and on-site testing are followed by integrated telescope testing, to verify system performance against the specifications. Although the SALT project is still far from completion, the authors are confident that the present benefits from

  3. Skylab Apollo Telescope Mount Spar and Sun End

    Science.gov (United States)

    1971-01-01

    The Apollo Telescope Mount (ATM) was designed and developed by the Marshall Space Flight Center and served as the primary scientific instrument unit aboard Skylab (1973-1979). The ATM contained eight complex astronomical instruments designed to observe the Sun over a wide spectrum from visible light to x-rays. This image depicts the sun end and spar of the ATM flight unit showing individual telescopes. All solar telescopes, the fine Sun sensors, and some auxiliary systems are mounted on the spar, a cruciform lightweight perforated metal mounting panel that divides the canister lengthwise into four equal compartments. The spar assembly was nested inside a cylindrical canister that fit into a complex frame named the rack, and was protected by the solar shield.

  4. Formation flight astronomical survey telescope

    Science.gov (United States)

    Tsunemi, Hiroshi

    2012-03-01

    Formation Flight Astronomical Survey Telescope (FFAST) is a project for hard X-ray observation. It consists of two small satellites; one (telescope satellite) has a super mirror covering the energy range up to 80 keV while the other (detector satellite) has an scintillator deposited CCD (SDCCD) having good spatial resolution and high efficiency up to 100 keV. Two satellites will be put into individual Kepler orbits forming an X-ray telescope with a focal length of 20 m. They will be not in pointing mode but in survey mode to cover a large sky region.

  5. The Automatic Telescope Network (ATN)

    CERN Document Server

    Mattox, J R

    1999-01-01

    Because of the scheduled GLAST mission by NASA, there is strong scientific justification for preparation for very extensive blazar monitoring in the optical bands to exploit the opportunity to learn about blazars through the correlation of variability of the gamma-ray flux with flux at lower frequencies. Current optical facilities do not provide the required capability.Developments in technology have enabled astronomers to readily deploy automatic telescopes. The effort to create an Automatic Telescope Network (ATN) for blazar monitoring in the GLAST era is described. Other scientific applications of the networks of automatic telescopes are discussed. The potential of the ATN for science education is also discussed.

  6. Bhavnagar Telescope: the most widely travelled telescope in the country

    CERN Document Server

    Rao, N Kameswara; Vagiswari, A

    2014-01-01

    In the last decade of the 19th century Maharaja Takhtasingji Observatory was built at Poona (1888-1912) under the supervision of K.D.Naegamavala, with the grant from Maharaja of Bhavnagar (from where the name Bhavnagar Telescope must have originated. The story of this telescope from its inception to the current status is traced. IIA Archives has been extensively used to resource information for this note.

  7. Ice Middleware in the New Solar Telescope's Telescope Control System

    Science.gov (United States)

    Shumko, S.

    2009-09-01

    The Big Bear Solar Observatory (BBSO) is now in the process of assembling and aligning its 1.6 m New Solar Telescope (NST). There are many challenges controlling NST and one of them is establishing reliable and robust communications between different parts of the Telescope Control System (TCS). For our TCS we selected Ice (Internet communication engine) from ZeroC, Inc. In this paper we discuss advantages of the Ice middleware, details of implementation and problems we face implementing it.

  8. 安图医院尿路感染患者中段尿中分离出的粪肠球菌和屎肠球菌的耐药性分析%Analysis on the drug resistance of Enterococcus faecalis and Enterococcus faecium isolated from the midstream urine of patients with urinary tract infection in Antu Hospital

    Institute of Scientific and Technical Information of China (English)

    鲍彩丽; 范倩燕; 吴迪; 汤园园; 谈秋雯; 张雪莲

    2014-01-01

    目的:分析安图医院尿路感染患者中段尿中分离出的粪肠球菌和屎肠球菌的耐药性及耐药基因,为临床用药提供参考。方法选取尿路感染患者中段尿中分离出的粪肠球菌(23株)和屎肠球菌(18株),采用API进行菌种鉴定,纸片扩散法进行体外药物敏感性试验,并采用聚合酶链反应(PCR)对其耐药基因进行检测。结果23株粪肠球菌中tetM、ermB、aac(6′)/aph(2′)、ant(6)-Ⅰ和aph(3′)-Ⅲ基因阳性检出率分别为65.2%、82.6%、100.0%、100.0%和100.0%;18株屎肠球菌中tetM、ermB、aac(6′)/aph(2′)、ant(6)-Ⅰ和aph(3′)-Ⅲ基因阳性检出率分别为55.5%、55.5%、100.0%、94.4%和100.0%。粪肠球菌对青霉素、四环素、环丙沙星、左氧氟沙星、红霉素的耐药率>50.0%,屎肠球菌对青霉素、氨苄西林、环丙沙星、左氧氟沙星、红霉素的耐药率为100.0%。结论临床分离的肠球菌属耐药相关基因携带率很高,肠球菌属对多种抗菌药物耐药率较高。%Objective To analyze the drug resistance and gene of Enterococcus faecalis and Enterococcus faecium isolated from the midstream urine of patients with urinary tract infection in Antu Hospital,and to provide the reference for clinical medication.Methods Enterococcus faecalis (23 isolates)and Enterococcus faecium (1 8 isolates)were isolated and collected from the midstream urine of patients with urinary tract infection.The bacteria were identified by API,and drug sensitivity test was done by Kirby-Bauer disk diffusion method.Drug resistance genes were also detected by polymerase chain reaction(PCR).Results The positive rates of tetM,ermB,aac(6′)/aph(2′),ant(6)-Ⅰ and aph(3′)-Ⅲ genes were 65.2%,82.6%,1 00.0%,1 00.0% and 1 00.0% in the 23 isolates of Enterococcus faecalis. In the 1 8 isolates of Enterococcus faecium,the positive rates of tet

  9. The small size telescope projects for the Cherenkov Telescope Array

    CERN Document Server

    ,

    2015-01-01

    The small size telescopes (SSTs), spread over an area of several square km, dominate the CTA sensitivity in the photon energy range from a few TeV to over 100 TeV, enabling for the detailed exploration of the very high energy gamma-ray sky. The proposed telescopes are innovative designs providing a wide field of view. Two of them, the ASTRI (Astrophysics con Specchi a Tecnologia Replicante Italiana) and the GCT (Gamma-ray Cherenkov Telescope) telescopes, are based on dual mirror Schwarzschild-Couder optics, with primary mirror diameters of 4 m. The third, SST-1M, is a Davies-Cotton design with a 4 m diameter mirror. Progress with the construction and testing of prototypes of these telescopes is presented. The SST cameras use silicon photomultipliers, with preamplifier and readout/trigger electronics designed to optimize the performance of these sensors for (atmospheric) Cherenkov light. The status of the camera developments is discussed. The SST sub-array will consist of about 70 telescopes at the CTA souther...

  10. Lightweighted ZERODUR for telescopes

    Science.gov (United States)

    Westerhoff, T.; Davis, M.; Hartmann, P.; Hull, T.; Jedamzik, R.

    2014-07-01

    The glass ceramic ZERODUR® from SCHOTT has an excellent reputation as mirror blank material for earthbound and space telescope applications. It is known for its extremely low coefficient of thermal expansion (CTE) at room temperature and its excellent CTE homogeneity. Recent improvements in CNC machining at SCHOTT allow achieving extremely light weighted substrates up to 90% incorporating very thin ribs and face sheets. In 2012 new ZERODUR® grades EXPANSION CLASS 0 SPECIAL and EXTREME have been released that offer the tightest CTE grades ever. With ZERODUR® TAILORED it is even possible to offer ZERODUR® optimized for customer application temperature profiles. In 2013 SCHOTT started the development of a new dilatometer setup with the target to drive the industrial standard of high accuracy thermal expansion metrology to its limit. In recent years SCHOTT published several paper on improved bending strength of ZERODUR® and lifetime evaluation based on threshold values derived from 3 parameter Weibull distribution fitted to a multitude of stress data. ZERODUR® has been and is still being successfully used as mirror substrates for a large number of space missions. ZERODUR® was used for the secondary mirror in HST and for the Wolter mirrors in CHANDRA without any reported degradation of the optical image quality during the lifetime of the missions. Some years ago early studies on the compaction effects of electron radiation on ZERODUR® were re analyzed. Using a more relevant physical model based on a simplified bimetallic equation the expected deformation of samples exposed in laboratory and space could be predicted in a much more accurate way. The relevant ingredients for light weighted mirror substrates are discussed in this paper: substrate material with excellent homogeneity in its properties, sufficient bending strengths, space radiation hardness and CNC machining capabilities.

  11. Telescopic drilling rod

    Energy Technology Data Exchange (ETDEWEB)

    Kagan, I.L.; Berezov, S.I.; Gavrilov, G.A.; Goykhman, Ya.A.; Makushkin, D.O.; Rachev, M.P.; Voynich, L.K.

    1981-09-07

    The telescopic drilling rod includes an inner section of the rod, in whose center cable has been passed and is attached a bearing assembly connecting it to the winch, outer section of rod along which there is pipeline connecting the working cavity formed by the inner section of rod and the housing, installed on the lower end of the outer section of rod, with cavity formed by framework of the guide swivel and end piece and connected to the hydraulic system of the machine by pipeline, as well as clamping elements. In order to drill wells to a depth greater than the length of the outer sectrion of the rod, the latter jointly with the inner section of rod is lowered into the extreme lower position until swivel rests on the feed mechanism. With further slipping of cable and the absence of pressure in the hydraulic system, clamping elements do not have an effect on the inner section of rod. It has the opportunity to freely move along the outer section of rod downwards to the face. When pressure is supplied on pipeline into cavity and further through pipeline into working cavity, the inner section of rod is clamped with feed of the outer section in the process of drilling, both sections move jointly. Because of the link between working cavity of sleeve installed on the lower end of the outer section of rod, and the hydraulic system of the machine through the swivel cavity, it is possible to fix the drilling rod in any mutual axial position of the section.

  12. BCK Network of Optical Telescopes

    Science.gov (United States)

    McGruder, Charles H.; Antoniuk, Krill; Carini, Michael T.; Gelderman, Richard; Hammond, Benjamin; Hicks, Stacy; Laney, David; Shakhovskoy, David; Strolger, Louis-Gregory; Williams, Joshua

    2015-01-01

    The BCK network consists of three research grade telescopes: 0.6m (B) at the Bell Observatory near Western Kentucky University (WKU), 1.3m (C) at the Crimean Astrophysical Observatory and a 1.3m (K) at Kitt Peak National Observatory. The Bell Telescope is operated remotely from WKU while the Robotically Controlled Telescope (RCT) at Kitt Peak possesses an autonomous scheduler. The BCK telescopes are distributed longitudinally over 145º and can be used to observe continuously up to 21.2 hours/day. The network will be chiefly employed to observe variable stars, blazars and unpredictable celestial events.Because celestial objects with ground-based telescopes cannot be observed optically during the daytime, continuous ground-based astronomical observations are only possible via a network of longitudinally distributed telescopes. When the sun rises in Crimea after it sets at Bell, continuous observations are possible. This occurs for about six and ½ months per year - mid September to early April. A network is highly desirable for events that are not predictable for instance the appearance of supernovae, gamma-ray bursts, or undiscovered exoplanetsVariable stars are really only known in significant numbers to about 14 mag. But, as the magnitude increases the number of stars in any field increases very sharply, so there are many variable stars to discover at faint magnitude (m > 14). Discovering new variables makes great undergraduate student projects, a major component of astronomical research at WKU. In addition, pinning down the periods of variable stars is greatly facilitated with a network of telescopes.The BCK telescope network will also be used for monitoring the optical variability of blazars. The network provides increased coverage on daily variability timescales by minimizing interruptions due to weather and or mechanical problems at any one observatory and is used for obtaining continuous (12+ hours) of observations of rapid variability in blazars which would

  13. Hubble Space Telescope-Illustration

    Science.gov (United States)

    1989-01-01

    This illustration depicts a side view of the Hubble Space Telescope (HST). The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is approximately the size of a railroad car, with two cylinders joined together and wrapped in a silvery reflective heat shield blanket. Wing-like solar arrays extend horizontally from each side of these cylinders, and dish-shaped anternas extend above and below the body of the telescope. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  14. The Large Binocular Telescope Project

    Science.gov (United States)

    Hill, J. M.

    1995-05-01

    The Large Binocular Telescope (LBT) Project has evolved from concepts first proposed in 1985. The present partners involved in the design and construction of this 2 x 8.4 meter binocular telescope are the University of Arizona, Italy represented by the Osservatorio Astrofisico di Arcetri and the Research Corporation based in Tucson. These three partners have committed sufficient funds to build the enclosure and the telescope populated with a single 8.4 meter optical train --- approximately 40 million dollars (1989). Based on this commitment, design and construction activities are now moving forward. Additional partners are being sought. The next mirror to be cast at the Steward Observatory Mirror Lab in spring of 1996 will be the first borosilicate honeycomb primary for LBT. The baseline optical configuration of LBT includes wide field Cassegrain secondaries with optical foci above the primaries to provide a corrected one degree field at F/4. The infrared F/15 secondaries are a Gregorian design to allow maximicrons flexibility for adaptive optics. The F/15 secondaries are undersized to provide a low thermal background focal plane which is unvignetted over a 4 arcminute diameter field-of-view. The interferometric focus combining the light from the two 8.4 meter primaries will reimage two folded Gregorian focal planes to a central location. The telescope elevation structure accommodates swing arms which allow rapid interchange of the various secondary and tertiary mirrors. Maximicrons stiffness and minimal thermal disturbance continue to be important drivers for the detailed design of the telescope. The telescope structure accommodates installation of a vacuum bell jar for aluminizing the primary mirrors in-situ on the telescope. The detailed design of the telescope structure will be completed in 1995 by ADS Italia (Lecco) and European Industrial Engineering (Mestre). The final enclosure design is now in progress at M3 Engineering (Tucson) and ADS Italia

  15. The calculus of telescopic urbanism

    OpenAIRE

    Arabindoo, P.

    2013-01-01

    Developing Amin's invocation of a telescopic urbanism as more than a visual metaphor, this paper seeks to rethink its epistemological and methodological focus, resisting at the same time the tendency to oversimplify the relationship between the different optics he outlines. Threatened by a dominant meta-narrative of a numerically driven calculus, this paper identifies an opportunity in Amin's telescopic urbanism to reject the 'big-data' approach to the city. In this context, it challenges the...

  16. The ASTRI prototype and mini-array: precursor telescopes for the Cherenkov Telescope Array

    Science.gov (United States)

    Pareschi, Giovanni

    2016-07-01

    In the framework of the Cherenkov Telescope Array (CTA) Observatory, the Italian National Institute of Astrophysics (INAF) has recently inaugurated in Sicily (Italy), at the Serra La Nave astronomical site on the slopes of Mount Etna, a large field of view (9.6 degrees) dual-mirror prototype (ASTRI SST-2M) of the CTA small size class of telescopes. CTA plans to install about 70 small size telescopes in the southern site to allow the study of the gamma rays from a few TeV up to hundreds of TeV. The ASTRI SST-2M telescope prototype has been developed following an end-to-end approach, since it includes the entire system of structure, mirror's optics (primary and secondary mirrors), camera, and control/acquisition software. Although it is a technological prototype, the ASTRI SST-2M prototype will be able to perform systematic monitoring of bright TeV sources. A remarkable improvement in terms of performance could come from the operation of the ASTRI mini-array, led by INAF in synergy with the Universidade de Sao Paulo (Brazil) and the North-West University (South Africa) and with also a contribution by INFN. The ASTRI mini-array will be composed of at least nine ASTRI SST-2M units. It is proposed as one of the CTA mini-array of telescope precursors and initial seeds of CTA, to be installed at the final CTA southern site. Apart from the assessment of a number of technological aspects related to CTA, the ASTRI mini-array will extend and improve the sensitivity, similar to the H.E.S.S. one in the 1-10 TeV energy range, up to about 100 TeV.

  17. Demonstration Telescopes Using "Dollar Optics"

    Science.gov (United States)

    Ross, Paul

    2008-05-01

    I propose a poster that illustrates the use of "dollar optics” for experimentation and for the creation of demonstration telescopes. Handling a variety of lenses and mirrors provides an opportunity for discovering practical optics. Some part of this path of exploration must have been traveled by Galileo as he experimented with spectacle lenses. "Dollar optics” include reading glasses (positive meniscus lenses), convex and concave mirrors, Fresnel sheets, magnifying lenses, and eye loupes. Unwanted distance spectacles (negative meniscus lenses) are available at second-hand stores. Galileo telescopes, "long” 17th century telescopes, and useful demonstration models of Newtonian reflectors can be made with "dollar” optics. The poster will illustrate practical information about "dollar optics” and telescopes: magnification, focal length, and "diopters” disassembling spectacles; creating cheap mounts for spectacle lenses; the importance of optical axes and alignment; eyepieces; and focusing. (A table would be useful with the poster to set out a hands-on display of "dollar optic” telescopes.) Educators, experimenters, and those concerned with astronomy outreach might be interested in this poster. Working with "dollar optics” requires facility with simple tools, interest in planning projects, patience, imagination, and the willingness to invest some time and effort. "Dollar optics” may help to foster creativity and hands-on enthusiasm - as did Galileo's work with simple lenses 400 years ago. "Oh! When will there be an end put to the new observations and discoveries of this admirable instrument?” - Galileo Galilei as quoted by Henry C. King, The History of the Telescope.

  18. The upgraded MAGIC Cherenkov telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Tescaro, D., E-mail: dtescaro@iac.es [Instituto de Astrofísica de Canarias (IAC), E-38205 La Laguna, Tenerife (Spain); Universidad de La Laguna (ULL), Dept. Astrofísica, E-38206 La Laguna, Tenerife (Spain)

    2014-12-01

    The MAGIC Cherenkov telescopes underwent a major upgrade in 2011 and 2012. A new 1039-pixel camera and a larger area digital trigger system were installed in MAGIC-I, making it essentially identical to the newer MAGIC-II telescope. The readout systems of both telescopes were also upgraded, with fully programmable receiver boards and DRS4-chip-based digitization systems. The upgrade eased the operation and maintenance of the telescopes and also improved significantly their performance. The system has now an integral sensitivity as good as 0.6% of the Crab Nebula flux (for E>400GeV), with an effective analysis threshold at 70 GeV. This allows MAGIC to secure one of the leading roles among the current major ground-based Imaging Atmospheric Cherenkov telescopes for the next 5–10 years. - Highlights: • In 2011 and 2012 the MAGIC telescopes underwent a two-stage major upgrade. • The new camera of MAGIC-I allows us to exploit a 1.4 larger trigger area. • The novel DRS4-based readout systems allow a cost-effective ultra-fast digitization. • The upgrade greatly improved the maintainability of the system. • MAGIC has now an optimal integral sensitivity of 0.6% of the Crab Nebula flux.

  19. SLAS Library Telescope Program (Abstract)

    Science.gov (United States)

    Small, J. S.

    2016-12-01

    (Abstract only) In the fall of 2014, I submitted to the members of the St. Louis Astronomical Society to take the $1,000 profit we had from a convention we had hosted and use it to purchase three telescopes to modify for a Library Telescope program that was invented by Mark Stowbridge and promoted by the New Hampshire Astronomical Society. I had met Mark at NEAF in 2012 when he was walking the floor demonstrating the telescope. We held meetings with three libraries, the St. Louis County Library system, the St. Louis Public Library system and an independent library in Kirkwood, Missouri. The response was overwhelming! SLCL responded with a request for ten telescopes and SLPL asked for five. We did our first build in October, 2014 and placed a total of eighteen telescopes. Since that time, SLAS has placed a total of eighty-eight telescopes in library systems around the St. Louis Metro area, expanding into neighboring counties and across the river in Illinois. In this talk, I will discuss how to approach this project and put it in place in your libraries!

  20. Concept Design for SOAR Telescope

    Science.gov (United States)

    Sebring, T.; Cecil, G.; Krabbendam, V.; Moretto, G.

    1998-12-01

    The Southern Astrophysical Research (SOAR) telescope is a \\$28M collaboration between Brazil, NOAO, Michigan State University, and the University of North Carolina at Chapel Hill. NOAO will operate the telescope for 20 years in exchange for 30 astronomers.) The project is now fully funded. This f/16 telescope is optimized for high-quality images across the isokinetic field (0."17 FWHM degradation from the telescope+facility over a field of 7.5' diameter.) It is being designed to take up to 2 Gemini-class (2100 kg) instruments, or a combination of lighter instruments at 7 Nasmyth and bent Cassegrain foci. The facility is now under construction atop Cerro Pachon, 400m from Gemini-S. First light is currently scheduled for early 2002. Corning Inc. is preparing to fabricate the 4.2m-diameter, 7.5-10 cm thick primary mirror from ULE glass. In early 1999 contacts will be awarded for 2 major subsystems: active optics (which includes optics polishing), and the alt.-az. telescope mount. We will outline the novel strategies that are being used to control project costs while optimizing telescope performance. Instrumentation plans will also be summarized.

  1. Cryogenic optical test planning using the Optical Telescope Element Simulator with the James Webb Space Telescope Integrated Science Instrument Module

    Science.gov (United States)

    Reichard, Timothy A.; Bond, Nicholas A.; Greeley, Bradford W.; Malumuth, Eliot M.; Melendez, Marcio; Shiri, Ron; Alves de Oliveira, Catarina; Antonille, Scott R.; Birkmann, Stephan; Davis, Clinton; Dixon, William V.; Martel, André R.; Miskey, Cherie L.; Ohl, Raymond G.; Sabatke, Derek; Sullivan, Joseph

    2016-09-01

    NASA's James Webb Space Telescope (JWST) is a 6.5 m diameter, segmented, deployable telescope for cryogenic infrared space astronomy ( 40 K). The JWST Observatory architecture includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM) element that contains four science instruments (SIs), including a guider. The SI and guider units are integrated to the ISIM structure and optically tested at NASA Goddard Space Flight Center as an instrument suite using a telescope simulator (Optical Telescope Element SIMulator; OSIM). OSIM is a high-fidelity, cryogenic JWST telescope simulator that features a 1.5m diameter powered mirror. The SIs are aligned to the flight structure's coordinate system under ambient, clean room conditions using optomechanical metrology and customized interfaces. OSIM is aligned to the ISIM mechanical coordinate system at the cryogenic operating temperature via internal mechanisms and feedback from alignment sensors and metrology in six degrees of freedom. SI performance, including focus, pupil shear, pupil roll, boresight, wavefront error, and image quality, is evaluated at the operating temperature using OSIM. The comprehensive optical test plans include drafting OSIM source configurations for thousands of exposures ahead of the start of a cryogenic test campaign. We describe how we predicted the performance of OSIM light sources illuminating the ISIM detectors to aide in drafting these optical tests before a test campaign began. We also discuss the actual challenges and successes of those exposure predictions encountered during a test campaign to fulfill the demands of the ISIM optical performance verification.

  2. The next generation Cherenkov Telescope Array observatory: CTA

    Energy Technology Data Exchange (ETDEWEB)

    Vercellone, S., E-mail: stefano@ifc.inaf.it

    2014-12-01

    The Cherenkov Telescope Array (CTA) is a large collaborative effort aimed at the design and operation of an observatory dedicated to the very high-energy gamma-ray astrophysics in the energy range 30 GeV–100 TeV, which will improve by about one order of magnitude the sensitivity with respect to the current major arrays (H.E.S.S., MAGIC, and VERITAS). In order to achieve such improved performance, for both the northern and southern CTA sites, four units of 23 m diameter Large Size Telescopes (LSTs) will be deployed close to the centre of the array with telescopes separated by about 100 m. A larger number (about 25 units) of 12 m Medium Size Telescopes (MSTs, separated by about 150 m), will cover a larger area. The southern site will also include up to 24 Schwarzschild–Couder dual-mirror medium-size Telescopes (SCTs) with the primary mirror diameter of 9.5 m. Above a few TeV, the Cherenkov light intensity is such that showers can be detected even well outside the light pool by telescopes significantly smaller than the MSTs. To achieve the required sensitivity at high energies, a huge area on the ground needs to be covered by Small Size Telescopes (SSTs) with a field of view of about 10° and an angular resolution of about 0.2°, making the dual-mirror configuration very effective. The SST sub-array will be composed of 50–70 telescopes with a mirror area of about 5–10 m{sup 2} and about 300 m spacing, distributed across an area of about 10 km{sup 2}. In this presentation we will focus on the innovative solution for the optical design of the medium and small size telescopes based on a dual-mirror configuration. This layout will allow us to reduce the dimension and the weight of the camera at the focal plane of the telescope, to adopt Silicon-based photo-multipliers as light detectors thanks to the reduced plate-scale, and to have an optimal imaging resolution on a wide field of view.

  3. The next generation Cherenkov Telescope Array observatory: CTA

    Science.gov (United States)

    Vercellone, S.

    2014-12-01

    The Cherenkov Telescope Array (CTA) is a large collaborative effort aimed at the design and operation of an observatory dedicated to the very high-energy gamma-ray astrophysics in the energy range 30 GeV-100 TeV, which will improve by about one order of magnitude the sensitivity with respect to the current major arrays (H.E.S.S., MAGIC, and VERITAS). In order to achieve such improved performance, for both the northern and southern CTA sites, four units of 23 m diameter Large Size Telescopes (LSTs) will be deployed close to the centre of the array with telescopes separated by about 100 m. A larger number (about 25 units) of 12 m Medium Size Telescopes (MSTs, separated by about 150 m), will cover a larger area. The southern site will also include up to 24 Schwarzschild-Couder dual-mirror medium-size Telescopes (SCTs) with the primary mirror diameter of 9.5 m. Above a few TeV, the Cherenkov light intensity is such that showers can be detected even well outside the light pool by telescopes significantly smaller than the MSTs. To achieve the required sensitivity at high energies, a huge area on the ground needs to be covered by Small Size Telescopes (SSTs) with a field of view of about 10° and an angular resolution of about 0.2°, making the dual-mirror configuration very effective. The SST sub-array will be composed of 50-70 telescopes with a mirror area of about 5-10 m2 and about 300 m spacing, distributed across an area of about 10 km2. In this presentation we will focus on the innovative solution for the optical design of the medium and small size telescopes based on a dual-mirror configuration. This layout will allow us to reduce the dimension and the weight of the camera at the focal plane of the telescope, to adopt Silicon-based photo-multipliers as light detectors thanks to the reduced plate-scale, and to have an optimal imaging resolution on a wide field of view.

  4. The Research Productivity of Small Telescopes and Space Telescopes

    CERN Document Server

    Ringwald, F A; Lovell, R L; Kays, S A; Torres, Y V A

    2003-01-01

    We present statistics on the research productivity of astronomical telescopes. These were compiled by finding papers in which new data were presented, noting which telescopes were used, and then counting the number of papers, number of pages, and other statistics. The journals used were the Astronomical Journal, the Astrophysical Journal (including the Letters and Supplements), and the Publications of the Astronomical Society of the Pacific. We also compiled citations from the Science Citation Index. This work was designed to be similar to that of Trimble (1995), except that more recent journals (from 1995) and citations (from 1998) were used. We also did not restrict our sample to large telescopes only: we included all telescopes from which new data were presented, the smallest of which was a 0.1-m. The data were gathered by first-year work-study undergraduates, who were instructed to include data for all telescopes for which they found new data were included in the journals. A by-product of this research wa...

  5. VISTA: Pioneering New Survey Telescope Starts Work

    Science.gov (United States)

    2009-12-01

    A new telescope - VISTA (the Visible and Infrared Survey Telescope for Astronomy) - has just started work at ESO's Paranal Observatory and has made its first release of pictures. VISTA is a survey telescope working at infrared wavelengths and is the world's largest telescope dedicated to mapping the sky. Its large mirror, wide field of view and very sensitive detectors will reveal a completely new view of the southern sky. Spectacular new images of the Flame Nebula, the centre of our Milky Way galaxy and the Fornax Galaxy Cluster show that it is working extremely well. VISTA is the latest telescope to be added to ESO's Paranal Observatory in the Atacama Desert of northern Chile. It is housed on the peak adjacent to the one hosting the ESO Very Large Telescope (VLT) and shares the same exceptional observing conditions. VISTA's main mirror is 4.1 metres across and is the most highly curved mirror of this size and quality ever made - its deviations from a perfect surface are less than a few thousandths of the thickness of a human hair - and its construction and polishing presented formidable challenges. VISTA was conceived and developed by a consortium of 18 universities in the United Kingdom [1] led by Queen Mary, University of London and became an in-kind contribution to ESO as part of the UK's accession agreement. The telescope design and construction were project-managed by the Science and Technology Facilities Council's UK Astronomy Technology Centre (STFC, UK ATC). Provisional acceptance of VISTA was formally granted by ESO at a ceremony at ESO's Headquarters in Garching, Germany, attended by representatives of Queen Mary, University of London and STFC, on 10 December 2009 and the telescope will now be operated by ESO. "VISTA is a unique addition to ESO's observatory on Cerro Paranal. It will play a pioneering role in surveying the southern sky at infrared wavelengths and will find many interesting targets for further study by the Very Large Telescope, ALMA and

  6. Schwarzschild-Couder Telescope for the Cherenkov Telescope Array

    CERN Document Server

    Meagher, Kevin J

    2014-01-01

    The Cherenkov Telescope Array (CTA) is the next major ground-based observatory for gamma-ray astronomy. With CTA gamma-ray sources will be studied in the very-high energy gamma-ray range of a few tens of GeV to 100 TeV with up to ten times better sensitivity than available with current generation instruments. We discuss the proposed US contribution to CTA that comprises imaging atmospheric Cherenkov telescope with Schwarzschild-Couder (SC) optics. Key features of the SC telescope are a wide field of view of eight degrees, a finely pixelated camera with silicon photomultipliers as photon detectors, and a compact and power efficient 1 GS/s readout. The progress in both the optical system and camera development are discussed in this paper.

  7. GSMT Education: Teaching about Adaptive Optics and Site Selection Using Extremely Large Telescopes

    Science.gov (United States)

    Sparks, R. T.; Pompea, S. M.

    2010-08-01

    Giant Segmented Mirror Telescopes (GSMT) represents the next generation of extremely large telescopes (ELT). Currently there are three active ELT projects, all established as international partnerships to build telescopes of greater than 20 meters aperture. Two of these have major participation by U.S. institutions: the Giant Magellan Telescope and the Thirty Meter Telescope. The ESO-ELT is under development by the European Southern Observatory and other European institutions. We have developed educational activities to accompany the design phase of these projects. The current activities focus on challenges faced in the design and site selection of a large telescope. The first module is on site selection. This online module is based on the successful Astronomy Village program model. Students evaluate several potential sites to decide where to build the GSMT. They must consider factors such as weather, light pollution, seeing, logistics, and geography. The second project has developed adaptive optics teaching units suitable for high school.

  8. Feature-based telescope scheduler

    Science.gov (United States)

    Naghib, Elahesadat; Vanderbei, Robert J.; Stubbs, Christopher

    2016-07-01

    Feature-based Scheduler offers a sequencing strategy for ground-based telescopes. This scheduler is designed in the framework of Markovian Decision Process (MDP), and consists of a sub-linear online controller, and an offline supervisory control-optimizer. Online control law is computed at the moment of decision for the next visit, and the supervisory optimizer trains the controller by simulation data. Choice of the Differential Evolution (DE) optimizer, and introducing a reduced state space of the telescope system, offer an efficient and parallelizable optimization algorithm. In this study, we applied the proposed scheduler to the problem of Large Synoptic Survey Telescope (LSST). Preliminary results for a simplified model of LSST is promising in terms of both optimality, and computational cost.

  9. Scientific management of Space Telescope

    Science.gov (United States)

    Odell, C. R.

    1981-01-01

    A historical summay is given on the science management of the Space Telescope, the inception of which began in 1962, when scientists and engineers first recommended the development of a nearly diffraction limited substantial-size optical telescope. Phase A, the feasibility requirements generation phase, began in 1971 and consisted largely of NASA scientists and a NASA design. Phase B, the preliminary design phase, established a tiered structure of scientists, led by the Large Space Telescope operations and Management Work Group. A Mission Operations Working Group headed six instrument definition teams to develop the essential instrument definitions. Many changes took place during Phase B, before design and development, which began in 1978 and still continues today.

  10. FAMOUS. The fluorescence telescope prototype

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, Johannes; Bretz, Thomas; Hebbeker, Thomas; Lauscher, Markus; Middendorf, Lukas; Niggemann, Tim; Peters, Christine; Sommer, Dominik; Stephan, Maurice [III. Physikalisches Institut A, RWTH Aachen University (Germany); Auffenberg, Jan; Schaufel, Merlin [III. Physikalisches Institut B, RWTH Aachen University (Germany)

    2015-07-01

    One of the most successful techniques for the detection of air showers produced by ultra-high-energy cosmic rays are fluorescence telescopes. The light produced by de-exciting nitrogen in the atmosphere is typically detected by photomultiplier tubes (PMTs). This technique has been successfully used by the Pierre Auger Observatory in Argentina for many years. Silicon photomultipliers (SiPMs) promise higher photon detection efficiencies than PMTs. This and other advantages motivate the construction of the fluorescence telescope prototype FAMOUS (First Auger Multi-pixel photon counter camera for the Observation of Ultra-high-energy air Showers) which makes use of SiPMs. In this talk we discuss the FAMOUS telescope with a new 64-pixel camera including power supply and DAQ.

  11. LSST telescope and site status

    Science.gov (United States)

    Gressler, William J.

    2016-07-01

    The Large Synoptic Survey Telescope (LSST) Project1 received its construction authorization from the National Science Foundation in August 2014. The Telescope and Site (T and S) group has made considerable progress towards completion in subsystems required to support the scope of the LSST science mission. The LSST goal is to conduct a wide, fast, deep survey via a 3-mirror wide field of view optical design, a 3.2-Gpixel camera, and an automated data processing system. The summit facility is currently under construction on Cerro Pachón in Chile, with major vendor subsystem deliveries and integration planned over the next several years. This paper summarizes the status of the activities of the T and S group, tasked with design, analysis, and construction of the summit and base facilities and infrastructure necessary to control the survey, capture the light, and calibrate the data. All major telescope work package procurements have been awarded to vendors and are in varying stages of design and fabrication maturity and completion. The unique M1M3 primary/tertiary mirror polishing effort is completed and the mirror now resides in storage waiting future testing. Significant progress has been achieved on all the major telescope subsystems including the summit facility, telescope mount assembly, dome, hexapod and rotator systems, coating plant, base facility, and the calibration telescope. In parallel, in-house efforts including the software needed to control the observatory such as the scheduler and the active optics control, have also seen substantial advancement. The progress and status of these subsystems and future LSST plans during this construction phase are presented.

  12. LISA telescope spacer design investigations

    Science.gov (United States)

    Sanjuan, Josep; Mueller, Guido; Livas, Jeffrey; Preston, Alix; Arsenovic, Petar; Castellucci, Kevin; Generie, Joseph; Howard, Joseph; Stebbins, Robin

    The Laser Interferometer Space Antenna (LISA) is a space-based gravitational wave observa-tory with the goal of observing Gravitational Waves (GWs) from astronomical sources in a frequency range from 30 µHz to 0.1 Hz. The detection of GWs at such low frequency requires measurements of distances at the pico-meter level between bodies separated by 5 million kilo-meters. The LISA mission consists of three identical spacecraft (SC) separated by 5 × 106 km forming an equilateral triangle. Each SC contains two optical assemblies and two vacuum en-closures housing one proof mass (PM) in geodesic (free fall) motion each. The two assemblies on one SC are each pointing towards an identical assembly on each of the other two SC to form a non-equal arm interferometer. The measurement of the GW strain is done by measuring the change in the length of the optical path between the PMs of one arm relative to the other arms caused by the pass of a GW. An important element of the Interferometric Measurement System (IMS) is the telescope which, on one hand, gathers the light coming from the far SC (˜100 pW) and, on the other hand, expands and collimates the small outgoing beam ( 1 W) and sends it to the far SC. Due to the very demanding sensitivity requirements care must be taken in the design and validation of the telescope not to degrade the IMS performance. For instance, the diameter of the telescope sets the the shot noise of the IMS and depends critically on the diameter of the primary and the divergence angle of the outgoing beam. As the telescope is rather fast telescope, the divergence angle is a critical function of the overall separation between the primary and secondary. Any long term changes of the distance of more than a a few micro-meter would be detrimental to the LISA mission. Similarly challenging are the requirements on the in-band path-length noise for the telescope which has to be kept below 1 pm Hz-1/2 in the LISA band. Different configurations (on-axis/off axis

  13. The network of INTA telescopes

    Science.gov (United States)

    Cuesta, L.

    2008-06-01

    The Spanish Instituto Nacional de Técnica Aeroespacial has a network of three telescopes located at some of the best places for astronomy in mainland Spain. The first is at the Observatorio de Calar Alto in Almeria, at an altitude of more than 2100 m. The second is near Calatayud in Zaragoza, at the summit of a 1400-m high mountain. The last is on the campus of the Instituto Nacional de Técnica Aerospatial (INTA), in Madrid. The three telescopes are either 40 or 50 cm in diameter and will be available for communications and educational projects.

  14. Wide field of view telescope

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, Mark R. (Albuquerque, NM); McGraw, John T. (Placitas, NM); Zimmer, Peter C. (Albuquerque, NM)

    2008-01-15

    A wide field of view telescope having two concave and two convex reflective surfaces, each with an aspheric surface contour, has a flat focal plane array. Each of the primary, secondary, tertiary, and quaternary reflective surfaces are rotationally symmetric about the optical axis. The combination of the reflective surfaces results in a wide field of view in the range of approximately 3.8.degree. to approximately 6.5.degree.. The length of the telescope along the optical axis is approximately equal to or less than the diameter of the largest of the reflective surfaces.

  15. Superconductor lunar telescopes --Abstract only

    Science.gov (United States)

    Chen, P. C.; Pitts, R.; Shore, S.; Oliversen, R.; Stolarik, J.; Segal, K.; Hojaji, H.

    1994-01-01

    We propose a new type of telescope designed specifically for the lunar environment of high vacuum and low temperature. Large area UV-Visible-IR telescope arrays can be built with ultra-light-weight replica optics. High T(sub c) superconductors provide support, steering, and positioning. Advantages of this approach are light-weight payload compatible with existing launch vehicles, configurable large area optical arrays, no excavation or heavy construction, and frictionless electronically controlled mechanisms. We have built a prototype and will be demonstarting some of its working characteristics.

  16. Highlights from the Telescope Array

    Science.gov (United States)

    Matthews, J. N.

    2016-11-01

    The Telescope Array measures the properties of ultra high energy cosmic ray induced extensive air showers. We do this using a variety of techniques including an array of scintillator detectors to sample the footprint of the air shower when it reaches the Earth's surface and telescopes to measure the fluorescence and Cerenkov light of the air shower. From this we determine the energy spectrum and chemical composition of the primary particles. We also search for sources of cosmic rays and anisotropy. We have found evidence of a possible source of ultra high energy cosmic rays in the northern sky. The experiment and its most recent measurements will be discussed.

  17. Autonomous Dome for Robotic Telescope

    CERN Document Server

    Kumar, Akash; Ganesh, Shashikiran

    2016-01-01

    Physical Research Laboratory operates a 50cm robotic observatory at Mount Abu. This Automated Telescope for Variability Studies (ATVS) makes use of Remote Telescope System 2 (RTS2) for autonomous operations. The observatory uses a 3.5m dome from Sirius Observatories. We have developed electronics using Arduino electronic circuit boards with home grown logic and software to control the dome operations. We are in the process of completing the drivers to link our Arduino based dome controller with RTS2. This document is a short description of the various phases of the development and their integration to achieve the required objective.

  18. The Advanced Telescope for High Energy Astrophysics

    Science.gov (United States)

    Guainazzi, Matteo

    2017-08-01

    Athena (the Advanced Telescope for High Energy Astrophysics) is a next generation X-ray observatory currently under study by ESA for launch in 2028. Athena is designed to address the Hot and Energetic Universe science theme, which addresses two key questions: 1) How did ordinary matter evolve into the large scale structures we see today? 2) How do black holes grow and shape the Universe. To address these topics Athena employs an innovative X-ray telescope based on Silicon Pore Optics technology to deliver extremely light weight and high throughput, while retaining excellent angular resolution. The mirror can be adjusted to focus onto one of two focal place instruments: the X-ray Integral Field Unit (X-IFU) which provides spatially-resolved, high resolution spectroscopy, and the Wide Field Imager (WFI) which provides spectral imaging over a large field of view, as well as high time resolution and count rate tolerance. Athena is currently in Phase A and the study status will be reviewed, along with the scientific motivations behind the mission.

  19. The Zadko Telescope: Exploring the Transient Universe

    Science.gov (United States)

    Coward, D. M.; Gendre, B.; Tanga, P.; Turpin, D.; Zadko, J.; Dodson, R.; Devogéle, M.; Howell, E. J.; Kennewell, J. A.; Boër, M.; Klotz, A.; Dornic, D.; Moore, J. A.; Heary, A.

    2017-01-01

    The Zadko telescope is a 1 m f/4 Cassegrain telescope, situated in the state of Western Australia about 80-km north of Perth. The facility plays a niche role in Australian astronomy, as it is the only meter class facility in Australia dedicated to automated follow-up imaging of alerts or triggers received from different external instruments/detectors spanning the entire electromagnetic spectrum. Furthermore, the location of the facility at a longitude not covered by other meter class facilities provides an important resource for time critical projects. This paper reviews the status of the Zadko facility and science projects since it began robotic operations in March 2010. We report on major upgrades to the infrastructure and equipment (2012-2014) that has resulted in significantly improved robotic operations. Second, we review the core science projects, which include automated rapid follow-up of gamma ray burst (GRB) optical afterglows, imaging of neutrino counterpart candidates from the ANTARES neutrino observatory, photometry of rare (Barbarian) asteroids, supernovae searches in nearby galaxies. Finally, we discuss participation in newly commencing international projects, including the optical follow-up of gravitational wave (GW) candidates from the United States and European GW observatory network and present first tests for very low latency follow-up of fast radio bursts. In the context of these projects, we outline plans for a future upgrade that will optimise the facility for alert triggered imaging from the radio, optical, high-energy, neutrino, and GW bands.

  20. New telescope designs suitable for massively-multiplexed spectroscopy

    CERN Document Server

    Pasquini, L; Ellis, R; de Zeeuw, T

    2016-01-01

    We present two novel designs for a telescope suitable for massively-multiplexed spectroscopy. The first is a very wide field Cassegrain telescope optimised for fibre feeding. It provides a Field Of View (FOV) of 2.5 degrees diameter with a 10m primary mirror. It is telecentric and works at F/3, optimal for fibre injection. As an option, a gravity invariant focus for the central 10 arc-minutes can be added, to host, for instance, a giant integral field unit (IFU). It has acceptable performance in the 360-1300 nm wavelength range. The second concept is an innovative five mirror telescope design based on a Three Mirror Anastigmatic (TMA) concept. The design provides a large FOV in a convenient, gravity- invariant focal plane, and is scalable to a range of telescope diameters. As specific example, we present a 10m telescope with a 1.5 degree diameter FOV and a relay system that allows simultaneous spectroscopy with 10,000 mini-IFUs over a square degree, or, alternatively a 17.5 square arcminutes giant IFU, by usi...

  1. Results from the AMANDA telescope

    Energy Technology Data Exchange (ETDEWEB)

    Ahrens, J.; Bai, X.; Barwick, S.W.; Becka, T.; Becker, K.-H.; Bernardini, E.; Bertrand, D.; Binon, F.; Biron, A.; Boeser, S.; Botner, O.; Bouhali, O.; Burgess, T.; Carius, S.; Castermans, T.; Chirkin, D.; Conrad, J.; Cooley, J.; Cowen, D.F.; Davour, A.; De Clercq, C.; DeYoung, T.; Desiati, P.; Dewulf, J.-P.; Ekstroem, P.; Feser, T.; Gaisser, T.K.; Ganupati, R.; Gaug, M.; Geenen, H.; Gerhardt, L.; Goldschmidt, A.; Hallgren, A.; Halzen, F.; Hanson, K.; Hardtke, R.; Hauschildt, T.; Hellwig, M.; Herquet, Ph.; Hill, G.C.; Hulth, P.O.; Hultqvist, K.; Hundertmark, S.; Jacobsen, J.; Karle, A.; Koepke, L.; Kuehn, K.; Kowalski, M.; Lamoureux, J.I.; Leich, H.; Leuthold, M.; Lindahl, P.; Liubarsky, I.; Madsen, J.; Mandli, K.; Marciniewski, P.; Matis, H.S.; McParland, C.P.; Messarius, T.; Minaeva, Y.; Miocinovic, P.; Morse, R.; Nahnhauer, R.; Neunhoeffer, T.; Niessen, P.; Nygren, D.R.; Ogelman, H.; Olbrechts, Ph.; Perez de los Heros, C.; Pohl, A.C.; Price, P.B.; Przybylski, G.T.; Rawlins, K.; Resconi, E.; Rhode, W.; Ribordy, M.; Richter, S.; Rodriguez Martino, J.; Sander, H.-G.; Schmidt, T.; Schneider, D.; Schinarakis, K.; Schwarz, R.; Silvestri, A.; Solarz, M.; Spiczak, G.M.; Spiering, C.; Steele, D.; Steffen, P.; Stokstad, R.G.; Sudoff, P.; Sudoff, K.-H.; Sulanke, K.-H.; Taboada, I.; Thollander, L.; Tilav, S.; Wagner, W.; Walck, C.; Weinheimer, C.; Wiebusch, C.H.; Wiedemann, C.; Wischnewski, R.; Wissing, H.; Woschnagg, K.; Yodh, G.; Young, S

    2003-06-30

    We present results from the AMANDA high energy neutrino telescope located at the South Pole. They include measurements of the atmospheric neutrino flux, search for UHE point sources, and diffuse sources producing electromagnetic/hadronic showers at the detector or close to it.

  2. The Atacama Submillimeter Telescope Experiment

    Science.gov (United States)

    Sekimoto, Yutaro; Kawabe, Ryohei; Yamamoto, Satoshi; Hasegawa, Tetsuo

    1999-10-01

    We have a plan to operate a new 10 m telescope at Pampa la Bola (4800 m) in Chile as one of Japanese R&D activities for Atacama Large Millimeter/Submillimeter Array. Technical and scientific purposes in this experiment are to develop and evaluate a high precision 10 m antenna under exposed conditions at the site, to develop and test low-noise submillimeter receivers and new SIS photon detectors, to test various techniques for submillimeter observations, and to explore the southern hemisphere in the submillimeter band: Galactic Center, Magellanic Clouds, and so on. The SIS mixer receivers at the Cassegrain focus covers 100, 230, 350, 500, 670, and 810 GHz bands for spectral line observations. A digital autocorrelator consisted of four modules with 500 MHz bandwidth is mounted in a container near the telescope. Two power generators with a capability of 200 kW are installed at the site. The telescope will be operated remotely from Japan via a commercial satellite communication system. After a test operation at Nobeyama for one and a half years, the telescope will be transported to Pampa la Bola in August 2001.

  3. Cern Axion Solar Telescope (CAST)

    CERN Multimedia

    2002-01-01

    The CERN Solar Axion Telescope, CAST, aims to shed light on a 30-year-old riddle of particle physics by detecting axions originating from the 15 million degree plasma in the Sun 's core. Axions were proposed as an extension to the Standard Model of particle physics to explain why CP violation is observed in weak but not strong interactions.

  4. Monster telescope hunts blue planets

    CERN Multimedia

    Leake, J

    2003-01-01

    BRITAIN is to back a project to build the world's biggest telescope - so powerful that it could see life-bearing planets in other solar systems. It will need the largest mirror ever built at about 100 metres in diameter (1/2 page).

  5. Push-To Telescope Mathematics

    Science.gov (United States)

    Teets, Donald

    2012-01-01

    Two coordinate systems are related here, one defined by the earth's equator and north pole, the other by the orientation of a telescope at some location on the surface of the earth. Applying an interesting though somewhat obscure property of orthogonal matrices and using the cross-product simplifies this relationship, revealing that a surprisingly…

  6. Results from the AMANDA telescope

    CERN Document Server

    Bouhali, O

    2003-01-01

    We present results from the AMANDA high energy neutrino telescope located at the South Pole. They include measurements of the atmospheric neutrino flux, search for UHE point sources, and diffuse sources producing electromagnetic/hadronic showers at the detector or close to it. (4 refs).

  7. Overdenture dengan Pegangan Telescopic Crown

    Directory of Open Access Journals (Sweden)

    Pambudi Santoso

    2014-06-01

    Full Text Available Kaitan presisi merupakan alat retensi mekanis yang menghubungkan antara satu atau lebih pegangan gigi tiruan, yang bertujuan untuk menambah retensi dan/atau stabilisasi. Kaitan presisi dapat digunakan secara luas pada gigi tiruan cekat, gigi tiruan sebagian lepasan, overdenture, implant untuk retensi overdenture, dan protesa maksilo fasial. Overdenture dengan kaitan presisi dapat membantu dalam pembagian beban kunyah, meminimalkan trauma pada gigi pegangan dan jaringan lunak, meminimalkan resorbsi tulang, dan meningkatkan estetik dan pengucapan suara. Salah satu jenis dari kaitan presisi adalah telescopic crown, terdiri dari 2 macam mahkota, yaitu mahkota primer yang melekat secara permanen pada gigi penyangga, dan mahkota sekunder yang melekat pada gigi tiruan. Tujuan pemaparan kasus ini adalah untuk memberikan informasi tentang rehabilitasi pasien edentulous sebagian rahang atas dengan telescopic crown..  Pasien wanita berusia 45 tahun datang ke klinik prostodonsia RSGM Prof.Soedomo dengan keluhan ingin dibuatkan gigi tiruan. Pasien kehilangan gigi 11 12 15 16 17 21 22 24 25 26 dan 27 yang diindikasikan untuk pembuatan overdenture gigi tiruan sebagian lepasan (GTS kerangka logam dengan pegangan telescopic crown pada gigi 13 dan 14 dengan sistem parallel-sided crown. Tahap-tahap pembuatan telescopic crown yaitu mencetak model study dengan catatan gigit pendahuluan. Perawatan saluran dilakukan pada akar gigi 13, dilanjutkan pemasangan pasak fiber serta rewalling dinding bukal. Gigi 13 dan 14 dilakukan preparasi mahkota penuh, dilanjutkan dengan pencetakan model kerja untuk coping primer dan kerangka logam dengan metode double impression. Coping primer disementasi pada gigi penyangga, dilanjutkan pasang coba coping sekunder beserta kerangka logam. Selanjutnya dilakukan pencatatan gigit, pencetakan model kerja, penyusunan gigi dan pasang coba penyusunan gigi pada pasien. Prosedur dilanjutkan dengan proses di laboratorium, serta insersi pada

  8. New Control Software of the 188cm Telescope of Okayama Astrophysical Observatory

    Science.gov (United States)

    Yoshida, Michitoshi; Shimizu, Yasuhiro; Watanabe, Etsuji; Yanagisawa, Kenshi; Uraguchi, Fumihiro

    2002-12-01

    We developed the telescope control software for the 188cm telescope of Okayama Astrophysical Observatory (OAO) based on Java technology. Basically, the software consists of two processes running on separate Java virtual machines; one of which is the "Command Dispatcher (CD)" and the other is the "User Interface (UI)". Among the two, CD is the main engine/server of the telescope control, whereas UI is just a client. The "standard" UI we provide is a graphical user interface written in Java/Swing. CD communicates with the local control units (LCUs) of the telescope through RS232C. CD is a Java multi-thread program, in which a number of threads run simultaneously. The threads running in CD are the follows: UNIX socket servers for external communications, socket opener for on-demand open/close of a socket port, socket client manager, auto-guider and dome watcher, internal command dispatcher, status manager, status collector, RS232C writer and reader, logger, and control units. The above "control units" are software models ("objects") of the telescope system. We introduced four control units- "Telescope", "Dome", "Weather-Monitor", and "Pointing"- for telescope control. The first three units are simple software models of the real-worlds devices. The last one, "Pointing", is a unit which abstracts pointing procedure of the telescope. CD and UI communicate with each other using UNIX socket. The command protocol of this communication is fairly simple, and observation instruments, auto guider, or additional UI for remote observation are also able to communicate with CD through socket using this protocol. CD opens and closes socket ports for communication on demand according to the request of client process (UI, instruments etc.), so that any clients can be connected to CD dynamically.

  9. The automated Palomar 60 inch telescope

    OpenAIRE

    Cenko, S Bradley; Fox, Derek B.; Moon, Dae-Sik; Harrison, Fiona A.; Kulkarni, S.R.; Henning, John R.; Guzman, C. Dani; Bonati, Marco; Smith, Roger M.; Thicksten, Robert P.; Doyle, Michael W.; Petrie, Hal L.; Gal-Yam, Avishay; Soderberg, Alicia M.; Anagnostou, Nathaniel L.

    2006-01-01

    We have converted the Palomar 60-inch telescope (P60) from a classical night assistant-operated telescope to a fully robotic facility. The automated system, which has been operational since September 2004, is designed for moderately fast (t

  10. Alignment of the James Webb Space Telescope optical telescope element

    Science.gov (United States)

    Glassman, Tiffany; Levi, Joshua; Liepmann, Till; Hahn, Walter; Bisson, Gary; Porpora, Dan; Hadjimichael, Theo

    2016-07-01

    The optical telescope element (OTE) of the James Webb Space Telescope has now been integrated and aligned. The OTE comprises the flight mirrors and the structure that supports them - 18 primary mirror segments, the secondary mirror, and the tertiary and fine steering mirrors (both housed in the aft optics subsystem). The primary mirror segments and the secondary mirror have actuators to actively control their positions during operations. This allows the requirements for aligning the OTE subsystems to be in the range of microns rather than nanometers. During OTE integration, the alignment of the major subsystems of the OTE structure and optics were controlled to ensure that, when the telescope is on orbit and at cryogenic temperatures, the active mirrors will be within the adjustment range of the actuators. Though the alignment of this flagship mission was complex and intricate, the key to a successful integration process turned out to be very basic: a clear, concise series of steps employing advanced planning, backup measurements, and cross checks that this multi-organizational team executed with a careful and methodical approach. This approach was not only critical to our own success but has implications for future space observatories.

  11. Origins Space Telescope: Telescope Design and Instrument Specifications

    Science.gov (United States)

    Meixner, Margaret; Carter, Ruth; Leisawitz, David; Dipirro, Mike; Flores, Anel; Staguhn, Johannes; Kellog, James; Roellig, Thomas L.; Melnick, Gary J.; Bradford, Charles; Wright, Edward L.; Zmuidzinas, Jonas; Origins Space Telescope Study Team

    2017-01-01

    The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, one of the four science and technology definition studies of NASA Headquarters for the 2020 Astronomy and Astrophysics Decadal survey. The renaming of the mission reflects Origins science goals that will discover and characterize the most distant galaxies, nearby galaxies and the Milky Way, exoplanets, and the outer reaches of our Solar system. This poster will show the preliminary telescope design that will be a large aperture (>8 m in diameter), cryogenically cooled telescope. We will also present the specifications for the spectrographs and imagers over a potential wavelength range of ~10 microns to 1 millimeter. We look forward to community input into this mission definition over the coming year as we work on the concept design for the mission. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. We welcome you to contact the Science and Technology Definition Team (STDT) with your science needs and ideas by emailing us at firsurveyor_info@lists.ipac.caltech.edu.

  12. The Medium Size Telescopes of the Cherenkov Telescope Array

    CERN Document Server

    Pühlhofer, G

    2016-01-01

    The Cherenkov Telescope Array (CTA) is the planned next-generation instrument for ground-based gamma-ray astronomy, covering a photon energy range of ~20 GeV to above 100 TeV. CTA will consist of the order of 100 telescopes of three sizes, installed at two sites in the Northern and Southern Hemisphere. This contribution deals with the 12 meter Medium Size Telescopes (MST) having a single mirror (modified Davies-Cotton, DC) design. In the baseline design of the CTA arrays, 25 MSTs in the South and 15 MSTs in the North provide the necessary sensitivity for CTA in the core energy range of 100 GeV to 10 TeV. DC-MSTs will be equipped with photomultiplier (PMT)-based cameras. Two options are available for these focal plane instruments, that will be provided by the FlashCam and the NectarCAM sub-consortia. In this contribution, a short introduction to the projects and their status is given.

  13. The Principles of Astronomical Telescope Design

    CERN Document Server

    Cheng, Jingquan

    2009-01-01

    Presents a summary of the author's twenty five years of experience in telescope design. This work provides a general introduction to various aspects of telescope design. It discusses the theory behind telescope design. It covers Radio, Infrared, Optical, X-Ray and Gamma-Ray wavelengths

  14. The Hubble Space Telescope: Problems and Solutions.

    Science.gov (United States)

    Villard, Ray

    1990-01-01

    Presented is the best understanding of the flaw discovered in the optics of the Hubble Space Telescope and the possible solutions to the problems. The spherical aberration in the telescope's mirror and its effect on the quality of the telescope's imaging ability is discussed. (CW)

  15. CFRP lightweight structures for extremely large telescopes

    DEFF Research Database (Denmark)

    Jessen, Niels Christian; Nørgaard-Nielsen, Hans Ulrik; Schroll, J.

    2008-01-01

    Telescope structures are traditionally built out of steel. To improve the possibility of realizing the ambitious extremely large telescopes, materials with a higher specific stiffness and a lower coefficient of thermal expansion are needed. An important possibility is Carbon Fibre Reinforced...... Plastic (CFRP). The advantages of using CFRP for the secondary mirror support structure of the European overwhelmingly large telescope are discussed....

  16. Focusing X-Ray Telescopes

    Science.gov (United States)

    O'Dell, Stephen; Brissenden, Roger; Davis, William; Elsner, Ronald; Elvis, Martin; Freeman, Mark; Gaetz, Terrance; Gorenstein, Paul; Gubarev, Mikhall; Jerlus, Diab; Juda, Michael; Kolodziejczak, Jeffrey; Murray, Stephen; Petre, Robert; Podgorski, William; Ramsey, Brian; Reid, Paul; Saha, Timo; Wolk, Scott; Troller-McKinstry, Susan; Weisskopf, Martin; Wilke, Rudeger; Zhang, William

    2010-01-01

    During the half-century history of x-ray astronomy, focusing x-ray telescopes, through increased effective area and finer angular resolution, have improved sensitivity by 8 orders of magnitude. Here, we review previous and current x-ray-telescope missions. Next, we describe the planned next-generation x-ray-astronomy facility, the International X-ray Observatory (IXO). We conclude with an overview of a concept for the next next-generation facility, Generation X. Its scientific objectives will require very large areas (about 10,000 sq m) of highly-nested, lightweight grazing-incidence mirrors, with exceptional (about 0.1-arcsec) resolution. Achieving this angular resolution with lightweight mirrors will likely require on-orbit adjustment of alignment and figure.

  17. The Ortega Telescope Andor CCD

    Science.gov (United States)

    Tucker, M.; Batcheldor, D.

    2012-07-01

    We present a preliminary instrument report for an Andor iKon-L 936 charge-couple device (CCD) being operated at Florida Tech's 0.8 m Ortega Telescope. This camera will replace the current Finger Lakes Instrumentation (FLI) Proline CCD. Details of the custom mount produced for this camera are presented, as is a quantitative and qualitative comparison of the new and old cameras. We find that the Andor camera has 50 times less noise than the FLI, has no significant dark current over 30 seconds, and has a smooth, regular flat field. The Andor camera will provide significantly better sensitivity for direct imaging programs and, once it can be satisfactorily tested on-sky, will become the standard imaging device on the Ortega Telescope.

  18. Telescoping phenomenon in pathological gambling

    DEFF Research Database (Denmark)

    Grant, Jon E; Odlaug, Brian Lawrence; Mooney, Marc E

    2012-01-01

    The course of pathological gambling (PG) in women has been described as having a later age of initiation but a shorter time to problematic gambling ("telescoped"). This study examined evidence for telescoping and its relationship with comorbidities. Seventy-one treatment-seeking individuals with PG...... underwent a diagnostic interview to examine gambling behaviors, age at initiation of gambling, and time from initiation to meeting criteria for PG. The women had a higher mean age at gambling initiation compared with that of the men (mean [SD] age, 31.3 [13.0] years, compared with 22.4 [7.9] years; p = 0...... and suggests a need for greater clinical focus on the gender differences of gambling behavior....

  19. Cherenkov Telescope Array Data Management

    CERN Document Server

    Lamanna, G; Contreras, J L; Knödlseder, J; Kosack, K; Neyroud, N; Aboudan, A; Arrabito, L; Barbier, C; Bastieri, D; Boisson, C; Brau-Nogué, S; Bregeon, J; Bulgarelli, A; Carosi, A; Costa, A; De Cesare, G; Reyes, R de los; Fioretti, V; Gallozzi, S; Jacquemier, J; Khelifi, B; Kocot, J; Lombardi, S; Lucarelli, F; Lyard, E; Maier, G; Massimino, P; Osborne, J P; Perri, M; Rico, J; Sanchez, D A; Satalecka, K; Siejkowski, H; Stolarczyk, T; Szepieniec, T; Testa, V; Walter, R; Ward, J E; Zoli, A

    2015-01-01

    Very High Energy gamma-ray astronomy with the Cherenkov Telescope Array (CTA) is evolving towards the model of a public observatory. Handling, processing and archiving the large amount of data generated by the CTA instruments and delivering scientific products are some of the challenges in designing the CTA Data Management. The participation of scientists from within CTA Consortium and from the greater worldwide scientific community necessitates a sophisticated scientific analysis system capable of providing unified and efficient user access to data, software and computing resources. Data Management is designed to respond to three main issues: (i) the treatment and flow of data from remote telescopes; (ii) "big-data" archiving and processing; (iii) and open data access. In this communication the overall technical design of the CTA Data Management, current major developments and prototypes are presented.

  20. Highlights from the Telescope Array

    Directory of Open Access Journals (Sweden)

    Matthews J.N.

    2016-01-01

    Full Text Available The Telescope Array measures the properties of ultra high energy cosmic ray induced extensive air showers. We do this using a variety of techniques including an array of scintillator detectors to sample the footprint of the air shower when it reaches the Earth’s surface and telescopes to measure the fluorescence and Cerenkov light of the air shower. From this we determine the energy spectrum and chemical composition of the primary particles. We also search for sources of cosmic rays and anisotropy. We have found evidence of a possible source of ultra high energy cosmic rays in the northern sky. The experiment and its most recent measurements will be discussed.

  1. The LWA1 Radio Telescope

    CERN Document Server

    Ellingson, S W; Craig, J; Hartman, J; Dowell, J; Wolfe, C N; Clarke, T E; Hicks, B C; Kassim, N E; Ray, P S; Rickard, L J; Schinzel, F K; Weiler, K W

    2012-01-01

    LWA1 is a new radio telescope operating in the frequency range 10-88 MHz, located in central New Mexico. The telescope consists of 258 pairs of dipole-type antennas whose outputs are individually digitized and formed into beams. Simultaneously, signals from all dipoles can be recorded using one of the instrument's "all dipoles" modes, facilitating all-sky imaging. Notable features of the instrument include high intrinsic sensitivity (about 6 kJy zenith system equivalent flux density), large instantaneous bandwidth (up to 78 MHz), and 4 independently-steerable beams utilizing digital "true time delay" beamforming. This paper summarizes the design of LWA1 and its performance as determined in commissioning experiments. We describe the method currently in use for array calibration, and report on measurements of sensitivity and beamwidth.

  2. Focusing Telescopes in Nuclear Astrophysics

    CERN Document Server

    Ballmoos, Peter von

    2007-01-01

    This volume is the first of its kind on focusing gamma-ray telescopes. Forty-eight refereed papers provide a comprehensive overview of the scientific potential and technical challenges of this nascent tool for nuclear astrophysics. The book features articles dealing with pivotal technologies such as grazing incident mirrors, multilayer coatings, Laue- and Fresnel-lenses - and even an optic using the curvature of space-time. The volume also presents an overview of detectors matching the ambitious objectives of gamma ray optics, and facilities for operating such systems on the ground and in space. The extraordinary scientific potential of focusing gamma-ray telescopes for the study of the most powerful sources and the most violent events in the Universe is emphasized in a series of introductory articles. Practicing professionals, and students interested in experimental high-energy astrophysics, will find this book a useful reference

  3. Education and outreach using the falcon telescope network

    Science.gov (United States)

    Gresham, Kimberlee C.; Palma, Christopher; Polsgrove, Daniel E.; Chun, Francis K.; Della-Rose, Devin J.; Tippets, Roger D.

    2016-12-01

    The Falcon Telescope Network (FTN) is a global network of small aperture telescopes developed by the Center for Space Situational Awareness Research in the Department of Physics at the United States Air Force Academy (USAFA). Consisting of commercially available equipment, the FTN is a collaborative effort between USAFA and other educational institutions ranging from two- and four-year colleges to major research universities. USAFA provides the equipment (e.g. telescope, mount, camera, filter wheel, dome, weather station, computers and storage devices) while the educational partners provide the building and infrastructure to support an observatory. The user base includes USAFA along with K-12 and higher education faculty and students. The diversity of the users implies a wide variety of observing interests, and thus the FTN collects images on diverse objects, including satellites, galactic and extragalactic objects, and objects popular for education and public outreach. The raw imagery, all in the public domain, will be accessible to FTN partners and will be archived at USAFA. Currently, there are five Falcon telescopes installed, two in Colorado and one each in Pennsylvania, Chile, and Australia. These five telescopes are in various stages of operational capability but all are remotely operable via a remote desktop application. The FTN team has conducted STEM First Light Projects for three of the U.S. observatories, soliciting proposals from middle and high school students and teachers that suggest and then become what is observed as official STEM first-light objects. Students and teachers learn how to write and submit a proposal as well as how telescopes operate and take data, while university-level students at the U.S. Air Force Academy and The Pennsylvania State University learn how to evaluate proposals and provide feedback to the middle and high school students and teachers. In this paper, we present the current status of the FTN, details of and lessons

  4. The Antares Undersea Neutrino Telescope

    Science.gov (United States)

    Anghinolfi, Marco

    2013-11-01

    Neutrino astronomy is a very promising field of investigation representing a complementary source of information with respect to photon-astronomy. ANTARES, operating off the French Mediterranean coast, is the worlds largest operational underwater neutrino telescope. In these proceedings, in addition to a short detector description, the results of recent analysis will be discussed. The ANTARES project is an important physics experiment but also represents a bench mark for a future large detector of the km3 scale.

  5. Building the Green Bank Telescope

    Science.gov (United States)

    Kellermann, Kenneth I.

    2017-01-01

    In a previous presentation, I reported on how the freak collapse of the NRAO 300-ft transit radio telescope led to the inclusion of $75 million for a new radio telescope in the 1989 Congressional Emergency Supplemental Appropriations Act. But, this was only the beginning. NRAO was faced with challenging specifications and an unworkable schedule, but there was no design and no project team. Only one bid was even close to the Congressional appropriation. In an attempt to meet the unrealistic antenna delivery date, the contractor started construction of the foundation and fabrication of antenna members before the design was finished, leading to retrofits, redesign, and multiple delays. The antenna contractor was twice sold to other companies leading to further delays and cost escalation. In order to recoup their mounting losses, the new owners sued NRAO for $29 million for claimed design changes, and NRAO countersued demanding to be reimbursed for added project management costs and lost scientific data resulting from the seven-year delay in the completion of the telescope. Legal fees and a small net award in favor of the contractor left NRAO and the NSF with a nine million dollar bill which NSF handled by an innovative accounting adjustment.

  6. Academic Training: Deep Space Telescopes

    CERN Multimedia

    Françoise Benz

    2006-01-01

    2005-2006 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 20, 21, 22, 23, 24 February from 11:00 to 12:00 - Council Chamber on 20, 21, 23, 24 February, TH Auditorium, bldg 4 - 3-006, on 22 February Deep Space Telescopes G. BIGNAMI / CNRS, Toulouse, F & Univ. di Pavia, I The short series of seminars will address results and aims of current and future space astrophysics as the cultural framework for the development of deep space telescopes. It will then present such new tools, as they are currently available to, or imagined by, the scientific community, in the context of the science plans of ESA and of all major world space agencies. Ground-based astronomy, in the 400 years since Galileo's telescope, has given us a profound phenomenological comprehension of our Universe, but has traditionally been limited to the narrow band(s) to which our terrestrial atmosphere is transparent. Celestial objects, however, do not care about our limitations, and distribute most of the information about their physics thro...

  7. The NASA Spitzer Space Telescope.

    Science.gov (United States)

    Gehrz, R D; Roellig, T L; Werner, M W; Fazio, G G; Houck, J R; Low, F J; Rieke, G H; Soifer, B T; Levine, D A; Romana, E A

    2007-01-01

    The National Aeronautics and Space Administration's Spitzer Space Telescope (formerly the Space Infrared Telescope Facility) is the fourth and final facility in the Great Observatories Program, joining Hubble Space Telescope (1990), the Compton Gamma-Ray Observatory (1991-2000), and the Chandra X-Ray Observatory (1999). Spitzer, with a sensitivity that is almost three orders of magnitude greater than that of any previous ground-based and space-based infrared observatory, is expected to revolutionize our understanding of the creation of the universe, the formation and evolution of primitive galaxies, the origin of stars and planets, and the chemical evolution of the universe. This review presents a brief overview of the scientific objectives and history of infrared astronomy. We discuss Spitzer's expected role in infrared astronomy for the new millennium. We describe pertinent details of the design, construction, launch, in-orbit checkout, and operations of the observatory and summarize some science highlights from the first two and a half years of Spitzer operations. More information about Spitzer can be found at http://spitzer.caltech.edu/.

  8. QUIJOTE telescope design and fabrication

    Science.gov (United States)

    Gomez, Alberto; Murga, Gaizka; Etxeita, Borja; Sanquirce, Rubén; Rebolo, Rafael; Rubiño-Martin, Jose Alberto; Herreros, José-Miguel; Hoyland, Roger; Gomez, Francisca; Génova-Santos, Ricardo T.; Piccirillo, Lucio; Maffei, Bruno; Watson, Robert

    2010-07-01

    The QUIJOTE CMB experiment aims to characterize the polarization of the CMB in the frequency range 10-30 GHz and large angular scales. It will be installed in the Teide Observatory, following the projects that the Anisotropy of the Cosmic Microwave Background group has developed in the past (Tenerife experiment, IAC-Bartol experiment...) and is running at the present time (VSA, Cosmosomas). The QUIJOTE CMB experiment will consist of two telescopes which will be installed inside a unique enclosure, which is already constructed. The layout of both telescopes is based on an altazimuth mount supporting a primary and a secondary mirror disposed in a offset Gregorian Dragon scheme. The use of industrial-like fabrication techniques, such as sand-mould casting, CNC machining, and laser tracker measuring for alignment, provided the required performances for microwave observation. A fast-track construction scheme, altogether with the use of these fabrication techniques allowed designing and manufacturing the opto-mechanics of the telescope in 14 months prior to delivery for final start-up in December 2008.

  9. Hard X-ray Modulation Telescope

    Institute of Scientific and Technical Information of China (English)

    LU Fangjun

    2011-01-01

    The Hard X-ray Modulation Telescope (HXMT) will be China's first astronomical satellite. On board HXMT there are three kinds of slat-collimated telescopes, the High Energy X-ray Telescope (HE, 20-250 keV, 5000 cm^2), the Medium Energy X-ray Telescope (ME, 5-30 keV, 952 cm^2), and the Low Energy X-ray Telescope (LE, 1-15 keV, 384 cm^2).

  10. Educational activities with the Faulkes Telescopes

    Science.gov (United States)

    Roberts, S.; Roche, P.; Ross, R.

    2008-06-01

    Las Cumbres Observatory Global Telescope Network (LCOGTN) will eventually provide access to a global network of robotic telescopes for research-based science education. Here we present the educational projects that have been undertaken using the 2-m Faulkes Telescopes in Hawaii and Australia in both the UK and Europe. These include themed observing days in which schools collaborate in their telescope sessions, the development of science portals where schools can upload and share their telescope data, and other innovative projects. Public access to these facilities will increase as IYA2009 approaches.

  11. Hubble Space Telescope: The Telescope, the Observations & the Servicing Mission

    Science.gov (United States)

    1999-11-01

    Today the HST Archives contain more than 260 000 astronomical observations. More than 13 000 astronomical objects have been observed by hundreds of different groups of scientists. Direct proof of the scientific significance of this project is the record-breaking number of papers published : over 2400 to date. Some of HST's most memorable achievements are: * the discovery of myriads of very faint galaxies in the early Universe, * unprecedented, accurate measurements of distances to the farthest galaxies, * significant improvement in the determination of the Hubble constant and thus the age of the Universe, * confirmation of the existence of blacks holes, * a far better understanding of the birth, life and death of stars, * a very detailed look at the secrets of the process by which planets are created. Europe and HST ESA's contribution to HST represents a nominal investment of 15%. ESA provided one of the two imaging instruments - the Faint Object Camera (FOC) - and the solar panels. It also has 15 scientists and computer staff working at the Space Telescope Science Institute in Baltimore (Maryland). In Europe the astronomical community receives observational assistance from the Space Telescope European Coordinating Facility (ST-ECF) located in Garching, Munich. In return for ESA's investment, European astronomers have access to approximately 15% of the observing time. In reality the actual observing time competitively allocated to European astronomers is closer to 20%. Looking back at almost ten years of operation, the head of ST-ECF, European HST Project Scientist Piero Benvenuti states: "Hubble has been of paramount importance to European astronomy, much more than the mere 20% of observing time. It has given the opportunity for European scientists to use a top class instrument that Europe alone would not be able to build and operate. In specific areas of research they have now, mainly due to HST, achieved international leadership." One of the major reasons for

  12. Herschel SPIRE FTS telescope model correction

    CERN Document Server

    Hopwood, Rosalind; Polehampton, Edward T; Valtchanov, Ivan; Benielli, Dominique; Imhof, Peter; Lim, Tanya; Lu, Nanyao; Marchili, Nicola; Pearson, Chris P; Swinyard, Bruce M

    2014-01-01

    Emission from the Herschel telescope is the dominant source of radiation for the majority of SPIRE Fourier transform spectrometer (FTS) observations, despite the exceptionally low emissivity of the primary and secondary mirrors. Accurate modelling and removal of the telescope contribution is, therefore, an important and challenging aspect of FTS calibration and data reduction pipeline. A dust-contaminated telescope model with time invariant mirror emissivity was adopted before the Herschel launch. However, measured FTS spectra show a clear evolution of the telescope contribution over the mission and strong need for a correction to the standard telescope model in order to reduce residual background (of up to 7 Jy) in the final data products. Systematic changes in observations of dark sky, taken over the course of the mission, provide a measure of the evolution between observed telescope emission and the telescope model. These dark sky observations have been used to derive a time dependent correction to the tel...

  13. Aligning Astronomical Telescopes via Identification of Stars

    Science.gov (United States)

    Whorton, Mark

    2010-01-01

    A proposed method of automated, precise alignment of a ground-based astronomical telescope would eliminate the need for initial manual alignment. The method, based on automated identification of known stars and other celestial objects in the telescope field of view, would also eliminate the need for an initial estimate of the aiming direction. The method does not require any equipment other than a digital imaging device such as a charge-coupled-device digital imaging camera and control computers of the telescope and camera, all of which are standard components in professional astronomical telescope systems and in high-end amateur astronomical telescope systems. The method could be implemented in software running in the telescope or camera control computer or in an external computer communicating with the telescope pointing mount and camera control computers.

  14. Recent developments for the Large Binocular Telescope Guiding Control Subsystem

    Science.gov (United States)

    Golota, T.; De La Peña, M. D.; Biddick, C.; Lesser, M.; Leibold, T.; Miller, D.; Meeks, R.; Hahn, T.; Storm, J.; Sargent, T.; Summers, D.; Hill, J.; Kraus, J.; Hooper, S.; Fisher, D.

    2014-07-01

    The Large Binocular Telescope (LBT) has eight Acquisition, Guiding, and wavefront Sensing Units (AGw units). They provide guiding and wavefront sensing capability at eight different locations at both direct and bent Gregorian focal stations. Recent additions of focal stations for PEPSI and MODS instruments doubled the number of focal stations in use including respective motion, camera controller server computers, and software infrastructure communicating with Guiding Control Subsystem (GCS). This paper describes the improvements made to the LBT GCS and explains how these changes have led to better maintainability and contributed to increased reliability. This paper also discusses the current GCS status and reviews potential upgrades to further improve its performance.

  15. Optical and system engineering in the development of a high-quality student telescope kit

    Science.gov (United States)

    Pompea, Stephen M.; Pfisterer, Richard N.; Ellis, Scott; Arion, Douglas N.; Fienberg, Richard Tresch; Smith, Thomas C.

    2010-07-01

    The Galileoscope student telescope kit was developed by a volunteer team of astronomers, science education experts, and optical engineers in conjunction with the International Year of Astronomy 2009. This refracting telescope is in production with over 180,000 units produced and distributed with 25,000 units in production. The telescope was designed to be able to resolve the rings of Saturn and to be used in urban areas. The telescope system requirements, performance metrics, and architecture were established after an analysis of current inexpensive telescopes and student telescope kits. The optical design approaches used in the various prototypes and the optical system engineering tradeoffs will be described. Risk analysis, risk management, and change management were critical as was cost management since the final product was to cost around 15 (but had to perform as well as 100 telescopes). In the system engineering of the Galileoscope a variety of analysis and testing approaches were used, including stray light design and analysis using the powerful optical analysis program FRED.

  16. Progress on Space Solar Telescope in 2002-2004

    Institute of Scientific and Technical Information of China (English)

    AI Guoxiang; YAN Yihua; JIN Shengzhen

    2004-01-01

    The progress on Chinese Space Solar Telescope (SST) in 2002-2004 is introduced. The documentations on plans and outlines based on the standards of Chinese aerospace industry for SST mission has been fulfilled. The key technical problems of SST satellite platform and payloads are tackled during pre-study stage of the mission. The laboratory assembly and calibration of the main optical telescope of 1.2 m spherical mirror and 1 m plain mirror have been carried out with the accuracy of λ/40 and λ/30, respectively. The prototype at 17.1 nm for extreme ultraviolet telescope is under development and manufacture with a diameter of 13 cm. Its primary and secondary mirrors have a manufacturing error of 5nm with a roughness degree of less than 0.5 nm and a multiplayer reflection factor of better than 20%. The on-board scientific data processing unit has been developed. Prototypes for other payloads such as H and white light telescope, wide band spectroscopy in high energy and solar and interplanetary radio spectrometer have been developed accordingly.

  17. An EUDET/AIDA Pixel Beam Telescope for Detector Development

    CERN Document Server

    Rubinskiy, I

    2015-01-01

    A high resolution (σ∼2μm) beam telescope based on monolithic active pixel sensors (MAPS) was developed within the EUDET collaboration. The telescope consists of six monolithic active pixel sensor planes (Mimosa26) with a pixel pitch of 18.4 \\mu m and thinned down to 50 \\mu m. The excellent resolution, readout rate and DAQ integration capabilities made the telescope a primary test beam tool for many groups including several CERN based experiments. Within the European detector infrastructure project AIDA the test beam telescope is being further extended in terms of cooling and powering infrastructure, read-out speed, area of acceptance, and precision. In order to provide a system optimized for the different requirements by the user community a combination of various state-of-the-art pixel technologies is foreseen. Furthermore, new central dead-time-free trigger logic unit (TLU) has been developed to provide LHC-speed response with one-trigger-per-particle operating mode and a synchronous clock for all conn...

  18. Status of the Cherenkov Telescope Array's Large Size Telescopes

    CERN Document Server

    Cortina, J

    2015-01-01

    The Cherenkov Telescope Array (CTA) observatory, will be deployed over two sites in the two hemispheres. Both sites will be equipped with four Large Size Telescopes (LSTs), which are crucial to achieve the science goals of CTA in the 20-200 GeV energy range. Each LST is equipped with a primary tessellated mirror dish of 23 m diameter, supported by a structure made mainly of carbon fibre reinforced plastic tubes and aluminum joints. This solution guarantees light weight (around 100 tons), essential for fast repositioning to any position in the sky in <20 seconds. The camera is composed of 1855 PMTs and embeds the control, readout and trigger electronics. The detailed design is now complete and production of the first LST, which will serve as a prototype for the remaining seven, is well underway. In 2016 the first LST will be installed at the Roque de los Muchachos Observatory on the Canary island of La Palma (Spain). In this talk we will outline the technical solutions adopted to fulfill the design requirem...

  19. Scientific Potential of Einstein Telescope

    CERN Document Server

    Sathyaprakash, B; Acernese, F; Andersson, P Amaro-Seoane N; Arun, K; Barone, F; Barr, B; Barsuglia, M; Beveridge, M Beker N; Birindelli, S; Bose, S; Bosi, L; Braccini, S; Bradaschia, C; Bulik, T; Calloni, E; Cella, G; Mottin, E Chassande; Chelkowski, S; Chincarini, A; Clark, J; Coccia, E; Colacino, C; Colas, J; Cumming, A; Cunningham, L; Cuoco, E; Danilishin, S; Danzmann, K; Salvo, R De; Dent, T; Rosa, R De; Fiore, L Di; Virgilio, A Di; Doets, M; Fafone, V; Falferi, P; Flaminio, R; Franc, J; Frasconi, F; Freise, A; Friedrich, D; Fulda, P; Gair, J; Gemme, G; Genin, E; Gennai, A; Giazotto, A; Glampedakis, K; Gräf, C; Granata, M; Grote, H; Guidi, G; Gurkovsky, A; Hammond, G; Hannam, M; Harms, J; Heinert, D; Hendry, M; Heng, I; Hennes, E; Hild, S; Hough, J; Husa, S; Huttner, S; Jones, G; Khalili, F; Kokeyama, K; Kokkotas, K; Krishnan, B; Li, T G F; Lorenzini, M; Lück, H; Majorana, E; Mandel, I; Mandic, V; Mantovani, M; Martin, I; Michel, C; Minenkov, Y; Morgado, N; Mosca, S; Mours, B; Müller--Ebhardt, H; Murray, P; Nawrodt, R; Nelson, J; Oshaughnessy, R; Ott, C D; Palomba, C; Paoli, A; Parguez, G; Pasqualetti, A; Passaquieti, R; Passuello, D; Pinard, L; Plastino, W; Poggiani, R; Popolizio, P; Prato, M; Punturo, M; Puppo, P; Rabeling, D; Racz, I; Rapagnani, P; Read, J; Regimbau, T; Rehbein, H; Reid, S; Rezzolla, L; Ricci, F; Richard, F; Rocchi, A; Rowan, S; Rüdiger, A; Santamaría, L; Sassolas, B; Schnabe, R; Schwarz, C; Seidel, P; Sintes, A; Somiya, K; Speirits, F; Strain, K; Strigin, S; Sutton, P; Tarabrin, S; Thüring, A; Brand, J van den; Veggel, M van; Broeck, C van den; Vecchio, A; Veitch, J; Vetrano, F; Vicere, A; Vyatchanin, S; Willke, B; Woan, G; Yamamoto, K

    2011-01-01

    Einstein gravitational-wave Telescope (ET) is a design study funded by the European Commission to explore the technological challenges of and scientific benefits from building a third generation gravitational wave detector. The three-year study, which concluded earlier this year, has formulated the conceptual design of an observatory that can support the implementation of new technology for the next two to three decades. The goal of this talk is to introduce the audience to the overall aims and objectives of the project and to enumerate ET's potential to influence our understanding of fundamental physics, astrophysics and cosmology.

  20. Detectors for the space telescope

    Science.gov (United States)

    Kelsall, T.

    1978-01-01

    This review of Space Telescope (ST) detectors is divided into two parts. The first part gives short summaries of detector programs carried out during the final planning stage (Phase B) of the ST and discusses such detectors as Photicon, the MAMA detectors, the CODACON, the University of Maryland ICCD, the Goddard Space Flight Center ICCD, and the 70 mm SEC TV sensor. The second part describes the detectors selected for the first ST flight, including the wide field/planetary camera, the faint object and high resolution spectrographs, and the high speed photometer.

  1. Cosmography with the Einstein Telescope

    CERN Document Server

    Sathyaprakash, B S; Broeck, Chris Van Den

    2009-01-01

    Einstein Telescope (ET) is a 3rd generation gravitational-wave (GW) detector that is currently undergoing a design study. ET can detect millions of compact binary mergers up to redshifts 2-8. A small fraction of mergers might be observed in coincidence as gamma-ray bursts, helping to measure both the luminosity distance and red-shift to the source. By fitting these measured values to a cosmological model, it should be possible to accurately infer the dark energy equation-of-state, dark matter and dark energy density parameters. ET could, therefore, herald a new era in cosmology.

  2. The Advanced Compton Telescope Mission

    CERN Document Server

    Boggs, S E; Ryan, J; Aprile, E; Gehrels, N; Kippen, M; Leising, M; Oberlack, U; Wunderer, C; Zych, A; Bloser, P; Harris, M; Hoover, A; Klimenk, A; Kocevski, D; McConnell, M; Milne, P; Novikova, E I; Phlips, B; Polsen, M; Sturner, S; Tournear, D; Weidenspointner, G; Wulf, E; Zoglauer, A; Baring, M; Beacom, J; Bildsten, L; Dermer, C; Hartmann, D; Hernanz, M; Smith, D; Starrfield, S; Boggs, Steven E.; Kurfess, James; Ryan, James; Aprile, Elena; Gehrels, Neil; Kippen, Marc; Leising, Mark; Oberlack, Uwe; Wunderer, Cornelia; Zych, Allen; Bloser, Peter; Harris, Michael; Hoover, Andrew; Klimenk, Alexei; Kocevski, Dan; Connell, Mark Mc; Milne, Peter; Novikova, Elena I.; Phlips, Bernard; Polsen, Mark; Sturner, Steven; Tournear, Derek; Weidenspointner, Georg; Wulf, Eric; Zoglauer, Andreas; Baring, Matthew; Beacom, John; Bildsten, Lars; Dermer, Charles; Hartmann, Dieter; Hernanz, Margarita; Smith, David; Starrfield, Sumner

    2006-01-01

    The Advanced Compton Telescope (ACT), the next major step in gamma-ray astronomy, will probe the fires where chemical elements are formed by enabling high-resolution spectroscopy of nuclear emission from supernova explosions. During the past two years, our collaboration has been undertaking a NASA mission concept study for ACT. This study was designed to (1) transform the key scientific objectives into specific instrument requirements, (2) to identify the most promising technologies to meet those requirements, and (3) to design a viable mission concept for this instrument. We present the results of this study, including scientific goals and expected performance, mission design, and technology recommendations.

  3. The Large Area Telescope on the Fermi Gamma-ray Space Telescope Mission

    Energy Technology Data Exchange (ETDEWEB)

    Atwood, W.B.; /UC, Santa Cruz; Abdo, Aous A.; /Naval Research Lab, Wash., D.C.; Ackermann, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Anderson, B. /UC, Santa Cruz; Axelsson, M.; /Stockholm U.; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Band, D.L.; /NASA, Goddard /NASA, Goddard; Barbiellini, Guido; /INFN, Trieste /Trieste U.; Bartelt, J.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bastieri, Denis; /INFN, Padua /Padua U.; Baughman, B.M.; /Ohio State U.; Bechtol, K.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bederede, D.; /DAPNIA, Saclay; Bellardi, F.; /INFN, Pisa; Bellazzini, R.; /INFN, Pisa; Berenji, B.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bignami, G.F.; /Pavia U.; Bisello, D.; /INFN, Padua /Padua U.; Bissaldi, E.; /Garching, Max Planck Inst., MPE; Blandford, R.D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Perugia /Perugia U. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Pisa /INFN, Pisa /Bari U. /INFN, Bari /Ecole Polytechnique /Washington U., Seattle /INFN, Padua /Padua U. /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /IASF, Milan /IASF, Milan /Kalmar U. /Royal Inst. Tech., Stockholm /DAPNIA, Saclay /ASI, Rome /INFN, Pisa /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /George Mason U. /Naval Research Lab, Wash., D.C. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /DAPNIA, Saclay /NASA, Goddard /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Montpellier U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; /more authors..

    2009-05-15

    The Large Area Telescope (Fermi/LAT, hereafter LAT), the primary instrument on the Fermi Gamma-ray Space Telescope (Fermi) mission, is an imaging, wide field-of-view (FoV), high-energy {gamma}-ray telescope, covering the energy range from below 20 MeV to more than 300 GeV. The LAT was built by an international collaboration with contributions from space agencies, high-energy particle physics institutes, and universities in France, Italy, Japan, Sweden, and the United States. This paper describes the LAT, its preflight expected performance, and summarizes the key science objectives that will be addressed. On-orbit performance will be presented in detail in a subsequent paper. The LAT is a pair-conversion telescope with a precision tracker and calorimeter, each consisting of a 4 x 4 array of 16 modules, a segmented anticoincidence detector that covers the tracker array, and a programmable trigger and data acquisition system. Each tracker module has a vertical stack of 18 (x, y) tracking planes, including two layers (x and y) of single-sided silicon strip detectors and high-Z converter material (tungsten) per tray. Every calorimeter module has 96 CsI(Tl) crystals, arranged in an eight-layer hodoscopic configuration with a total depth of 8.6 radiation lengths, giving both longitudinal and transverse information about the energy deposition pattern. The calorimeter's depth and segmentation enable the high-energy reach of the LAT and contribute significantly to background rejection. The aspect ratio of the tracker (height/width) is 0.4, allowing a large FoV (2.4 sr) and ensuring that most pair-conversion showers initiated in the tracker will pass into the calorimeter for energy measurement. Data obtained with the LAT are intended to (1) permit rapid notification of high-energy {gamma}-ray bursts and transients and facilitate monitoring of variable sources, (2) yield an extensive catalog of several thousand high-energy sources obtained from an all-sky survey, (3

  4. Corrector systems for cassegrain telescopes.

    Science.gov (United States)

    Wilson, R N

    1968-02-01

    Most modern reflecting telescopes have relative apertures of about f/3 and f/8 for the primary and first secondary foci in accordance with the suggestions of Bowen. The angular field which can be used at the first secondary focus is limited by the size of available plates for large instruments but can approach +/-1 degrees for smaller systems. The factors influencing the choice of the field corrector system in the first secondary focus are discussed. It is an important point whether the Ritchey-Chrétien form of the mirrors is strictly maintained-giving an optimum field without the corrector-or whether the aspheric constants are allowed to vary as free parameters. The differences are small but significant. The performance of a number of secondary focus correctors consisting of one, two, and three elements is discussed, spot diagrams being given in each case. Systems with fixed Ritchey-Chrétien mirror constants are inferior to those with free mirror constants. Test methods for the manufacture of the mirrors of telescopes of this type are compared. A doublet type corrector is suitable for compensation testing of primary mirrors or for secondaries tested from the back, but the testing of the latter from the front is more difficult. Several possible techniques are discussed.

  5. Origins Space Telescope: Community Participation

    Science.gov (United States)

    Carey, Sean J.; Origins Space Telescope Study Team

    2017-01-01

    The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. Origins is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum. Its imagers and spectrographs will enable a variety of surveys of the sky that will discover and characterize the most distant galaxies, Milky-Way, exoplanets, and the outer reaches of our Solar system. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. This poster will outline the ways in which the astronomical community can participate in the STDT activities and a summary of tools that are currently available or are planned for the community during the study. The Science and Technology Definition Team (STDT) would like to hear your science needs and ideas for this mission. The team can be contacted at firsurveyor_info@lists.ipac.caltech.edu.

  6. Far Ultraviolot Space Telescope (FAUST)

    Science.gov (United States)

    Bowyer, S.

    1988-01-01

    The Far Ultraviolet Space Telescope is a compact, wide field-of-view, far ultraviolet instrument designed for observations of extended and point sources of astronomical interest. It was originally used in sounding rocket work by both French and American investigators. The instrument was modified for flight on the space shuttle and flew on the Spacelab 1 mission as a joint effort between the Laboratoire d'Astronomie Spatiale and the University of California, Berkeley. The prime experiment objective of this telescope on the Atmospheric Laboratory Applications and Science (ATLAS 1) NASA mission is to observe faint astronomical sources in the far ultraviolet with sensitivities far higher than previously available. The experiment will cover the 1300 to 1800 A band, which is inaccessible to observers on earth. The observing program during the mission consists of obtaining deep sky images during spacecraft nighttime. The targets will include hot stars and nebulae in our own galaxy, faint diffuse galactic features similar to the cirrus clouds seen by the Infrared Astronomical Satellite (IRAS), large nearby galaxies, nearby clusters of galaxies, and objects of cosmological interest such as quasars and the diffuse far ultraviolet background.

  7. Origins Space Telescope: Study Plan

    Science.gov (United States)

    Cooray, Asantha R.; Origins Space Telescope Study Team

    2017-01-01

    The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. Origins is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum. Its spectrographs will enable 3D surveys of the sky that will discover and characterize the most distant galaxies, Milky-Way, exoplanets, and the outer reaches of our Solar system. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. The Science and Technology Definition Team (STDT) would like to hear your science needs and ideas for this mission. The team can be contacted at firsurveyor_info@lists.ipac.caltech.edu. This presentation will provide a summary of the OST STDT, the OST Study Team based at NASA Goddard Space Flight Center, study partners, and the advisory panel to the study. This presentation will also summarize recent activities, including the process used to reach a decision on the mission architecture, the identification of key science drivers, and the key study milestones between 2017 and 2020.

  8. ANTARES: An Undersea Neutrino telescope

    CERN Multimedia

    2002-01-01

    The ANTARES (Astronomy with a Neutrino Telescope and ${Abyss}$ environmental RESearch) deep-sea neutrino telescope is designed to search for neutrinos of astrophysical origin. Neutrinos are unique probes of the high energy universe; being neutral they are not deflected by magnetic fields and interacting weakly they can readily escape from the densest regions of the universe. Potential sources of neutrino are galactic (e.g supernova remnants, micro-quasars) and extra-galactic (e.g active galactic nuclei, gamma-ray bursters). Annihilation of dark matter particles in the Sun or Galactic Centre is another well motivated potential source of extra terrestrial neutrinos. The ANTARES detector is located 40 km off the coast of Toulon (France) at a depth of 2475m in the Mediterranean Sea. Being located in the Northern hemisphere it studies the Southern sky and in particular has the Galactic Centre in its field of view. Since 2006, the detector has operated continuously in a partial configuration. The detector was compl...

  9. Merz telescopes a global heritage worth preserving

    CERN Document Server

    2017-01-01

    This book comprises a fascinating collection of contributions on the Merz telescopes in Italy that collectively offer the first survey on historical large refracting telescopes in the country, drawing on original documents and photographs. It opens with a general introduction on the importance of Merz telescopes in the history of astronomy and analyses of the local and international contexts in which the telescopes were made. After examination of an example of the interaction between the maker and the astronomer in the construction and maintenance of these refractors, the history of the Merz telescopes at the main Italian observatories in the nineteenth century is described in detail. Expert testimony is also provided on how these telescopes were successfully used until the second half of the twentieth century for research purposes, thus proving their excellent optical qualities.

  10. Launch Will Create a Radio Telescope Larger than Earth

    Science.gov (United States)

    . This includes the National Science Foundation's Very Long Baseline Array (VLBA), an array of 10 telescopes spanning the United States from Hawaii to Saint Croix; NASA's Deep Space Network (DSN) sites in California, Spain, and Australia; the European VLBI Network, more than a dozen telescopes ranging from the United Kingdom to China; a Southern Hemisphere array of telescopes stretching from eastern Australia to South Africa; and Japan's network of domestic radio telescopes. In the United States, NASA is funding critical roles in the VSOP mission at both JPL and NRAO. JPL has built an array of three new tracking stations at its DSN sites in Goldstone, CA; Madrid, Spain; and near Canberra, Australia. A large existing tracking station at each of these sites has also been converted to an extremely sensitive radio telescope for simultaneous observations with the satellite. JPL also is providing precision orbit determination, scientific and operational planning support to the Japanese, and advice to U.S. astronomers who wish to observe with the satellite. NRAO is building a new tracking station at Green Bank, WV; contributing observing time on the VLBA array of telescopes; modifying existing data analysis hardware and software, and aiding astronomers with the analysis of the VSOP data. Much of the observational data will be processed at NRAO's facility in Socorro, NM, using the VLBA Correlator, a special purpose high-performance computer designed to process VLBI data. VSOP is the culmination of many years of planning and work by scientists and engineers around the world. Tests using NASA's Tracking and Data Relay Satellite System (TDRSS) proved the feasibility of space VLBI in 1986. Just last year, those old data were used again to test successfully the data-reduction facilities for VSOP. JPL manages the U.S. Space Very Long Baseline Interferometry project for NASA's Office of Space Science, Washington, DC. The VLBA, headquartered in Socorro, NM, is part of the National Radio

  11. ANTARES: The first undersea neutrino telescope

    Science.gov (United States)

    Ageron, M.; Aguilar, J. A.; Al Samarai, I.; Albert, A.; Ameli, F.; André, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Arnaud, K.; Aslanides, E.; Assis Jesus, A. C.; Astraatmadja, T.; Aubert, J.-J.; Auer, R.; Barbarito, E.; Baret, B.; Basa, S.; Bazzotti, M.; Becherini, Y.; Beltramelli, J.; Bersani, A.; Bertin, V.; Beurthey, S.; Biagi, S.; Bigongiari, C.; Billault, M.; Blaes, R.; Bogazzi, C.; de Botton, N.; Bou-Cabo, M.; Boudahef, B.; Bouwhuis, M. C.; Brown, A. M.; Brunner, J.; Busto, J.; Caillat, L.; Calzas, A.; Camarena, F.; Capone, A.; Caponetto, L.; Cârloganu, C.; Carminati, G.; Carmona, E.; Carr, J.; Carton, P. H.; Cassano, B.; Castorina, E.; Cecchini, S.; Ceres, A.; Chaleil, Th.; Charvis, Ph.; Chauchot, P.; Chiarusi, T.; Circella, M.; Compère, C.; Coniglione, R.; Coppolani, X.; Cosquer, A.; Costantini, H.; Cottini, N.; Coyle, P.; Cuneo, S.; Curtil, C.; D'Amato, C.; Damy, G.; van Dantzig, R.; de Bonis, G.; Decock, G.; Decowski, M. P.; Dekeyser, I.; Delagnes, E.; Desages-Ardellier, F.; Deschamps, A.; Destelle, J.-J.; di Maria, F.; Dinkespiler, B.; Distefano, C.; Dominique, J.-L.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drogou, J.-F.; Drouhin, D.; Druillole, F.; Durand, D.; Durand, R.; Eberl, T.; Emanuele, U.; Engelen, J. J.; Ernenwein, J.-P.; Escoffier, S.; Falchini, E.; Favard, S.; Fehr, F.; Feinstein, F.; Ferri, M.; Ferry, S.; Fiorello, C.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J.-L.; Galatá, S.; Galeotti, S.; Gay, P.; Gensolen, F.; Giacomelli, G.; Gojak, C.; Gómez-González, J. P.; Goret, Ph.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Hartmann, B.; Heijboer, A. J.; Heine, E.; Hello, Y.; Henry, S.; Hernández-Rey, J. J.; Herold, B.; Hößl, J.; Hogenbirk, J.; Hsu, C. C.; Hubbard, J. R.; Jaquet, M.; Jaspers, M.; de Jong, M.; Jourde, D.; Kadler, M.; Kalantar-Nayestanaki, N.; Kalekin, O.; Kappes, A.; Karg, T.; Karkar, S.; Karolak, M.; Katz, U.; Keller, P.; Kestener, P.; Kok, E.; Kok, H.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kretschmer, W.; Kruijer, A.; Kuch, S.; Kulikovskiy, V.; Lachartre, D.; Lafoux, H.; Lagier, P.; Lahmann, R.; Lahonde-Hamdoun, C.; Lamare, P.; Lambard, G.; Languillat, J.-C.; Larosa, G.; Lavalle, J.; Le Guen, Y.; Le Provost, H.; Levansuu, A.; Lefèvre, D.; Legou, T.; Lelaizant, G.; Lévéque, C.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Louis, F.; Lucarelli, F.; Lyashuk, V.; Magnier, P.; Mangano, S.; Marcel, A.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Masullo, R.; Mazéas, F.; Mazure, A.; Meli, A.; Melissas, M.; Migneco, E.; Mongelli, M.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Musumeci, M.; Naumann, C.; Naumann-Godo, M.; Neff, M.; Niess, V.; Nooren, G. J. L.; Oberski, J. E. J.; Olivetto, C.; Palanque-Delabrouille, N.; Palioselitis, D.; Papaleo, R.; Păvălaş, G. E.; Payet, K.; Payre, P.; Peek, H.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Picq, C.; Piret, Y.; Poinsignon, J.; Popa, V.; Pradier, T.; Presani, E.; Prono, G.; Racca, C.; Raia, G.; van Randwijk, J.; Real, D.; Reed, C.; Réthoré, F.; Rewiersma, P.; Riccobene, G.; Richardt, C.; Richter, R.; Ricol, J. S.; Rigaud, V.; Roca, V.; Roensch, K.; Rolin, J.-F.; Rostovtsev, A.; Rottura, A.; Roux, J.; Rujoiu, M.; Ruppi, M.; Russo, G. V.; Salesa, F.; Salomon, K.; Sapienza, P.; Schmitt, F.; Schöck, F.; Schuller, J.-P.; Schüssler, F.; Sciliberto, D.; Shanidze, R.; Shirokov, E.; Simeone, F.; Sottoriva, A.; Spies, A.; Spona, T.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Streeb, K.; Sulak, L.; Taiuti, M.; Tamburini, C.; Tao, C.; Tasca, L.; Terreni, G.; Tezier, D.; Toscano, S.; Urbano, F.; Valdy, P.; Vallage, B.; van Elewyck, V.; Vannoni, G.; Vecchi, M.; Venekamp, G.; Verlaat, B.; Vernin, P.; Virique, E.; de Vries, G.; van Wijk, R.; Wijnker, G.; Wobbe, G.; de Wolf, E.; Yakovenko, Y.; Yepes, H.; Zaborov, D.; Zaccone, H.; Zornoza, J. D.; Zúñiga, J.

    2011-11-01

    The ANTARES Neutrino Telescope was completed in May 2008 and is the first operational Neutrino Telescope in the Mediterranean Sea. The main purpose of the detector is to perform neutrino astronomy and the apparatus also offers facilities for marine and Earth sciences. This paper describes the design, the construction and the installation of the telescope in the deep sea, offshore from Toulon in France. An illustration of the detector performance is given.

  12. Parameterized Telescoping Proves Algebraic Independence of Sums

    CERN Document Server

    Schneider, Carsten

    2008-01-01

    Usually creative telescoping is used to derive recurrences for sums. In this article we show that the non-existence of a creative telescoping solution, and more generally, of a parameterized telescoping solution, proves algebraic independence of certain types of sums. Combining this fact with summation-theory shows transcendence of whole classes of sums. Moreover, this result throws new light on the question why, e.g., Zeilberger's algorithm fails to find a recurrence with minimal order.

  13. Resolution studies with the DATURA beam telescope

    CERN Document Server

    Jansen, Hendrik

    2016-01-01

    We present resolution studies carried out with the DATURA beam telescope, which belongs to the family of EUDET-type beam telescopes. The EUDET-type beam telescopes make use of CMOS MIMOSA 26 pixel detectors for particle tracking allowing for precise characterisation of particle sensing devices. A profound understanding of the performance of the beam telescope as a whole is obtained by a detailed characterisation of the sensors themselves. We extract the differential intrinsic resolution as measured in a MIMOSA 26 sensor using an iterative pull method and show various clustersize dependent quantities as the residual distribution, the intra-pixel residual width distribution and the intra-pixel frequency distribution.

  14. COSMOS Hubble Space Telescope Observations

    CERN Document Server

    Scoville, N Z; Blain, A W; Calzetti, D; Comastri, A; Capak, P; Carilli, C; Carlstrom, J E; Carollo, C M; Colbert, J; Daddi, E; Ellis, Richard S; Elvis, M; Ewald, S P; Fall, M; Franceschini, A; Giavalisco, M; Green, W; Griffiths, R E; Guzzo, L; Hasinger, G; Impey, C; Kneib, J P; Koda, J; Koekemoer, A; Lefèvre, O; Lilly, S; Liu, C T; McCracken, H J; Massey, R; Mellier, Y; Miyazaki, S; Mobasher, B; Mould, J; Norman, C; Réfrégier, A; Renzini, A; Rhodes, J; Rich, M; Sanders, D B; Schiminovich, D; Schinnerer, E; Scodeggio, M; Sheth, K; Shopbell, P L; Taniguchi, Y; Tyson, N; Urry, C M; Van Waerbeke, L; Vettolani, P; White, S D M; Yan, L

    2006-01-01

    The Cosmic Evolution Survey (COSMOS) was initiated with an extensive allocation (590 orbits in Cycles 12-13) using the Hubble Space Telescope (HST) for high resolution imaging. Here we review the characteristics of the HST imaging with the Advanced Camera for Surveys (ACS) and parallel observations with NICMOS and WFPC2. A square field (1.8$\\sq$\\deg) has been imaged with single-orbit ACS I-F814W exposures with 50% completeness for sources 0.5\\arcsec in diameter at I$_{AB} $ = 26.0 mag. The ACS imaging is a key part of the COSMOS survey, providing very high sensitivity and high resolution (0.09\\arcsec FWHM, 0.05\\arcsec pixels) imaging and detecting a million objects. These images yield resolved morphologies for several hundred thousand galaxies. The small HST PSF also provides greatly enhanced sensitivity for weak lensing investigations of the dark matter distribution.

  15. Adaptive Optics for Large Telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, S

    2008-06-27

    The use of adaptive optics was originally conceived by astronomers seeking to correct the blurring of images made with large telescopes due to the effects of atmospheric turbulence. The basic idea is to use a device, a wave front corrector, to adjust the phase of light passing through an optical system, based on some measurement of the spatial variation of the phase transverse to the light propagation direction, using a wave front sensor. Although the original concept was intended for application to astronomical imaging, the technique can be more generally applied. For instance, adaptive optics systems have been used for several decades to correct for aberrations in high-power laser systems. At Lawrence Livermore National Laboratory (LLNL), the world's largest laser system, the National Ignition Facility, uses adaptive optics to correct for aberrations in each of the 192 beams, all of which must be precisely focused on a millimeter scale target in order to perform nuclear physics experiments.

  16. The ANTARES underwater neutrino telescope

    CERN Document Server

    Montaruli, Teresa

    2015-01-01

    ANTARES is the first undersea neutrino telescope. It is in its complete configuration since May 2008 at about 2.5 km below the sea surface close to Marseille. Data from 12 lines are being analyzed and are producing first results. Here we discuss first analysis results for 5 lines and 10 lines, and we also comment on the performance of the full detector. We show that the detector has capabilities for discriminating upgoing neutrino events from the much larger amount of downgoing atmospheric muons and that data and simulation are in good agreement. We then discuss the physics reach of the detector for what concerns point-like source and dark matter searches.

  17. Can Radio Telescopes Find Axions?

    Science.gov (United States)

    Kohler, Susanna

    2017-08-01

    axions. Now scientists Katharine Kelley and Peter Quinn at ICRAR, University of Western Australia, have explored how we might use next-generation radio telescopes to search for photons that were created by axions interacting with the magnetic fields of our galaxy.Hope for Next-Gen TelescopesPotential axion coupling strengths vs. mass (click for a closer look). The axion mass is thought to lie between a eV and a meV; two theoretical models are shown with dashed lines. The plot shows the sensitivity of the upcoming SKA and its precursors, ASKAP and MEERKAT. [KelleyQuinn 2017]By using a simple galactic halo model and reasonable assumptions for the central galactic magnetic field even taking into account the time dependence of the field Kelley and Quinn estimate the radio-frequency power density that we would observe at Earth from axions being converted to photons within the Milky Ways magnetic field.The authors then compare this signature to the detection capabilities of upcoming radio telescope arrays. They show that the upcoming Square Kilometer Array and its precursors should have the capability to detect signs of axions across large parts of parameter space.Kelley and Quinn conclude that theres good cause for optimism about future radio telescopes ability to detect axions. And if we did succeed in making a detection, it would be a triumph for both particle physics and astrophysics, finally providing an explanation for the universes dark matter.CitationKatharine Kelley and P. J. Quinn 2017 ApJL 845 L4. doi:10.3847/2041-8213/aa808d

  18. Recent Results from Telescope Array

    CERN Document Server

    Fukushima, M

    2015-01-01

    The Telescope Array (TA) is an experiment to observe Ultra-High Energy Cosmic Rays (UHECRs). TA's recent results, the energy spectrum and anisotropy based on the 6-year surface array data, and the primary composition obtained from the shower maximum Xmax are reported. The spectrum demonstrates a clear dip and cutoff. The shape of the spectrum is well described by the energy loss of extra-galactic protons interacting with the cosmic microwave background (CMB). Above the cutoff, a medium-scale (20 degrees radius) flux enhancement was observed near the Ursa-Major. A chance probability of creating this hotspot from the isotropic flux is 4.0 sigma. The measured Xmax is consistent with the primary being proton or light nuclei for energies 10^18.2 eV - 10^19.2 eV.

  19. Cosmography with the Einstein Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Sathyaprakash, B S [School of Physics and Astronomy, Cardiff University, Cardiff, CF24 3AA (United Kingdom); Schutz, B F [Max Planck Institute for Gravitational Physics, The Albert Einstein Institute, Am Muehlenberg 1, Golm, D-14476 (Germany); Van Den Broeck, C, E-mail: B.Sathyaprakash@astro.cf.ac.u, E-mail: B.F.Schutz@aei.mpg.d, E-mail: vdbroeck@nikhef.n [Nikhef - National Institute for Subatomic Physics, Science Park 105, 1098 XG Amsterdam (Netherlands)

    2010-11-07

    The Einstein Telescope, a third-generation gravitational-wave detector under a design study, could detect millions of binary neutron star inspirals each year. A small fraction of these events might be observed as gamma-ray bursts, helping to measure both the luminosity distance D{sub L} to and redshift z of the source. By fitting these measured values of D{sub L} and z to a cosmological model, it would be possible to infer the dark energy equation of state to within 1.5% without the need to correct for errors in D{sub L} caused by weak lensing. This compares favourably with 0.3-10% accuracy that can be achieved with the Laser Interferometer Space Antenna (where weak lensing will need to be dealt with) as well as with dedicated dark energy missions that have been proposed, where 3.5-11% uncertainty is expected.

  20. NESTOR Deep Sea Neutrino Telescope

    Science.gov (United States)

    NESTOR Collaboration; Aggouras, G.; Anassontzis, E. G.; Ball, A. E.; Bourlis, G.; Chinowsky, W.; Fahrun, E.; Grammatikakis, G.; Green, C.; Grieder, P.; Katrivanos, P.; Koske, P.; Leisos, A.; Markopoulos, E.; Minkowsky, P.; Nygren, D.; Papageorgiou, K.; Przybylski, G.; Resvanis, L. K.; Siotis, I.; Sopher, J.; Staveris-Polikalas, A.; Tsagli, V.; Tsirigotis, A.; Tzamarias, S.; Zhukov, V. A.

    2006-01-01

    One module of NESTOR, the Mediterranean deep-sea neutrino telescope, was deployed at a depth of 4000m, 14km off the Sapienza Island, off the South West coast of Greece. The deployment site provides excellent environmental characteristics. The deployed NESTOR module is constructed as a hexagonal star like latticed titanium star with 12 Optical Modules and an one-meter diameter titanium sphere which houses the electronics. Power and data were transferred through a 30km electro-optical cable to the shore laboratory. In this report we describe briefly the detector and the detector electronics and discuss the first physics data acquired and give the zenith angular distribution of the reconstructed muons.

  1. Diffractive X-Ray Telescopes

    Science.gov (United States)

    Skinner, Gerald K.

    2010-01-01

    Diffractive X-ray telescopes, using zone plates, phase Fresnel lenses, or related optical elements have the potential to provide astronomers with true imaging capability with resolution many orders of magnitude better than available in any other waveband. Lenses that would be relatively easy to fabricate could have an angular resolution of the order of micro-arc-seconds or even better, that would allow, for example, imaging of the distorted spacetime in the immediate vicinity of the super-massive black holes in the center of active galaxies. What then is precluding their immediate adoption? Extremely long focal lengths, very limited bandwidth, and difficulty stabilizing the image are the main problems. The history, and status of the development of such lenses is reviewed here and the prospects for managing the challenges that they present are discussed.

  2. Diffractive X-ray Telescopes

    CERN Document Server

    Skinner, Gerald K

    2010-01-01

    Diffractive X-ray telescopes using zone plates, phase Fresnel lenses, or related optical elements have the potential to provide astronomers with true imaging capability with resolution several orders of magnitude better than available in any other waveband. Lenses that would be relatively easy to fabricate could have an angular resolution of the order of micro-arc-seconds or even better, that would allow, for example, imaging of the distorted space- time in the immediate vicinity of the super-massive black holes in the center of active galaxies What then is precluding their immediate adoption? Extremely long focal lengths, very limited bandwidth, and difficulty stabilizing the image are the main problems. The history, and status of the development of such lenses is reviewed here and the prospects for managing the challenges that they present are discussed.

  3. SEMICONDUCTOR INTEGRATED CIRCUITS: A novel fully differential telescopic operational transconductance amplifier

    Science.gov (United States)

    Tianwang, Li; Bo, Ye; Jinguang, Jiang

    2009-08-01

    A novel fully differential telescopic operational transconductance amplifier (OTA) is proposed. An additional PMOS differential pair is introduced to improve the unit-gain bandwidth of the telescopic amplifier. At the same time, the slew rate is enhanced by the auxiliary slew rate boost circuits. The proposed OTA is designed in a 0.18μm CMOS process. Simulation results show that there is a 49% improvement in the unit-gain bandwidth compared to that of a conventional OTA; moreover, the DC gain and the slew rate are also enhanced.

  4. A Study of the Fitting Accuracy of the Active Reflector for a Large Spherical Radio Telescope

    Institute of Scientific and Technical Information of China (English)

    Xiao-Qiang Tang; Jin-Song Wang; Qi-Ming Wang

    2003-01-01

    We propose a spatial three-degree-of-freedom (DOF) parallel mechanism combining two degrees of rotations and one degree of translation to support the active reflector units of a large spherical radio telescope. The kinematics, workspace and accuracy of the mechanism are analyzed. One-dimensional and two-dimensional fitting errors to the working region of active reflector are investigated. Dimensional parameters of the mechanism and active reflector unit are examined with respect to the requirement of fitting accuracy. The result of accuracy analysis shows the effectiveness and feasibility of the proposed mechanism, and gives a design rule to guarantee the highest working frequency required by large radio telescope.

  5. IR spectrometer project for the BTA telescope

    Science.gov (United States)

    Afanasiev, V. L.; Emelianov, E. V.; Murzin, V. A.; Vdovin, V. F.

    2013-07-01

    We introduce a project of new cooled infrared spectrometer-photometer for 6-m telescope BTA (Special Astrophysical Observatory of Russian Science Academy). The device would extend the wavelength range accessible for observations on the 6-m BTA telescope toward near infrared (0.8-2.5 um).

  6. A Mechanical Analogue of the Refracting Telescope

    Science.gov (United States)

    Vannoni, Maurizio; Molesini, Giuseppe; Sordini, Andrea; Straulino, Samuele

    2011-01-01

    The recent celebration of the discoveries made by Galileo four centuries ago has attracted new attention to the refracting telescope and to its use as an instrument for the observation of the night sky. This has offered the opportunity for addressing in the classroom the basic principles explaining the operation of the telescope. When doing so, a…

  7. Solar Magnetometry with the dutch open telescope

    NARCIS (Netherlands)

    Rutten, R.J.; Hammerschlag, R.H.; Sütterlin, P.; Bettonvil, F.C.M.; Zalm, E.B.J. van der

    2001-01-01

    The Dutch Open Telescope (DOT) has become op- erational at the Roque de los Muchachos Observa- tory on La Palma. The rst image sequences taken with this innovative telescope demonstrate its capa- bility for tomographic high-resolution imaging of the magnetic topology of the solar atmosphere up to th

  8. ANTARES : The first undersea neutrino telescope

    NARCIS (Netherlands)

    Ageron, M.; Aguilar, J. A.; Al Samarai, I.; Albert, A.; Ameli, F.; Andre, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Arnaud, K.; Aslanides, E.; Jesus, A. C. Assis; Astraatmadja, T.; Aubert, J. -J.; Auer, R.; Barbarito, E.; Baret, B.; Basa, S.; Bazzotti, M.; Becherini, Y.; Beltramelli, J.; Bersani, A.; Bertin, V.; Beurthey, S.; Biagi, S.; Bigongiari, C.; Billault, M.; Blaes, R.; Bogazzi, C.; de Botton, N.; Bou-Cabo, M.; Boudahef, B.; Bouwhuis, M. C.; Brown, A. M.; Brunner, J.; Busto, J.; Caillat, L.; Calzas, A.; Camarena, F.; Capone, A.; Caponetto, L.; Carloganu, C.; Carminati, G.; Carmona, E.; Carr, J.; Carton, P. H.; Cassano, B.; Castorina, E.; Cecchini, S.; Ceres, A.; Chaleil, Th; Charvis, Ph; Chauchot, P.; Chiarusi, T.; Circella, M.; Compere, C.; Coniglione, R.; Coppolani, X.; Cosquer, A.; Costantini, H.; Cottini, N.; Coyle, P.; Cuneo, S.; Curtil, C.; D'Amato, C.; Damy, G.; van Dantzig, R.; De Bonis, G.; Decock, G.; Decowski, M. P.; Dekeyser, I.; Delagnes, E.; Desages-Ardellier, F.; Deschamps, A.; Destelle, J. -J.; Di Maria, F.; Dinkespiler, B.; Distefano, C.; Dominique, J. -L.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drogou, J. -F.; Drouhin, D.; Druillole, F.; Durand, D.; Durand, R.; Eberl, T.; Emanuele, U.; Engelen, J. J.; Ernenwein, J. -P.; Escoffier, S.; Falchini, E.; Favard, S.; Fehr, F.; Feinstein, F.; Ferri, M.; Ferry, S.; Fiorello, C.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J. -L.; Galata, S.; Galeotti, S.; Gay, P.; Gensolen, F.; Giacomelli, G.; Gojak, C.; Gomez-Gonzalez, J. P.; Goret, Ph.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Hartmann, B.; Heijboer, A. J.; Heine, E.; Hello, Y.; Henry, S.; Hernandez-Rey, J. J.; Herold, B.; Hoessl, J.; Hogenbirk, J.; Hsu, C. C.; Hubbard, J. R.; Jaquet, M.; Jaspers, M.; de Jong, M.; Jourde, D.; Kadler, M.; Kalantar-Nayestanaki, N.; Kalekin, O.; Kappes, A.; Karg, T.; Karkar, S.; Karolak, M.; Katz, U.; Keller, P.; Kestener, P.; Kok, E.; Kok, H.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kretschmer, W.; Kruijer, A.; Kuch, S.; Kulikovskiy, V.; Lachartre, D.; Lafoux, H.; Lagier, P.; Lahmann, R.; Lahonde-Hamdoun, C.; Lamare, P.; Lambard, G.; Languillat, J-C; Larosa, G.; Lavalle, J.; Le Guen, Y.; Le Provost, H.; LeVanSuu, A.; Lefevre, D.; Legou, T.; Lelaizant, G.; Leveque, C.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Louis, F.; Lucarelli, F.; Lyashuk, V.; Magnier, P.; Mangano, S.; Marcel, A.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Masullo, R.; Mazeas, F.; Mazure, A.; Meli, A.; Melissas, M.; Migneco, E.; Mongelli, M.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Musumeci, M.; Naumann, C.; Naumann-Godo, M.; Neff, M.; Niess, V.; Nooren, G. J. L.; Oberski, J. E. J.; Olivetto, C.; Palanque-Delabrouille, N.; Patioselitis, D.; Papaleo, R.; Pavalas, G. E.; Payet, K.; Payre, P.; Peek, H.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Picq, C.; Piret, Y.; Poinsignon, J.; Popa, V.; Pradier, T.; Presani, E.; Prono, G.; Racca, C.; Raia, G.; van Randwijk, J.; Real, D.; Reed, C.; Rethore, F.; Rewiersma, P.; Riccobene, G.; Richardt, C.; Richter, R.; Ricol, J. S.; Rigaud, V.; Roca, V.; Roensch, K.; Rolin, J. -F.; Rostovtsev, A.; Rottura, A.; Roux, J.; Rujoiu, M.; Ruppi, M.; Russo, G. V.; Salesa, F.; Salomon, K.; Sapienza, P.; Schmitt, F.; Schoeck, F.; Schuller, J. -P.; Schuessler, F.; Sciliberto, D.; Shanidze, R.; Shirokov, E.; Simeone, F.; Sottoriva, A.; Spies, A.; Spona, T.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th; Streeb, K.; Sulak, L.; Taiuti, M.; Tamburini, C.; Tao, C.; Tasca, L.; Terreni, G.; Tezier, D.; Toscano, S.; Urbano, F.; Valdy, P.; Vallage, B.; Van Elewyck, V.; Vannoni, G.; Vecchi, M.; Venekamp, G.; Verlaat, B.; Vernin, P.; Virique, E.; de Vries, G.; Wijnker, G.; Wobbe, G.; de Wolf, E.; Yakovenko, Y.; Yepes, H.; Zaborov, D.; Zaccone, H.; Zornoza, J. D.; Zuniga, J.; van Wijk, R.

    2011-01-01

    The ANTARES Neutrino Telescope was completed in May 2008 and is the first operational Neutrino Telescope in the Mediterranean Sea. The main purpose of the detector is to perform neutrino astronomy and the apparatus also offers facilities for marine and Earth sciences. This paper describes the design

  9. Lijiang 2.4m Optical Telescope

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The 2.4m optical telescope of Yunnan Observatory was installed at Lijiang Observatory in the northwest of the Yunnan Province in 2007, which became operational since May 2008. At present, it is the largest general-use optical telescope in East Asia.

  10. Hard x-ray telescope mission

    DEFF Research Database (Denmark)

    Gorenstein, P.; Worrall, D.; Joensen, K.D.

    1996-01-01

    The Hard X-Ray Telescope was selected for study as a possible new intermediate size mission for the early 21st century. Its principal attributes are: (1) multiwavelength observing with a system of focussing telescopes that collectively observe from the UV to over 1 MeV, (2) much higher sensitivity...

  11. IR Spectrometer Project for the BTA Telescope

    OpenAIRE

    Afanasiev, V. L.; Emelianov, E. V.; Murzin, V. A.; Vdovin, V. F.

    2013-01-01

    We introduce a project of new cooled infrared spectrometer-photometer for 6-m telescope BTA (Special Astrophysical Observatory of Russian Science Academy). The device would extend the wavelength range accessible for observations on the 6-m BTA telescope toward near infrared (0.8-2.5 um).

  12. DAG telescope site studies and infrastructure for possible international co-operations

    Science.gov (United States)

    Yerli, Sinan K.; Yeşilyaprak, Cahit; Keskin, Onur; Alis, Sinan

    2016-07-01

    The selected site for the 4 m DAG (Eastern Anatolian Observatory in Turkish) telescope is at "Karakaya Ridge", at 3170 m altitude (3150 m after summit management). The telescope's optical design is performed by the DAG technical team to allow infrared observation at high angular resolution, with its adaptive optics system to be built in Turkey. In this paper; a brief introduction about DAG telescope design; planned instrumentation; the meteorological data collected from 2008, clear night counts, short-term DIMM observations; current infrastructure to hold auxiliary telescopes; auxiliary buildings to assist operations; the observatory design; and coating unit plans will be presented along with possible collaboration possibilities in terms of instrumentation and science programs.

  13. LUNASKA simultaneous neutrino searches with multiple telescopes

    CERN Document Server

    Bray, J D; James, C W; Roberts, P; Brown, A; Phillips, C J; Protheroe, R J; Reynolds, J E; McFadden, R A; Aartsen, M

    2011-01-01

    The most sensitive method for detecting neutrinos at the very highest energies is the lunar Cherenkov technique, which employs the Moon as a target volume, using conventional radio telescopes to monitor it for nanosecond-scale pulses of Cherenkov radiation from particle cascades in its regolith. Multiple-antenna radio telescopes are difficult to effectively combine into a single detector for this purpose, while single antennas are more susceptible to false events from radio interference, which must be reliably excluded for a credible detection to be made. We describe our progress in excluding such interference in our observations with the single-antenna Parkes radio telescope, and our most recent experiment (taking place the week before the ICRC) using it in conjunction with the Australia Telescope Compact Array, exploiting the advantages of both types of telescope.

  14. Calibration of the Cherenkov Telescope Array

    CERN Document Server

    Gaug, Markus; Berge, David; Reyes, Raquel de los; Doro, Michele; Foerster, Andreas; Maccarone, Maria Concetta; Parsons, Dan; van Eldik, Christopher

    2015-01-01

    The construction of the Cherenkov Telescope Array is expected to start soon. We will present the baseline methods and their extensions currently foreseen to calibrate the observatory. These are bound to achieve the strong requirements on allowed systematic uncertainties for the reconstructed gamma-ray energy and flux scales, as well as on the pointing resolution, and on the overall duty cycle of the observatory. Onsite calibration activities are designed to include a robust and efficient calibration of the telescope cameras, and various methods and instruments to achieve calibration of the overall optical throughput of each telescope, leading to both inter-telescope calibration and an absolute calibration of the entire observatory. One important aspect of the onsite calibration is a correct understanding of the atmosphere above the telescopes, which constitutes the calorimeter of this detection technique. It is planned to be constantly monitored with state-of-the-art instruments to obtain a full molecular and...

  15. A telescope with augmented reality functions

    Science.gov (United States)

    Hou, Qichao; Cheng, Dewen; Wang, Qiwei; Wang, Yongtian

    2016-10-01

    This study introduces a telescope with virtual reality (VR) and augmented reality (AR) functions. In this telescope, information on the micro-display screen is integrated to the reticule of telescope through a beam splitter and is then received by the observer. The design and analysis of telescope optical system with AR and VR ability is accomplished and the opto-mechanical structure is designed. Finally, a proof-of-concept prototype is fabricated and demonstrated. The telescope has an exit pupil diameter of 6 mm at an eye relief of 19 mm, 6° field of view, 5 to 8 times visual magnification , and a 30° field of view of the virtual image.

  16. Optical design of a rotating eyepiece telescope

    Science.gov (United States)

    Siddique, M.; Nasim, F.; Khan, A. N.; Gul, A.

    2016-08-01

    Flexible eyepiece telescope has been designed and verified. The rotating eyepiece of telescope will facilitate viewing of objects in a remote or out of sight target. Eyepiece arm of telescope can be rotated upto 360o keeping objective and reticule unchanged and ensuring zero deviation in reticule inclination. Main application of this scope is off axis viewing of objects. Image inversion has been carried out by using pair of mirrors and length of telescope is controlled by using relay lenses. The optical design, simulation and image analysis has been carried out by using ZEMAX®. Magnification of telescope is between 10∼⃒12 times with FOV of 60. Experiment has been carried out using uncoated Edmund Optics and optical tool box of Micro Series Kit, NEWPORT.

  17. Performance of the SST-1M telescope for the Cherenkov Telescope Array observatory

    CERN Document Server

    Moderski, R; Błocki, J.; Bogacz, L.; Bulik, T.; Cadoux, F.; Christov, A.; Chruślińska, M.; Curyło, M.; della Volpe, D.; Dyrda, M.; Favre, Y.; Frankowski, A.; Grudnik, Ł.; Grudzińska, M.; Heller, M.; Idźkowski, B.; Jamrozy, M.; Janiak, M.; Kasperek, J.; Lalik, K.; Lyard, E.; Mach, E.; Mandat, D.; Marszałek, A.; Michałowski, J.; Montaruli, T.; Neronov, A.; Niemiec, J.; Ostrowski, M.; Paśko, P.; Pech, M.; Porcelli, A.; Prandini, E.; Pueschel, E.; Rajda, P.; Rameez, M.; Rozwadowski, P.; Schioppa, E. jr; Schovanek, P.; Seweryn, K.; Skowron, K.; Sliusar, V.; Sowiński, M.; Stawarz, Ł.; Stodulska, M.; Stodulski, M.; Toscano, S.; Pujadas, I. Troyano; Walter, R.; Wiȩcek, M.; Zagdański, A.; Ziȩtara, K.; Żychowski, P.

    2015-01-01

    The single mirror small-size telescope (SST-1M) is one of the telescope projects being proposed for the Cherenkov Telescope Array observatory by a sub-consortium of Polish and Swiss institutions. The SST-1M prototype structure is currently being constructed at the Institute of Nuclear Physics in Cracow, Poland, while the camera will be assembled at the University of Geneva, Switzerland. This prototype enables measurements of parameters having a decisive influence on the telescope performance. We present results of numerical simulations of the SST-1M performance based on such measurements. The telescope effective area, the expected trigger rates and the optical point spread function are calculated.

  18. Young stars in old galaxies - surprising discovery with the world's leading telescopes

    Science.gov (United States)

    2002-06-01

    similar to the way a palaeontologist uses the skeletons of dinosaurs to deduce information about the era in which they lived. A surprising discovery The team combined images of a number of galaxies from Hubble's Wide Field and Planetary Camera 2 with infrared images obtained from the multi-mode ISAAC instrument on the 8.2m VLT Antu telescope at the ESO Paranal Observatory (Chile). To their great surprise, they discovered that many of the globular clusters in one of these galaxies, NGC 4365, a member of the large Virgo cluster of galaxies, were only a few thousand million years old, much younger than most of the other stars in this galaxy (roughly 12 thousand million years old). The astronomers were able to identify three major groups of stellar clusters. There is an old population of clusters of metal-poor stars, some clusters of old but metal-rich stars and now, seen for the first time, a population of clusters with young and metal-rich stars. These results have been fully confirmed by spectroscopic observations made with another of the world's giant telescopes, the 10-metre Keck on Hawaii. "It is a great pleasure to see two projects wholly or partly funded by Europe - VLT and Hubble - work in concert to produce such an important scientific result", says Piero Benvenuti, ESA Hubble Project Scientist. "The synergy between the most advanced ground and space telescopes continues to prove its effectiveness, paving the way to impressive new discoveries that would not otherwise be possible." The discovery of young globular clusters within old galaxies is surprising since the stars in the giant elliptical galaxies were until now believed to have formed during a single period early in the history of the Universe. It is now clear that some of the galaxies may be hiding their true nature and have indeed experienced much more recent periods of major star formation. Notes for editors This press release is issued in coordination between ESA and ESO. The Hubble Space Telescope project

  19. Design of the STAR-X Telescope

    Science.gov (United States)

    Saha, Timo T.; Zhang, William W.; McClelland, Ryan S.

    2017-01-01

    Top-level science goals of the Survey and Time-domain Astrophysical Research eXplorer (STAR-X) include: investigations of most violent explosions in the universe, study of growth of black holes across cosmic time and mass scale, and measure how structure formation heats majority of baryons in the universe. To meet these goals, the field-of-view of the telescope should be about 1 square-degree, the angular resolution should be 5 arc-seconds or below across large part of the field-of-view. The on-axis effective area at 1 KeV should be about 2,000 sq cm. Payload cost and launch considerations limit the outer diameter, focal length, and mass to 1.3 meters, 5 meters, and 250 kilograms, respectively. Telescope design is based on a segmented meta-shell approach we have developed at Goddard Space Flight Center for the STAR-X telescope. The telescope shells are divided into 30-degree segments. Individual telescopes and meta-shells are nested inside each other to meet the effective area requirements in 0.5 - 6.0 KeV range. We consider Wolter-Schwarzschild, and Modified-Wolter-Schwarzschild telescope designs as basic building blocks of the nested STAR-X telescope. These designs offer an excellent resolution over a large field of views. Nested telescopes are vulnerable to stray light problems. We have designed a multi-component baffle system to eliminate direct and single-reflection light paths inside the telescopes. Large number of internal and external baffle vane structures are required to prevent stray rays from reaching the focal plane. We have developed a simple ray-trace based tool to determine the dimensions and locations of the baffles. In this paper, we present the results of our trade studies, baffle design studies, and optical performance analyses of the STAR-X telescope.

  20. Beyond the Hubble Space Telescope: Early Development of the Next Generation Space Telescope

    Science.gov (United States)

    Smith, Robert W.; Patrick McCray, W.

    In this paper we investigate the early history of what was at first called the Next Generation Space Telescope, later to be renamed the James Webb Space Telescope. We argue that the initial ideas for such a Next Generation Space Telescope were developed in the context of the planning for a successor to the Hubble Space Telescope. Much the most important group of astronomers and engineers examining such a successor was based at the Space Telescope Science Institute in Baltimore. By the late 1980s, they had fashioned concepts for a successor that would work in optical, ultraviolet and infrared wavelengths, concepts that would later be regarded as politically unrealistic given the costs associated with them. We also explore how the fortunes of the planned Next Generation Space Telescope were intimately linked to that of its "parent," the Hubble Space Telescope.

  1. Monte Carlo Studies of medium-size telescope designs for the Cherenkov Telescope Array

    CERN Document Server

    Wood, M; Dumm, J; Funk, S

    2015-01-01

    We present studies for optimizing the next generation of ground-based imaging atmospheric Cherenkov telescopes (IACTs). Results focus on mid-sized telescopes (MSTs) for CTA, detecting very high energy gamma rays in the energy range from a few hundred GeV to a few tens of TeV. We describe a novel, flexible detector Monte Carlo package, FAST (FAst Simulation for imaging air cherenkov Telescopes), that we use to simulate different array and telescope designs. The simulation is somewhat simplified to allow for efficient exploration over a large telescope design parameter space. We investigate a wide range of telescope performance parameters including optical resolution, camera pixel size, and light collection area. In order to ensure a comparison of the arrays at their maximum sensitivity, we analyze the simulations with the most sensitive techniques used in the field, such as maximum likelihood template reconstruction and boosted decision trees for background rejection. Choosing telescope design parameters repre...

  2. The Large Millimeter Telescope (LMT)

    Science.gov (United States)

    Young, J. S.; Carrasco, L.; Schloerb, F. P.

    2002-05-01

    The Large Millimeter Telescope (LMT) project is a collaboration between the University of Massachusetts (UMass) in the USA and the Instituto Nacional de Astrofisica, Optica y Electronica (INAOE) in Mexico to build a 50m-diameter millimeter-wave antenna which will operate with good efficiency at wavelengths as short as 1 mm. The LMT is being built at an altitude of 4600 m atop Volcan Sierra Negra, an extinct volcanic peak in the state of Puebla, Mexico, approximately 100 km east of the city of Puebla. At 18 degrees 59' N latitude, the site offers an excellent view of the Galactic Center and good sky coverage of both hemispheres. Construction of the telescope is now well underway, and it is expected to be completed in late 2004. The LMT specifications call for an overall effective surface accuracy of 75 microns rms and a pointing accuracy of 1" rms. The strategy for meeting these performance goals supplements conventional antenna designs with various "active" systems to bring the final performance within the requirements. For surface accuracy, the LMT will rely on an open loop active surface which includes 180 moveable surface segments. For pointing accuracy, we will use traditional approaches supplemented by measurements to characterize the behavior of the structure, including inclinometers and temperature sensors which may be used with finite element models to determine structural deformations and predict pointing behavior. The initial complement of instruments will include a 32 element, heterodyne focal plane array at 3mm; a large format, focal plane bolometer array; a unique wide band receiver and spectrometer to determine the redshifts of primordial galaxies; and a 4 element receiver for the 1mm band. With its excellent sensitivity and angular resolution, the LMT will enable unique studies of the early universe and galaxy evolution, the interstellar medium and star formation in galaxies, and planetary science. In particular, with nearly 2000 m2 of collecting

  3. PIONIER: a 4-telescope visitor instrument at VLTI

    CERN Document Server

    Bouquin, Jean-Baptiste Le; Lazareff, B; Zins, G; Haguenauer, P; Jocou, L; Kern, P; Millan-Gabet, R; Traub, W; Absil, O; Augereau, J -C; Benisty, M; Blind, N; Bonfils, X; Bourget, P; Delboulbe, A; Feautrier, P; Germain, M; Gitton, P; Gillier, D; Kiekebusch, M; Kluska, J; Knudstrup, J; Labeye, P; Lizon, J -L; Monin, J -L; Magnard, Y; Malbet, F; Maurel, D; Menard, F; Micallef, M; Michaud, L; Montagnier, G; Morel, S; Moulin, T; Perraut, K; Popovic, D; Rabou, P; Rochat, S; Rojas, C; Roussel, F; Roux, A; Stadler, E; Stefl, S; Tatulli, E; Ventura, N

    2011-01-01

    PIONIER stands for Precision Integrated-Optics Near-infrared Imaging ExpeRiment. It combines four 1.8m Auxilliary Telescopes or four 8m Unit Telescopes of the Very Large Telescope Interferometer (ESO, Chile) using an integrated optics combiner. The instrument has been integrated at IPAG starting in December 2009 and commissioned at the Paranal Observatory in October 2010. It provides scientific observations since November 2010. In this paper, we detail the instrumental concept, we describe the standard operational modes and the data reduction strategy. We present the typical performance and discuss how to improve them. This paper is based on laboratory data obtained during the integrations at IPAG, as well as on-sky data gathered during the commissioning at VLTI. We illustrate the imaging capability of PIONIER on the binaries deltaSco and HIP11231. PIONIER provides 6 visibilities and 3 independent closure phases in the H band, either in a broadband mode or with a low spectral dispersion (R=40), using natural ...

  4. ESO Telescope Designer Raymond Wilson Wins Prestigious Kavli Award for Astrophysics

    Science.gov (United States)

    2010-06-01

    with four individual telescopes with 17.5 cm thick 8.2-metre mirrors. Active optics has contributed towards making the VLT the world's most successful ground-based observatory and will be an integral part of ESO's European Extremely Large Telescope (E-ELT) project. Active optics technology is also part of the twin 10-metre Keck telescopes, the Subaru telescope's 8.2-metre mirror and the two 8.1-metre Gemini telescopes. Co-prize winners Jerry Nelson and Roger Angel respectively pioneered the use of segmentation in telescope primary mirrors - as used on the Keck telescopes, and the development of lightweight mirrors with short focal ratios. A webcast from Oslo, Norway, announcing the prize winners is available at www.kavlifoundation.org and www.kavliprize.no. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  5. Innovative focal plane design for large space telescopes

    Science.gov (United States)

    Jahn, Wilfried; Ferrari, Marc; Hugot, Emmanuel

    2016-07-01

    Future large drift-scan space telescopes, providing high angular resolution and sensitive observations, require long linear focal planes covering large fields of view. In order to reach higher on-earth spatial resolution while keeping a large field of view, the use of homothetic imaging systems is prohibitive for VIS/IR applications. Based on Integral Field Unit technology developed for ground based instrumentation, we present an innovative optical system reorganizing a 1D field of view on a 2D detector array. Such a solution presents a high gain in terms of volume and weight, allowing compact cryogenic systems for IR observations.

  6. EMC Test Challenges for NASA's James Webb Space Telescope

    Science.gov (United States)

    McCloskey, John

    2016-01-01

    This presentation describes the electromagnetic compatibility (EMC) tests performed on the Integrated Science Instrument Module (ISIM), the science payload of the James Webb Space Telescope (JWST), at NASAs Goddard Space Flight Center (GSFC) in August 2015. By its very nature of being an integrated payload, it could be treated as neither a unit level test nor an integrated spacecraft observatory test. Non-standard test criteria are described along with non-standard test methods that had to be developed in order to evaluate them. Results are presented to demonstrate that all test criteria were met in less than the time allocated.

  7. EMC Test Challenges for NASAs James Webb Space Telescope

    Science.gov (United States)

    McCloskey, John

    2016-01-01

    This presentation describes the electromagnetic compatibility (EMC) tests performed on the Integrated Science Instrument Module (ISIM), the science payload of the James Webb Space Telescope (JWST), at NASAs Goddard Space Flight Center (GSFC) in August 2015. By its very nature of being an integrated payload, it could be treated as neither a unit level test nor an integrated spacecraft observatory test. Non-standard test criteria are described along with non-standard test methods that had to be developed in order to evaluate them. Results are presented to demonstrate that all test criteria were met in less than the time allocated.

  8. Spitzer Space Telescope proposal process

    Science.gov (United States)

    Laine, S.; Silbermann, N. A.; Rebull, L. M.; Storrie-Lombardi, L. J.

    2006-06-01

    This paper discusses the Spitzer Space Telescope General Observer proposal process. Proposals, consisting of the scientific justification, basic contact information for the observer, and observation requests, are submitted electronically using a client-server Java package called Spot. The Spitzer Science Center (SSC) uses a one-phase proposal submission process, meaning that fully-planned observations are submitted for most proposals at the time of submission, not months after acceptance. Ample documentation and tools are available to the observers on SSC web pages to support the preparation of proposals, including an email-based Helpdesk. Upon submission proposals are immediately ingested into a database which can be queried at the SSC for program information, statistics, etc. at any time. Large proposals are checked for technical feasibility and all proposals are checked against duplicates of already approved observations. Output from these tasks is made available to the Time Allocation Committee (TAC) members. At the review meeting, web-based software is used to record reviewer comments and keep track of the voted scores. After the meeting, another Java-based web tool, Griffin, is used to track the approved programs as they go through technical reviews, duplication checks and minor modifications before the observations are released for scheduling. In addition to detailing the proposal process, lessons learned from the first two General Observer proposal calls are discussed.

  9. Proposed National Large Solar Telescope

    Indian Academy of Sciences (India)

    Jagdev Singh

    2008-03-01

    Sun’s atmosphere is an ideal place to study and test many magnetohydrodynamic (MHD) processes controlling turbulent plasma. We wish to resolve some of the finest solar features (which remain unresolved presently) and study their dynamics. Indian Institute of Astrophysics has proposed to design, fabricate and install a 2-meter class solar telescope at a suitable site in India to resolve features on the Sun of the size of about 0.1 arcsec. The focal plane instruments will include a high resolution polarimeteric package to measure polarization with an accuracy of 0.01 per cent; a high spectral resolution spectrograph to obtain spectra in 5 widely separated absorption lines simultaneously and high spatial resolution narrow band imagers in various lines. The Himalayan region appears to be a good choice keeping in view the prevailing dry and clear weather conditions. We have started detailed analysis of the weather conditions in the area and at some other locations in India. The site characterization will be done using the Sun-photometer, S-DIMM and SHABAR techniques to determine the seeing conditions.

  10. The James Webb Space Telescope

    CERN Document Server

    Gardner, J P; Clampin, M; Doyon, R; Greenhouse, M A; Hammel, H B; Hutchings, J B; Jakobsen, P; Lilly, S J; Long, K S; Lunine, J I; McCaughrean, M J; Mountain, M; Nella, J; Rieke, G H; Rieke, M J; Rix, H W; Smith, E P; Sonneborn, G; Stiavelli, M; Stockman, H S; Windhorst, R A; Wright, G S; Gardner, Jonathan P.; Mather, John C.; Clampin, Mark; Doyon, Rene; Greenhouse, Matthew A.; Hammel, Heidi B.; Hutchings, John B.; Jakobsen, Peter; Lilly, Simon J.; Long, Knox S.; Lunine, Jonathan I.; Caughrean, Mark J. Mc; Mountain, Matt; Nella, John; Rieke, George H.; Rieke, Marcia J.; Rix, Hans-Walter; Smith, Eric P.; Sonneborn, George; Stiavelli, Massimo; Windhorst, Rogier A.; Wright, Gillian S.

    2006-01-01

    The James Webb Space Telescope (JWST) is a large (6.6m), cold (50K), infrared-optimized space observatory that will be launched early in the next decade. The observatory will have four instruments: a near-infrared camera, a near-infrared multi-object spectrograph, and a tunable filter imager will cover the wavelength range, 0.6 to 5.0 microns, while the mid-infrared instrument will do both imaging and spectroscopy from 5.0 to 29 microns. The JWST science goals are divided into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the early universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and active nuclei within them evolved from the epoch of reionization to the present day. The Birth of Stars and Protoplanetary Systems theme seeks to unravel the birth and early evolution of stars, from infall on to dust-e...

  11. Radio Telescopes Will Add to Cassini-Huygens Discoveries

    Science.gov (United States)

    2004-12-01

    telescopes in Parkes, Mopra, and Ceduna, Australia; Hobart, Tasmania; Urumqi and Shanghai, China; and Kashima, Japan. The positional measurements are a project led by JIVE and involving ESA, the Netherlands Foundation for Research in Astronomy, the University of Bonn, Helsinki University of Technology, JPL, the Australia Telescope National Facility, the National Astronomical Observatories of China, the Shanghai Astronomical Observatory, and the National Institute for Communication Technologies in Kashima, Japan. The Joint Institute for VLBI in Europe is funded by the national research councils, national facilities and institutes of The Netherlands (NWO and ASTRON), the United Kingdom (PPARC), Italy (CNR), Sweden (Onsala Space Observatory, National Facility), Spain (IGN) and Germany (MPIfR). The European VLBI Network is a joint facility of European, Chinese, South African and other radio astronomy institutes funded by their national research councils. The Australia Telescope is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  12. Very large Arecibo-type telescopes

    Science.gov (United States)

    Drake, Frank D.

    1988-03-01

    The Arecibo-type radio telescope, based on a fixed spherical reflector, is a very effective design for a large radio telescope on the Moon. In such telescopes, major structural members are provided by the ground on which they are built, and thus are provided at no cost in materials or transportation. The strong compression members, the tall towers which support the suspended platform, are an expensive part of the Arecibo telescope. The need for such towers can be eliminated if a suitable valley or crater can be found wherein the rim of the depression can be used as the support point for the cables which support the suspended platform. With an Arecibo-type radio telescope on the Moon, there are no changing gravity loads because of the design and no changing wind loads because of the location; therefore, the only source of time variation in the telescope geometry is thermal changes. Calculations show that with conventional materials, such as steel, it should be possible to construct an Arecibo-type telescope with a reflector diameter of some 30 km on the Moon, and with a reflector diameter of some 60 to 90 km if materials of high specific strength are used.

  13. Introduction to Small Telescope Research Communities of Practice

    Science.gov (United States)

    Genet, Russell M.

    2016-06-01

    Communities of practice are natural, usually informal groups of people who work together. Experienced members teach new members the “ropes.” Social learning theorist Etienne Wenger’s book, Communities of Practice: Learning, Meaning, and Identity, defined the field. There are, in astronomy, many communities of practice. One set of communities uses relatively small telescopes to observe brighter objects such as eclipsing binaries, intrinsically variable stars, transiting exoplanets, tumbling asteroids, and the occultation of background stars by asteroids and the Moon. Advances in low cost but increasingly powerful instrumentation and automation have greatly increased the research capabilities of smaller telescopes. These often professional-amateur (pro-am) communities engage in research projects that require a large number of observers as exemplified by the American Association of Variable Star Observers. For high school and community college students with an interest in science, joining a student-centered, small telescope community of practice can be both educational and inspirational. An example is the now decade-long Astronomy Research Seminar offered by Cuesta College in San Luis Obispo, California. Each student team is required to plan a project, obtain observations (either locally or via a remote robotic telescope), analyze their data, write a paper, and submit it for external review and publication. Well over 100 students, composed primarily of high school juniors and seniors, have been coauthors of several dozen published papers. Being published researchers has boosted these students’ educational careers with admissions to choice schools, often with scholarships. This seminar was recently expanded to serve multiple high schools with a volunteer assistant instructor at each school. The students meet regularly with their assistant instructor and also meet online with other teams and the seminar’s overall community college instructor. The seminar

  14. Calvin-Rehoboth Robotic Twin Telescopes

    Science.gov (United States)

    Haarsma, D. B.; Molnar, L. A.; VanBaak, D. A.

    2004-12-01

    The astronomy program at Calvin College, like many small colleges, is limited by poor weather and light pollution at its midwestern campus and by limited free time on the part of its astronomy faculty. Nonetheless we believe direct access to the physical universe is key to the science education both of science majors and nonmajors. Recent advances in hardware and software for modest robotic telescopes have made it possible for colleges like ours to incorporate the use of a remote bservatory into our curriculum within typical financial and time constraints. In this poster we make our first report on the installation of two robotic telescopes (one on campus and one at a remote site in New Mexico) using largely off-the-shelf components. Students learn first with the local telescope in order to understand the equipment and procedures, but obtain the majority of their data with the remote telescope. Equipment development is done first with the local telescope, and then implemented on the remote telescope (where time spent in development is difficult). We received an NSF CCLI grant and matching college funds in the summer of 2002. The local telescope was installed in the spring of 2003, and the New Mexico telescope was ready for remote operation in January 2004. Our poster will describe our equipment choices, including a few components (such as an equipment rack for the back end of the telescope) which we designed ourselves. It will also detail classroom use of the equipment in its first two semesters by students at a range of levels. A copy of the poster and many additional details of the project are available on the Calvin observatory website, http://www.calvin.edu/observatory/.

  15. Telescoping cylindrical piezoelectric fiber composite actuator assemblies

    Science.gov (United States)

    Allison, Sidney G. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor); Fox, legal representative, Christopher L. (Inventor); Fox Chattin, legal representative, Melanie L. (Inventor)

    2010-01-01

    A telescoping actuator assembly includes a plurality of cylindrical actuators in a concentric arrangement. Each cylindrical actuator is at least one piezoelectric fiber composite actuator having a plurality of piezoelectric fibers extending parallel to one another and to the concentric arrangement's longitudinal axis. Each cylindrical actuator is coupled to concentrically-adjacent ones of the cylindrical actuators such that the plurality of cylindrical actuators can experience telescopic movement. An electrical energy source coupled to the cylindrical actuators applies actuation energy thereto to generate the telescopic movement.

  16. The Thirty Meter Telescope (TMT) Project

    Science.gov (United States)

    Sanders, G.; TMT Project

    2004-12-01

    The Thirty Meter Telescope (TMT) Project is engaged in a design and development phase. TMT is proposed as a private-public partnership of the California Institute of Technology and the University of California (partners in the earlier CELT design study), AURA (designers of the earlier GSMT concept), and the Canadian ACURA consortium (designers of the VLOT concept). The partners are developing a 30 meter diameter, finely segmented filled aperture telescope with seeing-limited and diffraction-limited capabilities to address the broad range of GSMT science goals. The paper will present the status of the project development and telescope and instrument design.

  17. The GREGOR solar telescope on Tenerife

    CERN Document Server

    Schmidt, Wolfgang; Volkmer, Reiner; Denker, Carsten; Solanki, Sami; Balthasar, Horst; Gonzalez, Nazaret Bello; Berkefeld, Thomas; Collados, Manuel; Hofmann, Axel; Kneer, Franz; Lagg, Andreas; Puschmann, Klaus; Schmidt, Dirk; Sobotka, Michal; Soltau, Dirk; Strassmeier, Klaus

    2012-01-01

    2011 was a successful year for the GREGOR project. The telescope was finally completed in May with the installation of the 1.5-meter primary mirror. The installation of the first-light focal plane instruments was completed by the end of the year. At the same time, the preparations for the installation of the high-order adaptive optics were finished, its integration to the telescope is scheduled for early 2012. This paper describes the telescope and its instrumentation in their present first light configuration, and provides a brief overview of the science goals of GREGOR.

  18. California Extremely Large Telescope : conceptual design for a thirty-meter telescope

    Science.gov (United States)

    Following great success in the creation of the Keck Observatory, scientists at the California Institute of Technology and the University of California have begun to explore the scientific and technical prospects for a much larger telescope. The Keck telescopes will remain the largest telescopes in the world for a number of years, with many decades of forefront research ahead after that. Though these telescopes have produced dramatic discoveries, it is already clear that even larger telescopes must be built if we are to address some of the most profound questions about our universe. The time required to build a larger telescope is approximately ten years, and the California community is presently well-positioned to begin its design and construction. The same scientists who conceived, led the design, and guided the construction of the Keck Observatory have been intensely engaged in a study of the prospects for an extremely large telescope. Building on our experience with the Keck Observatory, we have concluded that the large telescope is feasible and is within the bounds set by present-day technology. Our reference telescope has a diameter of 30 meters, the largest size we believe can be built with acceptable risk. The project is currently designated the California Extremely Large Telescope (CELT).

  19. The ALMA Telescope Control System

    Science.gov (United States)

    Farris, A.; Marson, Ralph; Kern, Jeff

    2005-10-01

    The Atacama Large Millimeter Array (ALMA) is a joint project between North America, Europe and Japan. ALMA is an aperture synthesis radio telescope consisting of 50 12-meter antennas located at an elevation of 5,000 meters in Llano de Chajnantor, Chile. These antennas will operate at frequencies ranging from 31.3 GHz to 950 GHz. The antennas can be moved and placed in different configurations, with baselines between the antennas varying from 150 meters to 20 km. The 50 antennas are supplemented by sixteen additional ones, known as the ALMA Compact Array (ACA): 12 7-meter antennas and 4 12-meter antennas. The ALMA control system will consist of over 70 computers separated by distances of over 20 km. Two aspects of the system are apparent: its distributed nature and its need to accurately synchronize events across many computers separated by large distances. In this paper we describe key features of the architecture of the ALMA Control System, focusing on its properties as a distributed system and on the mechanisms employed to achieve its time synchronization goals. This control system is a distributed system that uses the ALMA Common Software (ACS) as a middleware system layered on top of CORBA. The architecture of the control system extensively employs the component/container model in ACS. In addition, the use of CORBA allows us to employ Java in the higher levels of the control system, leaving C++ to the lower time-critical levels. Python as a scripting language is used by astronomers, to craft standard observing programs, and engineers, in a testing and debugging mode. Key to the concept of an aperture synthesis telescope is a special purpose hardware system known as a correlator, responsible for making various delay model corrections and correlating the signals from the antennas. There are two correlators in ALMA, one for the array of 50 antennas and one for the ACA. This entire system operates under a control system that must synchronize events across the

  20. Radio Telescopes "Save the Day," Produce Data on Titan's Winds

    Science.gov (United States)

    2005-02-01

    eventually provide a three-dimensional record of motion for the Huygens Probe during its mission at Titan. Huygens was built by the European Space Agency. The radio astronomy support of the Huygens mission is coordinated by JIVE and JPL and involves the National Radio Astronomy Observatory (Green Bank, WV and Socorro, NM), the Netherlands Foundation for Research in Astronomy (ASTRON, The Netherlands), the University of Bonn (Germany), Helsinki University of Technology (Espoo, Finland), the MERLIN National Facility (Jodrell Bank, UK), the Onsala Space Observatory (Sweden), the NASA Jet Propulsion Laboratory (Pasadena, CA), the CSIRO Australia Telescope National Facility (ATNF, Sydney, Australia), the University of Tasmania (Hobart, Australia), the National Astronomical Observatories of China, the Shanghai Astronomical Observatory (Shanghai and Urumqi, China) and the National Institute of Information and Communications Technologies (Kashima Space Research Center, Japan). The Joint Institute for VLBI in Europe is hosted by ASTRON and funded by the national research councils, national facilities and institutes of The Netherlands (NOW), the United Kingdom (PPARC), Italy (CNR), Sweden (Onsala Space Observatory, National Facility), Spain (IGN) and Germany (MPIfR). The Australia Telescope is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO. The Cassini-Huygens mission is a cooperation between NASA, ESA and ASI, the Italian space agency. The Jet Propulsion Laboratory (JPL), a division of the California Institute of Technology in Pasadena, is managing the mission for NASA's Office of Space Science, Washington DC. JPL designed, developed and assembled the Cassini orbiter while ESA operated the Huygens atmospheric probe. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  1. Lightweight composite mirrors for telescopes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Lightweight, steady and stiff mirrors are necessary to decrease cost of telescopes such as IXO and GenX used in special NASA missions. Low-density materials are...

  2. Introduction to the Solar Space Telescope

    Indian Academy of Sciences (India)

    G. Ai; S. Jin; S. Wang; B. Ye; S. Yang

    2000-09-01

    The design of the space solar telescope (SST) (phase B) has been completed. The manufacturing is under development. At the end of 2000, it will be assembled. The basic aspect will be introduced in this paper.

  3. Beam Combination for Sparse Aperture Telescopes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Stellar Imager, an ultraviolet, sparse-aperture telescope, was one of the fifteen Vision Missions chosen for a study completed last year. Stellar Imager will...

  4. Goldstone Apple Valley Radio Telescope Project.

    Science.gov (United States)

    Ibe, Mary; MacLaren, Dave

    2003-01-01

    Describes the Goldstone Apple Valley Radio Telescope (GAVRT) project as a way of teaching astronomy concepts to middle school students. The project provides students opportunities to work with professional scientists. (SOE)

  5. EDUCATIONAL ASTRONOMICAL OBSERVATIONS ON REMOTE ACCESS TELESCOPES

    Directory of Open Access Journals (Sweden)

    Ivan P. Kriachko

    2016-01-01

    Full Text Available The purpose of this article is to show the way of overcoming one of the major problems of astronomy teaching methods in upper secondary school – organization of educational astronomical observations. Nowadays it became possible to perform such observations on remote access telescopes. By using up-to-date informational and communicational technologies, having an opportunity to work with robotic telescopes allows us to organize a unique cognitive and research oriented activities for students while conducting their specialized astronomical studies. Below here is given a brief description of the most significant robotic telescopes and the way of the usage of open remote access telescopic network which was created by professors and scientists of Harvard-Smithsonian Center for Astrophysics, USA.

  6. Atmospheric Monitoring for the MAGIC Telescopes

    CERN Document Server

    Gaug, M; Dorner, D; Doro, M; Font, Ll; Fruck, C; Garczarczyk, M; Garrido, D; Hrupec, D; Hose, J; López-Oramas, A; Maneva, G; Martinez, M; Mirzoyan, R; Temnikov, P; Zanin, R

    2014-01-01

    The monitoring of the atmosphere is very relevant for Imaging Atmospheric Cherenkov Telescopes. Adverse weather conditions (strong wind, high humidity, etc.) may damage the telescopes and must therefore be monitored continuously to guarantee a safe operation, and the presence of clouds and aerosols affects the transmission of the Cherenkov light and consequently the performance of the telescopes. The ATmospheric CAlibration (ATCA) technical working group of the MAGIC collaboration aims to cover all aspects related to atmosphere monitoring and calibration. In this paper we give an overview of the ATCA goals and activities, which include the set-up and maintenance of appropriate instrumentation, proper analysis of its data, the realization of MC studies, and the correction of real data taken under non-optimal atmospheric conditions. The final goal is to reduce the systematic uncertainties in the determination of the $\\gamma$-ray flux and energy, and to increase the duty cycle of the telescopes by establishing o...

  7. a New Concept of Agile Telescope

    Directory of Open Access Journals (Sweden)

    Michael Valasek

    2010-01-01

    Full Text Available The paper deals with the description of a new concept for a spherical mechanism for agile telescopes. It is based on redundantly actuated parallel kinematical structure. Due to the three times overactuated structure and application of several further innovative concepts, the Hexasphere achieves the movability of ±100 degrees. This enables the use of a Hexasphere as the basis for mounts of telescopes. Such telescopes can be optimized for minimum weight or for maximum dynamics. The proposed mechanism is expected to play a role in novel robotic telescopes nowadays used in many fields of astronomy and astrophysics, with emphasis on automated systems for alert observations of celestial gamma-ray bursts.

  8. The misalignment induced aberrations of TMA telescopes.

    Science.gov (United States)

    Thompson, Kevin P; Schmid, Tobias; Rolland, Jannick P

    2008-12-08

    The next major space-borne observatory, the James Webb Space Telescope, will be a 6.6M field-biased, obscured, three-mirror anastigmat (TMA). Over the used field of view, the performance of TMA telescopes is dominated by 3(rd) order misalignment aberrations. Here it is shown that two dominant 3(rd) order misalignment aberrations arise for any TMA telescope. One aberration, field constant 3(rd) order coma is a well known misalignment aberration commonly seen in two-mirror Ritchey Chretien telescopes. The second aberration, field-asymmetric, field-linear, 3(rd) order astigmatism is a new and unique image orientation dependence with field derived here for the first time using nodal aberration theory.

  9. Beam Combination for Sparse Aperture Telescopes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is for funding to continue development of an alternative beam combiner for Stellar Imager (SI), a 30-aperture, interferometric telescope chosen as one...

  10. The MuPix Telescope: A Thin, high Rate Tracking Telescope

    CERN Document Server

    Augustin, H; Dittmeier, S; Grzesik, C; Hammerich, J; Huang, Q; Huth, L; Kiehn, M; Kozlinskiy, A; Meier, F; Perić, I; Perrevoort, A -K; Schöning, A; Bruch, D vom; Wauters, F; Wiedner, D

    2016-01-01

    The MuPix Telescope is a particle tracking telescope, optimized for tracking low momentum particles and high rates. It is based on the novel High-Voltage Monolithic Active Pixel Sensors (HV-MAPS), designed for the Mu3e tracking detector. The telescope represents a first application of the HV-MAPS technology and also serves as test bed of the Mu3e readout chain. The telescope consists of up to eight layers of the newest prototypes, the MuPix7 sensors, which send data self-triggered via fast serial links to FPGAs, where the data is time-ordered and sent to the PC. A particle hit rate of 1 MHz per layer could be processed. Online tracking is performed with a subset of the incoming data. The general concept of the telescope, chip architecture, readout concept and online reconstruction are described. The performance of the sensor and of the telescope during test beam measurements are presented.

  11. A 16-m Telescope for the Advanced Technology Large Aperture Telescope (ATLAST) Mission

    Science.gov (United States)

    Lillie, Charles F.; Dailey, D. R.; Polidan, R. S.

    2010-01-01

    Future space observatories will require increasingly large telescopes to study the earliest stars and galaxies, as well as faint nearby objects. Technologies now under development will enable telescopes much larger than the 6.5-meter diameter James Webb Space Telescope (JWST) to be developed at comparable costs. Current segmented mirror and deployable optics technology enables the 6.5 meter JWST telescope to be folded for launch in the 5-meter diameter Ariane 5 payload fairing, and deployed autonomously after reaching orbit. Late in the next decade, when the Ares V Cargo Launch Vehicle payload fairing becomes operational, even larger telescope can be placed in orbit. In this paper we present our concept for a 16-meter JWST derivative, chord-fold telescope which could be stowed in the 10-m diameter Ares V fairing, plus a description of the new technologies that enable ATLAST to be developed at an affordable price.

  12. TALON - The Telescope Alert Operation Network System: Intelligent Linking of Distributed Autonomous Robotic Telescopes

    CERN Document Server

    White, R R; Davis, H; Galassi, M; Starr, D; Vestrand, W T; Wozniak, P

    2004-01-01

    The internet has brought about great change in the astronomical community, but this interconnectivity is just starting to be exploited for use in instrumentation. Utilizing the internet for communicating between distributed astronomical systems is still in its infancy, but it already shows great potential. Here we present an example of a distributed network of telescopes that performs more efficiently in synchronous operation than as individual instruments. RAPid Telescopes for Optical Response (RAPTOR) is a system of telescopes at LANL that has intelligent intercommunication, combined with wide-field optics, temporal monitoring software, and deep-field follow-up capability all working in closed-loop real-time operation. The Telescope ALert Operations Network (TALON) is a network server that allows intercommunication of alert triggers from external and internal resources and controls the distribution of these to each of the telescopes on the network. TALON is designed to grow, allowing any number of telescope...

  13. The Solar Optical Telescope on Hinode: Performance and Capabilities

    Science.gov (United States)

    Tarbell, Theodore D.; Tsuneta, S.; SOT Team

    2007-05-01

    The Hinode (Solar B) satellite includes the Solar Optical Telescope (SOT) with its 50 cm diameter Optical Telescope Assembly (OTA) and Focal Plane Package (FPP), for near UV and visible observations of the photosphere and chromosphere at very high (diffraction limited) angular resolution. The FPP has a Spectropolarimeter (SP) for precision measurements of photospheric vector magnetic fields over a 160 x 320 arcsecond field of view; a Narrowband Filter Imager (NFI) with a tunable birefringent filter for magnetic, Doppler, and intensity maps over the same field of view; and a Broadband Filter Imager (BFI) for highest resolution images in six wavelengths (G band, Ca II H, continua, etc.) over two thirds of that field of view. A polarization modulator in the telescope allows measurement of Stokes parameters at all wavelengths in the SP and NFI. This poster gives examples of SOT observables from the performance verification and initial observing phases of the mission. The SP routinely collects Stokes profiles with spatial resolution 0.16 arc seconds (pixel) and rms noise less than 0.001. Initially the NFI only made magnetograms in Fe I 6302.5 with rms noise less than 0.002; more recently it has begun to observe the other photospheric and chromospheric lines available. The BFI movies have unprecedented uniformity and stability for such high spatial resolution; cadence can be 4 seconds or less. All images are stabilized to 0.01 arc seconds by a tip tilt mirror and correlation tracker. The process for requesting Hinode observations is described, along with guidelines for SOT observing programs. Starting in May, 2007, the Hinode data policy becomes completely open, with all data available to the community immediately after receipt and reformatting at ISAS. Hinode is an international cooperative mission between JAXA/ISAS of Japan, NASA of the United States, PPARC of the United Kingdom, and ESA.

  14. Solar Rejection Filter for Large Telescopes

    Science.gov (United States)

    Hemmati, Hamid; Lesh, James

    2009-01-01

    To reject solar radiation photons at the front aperture for large telescopes, a mosaic of large transmission mode filters is placed in front of the telescope or at the aperture of the dome. Filtering options for effective rejection of sunlight include a smaller filter down-path near the focus of the telescope, and a large-diameter filter located in the front of the main aperture. Two types of large filters are viable: reflectance mode and transmittance mode. In the case of reflectance mode, a dielectric coating on a suitable substrate (e.g. a low-thermal-expansion glass) is arranged to reflect only a single, narrow wavelength and to efficiently transmit all other wavelengths. These coatings are commonly referred to as notch filter. In this case, the large mirror located in front of the telescope aperture reflects the received (signal and background) light into the telescope. In the case of transmittance mode, a dielectric coating on a suitable substrate (glass, sapphire, clear plastic, membrane, and the like) is arranged to transmit only a single wavelength and to reject all other wavelengths (visible and near IR) of light. The substrate of the large filter will determine its mass. At first glance, a large optical filter with a diameter of up to 10 m, located in front of the main aperture, would require a significant thickness to avoid sagging. However, a segmented filter supported by a structurally rugged grid can support smaller filters. The obscuration introduced by the grid is minimal because the total area can be made insignificant. This configuration can be detrimental to a diffraction- limited telescope due to diffraction effects at the edges of each sub-panel. However, no discernable degradation would result for a 20 diffraction-limit telescope (a photon bucket). Even the small amount of sagging in each subpanel should have minimal effect in the performance of a non-diffraction limited telescope because the part has no appreciable optical power. If the

  15. SAAO's new robotic telescope and WiNCam (Wide-field Nasmyth Camera)

    Science.gov (United States)

    Worters, Hannah L.; O'Connor, James E.; Carter, David B.; Loubser, Egan; Fourie, Pieter A.; Sickafoose, Amanda; Swanevelder, Pieter

    2016-08-01

    The South African Astronomical Observatory (SAAO) is designing and manufacturing a wide-field camera for use on two of its telescopes. The initial concept was of a Prime focus camera for the 74" telescope, an equatorial design made by Grubb Parsons, where it would employ a 61mmx61mm detector to cover a 23 arcmin diameter field of view. However, while in the design phase, SAAO embarked on the process of acquiring a bespoke 1-metre robotic alt-az telescope with a 43 arcmin field of view, which needs a homegrown instrument suite. The Prime focus camera design was thus adapted for use on either telescope, increasing the detector size to 92mmx92mm. Since the camera will be mounted on the Nasmyth port of the new telescope, it was dubbed WiNCam (Wide-field Nasmyth Camera). This paper describes both WiNCam and the new telescope. Producing an instrument that can be swapped between two very different telescopes poses some unique challenges. At the Nasmyth port of the alt-az telescope there is ample circumferential space, while on the 74 inch the available envelope is constrained by the optical footprint of the secondary, if further obscuration is to be avoided. This forces the design into a cylindrical volume of 600mm diameter x 250mm height. The back focal distance is tightly constrained on the new telescope, shoehorning the shutter, filter unit, guider mechanism, a 10mm thick window and a tip/tilt mechanism for the detector into 100mm depth. The iris shutter and filter wheel planned for prime focus could no longer be accommodated. Instead, a compact shutter with a thickness of less than 20mm has been designed in-house, using a sliding curtain mechanism to cover an aperture of 125mmx125mm, while the filter wheel has been replaced with 2 peripheral filter cartridges (6 filters each) and a gripper to move a filter into the beam. We intend using through-vacuum wall PCB technology across the cryostat vacuum interface, instead of traditional hermetic connector-based wiring. This

  16. TCS and peripheral robotization and upgrade on the ESO 1-meter telescope at La Silla Observatory

    Science.gov (United States)

    Ropert, S.; Suc, V.; Jordán, A.; Tala, M.; Liedtke, P.; Royo, S.

    2016-07-01

    In this work we describe the robotization and upgrade of the ESO 1m telescope located at La Silla Observatory. The ESO 1m telescope was the first telescope installed in La Silla, in 1966. It now hosts as a main instrument the FIber Dual EchellE Optical Spectrograph (FIDEOS), a high resolution spectrograph designed for precise Radial Velocity (RV) measurements on bright stars. In order to meet this project's requirements, the Telescope Control System (TCS) and some of its mechanical peripherals needed to be upgraded. The TCS was also upgraded into a modern and robust software running on a group of single board computers interacting together as a network with the CoolObs TCS developed by ObsTech. One of the particularities of the CoolObs TCS is that it allows to fuse the input signals of 2 encoders per axis in order to achieve high precision and resolution of the tracking with moderate cost encoders. One encoder is installed on axis at the telescope and the other on axis at the motor. The TCS was also integrated with the FIDEOS instrument system so that all the system can be controlled through the same remote user interface. Our modern TCS unit allows the user to run observations remotely through a secured internet web interface, minimizing the need of an on-site observer and opening a new age in robotic astronomy for the ESO 1m telescope.

  17. The Automated Palomar 60 Inch Telescope

    Science.gov (United States)

    Cenko, S. Bradley; Fox, Derek B.; Moon, Dae-Sik; Harrison, Fiona A.; Kulkarni, S. R.; Henning, John R.; Guzman, C. Dani; Bonati, Marco; Smith, Roger M.; Thicksten, Robert P.; Doyle, Michael W.; Petrie, Hal L.; Gal-Yam, Avishay; Soderberg, Alicia M.; Anagnostou, Nathaniel L.; Laity, Anastasia C.

    2006-10-01

    We have converted the Palomar 60 inch (1.52 m) telescope from a classic night-assistant-operated telescope to a fully robotic facility. The automated system, which has been operational since 2004 September, is designed for moderately fast (tdesign requirements, hardware and software upgrades, and lessons learned from roboticization. We present an overview of the current system performance as well as plans for future upgrades.

  18. CLIC Telescope optimization with ALLPIX simulation

    CERN Document Server

    Qi, Wu

    2015-01-01

    A simulation study of CLIC-EUDET telescope resolution with MIMOSA 26 as reference sensors under DESY (5.6 GeV electron beam) and CERN-SPS (120-180 GeV pion^{-} beam) conditions. During the study, a virtual DUT sensor with cylindrical sensing area was defined and used with ALLPIX software. By changing the configuration of telescope, some results for DESY's setup were found agreeing with the theoretical calculation.

  19. ESO's Telescopes In memoriam Daniel Enard

    Science.gov (United States)

    Gilmozzi, Roberto

    2009-06-01

    The contributions of ESO to the art of telescope-making have come a long way since the early years, placing it, by the turn of the millennium, among the acknowledged leaders in the field. In this article I will give a brief history of what are, in my view, the highlights among these developments, from the 3.6-metre telescope through the NTT and VLT/I to the E-ELT.

  20. Indirect Dark Matter Searches with MAGIC Telescopes

    OpenAIRE

    Satalecka, Konstancja; MAGIC Collaboration

    2015-01-01

    In the last few years the indirect dark matter (DM) searches became a hot topic, with several experimental results showing hints of DM signal. The Major Atmospheric Gamma Imaging Cherenkov (MAGIC) telescopes are two $17$\\,m diameter Cherenkov telescopes, located on the Canary island La Palma (Spain). MAGIC carries out a broad DM search program, including observations of dwarf galaxies, galaxy clusters and other DM dominated objects. In these proceedings recent MAGIC results from this field ar...

  1. Portable triple silicon detector telescope spectrometer for skin dosimetry

    Science.gov (United States)

    Helt-Hansen, J.; Larsen, H. E.; Christensen, P.

    1999-12-01

    The features of a newly developed portable beta telescope spectrometer are described. The detector probe uses three silicon detectors with the thickness: 50μm/150μm/7000μm covered by a 2μm thick titanium window. Rejection of photon contributions from mixed beta/photon exposures is achieved by coincidence requirements between the detector signals. The silicon detectors, together with cooling aggregate, bias supplies, preamplifiers and charge generation for calibration are contained in a handy detector probe. Through a 3- or 10-m cable the detector unit is connected to a compact, portable processing unit including a laptop computer executing control, monitor, histogram and display tasks. The use of digital signal processing at an early stage of the signal chain has facilitated the achievement of a compact, low-weight device. 256 channels are available for each of the three detectors. The LabVIEWTM software distributed by National Instruments was used for all program developments for the spectrometer, comprising also the capability of evaluating the absorbed dose rates from the measured beta spectra. The report describes the capability of the telescope spectrometer to measure beta and photon spectra as well as beta dose rates in mixed beta/photon radiation fields. It also describes the main features of the digital signal-processing electronics.

  2. The DAG project, a 4m class telescope: the telescope main structure performances

    Science.gov (United States)

    Marchiori, G.; Busatta, A.; Ghedin, L.; Marcuzzi, E.; Manfrin, C.; Battistel, C.; Pirnay, O.; Flebus, Carlo; Yeşilyaprak, C.; Keskin, O.; Yerli, S.

    2016-07-01

    Dogu Anatolu Gözlemevi (DAG-Eastern Anatolia Observatory) Project is a 4m class optical, near-infrared Telescope and suitable enclosure which will be located at an altitude of 3.170m in Erzurum, Turkey. The DAG telescope is a project fully funded by Turkish Ministry of Development and the Atatürk University of Astrophysics Research Telescope - ATASAM. The Project is being developed by the Belgian company AMOS (project leader), which is also the optics supplier and EIE GROUP, the Telescope Main Structure supplier and responsible for the final site integration. The design of the Telescope Main Structure fits in the EIE TBO Program which aims at developing a Dome/Telescope systemic optimization process for both performances and competitive costs based on previous project commitments like NTT, VLT, VST and ASTRI. The optical Configuration of the DAG Telescope is a Ritchey-Chretien with two Nasmyth foci and a 4m primary thin mirror controlled in shape and position by an Active Optic System. The main characteristics of the Telescope Main Structure are an Altitude-Azimuth light and rigid structure system with Direct Drive Systems for both axis, AZ Hydrostatic Bearing System and Altitude standard bearing system; both axes are equipped with Tape Encoder System. An innovative Control System characterizes the telescope performance.

  3. A Pointing Solution for the Medium Size Telescopes for the Cherenkov Telescope Array

    CERN Document Server

    Tiziani, D; Oakes, L; Schwanke, U

    2016-01-01

    An important aspect of the calibration of the Cherenkov Telescope Array is the pointing, which enables an exact alignment of each telescope and therefore allows to transform a position in the sky to a point in the plane of the Cherenkov camera and vice versa. The favoured approach for the pointing calibration of the medium size telescopes (MST) is the installation of an optical CCD-camera in the dish of the telescope that captures the position of the Cherenkov camera and of the stars in the night sky simultaneously during data taking. The adaption of this approach is presented in this proceeding.

  4. Reliability-centered maintenance for ground-based large optical telescopes and radio antenna arrays

    Science.gov (United States)

    Marchiori, G.; Formentin, F.; Rampini, F.

    2014-07-01

    the logic is completed for all the analyzed items, the resulting Maintenance Program is compiled in order to preserve all the system important functions and to rationalize the tasks periodicities. Lastly, the RCM is kept alive throughout the entire life of the telescope, where the effectiveness of the maintenance is constantly reviewed and adjusted on the basis of the "lesson learned". In addition to the RCM analysis methodology, a second basic concept is applied for the telescope maintenance: to design and install components in such a manner to restore a failure and to perform servicing procedures as close as possible to the telescope, maximizing the replacement of Line Replaceable Units (LRUs) or Shop Replaceable Units (SRUs), rather than repair on-equipment.

  5. The Mercator telescope: relevance, status, and future

    Science.gov (United States)

    Raskin, Gert; Pessemier, Wim; Merges, Florian; Pérez Padilla, Jesus; Prins, Saskia; Van Winckel, Hans

    2014-07-01

    In todays era of ever growing telescope apertures, there remains a specific niche for meter-class telescopes, provided they are equipped with efficient and dedicated instruments. In case these telescopes have permanent and long-term availability, they turn out very useful for intensive monitoring campaigns over a large range of time-scales. Flexible scheduling and time allocation allow small telescopes to rapidly seize new opportunities or provide immediate follow-up observations to complement data from large ground-based or space-borne facilities. The Mercator telescope, a 1.2-m telescope, installed at the Roque de Los Muchachos Observatory on La Palma (Canary Islands, Spain), successfully targets this niche of intensive monitoring and flexible scheduling. Mercator is already in operation since 2001 and has seen several upgrades in the mean time. In this contribution we give an update about the actual telescope status and its performance. We also present the Mercator instrument suite that currently consists of two instruments. The workhorse instrument is HERMES, a very efficient and stable fibre-fed high-resolution spectrograph. Recently, the MAIA imager was commissioned. This is a three- channel photometric instrument that observes a large field simultaneously in the different color bands. The MAIA detectors are unique 6k x 2k frame transfer devices which also allow for fast and continuous monitoring of variable phenomena.We discuss two important upcoming upgrades: a long-awaited automatic mirror cover and, more importantly, an entirely new telescope control system (TCS). This TCS is based on modern PLC technology, and relies on OPC UA and EtherCAT communication. Only commercially off-the-shelve hardware will be used for controlling the telescope. As a test case and as a precursor of the full TCS, such PLC systems are already deployed at Mercator to steer the Nasmyth mirror mechanism and to control the MAIA instrument. Finally, we also give an overview of the

  6. Hosting the Student Telescope Network First Site

    Science.gov (United States)

    Rice, M.; Bisque, S. T. M. D.; Stencel, R. E.

    2002-05-01

    The demonstration site for the Student Telescope Network, and for the first practical public-use Internet observatory, as powered by iBisque software, is at New Mexico Skies in southern New Mexico (www.nmskies.com). The observatory site, located approximately 14 miles northeast of the Apache Point Observatory and the Sunspot National Solar Observatory, is at 2,225 meters elevation in the southern Sacramento Mountains of New Mexico. It has very dark transparent skies, excellent weather conditions, good seeing and a high proportion of clear photometric nights. The Internet observatory pod concept includes placing multiple telescopes (as many as twelve), in each of several 32-foot roll-off roof observatories. The 14 to 16 inch aperture telescopes, mounted on accurately pointing and tracking Bisque "Paramounts" (www.bisque.com), plus KAF-1001E CCD cameras, are controlled with a browser-based sky-map GUI (patent pending) control system also developed by Software Bisque. We provide detail on the concept and its implementation. As of mid-March, 2002, the first demonstration telescope has been operating nightly for about 60 days. Over 420 users have registered on the telescope server, more than 2,000 images have been taken and their FITS files downloaded to users' computers all over the world. In this and the companion poster, we report our experiences over the period of the February-May (2002) trial period, including technical challenges and performance measures on the Internet observatory's operations. We further detail lessons learned for future development of browser-based Internet observatories for high school/college level instructional use, and lessons applicable to the use of Internet-based telescopes for serious astronomical research as well. We thank the Institute for Connecting Science Research to the Classroom for a grant to the University of Denver in support of this Internet telescope services pilot project.

  7. New Radio Telescope Makes First Scientific Observations

    Science.gov (United States)

    2001-05-01

    The world's two largest radio telescopes have combined to make detailed radar images of the cloud-shrouded surface of Venus and of a tiny asteroid that passed near the Earth. The images mark the first scientific contributions from the National Science Foundation's (NSF) new Robert C. Byrd Green Bank Telescope in West Virginia, which worked with the NSF's recently-upgraded Arecibo telescope in Puerto Rico. The project used the radar transmitter on the Arecibo telescope and the huge collecting areas of both telescopes to receive the echoes. GBT-Arecibo Radar Image of Maxwell Montes on Venus "These images are the first of many scientific contributions to come from the Robert C. Byrd Green Bank Telescope, and a great way for it to begin its scientific career," said Paul Vanden Bout, director of the National Radio Astronomy Observatory (NRAO). "Our congratulations go to the scientists involved in this project as well as to the hard-working staffs at Green Bank and Arecibo who made this accomplishment possible," Vanden Bout added. To the eye, Venus hides behind a veil of brilliant white clouds, but these clouds can be penetrated by radar waves, revealing the planet's surface. The combination of the Green Bank Telescope (GBT), the world's largest fully-steerable radio telescope, and the Arecibo telescope, the world's most powerful radar, makes an unmatched tool for studying Venus and other solar-system bodies. "Having a really big telescope like the new Green Bank Telescope to receive the radar echoes from small asteroids that are really close to the Earth and from very distant objects like Titan, the large moon of Saturn, will be a real boon to radar studies of the solar system." said Cornell University professor Donald Campbell, leader of the research team. Ten years ago, the radar system on NASA's Magellan spacecraft probed though the clouds of Venus to reveal in amazing detail the surface of the Earth's twin planet. These new studies using the GBT and Arecibo, the

  8. Undergraduate Research with a Small Radio Telescope

    Science.gov (United States)

    Fisher, P. L.; Williams, G. J.

    2001-11-01

    We describe the construction of a small radio telescope system at ULM and the role of radio astronomy in undergraduate education. The heart of the system is the Small Radio Telescope (SRT), which is a modified satellite TV antenna and custom receiver purchased from MIT Haystack Observatory. This telescope measures the brightness of many celestial objects at wavelengths near 21 cm. The system consists of various components to control dish movement, as well as perform analog to digital conversions allowing analysis of collected data. Undergraduate students have participated in the construction of the hardware and the task of interfacing the hardware to software on two GNU/Linux computer systems. The construction of the telescope and analysis of data allow the students to employ key concepts from mechanics, optics, electrodynamics, and thermodynamics, as well as computer and electronics skills. We will report preliminary results of solar observations conducted with this instrument and with the MIT Haystack Observatory 37m radio telescope. This work was supported by Louisiana Board of Regents grant LEQSF-ENH-UG-16, NASA/LaSPACE LURA R109139 and ULM Development Foundation Grant 97317.

  9. Simulation and track reconstruction for beam telescopes

    CERN Document Server

    Maqbool, Salman

    2017-01-01

    Beam telescopes are used for testing new detectors under development. Sensors are placed and a particle beam is passed through them. To test these novel detectors and determine their properties, the particle tracks need to be reconstructed from the known detectors in the telescope. Based on the reconstructed track, it’s predicted hits on the Device under Test (DUT) are compared with the actual hits on the DUT. Several methods exist for track reconstruction, but most of them don’t account for the effects of multiple scattering. General Broken Lines is one such algorithm which incorporates these effects during reconstruction. The aim of this project was to simulate the beam telescope and extend the track reconstruction framework for the FE-I4 telescope, which takes these effects into account. Section 1 introduces the problem, while section 2 focuses on beam telescopes. This is followed by the Allpix2 simulation framework in Section 3. And finally, Section 4 introduces the Proteus track reconstruction framew...

  10. Control challenges for extremely large telescopes

    Science.gov (United States)

    MacMartin, Douglas G.

    2003-08-01

    The next generation of large ground-based optical telescopes are likely to involve a highly segmented primary mirror that must be controlled in the presence of wind and other disturbances, resulting in a new set of challenges for control. The current design concept for the California Extremely Large Telescope (CELT) includes 1080 segments in the primary mirror, with the out-of-plane degrees of freedom actively controlled. In addition to the 3240 primary mirror actuators, the secondary mirror of the telescope will also require at least 5 degree of freedom control. The bandwidth of both control systems will be limited by coupling to structural modes. I discuss three control issues for extremely large telescopes in the context of the CELT design, describing both the status and remaining challenges. First, with many actuators and sensors, the cost and reliability of the control hardware is critical; the hardware requirements and current actuator design are discussed. Second, wind buffeting due to turbulence inside the telescope enclosure is likely to drive the control bandwidth higher, and hence limitations resulting from control-structure-interaction must be understood. Finally, the impact on the control architecture is briefly discussed.

  11. Introduction to the Chinese Giant Solar Telescope

    Science.gov (United States)

    Liu, Z.; Deng, Y.; Ji, H.

    2012-12-01

    In order to detect the fine structures of solar magnetic field and dynamic field, an 8 meter solar telescope has been proposed by Chinese solar community. Due to the advantages of ring structure in polarization detection and thermal control, the current design of CGST (Chinese Giant Solar Telescope) is an 8 meter ring solar telescope. The spatial resolution of CGST is equivalent to an 8 meter diameter telescope, and the light-gathering power equivalent to a 5 meter full aperture telescope. The integrated simulation of optical system and imaging ability such as optical design, MCAO, active maintenance of primary mirror were carried out in this paper. Mechanical system was analyzed by finite element method too. The results of simulation and analysis showed that the current design could meet the demand of most science cases not only in infrared band but also in near infrared band and even in visible band. CGST was proposed by all solar observatories in Chinese Academy of Sciences and several overseas scientists. It is supported by CAS (Chinese Academy of Sciences) and NSFC (National Natural Science Foundation of China) as a long term astronomical project.

  12. Habitable Exoplanet Imager Optical Telescope Concept Design

    Science.gov (United States)

    Stahl, H Philip

    2017-01-01

    The Habitable Exoplanet Imaging Mission (HabEx) is one of four missions under study for the 2020 Astrophysics Decadal Survey. Its goal is to directly image and spectroscopically characterize planetary systems in the habitable zone of Sun-like stars. Additionally, HabEx will perform a broad range of general astrophysics science enabled by 100 to 2500 nm spectral range and 3 x 3 arc-minute FOV. Critical to achieving the HabEx science goals is a large, ultra-stable UV/Optical/Near-IR (UVOIR) telescope. The baseline HabEx telescope is a 4-meter off-axis unobscured three-mirror-anastigmatic, diffraction limited at 400 nm with wavefront stability on the order of a few 10s of picometers. This paper summarizes the opto-mechanical design of the HabEx baseline optical telescope assembly, including a discussion of how science requirements drive the telescope's specifications, and presents analysis that the baseline telescope structure meets its specified tolerances.

  13. The Telescope: Outline of a Poetic History

    Science.gov (United States)

    Stocchi, M. P.

    2011-06-01

    Amongst the first editions of Galileo's books, only the Saggiatore has on its frontispiece the image of the telescope. Indeed, the telescope is not pictured on the very emphatic frontispieces of the other books in which Galileo was presenting and defending the results achieved by his celestial observations, such as the Sidereus Nuncius. Many contemporary scientists denied the reliability of the telescope, and some even refused to look into the eyepiece. In the 16th and 17th century, the lenses, mirrors, and optical devices of extraordinary complexity did not have the main task of leading to the objective truth but obtaining the deformation of the reality by means of amazing effects of illusion. The Baroque art and literature had the aim of surprising, and the artists gave an enthusiastic support to the telescope. The poems in praise of Galileo's telescopic findings were quite numerous, including Adone composed by Giovanni Battista Marino, one of the most renowned poets of the time. The Galilean discoveries were actually accepted by the poets as ideologically neutral contributions to the "wonder" in spite they were rejected or even condemned by the scientists, philosophers, and theologians.

  14. Schwarzschild-Couder telescope for the Cherenkov Telescope Array: Development of the Optical System

    CERN Document Server

    Rousselle, Julien; Errando, Manel; Humensky, Brian; Mukherjee, Reshmi; Nieto, Daniel; Okumura, Akira; Vassiliev, Vladimir

    2013-01-01

    The CTA (Cherenkov Telescope Array) is the next generation ground-based experiment for very high-energy (VHE) gamma-ray observations. It will integrate several tens of imaging atmospheric Cherenkov telescopes (IACTs) with different apertures into a single astronomical instrument. The US part of the CTA collaboration has proposed and is developing a novel IACT design with a Schwarzschild-Couder (SC) aplanatic two mirror optical system. In comparison with the traditional single mirror Davies-Cotton IACT the SC telescope, by design, can accommodate a wide field-of-view, with significantly improved imaging resolution. In addition, the reduced plate scale of an SC telescope makes it compatible with highly integrated cameras assembled from silicon photo multipliers. In this submission we report on the status of the development of the SC optical system, which is part of the effort to construct a full-scale prototype telescope of this type at the Fred Lawrence Whipple Observatory in southern Arizona.

  15. Single-Mirror Small-Size Telescope structure for the Cherenkov Telescope Array

    CERN Document Server

    Niemiec, Jacek; Dyrda, Michał; Kochański, Wojciech; Ludwin, Jaromir; Stodulski, Marek; Ziółkowski, Paweł

    2013-01-01

    A single-mirror small-size (1M-SST) Davies-Cotton telescope has been proposed for the southern observatory of the Cherenkov Telescope Array (CTA) by a consortium of scientific institutions from Poland, Switzerland, and Germany. The telescope has a 4 m diameter reflector and will be equipped with a fully digital camera based on Geiger avalanche photodiodes (APDs). Such a design is particularly interesting for CTA because it represents a very simple, reliable, and cheap solution for a SST. Here we present the design and the characteristics of the mechanical structure of the 1M-SST telescope and its drive system. We also discuss the results of a finite element method analysis in order to demonstrate the conformance of the design with the CTA specifications and scientific objectives. In addition, we report on the current status of the construction of a prototype telescope structure at the Institute of Nuclear Physics PAS in Krakow.

  16. The Cherenkov Telescope Array single-mirror small size telescope project: status and prospects

    Science.gov (United States)

    Aguilar, J. A.; Bilnik, W.; Bogacz, L.; Bulik, T.; Christov, A.; della Volpe, D.; Dyrda, M.; Frankowski, A.; Grudzińska, M.; Grygorczuk, J.; Heller, M.; Idźkowski, B.; Janiak, M.; Jamrozy, M.; Karczewski, M.; Kasperek, J.; Lyard, E.; Marszalek, A.; Michalowski, J.; Rameez, M.; Moderski, R.; Montaruli, T.; Neronov, A.; Nicolau-Kukliński, J.; Niemiec, J.; Ostrowski, M.; Paśko, P.; Płatos, Ł.; Prandini, E.; Rafalski, J.; Rajda, P. J.; Rataj, M.; Rupiński, M.; Rutkowskai, K.; Seweryn, K.; Sidz, M.; Stawarz, Ł.; Stodulska, M.; Stodulski, M.; Tokarz, M.; Toscano, S.; Troyano Pujadas, I.; Walter, R.; Wawer, P.; Wawrzaszek, R.; Wiśniewski, L.; Winiarski, K.; Zietara, K.; Ziółkowski, P.; Źychowski, P.

    2014-07-01

    The Cherenkov Telescope Array (CTA), the next generation very high energy gamma-ray observatory, will consist of three types of telescopes: large (LST), medium (MST) and small (SST) size telescopes. The small size telescopes are dedicated to the observation of gamma-rays with energy between a few TeV and few hundreds of TeV. The single-mirror small size telescope (SST-1M) is one of several SST designs. It will be equipped with a 4 m-diameter segmented mirror dish and a fully digital camera based on Geiger-mode avalanche photodiodes. Currently, the first prototype of the mechanical structure is under assembly in Poland. In 2014 it will be equipped with 18 mirror facets and a prototype of the camera.

  17. Status of the Schwarzchild-Couder Medium-Sized Telescope for the Cherenkov Telescope Array

    CERN Document Server

    Benbow, W

    2016-01-01

    The Cherenkov Telescope Array (CTA) is planned to be the next-generation very-high-energy (VHE; E > 100 GeV) gamma-ray observatory. It is anticipated that CTA will improve upon the sensitivity of the current generation of VHE experiments, such as VERITAS, HESS and MAGIC, by an order of magnitude. CTA is planned to consist of two graded arrays of Cherenkov telescopes with three primary-mirror sizes. A proof-of-concept telescope, based on the dual-mirror Schwarzchild-Couder design, is being constructed on the VERITAS site at the F.L. Whipple Observatory in southern Arizona, USA, and is a candidate design for the medium-sized telescopes. The construction of the telescope will be completed in early 2017, and the status of this project is presented here.

  18. The NASA Meter Class Autonomous Telescope: Ascension Island

    Science.gov (United States)

    Lederer, S.; Stansbery, E. G.; Cowardin, H. M.; Kervin, P.; Hickson, P.

    2013-09-01

    The Meter Class Autonomous Telescope (MCAT) is the newest optical sensor dedicated to NASA's mission to characterize the space debris environment. It is the successor to a series of optical telescopes developed and operated by the JSC Orbital Debris Program Office (ODPO) to monitor and assess the debris environment in (1) Low Earth Orbit (LEO), (2) Medium Earth Orbit (MEO), and (3) Geosynchronous Orbit (GEO), with emphasis on LEO and GEO altitudes. A joint NASA-Air Force Research Labs project, MCAT is a 1.3m optical telescope dedicated to debris research. Its optical path and sensor yield a large survey fence at the cutting edge of current detector performance. It has four primary operational observing modes, two of which were not computationally feasible a decade ago. Operations are supported by a sophisticated software suite that monitors clouds and weather conditions, and controls everything from data collection to dome rotation to processing tens of GB of imagery data nightly. With fainter detection limits, precision detection, acquisition and tracking of targets, multi-color photometry, precision astrometry, automated re-acquisition capability, and the ability to process all data at the acquisition rate, MCAT is capable of producing and processing a volume and quality of data far in excess of any current (or prior) ODPO operations. This means higher fidelity population inputs and eliminating the multi-year backlog from acquisition-to-product typical of optical campaigns. All of this is possible given a suitable observing location. Originally planned for the island of Legan, part of the Kwajalein Atoll Islands, recent developments have led to a change in venue. Specifically, the Ground-based Electro-Optical Deep Space Surveillance, or GEODSS, System of telescopes is the United States' major tracking system for deep space. This network consists of telescopes in Maui, Hawaii; Diego Garcia (Indian Ocean), and Socorro, New Mexico. A fourth optical telescope, though

  19. An innovative telescope control system architecture for SST-GATE telescopes at the CTA Observatory

    Science.gov (United States)

    Fasola, Gilles; Mignot, Shan; Laporte, Philippe; Abchiche, Abdel; Buchholtz, Gilles; Jégouzo, Isabelle

    2014-07-01

    SST-GATE (Small Size Telescope - GAmma-ray Telescope Elements) is a 4-metre telescope designed as a prototype for the Small Size Telescopes (SST) of the Cherenkov Telescope Array (CTA), a major facility for the very high energy gamma-ray astronomy of the next three decades. In this 100-telescope array there will be 70 SSTs, involving a design with an industrial view aiming at long-term service, low maintenance effort and reduced costs. More than a prototype, SST-GATE is also a fully functional telescope that shall be usable by scientists and students at the Observatoire de Meudon for 30 years. The Telescope Control System (TCS) is designed to work either as an element of a large array driven by an array controller or in a stand-alone mode with a remote workstation. Hence it is built to be autonomous with versatile interfacing; as an example, pointing and tracking —the main functions of the telescope— are managed onboard, including astronomical transformations, geometrical transformations (e.g. telescope bending model) and drive control. The core hardware is a CompactRIO (cRIO) featuring a real-time operating system and an FPGA. In this paper, we present an overview of the current status of the TCS. We especially focus on three items: the pointing computation implemented in the FPGA of the cRIO —using CORDIC algorithms— since it enables an optimisation of the hardware resources; data flow management based on OPCUA with its specific implementation on the cRIO; and the use of an EtherCAT field-bus for its ability to provide real-time data exchanges with the sensors and actuators distributed throughout the telescope.

  20. Nearby Exo-Earth Astrometric Telescope (NEAT)

    Science.gov (United States)

    Shao, M.; Nemati, B.; Zhai, C.; Goullioud, R.

    2011-01-01

    NEAT (Nearby Exo ]Earths Astrometric Telescope) is a modest sized (1m diameter telescope) It will be capable of searching approx 100 nearby stars down to 1 Mearth planets in the habitable zone, and 200 @ 5 Mearth, 1AU. The concept addresses the major issues for ultra -precise astrometry: (1) Photon noise (0.5 deg dia field of view) (2) Optical errors (beam walk) with long focal length telescope (3) Focal plane errors , with laser metrology of the focal plane (4) PSF centroiding errors with measurement of the "True" PSF instead of using a "guess " of the true PSF, and correction for intra pixel QE non-uniformities. Technology "close" to complete. Focal plane geometry to 2e-5 pixels and centroiding to approx 4e -5 pixels.

  1. The University of Iowa Automated Telescope Facility

    Science.gov (United States)

    Downey, E. C.; Mutel, R. L.

    We describe a CCD-based automated telescope system in operation at the University of Iowa. Observers initiate observing programs using a simple free-format scripting language for preparing observing requests. The schedule file describes sources, durations, filters and other observing parameters. A telescope scheduling program generates an ordered master observing list for a given night based on priority telescope control daemon then reads the sorted schedule file and issues commands to the hardware control daemons. All CCD images are calibrated (bias, thermal, flat) by default and pattern matched to the Guide Star Catalog, with accurate WCS coordinates written to the FITS header. Additional post-processing tools include an interactive image display and analysis program which supports photometry and astrometry, batch tools to automate supernova searches and time-sequenced photometry, and a stand-alone world coordinate calibration tool. Additional details are available {http://inferno.physics.uiowa.edu} on the WWW.

  2. Accurate Telescope Mount Positioning with MEMS Accelerometers

    Science.gov (United States)

    Mészáros, L.; Jaskó, A.; Pál, A.; Csépány, G.

    2014-08-01

    This paper describes the advantages and challenges of applying microelectromechanical accelerometer systems (MEMS accelerometers) in order to attain precise, accurate and stateless positioning of telescope mounts. This provides a completely independent method from other forms of electronic, optical, mechanical or magnetic feedback or real-time astrometry. Our goal is to reach the sub-arcminute range which is well smaller than the field-of-view of conventional imaging telescope systems. Here we present how this sub-arcminute accuracy can be achieved with very cheap MEMS sensors and we also detail how our procedures can be extended in order to attain even finer measurements. In addition, our paper discusses how can a complete system design be implemented in order to be a part of a telescope control system.

  3. LOBSTER - New Space X-Ray telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Hudec, R. [Astronomical Institute, Academy of Sciences of the Czech Republic, CZ-251 65 Ondrejov (Czech Republic); Pina, L. [Faculty of Nuclear Science, Czech Technical University, Prague (Czech Republic); Simon, V. [Astronomical Institute, Academy of Sciences of the Czech Republic, CZ-251 65 Ondrejov (Czech Republic); Sveda, L. [Faculty of Nuclear Science, Czech Technical University, Prague (Czech Republic); Inneman, A.; Semencova, V. [Center for Advanced X-ray Technologies, Reflex, Prague (Czech Republic); Skulinova, M. [Astronomical Institute, Academy of Sciences of the Czech Republic, CZ-251 65 Ondrejov (Czech Republic)

    2007-04-15

    We discuss the technological and scientific aspects of fully innovative very wide-field X-ray telescopes with high sensitivity. The prototypes of Lobster telescopes designed, developed and tested are very promising, allowing the proposals for space projects with very wide-field Lobster Eye X-ray optics to be considered for the first time. The novel telescopes will monitor the sky with unprecedented sensitivity and angular resolution of order of 1 arcmin. They are expected to contribute essentially to study of various astrophysical objects such as AGN, SNe, Gamma-ray bursts (GRBs), X-ray flashes (XRFs), galactic binary sources, stars, CVs, X-ray novae, various transient sources, etc. For example, the Lobster optics based X-ray All Sky Monitor is capable to detect around 20 GRBs and 8 XRFs yearly and this will surely significantly contribute to the related science.

  4. Adaptive Real Time Imaging Synthesis Telescopes

    CERN Document Server

    Wright, Melvyn

    2012-01-01

    The digital revolution is transforming astronomy from a data-starved to a data-submerged science. Instruments such as the Atacama Large Millimeter Array (ALMA), the Large Synoptic Survey Telescope (LSST), and the Square Kilometer Array (SKA) will measure their accumulated data in petabytes. The capacity to produce enormous volumes of data must be matched with the computing power to process that data and produce meaningful results. In addition to handling huge data rates, we need adaptive calibration and beamforming to handle atmospheric fluctuations and radio frequency interference, and to provide a user environment which makes the full power of large telescope arrays accessible to both expert and non-expert users. Delayed calibration and analysis limit the science which can be done. To make the best use of both telescope and human resources we must reduce the burden of data reduction. Our instrumentation comprises of a flexible correlator, beam former and imager with digital signal processing closely coupled...

  5. New Concept of Hungarian Robotic Telescopes

    Science.gov (United States)

    Hegedus, T.; Kiss, Z.; Biro, B.; Jager, Z.

    As the result of a longer innovation of a few Hungarian opto-mechanical and electronic small companies, a concept of fully robotic mounts has been formed some years ago. There are lots of Hungarian Automated Telescopes over the world (in Arizona, South Korea, Izrael and atop Mauna Kea, just below the famous Keck domes). These are cited as HAT telescopes (Bakos et al. 2002), and served thousands of large-frame time-series CCD images since 2004, and the working team found already 6 exoplanets, and a number of new variable stars, etc... The newest idea was to build a more robust robotic mount, hosting larger optics (D > 50 cm) for achieving much fainter celestial objects, than the HAT series (they are operating with Nikon teleobjective lenses) on a still relatively wide celestial area. The very first sample model is the BART-1, a 50cm f/6 telescope.

  6. Mirror Development for the Cherenkov Telescope Array

    CERN Document Server

    Förster, A; Baba, H; Bähr, J; Bonardi, A; Bonnoli, G; Brun, P; Canestrari, R; Chadwick, P; Chikawa, M; Carton, P -H; De Souza, V; Dipold, J; Doro, M; Durand, D; Dyrda, M; Giro, E; Glicenstein, J -F; Hanabata, Y; Hayashida, M; Hrabovski, M; Jeanney, C; Kagaya, M; Katagiri, H; Lessio, L; MANDAT, D; Mariotti, M; Medina, C; Michałowski, J; Micolon, P; Nakajima, D; Niemiec, J; Nozato, A; Palatka, M; Pareschi, G; Pech, M; Peyaud, B; Pühlhofer, G; Rataj, M; Rodeghiero, G; Rojas, G; Rousselle, J; Sakonaka, R; Schovanek, P; Seweryn, K; Schultz, C; Shu, S; Stinzing, F; Stodulski, M; Teshima, M; Travniczek, P; Van Eldik, C; Vassiliev, V; Wiśniewski, Ł; Wörnlein, A; Yoshida, T

    2013-01-01

    The Cherenkov Telescope Array (CTA) is a planned observatory for very-high energy gamma-ray astronomy. It will consist of several tens of telescopes of different sizes, with a total mirror area of up to 10,000 square meters. Most mirrors of current installations are either polished glass mirrors or diamond-turned aluminium mirrors, both labour intensive technologies. For CTA, several new technologies for a fast and cost-efficient production of light-weight and reliable mirror substrates have been developed and industrial pre-production has started for most of them. In addition, new or improved aluminium-based and dielectric surface coatings have been developed to increase the reflectance over the lifetime of the mirrors compared to those of current Cherenkov telescope instruments.

  7. GREGOR: the New German Solar Telescope

    CERN Document Server

    Balthasar, H; Kneer, F; Staude, J; Volkmer, R; Berkefeld, T; Caligari, P; Collados, M; Halbgewachs, C; Heidecke, F; Hofmann, A; Klvana, M; Nicklas, H; Popow, E; Puschmann, K; Schmidt, W; Sobotka, M; Soltau, D; Strassmeier, K; Wittmann, A

    2007-01-01

    GREGOR is a new open solar telescope with an aperture of 1.5m. It replaces the former 45-cm Gregory Coude telescope on the Canary island Tenerife. The optical concept is that of a double Gregory system. The main and the elliptical mirrors are made from a silicon-carbide material with high thermal conductivity. This is important to keep the mirrors on the ambient temperature avoiding local turbulence. GREGOR will be equipped with an adaptive optics system. The new telescope will be ready for operation in 2008. Post-focus instruments in the first stage will be a spectrograph for polarimetry in the near infrared and a 2-dimensional spectrometer based on Fabry-Perot interferometers for the visible.

  8. Telescopic nanotube device for hot nanolithography

    Science.gov (United States)

    Popescu, Adrian; Woods, Lilia M

    2014-12-30

    A device for maintaining a constant tip-surface distance for producing nanolithography patterns on a surface using a telescopic nanotube for hot nanolithography. An outer nanotube is attached to an AFM cantilever opposite a support end. An inner nanotube is telescopically disposed within the outer nanotube. The tip of the inner nanotube is heated to a sufficiently high temperature and brought in the vicinity of the surface. Heat is transmitted to the surface for thermal imprinting. Because the inner tube moves telescopically along the outer nanotube axis, a tip-surface distance is maintained constant due to the vdW force interaction, which in turn eliminates the need of an active feedback loop.

  9. The SPIRIT Telescope Initiative: six years on

    Science.gov (United States)

    Luckas, Paul

    2017-06-01

    Now in its sixth year of operation, the SPIRIT initiative remains unique in Australia, as a robust web-enabled robotic telescope initiative funded for education and outreach. With multiple modes of operation catering for a variety of usage scenarios and a fully supported education program, SPIRIT provides free access to contemporary astronomical tools for students and educators in Western Australia and beyond. The technical solution itself provides an excellent model for low cost robotic telescope installations, and the education program has evolved over time to include a broad range of student experiences-from engagement activities to authentic science. This paper details the robotic telescope solution, student interface and educational philosophy, summarises achievements and lessons learned and examines the possibilities for future enhancement including spectroscopy.

  10. Teaching radio astronomy with Affordable Small Radio Telescope (ASRT)

    Science.gov (United States)

    Joshi, Bhal Chandra

    A simple, easy to build and portable radio telescope, called Affordable Small Radio Telescope (ASRT), has been developed by the Radio Physics Laboratory (RPL), a radio astronomy teaching unit associated with the National Centre for Radio Astrophysics (TIFR) and Inter-University Centre for Astronomy and Astrophysics (IUCAA), which are two premier astronomy institutes in India. ASRT consists of off-the-shelf available Direct to Home television dishes and is easy to assemble. Our design is scalable from simple very low cost telescope to more complex yet moderately costing instrument. ASRT provides a platform for demonstrating radio physics concepts through simple hands-on experiment as well as for carrying out solar monitoring by college/University students. The presentation will highlight the concept of ASRT and the different experiments that can be carried out using it. The solar monitoring observations will be discussed along-with details of methods for calibrating these measurements. The pedagogical usefulness of ASRT in introducing undergraduatephysics students to astrophysics, measurements and analysis methods used in radio astronomy will also be discussed. Use of ASRT in the last three years in the programs of RPL, namely the annual Radio Astronomy Winter School for College students (RAWSC) and Pulsar Observing for Students (POS) is also presented. This year a new program was initiated to form a virtual group of an ASRT community, which will not only share their measurements, but also think of improving the pedagogical usefulness of ASRT by innovative experiments. This initiative is presented with the best practices drawn from our experience in using ASRT as a tool for student training in space sciences. The talk will also point out future ideas in involving a larger body of students in simple radio astronomy experiments with the ASRT, which RPL is likely to nucleate as part of its mandate.

  11. The first aluminum coating of the 3700mm primary mirror of the Devasthal Optical Telescope

    Science.gov (United States)

    Bheemireddy, Krishna Reddy; Gopinathan, Maheswar; Pant, Jayshreekar; Omar, Amitesh; Kumar, Brijesh; Uddin, Wahab; Kumar, Nirmal

    2016-07-01

    Initially the primary mirror of the 3.6m Devasthal Optical Telescope is uncoated polished zerodur glass supplied by Lytkarino Optical Glass Factory, Russia/Advanced Mechanical and Optical Systems, Belgium. In order to do the aluminium coating on the primary mirror the coating plant including washing unit is installed near the telescope (extension building of telescope) by Hind High Vacuum (HHV) Bangalore, India. Magnetron sputtering technique is used for the coating. Several coating trials are done before the primary mirror coating; samples are tested for reflectivity, uniformity, adhesivity and finally commissioned. The primary mirror is cleaned, coated by ARIES. We present here a brief description of the coating plant installation, Mirror cleaning and coating procedures and the testing results of the samples.

  12. Comparison of coronagraphs for high contrast imaging in the context of Extremely Large Telescopes

    CERN Document Server

    Martínez, P; Kasper, M; Cavarroc, C; Yaitskova, N; Fusco, T; Verinaud, C

    2008-01-01

    We compare coronagraph concepts and investigate their behavior and suitability for planet finder projects with Extremely Large Telescopes (ELTs, 30-42 meters class telescopes). For this task, we analyze the impact of major error sources that occur in a coronagraphic telescope (central obscuration, secondary support, low-order segment aberrations, segment reflectivity variations, pointing errors) for phase, amplitude and interferometric type coronagraphs. This analysis is performed at two different levels of the detection process: under residual phase left uncorrected by an eXtreme Adaptive Optics system (XAO) for a large range of Strehl ratio and after a general and simple model of speckle calibration, assuming common phase aberrations between the XAO and the coronagraph (static phase aberrations of the instrument) and non-common phase aberrations downstream of the coronagraph (differential aberrations provided by the calibration unit). We derive critical parameters that each concept will have to cope with by...

  13. The ANTARES telescope neutrino alert system

    Science.gov (United States)

    Ageron, M.; Aguilar, J. A.; Al Samarai, I.; Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Assis Jesus, A. C.; Astraatmadja, T.; Aubert, J.-J.; Baret, B.; Basa, S.; Bertin, V.; Biagi, S.; Bigi, A.; Bigongiari, C.; Bogazzi, C.; Bou-Cabo, M.; Bouhou, B.; Bouwhuis, M. C.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Cârloganu, C.; Carminati, G.; Carr, J.; Cecchini, S.; Charif, Z.; Charvis, Ph.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Coyle, P.; Curtil, C.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Eberl, T.; Emanuele, U.; Enzenhöfer, A.; Ernenwein, J.-P.; Escoffier, S.; Fermani, P.; Ferri, M.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J.-L.; Galatà, S.; Gay, P.; Giacomelli, G.; Giordano, V.; Gómez-González, J. P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Hartman, J.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Herold, B.; Hößl, J.; Hsu, C. C.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kavatsyuk, O.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lamare, P.; Larosa, G.; Lattuada, D.; Lefèvre, D.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martínez-Mora, J. A.; Meli, A.; Montaruli, T.; Moscoso, L.; Motz, H.; Neff, M.; Nezri, E.; Palioselitis, D.; Păvălaş, G. E.; Payet, K.; Payre, P.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Reed, C.; Richardt, C.; Richter, R.; Rivière, C.; Robert, A.; Roensch, K.; Rostovtsev, A.; Ruiz-Rivas, J.; Rujoiu, M.; Russo, G. V.; Salesa, F.; Sapienza, P.; Schöck, F.; Schuller, J.-P.; Schüssler, F.; Shanidze, R.; Simeone, F.; Spies, A.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Sánchez-Losa, A.; Taiuti, M.; Tamburini, C.; Toscano, S.; Vallage, B.; van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Wijnker, G.; Wilms, J.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zúñiga, J.

    2012-03-01

    The ANTARES telescope has the capability to detect neutrinos produced in astrophysical transient sources. Potential sources include gamma-ray bursts, core collapse supernovae, and flaring active galactic nuclei. To enhance the sensitivity of ANTARES to such sources, a new detection method based on coincident observations of neutrinos and optical signals has been developed. A fast online muon track reconstruction is used to trigger a network of small automatic optical telescopes. Such alerts are generated for special events, such as two or more neutrinos, coincident in time and direction, or single neutrinos of very high energy.

  14. The ANTARES Telescope Neutrino Alert System

    CERN Document Server

    Ageron, M; Samarai, I Al; Albert, A; André, M; Anghinolfi, M; Anton, G; Anvar, S; Ardid, M; Jesus, A C Assis; Astraatmadja, T; Aubert, J-J; Baret, B; Basa, S; Bertin, V; Biagi, S; Bigi, A; Bigongiari, C; Bogazzi, C; Bou-Cabo, M; Bouhou, B; Bouwhuis, M C; Brunner, J; Busto, J; Camarena, F; Capone, A; Cârloganu, C; Carminati, G; Carr, J; Cecchini, S; Charif, Z; Charvis, Ph; Chiarusi, T; Circella, M; Coniglione, R; Costantini, H; Coyle, P; Curtil, C; Decowski, M P; Dekeyser, I; Deschamps, A; Distefano, C; Donzaud, C; Dornic, D; Dorosti, Q; Drouhin, D; Eberl, T; Emanuele, U; Enzenöfer, A; Ernenwein, J-P; Escoffier, S; Fermani, P; Ferri, M; Flaminio, V; Folger, F; Fritsch, U; Fuda, J-L; Galatà, S; Gay, P; Giacomelli, G; Giordano, V; Gòmez-González, J; Graf, K; Guillard, G; Halladjian, G; Hallewell, G; van Haren, H; Hartman, J; Heijboer, A J; Hello, Y; Hernández-Rey, J J; Herold, B; Hößl, J; Hsu, C C; de Jong, M; Kadler, M; Kalekin, O; Kappes, A; Katz, U; Kavatsyuk, O; Kooijman, P; Kopper, C; Kouchner, A; Kreykenbohm, I; Kulikovskiy, V; Lahmann, R; Lamar, P; Larosa, G; Lattuada, D; Lefèvre, D; Lim, G; Presti, D Lo; Loehner, H; Loucatos, S; Mangano, S; Marcelin, M; Margiotta, A; Martínez-Mora, J A; Meli, A; Montaruli, T; Moscoso, L; Motz, H; Neff, M; Nezri, E; Palioselitis, D; Păvălaş, G E; Payet, K; Payre, P; Petrovic, J; Piattelli, P; Picot-Clemente, N; Popa, V; Pradier, T; Presani, E; Racca, C; Reed, C; Richardt, C; Richter, R; Rivière, C; Robert, A; Roensch, K; Rostovtsev, A; Ruiz-Rivas, J; Rujoiu, M; Russo, G V; Salesa, F; Sapienza, P; Schöck, F; Schuller, J-P; Schüssler, F; Shanidze, R; Simeone, F; Spies, A; Spuriol, M; Steijger, J J M; Stolarczyk, Th; Sànchez-Losa, A; Taiuti, M; Tamburini, C; Toscano, S; Vallage, B; Van Elewyck, V; Vannoni, G; Vecchi, M; Vernin, P; Wijnker, G; Wilms, J; de Wolf, E; Yepes, H; Zaborov, D; Zornoza, J D; Zùñiga, J

    2011-01-01

    The ANTARES telescope has the capability to detect neutrinos produced in astrophysical transient sources. Potential sources include gamma-ray bursts, core collapse supernovae, and flaring active galactic nuclei. To enhance the sensitivity of ANTARES to such sources, a new detection method based on coincident observations of neutrinos and optical signals has been developed. A fast online muon track reconstruction is used to trigger a network of small automatic optical telescopes. Such alerts are generated for special events, such as two or more neutrinos, coincident in time and direction, or single neutrinos of very high energy.

  15. The 10 Meter South Pole Telescope

    OpenAIRE

    Carlstrom, J. E.; Ade, P. A. R.; Aird, K. A.; Benson, B. A.; Bleem, L. E.; Busetti, S.; Chang, C. L.; Chauvin, E; Cho, H. -M.; Crawford, T. M.; Crites, A. T.; Dobbs, M. A.; Halverson, N. W.; Heimsath, S.; Holzapfel, W. L.

    2009-01-01

    The South Pole Telescope (SPT) is a 10 m diameter, wide-field, offset Gregorian telescope with a 966-pixel, multi-color, millimeter-wave, bolometer camera. It is located at the Amundsen-Scott South Pole station in Antarctica. The design of the SPT emphasizes careful control of spillover and scattering, to minimize noise and false signals due to ground pickup. The key initial project is a large-area survey at wavelengths of 3, 2 and 1.3 mm, to detect clusters of galaxies via the Sunyaev-Zeldov...

  16. Autonomous Dome for a Robotic Telescope

    Science.gov (United States)

    Kumar, A.; Sengupta, A.; Ganesh, S.

    2016-12-01

    The Physical Research Laboratory operates a 50 cm robotic observatory at Mount Abu (Rajsthan, India). This Automated Telescope for Variability Studies (ATVS) makes use of the Remote Telescope System 2 (RTS2) for autonomous operations. The observatory uses a 3.5 m dome from Sirius Observatories. We have developed electronics using Arduino electronic circuit boards with home grown logic and software to control the dome operations. We are in the process of completing the drivers to link our Arduino based dome controller with RTS2. This document is a short description of the various phases of the development and their integration to achieve the required objective.

  17. SOAR Telescope seismic performance II: seismic mitigation

    Science.gov (United States)

    Elias, Jonathan H.; Muñoz, Freddy; Warner, Michael; Rivera, Rossano; Martínez, Manuel

    2016-07-01

    We describe design modifications to the SOAR telescope intended to reduce the impact of future major earthquakes, based on the facility's experience during recent events, most notably the September 2015 Illapel earthquake. Specific modifications include a redesign of the encoder systems for both azimuth and elevation, seismic trigger for the emergency stop system, and additional protections for the telescope secondary mirror system. The secondary mirror protection may combine measures to reduce amplification of seismic vibration and "fail-safe" components within the assembly. The status of these upgrades is presented.

  18. Weizmann Fast Astronomical Survey Telescope (WFAST)

    Science.gov (United States)

    Nir, Guy; Ofek, Eran Oded; Ben-Ami, Sagi; Manulis, Ilan; Gal-Yam, Avishay; Diner, Oz; Rappaport, Michael

    2017-01-01

    The Weizmann Fast Astronomical Survey Telescope (W-FAST) is an experiment designed to explore variability on sub-second time scales. When completed it will consist of two robotic 55-cm f/2 Schmidt telescopes. The optics is capable of providing $\\sim0.5$" image quality over 23 deg$^2$. The focal plane will be equipped with fast readout, low read-noise sCMOS detectors. The first generation focal plane is expected to have 6.2 deg$^2$ field of view. WFAST is designed to study occultations by solar system objects (KBOs and Oort cloud objects), short time scale stellar variability, and high resolution imaging via proper coaddition.

  19. Recent Results from the ANTARES Neutrino Telescope

    CERN Document Server

    Giacomelli, Giorgio

    2012-01-01

    The ANTARES underwater neutrino telescope is located in the Mediterranean Sea about 40 km from Toulon at a depth of 2475 m. In its 12 line configuration it has almost 900 photomultipliers in 295 floors. The performance of the detector is discussed and several results are presented, including the measurements of downgoing muons, atmospheric neutrinos, search for a diffuse flux of high energy muon neutrinos, search for cosmic point sources of neutrinos, multi messenger astronomy, searches for fast magnetic monopoles and slow nuclearites. A short discussion is also made on Earth and Sea Science studies with a neutrino telescope.

  20. Daniel K. Inouye Solar Telescope Science Operations

    Science.gov (United States)

    Tritschler, Alexandra; Rimmele, Thomas R.; Berukoff, Steven

    2016-05-01

    The Daniel K. Inouye Solar Telescope (DKIST) is a versatile high resolution ground-based solar telescope designed to explore the dynamic Sun and its magnetism throughout the solar atmosphere from the photosphere to the faint corona. The DKIST is currently under construction on Haleakala, Maui, Hawai'i, and expected to commence with science operations in 2019. In this contribution we provide an overview of the high-level science operations concepts from proposal preparation and submission to the flexible and dynamic planning and execution of observations.

  1. Telescope Bernard Lyot: operation, instrumentation, perspectives

    Science.gov (United States)

    Cabanac, R.

    2016-12-01

    This talk is the TBL director report at the 3rd French national telescopes Users Meeting of 2016. Telescope Bernard Lyot, the 2-m at Pic du midi (2870m), is dedicated to spectro-polarimetric studies since 2007 with the instrument Narval. This paper presents TBL operation, science highlights and statistics of the past 10 years of operation. It also opens perspectives for the coming 10 years with the funding of Neo-Narval (Narval stabilized to v_r Pic du midi (aka SPIP) for the study of the young exoplanetary systems.

  2. Lunar Ultraviolet Telescope Experiment (LUTE) overview

    Science.gov (United States)

    McBrayer, R. O.; Frazier, J.; Nein, M.

    1993-09-01

    The Lunar Ultraviolet Telescope Experiment (LUTE) is a 1-m aperture telescope for imaging the stellar ultraviolet spectrum from the lunar surface. The aspects of Lute's educational value and the information it can provide on designing for the long-term exposure to the lunar environment are important considerations. This paper briefly summarizes the status of the phase A study by the Marshall Space Flight Center's (MSFC) LUTE Task Team. The primary focus will be a discussion of the merits of LUTE as a small and relatively inexpensive project that benefits a wide spectrum of interests and could be operating on the lunar surface by the turn of the century.

  3. 4 m Davies-Cotton telescope for the Cherenkov Telescope Array

    CERN Document Server

    Moderski, R; Barnacka, A; Basili, A; Boccone, V; Bogacz, L; Cadoux, F; Christov, A; Della Volpe, M; Dyrda, M; Frankowski, A; Grudzińska, M; Janiak, M; Karczewski, M; Kasperek, J; Kochański, W; Korohoda, P; Kozioł, J; Lubiński, P; Ludwin, J; Lyard, E; Marszałek, A; Michałowski, J; Montaruli, T; Nicolau-Kukliński, J; Niemiec, J; Ostrowski, M; Płatos, Ł; Rajda, P J; Rameez, M; Romaszkan, W; Rupiński, M; Seweryn, K; Stodulska, M; Stodulski, M; Walter, R; Winiarski, K; Wiśniewski, Ł; Zagdański, A; Zietara, K; Ziółkowski, P; Żychowski, P

    2013-01-01

    The Cherenkov Telescope Array (CTA) is the next generation very high energy gamma-ray observatory. It will consist of three classes of telescopes, of large, medium and small sizes. The small telescopes, of 4 m diameter, will be dedicated to the observations of the highest energy gamma-rays, above several TeV. We present the technical characteristics of a single mirror, 4 m diameter, Davies-Cotton telescope for the CTA and the performance of the sub-array consisting of the telescopes of this type. The telescope will be equipped with a fully digital camera based on custom made, hexagonal Geiger-mode avalanche photodiodes. The development of cameras based on such devices is an RnD since traditionally photomultipliers are used. The photodiodes are now being characterized at various institutions of the CTA Consortium. Glass mirrors will be used, although an alternative is being considered: composite mirrors that could be adopted if they meet the project requirements. We present a design of the telescope structure,...

  4. The VLT Adaptive Optics Facility Project: Telescope Systems

    Science.gov (United States)

    Arsenault, Robin; Hubin, Norbert; Stroebele, Stefan; Fedrigo, Enrico; Oberti, Sylvain; Kissler-Patig, Markus; Bacon, Roland; McDermid, Richard; Bonaccini-Calia, Domenico; Biasi, Roberto; Gallieni, Daniele; Riccardi, Armando; Donaldson, Rob; Lelouarn, Miska; Hackenberg, Wolfgang; Conzelman, Ralf; Delabre, Bernard; Stuik, Remko; Paufique, Jerome; Kasper, Markus; Vernet, Elise; Downing, Mark; Esposito, Simone; Duchateau, Michel; Franx, Marijn; Myers, Richard; Goodsell, Steven

    2006-03-01

    The Adaptive Optics Facility is a project to convert UT4 into a specialised Adaptive Telescope. The present secondary mirror (M2) will be replaced by a new M2-Unit hosting a 1170-actuator deformable mirror. The three focal stations will be equipped with instruments adapted to the new capability of this UT. Two instruments have been identified for the two Nasmyth foci: Hawk-I with its AO module GRAAL allowing a Ground Layer Adaptive Optics correction and MUSE with GALACSI for GLAO correction and Laser Tomography Adaptive Optics correction. A future instrument still needs to be defined for the Cassegrain focus. Several guide stars are required for the type of adaptive corrections needed and a Four Laser Guide Star Facility (4LGSF) is being developed in the scope of the AO Facility. Convex mirrors like the VLT M2 represent a major challenge for testing and a substantial effort is dedicated to this. ASSIST, is a test bench that will allow testing of the Deformable Secondary Mirror and both instruments with simulated turbulence. This article focusses on the telescope systems (Adaptive Secondary, Four Laser Guide Star Facility, RTC platform and ASSIST Test Bench). The following article describes the AO Modules GALACSI and GRAAL.

  5. Performance of the EUDET-type beam telescopes

    CERN Document Server

    Jansen, H; Bulgheroni, A.; Claus, G.; Corrin, E.; Cussans, D.G.; Dreyling-Eschweiler, J.; Eckstein, D.; Eichhorn, T.; Goffe, M.; Gregor, I.M.; Haas, D.; Muhl, C.; Perrey, H.; Peschke, R.; Roloff, P.; Rubinskiy, I.; Winter, M.

    2016-01-01

    Test beam measurements at the test beam facilities of DESY have been conducted to characterise the performance of the EUDET-type beam telescopes originally developed within the EUDET project. The beam telescopes are equipped with six sensor planes using MIMOSA26 monolithic active pixel devices. A programmable Trigger Logic Unit provides trigger logic and time stamp information on particle passage. Both data acquisition framework and offline reconstruction software packages are available. User devices are easily integrable into the data acquisition framework via predefined interfaces. The biased residual distribution is studied as a function of the beam energy, plane spacing and sensor threshold. Its width at the two centre pixel planes using all six planes for tracking in a 6 GeV electron/positron-beam is measured to be $(2.88\\,\\pm\\,0.08)\\,\\upmu\\meter$. Iterative track fits using the formalism of General Broken Lines are performed to estimate the intrinsic resolution of the individual pixel planes. The mean i...

  6. PANGU: A High Resolution Gamma-ray Space Telescope

    CERN Document Server

    Wu, Xin; Bravar, Alessandro; Chang, Jin; Fan, Yizhong; Pohl, Martin; Walter, Roland

    2014-01-01

    We describe the instrument concept of a high angular resolution telescope dedicated to the sub-GeV (from $\\gtrsim$10 MeV to $\\gtrsim$1 GeV) gamma-ray photon detection. This mission, named PANGU (PAir-productioN Gamma-ray Unit), has been suggested as a candidate for the joint small mission between the European Space Agency (ESA) and the Chinese Academy of Science (CAS). A wide range of topics of both astronomy and fundamental physics can be attacked with PANGU, covering Galactic and extragalactic cosmic-ray physics, extreme physics of a variety of extended (e.g. supernova remnants, galaxies, galaxy clusters) and compact (e.g. black holes, pulsars, gamma-ray bursts) objects, solar and terrestrial gamma-ray phenomena, and searching for dark matter decay and/or annihilation signature etc. The unprecedented point spread function can be achieved with a pair-production telescope with a large number of thin active tracking layers to precisely reconstruct the pair-produced electron and positron tracks. Scintillating f...

  7. Trigger & Data Acquisition System for the ANTARES Neutrion Telescope

    Institute of Scientific and Technical Information of China (English)

    HerveLafoux

    2001-01-01

    The ANTARES collaboration is building a deep underwater neutrino telescope to be immersed in the Mediterranean Sea 40km off the French coast.This detector will be able to detect the Cherenkov light emitted by muons produced in neutrino interactions using a three-dimensional matrix of optical sensors,The telescope will be made of nearly 1000 of these elementary units distributed over a wide area of about 0.1 km2 at an average depth of 2400m In order to reach a sub-nanosecond resolution on ligh pulse detection ,signals from all OMs are analyzed and digitized locally before being sent to shore through a 50km electro-optical cable,Front-end electronics,time alignment (clock distribution),Triggering and data acquistition for such a large and remote detector represent a real hallenge and required considerable R&D studies,The technical solutions adopted by the collaboration will be described and their performances discussed.

  8. The KM3NeT deep-sea neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Margiotta, Annarita

    2014-12-01

    KM3NeT is a deep-sea research infrastructure being constructed in the Mediterranean Sea. It will host the next generation Cherenkov neutrino telescope and nodes for a deep sea multidisciplinary observatory, providing oceanographers, marine biologists, and geophysicists with real time measurements. The neutrino telescope will complement IceCube in its field of view and exceed it substantially in sensitivity. Its main goal is the detection of high energy neutrinos of astrophysical origin. The detector will have a modular structure with six building blocks, each consisting of about 100 Detection Units (DUs). Each DU will be equipped with 18 multi-PMT digital optical modules. The first phase of construction has started and shore and deep-sea infrastructures hosting the future KM3NeT detector are being prepared in offshore Toulon, France and offshore Capo Passero on Sicily, Italy. The technological solutions for the neutrino detector of KM3NeT and the expected performance of the neutrino telescope are presented and discussed. - Highlights: • A deep-sea research infrastructure is being built in the Mediterranean Sea. • It will host a km{sup 3}-size neutrino telescope and a deep-sea multidisciplinary observatory. • The main goal of the neutrino telescope is the search for Galactic neutrino sources. • A major innovation is adopted in the design of the optical module. • 31 3 in. photomultiplier tubes (PMTs) will be hosted in the same glass sphere.

  9. STS-31 Hubble Space Telescope (HST) solar array (SA) mockup at MSFC, Alabama

    Science.gov (United States)

    1990-01-01

    A close-up shot shows an extravehicular mobility unit (EMU)-suited astronaut inspecting a solar array (SA) on the Hubble Space Telescope (HST) mockup in the Neutral Buoyancy Simulator (NBS) at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama. MSFC managed the design and development of the telescope. The weightlessness simulator was used to practice SA contingency procedures that might be used in space. Astronauts also practiced SA servicing missions in the simulator which they will perform on the telescope in space. The solar arrays which supply electrical power to the space telescope were developed and contributed by the European Space Agency (ESA). ESA's two prime contractors were British Aerospace in England and AEG in West Germany. The two wing-like solar arrays contain 48,000 solar cells. They convert the sun's energy to electricity during that portion of an orbit when they are exposed to sunlight. The power is stored in six batteries to support the telescope during

  10. Revisiting the Effectiveness of Large Optical Telescopes

    Directory of Open Access Journals (Sweden)

    V. V. Sychev

    2015-01-01

    Full Text Available To create large-size optical telescopes, various design concepts have been used. Each concept inevitably faced the challenge to optimize technical characteristics and parameters of the telescope. There was always a question: what concept to choose, how to estimate efficiency of such telescopes and by what criteria and how to estimate expediency of this or that project of the large-size telescope. It is, obviously, insufficient to make a resolution-based estimation. An estimate by the angular field size is inappropriate too. Well, it may be also an estimate by the stellar magnitude. All these criteria are related to each other. Improvement of one of these parameters inevitably leads to deterioration of the others. Obviously, the certain generalized criterion considering all parameters and features of the design concept of the large-size telescope is necessary here. As such can serve the criterion of informational content of the telescope.The article offers a complex criterion allowing not only to estimate efficiency of large-size optical telescopes, but also to compare their conceptual and technological level among themselves in terms of obtaining information.The article suggests a new term, i.e. the informational content invariant to characterize informative capacities of the chosen concept and of the realizing technology. It will allow us to avoid unjustified complications of technical solutions, wrong accents in designing and excess material inputs when developing the project.The informational content criterion-based analysis of the existing projects of large-size telescopes has been convincingly shown that, conceptually, there are three best telescopes, namely: GSMT, CELT, and ACT-25. And, in terms of informational content, the АCТ-25 is 10 times more than GSMT and CELT, and the existing Keck-telescope exceeds by 30 times. Hence, it is hard to escape a conclusion that it is more favourable to implement one ACT-25, than to do 10 GSMT or CELT

  11. Prototype of the SST-1M Telescope Structure for the Cherenkov Telescope Array

    CERN Document Server

    Niemiec, J; Błocki, J; Bogacz, L; Borkowski, J; Bulik, T; Cadoux, F; Christov, A; Curyło, M; della Volpe, D; Dyrda, M; Favre, Y; Frankowski, A; Grudnik, Ł; Grudzińska, M; Heller, M; Idźkowski, B; Jamrozy, M; Janiak, M; Kasperek, J; Lalik, K; Lyard, E; Mach, E; Mandat, D; Marszałek, A; Michałowski, J; Moderski, R; Montaruli, T; Neronov, A; Ostrowski, M; Paśko, P; Pech, M; Porcelli, A; Prandini, E; Rajda, P; Rameez, M; Schioppa, E jr; Schovanek, P; Seweryn, K; Skowron, K; Sliusar, V; Sowiński, M; Stawarz, Ł; Stodulska, M; Stodulski, M; Pujadas, I Troyano; Toscano, S; Walter, R; Wiȩcek, M; Zagdański, A; Ziȩtara, K

    2015-01-01

    A single-mirror small-size (SST-1M) Davies-Cotton telescope with a dish diameter of 4 m has been built by a consortium of Polish and Swiss institutions as a prototype for one of the proposed small-size telescopes for the southern observatory of the Cherenkov Telescope Array (CTA). The design represents a very simple, reliable, and cheap solution. The mechanical structure prototype with its drive system is now being tested at the Institute of Nuclear Physics PAS in Krakow. Here we present the design of the prototype and results of the performance tests of the structure and the drive and control system.

  12. Telescope Alignment From Sparsely Sampled Wavefront Measurements Over Pupil Subapertures

    Science.gov (United States)

    Bloemhof, Eric E.; An, Xin; Kuan, Gary M.; Moore, Douglas M.; OShay, Joseph F.; Tang, Hong; Page, Norman A.

    2012-01-01

    Alignment of two-element telescopes is a classic problem. During recent integration and test of the Space Interferometry Mission s (SIM s) Astrometric Beam Combiner (ABC), the innovators were faced with aligning two such telescope subsystems in the presence of a further complication: only two small subapertures in each telescope s pupil were accessible for measuring the wavefront with a Fizeau interferometer. This meant that the familiar aberrations that might be interpreted to infer system misalignments could be viewed only over small sub-regions of the pupil, making them hard to recognize. Further, there was no contiguous surface of the pupil connecting these two subapertures, so relative phase piston information was lost; the underlying full-aperture aberrations therefore had an additional degree of ambiguity. The solution presented here is to recognize that, in the absence of phase piston, the Zygo measurements primarily provide phase tilt in the subaperture windows of interest. Because these windows are small and situated far from the center of the (inaccessible) unobscured full aperture, any aberrations that are higher-order than tilt will be extremely high-order on the full aperture, and so not necessary or helpful to the alignment. Knowledge of the telescope s optical prescription allows straightforward evaluation of sensitivities (subap mode strength per unit full-aperture aberration), and these can be used in a predictive matrix approach to move with assurance to an aligned state. The technique is novel in every operational way compared to the standard approach of alignment based on full-aperture aberrations or searching for best rms wavefront. This approach is closely grounded in the observable quantities most appropriate to the problem. It is also more intuitive than inverting full phase maps (or subaperture Zernike spectra) with a ray-tracing program, which must certainly work in principle, but in practice met with limited success. Even if such

  13. The cern axion solar telescope (CAST)

    Energy Technology Data Exchange (ETDEWEB)

    Aalseth, C. E.; Arik, E.; Autiero, D.; Avignone, F. T.; Barth, K.; Bowyer, S. M.; Brauninger, H.; Brodzinski, R. L.; Carmona, J. M.; Cebrian, S.; Celebi, G.; Cetin, S.; Collar, J. I.; Creswick, R.; Delbart, A.; Delattre, M.; DiLella, L.; De Oliveira, R.; Eleftheriadis, Ch.; Erdutan, N.; Fanourakis, G.; Farach, H. A.; Fiorini, C.; Geralis, Th.; Giomataris, I.; Girard, T. A.; Gninenko, S. N.; Golubev, N. A.; Hasinoff, M.; Hoffmann, D.; Irastorza, I. G.; Jacoby, J.; Jeanneau, F.; Knopf, M. A.; Kovzelev, A. V.; Kotthaus, R.; Krčmar, M.; Krečak, Z.; Lakić, B.; Liolios, A.; Ljubičić, A.; Lutz, G.; Longoni, A.; Luzon, G.; Mailov, A.; Matveev, V. A.; Miley, H. S.; Morales, A.; Morales, J.; Mutterer, M.; Nikolaidis, A.; Nussinov, S.; Ortiz, A.; Pitts, W. K.; Placci, A.; Postoev, V. E.; Raffelt, G. G.; Riege, H.; Sampieto, M.; Sarsa, M.; Savvidis, I.; Stipčević, M.; Thomas, C. W.; Thompson, R. C.; Valco, P.; Villar, J. A.; Villierme, B.; Walckiers, L.; Wilcox, W.; Zachariadou, K.; Zioutas, K.

    2002-07-01

    A decommissioned LHC test magnet is being prepared as the CERN Axion Solar Telescope (CAST) experiment. The magnet has a field of 9.6 Tesla and length of 10 meters. It is being mounted on a platform to track the sun over plus or minus 8 to the sixth power vertically and plus or minus 45 to the sixth power, horizontally.

  14. Axis Offset Estimation of VLBI Telescopes

    Science.gov (United States)

    Krásná, Hana; Nickola, Marisa; Böhm, Johannes

    2014-12-01

    Axis offset models have to be applied for VLBI telescopes with pointing axes which do not intersect. In this work, we estimated the axis offsets for VLBI antennas in a global adjustment of suitable IVS 24-hour sessions (1984.0-2014.0) with the Vienna VLBI Software (VieVS). In particular, we focused on the two radio telescopes of the Hartebeesthoek Radio Astronomy Observatory (HartRAO) in South Africa. For the older 26-m telescope we compared the estimated axis offset values before (6699.2 ± 0.5 mm) and after (6707.3 ± 0.8 mm) the bearing repair in 2010. A comparison with axis offset estimates from other geodetic techniques, such as GNSS or conventional local survey, was made. The estimated axis offset for the newer 15-m telescope (1495.0 ± 3.4 mm) agrees with the estimated value from the GPS survey in 2007. Furthermore, we assessed the influence of differences in the axis offsets on the estimated geodetic parameters, such as station coordinates or Earth Orientation Parameters.

  15. TeraHertz Space Telescope (TST)

    Science.gov (United States)

    Dunn, Marina Madeline; Lesser, David; O'Dougherty, Stephan; Swift, Brandon; Pat, Terrance; Cortez, German; Smith, Steve; Goldsmith, Paul; Walker, Christopher K.

    2017-01-01

    The Terahertz Space Telescope (TST) utilizes breakthrough inflatable technology to create a ~25 m far-infrared observing system at a fraction of the cost of previous space telescopes. As a follow-on to JWST and Herschel, TST will probe the FIR/THz regime with unprecedented sensitivity and angular resolution, answering fundamental questions concerning the origin and destiny of the cosmos. Prior and planned space telescopes have barely scratched the surface of what can be learned in this wavelength region. TST will pick up where JWST and Herschel leave off. At ~30µm TST will have ~10x the sensitivity and ~3x the angular resolution of JWST. At longer wavelengths it will have ~1000x the sensitivity of Herschel and ~7 times the angular resolution. TST can achieve this at low cost through the innovative use of inflatable technology. A recently-completed NIAC Phase II study (Large Balloon Reflector) validated, both analytically and experimentally, the concept of a large inflatable spherical reflector and demonstrated critical telescope functions. In our poster we will introduce the TST concept and compare its performance to past, present, and proposed far-infrared observatories.

  16. Taming the 1.2 m Telescope

    Science.gov (United States)

    Griffin, S.; Edwards, M.; Greenwald, D.; Kono, D.; Liang, D.; Lohnes, K.; Wright, V.; Spillar, E.

    2013-09-01

    Achievable residual jitter on the 1.2 m telescope at MSSS shown in Figure 1 has historically been limited to 10-20 arc-sec. peak in moderate wind conditions due to the combination of the dynamics associated with the twin telescopes on the common declination axis shaft, and the related control system behavior. Figure 1 1.2 m Telescope The lightly damped, low frequency fundamental vibration mode shape of the telescopes rotating out of phase on the common declination axis shaft severely degraded the performance of the prior controllers. This vibration mode is easily excited by external forces such as wind loading and internal torque commands from the mount control system. The relatively poor historic performance was due to a combination of the low error rejection of external disturbances, and the controller exciting the mode. A radical new approach has been implemented that has resulted in a decrease of jitter to less than 1 arcsec under most conditions. The new approach includes minor hardware modifications to provide active damping with accelerometers as feedback sensors. This architecture has allowed a bandwidth increase of almost an order of magnitude and eliminated the large amplitude motions at the mode natural frequency, resulting in much improved pointing and jitter performance. A representative comparison of historical versus new architecture performance is shown in Figure 2 for the declination axis.

  17. The Mathematics of Go to Telescopes

    Science.gov (United States)

    Teets, Donald

    2007-01-01

    This article presents the mathematics involved in finding and tracking celestial objects with an electronically controlled telescope. The essential idea in solving this problem is to choose several different coordinate systems that simplify the various motions of the earth and other celestial objects. These coordinate systems are then related by…

  18. Modeling and control of antennas and telescopes

    CERN Document Server

    Gawronski, Wodek

    2008-01-01

    The book shows, step-by-step, the design, implementation, and testing of the antenna/telescope control system, from the design stage (analytical model) to fine tuning of the RF beam pointing (monopulse and conscan). It includes wide use of Matlab and Simulink..

  19. The telescopic tourist's guide to the Moon

    CERN Document Server

    May, Andrew

    2017-01-01

    Whether you’re interested in visiting Apollo landing sites or the locations of classic sci-fi movies, this is the tourist guide for you! This tourist guide has a twist – it is a guide to a whole different world, which you can visit from the comfort of your backyard with the aid of nothing more sophisticated than an inexpensive telescope. It tells you the best times to view the Moon, the most exciting sights to look out for, and the best equipment to use, allowing you to snap stunning photographs as well as view the sights with your own eyes. Have you ever been inspired by stunning images from the Hubble telescope, or the magic of sci-fi special effects, only to look through a small backyard telescope at the disappointing white dot of a planet or faint blur of a galaxy? Yet the Moon is different. Seen through even a relatively cheap telescope, it springs into life like a real place, with mountains and valleys and rugged craters. With a bit of imagination, you can even picture yourself as a sightseeing visi...

  20. Searching for tau neutrinos with Cherenkov telescopes

    Science.gov (United States)

    Góra, D.; Bernardini, E.; Kappes, A.

    2015-02-01

    Cherenkov telescopes have the capability of detecting high energy tau neutrinos in the energy range of 1-1000 PeV by searching for very inclined showers. If a tau lepton, produced by a tau neutrino, escapes from the Earth or a mountain, it will decay and initiate a shower in the air which can be detected by an air shower fluorescence or Cherenkov telescope. In this paper, we present detailed Monte Carlo simulations of corresponding event rates for the VERITAS and two proposed Cherenkov Telescope Array sites: Meteor Crater and Yavapai Ranch, which use representative AGN neutrino flux models and take into account topographic conditions of the detector sites. The calculated neutrino sensitivities depend on the observation time and the shape of the energy spectrum, but in some cases are comparable or even better than corresponding neutrino sensitivities of the IceCube detector. For VERITAS and the considered Cherenkov Telescope Array sites the expected neutrino sensitivities are up to factor 3 higher than for the MAGIC site because of the presence of surrounding mountains.

  1. XSPECT telescopes on the SRG: optical performance

    DEFF Research Database (Denmark)

    Westergaard, Niels Jørgen Stenfeldt; Polny, Josef; Christensen, Finn Erland

    1994-01-01

    The XSPECT, thin foil, multiply nested telescope on SRG has been designed to achieve a large effective area at energies between 6 and 15 keV. The design goal for the angular resolution is 2 arcmin (HPD). Results of foil figure error measurements are presented. A ray tracing analysis was performed...

  2. Imaging capabilities of the SODART telescopes

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Hornstrup, Allan; Pedersen, Kristian

    1998-01-01

    The on- and off-axis imaging properties and effective area of the two SODART flight telescopes have been measured using the expanded beam X-ray facility at the Daresbury synchrotron. Following measurements have been done for both Flight Model 1 & 2, at three energies: 6.627 keV, 8.837 keV and 11...

  3. So You Want a Meade LX Telescope!

    Science.gov (United States)

    Harris, Lawrence

    Perhaps every generation of astronomers believes that their telescopes are the best that have ever been. They are surely all correct! The great leap of our time is that computer-designed and machined parts have led to more accurately made components that give the astronomer ever better views. The manual skills of the craftsman mirror grinder have been transformed into the new-age skills of the programmer and the machine maker. (The new products did not end the work of craftsman telescope makers, though. Many highly skilled amateur/professional opticians continued to produce good-quality mirrors that are still seen today.) Amateur-priced telescopes are now capable of highly accurate tracking and computer control that were once only the province of professionals. This has greatly increased the possibilities of serious astronomy projects for which tailor-made software has been developed. Add a CCD camera to these improved telescopes (see Chap. 3), and you bring a whole new dimension to your astronomy (see Fig. 1.1).

  4. Roughness tolerances for Cherenkov telescope mirrors

    CERN Document Server

    Tayabaly, K; Canestrari, R; Bonnoli, G; Lavagna, M; Pareschi, G

    2016-01-01

    The Cherenkov Telescope Array (CTA) is a forthcoming international ground-based observatory for very high-energy gamma rays. Its goal is to reach sensitivity five to ten times better than existing Cherenkov telescopes such as VERITAS, H.E.S.S. or MAGIC and extend the range of observation to energies down to few tens of GeV and beyond 100 TeV. To achieve this goal, an array of about 100 telescopes is required, meaning a total reflective surface of several thousands of square meters. Thence, the optimal technology used for CTA mirrors manufacture should be both low-cost (~1000 euros/m2) and allow high optical performances over the 300-550 nm wavelength range. More exactly, a reflectivity higher than 85% and a PSF (Point Spread Function) diameter smaller than 1 mrad. Surface roughness can significantly contribute to PSF broadening and limit telescope performances. Fortunately, manufacturing techniques for mirrors are now available to keep the optical scattering well below the geometrically-predictable effect of ...

  5. Choosing and Using a Refracting Telescope

    CERN Document Server

    English, Neil

    2011-01-01

    The refracting telescope has a long and illustrious past. Here’s what the author says about early telescopes and today’s refractors: “Four centuries ago, a hitherto obscure Italian scientist turned a home-made spyglass towards the heavens. The lenses he used were awful by modern standards, inaccurately figured and filled with the scars of their perilous journey from the furnace to the finishing workshop. Yet, despite these imperfections, they allowed him to see what no one had ever seen before – a universe far more complex and dynamic than anyone had dared imagine. But they also proved endlessly useful in the humdrum of human affairs. For the first time ever, you could spy on your neighbor from a distance, or monitor the approach of a war-mongering army, thus deciding the fate of nations. “The refractor is without doubt the prince of telescopes. Compared with all other telescopic designs, the unobstructed view of the refractor enables it to capture the sharpest, highest contrast images and the wides...

  6. The Student Telescope Network (STN) experiment

    Science.gov (United States)

    Hannahoe, Ryan M.; Stencel, Robert E.; Bisque, Steve; Rice, Mike

    2003-02-01

    Several factors make observational astronomy difficult for pre-college students and teachers. (1) not many schools have teachers trained to use and maintain astronomy equipment; (2) school usually happens during the day and observing normally is a night-time activity; (3) the scourge of light pollution has hidden the stars from many students living in or near cities; (4) there is a general lack of access to expertise when needed. In addition, physically disabled students cannot climb ladders, to access the telescope eyepiece. Internet access to computer-controlled telescopes equipped with digital cameras can solve many of these difficulties. This enables students and their teachers to access well-maintained, robust Internet-controllable telescopes in dark-site locations and to consult more readily with experts. We present the results of technical solutions to Internet-control of telescopes, by Software Bisque, the New Mexico Skies Guest Observatory and the Youth Activities Committee of the Astronomical League in collaboration with Denver University Astronomy. We jointly submitted a funding proposal to the Institute for Connecting Science Research to the Classroom, and conducted a pilot program allowing high school students to access a CCD-equipped, accurately-pointing and tracking telescope, controllable over the Web, with a user-friendly skymap browser tool. With suitably placed telescopes worldwide, observing from the classroom in daylight will become feasible, as we have demonstrated with Australian and Eurasian student users of the New Mexico Skies Internet telescope. We report here on a three-month pilot project exploring this solution, conducted Feb-May 2002. User interest proved phenomenal, while user statistics proved diverse and there were distinct lessons learned about how to enhance student participation in the research process. We thank the Institute for Connecting Science Research to the Classroom for a grant to the University of Denver in partial

  7. Thirty Meter Telescope science instruments: a status report

    Science.gov (United States)

    Simard, Luc; Ellerbroek, Brent; Bhatia, Ravinder; Radovan, Matthew; Chisholm, Eric

    2016-08-01

    An overview of the current status of the science instruments for the Thirty Meter Telescope is presented. Three first-light instruments as well as a science calibration unit for AO-assisted instruments are under development. Developing instrument collaborations that can design and build these challenging instruments remains an area of intense activity. In addition to the instruments themselves, a preliminary design for a facility cryogenic cooling system based on gaseous helium turbine expanders has been completed. This system can deliver a total of 2.4 kilowatts of cooling power at 65K to the instruments with essentially no vibrations. Finally, the process for developing future instruments beyond first light has been extensively discussed and will get under way in early 2017.

  8. The Telescope Array Middle Drum fluorescence detector simulation on GPUs

    Science.gov (United States)

    Abu-Zayyad, Tareq; Telescope-Array Collaboration

    2014-06-01

    In recent years, the Graphics Processing Unit (GPU) has been recognized and widely used as an accelerator for many scientific calculations. In general, problems amenable to parallelization are ones that benefit most from the use of GPUs. The Monte Carlo simulation of fluorescence detector response to air showers presents many opportunities for parallelization. In this paper we report on a Monte Carlo program used for the simulation of the Telescope Array Fluorescence Detector located at the Middle Drum site which uses GPU acceleration. All of the physics simulation from shower development, light production and atmospheric attenuation, as well as, the realistic detector optics and electronics simulations are done on the GPU. A detailed description of the code implementation is given, and results on the accuracy and performance of the simulation are presented as well. Improvements in computational throughput in excess of 50× are reported and the accuracy of the results is on par with the CPU implementation of the simulation.

  9. Development of space telescope non-ORU hardware

    Science.gov (United States)

    Robertson, K. B.; Henderson, D. E.

    1985-12-01

    Since 1979 work has progressed in the development of the Hubble Space Telescope (HST) mockup. Underwater simulations to evaluate proposed on-orbit servicing tasks have also been done. These tasks involve the planned changeout of scientific instruments and the unscheduled changeout of other orbital replacement units (ORUs) such as batteries and computers. The HST components and subsystems that originally were designated ORUs were the items that were mission critical and were designed for easy changeout. Mockups of 14 non-ORU items were designed and fabricated for the purpose of evaluating the EVA changetasks in the MSFC Neutral Buoyancy Simulator (NBS). The objectives of this design/fabrication/test activity were to design and fabricate the potential ORUs so they contained realistic interfaces and were compatible with the NBS environments. The attachment of the mockup hardware to the spacecraft mockup was similar to the flight version. Also, the hardware connectors were flight-like.

  10. TELICS—A Telescope Instrument Control System for Small/Medium Sized Astronomical Observatories

    Science.gov (United States)

    Srivastava, Mudit K.; Ramaprakash, A. N.; Burse, Mahesh P.; Chordia, Pravin A.; Chillal, Kalpesh S.; Mestry, Vilas B.; Das, Hillol K.; Kohok, Abhay A.

    2009-10-01

    For any modern astronomical observatory, it is essential to have an efficient interface between the telescope and its back-end instruments. However, for small and medium-sized observatories, this requirement is often limited by tight financial constraints. Therefore a simple yet versatile and low-cost control system is required for such observatories to minimize cost and effort. Here we report the development of a modern, multipurpose instrument control system TELICS (Telescope Instrument Control System) to integrate the controls of various instruments and devices mounted on the telescope. TELICS consists of an embedded hardware unit known as a common control unit (CCU) in combination with Linux-based data acquisition and user interface. The hardware of the CCU is built around the ATmega 128 microcontroller (Atmel Corp.) and is designed with a backplane, master-slave architecture. A Qt-based graphical user interface (GUI) has been developed and the back-end application software is based on C/C++. TELICS provides feedback mechanisms that give the operator good visibility and a quick-look display of the status and modes of instruments as well as data. TELICS has been used for regular science observations since 2008 March on the 2 m, f/10 IUCAA Telescope located at Girawali in Pune, India.

  11. HATSouth: a global network of fully automated identical wide-field telescopes

    CERN Document Server

    Bakos, G Á; Penev, K; Bayliss, D; Jordán, A; Afonso, C; Hartman, J D; Henning, T; Kovács, G; Noyes, R W; Béky, B; Suc, V; Csák, B; Rabus, M; Lázár, J; Papp, I; Sári, P; Conroy, P; Zhou, G; Sackett, P D; Schmidt, B; Mancini, L; Sasselov, D D; Ueltzhoeffer, K

    2012-01-01

    HATSouth is the world's first network of automated and homogeneous telescopes that is capable of year-round 24-hour monitoring of positions over an entire hemisphere of the sky. The primary scientific goal of the network is to discover and characterize a large number of transiting extrasolar planets, reaching out to long periods and down to small planetary radii. HATSouth achieves this by monitoring extended areas on the sky, deriving high precision light curves for a large number of stars, searching for the signature of planetary transits, and confirming planetary candidates with larger telescopes. HATSouth employs 6 telescope units spread over 3 locations with large longitude separation in the southern hemisphere (Las Campanas Observatory, Chile; HESS site, Namibia; Siding Spring Observatory, Australia). Each of the HATSouth units holds four 0.18m diameter f/2.8 focal ratio telescope tubes on a common mount producing an 8.2x8.2 arcdeg field, imaged using four 4Kx4K CCD cameras and Sloan r filters, to give a...

  12. Camera Development for the Cherenkov Telescope Array

    Science.gov (United States)

    Moncada, Roberto Jose

    2017-01-01

    With the Cherenkov Telescope Array (CTA), the very-high-energy gamma-ray universe, between 30 GeV and 300 TeV, will be probed at an unprecedented resolution, allowing deeper studies of known gamma-ray emitters and the possible discovery of new ones. This exciting project could also confirm the particle nature of dark matter by looking for the gamma rays produced by self-annihilating weakly interacting massive particles (WIMPs). The telescopes will use the imaging atmospheric Cherenkov technique (IACT) to record Cherenkov photons that are produced by the gamma-ray induced extensive air shower. One telescope design features dual-mirror Schwarzschild-Couder (SC) optics that allows the light to be finely focused on the high-resolution silicon photomultipliers of the camera modules starting from a 9.5-meter primary mirror. Each camera module will consist of a focal plane module and front-end electronics, and will have four TeV Array Readout with GSa/s Sampling and Event Trigger (TARGET) chips, giving them 64 parallel input channels. The TARGET chip has a self-trigger functionality for readout that can be used in higher logic across camera modules as well as across individual telescopes, which will each have 177 camera modules. There will be two sites, one in the northern and the other in the southern hemisphere, for full sky coverage, each spanning at least one square kilometer. A prototype SC telescope is currently under construction at the Fred Lawrence Whipple Observatory in Arizona. This work was supported by the National Science Foundation's REU program through NSF award AST-1560016.

  13. Hazard detection with a monocular bioptic telescope.

    Science.gov (United States)

    Doherty, Amy L; Peli, Eli; Luo, Gang

    2015-09-01

    The safety of bioptic telescopes for driving remains controversial. The ring scotoma, an area to the telescope eye due to the telescope magnification, has been the main cause of concern. This study evaluates whether bioptic users can use the fellow eye to detect in hazards driving videos that fall in the ring scotoma area. Twelve visually impaired bioptic users watched a series of driving hazard perception training videos and responded as soon as they detected a hazard while reading aloud letters presented on the screen. The letters were placed such that when reading them through the telescope the hazard fell in the ring scotoma area. Four conditions were tested: no bioptic and no reading, reading without bioptic, reading with a bioptic that did not occlude the fellow eye (non-occluding bioptic), and reading with a bioptic that partially-occluded the fellow eye. Eight normally sighted subjects performed the same task with the partially occluding bioptic detecting lateral hazards (blocked by the device scotoma) and vertical hazards (outside the scotoma) to further determine the cause-and-effect relationship between hazard detection and the fellow eye. There were significant differences in performance between conditions: 83% of hazards were detected with no reading task, dropping to 67% in the reading task with no bioptic, to 50% while reading with the non-occluding bioptic, and 34% while reading with the partially occluding bioptic. For normally sighted, detection of vertical hazards (53%) was significantly higher than lateral hazards (38%) with the partially occluding bioptic. Detection of driving hazards is impaired by the addition of a secondary reading like task. Detection is further impaired when reading through a monocular telescope. The effect of the partially-occluding bioptic supports the role of the non-occluded fellow eye in compensating for the ring scotoma. © 2015 The Authors Ophthalmic & Physiological Optics © 2015 The College of Optometrists.

  14. The Spacewatch 1.8-meter Telescope

    Science.gov (United States)

    Perry, M. L.; McMillan, R. S.; Barr, L. D.; Bressi, T. H.; Gehrels, T.

    1996-09-01

    The largest telescope in the world dedicated to the search for Earth-approaching asteroids and other previously unknown members of the solar system will soon be operational. Its 1.8-m aperture, large and sensitive CCD, and dedication to surveying will make it possible to find as many as 80,000 new asteroids per year. The mechanical design by Barr is optimized by finite-element analysis to provide high resonant frequencies. The mount is an altitude-azimuth type for compatibility with the mirror support cell contributed by the Multi-Mirror Telescope Observatory. Both axes are driven by DC servo motors directly coupled to friction rollers. The CCD instrument stage will also be rotated under computer control. The telescope was fabricated in the University Research Instrumentation Center (URIC). Construction of the building began on Kitt Peak on July 1, 1996. The optical configuration is f/2.7 folded prime focus with a flat secondary that locates the focal plane in the center of the optical truss near the altitude axis. This shortened the telescope enough to make the dome building affordable, and the flat secondary preserves the fast f/number of the primary mirror. The coma corrector designed by R. A. Buchroeder is a modified Klee design of 5 spherical lens elements plus a filter transmitting longward of the B bandpass. The filter greatly simplifies lens design and reduces sky background while not significantly reducing the brightness of asteroids. The distortion-free, flat, unvignetted field of view is 0.8 deg in diameter and the image scale is 1.0 arcsec/24 micron pixel. Construction of the Spacewatch Telescope has been funded by grants from the DoD Clementine Program, NASA, the University of Arizona Foundation, and other private and corporate donors.

  15. The Configurable Aperture Space Telescope (CAST)

    Science.gov (United States)

    Ennico, Kimberly; Bendek, Eduardo A.; Lynch, Dana H.; Vassigh, Kenny K.; Young, Zion

    2016-07-01

    The Configurable Aperture Space Telescope, CAST, is a concept that provides access to a UV/visible-infrared wavelength sub-arcsecond imaging platform from space, something that will be in high demand after the retirement of the astronomy workhorse, the 2.4 meter diameter Hubble Space Telescope. CAST allows building large aperture telescopes based on small, compatible and low-cost segments mounted on autonomous cube-sized satellites. The concept merges existing technology (segmented telescope architecture) with emerging technology (smartly interconnected modular spacecraft, active optics, deployable structures). Requiring identical mirror segments, CAST's optical design is a spherical primary and secondary mirror telescope with modular multi-mirror correctors placed at the system focal plane. The design enables wide fields of view, up to as much as three degrees, while maintaining aperture growth and image performance requirements. We present a point design for the CAST concept based on a 0.6 meter diameter (3 x 3 segments) growing to a 2.6 meter diameter (13 x 13 segments) primary, with a fixed Rp=13,000 and Rs=8,750 mm curvature, f/22.4 and f/5.6, respectively. Its diffraction limited design uses a two arcminute field of view corrector with a 7.4 arcsec/mm platescale, and can support a range of platescales as fine as 0.01 arcsec/mm. Our paper summarizes CAST, presents a strawman optical design and requirements for the underlying modular spacecraft, highlights design flexibilities, and illustrates applications enabled by this new method in building space observatories.

  16. The Large Millimeter Telescope- Gran Telescopio Milimetrico

    Science.gov (United States)

    Irvine, W. M.; Schloerb, F. P.; Carramiñana, A.; Carrasco, L.

    2004-11-01

    The Large Millimeter Telescope/Gran Telescopio Milimetrico (LMT) project is a collaboration between the University of Massachusetts and the Instituto Nacional de Astrofisica, Óptica y Electrónica to build a 50 m diameter telescope that will have good efficiency at wavelengths as short as 1 mm. The LMT will have an overall effective surface accuracy of 70 micrometers and an ultimate pointing accuracy of better than 1 arcsec, and will thus be the largest millimeter-wavelength telescope in the world. The LMT site is Sierra Negra in the state of Puebla, at 4,640 meters above sea level in Central Mexico. At 18° 59' N latitude, it offers good sky coverage of both hemispheres. The normally low humidity will allow operation of the radio telescope at frequencies as high as 345 GHz. The LMT will make use of recent advances in structural design and active control of surface elements to achieve the required surface and pointing accuracy. At the site the alidade has been erected and the back structure for the main reflector has been assembled, while the monitor and control system has been successfully tested on another telescope. The schedule calls for acceptance tests in 2006. The initial complement of instruments will include a 32 element, heterodyne focal plane array at 3mm; a large format, focal plane bolometer array; a unique wide band receiver and spectrometer to determine the redshifts of primordial galaxies, and a 4 element receiver for the 1mm band. With its excellent sensitivity and mapping speed, the LMT/GTM will be a powerful facility for planetary science. In particular, it will enable key observations of comets, planetary atmospheres, asteroids and KBOs.

  17. The Gamma-ray Cherenkov Telescope for the Cherenkov Telescope Array

    CERN Document Server

    Tibaldo, L; Allan, D; Amans, J -P; Armstrong, T P; Balzer, A; Berge, D; Boisson, C; Bousquet, J -J; Brown, A M; Bryan, M; Buchholtz, G; Chadwick, P M; Costantini, H; Cotter, G; Daniel, M K; De Franco, A; De Frondat, F; Dournaux, J -L; Dumas, D; Ernenwein, J -P; Fasola, G; Funk, S; Gironnet, J; Graham, J A; Greenshaw, T; Hervet, O; Hidaka, N; Hinton, J A; Huet, J -M; Jankowsky, D; Jegouzo, I; Jogler, T; Kraus, M; Lapington, J S; Laporte, P; Lefaucheur, J; Markoff, S; Melse, T; Mohrmann, L; Molyneux, P; Nolan, S J; Okumura, A; Osborne, J P; Parsons, R D; Rosen, S; Ross, D; Rowell, G; Rulten, C B; Sato, Y; Sayede, F; Schmoll, J; Schoorlemmer, H; Servillat, M; Sol, H; Stamatescu, V; Stephan, M; Stuik, R; Sykes, J; Tajima, H; Thornhill, J; Trichard, C; Vink, J; Watson, J J; White, R; Yamane, N; Zech, A; Zink, A; Zorn, J

    2016-01-01

    The Cherenkov Telescope Array (CTA) is a forthcoming ground-based observatory for very-high-energy gamma rays. CTA will consist of two arrays of imaging atmospheric Cherenkov telescopes in the Northern and Southern hemispheres, and will combine telescopes of different types to achieve unprecedented performance and energy coverage. The Gamma-ray Cherenkov Telescope (GCT) is one of the small-sized telescopes proposed for CTA to explore the energy range from a few TeV to hundreds of TeV with a field of view $\\gtrsim 8^\\circ$ and angular resolution of a few arcminutes. The GCT design features dual-mirror Schwarzschild-Couder optics and a compact camera based on densely-pixelated photodetectors as well as custom electronics. In this contribution we provide an overview of the GCT project with focus on prototype development and testing that is currently ongoing. We present results obtained during the first on-telescope campaign in late 2015 at the Observatoire de Paris-Meudon, during which we recorded the first Cher...

  18. Pointing Calibration for the Cherenkov Telescope Array Medium Size Telescope Prototype

    CERN Document Server

    Oakes, Louise; Baehr, Juergen; Gruenewald, Sandra; Raeck, Tobias; Schlenstedt, Stefan; Schubert, Anja; Schwanke, Ullrich

    2013-01-01

    Pointing calibration is an offline correction applied in order to obtain the true pointing direction of a telescope. The Cherenkov Telescope Array (CTA) aims to have the precision to determine the position of point-like as well as slightly extended sources, with the goal of systematic errors less than 7 arc seconds in space angle. This poster describes the pointing calibration concept being developed for the CTA Medium Size Telescope (MST) prototype at Berlin-Adlershof, showing test results and preliminary measurements. The MST pointing calibration method uses two CCD cameras, mounted on the telescope dish, to determine the true pointing of the telescope. The "Lid CCD" is aligned to the optical axis of the telescope, calibrated with LEDs on the dummy gamma-camera lid; the "Sky CCD" is pre-aligned to the Lid CCD and the transformation between the Sky and Lid CCD camera fields of view is precisely modelled with images from special pointing runs which are also used to determine the pointing model. During source ...

  19. NASA 3D Models: James Webb Space Telescope

    Data.gov (United States)

    National Aeronautics and Space Administration — The James Webb Space Telescope (JWST) will be a large infrared telescope with a 6.5-meter primary mirror. The project is working to a 2018 launch date. The JWST will...

  20. An Analog Trigger System for Atmospheric Cherenkov Telescopes

    CERN Document Server

    Barcelo, M; Bigas, O Blanch; Boix, J; Delgado, C; Herranz, D; Lopez-Coto, R; Martinez, G

    2013-01-01

    Arrays of Cherenkov telescopes typically use multi-level trigger schemes to keep the rate of random triggers from the night sky background low. At a first stage, individual telescopes produce a trigger signal from the pixel information in the telescope camera. The final event trigger is then formed by combining trigger signals from several telescopes. In this poster, we present a possible scheme for the Cherenkov Telescope Array telescope trigger, which is based on the analog pulse information of the pixels in a telescope camera. Advanced versions of all components of the system have been produced and working prototypes have been tested, showing a performance that meets the original specifications. Finally, issues related to integrating the trigger system in a telescope camera and in the whole array will be dealt with.

  1. VST telescope dynamic analisys and position control algorithms

    CERN Document Server

    Schipani, P

    2001-01-01

    The VST (VLT Survey Telescope) is a 2.6 m class Alt-Az telescope to be installed on Cerro Paranal in the Atacama desert, Northern Chile, in the European Southern Observatory (ESO) site. The VST is a wide-field imaging facility planned to supply databases for the ESO Very Large Telescope (VLT) science and carry out stand-alone observations in the UV to I spectral range. So far no telescope has been dedicated entirely to surveys; the VST will be the first survey telescope to start the operation, as a powerful survey facility for the VLT observatory. This paper will focus on the axes motion control system. The dynamic model of the telescope will be analyzed, as well as the effect of the wind disturbance on the telescope performance. Some algorithms for the telescope position control will be briefly discussed.

  2. Construction Milestone Announced on Green Bank Telescope

    Science.gov (United States)

    2000-04-01

    The National Radio Astronomy Observatory announces completion of a major construction milestone on the world's largest fully steerable radio telescope - the National Science Foundation's Green Bank Telescope (GBT). The last of 2,004 aluminum surface panels was recently installed on the GBT's two-acre (100 m x 110 m) collecting dish. The telescope is located at NRAO's Green Bank site, in rural Pocahontas County, West Virginia. The GBT will be used to study everything from the formation of galaxies in the early universe, to the chemical make-up of the dust and gas inside galaxies and in the voids that separate them, to the birth processes of stars. In conjunction with other instruments, it will help make highly accurate radar maps of some familiar objects in our own solar system. The GBT is an engineering marvel. At 485 feet tall, it is comparable in height to the Washington Monument. It weighs 16 million pounds, yet by swiveling the dish in both azimuth and elevation, it can be pointed to any point in the sky with exquisite accuracy. Additionally, the telescope's two-acre collecting dish has many novel features. Most radio telescopes in use today use receivers suspended above the dish by four struts. These struts block some of the surface of the dish, scattering some of the incoming radio waves from celestial objects under study. The GBT's offset feedarm has no struts to block incoming radio waves. The GBT also boasts an active surface. The surface of the dish is composed of 2,004 panels. On the underside of the dish, actuators are located at each corner (i.e., intersection of four panels). These actuators are motors that move the surface panels up and down, keeping the (paraboloid) shape of the dish precisely adjusted, no matter what the tilt of the telescope. The combination of its unblocked aperture and active surface promise that the GBT will display extremely high sensitivity to faint radio signals. The GBT itself is not the only precious national resource in

  3. Design concepts for the California Extremely Large Telescope (CELT)

    Science.gov (United States)

    Nelson, Jerry E.

    2000-08-01

    The California Extremely Large Telescope is a study currently underway by the University of California and the California Institute of Technology, to assess the feasibility of building a 30-m ground based telescope that will push the frontiers to observational astronomy. The telescope will be fully steerable, with a large field of view, and be able to work in both a seeing-limited arena and as a diffraction-limited telescope, with adaptive optics.

  4. South African Student Constructed Indlebe Radio Telescope

    Science.gov (United States)

    McGruder, Charles H.; MacPherson, Stuart; Janse Van Vuuren, Gary Peter

    2017-01-01

    The Indlebe Radio Telescope (IRT) is a small transit telescope with a 5 m diameter parabolic reflector working at 21 cm. It was completely constructed by South African (SA) students from the Durban University of Technology (DUT), where it is located. First light occurred on 28 July 2008, when the galactic center, Sagittarius A, was detected. As a contribution to the International Year of Astronomy in 2009, staff members in the Department of Electronic Engineering at DUT in 2006 decided to have their students create a fully functional radio telescope by 2009. The specific project aims are to provide a visible project that could generate interest in science and technology in high school students and to provide a real world system for research in radio astronomy in general and an optimization of low noise radio frequency receiver systems in particular. These aims must be understood in terms of the SA’s government interests in radio astronomy. SA is a partner in the Square Kilometer Array (SKA) project, has constructed the Karoo Array Telescope (KAT) and MeerKat, which is the largest and most sensitive radio telescope in the southern hemisphere. SA and its partners in Africa are investing in the construction of the African Very Long Baseline Interferometry Network (AVN), an array of radio telescopes throughout Africa as an extension of the existing global Very Long Baseline Interferometry Network (VLBI). These projects will allow SA to make significant contributions to astronomy and enable astronomy to contribute to the scientific education and development goals of the country. The IRT sees on a daily basis the transit of Sag A. The transit time is influenced by precession, nutation, polar motion, aberration, celestial pole offset, proper motion, length of the terrestrial day and variable ionospheric refraction. Of these eight factors six are either predictable or measureable. To date neither celestial pole offset nor variable ionospheric refraction are predicable

  5. Error analysis and distribution of the driving mechanism for large spherical radio telescope active reflector

    Institute of Scientific and Technical Information of China (English)

    Huang Peng; Tang Xiaoqiang; Wang Liping; Yao Rui

    2008-01-01

    In order to reduce the cost, 3-PRS mechanism is introduced into the application of supporting the active reflector unit of large radio telescope. The kinematic model of 3-PRS mechanism with rotational joint errors is derived to solve the error problem in actual engineering application. Then based on the error model, inverse and forward kinematics are analyzed. Because the solutions can not be analytically expressed, a numerical method is applied. Afterwards, the parasitic motion errors are analyzed using search method and empirical formulas of the maximum parasitic motion error are put forward. Finally, the tolerance is distributed using empirical formulas to avoid interference between adjacent reflector units. The analyses provide a theoretical basis for the design and installation of large radio telescope active reflector.

  6. 21 CFR 886.5870 - Low-vision telescope.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Low-vision telescope. 886.5870 Section 886.5870...) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5870 Low-vision telescope. (a) Identification. A low-vision telescope is a device that consists of an arrangement of lenses or mirrors intended...

  7. Automatic guiding of the primary image of solar Gregory telescopes

    NARCIS (Netherlands)

    Küveler, G.; Wiehr, E.; Thomas, D.; Harzer, M.; Bianda, M.; Epple, A.; Sütterlin, P.; Weisshaar, E.

    1998-01-01

    The primary image reflected from the field-stop of solar Gregory telescopes is used for automatic guiding. This new system avoids temporal varying influences from the bending of the telescope tube by the main mirror's gravity and from offsets between the telescope and a separate guiding refractor.

  8. Eyes on the sky a spectrum of telescopes

    CERN Document Server

    Graham-Smith, Francis

    2016-01-01

    Astronomy is experiencing a golden age, with a new generation of innovative telescopes yielding a flood of information on the Universe. This book traces the development of telescopes from Galileo to the present day, and explains the basic principles of telescopes that operate in different parts of electromagnetic spectrum.

  9. San Pedro Martir Telescope: Mexican design endeavor

    Science.gov (United States)

    Toledo-Ramirez, Gengis K.; Bringas-Rico, Vicente; Reyes, Noe; Uribe, Jorge; Lopez, Aldo; Tovar, Carlos; Caballero, Xochitl; Del-Llano, Luis; Martinez, Cesar; Macias, Eduardo; Lee, William; Carramiñana, Alberto; Richer, Michael; González, Jesús; Sanchez, Beatriz; Lucero, Diana; Manuel, Rogelio; Segura, Jose; Rubio, Saul; Gonzalez, German; Hernandez, Obed; García, Mary; Lazaro, Jose; Rosales-Ortega, Fabian; Herrera, Joel; Sierra, Gerardo; Serrano, Hazael

    2016-08-01

    The Telescopio San Pedro Martir (TSPM) is a new ground-based optical telescope project, with a 6.5 meters honeycomb primary mirror, to be built in the Observatorio Astronomico Nacional on the Sierra San Pedro Martir (OAN-SPM) located in Baja California, Mexico. The OAN-SPM has an altitude of 2830 meters above sea level; it is among the best location for astronomical observation in the world. It is located 1830 m higher than the atmospheric inversion layer with 70% of photometric nights, 80% of spectroscopic nights and a sky brightness up to 22 mag/arcsec2. The TSPM will be suitable for general science projects intended to improve the knowledge of the universe established on the Official Mexican Program for Science, Technology and Innovation 2014-2018. The telescope efforts are headed by two Mexican institutions in name of the Mexican astronomical community: the Universidad Nacional Autonoma de Mexico and the Instituto Nacional de Astrofisica, Optica y Electronica. The telescope has been financially supported mainly by the Consejo Nacional de Ciencia y Tecnologia (CONACYT). It is under development by Mexican scientists and engineers from the Center for Engineering and Industrial Development. This development is supported by a Mexican-American scientific cooperation, through a partnership with the University of Arizona (UA), and the Smithsonian Astrophysical Observatory (SAO). M3 Engineering and Technology Corporation in charge of enclosure and building design. The TSPM will be designed to allow flexibility and possible upgrades in order to maximize resources. Its optical and mechanical designs are based upon those of the Magellan and MMT telescopes. The TSPM primary mirror and its cell will be provided by the INAOE and UA. The telescope will be optimized from the near ultraviolet to the near infrared wavelength range (0.35-2.5 m), but will allow observations up to 26μm. The TSPM will initially offer a f/5 Cassegrain focal station. Later, four folded Cassegrain and

  10. The Timepix telescope for charged particle tracking

    Science.gov (United States)

    Hynds, Daniel

    2013-12-01

    The Timepix telescope has been developed as a general purpose tool for studying the performance of position sensitive charged particle detectors. Initiated as part of the infrastructure for the development of a new vertex detector for the LHCb experiment, the system was extended under the FP7 project AIDA to allow its use as an external facility by several groups within both the high energy and medical physics communities. Based at the CERN SPS, high track rates (up to 18 kHz), precise spatial resolution at the device under test (down to 1.6 μm), and a flexible integration method have all been demonstrated. The telescope is constructed using the Timepix ASIC, a hybrid pixel chip with an active area of 14×14 mm2.

  11. Lunar Ultraviolet Telescope Experiment (LUTE), phase A

    Science.gov (United States)

    McBrayer, Robert O.

    1994-04-01

    The Lunar Ultraviolet Telescope Experiment (LUTE) is a 1-meter telescope for imaging from the lunar surface the ultraviolet spectrum between 1,000 and 3,500 angstroms. There have been several endorsements of the scientific value of a LUTE. In addition to the scientific value of LUTE, its educational value and the information it can provide on the design of operating hardware for long-term exposure in the lunar environment are important considerations. This report provides the results of the LUTE phase A activity begun at the George C. Marshall Space Flight Center in early 1992. It describes the objective of LUTE (science, engineering, and education), a feasible reference design concept that has evolved, and the subsystem trades that were accomplished during the phase A.

  12. Fate of James Webb Space Telescope murky

    Science.gov (United States)

    Showstack, Randy

    2011-07-01

    The James Webb Space Telescope (JWST), the next-generation successor to the Hubble Space Telescope, was put on the chopping block by the U.S. House of Representatives Appropriations Subcommittee on Commerce, Justice, Science, and Related Agencies. The subcommittee approved a measure on 7 July that “terminates funding for [JWST], which is billions of dollars over budget and plagued by poor management.” Then, on 13 July, Rep. Adam Schiff (D-Calif.), whose district includes NASA's Jet Propulsion Laboratory, tried to insert a funding amendment—transferring $200 million from NASA's Cross-Agency Support budget to JWST—when the full House Committee on Appropriations voted. That amendment failed in a voice vote.

  13. The Zadko Telescope: Exploring the transient Universe

    CERN Document Server

    Coward, D M; Tanga, P; Turpin, D; Zadko, J; Dodson, R; Devogéle, M; Howell, E J; Kennewell, J A; Boër, M; Klotz, A; Dornic, D; Moore, J A; Heary, A

    2016-01-01

    The Zadko Telescope is a 1 m f/4 Cassegrain telescope, situated in the state of Western Australia about 80 km north of Perth. The facility plays a niche role in Australian astronomy, as it is the only meter class facility in Australia dedicated to automated follow-up imaging of alerts or triggers received from different external instruments/detectors spanning the entire electromagnetic spectrum. Furthermore the location of the facility at a longitude not covered by other meter class facilities provides an important resource for time critical projects. This paper reviews the status of the Zadko facility and science projects since it began robotic operations in March 2010. We report on major upgrades to the infrastructure and equipment (2012-2014) that has resulted in significantly improved robotic operations. Secondly, we review the core science projects, which include automated rapid follow-up of gamma ray burst (GRB) optical afterglows, imaging of neutrino counterpart candidates from the ANTARES neutrino obs...

  14. The 10 Meter South Pole Telescope

    CERN Document Server

    Carlstrom, J E; Aird, K A; Benson, B A; Bleem, L E; Busetti, S; Chang, C L; Chauvin, E; Cho, H -M; Crawford, T M; Crites, A T; Dobbs, M A; Halverson, N W; Heimsath, S; Holzapfel, W L; Hrubes, J D; Joy, M; Keisler, R; Lanting, T M; Lee, A T; Leitch, E M; Leong, J; Lu, W; Lueker, M; McMahon, J J; Mehl, J; Meyer, S S; Mohr, J J; Montroy, T E; Padin, S; Plagge, T; Pryke, C; Ruhl, J E; Schaffer, K K; Schwan, D; Shirokoff, E; Spieler, H G; Staniszewski, Z; Stark, A A; Vieira, K Vanderlinde J D

    2009-01-01

    The South Pole Telescope (SPT) is a 10 m diameter, wide-field, offset Gregorian telescope with a 966-pixel, multi-color, millimeter-wave, bolometer camera. It is located at the Amundsen-Scott South Pole station in Antarctica. The design of the SPT emphasizes careful control of spillover and scattering, to minimize noise and false signals due to ground pickup. The key initial project is a large-area survey at wavelengths of 3, 2 and 1.3 mm, to detect clusters of galaxies via the Sunyaev-Zeldovich (SZ) effect and to measure the high-l angular power spectrum of the cosmic microwave background (CMB). The data will be used to characterize the primordial matter power spectrum and to place constraints on the equation of state of dark energy.

  15. Computerization of a telescope at secondary education

    Science.gov (United States)

    García Santiago, A.; Martos Jumillas, J.

    2017-03-01

    The work we are presenting in this paper is the computerization of a refractor telescope on an EQ3 type equatorial mount through Arduino. The control of the mount is done via three different interfaces: Stellarium, an Android interface for mobile phones and a second interface for PC made with Processing. The aforementioned work was done by the authors with a double purpose: presenting the interest in astronomy in the Mathematics department, and the development of applications within the subject of Technology in 4th ESO. So, it is a collaborative project between both departments. Except for the telescope and the mount, all the resources we have used can be found in any high school: free software (Guadalinex v9), App Inventor and Processing.The project was carried out under the principle of reducing all possible costs given the economic possibilities of the institution.

  16. The Automated Palomar 60-Inch Telescope

    CERN Document Server

    Cenko, S B; Moon, D S; Harrison, F A; Kulkarni, S R; Henning, J R; Guzman, C D; Bonati, M; Smith, R M; Thicksten, R P; Doyle, M W; Petrie, H L; Gal-Yam, A; Soderberg, A M; Anagnostou, N L; Laity, A C; Fox, Derek B.; Moon, Dae-Sik; Harrison, Fiona A.; Henning, John R.; Bonati, Marco; Smith, Roger M.; Thicksten, Robert P.; Doyle, Michael W.; Petrie, Hal L.; Gal-Yam, Avishay; Soderberg, Alicia M.; Anagnostou, Nathaniel L.; Laity, Anastasia C.

    2006-01-01

    We have converted the Palomar 60-inch telescope (P60) from a classical night assistant-operated telescope to a fully robotic facility. The automated system, which has been operational since September 2004, is designed for moderately fast (t <~ 3 minutes) and sustained (R <~ 23 mag) observations of gamma-ray burst afterglows and other transient events. Routine queue-scheduled observations can be interrupted in response to electronic notification of transient events. An automated pipeline reduces data in real-time, which is then stored on a searchable web-based archive for ease of distribution. We describe here the design requirements, hardware and software upgrades, and lessons learned from roboticization. We present an overview of the current system performance as well as plans for future upgrades.

  17. Hard x-ray telescope mission

    DEFF Research Database (Denmark)

    Gorenstein, P.; Worrall, D.; Joensen, K.D.

    1996-01-01

    The Hard X-Ray Telescope was selected for study as a possible new intermediate size mission for the early 21st century. Its principal attributes are: (1) multiwavelength observing with a system of focussing telescopes that collectively observe from the UV to over 1 MeV, (2) much higher sensitivity...... and much better angular resolution in the 10 - 100 keV band, and (3) higher sensitivity for detecting gamma ray lines of known energy in the 100 keV to 1 MeV band. This paper emphasizes the mission aspects of the concept study such as the payload configuration and launch vehicle. An engineering team...... at the Marshall Space Center is participating in these two key aspects of the study....

  18. The Design of Diamond Compton Telescope

    CERN Document Server

    Hibino, Kinya; Okuno, Shoji; Yajima, Kaori; Uchihori, Yukio; Kitamura, Hisashi; Takashima, Takeshi; Yokota, Mamoru; Yoshida, Kenji

    2007-01-01

    We have developed radiation detectors using the new synthetic diamonds. The diamond detector has an advantage for observations of "low/medium" energy gamma rays as a Compton telescope. The primary advantage of the diamond detector can reduce the photoelectric effect in the low energy range, which is background noise for tracking of the Compton recoil electron. A concept of the Diamond Compton Telescope (DCT) consists of position sensitive layers of diamond-striped detector and calorimeter layer of CdTe detector. The key part of the DCT is diamond-striped detectors with a higher positional resolution and a wider energy range from 10 keV to 10 MeV. However, the diamond-striped detector is under development. We describe the performance of prototype diamond detector and the design of a possible DCT evaluated by Monte Carlo simulations.

  19. Exploring the Universe with the Worldwide Telescope

    Science.gov (United States)

    Fay, J. E.

    2014-12-01

    Microsoft Research WorldWide Telescope is a software platform for exploring the universe. Whether you are a researcher, student or just a casual explorer WorldWide Telescope uses cutting edge technology to take you anywhere in the universe and visualize data collected by science programs from across the globe, including NASA great observatories and planetary probes. WWT leverages technologies such as Virtual reality headsets, multi-channel full dome projection and HTML5/WebGL to bring the WWT experience to any device and any scale. We will discuss how to use WWT to browse previously curated data, as well as how to process and visualize your own data, using examples from NASA Mars missions.

  20. Vibration damping for the Segmented Mirror Telescope

    Science.gov (United States)

    Maly, Joseph R.; Yingling, Adam J.; Griffin, Steven F.; Agrawal, Brij N.; Cobb, Richard G.; Chambers, Trevor S.

    2012-09-01

    The Segmented Mirror Telescope (SMT) at the Naval Postgraduate School (NPS) in Monterey is a next-generation deployable telescope, featuring a 3-meter 6-segment primary mirror and advanced wavefront sensing and correction capabilities. In its stowed configuration, the SMT primary mirror segments collapse into a small volume; once on location, these segments open to the full 3-meter diameter. The segments must be very accurately aligned after deployment and the segment surfaces are actively controlled using numerous small, embedded actuators. The SMT employs a passive damping system to complement the actuators and mitigate the effects of low-frequency (operating deflection shapes of the mirror and to quantify segment edge displacements; relative alignment of λ/4 or better was desired. The TMDs attenuated the vibration amplitudes by 80% and reduced adjacent segment phase mismatches to acceptable levels.

  1. Thirty Meter Telescope Detailed Science Case: 2015

    CERN Document Server

    Skidmore, Warren; Fukugawa, Misato; Goswami, Aruna; Hao, Lei; Jewitt, David; Laughlin, Greg; Steidel, Charles; Hickson, Paul; Simard, Luc; Schöck, Matthias; Treu, Tommaso; Cohen, Judith; Anupama, G C; Dickinson, Mark; Harrison, Fiona; Kodama, Tadayuki; Lu, Jessica R; Macintosh, Bruce; Malkan, Matt; Mao, Shude; Narita, Norio; Sekiguchi, Tomohiko; Subramaniam, Annapurni; Tanaka, Masaomi; Tian, Feng; A'Hearn, Michael; Akiyama, Masayuki; Ali, Babar; Aoki, Wako; Bagchi, Manjari; Barth, Aaron; Bhalerao, Varun; Bradac, Marusa; Bullock, James; Burgasser, Adam J; Chapman, Scott; Chary, Ranga-Ram; Chiba, Masashi; Cooray, Asantha; Crossfield, Ian; Currie, Thayne; Das, Mousumi; Dewangan, G C; de Grijs, Richard; Do, Tuan; Dong, Subo; Evslin, Jarah; Fang, Taotao; Fang, Xuan; Fassnacht, Christopher; Fletcher, Leigh; Gaidos, Eric; Gal, Roy; Ghez, Andrea; Giavalisco, Mauro; Grady, Carol A; Greathouse, Thomas; Gogoi, Rupjyoti; Guhathakurta, Puragra; Ho, Luis; Hasan, Priya; Herczeg, Gregory J; Honda, Mitsuhiko; Imanishi, Masa; Inanmi, Hanae; Iye, Masanori; Kamath, U S; Kane, Stephen; Kashikawa, Nobunari; Kasliwal, Mansi; Kirby, Vishal KasliwalEvan; Konopacky, Quinn M; Lepine, Sebastien; Li, Di; Li, Jianyang; Liu, Junjun; Liu, Michael C; Lopez-Rodriguez, Enrigue; Lotz, Jennifer; Lubin, Philip; Macri, Lucas; Maeda, Keiichi; Marchis, Franck; Marois, Christian; Marscher, Alan; Martin, Crystal; Matsuo, Taro; Max, Claire; McConnachie, Alan; McGough, Stacy; Melis, Carl; Meyer, Leo; Mumma, Michael; Muto, Takayuki; Nagao, Tohru; Najita, Joan R; Navarro, Julio; Pierce, Michael; Prochaska, Jason X; Oguri, Masamune; Ojha, Devendra K; Okamoto, Yoshiko K; Orton, Glenn; Otarola, Angel; Ouchi, Masami; Packham, Chris; Padgett, Deborah L; Pandey, Shashi Bhushan; Pilachowsky, Catherine; Pontoppidan, Klaus M; Primack, Joel; Puthiyaveettil, Shalima; Ramirez-Ruiz, Enrico; Reddy, Naveen; Rich, Michael; Richter, Matthew J; Schombert, James; Sen, Anjan Ananda; Shi, Jianrong; Sheth, Kartik; Srianand, R; Tan, Jonathan C; Tanaka, Masayuki; Tanner, Angelle; Tominaga, Nozomu; Tytler, David; U, Vivian; Wang, Lingzhi; Wang, Xiaofeng; Wang, Yiping; Wilson, Gillian; Wright, Shelley; Wu, Chao; Wu, Xufeng; Xu, Renxin; Yamada, Toru; Yang, Bin; Zhao, Gongbo; Zhao, Hongsheng

    2015-01-01

    The TMT Detailed Science Case describes the transformational science that the Thirty Meter Telescope will enable. Planned to begin science operations in 2024, TMT will open up opportunities for revolutionary discoveries in essentially every field of astronomy, astrophysics and cosmology, seeing much fainter objects much more clearly than existing telescopes. Per this capability, TMT's science agenda fills all of space and time, from nearby comets and asteroids, to exoplanets, to the most distant galaxies, and all the way back to the very first sources of light in the Universe. More than 150 astronomers from within the TMT partnership and beyond offered input in compiling the new 2015 Detailed Science Case. The contributing astronomers represent the entire TMT partnership, including the California Institute of Technology (Caltech), the Indian Institute of Astrophysics (IIA), the National Astronomical Observatories of the Chinese Academy of Sciences (NAOC), the National Astronomical Observatory of Japan (NAOJ),...

  2. Hubble Space Telescope: A cosmic time machine

    Science.gov (United States)

    Westphal, J. A.; Harms, R. J.; Brandt, J. C.; Bless, R. C.; Macchetto, F. D.; Jefferys, W. H.

    1991-01-01

    The mission of the Hubble Space Telescope (HST) is to explore the expanding and evolving universe. During the 3,000 operating hours every year for the next 15 years or more, the HST will be used to study: galaxies; pulsars; globular clusters; neighboring stars where planets may be forming; binary star systems; condensing gas clouds and their chemical composition; and the rings of Saturn and the swirling ultraviolet clouds of Venus. The major technical achievements - its nearly perfect mirrors, its precise guidance system of rate gyroscopes, reaction wheels, star trackers, and fine guidance sensors are briefly discussed. The scientific instruments on board HST are briefly described. The integration of the equipment and instruments is outlined. The Space Telescope Science Institute (STScI) has approved time for 162 observations from among 556 proposals. The mission operation and data flow are explained.

  3. The ROTSE-III Robotic Telescope System

    CERN Document Server

    Akerlof, Carl W; Casperson, D E; Epps, H W; Kehoe, R; Marshall, S L; McGowan, K E; McKay, T A; Phillips, M A; Rykoff, E S; Schier, J A; Smith, D A; Vestrand, W T; Wozniak, P R; Wren, J A

    2002-01-01

    The observation of a prompt optical flash from GRB990123 convincingly demonstrated the value of autonomous robotic telescope systems. Pursuing a program of rapid follow-up observations of gamma-ray bursts, the Robotic Optical Transient Search Experiment (ROTSE) has developed a next-generation instrument, ROTSE-III, that will continue the search for fast optical transients. The entire system was designed as an economical robotic facility to be installed at remote sites throughout the world. There are seven major system components: optics, optical tube assembly, CCD camera, telescope mount, enclosure, environmental sensing & protection and data acquisition. Each is described in turn in the hope that the techniques developed here will be useful in similar contexts elsewhere.

  4. A new telescope concept for space communication

    Science.gov (United States)

    Henneberg, Peter; Schubert, Hermann

    1990-07-01

    The design concept of an optical transmit-receive antenna telescope developed in the framework of the ESA SILEX program is presented. SILEX involves optical communication between satellites in GEO, using semiconductor laser diodes operating at 825 nm as the light source. The telescope requirements include entrance diameter 250 mm, exit pupil 8 mm, acquisition FOV 8500 microrad, communication FOV 2000 microrad, angular magnification -31.25, retroreflection 3 microW/sq m nm or less, stray light 1.05 microW/sq m nm or less, and alignment stability 10 years with no refocusing in orbit. The present compact two-mirror configuration employs the glass-ceramic Zerodur for all of the major components (primary mirror/baseplate, secondary mirror, tube, front ring, and ocular) for a total mass of only 5760 g. The prototype manufacturing process gave surface errors of 25 nm rms-WF for the primary and 15 nm rms-WF for the secondary.

  5. Astronomical telescope with holographic primary objective

    Science.gov (United States)

    Ditto, Thomas D.; Friedman, Jeffrey F.; Content, David A.

    2011-09-01

    A dual dispersion telescope with a plane grating primary objective was previously disclosed that can overcome intrinsic chromatic aberration of dispersive optics while allowing for unprecedented features such as million object spectroscopy, extraordinary étendue, flat primary objective with a relaxed figure tolerance, gossamer membrane substrate stowable as an unsegmented roll inside a delivery vehicle, and extensibility past 100 meter aperture at optical wavelengths. The novel design meets many criteria for space deployment. Other embodiments are suitable for airborne platforms as well as terrestrial and lunar sites. One problem with this novel telescope is that the grazing exodus configuration necessary to achieve a large aperture is traded for throughput efficiency. Now we show how the hologram of a point source used in place of the primary objective plane grating can improve efficiency by lowering the diffraction angle below grazing exodus. An intermediate refractive element is used to compensate for wavelength dependent focal lengths of the holographic primary objective.

  6. A Fast Approach to Creative Telescoping

    CERN Document Server

    Koutschan, Christoph

    2010-01-01

    In this note we reinvestigate the task of computing creative telescoping relations in differential-difference operator algebras. Our approach is based on an ansatz that explicitly includes the denominators of the delta parts. We contribute several ideas of how to make an implementation of this approach reasonably fast and provide such an implementation. A selection of examples shows that it can be superior to existing methods by a large factor.

  7. Time to Revisit the Heterogeneous Telescope Network

    Science.gov (United States)

    Hessman, F. V.

    The "Heterogeneous Telescope Network" (HTN) was founded in 2005 as a loose collaboration of people somehow associated with robotic telescopes and/or projects interested in the transient universe. Other than being a very interesting forum for the exchange of ideas, the only lasting contribution of the HTN was a proposed protocol for the operation of a loose e-market for the exchange of telescope time (Allan et al. 2006; White & Allan 2007). Since the last formal meeting in 2007, the HTN has gone into a "Dornröschenschlaf" (a better word than "hibernation") : the players and interest are there, but the public visibility and activity is not. Although the participants knew and know that global networking is the way of the future for many types of science, various things have kept the HTN from taking the idea and actually implementing it: work on simply getting one's own system to work (e.g. myself), career paths of major players (e.g. Allan), dealing with the complexity of ones' own network (TALONS, RoboNet, LCO), and - most importantly - no common science driver big enough to push the participants to try it in earnest. Things have changed, however: robotic telescopes have become easier to create and operate, private networks have matured, large-scale consortia have become more common, event reporting using VOEvent has become the global standard and has a well-defined infrastructure, and large-scale sources of new objects and events are operating or will soon be operating (OGLE, CSS, Pan-STARRs, GAIA). I will review the scientific and sociological prospects for re-invigorating the HTN idea and invite discussion.

  8. Supernova Science with an Advanced Compton Telescope

    Science.gov (United States)

    2000-12-04

    advanced Compton telescope would be a powerful astrophysical tool. KEYWORDS: gamma rays:observations - Galaxy: center - supernoae: genearl - ISM: general 1...Radionuclei produced in SNe decay to stable nuclei on various time-scales, generating gamma- and x-ray photons, electrons and positrons. These decay products...Older SNRs must be galactic, but the emission can be detected on decadal- millenial time-scales. SNR studies thus concentrate upon 57Co(122 keV), 22Na

  9. Hubble space telescope onboard battery performance

    Science.gov (United States)

    Rao, Gopalakrishna M.; Wajsgras, Harry; Vaidyanathan, Hari; Armontrout, Jon D.

    1996-01-01

    The performance of six 88 Ah Nickel-Hydrogen (Ni-H2) batteries that are used onboard in the Hubble Space Telescope (Flight Spare Module (FSM) and Flight Module 2 (FM2)) is discussed. These batteries have 22 series cells per battery and a common bus that would enable them to operate at a common voltage. It is launched on April 24, 1990. This paper reviews: the cell design, battery specification, system constraints, operating parameters, onboard battery management, and battery performance.

  10. Telescope and instrument robotization at Dome C

    Science.gov (United States)

    Strassmeier, K. G.; Agabi, K.; Agnoletto, L.; Allan, A.; Andersen, M. I.; Ansorge, W.; Bortoletto, F.; Briguglio, R.; Buey, J.-T.; Castellini, S.; Coudé du Foresto, V.; Damé, L.; Deeg, H. J.; Eiroa, C.; Durand, G.; Fappani, D.; Frezzotti, M.; Granzer, T.; Gröschke, A.; Kärcher, H. J.; Lenzen, R.; Mancini, A.; Montanari, C.; Mora, A.; Pierre, A.; Pirnay, O.; Roncella, F.; Schmider, F.-X.; Steele, I.; Storey, J. W. V.; Tothill, N. F. H.; Travouillon, T.; Vittuari, L.

    2007-07-01

    This article reviews the situation for robotization of telescopes and instruments at the Antarctic station Concordia on Dome C. A brain-storming meeting was held in Tenerife in March 2007 from which this review emerged. We describe and summarize the challenges for night-time operations of various astronomical experiments at conditions ``between Earth and Space'' and conclude that robotization is likely a prerequisite for continuous astronomical data taking during the 2000-hour night at Dome C.

  11. Preliminary Multivariable Cost Model for Space Telescopes

    Science.gov (United States)

    Stahl, H. Philip

    2010-01-01

    Parametric cost models are routinely used to plan missions, compare concepts and justify technology investments. Previously, the authors published two single variable cost models based on 19 flight missions. The current paper presents the development of a multi-variable space telescopes cost model. The validity of previously published models are tested. Cost estimating relationships which are and are not significant cost drivers are identified. And, interrelationships between variables are explored

  12. UV/Visible Telescope with Hubble Disposal

    Science.gov (United States)

    Benford, Dominic J.

    2013-01-01

    Submission Overview: Our primary objective is to convey a sense of the significant advances possible in astrophysics investigations for major Cosmic Origins COR program goals with a 2.4m telescope asset outfitted with one or more advanced UV visible instruments. Several compelling science objectives were identified based on community meetings these science objectives drove the conceptual design of instruments studied by the COR Program Office during July September 2012. This RFI submission encapsulates the results of that study, and suggests that a more detailed look into the instrument suite should be conducted to prove viability and affordability to support the demonstrated scientific value. This study was conducted in the context of a larger effort to consider the options available for a mission to dispose safely of Hubble hence, the overall architecture considered for the mission we studied for the 2.4m telescope asset included resource sharing. This mitigates combined cost and risk and provides naturally for a continued US leadership role in astrophysics with an advanced, general-purpose UV visible space telescope.

  13. Building the James Webb Space Telescope

    Science.gov (United States)

    Gardner, Jonathan P.

    2012-01-01

    The James Webb Space Telescope is the scientific successor to the Hubble and Spitzer Space Telescopes. It will be a large (6.6m) cold (50K) telescope launched into orbit around the second Earth-Sun Lagrange point. It is a partnership of NASA with the European and Canadian Space Agencies. JWST will make progress In almost every area of astronomy, from the first galaxies to form in the early universe to exoplanets and Solar System objects. Webb will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Near-Infrared Imager and Slitless Spectrograph will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. The observatory Is confirmed for launch in 2018; the design is complete and it is in its construction phase. Innovations that make JWST possible include large-area low-noise infrared detectors, cryogenic ASICs, a MEMS micro-shutter array providing multi-object spectroscopy, a non-redundant mask for interferometric coronagraphy and diffraction-limited segmented beryllium mirrors with active wavefront sensing and control. Recent progress includes the completion of the mirrors, the delivery of the first flight instruments and the start of the integration and test phase.

  14. MINERVA: Small Planets from Small Telescopes

    Science.gov (United States)

    Wittenmyer, Robert A.; Johnson, John Asher; Wright, Jason; McCrady, Nate; Swift, Jonathan; Bottom, Michael; Plavchan, Peter; Riddle, Reed; Muirhead, Philip S.; Herzig, Erich; Myles, Justin; Blake, Cullen H.; Eastman, Jason; Beatty, Thomas G.; Lin, Brian; Zhao, Ming; Gardner, Paul; Falco, Emilio; Criswell, Stephen; Nava, Chantanelle; Robinson, Connor; Hedrick, Richard; Ivarsen, Kevin; Hjelstrom, Annie; Vera, Jon De; Szentgyorgyi, Andrew

    2015-09-01

    The Kepler mission has shown that small planets are extremely common. It is likely that nearly every star in the sky hosts at least one rocky planet. We just need to look hard enough-but this requires vast amounts of telescope time. MINERVA (MINiature Exoplanet Radial Velocity Array) is a dedicated exoplanet observatory with the primary goal of discovering rocky, Earth-like planets orbiting in the habitable zone of bright, nearby stars. The MINERVA team is a collaboration among UNSW Australia, Harvard-Smithsonian Center for Astrophysics, Penn State University, University of Montana, and the California Institute of Technology. The four-telescope MINERVA array will be sited at the F.L. Whipple Observatory on Mt Hopkins in Arizona, USA. Full science operations will begin in mid-2015 with all four telescopes and a stabilised spectrograph capable of high-precision Doppler velocity measurements. We will observe ~100 of the nearest, brightest, Sun-like stars every night for at least five years. Detailed simulations of the target list and survey strategy lead us to expect new low-mass planets.

  15. Sensivity studies for the Cherenkov Telescope Array

    Science.gov (United States)

    Collado, Tarek Hassan

    2015-06-01

    Since the creation of the first telescope in the 17th century, every major discovery in astrophysics has been the direct consequence of the development of novel observation techniques, opening new windows in the electromagnetic spectrum. After Karl Jansky discovered serendipitously the first radio source in 1933, Grote Reber built the first parabolic radio telescope in his backyard, planting the seed of a whole new field in astronomy. Similarly, new technologies in the 1950s allowed the establishment of other fields, such as the infrared, ultraviolet or the X-rays. The highest energy end of the electromagnetic spectrum, the γ-ray range, represents the last unexplored window for astronomers and should reveal the most extreme phenomena that take place in the Universe. Given the technical complexity of γ-ray detection and the extremely relative low fluxes, γ-ray astronomy has undergone a slower development compared to other wavelengths. Nowadays, the great success of consecutive space missions together with the development and refinement of new detection techniques from the ground, has allowed outstanding scientific results and has brought gamma-ray astronomy to a worthy level in par with other astronomy fields. This work is devoted to the study and improvement of the future Cherenkov Telescope Array (CTA), the next generation of ground based γ-ray detectors, designed to observe photons with the highest energies ever observed from cosmic sources.

  16. The CAST X-ray telescope

    Energy Technology Data Exchange (ETDEWEB)

    Rosu, Madalin M. [Institut fuer Kernphysik, Technische Universitaet Darmstadt (Germany)

    2010-07-01

    CAST (CERN Axion Solar Telescope) is a project at the European Organization for Nuclear Research CERN in Geneva, which searches for Axions coming from the Sun. The most sensitive detector system used at CAST is the X-ray Wolter type I telescope. Its two constituents, the X-ray mirror optics and the fully depleted EPIC pn-CCD detector, were originally built for ABRIXAS and XMM-Newton space missions. Their combined use provides the X-ray telescope with the highest axion discovery potential of all CAST detectors, excellent imaging capability and almost 100% data tacking reliability in conditions of low background which is suppressed by a factor of 155 by focusing the photons from the aperture of the magnet of 14.5 cm{sup 2} to a spot of roughly 9.3 mm{sup 2} on the CCD chip. For achieving a high sensitivity the CCD chip is operated at -130 C in a vacuum vessel made of aluminum and a passive shield of copper and led to reduce the external {gamma}-ray. All these combined with a extremely thin and homogeneous entrance window of 20 nm located on the back side of the chip result in a quantum efficiency of >95% in the photon energy range of 1 to 7 keV, which is the interesting region for the axion search with the CAST experiment.

  17. Telescope resolution using negative refractive index materials

    Science.gov (United States)

    May, Jack L.; Jennetti, Tony

    2004-02-01

    Concepts are presented for using negative refractive index (NRI) materials to design parabolic reflector telescopes and antennas with resolutions significantly better than the diffractions limit. The main question we are attempting to answer is can negative refractive material be used to improve performance of parabolic systems even when the signal or light source is far away and no evanescent fields are present when they arrive at the parabolic reflector. The main approach is to take advantage of any knowledge that we have to recreate the evanescent fields. Fields are then adapted to improve a performance measure such a sharper focus or antenna rejection of interference. A negative refraction index lens is placed between the conventional reflector and focal plane to shape the point spread function. To produce telescope resolutions that are better than the diffraction limit, evanescent fields created by the reflection off of the parabolic surface are amplified and modified to generate fields that sharpen the focus. A second approach use available knowledge of an emitting aperture to synthesize a field at a distance that matches as closely as possible the field of the emitting aperture. The yet unproven conclusion is that techniques can be developed that will improve antenna and telescopes resolution that is better than the diffraction limit.

  18. Large Telescope Segmented Primary Mirror Alignment

    Science.gov (United States)

    Rud, Mayer

    2010-01-01

    A document discusses a broadband (white light) point source, located at the telescope Cassegrain focus, which generates a cone of light limited by the hole in the secondary mirror (SM). It propagates to the aspheric null-mirror, which is optimized to make all the reflected rays to be normal to the primary mirror (PM) upon reflection. PM retro-reflects the rays back through the system for wavefront analysis. The point source and the wavefront analysis subsystems are all located behind the PM. The PM phasing is absolute (white light) and does not involve the SM. A relatively small, aspheric null-mirror located near the PM center of curvature has been designed to deliver the high level of optical wavefront correction. The phasing of the segments is absolute due to the use of a broadband source. The segmented PM is optically aligned independently and separately from the SM alignment. The separation of the PM segments alignment from the PM to the SM, and other telescope optics alignments, may be a significant advantage, eliminating the errors coupling. The point source of this concept is fully cooperative, unlike a star or laser-generated guide-star, providing the necessary brightness for the optimal S/N ratio, the spectral content, and the stable on-axis position. This concept can be implemented in the lab for the PM initial alignment, or made to be a permanent feature of the space-based or groundbased telescope.

  19. High Speed Telescopic Imaging of Sprites

    Science.gov (United States)

    McHarg, M. G.; Stenbaek-Nielsen, H. C.; Kanmae, T.; Haaland, R. K.

    2010-12-01

    A total of 21 sprite events were recorded at Langmuir Laboratory, New Mexico, during the nights of 14 and 15 July 2010 with a 500 mm focal length Takahashi Sky 90 telescope. The camera used was a Phantom 7.3 with a VideoScope image intensifier. The images were 512x256 pixels for a field of view of 1.3x0.6 degrees. The data were recorded at 16,000 frames per second (62 μs between images) and an integration time of 20 μs per image. Co-aligned with the telescope was a second similar high-speed camera, but with an 85 mm Nikon lens; this camera recorded at 10,000 frames per second with 100 μs exposure. The image format was also 512x256 pixels for a field of view of 7.3x3.7 degrees. The 21 events recorded include all basic sprite elements: Elve, sprite halos, C-sprites, carrot sprites, and large jellyfish sprites. We compare and contrast the spatial details seen in the different types of sprites, including streamer head size and the number of streamers subsequent to streamer head splitting. Telescopic high speed image of streamer tip splitting in sprites recorded at 07:06:09 UT on 15 July 2010.

  20. Initial Results from the XUV Doppler Telescope

    Science.gov (United States)

    Kano, R.; Hara, H.; Kobayashi, K.; Kumagai, K.; Nagata, S.; Sakao, T.; Shimizu, T.; Tsuneta, S.; Yoshida, T.

    We developed a unique telescope to obtain simultaneous XUV images and the velocity maps by measuring the line-of-sight Doppler shifts of the Fe XIV 211A&ring line (T = 1.8 MK): the Solar XUV Doppler Telescope (hereafter XDT). The telescope was launched by the Institute of Space and Astronautical Science with the 22nd S520 rocket on January 31, 1998, and took 14 XUV whole sun images during 5 minutes. Simultaneous observations of XDT with Yohkoh (SXT), SOHO (EIT, CDS, LASCO and MDI) were successfully carried out. The images taken with EIT, XDT and SXT are able to cover the wide temperature ranging from 1 to 10 MK, and clearly show the multi-temperature nature of the solar corona. Indeed, we notice that both the cool (1-2 MK) loops observed with EIT and XDT, and the hot (>3 MK) loops observed with SXT exist in the same active regions but in a spatially exclusive way. The XDT red-blue ratio between longer- and shorter-wavelength bands of Fe XIV 211A&ring line indicates a possible down-flow of 1.8 MK plasma near the footpoints of multiple cool loops

  1. The Green Bank Telescope: User Interfaces

    Science.gov (United States)

    Maddalena, R. J.; Fisher, J. R.

    1999-12-01

    The NRAO-Green Bank Telescope is composed of a unique, versatile, and complex suite of instrumentation. Observers and staff members will require intuitive user interfaces that can exploit the full capabilities of the instrument. The object-oriented monitor and control system which underlies all of the GBT user interfaces provides a uniform software interface to each GBT device, from receivers to detectors. The control system allows the creation of high-level user interfaces in a wide range of programming languages with less effort than normally encountered in the creation of such interfaces. We will present at least two of the graphical user interfaces astronomers will encounter when observing with the GBT. One interface, written in Glish/Tk, is designed for astronomers and used for specifying observations. A demonstration will be given of another interface, written in Tcl/Tk, designed for the monitoring and debugging of telescope component and which will be used predominantly by telescope operators, engineers, and other staff members. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  2. Vibration measurements of the Daniel K. Inouye Solar Telescope mount, Coudé rotator, and enclosure assemblies

    Science.gov (United States)

    McBride, William R.; McBride, Daniel R.

    2016-08-01

    The Daniel K. Inouye Solar Telescope (DKIST) will be the largest solar telescope in the world, with a 4-meter off-axis primary mirror and 16 meter rotating Coudé laboratory within the telescope pier. The off-axis design requires a mount similar to an 8-meter on-axis telescope. Both the telescope mount and the Coudé laboratory utilize a roller bearing technology in place of the more commonly used hydrostatic bearings. The telescope enclosure utilizes a crawler mechanism for the altitude axis. As these mechanisms have not previously been used in a telescope, understanding the vibration characteristics and the potential impact on the telescope image is important. This paper presents the methodology used to perform jitter measurements of the enclosure and the mount bearings and servo system in a high-noise environment utilizing seismic accelerometers and high dynamic-range data acquisition equipment, along with digital signal processing (DSP) techniques. Data acquisition and signal processing were implemented in MATLAB. In the factory acceptance testing of the telescope mount, multiple accelerometers were strategically located to capture the six axes-of-motion of the primary and secondary mirror dummies. The optical sensitivity analysis was used to map these mirror mount displacements and rotations into units of image motion on the focal plane. Similarly, tests were done with the Coudé rotator, treating the entire rotating instrument lab as a rigid body. Testing was performed by recording accelerometer data while the telescope control system performed tracking operations typical of various observing scenarios. The analysis of the accelerometer data utilized noise-averaging fast Fourier transform (FFT) routines, spectrograms, and periodograms. To achieve adequate dynamic range at frequencies as low as 3Hz, the use of special filters and advanced windowing functions were necessary. Numerous identical automated tests were compared to identify and select the data sets

  3. Innovative enclosure dome/observing aperture system design for the MROI Array Telescopes

    Science.gov (United States)

    Busatta, A.; Marchiori, G.; Mian, S.; Payne, I.; Pozzobon, M.

    2010-07-01

    The close-pack array of the MROI necessitated an original design for the Unit Telescope Enclosure (UTE) at Magdalena Ridge Observatory. The Magdalena Ridge Observatory Interferometer (MROI) is a project which comprises an array of up to ten (10) 1.4m diameter mirror telescopes arranged in a "Y" configuration. Each of these telescopes will be housed inside a Unit Telescope Enclosure (UTE) which are relocatable onto any of 28 stations. The most compact configuration includes all ten telescopes, several of which are at a relative distance of less than 8m center to center from each other. Since the minimum angle of the field of regard is 30° with respect to the horizon, it is difficult to prevent optical blockage caused by adjacent UTEs in this compact array. This paper presents the design constraints inherent in meeting the requirement for the close-pack array. An innovative design enclosure was created which incorporates an unique dome/observing aperture system. The description of this system focuses on how the field of regard requirement led to an unique and highly innovative concept that had to be able to operate in the harsh environmental conditions encountered at an altitude of 10,460ft (3,188m). Finally, we describe the wide use of composites materials and structures (e.g. glass/carbon fibres, sandwich panels etc.) on the aperture system which represents the only way to guarantee adequate thermal and environmental protection, compactness, structural stability and limited power consumption due to reduced mass.

  4. Wide-field hard x-ray survey telescope: ProtoEXIST1

    Science.gov (United States)

    Hong, J.; Grindlay, J. E.; Chammas, N.; Allen, B.; Copete, A.; Said, B.; Burke, M.; Howell, J.; Gauron, T.; Baker, R. G.; Barthelmy, S. D.; Sheikh, S.; Gehrels, N.; Cook, W. R.; Burnham, J. A.; Harrison, F. A.; Collins, J.; Labov, S.; Garson, A., III; Krawczynski, H.

    2007-09-01

    We report our progress on the development of pixellated imaging CZT detector arrays for our first-generation balloon-borne wide-field hard X-ray (20 - 600 keV) telescope, ProtoEXIST1. Our ProtoEXIST program is a pathfinder for the High Energy Telescope (HET) on the Energetic X-ray Imaging Survey telescope (EXIST), a proposed implementation of the Black Hole Finder Probe. ProtoEXIST1 consists of four independent coded-aperture telescopes with close-tiled (~0.4 mm gaps) CZT detectors that preserve their 2.5mm pixel pitch. Multiple shielding/field-of-view configurations are planned to identify optimal geometry for the HET in EXIST. The primary technical challenge in ProtoEXIST is the development of large area, close-tiled modules of imaging CZT detectors (1000 cm2 for ProtoEXIST1), with all readout and control systems for the ASIC readout vertically stacked. We describe the overall telescope configuration of ProtoEXIST1 and review the current development status of the CZT detectors, from individual detector crystal units (DCUs) to a full detector module (DM). We have built the first units of each component for the detector plane and have completed a few Rev2 DCUs (2x2 cm2), which are under a series of tests. Bare DCUs (pre-crystal bonding) show high, uniform ASIC yield (~70%) and ~30% reduction in electronics noise compared to the Rev1 equivalent. A Rev1 DCU already achieved ~1.2% FWHM at 662 keV, and preliminary analysis of the initial radiation tests on a Rev2 DCU shows ~ 4 keV FWHM at 60 keV (vs. 4.7 keV for Rev1). We therefore expect about <=1% FWHM at 662 keV with the Rev2 detectors.

  5. Abu Simbel Radio Telescope Project in the upper Egypt.

    Science.gov (United States)

    Shaltout, M.

    1999-03-01

    This paper shows the importance of building a radio telescope at Abu Simbel in the south of Egypt as part of the European VLBI Network (EVN) to cover the gap between the radio telescopes in Western Europe and the radio telescope at Hartebeesthoek in South Africa. The telescope can be used for solar and stellar observations at wavelengths ranging between centimetres and millimetres, and for geodetic VLBI studies. The suggested diameter is 32 meters for the telescope and it is expected to work in the frequency range from 1.4 to 43 GHz. Abu Simbel is characterised by excellent atmospheric transparency, dry climate, and low population without any artificial interference.

  6. Solar Magnetism and the Activity Telescope at HSOS

    Institute of Scientific and Technical Information of China (English)

    Hong-Qi Zhang; Ya-Nan Wang; Qi-Qian Hu; Jun-Sun Xue; Hai-Tian Lu; Hou-Kun Ni; Han-Liang Chen; Xiao-Jun Zhou; Qing-Sheng Zhu; Lü-Jun Yuan; Yong Zhu; Dong-Guang Wang; Yuan-Yong Deng; Ke-Liang Hu; Jiang-Tao Su; Jia-Ben Lin; Gang-Hua Lin; Shi-Mo Yang; Wei-Jun Mao

    2007-01-01

    A new solar telescope system is described, which has been operating at Huairou Solar Observing Station (HSOS), National Astronomical Observatories, Chinese Academy of Sciences (CAS), since the end of 2005. This instrument, the Solar Magnetism and Activity Telescope (SMAT), comprises two telescopes which respectively make measurements of full solar disk vector magnetic field and Hα observation. The core of the full solar disk video vector magnetograph is a birefringent filter with 0.1(A) bandpass, installed in the tele-centric optical system of the telescope. We present some preliminary observational results of the full solar disk vector magnetograms and Hα filtergrams obtained with this telescope system.

  7. Measuring Visual Double Stars with Robotic Telescopes

    Science.gov (United States)

    Boyce, Pat; Boyce, Grady; Genet, Russell M.; Faisal Al-Zaben, Dewei Li, Yongyao Li, Aren Dennis, Zhixin Cao, Junyao Li, Steven Qu, Jeff Li, Michael Fene, Allen Priest, Stephen Priest, Rex Qiu, , and, Bill Riley

    2016-06-01

    The Astronomy Research Seminars introduce students to scientific research by carrying out the entire process: planning a scientific research project, writing a research proposal, gathering and analyzing observational data, drawing conclusions, and presenting the research results in a published paper and presentation.In 2015 Cuesta College and Russell Genet sponsored a new hybrid format for the seminar enabling distance learning. Boyce Research Initiatives and Education Foundation (BRIEF) conducted the course at The Army and Navy Academy (ANA) in Carlsbad, California, in the spring and fall of 2015.The course objective is to complete the research and publish the paper within one semester. Our program schedule called for observations to be performed within a two week period. Measurement of visual binary stars was chosen because sufficient observations could be made in just two evenings of good weather. We quickly learned that our location by the ocean did not provide reliable weather to use local telescopes.The iTelescope network of robotic telescopes located in Australia, Spain and the U.S. solved the problem. Reservations for these systems are booked online and include date, time, exposure and filters. The high quality telescopes range from 4" to 27" in size with excellent cameras. By watching the weather forecasts for the sites, we were able to schedule our observations within the two week time frame required.Timely and reliable data reduction was the next hurdle. The students were using widely varying equipment (PCs, MACs, tablets, smart phones) with incompatible software. After wasting time trying to be computer technicians, we settled a on standard set of software relying on Mirametrics' Mira Pro x64. We installed the software on an old laptop, downloaded the iTelescope data files, gave the students remote access using GoToMyPC.These efficiencies enabled us to meet the demanding one semester schedule and assure a better learning experience. We have been able to

  8. Cornell Caltech Atacama Telescope (CCAT): a 25 m aperture telescope above 5000 m altitude

    CERN Document Server

    Sebring, T A; Radford, S; Zmuidzinas, J; Sebring, Thomas A.; Giovanelli, Riccardo; Radford, Simon; Zmuidzinas, Jonas

    2006-01-01

    Cornell, California Institute of Technology (Caltech), and Jet Propulsion Lab (JPL) have joined together to study development of a 25 meter sub-millimeter telescope (CCAT) on a high peak in the Atacama region of northern Chile, where the atmosphere is so dry as to permit observation at wavelengths as short as 200 micron. The telescope is designed to deliver high efficiency images at that wavelength with a total 1/2 wavefront error of about 10 microns. With a 20 arc min field of view, CCAT will be able to accommodate large format bolometer arrays and will excel at carrying out surveys as well as resolving structures to the 2 arc sec. resolution level. The telescope will be an ideal complement to ALMA. Initial instrumentation will include both a wide field bolometer camera and a medium resolution spectrograph. Studies of the major telescope subsystems have been performed as part of an initial Feasibility Concept Study. Novel aspects of the telescope design include kinematic mounting and active positioning of pr...

  9. The Single Mirror Small Sized Telescope For The Cherenkov Telescope Array

    CERN Document Server

    Heller, M; Porcelli, A; Pujadas, I Troyano; Zietara, K; della Volpe, D; Montaruli, T; Cadoux, F; Favre, Y; Aguilar, J A; Christov, A; Prandini, E; Rajda, P; Rameez, M; Bilnik, W; Blocki, J; Bogacz, L; Borkowski, J; Bulik, T; Frankowski, A; Grudzinska, M; Idzkowski, B; Jamrozy, M; Janiak, M; Kasperek, J; Lalik, K; Lyard, E; Mach, E; Mandat, D; Marszalek, A; Miranda, L D Medina; Michalowski, J; Moderski, R; Neronov, A; Niemiec, J; Ostrowski, M; Pasko, P; Pech, M; Schovanek, P; Seweryn, K; Sliusar, V; Skowron, K; Stawarz, L; Stodulska, M; Stodulski, M; Walter, R; Wiecek, M; Zagdanski, A

    2016-01-01

    The Small Size Telescope with Single Mirror (SST-1M) is one of the proposed types of Small Size Telescopes (SST) for the Cherenkov Telescope Array (CTA). About 70 SST telescopes will be part the CTA southern array which will also include Medium Sized Telescopes (MST) in its threshold configuration. Optimized for the detection of gamma rays in the energy range from 5 TeV to 300 TeV, the SST-1M uses a Davies-Cotton optics with a 4 m dish diameter with a field of view of 9 degrees. The Cherenkov light resulting from the interaction of the gamma-rays in the atmosphere is focused onto a 88 cm side-to-side hexagonal photo-detection plane. The latter is composed of 1296 hollow light guides coupled to large area hexagonal silicon photomultipliers (SiPM). The SiPM readout is fully digital readout as for the trigger system. The compact and lightweight design of the SST-1M camera offers very high performance ideal for gamma-ray observation requirement. In this contribution, the concept, design, performance and status of...

  10. Development of a mid-sized Schwarzschild-Couder Telescope for the Cherenkov Telescope Array

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, Robert A.

    2012-06-28

    The Cherenkov Telescope Array (CTA) is a ground-based observatory for very high-energy (10 GeV to 100 TeV) gamma rays, planned for operation starting in 2018. It will be an array of dozens of optical telescopes, known as Atmospheric Cherenkov Telescopes (ACTs), of 8 m to 24 m diameter, deployed over an area of more than 1 square km, to detect flashes of Cherenkov light from showers initiated in the Earth's atmosphere by gamma rays. CTA will have improved angular resolution, a wider energy range, larger fields of view and an order of magnitude improvement in sensitivity over current ACT arrays such as H.E.S.S., MAGIC and VERITAS. Several institutions have proposed a research and development program to eventually contribute 36 medium-sized telescopes (9 m to 12 m diameter) to CTA to enhance and optimize its science performance. The program aims to construct a prototype of an innovative, Schwarzschild-Couder telescope (SCT) design that will allow much smaller and less expensive cameras and much larger fields of view than conventional Davies-Cotton designs, and will also include design and testing of camera electronics for the necessary advances in performance, reliability and cost. We report on the progress of the mid-sized SCT development program.

  11. The dual-mirror Small Size Telescope for the Cherenkov Telescope Array

    CERN Document Server

    Pareschi, G; Antonelli, L A; Bastieri, D; Bellassai, G; Belluso, M; Bigongiari, C; Billotta, S; Biondo, B; Bonanno, G; Bonnoli, G; Bruno, P; Bulgarelli, A; Canestrari, R; Capalbi, M; Caraveo, P; Carosi, A; Cascone, E; Catalano, O; Cereda, M; Conconi, P; Conforti, V; Cusumano, G; De Caprio, V; De Luca, A; Di Paola, A; Di Pierro, F; Fantinel, D; Fiorini, M; Fugazza, D; Gardiol, D; Ghigo, M; Gianotti, F; Giarrusso, S; Giro, E; Grillo, A; Impiombato, D; Incorvaia, S; La Barbera, A; La Palombara, N; La Parola, V; La Rosa, G; Lessio, L; Leto, G; Lombardi, S; Lucarelli, F; Maccarone, M C; Malaguti, G; Malaspina, G; Mangano, V; Marano, D; Martinetti, E; Millul, R; Mineo, T; MistÒ, A; Morello, C; Morlino, G; Panzera, M R; Rodeghiero, G; Romano, P; Russo, F; Sacco, B; Sartore, N; Schwarz, J; Segreto, A; Sironi, G; Sottile, G; Stamerra, A; Strazzeri, E; Stringhetti, L; Tagliaferri, G; Testa, V; Timpanaro, M C; Toso, G; Tosti, G; Trifoglio, M; Vallania, P; Vercellone, S; Zitelli, V; Amans, J P; Boisson, C; Costille, C; Dournaux, J L; Dumas, D; Fasola, G; Hervet, O; Huet, J M; Laporte, P; Rulten, C; Sol, H; Zech, A; White, R; Hinton, J; Ross, D; Sykes, J; Ohm, S; Schmoll, J; Chadwick, P; Greenshaw, T; Daniel, M; Cotter, G; Varner, G S; Funk, S; Vandenbroucke, J; Sapozhnikov, L; Buckley, J; Moore, P; Williams, D; Markoff, S; Vink, J; Berge, D; Hidaka, N; Okumura, A; Tajima, H

    2013-01-01

    In this paper, the development of the dual mirror Small Size Telescopes (SST) for the Cherenkov Telescope Array (CTA) is reviewed. Up to 70 SST, with a primary mirror diameter of 4 m, will be produced and installed at the CTA southern site. These will allow investigation of the gamma-ray sky at the highest energies accessible to CTA, in the range from about 1 TeV to 300 TeV. The telescope presented in this contribution is characterized by two major innovations: the use of a dual mirror Schwarzschild-Couder configuration and of an innovative camera using as sensors either multi-anode photomultipliers (MAPM) or silicon photomultipliers (SiPM). The reduced plate-scale of the telescope, achieved with the dual-mirror optics, allows the camera to be compact (40 cm in diameter), and low-cost. The camera, which has about 2000 pixels of size 6x6 mm^2, covers a field of view of 10{\\deg}. The dual mirror telescopes and their cameras are being developed by three consortia, ASTRI (Astrofisica con Specchi a Tecnologia Repl...

  12. Calibration and testing of a prototype of the JEM-EUSO telescope on Telescope Array site

    Directory of Open Access Journals (Sweden)

    Tsunesada Y.

    2013-06-01

    Full Text Available Aim of the TA-EUSO project is to install a prototype of the JEM-EUSO telescope on the Telescope Array site in Black Rock Mesa, Utah and perform observation of natural and artificial ultraviolet light. The detector consists of one Photo Detector Module (PDM, identical to the 137 present on the JEM-EUSO focal surface. Each PDM is composed by 36 Hamamatsu multi-anode photomultipliers (64 channels per tube, for a total of 2304 channels. Front-End readout is performed by 36 ASICS, with trigger and readout tasks performed by two FPGA boards that send the data to a CPU and storage system. Two, 1 meter side square Fresnel lenses provide a field-of-view of 8 degrees. The telescope will be housed in a container located in front of the fluorescence detector of the Telescope Array collaboration, looking in the direction of the ELF (Electron Light Source and CLF (Central Laser Facility. Aim of the project is to calibrate the response function of the EUSO telescope with the TA fluorescence detector in presence of a shower of known intensity and distribution. An initial run of about six months starting from end 2012 is foreseen, during which we expect to observe, triggered by TA electronics, a few cosmic ray events which will be used to further refine the calibration of the EUSO-Ground with TA. Medium term plans include the increase of the number of PDM and therefore the field of view.

  13. Classic Telescopes A Guide to Collecting, Restoring, and Using Telescopes of Yesteryear

    CERN Document Server

    English, Neil

    2013-01-01

    Classic Telescopes explores the exciting world of telescopes past, as well as the possibilities involved in acquiring these instruments. What are classic telescopes? First, the book takes a look at the more traditional telescopes built by the great instrument makers of the eighteenth and nineteenth centuries and the dynastic houses founded by the likes of John Dollond, Alvan Clark, Thomas Cooke & Sons and Carl Zeiss, plus some lesser-known luminaries, including John Brashear, John Calver, and Henry Fitz. Instruments constructed from the 1950s until as recently as the early 1990s are now also considered 'classic.' There is thus a very active market for buying and selling these 'modern' classics. The author examines some of the most talked about instruments on the amateur Internet forums, including the Unitron refractors, the Questar 90, a classic 6-inch reflector, the RV-6; a 3-inch F/15 achromat by Fullerscopes; the time-honored AstroScan Richfield reflector; and many, many more. Classic telescopes are of...

  14. Finite Element Analysis of the 2 m Telescope Assemble

    Institute of Scientific and Technical Information of China (English)

    ZHAO Fu; WANG Ping; ZHAO Yue-jin; ZHANG Li; XIN Hong-bing

    2007-01-01

    To improve the performance of the 2 m telescope,the optimum design is applied to the telescope assemble.Referring to the telescope assemble with the dimetric truss,a group of reasonable sizes of the telescope assemble are found by optimization methods and modal analysis,which will raise the resonant frequency by 4.21%.As a result,the telescope assemble is less likely to resonate.Besides,the dynamic response module in ANSYS is utilized to analyze the modal type,harmonic vibration response and random vibration response of the telescope assemble.By the calculation of ANSYS,finite element analysis (FEA) method proves that the performance of the telescope assemble is mildly enhanced by means of optimum design.

  15. Young Astronomers' Observe with ESO Telescopes

    Science.gov (United States)

    1995-11-01

    Today, forty 16-18 year old students and their teachers are concluding a one-week, educational `working visit' to the ESO Headquarters in Garching (See ESO Press Release 14/95 of 8 November 1995). They are the winners of the Europe-wide contest `Europe Towards the Stars', organised by ESO with the support of the European Union, under the auspices of the Third European Week for Scientific and Technological Culture. From November 14-20, they have worked with professional ESO astronomers in order to get insight into the methods and principles of modern astronomy and astrophysics, as carried out at one of the world's foremost international centres. This included very successful remote observations with the ESO 3.5-m New Technology Telescope (NTT) and the 1.4-m Coude Auxiliary Telescope (CAT) via a satellite link between the ESO Headquarters and the La Silla observatory in Chile, 12,000 kilometres away. After a general introduction to modern astronomy on the first day of the visit, the participants divided into six teams, according to their interests. Some chose to observe distant galaxies, others prefered to have a closer look on binary stars, and one team decided to investigate a star which is thought to be surrounded by a proto-planetary system. Each team was supported by an experienced ESO astronomer. Then followed the observations at the remote consoles during three nights, the first at the NTT and the following at the CAT. Each team had access to the telescope during half a night. Although the work schedule - exactly as in `real' science - was quite hard, especially during the following data reduction and interpretative phase, all teams managed extremely well and in high spirits. The young astronomers' observations were favoured by excellent atmospheric conditions. At the NTT, the seeing was better than 0.5 arcsecond during several hours, an exceptional value that allows very good images to be obtained. All observations represent solid and interesting science, and

  16. Portable triple silicon detector telescope spectrometer for skin dosimetry

    CERN Document Server

    Helt-Hansen, J; Christensen, P

    1999-01-01

    The features of a newly developed portable beta telescope spectrometer are described. The detector probe uses three silicon detectors with the thickness: 50 mu m/150 mu m/7000 mu m covered by a 2 mu m thick titanium window. Rejection of photon contributions from mixed beta/photon exposures is achieved by coincidence requirements between the detector signals. The silicon detectors, together with cooling aggregate, bias supplies, preamplifiers and charge generation for calibration are contained in a handy detector probe. Through a 3- or 10-m cable the detector unit is connected to a compact, portable processing unit including a laptop computer executing control, monitor, histogram and display tasks. The use of digital signal processing at an early stage of the signal chain has facilitated the achievement of a compact, low-weight device. 256 channels are available for each of the three detectors. The LabVIEW sup T sup M software distributed by National Instruments was used for all program developments for the sp...

  17. Segmented glass optics for next generation X-ray telescopes .

    Science.gov (United States)

    Proserpio, L.; Basso, S.; Civitani, M.; Citterio, O.; Conconi, P.; Ghigo, M.; Pareschi, G.; Salmaso, B.; Spiga, D.; Tagliaferri, G.

    The realization of X-Ray Optical Units, based on the use of slumped thin glass segments to form densely packed modules of mirrors in a Wolter type I optical design, is under investigation since some years at the Astronomical Observatory of Brera (INAF-OAB) in collaboration with the Max Planck institute for Extraterrestrial physics (MPE) and the European Space Agency (ESA). In order to reach the challenging requirements posed by next-generation X-ray telescopes, an innovative assembly approach to align and mount the IXO-like mirror segments has been developed, based on the use of glass reinforcing ribs that connect the plates to each-other. One of the most interesting features of this integration scheme is that it guarantees an active correction for existing figure errors: since the glasses are bonded into the optical unit while kept trough vacuum suction on the integration mould surface, they assume the exact shape of the mould itself. The status of the development is reviewed in this paper, from the basic idea to the latest results obtained with prototypes.

  18. Performance of the EUDET-type beam telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, Hendrik; Spannagel, Simon; Behr, Joerg; Dreyling-Eschweiler, Jan; Eckstein, Doris; Eichhorn, Thomas; Gregor, Ingrid Maria; Muhl, Carsten; Perrey, Hanno; Peschke, Richard; Roloff, Philipp; Rubinskiy, Igor [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Bulgheroni, Antonio [INFN, Milano (Italy); EC - Joint Research Centre, Karlsruhe (Germany); Claus, Gilles; Goffe, Mathieu; Winter, Marc [IPHC, Strasbourg (France); Corrin, Emlyn; Haas, Daniel [University of Geneva, DPNC, Geneva (Switzerland); Cussans, David [University of Bristol, Bristol (United Kingdom)

    2016-12-15

    Test beam measurements at the test beam facilities of DESY have been conducted to characterise the performance of the EUDET-type beam telescopes originally developed within the EUDET project. The beam telescopes are equipped with six sensor planes using MIMOSA 26 monolithic active pixel devices. A programmable Trigger Logic Unit provides trigger logic and time stamp information on particle passage. Both data acquisition framework and offline reconstruction software packages are available. User devices are easily integrable into the data acquisition framework via predefined interfaces. The biased residual distribution is studied as a function of the beam energy, plane spacing and sensor threshold. Its standard deviation at the two centre pixel planes using all six planes for tracking in a 6 GeV electron/positron-beam is measured to be (2.88 ± 0.08) μm. Iterative track fits using the formalism of General Broken Lines are performed to estimate the intrinsic resolution of the individual pixel planes. The mean intrinsic resolution over the six sensors used is found to be (3.24 ± 0.09) μm. With a 5 GeV electron/positron beam, the track resolution halfway between the two inner pixel planes using an equidistant plane spacing of 20 mm is estimated to (1.83 ± 0.03) μm assuming the measured intrinsic resolution. Towards lower beam energies the track resolution deteriorates due to increasing multiple scattering. Threshold studies show an optimal working point of the MIMOSA 26 sensors at a sensor threshold of between five and six times their RMS noise. Measurements at different plane spacings are used to calibrate the amount of multiple scattering in the material traversed and allow for corrections to the predicted angular scattering for electron beams. (orig.)

  19. Performance of the EUDET-type beam telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, H.; Spannagel, S.; Behr, J. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); and others

    2016-05-15

    Test beam measurements at the test beam facilities of DESY have been conducted to characterise the performance of the EUDET-type beam telescopes originally developed within the EUDET project. The beam telescopes are equipped with six sensor planes using MIMOSA26 monolithic active pixel devices. A programmable Trigger Logic Unit provides trigger logic and time stamp information on particle passage. Both data acquisition framework and offline reconstruction software packages are available. User devices are easily integrable into the data acquisition framework via predefined interfaces. The biased residual distribution is studied as a function of the beam energy, plane spacing and sensor threshold. Its standard deviation at the two centre pixel planes using all six planes for tracking in a 6 GeV electron/positron-beam is measured to be (2.88±0.08) μm. Iterative track fits using the formalism of General Broken Lines are performed to estimate the intrinsic resolution of the individual pixel planes. The mean intrinsic resolution over the six sensors used is found to be (3.24±0.09) μm. With a 5 GeV electron/positron beam, the track resolution halfway between the two inner pixel planes using an equidistant plane spacing of 20 mm is estimated to (1.83±0.03) μm assuming the measured intrinsic resolution. Towards lower beam energies the track resolution deteriorates due to increasing multiple scattering. Threshold studies show an optimal working point of the MIMOSA26 sensors at a sensor threshold of between five and six times their RMS noise. Measurements at different plane spacings are used to calibrate the amount of multiple scattering in the material traversed and allow for corrections to the predicted angular scattering for electron beams.

  20. THE ATACAMA COSMOLOGY TELESCOPE: DATA CHARACTERIZATION AND MAPMAKING

    Energy Technology Data Exchange (ETDEWEB)

    Duenner, Rolando; Aguirre, Paula; Barrientos, L. Felipe [Departamento de Astronomia y Astrofisica, Facultad de Fisica, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago 22 (Chile); Hasselfield, Matthew; Amiri, Mandana; Battistelli, Elia S.; Burger, Bryce [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z4 (Canada); Marriage, Tobias A.; Acquaviva, Viviana; Das, Sudeep [Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States); Sievers, Jon; Appel, John William [Joseph Henry Laboratories of Physics, Jadwin Hall, Princeton University, Princeton, NJ 08544 (United States); Addison, Graeme E.; Calabrese, Erminia [Department of Astrophysics, Oxford University, Oxford OX1 3RH (United Kingdom); Ade, Peter A. R. [School of Physics and Astronomy, Cardiff University, The Parade, Cardiff CF24 3AA (United Kingdom); Bond, J. Richard [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON M5S 3H8 (Canada); Brown, Ben [Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Chervenak, Jay [Code 553/665, NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Devlin, Mark J.; Dicker, Simon R. [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); and others

    2013-01-01

    We present a description of the data reduction and mapmaking pipeline used for the 2008 observing season of the Atacama Cosmology Telescope (ACT). The data presented here at 148 GHz represent 12% of the 90 TB collected by ACT from 2007 to 2010. In 2008 we observed for 136 days, producing a total of 1423 hr of data (11 TB for the 148 GHz band only), with a daily average of 10.5 hr of observation. From these, 1085 hr were devoted to an 850 deg{sup 2} stripe (11.2 hr by 9. Degree-Sign 1) centered on a declination of -52. Degree-Sign 7, while 175 hr were devoted to a 280 deg{sup 2} stripe (4.5 hr by 4. Degree-Sign 8) centered at the celestial equator. The remaining 163 hr correspond to calibration runs. We discuss sources of statistical and systematic noise, calibration, telescope pointing, and data selection. For the 148 GHz band, out of 1260 survey hours and 1024 detectors in the array, 816 hr and 593 effective detectors remain after data selection, yielding a 38% survey efficiency. The total sensitivity in 2008, determined from the noise level between 5 Hz and 20 Hz in the time-ordered data stream (TOD), is 32 {mu}K{radical}s in cosmic microwave background units. Atmospheric brightness fluctuations constitute the main contaminant in the data and dominate the detector noise covariance at low frequencies in the TOD. The maps were made by solving the least-squares problem using the Preconditioned Conjugate Gradient method, incorporating the details of the detector and noise correlations. Simulations, as well as cross-correlations with Wilkinson Microwave Anisotropy Probe sky maps on large angular scales, reveal that our maps are unbiased at multipoles l > 300. This paper accompanies the public release of the 148 GHz southern stripe maps from 2008. The techniques described here will be applied to future maps and data releases.

  1. Using Internet-Based Robotic Telescopes to Engage Non-Science Majors in Astronomical Observation

    Science.gov (United States)

    Berryhill, K. J.; Coble, K.; Slater, T. F.; McLin, K. M.; Cominsky, L. R.

    2013-12-01

    Responding to national science education reform documents calling for students to have more opportunities for authentic research experiences, several national projects have developed online telescope networks to provide students with Internet-access to research grade telescopes. The nature of astronomical observation (e.g., remote sites, expensive equipment, and odd hours) has been a barrier in the past. Internet-based robotic telescopes allow scientists to conduct observing sessions on research-grade telescopes half a world away. The same technology can now be harnessed by STEM educators to engage students and reinforce what is being taught in the classroom, as seen in some early research in elementary schools (McKinnon and Mainwaring 2000 and McKinnon and Geissinger 2002), middle/high schools (Sadler et al. 2001, 2007 and Gehret et al. 2005) and undergraduate programs (e.g., McLin et al. 2009). This project looks at the educational value of using Internet-based robotic telescopes in a general education introductory astronomy course at the undergraduate level. Students at a minority-serving institution in the midwestern United States conducted observational programs using the Global Telescope Network (GTN). The project consisted of the use of planetarium software to determine object visibility, observing proposals (with abstract, background, goals, and dissemination sections), peer review (including written reviews and panel discussion according to NSF intellectual merit and broader impacts criteria), and classroom presentations showing the results of the observation. The GTN is a network of small telescopes funded by the Fermi mission to support the science of high energy astrophysics. It is managed by the NASA E/PO Group at Sonoma State University and is controlled using SkyNet. Data includes course artifacts (proposals, reviews, panel summaries, presentations, and student reflections) for six semesters plus student interviews. Using a grounded theory approach

  2. An early lunar-based telescope - The Lunar Transit Telescope (LTT)

    Science.gov (United States)

    Mcgraw, John T.

    1990-01-01

    The first telescope accompanying return to the moon, a simple but elegant two meter class instrument capable of producing an extraordinary survey of the universe is proposed. This telescope produces a deep image of the sky obtained simultaneously in several broad bandpasses in the wavelength range from about 0.1 to 2 microns, with diffraction limited imaging in the infrared and approximately 0.1 arcsec resolution at shorter wavelengths. In an 18.6 year mission, the survey would include approximately 2 percent of the sky with multiple observations of all the surveyed area. This survey is accomplished with a telescope which has no moving parts and requires no continuing support beyond initial deployment.

  3. James Webb Space Telescope Optical Telescope Element Integrated Science Instrument Module (OTIS) Status

    Science.gov (United States)

    Feinberg, Lee; Voyton, Mark; Lander, Julie; Keski-Kuha, Ritva; Matthews, Gary

    2016-01-01

    The James Webb Space Telescope Optical Telescope Element (OTE) and Integrated ScienceInstrument Module (ISIM)are integrated together to form the OTIS. Once integrated, the OTIS undergoes primary mirrorcenter of curvatureoptical tests, electrical and operational tests, acoustics and vibration testing at the Goddard SpaceFlight Center beforebeing shipped to the Johnson Space Center for cryogenic optical testing of the OTIS. In preparationfor the cryogenicoptical testing, the JWST project has built a Pathfinder telescope and has completed two OpticalGround SystemEquipment (OGSE) cryogenic optical tests with the Pathfinder. In this paper, we will summarize opticaltest results todate and status the final Pathfinder test and the OTIS integration and environmental test preparations

  4. James Webb Space Telescope Optical Telescope Element/Integrated Science Instrument Module (OTIS) Status

    Science.gov (United States)

    Feinberg, Lee; Voyton, Mark; Lander, Juli; Keski-Kuha, Ritva; Matthews, Gary

    2016-01-01

    The James Webb Space Telescope Optical Telescope Element (OTE) and Integrated Science Instrument Module (ISIM) are integrated together to form the OTIS. Once integrated, the OTIS undergoes primary mirror center of curvature optical tests, electrical and operational tests, acoustics and vibration testing at the Goddard Space Flight Center before being shipped to the Johnson Space Center for cryogenic optical testing of the OTIS. In preparation for the cryogenic optical testing, the JWST project has built a Pathfinder telescope and has completed two Optical Ground System Equipment (OGSE) cryogenic optical tests with the Pathfinder. In this paper, we will summarize optical test results to date and status the final Pathfinder test and the OTIS integration and environmental test preparations

  5. Actuator Development at IAAT for the Cherenkov Telescope Array Medium Size Telescopes

    CERN Document Server

    Diebold, S; Pühlhofer, G; Renner, S; Santangelo, A; Schanz, T; Tenzer, C

    2016-01-01

    The Cherenkov Telescope Array (CTA) will be the future observatory for TeV gamma-ray astronomy. In order to increase the sensitivity and to extend the energy coverage beyond the capabilities of current facilities, its design concept features telescopes of three different size classes. Based on the experience from H.E.S.S. phase II, the Institute for Astronomy and Astrophysics T\\"ubingen (IAAT) develops actuators for the mirror control system of the CTA Medium Size Telescopes (MSTs). The goals of this effort are durability, high precision, and mechanical stability under all environmental conditions. Up to now, several revisions were developed and the corresponding prototypes were extensively tested. In this contribution our latest design revision proposed for the CTA MSTs are presented.

  6. A Micromegas-based telescope for muon tomography: The WatTo experiment

    Science.gov (United States)

    Bouteille, S.; Attié, D.; Baron, P.; Calvet, D.; Magnier, P.; Mandjavidze, I.; Procureur, S.; Riallot, M.; Winkler, M.

    2016-10-01

    This paper reports about the first Micromegas-based telescope built for applications in muon tomography. The telescope consists of four, 50×50 cm2 resistive multiplexed Micromegas with a 2D layout and a self-triggering electronics based on the Dream chip. Thanks to the multiplexing, the four detectors were readout with a single Front-End Unit. The high voltages were provided by a dedicated card using low consumption CAEN miniaturized modules. A nano-PC (Hummingboard) ensured the HV control and monitoring coupled with a temperature feedback as well as the data acquisition and storage. The overall consumption of the instrument yielded 30 W only, i.e. the equivalent of a standard bulb. The telescope was operated outside during 3.5 months to image the water tower of the CEA-Saclay research center, including a 1.5-month campaign with solar panels. The development of autonomous, low consumption muon telescopes with unprecedented accuracy opens new applications in imaging as well as in the field of muon metrology.

  7. First results of the Test-Bed Telescopes (TBT) project: Cebreros telescope commissioning

    Science.gov (United States)

    Ocaña, Francisco; Ibarra, Aitor; Racero, Elena; Montero, Ángel; Doubek, Jirí; Ruiz, Vicente

    2016-07-01

    The TBT project is being developed under ESA's General Studies and Technology Programme (GSTP), and shall implement a test-bed for the validation of an autonomous optical observing system in a realistic scenario within the Space Situational Awareness (SSA) programme of the European Space Agency (ESA). The goal of the project is to provide two fully robotic telescopes, which will serve as prototypes for development of a future network. The system consists of two telescopes, one in Spain and the second one in the Southern Hemisphere. The telescope is a fast astrograph with a large Field of View (FoV) of 2.5 x 2.5 square-degrees and a plate scale of 2.2 arcsec/pixel. The tube is mounted on a fast direct-drive mount moving with speed up to 20 degrees per second. The focal plane hosts a 2-port 4K x 4K back-illuminated CCD with readout speeds up to 1MHz per port. All these characteristics ensure good survey performance for transients and fast moving objects. Detection software and hardware are optimised for the detection of NEOs and objects in high Earth orbits (objects moving from 0.1-40 arcsec/second). Nominal exposures are in the range from 2 to 30 seconds, depending on the observational strategy. Part of the validation scenario involves the scheduling concept integrated in the robotic operations for both sensors. Every night it takes all the input needed and prepares a schedule following predefined rules allocating tasks for the telescopes. Telescopes are managed by RTS2 control software, that performs the real-time scheduling of the observation and manages all the devices at the observatory.1 At the end of the night the observing systems report astrometric positions and photometry of the objects detected. The first telescope was installed in Cebreros Satellite Tracking Station in mid-2015. It is currently in the commissioning phase and we present here the first results of the telescope. We evaluate the site characteristics and the performance of the TBT Cebreros

  8. Asteroid observations with the Hubble Space Telescope and the Space Infrared Telescope Facility

    Science.gov (United States)

    Zellner, B.; Wells, Eddie N.; Chapman, Clark R.; Cruikshank, D. P.

    1989-01-01

    The ways that the asteroids can be studied with the Hubble Space Telescope (HST) and the Space Infrared Telescope Facility (SIRTF) are examined. Spectrophotometry of asteroids and the study of asteroid surfaces, shape, spins, configuration, normal reflectance, and limb darkening of asteroids using the HST are addressed along with the detection of asteroid satellites and the discovery of small asteroids using the HST. The relation of the HST to its ground system is described, as are the spectrophotometric instruments of the HST. Imaging with the HST using the Faint Object Camera and the Wide Field and Planetary Camera is examined. Finally, the SIRTF observatory, instrumentation, and capabilities for solar system science are discussed.

  9. Performance of the MAGIC telescopes under moonlight

    Science.gov (United States)

    Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Arcaro, C.; Babić, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Berti, A.; Bhattacharyya, W.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Carosi, R.; Carosi, A.; Chatterjee, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Cumani, P.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Oña Wilhelmi, E.; Di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Engelkemeier, M.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Gaug, M.; Giammaria, P.; Godinović, N.; Gora, D.; Griffiths, S.; Guberman, D.; Hadasch, D.; Hahn, A.; Hassan, T.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Hughes, G.; Ishio, K.; Konno, Y.; Kubo, H.; Kushida, J.; Kuveždić, D.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; Maggio, C.; Majumdar, P.; Makariev, M.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Minev, M.; Mirzoyan, R.; Moralejo, A.; Moreno, V.; Moretti, E.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Ninci, D.; Nishijima, K.; Noda, K.; Nogués, L.; Paiano, S.; Palacio, J.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Pedaletti, G.; Peresano, M.; Perri, L.; Persic, M.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Garcia, J. R.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Rugliancich, A.; Saito, T.; Satalecka, K.; Schroeder, S.; Schweizer, T.; Sillanpää, A.; Sitarek, J.; Šnidarić, I.; Sobczynska, D.; Stamerra, A.; Strzys, M.; Surić, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Torres, D. F.; Torres-Albà, N.; Treves, A.; Vanzo, G.; Vazquez Acosta, M.; Vovk, I.; Ward, J. E.; Will, M.; Zarić, D.

    2017-09-01

    MAGIC, a system of two imaging atmospheric Cherenkov telescopes, achieves its best performance under dark conditions, i.e. in absence of moonlight or twilight. Since operating the telescopes only during dark time would severely limit the duty cycle, observations are also performed when the Moon is present in the sky. Here we develop a dedicated Moon-adapted analysis to characterize the performance of MAGIC under moonlight. We evaluate energy threshold, angular resolution and sensitivity of MAGIC under different background light levels, based on Crab Nebula observations and tuned Monte Carlo simulations. This study includes observations taken under non-standard hardware configurations, such as reducing the camera photomultiplier tubes gain by a factor ∼1.7 (reduced HV settings) with respect to standard settings (nominal HV) or using UV-pass filters to strongly reduce the amount of moonlight reaching the cameras of the telescopes. The Crab Nebula spectrum is correctly reconstructed in all the studied illumination levels, that reach up to 30 times brighter than under dark conditions. The main effect of moonlight is an increase in the analysis energy threshold and in the systematic uncertainties on the flux normalization. The sensitivity degradation is constrained to be below 10%, within 15-30% and between 60 and 80% for nominal HV, reduced HV and UV-pass filter observations, respectively. No worsening of the angular resolution was found. Thanks to observations during moonlight, the maximal duty cycle of MAGIC can be increased from ∼18%, under dark nights only, to up to ∼40% in total with only moderate performance degradation.

  10. Fermi Large Area Telescope Second Source Catalog

    Science.gov (United States)

    Nolan, P. L.; Abdo, A. A.; Ackermann, M.; Ajello, M.; Allafort, A.; Antolini, E.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Belfiore, A.; Bellazzini, R.; Berenji, B.; Bignami, G. F.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Bonnell, J.; Borgland, A. W.; Bottacini, E.; Bouvier, A.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Burnett, T. H.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Campana, R.; Cañadas, B.; Cannon, A.; Caraveo, P. A.; Casandjian, J. M.; Cavazzuti, E.; Ceccanti, M.; Cecchi, C.; Çelik, Ö.; Charles, E.; Chekhtman, A.; Cheung, C. C.; Chiang, J.; Chipaux, R.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Cominsky, L. R.; Conrad, J.; Corbet, R.; Cutini, S.; D'Ammando, F.; Davis, D. S.; de Angelis, A.; DeCesar, M. E.; DeKlotz, M.; De Luca, A.; den Hartog, P. R.; de Palma, F.; Dermer, C. D.; Digel, S. W.; Silva, E. do Couto e.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Dumora, D.; Enoto, T.; Escande, L.; Fabiani, D.; Falletti, L.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Focke, W. B.; Fortin, P.; Frailis, M.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giebels, B.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grondin, M.-H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Gustafsson, M.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; Hayashida, M.; Hays, E.; Hill, A. B.; Horan, D.; Hou, X.; Hughes, R. E.; Iafrate, G.; Itoh, R.; Jóhannesson, G.; Johnson, R. P.; Johnson, T. E.; Johnson, A. S.; Johnson, T. J.; Kamae, T.; Katagiri, H.; Kataoka, J.; Katsuta, J.; Kawai, N.; Kerr, M.; Knödlseder, J.; Kocevski, D.; Kuss, M.; Lande, J.; Landriu, D.; Latronico, L.; Lemoine-Goumard, M.; Lionetto, A. M.; Llena Garde, M.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Madejski, G. M.; Marelli, M.; Massaro, E.; Mazziotta, M. N.; McConville, W.; McEnery, J. E.; Mehault, J.; Michelson, P. F.; Minuti, M.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Mongelli, M.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakamori, T.; Naumann-Godo, M.; Norris, J. P.; Nuss, E.; Nymark, T.; Ohno, M.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orlando, E.; Ormes, J. F.; Ozaki, M.; Paneque, D.; Panetta, J. H.; Parent, D.; Perkins, J. S.; Pesce-Rollins, M.; Pierbattista, M.; Pinchera, M.; Piron, F.; Pivato, G.; Porter, T. A.; Racusin, J. L.; Rainò, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Reposeur, T.; Ritz, S.; Rochester, L. S.; Romani, R. W.; Roth, M.; Rousseau, R.; Ryde, F.; Sadrozinski, H. F.-W.; Salvetti, D.; Sanchez, D. A.; Saz Parkinson, P. M.; Sbarra, C.; Scargle, J. D.; Schalk, T. L.; Sgrò, C.; Shaw, M. S.; Shrader, C.; Siskind, E. J.; Smith, D. A.; Spandre, G.; Spinelli, P.; Stephens, T. E.; Strickman, M. S.; Suson, D. J.; Tajima, H.; Takahashi, H.; Takahashi, T.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Tibolla, O.; Tinebra, F.; Tinivella, M.; Torres, D. F.; Tosti, G.; Troja, E.; Uchiyama, Y.; Vandenbroucke, J.; Van Etten, A.; Van Klaveren, B.; Vasileiou, V.; Vianello, G.; Vitale, V.; Waite, A. P.; Wallace, E.; Wang, P.; Werner, M.; Winer, B. L.; Wood, D. L.; Wood, K. S.; Wood, M.; Yang, Z.; Zimmer, S.

    2012-04-01

    We present the second catalog of high-energy γ-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), derived from data taken during the first 24 months of the science phase of the mission, which began on 2008 August 4. Source detection is based on the average flux over the 24 month period. The second Fermi-LAT catalog (2FGL) includes source location regions, defined in terms of elliptical fits to the 95% confidence regions and spectral fits in terms of power-law, exponentially cutoff power-law, or log-normal forms. Also included are flux measurements in five energy bands and light curves on monthly intervals for each source. Twelve sources in the catalog are modeled as spatially extended. We provide a detailed comparison of the results from this catalog with those from the first Fermi-LAT catalog (1FGL). Although the diffuse Galactic and isotropic models used in the 2FGL analysis are improved compared to the 1FGL catalog, we attach caution flags to 162 of the sources to indicate possible confusion with residual imperfections in the diffuse model. The 2FGL catalog contains 1873 sources detected and characterized in the 100 MeV to 100 GeV range of which we consider 127 as being firmly identified and 1171 as being reliably associated with counterparts of known or likely γ-ray-producing source classes. We dedicate this paper to the memory of our colleague Patrick Nolan, who died on 2011 November 6. His career spanned much of the history of high-energy astronomy from space and his work on the Large Area Telescope (LAT) began nearly 20 years ago when it was just a concept. Pat was a central member in the operation of the LAT collaboration and he is greatly missed.

  11. Evolution of operations for the Survey Telescope at Paranal

    Science.gov (United States)

    Romero, Cristian M.; Mieske, Steffen; Brillant, Stéphane; Pino, Andres; Cerda, Susana; Reyes, Claudia; La Fuente, Carlos

    2016-07-01

    Since 2009, operations began at the Survey Telescopes at Paranal Observatory. The surveys aimed to observe using a large field of view targeting much fainter sources and covering wide areas of sky quickly. The first to enter operations was VISTA (Visible and Infrared Survey Telescope for Astronomy) and then the VST Telescope (VLT Survey Telescope). The survey telescopes introduced a change into the operational model of the time. The observations were wholly conducted by the telescope and instrument operator without the aid of a support astronomer. This prompted the gradual and steady improvement of tools for the operation of the observatory both generally and in particular for the Survey Telescopes. Examples of these enhancements include control systems for image quality, selection of OBs, logging of evening activities, among others. However, the new generation instruments at the Very Large Telescope (VLT) posed a new challenge to the observatory from a scientific and operational point of view. As these new systems were more demanding and complex, they would be more complicated to operate and require additional support. Hence, the focus of this study is to explore the possible development and optimization of the operations of the Survey telescopes, which would give greater operational flexibility in regards to the new generation instruments. Moreover, we aim to evaluate the feasibility of redistributing of telescope operators during periods of increased demand from other VLT systems.

  12. Extendable retractable telescopic mast for deployable structures

    Science.gov (United States)

    Schmid, M.; Aguirre, M.

    1986-01-01

    The Extendable and Retractable Mast (ERM) which is presently developed by Dornier in the frame of an ESA-contract, will be used to deploy and retract large foldable structures. The design is based on a telescopic carbon-fiber structure with high stiffness, strength and pointing accuracy. To verify the chosen design, a breadboard model of an ERM was built and tested under thermal vacuum (TV)-conditions. It is planned as a follow-on development to manufacture and test an Engineering Model Mast. The Engineering Model will be used to establish the basis for an ERM-family covering a wide range of requirements.

  13. Predictive Thermal Control Technology for Stable Telescope

    Science.gov (United States)

    Stahl, H. Philip

    Predictive Thermal Control (PTC) project is a multiyear effort to develop, demonstrate, mature towards TRL6, and assess the utility of model based Predictive Thermal Control technology to enable a thermally stable telescope. PTC demonstrates technology maturation by model validation and characterization testing of traceable components in a relevant environment. PTC's efforts are conducted in consultation with the Cosmic Origins Office and NASA Program Analysis Groups. To mature Thermally Stable Telescope technology, PTC has three objectives: • Validate models that predict thermal optical performance of real mirrors and structure based on their designs and constituent material properties, i.e. coefficient of thermal expansion (CTE) distribution, thermal conductivity, thermal mass, etc. • Derive thermal system stability specifications from wavefront stability requirements. • Demonstrate utility of Predictive Thermal Control for achieving thermal stability. To achieve these objectives, PTC has five quantifiable milestones: 1. Develop a high-fidelity model of the AMTD-2 1.5 meter ULE® mirror, including 3D CTE distribution and reflective optical coating, that predicts its optical performance response to steady-state and dynamic thermal gradients under bang/bang and proportional thermal control. 2. Derive specifications for thermal control system as a function of wavefront stability. 3. Design and build a predictive Thermal Control System for a 1.5 meter ULE® mirror using new and existing commercial-off-the-shelf components that sense temperature changes at the 1mK level and actively controls the mirrors thermal environment at the 20mK level. 4. Validate the model by testing a 1.5-m class ULE® mirror in a relevant thermal vacuum environment in the MSFC X-ray and Cryogenic Facility (XRCF) test facility. 5. Use validated model to perform trade studies to optimize thermo-optical performance as a function of mirror design, material selection, mass, etc. PTC advances

  14. Time Calibration of the ANTARES Neutrino Telescope

    CERN Document Server

    Aguilar, J A; Albert, A; André, M; Anghinolfi, M; Anton, G; Anvar, S; Ardid, M; Jesus, A C Assis; Astraatmadja, T; Aubert, J J; Auer, R; Baret, B; Basa, S; Bazzotti, M; Bertin, V; Biagi, S; Bigongiari, C; Bou-Cabo, M; Bouwhuis, M C; Brown, A M; Brunner, J; Busto, J; Camarena, F; Capone, A; Carloganu, C; Carminati, G; Carr, J; Cecchini, S; Charvis, Ph; Chiarusi, T; Circella, M; Costantini, H; Cottini, N; Coyle, P; Curtil, C; Decowski, M P; Dekeyser, I; Deschamps, A; Distefano, C; Donzaud, C; Dornic, D; Drouhin, D; Eberl, T; Emanuele, U; Ernenwein, J P; Escoffier, S; Fehr, F; Flaminio, V; Fritsch, U; Fuda, J L; Galata, S; Gay, P; Giacomelli, G; Gómez-González, J P; Graf, K; Guillard, G; Halladjian, G; Hallewell, G; van Haren, H; Heijboer, A J; Hello, Y; Hernández-Rey, J J; Herold, B; Hössl, J; Hsu, C C; de Jong, M; Kadler, M; Kalantar-Nayestanaki, N; Kalekin, O; Kappes, A; Katz, U; Kooijman, P; Kopper, C; Kouchner, A; Kulikovskiy, V; Lahmann, R; Lamare, P; Larosa, G; Lefèvre, D; Lim, G; Presti, D Lo; Loehner, H; Loucatos, S; Lucarelli, F; Mangano, S; Marcelin, M; Margiotta, A; Martinez-Mora, J A; Mazure, A; Montaruli, T; Morganti, M; Moscoso, L; Motz, H; Naumann, C; Neff, M; Palioselitis, D; Pavalas, G E; Payre, P; Petrovic, J; Piattelli, P; Picot-Clemente, N; Picq, C; Popa, V; Pradier, T; Presani, E; Racca, C; Reed, C; Riccobene, G; Richardt, C; Rujoiu, M; Russo, G V; Salesa, F; Sapienza, P; Schöck, F; Schuller, J P; Shanidze, R; Simeone, F; Spies, A; Spurio, M; Steijger, J J M; Stolarczyk, Th; Taiuti, M; Tamburini, C; Tasca, L; Toscano, S; Vallage, B; Van Elewyck, V; Vannoni, G; Vecchi, M; Vernin, P; Wijnker, G; de Wolf, E; Yepes, H; Zaborov, D; Zornoza, J D; Zúñiga, J

    2010-01-01

    The ANTARES deep-sea neutrino telescope comprises a three-dimensional array of photomultipliers to detect the Cherenkov light induced by upgoing relativistic charged particles originating from neutrino interactions in the vicinity of the detector. The large scattering length of light in the deep sea facilitates an angular resolution of a few tenths of a degree for neutrino energies exceeding 10 TeV. In order to achieve this optimal performance, the time calibration procedures should ensure a relative time calibration between the photomultipliers at the level of about 1ns. The methods developed to attain this level of precision are described.

  15. Time calibration of the ANTARES neutrino telescope

    Science.gov (United States)

    ANTARES Collaboration; Aguilar, J. A.; Al Samarai, I.; Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Assis Jesus, A. C.; Astraatmadja, T.; Aubert, J. J.; Auer, R.; Baret, B.; Basa, S.; Bazzotti, M.; Bertin, V.; Biagi, S.; Bigongiari, C.; Bou-Cabo, M.; Bouwhuis, M. C.; Brown, A. M.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Cârloganu, C.; Carminati, G.; Carr, J.; Cecchini, S.; Charvis, Ph.; Chiarusi, T.; Circella, M.; Costantini, H.; Cottini, N.; Coyle, P.; Curtil, C.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; Emanuele, U.; Ernenwein, J. P.; Escoffier, S.; Fehr, F.; Flaminio, V.; Fritsch, U.; Fuda, J. L.; Galata, S.; Gay, P.; Giacomelli, G.; Gómez-González, J. P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Herold, B.; Hößl, J.; Hsu, C. C.; de Jong, M.; Kadler, M.; Kalantar-Nayestanaki, N.; Kalekin, O.; Kappes, A.; Katz, U.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kulikovskiy, V.; Lahmann, R.; Lamare, P.; Larosa, G.; Lefèvre, D.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Lucarelli, F.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Mazure, A.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Naumann, C.; Neff, M.; Palioselitis, D.; Păvălaş, G. E.; Payre, P.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Picq, C.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Reed, C.; Riccobene, G.; Richardt, C.; Rujoiu, M.; Russo, G. V.; Salesa, F.; Sapienzap, P.; Schöck, F.; Schuller, J. P.; Shanidze, R.; Simeone, F.; Spies, A.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Taiuti, M.; Tamburini, C.; Tasca, L.; Toscano, S.; Vallage, B.; van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Wijnker, G.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zúñiga, J.; ANTARES Collaboration

    2011-02-01

    The ANTARES deep-sea neutrino telescope comprises a three-dimensional array of photomultipliers to detect the Cherenkov light induced by upgoing relativistic charged particles originating from neutrino interactions in the vicinity of the detector. The large scattering length of light in the deep sea facilitates an angular resolution of a few tenths of a degree for neutrino energies exceeding 10 TeV. In order to achieve this optimal performance, the time calibration procedures should ensure a relative time calibration between the photomultipliers at the level of ˜1 ns. The methods developed to attain this level of precision are described.

  16. Atmospheric Cherenkov Gamma-ray Telescopes

    CERN Document Server

    Holder, Jamie

    2015-01-01

    The stereoscopic imaging atmospheric Cherenkov technique, developed in the 1980s and 1990s, is now used by a number of existing and planned gamma-ray observatories around the world. It provides the most sensitive view of the very high energy gamma-ray sky (above 30 GeV), coupled with relatively good angular and spectral resolution over a wide field-of-view. This Chapter summarizes the details of the technique, including descriptions of the telescope optical systems and cameras, as well as the most common approaches to data analysis and gamma-ray reconstruction.

  17. Instrumentation for the California Extremely Large Telescope

    Science.gov (United States)

    Taylor, Keith; McLean, Ian S.

    2003-03-01

    The Phase A study for the California Extremely Large Telescope (CELT) Project has recently been completed. As part of this exercise a working group was set-up to evolve instrumentation strategies matched to the scientific case for the CELT facility. We report here on the proposed initial instrument suite which includes not only massively multiplexed seeing-limited multi-object spectroscopy but also on plans for wide-field adaptive optics fed integral-field spectroscopy and imaging at, or approaching, CELT's diffraction limit.

  18. A 25 m Live Optics Telescope

    DEFF Research Database (Denmark)

    Ardeberg, Arne; Andersen, Torben; Owner-Petersen, Mette

    1996-01-01

    dynamic effects and image quality resulting from the 141 segment spots. Automatic segment control at a bandwidth of only 1 Hz gives excellent image quality. We foresee to reach a bandwidth > 50 Hz, securing a system partly adaptive, with effects of atmospheric wave front tilt removed through M4 segment...... tilting at high frequency. Further progress includes optimization of mechanical design and end-to-end simulation model, wind tunnel testing and studies of wavefrontsensor, correlation tracker and instruments. A fully adaptive system is tentatively studied as is coherent operation at IR wavelengths.Key...... words: Very large telescopes - live optics - image quality - wind buffeting - end-to-end simulation model....

  19. Supernova Remnants with Fermi Large Area Telescope

    Directory of Open Access Journals (Sweden)

    Caragiulo M.

    2017-01-01

    Full Text Available The Large Area Telescope (LAT, on-board the Fermi satellite, proved to be, after 8 years of data taking, an excellent instrument to detect and observe Supernova Remnants (SNRs in a range of energies running from few hundred MeV up to few hundred GeV. It provides essential information on physical processes that occur at the source, involving both accelerated leptons and hadrons, in order to understand the mechanisms responsible for the primary Cosmic Ray (CR acceleration. We show the latest results in the observation of Galactic SNRs by Fermi-LAT.

  20. Deployable and retractable telescoping tubular structure development

    Science.gov (United States)

    Thomson, M. W.

    1994-01-01

    A new deployable and retractable telescoping boom capable of high deployed stiffness and strength is described. Deployment and retraction functions are controlled by simple, reliable, and fail-safe latches between the tubular segments. The latch and a BI-STEM (Storable Tubular Extendible Member) actuator work together to eliminate the need for the segments to overlap when deployed. This yields an unusually lightweight boom and compact launch configuration. An aluminum space-flight prototype with three joints displays zero structural deadband, low hysteresis, and high damping. The development approach and difficulties are discussed. Test results provide a joint model for sizing flight booms of any diameter and length.

  1. Telescope stray light: early experience with SOFIA

    Science.gov (United States)

    Waddell, Patrick; Becklin, Eric E.; Hamilton, Ryan T.; Vacca, William D.; Lachenmann, Michael

    2016-09-01

    Effective stray light control is a key requirement for wide dynamic range performance of scientific optical and infrared systems. SOFIA now has over 325 mission flights including extended southern hemisphere deployments; science campaigns using 7 different instrument configurations have been completed. The research observations accomplished on these missions indicate that the telescope and cavity designs are effective at suppressing stray light. Stray light performance impacts, such as optical surface contamination, from cavity environment conditions during mission flight cycles and while on-ground, have proved to be particularly benign. When compared with earlier estimates, far fewer large optics re-coatings are now anticipated, providing greater facility efficiency.

  2. Galileo's Instruments of Credit Telescopes, Images, Secrecy

    CERN Document Server

    Biagioli, Mario

    2006-01-01

    In six short years, Galileo Galilei went from being a somewhat obscure mathematics professor running a student boarding house in Padua to a star in the court of Florence to the recipient of dangerous attention from the Inquisition for his support of Copernicanism. In that brief period, Galileo made a series of astronomical discoveries that reshaped the debate over the physical nature of the heavens: he deeply modified the practices and status of astronomy with the introduction of the telescope and pictorial evidence, proposed a radical reconfiguration of the relationship between theology and a

  3. A new large area monolithic silicon telescope

    CERN Document Server

    Tudisco, S; Cabibbo, M; Cardella, G; De Geronimo, G; Di Pietro, A; Fallica, G; Figuera, P; Musumarra, A; Papa, M; Pappalardo, G S; Rizzo, F; Valvo, G

    1999-01-01

    A new prototype of large area (20x20 mm sup 2) monolithic silicon telescope with an ultrathin DELTA E stage (1 mu m) has been built and tested. A particular mask for the ground electrode has been developed to improve the charge collection reducing the induction between the E and DELTA E stages. A special designed preamplifier has been used for the readout of the signal from the DELTA E stage to overcome the problem of the large input capacitance (40 nF). A rather low energy threshold charge discrimination has been obtained. Small side effects due to the electric field deformation near the ground electrode were observed and quantified.

  4. The X-ray Telescope of CAST

    OpenAIRE

    Kuster, M.; Bräuninger, H.; Cébrian, S.; Davenport, M.; Elefteriadis, C.; Englhauser, J.; Fischer, H.; Franz, J.; Friedrich, P.; R. Hartmann; Heinsius, F.H.; Hoffmann, D.H.H.; Hoffmeister, G.; Joux, J. N.; Kang, D.

    2007-01-01

    The Cern Axion Solar Telescope (CAST) is in operation and taking data since 2003. The main objective of the CAST experiment is to search for a hypothetical pseudoscalar boson, the axion, which might be produced in the core of the sun. The basic physics process CAST is based on is the time inverted Primakoff effect, by which an axion can be converted into a detectable photon in an external electromagnetic field. The resulting X-ray photons are expected to be thermally distributed between 1 and...

  5. QUIJOTE Experiment: status of telescopes and instrumentation

    Science.gov (United States)

    Pérez-de-Taoro, M. R.; Aguiar-González, M.; Cózar-Castellano, J.; Génova-Santos, R.; Gómez-Reñasco, F.; Hoyland, R.; Peláez-Santos, A.; Poidevin, F.; Tramonte, D.; Rebolo-López, R.; Rubiño-Martín, J. A.; Sánchez-de-la-Rosa, V.; Vega-Moreno, A.; Viera-Curbelo, T.; Vignaga, R.; Casas, F. J.; Martinez-Gonzalez, E.; Ortiz, D.; Aja, B.; Artal, E.; Cano-de-Diego, J. L.; de-la-Fuente, L.; Mediavilla, A.; Terán, J. V.; Villa, E.; Harper, S.; McCulloch, M.; Melhuish, S.; Piccirillo, L.; Lasenby, A.

    2016-07-01

    The QUIJOTE Experiment (Q-U-I JOint TEnerife) is a combined operation of two telescopes and three instruments working in the microwave band to measure the polarization of the Cosmic Microwave Background (CMB) from the northern hemisphere, at medium and large angular scales. The experiment is located at the Teide Observatory in Tenerife, one of the seven Canary Islands (Spain). The project is a consortium maintained by several institutions: the Instituto de Astrofísica de Canarias (IAC), the Instituto de Física de Cantabria (IFCA), the Communications Engineering Department (DICOM) at Universidad de Cantabria, and the Universities of Manchester and Cambridge. The consortium is led by the IAC.

  6. The MEGA Advanced Compton Telescope Project

    OpenAIRE

    Bloser, P. F.; Andritschke, R.; Kanbach, G.; Schoenfelder, V.; Schopper, F.; Zoglauer, A.; Collaboration, for the MEGA

    2001-01-01

    The goal of the Medium Energy Gamma-ray Astronomy (MEGA) telescope is to improve sensitivity at medium gamma-ray energies (0.4-50 MeV) by at least an order of magnitude over that of COMPTEL. This will be achieved with a new compact design that allows for a very wide field of view, permitting a sensitive all-sky survey and the monitoring of transient and variable sources. The key science objectives for MEGA include the investigation of cosmic high-energy particle accelerators, studies of nucle...

  7. Observations of microquasars with the MAGIC telescope

    CERN Document Server

    Rico, J; Bordas, P; Bosch-Ramon, V; Cortina, J; Paredes, J M; Ribó, M; Torres, D F; Zanin, R

    2007-01-01

    We report on the results from the observations in very high energy band (VHE, E_gamma > 100GeV) of the black hole X-ray binary (BHXB) Cygnus X-1. The observations were performed with the MAGIC telescope, for a total of 40 hours during 26 nights, spanning the period between June and November 2006. We report on the results of the searches for steady and variable gamma-ray signals, including the first experimental evidence for an intense flare, of duration between 1.5 and 24 hours.

  8. Latest technique makes a sharper telescope

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ The integration testing of 4K×4K Charge Coupled Device (CCD) detection system developed by researchers from the CAS Purple Mountain Observatory in cooperation with overseas coworkers was successfully carried out for the Schmidt telescope at the Xuyi station in east China's Jiangsu Province recently.Preliminary observations have led to exciting results. From the CCD image with an exposure time of 1 sec, 18th magnitude stars are clearly detectable while in the CCD image with an exposure time of 20sec, 21.2th magnitude stars are recognizable.

  9. Muon imaging of volcanoes with Cherenkov telescopes

    Science.gov (United States)

    Carbone, Daniele; Catalano, Osvaldo; Cusumano, Giancarlo; Del Santo, Melania; La Parola, Valentina; La Rosa, Giovanni; Maccarone, Maria Concetta; Mineo, Teresa; Pareschi, Giovanni; Sottile, Giuseppe; Zuccarello, Luciano

    2017-04-01

    The quantitative understanding of the inner structure of a volcano is a key feature to model the processes leading to paroxysmal activity and, hence, to mitigate volcanic hazards. To pursue this aim, different geophysical techniques are utilized, that are sensitive to different properties of the rocks (elastic, electrical, density). In most cases, these techniques do not allow to achieve the spatial resolution needed to characterize the shallowest part of the plumbing system and may require dense measurements in active zones, implying a high level of risk. Volcano imaging through cosmic-ray muons is a promising technique that allows to overcome the above shortcomings. Muons constantly bombard the Earth's surface and can travel through large thicknesses of rock, with an energy loss depending on the amount of crossed matter. By measuring the absorption of muons through a solid body, one can deduce the density distribution inside the target. To date, muon imaging of volcanic structures has been mainly achieved with scintillation detectors. They are sensitive to noise sourced from (i) the accidental coincidence of vertical EM shower particles, (ii) the fake tracks initiated from horizontal high-energy electrons and low-energy muons (not crossing the target) and (iii) the flux of upward going muons. A possible alternative to scintillation detectors is given by Cherenkov telescopes. They exploit the Cherenkov light emitted when charged particles (like muons) travel through a dielectric medium, with velocity higher than the speed of light. Cherenkov detectors are not significantly affected by the above noise sources. Furthermore, contrarily to scintillator-based detectors, Cherenkov telescopes permit a measurement of the energy spectrum of the incident muon flux at the installation site, an issue that is indeed relevant for deducing the density distribution inside the target. In 2014, a prototype Cherenkov telescope was installed at the Astrophysical Observatory of Serra

  10. Telescopic Partial Dentures-Concealed Technology

    Science.gov (United States)

    Bhagat, Tushar Vitthalrao; Walke, Ashwini Nareshchandra

    2015-01-01

    The ideal goal of good dentist is to restore the missing part of oral structure, phonetics, his look and the most important is restored the normal health of the patient, which is hampered due to less or insufficient intake of food. Removable partial denture (RPD) treatment option is considered as a notion, which precludes the inevitability of “floating plastic” in edentulous mouth, that many times fail to fulfill the above essential of the patients. In modern dentistry, though the dental implants or fixed partial denture is the better options, but they have certain limitations. However, overdentures and particularly telescopic denture is the overlooked technology in dentistry that would be a boon for such needy patients. Telescopic denture is especially indicated in the distal edentulous area with minimum two teeth bilaterally present with a good amount of periodontal support. This treatment modality is sort of preventive prosthodontics remedy, which in a conservative manner preserve the remaining teeth and helps in conservation of alveolar bone ultimately. There are two tenets related to this option, one is constant conservation edentulous ridge around the retained tooth and the most important is the endless existence of periodontal sensory action that directs and monitor gnathodynamic task. In this option the primary coping or inner coping are cemented on the prepared tooth, and a similar removable outer or inner telescopic crown placed tightly by using a mechanism of tenso-friction, this is firmly attached to a removable RPD in place without moving or rocking of the prosthesis, which is the common compliant of almost all patients of RPD. Copings are also protecting the abutment from tooth decay and also offers stabilization and maintaining of the outer crown. The outer crown engages the inner coping and gives as an anchor for the remainder of the dentition. This work is the review of telescopic prosthesis which is well supported by the case discussion, and

  11. LOFAR, a new low frequency radio telescope

    CERN Document Server

    Röttgering, H J A

    2003-01-01

    LOFAR, the Low Frequency Array, is a large radio telescope consisting of approximately 100 soccer-field sized antenna stations spread over a region of 400 km in diameter. It will operate at frequencies from ~10 to 240 MHz, with a resolution at 240 MHz of better than an arcsecond. Its superb sensitivity will allow for studies of a broad range of astrophysical topics, including reionisation, transient radio sources and cosmic rays, distant galaxies and AGNs. In this contribution a status rapport of the LOFAR project and an overview of the science case is presented.

  12. Astrobiology with Robotic Telescopes at CAB

    Directory of Open Access Journals (Sweden)

    Luis Cuesta

    2010-01-01

    Full Text Available The key objectives of RTRCAB are the identification of new exoplanets and especially the characterization of the known exoplanets by observing photometric and systematic monitoring of their transits. These telescopes, equipped with advanced technology, optimized control programs, and optical and technical characteristics adequate for this purpose, are ideal to make the observations that are required to carry out these programs. The achievement of these goals is ensured by the existence of three separated geographical stations. In this sense, there are several planned missions that have the same objectives among their scientific goals, like Kepler, CoRoT, GAIA, and PLATO.

  13. Telescope loading: A problem reduction approach

    Science.gov (United States)

    Bresina, John L.

    1994-01-01

    This paper presents a problem reduction approach to telescope loading. To study time-varying celestial behavior, astronomers submit periodic observation campaigns which involve a sequence of observations at a given sampling frequency over months or years. The loader's task is to generate an assignment of observation tasks to each night in the time window such that resource demand does not exceed resource capacity and such that the observations usefully contribute to the campaigns' scientific purposes, in a manner that is fair to all participating astronomers.

  14. Development of telescope control system for the 50cm telescope of UC Observatory Santa Martina

    Science.gov (United States)

    Shen, Tzu-Chiang; Soto, Ruben; Reveco, Johnny; Vanzi, Leonardo; Fernández, Jose M.; Escarate, Pedro; Suc, Vincent

    2012-09-01

    The main telescope of the UC Observatory Santa Martina is a 50cm optical telescope donated by ESO to Pontificia Universidad Catolica de Chile. During the past years the telescope has been refurbished and used as the main facility for testing and validating new instruments under construction by the center of Astro-Engineering UC. As part of this work, the need to develop a more efficient and flexible control system arises. The new distributed control system has been developed on top of Internet Communication Engine (ICE), a framework developed by Zeroc Inc. This framework features a lightweight but powerful and flexible inter-process communication infrastructure and provides binding to classic and modern programming languages, such as, C/C++, java, c#, ruby-rail, objective c, etc. The result of this work shows ICE as a real alternative for CORBA and other de-facto distribute programming framework. Classical control software architecture has been chosen and comprises an observation control system (OCS), the orchestrator of the observation, which controls the telescope control system (TCS), and detector control system (DCS). The real-time control and monitoring system is deployed and running over ARM based single board computers. Other features such as logging and configuration services have been developed as well. Inter-operation with other main astronomical control frameworks are foreseen in order achieve a smooth integration of instruments when they will be integrated in the main observatories in the north of Chile

  15. The Large Area Telescope on the Fermi Gamma-ray Space Telescope Mission

    CERN Document Server

    Atwood, W B

    2009-01-01

    (Abridged) The Large Area Telescope (Fermi/LAT, hereafter LAT), the primary instrument on the Fermi Gamma-ray Space Telescope (Fermi) mission, is an imaging, wide field-of-view, high-energy gamma-ray telescope, covering the energy range from below 20 MeV to more than 300 GeV. This paper describes the LAT, its pre-flight expected performance, and summarizes the key science objectives that will be addressed. On-orbit performance will be presented in detail in a subsequent paper. The LAT is a pair-conversion telescope with a precision tracker and calorimeter, each consisting of a 4x4 array of 16 modules, a segmented anticoincidence detector that covers the tracker array, and a programmable trigger and data acquisition system. Each tracker module has a vertical stack of 18 x,y tracking planes, including two layers (x and y) of single-sided silicon strip detectors and high-Z converter material (tungsten) per tray. Every calorimeter module has 96 CsI(Tl) crystals, arranged in an 8 layer hodoscopic configuration wit...

  16. Care of astronomical telescopes and accessories a manual for the astronomical observer and amateur telescope maker

    CERN Document Server

    Pepin, M Barlow

    2005-01-01

    Commercially-made astronomical telescopes are better and less expensive than ever before, and their optical and mechanical performance can be superb. When a good-quality telescope fails to perform as well as it might, the reason is quite probably that it needs a little care and attention! Here is a complete guide for anyone who wants to understand more than just the basics of astronomical telescopes and accessories, and how to maintain them in the peak of condition. The latest on safely adjusting, cleaning, and maintaining your equipment is combined with thoroughly updated methods from the old masters. Here, too, are details of choosing new and used optics and accessories, along with enhancements you can make to extend their versatility and useful lifetime. This book is for you. Really. Looking after an astronomical telescope isn't only for the experts - although there are some things that only an expert should attempt - and every serious amateur astronomer will find invaluable information here, gleaned from ...

  17. The scaling relationship between telescope cost and aperture size for very large telescopes

    Science.gov (United States)

    van Belle, Gerard T.; Meinel, Aden Baker; Meinel, Marjorie Pettit

    2004-01-01

    Cost data for ground-based telescopes of the last century are analyzed for trends in the relationship between aperture size and cost. We find that for apertures built prior to 1980, costs scaled as aperture size to the 2.8 power, which is consistent with the precious finding of Meinel (1978). After 1980, 'traditional' monolithic mirror telescope costs have scaled as aperture to the 2.5 power. The large multiple mirror telescopes built or in construction during this time period (Keck, LBT, GTC) appear to deviate from this relationship with significant cost savings as a result, although it is unclear what power law such structures follow. We discuss the implications of the current cost-aperture size data on the proposed large telescope projects of the next ten to twenty years. Structures that naturally tend towards the 2.0 power in the cost-aperture relationship will be the favorable choice for future extremely large apertures; out expectation is that space-based structures will ultimately gain economic advantage over ground-based ones.

  18. Designing a Gamma-Ray Telescope on a Budget

    Science.gov (United States)

    Kohler, Susanna

    2017-05-01

    Major space-based observatories are imperative in astronomy, but they take a long time to plan, build, and launch and they arent cheap. A new study examines an interesting compromise: a low-cost, space-based gamma-ray detector that we could use while we wait for the next big observatory to launch.Coverage and sensitivity of past and future missions for the X-ray to gamma-ray energy range (click for a better look!). The only past mission to explore the 1 MeV region was COMPTEL, on board CGRO. e-ASTROGAM is a proposed future space mission that would explore this range. [Lucchetta et al. 2017]A Gap in CoverageIn the last few decades, weve significantly expanded our X-ray and gamma-ray viewof the sky. One part of the electromagnetic spectrum remains poorly explored, however: the approximate transition point between X-rays and gamma rays near 1 MeV.Space-based gamma-ray telescopes have been proposed for the future to better explore this energy range. But these major observatories have costs of around half a billion Euros and will take roughly a decade to build and launch. Is there a way to get eyes on this energy range sooner?Scaling Down with CubeSatA team of scientists led by Giulio Lucchetta (University of Padova and INFN Padova, Italy) has proposed an intriguing solution for the more immediate future: a nano-satellite telescope based on the CubeSat standard.Structure of the proposed gamma-ray detector, in a 2U CubeSat design. [Lucchetta et al. 2017]A CubeSat is a miniaturized satellite design that can be easily deployed in space, either from the International Space Station or by hitching a ride as a secondary payload on a large rocket. The size of a CubeSat is a standardized unit of measurement: a single CubeSat unit, or 1U, is a mere 10x10x10 cm and a maximum of 1.33 kg in weight.The gamma-ray telescope proposed by Lucchetta and collaborators would use a 2U standard for the instrument, so the instrument would be only 10x10x20 cm in size! The design for the

  19. Telescoping Sample Canister Capture Mechanism (TSCCM)

    Science.gov (United States)

    Kong, Kin Yuen; Gorevan, Stephen; Mukherjee, Suparna; Wilson, Jack

    2003-11-01

    Sample return from solar system bodies including planets, moons, comets and asteroids is of high importance within the space science community. A returned sample will allow much more elaborate and detailed analysis not feasible through remote robotic analysis. For this reason, Honeybee Robotics has developed a low-cost reusable, automated on-orbit sample canister capture mechanism. The purpose of the mechanism is to capture a full sample canister and transfer it to a storage cache, sample return spacecraft, or on-orbit laboratory for further scientific study. The current design allows for reliable misalignment-compensated capture for various sample container geometries in any initial orientation. After capture, the sample canister is aligned and presented for transfer. Honeybee has demonstrated the concept through tests of two- and three-dimensional telescopic capture mechanism breadboards. The telescopic capture mechanism design is scalable, minimizes volume and can be made of lightweight material to minmize mass, all of which are critical aspects of spacecraft design.

  20. Thirty Meter Telescope Detailed Science Case: 2015

    Science.gov (United States)

    Skidmore, Warren; TMT International Science Development Teams; Science Advisory Committee, TMT

    2015-12-01

    The TMT Detailed Science Case describes the transformational science that the Thirty Meter Telescope will enable. Planned to begin science operations in 2024, TMT will open up opportunities for revolutionary discoveries in essentially every field of astronomy, astrophysics and cosmology, seeing much fainter objects much more clearly than existing telescopes. Per this capability, TMT's science agenda fills all of space and time, from nearby comets and asteroids, to exoplanets, to the most distant galaxies, and all the way back to the very first sources of light in the universe. More than 150 astronomers from within the TMT partnership and beyond offered input in compiling the new 2015 Detailed Science Case. The contributing astronomers represent the entire TMT partnership, including the California Institute of Technology (Caltech), the Indian Institute of Astrophysics (IIA), the National Astronomical Observatories of the Chinese Academy of Sciences (NAOC), the National Astronomical Observatory of Japan (NAOJ), the University of California, the Association of Canadian Universities for Research in Astronomy (ACURA) and US associate partner, the Association of Universities for Research in Astronomy (AURA). Cover image: artist's rendition of the TMT International Observatory on Mauna Kea opening in the late evening before beginning operations.

  1. Neutral Buoyancy Simulator- NB38 -Space Telescope

    Science.gov (United States)

    1980-01-01

    The Hubble Space Telescope (HST) is a cooperative program of the European Space Agency (ESA) and the National Aeronautical and Space Administration (NASA) to operate a long-lived space-based observatory. It was the flagship mission of NASA's Great Observatories program. The HST program began as an astronomical dream in the 1940s. During the 1970s and 1980s, the HST was finally designed and built becoming operational in the 1990s. The HST was deployed into a low-Earth orbit on April 25, 1990 from the cargo bay of the Space Shuttle Discovery (STS-31). The design of the HST took into consideration its length of service and the necessity of repairs and equipment replacement by making the body modular. In doing so, subsequent shuttle missions could recover the HST, replace faulty or obsolete parts and be re-released. Pictured is MSFC's Neutral Buoyancy Simulator (NBS) that served as the test center for shuttle astronauts training for Hubble related missions. Shown are astronauts Bruce McCandless and Sharnon Lucid being fitted for their space suits prior to entering the NBS to begin training on the space telescope axial scientific instrument changeout.

  2. Radiation length imaging with high resolution telescopes

    CERN Document Server

    Stolzenberg, U; Schwenker, B; Wieduwilt, P; Marinas, C; Lütticke, F

    2016-01-01

    The construction of low mass vertex detectors with a high level of system integration is of great interest for next generation collider experiments. Radiation length images with a sufficient spatial resolution can be used to measure and disentangle complex radiation length $X$/$X_0$ profiles and contribute to the understanding of vertex detector systems. Test beam experiments with multi GeV particle beams and high-resolution tracking telescopes provide an opportunity to obtain precise 2D images of the radiation length of thin planar objects. At the heart of the $X$/$X_0$ imaging is a spatially resolved measurement of the scattering angles of particles traversing the object under study. The main challenges are the alignment of the reference telescope and the calibration of its angular resolution. In order to demonstrate the capabilities of $X$/$X_0$ imaging, a test beam experiment has been conducted. The devices under test were two mechanical prototype modules of the Belle II vertex detector. A data sample of ...

  3. The Solar Electron And Proton Telescope (sept)

    Science.gov (United States)

    Falkner, P.; Johlander, B.; Mueller-Mellin, R.; Sanderson, T.; Habinc, S.

    The Solar Electron and Proton Telescope consists of two dual double-ended mag- net/foil particle telescopes which cleanly separate and measure electrons in the energy range from 20 - 400 keV and protons from 20 - 7000 keV. The instrument utilizes an ASIC-PDFE (Particle Detection Front End), which provides low noise charge sensi- tive pre-amplifier, filters, pulse shaper, 8-bit ADC and anti-coincidence electronics for a single solid-state detector. The counts are accumulated in 256 linear bins on a radia- tion hardened SRAM under control of an FPGA and read out once every minute by the supervising DPU. The FPGA provides the possibility of quasi-logarithmic binning be- fore transferring the data to the main DPU. A simple ramp pulser provides electronic in-flight instrument calibration and testing. The complete instrument with 4 complete channels has a mass of 500 g and consumes 500 mW of power. The maximum count rate is 250 ksamples per second per channel. The instrument is to be flown on the Solar Terrestrial Relations Observatory (STEREO) mission with intended launch in 2005. The talk describes the technical implementation of the instrument.

  4. Virtualizing observation computing infrastructure at Subaru Telescope

    Science.gov (United States)

    Jeschke, Eric; Inagaki, Takeshi; Kackley, Russell; Schubert, Kiaina; Tait, Philip

    2016-08-01

    Subaru Telescope, an 8-meter class optical telescope located in Hawaii, has been using a high-availability commodity cluster as a platform for our Observation Control System (OCS). Until recently, we have followed a tried-and-tested practice of running the system under a native (Linux) OS installation with dedicated attached RAID systems and following a strict cluster deployment model to facilitate failover handling of hardware problems,1.2 Following the apparent benefits of virtualizing (i.e. running in Virtual Machines (VMs)) many of the non- observation critical systems at the base facility, we recently began to explore the idea of migrating other parts of the observatory's computing infrastructure to virtualized systems, including the summit OCS, data analysis systems and even the front ends of various Instrument Control Systems. In this paper we describe our experience with the initial migration of the Observation Control System to virtual machines running on the cluster and using a new generation tool - ansible - to automate installation and deployment. This change has significant impacts for ease of cluster maintenance, upgrades, snapshots/backups, risk-management, availability, performance, cost-savings and energy use. In this paper we discuss some of the trade-offs involved in this virtualization and some of the impacts for the above-mentioned areas, as well as the specific techniques we are using to accomplish the changeover, simplify installation and reduce management complexity.

  5. Simulators, Remote Labs and Robotic Telescopes

    Science.gov (United States)

    Folhas, Alvaro

    2015-04-01

    There is an increasing gap between students of the twenty-first century and the teaching methodology still stuck in the past century. The myriad stimuli that involve our students, immediate consumption of information, and the availability of resources, should cast the teacher in search methodologies that encourage the student to learn. The simulators, virtual laboratories and remote controlled robotic equipment are examples of high didactic potential resources, created by scientific organizations and universities, to be used in education, providing a direct interaction with science and motivating our students to a future career in science. It is up to us to take advantage of that work, and those resources, to light the sparkle in the eyes of our students. In Astronomy Club I've developed with high school students some practical projects in science, using, over the web, the robotic telescopes through which the students are studying and photographing deep sky objects; or the European network of radio telescope, measuring the speed of the arms of our galaxy in our galactic dance, their temperatures showing where it is more likely to form new stars. Students use these tools, engaging in their own knowledge construction, and forego their Friday afternoons without a hurry to go home for the weekend. That's the spirit we want for the school.

  6. Bokeh mirror alignment for Cherenkov telescopes

    Science.gov (United States)

    Ahnen, M. L.; Baack, D.; Balbo, M.; Bergmann, M.; Biland, A.; Blank, M.; Bretz, T.; Bruegge, K. A.; Buss, J.; Domke, M.; Dorner, D.; Einecke, S.; Hempfling, C.; Hildebrand, D.; Hughes, G.; Lustermann, W.; Mannheim, K.; Mueller, S. A.; Neise, D.; Neronov, A.; Noethe, M.; Overkemping, A.-K.; Paravac, A.; Pauss, F.; Rhode, W.; Shukla, A.; Temme, F.; Thaele, J.; Toscano, S.; Vogler, P.; Walter, R.; Wilbert, A.

    2016-09-01

    Imaging Atmospheric Cherenkov Telescopes (IACTs) need imaging optics with large apertures and high image intensities to map the faint Cherenkov light emitted from cosmic ray air showers onto their image sensors. Segmented reflectors fulfill these needs, and composed from mass production mirror facets they are inexpensive and lightweight. However, as the overall image is a superposition of the individual facet images, alignment remains a challenge. Here we present a simple, yet extendable method, to align a segmented reflector using its Bokeh. Bokeh alig nment does not need a star or good weather nights but can be done even during daytime. Bokeh alignment optimizes the facet orientations by comparing the segmented reflectors Bokeh to a predefined template. The optimal Bokeh template is highly constricted by the reflector's aperture and is easy accessible. The Bokeh is observed using the out of focus image of a near by point like light source in a distance of about 10 focal lengths. We introduce Bokeh alignment on segmented reflectors and demonstrate it on the First Geiger-mode Avalanche Cherenkov Telescope (FACT) on La Palma, Spain.

  7. Ground calibrations of Nuclear Compton Telescope

    Science.gov (United States)

    Chiu, Jeng-Lun; Liu, Zhong-Kai; Bandstra, Mark S.; Bellm, Eric C.; Liang, Jau-Shian; Perez-Becker, Daniel; Zoglauer, Andreas; Boggs, Steven E.; Chang, Hsiang-Kuang; Chang, Yuan-Hann; Huang, Minghuey A.; Amman, Mark; Chiang, Shiuan-Juang; Hung, Wei-Che; Lin, Chih-Hsun; Luke, Paul N.; Run, Ray-Shine; Wunderer, Cornelia B.

    2010-07-01

    The Nuclear Compton Telescope (NCT) is a balloon-borne soft gamma ray (0.2-10 MeV) telescope designed to study astrophysical sources of nuclear line emission and polarization. The heart of NCT is an array of 12 cross-strip germanium detectors, designed to provide 3D positions for each photon interaction with full 3D position resolution to imaging, effectively reduces background, and enables the measurement of polarization. The keys to Compton imaging with NCT's detectors are determining the energy deposited in the detector at each strip and tracking the gamma-ray photon interaction within the detector. The 3D positions are provided by the orthogonal X and Y strips, and by determining the interaction depth using the charge collection time difference (CTD) between the anode and cathode. Calibrations of the energy as well as the 3D position of interactions have been completed, and extensive calibration campaigns for the whole system were also conducted using radioactive sources prior to our flights from Ft. Sumner, New Mexico, USA in Spring 2009, and from Alice Springs, Australia in Spring 2010. Here we will present the techniques and results of our ground calibrations so far, and then compare the calibration results of the effective area throughout NCT's field of view with Monte Carlo simulations using a detailed mass model.

  8. Results from the ANTARES neutrino telescope

    Directory of Open Access Journals (Sweden)

    Spurio M.

    2016-01-01

    Full Text Available ANTARES is the largest neutrino telescope in the Northern hemisphere, running in its final configuration since 2008. After the discovery of a cosmic neutrino diffuse flux by the IceCube detector, the search for its origin has become a key mission in high-energy astrophysics. The ANTARES sensitivity is large enough to constrain the origin of the IceCube excess from regions extended up to 0.2 sr in the Southern sky. The Southern sky has been studied searching for point-like objects, for extended regions of emission (as the Galactic plane and for signal from transient objects selected through multimessenger observations. Upper limits are presented assuming different spectral indexes for the energy spectrum of neutrino sources. In addition, ANTARES provides results on studies of the sky in combination with different multimessenger experiments, on atmospheric neutrinos, on the searches for rare particles in the cosmic radiation (such as magnetic monopoles and nuclearites, and on Earth and Sea science. Particularly relevant are the searches for Dark Matter: the limits obtained for the spin-dependent WIMP-nucleon cross section overcome that of existing direct-detection experiments. The recent results, widely discussed in dedicated presentations during the 7th edition of the Very Large Volume Neutrino Telescope Workshop (VLVνT-2015, are highlighted in this paper.

  9. Security of remotely operated robotic telescopes

    Science.gov (United States)

    Surrey, Peter J.; Muecke-Herzberg, Dorothea

    2000-06-01

    A robotic telescope is both a complex system with many potential modes of failure, and an attractive target for computer criminals. The paper describes a systematic approach to security designed to optimize the operational continuity of such a system. This includes the development of policy guidelines, techniques for identifying the prioritizing the assets to be protected, and for assessing the threats against these assets. Commonly encountered threats are discussed, and specific security mechanisms to counter these threats described, including fault-tolerant hardware configurations, cryptographic techniques for authentication and confidentiality, and leveraging the properties of point-to-point wide-area networking links. A typical remote telescope offers multiple points of attack through its interfaces for engineering control, observation scheduling, data retrieval and routine management. A case study is presented highlighting the engineering trade-offs required to protect these interfaces, and discussing the implementation of specific countermeasures described earlier. Finally some recommendations are made for managing the human aspects of security implementations.

  10. Status of the Cherenkov Telescope Array Project

    CERN Document Server

    de Almeida, Ulisses Barres

    2016-01-01

    Gamma-ray astronomy holds a great potential for Astrophysics, Particle Physics and Cosmology. The CTA is an inter- national initiative to build the next generation of ground-based gamma-ray observatories, which will represent a factor of 5-10 times improvement in the sensitivity of observations in the range 100 GeV - 10 TeV, as well as an extension of the observational capabilities down to energies below 100 GeV and beyond 100 TeV. The array will consist of two telescope networks (one in the Northern Hemisphere and another in the South) so to achieve a full-sky coverage, and will be com- posed by a hybrid system of 4 different telescope types. It will operate as an observatory, granting open access to the community through calls for submission of proposals competing for observation time. The CTA will give us access to the non-thermal and high-energy universe at an unprecedented level, and will be one of the main instruments for high-energy astrophysics and astroparticle physics of the next 30 years. CTA has n...

  11. Beam calibration of radio telescopes with drones

    CERN Document Server

    Chang, Chihway; Refregier, Alexandre; Amara, Adam; Glauser, Adrian; Casura, Sarah

    2015-01-01

    We present a multi-frequency far-field beam map for the 5m dish telescope at the Bleien Observatory measured using a commercially available drone. We describe the hexacopter drone used in this experiment, the design of the flight pattern, and the data analysis scheme. This is the first application of this calibration method to a single dish radio telescope in the far-field. The high signal-to-noise data allows us to characterise the beam pattern with high accuracy out to at least the 4th side-lobe. The resulting 2D beam pattern is compared with that derived from a more traditional calibration approach using an astronomical calibration source. We discuss the advantages of this method compared to other beam calibration methods. Our results show that this drone-based technique is very promising for ongoing and future radio experiments, where the knowledge of the beam pattern is key to obtaining high-accuracy cosmological and astronomical measurements.

  12. Data Analysis Challenges for the Einstein Telescope

    CERN Document Server

    Bosi, Leone

    2009-01-01

    The Einstein Telescope is a proposed third generation gravitational wave detector that will operate in the region of 1 Hz to a few kHz. As well as the inspiral of compact binaries composed of neutron stars or black holes, the lower frequency cut-off of the detector will open the window to a number of new sources. These will include the end stage of inspirals, plus merger and ringdown of intermediate mass black holes, where the masses of the component bodies are on the order of a few hundred solar masses. There is also the possibility of observing intermediate mass ratio inspirals, where a stellar mass compact object inspirals into a black hole which is a few hundred to a few thousand times more massive. In this article, we investigate some of the data analysis challenges for the Einstein Telescope such as the effects of increased source number, the need for more accurate waveform models and the some of the computational issues that a data analysis strategy might face.

  13. Giant Magellan Telescope Site Testing Summary

    CERN Document Server

    Thomas-Osip, Joanna E; Prieto, Gabriel; Phillips, Mark M; Johns, Matt

    2011-01-01

    Cerro Las Campanas located at Las Campanas Observatory (LCO) in Chile has been selected as the site for the Giant Magellan Telescope. We report results obtained since the commencement, in 2005, of a systematic site testing survey of potential GMT sites at LCO. Meteorological (cloud cover, temperature, pressure, wind, and humidity) and DIMM seeing data have been obtained at three potential sites, and are compared with identical data taken at the site of the twin Magellan 6.5m telescopes. In addition, measurements of the turbulence profile of the free-atmosphere above LCO have been collected with a MASS/DIMM. Furthermore, we consider photometric quality, light pollution, and precipitable water vapor (PWV). LCO, and Co. Las Campanas in particular, have dark skies, little or no risk of future light pollution, excellent seeing, moderate winds, PWV adequate for mid-IR astronomy during a reasonable fraction of the nights, and a high fraction of clear nights overall. Finally, Co. Las Campanas meets or exceeds all the...

  14. The X-ray Telescope of CAST

    CERN Document Server

    Kuster, M; Cebrián, S; Davenport, M; Elefteriadis, C; Englhauser, J; Fischer, H; Franz, J; Friedrich, P; Hartmann, R; Heinsius, F H; Hoffmann, Dieter H H; Hoffmeister, G; Joux, J N; Königsmann, K C; Kang, D; Kotthaus, R; Lasseur, C; Lippitsch, A; Lutz, G; Morales, J; Papaevangelou, T; Rodríguez, A; Strüder, L; Vogel, J; Zioutas, K

    2007-01-01

    The Cern Axion Solar Telescope (CAST) is in operation and taking data since 2003. The main objective of the CAST experiment is to search for a hypothetical pseudoscalar boson, the axion, which might be produced in the core of the sun. The basic physics process CAST is based on is the time inverted Primakoff effect, by which an axion can be converted into a detectable photon in an external electromagnetic field. The resulting X-ray photons are expected to be thermally distributed between 1 and 7 keV. The most sensitive detector system of CAST is a pn-CCD detector combined with a Wolter I type X-ray mirror system. With the X-ray telescope of CAST a background reduction of more than 2 orders off magnitude is achieved, such that for the first time the axion photon coupling constant g_agg can be probed beyond the best astrophysical constraints g_agg < 1 x 10^-10 GeV^-1.

  15. The x-ray telescope of CAST

    Science.gov (United States)

    Kuster, M.; Bräuninger, H.; Cebrián, S.; Davenport, M.; Eleftheriadis, C.; Englhauser, J.; Fischer, H.; Franz, J.; Friedrich, P.; Hartmann, R.; Heinsius, F. H.; Hoffmann, D. H. H.; Hoffmeister, G.; Joux, J. N.; Kang, D.; Königsmann, K.; Kotthaus, R.; Papaevangelou, T.; Lasseur, C.; Lippitsch, A.; Lutz, G.; Morales, J.; Rodríguez, A.; Strüder, L.; Vogel, J.; Zioutas

    2007-06-01

    The CERN Axion Solar Telescope (CAST) has been in operation and taking data since 2003. The main objective of the CAST experiment is to search for a hypothetical pseudoscalar boson, the axion, which might be produced in the core of the sun. The basic physics process CAST is based on is the time inverted Primakoff effect, by which an axion can be converted into a detectable photon in an external electromagnetic field. The resulting x-ray photons are expected to be thermally distributed between 1 and 7 keV. The most sensitive detector system of CAST is a pn-CCD detector combined with a Wolter I type x-ray mirror system. With the x-ray telescope of CAST a background reduction of more than 2 orders of magnitude is achieved, such that for the first time the axion photon coupling constant gaγγ can be probed beyond the best astrophysical constraints gaγγ < 1 × 10-10 GeV-1.

  16. Very Large Aperture Diffractive Space Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Hyde, Roderick Allen

    1998-04-20

    A very large (10's of meters) aperture space telescope including two separate spacecraft--an optical primary functioning as a magnifying glass and an optical secondary functioning as an eyepiece. The spacecraft are spaced up to several kilometers apart with the eyepiece directly behind the magnifying glass ''aiming'' at an intended target with their relative orientation determining the optical axis of the telescope and hence the targets being observed. The magnifying glass includes a very large-aperture, very-thin-membrane, diffractive lens, e.g., a Fresnel lens, which intercepts incoming light over its full aperture and focuses it towards the eyepiece. The eyepiece has a much smaller, meter-scale aperture and is designed to move along the focal surface of the magnifying glass, gathering up the incoming light and converting it to high quality images. The positions of the two space craft are controlled both to maintain a good optical focus and to point at desired targets.

  17. The Swift Mission and the REM Telescope

    Science.gov (United States)

    Gehrels, N.; Chincarini, G.; Giommi, P.; Mason, K. O.; Nousek, J. A.; Wells, A. A.; White, N. E.; Barthelemy, S. D.; Burrow, D. N.; Hurley, K. C.

    2003-01-01

    Following a description of the science drive which originated the Swift Mission, this is US NASA MIDEX Mission with the collaboration of Italy and the UK, we will describe the status of the hardware and the observing strategy. The telemetry is carried out via the TDRSS satellite for those communications that need immediate response. The data transfer and the scheduled uploading of routine commands will be done through the ASI Malindi station in Kenia. Both in the US and in Europe a large effort will be done to follow the bursts with the maximum of efficiency and as soon as possible after the alert. We will describe how the ESO VLT telescopes are able to respond to the alert. To address the problematic of the dark bursts and to immediately follow up all of the bursts also in the Near Infrared we designed and built a 60 cm NIR Robotic telescope, REM, to be located on the ESO ground at Cerro La Silla. The instrumentation includes also a low dispersion spectrograph with the capability of multi wavelength optical photometry.

  18. FERMI LARGE AREA TELESCOPE SECOND SOURCE CATALOG

    Energy Technology Data Exchange (ETDEWEB)

    Nolan, P. L.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Abdo, A. A. [Center for Earth Observing and Space Research, College of Science, George Mason University, Fairfax, VA 22030 (United States); Ackermann, M. [Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen (Germany); Antolini, E.; Bonamente, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy); Atwood, W. B.; Belfiore, A. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Axelsson, M. [Department of Astronomy, Stockholm University, SE-106 91 Stockholm (Sweden); Baldini, L.; Bellazzini, R. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Universite Paris Diderot, Service d' Astrophysique, CEA Saclay, 91191 Gif sur Yvette (France); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Bastieri, D. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Bignami, G. F., E-mail: digel@stanford.edu, E-mail: Gino.Tosti@pg.infn.it, E-mail: jean.ballet@cea.fr, E-mail: tburnett@u.washington.edu [Istituto Universitario di Studi Superiori (IUSS), I-27100 Pavia (Italy); and others

    2012-04-01

    We present the second catalog of high-energy {gamma}-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), derived from data taken during the first 24 months of the science phase of the mission, which began on 2008 August 4. Source detection is based on the average flux over the 24 month period. The second Fermi-LAT catalog (2FGL) includes source location regions, defined in terms of elliptical fits to the 95% confidence regions and spectral fits in terms of power-law, exponentially cutoff power-law, or log-normal forms. Also included are flux measurements in five energy bands and light curves on monthly intervals for each source. Twelve sources in the catalog are modeled as spatially extended. We provide a detailed comparison of the results from this catalog with those from the first Fermi-LAT catalog (1FGL). Although the diffuse Galactic and isotropic models used in the 2FGL analysis are improved compared to the 1FGL catalog, we attach caution flags to 162 of the sources to indicate possible confusion with residual imperfections in the diffuse model. The 2FGL catalog contains 1873 sources detected and characterized in the 100 MeV to 100 GeV range of which we consider 127 as being firmly identified and 1171 as being reliably associated with counterparts of known or likely {gamma}-ray-producing source classes.

  19. The Hopkins Ultraviolet Telescope: The Final Archive

    CERN Document Server

    Dixon, William V; Kruk, Jeffrey W; Romelfanger, Mary L

    2013-01-01

    The Hopkins Ultraviolet Telescope (HUT) was a 0.9 m telescope and moderate-resolution (~3 A) far-ultraviolet (820-1850 A) spectrograph that flew twice on the space shuttle, in 1990 December (Astro-1, STS-35) and 1995 March (Astro-2, STS-67). The resulting spectra were originally archived in a non-standard format that lacked important descriptive metadata. To increase their utility, we have modified the original data-reduction software to produce a new and more user-friendly data product, a time-tagged photon list similar in format to the Intermediate Data Files (IDFs) produced by the {\\it Far Ultraviolet Spectroscopic Explorer} calibration pipeline. We have transferred all relevant pointing and instrument-status information from locally-archived science and engineering databases into new FITS header keywords for each data set. Using this new pipeline, we have reprocessed the entire HUT archive from both missions, producing a new set of calibrated spectral products in a modern FITS format that is fully complia...

  20. Optical synoptic telescopes: new science frontiers

    Science.gov (United States)

    Tyson, J. Anthony

    2010-07-01

    Over the past decade, sky surveys such as the Sloan Digital Sky Survey (SDSS) have proven the power of large data sets for answering fundamental astrophysical questions. This observational progress, based on a synergy of advances in telescope construction, detectors, and information technology, has had a dramatic impact on nearly all fields of astronomy, and areas of fundamental physics. The next-generation instruments, and the surveys that will be made with them, will maintain this revolutionary progress. The hardware and computational technical challenges and the exciting science opportunities are attracting scientists and engineers from astronomy, optics, low-light-level detectors, high-energy physics, statistics, and computer science. The history of astronomy has taught us repeatedly that there are surprises whenever we view the sky in a new way. This will be particularly true of discoveries emerging from a new generation of sky surveys. Imaging data from large ground-based active optics telescopes with sufficient étendue can address many scientific missions simultaneously. These new investigations will rely on the statistical precision obtainable with billions of objects. For the first time, the full sky will be surveyed deep and fast, opening a new window on a universe of faint moving and distant exploding objects as well as unraveling the mystery of dark energy.

  1. Optical design of the Discovery Channel Telescope

    Science.gov (United States)

    MacFarlane, Malcolm J.; Dunham, Edward W.

    2004-10-01

    The Discovery Channel Telescope (DCT) is a joint venture between Discovery Communications and Lowell Observatory. The telescope will have a 4.2-meter clear aperture, active primary mirror working at F/1.9. Two observing stations are presently planned; a Ritchey-Chretien focus some two meters behind the vertex of the primary mirror and a prime focus featuring a wide-field optical corrector (WFOC) with a two-degree field of view. The Ritchey-Chretien focus will be used for a variety of optical and near infrared imaging and spectroscopic instrumentation while the prime focus will be largely used as a survey tool to search for near-earth and Kuiper belt objects, for example. In order to take advantage of sub-arc second seeing at the DCT site, a stringent set of requirements has been placed on the two foci. The requirements are for the full-width, half-maximum (FWHM) image of a point source to be less than 0.20 arc second at the Ritchey-Chretien focus over a 21 arc minute field and less than 0.27 arc second at prime focus in each of six filter bands including a very broad band for survey purposes. This paper describes the optical design of the field correctors at the two foci. Particular attention is paid to the WFOC. This state of the art device poses a number of optical challenges which are discussed here, as well as mechanical challenges which are discussed elsewhere.

  2. Mirror seeing of the Antarctic survey telescope

    Institute of Scientific and Technical Information of China (English)

    ZHANG Kaiyuan; LI Zhengyang; YUAN Xiangyan; PEI Chong

    2014-01-01

    Site testing results indicate that Antarctic Dome A is an excellent ground-based astronomical site suitable for observations ranging from visible to infrared wavelengths. However, the harsh environment in Antarctica, especially the very low temperature and atmospheric pressure, always produces frost on the telescopes’ mirrors, which are exposed to the air. Since the Dome A site is still unattended, the Antarctic telescope tubes are always designed to be filled with dry nitrogen, and the outer surfaces of the optical system are heated by an indium-tin oxide thin film. These precautions can prevent the optical surfaces from frosting over, but they degrade the image quality by introducing additional mirror seeing. Based on testing observations of the second Antarctic Survey Telescope (AST3-2) in the Mohe site in China, mirror seeing resulting from the heated aspheric plate has been measured using micro-thermal sensors. Results comparing the real-time atmospheric seeing monitored by the Differential Image Motion Monitor and real-time examinations of image quality agree well.

  3. Results from the ANTARES Neutrino Telescope

    CERN Document Server

    Spurio, M

    2016-01-01

    A primary goal of a deep-sea neutrino telescopes as ANTARES is the search for astrophysical neutrinos in the TeV-PeV range. ANTARES is today the largest neutrino telescope in the Northern hemisphere. After the discovery of a cosmic neutrino diffuse flux by the IceCube, the understanding of its origin has become a key mission in high-energy astrophysics. ANTARES makes a valuable contribution for sources located in the Southern sky thanks to its excellent angular resolution in both the muon channel and the cascade channel (induced by all neutrino flavors). Assuming various spectral indexes for the energy spectrum of neutrino emitters, the Southern sky and in particular central regions of our Galaxy are studied searching for point-like objects and for extended regions of emission. In parallel, by adopting a multimessenger approach, based on time and/or space coincidences with other cosmic probes, the sensitivity of such searches can be considerably augmented. ANTARES has participated to a high-energy neutrino fo...

  4. Fermi Large Area Telescope Second Source Catalog

    CERN Document Server

    ,

    2011-01-01

    We present the second catalog of high-energy gamma-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), derived from data taken during the first 24 months of the science phase of the mission, which began on 2008 August 4. Source detection is based on the average flux over the 24-month period. The Second Fermi-LAT catalog (2FGL) includes source location regions, defined in terms of elliptical fits to the 95% confidence regions and spectral fits in terms of power-law, exponentially cutoff power-law, or log-normal forms. Also included are flux measurements in 5 energy bands and light curves on monthly intervals for each source. Twelve sources in the catalog are modeled as spatially extended. We provide a detailed comparison of the results from this catalog with those from the first Fermi-LAT catalog (1FGL). Although the diffuse Galactic and isotropic models used in the 2FGL analysis are improved compared to the 1FGL catalog, we att...

  5. DESTINY, the Dark Energy Space Telescope

    Science.gov (United States)

    Lauer, T. R.; Morse, J. A.; Destiny Science Team

    2003-12-01

    We describe a mission concept for a 1.8-meter near-infrared (NIR) grism-mode space telescope optimized to return richly sampled Hubble diagrams of Type Ia and Type II supernovae (SNe) over the redshift range 0.5 the Universe as a function of time, and characterizing the nature of dark energy. The central concept for our proposed Dark Energy Space Telescope (DESTINY) is an all-grism NIR survey camera. SNe will be discovered by repeated imaging of an area located at the north ecliptic pole. Grism spectra with resolving power l/Dl = R * 100 will provide broad-band spectrophotometry, redshifts, SNe classification, as well as valuable time-resolved diagnostic data for understanding the SN explosion physics. Our approach features only a single mode of operation, a single detector technology, and a single instrument. Although grism spectroscopy is slow compared to SN detection in any single broad-band filter for photometry, or to conventional slit spectra for spectral diagnostics, the multiplex advantage of observing a large field-of-view over a full octave in wavelength simultaneously makes this approach highly competitive.

  6. Shaped pupil design for future space telescopes

    Science.gov (United States)

    Riggs, A. J. Eldorado; Zimmerman, Neil; Carlotti, Alexis; Kasdin, N. Jeremy; Vanderbei, Robert

    2014-08-01

    Several years ago at Princeton we invented a technique to optimize shaped pupil (SP) coronagraphs for any telescope aperture. In the last year, our colleagues at the Jet Propulsion Laboratory (JPL) invented a method to produce these non-freestanding mask designs on a substrate. These two advances allowed us to design SPs for two possible space telescopes for the direct imaging of exoplanets and disks, WFIRST-AFTA and Exo-C. In December 2013, the SP was selected along with the hybrid Lyot coronagraph for placement in the AFTA coronagraph instrument. Here we describe our designs and analysis of the SPs being manufactured and tested in the High Contrast Imaging Testbed at JPL.We also explore hybrid SP coronagraph designs for AFTA that would improve performance with minimal or no changes to the optical layout. These possibilities include utilizing a Lyot stop after the focal plane mask or applying large, static deformations to the deformable mirrors (nominally for wavefront correction) already in the system.

  7. The Swift Mission and the REM Telescope

    Science.gov (United States)

    Gehrels, N.; Chincarini, G.; Giommi, P.; Mason, K. O.; Nousek, J. A.; Wells, A. A.; White, N. E.; Barthelemy, S. D.; Burrow, D. N.; Hurley, K. C.

    2003-01-01

    Following a description of the science drive which originated the Swift Mission, this is US NASA MIDEX Mission with the collaboration of Italy and the UK, we will describe the status of the hardware and the observing strategy. The telemetry is carried out via the TDRSS satellite for those communications that need immediate response. The data transfer and the scheduled uploading of routine commands will be done through the ASI Malindi station in Kenia. Both in the US and in Europe a large effort will be done to follow the bursts with the maximum of efficiency and as soon as possible after the alert. We will describe how the ESO VLT telescopes are able to respond to the alert. To address the problematic of the dark bursts and to immediately follow up all of the bursts also in the Near Infrared we designed and built a 60 cm NIR Robotic telescope, REM, to be located on the ESO ground at Cerro La Silla. The instrumentation includes also a low dispersion spectrograph with the capability of multi wavelength optical photometry.

  8. Beam Calibration of Radio Telescopes with Drones

    Science.gov (United States)

    Chang, Chihway; Monstein, Christian; Refregier, Alexandre; Amara, Adam; Glauser, Adrian; Casura, Sarah

    2015-11-01

    We present a multi-frequency far-field beam map for the 5m dish telescope at the Bleien Observatory measured using a commercially available drone. We describe the hexacopter drone used in this experiment, the design of the flight pattern, and the data analysis scheme. This is the first application of this calibration method to a single dish radio telescope in the far-field. The high signal-to-noise data allows us to characterise the beam pattern with high accuracy out to at least the 4th side-lobe. The resulting 2D beam pattern is compared with that derived from a more traditional calibration approach using an astronomical calibration source. We discuss the advantages of this method compared to other beam calibration methods. Our results show that this drone-based technique is very promising for ongoing and future radio experiments, where the knowledge of the beam pattern is key to obtaining high-accuracy cosmological and astronomical measurements.

  9. Fermi Large Area Telescope Second Source Catalog

    Science.gov (United States)

    Nolan, P. L.; Abdo, A. A.; Ackermann, M.; Ajello, M; Allafort, A.; Antolini, E; Bonnell, J.; Cannon, A.; Celik O.; Corbet, R.; Davis, D. S.; DeCesar, M. E.; Ferrara, E. C.; Gehrels, N.; Harding, A. K.; Hays, E.; Johnson, T. E.; McConville, W.; McEnery, J. E; Perkins, J. S.; Racusin, J. L; Scargle, J. D.; Stephens, T. E.; Thompson, D. J.; Troja, E.

    2012-01-01

    We present the second catalog of high-energy gamma-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), derived from data taken during the first 24 months of the science phase of the mission, which began on 2008 August 4. Source detection is based on the average flux over the 24-month period. The Second Fermi-LAT catalog (2FGL) includes source location regions, defined in terms of elliptical fits to the 95% confidence regions and spectral fits in terms of power-law, exponentially cutoff power-law, or log-normal forms. Also included are flux measurements in 5 energy bands and light curves on monthly intervals for each source. Twelve sources in the catalog are modeled as spatially extended. We provide a detailed comparison of the results from this catalog with those from the first Fermi-LAT catalog (1FGL). Although the diffuse Galactic and isotropic models used in the 2FGL analysis are improved compared to the 1FGL catalog, we attach caution flags to 162 of the sources to indicate possible confusion with residual imperfections in the diffuse model. The 2FGL catalog contains 1873 sources detected and characterized in the 100 11eV to 100 GeV range of which we consider 127 as being firmly identified and 1171 as being reliably associated with counterparts of known or likely gamma-ray-producing source classes.

  10. Origins Space Telescope: Solar System Science

    Science.gov (United States)

    Wright, Edward L.; Origins Space Telescope Study Team

    2017-01-01

    The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. Origins is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum. Its imagers and spectrographs will enable a variety of surveys of the sky that will discover and characterize the most distant galaxies, Milky-Way, exoplanets, and the outer reaches of our Solar system. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. The Science and Technology Definition Team (STDT) would like to hear your science needs and ideas for this mission. The team can be contacted at firsurveyor_info@lists.ipac.caltech.edu.In the Solar System, OST will provide km/sec resolution on lines from planet, moons and comets. OST will measure molecular abundances and isotope ratios in planets and comets. OST will be able to do continuum surveys for faint moving sources such as Kuiper Belt Objects, enabling a census of smaller objects in the Kuiper Belt. If the putative Planet IX is massive enough to be self-luminous, then OST will be able to detect it out to thousands of AU from the Sun.

  11. Neutral Buoyancy Simulator- NB38 -Space Telescope

    Science.gov (United States)

    1980-01-01

    The Hubble Space Telescope (HST) is a cooperative program of the European Space Agency (ESA) and the National Aeronautical and Space Administration (NASA) to operate a long-lived space-based observatory. It was the flagship mission of NASA's Great Observatories program. The HST program began as an astronomical dream in the 1940s. During the 1970s and 1980s, the HST was finally designed and built becoming operational in the 1990s. The HST was deployed into a low-Earth orbit on April 25, 1990 from the cargo bay of the Space Shuttle Discovery (STS-31). The design of the HST took into consideration its length of service and the necessity of repairs and equipment replacement by making the body modular. In doing so, subsequent shuttle missions could recover the HST, replace faulty or obsolete parts and be re-released. Pictured is MSFC's Neutral Buoyancy Simulator (NBS) that served as the test center for shuttle astronauts training for Hubble related missions. Shown are astronauts Bruce McCandless and Sharnon Lucid being fitted for their space suits prior to entering the NBS to begin training on the space telescope axial scientific instrument changeout.

  12. The Telescope Array's Low Energy Extension: TALE

    Science.gov (United States)

    Matthews, John

    2009-05-01

    A great deal of information about the sources of ultra high energy cosmic rays exists encoded in the energy spectrum. There are three spectral features in the ultra high energy regime (the second knee, the ankle, and the GZK cut-off). An important composition change also occurs in this energy range. The Telescope Array (TA) is a large area ultra high energy cosmic ray observatory built and operated by groups from the US, Japan, Korea, and Russia. The existing part of the Telescope Array already has good efficiency above the ankle (˜10^18.5 eV). These detectors are already in the field collecting data. The TA Low Energy Extension (TALE) refers to the detectors devoted to the ``low energy'' portion of the spectrum - 10^16.5 - 10^19 eV. The aim of TA/TALE is to understand the origin of cosmic rays and to study their composition over a broad energy range. We will introduce the detector components and discuss the opportunities.

  13. Europe's latest space telescope is off to a good start

    Science.gov (United States)

    1999-12-01

    The world's most powerful observatory for X-ray astronomy, the European Space Agency's XMM satellite, set off into space from Kourou, French Guiana, at 15:32 Paris time on 10 December. The mighty Ariane 5 launcher, making its very first commercial launch, hurled the 3.9-tonne spacecraft into a far-ranging orbit. Within one hour of lift-off the European Space Operations Centre at Darmstadt, Germany, confirmed XMM was under control with electrical power available from the solar arrays. "XMM is the biggest and most innovative scientific spacecraft developed by ESA so far," said Roger Bonnet, ESA's Director of Science. "The world's space agencies now want the new technology that ESA and Europe's industries have put into XMM's amazingly sensitive X-ray telescopes. And the world's astronomers are queuing up to use XMM to explore the hottest places in the universe. We must ask them to be patient while we get XMM fully commissioned." XMM's initial orbit carries it far into space, to 114,000 kilometres from the Earth at its most distant point. On its return the satellite's closest approach, or perigee, will be at 850 kilometres. The next phase of the operation, expected to take about a week, will raise that perigee to 7000 kilometres by repeated firing of XMM's own thrusters. The spacecraft will then be on its intended path, spending 40 hours out of every 48-hour orbit clear of the radiation belts which spoil the view of the X-ray universe. Technical commissioning and verification of the performance of the telescopes and scientific instruments will then follow. XMM should be fully operational for astronomy in the spring of 2000. All of ESA's science missions present fresh technological challenges to Europe's aerospace industries. In building XMM, the prime contractor Dornier Satellitensysteme in Friedrichshafen in Germany (part of DaimlerChrysler Aerospace) has led an industrial consortium involving 46 companies from 14 European countries and one in the United States. XMM

  14. A Trigger and Readout Scheme for future Cherenkov Telescope Arrays

    CERN Document Server

    Hermann, G; Foehr, C; Hofmann, W; Kihm, T; Köck, F

    2008-01-01

    The next generation of ground-based gamma-ray observatories, such as e.g. CTA, will consist of about 50-100 telescopes, and cameras with in total ~100000 to ~200000 channels. The telescopes of the core array will cover and effective area of ~ 1 km2 and will be possibly accompanied by a large halo of smaller telescopes spread over about 10 km2 . In order to make maximum use of the stereoscopic approach, a very flexible inter-telescope trigger scheme is needed which allows to couple telescopes that located up to ~1 km apart. The development of a cost effective readout scheme for the camera signals exhibits a major technological challenge. Here we present ideas on a new asynchronous inter-telescope trigger scheme, and a very cost-effective, high-bandwidth frontend to backend data transfer system, both based on standard Ethernet components and an Ethernet front-end interface based on mass production standard FPGAs.

  15. Undergraduate Education with the WIYN 0.9-m Telescope

    Science.gov (United States)

    Pilachowski, Catherine A.

    2017-01-01

    Several models have been explored at Indiana University Bloomington for undergraduate student engagement in astronomy using the WIYN 0.9-m telescope at Kitt Peak. These models include individual student research projects using the telescope, student observations as part of an observational techniques course for majors, and enrichment activities for non-science majors in general education courses. Where possible, we arrange for students to travel to the telescope. More often, we are able to use simple online tools such as Skype and VNC viewers to give students an authentic observing experience. Experiences with the telescope motivate students to learn basic content in astronomy, including the celestial sphere, the electromagnetic spectrum, telescopes and detectors, the variety of astronomical objects, date reduction processes, image analysis, and color image creation and appreciation. The WIYN 0.9-m telescope is an essential tool for our program at all levels of undergraduate education

  16. Japanese sounding rocket experiment with the solar XUV Doppler telescope

    Science.gov (United States)

    Sakao, Taro; Tsuneta, Saku; Hara, Hirohisa; Kano, Ryouhei; Yoshida, Tsuyoshi; Nagata, Shin'ichi; Shimizu, Toshifumi; Kosugi, Takeo; Murakami, Katsuhiko; Wasa, Wakuna; Inoue, Masao; Miura, Katsuhiro; Taguchi, Koji; Tanimoto, Kazuo

    1996-11-01

    We present an overview of an ongoing Japanese sounding rocket project with the Solar XUV Doppler telescope. The telescope employs a pair of normal incidence multilayer mirrors and a back-thinned CCD, and is designed to observe coronal velocity field of the whole sun by measuring line- of-sight Doppler shifts of the Fe XIV 211 angstroms line. The velocity detection limit is estimated to be better than 100 km/s. The telescope will be launched by the Institute of Space and Astronautical Science in 1998, when the solar activity is going to be increasing towards the cycle 23 activity maximum. Together with the overview of the telescope, the current status of the development of each telescope components including multilayer mirrors, telescope structure, image stabilization mechanism, and focal plane assembly, are reviewed. The observation sequence during the flight is also briefly described.

  17. The ASTRI SST-2M prototype and mini-array for the Cherenkov Telescope Array (CTA)

    Science.gov (United States)

    Pareschi, Giovanni

    2016-08-01

    In the framework of the Cherenkov Telescope Array (CTA) Observatory, the Italian National Institute of Astrophysics (INAF) has recently inaugurated in Sicily (Italy), at the Serra La Nave astronomical site (on the slopes of Mount Etna), a dual-mirror prototype (ASTRI SST-2M) of the CTA small size class of telescopes. It is planned to install up to 70 small size telescopes in the southern CTA site, in order to allow the study of the gamma rays from a few TeV up to hundreds of TeV. The ASTRI SST-2M telescope prototype has been developed following an end-to-end approach. According to this philosophy, the telescope includes structure, primary and secondary mirrors, camera, software and hardware for control/acquisition and data handling. The camera, almost completed, has been designed to cover a field of view of 9.6 degrees. After the full implementation of the prototype, a remarkable improvement in terms of technology advancement and performance will come from the operation of the ASTRI mini-array, led within the CTA collaboration by INAF in synergy with the Universidade de Sao Paulo (Brazil) and the North-West University (South Africa). The ASTRI mini-array will be composed of at least 9 ASTRI SST-2M units and it is proposed to be installed at the CTA southern site as part of its pre-production phase. Apart from the assessment of a number of technological aspects related to CTA, the ASTRI mini-array will extend and improve the flux sensitivity compared with the current experiments (HESS, MAGIC and VERITAS) in the 5 - 300 TeV energy range.

  18. Optical Testing and Verification Methods for the James Webb Space Telescope Integrated Science Instrument Module Element

    Science.gov (United States)

    Antonille, Scott R.; Miskey, Cherie L.; Ohl, Raymond G.; Rohrbach, Scott O.; Aronstein, David L.; Bartoszyk, Andrew E.; Bowers, Charles W.; Cofie, Emmanuel; Collins, Nicholas R.; Comber, Brian J.; hide

    2016-01-01

    NASA's James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy (40K). The JWST Observatory includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM) that contains four science instruments (SI) and the fine guider. The SIs are mounted to a composite metering structure. The SI and guider units were integrated to the ISIM structure and optically tested at the NASA Goddard Space Flight Center as a suite using the Optical Telescope Element SIMulator (OSIM). OSIM is a full field, cryogenic JWST telescope simulator. SI performance, including alignment and wave front error, were evaluated using OSIM. We describe test and analysis methods for optical performance verification of the ISIM Element, with an emphasis on the processes used to plan and execute the test. The complexity of ISIM and OSIM drove us to develop a software tool for test planning that allows for configuration control of observations, associated scripts, and management of hardware and software limits and constraints, as well as tools for rapid data evaluation, and flexible re-planning in response to the unexpected. As examples of our test and analysis approach, we discuss how factors such as the ground test thermal environment are compensated in alignment. We describe how these innovative methods for test planning and execution and post-test analysis were instrumental in the verification program for the ISIM element, with enough information to allow the reader to consider these innovations and lessons learned in this successful effort in their future testing for other programs.

  19. The new robotic telescope developed at the Perugia University Observatory

    CERN Document Server

    Tosti, G; Falchetti-Frescura, A

    1999-01-01

    In the next few years a turning-point in blazar study will be represented by the development of automatic monitoring. This will need the diffusion of the robotic telescope concept all over the world. In this paper we present the main characteristics of a 0.80 m robotic telescope which could be useful prototype instrument for a world-wide network of robotic telescopes devoted to intensive monitoring of variable sources. (0 refs).

  20. VLT telescope control software: status, development, and lessons learned

    Science.gov (United States)

    Wirenstrand, Krister

    2003-02-01

    The four 8m VLT telescopes on Paranal are now in full science operation, and they all deliver good results with very small technical downtimes. Of course, many factors are contributing to these results, and also the telescope control software has its share. It has demonstrated to be robust and reliable and also flexible and expandable. In the four years since First Light of the first VLT telescope, this software has been continuously maintained and developed, for improvements on the 8m telescopes but also for use on other telescopes. In addition to the 8m ones, another three telescopes, using applicable parts of the same software, are in operation on Paranal: the 350- mm seeing monitor and two 400-mm siderostats. And the process continues: in the beginning of 2003 the first of three 1.8m Auxiliary Telescopes for the VLT Interferometer will be installed; the control software to 80% being the same as for the 8m telescopes, but with additional devices and control functionality. Another three ESO telescopes on La Silla are also using the same software, as well as two wide field telescopes for Paranal that are now in the design and manufacturing phase. In this development process, and in particular after first installation, we have learned lessons in many areas of software project work. System design and engineering, standardization, tools, testing: these are example areas where there is always room for improvement. Another lesson learned is the importance of the concept of Commissioning, i.e. the work to take the telescope from "integrated" to "working"! What the future of telescope control software will be, that we don't know, but we are working on it! And we try to keep an evolutionary approach, taking advantage of the lessons learned.