WorldWideScience

Sample records for unit site symmetry

  1. Symmetry Breaking in MILP Formulations for Unit Commitment Problems

    KAUST Repository

    Lima, Ricardo

    2015-12-11

    This paper addresses the study of symmetry in Unit Commitment (UC) problems solved by Mixed Integer Linear Programming (MILP) formulations, and using Linear Programming based Branch & Bound MILP solvers. We propose three sets of symmetry breaking constraints for UC MILP formulations exhibiting symmetry, and its impact on three UC MILP models are studied. The case studies involve the solution of 24 instances by three widely used models in the literature, with and without symmetry breaking constraints. The results show that problems that could not be solved to optimality within hours can be solved with a relatively small computational burden if the symmetry breaking constraints are assumed. The proposed symmetry breaking constraints are also compared with the symmetry breaking methods included in two MILP solvers, and the symmetry breaking constraints derived in this work have a distinct advantage over the methods in the MILP solvers.

  2. Symmetry Breaking in MILP Formulations for Unit Commitment Problems

    KAUST Repository

    Lima, Ricardo; Novais, Augusto Q.

    2015-01-01

    This paper addresses the study of symmetry in Unit Commitment (UC) problems solved by Mixed Integer Linear Programming (MILP) formulations, and using Linear Programming based Branch & Bound MILP solvers. We propose three sets of symmetry breaking constraints for UC MILP formulations exhibiting symmetry, and its impact on three UC MILP models are studied. The case studies involve the solution of 24 instances by three widely used models in the literature, with and without symmetry breaking constraints. The results show that problems that could not be solved to optimality within hours can be solved with a relatively small computational burden if the symmetry breaking constraints are assumed. The proposed symmetry breaking constraints are also compared with the symmetry breaking methods included in two MILP solvers, and the symmetry breaking constraints derived in this work have a distinct advantage over the methods in the MILP solvers.

  3. Hanford Site Waste management units report

    International Nuclear Information System (INIS)

    1992-01-01

    This report summarizes the operable units in several areas of the Hanford Site Waste Facility. Each operable unit has several waste units (crib, ditch, pond, etc.). The operable units are summarized by describing each was unit. Some of the descriptions are unit name, unit type, waste category start data, site description, etc. The descriptions will vary for each waste unit in each operable unit and area of the Hanford Site

  4. Symmetry-adapted configurational modelling of fractional site occupancy in solids

    Energy Technology Data Exchange (ETDEWEB)

    Grau-Crespo, R [Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Hamad, S [Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Catlow, C R A [Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Leeuw, N H de [Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom)

    2007-06-27

    A methodology is presented, which reduces the number of site-occupancy configurations to be calculated when modelling site disorder in solids, by taking advantage of the crystal symmetry of the lattice. Within this approach, two configurations are considered equivalent when they are related by an isometric operation; a trial list of possible isometric transformations is provided by the group of symmetry operators in the parent structure, which is used to generate all configurations via atomic substitutions. We have adapted the equations for configurational statistics to operate in the reduced configurational space of the independent configurations. Each configuration in this space is characterized by its reduced energy, which includes not only its energy but also a contribution from its degeneracy in the complete configurational space, via an entropic term. The new computer program SOD (site-occupancy disorder) is presented, which performs this analysis in systems with arbitrary symmetry and any size of supercell. As a case study we use the distribution of cations in iron antimony oxide FeSbO{sub 4}, where we also introduce some general considerations for the modelling of site-occupancy disorder in paramagnetic systems.

  5. Hanford Site Waste Management Units Report

    Energy Technology Data Exchange (ETDEWEB)

    Shearer, Jeffrey P. [Hanford Site (HNF), Richland, WA (United States)

    2012-02-29

    The Hanford Site Waste Management Units Report (HSWMUR) has been created to meet the requirements of the Tri-Party Agreement (TPA) Action Plan, Section 3.5, which states: “The Hanford Site Waste Management Units Report shall be generated, in a format agreed upon by the Parties, as a calendar year report and issued annually by the DOE by the end of February of each year, and posted electronically for regulator and public access. This report shall reflect all changes made in waste management unit status during the previous year.” This February 2012 version of the HSWMUR contains a comprehensive inventory of the 3389 sites and 540 subsites in the Waste Information Data System (WIDS). The information for each site contains a description of each unit and the waste it contains, where applicable. The WIDS database provides additional information concerning the sites contained in this report and is maintained with daily changes to these sites.

  6. Hanford Site Waste Management Units Report

    Energy Technology Data Exchange (ETDEWEB)

    Shearer, Jeffrey P. [Hanford Site (HNF), Richland, WA (United States)

    2013-02-13

    The Hanford Site Waste Management Units Report (HSWMUR) has been created to meet the requirements of the Tri-Party Agreement (TPA) Action Plan, Section 3.5, which states: “The Hanford Site Waste Management Units Report shall be generated, in a format agreed upon by the Parties, as a calendar year report and issued annually by the DOE by the end of February of each year, and posted electronically for regulator and public access. This report shall reflect all changes made in waste management unit status during the previous year.” This February 2013 version of the HSWMUR contains a comprehensive inventory of the 3427 sites and 564 subsites in the Waste Information Data System (WIDS). The information for each site contains a description of each unit and the waste it contains, where applicable. The WIDS database provides additional information concerning the sites contained in this report and is maintained with daily changes to these sites.

  7. Hanford Site Waste Management Units Report

    Energy Technology Data Exchange (ETDEWEB)

    Shearer, Jeffrey P. [Hanford Site (HNF), Richland, WA (United States)

    2014-02-19

    The Hanford Site Waste Management Units Report (HSWMUR) has been created to meet the requirements of the Tri-Party Agreement (TPA) Action Plan, Section 3.5, which states: “The Hanford Site Waste Management Units Report shall be generated, in a format agreed upon by the Parties, as a calendar year report and issued annually by the DOE by the end of February of each year, and posted electronically for regulator and public access. This report shall reflect all changes made in waste management unit status during the previous year.” This February 2013 version of the HSWMUR contains a comprehensive inventory of the 3438 sites and 569 subsites in the Waste Information Data System (WIDS). The information for each site contains a description of each unit and the waste it contains, where applicable. The WIDS database provides additional information concerning the sites contained in this report and is maintained with daily changes to these sites.

  8. Hanford Site waste management units report

    International Nuclear Information System (INIS)

    1993-04-01

    The Hanford Site Waste Management Units Report was originated to provide information responsive to Section 3004(u) of the Hazardous and Solid Waste Amendments of the 1984. This report provides a comprehensive inventory of all types of waste management units at the Hanford Site, including a description of the units and the waste they contain. Waste management units in the report include: (1) Resource Conservation and Recovery Act of 1976 (RCRA) disposal units, (2) Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) disposal units, (3) unplanned releases, (4) inactive contaminated structures, (5) RCRA treatment, storage, and disposal (TSD) units, and (6) other storage areas. Because of the comprehensive nature of the units report, the list of units is more extensive than required by Section 3004(u) of Hazardous and Solid Waste Amendments of the 1984. In Sections 3.0 through 6.0 of this report, the four aggregate areas are subdivided into their operable units. The operable units are further divided into two parts: (1) those waste management units assigned to the operable unit that will be remediated as part of the Environmental Restoration Remedial Actions (ERRA) Program, and (2) those waste management units located within the operable unit boundaries but not assigned to the ERRA program. Only some operable unit sections contain the second part

  9. Hanford Site waste management units report

    International Nuclear Information System (INIS)

    1993-04-01

    The Hanford Site Waste Management Units Report was originated to provide information responsive to Section 3004(u) of the Hazardous and Solid Waste Amendments of the 1984. This report provides a comprehensive inventory of all types of waste management units at the Hanford Site, including a description of the units and the waste they contain. Waste management units in the report include: (1) Resource Conservation and Recovery Act of 1976 (RCRA) disposal units, (2) Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) disposal units, (3) unplanned releases, (4) inactive contaminated structures, (5) RCRA treatment, storage, and disposal (TSD) units, and (6) other storage areas. Because of the comprehensive nature of the units report, the list of units is more extensive than required by Section 3004(u) of Hazardous and Solid Waste Amendments of the 1984. In Sections 3.0 through 6.0 of this report, the four aggregate areas are subdivided into their operable units. The operable units are further divided into two parts: (1) those waste management units assigned to the operable unit that will be remediated as part of the Environmental Restoration Remedial Actions (ERRA) Program, and (2) those waste management units located within the operable unit boundaries but not assigned to the ERRA program. Only some operable unit sections contain the second part.Volume two contains Sections 4.0 through 6.0 and the following appendices: Appendix A -- acronyms and definition of terms; Appendix B -- unplanned releases that are not considered to be units; and Appendix C -- operable unit maps

  10. Hanford Site Waste Management Units Report

    International Nuclear Information System (INIS)

    1991-01-01

    This Hanford Site Waste Management Units Report (HSWMUR) was originated to provide information responsive to Section 3004(u) of the Hazardous and Solid Waste Amendments (HSWA) of the 1984 United States Code (USC). The report provides a comprehensive inventory of all types of waste management units at the Hanford Site and consists of waste disposal units, including (1) Resource Conservation and Recovery Act of 1976 (RCRA) disposal units, (2) Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) disposal units, (3) unplanned releases, (4) inactive contaminated structure, (5) RCRA treatment and storage units, and (6) other storage areas. Because of the comprehensive nature of this report, the listing of sites is more extensive than required by Section 3004(u) of HSWA. In support of the Hanford RCRA permit, a field was added to designate whether the waste management unit is a solid waste management unit (SWMU). As SWMUs are identified, they will added to the Hanford Waste Information Data System (WIDS), which is the database supporting this report, and added to the report at its next annual update. A quality review of the WIDS was conducted this past year. The review included checking all data against their reference and making appropriate changes, updating the data elements using the most recent references, marking duplicate units for deletion, and addition additional information. 6 refs

  11. Hanford Site Waste Management Units Report

    International Nuclear Information System (INIS)

    1991-01-01

    This Hanford Site Waste Management Units Report (HSWMUR) was originated to provide information responsive to Section 3004(u) of the Hazardous and Solid Waste Amendments (HSWA) of the 1984 United States Code (USC). The report provides a comprehensive inventory of all types of waste management units at the Hanford Site and consists of waste disposal units, including (1) Resource Conservation and Recovery Act of 1976 (RCRA) disposal units, (2) Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) disposal units, (3) unplanned releases, (4) inactive contaminated structures, (5) RCRA treatment and storage units, and (6) other storage areas. Because of the comprehensive nature of this report, the listing of sites is more extensive than required by Section 3004(u) of HSWA. In support of the Hanford RCRA permit, a field was added to designate whether the waste management unit is a solid waste management unit (SWMU). As SWMUs are identified, they will added to the Hanford Waste Information Data System (WIDS), which is the database supporting this report, and added to the report at its next annual update. A quality review of the WIDS was conducted this past year. The review included checking all data against their reference and making appropriate changes, updating the data elements using the most recent references, marking duplicate units for deletion, and adding additional information. 6 refs

  12. Hanford Site Waste Managements Units reports

    International Nuclear Information System (INIS)

    1992-01-01

    The Hanford Site Waste Management Units Report (HSWMUR) was originated to provide information responsive to Section 3004(u) of the Hazardous and Solid Waste Amendments (HSWA) of the 1984 United States Code (USC 1984). This report provides a comprehensive inventory of all types of waste management units at the Hanford Site, including a description of the units and the waste they contain. Waste management units in this report include: (1) Resource Conservation and Recovery Act of 1976 (RCRA) disposal units, (2) Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) disposal units, (3) unplanned releases, (4) inactive contaminated structures, (5) RCRA treatment, storage, and disposal (TSD) units, and (6) other storage areas. Because of the comprehensive nature of this report, the listing of sites is more extensive than required by Section 3004(u) of HSWA. The information in this report is extracted from the Waste Information Data System (WIDS). The WIDS provides additional information concerning the waste management units contained in this report and is maintained current with changes to these units. This report is updated annually if determined necessary per the Hanford Federal Facility Agreement and Consent Order Order (commonly referred to as the Tri-Party Agreement, Ecology et al. 1990). This report identifies 1,414 waste management units. Of these, 1,015 units are identified as solid waste management units (SWMU), and 342 are RCRA treatment, storage, and disposal units. The remaining 399 are comprised mainly of one-time spills to the environment, sanitary waste disposal facilities (i.e., septic tanks), and surplus facilities awaiting decontamination and decommissioning

  13. Can Crystal Symmetry and Packing Influence the Active Site Conformation of Homohexameric Purine Nucleoside Phosphorylases?

    Directory of Open Access Journals (Sweden)

    Marija Luić

    2016-06-01

    Full Text Available It is generaly believed that enzymes retain most of their functionality in the crystal form due to the large solvent content of protein crystals. This is facilitated by the fact that their natural environment in solution is not too far from the one found in the crystal form. Nevertheless, if the nature of the enzyme is such to require conformational changes, overcoming of the crystal packing constraints may prove to be too difficult. Such conformational change is present in one class of enzymes (purine nucleoside phosphorylases, that is the subject of our scientific interest for many years. The influence of crystal symmetry and crystal packing on the conformation of the active sites in the case of homohexameric purine nucleoside phosphorylases is presented and analysed. This work is licensed under a Creative Commons Attribution 4.0 International License.

  14. Translational Symmetry and Microscopic Constraints on Symmetry-Enriched Topological Phases: A View from the Surface

    Directory of Open Access Journals (Sweden)

    Meng Cheng

    2016-12-01

    Full Text Available The Lieb-Schultz-Mattis theorem and its higher-dimensional generalizations by Oshikawa and Hastings require that translationally invariant 2D spin systems with a half-integer spin per unit cell must either have a continuum of low energy excitations, spontaneously break some symmetries, or exhibit topological order with anyonic excitations. We establish a connection between these constraints and a remarkably similar set of constraints at the surface of a 3D interacting topological insulator. This, combined with recent work on symmetry-enriched topological phases with on-site unitary symmetries, enables us to develop a framework for understanding the structure of symmetry-enriched topological phases with both translational and on-site unitary symmetries, including the effective theory of symmetry defects. This framework places stringent constraints on the possible types of symmetry fractionalization that can occur in 2D systems whose unit cell contains fractional spin, fractional charge, or a projective representation of the symmetry group. As a concrete application, we determine when a topological phase must possess a “spinon” excitation, even in cases when spin rotational invariance is broken down to a discrete subgroup by the crystal structure. We also describe the phenomena of “anyonic spin-orbit coupling,” which may arise from the interplay of translational and on-site symmetries. These include the possibility of on-site symmetry defect branch lines carrying topological charge per unit length and lattice dislocations inducing degeneracies protected by on-site symmetry.

  15. A systematic analysis of the spectra of trivalent actinide chlorides in D3h site symmetry

    International Nuclear Information System (INIS)

    Carnall, W.T.

    1989-11-01

    The optical spectra of actinide ions in the compound AnCl 3 and doped into single crystal LaCl 3 were interpreted in terms of transitions within 5f N configurations. Energy-level calculations were carried out using an effective operator Hamiltonian, the parameters of which were determined by fitting experimental data. Atomic and crystal-field matrices were diagonalized simultaneously assuming an approximate D 3h site symmetry. The spectroscopic data were taken from the literature but in most cases supplemented by unpublished measurements in absorption and in fluorescence. Spectroscopic data for each ion were analyzed independently, then the model parameters were intercompared and in many cases adjusted such that in the final fitting process the principal interactions showed uniform trends in parameter values with increasing atomic number. Consistent with analyses of the spectra of lanthanide ions in both LaCl 3 and LaF 3 , abrupt changes in magnitude of certain crystal-field parameters were found near the center of the 5f N -series. This resulted in two groups of parameter values, but with consistent trends for both halves of the series, and generally very good agreement between observed and computed energies. A new energy level chart based on computed crystal-field level energies for each trivalent actinide ion has been prepared. in addition, the parameters of the atomic part of each 5f N Hamiltonian were used to calculate the matrix elements of U (λ) for selected transitions. The values were tabulated to facilitate calculation of intensity-related parameters for 5f N -transitions using the Judd-Ofelt theory. 44 refs., 10 figs., 3 tabs

  16. Waste management units - Savannah River Site

    International Nuclear Information System (INIS)

    1989-10-01

    This report is a compilation of worksheets from the waste management units of Savannah River Plant. Information is presented on the following: Solid Waste Management Units having received hazardous waste or hazardous constituents with a known release to the environment; Solid Waste Management Units having received hazardous waste or hazardous constituents with no known release to the environment; Solid Waste Management Units having received no hazardous waste or hazardous constituents; Waste Management Units having received source; and special nuclear, or byproduct material only

  17. Quasi-Unit-Cell Model for an Al-Ni-Co Ideal Quasicrystal based on Clusters with Broken Tenfold Symmetry

    International Nuclear Information System (INIS)

    Abe, Eiji; Saitoh, Koh; Takakura, H.; Tsai, A. P.; Steinhardt, P. J.; Jeong, H.-C.

    2000-01-01

    We present new evidence supporting the quasi-unit-cell description of the Al 72 Ni 20 Co 8 decagonal quasicrystal which shows that the solid is composed of repeating, overlapping decagonal cluster columns with broken tenfold symmetry. We propose an atomic model which gives a significantly improved fit to electron microscopy experiments compared to a previous proposal by us and to alternative proposals with tenfold symmetric clusters. (c) 2000 The American Physical Society

  18. Concentration of WWER-1000 unit power on one site

    International Nuclear Information System (INIS)

    Rousek, J.; Kysel, J.; Sladek, V.

    1987-01-01

    The problem of a suitable number of nuclear power plant units built on one site is discussed. Using an example of three sites being prepared now in Czechoslovakia, two alternatives - one with two WWER-1000 units, the other with four WWER-1000 units on one site - are evaluated from the viewpoint of long-range nuclear power development program in Czechoslovakia, costs, transmission of electric power and heat supply. (author). 10 tabs., 13 refs

  19. An unusual internal ribosomal entry site of inverted symmetry directs expression of a potato leafroll polerovirus replication-associated protein

    Science.gov (United States)

    Jaag, Hannah Miriam; Kawchuk, Lawrence; Rohde, Wolfgang; Fischer, Rainer; Emans, Neil; Prüfer, Dirk

    2003-01-01

    Potato leafroll polerovirus (PLRV) genomic RNA acts as a polycistronic mRNA for the production of proteins P0, P1, and P2 translated from the 5′-proximal half of the genome. Within the P1 coding region we identified a 5-kDa replication-associated protein 1 (Rap1) essential for viral multiplication. An internal ribosome entry site (IRES) with unusual structure and location was identified that regulates Rap1 translation. Core structural elements for internal ribosome entry include a conserved AUG codon and a downstream GGAGAGAGAGG motif with inverted symmetry. Reporter gene expression in potato protoplasts confirmed the internal ribosome entry function. Unlike known IRES motifs, the PLRV IRES is located completely within the coding region of Rap1 at the center of the PLRV genome. PMID:12835413

  20. The Road Side Unit for the A270 Test Site

    NARCIS (Netherlands)

    Passchier, I.; Driessen, B.J.F.; Heijligers, B.M.R.; Netten, B.D.; Schackmann, P.P.M.

    2011-01-01

    The design and implementation of the Road Side Unit for the A270 Test Site is presented. It consists of a sensor platform and V2I communication platform with full coverage of the test site. A service platform enables applications to make use of these facilities. The RSU will be used both for the

  1. Symmetry and symmetry breaking

    International Nuclear Information System (INIS)

    Balian, R.; Lambert, D.; Brack, A.; Lachieze-Rey, M.; Emery, E.; Cohen-Tannoudji, G.; Sacquin, Y.

    1999-01-01

    The symmetry concept is a powerful tool for our understanding of the world. It allows a reduction of the volume of information needed to apprehend a subject thoroughly. Moreover this concept does not belong to a particular field, it is involved in the exact sciences but also in artistic matters. Living beings are characterized by a particular asymmetry: the chiral asymmetry. Although this asymmetry is visible in whole organisms, it seems it comes from some molecules that life always produce in one chirality. The weak interaction presents also the chiral asymmetry. The mass of particles comes from the breaking of a fundamental symmetry and the void could be defined as the medium showing as many symmetries as possible. The texts put together in this book show to a great extent how symmetry goes far beyond purely geometrical considerations. Different aspects of symmetry ideas are considered in the following fields: the states of matter, mathematics, biology, the laws of Nature, quantum physics, the universe, and the art of music. (A.C.)

  2. Site descriptions of environmental restoration units at the Oak Ridge K-25 Site, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Goddard, P.L.; Legeay, A.J.; Pesce, D.S.; Stanley, A.M.

    1995-11-01

    This report, Site Descriptions of Environmental Restoration Units at the Oak Ridge K-25 Site, Oak Ridge, Tennessee, is being prepared to assimilate information on sites included in the Environmental Restoration (ER) Program of the K-25 Site, one of three major installations on the Oak Ridge Reservation (ORR) built during World War III as part of the Manhattan Project. The information included in this report will be used to establish program priorities so that resources allotted to the K-25 ER Program can be best used to decrease any risk to humans or the environment, and to determine the sequence in which any remedial activities should be conducted. This document will be updated periodically in both paper and Internet versions. Units within this report are described in individual data sheets arranged alphanumerically. Each data sheet includes entries on project status, unit location, dimensions and capacity, dates operated, present function, lifecycle operation, waste characteristics, site status, media of concern, comments, and references. Each data sheet is accompanied by a photograph of the unit, and each unit is located on one of 13 area maps. These areas, along with the sub-area, unit, and sub-unit breakdowns within them, are outlined in Appendix A. Appendix B is a summary of information on remote aerial sensing and its applicability to the ER program

  3. Site descriptions of environmental restoration units at the Oak Ridge K-25 Site, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Goddard, P.L.; Legeay, A.J.; Pesce, D.S.; Stanley, A.M.

    1995-11-01

    This report, Site Descriptions of Environmental Restoration Units at the Oak Ridge K-25 Site, Oak Ridge, Tennessee, is being prepared to assimilate information on sites included in the Environmental Restoration (ER) Program of the K-25 Site, one of three major installations on the Oak Ridge Reservation (ORR) built during World War III as part of the Manhattan Project. The information included in this report will be used to establish program priorities so that resources allotted to the K-25 ER Program can be best used to decrease any risk to humans or the environment, and to determine the sequence in which any remedial activities should be conducted. This document will be updated periodically in both paper and Internet versions. Units within this report are described in individual data sheets arranged alphanumerically. Each data sheet includes entries on project status, unit location, dimensions and capacity, dates operated, present function, lifecycle operation, waste characteristics, site status, media of concern, comments, and references. Each data sheet is accompanied by a photograph of the unit, and each unit is located on one of 13 area maps. These areas, along with the sub-area, unit, and sub-unit breakdowns within them, are outlined in Appendix A. Appendix B is a summary of information on remote aerial sensing and its applicability to the ER program.

  4. Feasibility study for the United Heckathorn Superfund Site, Richmond, California

    Energy Technology Data Exchange (ETDEWEB)

    Lincoff, A.H. [US Environmental Protection Agency, San Francisco, CA (United States). Region IX; Costan, G.P.; Montgomery, M.S.; White, P.J. [Pacific Northwest Lab., Richland, WA (United States)

    1994-07-01

    The United Heckathom Superfund Site in Richmond, California, was used to formulate pesticides from approximately 1947 to 1966. Soils at the site and sediments in the harbor were contaminated with various chlorinated pesticides, primarily DDT, as a result of these activities. The US Environmental Protection Agency listed the site on the Superfund National Priorities List in 1990. This document is part of the Remedial Investigation and Feasibility Study phase of the Superfund response, which will provide the basis for selection of a final remedy that will protect human health and the environment and achieve compliance with federal and state envirorunental laws.

  5. Feasibility study for the United Heckathorn Superfund Site, Richmond, California

    International Nuclear Information System (INIS)

    Lincoff, A.H.

    1994-07-01

    The United Heckathom Superfund Site in Richmond, California, was used to formulate pesticides from approximately 1947 to 1966. Soils at the site and sediments in the harbor were contaminated with various chlorinated pesticides, primarily DDT, as a result of these activities. The US Environmental Protection Agency listed the site on the Superfund National Priorities List in 1990. This document is part of the Remedial Investigation and Feasibility Study phase of the Superfund response, which will provide the basis for selection of a final remedy that will protect human health and the environment and achieve compliance with federal and state envirorunental laws

  6. Corrective Action Investigation Plan for Corrective Action Unit 137: Waste Disposal Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Wickline, Alfred

    2005-01-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 137: Waste Disposal Sites. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 137 contains sites that are located in Areas 1, 3, 7, 9, and 12 of the Nevada Test Site (NTS), which is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 137 is comprised of the eight corrective action sites (CASs) shown on Figure 1-1 and listed below: (1) CAS 01-08-01, Waste Disposal Site; (2) CAS 03-23-01, Waste Disposal Site; (3) CAS 03-23-07, Radioactive Waste Disposal Site; (4) CAS 03-99-15, Waste Disposal Site; (5) CAS 07-23-02, Radioactive Waste Disposal Site; (6) CAS 09-23-07, Radioactive Waste Disposal Site; (7) CAS 12-08-01, Waste Disposal Site; and (8) CAS 12-23-07, Waste Disposal Site. The Corrective Action Investigation (CAI) will include field inspections, radiological surveys, geophysical surveys, sampling of environmental media, analysis of samples, and assessment of investigation results, where appropriate. Data will be obtained to support corrective action alternative evaluations and waste management decisions. The CASs in CAU 137 are being investigated because hazardous and/or radioactive constituents may be present in concentrations that could potentially pose a threat to human health and the environment. Existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives for the CASs. Additional information will be generated by conducting a CAI before evaluating and selecting corrective action

  7. Site selection and evaluation of nuclear power units in Egypt

    International Nuclear Information System (INIS)

    Bonnefille, R.

    1980-01-01

    The selection of sites for nuclear power units in Egypt by SOFRATOME for Nuclear Plants Authority is carried on using a method based on interaction between different criteria. The method and the main results on criterion 'radio-ecological impact' are sketched briefly [fr

  8. DNA deformability changes of single base pair mutants within CDE binding sites in S. Cerevisiae centromere DNA correlate with measured chromosomal loss rates and CDE binding site symmetries

    Directory of Open Access Journals (Sweden)

    Marx Kenneth A

    2006-03-01

    created using the wild type sequence and the 3 associated alternate base mutants at each binding site position. These position specific slope magnitudes, or sensitivities, correlated with and reflected the underlying position symmetry of the DNA binding sequences. Conclusion These results suggest the utility of correlating quantitative aspects of sequence specific protein-DNA complex single base mutants with changes in the easily calculated PD-deformability scale of the individual DNA sequence mutants. Using this PD approach, it may be possible in the future to understand the magnitude of biological or energetic functional effects of specific DNA sequence mutants within DNA-protein complexes in terms of their effect on DNA deformability.

  9. Decommissioning Planning for Nuclear Units at the Oskarshamn Site

    International Nuclear Information System (INIS)

    Rannemalm, Thom; Eriksson, Joergen; Bergh, Niklas

    2016-01-01

    This paper will describe the process that OKG is now in and how the regulatory framework in Sweden is set out with EIA preparation, SAR updates, decommissioning plans etc. and how OKG plans to meet some of the challenges that need to be considered in front of the decommissioning. There will be a discussion on which strategic decisions will have priority and why. The paper will also discuss some of the difficulties with having a site with two units in decommissioning and one unit in power operation. (authors)

  10. Closure Report for Corrective Action Unit 107: Low Impact Soil Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2009-01-01

    Corrective Action Unit (CAU) 107 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Low Impact Soil Sites' and consists of the following 15 Corrective Action Sites (CASs), located in Areas 1, 2, 3, 4, 5, 9, 10, and 18 of the Nevada Test Site: CAS 01-23-02, Atmospheric Test Site - High Alt; CAS 02-23-02, Contaminated Areas (2); CAS 02-23-03, Contaminated Berm; CAS 02-23-10, Gourd-Amber Contamination Area; CAS 02-23-11, Sappho Contamination Area; CAS 02-23-12, Scuttle Contamination Area; CAS 03-23-24, Seaweed B Contamination Area; CAS 03-23-27, Adze Contamination Area; CAS 03-23-28, Manzanas Contamination Area; CAS 03-23-29, Truchas-Chamisal Contamination Area; CAS 04-23-02, Atmospheric Test Site T4-a; CAS 05-23-06, Atmospheric Test Site; CAS 09-23-06, Mound of Contaminated Soil; CAS 10-23-04, Atmospheric Test Site M-10; and CAS 18-23-02, U-18d Crater (Sulky). Closure activities were conducted from February through April 2009 according to the FFACO (1996; as amended February 2008) and Revision 1 of the Streamlined Approach for Environmental Restoration Plan for CAU 107 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2009). The corrective action alternatives included No Further Action and Closure in Place with Administrative Controls. Closure activities are summarized.

  11. Construction of Site Risk Model using Individual Unit Risk Model in a NPP Site

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Ho Gon; Han, Sang Hoon [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Since Fukushima accident, strong needs to estimate site risk has been increased to identify the possibility of re-occurrence of such a tremendous disaster and prevent such a disaster. Especially, in a site which has large fleet of nuclear power plants, reliable site risk assessment is very emergent to confirm the safety. In Korea, there are several nuclear power plant site which have more than 6 NPPs. In general, risk model of a NPP in terms of PSA is very complicated and furthermore, it is expected that the site risk model is more complex than that. In this paper, the method for constructing site risk model is proposed by using individual unit risk model. Procedure for the development of site damage (risk) model was proposed in the present paper. Since the site damage model is complicated in the sense of the scale of the system and dependency of the components of the system, conventional method may not be applicable in many side of the problem.

  12. Dedicated education unit: implementing an innovation in replication sites.

    Science.gov (United States)

    Moscato, Susan R; Nishioka, Vicki M; Coe, Michael T

    2013-05-01

    An important measure of an innovation is the ease of replication and achievement of the same positive outcomes. The dedicated education unit (DEU) clinical education model uses a collaborative academic-service partnership to develop an optimal learning environment for students. The University of Portland adapted this model from Flinders University, Australia, to increase the teaching capacity and quality of nursing education. This article identifies DEU implementation essentials and reports on the outcomes of two replication sites that received consultation support from the University of Portland. Program operation information, including education requirements for clinician instructors, types of patient care units, and clinical faculty-to-student ratios is presented. Case studies of the three programs suggest the DEU model is adaptable to a range of different clinical settings and continues to show promise as one strategy for addressing the nurse faculty shortage and strengthening academic-clinical collaborations while maintaining quality clinical education for students. Copyright 2013, SLACK Incorporated.

  13. Corrective Action Investigation Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Grant Evenson

    2006-01-01

    Corrective Action Unit (CAU) 139 is located in Areas 3, 4, 6, and 9 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 139 is comprised of the seven corrective action sites (CASs) listed below: (1) 03-35-01, Burn Pit; (2) 04-08-02, Waste Disposal Site; (3) 04-99-01, Contaminated Surface Debris; (4) 06-19-02, Waste Disposal Site/Burn Pit; (5) 06-19-03, Waste Disposal Trenches; (6) 09-23-01, Area 9 Gravel Gertie; and (7) 09-34-01, Underground Detection Station. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives with the exception of CASs 09-23-01 and 09-34-01. Regarding these two CASs, CAS 09-23-01 is a gravel gertie where a zero-yield test was conducted with all contamination confined to below ground within the area of the structure, and CAS 09-34-01 is an underground detection station where no contaminants are present. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for the other five CASs where information is insufficient. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 4, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 139

  14. Corrective Action Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2007-07-01

    Corrective Action Unit (CAU) 139, Waste Disposal Sites, is listed in the Federal Facility Agreement and Consent Order (FFACO) of 1996 (FFACO, 1996). CAU 139 consists of seven Corrective Action Sites (CASs) located in Areas 3, 4, 6, and 9 of the Nevada Test Site (NTS), which is located approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1). CAU 139 consists of the following CASs: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Details of the site history and site characterization results for CAU 139 are provided in the approved Corrective Action Investigation Plan (CAIP) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2006) and in the approved Corrective Action Decision Document (CADD) (NNSA/NSO, 2007). The purpose of this Corrective Action Plan (CAP) is to present the detailed scope of work required to implement the recommended corrective actions as specified in Section 4.0 of the approved CADD (NNSA/NSO, 2007). The approved closure activities for CAU 139 include removal of soil and debris contaminated with plutonium (Pu)-239, excavation of geophysical anomalies, removal of surface debris, construction of an engineered soil cover, and implementation of use restrictions (URs). Table 1 presents a summary of CAS-specific closure activities and contaminants of concern (COCs). Specific details of the corrective actions to be performed at each CAS are presented in Section 2.0 of this report.

  15. Corrective Action Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2007-01-01

    Corrective Action Unit (CAU) 139, Waste Disposal Sites, is listed in the Federal Facility Agreement and Consent Order (FFACO) of 1996 (FFACO, 1996). CAU 139 consists of seven Corrective Action Sites (CASs) located in Areas 3, 4, 6, and 9 of the Nevada Test Site (NTS), which is located approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1). CAU 139 consists of the following CASs: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Details of the site history and site characterization results for CAU 139 are provided in the approved Corrective Action Investigation Plan (CAIP) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2006) and in the approved Corrective Action Decision Document (CADD) (NNSA/NSO, 2007). The purpose of this Corrective Action Plan (CAP) is to present the detailed scope of work required to implement the recommended corrective actions as specified in Section 4.0 of the approved CADD (NNSA/NSO, 2007). The approved closure activities for CAU 139 include removal of soil and debris contaminated with plutonium (Pu)-239, excavation of geophysical anomalies, removal of surface debris, construction of an engineered soil cover, and implementation of use restrictions (URs). Table 1 presents a summary of CAS-specific closure activities and contaminants of concern (COCs). Specific details of the corrective actions to be performed at each CAS are presented in Section 2.0 of this report

  16. Analysis of local symmetry and impurity location of Cu2+ ions doped C8H11KO8 single crystal through EPR technique for site I

    Science.gov (United States)

    Sheela, K. Juliet; Subbulakshmi, N.; Subramanian, P.

    2018-04-01

    Electron paramagnetic resonance (EPR) studies have been investigated on Cu2+ ion incorporated into the single crystals of potassium succinate-succinic acid (KSSA) at room temperature. Two magnetically in-equivalent Cu2+ sites in the lattice are identified, among them site I has been reported. The spin Hamiltonian parameters are determined with the fitting of spectra to rhombic symmetry crystalline field. The co-ordination of the Cu2+ ion in this molecule is a distorted dodecahedron. From the calculated gxx, gyy, gzz and Axx, Ayy, Azz and their directional cosines values, location of site I impurity ion Cu2+ could be identified as a substituitional one. Also the ground state wave function of the impurity ion was found to be d2z.

  17. Closure Report for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2009-01-01

    Corrective Action Unit (CAU) 139 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Waste Disposal Sites' and consists of the following seven Corrective Action Sites (CASs), located in Areas 3, 4, 6, and 9 of the Nevada Test Site: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Closure activities were conducted from December 2008 to April 2009 according to the FFACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 139 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. Closure activities are summarized. CAU 139, 'Waste Disposal Sites,' consists of seven CASs in Areas 3, 4, 6, and 9 of the NTS. The closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 139 as documented in this CR: (1) At CAS 03-35-01, Burn Pit, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (2) At CAS 04-08-02, Waste Disposal Site, an administrative UR was implemented. No postings or post-closure monitoring are required. (3) At CAS 04-99-01, Contaminated Surface Debris, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (4) At CAS 06-19-02, Waste Disposal Site/Burn Pit, no work was performed. (5) At CAS 06-19-03, Waste Disposal Trenches, a native soil cover was installed, and a UR was

  18. Closure Report for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2009-07-31

    Corrective Action Unit (CAU) 139 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Waste Disposal Sites' and consists of the following seven Corrective Action Sites (CASs), located in Areas 3, 4, 6, and 9 of the Nevada Test Site: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Closure activities were conducted from December 2008 to April 2009 according to the FFACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 139 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. Closure activities are summarized. CAU 139, 'Waste Disposal Sites,' consists of seven CASs in Areas 3, 4, 6, and 9 of the NTS. The closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 139 as documented in this CR: (1) At CAS 03-35-01, Burn Pit, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (2) At CAS 04-08-02, Waste Disposal Site, an administrative UR was implemented. No postings or post-closure monitoring are required. (3) At CAS 04-99-01, Contaminated Surface Debris, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (4) At CAS 06-19-02, Waste Disposal Site/Burn Pit, no work was performed. (5) At CAS 06-19-03, Waste Disposal Trenches, a native soil cover was installed

  19. Corrective Action Plan for Corrective Action Unit 543: Liquid Disposal Units, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2006-01-01

    Corrective Action Unit (CAU) 543, Liquid Disposal Units, is listed in Appendix III of the Federal Facility Agreement and Consent Order of 1996. CAU 543 consists of seven Corrective Action Sites (CASs) located in Areas 6 and 15 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. CAU 543 consists of the following seven CASs: (sm b ullet) CAS 06-07-01, Decon Pad (sm b ullet) CAS 15-01-03, Aboveground Storage Tank (sm b ullet) CAS 15-04-01, Septic Tank (sm b ullet) CAS 15-05-01, Leachfield (sm b ullet) CAS 15-08-01, Liquid Manure Tank (sm b ullet) CAS 15-23-01, Underground Radioactive Material Area (sm b ullet) CAS 15-23-03, Contaminated Sump, Piping From January 24, 2005 through April 14, 2005, CAU 543 site characterization activities were conducted, and are reported in Appendix A of the CAU 543 Corrective Action Decision Document (CADD) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2005). The recommended corrective action as stated in the approved CADD is No Further Action for five of the CAU 543 CASs, and Closure In Place for the remaining two CASs

  20. Closure Report for Corrective Action Unit 547: Miscellaneous Contaminated Waste Sites, Nevada National Security Site, Nevada

    International Nuclear Information System (INIS)

    2012-01-01

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 547, Miscellaneous Contaminated Waste Sites, and provides documentation supporting the completed corrective actions and confirmation that closure objectives for CAU 547 were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 as amended). CAU 547 consists of the following three Corrective Action Sites (CASs), located in Areas 2, 3, and 9 of the Nevada National Security Site: (1) CAS 02-37-02, Gas Sampling Assembly; (2) CAS 03-99-19, Gas Sampling Assembly; AND (3) CAS 09-99-06, Gas Sampling Assembly Closure activities began in August 2011 and were completed in June 2012. Activities were conducted according to the Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) for CAU 547 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2011). The recommended corrective action for the three CASs in CAU 547 was closure in place with administrative controls. The following closure activities were performed: (1) Open holes were filled with concrete; (2) Steel casings were placed over vertical expansion joints and filled with cement; (3) Engineered soil covers were constructed over piping and exposed sections of the gas sampling system components; (4) Fencing, monuments, Jersey barriers, radiological postings, and use restriction (UR) warning signs were installed around the perimeters of the sites; (5) Housekeeping debris was picked up from around the sites and disposed; and (6) Radiological surveys were performed to confirm final radiological postings. UR documentation is included in Appendix D. The post-closure plan was presented in detail in the CADD/CAP for CAU 547 and is included as

  1. Closure Report for Corrective Action Unit 547: Miscellaneous Contaminated Waste Sites, Nevada National Security Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2012-07-17

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 547, Miscellaneous Contaminated Waste Sites, and provides documentation supporting the completed corrective actions and confirmation that closure objectives for CAU 547 were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 as amended). CAU 547 consists of the following three Corrective Action Sites (CASs), located in Areas 2, 3, and 9 of the Nevada National Security Site: (1) CAS 02-37-02, Gas Sampling Assembly; (2) CAS 03-99-19, Gas Sampling Assembly; AND (3) CAS 09-99-06, Gas Sampling Assembly Closure activities began in August 2011 and were completed in June 2012. Activities were conducted according to the Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) for CAU 547 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2011). The recommended corrective action for the three CASs in CAU 547 was closure in place with administrative controls. The following closure activities were performed: (1) Open holes were filled with concrete; (2) Steel casings were placed over vertical expansion joints and filled with cement; (3) Engineered soil covers were constructed over piping and exposed sections of the gas sampling system components; (4) Fencing, monuments, Jersey barriers, radiological postings, and use restriction (UR) warning signs were installed around the perimeters of the sites; (5) Housekeeping debris was picked up from around the sites and disposed; and (6) Radiological surveys were performed to confirm final radiological postings. UR documentation is included in Appendix D. The post-closure plan was presented in detail in the CADD/CAP for CAU 547 and is included as

  2. Closure Report for Corrective Action Unit 537: Waste Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2007-01-01

    Corrective Action Unit (CAU) 537 is identified in the ''Federal Facility Agreement and Consent Order'' (FFACO) of 1996 as Waste Sites. CAU 537 is located in Areas 3 and 19 of the Nevada Test Site, approximately 65 miles northwest of Las Vegas, Nevada, and consists of the following two Corrective Action Sites (CASs): CAS 03-23-06, Bucket; Yellow Tagged Bags; and CAS 19-19-01, Trash Pit. CAU 537 closure activities were conducted in April 2007 according to the FFACO and Revision 3 of the Sectored Clean-up Work Plan for Housekeeping Category Waste Sites (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2003). At CAS 03-23-06, closure activities included removal and disposal of a 15-foot (ft) by 15-ft by 8-ft tall wooden shed containing wood and metal debris and a 5-gallon plastic bucket containing deteriorated plastic bags with yellow radioactive contamination tape. The debris was transported to the Area 9 U10c Landfill for disposal after being screened for radiological contamination according to the ''NV/YMP Radiological Control Manual'' (NNSA/NSO, 2004). At CAS 19-19-01, closure activities included segregation, removal, and disposal of non-friable, non-regulated asbestos-containing material (ACM) and construction debris. The ACM was determined to be non-friable by waste characterization samples collected prior to closure activities. The ACM was removed and double-bagged by licensed, trained asbestos workers and transported to the Area 9 U10c Landfill for disposal. Construction debris was transported in end-dump trucks to the Area 9 U10c Landfill for disposal. Closure activities generated sanitary waste/construction debris and ACM. Waste generated during closure activities was appropriately managed and disposed. Waste characterization sample results are included as Appendix A of this report, and waste disposition documentation is included as Appendix B of this report. Copies of the Sectored Housekeeping Site Closure

  3. Closure Report for Corrective Action Unit 543: Liquid Disposal Units, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2008-01-01

    This Closure Report (CR) documents closure activities for Corrective Action Unit (CAU) 543, Liquid Disposal Units, according to the Federal Facility Agreement and Consent Order (FFACO, 1996) and the Corrective Action Plan (CAP) for CAU 543 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2007). CAU 543 is located at the Nevada Test Site (NTS), Nevada (Figure 1), and consists of the following seven Corrective Action Sites (CASs): CAS 06-07-01, Decon Pad; CAS 15-01-03, Aboveground Storage Tank; CAS 15-04-01, Septic Tank; CAS 15-05-01, Leachfield; CAS 15-08-01, Liquid Manure Tank; CAS 15-23-01, Underground Radioactive Material Area; CAS 15-23-03, Contaminated Sump, Piping; and CAS 06-07-01 is located at the Decontamination Facility in Area 6, adjacent to Yucca Lake. The remaining CASs are located at the former U.S. Environmental Protection Agency (EPA) Farm in Area 15. The purpose of this CR is to provide a summary of the completed closure activities, to document waste disposal, and to present analytical data confirming that the remediation goals were met. The closure alternatives consisted of closure in place for two of the CASs, and no further action with implementation of best management practices (BMPs) for the remaining five CASs.

  4. EPR of Cu(II) in sarcosine cadmium chloride: probe into dopant site - symmetry and copper-sarcosine interaction

    CERN Document Server

    Pathinettam-Padiyan, D; Murugesan, R

    2000-01-01

    The electron paramagnetic resonance spectra of Cu(II) doped sarcosine cadmium chloride single crystals have been investigated at room temperature. Experimental results reveal that the Cu(II) ion enters the lattice interstitially. The observed superhyperfine lines indicate the superposition of two sets of quintet structure with interaction of nitrogen atoms and the two isotopes of copper. The spin Hamiltonian parameters are evaluated by Schonland method and the electric field symmetry around the copper ion is rhombic. An admixture of d sub z sup 2 orbital with the d sub x sub sup 2 sub - sub y sub sup 2 ground state is observed. Evaluation of MO coefficients reveals that the in-plane interaction between copper and nitrogen is strong in this lattice.

  5. Symmetry witnesses

    Science.gov (United States)

    Aniello, Paolo; Chruściński, Dariusz

    2017-07-01

    A symmetry witness is a suitable subset of the space of selfadjoint trace class operators that allows one to determine whether a linear map is a symmetry transformation, in the sense of Wigner. More precisely, such a set is invariant with respect to an injective densely defined linear operator in the Banach space of selfadjoint trace class operators (if and) only if this operator is a symmetry transformation. According to a linear version of Wigner’s theorem, the set of pure states—the rank-one projections—is a symmetry witness. We show that an analogous result holds for the set of projections with a fixed rank (with some mild constraint on this rank, in the finite-dimensional case). It turns out that this result provides a complete classification of the sets of projections with a fixed rank that are symmetry witnesses. These particular symmetry witnesses are projectable; i.e. reasoning in terms of quantum states, the sets of ‘uniform’ density operators of corresponding fixed rank are symmetry witnesses too.

  6. Closure Report for Corrective Action Unit 536: Area 3 Release Site, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2007-01-01

    Corrective Action Unit (CAU) 536 is located in Area 3 of the Nevada Test Site. CAU 536 is listed in the Federal Facility Agreement and Consent Order of 1996 as Area 3 Release Site, and comprises a single Corrective Action Site (CAS): (sm b ullet) CAS 03-44-02, Steam Jenny Discharge The Nevada Division of Environmental Protection (NDEP)-approved corrective action alternative for CAS 03-44-02 is clean closure. Closure activities included removing and disposing of total petroleum hydrocarbon (TPH)- and polyaromatic hydrocarbon (PAH)-impacted soil, soil impacted with plutonium (Pu)-239, and concrete pad debris. CAU 536 was closed in accordance with the NDEP-approved CAU 536 Corrective Action Plan (CAP), with minor deviations as approved by NDEP. The closure activities specified in the CAP were based on the recommendations presented in the CAU 536 Corrective Action Decision Document (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2004). This Closure Report documents CAU 536 closure activities. During closure activities, approximately 1,000 cubic yards (yd3) of hydrocarbon waste in the form of TPH- and PAH-impacted soil and debris, approximately 8 yd3 of Pu-239-impacted soil, and approximately 100 yd3 of concrete debris were generated, managed, and disposed of appropriately. Additionally, a previously uncharacterized, buried drum was excavated, removed, and disposed of as hydrocarbon waste as a best management practice. Waste minimization techniques, such as the utilization of laboratory analysis to characterize and classify waste streams, were employed during the performance of closure

  7. Restaurant Food Allergy Practices - Six Selected Sites, United States, 2014.

    Science.gov (United States)

    Radke, Taylor J; Brown, Laura G; Faw, Brenda; Hedeen, Nicole; Matis, Bailey; Perez, Priscela; Viveiros, Brendalee; Ripley, Danny

    2017-04-21

    Food allergies affect an estimated 15 million persons in the United States (1), and are responsible for approximately 30,000 emergency department visits and 150-200 deaths each year (2). Nearly half of reported fatal food allergy reactions over a 13-year period were caused by food from a restaurant or other food service establishment (3). To ascertain the prevalence of food allergy training, training topics, and practices related to food allergies, CDC's Environmental Health Specialists Network (EHS-Net), a collaborative forum of federal agencies and state and local health departments with six sites, interviewed personnel at 278 restaurants. Fewer than half of the 277 restaurant managers (44.4%), 211 food workers (40.8%), and 156 servers (33.3%) interviewed reported receiving food allergy training. Among those who reported receiving training, topics commonly included the major food allergens and what to do if a customer has a food allergy. Although most restaurants had ingredient lists for at least some menu items, few had separate equipment or areas designated for the preparation of allergen-free food. Restaurants can reduce the risk for allergic reactions among patrons by providing food allergy training for personnel and ingredient lists for all menu items and by dedicating equipment and areas specifically for preparing allergen-free food.

  8. National priorities list sites: The United States Territories, 1992

    International Nuclear Information System (INIS)

    1992-12-01

    The publication provides general Superfund background information and descriptions of activities at each State National Priorities List (NPL) site. It clearly describes what the problems are, what EPA and others participating in site cleanups are doing, and how the nation can move ahead in solving these serious problems. Compiles site summary fact sheets on each State site being cleaned up under the Superfund Program

  9. Mirror symmetry

    CERN Document Server

    Voisin, Claire

    1999-01-01

    This is the English translation of Professor Voisin's book reflecting the discovery of the mirror symmetry phenomenon. The first chapter is devoted to the geometry of Calabi-Yau manifolds, and the second describes, as motivation, the ideas from quantum field theory that led to the discovery of mirror symmetry. The other chapters deal with more specialized aspects of the subject: the work of Candelas, de la Ossa, Greene, and Parkes, based on the fact that under the mirror symmetry hypothesis, the variation of Hodge structure of a Calabi-Yau threefold determines the Gromov-Witten invariants of its mirror; Batyrev's construction, which exhibits the mirror symmetry phenomenon between hypersurfaces of toric Fano varieties, after a combinatorial classification of the latter; the mathematical construction of the Gromov-Witten potential, and the proof of its crucial property (that it satisfies the WDVV equation), which makes it possible to construct a flat connection underlying a variation of Hodge structure in the ...

  10. Corrective Action Plan for Corrective Action Unit 543: Liquid Disposal Units, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2007-01-01

    Corrective Action Unit (CAU) 543: Liquid Disposal Units is listed in Appendix III of the ''Federal Facility Agreement and Consent Order'' (FFACO) which was agreed to by the state of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense (FFACO, 1996). CAU 543 sites are located in Areas 6 and 15 of the Nevada Test Site (NTS), which is approximately 65 miles northwest of Las Vegas, Nevada. CAU 543 consists of the following seven Corrective Action Sites (CASs) (Figure 1): CAS 06-07-01, Decon Pad; CAS 15-01-03, Aboveground Storage Tank; CAS 15-04-01, Septic Tank; CAS 15-05-01, Leachfield; CAS 15-08-01, Liquid Manure Tank; CAS 15-23-01, Underground Radioactive Material Area; and CAS 15-23-03, Contaminated Sump, Piping. All Area 15 CASs are located at the former U.S. Environmental Protection Agency (EPA) Farm, which operated from 1963 to 1981 and was used to support animal experiments involving the uptake of radionuclides. Each of the Area 15 CASs, except CAS 15-23-01, is associated with the disposal of waste effluent from Building 15-06, which was the primary location of the various tests and experiments conducted onsite. Waste effluent disposal from Building 15-06 involved piping, sumps, outfalls, a septic tank with leachfield, underground storage tanks, and an aboveground storage tank (AST). CAS 15-23-01 was associated with decontamination activities of farm equipment potentially contaminated with radiological constituents, pesticides, and herbicides. While the building structures were removed before the investigation took place, all the original tanks, sumps, piping, and concrete building pads remain in place. The Area 6 CAS is located at the Decontamination Facility in Area 6, a facility which operated from 1971 to 2001 and was used to decontaminate vehicles, equipment, clothing, and other materials that had become contaminated during nuclear testing activities. The CAS includes the effluent collection and distribution systems for Buildings

  11. Closure Report for Corrective Action Unit 356: Mud Pits and Disposal Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2002-01-01

    This Closure Report (CR) has been prepared for Corrective Action Unit (CAU) 356, Mud Pits and Disposal Sites, in accordance with the Federal Facility Agreement and Consent Order. This CAU is located in Areas 3 and 20 of the Nevada Test Site (NTS) approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 356 consists of seven Corrective Action Sites (CASs): 03-04-01, Area 3 Change House Septic System; 03-09-01, Mud Pit Spill Over; 03-09-03, Mud Pit; 03-09-04, Mud Pit; 03-09-05, Mud Pit; 20-16-01, Landfill; and 20-22-21, Drums. This CR identifies and rationalizes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Operations Office's (NNSA/NV's) recommendation that no further corrective action and closure in place is deemed necessary for CAU 356. This recommendation is based on the results of field investigation/closure activities conducted November 20, 2001, through January 3, 2002, and March 11 to 14, 2002. These activities were conducted in accordance with the Streamlined Approach for Environmental Restoration Plan (SAFER) for CAU 356. For CASs 03-09-01, 03-09-03, 20-16-01, and 22-20-21, analytes detected in soil during the corrective action investigation were evaluated against Preliminary Action Levels (PALs) and it was determined that no Contaminants of Concern (COCs) were present. Therefore, no further action is necessary for the soil at these CASs. For CASs 03-04-01, 03-09-04, and 03-09-05, analytes detected in soil during the corrective action investigation were evaluated against PALs and identifies total petroleum hydrocarbons (TPHs) and radionuclides (i.e., americium-241 and/or plutonium 239/240) as COCs. The nature, extent, and concentration of the TPH and radionuclide COCs were bounded by sampling and shown to be relatively immobile. Therefore, closure in place is recommended for these CASs in CAU 356. Further, use restrictions are not required at this CAU beyond the NTS use restrictions identified in

  12. Closure Report for Corrective Action Unit 573: Alpha Contaminated Sites Nevada National Security Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick [Navarro, Las Vegas, NV (United States)

    2017-03-01

    This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 573: Alpha Contaminated Sites, Nevada National Security Site, Nevada. CAU 573 comprises the two corrective action sites (CASs): 05-23-02-GMX Alpha Contaminated Are-Closure in Place and 05-45-01-Atmospheric Test Site - Hamilton- Clean Closure. The purpose of this CR is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 573 based on the implementation of the corrective actions. Corrective action activities were performed at Hamilton from May 25 through June 30, 2016; and at GMX from May 25 to October 27, 2016, as set forth in the Corrective Action Decision Document (CADD)/Corrective Action Plan (CAP) for Corrective Action Unit 573: Alpha Contaminated Sites; and in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices. Verification sample results were evaluated against data quality objective criteria developed by stakeholders that included representatives from the Nevada Division of Environmental Protection and the DOE, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) during the corrective action alternative (CAA) meeting held on November 24, 2015. Radiological doses exceeding the final action level were assumed to be present within the high contamination areas associated with CAS 05-23-02, thus requiring corrective action. It was also assumed that radionuclides were present at levels that require corrective action within the soil/debris pile associated with CAS 05-45-01. During the CAU 573 CAA meeting, the CAA of closure in place with a use restriction (UR) was selected by the stakeholders as the preferred corrective action of the high contamination areas at CAS 05-23-02 (GMX), which contain high levels of removable contamination; and the CAA of clean closure was selected by the

  13. Closure report for housekeeping category, Corrective Action Unit 349, Area 12, Nevada Test Site

    International Nuclear Information System (INIS)

    1998-01-01

    This Closure Report summarizes the corrective actions which were completed at the Corrective Action Sites within Corrective Action Unit 349 Area 12 at the Nevada Test Site. Current site descriptions, observations and identification of wastes removed are included on FFACO Corrective Action Site housekeeping closure verification forms

  14. Closure report for housekeeping category, Corrective Action Unit 349, Area 12, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This Closure Report summarizes the corrective actions which were completed at the Corrective Action Sites within Corrective Action Unit 349 Area 12 at the Nevada Test Site. Current site descriptions, observations and identification of wastes removed are included on FFACO Corrective Action Site housekeeping closure verification forms.

  15. Closure report for housekeeping category, Corrective Action Unit 348, Nevada Test Site

    International Nuclear Information System (INIS)

    1998-01-01

    This Closure Report summarizes the corrective actions which were completed at twelve Corrective Action Sites within Corrective Action Unit 348 at the Nevada Test Site. Current site descriptions, observations and identification of wastes removed are included on FFACO Corrective Action Site housekeeping closure verification forms

  16. Closure report for housekeeping category, Corrective Action Unit 347, Nevada Test Site

    International Nuclear Information System (INIS)

    1998-01-01

    This Closure Report summarizes the corrective actions which were completed at the Corrective Action Sites within Corrective Action Unit 347 at the Nevada Test Site. Current site descriptions, observations and identification of wastes removed are included on FFACO Corrective Action Site housekeeping closure verification forms

  17. Corrective Action Investigation Plan for Corrective Action Unit 573: Alpha Contaminated Sites, Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick

    2014-05-01

    Corrective Action Unit (CAU) 573 is located in Area 5 of the Nevada National Security Site, which is approximately 65 miles northwest of Las Vegas, Nevada. CAU 573 is a grouping of sites where there has been a suspected release of contamination associated with non-nuclear experiments and nuclear testing. This document describes the planned investigation of CAU 573, which comprises the following corrective action sites (CASs): • 05-23-02, GMX Alpha Contaminated Area • 05-45-01, Atmospheric Test Site - Hamilton These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives.

  18. Corrective Action Investigation Plan for Corrective Action Unit 137: Waste Disposal Sites, Nevada Test Site, Nevada, Rev. No.:0

    Energy Technology Data Exchange (ETDEWEB)

    Wickline, Alfred

    2005-12-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 137: Waste Disposal Sites. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 137 contains sites that are located in Areas 1, 3, 7, 9, and 12 of the Nevada Test Site (NTS), which is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 137 is comprised of the eight corrective action sites (CASs) shown on Figure 1-1 and listed below: (1) CAS 01-08-01, Waste Disposal Site; (2) CAS 03-23-01, Waste Disposal Site; (3) CAS 03-23-07, Radioactive Waste Disposal Site; (4) CAS 03-99-15, Waste Disposal Site; (5) CAS 07-23-02, Radioactive Waste Disposal Site; (6) CAS 09-23-07, Radioactive Waste Disposal Site; (7) CAS 12-08-01, Waste Disposal Site; and (8) CAS 12-23-07, Waste Disposal Site. The Corrective Action Investigation (CAI) will include field inspections, radiological surveys, geophysical surveys, sampling of environmental media, analysis of samples, and assessment of investigation results, where appropriate. Data will be obtained to support corrective action alternative evaluations and waste management decisions. The CASs in CAU 137 are being investigated because hazardous and/or radioactive constituents may be present in concentrations that could potentially pose a threat to human health and the environment. Existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives for the CASs. Additional information will be generated by conducting a CAI before evaluating and selecting

  19. Sites in the United States contaminated with radioactivity

    International Nuclear Information System (INIS)

    Wolbarst, A.B.; Blom, P.F.; Chan, D.

    1999-01-01

    Over the century that radioactive materials have been mined, processed, produced, and utilized, many sites across the US have become contaminated. Such sites include bases and installations of the Department of Defense, weapons production and research facilities of the Department of Energy, properties under the authority of other Federal agencies, privately-owned and governmental facilities that are licensed by the Nuclear Regulatory Commission and its Agreement States, and sites licensed by or the responsibility of states. This review reports on aspects of work by the Environmental Protection Agency, the Department of Defense, the Department of Energy, the Nuclear Regulatory Commission, and others to identify sites contaminated with radioactive materials. It also describes the principal programs that have been instituted to deal with them

  20. Interim remedial measures proposed plan for the 200-ZP-1 Operable Unit, Hanford Site, Washington

    International Nuclear Information System (INIS)

    Parker, D.L.

    1993-12-01

    The purpose of this interim remedial measures (IRM) proposed plan is to present and solicit public comments on the IRM planned for the 200-ZP-1 Operable Unit at the Hanford Site in Washington state. The 200-ZP-1 is one of two operable units that envelop the groundwater beneath the 200 West Area of the Hanford Site

  1. Symmetry, Symmetry Breaking and Topology

    Directory of Open Access Journals (Sweden)

    Siddhartha Sen

    2010-07-01

    Full Text Available The ground state of a system with symmetry can be described by a group G. This symmetry group G can be discrete or continuous. Thus for a crystal G is a finite group while for the vacuum state of a grand unified theory G is a continuous Lie group. The ground state symmetry described by G can change spontaneously from G to one of its subgroups H as the external parameters of the system are modified. Such a macroscopic change of the ground state symmetry of a system from G to H correspond to a “phase transition”. Such phase transitions have been extensively studied within a framework due to Landau. A vast range of systems can be described using Landau’s approach, however there are also systems where the framework does not work. Recently there has been growing interest in looking at such non-Landau type of phase transitions. For instance there are several “quantum phase transitions” that are not of the Landau type. In this short review we first describe a refined version of Landau’s approach in which topological ideas are used together with group theory. The combined use of group theory and topological arguments allows us to determine selection rule which forbid transitions from G to certain of its subgroups. We end by making a few brief remarks about non-Landau type of phase transition.

  2. Site symmetry and crystal field of Ce{sup 3+} luminescent centres in KMgF{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Yamaga, M. [Department of Electrical and Electronic Engineering, Faculty of Engineering, Gifu University, Gifu (Japan); Honda, M.; Kawamata, N. [Faculty of Science, Naruto University of Education, Naruto (Japan); Fujita, T.; Shimamura, K.; Fukuda, T. [Institute for Materials Research, Tohoku University, Sendai (Japan)

    2001-04-09

    The electron-spin resonance (ESR) spectra of Ce{sup 3+} in KMgF{sub 3} observed at low temperatures (<20 K) show that two tetragonal and two orthorhombic Ce{sup 3+} centres exist in the absence of a cubic centre. These Ce{sup 3+} centres are strongly associated with substitution of Ce{sup 3+} ions for K{sup +} ions with K{sup +}-ion vacancies at three different sites and for a Mg{sup 2+} ion with a vacancy of the nearest neighbour Mg{sup 2+} ion along the [101] direction as charge compensators. The optical absorption spectrum of Ce{sup 3+} in KMgF{sub 3} measured at room temperature consists of two intense broadbands with peaks at 229 and 237 nm, and two weak bands with peaks at 203 and 211 nm corresponding to the transition from the ground state {sup 2}F{sub 5/2} to the 5d{sup 1} excited states of Ce{sup 3+}. The Ce{sup 3+} luminescence spectrum excited at 229 or 237 nm at room temperature is composed of broadbands with double peaks at 265 and 282 nm, which are due to the ground-state splitting between {sup 2}F{sub 5/2} and {sup 2}F{sub 7/2}. The peak of the weak luminescence band excited at a tail (250-280 nm) of the intense absorption bands is shifted to lower energy. The intense and weak Ce{sup 3+} luminescence bands are assigned to Ce{sup 3+} ions substituting for K{sup +} ions away from and near to K{sup +}-ion vacancies, respectively. The luminescence from Ce{sup 3+} ions substituting for Mg{sup 2+} ions could not be observed at room temperature. (author)

  3. Universe symmetries

    International Nuclear Information System (INIS)

    Souriau, J.M.

    1984-01-01

    The sky uniformity can be noticed in studying the repartition of objects far enough. The sky isotropy description uses space rotations. The group theory elements will allow to give a meaning at the same time precise and general to the word a ''symmetry''. Universe models are reviewed, which must have both of the following qualities: - conformity with the physic known laws; - rigorous symmetry following one of the permitted groups. Each of the models foresees that universe evolution obeys an evolution equation. Expansion and big-bang theory are recalled. Is universe an open or closed space. Universe is also electrically neutral. That leads to a work hypothesis: the existing matter is not given data of universe but it appeared by evolution from nothing. Problem of matter and antimatter is then raised up together with its place in universe [fr

  4. Risk analysis of NPP in multi-unit site for configuration of AAC power source

    International Nuclear Information System (INIS)

    Kim, Myung Ki

    2000-01-01

    Because of the difficulties in finding new sites for nuclear power plants, more units are being added to the existing sites. In these multi-unit sites, appropriate countermeasures should be established to cope with the potential station blackout (SBO) accident. Currently, installation of additional diesel generator (DG) is considered to ensure an alternative AC power source, but it has not been decided yet how many DGs should be installed in a multi-unit site. In this paper, risk informed decision making method, which evaluates reliability of electrical system, core damage frequency, and site average core damage frequency, is introduced to draw up the suitable number of DG in multi-unit site. The analysis results show that installing two DGs lowered the site average core damage frequency by 1.4% compared to one DG in six unit site. In the light of risk-informed decisions in regulatory guide 1.174, there is no difference of safety between two alternatives. It is concluded that one emergency diesel generator sufficiently guarantees safety against station blackout of nuclear power plants in multi-unit site. (author)

  5. Public relation aspects of site selection in the United Kingdom

    International Nuclear Information System (INIS)

    Curtin, T.

    1996-01-01

    Following a recent review, the UK Government has confirmed that it continues to favour a policy of deep disposal of intermediate low-level waste. The Government's continuing policy stems from the recommendations of the 1976 Royal Commission on Environmental Pollution (the 'Flowers'Report) and White Papers issued in 1977 and 1982 and 1982. The paper outlines the search for a disposal site in the UK. Nirex (Nuclear Industry Radioactive Waste Executive) was set up in 1982 to research and develop disposal facilities for intermediate low-level waste and low-level waste. At that time disposal facilities were envisaged as an engineered near-surface facility for LLW and short-lived ILW, and a modified mine or purpose built cavity at greater depth for long-lived ILW. Investigation of various sites followed and is discussed in the paper. The paper reviews the lessons learned in the field of public relations and public consultation, notably that public acceptance is a key factor in site selection and development, and that transparency is essential. For example, when it was announced that Sellafield was the preferred site for the repository, local councils became involved in discussions and planning, and Nirex is becoming more and more integrated into the local community. (author)

  6. Holistic approach to multi-unit site risk assessment: Status and Issues

    International Nuclear Information System (INIS)

    Kim, Inn Seock; Jang, Mi Suk; Kim, Seoung Rae

    2017-01-01

    The events at the Fukushima Daiichi Nuclear Power Station in March 2011 point out, among other matters, that concurrent accidents at multiple units of a site can occur in reality. Although site risk has been deterministically considered to some extent in nuclear power plant siting and design, potential occurrence of multi-unit accident sequences at a site was not investigated in sufficient detail thus far in the nuclear power community. Therefore, there is considerable worldwide interest and research effort directed toward multi-unit site risk assessment, especially in the countries with high-density nuclear-power-plant sites such as Korea. As the technique of probabilistic safety assessment (PSA) has been successfully applied to evaluate the risk associated with operation of nuclear power plants in the past several decades, the PSA having primarily focused on single-unit risks is now being extended to the multi-unit PSA. In this paper we first characterize the site risk with explicit consideration of the risk associated with spent fuel pools as well as the reactor risks. The status of multi-unit risk assessment is discussed next, followed by a description of the emerging issues relevant to the multi-unit risk evaluation from a practical standpoint

  7. Holistic approach to multi-unit site risk assessment: Status and Issues

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Inn Seock; Jang, Mi Suk; Kim, Seoung Rae [Nuclear Engineering Service and Solution Company (NESS), Daejeon Business Agency, Daejeon (Korea, Republic of)

    2017-03-15

    The events at the Fukushima Daiichi Nuclear Power Station in March 2011 point out, among other matters, that concurrent accidents at multiple units of a site can occur in reality. Although site risk has been deterministically considered to some extent in nuclear power plant siting and design, potential occurrence of multi-unit accident sequences at a site was not investigated in sufficient detail thus far in the nuclear power community. Therefore, there is considerable worldwide interest and research effort directed toward multi-unit site risk assessment, especially in the countries with high-density nuclear-power-plant sites such as Korea. As the technique of probabilistic safety assessment (PSA) has been successfully applied to evaluate the risk associated with operation of nuclear power plants in the past several decades, the PSA having primarily focused on single-unit risks is now being extended to the multi-unit PSA. In this paper we first characterize the site risk with explicit consideration of the risk associated with spent fuel pools as well as the reactor risks. The status of multi-unit risk assessment is discussed next, followed by a description of the emerging issues relevant to the multi-unit risk evaluation from a practical standpoint.

  8. Safety assessment of multi-unit NPP sites subject to external events

    International Nuclear Information System (INIS)

    Samaddar, Sujit; Hibino, Kenta; Coman, Ovidiu

    2014-01-01

    This paper presents a framework for conducting a probabilistic safety assessment of multi-unit sites against external events. The treatment of multiple hazard on a unit, interaction between units, implementation of severe accident measures, human reliability, environmental conditions, metric of risk for both reactor and non-reactor sources, integration of risk and responses and many such important factors need to be addressed within the context of this framework. The framework facilitates the establishment of a comprehensive methodology that can be applied internationally to the peer review of safety assessment of multi-unit sites under the impact of multiple external hazards. In summary, it can be said that the site safety assessment for a multi-unit site will be quite complex and need to start with individual unit risk assessments, these need to be combined considering the interactions between units and their responses, and the fragilities of the installations established considering the combined demands from all interactions. Using newly established risk metric the risk can then be integrated for the overall site. Fig. 2 shows schematically such a proposal. Much work has to done and the IAEA has established a working group that is systematically establishing the structure and process to incorporate the many issues that are a part of a multi-unit site safety assessment. (authors)

  9. SUPERFUND TREATABILITY CLEARINGHOUSE: SOIL STABILIZATION PILOT STUDY, UNITED CHROME NPL SITE PILOT STUDY AND HEALTH AND SAFETY PROGRAM, UNITED CHROME NPL SITE PILOT STUDY

    Science.gov (United States)

    This document is a project plan for a pilot study at the United Chrome NPL site, Corvallis, Oregon and includes the health and safety and quality assurance/quality control plans. The plan reports results of a bench-scale study of the treatment process as iieasured by the ...

  10. Closure Report for Corrective Action Unit 330: Areas 6, 22, and 23 Tanks and Spill Sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    A. T. Urbon

    2003-07-01

    This Closure Report (CR) documents the activities performed to close Corrective Action Unit (CAU) 330: Areas 6, 22, and 23 Tanks and Spill Sites, in accordance with the Federal Facility Agreement and Consent Order (FFACO of 1996), and the Nevada Division of Environmental Protection (NDEP)-approved Streamlined Approach for Environmental Restoration (SAFER) Plan for CAU 330: Areas 6, 22, and 23 Tanks and Spill Sites, Nevada Test Site (NTS), Nevada (U.S. Department of Energy, National Nuclear Security Administration Nevada Operation Office [NNSA/NV], 2001). CAU 330 consists of the following four Corrective Action Sites (CASs): 06-02-04, 22-99-06, 23-01-02, and 23-25-05 (Figure 1).

  11. Site Specific Waste Management Instruction for the 116-F-4 soil storage unit

    International Nuclear Information System (INIS)

    Hopkins, G.G.

    1996-08-01

    This Site Specific Waste Management Instruction provides guidance for management of waste generated during the excavation and remediation of soil and debris from the 116-4 soil storage unit located at the Hanford Site in Richland, Washington. This document outlines the waste management practices that will be performed in the field to implement federal, state, and US Department of Energy requirements

  12. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 107: Low Impact Soil Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2008-01-01

    This Streamlined Approach for Environmental Restoration Plan covers activities associated with Corrective Action Unit (CAU) 107 of the Federal Facility Agreement and Consent Order (FFACO, 1996 (as amended February 2008)). CAU 107 consists of the following Corrective Action Sites (CASs) located in Areas 1, 2, 3, 4, 5, 9, 10, and 18 of the Nevada Test Site. (1) CAS 01-23-02, Atmospheric Test Site - High Alt; (2) CAS 02-23-02, Contaminated Areas (2); (3) CAS 02-23-03, Contaminated Berm; (4) CAS 02-23-10, Gourd-Amber Contamination Area; (5) CAS 02-23-11, Sappho Contamination Area; (6) CAS 02-23-12, Scuttle Contamination Area; (7) CAS 03-23-24, Seaweed B Contamination Area; (8) CAS 03-23-27, Adze Contamination Area; (9) CAS 03-23-28, Manzanas Contamination Area; (10) CAS 03-23-29, Truchas-Chamisal Contamination Area; (11) CAS 04-23-02, Atmospheric Test Site T4-a; (12) CAS 05-23-06, Atmospheric Test Site; (13) CAS 09-23-06, Mound of Contaminated Soil; (14) CAS 10-23-04, Atmospheric Test Site M-10; and (15) CAS 18-23-02, U-18d Crater (Sulky). Based on historical documentation, personnel interviews, site process knowledge, site visits, photographs, engineering drawings, field screening, analytical results, and the results of data quality objectives process (Section 3.0), closure in place with administrative controls or no further action will be implemented for CAU 107. CAU 107 closure activities will consist of verifying that the current postings required under Title 10 Code of Federal Regulations (CFR) Part 835 are in place and implementing use restrictions (URs) at two sites, CAS 03-23-29 and CAS 18-23-02. The current radiological postings combined with the URs are adequate administrative controls to limit site access and worker dose

  13. CLOSURE REPORT FOR CORRECTIVE ACTION UNIT 204: STORAGE BUNKERS, NEVADA TEST SITE, NEVADA

    International Nuclear Information System (INIS)

    2006-01-01

    Corrective Action Unit (CAU) 330 consists of four Corrective Action Sites (CASs) located in Areas 6, 22, and 23 of the Nevada Test Site (NTS). The unit is listed in the Federal Facility Agreement and Consent Order (FFACO, 1996) as CAU 330: Areas 6, 22, and 23 Tanks and Spill Sites. CAU 330 consists of the following CASs: CAS 06-02-04, Underground Storage Tank (UST) and Piping CAS 22-99-06, Fuel Spill CAS 23-01-02, Large Aboveground Storage Tank (AST) Farm CAS 23-25-05, Asphalt Oil Spill/Tar Release

  14. Closure Report for Corrective Action Unit 340: NTS Pesticide Release Sites Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    C. M. Obi

    2000-05-01

    The purpose of this report is to provide documentation of the completed corrective action and to provide data confirming the corrective action. The corrective action was performed in accordance with the approved Corrective Action Plan (CAP) (U.S. Department of Energy [DOE], 1999) and consisted of clean closure by excavation and disposal. The Area 15 Quonset Hut 15-11 was formerly used for storage of farm supplies including pesticides, herbicides, and fertilizers. The Area 23 Quonset Hut 800 was formerly used to clean pesticide and herbicide equipment. Steam-cleaning rinsate and sink drainage occasionally overflowed a sump into adjoining drainage ditches. One ditch flows south and is referred to as the quonset hut ditch. The other ditch flows southeast and is referred to as the inner drainage ditch. The Area 23 Skid Huts were formerly used for storing and mixing pesticide and herbicide solutions. Excess solutions were released directly to the ground near the skid huts. The skid huts were moved to a nearby location prior to the site characterization performed in 1998 and reported in the Corrective Action Decision Document (CADD) (DOE, 1998). The vicinity and site plans of the Area 23 sites are shown in Figures 2 and 3, respectively.

  15. Corrective Action Investigation Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    Grant Evenson

    2006-04-01

    Corrective Action Unit (CAU) 139 is located in Areas 3, 4, 6, and 9 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 139 is comprised of the seven corrective action sites (CASs) listed below: (1) 03-35-01, Burn Pit; (2) 04-08-02, Waste Disposal Site; (3) 04-99-01, Contaminated Surface Debris; (4) 06-19-02, Waste Disposal Site/Burn Pit; (5) 06-19-03, Waste Disposal Trenches; (6) 09-23-01, Area 9 Gravel Gertie; and (7) 09-34-01, Underground Detection Station. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives with the exception of CASs 09-23-01 and 09-34-01. Regarding these two CASs, CAS 09-23-01 is a gravel gertie where a zero-yield test was conducted with all contamination confined to below ground within the area of the structure, and CAS 09-34-01 is an underground detection station where no contaminants are present. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for the other five CASs where information is insufficient. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 4, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 139.

  16. Corrective Action Investigation Plan for Corrective Action Unit 554: Area 23 Release Site, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Boehlecke, Robert F.

    2004-01-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information for conducting site investigation activities at Corrective Action Unit (CAU) 554: Area 23 Release Site, Nevada Test Site, Nevada. Information presented in this CAIP includes facility descriptions, environmental sample collection objectives, and criteria for the selection and evaluation of environmental samples. Corrective Action Unit 554 is located in Area 23 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 554 is comprised of one Corrective Action Site (CAS), which is: 23-02-08, USTs 23-115-1, 2, 3/Spill 530-90-002. This site consists of soil contamination resulting from a fuel release from underground storage tanks (USTs). Corrective Action Site 23-02-08 is being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation prior to evaluating corrective action alternatives and selecting the appropriate corrective action for this CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document for CAU 554. Corrective Action Site 23-02-08 will be investigated based on the data quality objectives (DQOs) developed on July 15, 2004, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; and contractor personnel. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 554. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to CAS 23-02-08. The scope of the corrective action investigation

  17. Remedial investigation for the 200-BP-1 operable unit, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    Buckmaster, M.A.

    1991-01-01

    The Hanford Site, Richland, Washington, contains over 1500 identified waste sites that will be characterized and remediated over the next 30 years. In support of the ''Hanford Federal Facility Agreement and Consent Order,'' the US Department of Energy has initiated a remedial investigation/feasibility study (RI/FS) at the 200-BP-1 operable unit. The 200-BP-1 RI is the first Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) investigation on the Hanford Site that involves drilling into highly radioactive and chemically contaminated soils. The initial phase of the site characterization is oriented toward determining the nature and extent of any contamination present in the vicinity of the 200-BP-1 operable unit. The major focus of the Phase I RI is the drilling and sampling of 10 inactive waste disposal units which received low level radioactive liquid waste

  18. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 107: Low Impact Soil Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2009-01-01

    This Streamlined Approach for Environmental Restoration Plan covers activities associated with Corrective Action Unit (CAU) 107 of the Federal Facility Agreement and Consent Order (1996 (as amended February 2008)). CAU 107 consists of the following Corrective Action Sites (CASs) located in Areas 1, 2, 3, 4, 5, 9, 10, and 18 of the Nevada Test Site. (sm b ullet) CAS 01-23-02, Atmospheric Test Site - High Alt(sm b ullet) CAS 02-23-02, Contaminated Areas (2)(sm b ullet) CAS 02-23-03, Contaminated Berm(sm b ullet) CAS 02-23-10, Gourd-Amber Contamination Area(sm b ullet) CAS 02-23-11, Sappho Contamination Area(sm b ullet) CAS 02-23-12, Scuttle Contamination Area(sm b ullet) CAS 03-23-24, Seaweed B Contamination Area(sm b ullet) CAS 03-23-27, Adze Contamination Area(sm b ullet) CAS 03-23-28, Manzanas Contamination Area(sm b ullet) CAS 03-23-29, Truchas-Chamisal Contamination Area(sm b ullet) CAS 04-23-02, Atmospheric Test Site T4-a(sm b ullet) CAS 05-23-06, Atmospheric Test Site(sm b ullet) CAS 09-23-06, Mound of Contaminated Soil(sm b ullet) CAS 10-23-04, Atmospheric Test Site M-10(sm b ullet) CAS 18-23-02, U-18d Crater (Sulky) Based on historical documentation, personnel interviews, site process knowledge, site visits, photographs, engineering drawings, field screening, analytical results, and the results of data quality objectives process (Section 3.0), closure in place with administrative controls or no further action will be implemented for CAU 107.

  19. Some symmetries in nuclei

    International Nuclear Information System (INIS)

    Henley, E.M.

    1981-09-01

    Internal and space-time symmetries are discussed in this group of lectures. The first of the lectures deals with an internal symmetry, or rather two related symmetries called charge independence and charge symmetry. The next two discuss space-time symmetries which also hold approximately, but are broken only by the weak forces; that is, these symmetries hold for both the hadronic and electromagnetic forces

  20. Radioactive residues at nuclear sites in the United States of America

    International Nuclear Information System (INIS)

    Fiore, J.; Rampertaap, A.; Greeves, J.; MacKinney, J.; Raguso, M.; Selstrom, J.

    2000-01-01

    The United States of America has a large number of sites where radioactive materials have been mined, processed, produced, or used. Upon completion of activities at these sites, some will be cleaned up completely and released for unrestricted future use. However, at other sites, contamination will remain on the site following cleanup, requiring long term institutional controls. Depending on the purpose or the activity conducted at a specific site, these locations are generally under the jurisdiction of a federal agency: the United States Department of Energy, the United States Nuclear Regulatory Commission, the United States Environmental Protection Agency, or the United States Department of Defense. However, under certain conditions, the Nuclear Regulatory Commission relinquishes regulatory authority to individual states to regulate the commercial uses of radioactive materials (except for nuclear reactors), so some locations with radioactive materials are under the jurisdiction of individual states. Other sites with naturally occurring radioactive contamination may also be controlled by individual states. One or two sites under the jurisdiction of each agency are discussed where radioactive materials either existed in the past or exist today, and the source of contamination, the anticipated end state, and the process by which the responsible agency did or will conduct cleanup and site closure are described. Several issues are reviewed that must be addressed in order to design and implement remediations that will ensure long term protection for the environment and future inhabitants. The role of citizens in environmental cleanups is examined, and how institutional controls may be applied to ensure long term protection of remediations that leave some contaminants in place. (author)

  1. Quantitative comparison of the nuclear power plant sites in the United Kingdom

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, J; Sina, A M [Queen Mary Coll., London (UK). Dept. of Nuclear Engineering

    1976-01-01

    A probabilistic method is described for a comparison of nuclear power plant sites in the United Kingdom, which evaluates quantitatively the sites in terms of favourability, by taking into account the real term meteorological conditions, i.e. wind direction, wind speed, and stability distributions, and also the population distribution around the cities. A 'site safety quality factor' is obtained for each site and is used to compare the favourability of each site with respect to releases of radioactivity. The quality factor corresponds to the average number of persons that would be exposed to the specified relative concentration averaged over all weather conditions. The sites compared are Berkeley, Bradwell, Dungeness, Hartlepool, Heysham, Oldbury, Sizewell, and Wylfa.

  2. Corrective Action Decision Document/Closure Report for Corrective Action Unit 383: Area E-Tunnel Sites, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2010-03-15

    This Corrective Action Decision Document/Closure Report (CADD/CR) was prepared by the Defense Threat Reduction Agency (DTRA) for Corrective Action Unit (CAU) 383, Area 12 E-Tunnel Sites, which is the joint responsibility of DTRA and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This CADD/CR is consistent with the requirements of the Federal Facility Agreement and Consent Order (FFACO) agreed to by the State of Nevada, the DOE, and the U.S. Department of Defense. Corrective Action Unit 383 is comprised of three Corrective Action Sites (CASs) and two adjacent areas: • CAS 12-06-06, Muckpile • CAS 12-25-02, Oil Spill • CAS 12-28-02, Radioactive Material • Drainage below the Muckpile • Ponds 1, 2, and 3 The purpose of this CADD/CR is to provide justification and documentation to support the recommendation for closure with no further corrective action, by placing use restrictions at the three CASs and two adjacent areas of CAU 383.

  3. Controlling engineering project changes for multi-unit, multi-site standardized nuclear power plants

    International Nuclear Information System (INIS)

    Randall, E.; Boddeker, G.; McGugin, H.; Strother, E.; Waggoner, G.

    1978-01-01

    Multibillioin dollar multiple nuclear power plant projects have numerous potential sources of engineering changes. The majority of these are internally generated changes, client generated changes, and changes from construction, procurement, other engineering organizations, and regulatory organizations. For multiunit, multisite projects, the use of a standardized design is cost effective. Engineering changes can then be controlled for a single standardized design, and the unit or site unique changes can be treated as deviations. Once an effective change procedure is established for change control of the standardized design, the same procedures can be used for control of unit or site unique changes

  4. Closure Report for Corrective Action Unit 134: Aboveground Storage Tanks, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2009-01-01

    Corrective Action Unit (CAU) 134 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Aboveground Storage Tanks' and consists of the following four Corrective Action Sites (CASs), located in Areas 3, 15, and 29 of the Nevada Test Site: (1) CAS 03-01-03, Aboveground Storage Tank; (2) CAS 03-01-04, Tank; (3) CAS 15-01-05, Aboveground Storage Tank; and (4) CAS 29-01-01, Hydrocarbon Stain

  5. Chiral symmetry and chiral-symmetry breaking

    International Nuclear Information System (INIS)

    Peskin, M.E.

    1982-12-01

    These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed

  6. Regional approaches to power plant siting in the United States of America

    International Nuclear Information System (INIS)

    DiNunno, J.J.

    1975-01-01

    The selection and evaluation of sites for power plants in the United States of America have become increasingly difficult in recent years as pressures from various societal segments have resulted in governmental restraints on selection and burning of fossil fuels, methods of heat dissipation, acquisition of transmission rights of way, and on environmental impact of industrialization in general. New legislation at both Federal and state levels has been enacted that influences power plant siting. In addition to environmental requirements that must be satisfied, implementing procedures require documented justification for sites chosen and public disclosure of the basis for selection. Some states have consolidated their regulatory activities in the power plant siting area to provide for a more unified approach to these problems. Although nuclear plants have by far the most rigorous requirements for documentation of site selection and plant design, the application of the same general philosophies to fossil plants has been made in several states and can be anticipated elsewhere. Individual site-related investigations have not so much changed in basics as they have been enlarged in scope. Whereas in the past the search for siting alternatives was frequently confined to a utility's service area, the additional siting constraints represented in environmental laws, the economies of size of nuclear power plants, and the sharing of plant capacities among utilities have contributed to a widening of the search area. Several states have assumed the responsibility for site search and investigation and their efforts extend state-wide. This paper discusses applications of regional approaches to power plant siting in the United States of America using case studies made by NUS Corporation, an engineering/environmental consulting firm. The universality of these approaches is indicated, leaving to national policies and goals the importance of values assigned to the basic siting factors

  7. Closure Report for Corrective Action Unit 366: Area 11 Plutonium Valley Dispersion Sites, Nevada National Security Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2013-12-31

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 366, Area 11 Plutonium Valley Dispersion Sites, and provides documentation supporting the completed corrective actions and confirmation that closure objectives for CAU 366 were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 as amended).

  8. Symmetries and nuclei

    International Nuclear Information System (INIS)

    Henley, E.M.

    1987-01-01

    Nuclei are very useful for testing symmetries, and for studies of symmetry breaking. This thesis is illustrated for two improper space-time transformations, parity and time-reversal and for one internal symmetry: charge symmetry and independence. Recent progress and present interest is reviewed. 23 refs., 8 figs., 2 tabs

  9. EPA RREL's mobile volume reduction unit advances soil washing at four Superfund sites

    International Nuclear Information System (INIS)

    Gaire, R.; Borst, M.

    1994-01-01

    Research testing of the US. Environmental Protection Agency (EPA) Risk Reduction Engineering Laboratory's (RREL) Volume Reduction Unit (VRU), produced data helping advance soil washing as a remedial technology for contaminated soils. Based on research at four Superfund sites, each with a different matrix of organic contaminants, EPA evaluated the soil technology and provided information to forecast realistic, full-scale remediation costs. Primarily a research tool, the VRU is RREL's mobile test unit for investigating the breadth of this technology. During a Superfund Innovative Technology Evaluation (SITE) Demonstration at Escambia Wood Treating Company Site, Pensacola, FL, the VRU treated soil contaminated with pentachlorophenol (PCP) and polynuclear aromatic hydrocarbon-laden creosote (PAH). At Montana Pole and Treatment Plant Site, Butte, MT, the VRU treated soil containing PCP mixed with diesel oil (measured as total petroleum hydrocarbons) and a trace of dioxin. At Dover Air Force Base Site, Dover, DE, the VRU treated soil containing JP-4 jet fuel, measured as TPHC. At Sand Creek Site, Commerce City, CO, the feed soil at this site was contaminated with two pesticides: heptachlor and dieldrin. Less than 10 percent of these pesticides remained in the treated coarse soil fractions

  10. Radioactive solid waste inventories at United States Department of Energy burial and storage sites

    International Nuclear Information System (INIS)

    Watanabe, T.

    1987-06-01

    Radioactive solid waste inventories are given for United States Department of Energy (DOE) burial and storage sites. These data are obtained from the Solid Waste Information Management System (SWIMS) and reflect the inventories as of the end of the calendar year 1986. 4 figs., 7 tabs

  11. Compilation of 137Cs concentrations at selected sites in the continental United States

    International Nuclear Information System (INIS)

    Mohr, R.A.; Franks, L.A.

    1982-01-01

    This report summarizes results of cesium-137 analyses of soil samples obtained at 21 locations throughout the continental United States. The sites were all in the vicinity of operating nuclear power reactors, or those scheduled for operation. Selected fallout and meteorological data are also included

  12. United States and European students’ social-networking site activities and academic performance

    NARCIS (Netherlands)

    Karpinski, Aryn; Kirschner, Paul A.; Shreffler, Anthony; Albert, Patricia; Tomko, Carrie

    2018-01-01

    Different cultures communicate differently. Research is beginning to examine the differences in culture related to social-networking site (SNS) use. Differences in specific SNS activities related to academic performance among United States (US; n = 446) and European (n = 394) university students

  13. Denver Radium Site -- Operable Unit I closeout report for the US Environmental Protection Agency

    International Nuclear Information System (INIS)

    1992-08-01

    The Denver Radium Site consists of properties in the Denver, Colorado, area having radioactive contamination left from radium processing in the early 1900s. The properties are divided into 11 gaps or operable units to facilitate remedial action of the Site. Operable Unit I is an 8-acre block bounded by Quivas Street to the east, Shoshone Street to the west, West 12th Avenue to the south, and West 13th Avenue to the north. The primary focus of interest concerning investigations of radiological contamination was a radium, vanadium, and uranium processing facility at 1201 Quivas Street owned by the Pittsburgh Radium Company (PRC) from 1925 until 1926. The Radium Ores Company, which was associated with PRC, operated the facility until 1927. A Remedial investigation (RI) of Operable Unit I was prepared by Jacobs Engineering Group and CH 2 M Hill on behalf of EPA in April 1986. The draft Feasibility Study (FS), prepared by Jacobs Engineering Group and CH 2 M Hill, was issued in July 1987 (the final FS is the Community Relations Responsiveness Summary with an errata to the draft, issued September 1987). The RI focused on radium uranium processing residues discarded in the early 1900s. These residues contained uranium, radium, and thorium. EPA s Community Relations Plan involved the community in the decision-making process relating to the remedy to be implemented at Operable Unit X, and promoted communications among interested parties throughout the course of the project. The remedial action alternative preferred by EPA for Operable Unit I was Off-Site Permanent Disposal. Because a permanent disposal facility was not available at the time the Record of Decision was issued in September 1987, EPA selected the On-Site Temporary Containment (capping) with the Off-Site Permanent Disposal alternative

  14. Corrective Action Investigation Plan for Corrective Action Unit 190: Contaminated Waste Sites Nevada Test Site, Nevada, Rev. No.: 0

    International Nuclear Information System (INIS)

    Wickline, Alfred

    2006-01-01

    Corrective Action Unit (CAU) 190 is located in Areas 11 and 14 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 190 is comprised of the four Corrective Action Sites (CASs) listed below: (1) 11-02-01, Underground Centrifuge; (2) 11-02-02, Drain Lines and Outfall; (3) 11-59-01, Tweezer Facility Septic System; and (4) 14-23-01, LTU-6 Test Area. These sites are being investigated because existing information is insufficient on the nature and extent of potential contamination to evaluate and recommend corrective action alternatives. Additional information will be obtained before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS by conducting a corrective action investigation (CAI). The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on August 24, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture, and National Security Technologies, LLC. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 190. The scope of the CAU 190 CAI includes the following activities: (1) Move surface debris and/or materials, as needed, to facilitate sampling; (2) Conduct radiological and geophysical surveys; (3) Perform field screening; (4) Collect and submit environmental samples for laboratory analysis to determine whether contaminants of concern (COCs) are present; (5) If COCs are present, collect additional step-out samples to define the lateral and vertical extent of the contamination; (6) Collect samples of source material, if present

  15. Closure Report for Corrective Action Unit 107: Low Impact Soil Sites, Nevada Test Site, Nevada with ROTC-1

    International Nuclear Information System (INIS)

    Matthews, Patrick

    2009-01-01

    CAU 107, ''Low Impact Soil Sites'', consists of 15 CASs in Areas 1, 2, 3, 4, 5, 9, 10, and 18 of the NTS. The closure alternatives included No Further Action and Closure in Place with Administrative Controls. This CR provides a summary of completed closure activities. ROTC Justification: The FFACO UR as published in the Closure Report for Corrective Action Unit 107: Low Impact Soil Sites, Nevada Test Site, Nevada (NNSA/NSO, 2009) states that the UR for CAS 18-23-02, U-18d Crater (Sulky), was implemented for assumed radioactive contamination that could cause a dose greater that 25 millirems per year. This document further clarifies that this was based on particulate releases of radionuclides identified in Radiological Effluents Released from U.S. Continental Tests, 1961 through 1992 (DOE/NV, 1996). The radionuclides listed in this document are krypton (Kr)-85, Kr-85m, Kr-87, Kr-88, rubidium (Rb)-87, strontium (Sr)-89, Sr-91, yttrium (Y)-91, iodine (I)-131, I-132, I-133, I-134, I-135, xeon (Xe)-133, Xe-135, Xe-138, cesium (Cs)-135, Cs-138, barium (Ba)-139, and Ba-140.

  16. Corrective Action Decision Document/Closure Report for Corrective Action Unit 567: Miscellaneous Soil Sites - Nevada National Security Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick [Navarro-Intera, LLC (N-I), Las Vegas, NV (United States)

    2014-12-01

    This Corrective Action Decision Document/Closure Report presents information supporting the closure of Corrective Action Unit (CAU) 567: Miscellaneous Soil Sites, Nevada National Security Site, Nevada. The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 567 based on the implementation of the corrective actions. The corrective actions implemented at CAU 567 were developed based on an evaluation of analytical data from the CAI, the assumed presence of COCs at specific locations, and the detailed and comparative analysis of the CAAs. The CAAs were selected on technical merit focusing on performance, reliability, feasibility, safety, and cost. The implemented corrective actions meet all requirements for the technical components evaluated. The CAAs meet all applicable federal and state regulations for closure of the site. Based on the implementation of these corrective actions, the DOE, National Nuclear Security Administration Nevada Field Office provides the following recommendations: • No further corrective actions are necessary for CAU 567. • The Nevada Division of Environmental Protection issue a Notice of Completion to the DOE, National Nuclear Security Administration Nevada Field Office for closure of CAU 567. • CAU 567 be moved from Appendix III to Appendix IV of the FFACO.

  17. Housekeeping Closure Report for Corrective Action Unit 119: Storage Tanks, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2000-01-01

    The Federal Facility Agreement and Consent Order was entered into by the State of Nevada, US Department of Energy, and US Department of Defense to identify sites of potential historical contamination and implement corrective actions based on public health and environmental considerations. The facilities subject to this agreement include the Nevada Test Site (NTS), parts of the Tonopah Test Range, parts to the Nellis Air Force Range, the Central Nevada Test Area, and the Project Shoal Area. Corrective Action Sites (CASs) are areas potentially requiring corrective actions and may include solid waste management units, individual disposal, or release sites. Based on geography, technical similarity, agency responsibility, or other appropriate reasons, CASs are grouped together into Corrective Action Units (CAUs) for the purpose of determining appropriate corrective actions. This report contains the Closure Verification Forms for cleanup activities that were performed at 19 CASs with in CAU 119 on the NTS. The form for each CAS provides the location, directions to the site, general description, and photographs of the site before and after cleanup activities. Activities included verification of the prior removal of both aboveground and underground gas/oil storage tanks, gas sampling tanks, pressure fuel tanks, tank stands, trailers, debris, and other material. Based on these former activities, no further action is required at these CASs

  18. Corrective Action Investigation Plan for Corrective Action Unit 551: Area 12 Muckpiles, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Boehlecke, Robert F.

    2004-01-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 551, Area 12 muckpiles, Nevada Test Site (NTS), Nevada. This CAIP has been developed in accordance with the 'Federal Facility Agreement and Consent Order' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 551 is located in Area 12 of the NTS, which is approximately 110 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Area 12 is approximately 40 miles beyond the main gate to the NTS. Corrective Action Unit 551 is comprised of the four Corrective Action Sites (CASs) shown on Figure 1-1 and listed below: (1) 12-01-09, Aboveground Storage Tank and Stain; (2) 12-06-05, Muckpile; (3) 12-06-07, Muckpile; and (4) 12-06-08, Muckpile. Corrective Action Site 12-01-09 is located in Area 12 and consists of an above ground storage tank (AST) and associated stain. Corrective Action Site 12-06-05 is located in Area 12 and consists of a muckpile associated with the U12 B-Tunnel. Corrective Action Site 12-06-07 is located in Area 12 and consists of a muckpile associated with the U12 C-, D-, and F-Tunnels. Corrective Action Site 12-06-08 is located in Area 12 and consists of a muckpile associated with the U12 B-Tunnel. In keeping with common convention, the U12B-, C-, D-, and F-Tunnels will be referred to as the B-, C-, D-, and F-Tunnels. The corrective action investigation (CAI) will include field inspections, radiological surveys, and sampling of media, where appropriate. Data will also be obtained to support waste management decisions

  19. The symmetry of man.

    Science.gov (United States)

    Ermolenko, Alexander E; Perepada, Elena A

    2007-01-01

    The paper contains a description of basic regularities in the manifestation of symmetry of human structural organization and its ontogenetic and phylogenetic development. A concept of macrobiocrystalloid with inherent complex symmetry is proposed for the description of the human organism in its integrity. The symmetry can be characterized as two-plane radial (quadrilateral), where the planar symmetry is predominant while the layout of organs of radial symmetry is subordinated to it. Out of the two planes of symmetry (sagittal and horizontal), the sagittal plane is predominant. The symmetry of the chromosome, of the embrio at the early stages of cell cleavage as well as of some organs and systems in their phylogenetic development is described. An hypothesis is postulated that the two-plane symmetry is formed by two mechanisms: a) the impact of morphogenetic fields of the whole crystalloid organism during embriogenesis and, b) genetic mechanisms of the development of chromosomes having two-plane symmetry.

  20. Proposed plan for remedial action at the quarry residuals operable unit of the Weldon Spring Site

    International Nuclear Information System (INIS)

    1998-03-01

    This proposed plan addresses the management of contamination present in various components of the quarry residuals operable unit (QROU) of the Weldon Spring site, which is located in St. Charles County, Missouri. The QROU consists of (1) residual waste at the quarry proper; (2) the Femme Osage Slough, Little Femme Osage Creek, and Femme Osage Creek; and (3) quarry groundwater located primarily north of the slough. Potential impacts to the St. Charles County well field downgradient of the quarry area are also being addressed as part of the evaluations for this operable unit. Remedial activities for the QROU will be conducted by the US Department of Energy (DOE) in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. As part of the remedial investigation/feasibility study (RI/FS) process required for the QROU under CERCLA, three major evaluation documents have been prepared to support cleanup decisions for this operable unit. decisions for this operable unit

  1. Fossil and Contemporary Fine Carbon Fractions at 12 Rural and Urban Sites in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Schichtel, B; Malm, W; Bench, G; Fallon, S; McDade, C; Chow, J

    2007-03-01

    Fine particulate matter collected at two urban, four near-urban, and six remote sites throughout the United States were analyzed for total carbon (TC) and radiocarbon ({sup 14}C). Samples were collected at most sites for both a summer and winter season. The radiocarbon was used to partition the TC into fossil and contemporary fractions. On average, contemporary carbon composed about half of the carbon at the urban, {approx}70-97% at near-urban, and 82-100% at remote sites. At Phoenix, Arizona, and Seattle, Washington, one monitor was located within the urban center and one outside to assess the urban excess over background concentrations. During the summer the urban and rural sites had similar contemporary carbon concentrations. However, during the winter the urban sites had more than twice the contemporary carbon measured at the neighboring sites, indicating anthropogenic contributions to the contemporary carbon. The urban fossil carbon was 4-20 times larger than the neighboring rural sites for both seasons. Organic (OC) and elemental carbon (EC) from TOR analysis were available. These and the radiocarbon data were used to estimate characteristic fossil and contemporary EC/TC ratios for the winter and summer seasons. These ratios were applied to carbon data from the Interagency Monitoring of Protected Visual Environments network to estimate the fraction of contemporary carbon at mostly rural sites throughout the United States. In addition, the ratios were used to develop a semiquantitative, lower bound estimate of secondary organic carbon (SOC) contribution to fossil and contemporary carbon. SOC accounted for more than one-third of the fossil and contemporary carbon.

  2. Engineering assessment of inactive uranium mill tailings: Phillips/United Nuclear site, Ambrosia Lake, New Mexico

    International Nuclear Information System (INIS)

    1981-10-01

    Ford, Bacon and Davis Utah, Inc., has reevaluated the Phillips/United Nuclear site in order to revise the December 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Ambrosia Lake, New Mexico. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from 2.6 million dry tons of tailings at the Phillips/United Nuclear site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material, to removal of the tailings to remote disposal sites and decontamination of the tailings site. Cost estimates for the four options range from about $21,500,000 for stabilization in-place, to about $45,200,000 for disposal at a distance of about 15 mi. Three principal alternatives for the reprocessing of the Phillips/United Nuclear tailings were examined: heap leaching; treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing.The cost of the uranium recovered would be about $87/lb of U 3 O 8 by either heap leach or conventional plant process. The spot market price for uranium was $25/lb early in 1981. Reprocessing the Phillips/United Nuclear tailings for uranium recovery does not appear to be economically attractive under present or foreseeable market conditions

  3. Big break for charge symmetry

    CERN Document Server

    Miller, G A

    2003-01-01

    Two new experiments have detected charge-symmetry breaking, the mechanism responsible for protons and neutrons having different masses. Symmetry is a crucial concept in the theories that describe the subatomic world because it has an intimate connection with the laws of conservation. The theory of the strong interaction between quarks - quantum chromodynamics - is approximately invariant under what is called charge symmetry. In other words, if we swap an up quark for a down quark, then the strong interaction will look almost the same. This symmetry is related to the concept of sup i sospin sup , and is not the same as charge conjugation (in which a particle is replaced by its antiparticle). Charge symmetry is broken by the competition between two different effects. The first is the small difference in mass between up and down quarks, which is about 200 times less than the mass of the proton. The second is their different electric charges. The up quark has a charge of +2/3 in units of the proton charge, while ...

  4. Remedial investigation/feasibility study work plan for the 100-BC-2 operable unit, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1993-05-01

    This work plan and attached supporting project plans establish the operable unit setting and the objectives, procedures, tasks, and schedule for conducting the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) remedial investigation/feasibility study (RI/FS) for the 100-BC-2 operable unit in the 100 Area of the Hanford Site. The 100 Area is one of four areas at the Hanford Site that are on the US Environmental Protection Agency's (EPA) National Priorities List under CERCLA. The 100-BC-2 operable unit is one of two source operable units in the 100-B/C Area (Figure ES-1). Source operable units are those that contain facilities and unplanned release sites that are potential sources of hazardous substance contamination. The 100-BC-2 source operable unit contains waste sites that were formerly in the 100-BC-2, 100-BC-3, and 100-BC-4 operable units. Because of their size and geographic location, the waste sites from these two operable units were added to 100-BC-2. This allows for a more efficient and effective investigation of the remaining 100-B/C Reactor area waste sites. The investigative approach to waste sites associated with the 100-BC-2 operable unit are listed in Table ES-1. The waste sites fall into three general categories: high priority liquid waste disposal sites, low priority liquid waste disposal sites, and solid waste burial grounds. Several sites have been identified as candidates for conducting an IRM. Two sites have been identified as warranting additional limited field sampling. The two sites are the 116-C-2A pluto crib, and the 116-C-2C sand filter

  5. CLOSURE REPORT FOR CORRECTIVE ACTION UNIT 390: AREAS 9, 10, AND 12 SPILL SITES, NEVADA TEST SITE, NEVADA

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-10-01

    Corrective Action Unit (CAU) 390 consists four Corrective Action Sites (CASs) located in Areas 9, 10, and 12 of the Nevada Test Site. The closure activities performed at the CASs include: (1) CAS 09-99-03, Wax, Paraffin: 2 cubic yards of drilling polymer was removed on June 20,2005, and transported to the Area 9 Landfill for disposal. (2) CAS 10-99-01, Epoxy Tar Spill: 2 cubic feet of asphalt waste was removed on June 20,2005, and transported to the Area 9 Landfill for disposal. (3) CAS 10-99-03, Tar Spills: 3 cubic yards of deteriorated asphalt waste was removed on June 20,2005, and transported to the Area 9 Landfill for disposal. (4) CAS 12-25-03, Oil Stains (2); Container: Approximately 16 ounces of used oil were removed from ventilation equipment on June 28,2005, and recycled. One CAS 10-22-19, Drums, Stains, was originally part of CAU 390 but was transferred out of CAU 390 and into CAU 550, Drums, Batteries, and Lead Materials. The transfer was approved by the Nevada Division of Environmental Protection on August 19,2005, and a copy of the approval letter is included in Appendix D of this report.

  6. Streamlined Approach for Environmental Restoration Work Plan for Corrective Action Unit 461: Joint Test Assembly Sites and Corrective Action Unit 495: Unconfirmed Joint Test Assembly Sites Tonopah Test Range, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Jeff Smith

    1998-08-01

    This Streamlined Approach for Environmental Restoration plan addresses the action necessary for the clean closure of Corrective Action Unit 461 (Test Area Joint Test Assembly Sites) and Corrective Action Unit 495 (Unconfirmed Joint Test Assembly Sites). The Corrective Action Units are located at the Tonopah Test Range in south central Nevada. Closure for these sites will be completed by excavating and evaluating the condition of each artillery round (if found); detonating the rounds (if necessary); excavating the impacted soil and debris; collecting verification samples; backfilling the excavations; disposing of the impacted soil and debris at an approved low-level waste repository at the Nevada Test Site

  7. Radioactive solid waste inventories at United States Department of Energy burial and storage sites

    International Nuclear Information System (INIS)

    Watanabe, T.

    1986-06-01

    Radioactive solid waste inventories are given for United States Department of Energy (DOE) burial and storage sites. These data are obtained from the Solid Waste Information Management System (SWIMS) and reflect the inventories as of the end of the calendar year 1985. This report differs from previous issues in that the data cutoff date is December 31, 1985, rather than the fiscal year end. Another difference from previous issues is that data for the TRU categories 1 and 6 have been omitted

  8. Site-specific waste management instruction for the 100-KR-4 Operable Unit drilling

    International Nuclear Information System (INIS)

    Hadley, J.T.

    1996-07-01

    This site-specific waste management instruction provides guidance for the management of waste generated as a result of groundwater well installations in the 100-KR-4 Operable Unit (OU). The well installations are necessary to implement the Remedial Action (RA) option (pump-and-treat using ion exchange) to prevent discharge of hexavalent chromium at levels above those considered protective of aquatic life in the Columbia River and riverbed sediments

  9. Site-specific waste management instruction for the 100-KR-4 Operable Unit drilling. Revision 1

    International Nuclear Information System (INIS)

    Hadley, J.T.

    1996-08-01

    This site-specific waste management instruction provides guidance for the management of waste generated as a result of groundwater well installations in the 100-KR-4 Operable Unit (OU). The well installations are necessary to implement the Remedial Action (RA) option (pump-and-treat using ion exchange) to prevent discharge of hexavalent chromium at levels above those considered protective of aquatic life in the Columbia River and riverbed sediments

  10. Closure Report for Corrective Action Unit 356: Mud Pits and Disposal Sites, Nevada Test Site, Nevada with Errata Sheet

    Energy Technology Data Exchange (ETDEWEB)

    NNSA/NV

    2002-11-12

    This Closure Report (CR) has been prepared for Corrective Action Unit (CAU) 356, Mud Pits and Disposal Sites, in accordance with the Federal Facility Agreement and Consent Order. This CAU is located in Areas 3 and 20 of the Nevada Test Site (NTS) approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 356 consists of seven Corrective Action Sites (CASs): 03-04-01, Area 3 Change House Septic System; 03-09-01, Mud Pit Spill Over; 03-09-03, Mud Pit; 03-09-04, Mud Pit; 03-09-05, Mud Pit; 20-16-01, Landfill; and 20-22-21, Drums. This CR identifies and rationalizes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Operations Office's (NNSA/NV's) recommendation that no further corrective action and closure in place is deemed necessary for CAU 356. This recommendation is based on the results of field investigation/closure activities conducted November 20, 2001, through January 3, 2002, and March 11 to 14, 2002. These activities were conducted in accordance with the Streamlined Approach for Environmental Restoration Plan (SAFER) for CAU 356. For CASs 03-09-01, 03-09-03, 20-16-01, and 22-20-21, analytes detected in soil during the corrective action investigation were evaluated against Preliminary Action Levels (PALs) and it was determined that no Contaminants of Concern (COCs) were present. Therefore, no further action is necessary for the soil at these CASs. For CASs 03-04-01, 03-09-04, and 03-09-05, analytes detected in soil during the corrective action investigation were evaluated against PALs and identifies total petroleum hydrocarbons (TPHs) and radionuclides (i.e., americium-241 and/or plutonium 239/240) as COCs. The nature, extent, and concentration of the TPH and radionuclide COCs were bounded by sampling and shown to be relatively immobile. Therefore, closure in place is recommended for these CASs in CAU 356. Further, use restrictions are not required at this CAU beyond the NTS use restrictions

  11. On the symmetry of phosphorous doped ZnSe

    Indian Academy of Sciences (India)

    The site symmetry of P doped ZnSe is analysed in detail here, as the recent experiments suggest two possible symmetries T d and C 3 V . The reduction to C 3 V is attributed to the presence of natural impurity, Ga. Our calculations based on molecular model and Green's functions suggest that the symmetry C 3 V is possible ...

  12. On the symmetry of phosphorous doped ZnSe

    Indian Academy of Sciences (India)

    Unknown

    Abstract. The site symmetry of P doped ZnSe is analysed in detail here, as the recent experiments suggest two possible symmetries Td and C3V. The reduction to C3V is attributed to the presence of natural impurity,. Ga. Our calculations based on molecular model and Green's functions suggest that the symmetry C3V is.

  13. Origin of family symmetries

    International Nuclear Information System (INIS)

    Nilles, Hans Peter

    2012-04-01

    Discrete (family) symmetries might play an important role in models of elementary particle physics. We discuss the origin of such symmetries in the framework of consistent ultraviolet completions of the standard model in field and string theory. The symmetries can arise due to special geometrical properties of extra compact dimensions and the localization of fields in this geometrical landscape. We also comment on anomaly constraints for discrete symmetries.

  14. Origin of family symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Nilles, Hans Peter [Bonn Univ. (Germany). Bethe Center for Theoretical Physics; Bonn Univ. (Germany). Physikalisches Inst.; Ratz, Michael [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Vaudrevange, Patrick K.S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-04-15

    Discrete (family) symmetries might play an important role in models of elementary particle physics. We discuss the origin of such symmetries in the framework of consistent ultraviolet completions of the standard model in field and string theory. The symmetries can arise due to special geometrical properties of extra compact dimensions and the localization of fields in this geometrical landscape. We also comment on anomaly constraints for discrete symmetries.

  15. Corrective Action Investigation Plan for Corrective Action Unit 366: Area 11 Plutonium Valley Dispersion Sites, Nevada National Security Site, Nevada

    International Nuclear Information System (INIS)

    Matthews, Patrick

    2011-01-01

    Corrective Action Unit 366 comprises the six corrective action sites (CASs) listed below: (1) 11-08-01, Contaminated Waste Dump No.1; (2) 11-08-02, Contaminated Waste Dump No.2; (3) 11-23-01, Radioactively Contaminated Area A; (4) 11-23-02, Radioactively Contaminated Area B; (5) 11-23-03, Radioactively Contaminated Area C; and (6) 11-23-04, Radioactively Contaminated Area D. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed July 6, 2011, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 366. The presence and nature of contamination at CAU 366 will be evaluated based on information collected from a field investigation. Radiological contamination will be evaluated based on a comparison of the total effective dose (TED) at sample locations to the dose-based final action level (FAL). The TED will be calculated by summing the estimates of internal and external dose. Results from the analysis of soil samples collected from sample plots will be used to calculate internal radiological dose. Thermoluminescent dosimeters placed at each sample location will be used to measure external radiological dose. Based on historical documentation of the releases

  16. Symmetry, asymmetry and dissymmetry

    International Nuclear Information System (INIS)

    Wackenheim, A.; Zollner, G.

    1987-01-01

    The authors discuss the concept of symmetry and defect of symmetry in radiological imaging and recall the definition of asymmetry (congenital or constitutional) and dissymmetry (acquired). They then describe a rule designed for the cognitive method of automatic evaluation of shape recognition data and propose the use of reversal symmetry [fr

  17. Symmetry and electromagnetism

    International Nuclear Information System (INIS)

    Fuentes Cobas, L.E.; Font Hernandez, R.

    1993-01-01

    An analytical treatment of electrostatic and magnetostatic field symmetry, as a function of charge and current distribution symmetry, is proposed. The Newmann Principle, related to the cause-effect symmetry relation, is presented and applied to the characterization of simple configurations. (Author) 5 refs

  18. Weak C* Hopf Symmetry

    OpenAIRE

    Rehren, K. -H.

    1996-01-01

    Weak C* Hopf algebras can act as global symmetries in low-dimensional quantum field theories, when braid group statistics prevents group symmetries. Possibilities to construct field algebras with weak C* Hopf symmetry from a given theory of local observables are discussed.

  19. Gauge symmetry breaking

    International Nuclear Information System (INIS)

    Weinberg, S.

    1976-01-01

    The problem of how gauge symmetries of the weak interactions get broken is discussed. Some reasons why such a heirarchy of gauge symmetry breaking is needed, the reason gauge heirarchies do not seem to arise in theories of a given and related type, and the implications of theories with dynamical symmetry breaking, which can exhibit a gauge hierarchy

  20. Corrective Action Decision Document/Closure Report for Corrective Action Unit 370: T-4 Atmospheric Test Site, Nevada Test Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Matthews

    2009-05-01

    This Corrective Action Decision Document/Closure Report has been prepared for Corrective Action Unit (CAU) 370, T-4 Atmospheric Test Site, located in Area 4 at the Nevada Test Site, Nevada, in accordance with the Federal Facility Agreement and Consent Order (FFACO). Corrective Action Unit 370 is comprised of Corrective Action Site (CAS) 04-23-01, Atmospheric Test Site T-4. The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 370 due to the implementation of the corrective action of closure in place with administrative controls. To achieve this, corrective action investigation (CAI) activities were performed from June 25, 2008, through April 2, 2009, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 370: T-4 Atmospheric Test Site and Record of Technical Change No. 1.

  1. Corrective Action Investigation Plan for Corrective Action Unit 543: Liquid Disposal Units, Nevada Test Site, Nevada: Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2004-05-03

    The general purpose of this Corrective Action Investigation Plan is to ensure that adequate data are collected to provide sufficient and reliable information to identify, evaluate, and select technically viable corrective action alternatives (CAAs) for Corrective Action Unit (CAU) 543: Liquid Disposal Units, Nevada Test Site (NTS), Nevada. Located in Areas 6 and 15 on the NTS, CAU 543 is comprised of a total of seven corrective action sites (CASs), one in Area 6 and six in Area 15. The CAS in Area 6 consists of a Decontamination Facility and its components which are associated with decontamination of equipment, vehicles, and materials related to nuclear testing. The six CASs in Area 15 are located at the U.S. Environmental Protection Agency Farm and are related to waste disposal activities at the farm. Sources of possible contamination at Area 6 include potentially contaminated process waste effluent discharged through a process waste system, a sanitary waste stream generated within buildings of the Decon Facility, and radiologically contaminated materials stored within a portion of the facility yard. At Area 15, sources of potential contamination are associated with the dairy operations and the animal tests and experiments involving radionuclide uptake. Identified contaminants of potential concern include volatile organic compounds, semivolatile organic compounds, petroleum hydrocarbons, pesticides, herbicides, polychlorinated biphenyls, metals, and radionuclides. Three corrective action closure alternatives - No Further Action, Close in Place, or Clean Closure - will be recommended for CAU 543 based on an evaluation of all the data quality objective-related data. Field work will be conducted following approval of the plan. The results of the field investigation will support a defensible evaluation of CAAs that will be presented in the Corrective Action Decision Document.

  2. Symmetry in running.

    Science.gov (United States)

    Raibert, M H

    1986-03-14

    Symmetry plays a key role in simplifying the control of legged robots and in giving them the ability to run and balance. The symmetries studied describe motion of the body and legs in terms of even and odd functions of time. A legged system running with these symmetries travels with a fixed forward speed and a stable upright posture. The symmetries used for controlling legged robots may help in elucidating the legged behavior of animals. Measurements of running in the cat and human show that the feet and body sometimes move as predicted by the even and odd symmetry functions.

  3. Symmetries of Chimera States

    Science.gov (United States)

    Kemeth, Felix P.; Haugland, Sindre W.; Krischer, Katharina

    2018-05-01

    Symmetry broken states arise naturally in oscillatory networks. In this Letter, we investigate chaotic attractors in an ensemble of four mean-coupled Stuart-Landau oscillators with two oscillators being synchronized. We report that these states with partially broken symmetry, so-called chimera states, have different setwise symmetries in the incoherent oscillators, and in particular, some are and some are not invariant under a permutation symmetry on average. This allows for a classification of different chimera states in small networks. We conclude our report with a discussion of related states in spatially extended systems, which seem to inherit the symmetry properties of their counterparts in small networks.

  4. Parastatistics and gauge symmetries

    International Nuclear Information System (INIS)

    Govorkov, A.B.

    1982-01-01

    A possible formulation of gauge symmetries in the Green parafield theory is analysed and the SO(3) gauge symmetry is shown to be on a distinct status. The Greenberg paraquark hypothesis turns out to be not equivalent to the hypothesis of quark colour SU(3)sub(c) symmetry. Specific features of the gauge SO(3) symmetry are discussed, and a possible scheme where it is an exact subgroup of the broken SU(3)sub(c) symmetry is proposed. The direct formulation of the gauge principle for the parafield represented by quaternions is also discussed

  5. Perceptions and Use of Social Networking Sites in the United States and Ecuador: A Mixed-Methods Approach

    Science.gov (United States)

    Pumper, Megan A.; Yaeger, Jeffery P.; Moreno, Megan A.

    2013-01-01

    Social networking sites are globally popular. In the United States, these types of sites are perceived positively by users and used at high rates, which has likely yielded personal health behavior displays such as substance abuse and depression. Due to possible cultural influence present on these sites, it remains unknown if SNS could be utilized…

  6. Generalized global symmetries

    International Nuclear Information System (INIS)

    Gaiotto, Davide; Kapustin, Anton; Seiberg, Nathan; Willett, Brian

    2015-01-01

    A q-form global symmetry is a global symmetry for which the charged operators are of space-time dimension q; e.g. Wilson lines, surface defects, etc., and the charged excitations have q spatial dimensions; e.g. strings, membranes, etc. Many of the properties of ordinary global symmetries (q=0) apply here. They lead to Ward identities and hence to selection rules on amplitudes. Such global symmetries can be coupled to classical background fields and they can be gauged by summing over these classical fields. These generalized global symmetries can be spontaneously broken (either completely or to a subgroup). They can also have ’t Hooft anomalies, which prevent us from gauging them, but lead to ’t Hooft anomaly matching conditions. Such anomalies can also lead to anomaly inflow on various defects and exotic Symmetry Protected Topological phases. Our analysis of these symmetries gives a new unified perspective of many known phenomena and uncovers new results.

  7. Occurrence and distribution of microplastics at selected coastal sites along the southeastern United States.

    Science.gov (United States)

    Yu, Xubiao; Ladewig, Samantha; Bao, Shaowu; Toline, Catherine A; Whitmire, Stefanie; Chow, Alex T

    2018-02-01

    To investigate the occurrence and distribution of microplastics in the southeastern coastal region of the United States, we quantified the amount of microplastics in sand samples from multiple coastal sites and developed a predictive model to understand the drift of plastics via ocean currents. Sand samples from eighteen National Park Service (NPS) beaches in the Southeastern Region were collected and microplastics were isolated from each sample. Microplastic counts were compared among sites and local geography was used to make inferences about sources and modes of distribution. Samples were analyzed to identify the composition of particles using Fourier transform infrared spectroscopy (FTIR). To predict the spatiotemporal distribution and movements of particles via coastal currents, a Regional Ocean Modeling System (ROMS) was applied. Microplastics were detected in each of the sampled sites although abundance among sites was highly variable. Approximately half of the samples were dominated by thread-like and fibrous materials as opposed to beads and particles. Results of FTIR suggested that 24% consisted of polyethylene terephthalate (PET), while about 68% of the fibers tested were composed of man-made cellulosic materials such as rayon. Based on published studies examining sources of microplastics, the shape of the particles found here (mostly fibers) and the presence of PET, we infer the source of microplastics in coastal areas is mainly from urban areas, such as wastewater discharge, rather than breakdown of larger marine debris drifting in the ocean. Local geographic features, e.g., the nearness of sites to large rivers and urbanized areas, explain variance in amount of microplastics among sites. Additionally, the distribution of simulated particles is explained by ocean current patterns; computer simulations were correlated with field observations, reinforcing the idea that ocean currents can be a good predictor of the fate and distribution of microplastics

  8. Monticello Mill Tailings Site, Operable Unit lll, Annual Groundwater Report, May 2015 Through April 2016

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Jason [USDOE Office of Legacy Management (LM), Washington, DC (United States); Smith, Fred [Navarro Research and Engineering, Oak Ridge, TN (United States)

    2016-10-01

    This report provides the annual analysis of water quality restoration progress, cumulative through April 2016, for Operable Unit (OU) III, surface water and groundwater, of the U.S. Department of Energy (DOE) Office of Legacy Management (LM) Monticello Mill Tailings Site (MMTS). The MMTS is a Comprehensive Environmental Response, Compensation, and Liability Act National Priorities List site located in and near the city of Monticello, San Juan County, Utah. MMTS comprises the 110-acre site of a former uranium- and vanadium-ore-processing mill (mill site) and 1700 acres of surrounding private and municipal property. Milling operations generated 2.5 million cubic yards of waste (tailings) from 1942 to 1960. The tailings were impounded at four locations on the mill site. Inorganic constituents in the tailings drained from the impoundments to contaminate local surface water (Montezuma Creek) and groundwater in the underlying alluvial aquifer. Mill tailings dispersed by wind and water also contaminated properties surrounding and downstream of the mill site. Remedial actions to remove and isolate radiologically contaminated soil, sediment, and debris from the former mill site, Operable Unit I (OU I), and surrounding properties (OU II) were completed in 1999 with the encapsulation of the wastes in an engineered repository located on DOE property 1 mile south of the former mill site. This effectively removed the primary source of groundwater contamination; however, contamination of groundwater and surface water remains within OU III at levels that exceed water quality protection standards. Uranium is the primary contaminant of concern (COC). LM implemented monitored natural attenuation with institutional controls as the OU III remedy in 2004. Because groundwater restoration proceeded more slowly than expected and did not meet performance criteria established in the OU III Record of Decision (June 2004), LM implemented a contingency action in 2009 by an Explanation of

  9. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 398: Area 25 Spill Sites, Nevada Test Site, Nevada; TOPICAL

    International Nuclear Information System (INIS)

    K. B. Campbell

    2001-01-01

    This Streamlined Approach for Environmental Restoration (SAFER) plan addresses the activities necessary to close Corrective Action Unit (CAU) 398: Area 25 Spill Sites. CAU 398, located in Area 25 of the Nevada Test Site, is currently listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO) (FFACO, 1996), and consists of the following 13 Corrective Action Sites (CASs) (Figure 1): (1) CAS 25-44-01 , a fuel spill on soil that covers a concrete pad. The origins and use of the spill material are unknown, but the spill is suspected to be railroad bedding material. (2) CAS 25-44-02, a spill of liquid to the soil from leaking drums. (3) CAS 25-44-03, a spill of oil from two leaking drums onto a concrete pad and surrounding soil. (4) CAS 25-44-04, a spill from two tanks containing sulfuric acid and sodium hydroxide used for a water demineralization process. (5) CAS 25-25-02, a fuel or oil spill from leaking drums that were removed in 1992. (6) CAS 25-25-03, an oil spill adjacent to a tipped-over drum. The source of the drum is not listed, although it is noted that the drum was removed in 1991. (7) CAS 25-25-04, an area on the north side of the Engine-Maintenance, Assembly, and Disassembly (E-MAD) facility, where oils and cooling fluids from metal machining operations were poured directly onto the ground. (8) CAS 25-25-05, an area of oil and/or hydraulic fluid spills beneath the heavy equipment once stored there. (9) CAS 25-25-06, an area of diesel fuel staining beneath two generators that have since been removed. (10) CAS 25-25-07, an area of hydraulic oil spills associated with a tunnel-boring machine abandoned inside X-Tunnel. (11) CAS 25-25-08, an area of hydraulic fluid spills associated with a tunnel-boring machine abandoned inside Y-Tunnel. (12) CAS 25-25-16, a diesel fuel spill from an above-ground storage tank located near Building 3320 at Engine Test Stand-1 (ETS-1) that was removed in 1998. (13) CAS 25-25-17, a hydraulic oil spill

  10. Electrical stimulation site influences the spatial distribution of motor units recruited in tibialis anterior.

    Science.gov (United States)

    Okuma, Yoshino; Bergquist, Austin J; Hong, Mandy; Chan, K Ming; Collins, David F

    2013-11-01

    To compare the spatial distribution of motor units recruited in tibialis anterior (TA) when electrical stimulation is applied over the TA muscle belly versus the common peroneal nerve trunk. Electromyography (EMG) was recorded from the surface and from fine wires in superficial and deep regions of TA. Separate M-wave recruitment curves were constructed for muscle belly and nerve trunk stimulation. During muscle belly stimulation, significantly more current was required to generate M-waves that were 5% of the maximal M-wave (M max; M5%max), 50% M max (M 50%max) and 95% M max (M 95%max) at the deep versus the superficial recording site. In contrast, during nerve trunk stimulation, there were no differences in the current required to reach M5%max, M 50%max or M 95%max between deep and superficial recording sites. Surface EMG reflected activity in both superficial and deep muscle regions. Stimulation over the muscle belly recruited motor units from superficial to deep with increasing stimulation amplitude. Stimulation over the nerve trunk recruited superficial and deep motor units equally, regardless of stimulation amplitude. These results support the idea that where electrical stimulation is applied markedly affects how contractions are produced and have implications for the interpretation of surface EMG data. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  11. Closure Report for Corrective Action Unit 143: Area 25 Contaminated Waste Dumps, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Tobiason, D. S.

    2002-01-01

    This Closure Report (CR) has been prepared for the Area 25 Contaminated Waste Dumps (CWD), Corrective Action Unit (CAU) 143 in accordance with the Federal Facility Agreement and Consent Order [FFACO] (FFACO, 1996) and the Nevada Division of Environmental Protection (NDEP)-approved Corrective Action Plan (CAP) for CAU 143: Area 25, Contaminated Waste Dumps, Nevada Test Site, Nevada. CAU 143 consists of two Corrective Action Sites (CASs): 25-23-09 CWD No.1, and 25-23-03 CWD No.2. The Area 25 CWDs are historic disposal units within the Area 25 Reactor Maintenance, Assembly, and Disassembly (R-MAD), and Engine Maintenance, Assembly, and Disassembly (E-MAD) compounds located on the Nevada Test Site (NTS). The R-MAD and E-MAD facilities originally supported a portion of the Nuclear Rocket Development Station in Area 25 of the NTS. CWD No.1 CAS 25-23-09 received solid radioactive waste from the R-MAD Compound (East Trestle and West Trench Berms) and 25-23-03 CWD No.2 received solid radioactive waste from the E-MAD Compound (E-MAD Trench)

  12. Closure Plan for Corrective Action Unit 109: U-2bu Subsidence Crater Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Shannon Parsons

    1999-03-01

    The U-2bu subsidence crater, Corrective Action Unit 109, will be closed in accordance with the Resource Conservation and Recovery Act, the Nevada Division of Environmental Protection operational permit, and the Federal Facilities Agreement and Consent Order. The U-2bu subsidence crater is located in Area 2 of the Nevada Test Site. It was created in 1971 by an underground nuclear test with the name Miniata. The crater has a diameter of 288 meters (944 feet) and an approximate depth of 35 meters (115 feet). The subsidence crater was used as a land disposal unit for radioactive and hazardous waste from 1973 to 1988. Site disposal history is supported by memorandums, letters, and personnel who worked at the Nevada Test Site at the time of active disposal. Closure activities will include the excavation and disposal of impacted soil form the tip of the crater. Upon completion of excavation, verification samples will be collected to show that lead has been removed to concentrations be low regulatory action level. The area will then be backfilled and a soil flood diversion berm will be constructed, and certified by an independent professional engineer as to having followed the approved Closure Plan.

  13. The relative abundance of desert tortoises on the Nevada Test Site within ecological landform units

    International Nuclear Information System (INIS)

    Woodward, R.; Rautenstrauch, K.R.; Hall, D.B.; Ostler, W.K.

    1998-09-01

    Sign-survey transects were sampled in 1996 to better determine the relative abundance of desert tortoises on the Nevada Test Site (NTS). These transects were sampled within ecological land-form units (ELUs), which are small, ecologically homogeneous units of land. Two-hundred and six ELUs were sampled by walking 332 transects totaling 889 kilometers (km). These ELUs covered 528 km 2 . Two-hundred and eight-one sign were counted. An average of 0.32 sign was found per km walked. Seventy percent of the area sampled had a very low abundance of tortoises, 29% had a low abundance, and 1% had a moderate abundance. A revised map of the relative abundance of desert tortoise on the NTS is presented. Within the 1,330 km 2 of desert tortoise habitat on the NTS, 49% is classified as having no tortoises or a very low abundance, 18% has a low or moderate abundance, 12% is unclassified land being used by the Yucca Mountain Site Characterization Project, and the remaining 21% still has an unknown abundance of desert tortoises. Based on the results of this work, the amount of tortoise habitat previously classified as having an unknown or low-moderate abundance, and on which clearance surveys and on-site monitoring was required, has been reduced by 20%

  14. Symmetry and symmetry breaking in quantum mechanics

    International Nuclear Information System (INIS)

    Chomaz, Philippe

    1998-01-01

    In the world of infinitely small, the world of atoms, nuclei and particles, the quantum mechanics enforces its laws. The discovery of Quanta, this unbelievable castration of the Possible in grains of matter and radiation, in discrete energy levels compels us of thinking the Single to comprehend the Universal. Quantum Numbers, magic Numbers and Numbers sign the wave. The matter is vibration. To describe the music of the world one needs keys, measures, notes, rules and partition: one needs quantum mechanics. The particles reduce themselves not in material points as the scholars of the past centuries thought, but they must be conceived throughout the space, in the accomplishment of shapes of volumes. When Einstein asked himself whether God plays dice, there was no doubt among its contemporaries that if He exists He is a geometer. In a Nature reduced to Geometry, the symmetries assume their role in servicing the Harmony. The symmetries allow ordering the energy levels to make them understandable. They impose there geometrical rules to the matter waves, giving them properties which sometimes astonish us. Hidden symmetries, internal symmetries and newly conceived symmetries have to be adopted subsequently to the observation of some order in this world of Quanta. In turn, the symmetries provide new observables which open new spaces of observation

  15. An experimental study of symmetry lowering of analcime

    Science.gov (United States)

    Sugano, Neo; Kyono, Atsushi

    2018-04-01

    Single crystals of analcime were hydrothermally synthesized from a gel of analcime composition at 200 °C for 24 h. They were grown up to 100 μm in size with typical deltoidal icositetrahedron habit. The chemical composition determined by EPMA and TG analyses was Na0.84(Al0.89Si2.12)O6·1.04H2O. The single-crystal X-ray diffraction method was used to determine the symmetry and crystal structure of analcime. The analcime grown from a gel crystallized in cubic space group Ia3 d with lattice parameter a = 13.713(3) Å. In the cubic analcime, Si and Al cations were totally disordered over the framework T sites with site occupancy of Si:Al = 0.6871:0.3129(14). The single crystals of analcime with cubic symmetry were hydrothermally reheated at 200 °C in ultrapure water. After the hydrothermal treatment for 24 h, forbidden reflections for the cubic Ia3 d symmetry were observed. The reflection conditions led to an orthorhombic space group Ibca with lattice parameters a = 13.727(2) Å, b = 13.707(2) Å, and c = 13.707(2) Å. The unit-cell showed a slight distortion with ( a + b)/2 > c, yielding a flattened cell along c. In the orthorhombic analcime, Al exhibited a site preference for T11 site, which indicates that the Si/Al ordering over the framework T sites lowers the symmetry from cubic Ia3 d to orthorhombic Ibca. After the hydrothermal treatment for 48 h, reflections corresponding to orthorhombic space group Ibca were observed as well. The lattice parameters were a = 13.705(2) Å, b = 13.717(2) Å, and c = 13.706(2) Å, retaining the flattened cell shape with ( a + b)/2 > c. The Si and Al cations were further ordered among the framework T sites than the case of the hydrothermal treatment for 24 h. As a consequence, the Si/Al ordering was slightly but significantly accelerated with increasing the hydrothermal treatment time. During the hydrothermal reaction, however, chemical compositions were almost unchanged. The site occupancies of Na over the extra-framework sites

  16. Crystal-field energy level analysis for Nd3+ ions at the low symmetry C1 site in [Nd(hfa)4(H2O)](N(C2H5)4) single crystals

    International Nuclear Information System (INIS)

    Mech, Agnieszka; Gajek, Zbigniew; Karbowiak, Miroslaw; Rudowicz, Czeslaw

    2008-01-01

    Optical absorption measurements of Nd 3+ ions in single crystals of [Nd(hfa) 4 (H 2 O)](N(C 2 H 5 ) 4 ) (hfa = hexafluoroacetyloacetonate), denoted Nd(hfa) for short, have been carried out at 4.2 and 298 K. This compound crystallizes in the monoclinic system (space group P 2 1 /n). Each Nd ion is coordinated to eight oxygen atoms that originate from the hexafluoroacetylacetonate ligands and one oxygen atom from the water molecule. A total of 85 experimental crystal-field (CF) energy levels arising from the Nd 3+ (4f 3 ) electronic configuration were identified in the optical spectra and assigned. A three-step CF analysis was carried out in terms of a parametric Hamiltonian for the actual C 1 symmetry at the Nd 3+ ion sites. In the first step, a total of 27 CF parameters (CFPs) in the Wybourne notation B kq , admissible by group theory, were determined in a preliminary fitting constrained by the angular overlap model predictions. The resulting CFP set was reduced to 24 specific independent CFPs using appropriate standardization transformations. Optimizations of the second-rank CFPs and extended scanning of the parameter space were employed in the second step to improve reliability of the CFP sets, which is rather a difficult task in the case of no site symmetry. Finally, seven free-ion parameters and 24 CFPs were freely varied, yielding an rms deviation between the calculated energy levels and the 85 observed ones of 11.1 cm -1 . Our approach also allows prediction of the energy levels of Nd 3+ ions that are hidden in the spectral range overlapping with strong ligand absorption, which is essential for understanding the inter-ionic energy transfer. The orientation of the axis system associated with the fitted CF parameters w.r.t. the crystallographic axes is established. The procedure adopted in our calculations may be considered as a general framework for analysis of CF levels of lanthanide ions at low (triclinic) symmetry sites

  17. Crystal-field energy level analysis for Nd(3+) ions at the low symmetry C(1) site in [Nd(hfa)(4)(H(2)O)](N(C(2)H(5))(4)) single crystals.

    Science.gov (United States)

    Mech, Agnieszka; Gajek, Zbigniew; Karbowiak, Mirosław; Rudowicz, Czesław

    2008-09-24

    Optical absorption measurements of Nd(3+) ions in single crystals of [Nd(hfa)(4)(H(2)O)](N(C(2)H(5))(4)) (hfa = hexafluoroacetyloacetonate), denoted Nd(hfa) for short, have been carried out at 4.2 and 298 K. This compound crystallizes in the monoclinic system (space group P 2(1)/n). Each Nd ion is coordinated to eight oxygen atoms that originate from the hexafluoroacetylacetonate ligands and one oxygen atom from the water molecule. A total of 85 experimental crystal-field (CF) energy levels arising from the Nd(3+) (4f(3)) electronic configuration were identified in the optical spectra and assigned. A three-step CF analysis was carried out in terms of a parametric Hamiltonian for the actual C(1) symmetry at the Nd(3+) ion sites. In the first step, a total of 27 CF parameters (CFPs) in the Wybourne notation B(kq), admissible by group theory, were determined in a preliminary fitting constrained by the angular overlap model predictions. The resulting CFP set was reduced to 24 specific independent CFPs using appropriate standardization transformations. Optimizations of the second-rank CFPs and extended scanning of the parameter space were employed in the second step to improve reliability of the CFP sets, which is rather a difficult task in the case of no site symmetry. Finally, seven free-ion parameters and 24 CFPs were freely varied, yielding an rms deviation between the calculated energy levels and the 85 observed ones of 11.1 cm(-1). Our approach also allows prediction of the energy levels of Nd(3+) ions that are hidden in the spectral range overlapping with strong ligand absorption, which is essential for understanding the inter-ionic energy transfer. The orientation of the axis system associated with the fitted CF parameters w.r.t. the crystallographic axes is established. The procedure adopted in our calculations may be considered as a general framework for analysis of CF levels of lanthanide ions at low (triclinic) symmetry sites.

  18. Crystal-field energy level analysis for Nd3+ ions at the low symmetry C1 site in [Nd(hfa)4(H2O)](N(C2H5)4) single crystals

    Science.gov (United States)

    Mech, Agnieszka; Gajek, Zbigniew; Karbowiak, Mirosław; Rudowicz, Czesław

    2008-09-01

    Optical absorption measurements of Nd3+ ions in single crystals of [Nd(hfa)4(H2O)](N(C2H5)4) (hfa = hexafluoroacetyloacetonate), denoted Nd(hfa) for short, have been carried out at 4.2 and 298 K. This compound crystallizes in the monoclinic system (space group P 21/n). Each Nd ion is coordinated to eight oxygen atoms that originate from the hexafluoroacetylacetonate ligands and one oxygen atom from the water molecule. A total of 85 experimental crystal-field (CF) energy levels arising from the Nd3+ (4f3) electronic configuration were identified in the optical spectra and assigned. A three-step CF analysis was carried out in terms of a parametric Hamiltonian for the actual C1 symmetry at the Nd3+ ion sites. In the first step, a total of 27 CF parameters (CFPs) in the Wybourne notation Bkq, admissible by group theory, were determined in a preliminary fitting constrained by the angular overlap model predictions. The resulting CFP set was reduced to 24 specific independent CFPs using appropriate standardization transformations. Optimizations of the second-rank CFPs and extended scanning of the parameter space were employed in the second step to improve reliability of the CFP sets, which is rather a difficult task in the case of no site symmetry. Finally, seven free-ion parameters and 24 CFPs were freely varied, yielding an rms deviation between the calculated energy levels and the 85 observed ones of 11.1 cm-1. Our approach also allows prediction of the energy levels of Nd3+ ions that are hidden in the spectral range overlapping with strong ligand absorption, which is essential for understanding the inter-ionic energy transfer. The orientation of the axis system associated with the fitted CF parameters w.r.t. the crystallographic axes is established. The procedure adopted in our calculations may be considered as a general framework for analysis of CF levels of lanthanide ions at low (triclinic) symmetry sites.

  19. Symmetries in nature

    International Nuclear Information System (INIS)

    Mainzer, K.

    1988-01-01

    Symmetry, disymmetry, chirality etc. are well-known topics in chemistry. But they cannot only be found on the molecular level of matter. Atoms and elementary particles in physics are also characterized by particular symmetry groups. Even living organisms and populations on the macroscopic level have functional properties of symmetry. The whole physical, chemical, and biological evolution seems to be regulated by the emergence of new symmetries and the breaking down of old ones. One is reminded of Heisenberg's famous statement: 'Die letzte Wurzel der Erscheinungen ist also nicht die Materie, sondern das mathematische Gesetz, die Symmetrie, die mathematische Form' (Wandlungen in den Grundlagen der Naturwissenschaften, 1959). Historically the belief in symmetry and simplicity of nature has a long philosophical tradition from the Pythagoreans, Plato and Greek astronomers to Kepler and modern scientists. Today, 'symmetries in nature' is a common topic of mathematics, physics, chemistry, and biology. A lot of Nobel prizes were given in honour of inquiries concerning symmetries in nature. The fascination of symmetries is not only motivated by science, but by art and religion too. Therefore 'symmetris in nature' is an interdisciplinary topic which may help to overcome C.P. Snow's 'Two Cultures' of natural sciences and humanities. (author) 17 refs., 21 figs

  20. Symmetries in nature

    Energy Technology Data Exchange (ETDEWEB)

    Mainzer, K

    1988-05-01

    Symmetry, disymmetry, chirality etc. are well-known topics in chemistry. But they cannot only be found on the molecular level of matter. Atoms and elementary particles in physics are also characterized by particular symmetry groups. Even living organisms and populations on the macroscopic level have functional properties of symmetry. The whole physical, chemical, and biological evolution seems to be regulated by the emergence of new symmetries and the breaking down of old ones. One is reminded of Heisenberg's famous statement: 'Die letzte Wurzel der Erscheinungen ist also nicht die Materie, sondern das mathematische Gesetz, die Symmetrie, die mathematische Form' (Wandlungen in den Grundlagen der Naturwissenschaften, 1959). Historically the belief in symmetry and simplicity of nature has a long philosophical tradition from the Pythagoreans, Plato and Greek astronomers to Kepler and modern scientists. Today, 'symmetries in nature' is a common topic of mathematics, physics, chemistry, and biology. A lot of Nobel prizes were given in honour of inquiries concerning symmetries in nature. The fascination of symmetries is not only motivated by science, but by art and religion too. Therefore 'symmetris in nature' is an interdisciplinary topic which may help to overcome C.P. Snow's 'Two Cultures' of natural sciences and humanities. (author) 17 refs., 21 figs.

  1. Symmetries in nuclei

    International Nuclear Information System (INIS)

    Arima, A.

    2003-01-01

    (1) There are symmetries in nature, and the concept of symmetry has been used in art and architecture. The symmetry is evaluated high in the European culture. In China, the symmetry is broken in the paintings but it is valued in the architecture. In Japan, however, the symmetry has been broken everywhere. The serious and interesting question is why these differences happens? (2) In this lecture, I reviewed from the very beginning the importance of the rotational symmetry in quantum mechanics. I am sorry to be too fundamental for specialists of nuclear physics. But for people who do not use these theories, I think that you could understand the mathematical aspects of quantum mechanics and the relation between the angular momentum and the rotational symmetry. (3) To the specialists of nuclear physics, I talked about my idea as follows: dynamical treatment of collective motions in nuclei by IBM, especially the meaning of the degeneracy observed in the rotation bands top of γ vibration and β vibration, and the origin of pseudo-spin symmetry. Namely, if there is a symmetry, a degeneracy occurs. Conversely, if there is a degeneracy, there must be a symmetry. I discussed some details of the observed evidence and this correspondence is my strong belief in physics. (author)

  2. Siting the high level radioactive waste repository in the United States

    International Nuclear Information System (INIS)

    Tourtellotte, J.

    1992-01-01

    For more than twenty-five years after the National Academy of Science issued its 1957 report recommending a Mined Geologic Disposal System (''MGDS'') for high level radioactive waste, no substantial progress was made in selecting and siting a repository. The United States Congress attempted to give substantive and procedural direction to the program in the Nuclear Waste Policy Act of 1982. Seeing that very little had been accomplished some five years later, Congress gave further direction and tentatively selected a single site, Yucca Mountain in Nevada, in the Nuclear Waste Policy Act Amendments of 1987. Selection of the Yucca Mountain site created a political conflict between federal and state authorities. Until recently, that conflict stalled the site characterization and evaluation program. Standards development under a polycentric regulatory regime has also been slow and has created a number of technical, legal and policy controversies. The Environmental Protection Agency (EPA), charged with setting radiation protection rules, may be developing regulatory standards which are technically unachievable and, therefore, legally unprovable in a licensing proceeding. The Nuclear Regulatory Commission (NRC), having the responsibility for licensing and setting performance objectives, may be taking an overly conservative approach. This approach could seriously impact the cost and may preclude the ability to reach an affirmative finding on license issuance. The Department of Energy (DOE) has responsibility for siting, construction and operation of the repository. In so doing, DOE must apply both EPA and NRC standards. To the extent that EPA and NRC standards are untimely, poorly defined, unrealistic, inconsistent, and technically or legally unsound, DOE may be forestalled from fulfilling its responsibilities. The US must rethink its approach to siting the high level radioactive waste repository and take realistic, timely action to preserve the nuclear option. (Author)

  3. Coordinating bifurcated remediation of soil and groundwater at sites containing multiple operable units

    International Nuclear Information System (INIS)

    Laney, D.F.

    1996-01-01

    On larger and/or more complex sites, remediation of soil and groundwater is sometimes bifurcated. This presents some unique advantages with respect to expedited cleanup of one medium, however, it requires skillful planning and significant forethought to ensure that initial remediation efforts do not preclude some long-term options, and/or unduly influence the subsequent selection of a technology for the other operable units and/or media. this paper examines how the decision to bifurcate should be approached, the various methods of bifurcation, the advantages and disadvantages of bifurcation, and the best methods to build flexibility into the design of initial remediation systems so as to allow for consideration of a fuller range of options for remediation of other operable units and/or media at a later time. Pollutants of concern include: metals; petroleum hydrocarbons; and chlorinated solvents

  4. Experience in verification regimes. United States On-Site Inspection Agency

    International Nuclear Information System (INIS)

    Reppert, J.

    1998-01-01

    Experiences are described of the United States On-site Inspection Agency in verification regimes all over the world where it has been applied in the last 30 years. The challenge for the future is to extend the benefits of the applied tools to all states in all regions to enhance stability and to create conditions for peace at lower levels of armaments than currently exist. The USA need to engage states currently caught in cycles of violence and arms escalation. They must examine technologies which together with on-site aspects of verification or transparency regimes can provide a comprehensive picture at affordable costs. They foresee a growth in combined training with new states entering for the first time into regime that include arms control and transparency measure

  5. Petrology of tuff units from the J-13 drill site, Jackass Flats, Nevada

    International Nuclear Information System (INIS)

    Heiken, G.H.; Bevier, M.L.

    1979-01-01

    The J-13 drill hole, located in Jackass Flats, Nevada Test Site, has penetrated 125 m of alluvium and 932 m of tuff. Most of the tuff deposits consist of welded tuffs; glass phases in the tuffs have been replaced by authigenic minerals, mainly K-feldspar, silica, and zeolites. The zonation of authigenic minerals, with depth, indictes that alteration of glass phases and filling of vugs occurred during welding and compaction of tuff units soon after deposition and by interaction with groundwater. Zonation of authigenic minerals in tuff deposits at Jackass Flats is similar to mineral zonation in tuffs elsewhere at the Nevada Test Site and in tuff deposits of west Texas. All appear to have been developed by leaching of glass phases and deposition of authigenic minerals in open hydrologic systems. 10 figures, 38 tables

  6. Closure Report for Corrective Action Unit 563: Septic Systems, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2010-01-01

    Corrective Action Unit (CAU) 563 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Septic Systems' and consists of the following four Corrective Action Sites (CASs), located in Areas 3 and 12 of the Nevada Test Site: (1) CAS 03-04-02, Area 3 Subdock Septic Tank; (2) CAS 03-59-05, Area 3 Subdock Cesspool; (3) CAS 12-59-01, Drilling/Welding Shop Septic Tanks; and (4) CAS 12-60-01, Drilling/Welding Shop Outfalls Closure activities were conducted from September to November 2009 in accordance with the FFACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 563. The corrective action alternatives included No Further Action and Clean Closure.

  7. Closure Report for Corrective Action Unit 563: Septic Systems, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2010-02-28

    Corrective Action Unit (CAU) 563 is identified in the Federal Facility Agreement and Consent Order (FFACO) as “Septic Systems” and consists of the following four Corrective Action Sites (CASs), located in Areas 3 and 12 of the Nevada Test Site: · CAS 03-04-02, Area 3 Subdock Septic Tank · CAS 03-59-05, Area 3 Subdock Cesspool · CAS 12-59-01, Drilling/Welding Shop Septic Tanks · CAS 12-60-01, Drilling/Welding Shop Outfalls Closure activities were conducted from September to November 2009 in accordance with the FFACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 563. The corrective action alternatives included No Further Action and Clean Closure.

  8. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 121: Storage Tanks and Miscellaneous Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2007-01-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan identifies the activities required for the closure of Corrective Action Unit (CAU) 121, Storage Tanks and Miscellaneous Sites. CAU 121 is currently listed in Appendix III of the ''Federal Facility Agreement and Consent Order'' (FFACO, 1996) and consists of three Corrective Action Sites (CASs) located in Area 12 of the Nevada Test Site (NTS): CAS 12-01-01, Aboveground Storage Tank; CAS 12-01-02, Aboveground Storage Tank; and CAS 12-22-26, Drums; 2 AST's. CASs 12-01-01 and 12-01-02 are located to the west of the Area 12 Camp, and CAS 12-22-26 is located near the U-12g Tunnel, also known as G-tunnel, in Area 12 (Figure 1). The aboveground storage tanks (ASTs) present at CASs 12-01-01 and 12-01-02 will be removed and disposed of at an appropriate facility. Soil below the ASTs will be sampled to identify whether it has been impacted with chemicals or radioactivity above action levels. If impacted soil above action levels is present, the soil will be excavated and disposed of at an appropriate facility. The CAS 12-22-26 site is composed of two overlapping areas, one where drums had formerly been stored, and the other where an AST was used to dispense diesel for locomotives used at G-tunnel. This area is located above an underground radioactive materials area (URMA), and within an area that may have elevated background radioactivity because of containment breaches during nuclear tests and associated tunnel reentry operations. CAS 12-22-26 does not include the URMA or the elevated background radioactivity. An AST that had previously been used to store liquid magnesium chloride (MgCl) was properly disposed of several years ago, and releases from this tank are not an environmental concern. The diesel AST will be removed and disposed of at an appropriate facility. Soil at the former drum area and the diesel AST area will be sampled to identify whether it has been impacted by releases, from the drums or the

  9. Status of remedial investigation activities in the Hanford Site 300 Area groundwater operable unit

    International Nuclear Information System (INIS)

    Hulstrom, L.C.; Innis, B.E.; Frank, M.A.

    1993-09-01

    The Phase 1 remedial investigation (RI) and Phase 1 and 2 feasibility studies (FS) for the 300-FF-5 groundwater operable unit underlying the 300 Area on the Hanford Site have been completed. Analysis and evaluation of soil, sediment, and surface water, and biotic sampling data, groundwater chemistry, and radiological data gathered over the past 3 years has been completed. Risk assessment calculations have been performed. Use of the data gathered, coupled with information from an automated water level data collection system, has enabled engineers to track three plumes that represent the most significant contamination of the groundwater

  10. Closure plan for Corrective Action Unit 109: U-2bu subsidence crater, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    1999-03-01

    The U-2bu subsidence crater, Corrective Action Unit 109, will be closed in accordance with the Resource Conservation and Recovery Act, the Nevada Division of Environmental Protection operational permit, and the Federal Facility Agreement and Consent Order. The U-2bu subsidence crater is located in Area 2 of the Nevada Test Site. It was created in 1971 by an underground nuclear test with the name Miniata. The crater has a diameter of 288 meters (944 feet) and an approximate depth of 35 meters (115 feet). Based on the results of the analyses reported in the site characterization report, the only constituents of concern in the U-2bu subsidence crater include leachable lead and total petroleum hydrocarbons. Closure activities will include the excavation and disposal of impacted soil from the top of the crater. Upon completion of excavation, verification samples will be collected to show that the leachable lead has been removed to concentrations below the regulatory action level. After sample results show that the lead has been removed, the excavated area will be backfilled and a soil flood diversion berm will be constructed as a best management practice. An independent registered professional engineer will certify the site was closed following the approved Closure Plan. Post-closure care is not warranted for this site because closure activities will involve removal of the Resource Conservation and Recovery Act constituents of concern

  11. Analysis of the rock mechanics properties of volcanic tuff units from Yucca Mountain, Nevada Test Site

    International Nuclear Information System (INIS)

    Price, R.H.

    1983-08-01

    Over two hundred fifty mechanical experiments have been run on samples of tuff from Yucca Mountain, Nevada Test Site. Cores from the Topopah Spring, Calico Hills, Bullfrog and Tram tuff units were deformed to collect data for an initial evaluation of mechanical (elastic and strength) properties of the potential horizons for emplacement of commercial nuclear wastes. The experimental conditions ranged in sample saturation from room dry to fully saturated, confining pressure from 0.1 to 20 MPa, pore pressure from 0.1 to 5 MPa, temperature from 23 to 200 0 C, and strain rate from 10 -7 to 10 -2 s -1 . These test data have been analyzed for variations in elastic and strength properties with changes in test conditions, and to study the effects of bulk-rock characteristics on mechanical properties. In addition to the site-specific data on Yucca Mountain tuff, mechanical test results on silicic tuff from Rainier Mesa, Nevada Test Site, are also discussed. These data both overlap and augment the Yucca Mountain tuff data, allowing more definitive conclusions to be reached, as well as providing data at some test conditions not covered by the site-specific tests

  12. Closure plan for Corrective Action Unit 109: U-2bu subsidence crater, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The U-2bu subsidence crater, Corrective Action Unit 109, will be closed in accordance with the Resource Conservation and Recovery Act, the Nevada Division of Environmental Protection operational permit, and the Federal Facility Agreement and Consent Order. The U-2bu subsidence crater is located in Area 2 of the Nevada Test Site. It was created in 1971 by an underground nuclear test with the name Miniata. The crater has a diameter of 288 meters (944 feet) and an approximate depth of 35 meters (115 feet). Based on the results of the analyses reported in the site characterization report, the only constituents of concern in the U-2bu subsidence crater include leachable lead and total petroleum hydrocarbons. Closure activities will include the excavation and disposal of impacted soil from the top of the crater. Upon completion of excavation, verification samples will be collected to show that the leachable lead has been removed to concentrations below the regulatory action level. After sample results show that the lead has been removed, the excavated area will be backfilled and a soil flood diversion berm will be constructed as a best management practice. An independent registered professional engineer will certify the site was closed following the approved Closure Plan. Post-closure care is not warranted for this site because closure activities will involve removal of the Resource Conservation and Recovery Act constituents of concern.

  13. RCRA facility investigation/corrective measures study work plan for the 100-HR-1 operable unit, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1992-09-01

    Four areas of the Hanford Site (the 100, 200, 300, and 1100 Areas) have been included on the US. Environmental Protection Agency's (EPA's) National Priorities List (NPL) under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under the Hanford Federal Facility Agreement and Consent Order, signed by the Washington State Department of Ecology (Ecology), EPA, and the US Department of Energy (DOE), more than 1,000 inactive waste disposal and unplanned release sites on the Hanford Site have been grouped into a number of source and groundwater operable units. These operable units contain contamination in the form of hazardous waste, radioactive/hazardous mixed waste, and other CERCLA hazardous substances. This work plan and the attached supporting project plans establish the operable unit setting and the objectives, procedures, tasks, and schedule for conducting the RCRA facility investigation/corrective measures study (RFI/CMS) for the 100-HR-1 source operable unit. Source operable units include facilities and unplanned release sites that are potential sources of contamination. The 100-HR-3 operable unit underlies the D/DR and H Areas, the 600 Area between them, and the six source operable units these areas contain. The 100-HR-3 operable unit includes all contamination found in the aquifer soils and water within its boundary. Separate work plans have been initiated for the 100-HR-3 groundwater operable unit (DOE-RL 1992a) and the 100-DR-1 (DOE-RL 1992b) source operable units

  14. From physical symmetries to emergent gauge symmetries

    International Nuclear Information System (INIS)

    Barceló, Carlos; Carballo-Rubio, Raúl; Di Filippo, Francesco; Garay, Luis J.

    2016-01-01

    Gauge symmetries indicate redundancies in the description of the relevant degrees of freedom of a given field theory and restrict the nature of observable quantities. One of the problems faced by emergent theories of relativistic fields is to understand how gauge symmetries can show up in systems that contain no trace of these symmetries at a more fundamental level. In this paper we start a systematic study aimed to establish a satisfactory mathematical and physical picture of this issue, dealing first with abelian field theories. We discuss how the trivialization, due to the decoupling and lack of excitation of some degrees of freedom, of the Noether currents associated with physical symmetries leads to emergent gauge symmetries in specific situations. An example of a relativistic field theory of a vector field is worked out in detail in order to make explicit how this mechanism works and to clarify the physics behind it. The interplay of these ideas with well-known results of importance to the emergent gravity program, such as the Weinberg-Witten theorem, are discussed.

  15. The Symmetry of Multiferroics

    OpenAIRE

    Harris, A. Brooks

    2006-01-01

    This paper represents a detailed instruction manual for constructing the Landau expansion for magnetoelectric coupling in incommensurate ferroelectric magnets. The first step is to describe the magnetic ordering in terms of symmetry adapted coordinates which serve as complex valued magnetic order parameters whose transformation properties are displayed. In so doing we use the previously proposed technique to exploit inversion symmetry, since this symmetry had been universally overlooked. Havi...

  16. Mixed-Valence Molecular Unit for Quantum Cellular Automata: Beyond the Born-Oppenheimer Paradigm through the Symmetry-Assisted Vibronic Approach.

    Science.gov (United States)

    Clemente-Juan, Juan Modesto; Palii, Andrew; Coronado, Eugenio; Tsukerblat, Boris

    2016-08-09

    In this article, we focus on the electron-vibrational problem of the tetrameric mixed-valence (MV) complexes proposed for implementation as four-dot molecular quantum cellular automata (mQCA).1 Although the adiabatic approximation explored in ref 2 is an appropriate tool for the qualitative analysis of the basic characteristics of mQCA, like vibronic trapping of the electrons encoding binary information and cell-cell response, it loses its accuracy providing moderate vibronic coupling and fails in the description of the discrete pattern of the vibronic levels. Therefore, a precise solution of the quantum-mechanical vibronic problem is of primary importance for the evaluation of the shapes of the electron transfer optical absorption bands and quantitative analysis of the main parameters of tetrameric quantum cells. Here, we go beyond the Born-Oppenheimer paradigm and present a solution of the quantum-mechanical pseudo Jahn-Teller (JT) vibronic problem in bielectronic MV species (exemplified by the tetra-ruthenium complexes) based on the recently developed symmetry-assisted approach.3,4 The mathematical approach to the vibronic eigenproblem takes into consideration the point symmetry basis, and therefore, the total matrix of the JT Hamiltonian is blocked to the maximum extent. The submatrices correspond to the irreducible representations (irreps) of the point group. With this tool, we also extend the theory of the mQCA cell beyond the limit of prevailing Coulomb repulsion in the electronic pair (adopted in ref 2), and therefore, the general pseudo-JT problems for spin-singlet ((1)B1g, 2(1)A1g, (1)B2g, (1)Eu) ⊗ (b1g + eu) and spin-triplet states ((3)A2g, (3)B1g, 2(3)Eu) ⊗ (b1g + eu) in a square-planar bielectronic system are solved. The obtained symmetry-adapted electron-vibrational functions are employed for the calculation of the profiles (shape functions) of the charge transfer absorption bands in the tetrameric MV complexes and for the discussion of the

  17. Corrective Action Decision Document/Closure Report for Corrective Action Unit 105: Area 2 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick

    2013-09-01

    This Corrective Action Decision Document/Closure Report presents information supporting the closure of Corrective Action Unit (CAU) 105: Area 2 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada. CAU 105 comprises the following five corrective action sites (CASs): -02-23-04 Atmospheric Test Site - Whitney Closure In Place -02-23-05 Atmospheric Test Site T-2A Closure In Place -02-23-06 Atmospheric Test Site T-2B Clean Closure -02-23-08 Atmospheric Test Site T-2 Closure In Place -02-23-09 Atmospheric Test Site - Turk Closure In Place The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 105 based on the implementation of the corrective actions. Corrective action investigation (CAI) activities were performed from October 22, 2012, through May 23, 2013, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 105: Area 2 Yucca Flat Atmospheric Test Sites; and in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices.

  18. Site descriptions of environmental restoration units at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Kuhaida, A.J. Jr.; Parker, A.F.

    1997-02-01

    This report provides summary information on Oak Ridge National Laboratory (ORNL) Environmental Restoration (ER) sites as listed in the Oak Ridge Reservation Federal Facility Agreement (FFA), dated January 1, 1992, Appendix C. The Oak Ridge National Laboratory was built in 1943 as part of the World War II Manhattan Project. The original mission of ORNL was to produce and chemically separate the first gram-quantities of plutonium as part of the national effort to produce the atomic bomb. The current mission of ORNL is to provide applied research and development in support of the U.S. Department of Energy (DOE) programs in nuclear fusion and fission, energy conservation, fossil fuels, and other energy technologies and to perform basic scientific research in selected areas of the physical, life, and environmental sciences. ER is also tasked with clean up or mitigation of environmental impacts resulting from past waste management practices on portions of the approximately 37,000 acres within the Oak Ridge Reservation (ORR). Other installations located within the ORR are the Gaseous Diffusion Plant (K-25) and the Y-12 plant. The remedial action strategy currently integrates state and federal regulations for efficient compliance and approaches for both investigations and remediation efforts on a Waste Area Grouping (WAG) basis. As defined in the ORR FFA Quarterly Report July - September 1995, a WAG is a grouping of potentially contaminated sites based on drainage area and similar waste characteristics. These contaminated sites are further divided into four categories based on existing information concerning whether the data are generated for scoping or remedial investigation (RI) purposes. These areas are as follows: (1) Operable Units (OU); (2) Characterization Areas (CA); (3) Remedial Site Evaluation (RSE) Areas; and (4) Removal Site Evaluation (RmSE) Areas.

  19. Unit soil loss rate from various construction sites during a storm.

    Science.gov (United States)

    Maniquiz, Marla C; Lee, Soyoung; Lee, Eunju; Kong, Dong-Soo; Kim, Lee-Hyung

    2009-01-01

    The Korean Ministry of Environment (MOE) opts to establish an ordinance having a standard specifying an allowable soil loss rate applicable to construction projects. The predicted amount of soil loss from a construction site exceeding the standard can be used to calculate the percent reduction necessary to comply with the ordinance. This research was conducted to provide a basis to establish a standard by investigating the unit soil loss rates in the three phases of development: pre-construction, active construction and post construction based from 1,036 Environmental Impact Assessment (EIA) reports within the six-year period (2000-2005). Based on the findings, several factors affect the magnitude of soil loss rates particularly storm characteristics, site slope, soil type, location from rivers, as well as the type of construction activity. In general, the unit soil loss rates during the active construction phase are extremely higher in comparison to undisturbed areas; in magnitude of 7 to 80 times larger in urban areas and 18 to 585 times in rural areas. Only between 20 to 40 percent of the soil loss rates was contributed at pre- and post- construction phases indicating that the active construction phase is the most important phase to control.

  20. Approximate and renormgroup symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Ibragimov, Nail H. [Blekinge Institute of Technology, Karlskrona (Sweden). Dept. of Mathematics Science; Kovalev, Vladimir F. [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Mathematical Modeling

    2009-07-01

    ''Approximate and Renormgroup Symmetries'' deals with approximate transformation groups, symmetries of integro-differential equations and renormgroup symmetries. It includes a concise and self-contained introduction to basic concepts and methods of Lie group analysis, and provides an easy-to-follow introduction to the theory of approximate transformation groups and symmetries of integro-differential equations. The book is designed for specialists in nonlinear physics - mathematicians and non-mathematicians - interested in methods of applied group analysis for investigating nonlinear problems in physical science and engineering. (orig.)

  1. Approximate and renormgroup symmetries

    International Nuclear Information System (INIS)

    Ibragimov, Nail H.; Kovalev, Vladimir F.

    2009-01-01

    ''Approximate and Renormgroup Symmetries'' deals with approximate transformation groups, symmetries of integro-differential equations and renormgroup symmetries. It includes a concise and self-contained introduction to basic concepts and methods of Lie group analysis, and provides an easy-to-follow introduction to the theory of approximate transformation groups and symmetries of integro-differential equations. The book is designed for specialists in nonlinear physics - mathematicians and non-mathematicians - interested in methods of applied group analysis for investigating nonlinear problems in physical science and engineering. (orig.)

  2. Characteristics of particulate matter collected at an urban background site and a roadside site in Birmingham, United Kingdom

    OpenAIRE

    Taiwo, Adewale M.

    2017-01-01

    ABSTRACT This study was conducted to investigate the compositional characteristics of particulate matter (PM) collected both at an urban background site (Elms Road observational site, EROS) and a roadside site (Bristol Road observational site, BROS). PM samples were collected at the receptor sites between March 28 and April 11, 2012. Observed parameters included water-soluble ions (Cl-, NO- 3, SO4 2-, Na+, NH4 +, K+, Mg2+, Ca2+) and trace metals (V, Al, Cr, Mn, Fe, Zn, Cu, Sb, Ba, Pb). Result...

  3. Remedial investigation/feasibility study work plan for the 100-FR-3 operable unit, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1992-09-01

    Four areas of the Hanford Site (the 100, 200, 300, and 1100 Areas) have been included on the US Environmental Protection Agency's (EPA's) National Priorities List (NPL) under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Figure 1-1 shows the location of these areas. Under the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement, Ecology et al. 1990a), signed by the Washington State Department of Ecology (Ecology), EPA, and the US Department of Energy (DOE), more than 1,000 inactive waste disposal and unplanned release sites on the Hanford Site have been grouped into a number of source and groundwater operable units. These operable units contain contamination in the form of hazardous waste, radioactive/hazardous mixed waste, and other CERCLA hazardous substances. This work plan and the attached supporting project plans establish the operable unit setting and the objectives, procedures, tasks, and schedule for conducting the CERCLA remedial investigation/feasibility study (RI/FS) for the 100-FR-3 operable unit. The 100-K Area consists of the 100-FR-3 groundwater operable unit and two source operable units. The 100-FR-3 operable unit includes all contamination found in the aquifer soils and water beneath the 100-F Area. Source operable units include facilities and unplanned release sites that are potential sources of contamination. A separate work plan has been initiated for the 100-FR-1 source operable unit (DOE-RL 1992a)

  4. Remedial investigation/feasibility study work plan for the 100-FR-1 operable unit, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1992-08-01

    Four areas of the Hanford Site (the 100, 200,300, and 1100 Areas) have been included on the US Environmental Protection Agency's (EPA's) National Priorities List (NPL) under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement, Ecology et al. 1990a), signed by the Washington State Department of Ecology (Ecology), EPA, and the US Department of Energy (DOE), more than 1,000 inactive waste disposal and unplanned release sites on the Hanford Site have been grouped into a number of source and groundwater operable units. These operable units contain contamination in the form of hazardous waste, radioactive/hazardous mixed waste, and other CERCLA hazardous substances. This work plan and the attached supporting project plans establish the objectives, procedures, tasks, and schedule for conducting the CERCLA remedial investigation/feasibility study (RI/FS) for the 100-FR-1 operable unit. The 100-FR-1 source operable unit is one of two source operable units in the 100-F Area. Source operable units include facilities and unplanned release sites that are potential sources of hazardous substance contamination. The groundwater affected or potentially affected by the entire 100-F Area is considered as a separate operable unit, the 100-FR-3 groundwater operable unit. A separate work plan has been initiated for the 100-FR-3 operable unit (DOE/RL 1992a)

  5. Technical challenges in the qualitative ecological risk assessments performed on the Hanford Site operable units

    International Nuclear Information System (INIS)

    Probasco, K.M.

    1994-01-01

    Qualitative Risk Assessments (QRAS) have been selected as the method for providing the risk-driver indications for interim, remedial, and cleanup actions for the Hanford Site operable units' ecological risk assessments. This expedited response action path has been developed for the Hanford Site to facilitate time-critical decisions and generate immediate emergency cleanup actions. Tight budgets and aggressive time schedules are a major factor in the development of the QRA process. The QRA is a quick way to find immediate threats and a good precursor to a full risk assessment. However, numerous technical challenges have been identified with the QRA approach. The QRA approach differs from a baseline risk assessment in several ways. The main differences involve the use of data that have previously been gathered from the site, and the development of a ''bias-for-action'' document that would reveal qualitative risks from the contaminants identified at the operable units. Technical challenges concerning the ecological portion of these QRAs have raised questions about using the ORA for decision-making and may have weakened the validity of its use in the established procedural framework. Challenges involving such issues as the extrapolation of the contaminant data, data validation and screening techniques, receptor selections, and the final risk characterization outcome threaten the feasibility of the QRA as a decision-making tool. This discussion provides insight into resolving technical challenges and may be a ''lessons-learned'' device for those interested in the QRA approach. Ultimately, these challenges are proving to be learning tools for scientists, regulators, and ecologists and are identifying the data gaps and research direction for future ecological baseline risk assessments

  6. Annual dose at the exclusion area boundary of a multi-unit CANDU site

    International Nuclear Information System (INIS)

    Gagnon, N.; Bobb, C.R.; Tsang, K.T.

    1997-01-01

    The annual dose to members of the public from CANDU nuclear power stations is dominated by the contribution from airborne effluents. The principal radionuclides contributing to the annual dose are tritium, carbon-14 and noble gases. The tritium is released as tritiated heavy-water vapour; the carbon-14 is released principally as carbon dioxide. To demonstrate compliance with the public dose limit, AECL has calculated the annual dose from airborne emissions from 10 CANDU units at an extended Wolsong site. The analysis has used the treatment of atmospheric dispersion described in the US Regulatory Guide 1.111 and programmed in the code XOQDOQ. The analysis has then modelled the transport of these airborne emissions through the environment as they expose the critical group using the US Regulatory Guide 1.109. the study takes account of the different annual emissions from each unit to reflect the different design features of the units. This study also includes a treatment of topography and makes allowances for building wake effects

  7. Economic impacts on the United States of siting decisions for the international thermonuclear experimental reactor

    International Nuclear Information System (INIS)

    Peerenboom, J.P.; Hanson, M.E.; Huddleston, J.R.

    1996-08-01

    This report presents the results of a study that examines and compares the probable short-term economic impacts of the International Thermonuclear Experimental Reactor (ITER) on the United States (U.S.) if (1) ITER were to be sited in the U.S., or (2) ITER were to be sited in one of the other countries that, along with the U.S., is currently participating in the ITER program. Life-cycle costs associated with ITER construction, operation, and decommissioning are analyzed to assess their economic impact. A number of possible U.S. host and U.S. non-host technology and cost-sharing arrangements with the other ITER Parties are examined, although cost-sharing arrangements and the process by which the Parties will select a host country and an ITER site remain open issues. Both national and local/regional economic impacts, as measured by gross domestic product, regional output, employment, net exports, and income, are considered. These impacts represent a portion of the complex, interrelated set of economic considerations that characterize U.S. host and U.S. non-host participation in ITER. A number of other potentially important economic and noneconomic considerations are discussed qualitatively

  8. Economic impacts on the United States of siting decisions for the International Thermonuclear Experimental Reactor

    International Nuclear Information System (INIS)

    Peerenboom, J.P.; Wolsko, T.D.; Hanson, M.E.

    1997-01-01

    This paper presents the results of a study that examines and compares the probable short-term economic impacts of the International Thermonuclear Experimental Reactor (ITER) on the United States (U.S.) if (1) ITER were to be sited in the U.S., or (2) ITER were to be sited in one of the other countries that along with the U.S., is currently participating in the ITER program. Life-cycle costs associated with ITER construction, operation, and decommissioning are analyzed to assess their economic impact. A number of possible U.S. host and U.S. non-host technology and cost-sharing arrangements with the other ITER Parties are examined, although cost-sharing arrangements and the process by which the Parties will select a host country and an ITER site remain open issues. Both national and local/regional economic impacts, as measured by gross domestic product, regional output, employment, net exports, and income, are considered. These impacts represent a portion of the complex, interrelated set of economic considerations that characterize U.S. host and U.S. non-host participation in ITER. A number of other potentially important economic and noneconomic considerations are discussed qualitatively

  9. Economic impacts on the United States of siting decisions for the international thermonuclear experimental reactor

    Energy Technology Data Exchange (ETDEWEB)

    Peerenboom, J.P.; Hanson, M.E.; Huddleston, J.R. [and others

    1996-08-01

    This report presents the results of a study that examines and compares the probable short-term economic impacts of the International Thermonuclear Experimental Reactor (ITER) on the United States (U.S.) if (1) ITER were to be sited in the U.S., or (2) ITER were to be sited in one of the other countries that, along with the U.S., is currently participating in the ITER program. Life-cycle costs associated with ITER construction, operation, and decommissioning are analyzed to assess their economic impact. A number of possible U.S. host and U.S. non-host technology and cost-sharing arrangements with the other ITER Parties are examined, although cost-sharing arrangements and the process by which the Parties will select a host country and an ITER site remain open issues. Both national and local/regional economic impacts, as measured by gross domestic product, regional output, employment, net exports, and income, are considered. These impacts represent a portion of the complex, interrelated set of economic considerations that characterize U.S. host and U.S. non-host participation in ITER. A number of other potentially important economic and noneconomic considerations are discussed qualitatively.

  10. Anomalous Symmetry Fractionalization and Surface Topological Order

    Directory of Open Access Journals (Sweden)

    Xie Chen

    2015-10-01

    Full Text Available In addition to possessing fractional statistics, anyon excitations of a 2D topologically ordered state can realize symmetry in distinct ways, leading to a variety of symmetry-enriched topological (SET phases. While the symmetry fractionalization must be consistent with the fusion and braiding rules of the anyons, not all ostensibly consistent symmetry fractionalizations can be realized in 2D systems. Instead, certain “anomalous” SETs can only occur on the surface of a 3D symmetry-protected topological (SPT phase. In this paper, we describe a procedure for determining whether a SET of a discrete, on-site, unitary symmetry group G is anomalous or not. The basic idea is to gauge the symmetry and expose the anomaly as an obstruction to a consistent topological theory combining both the original anyons and the gauge fluxes. Utilizing a result of Etingof, Nikshych, and Ostrik, we point out that a class of obstructions is captured by the fourth cohomology group H^{4}(G,U(1, which also precisely labels the set of 3D SPT phases, with symmetry group G. An explicit procedure for calculating the cohomology data from a SET is given, with the corresponding physical intuition explained. We thus establish a general bulk-boundary correspondence between the anomalous SET and the 3D bulk SPT whose surface termination realizes it. We illustrate this idea using the chiral spin liquid [U(1_{2}] topological order with a reduced symmetry Z_{2}×Z_{2}⊂SO(3, which can act on the semion quasiparticle in an anomalous way. We construct exactly solved 3D SPT models realizing the anomalous surface terminations and demonstrate that they are nontrivial by computing three-loop braiding statistics. Possible extensions to antiunitary symmetries are also discussed.

  11. RCRA facility investigation/corrective measures study work plan for the 200-UP-2 Operable Unit, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1993-06-01

    The 200-UP-2 Operable Unit is one of two source operable units at the U Plant Aggregate Area at the Hanford Site. Source operable units include waste management units and unplanned release sites that are potential sources of radioactive and/or hazardous substance contamination. This work plan, while maintaining the title RFI/CMS, presents the background and direction for conducting a limited field investigation in the 200-UP-2 Operable Unit, which is the first part of the process leading to final remedy selection. This report discusses the background, prior recommendations, goals, organization, and quality assurance for the 200-UP-2 Operable Unit Work Plan. The discussion begins with a summary of the regulatory framework and the role of the work plan. The specific recommendations leading into the work plan are then addressed. Next, the goals and organization of the report are discussed. Finally, the quality assurance and supporting documentation are presented

  12. Remedial investigation/feasibility study work plan for the 100-KR-4 operable unit, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1992-09-01

    Four areas of the Hanford Site (the 100, 200, 300, and 1100 Areas) have been included on the US Environmental Protection Agency's (EPA's) National Priorities List (NPL) under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). This work plan and the attached supporting project plans establish the operable unit setting and the objectives, procedures, tasks, and schedule for conducting the CERCLA remedial investigation/feasibility study (RI/FS) for the 100-KR-4 operable unit. The 100-K Area consists of the 100-KR-4 groundwater operable unit and three source operable units. The 100-KR-4 operable unit includes all contamination found in the aquifer soils and water beneath the 100-K Area. Source operable units include facilities and unplanned release sites that are potential sources of contamination

  13. Remedial investigation/feasibility study work plan for the 100-KR-4 operable unit, Hanford Site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    Four areas of the Hanford Site (the 100, 200, 300, and 1100 Areas) have been included on the US Environmental Protection Agency`s (EPA`s) National Priorities List (NPL) under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). This work plan and the attached supporting project plans establish the operable unit setting and the objectives, procedures, tasks, and schedule for conducting the CERCLA remedial investigation/feasibility study (RI/FS) for the 100-KR-4 operable unit. The 100-K Area consists of the 100-KR-4 groundwater operable unit and three source operable units. The 100-KR-4 operable unit includes all contamination found in the aquifer soils and water beneath the 100-K Area. Source operable units include facilities and unplanned release sites that are potential sources of contamination.

  14. Beyond Section 508: The Spectrum of Legal Requirements for Accessible e-Government Web Sites in the United States

    Science.gov (United States)

    Jaeger, Paul T.

    2004-01-01

    In the United States, a number of federal laws establish requirements that electronic government (e-government) information and services be accessible to individuals with disabilities. These laws affect e-government Web sites at the federal, state, and local levels. To this point, research about the accessibility of e-government Web sites has…

  15. Corrective Action Plan for Corrective Action Unit 151: Septic Systems and Discharge Area, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2007-01-01

    Corrective Action Unit (CAU) 151, Septic Systems and Discharge Area, is listed in the Federal Facility Agreement and Consent Order (FFACO) of 1996 (FFACO, 1996). CAU 151 consists of eight Corrective Action Sites (CASs) located in Areas 2, 12, and 18 of the Nevada Test Site (NTS), which is located approximately 65 miles northwest of Las Vegas, Nevada

  16. Summary: Symmetries and spin

    International Nuclear Information System (INIS)

    Haxton, W.C.

    1988-01-01

    I discuss a number of the themes of the Symmetries and Spin session of the 8th International Symposium on High Energy Spin Physics: parity nonconservation, CP/T nonconservation, and tests of charge symmetry and charge independence. 28 refs., 1 fig

  17. Symmetry Festival 2016

    CERN Document Server

    2016-01-01

    The Symmetry Festival is a science and art program series, the most important periodic event (see its history) to bring together scientists, artists, educators and practitioners interested in symmetry (its roots, what is behind, applications, etc.), or in the consequences of its absence.

  18. Quantum symmetry for pedestrians

    International Nuclear Information System (INIS)

    Mack, G.; Schomerus, V.

    1992-03-01

    Symmetries more general than groups are possible in quantum therory. Quantum symmetries in the narrow sense are compatible with braid statistics. They are theoretically consistent much as supersymmetry is, and they could lead to degenerate multiplets of excitations with fractional spin in thin films. (orig.)

  19. Wigner's Symmetry Representation Theorem

    Indian Academy of Sciences (India)

    IAS Admin

    At the Heart of Quantum Field Theory! Aritra Kr. ... principle of symmetry was not held as something very fundamental ... principle of local symmetry: the laws of physics are invariant un- .... Next, we would show that different coefficients of a state ...

  20. Charged fluids with symmetries

    Indian Academy of Sciences (India)

    It is possible to introduce many types of symmetries on the manifold which restrict the ... metric tensor field and generate constants of the motion along null geodesics .... In this analysis we have studied the role of symmetries for charged perfect ...

  1. Symmetry and Interculturality

    Science.gov (United States)

    Marchis, Iuliana

    2009-01-01

    Symmetry is one of the fundamental concepts in Geometry. It is a Mathematical concept, which can be very well connected with Art and Ethnography. The aim of the article is to show how to link the geometrical concept symmetry with interculturality. For this mosaics from different countries are used.

  2. Corrective Action Plan for Corrective Action Unit 563: Septic Systems, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2009-01-01

    This Corrective Action Plan (CAP) has been prepared for Corrective Action Unit (CAU) 563, Septic Systems, in accordance with the Federal Facility Agreement and Consent Order. CAU 563 consists of four Corrective Action Sites (CASs) located in Areas 3 and 12 of the Nevada Test Site. CAU 563 consists of the following CASs: CAS 03-04-02, Area 3 Subdock Septic Tank CAS 03-59-05, Area 3 Subdock Cesspool CAS 12-59-01, Drilling/Welding Shop Septic Tanks CAS 12-60-01, Drilling/Welding Shop Outfalls Site characterization activities were performed in 2007, and the results are presented in Appendix A of the CAU 563 Corrective Action Decision Document. The scope of work required to implement the recommended closure alternatives is summarized below. CAS 03-04-02, Area 3 Subdock Septic Tank, contains no contaminants of concern (COCs) above action levels. No further action is required for this site; however, as a best management practice (BMP), all aboveground features (e.g., riser pipes and bumper posts) will be removed, the septic tank will be removed, and all open pipe ends will be sealed with grout. CAS 03-59-05, Area 3 Subdock Cesspool, contains no COCs above action levels. No further action is required for this site; however, as a BMP, all aboveground features (e.g., riser pipes and bumper posts) will be removed, the cesspool will be abandoned by filling it with sand or native soil, and all open pipe ends will be sealed with grout. CAS 12-59-01, Drilling/Welding Shop Septic Tanks, will be clean closed by excavating approximately 4 cubic yards (yd3) of arsenic- and chromium-impacted soil. In addition, as a BMP, the liquid in the South Tank will be removed, the North Tank will be removed or filled with grout and left in place, the South Tank will be filled with grout and left in place, all open pipe ends will be sealed with grout or similar material, approximately 10 yd3 of chlordane-impacted soil will be excavated, and debris within the CAS boundary will be removed. CAS 12

  3. Symmetry and symmetry breaking in modern physics

    International Nuclear Information System (INIS)

    Barone, M; Theophilou, A K

    2008-01-01

    In modern physics, the theory of symmetry, i.e. group theory, is a basic tool for understanding and formulating the fundamental principles of Physics, like Relativity, Quantum Mechanics and Particle Physics. In this work we focus on the relation between Mathematics, Physics and objective reality

  4. Closure Report for Corrective Action Unit 135: Areas 25 Underground Storage Tanks, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    D. H. Cox

    2001-06-01

    Corrective Action Unit (CAU) 135, Area 25 Underground Storage Tanks, was closed in accordance with the approved Corrective Action Plan (DOE/NV, 2000). CAU 135 consists of three Corrective Action Sites (CAS). Two of these CAS's were identified in the Corrective Action Investigation Data Quality Objective meeting as being improperly identified as underground storage tanks. CAS 25-02-03 identified as the Deluge Valve Pit was actually an underground electrical vault and CAS 25-02-10 identified as an Underground Storage Tank was actually a former above ground storage tank filled with demineralized water. Both of these CAS's are recommended for a no further action closure. CAS 25-02-01 the Underground Storage Tanks commonly referred to as the Engine Maintenance Assembly and Disassembly Waste Holdup Tanks and Vault was closed by decontaminating the vault structure and conducting a radiological verification survey to document compliance with the Nevada Test Site unrestricted use release criteria. The Area 25 Underground Storage Tanks, (CAS 25-02-01), referred to as the Engine Maintenance, Assembly, and Disassembly (E-MAD) Waste Holdup Tanks and Vault, were used to receive liquid waste from all of the radioactive and cell service area drains at the E-MAD Facility. Based on the results of the Corrective Action Investigation conducted in June 1999, discussed in ''The Corrective Action Investigation Plan for Corrective Action Unit 135: Area 25 Underground Storage Tanks, Nevada Test Site, Nevada'' (DOE/NV, 199a), one sample from the radiological survey of the concrete vault interior exceeded radionuclide preliminary action levels. The analytes from the sediment samples exceeded the preliminary action levels for polychlorinated biphenyls, Resource Conservation and Recovery Act metals, total petroleum hydrocarbons as diesel-range organics, and radionuclides. The CAU 135 closure activities consisted of scabbling radiological ''hot spots

  5. Characterization report for Area 23, Building 650 Leachfield, Corrective Action Unit Number 94, Nevada Test Site. Revision 1

    International Nuclear Information System (INIS)

    1998-01-01

    Corrective Action Unit (CAU) Number 94, Building 650 Leachfield, is an historic laboratory disposal unit located in Area 23 at the Nevada Test Site (NTS) in Nye County, Nevada. The objectives of this project were twofold: characterize subsurface conditions at the CAU with respect to the on-site disposal unit, and provide sufficient information to develop a closure strategy for the leachfield. To this end, subsurface sampling was conducted in the vicinity of the piping above the distribution box, under and around the distribution box, and within the leachfield

  6. Characterization report for Area 23, Building 650 Leachfield, Corrective Action Unit Number 94, Nevada Test Site. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-27

    Corrective Action Unit (CAU) Number 94, Building 650 Leachfield, is an historic laboratory disposal unit located in Area 23 at the Nevada Test Site (NTS) in Nye County, Nevada. The objectives of this project were twofold: characterize subsurface conditions at the CAU with respect to the on-site disposal unit, and provide sufficient information to develop a closure strategy for the leachfield. To this end, subsurface sampling was conducted in the vicinity of the piping above the distribution box, under and around the distribution box, and within the leachfield.

  7. Candidate sites for future hot-dry-rock development in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Goff, F.; Decker, E.R.

    1982-12-01

    Generalized geologic and other data are tabulated for 24 potential hot dry rock (HDR) sites in the contiguous United States. The data show that HDR resources occur in many geologic and tectonic settings. Potential reservoir rocks at each prospect are described and each system is cateogrized accoridng to inferred heat sources. The Fenton Hill area in New Mexico is discussed in detail because this region may be considered ideal for HDR development. Three other prospectively valuable localities are described: The Geysers-Clear lake region in California, the Roosevelt Hot Springs area in Utah, and the White Mountains region in New Hampshire. These areas are singled out to illustrate the roles of significantly different geology and geophysics, reservoir rocks, and reservoir heat contents in possible HDR developments.

  8. Potential Nuclear Power Plant Siting Issues in the United Arab Emirates

    International Nuclear Information System (INIS)

    Al Hanai, Waddah T.

    2011-01-01

    Based on the need to develop additional sources of electricity to meet future demand and to ensure the rapid growth of its economy, the United Arab Emirates has embarked on a nuclear programme. The Federal Law by Decree No. 6 of 2009, Concerning the Peaceful Uses of Nuclear Energy was signed by the President, last fall. This law created the Federal Authority for Nuclear Regulation (FANR), which is developing the framework of regulations which will guide the UAE programme. This paper reviews the development of the FANR regulation on Siting and the related environmental issues in general and those unique to the area. This will include steps being planned by the Authority to review the license application and the current concepts being looked at for the inspection programme. Among the unique aspects the author will look at are the results from a recent in-depth study performed on dust and sand storms. (author)

  9. Housekeeping Closure Report for Corrective Action Unit 463: Areas 2, 3, 9, and 25 Housekeeping Waste Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    1999-01-01

    The Federal Facility Agreement and Consent Order was entered into by the State of Nevada, U.S. Department of Energy, and U.S. Department of Defense to identify sites of potential historical contamination and implement corrective actions based on public health and environmental considerations. The facilities subject to this agreement include the Nevada Test Site (NTS), parts of the Tonopah Test Range, parts of the Nellis Air Force Range, the Central Nevada Test Area, and the Project Shoal Area. Corrective Action Sites (CASs) are areas potentially requiring corrective actions and may include solid waste management units, individual disposal, or release sites. Based on geography, technical similarity, agency responsibility, or other appropriate reasons, CASs are grouped together into Corrective Action Units (CAUs) for the purposes of determining corrective actions. This report contains the Closure Verification Forms for cleanup activities that were performed at 13 CASs within CAU 463 on the NTS. The Housekeeping Closure Verification Form for each CAS provides the location, directions to the site, general description, and photographs of the site before and after cleanup activities. Housekeeping activities at these sites included removal of debris (e.g., wooden pallets, metal, glass, and trash) and other material. In addition, these forms confirm prior removal of other contaminated materials such as metal drums or buckets, transformers, lead bricks, batteries, and gas cylinders. Based on these activities, no further action is required at these CASs

  10. Screening of Potential Remediation Methods for the 200-ZP-1 Operable Unit at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J.; Nimmons, Michael J.; Johnson, Christian D.; Dresel, P EVAN.; Murray, Christopher J.

    2006-08-07

    A screening-level evaluation of potential remediation methods for application to the contaminants of concern (COC) in the 200-ZP-1 Operable Unit at the Hanford Site was conducted based on the methods outlined in the Guidance for Conducting Remedial Investigations and Feasibility Studies under CERCLA Interim Final. The scope of this screening was to identify the most promising remediation methods for use in the more detailed analysis of remediation alternatives that will be conducted as part of the full feasibility study. The screening evaluation was conducted for the primary COC (potential major risk drivers). COC with similar properties were grouped for the screening evaluation. The screening evaluation was conducted in two primary steps. The initial screening step evaluated potential remediation methods based on whether they can be effectively applied within the environmental setting of the 200-ZP-1 Operable Unit for the specified contaminants. In the second step, potential remediation methods were screened using scoping calculations to estimate the scale of infrastructure, overall quantities of reagents, and conceptual approach for applying the method for each defined grouping of COC. Based on these estimates, each method was screened with respect to effectiveness, implementability, and relative cost categories of the CERCLA feasibility study screening process defined in EPA guidance.

  11. Analysis of source spectra, attenuation, and site effects from central and eastern United States earthquakes

    International Nuclear Information System (INIS)

    Lindley, G.

    1998-02-01

    This report describes the results from three studies of source spectra, attenuation, and site effects of central and eastern United States earthquakes. In the first study source parameter estimates taken from 27 previous studies were combined to test the assumption that the earthquake stress drop is roughly a constant, independent of earthquake size. 200 estimates of stress drop and seismic moment from eastern North American earthquakes were combined. It was found that the estimated stress drop from the 27 studies increases approximately as the square-root of the seismic moment, from about 3 bars at 10 20 dyne-cm to 690 bars at 10 25 dyne-cm. These results do not support the assumption of a constant stress drop when estimating ground motion parameters from eastern North American earthquakes. In the second study, broadband seismograms recorded by the United States National Seismograph Network and cooperating stations have been analysed to determine Q Lg as a function of frequency in five regions: the northeastern US, southeastern US, central US, northern Basin and Range, and California and western Nevada. In the third study, using spectral analysis, estimates have been made for the anelastic attenuation of four regional phases, and estimates have been made for the source parameters of 27 earthquakes, including the M b 5.6, 14 April, 1995, West Texas earthquake

  12. Corrective Action Decision Document for Corrective Action Unit 204: Storage Bunkers, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Boehlecke, Robert

    2004-01-01

    The six bunkers included in CAU 204 were primarily used to monitor atmospheric testing or store munitions. The 'Corrective Action Investigation Plan (CAIP) for Corrective Action Unit 204: Storage Bunkers, Nevada Test Site, Nevada' (NNSA/NV, 2002a) provides information relating to the history, planning, and scope of the investigation; therefore, it will not be repeated in this CADD. This CADD identifies potential corrective action alternatives and provides a rationale for the selection of a recommended corrective action alternative for each CAS within CAU 204. The evaluation of corrective action alternatives is based on process knowledge and the results of investigative activities conducted in accordance with the CAIP (NNSA/NV, 2002a) that was approved prior to the start of the Corrective Action Investigation (CAI). Record of Technical Change (ROTC) No. 1 to the CAIP (approval pending) documents changes to the preliminary action levels (PALs) agreed to by the Nevada Division of Environmental Protection (NDEP) and DOE, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This ROTC specifically discusses the radiological PALs and their application to the findings of the CAU 204 corrective action investigation. The scope of this CADD consists of the following: (1) Develop corrective action objectives; (2) Identify corrective action alternative screening criteria; (3) Develop corrective action alternatives; (4) Perform detailed and comparative evaluations of corrective action alternatives in relation to corrective action objectives and screening criteria; and (5) Recommend and justify a preferred corrective action alternative for each CAS within CAU 204

  13. ALTERNATIVE REMEDIATION TECHNOLOGY STUDY FOR GROUNDWATER TREATMENT AT 200-PO-1 OPERABLE UNIT AT HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    DADO MA

    2008-07-31

    This study focuses on the remediation methods and technologies applicable for use at 200-PO-I Groundwater Operable Unit (OU) at the Hanford Site. The 200-PO-I Groundwater au requires groundwater remediation because of the existence of contaminants of potential concern (COPC). A screening was conducted on alternative technologies and methods of remediation to determine which show the most potential for remediation of groundwater contaminants. The possible technologies were screened to determine which would be suggested for further study and which were not applicable for groundwater remediation. COPCs determined by the Hanford Site groundwater monitoring were grouped into categories based on properties linking them by remediation methods applicable to each COPC group. The screening considered the following criteria. (1) Determine if the suggested method or technology can be used for the specific contaminants found in groundwater and if the technology can be applied at the 200-PO-I Groundwater au, based on physical characteristics such as geology and depth to groundwater. (2) Evaluate screened technologies based on testing and development stages, effectiveness, implementability, cost, and time. This report documents the results of an intern research project conducted by Mathew Dado for Central Plateau Remediation in the Soil and Groundwater Remediation Project. The study was conducted under the technical supervision of Gloria Cummins and management supervision of Theresa Bergman and Becky Austin.

  14. The projected environmental impacts of transportation of radioactive material to the first United States repository site

    International Nuclear Information System (INIS)

    Cashwell, J.W.; Neuhauser, K.S.; Reardon, P.C.; McNair, G.W.

    1987-01-01

    The relative national environmental impacts of transporting spent fuel and other nuclear wastes to each of 9 candidate repository sites in the United States were analyzed for the 26-year period of repository operation. Two scenarios were examined for each repository: 1) shipment of 5-year-old spent fuel and Defence High-Level Waste (DHLW) directly from their points of origin to a repository (reference case); and 2) shipment of 5-year-old spent fuel to a Monitored Retrievable Storage (MRS) facility and shipment (by dedicated rail) of 10-year-old consolidated spent fuel from the MRS to a repository. Transport by either all truck or all rail from the points of origin were analyzed as bounding cases. The computational system used to analyze these impacts included the WASTES II logistics code and the RADTRAN III risk analysis code. The radiological risks for the reference case increased as the total shipment miles to a repository increased for truck; the risks also increased with mileage for rail but at a lower rate. For the MRS scenario the differences between repository sites were less pronounced for both modal options, because of the reduction in total shipment miles possible with the large dedicated rail casks. All the risks reported are small in comparison to the radiological risks due to 'natural background'

  15. Symmetry and fermion degeneracy on a lattice

    International Nuclear Information System (INIS)

    Raszillier, H.

    1982-03-01

    In this paper we consider the general form of finite difference approximation to the Dirac (Weyl) Hamiltonian on a lattice and investigate systematically the dependence on symmetry of the number of particles described by it. Our result is, that to a symmetry - expressed by a crystallographic space group - there corresponds a minimal number of particles, which are associated to prescribed points of momentum space (the unit cell of the reciprocal lattice). For convenience of the reader we show, using the existing detailed descriptions of space groups, how these results look for all the relevant (symmorphic) symmetry groups. Only for lattice Hamiltonians with a momentum dependent mass term can this degeneracy be reduced and even eliminated without reducing the symmetry. (orig./HSI)

  16. Closure Report for Corrective Action Unit 151: Septic Systems and Discharge Area, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2008-01-01

    Corrective Action Unit (CAU) 151 is identified in the Federal Facility Agreement and Consent Order (FFACO) as Septic Systems and Discharge Area. CAU 151 consists of the following eight Corrective Action Sites (CASs), located in Areas 2, 12, and 18 of the Nevada Test Site, approximately 65 miles northwest of Las Vegas, Nevada: (1) CAS 02-05-01, UE-2ce Pond; (2) CAS 12-03-01, Sewage Lagoons (6); (3) CAS 12-04-01, Septic Tanks; (4) CAS 12-04-02, Septic Tanks; (5) CAS 12-04-03, Septic Tank; (6) CAS 12-47-01, Wastewater Pond; (7) CAS 18-03-01, Sewage Lagoon; and (8) CAS 18-99-09, Sewer Line (Exposed). CAU 151 closure activities were conducted according to the FFACO (FFACO, 1996; as amended February 2008) and the Corrective Action Plan for CAU 151 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007) from October 2007 to January 2008. The corrective action alternatives included no further action, clean closure, and closure in place with administrative controls. CAU 151 closure activities are summarized in Table 1. Closure activities generated liquid remediation waste, sanitary waste, hydrocarbon waste, and mixed waste. Waste generated was appropriately managed and disposed. Waste that is currently staged onsite is being appropriately managed and will be disposed under approved waste profiles in permitted landfills. Waste minimization activities included waste characterization sampling and segregation of waste streams. Some waste exceeded land disposal restriction limits and required offsite treatment prior to disposal. Other waste meeting land disposal restrictions was disposed of in appropriate onsite or offsite landfills. Waste disposition documentation is included as Appendix C

  17. Closure Report for Corrective Action Unit 516: Septic Systems and Discharge Points, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2007-01-01

    Corrective Action Unit (CAU) 516 is located in Areas 3, 6, and 22 of the Nevada Test Site. CAU 516 is listed in the Federal Facility Agreement and Consent Order of 1996 as Septic Systems and Discharge Points, and is comprised of six Corrective Action Sites (CASs): (sm b ullet) CAS 03-59-01, Bldg 3C-36 Septic System (sm b ullet) CAS 03-59-02, Bldg 3C-45 Septic System (sm b ullet) CAS 06-51-01, Sump and Piping (sm b ullet) CAS 06-51-02, Clay Pipe and Debris (sm b ullet) CAS 06-51-03, Clean Out Box and Piping (sm b ullet) CAS 22-19-04, Vehicle Decontamination Area The Nevada Division of Environmental Protection (NDEP)-approved corrective action alternative for CASs 06-51-02 and 22-19-04 is no further action. The NDEP-approved corrective action alternative for CASs 03-59-01, 03-59-02, 06-51-01, and 06-51-03 is clean closure. Closure activities included removing and disposing of total petroleum hydrocarbon (TPH)-impacted septic tank contents, septic tanks, distribution/clean out boxes, and piping. CAU 516 was closed in accordance with the NDEP-approved CAU 516 Corrective Action Plan (CAP). The closure activities specified in the CAP were based on the recommendations presented in the CAU 516 Corrective Action Decision Document (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2004). This Closure Report documents CAU 516 closure activities. During closure activities, approximately 186 tons of hydrocarbon waste in the form of TPH-impacted soil and debris, as well as 89 tons of construction debris, were generated and managed and disposed of appropriately. Waste minimization techniques, such as field screening of soil samples and the utilization of laboratory analysis to characterize and classify waste streams, were employed during the performance of closure work

  18. Closure Report for Corrective Action Unit 151: Septic Systems and Discharge Area, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2008-04-01

    Corrective Action Unit (CAU) 151 is identified in the Federal Facility Agreement and Consent Order (FFACO) as Septic Systems and Discharge Area. CAU 151 consists of the following eight Corrective Action Sites (CASs), located in Areas 2, 12, and 18 of the Nevada Test Site, approximately 65 miles northwest of Las Vegas, Nevada: (1) CAS 02-05-01, UE-2ce Pond; (2) CAS 12-03-01, Sewage Lagoons (6); (3) CAS 12-04-01, Septic Tanks; (4) CAS 12-04-02, Septic Tanks; (5) CAS 12-04-03, Septic Tank; (6) CAS 12-47-01, Wastewater Pond; (7) CAS 18-03-01, Sewage Lagoon; and (8) CAS 18-99-09, Sewer Line (Exposed). CAU 151 closure activities were conducted according to the FFACO (FFACO, 1996; as amended February 2008) and the Corrective Action Plan for CAU 151 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007) from October 2007 to January 2008. The corrective action alternatives included no further action, clean closure, and closure in place with administrative controls. CAU 151 closure activities are summarized in Table 1. Closure activities generated liquid remediation waste, sanitary waste, hydrocarbon waste, and mixed waste. Waste generated was appropriately managed and disposed. Waste that is currently staged onsite is being appropriately managed and will be disposed under approved waste profiles in permitted landfills. Waste minimization activities included waste characterization sampling and segregation of waste streams. Some waste exceeded land disposal restriction limits and required offsite treatment prior to disposal. Other waste meeting land disposal restrictions was disposed of in appropriate onsite or offsite landfills. Waste disposition documentation is included as Appendix C.

  19. Closure Report for Corrective Action Unit 562: Waste Systems, Nevada National Security Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2012-08-15

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 562, Waste Systems, and provides documentation supporting the completed corrective actions and confirmation that closure objectives for CAU 562 were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 as amended). CAU 562 consists of the following 13 Corrective Action Sites (CASs), located in Areas 2, 23, and 25 of the Nevada National Security Site: · CAS 02-26-11, Lead Shot · CAS 02-44-02, Paint Spills and French Drain · CAS 02-59-01, Septic System · CAS 02-60-01, Concrete Drain · CAS 02-60-02, French Drain · CAS 02-60-03, Steam Cleaning Drain · CAS 02-60-04, French Drain · CAS 02-60-05, French Drain · CAS 02-60-06, French Drain · CAS 02-60-07, French Drain · CAS 23-60-01, Mud Trap Drain and Outfall · CAS 23-99-06, Grease Trap · CAS 25-60-04, Building 3123 Outfalls Closure activities began in October 2011 and were completed in April 2012. Activities were conducted according to the Corrective Action Plan for CAU 562 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2011). The corrective actions included No Further Action and Clean Closure. Closure activities generated sanitary waste and hazardous waste. Some wastes exceeded land disposal limits and required offsite treatment prior to disposal. Other wastes met land disposal restrictions and were disposed in appropriate onsite or offsite landfills. NNSA/NSO requests the following: · A Notice of Completion from the Nevada Division of Environmental Protection to NNSA/NSO for closure of CAU 562 · The transfer of CAU 562 from Appendix III to Appendix IV, Closed Corrective Action Units, of the FFACO

  20. Symmetry fractionalization of visons in Z2 spin liquids

    Science.gov (United States)

    Qi, Yang; Cheng, Meng; Fang, Chen

    In this work we study symmetry fractionalization of vison excitations in topological Z2 spin liquids. We show that in the presence of the full SO (3) spin-rotational symmetry and if there is an odd number of spin-1/2 per unit cell, the symmetry fractionalization of visons is completely fixed. On the other hand, visons can have different classes of symmetry fractionalization if the spin-rotational symmetry is reduced. As a concrete example, we show that visons in the Balents-Fisher-Girvin Z2 spin liquid have crystal symmetry fractionalization classes which are not allowed in SO (3) symmetric spin liquids, due to the reduced spin-rotational symmetry.

  1. Hidden gauge symmetry

    International Nuclear Information System (INIS)

    O'Raifeartaigh, L.

    1979-01-01

    This review describes the principles of hidden gauge symmetry and of its application to the fundamental interactions. The emphasis is on the structure of the theory rather than on the technical details and, in order to emphasise the structure, gauge symmetry and hidden symmetry are first treated as independent phenomena before being combined into a single (hidden gauge symmetric) theory. The main application of the theory is to the weak and electromagnetic interactions of the elementary particles, and although models are used for comparison with experiment and for illustration, emphasis is placed on those features of the application which are model-independent. (author)

  2. Sequential flavor symmetry breaking

    International Nuclear Information System (INIS)

    Feldmann, Thorsten; Jung, Martin; Mannel, Thomas

    2009-01-01

    The gauge sector of the standard model exhibits a flavor symmetry that allows for independent unitary transformations of the fermion multiplets. In the standard model the flavor symmetry is broken by the Yukawa couplings to the Higgs boson, and the resulting fermion masses and mixing angles show a pronounced hierarchy. In this work we connect the observed hierarchy to a sequence of intermediate effective theories, where the flavor symmetries are broken in a stepwise fashion by vacuum expectation values of suitably constructed spurion fields. We identify the possible scenarios in the quark sector and discuss some implications of this approach.

  3. Sequential flavor symmetry breaking

    Science.gov (United States)

    Feldmann, Thorsten; Jung, Martin; Mannel, Thomas

    2009-08-01

    The gauge sector of the standard model exhibits a flavor symmetry that allows for independent unitary transformations of the fermion multiplets. In the standard model the flavor symmetry is broken by the Yukawa couplings to the Higgs boson, and the resulting fermion masses and mixing angles show a pronounced hierarchy. In this work we connect the observed hierarchy to a sequence of intermediate effective theories, where the flavor symmetries are broken in a stepwise fashion by vacuum expectation values of suitably constructed spurion fields. We identify the possible scenarios in the quark sector and discuss some implications of this approach.

  4. Physics from symmetry

    CERN Document Server

    Schwichtenberg, Jakob

    2015-01-01

    This is a textbook that derives the fundamental theories of physics from symmetry.   It starts by introducing, in a completely self-contained way, all mathematical tools needed to use symmetry ideas in physics. Thereafter, these tools are put into action and by using symmetry constraints, the fundamental equations of Quantum Mechanics, Quantum Field Theory, Electromagnetism, and Classical Mechanics are derived. As a result, the reader is able to understand the basic assumptions behind, and the connections between the modern theories of physics. The book concludes with first applications of the previously derived equations.

  5. RCRA facility investigation/corrective measures study work plan for the 100-HR-3 operable unit, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1992-09-01

    Four areas of the Hanford Site (the 100, 200, 300, and 1100 Areas) have been included on the US Environmental Protection Agency's (EPA's) National Priorities List (NPL) under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under the Hanford Federal Facility Agreement and Consent Order, signed by the Washington State Department of Ecology (Ecology), EPA, and the US Department of Energy (DOE), more than 1000 inactive waste disposal and unplanned release sites on the Hanford Site have been grouped into a number of source and groundwater operable units. These operable units contain contamination in the form of hazardous waste, radioactive/hazardous mixed waste, and other CERCLA hazardous substances. Also included in the Tri-Party Agreement are 55 Resource Conservation and Recovery Act (RCRA) treatment, storage, or disposal (TSD) facilities that will be closed or permitted to operate in accordance with RCRA regulations, under the authority of Chapter 173-303 Washington Administrative Code (WAC). Some of the TSD facilities are included in the operable units. This work plan and the attached supporting project plans establish the operable unit setting and the objectives, procedures, tasks, and schedule for conducting the RCRA facility investigation/corrective measures study (RFI/CMS) for the 100-HR-3 operable unit. The 100-HR-3 operable unit underlies the D/DR and H Areas, the 600 Area between them, and the six source operable units these areas contain. The 100-HR-3 operable unit includes all contamination found in the aquifer soils and water within its boundary. Source operable units include facilities and unplanned release sites that are potential sources of contamination. Separate work plans have been initiated for the 100-DR-1 (DOE-RL 1992a) and 100-HR-1 (DOE-RL 1992b) source operable units

  6. Corrective Action Investigation Plan for Corrective Action Unit 542: Disposal Holes, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Laura Pastor

    2006-01-01

    Corrective Action Unit (CAU) 542 is located in Areas 3, 8, 9, and 20 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 542 is comprised of eight corrective action sites (CASs): (1) 03-20-07, ''UD-3a Disposal Hole''; (2) 03-20-09, ''UD-3b Disposal Hole''; (3) 03-20-10, ''UD-3c Disposal Hole''; (4) 03-20-11, ''UD-3d Disposal Hole''; (5) 06-20-03, ''UD-6 and UD-6s Disposal Holes''; (6) 08-20-01, ''U-8d PS No.1A Injection Well Surface Release''; (7) 09-20-03, ''U-9itsy30 PS No.1A Injection Well Surface Release''; and (8) 20-20-02, ''U-20av PS No.1A Injection Well Surface Release''. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 30, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 542. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS. The scope of the CAI for CAU 542 includes the following activities: (1) Move surface debris and/or materials, as needed, to facilitate sampling. (2) Conduct radiological surveys. (3) Conduct geophysical surveys to

  7. Status of environmental response efforts at radioactively contaminated sites in the united states air force installation restoration program

    International Nuclear Information System (INIS)

    Rowe, W.D. Jr.; McEntee, T.E. Jr.; Johnson, B.; Manning, L.

    1995-01-01

    The United States Air Force has identified approximately 170 radioactively contaminated sites at its domestic installations. These sites contain a variety of low level radioactive and mixed wastes and are classified as burial sites, landfills, buildings, and other disposal sites. Of these 170, approximately 70 are presently being evaluated under the Air Force Installation Restoration Program (IRP) in accordance with applicable laws and regulations. Removal and/or remedial actions have been taken at specific sites using site-specific residual radioactivity criteria. The remaining sites are either under investigation to determine the need for possible action or have been classified as response complete based on restricted or unrestricted future use. This paper describes past Air Force operations that generated radioactive waste materials; examines the current inventory of resulting radioactively contaminated sites in the Air Force IRP; reviews criteria used to evaluate sites for removal and/or remedial actions; provides summary information on actions taken at sites; and focuses on response actions and cleanup levels at two completed sites. The paper concludes with an assessment of outstanding issues relevant to the remediation of radioactively contaminated sites. (author)

  8. RCRA facility investigation/corrective measures study work plan for the 100-DR-1 operable unit, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1992-09-01

    Four areas of the Hanford Site (the 100, 200, 300, and 1100 Areas) have been included on the US Environmental Protection Agency's (EPA's) National Priorities List (NPL) under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement, Ecology et. al. 1990a), signed by the Washington State Department of Ecology (Ecology), EPA, and the US Department of Energy (DOE), more than 1,000 inactive waste disposal and unplanned release sites on the Hanford Site have been grouped into a number of source and groundwater operable units. These operable units contain contamination in the form of hazardous waste, radioactive/hazardous mixed waste, and other CERCLA hazardous substances. Also included in the Tri-Party Agreement are 55 Resource Conservation and Recovery Act (RCRA) treatment, storage, or disposal (TSD) facilities that will be closed or permitted to operate in accordance with RCRA regulations. Some of the TSD facilities are included in the operable units. This work plan and the attached supporting project plans establish the operable unit setting and the objectives, procedures, tasks, and schedule for conducting the RCRA facility investigation/corrective measures study (RFI/CMS) for the 100-DR-1 source operable unit Source operable units include facilities and unplanned release sites that are potential sources of contamination

  9. Generalized symmetry algebras

    International Nuclear Information System (INIS)

    Dragon, N.

    1979-01-01

    The possible use of trilinear algebras as symmetry algebras for para-Fermi fields is investigated. The shortcomings of the examples are argued to be a general feature of such generalized algebras. (author)

  10. Gauge symmetry from decoupling

    Directory of Open Access Journals (Sweden)

    C. Wetterich

    2017-02-01

    Full Text Available Gauge symmetries emerge from a redundant description of the effective action for light degrees of freedom after the decoupling of heavy modes. This redundant description avoids the use of explicit constraints in configuration space. For non-linear constraints the gauge symmetries are non-linear. In a quantum field theory setting the gauge symmetries are local and can describe Yang–Mills theories or quantum gravity. We formulate gauge invariant fields that correspond to the non-linear light degrees of freedom. In the context of functional renormalization gauge symmetries can emerge if the flow generates or preserves large mass-like terms for the heavy degrees of freedom. They correspond to a particular form of gauge fixing terms in quantum field theories.

  11. Segmentation Using Symmetry Deviation

    DEFF Research Database (Denmark)

    Hollensen, Christian; Højgaard, L.; Specht, L.

    2011-01-01

    of the CT-scans into a single atlas. Afterwards the standard deviation of anatomical symmetry for the 20 normal patients was evaluated using non-rigid registration and registered onto the atlas to create an atlas for normal anatomical symmetry deviation. The same non-rigid registration was used on the 10...... hypopharyngeal cancer patients to find anatomical symmetry and evaluate it against the standard deviation of the normal patients to locate pathologic volumes. Combining the information with an absolute PET threshold of 3 Standard uptake value (SUV) a volume was automatically delineated. The overlap of automated....... The standard deviation of the anatomical symmetry, seen in figure for one patient along CT and PET, was extracted for normal patients and compared with the deviation from cancer patients giving a new way of determining cancer pathology location. Using the novel method an overlap concordance index...

  12. Statistical symmetries in physics

    International Nuclear Information System (INIS)

    Green, H.S.; Adelaide Univ., SA

    1994-01-01

    Every law of physics is invariant under some group of transformations and is therefore the expression of some type of symmetry. Symmetries are classified as geometrical, dynamical or statistical. At the most fundamental level, statistical symmetries are expressed in the field theories of the elementary particles. This paper traces some of the developments from the discovery of Bose statistics, one of the two fundamental symmetries of physics. A series of generalizations of Bose statistics is described. A supersymmetric generalization accommodates fermions as well as bosons, and further generalizations, including parastatistics, modular statistics and graded statistics, accommodate particles with properties such as 'colour'. A factorization of elements of ggl(n b ,n f ) can be used to define truncated boson operators. A general construction is given for q-deformed boson operators, and explicit constructions of the same type are given for various 'deformed' algebras. A summary is given of some of the applications and potential applications. 39 refs., 2 figs

  13. Wigner's Symmetry Representation Theorem

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 10. Wigner's Symmetry Representation Theorem: At the Heart of Quantum Field Theory! Aritra Kr Mukhopadhyay. General Article Volume 19 Issue 10 October 2014 pp 900-916 ...

  14. Dynamical symmetries for fermions

    International Nuclear Information System (INIS)

    Guidry, M.

    1989-01-01

    An introduction is given to the Fermion Dynamical Symmetry Model (FDSM). The analytical symmetry limits of the model are then applied to the calculation of physical quantities such as ground-state masses and B(E 2 ) values in heavy nuclei. These comparisons with data provide strong support for a new principle of collective motion, the Dynamical Pauli Effect, and suggest that dynamical symmetries which properly account for the pauli principle are much more persistent in nuclear structure than the corresponding boson symmetries. Finally, we present an assessment of criticisms which have been voiced concerning the FDSM, and a discussion of new phenomena and ''exotic spectroscopy'' which may be suggested by the model. 14 refs., 8 figs., 4 tabs

  15. Remedial investigation/feasibility study work plan for the 100-BC-5 Operable Unit, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1992-04-01

    Four areas of the Hanford Site (the 100, 200, 300 and 1100 Areas) have been included on the US Environmental Protection Agency's (EPA's) National Priorities List (NPL) under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Figure 1-1 shows the location of these areas. Under the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement, Ecology et al. 1990a), signed by the Washington State Department of Ecology (Ecology), EPA, and the US Department of Energy (DOE), more than 1,000 inactive waste disposal and unplanned release sites on the Hanford Site have been grouped into a number of source and groundwater operable units. These operable units contain contamination in the form of hazardous waste, radioactive/hazardous mixed waste and other CERCLA hazardous substances. Also included in the Tri-Party Agreement are 55 Resource Conservation and Recovery Act (RCRA) treatment, storage, or disposal (TSD) facilities that will be closed or permitted to operate in accordance with RCRA regulations, under the authority of Chapter 173-303 Washington Administrative Code (WAC). Some of the TSD facilities are included in the operable units. This work plant and the attached supporting project plans establish the operable unit setting and the objectives, procedures, tasks, and schedule for conducting the CERCLA remedial investigation/feasibility study (RI/FS) for the 100-BC-5 operable unit. The 100-B/C Area consists of the 100-BC-5 groundwater operable unit and four source operable units. The 100-BC-5 operable unit includes all contamination found in the aquifer soils and water beneath the 100-B/C Area. Source operable units include facilities and unplanned release sites that are potential sources of contamination

  16. BIOTIC INTEGRITY OF STREAMS IN THE SAVANNAH RIVER SITE INTEGRATOR OPERABLE UNITS, 1996 TO 2003

    Energy Technology Data Exchange (ETDEWEB)

    Paller, M; Susan Dyer, S

    2004-11-08

    The Savannah River Site (SRS) has been divided into six Integrator Operable Units (IOUs) that correspond to the watersheds of the five major streams on the SRS (Upper Three Runs, Fourmile Branch, Pen Branch, Steel Creek, and Lower Three Runs) and the portions of the Savannah River and Savannah River Swamp associated with the SRS. The streams are the primary integrators within each IOU because they potentially receive, through surface or subsurface drainage, soluble contaminants from all waste sites within their watersheds. If these contaminants reach biologically significant levels, they would be expected to effect the numbers, types, and health of stream organisms. In this study, biological sampling was conducted within each IOU as a measure of the cumulative ecological effects of the waste sites within the IOUs. The use of information from biological sampling to assess environmental quality is often termed bioassessment. The IOU bioassessment program included 38 sites in SRS streams and nine sites in the Savannah River. Sampling was conducted in 1996 to 1998, 2000, and 2003. Four bioassessment methods were used to evaluate ecological conditions in the IOU streams: the Index of Biotic Integrity, the Fish Health Assessment Index, measurement of fish tissue contaminant levels, and two benthic macroinvertebrate indices. The Index of Biotic Integrity (IBI) is an EPA supported method based on comparison of ecologically important and sensitive fish assemblage variables between potentially disturbed and reference (i.e., undisturbed) sites. It is designed to assess the ability of a stream to support a self-sustaining biological community and ecological processes typical of undisturbed, natural conditions. Since many types of contaminants can bioaccumulate, fish tissue contaminant data were used to determine the types of chemicals fish were exposed to and their relative magnitudes among IOUs. The Fish Health Assessment Index (HAI) is an EPA supported method for assessing

  17. Flavour from accidental symmetries

    International Nuclear Information System (INIS)

    Ferretti, Luca; King, Stephen F.; Romanino, Andrea

    2006-01-01

    We consider a new approach to fermion masses and mixings in which no special 'horizontal' dynamics is invoked to account for the hierarchical pattern of charged fermion masses and for the peculiar features of neutrino masses. The hierarchy follows from the vertical, family-independent structure of the model, in particular from the breaking pattern of the Pati-Salam group. The lightness of the first two fermion families can be related to two family symmetries emerging in this context as accidental symmetries

  18. Closure Report for Corrective Action Unit 574: Neptune, Nevada National Security Site, Nevada

    International Nuclear Information System (INIS)

    2012-01-01

    Corrective Action Unit (CAU) 574 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Neptune' and consists of the following two Corrective Action Sites (CASs), located in Area 12 of the Nevada National Security Site: (1) CAS 12-23-10, U12c.03 Crater (Neptune); and (2) CAS 12-45-01, U12e.05 Crater (Blanca). This Closure Report presents information supporting closure of CAU 574 according to the FFACO (FFACO, 1996 [as amended March 2010]) and the Streamlined Approach for Environmental Restoration Plan for CAU 574 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2011). The following activities were performed to support closure of CAU 574: (1) In situ external dose rate measurements were collected using thermoluminescent dosimeters at CAS 12-45-01, U12e.05 Crater (Blanca). (2) Total effective dose rates were determined at both sites by summing the internal and external dose rate components. (3) A use restriction (UR) was implemented at CAS 12-23-10, U12c.03 Crater (Neptune). Areas that exceed the final action level (FAL) of 25 millirems per year (mrem/yr) based on the Occasional Use Area exposure scenario are within the existing use restricted area for CAU 551. The 25-mrem/yr FAL is not exceeded outside the existing CAU 551 UR for any of the exposure scenarios (Industrial Area, Remote Work Area, and Occasional Use Area). Therefore, the existing UR for CAU 551 is sufficient to bound contamination that exceeds the FAL. (4) An administrative UR was implemented at CAS 12-45-01, U12e.05 Crater (Blanca) as a best management practice (BMP). The 25-mrem/yr FAL was not exceeded for the Remote Work Area or Occasional Use Area exposure scenarios; therefore, a UR is not required. However, because the 25-mrem/yr FAL was exceeded for the Industrial Area exposure scenario, an administrative UR was established as a BMP. UR documentation is included as Appendix B. The UR at CAS 12-23-10, U12c.03 Crater (Neptune

  19. Identification of specific organic contaminants in different units of a chemical production site.

    Science.gov (United States)

    Dsikowitzky, L; Botalova, O; al Sandouk-Lincke, N A; Schwarzbauer, J

    2014-07-01

    Due to the very limited number of studies dealing with the chemical composition of industrial wastewaters, many industrial organic contaminants still escape our view and consequently also our control. We present here the chemical characterization of wastewaters from different units of a chemical complex, thereby contributing to the characterization of industrial pollution sources. The chemicals produced in the investigated complex are widely and intensively used and the synthesis processes are common and applied worldwide. The chemical composition of untreated and treated wastewaters from the chemical complex was investigated by applying a non-target screening which allowed for the identification of 39 organic contaminants. According to their application most of them belonged to four groups: (i) unspecific educts or intermediates of industrial syntheses, (ii) chemicals for the manufacturing of pharmaceuticals, (iii) educts for the synthesis of polymers and resins, and (iv) compounds known as typical constituents of municipal sewage. A number of halogenated compounds with unknown toxicity and with very high molecular diversity belonged to the second group. Although these compounds were completely removed or degraded during wastewater treatment, they could be useful as "alarm indicators" for industrial accidents in pharmaceutical manufacturing units or for malfunctions of wastewater treatment plants. Three potential branch-specific indicators for polymer manufacturing were found in the outflow of the complex. Among all compounds, bisphenol A, which was present in the leachate water of the on-site waste deposit, occurred in the highest concentrations of up to 20 000 μg L(-1). The comparison of contaminant loads in the inflow and outflow of the on-site wastewater treatment facility showed that most contaminants were completely or at least significantly removed or degraded during the treatment, except two alkylthiols, which were enriched during the treatment process

  20. Dihedral flavor symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Blum, Alexander Simon

    2009-06-10

    This thesis deals with the possibility of describing the flavor sector of the Standard Model of Particle Physics (with neutrino masses), that is the fermion masses and mixing matrices, with a discrete, non-abelian flavor symmetry. In particular, mass independent textures are considered, where one or several of the mixing angles are determined by group theory alone and are independent of the fermion masses. To this end a systematic analysis of a large class of discrete symmetries, the dihedral groups, is analyzed. Mass independent textures originating from such symmetries are described and it is shown that such structures arise naturally from the minimization of scalar potentials, where the scalars are gauge singlet flavons transforming non-trivially only under the flavor group. Two models are constructed from this input, one describing leptons, based on the group D{sub 4}, the other describing quarks and employing the symmetry D{sub 14}. In the latter model it is the quark mixing matrix element V{sub ud} - basically the Cabibbo angle - which is at leading order predicted from group theory. Finally, discrete flavor groups are discussed as subgroups of a continuous gauge symmetry and it is shown that this implies that the original gauge symmetry is broken by fairly large representations. (orig.)

  1. Dihedral flavor symmetries

    International Nuclear Information System (INIS)

    Blum, Alexander Simon

    2009-01-01

    This thesis deals with the possibility of describing the flavor sector of the Standard Model of Particle Physics (with neutrino masses), that is the fermion masses and mixing matrices, with a discrete, non-abelian flavor symmetry. In particular, mass independent textures are considered, where one or several of the mixing angles are determined by group theory alone and are independent of the fermion masses. To this end a systematic analysis of a large class of discrete symmetries, the dihedral groups, is analyzed. Mass independent textures originating from such symmetries are described and it is shown that such structures arise naturally from the minimization of scalar potentials, where the scalars are gauge singlet flavons transforming non-trivially only under the flavor group. Two models are constructed from this input, one describing leptons, based on the group D 4 , the other describing quarks and employing the symmetry D 14 . In the latter model it is the quark mixing matrix element V ud - basically the Cabibbo angle - which is at leading order predicted from group theory. Finally, discrete flavor groups are discussed as subgroups of a continuous gauge symmetry and it is shown that this implies that the original gauge symmetry is broken by fairly large representations. (orig.)

  2. GROUDWATER REMEDIATION AT THE 100-HR-3 OPERABLE UNIT HANFORD, SITE WASHINGTON, USA - 11507

    International Nuclear Information System (INIS)

    Smoot, J.L.; Biebesheimer, F.H.; Eluskie, J.A.; Spiliotopoulos, A.; Tonkin, M.J.; Simpkin, T.

    2011-01-01

    The 100-HR-3 Groundwater Operable Unit (OU) at the Hanford Site underlies three former plutonium production reactors and the associated infrastructure at the 100-D and 100-H Areas. The primary contaminant of concern at the site is hexavalent chromium; the secondary contaminants are strontium-90, technetium-99, tritium, uranium, and nitrate. The hexavalent chromium plume is the largest plume of its type in the state of Washington, covering an area of approximately 7 km 2 (2.7 mi 2 ) with concentrations greater than 20 (micro)g/L. Concentrations range from 60,000 (micro)g/L near the former dichromate transfer station in the 100-D Area to large areas of 20 to 100 (micro)g/L across much of the plume area. Pump-and-treat operations began in 1997 and continued into 2010 at a limited scale of approximately 200 gal/min. Remediation of groundwater has been fairly successful in reaching remedial action objectives (RAOs) of 20 (micro)g/L over a limited region at the 100-H, but less effective at 100-D. In 2000, an in situ, permeable reactive barrier was installed downgradient of the hotspot in 100-D as a second remedy. The RAOs are still being exceeded over a large portion of the area. The CH2M HILL Plateau Remediation Company was awarded the remediation contract for groundwater in 2008 and initiated a remedial process optimization study consisting of modeling and technical studies intended to enhance the remediation. As a result of the study, 1,400 gal/min of expanded treatment capacity are being implemented. These new systems are designed to meet 2012 and 2020 target milestones for protection of the Columbia River and cleanup of the groundwater plumes.

  3. Corrective Action Investigation Plan for Corrective Action Unit 536: Area 3 Release Site, Nevada Test Site, Nevada (Rev. 0 / June 2003), Including Record of Technical Change No. 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    2003-06-27

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's approach to collect the data necessary to evaluate corrective action alternatives (CAAs) appropriate for the closure of Corrective Action Unit (CAU) 536: Area 3 Release Site, Nevada Test Site, Nevada, under the Federal Facility Agreement and Consent Order. Corrective Action Unit 536 consists of a single Corrective Action Site (CAS): 03-44-02, Steam Jenny Discharge. The CAU 536 site is being investigated because existing information on the nature and extent of possible contamination is insufficient to evaluate and recommend corrective action alternatives for CAS 03-44-02. The additional information will be obtained by conducting a corrective action investigation (CAI) prior to evaluating CAAs and selecting the appropriate corrective action for this CAS. The results of this field investigation are to be used to support a defensible evaluation of corrective action alternatives in the corrective action decision document. Record of Technical Change No. 1 is dated 3-2004.

  4. Corrective Action Decision Document/Closure Report for Corrective Action Unit 570: Area 9 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick [Navarro-Intera, LLC (N-I), Las Vegas, NV (United States)

    2013-11-01

    This Corrective Action Decision Document/Closure Report presents information supporting the closure of Corrective Action Unit (CAU) 570: Area 9 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada. This complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. The purpose of the CADD/CR is to provide justification and documentation supporting the recommendation that no further corrective action is needed.

  5. Closure Report for Corrective Action Unit 300: Surface Release Areas Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2007-01-01

    Corrective Action Unit (CAU) 300 is located in Areas 23, 25, and 26 of the Nevada Test Site, which is located approximately 65 miles northwest of Las Vegas, Nevada. CAU 300 is listed in the Federal Facility Agreement and Consent Order of 1996 as Surface Release Areas and is comprised of the following seven Corrective Action Sites (CASs), which are associated with the identified Building (Bldg): (sm b ullet) CAS 23-21-03, Bldg 750 Surface Discharge (sm b ullet) CAS 23-25-02, Bldg 750 Outfall (sm b ullet) CAS 23-25-03, Bldg 751 Outfall (sm b ullet) CAS 25-60-01, Bldg 3113A Outfall (sm b ullet) CAS 25-60-02, Bldg 3901 Outfall (sm b ullet) CAS 25-62-01, Bldg 3124 Contaminated Soil (sm b ullet) CAS 26-60-01, Bldg 2105 Outfall and Decon Pad The Nevada Division of Environmental Protection (NDEP)-approved corrective action alternative for CASs 23-21-03, 23-25-02, and 23-25-03 is no further action. As a best management practice, approximately 48 feet of metal piping was removed from CAS 23-25-02 and disposed of as sanitary waste. The NDEP-approved corrective action alternative for CASs 25-60-01, 25-60-02, 25-62-01, and 26-60-01, is clean closure. Closure activities for these CASs included removing and disposing of soil impacted with total petroleum hydrocarbons-diesel range organics (TPH-DRO), polychlorinated biphenyls (PCBs), semivolatile organic compounds (SVOCs), and cesium (Cs)-137, concrete impacted with TPH-DRO, and associated piping impacted with TPH-DRO. CAU 300 was closed in accordance with the NDEP-approved CAU 300 Corrective Action Plan (CAP) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2006). The closure activities specified in the CAP were based on the recommendations presented in the CAU 300 Corrective Action Decision Document (NNSA/NSO, 2005). This Closure Report documents CAU 300 closure activities. During closure activities, approximately 40 cubic yards (yd3) of low-level waste consisting of TPH

  6. Closure Report for Corrective Action Unit 224: Decon Pad and Septic Systems, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2007-01-01

    Corrective Action Unit (CAU) 224 is located in Areas 02, 03, 05, 06, 11, and 23 of the Nevada Test Site, which is situated approximately 65 miles northwest of Las Vegas, Nevada. CAU 224 is listed in the Federal Facility Agreement and Consent Order (FFACO) of 1996 as Decon Pad and Septic Systems and is comprised of the following nine Corrective Action Sites (CASs): CAS 02-04-01, Septic Tank (Buried); CAS 03-05-01, Leachfield; CAS 05-04-01, Septic Tanks (4)/Discharge Area; CAS 06-03-01, Sewage Lagoons (3); CAS 06-05-01, Leachfield; CAS 06-17-04, Decon Pad and Wastewater Catch; CAS 06-23-01, Decon Pad Discharge Piping; CAS 11-04-01, Sewage Lagoon; and CAS 23-05-02, Leachfield. The Nevada Division of Environmental Protection (NDEP)-approved corrective action alternative for CASs 02-04-01, 03-05-01, 06-03-01, 11-04-01, and 23-05-02 is no further action. As a best management practice, the septic tanks and distribution box were removed from CASs 02-04-01 and 11-04-01 and disposed of as hydrocarbon waste. The NDEP-approved correction action alternative for CASs 05-04-01, 06-05-01, 06-17-04, and 06-23-01 is clean closure. Closure activities for these CASs included removing and disposing of radiologically and pesticide-impacted soil and debris. CAU 224 was closed in accordance with the NDEP-approved CAU 224 Corrective Action Plan (CAP). The closure activities specified in the CAP were based on the recommendations presented in the CAU 224 Corrective Action Decision Document (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2005). This Closure Report documents CAU 224 closure activities. During closure activities, approximately 60 cubic yards (yd3) of mixed waste in the form of soil and debris; approximately 70 yd 3 of sanitary waste in the form of soil, liquid from septic tanks, and concrete debris; approximately 10 yd 3 of hazardous waste in the form of pesticide-impacted soil; approximately 0.5 yd 3 of universal waste in the form of

  7. Closure Report for Corrective Action Unit 300: Surface Release Areas Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2007-07-01

    Corrective Action Unit (CAU) 300 is located in Areas 23, 25, and 26 of the Nevada Test Site, which is located approximately 65 miles northwest of Las Vegas, Nevada. CAU 300 is listed in the Federal Facility Agreement and Consent Order of 1996 as Surface Release Areas and is comprised of the following seven Corrective Action Sites (CASs), which are associated with the identified Building (Bldg): {sm_bullet} CAS 23-21-03, Bldg 750 Surface Discharge {sm_bullet} CAS 23-25-02, Bldg 750 Outfall {sm_bullet} CAS 23-25-03, Bldg 751 Outfall {sm_bullet} CAS 25-60-01, Bldg 3113A Outfall {sm_bullet} CAS 25-60-02, Bldg 3901 Outfall {sm_bullet} CAS 25-62-01, Bldg 3124 Contaminated Soil {sm_bullet} CAS 26-60-01, Bldg 2105 Outfall and Decon Pad The Nevada Division of Environmental Protection (NDEP)-approved corrective action alternative for CASs 23-21-03, 23-25-02, and 23-25-03 is no further action. As a best management practice, approximately 48 feet of metal piping was removed from CAS 23-25-02 and disposed of as sanitary waste. The NDEP-approved corrective action alternative for CASs 25-60-01, 25-60-02, 25-62-01, and 26-60-01, is clean closure. Closure activities for these CASs included removing and disposing of soil impacted with total petroleum hydrocarbons-diesel range organics (TPH-DRO), polychlorinated biphenyls (PCBs), semivolatile organic compounds (SVOCs), and cesium (Cs)-137, concrete impacted with TPH-DRO, and associated piping impacted with TPH-DRO. CAU 300 was closed in accordance with the NDEP-approved CAU 300 Corrective Action Plan (CAP) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2006). The closure activities specified in the CAP were based on the recommendations presented in the CAU 300 Corrective Action Decision Document (NNSA/NSO, 2005). This Closure Report documents CAU 300 closure activities. During closure activities, approximately 40 cubic yards (yd3) of low-level waste consisting of TPH-DRO-, PCB

  8. Corrective Action Plan for Corrective Action Unit 562: Waste Systems, Nevada National Security Site, Nevada

    International Nuclear Information System (INIS)

    2011-01-01

    This Corrective Action Plan has been prepared for Corrective Action Unit (CAU) 562, Waste Systems, in accordance with the Federal Facility Agreement and Consent Order (1996; as amended March 2010). CAU 562 consists of 13 Corrective Action Sites (CASs) located in Areas 2, 23, and 25 of the Nevada National Security Site. Site characterization activities were performed in 2009 and 2010, and the results are presented in Appendix A of the Corrective Action Decision Document for CAU 562. The scope of work required to implement the recommended closure alternatives is summarized. (1) CAS 02-26-11, Lead Shot, will be clean closed by removing shot. (2) CAS 02-44-02, Paint Spills and French Drain, will be clean closed by removing paint and contaminated soil. As a best management practice (BMP), asbestos tile will be removed. (3) CAS 02-59-01, Septic System, will be clean closed by removing septic tank contents. As a BMP, the septic tank will be removed. (4) CAS 02-60-01, Concrete Drain, contains no contaminants of concern (COCs) above action levels. No further action is required; however, as a BMP, the concrete drain will be removed. (5) CAS 02-60-02, French Drain, was clean closed. Corrective actions were completed during corrective action investigation activities. As a BMP, the drain grates and drain pipe will be removed. (6) CAS 02-60-03, Steam Cleaning Drain, will be clean closed by removing contaminated soil. As a BMP, the steam cleaning sump grate and outfall pipe will be removed. (7) CAS 02-60-04, French Drain, was clean closed. Corrective actions were completed during corrective action investigation activities. (8) CAS 02-60-05, French Drain, will be clean closed by removing contaminated soil. (9) CAS 02-60-06, French Drain, contains no COCs above action levels. No further action is required. (10) CAS 02-60-07, French Drain, requires no further action. The french drain identified in historical documentation was not located during corrective action investigation

  9. The evaluation of effective criteria on site selection for energy production units from cellulosic biomass in Iran

    Directory of Open Access Journals (Sweden)

    Majid Azizi

    2017-12-01

    Full Text Available Both Analytical Hierarchy Process (AHP and benefits, opportunities, costs and risks (BOCR techniques were used successfully to evaluate the effective criteria on site selection for energy production unit development from cellulosic biomass in Iran. The results showed that the benefits criteria was at the first level while the initial cellulosic raw materials and opportunities with the aim of the local economy had the second position as the most important indices on site selection. In addition, third criterion has been introduced for the costs criteria (transportation cost and social barriers by the experts. However, risks criteria which referred to instability of providing cellulosic raw materials is one of the less important effective indices on site selection to make energy production unit. The results illustrated that the economy and politics as two environmental effective factors affected on the site selection process generally.

  10. Creating diversity by site-selective peptide modification: a customizable unit affords amino acids with high optical purity.

    Science.gov (United States)

    Romero-Estudillo, Ivan; Boto, Alicia

    2013-11-15

    The development of peptide libraries by site-selective modification of a few parent peptides would save valuable time and materials in discovery processes, but still is a difficult synthetic challenge. Herein natural hydroxyproline is introduced as a "convertible" unit for the production of a variety of optically pure amino acids, including expensive N-alkyl amino acids, and to achieve the mild, efficient, and site-selective modification of peptides.

  11. Life Extension Program for the Modular Caustic Side Solvent Extraction Unit at Savannah River Site - 13179

    International Nuclear Information System (INIS)

    Samadi, Azadeh

    2013-01-01

    Caustic Side Solvent Extraction (CSSX) is currently used at the U.S. Department of Energy (DOE) Savannah River Site (SRS) for removal of cesium from the high-level salt-wastes stored in underground tanks. Currently, the Actinide Removal Process (ARP) and the CSSX process are deployed in the (ARP)/Modular CSSX Unit (MCU), to process salt waste for permanent disposition. The CSSX technology utilizes a multi-component organic solvent and annular centrifugal contactors to extract cesium from alkaline salt waste. The original plant was permitted for a three year design life; however, given the successful operation of the plant, a life extension program was completed to continue operations. The program included detailed engineering analyses of the life-expectancy of passive and active components, resulting in component replacement and/or maintenance and monitoring program improvements. The program also included a review of the operations and resulted in a series of operational improvements. Since the improvements have been made, an accelerated processing rate has been demonstrated. In addition, plans for instituting a next-generation solvent are in place and will enhance the decontamination factors. (author)

  12. A terrain-based site characterization map of California with implications for the contiguous United States

    Science.gov (United States)

    Yong, Alan K.; Hough, Susan E.; Iwahashi, Junko; Braverman, Amy

    2012-01-01

    We present an approach based on geomorphometry to predict material properties and characterize site conditions using the VS30 parameter (time‐averaged shear‐wave velocity to a depth of 30 m). Our framework consists of an automated terrain classification scheme based on taxonomic criteria (slope gradient, local convexity, and surface texture) that systematically identifies 16 terrain types from 1‐km spatial resolution (30 arcsec) Shuttle Radar Topography Mission digital elevation models (SRTM DEMs). Using 853 VS30 values from California, we apply a simulation‐based statistical method to determine the mean VS30 for each terrain type in California. We then compare the VS30 values with models based on individual proxies, such as mapped surface geology and topographic slope, and show that our systematic terrain‐based approach consistently performs better than semiempirical estimates based on individual proxies. To further evaluate our model, we apply our California‐based estimates to terrains of the contiguous United States. Comparisons of our estimates with 325 VS30 measurements outside of California, as well as estimates based on the topographic slope model, indicate our method to be statistically robust and more accurate. Our approach thus provides an objective and robust method for extending estimates of VS30 for regions where in situ measurements are sparse or not readily available.

  13. Remedial investigation/feasibility study work plan for the 100-BC-5 operable unit, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1992-07-01

    Four areas of the Hanford Site (the 100, 200, 300, and 1100 Areas) have been included on the US Environmental Protection Agency's (EPA's) National Priorities List (NPL) under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). The Tri-Party Agreement requires that the cleanup programs at the Hanford Site integrate the requirements of CERCLA, RCRA, and Washington State's dangerous waste (the state's RCRA-equivalent) program. This work plan and the attached supporting project plans establish the operable unit setting and the objectives, procedures, tasks, and schedule for conducting the CERCLA remedial investigation/feasibility study (RI/FS) for the 100-BC-5 operable unit. The 100-B/C Area consists of the 100-BC-5 groundwater operable unit and four source operable units. The 100-BC-5 operable unit includes all contamination found in the aquifer soils and water beneath the 100-B/C Area. Source operable units include facilities and unplanned release sites that are potential sources of contamination

  14. Corrective Action Decision Document/Closure Report for Corrective Action Unit 190: Contaminated Waste Sites, Nevada Test Site, Nevada, Revision 0

    International Nuclear Information System (INIS)

    Alfred Wickline

    2008-01-01

    This Corrective Action Decision Document/Closure Report has been prepared for Corrective Action Unit (CAU) 190, Contaminated Waste Sites, Nevada Test Site, Nevada, in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; U.S. Department of Energy, Environmental Management; U.S. Department of Defense; and DOE, Legacy Management (1996, as amended January 2007). Corrective Action Unit 190 is comprised of the following four corrective action sites (CASs): (1) 11-02-01, Underground Centrifuge; (2) 11-02-02, Drain Lines and Outfall; (3) 11-59-01, Tweezer Facility Septic System; (4) 14-23-01, LTU-6 Test Area The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation for closure of CAU 190 with no further corrective action. To achieve this, corrective action investigation (CAI) activities were performed from March 21 through June 26, 2007. All CAI activities were conducted as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 190: Contaminated Waste Sites, Nevada Test Site, Nevada (NNSA/NSO, 2006). The purpose of the CAI was to fulfill the following data needs as defined during the data quality objective process: (1) Determine whether contaminants of concern (COCs) are present. (2) If COCs are present, determine their nature and extent. (3) Provide sufficient information and data to complete appropriate corrective actions. The CAU 190 dataset from the investigation results was evaluated based on the data quality indicator parameters. This evaluation demonstrated the quality and acceptability of the dataset for use in fulfilling the data quality objective data needs

  15. Corrective Action Investigation Plan for Corrective Action Unit 545: Dumps, Waste Disposal Sites, and Buried Radioactive Materials Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Alfred Wickline

    2007-01-01

    Corrective Action Unit 545, Dumps, Waste Disposal Sites, and Buried Radioactive Materials, consists of seven inactive sites located in the Yucca Flat area and one inactive site in the Pahute Mesa area. The eight CAU 545 sites consist of craters used for mud disposal, surface or buried waste disposed within craters or potential crater areas, and sites where surface or buried waste was disposed. The CAU 545 sites were used to support nuclear testing conducted in the Yucca Flat area during the 1950s through the early 1990s, and in Area 20 in the mid-1970s. This Corrective Action Investigation Plan has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. Under the Federal Facility Agreement and Consent Order, this Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection for approval. Fieldwork will be conducted following approval

  16. Closure Report for Corrective Action Unit 568: Area 3 Plutonium Dispersion Sites Nevada National Security Site, Nevada, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick [Navarro, Las Vegas, NV (United States)

    2017-06-01

    The purpose of this CR is to provide documentation and justification that no further corrective action is needed for the closure of CAU 568 based on the implementation of corrective actions. This includes a description of closure activities that were performed and an evaluation of the verification data. The CAP (NNSA/NFO, 2016a) and ROTC-1 (NNSA/NFO, 2016c) provide information relating to the selection of CAAs and the reasoning behind their selection. The CADD (NNSA/NFO, 2015) identifies the release sites that require additional corrective action and presents information supporting the selection of CAAs.

  17. Closure Report for Corrective Action Unit 166: Storage Yards and Contaminated Materials, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2009-08-01

    Corrective Action Unit (CAU) 166 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Storage Yards and Contaminated Materials' and consists of the following seven Corrective Action Sites (CASs), located in Areas 2, 3, 5, and 18 of the Nevada Test Site: CAS 02-42-01, Condo Release Storage Yd - North; CAS 02-42-02, Condo Release Storage Yd - South; CAS 02-99-10, D-38 Storage Area; CAS 03-42-01, Conditional Release Storage Yard; CAS 05-19-02, Contaminated Soil and Drum; CAS 18-01-01, Aboveground Storage Tank; and CAS 18-99-03, Wax Piles/Oil Stain. Closure activities were conducted from March to July 2009 according to the FF ACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 166 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action and Clean Closure. Closure activities are summarized. CAU 166, Storage Yards and Contaminated Materials, consists of seven CASs in Areas 2, 3, 5, and 18 of the NTS. The closure alternatives included No Further Action and Clean Closure. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 166 as documented in this CR: (1) At CAS 02-99-10, D-38 Storage Area, approximately 40 gal of lead shot were removed and are currently pending treatment and disposal as MW, and approximately 50 small pieces of DU were removed and disposed as LLW. (2) At CAS 03-42-01, Conditional Release Storage Yard, approximately 7.5 yd{sup 3} of soil impacted with lead and Am-241 were removed and disposed as LLW. As a BMP, approximately 22 ft{sup 3} of asbestos tile were removed from a portable building and disposed as ALLW, approximately 55 gal of oil were drained from accumulators and are currently pending disposal as HW, the portable building was removed and

  18. Closure Report for Corrective Action Unit 166: Storage Yards and Contaminated Materials, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2009-01-01

    Corrective Action Unit (CAU) 166 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Storage Yards and Contaminated Materials' and consists of the following seven Corrective Action Sites (CASs), located in Areas 2, 3, 5, and 18 of the Nevada Test Site: CAS 02-42-01, Condo Release Storage Yd - North; CAS 02-42-02, Condo Release Storage Yd - South; CAS 02-99-10, D-38 Storage Area; CAS 03-42-01, Conditional Release Storage Yard; CAS 05-19-02, Contaminated Soil and Drum; CAS 18-01-01, Aboveground Storage Tank; and CAS 18-99-03, Wax Piles/Oil Stain. Closure activities were conducted from March to July 2009 according to the FF ACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 166 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action and Clean Closure. Closure activities are summarized. CAU 166, Storage Yards and Contaminated Materials, consists of seven CASs in Areas 2, 3, 5, and 18 of the NTS. The closure alternatives included No Further Action and Clean Closure. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 166 as documented in this CR: (1) At CAS 02-99-10, D-38 Storage Area, approximately 40 gal of lead shot were removed and are currently pending treatment and disposal as MW, and approximately 50 small pieces of DU were removed and disposed as LLW. (2) At CAS 03-42-01, Conditional Release Storage Yard, approximately 7.5 yd 3 of soil impacted with lead and Am-241 were removed and disposed as LLW. As a BMP, approximately 22 ft 3 of asbestos tile were removed from a portable building and disposed as ALLW, approximately 55 gal of oil were drained from accumulators and are currently pending disposal as HW, the portable building was removed and disposed as LLW, and

  19. Corrective Action Decision Document for Corrective Action Unit 536: Area 3 Release Site, Nevada Test Site, Nevada, Revision 0 with Errata

    Energy Technology Data Exchange (ETDEWEB)

    Boehlecke, Robert

    2004-11-01

    This Corrective Action Decision Document (CADD) has been prepared for Corrective Action Unit (CAU) 536: Area 3 Release Site, Nevada Test Site (NTS), Nevada, in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S Department of Defense (FFACO, 1996). The NTS is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 536 is comprised of a single Corrective Action Site (CAS), 03-44-02, Steam Jenny Discharge, and is located in Area 3 of the NTS (Figure 1-2). The CAU was investigated in accordance with the Corrective Action Investigation Plan (CAIP) and Record of Technical Change (ROTC) No. 1 (NNSA/NV, 2003). The CADD provides or references the specific information necessary to support the recommended corrective action alternative selected to complete closure of the site. The CAU 536, Area 3 Release Site, includes the Steam Jenny Discharge (CAS 03-44-02) that was historically used for steam cleaning equipment in the Area 3 Camp. Concerns at this CAS include contaminants commonly associated with steam cleaning operations and Area 3 Camp activities that include total petroleum hydrocarbons (TPH), unspecified solvents, radionuclides, metals, and polychlorinated biphenyls (PCBs). The CAIP for Corrective Action Unit 536: Area 3 Release Site, Nevada Test Site, Nevada (NNSA/NV, 2003), provides additional information relating to the history, planning, and scope of the investigation; therefore, it will not be repeated in this CADD. This CADD identifies potential corrective action alternatives and provides a rationale for the selection of a recommended corrective action alternative for the CAS within CAU 536. The evaluation of corrective action alternatives is based on process knowledge and the results of the investigative activities conducted in accordance with the CAIP (NNSA/NV, 2003) that was approved prior to the start of the

  20. Corrective Action Decision Document/Closure Report for Corrective Action Unit 137: Waste Disposal Sites, Nevada Test Site, Nevada (Revision 0) with ROTC 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, Mark J

    2007-03-01

    The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation for closure of CAU 137 with no further corrective action. To achieve this, corrective action investigation (CAI) activities were performed from February 28 through August 17, 2006, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 137: Waste Disposal Sites. The purpose of the CAI was to fulfill the following data needs as defined during the data quality objective process: • Determine whether contaminants of concern (COCs) are present. • If COCs are present, determine their nature and extent. • Provide sufficient information and data to complete appropriate corrective actions. ROTC-1: Downgrade FFACO UR at CAU 137, CAS 07-23-02, Radioactive Waste Disposal Site to an Administrative UR. ROTC-2: Downgrade FFACO UR at CAU 137, CAS 01-08-01, Waste Disposal Site to an Administrative UR.

  1. Remedial investigation/feasibility study work plan for the 100-KR-1 operable unit, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1992-07-01

    Four areas of the Hanford Site (the 100, 200, 300, and 1100 Areas) have been included on the US Environmental Protection Agency's (EPA's) National Priorities List (NPL) under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Figure 1-1 shows the location of these areas. Under the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement, Ecology et al. 1990a), signed by the Washington State Department of Ecology (Ecology), EPA, and the US Department of Energy (DOE), more than 1,000 inactive waste disposal and unplanned release sites on the Hanford Site have been grouped into a number of source and groundwater operable units. These operable units contain contamination in the form of hazardous waste, radioactive/hazardous mixed waste, and other CERCLA hazardous substances. Also included in the Tri-Party Agreement are 55 Resource Conservation and Recovery Act (RCRA) treatment, storage, or disposal (TSD) facilities that will be closed or permitted to operate in accordance with RCRA regulations, under the authority of Chapter 173-303 Washington Administrative Code (WAC). Some of the TSD facilities are included in the operable units. This work plan and the attached supporting project plans establish the objectives, procedures, tasks, and schedule for conducting the CERCLA remedial investigation/feasibility study (RI/FS) for the 100-KR-1 operable unit. The 100-KR-1 source operable unit is one of three source operable units in the 100-K Area. Source operable units include facilities and unplanned release sites that are potential sources of hazardous substance contamination

  2. Approach and plan for cleanup actions in the 100-FR-2 operable unit of the Hanford Site, Revision 0

    International Nuclear Information System (INIS)

    1995-06-01

    A new administrative approach is being used to reach a cleanup decision for the 100-FR-2 Operable Unit. The unit, located at the 100-F Area, contains solid waste sites and is one of the remaining operable units scheduled for characterization and cleanup in the 100 Area. This Focus Package (1) describes the new approach and activities needed to reach a decision on cleanup actions for the 100-FR-2 Operable Unit and (2) invites public participation into the planning process. The previous approach included the production of a Work Plan, a Limited Field Investigation Report, a Qualitative Risk Assessment, a Focused Feasibility Study, and a Proposed Plan, all culminating in an interim action Record of Decision. Information gathered to date on other operable units allows the analgous site approach to be used on the 100-FR-2 Operable Unit, and therefore, a reduction in documentation preparation. The U.S. Environmental Protection Agency, Washington State Department of Ecology, and the U.S. Department of Energy (Tri-Party Agreement) believe that the new approach will save time and funding. In the new approach, the Work Plan has been condensed into this 12 page Focus Package. The Focus Package includes a summary of 100-F Area information, a list of waste sites in the 100-FR-2 Operable Unit, a summary of proposed work, and a schedule. The new approach will also combine the Limited Field Investigation and Qualitative Risk Assessment reports into the Focused Feasibility Study. The Focused Feasibility Study will analyze methods and costs to clean up waste sites. Consolidating the documents should reduce the time to complete the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) process by 16 months, compared to the previous approach

  3. Stochastic hydrogeologic units and hydrogeologic properties development for total-system performance assessments. Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Schenker, A.R.; Guerin, D.C.; Robey, T.H.; Rautman, C.A.; Barnard, R.W.

    1995-09-01

    A stochastic representation of the lithologic units and associated hydrogeologic parameters of the potential high-level nuclear waste repository are developed for use in performance-assessment calculations, including the Total-System Performance Assessment for Yucca Mountain-SNL Second Iteration (TSPA-1993). A simplified lithologic model has been developed based on the physical characteristics of the welded and nonwelded units at Yucca Mountain. Ten hydrogeologic units are developed from site-specific data (lithologic and geophysical logs and core photographs) obtained from the unsaturated and saturated zones. The three-dimensional geostatistical model of the ten hydrogeologic units is based on indicator-coding techniques and improves on the two-dimensional model developed for TSPA91. The hydrogeologic properties (statistics and probability distribution functions) are developed from the results of laboratory tests and in-situ aquifer tests or are derived through fundamental relationships. Hydrogeologic properties for matrix properties, bulk conductivities, and fractures are developed from existing site specific data. Extensive data are available for matrix porosity, bulk density, and matrix saturated conductivity. For other hydrogeologic properties, the data are minimal or nonexistent. Parameters for the properties are developed as beta probability distribution functions. For the model units without enough data for analysis, parameters are developed as analogs to existing units. A relational, analytic approach coupled with bulk conductivity parameters is used to develop fracture parameters based on the smooth-wall-parallel-plate theory. An analytic method is introduced for scaling small-core matrix properties to the hydrogeologic unit scales

  4. Quantum Space-Time Deformed Symmetries Versus Broken Symmetries

    CERN Document Server

    Amelino-Camelia, G

    2002-01-01

    Several recent studies have concerned the faith of classical symmetries in quantum space-time. In particular, it appears likely that quantum (discretized, noncommutative,...) versions of Minkowski space-time would not enjoy the classical Lorentz symmetries. I compare two interesting cases: the case in which the classical symmetries are "broken", i.e. at the quantum level some classical symmetries are lost, and the case in which the classical symmetries are "deformed", i.e. the quantum space-time has as many symmetries as its classical counterpart but the nature of these symmetries is affected by the space-time quantization procedure. While some general features, such as the emergence of deformed dispersion relations, characterize both the symmetry-breaking case and the symmetry-deformation case, the two scenarios are also characterized by sharp differences, even concerning the nature of the new effects predicted. I illustrate this point within an illustrative calculation concerning the role of space-time symm...

  5. Symmetry of priapulids (Priapulida). 2. Symmetry of larvae.

    Science.gov (United States)

    Adrianov, A V; Malakhov, V V

    2001-02-01

    Larvae of priapulids are characterized by radial symmetry evident from both external and internal characters of the introvert and lorica. The bilaterality appears as a result of a combination of several radial symmetries: pentaradial symmetry of the teeth, octaradial symmetry of the primary scalids, 25-radial symmetry of scalids, biradial symmetry of the neck, and biradial and decaradial symmetry of the trunk. Internal radiality is exhibited by musculature and the circumpharyngeal nerve ring. Internal bilaterality is evident from the position of the ventral nerve cord and excretory elements. Externally, the bilaterality is determined by the position of the anal tubulus and two shortened midventral rows of scalids bordering the ventral nerve cord. The lorical elements define the biradial symmetry that is missing in adult priapulids. The radial symmetry of larvae is a secondary appearance considered an evolutionary adaptation to a lifestyle within the three-dimensional environment of the benthic sediment. Copyright 2001 Wiley-Liss, Inc.

  6. Big break for charge symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Miller, G.A. [Department of Physics, University of Washington, Seattle (United States); Kolck, U. van [Department of Physics, University of Arizona, Tucson (United States)

    2003-06-01

    Two new experiments have detected charge-symmetry breaking, the mechanism responsible for protons and neutrons having different masses. Symmetry is a crucial concept in the theories that describe the subatomic world because it has an intimate connection with the laws of conservation. The theory of the strong interaction between quarks - quantum chromodynamics - is approximately invariant under what is called charge symmetry. In other words, if we swap an up quark for a down quark, then the strong interaction will look almost the same. This symmetry is related to the concept of {sup i}sospin{sup ,} and is not the same as charge conjugation (in which a particle is replaced by its antiparticle). Charge symmetry is broken by the competition between two different effects. The first is the small difference in mass between up and down quarks, which is about 200 times less than the mass of the proton. The second is their different electric charges. The up quark has a charge of +2/3 in units of the proton charge, while the down quark has a negative charge of -1/3. If charge symmetry was exact, the proton and the neutron would have the same mass and they would both be electrically neutral. This is because the proton is made of two up quarks and a down quark, while the neutron comprises two downs and an up. Replacing up quarks with down quarks, and vice versa, therefore transforms a proton into a neutron. Charge-symmetry breaking causes the neutron to be about 0.1% heavier than the proton because the down quark is slightly heavier than the up quark. Physicists had already elucidated certain aspects of charge-symmetry breaking, but our spirits were raised greatly when we heard of the recent work of Allena Opper of Ohio University in the US and co-workers at the TRIUMF laboratory in British Columbia, Canada. Her team has been trying to observe a small charge-symmetry-breaking effect for several years, using neutron beams at the TRIUMF accelerator. The researchers studied the

  7. An exploration of social-networking site use, multitasking, and academic performance among United States and European university students

    NARCIS (Netherlands)

    Karpinski, Aryn; Kirschner, Paul A.; Ozer, Ipek; Mellott, Jennifer; Ochwo, Pius

    2018-01-01

    Studies have shown that multitasking with technology, specifically using Social Networking Sites (SNSs), decreases both efficiency and productivity in an academic setting. This study investigates multitasking’s impact on the relationship between SNS use and Grade Point Average (GPA) in United

  8. 76 FR 79228 - Combined Licenses at William States Lee III Nuclear Station Site, Units 1 and 2; Duke Energy...

    Science.gov (United States)

    2011-12-21

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 52-018 and 52-019; NRC-2008-0170] Combined Licenses at William States Lee III Nuclear Station Site, Units 1 and 2; Duke Energy Carolinas, LLC AGENCY: Nuclear.... SUMMARY: Notice is hereby given that the U.S. Nuclear Regulatory Commission (NRC) and the U.S. Army Corps...

  9. Site productivity and forest carbon stocks in the United States: Analysis and implications for forest offset project planning

    Science.gov (United States)

    Coeli M. Hoover; James E. Smith

    2012-01-01

    The documented role of United States forests in sequestering carbon, the relatively low cost of forest-based mitigation, and the many co-benefits of increasing forest carbon stocks all contribute to the ongoing trend in the establishment of forest-based carbon offset projects. We present a broad analysis of forest inventory data using site quality indicators to provide...

  10. Proposed plan for interim remedial measures at the 100-HR-1 Operable Unit, Hanford Site, Richland, Washington. Draft A

    International Nuclear Information System (INIS)

    1994-09-01

    This proposed plan introduces the interim remedial measures for addressing contaminated soil at the 100-HR-1 Operable Unit, located at the Hanford Site. In addition, this plan includes a summary of other alternatives analyzed and considered for the 100-HR-1 Operable Unit. The EPA, DOE, and Washington State Dept. of Ecology believe that a combination of removal, treatment, and disposal technologies, where appropriate, would significantly reduce the potential threats to human health and the environment at the 100-HR-1 Operable Unit high-priority waste sites. The remedial actions described in this proposed plan are designed to minimize human health and ecological risks and ensure that additional contaminants originating from these waste sites are not transported to the groundwater. The 100-HR-1 Operable Unit contains the retention basin for the H reactor cooling system, process effluent trenches, the Pluto crib which received an estimated 260 gallons of radioactive liquid waste, process effluent pipelines, and solid waste sites used for the burial of decontaminated and decommissioned equipment from other facilities. Potential health threats would be from the isotopes of cesium, cobalt, europium, plutonium, and strontium, and from chromium, arsenic, lead, and chysene

  11. Corrective Action Investigation Plan for Corrective Action Unit 145: Wells and Storage Holes, Nevada Test Site, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    David A. Strand

    2004-09-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information for conducting site investigation activities at Corrective Action Unit (CAU) 145: Wells and Storage Holes. Information presented in this CAIP includes facility descriptions, environmental sample collection objectives, and criteria for the selection and evaluation of environmental samples. Corrective Action Unit 145 is located in Area 3 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 145 is comprised of the six Corrective Action Sites (CASs) listed below: (1) 03-20-01, Core Storage Holes; (2) 03-20-02, Decon Pad and Sump; (3) 03-20-04, Injection Wells; (4) 03-20-08, Injection Well; (5) 03-25-01, Oil Spills; and (6) 03-99-13, Drain and Injection Well. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation (CAI) prior to evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. One conceptual site model with three release scenario components was developed for the six CASs to address all releases associated with the site. The sites will be investigated based on data quality objectives (DQOs) developed on June 24, 2004, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQOs process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 145.

  12. Rigidity and symmetry

    CERN Document Server

    Weiss, Asia; Whiteley, Walter

    2014-01-01

    This book contains recent contributions to the fields of rigidity and symmetry with two primary focuses: to present the mathematically rigorous treatment of rigidity of structures, and to explore the interaction of geometry, algebra, and combinatorics. Overall, the book shows how researchers from diverse backgrounds explore connections among the various discrete structures with symmetry as the unifying theme.  Contributions present recent trends and advances in discrete geometry, particularly in the theory of polytopes. The rapid development of abstract polytope theory has resulted in a rich theory featuring an attractive interplay of methods and tools from discrete geometry, group theory, classical geometry, hyperbolic geometry and topology.  The volume will also be a valuable source as an introduction to the ideas of both combinatorial and geometric rigidity theory and its applications, incorporating the surprising impact of symmetry. It will appeal to students at both the advanced undergraduate and gradu...

  13. Physics from symmetry

    CERN Document Server

    Schwichtenberg, Jakob

    2018-01-01

    This is a textbook that derives the fundamental theories of physics from symmetry. It starts by introducing, in a completely self-contained way, all mathematical tools needed to use symmetry ideas in physics. Thereafter, these tools are put into action and by using symmetry constraints, the fundamental equations of Quantum Mechanics, Quantum Field Theory, Electromagnetism, and Classical Mechanics are derived. As a result, the reader is able to understand the basic assumptions behind, and the connections between the modern theories of physics. The book concludes with first applications of the previously derived equations. Thanks to the input of readers from around the world, this second edition has been purged of typographical errors and also contains several revised sections with improved explanations. .

  14. Closure Report for Corrective Action Unit 240: Area 25 Vehicle Washdown Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Gustafason, D.L.

    2001-01-01

    The Area 25 Vehicle Washdown, Corrective Action Unit (CAU) 240, was clean-closed following the approved Corrective Action Decision Document closure alternative and in accordance with the Federal Facility Agreement and Consent Order (FFACO, 1996). The CAU consists of thee Corrective Action Sites (CASs): 25-07-01 - Vehicle Washdown Area (Propellant Pad); 25-07-02 - Vehicle Washdown Area (F and J Roads Pad); and 25-07-03 - Vehicle Washdown Station (RADSAFE Pad). Characterization activities indicated that only CAS 25-07-02 (F and J Roads Pad) contained constituents of concern (COCs) above action levels and required remediation. The COCs detected were Total Petroleum Hydrocarbons (TPH) as diesel, cesium-137, and strontium-90. The F and J Roads Pad may have been used for the decontamination of vehicles and possibly disassembled engine and reactor parts from Test Cell C. Activities occurred there during the 1960s through early 1970s. The F and J Roads Pad consisted of a 9- by 5-meter (m) (30- by 15-foot [ft]) concrete pad and a 14- by 13-m (46-by 43-ft) gravel sump. The clean-closure corrective action consisted of excavation, disposal, verification sampling, backfilling, and regrading. Closure activities began on August 21, 2000, and ended on September 19, 2000. Waste disposal activities were completed on December 12, 2000. A total of 172 cubic meters (223 cubic yards) of impacted soil was excavated and disposed. The concrete pad was also removed and disposed. Verification samples were collected from the bottom and sidewalls of the excavation and analyzed for TPH diesel and 20-minute gamma spectroscopy. The sample results indicated that all impacted soil above remediation standards was removed. The closure was completed following the approved Corrective Action Plan. All impacted waste was disposed in the Area 6 Hydrocarbon Landfill. All non-impacted debris was disposed in the Area 9 Construction Landfill and the Area 23 Sanitary Landfill

  15. Retail Deli Slicer Cleaning Frequency--Six Selected Sites, United States, 2012.

    Science.gov (United States)

    Brown, Laura G; Hoover, E Rickamer; Ripley, Danny; Matis, Bailey; Nicholas, David; Hedeen, Nicole; Faw, Brenda

    2016-04-01

    Listeria monocytogenes (Listeria) causes the third highest number of foodborne illness deaths (an estimated 255) in the United States annually, after nontyphoidal Salmonella species and Toxoplasma gondii (1). Deli meats are a major source of listeriosis illnesses, and meats sliced and packaged at retail delis are the major source of listeriosis illnesses attributed to deli meat (4). Mechanical slicers pose cross-contamination risks in delis and are an important source of Listeria cross-contamination. Reducing Listeria contamination of sliced meats in delis will likely reduce Listeria illnesses and outbreaks. Good slicer cleaning practices can reduce this foodborne illness risk. CDC's Environmental Health Specialists Network (EHS-Net) studied how often retail deli slicers were fully cleaned (disassembled, cleaned, and sanitized) at the Food and Drug Administration (FDA) Food Code-specified minimum frequency of every 4 hours and examined deli and staff characteristics related to slicer cleaning frequency. Interviews with staff members in 298 randomly-selected delis in six EHS-Net sites showed that approximately half of delis fully cleaned their slicers less often than FDA's specified minimum frequency. Chain-owned delis and delis with more customers, more slicers, required manager food safety training, food safety-knowledgeable workers, written slicer-cleaning policies, and food safety-certified managers fully cleaned their slicers more frequently than did other types of delis, according to deli managers or workers. States and localities should require deli manager training and certification, as specified in the FDA Food Code. They should also consider encouraging or requiring delis to have written slicer-cleaning policies. Retail food industry leaders can also implement these prevention efforts to reduce risk in their establishments. Because independent and smaller delis had lower frequencies of slicer cleaning, prevention efforts should focus on these types of

  16. Closure Report for Corrective Action Unit 124, Storage Tanks, Nevada Test Site, Nevada with Errata Sheet, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Alfred Wickline

    2008-01-01

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 124, Storage Tanks, Nevada Test Site (NTS), Nevada. This report complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996; as amended January 2007). This CR provides documentation and justification for the closure of CAU 124 without further corrective action. This justification is based on process knowledge and the results of the investigative activities conducted in accordance with the Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 124: Storage Tanks, Nevada Test Site, Nevada (NNSA/NSO, 2007). The SAFER Plan provides information relating to site history as well as the scope and planning of the investigation. Therefore, this information will not be repeated in this CR.

  17. Caustic Recycling Pilot Unit to Separate Sodium from LLW at Hanford Site - 12279

    Energy Technology Data Exchange (ETDEWEB)

    Pendleton, Justin; Bhavaraju, Sai; Priday, George; Desai, Aditya; Duffey, Kean; Balagopal, Shekar [Ceramatec Inc., Salt Lake City, UT 84119 (United States)

    2012-07-01

    As part of the Department of Energy (DOE) sponsored Advanced Remediation Technologies initiative, a scheme was developed to combine Continuous Sludge Leaching (CSL), Near-Tank Cesium Removal (NTCR), and Caustic Recycling Unit (CRU) using Ceramatec technology, into a single system known as the Pilot Near-Tank Treatment System (PNTTS). The Cesium (Cs) decontaminated effluent from the NTCR process will be sent to the caustic recycle process for recovery of the caustic which will be reused in another cycle of caustic leaching in the CSL process. Such an integrated mobile technology demonstration will give DOE the option to insert this process for sodium management at various sites in Hanford, and will minimize the addition of further sodium into the waste tanks. This allows for recycling of the caustic used to remove aluminum during sludge washing as a pretreatment step in the vitrification of radioactive waste which will decrease the Low Level Waste (LLW) volume by as much as 39%. The CRU pilot process was designed to recycle sodium in the form of pure sodium hydroxide. The basis for the design of the 1/4 scale pilot caustic recycling unit was to demonstrate the efficient operation of a larger scale system to recycle caustic from the NTCR effluent stream from the Parsons process. The CRU was designed to process 0.28 liter/minute of NTCR effluent, and generate 10 M concentration of 'usable' sodium hydroxide. The proposed process operates at 40 deg. C to provide additional aluminum solubility and then recover the sodium hydroxide to the point where the aluminum is saturated at 40 deg. C. A system was developed to safely separate and vent the gases generated during operation of the CRU with the production of 10 M sodium hydroxide. Caustic was produced at a rate between 1.9 to 9.3 kg/hr. The CRU was located inside an ISO container to allow for moving of the unit close to tank locations to process the LLW stream. Actual tests were conducted with the NTCR effluent

  18. BOOK REVIEW: Symmetry Breaking

    Science.gov (United States)

    Ryder, L. H.

    2005-11-01

    One of the most fruitful and enduring advances in theoretical physics during the last half century has been the development of the role played by symmetries. One needs only to consider SU(3) and the classification of elementary particles, the Yang Mills enlargement of Maxwell's electrodynamics to the symmetry group SU(2), and indeed the tremendous activity surrounding the discovery of parity violation in the weak interactions in the late 1950s. This last example is one of a broken symmetry, though the symmetry in question is a discrete one. It was clear to Gell-Mann, who first clarified the role of SU(3) in particle physics, that this symmetry was not exact. If it had been, it would have been much easier to discover; for example, the proton, neutron, Σ, Λ and Ξ particles would all have had the same mass. For many years the SU(3) symmetry breaking was assigned a mathematical form, but the importance of this formulation fell away when the quark model began to be taken seriously; the reason the SU(3) symmetry was not exact was simply that the (three, in those days) quarks had different masses. At the same time, and in a different context, symmetry breaking of a different type was being investigated. This went by the name of `spontaneous symmetry breaking' and its characteristic was that the ground state of a given system was not invariant under the symmetry transformation, though the interactions (the Hamiltonian, in effect) was. A classic example is ferromagnetism. In a ferromagnet the atomic spins are aligned in one direction only—this is the ground state of the system. It is clearly not invariant under a rotation, for that would change the ground state into a (similar but) different one, with the spins aligned in a different direction; this is the phenomenon of a degenerate vacuum. The contribution of the spin interaction, s1.s2, to the Hamiltonian, however, is actually invariant under rotations. As Coleman remarked, a little man living in a ferromagnet would

  19. Symmetry, structure, and spacetime

    CERN Document Server

    Rickles, Dean

    2007-01-01

    In this book Rickles considers several interpretative difficulties raised by gauge-type symmetries (those that correspond to no change in physical state). The ubiquity of such symmetries in modern physics renders them an urgent topic in philosophy of physics. Rickles focuses on spacetime physics, and in particular classical and quantum general relativity. Here the problems posed are at their most pathological, involving the apparent disappearance of spacetime! Rickles argues that both traditional ontological positions should be replaced by a structuralist account according to which relational

  20. Symmetry and inflation

    International Nuclear Information System (INIS)

    Chimento, Luis P.

    2002-01-01

    We find the group of symmetry transformations under which the Einstein equations for the spatially flat Friedmann-Robertson-Walker universe are form invariant. They relate the energy density and the pressure of the fluid to the expansion rate. We show that inflation can be obtained from nonaccelerated scenarios by a symmetry transformation. We derive the transformation rule for the spectrum and spectral index of the curvature perturbations. Finally, the group is extended to investigate inflation in the anisotropic Bianchi type-I spacetime and the brane-world cosmology

  1. Closure Report for Corrective Action Unit 110: Areas 3 RWMS U-3ax/bl Disposal Unit, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    J. L. Smith

    2001-08-01

    This Closure Report (CR) has been prepared for the Area 3 Radioactive Waste Management Site (RWMS) U-3ax/bl Disposal Unit Corrective Action Unit (CAU) 110 in accordance with the reissued (November 2000) Resource Conservation and Recovery Act (RCRA) Part B operational permit NEV HW009 (Nevada Division of Environmental Protection [NDEP], 2000) and the Federal Facility and Consent Order (FFACO) (NDEP et al., 1996). CAU 110 consists of one Corrective Action Site 03-23-04, described as the U-3ax/bl Subsidence Crater. Certifications of closure are located in Appendix A. The U-3ax/bl is a historic disposal unit within the Area 3 RWMS located on the Nevada Test Site (NTS). The unit, which was formed by excavating the area between two subsidence craters (U-3ax and U-3bl), was operationally closed in 1987. The U-3ax/bl disposal unit was closed under the RCRA, as a hazardous waste landfill. Existing records indicate that, from July 1968 to December 1987, U-3ax/bl received 2.3 x 10{sup 5} cubic meters (m{sup 3}) (8.12 x 10{sup 6} cubic feet [ft{sup 3}]) of waste. NTS atmospheric nuclear device testing generated approximately 95% of the total waste volume disposed of in U-3ax/bl; 80% of the total volume was generated from the Waste Consolidation Project. Area 3 is located in Yucca Flat, within the northeast quadrant of the NTS. The Yucca Flat watershed is a structurally closed basin encompassing an area of approximately 780 square kilometers (300 square miles). The structural geomorphology of Yucca Flat is typical of the Basin and Range Physiographic Province. Yucca Flat lies in one of the most arid regions of the country. Water balance calculations for Area 3 indicate that it is normally in a state of moisture deficit.

  2. Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 575: Area 15 Miscellaneous Sites, Nevada National Security Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick [Navarro-Intera, LLC (N-I), Las Vegas, NV (United States)

    2014-12-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the actions needed to achieve closure for Corrective Action Unit (CAU) 575, Area 15 Miscellaneous Sites, identified in the Federal Facility Agreement and Consent Order (FFACO). CAU 575 comprises the following four corrective action sites (CASs) located in Area 15 of the Nevada National Security Site: 15-19-02, Waste Burial Pit, 15-30-01, Surface Features at Borehole Sites, 15-64-01, Decontamination Area, 15-99-03, Aggregate Plant This plan provides the methodology for field activities needed to gather the necessary information for closing each CAS. There is sufficient information and process knowledge from historical documentation and investigations of similar sites regarding the expected nature and extent of potential contaminants to recommend closure of CAU 575 using the SAFER process. Additional information will be obtained by conducting a field investigation to document and verify the adequacy of existing information, to affirm the predicted corrective action decisions, and to provide sufficient data to implement the corrective actions. This will be presented in a closure report that will be prepared and submitted to the Nevada Division of Environmental Protection (NDEP) for review and approval.

  3. Environmental Insights from Siting New Nuclear Power Plants in the United States

    International Nuclear Information System (INIS)

    Kugler, Andrew J.

    2013-01-01

    This described the Part 52 combined licence review process, under which a design certification and an early site permit can come together to allow a limited work authorization to be issued for pre-construction work while the combined Construction and Operation Licence (COL) application is being considered by the regulator. The regulatory then performs ITAAC (Inspection, Test, Analysis, Acceptance Criteria) to verify that the as-build plant conforms to what was licensed. The Siting Safety Review that is performed under the COL process considers factors such as geology, surface faulting, seismology, geotechnical engineering, hydrology, flooding and groundwater. For an existing site, this involves updating the hazard evaluation from the original one. Dose consequence calculations are performed for both design basis accidents and severe accidents. Experience with siting has shown that all applicants deviate from the guidance, that it is difficult to compare existing sites with new sites, that water supply is a bigger issue now than it was for existing reactors and that site selection can come down to a choice 'among the best', rather than the 'best possible'. Consideration of alternative sites is a big part of the process; the U.S.NRC can reject a primary site if an alternative site appears to be more appropriate, though it cannot force an applicant to select a secondary site

  4. Unit environmental transport assessment of contaminants from Hanford's past-practice waste sites. Hanford Remedial Action Environmental Impact Statement

    International Nuclear Information System (INIS)

    Whelan, G.; Buck, J.W.; Castleton, K.J.

    1995-06-01

    The US Department of Energy, Richland Operations Office (DOE-RL) contracted Pacific Northwest Laboratory (PNL) to provide support to Advanced Sciences, Incorporated (ASI) in implementing tile regional no-action risk assessment in the Hanford Remedial Action Environmental Impact Statement. Researchers at PNL were charged with developing unit concentrations for soil, groundwater, surface water, and air at multiple locations within an 80-km radius from the center of tile Hanford installation. Using the Multimedia Environmental Pollutant Assessment System (MEPAS), PNL simulated (1) a unit release of one ci for each radionuclide and one kg for each chemical from contaminated soils and ponded sites, (2) transport of the contaminants in and through various environmental media and (3) exposure/risk of four exposure scenarios, outlined by the Hanford Site Baseline Remedial Action Methodology. These four scenarios include residential, recreational, industrial, and agricultural exposures. Spacially and temporally distributed environmental concentrations based on unit releases of radionuclides and chemicals were supported to ASI in support of the HRA-EIS. Risk for the four exposure scenarios, based on unit environment concentrations in air, water, and soil. were also supplied to ASI. This report outlines the procedure that was used to implement the unit transport portion of the HRA-EIS baseline risk assessment. Deliverables include unit groundwater, surface water, air, and soil concentrations at multiple locations within an 80-km radius from the center of the Hanford installation

  5. Introduction to Chiral Symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Volker [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-05-09

    These lectures are an attempt to a pedagogical introduction into the elementary concepts of chiral symmetry in nuclear physics. We will also discuss some effective chiral models such as the linear and nonlinear sigma model as well as the essential ideas of chiral perturbation theory. We will present some applications to the physics of ultrarelativistic heavy ion collisionsd.

  6. Classical mirror symmetry

    CERN Document Server

    Jinzenji, Masao

    2018-01-01

    This book furnishes a brief introduction to classical mirror symmetry, a term that denotes the process of computing Gromov–Witten invariants of a Calabi–Yau threefold by using the Picard–Fuchs differential equation of period integrals of its mirror Calabi–Yau threefold. The book concentrates on the best-known example, the quintic hypersurface in 4-dimensional projective space, and its mirror manifold. First, there is a brief review of the process of discovery of mirror symmetry and the striking result proposed in the celebrated paper by Candelas and his collaborators. Next, some elementary results of complex manifolds and Chern classes needed for study of mirror symmetry are explained. Then the topological sigma models, the A-model and the B-model, are introduced. The classical mirror symmetry hypothesis is explained as the equivalence between the correlation function of the A-model of a quintic hyper-surface and that of the B-model of its mirror manifold. On the B-model side, the process of construct...

  7. Approximate symmetries of Hamiltonians

    Science.gov (United States)

    Chubb, Christopher T.; Flammia, Steven T.

    2017-08-01

    We explore the relationship between approximate symmetries of a gapped Hamiltonian and the structure of its ground space. We start by considering approximate symmetry operators, defined as unitary operators whose commutators with the Hamiltonian have norms that are sufficiently small. We show that when approximate symmetry operators can be restricted to the ground space while approximately preserving certain mutual commutation relations. We generalize the Stone-von Neumann theorem to matrices that approximately satisfy the canonical (Heisenberg-Weyl-type) commutation relations and use this to show that approximate symmetry operators can certify the degeneracy of the ground space even though they only approximately form a group. Importantly, the notions of "approximate" and "small" are all independent of the dimension of the ambient Hilbert space and depend only on the degeneracy in the ground space. Our analysis additionally holds for any gapped band of sufficiently small width in the excited spectrum of the Hamiltonian, and we discuss applications of these ideas to topological quantum phases of matter and topological quantum error correcting codes. Finally, in our analysis, we also provide an exponential improvement upon bounds concerning the existence of shared approximate eigenvectors of approximately commuting operators under an added normality constraint, which may be of independent interest.

  8. Molecular symmetry and spectroscopy

    CERN Document Server

    Bunker, Philip; Jensen, Per

    2006-01-01

    The first edition, by P.R. Bunker, published in 1979, remains the sole textbook that explains the use of the molecular symmetry group in understanding high resolution molecular spectra. Since 1979 there has been considerable progress in the field and a second edition is required; the original author has been joined in its writing by Per Jensen. The Material of the first edition has been reorganized and much has been added. The molecular symmetry group is now introduced early on, and the explanation of how to determine nuclear spin statistical weights has been consolidated in one chapter, after groups, symmetry groups, character tables and the Hamiltonian have been introduced. A description of the symmetry in the three-dimensional rotation group K(spatial), irreducible spherical tensor operators, and vector coupling coefficients is now included. The chapters on energy levels and selection rules contain a great deal of material that was not in the first edition (much of it was undiscovered in 1979), concerning ...

  9. Introduction to chiral symmetry

    International Nuclear Information System (INIS)

    Koch, V.

    1996-01-01

    These lectures are an attempt to a pedagogical introduction into the elementary concepts of chiral symmetry in nuclear physics. Effective chiral models such as the linear and nonlinear sigma model will be discussed as well as the essential ideas of chiral perturbation theory. Some applications to the physics of ultrarelativistic heavy ion collisions will be presented

  10. The politics of symmetry

    NARCIS (Netherlands)

    Pels, D.L.

    While symmetry and impartiality have become ruling principles in S&TS, defining its core ideal of a 'value-free relativism', their philosophical anchorage has attracted much less discussion than the issue or:how far their jurisdiction can be extended or generalized. This paper seeks to argue that

  11. Symmetries in fundamental physics

    CERN Document Server

    Sundermeyer, Kurt

    2014-01-01

    Over the course of the last century it has become clear that both elementary particle physics and relativity theories are based on the notion of symmetries. These symmetries become manifest in that the "laws of nature" are invariant under spacetime transformations and/or gauge transformations. The consequences of these symmetries were analyzed as early as in 1918 by Emmy Noether on the level of action functionals. Her work did not receive due recognition for nearly half a century, but can today be understood as a recurring theme in classical mechanics, electrodynamics and special relativity, Yang-Mills type quantum field theories, and in general relativity. As a matter of fact, as shown in this monograph, many aspects of physics can be derived solely from symmetry considerations. This substantiates the statement of E.P.Wigner "... if we knew all the laws of nature, or the ultimate Law of nature, the invariance properties of these laws would not furnish us new information." Thanks to Wigner we now also underst...

  12. Symmetries in fundamental physics

    CERN Document Server

    Sundermeyer, Kurt

    2014-01-01

    Over the course of the last century it has become clear that both elementary particle physics and relativity theories are based on the notion of symmetries. These symmetries become manifest in that the "laws of nature" are invariant under spacetime transformations and/or gauge transformations. The consequences of these symmetries were analyzed as early as in 1918 by Emmy Noether on the level of action functionals. Her work did not receive due recognition for nearly half a century, but can today be understood as a recurring theme in classical mechanics, electrodynamics and special relativity, Yang-Mills type quantum field theories, and in general relativity. As a matter of fact, as shown in this monograph, many aspects of physics can be derived solely from symmetry considerations. This substantiates the statement of E.P. Wigner "... if we knew all the laws of nature, or the ultimate Law of nature, the invariance properties of these laws would not furnish us new information." Thanks to Wigner we now also unders...

  13. Groups and Symmetry

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 10. Groups and Symmetry: A Guide to Discovering Mathematics. Geetha Venkataraman. Book Review Volume 4 Issue 10 October 1999 pp 91-92. Fulltext. Click here to view fulltext PDF. Permanent link:

  14. Aspects of W∞ symmetry

    International Nuclear Information System (INIS)

    Sezgin, E.

    1991-08-01

    We review the structure of W ∞ algebras, their super and topological extensions, and their contractions down to (super) w ∞ . Emphasis is put on the field theoretic realizations of these algebras. We also review the structure of w ∞ and W ∞ gravities and comment on various applications of W ∞ symmetry. (author). 42 refs

  15. Non-Noetherian symmetries

    International Nuclear Information System (INIS)

    Hojman, Sergio A.

    1996-01-01

    The purpose of these lectures is to present some of the ways in which non-Noetherian symmetries are used in contemporary mathematical physics. These include, among others, obtaining conservation laws for dynamical systems, solving non-linear problems, getting alternative Lagrangians for systems of differential equations and constructing symplectic structures and Hamiltonians for dynamical systems starting from scratch

  16. Detection symmetry and asymmetry

    NARCIS (Netherlands)

    du Buf, J.M.H.

    1991-01-01

    Experiments were performed on the detection symmetry and asymmetry of incremental and decremental disks, as a function of both disk diameter and duration. It was found that, for a background luminance of 300cd.m-2, thresholds of dynamic (briefly presented) foveal disks are symmetrical for all

  17. From symmetries to dynamics

    International Nuclear Information System (INIS)

    Stern, J.

    2000-01-01

    The problem of a uniform description of symmetries, their dynamic disturbing and the structure of the vacuum is discussed. The role which problems of this kind played in searching for and understanding the Standard Model of elementary particles from the 1960s till now is also highlighted. (Z.J.)

  18. Fields, symmetries, and quarks

    International Nuclear Information System (INIS)

    Mosel, U.

    1989-01-01

    'Fields, symmetries, and quarks' covers elements of quantum field theory, symmetries, gauge field theories and phenomenological descriptions of hadrons, with special emphasis on topics relevant to nuclear physics. It is aimed at nuclear physicists in general and at scientists who need a working knowledge of field theory, symmetry principles of elementary particles and their interactions and the quark structure of hadrons. The book starts out with an elementary introduction into classical field theory and its quantization. As gauge field theories require a working knowledge of global symmetries in field theories this topic is then discussed in detail. The following part is concerned with the general structure of gauge field theories and contains a thorough discussion of the still less widely known features of Non-Abelian gauge field theories. Quantum Chromodynamics (QCD), which is important for the understanding of hadronic matter, is discussed in the next section together with the quark compositions of hadrons. The last two chapters give a detailed discussion of phenomenological bag-models. The MIT bag is discussed, so that all theoretical calculations can be followed step by step. Since in all other bag-models the calculational methods and steps are essentially identical, this chapter should enable the reader to actually perform such calculations unaided. A last chapter finally discusses the topological bag-models which have become quite popular over the last few years. (orig.)

  19. Symmetry of priapulids (Priapulida). 1. Symmetry of adults.

    Science.gov (United States)

    Adrianov, A V; Malakhov, V V

    2001-02-01

    Priapulids possess a radial symmetry that is remarkably reflected in both external morphology and internal anatomy. It results in the appearance of 25-radial (a number divisible by five) symmetry summarized as a combination of nonaradial, octaradial, and octaradial (9+8+8) symmetries of scalids. The radial symmetry is a secondary appearance considered as an evolutionary adaptation to a lifestyle within the three-dimensional environment of bottom sediment. The eight anteriormost, or primary, scalids retain their particular position because of their innervation directly from the circumpharyngeal brain. As a result of a combination of the octaradial symmetry of primary scalids, pentaradial symmetry of teeth, and the 25-radial symmetry of scalids, the initial bilateral symmetry remains characterized by the single sagittal plane. Copyright 2001 Wiley-Liss, Inc.

  20. Analysis of risk reduction measures applied to shared essential service water systems at multi-unit sites

    International Nuclear Information System (INIS)

    Kohut, P.; Musicki, Z.; Fitzpatrick, R.

    1991-06-01

    This report summarizes a study performed by Brookhaven National Laboratory for the US Nuclear Regulatory Commission in support of the resolution of NRC Generic Issue 130. GI-130 is concerned with the potential core damage vulnerability resulting from failure of the emergency service water (ESW) system in selected multiplant units. These multiplant units are all twin pressurized water reactor designs that have only two ESW pumps per unit (one per train) backed up by a unit crosstie capability. This generic issue applies to seven US sites (14 plants). The study established and analyzed the core damage vulnerability and identified potential improvements for the ESW system. It obtained generic estimates of the risk reduction potential and cost effectiveness of each potential improvement. The analysis also investigated the cost/benefit aspects of selected combinations of potential improvements. 4 figs., 62 tabs

  1. Closure Report for Corrective Action Unit 254: Area 25, R-MAD Decontamination Facility, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    G. N. Doyle

    2002-02-01

    Corrective Action Unit (CAU) 254 is located in Area 25 of the Nevada Test Site (NTS), approximately 100 kilometers (km) (62 miles) northwest of Las Vegas, Nevada. The site is located within the Reactor Maintenance, Assembly and Disassembly (R-MAD) compound and consists of Building 3126, two outdoor decontamination pads, and surrounding areas within an existing fenced area measuring approximately 50 x 37 meters (160 x 120 feet). The site was used from the early 1960s to the early 1970s as part of the Nuclear Rocket Development Station program to decontaminate test-car hardware and tooling. The site was reactivated in the early 1980s to decontaminate a radiologically contaminated military tank. This Closure Report (CR) describes the closure activities performed to allow un-restricted release of the R-MAD Decontamination Facility.

  2. The contribution to site core damage frequency from independent occurrences of initiators in two or more units: How low is it?

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-San; Park, Jin Hee; Lim, Ho Gon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Stutzke estimated the site risk by summing the contribution from common cause initiators and the contribution from single-unit initiators. He considered some kinds of multi-unit accident sequences caused by single-unit initiators. However, the contribution from independent occurrences of initiators in two or more units at a site was not taken into account. The purpose of this study is to estimate the contribution to site core damage frequency (CDF) from simultaneous occurrences of independent initiators in two or more units at the same site. Some assumptions and methods used in this analysis are firstly described, and the results and conclusions of the analysis are described. In this study, the contribution to site core damage frequency (CDF) from simultaneous occurrences of independent initiators in two or more units at the same site was estimated. A Korean six-unit site was selected as the reference site and the at-power internal events Level 1 PSA model for an OPR1000 unit at the reference site was used as the base model, and was modified to deal with some major dependencies between units at the site. Specifically, the availability of the AAC D/G, dependencies between offsite power recovery actions in different unis, and inter-unit CCF modeling for risk-significant components such as diesel generators were taken into account. As a result, the sum of dual-unit CDF due to independent occurrences of initiators in two units at the reference site was estimated to be sufficiently low to be neglected.

  3. Corrective Action Investigation Plan for Corrective Action Unit 321: Area 22 Weather Station Fuel Storage, Nevada Test Site, Nevada; TOPICAL

    International Nuclear Information System (INIS)

    1999-01-01

    This Corrective Action Investigation Plan (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the US Department of Energy, Nevada Operations Office (DOE/NV); the State of Nevada Division of Environmental Protection (NDEP); and the US Department of Defense (FFACO, 1996). The CAIP is a document that provides or references all of the specific information for investigation activities associated with Corrective Action Units (CAUs) or Corrective Action Sites (CASs). According to the FFACO (1996), CASs are sites potentially requiring corrective action(s) and may include solid waste management units or individual disposal or release sites. A CAU consists of one or more CASs grouped together based on geography, technical similarity, or agency responsibility for the purpose of determining corrective actions. This CAIP contains the environmental sample collection objectives and the criteria for conducting site investigation activities at the CAU 321 Area 22 Weather Station Fuel Storage, CAS 22-99-05 Fuel Storage Area. For purposes of this discussion, this site will be referred to as either CAU 321 or the Fuel Storage Area. The Fuel Storage Area is located in Area 22 of the Nevada Test Site (NTS). The NTS is approximately 105 kilometers (km) (65 miles[mi]) northwest of Las Vegas, Nevada (Figure 1-1) (DOE/NV, 1996a). The Fuel Storage Area (Figure 1-2) was used to store fuel and other petroleum products necessary for motorized operations at the historic Camp Desert Rock facility which was operational from 1951 to 1958 at the Nevada Test Site, Nevada. The site was dismantled after 1958 (DOE/NV, 1996a)

  4. Summary of the engineering assessment of inactive uranium mill tailings: Phillips/United Nuclear site, Ambrosia Lake, New Mexico

    International Nuclear Information System (INIS)

    1981-10-01

    Ford, Bacon and Davis Utah, Inc., has reevaluated the Phillips/United Nuclear site in order to revise the December 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Ambrosia Lake, New Mexico. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 2.6 million dry tons of tailings at the Phillips/United Nuclear site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material, to removal of the tailings to remote disposal sites and decontamination of the tailings site. Cost estimates for the four options range from about $21,500,000 for stabilization in-place, to about $45,200,000 for disposal at a distance of about 15 mi. Three principal alternatives for the reprocessing of the Phillips/United Nuclear tailings were examined: heap leaching; treatment at an existing mill; reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $87/lb of U 3 O 8 by either heap leach or conventional plant process. The spot market price for uranium was $25/lb early in 1981. Reprocessing the Phillips/United Nuclear tailings for uranium recovery does not appear to be economically attractive under present or foreseeable market conditions

  5. Corrective action investigation plan for Corrective Action Unit 342: Area 23 Mercury Fire Training Pit, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This Corrective Action Investigation Plan (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the US Department of Energy, Nevada Operations Office (DOE/NV); the State of Nevada Division of Environmental Protection (NDEP); and the US Department of Defense (FFACO, 1996). The CAIP is a document that provides or references all of the specific information for investigation activities associated with Corrective Action Units (CAUs) or Corrective Action Sites (CASs). According to the FFACO, CASs are sites potentially requiring corrective action(s) and may include solid waste management units or individual disposal or release sites (FFACO, 1996). Corrective Action Units consist of one or more CASs grouped together based on geography, technical similarity, or agency responsibility for the purpose of determining corrective actions. This CAIP contains the environmental sample collection objectives and the criteria for conducting site investigation activities at CAU 342, the Area 23 Mercury Fire Training Pit (FTP), which is located in Area 23 at the Nevada Test Site (NTS). The NTS is approximately 88 km (55 mi) northwest of Las Vegas, Nevada. Corrective Action Unit 342 is comprised of CAS 23-56-01. The FTP is an area approximately 100 m by 140 m (350 ft by 450 ft) located west of the town of Mercury, Nevada, which was used between approximately 1965 and 1990 to train fire-fighting personnel (REECo, 1991; Jacobson, 1991). The surface and subsurface soils in the FTP have likely been impacted by hydrocarbons and other contaminants of potential concern (COPC) associated with burn activities and training exercises in the area.

  6. Bilateral symmetry analysis of breast MRI

    International Nuclear Information System (INIS)

    Alterson, Robert; Plewes, Donald B

    2003-01-01

    Mammographic interpretation often uses symmetry between left and right breasts to indicate the site of potential tumour masses. This approach has not been applied to breast images obtained from MRI. We present an automatic technique for breast symmetry detection based on feature extraction techniques which does not require any efforts to co-register breast MRI data. The approach applies computer-vision techniques to detect natural biological symmetries in breast MR scans based on three objective measures of similarity: multiresolution non-orthogonal wavelet representation, three-dimensional intensity distributions and co-occurrence matrices. Statistical distributions that are invariant to feature localization are computed for each of the extracted image features. These distributions are later compared against each other to account for perceptual similarity. Studies based on 51 normal MRI scans of randomly selected patients showed that the sensitivity of symmetry detection rate approached 94%. The symmetry analysis procedure presented in this paper can be applied as an aid in detecting breast tissue changes arising from disease

  7. Corrective Action Decision Document for Corrective Action Unit 366: Area 11 Plutonium Valley Dispersion Sites Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Matthews

    2012-09-01

    CAU 366 comprises six corrective action sites (CASs): • 11-08-01, Contaminated Waste Dump #1 • 11-08-02, Contaminated Waste Dump #2 • 11-23-01, Radioactively Contaminated Area A • 11-23-02, Radioactively Contaminated Area B • 11-23-03, Radioactively Contaminated Area C • 11-23-04, Radioactively Contaminated Area D The purpose of this CADD is to identify and provide the rationale for the recommendation of corrective action alternatives (CAA) for the six CASs within CAU 366. Corrective action investigation (CAI) activities were performed from October 12, 2011, to May 14, 2012, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 366: Area 11 Plutonium Valley Dispersion Sites.

  8. Corrective Action Investigation Plan for Corrective Action Unit 232: Area 25 Sewage Lagoons Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    DOE/NV Operations Office

    1999-05-01

    This Corrective Action Investigation Plan (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) (1996) that was agreed to by the US Department of Energy, Nevada Operations Office (DOE/NV); the State of Nevada Division of Environmental Protection (NDEP); and the US Department of Defense. The CAIP is a document that provides or references all of the specific information for investigation activities associated with Corrective Action Units (CAUs) or Corrective Action Sites (CASs). According to the FFACO, CASs are sites potentially requiring corrective action(s) and may include solid waste management units or individual disposal or release sites. A CAU consists of one or more CASs grouped together based on geography, technical similarity, or agency responsibility for the purpose of determining corrective actions. This CAIP contains the environmental sample collection objectives and criteria for conducting site investigation activities at CAU 232, Area 25 Sewage Lagoons. Corrective Action Unit 232 consists of CAS 25-03-01, Sewage Lagoon, located in Area 25 of the Nevada Test Site (NTS). The NTS is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1) (DOE/NV, 1996a). The Area 25 Sewage Lagoons (Figure 1-2) (IT, 1999b) are located approximately 0.3 mi south of the Test Cell 'C' (TCC) Facility and were used for the discharge of sanitary effluent from the TCC facility. For purposes of this discussion, this site will be referred to as either CAU 232 or the sewage lagoons.

  9. Alternative Site Technology Deployment-Monitoring System for the U-3ax/bl Disposal Unit at the Nevada Test Site

    International Nuclear Information System (INIS)

    Dixon, J.M.; Levitt, D.G.; Rawlinson, S.E.

    2001-01-01

    In December 2000, a performance monitoring facility was constructed adjacent to the U-3ax/bl mixed waste disposal unit at the Nevada Test Site (NTS). Recent studies conducted in the arid southwestern United States suggest that a vegetated monolayer evapotranspiration (ET) closure cover may be more effective at isolating waste than traditional Resource Conservation and Recovery Act (RCRA) multi-layered designs. The monitoring system deployed next to the U-3ax/bl disposal unit consists of eight drainage lysimeters with three surface treatments: two are left bare; two are revegetated with native species; two are being allowed to revegetate with invader species; and two are reserved for future studies. Soil used in each lysimeter is native alluvium taken from the same location as the soil used for the cover material on U-3ax/bl. The lysimeters were constructed so that any drainage to the bottom can be collected and measured. To provide a detailed evaluation of the cover performance, an ar ray of 16 sensors was installed in each lysimeter to measure soil water content, soil water potential, and soil temperature. Revegetation of the U-3ax/bl closure cover establishes a stable plant community that maximizes water loss through transpiration while at the same time, reduces water and wind erosion and ultimately restores the disposal unit to its surrounding Great Basin Desert environment

  10. Corrective Action Decision Document/Closure Report for Corrective Action Unit 105: Area 2 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick

    2014-01-01

    The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 105 based on the implementation of the corrective actions. Corrective action investigation (CAI) activities were performed from October 22, 2012, through May 23, 2013, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 105: Area 2 Yucca Flat Atmospheric Test Sites; and in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices.

  11. Corrective Action Investigation Plan for Corrective Action Unit 576: Miscellaneous Radiological Sites and Debris Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick [Navarro, Las Vegas, NV (United States)

    2016-12-01

    Corrective Action Unit (CAU) 576 is located in Areas 2, 3, 5, 8, and 9 of the Nevada National Security Site, which is approximately 65 miles northwest of Las Vegas, Nevada. CAU 576 is a grouping of sites where there has been a suspected release of contamination associated with nuclear testing. This document describes the planned investigation of CAU 576, which comprises the following corrective action sites (CASs): 00-99-01, Potential Source Material; 02-99-12, U-2af (Kennebec) Surface Rad-Chem Piping; 03-99-20, Area 3 Subsurface Rad-Chem Piping; 05-19-04, Frenchman Flat Rad Waste Dump ; 09-99-08, U-9x (Allegheny) Subsurface Rad-Chem Piping; 09-99-09, U-9its u24 (Avens-Alkermes) Surface Contaminated Flex Line These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document (CADD).

  12. Phase II, Title I engineering assessment of inactive uranium mill tailings, Phillips/United Nuclear Site, Ambrosia Lake, New Mexico

    International Nuclear Information System (INIS)

    1977-12-01

    An engineering assessment was performed of the problems resulting from the existence of radioactive uranium mill tailings at the Phillips/United Nuclear site at Ambrosia Lake, New Mexico. Services included the preparation of topographic maps, the performance of core drillings sufficient to determine areas and volumes of tailings, and radiometric measurements to determine radium-contaminated materials, the evaluation of resulting radiation exposures of individuals and nearby populations, the investigation of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas release from the 2.6 million tons of tailings at the Phillips/United Nuclear site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation are also factors. The estimated radiological health effects to the general population are considered to be minimal. The two alternative actions presented are: dike stabilization, fencing, and maintenance; and adding 2 ft of stabilization cover material. Both options include remedial action at off-site structures and on-site decontamination around the tailings pile. Cost estimates for the two options are $920,000 and $2,230,000, respectively

  13. Corrective Action Investigation plan for Corrective Action Unit 546: Injection Well and Surface Releases, Nevada Test Site, Nevada, Revision 0

    International Nuclear Information System (INIS)

    Alfred Wickline

    2008-01-01

    Corrective Action Unit (CAU) 546 is located in Areas 6 and 9 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 546 is comprised of two Corrective Action Sites (CASs) listed below: 06-23-02, U-6a/Russet Testing Area 09-20-01, Injection Well These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on November 8, 2007, by representatives of the Nevada Division of Environmental Protection and U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process has been used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 546

  14. Global Anomaly Detection in Two-Dimensional Symmetry-Protected Topological Phases

    Science.gov (United States)

    Bultinck, Nick; Vanhove, Robijn; Haegeman, Jutho; Verstraete, Frank

    2018-04-01

    Edge theories of symmetry-protected topological phases are well known to possess global symmetry anomalies. In this Letter we focus on two-dimensional bosonic phases protected by an on-site symmetry and analyze the corresponding edge anomalies in more detail. Physical interpretations of the anomaly in terms of an obstruction to orbifolding and constructing symmetry-preserving boundaries are connected to the cohomology classification of symmetry-protected phases in two dimensions. Using the tensor network and matrix product state formalism we numerically illustrate our arguments and discuss computational detection schemes to identify symmetry-protected order in a ground state wave function.

  15. 78 FR 66779 - United States Enrichment Corporation, Paducah Gaseous Diffusion Plant, Including On-Site Leased...

    Science.gov (United States)

    2013-11-06

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-82,862] United States Enrichment..., applicable to workers of United States Enrichment Corporation, Paducah Gaseous Diffusion Plant, including on... were engaged in the production of low enrichment uranium. The company reports that workers leased from...

  16. Proposed plan for the United Nuclear Corporation Disposal Site at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1991-03-01

    The US Department of Energy (DOE) in compliance with Section 117(a) of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980, as amended by the Superfund Amendments and Reauthorization Act (SARA) of 1986, is releasing the proposed plan for remedial action at the United Nuclear Corporation (UNC) Disposal Site located at the DOE Oak Ridge Operations (ORO) Y-12 Plant, Oak Ridge, Tennessee. The purpose of this document is to present and solicit for comment to the public and all interested parties the ''preferred plan'' to remediate the UNC Disposal Site. However, comments on all alternatives are invited

  17. Symmetries in physics and harmonics

    International Nuclear Information System (INIS)

    Kolk, D.

    2006-01-01

    In this book the symmetries of elementary particles are described in relation to the rules of harmonics in music. The selection rules are described in connections with harmonic intervals. Also symmetry breaking is considered in this framework. (HSI)

  18. Unified Symmetry of Hamilton Systems

    International Nuclear Information System (INIS)

    Xu Xuejun; Qin Maochang; Mei Fengxiang

    2005-01-01

    The definition and the criterion of a unified symmetry for a Hamilton system are presented. The sufficient condition under which the Noether symmetry is a unified symmetry for the system is given. A new conserved quantity, as well as the Noether conserved quantity and the Hojman conserved quantity, deduced from the unified symmetry, is obtained. An example is finally given to illustrate the application of the results.

  19. Quantum symmetries in particle interactions

    International Nuclear Information System (INIS)

    Shirkov, D.V.

    1983-01-01

    The concept of a quantum symmetry is introduced as a symmetry in the formulation of which quantum representations and specific quantum notions are used essentially. Three quantum symmetry principles are discussed: the principle of renormalizability (possibly super-renormalizability), the principle of local gauge symmetry, and the principle of supersymmetry. It is shown that these principles play a deterministic role in the development of quantum field theory. Historically their use has led to ever stronger restrictions on the interaction mechanism of quantum fields

  20. Symmetry and topology in evolution

    International Nuclear Information System (INIS)

    Lukacs, B.; Berczi, S.; Molnar, I.; Paal, G.

    1991-10-01

    This volume contains papers of an interdisciplinary symposium on evolution. The aim of this symposium, held in Budapest, Hungary, 28-29 May 1991, was to clear the role of symmetry and topology at different levels of the evolutionary processes. 21 papers were presented, their topics included evolution of the Universe, symmetry of elementary particles, asymmetry of the Earth, symmetry and asymmetry of biomolecules, symmetry and topology of lining objects, human asymmetry etc. (R.P.)

  1. Closure Plan for Corrective Action Unit 110: Area 3 RWMS U-3ax/bl Disposal Unit, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Fitzmaurice, T. M.

    2000-01-01

    This Closure Plan has been prepared for the Area 3 RWMS U-3ax/bl Disposal Unit Corrective Action Unit 110 in accordance with the Federal Facility and Consent Order (Nevada Division of Environmental Protection [NDEP] et al., 1996). The U-3ax/bl is a historic disposal unit within the Area 3 Radioactive Waste Management Site located on the Nevada Test Site (NTS). The unit, which was formed by excavating the area between two subsidence craters (U-3ax and U-3bl), was operationally closed in 1987. The U-3ax/bl disposal unit is scheduled for permanent closure under the Resource Conservation and Recovery Act as a hazardous waste landfill. Existing records indicate that, from July 1968 to December 1987, U-3ax/bl received 2.3 x 10 5 cubic meters (8.12 x 10 6 cubic feet) of waste. NTS nuclear device testing generated approximately 95 percent of the total volume disposed of in U-3ax/bl, the majority of which came from the Waste Consolidation Project (80 percent of the total volume) (Elletson and Johnejack, 1995). Area 3 is located in Yucca Flat, within the northeast quadrant of the NTS. The Yucca Flat watershed is a structurally closed basin encompassing an area of approximately 780 square kilometers (300 square miles). The structural geomorphology of Yucca Flat is typical of the Basin and Range Physiographic Province. Yucca Flat lies in one of the most arid regions of the country. Water balance calculations for Area 3 indicate that it is continuously in a state of moisture deficit. The U-3ax/bl Disposal Unit will be closed in place by installing a Resource Conservation and Recovery Act equivalent cover. Following cover construction a fence will be installed around the cover to prevent accidental damage to the cover. Post-closure monitoring will consist of site inspections to determine the condition of the engineered cover and cover performance monitoring using Time-Domain Reflectometry arrays to monitor moisture migration in the cover. Any identified maintenance and repair

  2. Closure Plan for Corrective Action Unit 110: Area 3 RWMS U-3ax/bl Disposal Unit, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    T. M. Fitzmaurice

    2000-08-01

    This Closure Plan has been prepared for the Area 3 RWMS U-3ax/bl Disposal Unit Corrective Action Unit 110 in accordance with the Federal Facility and Consent Order (Nevada Division of Environmental Protection [NDEP] et al., 1996). The U-3ax/bl is a historic disposal unit within the Area 3 Radioactive Waste Management Site located on the Nevada Test Site (NTS). The unit, which was formed by excavating the area between two subsidence craters (U-3ax and U-3bl), was operationally closed in 1987. The U-3ax/bl disposal unit is scheduled for permanent closure under the Resource Conservation and Recovery Act as a hazardous waste landfill. Existing records indicate that, from July 1968 to December 1987, U-3ax/bl received 2.3 x 10{sup 5} cubic meters (8.12 x 10{sup 6} cubic feet) of waste. NTS nuclear device testing generated approximately 95 percent of the total volume disposed of in U-3ax/bl, the majority of which came from the Waste Consolidation Project (80 percent of the total volume) (Elletson and Johnejack, 1995). Area 3 is located in Yucca Flat, within the northeast quadrant of the NTS. The Yucca Flat watershed is a structurally closed basin encompassing an area of approximately 780 square kilometers (300 square miles). The structural geomorphology of Yucca Flat is typical of the Basin and Range Physiographic Province. Yucca Flat lies in one of the most arid regions of the country. Water balance calculations for Area 3 indicate that it is continuously in a state of moisture deficit. The U-3ax/bl Disposal Unit will be closed in place by installing a Resource Conservation and Recovery Act equivalent cover. Following cover construction a fence will be installed around the cover to prevent accidental damage to the cover. Post-closure monitoring will consist of site inspections to determine the condition of the engineered cover and cover performance monitoring using Time-Domain Reflectometry arrays to monitor moisture migration in the cover. Any identified maintenance and

  3. Corrective Action Investigation Plan for Corrective Action Unit 543: Liquid Disposal Units Nevada Test Site, Nevada, Rev. No.: 0 with ROTC 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    David A. Strand

    2004-05-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 543: Liquid Disposal Units, Nevada Test Site (NTS), Nevada. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S Department of Defense (DoD). Corrective Action Unit 543 is located in Area 6 and Area 15 of the NTS, which is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Seven corrective action sites (CASs) comprise CAU 543 and are listed below: (1) 06-07-01, Decon Pad; (2) 15-01-03, Aboveground Storage Tank; (3) 15-04-01, Septic Tank; (4) 15-05-01, Leachfield; (5) 15-08-01, Liquid Manure Tank; (6) 15-23-01, Underground Radioactive Material Area; and (7) 15-23-03, Contaminated Sump, Piping. Corrective Action Site 06-07-01, Decon Pad, is located in Area 6 and consists of the Area 6 Decontamination Facility and its components that are associated with decontamination of equipment, vehicles, and materials related to nuclear testing. The six CASs in Area 15 are located at the U.S. Environmental Protection Agency (EPA) Farm and are related to waste disposal activities at the EPA Farm. The EPA Farm was a fully-functional dairy associated with animal experiments conducted at the on-site laboratory. The corrective action investigation (CAI) will include field inspections, video-mole surveys, and sampling of media, where appropriate. Data will also be obtained to support waste management decisions. The CASs within CAU 543 are being investigated because hazardous and/or radioactive constituents may be present at concentrations that could potentially pose a threat to human health and the environment. The seven CASs in CAU 543

  4. Charge independence and charge symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Miller, G A [Washington Univ., Seattle, WA (United States). Dept. of Physics; van Oers, W T.H. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Physics; [TRIUMF, Vancouver, BC (Canada)

    1994-09-01

    Charge independence and charge symmetry are approximate symmetries of nature, violated by the perturbing effects of the mass difference between up and down quarks and by electromagnetic interactions. The observations of the symmetry breaking effects in nuclear and particle physics and the implications of those effects are reviewed. (author). 145 refs., 3 tabs., 11 figs.

  5. Charge independence and charge symmetry

    International Nuclear Information System (INIS)

    Miller, G.A.

    1994-09-01

    Charge independence and charge symmetry are approximate symmetries of nature, violated by the perturbing effects of the mass difference between up and down quarks and by electromagnetic interactions. The observations of the symmetry breaking effects in nuclear and particle physics and the implications of those effects are reviewed. (author). 145 refs., 3 tabs., 11 figs

  6. Symmetry energy in nuclear surface

    International Nuclear Information System (INIS)

    Danielewicz, P.; Lee, Jenny

    2009-01-01

    Interplay between the dependence of symmetry energy on density and the variation of nucleonic densities across nuclear surface is discussed. That interplay gives rise to the mass dependence of the symmetry coefficient in an energy formula. Charge symmetry of the nuclear interactions allows to introduce isoscalar and isovector densities that are approximately independent of the magnitude of neutron-proton asymmetry. (author)

  7. Emergence of Symmetries from Entanglement

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    Maximal Entanglement appears to be a key ingredient for the emergence of symmetries. We first illustrate this phenomenon using two examples: the emergence of conformal symmetry in condensed matter systems and  the relation of tensor networks to holography. We further present a Principle of Maximal Entanglement that seems to dictate to a large extend the structure of gauge symmetry.

  8. Group analysis and renormgroup symmetries

    International Nuclear Information System (INIS)

    Kovalev, V.F.; Pustovalov, V.V.; Shirkov, D.V.

    1996-01-01

    An original regular approach to constructing special type symmetries for boundary-value problems, namely renormgroup symmetries, is presented. Different methods of calculating these symmetries based on modern group analysis are described. An application of the approach to boundary value problems is demonstrated with the help of a simple mathematical model. 35 refs

  9. Corrective Action Investigation Plan for Corrective Action Unit 569: Area 3 Yucca Flat Atmospheric Test Sites Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Matthews; Christy Sloop

    2012-02-01

    Corrective Action Unit (CAU) 569 is located in Area 3 of the Nevada National Security Site, which is approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 569 comprises the nine numbered corrective action sites (CASs) and one newly identified site listed below: (1) 03-23-09, T-3 Contamination Area (hereafter referred to as Annie, Franklin, George, and Moth); (2) 03-23-10, T-3A Contamination Area (hereafter referred to as Harry and Hornet); (3) 03-23-11, T-3B Contamination Area (hereafter referred to as Fizeau); (4) 03-23-12, T-3S Contamination Area (hereafter referred to as Rio Arriba); (5) 03-23-13, T-3T Contamination Area (hereafter referred to as Catron); (6) 03-23-14, T-3V Contamination Area (hereafter referred to as Humboldt); (7) 03-23-15, S-3G Contamination Area (hereafter referred to as Coulomb-B); (8) 03-23-16, S-3H Contamination Area (hereafter referred to as Coulomb-A); (9) 03-23-21, Pike Contamination Area (hereafter referred to as Pike); and (10) Waste Consolidation Site 3A. Because CAU 569 is a complicated site containing many types of releases, it was agreed during the data quality objectives (DQO) process that these sites will be grouped. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each study group. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the DQOs developed on September 26, 2011, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO

  10. Dark discrete gauge symmetries

    International Nuclear Information System (INIS)

    Batell, Brian

    2011-01-01

    We investigate scenarios in which dark matter is stabilized by an Abelian Z N discrete gauge symmetry. Models are surveyed according to symmetries and matter content. Multicomponent dark matter arises when N is not prime and Z N contains one or more subgroups. The dark sector interacts with the visible sector through the renormalizable kinetic mixing and Higgs portal operators, and we highlight the basic phenomenology in these scenarios. In particular, multiple species of dark matter can lead to an unconventional nuclear recoil spectrum in direct detection experiments, while the presence of new light states in the dark sector can dramatically affect the decays of the Higgs at the Tevatron and LHC, thus providing a window into the gauge origin of the stability of dark matter.

  11. Symmetries and microscopic physics

    International Nuclear Information System (INIS)

    Blaizot, J.P.

    1997-01-01

    This book is based on a course of lectures devoted to the applications of group theory to quantum physics. The purpose is to give students a precise idea of general principles involving the concept of symmetry and to present practical methods used to calculate physical properties derived from symmetries. The first chapter is an introduction to the main results of group theory, 2 chapters highlight principles and methods concerning geometrical transformations in the space of states, state degeneracy and perturbation theory. The last 4 chapters investigate the applications of these methods to atom physics, nuclear structure and elementary particles. A chapter is devoted to the atom of hydrogen and another to the isospin. Numerous exercises and problems, some with their corrections, are proposed. (A.C.)

  12. Asymmetry, Symmetry and Beauty

    Directory of Open Access Journals (Sweden)

    Abbe R. Kopra

    2010-07-01

    Full Text Available Asymmetry and symmetry coexist in natural and human processes.  The vital role of symmetry in art has been well demonstrated. This article highlights the complementary role of asymmetry. Further we show that the interaction of asymmetric action (recursion and symmetric opposition (sinusoidal waves are instrumental in generating creative features (relatively low entropy, temporal complexity, novelty (less recurrence in the data than in randomized copies and complex frequency composition. These features define Bios, a pattern found in musical compositions and in poetry, except for recurrence instead of novelty. Bios is a common pattern in many natural and human processes (quantum processes, the expansion of the universe, gravitational waves, cosmic microwave background radiation, DNA, physiological processes, animal and human populations, and economic time series. The reduction in entropy is significant, as it reveals creativity and contradicts the standard claim of unavoidable decay towards disorder. Artistic creations capture fundamental features of the world.

  13. Strong Electroweak Symmetry Breaking

    CERN Document Server

    Grinstein, Benjamin

    2011-01-01

    Models of spontaneous breaking of electroweak symmetry by a strong interaction do not have fine tuning/hierarchy problem. They are conceptually elegant and use the only mechanism of spontaneous breaking of a gauge symmetry that is known to occur in nature. The simplest model, minimal technicolor with extended technicolor interactions, is appealing because one can calculate by scaling up from QCD. But it is ruled out on many counts: inappropriately low quark and lepton masses (or excessive FCNC), bad electroweak data fits, light scalar and vector states, etc. However, nature may not choose the minimal model and then we are stuck: except possibly through lattice simulations, we are unable to compute and test the models. In the LHC era it therefore makes sense to abandon specific models (of strong EW breaking) and concentrate on generic features that may indicate discovery. The Technicolor Straw Man is not a model but a parametrized search strategy inspired by a remarkable generic feature of walking technicolor,...

  14. Symmetry rules. How science and nature are founded on symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, J.

    2008-07-01

    When we use science to describe and understand the world around us, we are in essence grasping nature through symmetry. In fact, modern theoretical physics suggests that symmetry is a, if not the, foundational principle of nature. Emphasizing the concepts, this book leads the reader coherently and comprehensively into the fertile field of symmetry and its applications. Among the most important applications considered are the fundamental forces of nature and the Universe. It is shown that the Universe cannot possess exact symmetry, which is a principle of fundamental significance. Curie's principle - which states that the symmetry of the effect is at least that of the cause - features prominently. An introduction to group theory, the mathematical language of symmetry, is included. This book will convince all interested readers of the importance of symmetry in science. Furthermore, it will serve as valuable background reading for all students in the physical sciences. (orig.)

  15. Symmetry rules How science and nature are founded on symmetry

    CERN Document Server

    Rosen, Joe

    2008-01-01

    When we use science to describe and understand the world around us, we are in essence grasping nature through symmetry. In fact, modern theoretical physics suggests that symmetry is a, if not the, foundational principle of nature. Emphasizing the concepts, this book leads the reader coherently and comprehensively into the fertile field of symmetry and its applications. Among the most important applications considered are the fundamental forces of nature and the Universe. It is shown that the Universe cannot possess exact symmetry, which is a principle of fundamental significance. Curie's principle - which states that the symmetry of the effect is at least that of the cause - features prominently. An introduction to group theory, the mathematical language of symmetry, is included. This book will convince all interested readers of the importance of symmetry in science. Furthermore, it will serve as valuable background reading for all students in the physical sciences.

  16. A broken symmetry ontology: Quantum mechanics as a broken symmetry

    International Nuclear Information System (INIS)

    Buschmann, J.E.

    1988-01-01

    The author proposes a new broken symmetry ontology to be used to analyze the quantum domain. This ontology is motivated and grounded in a critical epistemological analysis, and an analysis of the basic role of symmetry in physics. Concurrently, he is led to consider nonheterogeneous systems, whose logical state space contains equivalence relations not associated with the causal relation. This allows him to find a generalized principle of symmetry and a generalized symmetry-conservation formalisms. In particular, he clarifies the role of Noether's theorem in field theory. He shows how a broken symmetry ontology already operates in a description of the weak interactions. Finally, by showing how a broken symmetry ontology operates in the quantum domain, he accounts for the interpretational problem and the essential incompleteness of quantum mechanics. He proposes that the broken symmetry underlying this ontological domain is broken dilation invariance

  17. Plans for characterization of salt sites in the United States of America

    International Nuclear Information System (INIS)

    Heim, G.E.; Matthews, S.C.; Kircher, J.F.; Kennedy, R.K.

    1984-02-01

    The characterization plans presented in this paper are considered to be basic in nature and are the minimum program that meets project needs. The proposed basic program can be applied to any of the salt sites under consideration. It has been designed to provide the data required to support the design, performance assessment, and licensing of each of the principal project elements: the repository, the shafts, and the surface facilities. The work has been sequenced to meet the design and licensing schedule. It is anticipated that additional characterization activities will be performed to address site-specific considerations and to provide additional information to address questions which arise during the evaluation of characterization data. The information obtained during the characterization program will be incorporated into: the site characterization plan, the site recommendation report, the environmental impact statement, and the construction authorization application

  18. Corrective Action Investigation Plan for Corrective Action Unit 232: Area 25 Sewage Lagoons, Nevada Test Site, Nevada, Revision 0

    International Nuclear Information System (INIS)

    1999-01-01

    The Corrective Action Investigation Plan for Corrective Action Unit 232, Area 25 Sewage Lagoons, has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the U.S. Department of Energy, Nevada Operations Office; the State of Nevada Division of Environmental Protection; and the U. S. Department of Defense. Corrective Action Unit 232 consists of Corrective Action Site 25-03-01, Sewage Lagoon. Corrective Action Unit 232, Area 25 Sewage Lagoons, received sanitary effluent from four buildings within the Test Cell ''C'' Facility from the mid-1960s through approximately 1996. The Test Cell ''C'' Facility was used to develop nuclear propulsion technology by conducting nuclear test reactor studies. Based on the site history collected to support the Data Quality Objectives process, contaminants of potential concern include volatile organic compounds, semivolatile organic compounds, Resource Conservation and Recovery Act metals, petroleum hydrocarbons, polychlorinated biphenyls, pesticides, herbicides, gamma emitting radionuclides, isotopic plutonium, isotopic uranium, and strontium-90. A detailed conceptual site model is presented in Section 3.0 and Appendix A of this Corrective Action Investigation Plan. The conceptual model serves as the basis for the sampling strategy. Under the Federal Facility Agreement and Consent Order, the Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection for approval. Field work will be conducted following approval of the plan. The results of the field investigation will support a defensible evaluation of corrective action alternatives in the Corrective Action Decision Document

  19. Surface radiation survey and soil sampling of the 300-FF-1 operable unit, Hanford Site, southeastern Washington: A case study

    International Nuclear Information System (INIS)

    Teel, S.S.; Olsen, K.B.

    1990-10-01

    The methods used for conducting a radiological characterization of the soil surface for the Phase I Remedial Investigation of a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) site is presented via a case study. The study site is an operable unit (300-FF-1) located in and adjacent to the 300 Area of the US Department of Energy's Hanford Site in southeastern Washington State. The operable unit contains liquid and solid waste disposal facilities associated with nuclear fuels fabrication. Continuous surface radiation surveying and soil sampling of selected locations were conducted. Contamination was found in several locations within the operable unit including areas near the liquid and solid waste disposal facilities. Instruments used during surveying included portable beta/gamma (P-11) detectors, and the Ultrasonic Ranging and Data System using an NaI (Tl) detector. Laboratory analyses results indicate that above-background radiation levels were primarily due to the presence of uranium. Both types of field instruments used in the study were effective in detecting surface contamination from radionuclides; however, each had specific advantages. Guidelines are presented for the optimum use of these instruments when performing a radiological characterization of the soil surface. 4 refs., 3 figs., 3 tabs

  20. Unit evaluation at Yucca Mountain, Nevada Test Site: summary report and recommendation

    International Nuclear Information System (INIS)

    Johnstone, J.K.; Peters, R.R.; Gnirk, P.F.

    1984-06-01

    Of the four potential repository units, identified at Yucca Mountain, two potential units the welded, devitrified portions of the Bullfrog and Tram Members of the Crater Flat Tuff are below the water table. The welded, devitrified Topopah Spring Member of the Paintbrush Tuff and the nonwelded, zeolitized Tuffaceous Beds of Calico Hills are above the water table. The results of a study of the four potential repository units are to provide a technical basis for selecting a single target repository unit for future test and evaluation. The unit evaluation studies compared the units rather than provided and absolute assessment. The four ranking evaluation criteria used were: radionuclide isolation time; allowable repository gross thermal loading; excavation stability; and relative economics. Considered the most important of the criteria as well as the most difficult, radionuclide isolation times were estimated using the limited existing data. The allowable repository gross thermal loadings determined from near-field calculations, were nearly the same for all four units. The gross thermal loading supported other criteria by providing the heat source for succeeding thermally related evaluation studies. A large number of studies evaluated excavation stability, including near-field mechanical and thermomechanical finite element code calculations studies. A large number of studies evaluated excavation stability, including near-field mechanical and thermomechanical finite element code calculations, rock matrix property evaluation, and rock mass classification. Relative economics, a minor criterion, did not play an explicit role in the final ranking. Based on all of the analyses, the final recommendation was that the Topopah Springs be selected as the target unit, followed, in order, by the Calico Hills, Bullfrog, and Tram

  1. Geotechnical Assessment of United States and Foreign Test Sites and Material Properties of Geologic Media

    Science.gov (United States)

    1979-06-01

    34Granite" Westerly granite (Rhode Island) Climax Stock granodiorite (Nevada Test Site) Sandstone Kayenta formation (Mixed Comany site, Colorado) Nugget...Grain size ranges between .1 to 1.3 -. Porosity is low for a sandstone, approximately 4 percent. Kayenta Forwfation Kayeata Formation is a fine to...Comparison of the fail envelopespfos fshale, sandstone a granite.aluim g19 NARDLAT SRANOjoniOrTe ) ’U SW UGET SANS (H) . KAYENTA SANDSTONE (S) S 02 --.-: j W

  2. Accelerated cleanup of mixed waste units on the Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    Patterson, J.K.; Johnson, W.L.; Downey, H.D.

    1993-09-01

    This report provides a status of the expedited response action (ERA) projects currently being implemented at the Hanford Site. A detailed review of the accomplishments to date, the technologies employed, the problems encountered, and an analysis of the lessons learned are included. A total of nine ERAs have been initiated at the Hanford Site and are presented in a case study format with emphasis on the progress being made and the challenges ahead

  3. Symmetry and quantum mechanics

    CERN Document Server

    Corry, Scott

    2016-01-01

    This book offers an introduction to quantum mechanics for professionals, students, and others in the field of mathematics who have a minimal background in physics with an understanding of linear algebra and group theory. It covers such topics as Lie groups, algebras and their representations, and analysis (Hilbert space, distributions, the spectral Theorem, and the Stone-Von Neumann Theorem). The book emphasizes the role of symmetry and is useful to physicists as it provides a mathematical introduction to the topic.

  4. Gravitation, Symmetry and Undergraduates

    Science.gov (United States)

    Jorgensen, Jamie

    2001-04-01

    This talk will discuss "Project Petrov" Which is designed to investigate gravitational fields with symmetry. Project Petrov represents a collaboration involving physicists, mathematicians as well as graduate and undergraduate math and physics students. An overview of Project Petrov will be given, with an emphasis on students' contributions, including software to classify and generate Lie algebras, to classify isometry groups, and to compute the isometry group of a given metric.

  5. Symmetry breaking and chaos

    International Nuclear Information System (INIS)

    Bunakov, V.E.; Ivanov, I.B.

    1999-01-01

    Connections between the symmetries of Hamiltonian systems in classical and quantum mechanics, on one hand, and their regularity or chaoticity, on the other hand, are considered. The quantum-chaoticity criterion that was proposed previously and which was borrowed from the theory of compound-nucleus resonances is used to analyze the quantum diamagnetic Kepler problem - that is, the motion of a spinless charged particle in a Coulomb and a uniform magnetic field

  6. Symmetry and statistics

    International Nuclear Information System (INIS)

    French, J.B.

    1974-01-01

    The concepts of statistical behavior and symmetry are presented from the point of view of many body spectroscopy. Remarks are made on methods for the evaluation of moments, particularly widths, for the purpose of giving a feeling for the types of mathematical structures encountered. Applications involving ground state energies, spectra, and level densities are discussed. The extent to which Hamiltonian eigenstates belong to irreducible representations is mentioned. (4 figures, 1 table) (U.S.)

  7. Symmetry in music

    Energy Technology Data Exchange (ETDEWEB)

    Herrero, O F, E-mail: o.f.herrero@hotmail.co [Conservatorio Superior de Musica ' Eduardo Martinez Torner' Corrada del Obispo s/n 33003 - Oviedo - Asturias (Spain)

    2010-06-01

    Music and Physics are very close because of the symmetry that appears in music. A periodic wave is what music really is, and there is a field of Physics devoted to waves researching. The different musical scales are the base of all kind of music. This article tries to show how this musical scales are made, how the consonance is the base of many of them and how symmetric they are.

  8. Lie symmetries and superintegrability

    International Nuclear Information System (INIS)

    Nucci, M C; Post, S

    2012-01-01

    We show that a known superintegrable system in two-dimensional real Euclidean space (Post and Winternitz 2011 J. Phys. A: Math. Theor. 44 162001) can be transformed into a linear third-order equation: consequently we construct many autonomous integrals—polynomials up to order 18—for the same system. The reduction method and the connection between Lie symmetries and Jacobi last multiplier are used.

  9. Symmetry in music

    International Nuclear Information System (INIS)

    Herrero, O F

    2010-01-01

    Music and Physics are very close because of the symmetry that appears in music. A periodic wave is what music really is, and there is a field of Physics devoted to waves researching. The different musical scales are the base of all kind of music. This article tries to show how this musical scales are made, how the consonance is the base of many of them and how symmetric they are.

  10. Corrective Action Decision Document/Closure Report for Corrective Action Unit 106: Area 5, 11 Frenchman Flat Atmospheric Sites, Nevada National Security Site, Nevada

    International Nuclear Information System (INIS)

    Matthews, Patrick; Peterson, Dawn

    2011-01-01

    Corrective Action Unit 106 comprises four corrective action sites (CASs): (1) 05-20-02, Evaporation Pond; (2) 05-23-05, Atmospheric Test Site - Able; (3) 05-45-04, 306 GZ Rad Contaminated Area; (4) 05-45-05, 307 GZ Rad Contaminated Area. The purpose of this CADD/CR is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 106 based on the implementation of corrective actions. The corrective action of clean closure was implemented at CASs 05-45-04 and 05-45-05, while no corrective action was necessary at CASs 05-20-02 and 05-23-05. Corrective action investigation (CAI) activities were performed from October 20, 2010, through June 1, 2011, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 106: Areas 5, 11 Frenchman Flat Atmospheric Sites. The approach for the CAI was divided into two facets: investigation of the primary release of radionuclides, and investigation of other releases (mechanical displacement and chemical releases). The purpose of the CAI was to fulfill data needs as defined during the data quality objective (DQO) process. The CAU 106 dataset of investigation results was evaluated based on a data quality assessment. This assessment demonstrated the dataset is complete and acceptable for use in fulfilling the DQO data needs. Investigation results were evaluated against final action levels (FALs) established in this document. A radiological dose FAL of 25 millirem per year was established based on the Industrial Area exposure scenario (2,250 hours of annual exposure). The only radiological dose exceeding the FAL was at CAS 05-45-05 and was associated with potential source material (PSM). It is also assumed that additional PSM in the form of depleted uranium (DU) and DU-contaminated debris at CASs 05-45-04 and 05-45-05 exceed the FAL. Therefore, corrective actions were undertaken at these CASs that consisted of removing PSM and collecting verification

  11. Mitigation action plan for liquid waste sites in the 100-BC-1, 100-DR-1, and 100-HR-1 units

    International Nuclear Information System (INIS)

    Weiss, S.G.

    1996-05-01

    A Record of Decision (ROD) was issued for remediation of waste sites in the 100-BC-1, 100-DR-1, and 100-HR-1 Operable Units in the 100 Area of the Hanford Site. This Mitigation Action Plan (MAP) explains how mitigation measures for these remedial activities will be planned and implemented. The new activities planned in the ROD are not anticipated to result in releases of hazardous substances and will minimize disturbance of currently undisturbed areas. However, certain actions required by the ROD may result in the redisturbance of areas of recovering vegetation. This MAP presents a strategy for limiting disturbances and identifies an opportunity for revegetating a previously disturbed site; the knowledge gained from this demonstration project can be applied to final revegetation of the rest of the remediated sites and sites disturbed during cleanup when remediation of an area is completed. This work will be conducted in coordination with the Natural Resource Trustees Council and Native American Tribes to help minimize impacts to natural resources and cultural resources from project activities and to restore the remediated sites to an appropriate level of habitat

  12. Closure Report for Corrective Action Unit 465: Hydronuclear Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Mark Burmeister and Patrick Matthews

    2012-11-01

    The corrective action sites (CASs) within CAU 465 are located within Areas 6 and 27 of the NNSS. CAU 465 comprises the following CASs: • 00-23-01, Hydronuclear Experiment, located in Area 27 of the NNSS and known as the Charlie site. • 00-23-02, Hydronuclear Experiment, located in Area 27 of the NNSS and known as the Dog site. • 00-23-03, Hydronuclear Experiment, located in Area 27 of the NNSS and known as the Charlie Prime and Anja sites. • 06-99-01, Hydronuclear, located in Area 6 of the NNSS and known as the Trailer 13 site. The purpose of this CR is to provide documentation supporting the completed corrective actions and provide data confirming that the closure objectives for CASs within CAU 465 were met. From September 2011 through July 2012, closure activities were performed as set forth in the Streamlined Approach for Environmental Restoration Plan for CAU 465: Hydronuclear, Nevada National Security Site, Nevada.

  13. Corrective Action Investigation Plan for Corrective Action Unit 105: Area 2 Yucca Flat Atmospheric Test Sites Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Matthews

    2012-09-01

    Corrective Action Unit (CAU) 105 is located in Area 2 of the Nevada National Security Site, which is approximately 65 miles northwest of Las Vegas, Nevada. CAU 105 is a geographical grouping of sites where there has been a suspected release of contamination associated with atmospheric nuclear testing. This document describes the planned investigation of CAU 105, which comprises the following corrective action sites (CASs): • 02-23-04, Atmospheric Test Site - Whitney • 02-23-05, Atmospheric Test Site T-2A • 02-23-06, Atmospheric Test Site T-2B • 02-23-08, Atmospheric Test Site T-2 • 02-23-09, Atmospheric Test Site - Turk These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on April 30, 2012, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 105. The site investigation process will also be conducted in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices to be applied to this activity. The potential contamination sources associated with all CAU 105 CASs are from atmospheric nuclear testing activities. The presence and nature of contamination at CAU

  14. Corrective Action Decision Document/Closure Report for Corrective Action Unit 367: Area 10 Sedan, Ess and Uncle Unit Craters Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Matthews

    2011-06-01

    Corrective Action Unit 367 comprises four corrective action sites (CASs): • 10-09-03, Mud Pit • 10-45-01, U-10h Crater (Sedan) • 10-45-02, Ess Crater Site • 10-45-03, Uncle Crater Site The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation of the corrective actions and site closure activities implemented at CAU 367. A corrective action of closure in place with use restrictions was completed at each of the three crater CASs (10-45-01, 10-45-02, and 10-45-03); corrective actions were not required at CAS 10-09-03. In addition, a limited soil removal corrective action was conducted at the location of a potential source material release. Based on completion of these correction actions, no additional corrective action is required at CAU 367, and site closure is considered complete. Corrective action investigation (CAI) activities were performed from February 2010 through March 2011, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 367: Area 10 Sedan, Ess and Uncle Unit Craters, Nevada Test Site, Nevada. The approach for the CAI was divided into two facets: investigation of the primary release of radionuclides, and investigation of non-test or other releases (e.g., migration in washes and potential source material). Based on the proximity of the Uncle, Ess, and Sedan craters, the impact of the Sedan test on the fallout deposited from the two earlier tests, and aerial radiological surveys, the CAU 367 investigation was designed to study the releases from the three crater CASs as one combined release (primary release). Corrective Action Site 10-09-03, Mud Pit, consists of two mud pits identified at CAU 367. The mud pits are considered non-test releases or other releases and were investigated independent of the three crater CASs. The purpose of the CAI was to fulfill data needs as defined during the data quality objective (DQO) process. The CAU 367 dataset of

  15. Corrective Action Investigation Plan for Corrective Action Unit 487: Thunderwell Site, Tonopah Test Range, Nevada (Rev. No.: 0, January 2001)

    Energy Technology Data Exchange (ETDEWEB)

    DOE/NV

    2001-01-02

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, Nevada Operations Office's (DOE/NV's) approach to collect the data necessary to evaluate corrective action alternatives (CAAs) appropriate for the closure of Corrective Action Unit (CAU) 487, Thunderwell Site, Tonopah Test Range (TTR), Nevada, under the Federal Facility Agreement and Consent Order. Corrective Action Unit 487 consists of a single Corrective Action Site (CAS), RG 26-001-RGRV, Thunderwell Site. The site is located in the northwest portion of the TTR, Nevada, approximately five miles northwest of the Area 3 Control Point and closest to the Cactus Flats broad basin. Historically, Sandia National Laboratories in New Mexico used CAU 487 in the early to mid-1960s for a series of high explosive tests detonated at the bottom of large cylindrical steel tubes. Historical photographs indicate that debris from these tests and subsequent operations may have been scattered and buried throughout the site. A March 2000 walk-over survey and a July 2000 geophysical survey indicated evidence of buried and surface debris in dirt mounds and areas throughout the site; however, a radiological drive-over survey also performed in July 2000 indicated that no radiological hazards were identified at this site. Based on site history, the scope of this plan is to resolve the problem statement identified during the Data Quality Objectives process that detonation activities at this CAU site may have resulted in the release of contaminants of concern into the surface/subsurface soil including total volatile and total semivolatile organic compounds, total Resource Conservation and Recovery Act metals, radionuclides, total petroleum hydrocarbons, and high explosives. Therefore, the scope of corrective action field investigation will involve excavation, drilling, and extensive soil sampling and analysis activities to determine the extent (if any) of both the lateral and vertical contamination

  16. Closure Report for Corrective Action Unit 230: Area 22 Sewage Lagoons and Corrective Action Unit 320: Area 22 Desert Rock Airport Strainer Box Nevada Test Site, Nevada; TOPICAL

    International Nuclear Information System (INIS)

    D. S. Tobiason

    2001-01-01

    This Closure Report (CR) describes the remediation activities performed and the results of verification sampling conducted at Corrective Action Unit (CAU) 230, Area 22 Sewage Lagoons and CAU 320, Area 22 Desert Rock Airport Strainer Box. The CAU is currently listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO, 1996). The CAU is located in Area 22 of the Nevada Test Site (NTS) (Figure 1) and consists of the following Corrective Action Sites (CASs): 22-03-01- Sewage Lagoon (CAU 230); and 22-99-01- Strainer Box (CAU 320). Included with CAS 22-99-01 is a buried Imhoff tank and a sludge bed. These CAUs will be collectively referred to in this plan as the Area 22 Sewage Lagoons site. Site characterization activities were done during September 1999. Characterization of the manholes associated with the septic system leading to the Imhoff tank was done during March 2000. The results of the characterization presented in the Corrective Action Decision Document (CADD) indicated that only the sludge bed (CAS 22-99-01) contained constituents of concern (COC) above action levels and required remediation (U.S. Department of Energy, Nevada Operations Office[DOE/NV], 2000a)

  17. Closure Report for Corrective Action Unit 230: Area 22 Sewage Lagoons and Corrective Action Unit 320: Area 22 Desert Rock Airport Strainer Box Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    D. S. Tobiason

    2001-07-01

    This Closure Report (CR) describes the remediation activities performed and the results of verification sampling conducted at Corrective Action Unit (CAU) 230, Area 22 Sewage Lagoons and CAU 320, Area 22 Desert Rock Airport Strainer Box. The CAU is currently listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO, 1996). The CAU is located in Area 22 of the Nevada Test Site (NTS) (Figure 1) and consists of the following Corrective Action Sites (CASs): 22-03-01- Sewage Lagoon (CAU 230); and 22-99-01- Strainer Box (CAU 320). Included with CAS 22-99-01 is a buried Imhoff tank and a sludge bed. These CAUs will be collectively referred to in this plan as the Area 22 Sewage Lagoons site. Site characterization activities were done during September 1999. Characterization of the manholes associated with the septic system leading to the Imhoff tank was done during March 2000. The results of the characterization presented in the Corrective Action Decision Document (CADD) indicated that only the sludge bed (CAS 22-99-01) contained constituents of concern (COC) above action levels and required remediation (U.S. Department of Energy, Nevada Operations Office [DOE/NV], 2000a).

  18. Sampling and analysis plan for remediation of Operable Unit 100-IU-3 waste site 600-104

    International Nuclear Information System (INIS)

    1997-08-01

    This sampling and analysis plan (SAP) presents the rationale and strategy for the sampling and analysis activities to support remediation of 100-IU-3 Operable Unit waste site 600-104. The purpose of the proposed sampling and analysis activities is to demonstrate that time-critical remediation of the waste site for soil containing 2,4-Dichlorophonoxyacetic acid salts and esters (2,4-D) and dioxin/furan isomers at concentrations that exceed cleanup levels has been effective. This shall be accomplished by sampling various locations of the waste site before and after remediation, analyzing the samples, and comparing the results to action levels set by the Washington State Department of Ecology

  19. Closure Report for Corrective Action Unit 481: Area 12 T-Tunnel Conditional Release Storage Yard, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2008-01-01

    Corrective Action Unit (CAU) 481 is identified in the Federal Facility Agreement and Consent Order (FFACO) as Area 12 T-Tunnel Conditional Release Storage Yard. CAU 481 is located in Area 12 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. This CAU consists of one Corrective Action Site (CAS), CAS 12-42-05, Housekeeping Waste. CAU 481 closure activities were conducted by the Defense Threat Reduction Agency from August 2007 through July 2008 according to the FFACO and Revision 3 of the Sectored Clean-up Work Plan for Housekeeping Category Waste Sites. Closure activities included removal and disposal of construction debris and low-level waste. Drained fluids, steel, and lead was recycled as appropriate. Waste generated during closure activities was appropriately managed and disposed.

  20. Sampling and analysis plan for remediation of Operable Unit 100-IU-3 waste site 600-104. Revision 1

    International Nuclear Information System (INIS)

    1997-08-01

    This sampling and analysis plan presents the rationale and strategy for the sampling and analysis activities to support remediation of 100-IU-3 Operable Unit waste site 600-104. The purpose of the proposed sampling and analysis activities is to demonstrate that time-critical remediation of the waste site for soil containing 2,4-Dichlorophenoxyacetic acid salts and esters (2,4-D) and dioxin/furan isomers at concentrations that exceed cleanup levels has been effective. This shall be accomplished by sampling various locations of the waste site before and after remediation, analyzing the samples, and comparing the results to action levels set by the Washington State Department of Ecology

  1. Closure Report for Corrective Action Unit 553: Areas 19, 20 Mud Pits and Cellars, Nevada Test Site, Nevada, Revision 0

    International Nuclear Information System (INIS)

    Al Wickline

    2007-01-01

    This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 553: Areas 19, 20 Mud Pits and Cellars, Nevada Test Site, Nevada. This CR complies with the requirements of the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. The corrective action sites (CASs) within CAU 553 are located within Areas 19 and 20 of the Nevada Test Site. Corrective Action Unit 553 is comprised of the following CASs: 19-99-01, Mud Spill 19-99-11, Mud Spill 20-09-09, Mud Spill 20-99-03, Mud Spill. The purpose of this CR is to provide documentation supporting the completed corrective actions and provide data confirming that the closure objectives for CASs within CAU 553 were met. To achieve this, the following actions were or will be performed: Review the current site conditions including the concentration and extent of contamination. Implement any corrective actions necessary to protect human health and the environment. Properly dispose of corrective action and investigation wastes. Document the Notice of Completion and closure of CAU 553 to be issued by Nevada Division of Environmental Protection

  2. Corrective Action Decision Document for Corrective Action Unit 322: Areas 1 and 3 Release Sites and Injection Wells Nevada Test Site, Nevada, Rev. No. 0

    Energy Technology Data Exchange (ETDEWEB)

    Robert Boehlecke

    2004-12-01

    This Corrective Action Decision Document has been prepared for Corrective Action Unit (CAU) 322, Areas 1 and 3 Release Sites and Injection Wells, Nevada Test Site, Nevada, in accordance with the ''Federal Facility Agreement and Consent Order'' (1996). Corrective Action Unit 322 is comprised of the following corrective action sites (CASs): (1) 01-25-01 - AST Release Site; (2) 03-25-03 - Mud Plant and AST Diesel Release; and (3) 03-20-05 - Injection Wells and BOP Shop. The purpose of this Corrective Action Decision Document is to identify and provide the rationale for the recommendation of a corrective action alternative for each CAS within CAU 322. Corrective action investigation activities were performed from April 2004 through September 2004, as set forth in the Corrective Action Investigation Plan. The purposes of the activities as defined during the data quality objectives process were: (1) Determine if contaminants of concern (COCs) are present; (2) If COCs are present, determine their nature and extent; and (3) Provide sufficient information and data to recommend appropriate corrective actions for the CASs. Analytes detected during the corrective action investigation were evaluated against appropriate preliminary action levels to identify contaminants of concern for each corrective action site. Radiological field measurements were compared to unrestricted release criteria. Assessment of the data generated from investigation activities revealed the following: (1) CAS 01-25-01 contains an AST berm contaminated with total petroleum hydrocarbons (TPH) diesel-range organics (DRO). (2) CAS 03-25-03 includes two distinct areas: Area A where no contamination remains from a potential spill associated with an AST, and Area B where TPH-DRO contamination associated with various activities at the mud plant was identified. The Area B contamination was found at various locations and depths. (3) CAS 03-25-03 Area B contains TPH-DRO contamination at various

  3. Symmetry methods for option pricing

    Science.gov (United States)

    Davison, A. H.; Mamba, S.

    2017-06-01

    We obtain a solution of the Black-Scholes equation with a non-smooth boundary condition using symmetry methods. The Black-Scholes equation along with its boundary condition are first transformed into the one dimensional heat equation and an initial condition respectively. We then find an appropriate general symmetry generator of the heat equation using symmetries and the fundamental solution of the heat equation. The symmetry generator is chosen such that the boundary condition is left invariant; the symmetry can be used to solve the heat equation and hence the Black-Scholes equation.

  4. Use and views on social networking sites of pharmacy students in the United kingdom.

    Science.gov (United States)

    Hall, Maurice; Hanna, Lezley-Anne; Huey, Gwyneth

    2013-02-12

    Objective. To investigate students' use and views on social networking sites and assess differences in attitudes between genders and years in the program.Methods. All pharmacy undergraduate students were invited via e-mail to complete an electronic questionnaire consisting of 21 questions relating to social networking.Results. Most (91.8%) of the 377 respondents reported using social networking Web sites, with 98.6% using Facebook and 33.7% using Twitter. Female students were more likely than male students to agree that they had been made sufficiently aware of the professional behavior expected of them when using social networking sites (76.6% vs 58.1% p=0.002) and to agree that students should have the same professional standards whether on placement or using social networking sites (76.3% vs 61.6%; psocial networking use and potentially inappropriate attitudes towards professionalism were found among pharmacy students. Further training may be useful to ensure pharmacy students are aware of how to apply codes of conduct when using social networking sites.

  5. Use and Views on Social Networking Sites of Pharmacy Students in the United Kingdom

    Science.gov (United States)

    Hanna, Lezley-Anne; Huey, Gwyneth

    2013-01-01

    Objective. To investigate students' use and views on social networking sites and assess differences in attitudes between genders and years in the program. Methods. All pharmacy undergraduate students were invited via e-mail to complete an electronic questionnaire consisting of 21 questions relating to social networking. Results. Most (91.8%) of the 377 respondents reported using social networking Web sites, with 98.6% using Facebook and 33.7% using Twitter. Female students were more likely than male students to agree that they had been made sufficiently aware of the professional behavior expected of them when using social networking sites (76.6% vs 58.1% p=0.002) and to agree that students should have the same professional standards whether on placement or using social networking sites (76.3% vs 61.6%; p<0.001). Conclusions. A high level of social networking use and potentially inappropriate attitudes towards professionalism were found among pharmacy students. Further training may be useful to ensure pharmacy students are aware of how to apply codes of conduct when using social networking sites. PMID:23459621

  6. Corrective Action Decision Document/Closure Report for Corrective Action Unit 545: Dumps, Waste Disposal Sites, and Buried Radioactive Materials Nevada Test Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Alfred Wickline

    2008-04-01

    This Corrective Action Decision Document (CADD)/Closure Report (CR) has been prepared for Corrective Action Unit (CAU) 545, Dumps, Waste Disposal Sites, and Buried Radioactive Materials, in Areas 2, 3, 9, and 20 of the Nevada Test Site, Nevada, in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management (1996, as amended February 2008). Corrective Action Unit 545 is comprised of the following eight Corrective Action Sites (CASs): • 02-09-01, Mud Disposal Area • 03-08-03, Mud Disposal Site • 03-17-01, Waste Consolidation Site 3B • 03-23-02, Waste Disposal Site • 03-23-05, Europium Disposal Site • 03-99-14, Radioactive Material Disposal Area • 09-23-02, U-9y Drilling Mud Disposal Crater • 20-19-01, Waste Disposal Site While all eight CASs are addressed in this CADD/CR, sufficient information was available for the following three CASs; therefore, a field investigation was not conducted at these sites: • For CAS 03-08-03, though the potential for subsidence of the craters was judged to be extremely unlikely, the data quality objective (DQO) meeting participants agreed that sufficient information existed about disposal and releases at the site and that a corrective action of close in place with a use restriction is recommended. Sampling in the craters was not considered necessary. • For CAS 03-23-02, there were no potential releases of hazardous or radioactive contaminants identified. Therefore, the Corrective Action Investigation Plan for CAU 545 concluded that: “Sufficient information exists to conclude that this CAS does not exist as originally identified. Therefore, there is no environmental concern associated with CAS 03-23-02.” This CAS is closed with no further action. • For CAS 03-23-05, existing information about the two buried sources and lead pig was considered to be

  7. RCRA Part A Permit Application for Waste Management Activities at the Nevada Test Site, Part B Permit Application Hazardous Waste Storage Unit, Nevada Test Site, and Part B Permit Application - Explosives Ordnance Disposal Unit (EODU)

    International Nuclear Information System (INIS)

    2010-01-01

    The Area 5 Hazardous Waste Storage Unit (HWSU) was established to support testing, research, and remediation activities at the Nevada Test Site (NTS), a large-quantity generator of hazardous waste. The HWSU, located adjacent to the Area 5 Radioactive Waste Management Site (RWMS), is a prefabricated, rigid steel-framed, roofed shelter used to store hazardous nonradioactive waste generated on the NTS. No offsite generated wastes are managed at the HWSU. Waste managed at the HWSU includes the following categories: Flammables/Combustibles; Acid Corrosives; Alkali Corrosives; Oxidizers/Reactives; Toxics/Poisons; and Other Regulated Materials (ORMs). A list of the regulated waste codes accepted for storage at the HWSU is provided in Section B.2. Hazardous wastes stored at the HWSU are stored in U.S. Department of Transportation (DOT) compliant containers, compatible with the stored waste. Waste transfer (between containers) is not allowed at the HWSU and containers remain closed at all times. Containers are stored on secondary containment pallets and the unit is inspected monthly. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational Resource Conservation and Recovery Act (RCRA) units at the NTS and their respective regulatory status.

  8. RCRA Part A Permit Application for Waste Management Activities at the Nevada Test Site, Part B Permit Application Hazardous Waste Storage Unit, Nevada Test Site, and Part B Permit Application - Explosives Ordnance Disposal Unit (EODU)

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Programs

    2010-06-17

    The Area 5 Hazardous Waste Storage Unit (HWSU) was established to support testing, research, and remediation activities at the Nevada Test Site (NTS), a large-quantity generator of hazardous waste. The HWSU, located adjacent to the Area 5 Radioactive Waste Management Site (RWMS), is a prefabricated, rigid steel-framed, roofed shelter used to store hazardous nonradioactive waste generated on the NTS. No offsite generated wastes are managed at the HWSU. Waste managed at the HWSU includes the following categories: Flammables/Combustibles; Acid Corrosives; Alkali Corrosives; Oxidizers/Reactives; Toxics/Poisons; and Other Regulated Materials (ORMs). A list of the regulated waste codes accepted for storage at the HWSU is provided in Section B.2. Hazardous wastes stored at the HWSU are stored in U.S. Department of Transportation (DOT) compliant containers, compatible with the stored waste. Waste transfer (between containers) is not allowed at the HWSU and containers remain closed at all times. Containers are stored on secondary containment pallets and the unit is inspected monthly. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational Resource Conservation and Recovery Act (RCRA) units at the NTS and their respective regulatory status.

  9. Perceived risk, trust in government, and response to repository siting in the United States

    International Nuclear Information System (INIS)

    Kraft, M.E.

    1991-01-01

    Conflicts over the siting of high-level radioactive waste repositories have been intense and unrelenting. Public and state opposition to implementation of the US Nuclear Waste Policy Act is tied closely to the perception of unacceptably high repository risks and to lack of trust and confidence in governmental agencies, particularly the DOE. This paper explores the relationship of perceived risk, trust in government, and opposition to repository siting in the US in an attempt to clarify the conditions of successful implementation of nuclear waste policy in the decades ahead

  10. Regulatory inspection activities on nuclear power plant sites during construction in the United Kingdom

    International Nuclear Information System (INIS)

    Jeffery, J.V.

    1977-01-01

    The work of regulatory inspection of the construction of the plant on the site is performed not only by the inspector who has been allocated to inspection duties for that site but also by the specialist staff who are involved with the safety assessment of the plant. The co-ordination of this work is described in the paper and examples are given of inspection activities associated with the enforcement requirements of licence conditions as well as those related to the inspection of the plant itself. (author)

  11. Geohydrologic problems at low-level radioactive waste disposal sites in the United States of America

    International Nuclear Information System (INIS)

    Fischer, J.N.; Robertson, J.B.

    1984-01-01

    Several commercial and US Department of Energy low-level radioactive waste disposal sites in the USA have not adequately contained the waste products. Studies of these sites indicate a number of causes for the problems, including water accumulation in filled trenches, breaches of trench cap integrity, erosion, high water table, hydrogeological complexity, flooding, complex leachate chemistry, and rapid radionuclide migration in groundwater. These problems can be avoided through the application of practical, comprehensive, and common sense earth-science guidelines discussed in this paper. (author)

  12. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 326: Areas 6 and 27 Release Sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    A. T. Urbon

    2001-09-01

    This Streamlined Approach for Environmental Restoration (SAFER) plan addresses the action necessary for the closure of Corrective Action Unit (CAU) 326, Areas 6 and 27 Release Sites. This CAU is currently listed in the January 2001, Appendix III of the Federal Facilities Agreement and Consent Order (FFACO) (FFACO, 1996). CAU 326 is located on the Nevada Test Site (NTS) and consists of the following four Corrective Action Sites (CASS) (Figure 1): CAS 06-25-01--Is a rupture in an underground pipe that carried heating oil (diesel) from the underground heating oil tank (Tank 6-CP-1) located to the west of Building CP-70 to the boiler in Building CP-1 in the Area 6 Control Point (CP) compound. CAS 06-25-02--A heating oil spill that is a result of overfilling an underground heating oil tank (Tank 6-DAF-5) located at the Area 6 Device Assembly Facility (DAF). CAS 06-25-04--A release of waste oil that occurred while removing used oil to from Tank 6-619-4. Tank 6-619-4 is located northwest of Building 6-619 at the Area 6 Gas Station. CAS 27-25-01--Consists of an excavation that was created in an attempt to remove impacted stained soil from the Site Maintenance Yard in Area 27. Approximately 53.5 cubic meters (m{sup 3}) (70 cubic yards [yd{sup 3}]) of soil impacted by total petroleum hydrocarbons (TPH) and polychlorinated biphenyls (PCBs) was excavated before the excavation activities were halted. The excavation activities were stopped because the volume of impacted soil exceeded estimated quantities and budget.

  13. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 330: Areas 6, 22, and 23 Tanks and Spill Sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    T. M. Fitzmaurice

    2001-08-01

    This Streamlined Approach for Environmental restoration (SAFER) plan addresses the action necessary for the closure of Corrective Action Unit (CAU) 330, Areas 6,22, and 23 Tanks and Spill Sites. The CAUs are currently listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO). This CAU is located at the Nevada Test Site (NTS) (Figure 1). CAU 330 consists of the following Corrective Action Sites (CASs): (1) CAS 06-02-04 - Consists of an underground tank and piping. This CAS is close to an area that was part of the Animal Investigation Program (AIP), conducted under the U.S. Public Health Service. Its purpose was to study and perform tests on the cattle and wild animals in and around the NTS that were exposed to radionuclides. It is unknown if this tank was part of these operations. (2) CAS 22-99-06 - Is a fuel spill that is believed to be a waste oil release which occurred when Camp Desert Rock was an active facility. This CAS was originally identified as being a small depression where liquids were poured onto the ground, located on the west side of Building T-1001. This building has been identified as housing a fire station, radio station, and radio net remote and telephone switchboard. (3) CAS 23-01-02 - Is a large aboveground storage tank (AST) farm that was constructed to provide gasoline and diesel storage in Area 23. The site consists of two ASTs, a concrete foundation, a surrounding earthen berm, associated piping, and unloading stations. (4) CAS 23-25-05 - Consists of an asphalt oil spill/tar release that contains a wash covered with asphalt oil/tar material, a half buried 208-liter (L) (55-gallon [gal]) drum, rebar, and concrete located in the vicinity.

  14. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 330: Areas 6, 22, and 23 Tanks and Spill Sites, Nevada Test Site, Nevada; TOPICAL

    International Nuclear Information System (INIS)

    T. M. Fitzmaurice

    2001-01-01

    This Streamlined Approach for Environmental restoration (SAFER) plan addresses the action necessary for the closure of Corrective Action Unit (CAU) 330, Areas 6,22, and 23 Tanks and Spill Sites. The CAUs are currently listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO). This CAU is located at the Nevada Test Site (NTS) (Figure 1). CAU 330 consists of the following Corrective Action Sites (CASs): (1) CAS 06-02-04 - Consists of an underground tank and piping. This CAS is close to an area that was part of the Animal Investigation Program (AIP), conducted under the U.S. Public Health Service. Its purpose was to study and perform tests on the cattle and wild animals in and around the NTS that were exposed to radionuclides. It is unknown if this tank was part of these operations. (2) CAS 22-99-06 - Is a fuel spill that is believed to be a waste oil release which occurred when Camp Desert Rock was an active facility. This CAS was originally identified as being a small depression where liquids were poured onto the ground, located on the west side of Building T-1001. This building has been identified as housing a fire station, radio station, and radio net remote and telephone switchboard. (3) CAS 23-01-02 - Is a large aboveground storage tank (AST) farm that was constructed to provide gasoline and diesel storage in Area 23. The site consists of two ASTs, a concrete foundation, a surrounding earthen berm, associated piping, and unloading stations. (4) CAS 23-25-05 - Consists of an asphalt oil spill/tar release that contains a wash covered with asphalt oil/tar material, a half buried 208-liter (L) (55-gallon[gal]) drum, rebar, and concrete located in the vicinity

  15. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 326: Areas 6 and 27 Release Sites, Nevada Test Site, Nevada; TOPICAL

    International Nuclear Information System (INIS)

    A. T. Urbon

    2001-01-01

    This Streamlined Approach for Environmental Restoration (SAFER) plan addresses the action necessary for the closure of Corrective Action Unit (CAU) 326, Areas 6 and 27 Release Sites. This CAU is currently listed in the January 2001, Appendix III of the Federal Facilities Agreement and Consent Order (FFACO) (FFACO, 1996). CAU 326 is located on the Nevada Test Site (NTS) and consists of the following four Corrective Action Sites (CASS) (Figure 1): CAS 06-25-01-Is a rupture in an underground pipe that carried heating oil (diesel) from the underground heating oil tank (Tank 6-CP-1) located to the west of Building CP-70 to the boiler in Building CP-1 in the Area 6 Control Point (CP) compound. CAS 06-25-02-A heating oil spill that is a result of overfilling an underground heating oil tank (Tank 6-DAF-5) located at the Area 6 Device Assembly Facility (DAF). CAS 06-25-04-A release of waste oil that occurred while removing used oil to from Tank 6-619-4. Tank 6-619-4 is located northwest of Building 6-619 at the Area 6 Gas Station. CAS 27-25-01-Consists of an excavation that was created in an attempt to remove impacted stained soil from the Site Maintenance Yard in Area 27. Approximately 53.5 cubic meters (m(sup 3)) (70 cubic yards[yd(sup 3)]) of soil impacted by total petroleum hydrocarbons (TPH) and polychlorinated biphenyls (PCBs) was excavated before the excavation activities were halted. The excavation activities were stopped because the volume of impacted soil exceeded estimated quantities and budget

  16. Baseline risk assessment for the quarry residuals operable unit of the Weldon Spring Site, Weldon Spring, Missouri

    International Nuclear Information System (INIS)

    1998-02-01

    The U.S. Department of Energy (DOE) is conducting cleanup activities at the Weldon Spring site, located in St. Charles County, Missouri, about 48 km (30 mi) west of St. Louis. Cleanup of the site consists of several integrated components. The quarry residuals operable unit (QROU), consisting of the Weldon Spring quarry and its surrounding area, is one of four operable units being evaluated. In accordance with requirements of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended, DOE is conducting a remedial investigation/feasibility study (RI/FS) to determine the proper response to address various contaminated media that constitute the QROU. Specifically, the operable unit consists of the following areas and media: the residual material remaining at the Weldon Spring quarry after removal of the pond water and the bulk waste; groundwater underlying the quarry and surrounding area; and other media located in the surrounding vicinity of the quarry, including surface water and sediment at Femme Osage Slough, Little Femme Osage Creek, and Femme Osage Creek. An initial evaluation of conditions at the quarry area identified remaining data requirements needed to support the conceptual site exposure and hydrogeological models. These data requirements are discussed in the RI/FS work plan issued in January 1994. Soil contamination located at a property adjacent to the quarry, referred to as Vicinity Property 9 (VP9), was originally part of the scope of the QROU, as discussed in the work plan. However, a decision was subsequently made to remediate this vicinity property as part of cleanup activities for the chemical plant operable unit, as provided for in the Record of Decision (ROD). Remediation of VP9 was completed in early 1996. Hence, this baseline risk assessment (BRA) does not address VP9

  17. Baseline risk assessment for the quarry residuals operable unit of the Weldon Spring Site, Weldon Spring, Missouri

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    The U.S. Department of Energy (DOE) is conducting cleanup activities at the Weldon Spring site, located in St. Charles County, Missouri, about 48 km (30 mi) west of St. Louis. Cleanup of the site consists of several integrated components. The quarry residuals operable unit (QROU), consisting of the Weldon Spring quarry and its surrounding area, is one of four operable units being evaluated. In accordance with requirements of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended, DOE is conducting a remedial investigation/feasibility study (RI/FS) to determine the proper response to address various contaminated media that constitute the QROU. Specifically, the operable unit consists of the following areas and media: the residual material remaining at the Weldon Spring quarry after removal of the pond water and the bulk waste; groundwater underlying the quarry and surrounding area; and other media located in the surrounding vicinity of the quarry, including surface water and sediment at Femme Osage Slough, Little Femme Osage Creek, and Femme Osage Creek. An initial evaluation of conditions at the quarry area identified remaining data requirements needed to support the conceptual site exposure and hydrogeological models. These data requirements are discussed in the RI/FS work plan issued in January 1994. Soil contamination located at a property adjacent to the quarry, referred to as Vicinity Property 9 (VP9), was originally part of the scope of the QROU, as discussed in the work plan. However, a decision was subsequently made to remediate this vicinity property as part of cleanup activities for the chemical plant operable unit, as provided for in the Record of Decision (ROD). Remediation of VP9 was completed in early 1996. Hence, this baseline risk assessment (BRA) does not address VP9.

  18. Sampling design and procedures for fixed surface-water sites in the Georgia-Florida coastal plain study unit, 1993

    Science.gov (United States)

    Hatzell, H.H.; Oaksford, E.T.; Asbury, C.E.

    1995-01-01

    The implementation of design guidelines for the National Water-Quality Assessment (NAWQA) Program has resulted in the development of new sampling procedures and the modification of existing procedures commonly used in the Water Resources Division of the U.S. Geological Survey. The Georgia-Florida Coastal Plain (GAFL) study unit began the intensive data collection phase of the program in October 1992. This report documents the implementation of the NAWQA guidelines by describing the sampling design and procedures for collecting surface-water samples in the GAFL study unit in 1993. This documentation is provided for agencies that use water-quality data and for future study units that will be entering the intensive phase of data collection. The sampling design is intended to account for large- and small-scale spatial variations, and temporal variations in water quality for the study area. Nine fixed sites were selected in drainage basins of different sizes and different land-use characteristics located in different land-resource provinces. Each of the nine fixed sites was sampled regularly for a combination of six constituent groups composed of physical and chemical constituents: field measurements, major ions and metals, nutrients, organic carbon, pesticides, and suspended sediments. Some sites were also sampled during high-flow conditions and storm events. Discussion of the sampling procedure is divided into three phases: sample collection, sample splitting, and sample processing. A cone splitter was used to split water samples for the analysis of the sampling constituent groups except organic carbon from approximately nine liters of stream water collected at four fixed sites that were sampled intensively. An example of the sample splitting schemes designed to provide the sample volumes required for each sample constituent group is described in detail. Information about onsite sample processing has been organized into a flowchart that describes a pathway for each of

  19. Corrective Action Decision Document/Corrective Action Plan for Corrective Action Unit 547: Miscellaneous Contaminated Waste Sites, Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Mark Krauss

    2011-09-01

    The purpose of this CADD/CAP is to present the corrective action alternatives (CAAs) evaluated for CAU 547, provide justification for selection of the recommended alternative, and describe the plan for implementing the selected alternative. Corrective Action Unit 547 consists of the following three corrective action sites (CASs): (1) CAS 02-37-02, Gas Sampling Assembly; (2) CAS 03-99-19, Gas Sampling Assembly; and(3) CAS 09-99-06, Gas Sampling Assembly. The gas sampling assemblies consist of inactive process piping, equipment, and instrumentation that were left in place after completion of underground safety experiments. The purpose of these safety experiments was to confirm that a nuclear explosion would not occur in the case of an accidental detonation of the high-explosive component of the device. The gas sampling assemblies allowed for the direct sampling of the gases and particulates produced by the safety experiments. Corrective Action Site 02-37-02 is located in Area 2 of the Nevada National Security Site (NNSS) and is associated with the Mullet safety experiment conducted in emplacement borehole U2ag on October 17, 1963. Corrective Action Site 03-99-19 is located in Area 3 of the NNSS and is associated with the Tejon safety experiment conducted in emplacement borehole U3cg on May 17, 1963. Corrective Action Site 09-99-06 is located in Area 9 of the NNSS and is associated with the Player safety experiment conducted in emplacement borehole U9cc on August 27, 1964. The CAU 547 CASs were investigated in accordance with the data quality objectives (DQOs) developed by representatives of the Nevada Division of Environmental Protection (NDEP) and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to determine and implement appropriate corrective actions for CAU 547. Existing radiological survey data and historical knowledge of

  20. Concept and methodology for evaluating core damage frequency considering failure correlation at multi units and sites and its application

    Energy Technology Data Exchange (ETDEWEB)

    Ebisawa, K.; Teragaki, T.; Nomura, S. [Former Incorporated Administrative Agency, Japan Nuclear Safety Organization (Japan); Abe, H., E-mail: Hiroshi_abe@nsr.go.jp [Former Incorporated Administrative Agency, Japan Nuclear Safety Organization (Japan); Shigemori, M.; Shimomoto, M. [Mizuho Information & Research Institute, 2-3, Kanda-Nishikicho, Chiyoda-ku, Tokyo (Japan)

    2015-07-15

    Highlights: • We develop a method to evaluate CDF considering failure correlation at multi units. • We develop a procedure to evaluate correlation coefficient between multi components. • We evaluate CDF at two different BWR units using correlation coefficients. • We confirm the validity of method and correlation coefficient through the evaluation. - Abstract: The Tohoku earthquake (Mw9.0) occurred on March 11, 2011 and caused a large tsunami. The Fukushima Daiichi Nuclear Power Plant with six units were overwhelmed by the tsunami and core damage occurred. Authors proposed the concept and method for evaluating core damage frequency (CDF) considering failure correlation at the multi units and sites. Based on the above method, one of authors developed the procedure for evaluating the failure correlation coefficient and response correlation coefficient between the multi components under the strong seismic motion. These method and failure correlation coefficients were applied to two different BWR units and their CDF was evaluated by seismic probabilistic risk assessment technology. Through this quantitative evaluation, the validity of the method and failure correlation coefficient was confirmed.

  1. Concept and methodology for evaluating core damage frequency considering failure correlation at multi units and sites and its application

    International Nuclear Information System (INIS)

    Ebisawa, K.; Teragaki, T.; Nomura, S.; Abe, H.; Shigemori, M.; Shimomoto, M.

    2015-01-01

    Highlights: • We develop a method to evaluate CDF considering failure correlation at multi units. • We develop a procedure to evaluate correlation coefficient between multi components. • We evaluate CDF at two different BWR units using correlation coefficients. • We confirm the validity of method and correlation coefficient through the evaluation. - Abstract: The Tohoku earthquake (Mw9.0) occurred on March 11, 2011 and caused a large tsunami. The Fukushima Daiichi Nuclear Power Plant with six units were overwhelmed by the tsunami and core damage occurred. Authors proposed the concept and method for evaluating core damage frequency (CDF) considering failure correlation at the multi units and sites. Based on the above method, one of authors developed the procedure for evaluating the failure correlation coefficient and response correlation coefficient between the multi components under the strong seismic motion. These method and failure correlation coefficients were applied to two different BWR units and their CDF was evaluated by seismic probabilistic risk assessment technology. Through this quantitative evaluation, the validity of the method and failure correlation coefficient was confirmed

  2. Corrective Action Plan for Corrective Action Unit 254: Area 25 R-MAD Decontamination Facility Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Obi, C.M.

    2000-01-01

    The Area 25 Reactor Maintenance, Assembly, and Disassembly Decontamination Facility is identified in the Federal Facility Agreement and Consent Order (FFACO) as Corrective Action Unit (CAU) 254. CAU 254 is located in Area 25 of the Nevada Test Site and consists of a single Corrective Action Site CAS 25-23-06. CAU 254 will be closed, in accordance with the FFACO of 1996. CAU 254 was used primarily to perform radiological decontamination and consists of Building 3126, two outdoor decontamination pads, and surrounding soil within an existing perimeter fence. The site was used to decontaminate nuclear rocket test-car hardware and tooling from the early 1960s through the early 1970s, and to decontaminate a military tank in the early 1980s. The site characterization results indicate that, in places, the surficial soil and building materials exceed clean-up criteria for organic compounds, metals, and radionuclides. Closure activities are expected to generate waste streams consisting of nonhazardous construction waste. petroleum hydrocarbon waste, hazardous waste, low-level radioactive waste, and mixed waste. Some of the wastes exceed land disposal restriction limits and will require off-site treatment before disposal. The recommended corrective action was revised to Alternative 3- ''Unrestricted Release Decontamination, Verification Survey, and Dismantle Building 3126,'' in an addendum to the Correction Action Decision Document

  3. Feasibility study for the United Nuclear Corporation Disposal Site at the Oak Ridge Y-12 plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1991-02-01

    In July 1990, the US Environmental Protection Agency (EPA) directed the Department of Energy Oak Ridge Operations to comply with Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requirements for the remediation of the United Nuclear Corporation (UNC) Disposal Site located at the Y-12 Plant, Oak Ridge, Tennessee. EPA, Waste Management Branch, had approved a closure plan in December 1989 for the UNC Disposal Site. This feasibility study (FS) is a fully satisfy the National Oil and Hazardous Substances Contingency Plan (NCP) requirements for support of the selection of a remedial response for closure of the UNC Disposal Site. For two years the UNC Disposal Site accepted and disposed of waste from the decommissioning of a UNC uranium recovery facility in Wood River Junction, Rhode Island. Between June 1982 and November 1984, the UNC Disposal Site received 11,000 55-gal drums of sludge fixed in cement, 18,000 drums of contaminated soil, and 288 wooden boxes of contaminated building and process demolition materials. The FS assembles a wide range of remedial technologies so the most appropriate actions could be selected to remediate potential contamination to below MCLs and/or to below the maximum level of acceptable risk. Technologies were evaluated based on technical effectiveness, ease of implementation, and costs. Applicable technologies were then selected for alternative development. 33 refs., 9 figs., 27 tabs

  4. Corrective Action Investigation Plan for Corrective Action Unit 552: Area 12 Muckpile and Ponds, Nevada Test Site, Nevada: Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2004-04-06

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's approach for collecting the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 552: Area 12 Muckpile and Ponds, Nevada Test Site (NTS), Nevada, under the Federal Facility Agreement and Consent Order. Located in Area 12 on the NTS, CAU 552 consists of two Corrective Action Sites (CASs): 12-06-04, Muckpile; 12-23-05, Ponds. Corrective Action Site 12-06-04 in Area 12 consists of the G-Tunnel muckpile, which is the result of tunneling activities. Corrective Action Site 12-23-05 consists of three dry ponds adjacent to the muckpile. The toe of the muckpile extends into one of the ponds creating an overlap of two CASs. The purpose of the investigation is to ensure that adequate data are collected to provide sufficient and reliable information to identify, evaluate, and select technic ally viable corrective actions. The results of the field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.

  5. Geophysical investigation of the 120-KE-3 and 118-K-2 sites, 100-KR-2 operable unit

    International Nuclear Information System (INIS)

    Bergstrom, K.A.; Mitchell, T.H.; Bolin, B.J.

    1995-04-01

    Geophysical investigations using ground-penetrating radar (GPR) and electromagnetic induction (EMI) were conducted at two waste sites, 120-KE-3 and 118-K-2, in the 100-K Area (Figure 1). Both of the sites are located within Operable Unit 100-KR-2. The 120-KE-3 waste site (Figure 2), also known as the 183-Filter Water Facility Trench and 100-KE-3, received sulfuric acid sludge from sulfuric acid storage tanks that were contaminated with 700 kg of mercury. The trench is documented as 3 ft wide by 3 ft deep by 40 ft long. However, part or all of the trench was excavated when an outside contractor attempted to recover the mercury (Carpenter and Cote 1994). Therefore, the actual size of the ''disturbed area'' from the trench and subsequent excavation is unknown. The objective of the geophysical investigation was to locate the original or reworked trench. The 118- K-2 site (Figure 3) was reportedly used to dispose radioactive sludge from the 116-KE-4 and 116-KW-3 retention basins. The size of the ''trench'' is unknown and documentation shows it in two different locations. No other information si available on the site. The objective of the investigation was to locate the trench

  6. Final Status Survey Report for Corrective Action Unit 117 - Pluto Disassembly Facility, Building 2201, Nevada National Security Site, Nevada

    International Nuclear Information System (INIS)

    Gwin, Jeremy; Frenette, Douglas

    2010-01-01

    This document contains the process knowledge, radiological data and subsequent statistical methodology and analysis to support approval for the radiological release of Corrective Action Unit (CAU) 117 - Pluto Disassembly Facility, Building 2201 located in Area 26 of the Nevada National Security Site (NNSS). Preparations for release of the building began in 2009 and followed the methodology described in the Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM). MARSSIM is the DOE approved process for release of Real Property (buildings and landmasses) to a set of established criteria or authorized limits. The pre-approved authorized limits for surface contamination values and corresponding assumptions were established by DOE O 5400.5. The release criteria coincide with the acceptance criteria of the U10C landfill permit. The U10C landfill is the proposed location to dispose of the radiologically non-impacted, or ''clean,'' building rubble following demolition. However, other disposition options that include the building and/or waste remaining at the NNSS may be considered providing that the same release limits apply. The Final Status Survey was designed following MARSSIM guidance by reviewing historical documentation and radiological survey data. Following this review a formal radiological characterization survey was performed in two phases. The characterization revealed multiple areas of residual radioactivity above the release criteria. These locations were remediated (decontaminated) and then the surface activity was verified to be less than the release criteria. Once remediation efforts had been successfully completed, a Final Status Survey Plan (10-015, ''Final Status Survey Plan for Corrective Action Unit 117 - Pluto Disassembly Facility, Building 2201'') was developed and implemented to complete the final step in the MARSSIM process, the Final Status Survey. The Final Status Survey Plan consisted of categorizing each individual room into one

  7. On-site energy consumption and selected emissions at softwood sawmills in the southwestern United States

    Science.gov (United States)

    Dan Loeffler; Nathaniel Anderson; Todd A. Morgan; Colin B. Sorenson

    2016-01-01

    Presently there is a lack of information describing US southwestern energy consumption and emissions generated from the sawmilling industry. This article uses a mail survey of softwood sawmills in the states of Arizona, Colorado, and New Mexico to develop a profile of on-site energy consumption and selected emissions for the industry. Energy consumption is...

  8. Linking climate, gross primary productivity, and site index across forests of the western United States

    Science.gov (United States)

    Aaron R. Weiskittel; Nicholas L. Crookston; Philip J. Radtke

    2011-01-01

    Assessing forest productivity is important for developing effective management regimes and predicting future growth. Despite some important limitations, the most common means for quantifying forest stand-level potential productivity is site index (SI). Another measure of productivity is gross primary production (GPP). In this paper, SI is compared with GPP estimates...

  9. Streamlined RI/FS planning for the groundwater operable unit at the Weldon Spring Site

    International Nuclear Information System (INIS)

    Picel, M.H.; Durham, L.A.; Blunt, D.L.; Hartmann, H.M.

    1995-01-01

    The U.S. Department of Energy (DOE) is conducting cleanup activities at the chemical plant area of the Weldon Spring Site located in St. Charles County, Missouri, about 48 km (30 mi) west of St. Louis and 22 km (14 mi) southwest of the City of St. Charles. The 88-ha (217-acre) chemical plant area is chemically and radioactively contaminated as a result of uranium processing activities conducted by the U.S. Atomic Energy Commission during the 1950s and 1960s. The Army also used the chemical plant area for the production of explosives in the 1940s. The Weldon Spring Site chemical plant area was listed on the National Priorities List (NPL) in 1989. Adjacent to the chemical plant area is another NPL site known as the Weldon Spring Ordnance Works. The ordnance works area is a former explosive production facility that manufactured trinitrotoluene (TNT) and dinitrotoluene (DNT) during World War II. The ordnance works area covers 7,000 ha (17,232 acres); cleanup of this site is managed by the U.S. Army Corps of Engineers (CE)

  10. UNITED STATES AND GERMAN BILATERAL AGREEMENT ON REMEDIATION OF HAZARDOUS WASTE SITES

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) and Germany's Bundesministerium fur Forschung und Technologie (BMFT) are involved in a collaborative effort called the U.S. and German Bilateral Agreement on Remediation of Hazardous Waste Sites. he purpose of this interim status rep...

  11. The siting dilemma: Low-level radioactive waste disposal in the United States

    International Nuclear Information System (INIS)

    English, M.R.

    1991-01-01

    The 1980 Low-Level Radioactive Waste Policy Act ushered in a new era in low-level waste disposal; one with vastly increased state responsibilities. By a 1985 amendment, states were given until January 1993 to fulfill their mandate. In this dissertation, their progress is reviewed. The focus then turns to one particularly intractable problem: that of finding technically and socially acceptable sites for new disposal facilities. Many lament the difficulty of siting facilities that are intended to benefit the public at large but are often locally unwanted. Many label local opposition as purely self-interested; as simply a function of the NIMBY (Not In My Backyard) syndrome. Here, it is argued that epithets such as NIMBY are unhelpful. Instead, to lay the groundwork for widely acceptable solutions to siting conflicts, deeper understanding is needed of differing values on issues concerning authority, trust, risk, and justice. This dissertation provides a theoretical and practical analysis of those issues as they pertain to siting low-level waste disposal facilities and, by extension, other locally unwanted facilities

  12. Corrective Action Investigation Plan for Corrective Action Unit 365: Baneberry Contamination Area, Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Matthews

    2010-12-01

    Corrective Action Unit 365 comprises one corrective action site (CAS), CAS 08-23-02, U-8d Contamination Area. This site is being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for the CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The site will be investigated based on the data quality objectives (DQOs) developed on July 6, 2010, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for the Baneberry site. The primary release associated with Corrective Action Unit 365 was radiological contamination from the Baneberry nuclear test. Baneberry was an underground weapons-related test that vented significant quantities of radioactive gases from a fissure located in close proximity to ground zero. A crater formed shortly after detonation, which stemmed part of the flow from the fissure. The scope of this investigation includes surface and shallow subsurface (less than 15 feet below ground surface) soils. Radionuclides from the Baneberry test with the potential to impact groundwater are included within the Underground Test Area Subproject. Investigations and corrective actions associated with the Underground Test Area Subproject include the radiological inventory resulting from the Baneberry test.

  13. Feasibility study for remedial action for the Quarry Residuals Operable Unit at the Weldon Spring Site, Weldon Spring, Missouri

    International Nuclear Information System (INIS)

    1998-03-01

    The U.S. Department of Energy (DOE) is conducting cleanup activities at the Weldon Spring site, which is located in St. Charles County, Missouri, about 48 km (30 mi) west of St. Louis (Figure 1.1). Cleanup of the Weldon Spring site consists of several integrated components. The quarry residuals operable unit (QROU) is one of four operable units being evaluated. In accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended, a remedial investigation/feasibility study (RI/FS) is being conducted to evaluate conditions and potential responses for the following areas and/or media that constitute the QROU: (1) the residual material (soil and sediment) remaining at the Weldon Spring quarry after removal of the bulk waste (about 11 million L [3 million gal] of uranium-contaminated ponded water was also addressed previous to bulk waste removal); (2) other media located in the surrounding vicinity of the quarry, including adjacent soil, surface water, and sediment in Femme Osage Slough and several creeks; and (3) quarry groundwater located primarily north of Femme Osage Slough. Potential impacts to the St. Charles County well field downgradient of the quarry area are also being addressed as part of QROU RI/FS evaluations. For remedial action sites, it is DOE policy to integrate values associated with the National Environmental Policy Act (NEPA) into the CERCLA decision-making process. The analyses contained herein address NEPA values as appropriate to the actions being considered for the QROU. A work plan summarizing initial site conditions and providing conceptual site hydrogeological and exposure models was published in January 1994. The RI and baseline risk assessment (BRA) reports have been completed. The RI discusses in detail the nature and extent and the fate and transport of contamination at the quarry area

  14. Feasibility study for remedial action for the Quarry Residuals Operable Unit at the Weldon Spring Site, Weldon Spring, Missouri

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The U.S. Department of Energy (DOE) is conducting cleanup activities at the Weldon Spring site, which is located in St. Charles County, Missouri, about 48 km (30 mi) west of St. Louis (Figure 1.1). Cleanup of the Weldon Spring site consists of several integrated components. The quarry residuals operable unit (QROU) is one of four operable units being evaluated. In accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended, a remedial investigation/feasibility study (RI/FS) is being conducted to evaluate conditions and potential responses for the following areas and/or media that constitute the QROU: (1) the residual material (soil and sediment) remaining at the Weldon Spring quarry after removal of the bulk waste (about 11 million L [3 million gal] of uranium-contaminated ponded water was also addressed previous to bulk waste removal); (2) other media located in the surrounding vicinity of the quarry, including adjacent soil, surface water, and sediment in Femme Osage Slough and several creeks; and (3) quarry groundwater located primarily north of Femme Osage Slough. Potential impacts to the St. Charles County well field downgradient of the quarry area are also being addressed as part of QROU RI/FS evaluations. For remedial action sites, it is DOE policy to integrate values associated with the National Environmental Policy Act (NEPA) into the CERCLA decision-making process. The analyses contained herein address NEPA values as appropriate to the actions being considered for the QROU. A work plan summarizing initial site conditions and providing conceptual site hydrogeological and exposure models was published in January 1994. The RI and baseline risk assessment (BRA) reports have been completed. The RI discusses in detail the nature and extent and the fate and transport of contamination at the quarry area.

  15. Corrective Action Investigation Plan for Corrective Action Unit 409: Other Waste Sites, Tonopah Test Range, Nevada (Rev. 0)

    International Nuclear Information System (INIS)

    2000-01-01

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 409 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 409 consists of three Corrective Action Sites (CASs): TA-53-001-TAB2, Septic Sludge Disposal Pit No.1; TA-53-002-TAB2, Septic Sludge Disposal Pit No.2; and RG-24-001-RGCR, Battery Dump Site. The Septic Sludge Disposal Pits are located near Bunker Two, close to Area 3, on the Tonopah Test Range. The Battery Dump Site is located at the abandoned Cactus Repeater Station on Cactus Peak. The Cactus Repeater Station was a remote, battery-powered, signal repeater station. The two Septic Sludge Disposal Pits were suspected to be used through the late 1980s as disposal sites for sludge from septic tanks located in Area 3. Based on site history collected to support the Data Quality Objectives process, contaminants of potential concern are the same for the disposal pits and include: volatile organic compounds (VOCs), semivolatile organic compounds, total petroleum hydrocarbons (TPHs) as gasoline- and diesel-range organics, polychlorinated biphenyls, Resource Conservation and Recovery Act metals, and radionuclides (including plutonium and depleted uranium). The Battery Dump Site consists of discarded lead-acid batteries and associated construction debris, placing the site in a Housekeeping Category and, consequently, no contaminants are expected to be encountered during the cleanup process. The corrective action the at this CAU will include collection of discarded batteries and construction debris at the Battery Dump Site for proper disposal and recycling, along with photographic documentation as the process progresses. The corrective action for the remaining CASs involves the collection of background radiological data through borings drilled at

  16. Chronic neural probe for simultaneous recording of single-unit, multi-unit, and local field potential activity from multiple brain sites

    Science.gov (United States)

    Pothof, F.; Bonini, L.; Lanzilotto, M.; Livi, A.; Fogassi, L.; Orban, G. A.; Paul, O.; Ruther, P.

    2016-08-01

    Objective. Drug resistant focal epilepsy can be treated by resecting the epileptic focus requiring a precise focus localisation using stereoelectroencephalography (SEEG) probes. As commercial SEEG probes offer only a limited spatial resolution, probes of higher channel count and design freedom enabling the incorporation of macro and microelectrodes would help increasing spatial resolution and thus open new perspectives for investigating mechanisms underlying focal epilepsy and its treatment. This work describes a new fabrication process for SEEG probes with materials and dimensions similar to clinical probes enabling recording single neuron activity at high spatial resolution. Approach. Polyimide is used as a biocompatible flexible substrate into which platinum electrodes and leads are integrated with a minimal feature size of 5 μm. The polyimide foils are rolled into the cylindrical probe shape at a diameter of 0.8 mm. The resulting probe features match those of clinically approved devices. Tests in saline solution confirmed the probe stability and functionality. Probes were implanted into the brain of one monkey (Macaca mulatta), trained to perform different motor tasks. Suitable configurations including up to 128 electrode sites allow the recording of task-related neuronal signals. Main results. Probes with 32 and 64 electrode sites were implanted in the posterior parietal cortex. Local field potentials and multi-unit activity were recorded as early as one hour after implantation. Stable single-unit activity was achieved for up to 26 days after implantation of a 64-channel probe. All recorded signals showed modulation during task execution. Significance. With the novel probes it is possible to record stable biologically relevant data over a time span exceeding the usual time needed for epileptic focus localisation in human patients. This is the first time that single units are recorded along cylindrical polyimide probes chronically implanted 22 mm deep into the

  17. Corrective Action Investigation Plan for Corrective Action Unit 567: Miscellaneous Soil Sites, Nevada National Security Site, Nevada, with ROTC 1 Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick K.

    2013-07-01

    Corrective Action Unit (CAU) 567 is located in Areas 1, 3, 5, 20, and 25 of the Nevada National Security Site, which is approximately 65 miles northwest of Las Vegas, Nevada. CAU 567 is a grouping of sites where there has been a suspected release of contamination associated with nuclear testing. This document describes the planned investigation of CAU 567, which comprises the following corrective action sites (CASs): • 01-23-03, Atmospheric Test Site T-1 • 03-23-25, Seaweed E Contamination Area • 05-23-07, A5b RMA • 20-23-08, Colby Mud Spill • 25-23-23, J-11 Soil RMA These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the investigation report. The sites will be investigated based on the data quality objectives (DQOs) developed on May 6, 2013, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 567. The site investigation process will also be conducted in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices to be applied to this activity. The potential contamination sources associated with CAU 567 releases are nuclear test operations and other NNSS operations. The DQO process resulted in an assumption that total effective dose (TED) within a default contamination boundary

  18. Mirror symmetry II

    CERN Document Server

    Greene, Brian R

    1997-01-01

    Mirror symmetry has undergone dramatic progress during the last five years. Tremendous insight has been gained on a number of key issues. This volume surveys these results. Some of the contributions in this work have appeared elsewhere, while others were written specifically for this collection. The areas covered are organized into 4 sections, and each presents papers by both physicists and mathematicians. This volume collects the most important developments that have taken place in mathematical physics since 1991. It is an essential reference tool for both mathematics and physics libraries and for students of physics and mathematics.

  19. Inertial Symmetry Breaking

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Christopher T.

    2018-03-19

    We review and expand upon recent work demonstrating that Weyl invariant theories can be broken "inertially," which does not depend upon a potential. This can be understood in a general way by the "current algebra" of these theories, independently of specific Lagrangians. Maintaining the exact Weyl invariance in a renormalized quantum theory can be accomplished by renormalization conditions that refer back to the VEV's of fields in the action. We illustrate the computation of a Weyl invariant Coleman-Weinberg potential that breaks a U(1) symmetry together,with scale invariance.

  20. Leadership, power and symmetry

    DEFF Research Database (Denmark)

    Spaten, Ole Michael

    2016-01-01

    Research publications concerning managers who coach their own employees are barely visible despite its wide- spread use in enterprises (McCarthy & Milner, 2013; Gregory & Levy, 2011; Crabb, 2011). This article focuses on leadership, power and moments of symmetry in the coaching relationship...... regarding managers coaching their employees and it is asked; what contributes to coaching of high quality when one reflects on the power aspect as being immanent? Fourteen middle managers coached five of their employees, and all members of each party wrote down cues and experiences immediately after each...

  1. Groups and symmetry

    CERN Document Server

    Farmer, David W

    1995-01-01

    In most mathematics textbooks, the most exciting part of mathematics-the process of invention and discovery-is completely hidden from the reader. The aim of Groups and Symmetry is to change all that. By means of a series of carefully selected tasks, this book leads readers to discover some real mathematics. There are no formulas to memorize; no procedures to follow. The book is a guide: Its job is to start you in the right direction and to bring you back if you stray too far. Discovery is left to you. Suitable for a one-semester course at the beginning undergraduate level, there are no prerequ

  2. Geometry and symmetry

    CERN Document Server

    Yale, Paul B

    2012-01-01

    This book is an introduction to the geometry of Euclidean, affine, and projective spaces with special emphasis on the important groups of symmetries of these spaces. The two major objectives of the text are to introduce the main ideas of affine and projective spaces and to develop facility in handling transformations and groups of transformations. Since there are many good texts on affine and projective planes, the author has concentrated on the n-dimensional cases.Designed to be used in advanced undergraduate mathematics or physics courses, the book focuses on ""practical geometry,"" emphasi

  3. Institutional aspects of siting nuclear waste disposal facilities in the United States

    International Nuclear Information System (INIS)

    Stewart, J.C.; Prichard, W.C.

    1987-01-01

    This paper has dealt with the institutional issues associated with disposal of nuclear waste in the US. The authors believe that these institutional problems must be resolved, no matter how technologically well suited a site may be for disposal, before site selection may take place. The authors have also pointed out that the geography of the US, with its large arid regions of very low population density, contributes to the institutional acceptability of nuclear waste disposal. Economic factors, especially in sparsely populated areas where the uranium mining and milling industry has caused operation, also weigh on the acceptability of nuclear waste to local communities. This acceptability will be highest where there are existing nuclear facilities and/or facilities which are closed - thus creating unemployment especially where alternative economic opportunities are few

  4. MX Siting Investigation Geotechnical Evaluation Conterminous United States. Volume II. Intermediate Screening.

    Science.gov (United States)

    1977-12-21

    as any earth material which is not rippable by SURFACE ROCK AND ROCK OFTHEGconventional excavation methods. Where available, seismic WITHIN A NOMINAL...calcareous concretions. The unit is considered to be rippable but only marginally where resistant oil shale is encountered (Armstrong, oral communication...1977). The remaining suitable area is underlain by generally rippable -_..rtiary to Cretaceous sediinentary formations of minor extent. The most notable

  5. Institutional aspects of siting nuclear waste disposal facilities in the United States

    International Nuclear Information System (INIS)

    Stewart, John Cameron.; Prichard, Clark. W.

    1987-01-01

    This chapter deals with the institutional issues associated with the disposal of nuclear waste in the United States of America. These include socio-economic, financial, land use and especially, political factors. Institutional issues must, however, be resolved, as well as the technological problems of engineering and geology. The general issues are first examined, then the organisation and financing, land use, community acceptance, transport problems and finally, local economic impacts. (UK)

  6. CLOSURE REPORT FOR CORRECTIVE ACTION UNIT 528: POLYCHLORINATED BIPHENYLS CONTAMINATION NEVADA TEST SITE, NEVADA

    Energy Technology Data Exchange (ETDEWEB)

    BECHTEL NEVADA

    2006-09-01

    This Closure Report (CR) describes the closure activities performed at CAU 528, Polychlorinated Biphenyls Contamination, as presented in the Nevada Division of Environmental Protection (NDEP)-approved Corrective Action Plan (CAP) (US. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSAINSO], 2005). The approved closure alternative was closure in place with administrative controls. This CR provides a summary of the completed closure activities, documentation of waste disposal, and analytical data to confirm that the remediation goals were met.

  7. Fine resolution mapping of double-strand break sites for human ribosomal DNA units

    Directory of Open Access Journals (Sweden)

    Bernard J. Pope

    2016-12-01

    Full Text Available DNA breakage arises during a variety of biological processes, including transcription, replication and genome rearrangements. In the context of disease, extensive fragmentation of DNA has been described in cancer cells and during early stages of neurodegeneration (Stephens et al., 2011 Stephens et al. (2011 [5]; Blondet et al., 2001 Blondet et al. (2001 [1]. Stults et al. (2009 Stults et al. (2009 [6] reported that human rDNA gene clusters are hotspots for recombination and that rDNA restructuring is among the most common chromosomal alterations in adult solid tumours. As such, analysis of rDNA regions is likely to have significant prognostic and predictive value, clinically. Tchurikov et al. (2015a, 2016 Tchurikov et al. (2015a, 2016 [7,9] have made major advances in this direction, reporting that sites of human genome double-strand breaks (DSBs occur frequently at sites in rDNA that are tightly linked with active transcription - the authors used a RAFT (rapid amplification of forum termini protocol that selects for blunt-ended sites. They reported the relative frequency of these rDNA DSBs within defined co-ordinate ‘windows’ of varying size and made these data (as well as the relevant ‘raw’ sequencing information available to the public (Tchurikov et al., 2015b. Assay designs targeting rDNA DSB hotspots will benefit greatly from the publication of break sites at greater resolution. Here, we re-analyse public RAFT data and make available rDNA DSB co-ordinates to the single-nucleotide level.

  8. The effect of recording site on extracted features of motor unit action potential.

    Science.gov (United States)

    Artuğ, N Tuğrul; Goker, Imran; Bolat, Bülent; Osman, Onur; Kocasoy Orhan, Elif; Baslo, M Baris

    2016-06-01

    Motor unit action potential (MUAP), which consists of individual muscle fiber action potentials (MFAPs), represents the electrical activity of the motor unit. The values of the MUAP features are changed by denervation and reinnervation in neurogenic involvement as well as muscle fiber loss with increased diameter variability in myopathic diseases. The present study is designed to investigate how increased muscle fiber diameter variability affects MUAP parameters in simulated motor units. In order to detect this variation, simulated MUAPs were calculated both at the innervation zone where the MFAPs are more synchronized, and near the tendon, where they show increased temporal dispersion. Reinnervation in neurogenic state increases MUAP amplitude for the recordings at both the innervation zone and near the tendon. However, MUAP duration and the number of peaks significantly increased in a case of myopathy for recordings near the tendon. Furthermore, of the new features, "number of peaks×spike duration" was found as the strongest indicator of MFAP dispersion in myopathy. MUAPs were also recorded from healthy participants in order to investigate the biological counterpart of the simulation data. MUAPs which were recorded near to tendon revealed significantly prolonged duration and decreased amplitude. Although the number of peaks was increased by moving the needle near to tendon, this was not significant. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Corrective Action Decision Document for Corrective Action Unit 322: Areas 1 and 3 Release Sites and Injection Wells Nevada Test Site, Nevada, Revision 0 with ROTC 1

    International Nuclear Information System (INIS)

    Boehlecke, Robert

    2004-01-01

    This Corrective Action Decision Document has been prepared for Corrective Action Unit (CAU) 322, Areas 1 and 3 Release Sites and Injection Wells, Nevada Test Site, Nevada, in accordance with the ''Federal Facility Agreement and Consent Order'' (1996). Corrective Action Unit 322 is comprised of the following corrective action sites (CASs): (1) 01-25-01 - AST Release Site; (2) 03-25-03 - Mud Plant and AST Diesel Release; and (3) 03-20-05 - Injection Wells and BOP Shop. The purpose of this Corrective Action Decision Document is to identify and provide the rationale for the recommendation of a corrective action alternative for each CAS within CAU 322. Corrective action investigation activities were performed from April 2004 through September 2004, as set forth in the Corrective Action Investigation Plan. The purposes of the activities as defined during the data quality objectives process were: (1) Determine if contaminants of concern (COCs) are present; (2) If COCs are present, determine their nature and extent; and (3) Provide sufficient information and data to recommend appropriate corrective actions for the CASs. Analytes detected during the corrective action investigation were evaluated against appropriate preliminary action levels to identify contaminants of concern for each corrective action site. Radiological field measurements were compared to unrestricted release criteria. Assessment of the data generated from investigation activities revealed the following: (1) CAS 01-25-01 contains an AST berm contaminated with total petroleum hydrocarbons (TPH) diesel-range organics (DRO). (2) CAS 03-25-03 includes two distinct areas: Area A where no contamination remains from a potential spill associated with an AST, and Area B where TPH-DRO contamination associated with various activities at the mud plant was identified. The Area B contamination was found at various locations and depths. (3) CAS 03-25-03 Area B contains TPH-DRO contamination at various locations and

  10. Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 538: Spill Sites, Nevada Test Site, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    Alfred Wickline

    2006-04-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the actions necessary for the closure of Corrective Action Unit (CAU) 538: Spill Sites, Nevada Test Site, Nevada. It has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. A SAFER may be performed when the following criteria are met: (1) Conceptual corrective actions are clearly identified (although some degree of investigation may be necessary to select a specific corrective action before completion of the Corrective Action Investigation [CAI]). (2) Uncertainty of the nature, extent, and corrective action must be limited to an acceptable level of risk. (3) The SAFER Plan includes decision points and criteria for making data quality objective (DQO) decisions. The purpose of the investigation will be to document and verify the adequacy of existing information; to affirm the decision for either clean closure, closure in place, or no further action; and to provide sufficient data to implement the corrective action. The actual corrective action selected will be based on characterization activities implemented under this SAFER Plan. This SAFER Plan identifies decision points developed in cooperation with the Nevada Division of Environmental Protection (NDEP) and where DOE will reach consensus with NDEP before beginning the next phase of work.

  11. Corrective Action Decision Document for Corrective Action Unit 322: Areas 1 and 3 Release Sites and Injection Wells Nevada Test Site, Nevada, Revision 0 with ROTC 1

    Energy Technology Data Exchange (ETDEWEB)

    Boehlecke, Robert

    2004-12-01

    This Corrective Action Decision Document has been prepared for Corrective Action Unit (CAU) 322, Areas 1 and 3 Release Sites and Injection Wells, Nevada Test Site, Nevada, in accordance with the ''Federal Facility Agreement and Consent Order'' (1996). Corrective Action Unit 322 is comprised of the following corrective action sites (CASs): (1) 01-25-01 - AST Release Site; (2) 03-25-03 - Mud Plant and AST Diesel Release; and (3) 03-20-05 - Injection Wells and BOP Shop. The purpose of this Corrective Action Decision Document is to identify and provide the rationale for the recommendation of a corrective action alternative for each CAS within CAU 322. Corrective action investigation activities were performed from April 2004 through September 2004, as set forth in the Corrective Action Investigation Plan. The purposes of the activities as defined during the data quality objectives process were: (1) Determine if contaminants of concern (COCs) are present; (2) If COCs are present, determine their nature and extent; and (3) Provide sufficient information and data to recommend appropriate corrective actions for the CASs. Analytes detected during the corrective action investigation were evaluated against appropriate preliminary action levels to identify contaminants of concern for each corrective action site. Radiological field measurements were compared to unrestricted release criteria. Assessment of the data generated from investigation activities revealed the following: (1) CAS 01-25-01 contains an AST berm contaminated with total petroleum hydrocarbons (TPH) diesel-range organics (DRO). (2) CAS 03-25-03 includes two distinct areas: Area A where no contamination remains from a potential spill associated with an AST, and Area B where TPH-DRO contamination associated with various activities at the mud plant was identified. The Area B contamination was found at various locations and depths. (3) CAS 03-25-03 Area B contains TPH-DRO contamination at various

  12. Closure Report for Corrective Action Unit 566: EMAD Compound, Nevada National Security Site, Nevada with ROTC-1, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Mark Krauss

    2011-06-01

    This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 566: EMAD Compound, Nevada National Security Site, Nevada. Corrective Action Unit 566 comprises Corrective Action Site (CAS) 25-99-20, EMAD Compound, located within Area 25 of the Nevada National Security Site. The purpose of this CR is to provide documentation supporting the completed corrective actions and provide data confirming that the closure objectives for CAU 566 were met. To achieve this, the following actions were performed: • Review the current site conditions, including the concentration and extent of contamination. • Implement any corrective actions necessary to protect human health and the environment. • Properly dispose of corrective action and investigation wastes. • Document Notice of Completion and closure of CAU 566 issued by the Nevada Division of Environmental Protection. From October 2010 through May 2011, closure activities were performed as set forth in the Streamlined Approach for Environmental Restoration Plan for CAU 566: EMAD Compound, Nevada National Security Site, Nevada. The purposes of the activities as defined during the data quality objectives process were as follows: • Determine whether contaminants of concern (COCs) are present. • If COCs are present, determine their nature and extent, implement appropriate corrective actions, and properly dispose of wastes. Analytes detected during the closure activities were evaluated against final action levels (FALs) to determine COCs for CAU 566. Assessment of the data from collected soil samples, and from radiological and visual surveys of the site, indicates the FALs were exceeded for polychlorinated biphenyls (PCBs), semivolatile organic compounds (SVOCs), and radioactivity. Corrective actions were implemented to remove the following: • Radiologically contaminated soil assumed greater than FAL at two locations • Radiologically contaminated soil assumed greater than FAL with

  13. Closure Letter Report for Corrective Action Unit 496: Buried Rocket Site - Antelope Lake (TTR)

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2007-01-01

    A Streamlined Approach for Environmental Restoration (SAFER) Plan for investigation and closure of CAU 496, Corrective Action Site (CAS) TA-55-008-TAAL (Buried Rocket), at the Tonopah Test Range (TTR), was approved by the Nevada Department of Environmental Protection (NDEP) on July 21,2004. Approval to transfer CAS TA-55-008-TAAL from CAU 496 to CAU 4000 (No Further Action Sites) was approved by NDEP on December 21, 2005, based on the assumption that the rocket did not present any environmental concern. The approval letter included the following condition: ''NDEP understands, from the NNSA/NSO letter dated November 30,2005, that a search will be conducted for the rocket during the planned characterization of other sites at the Tonopah Test Range and, if found, the rocket will be removed as a housekeeping measure''. NDEP and U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office personnel located the rocket on Mid Lake during a site visit to TTR, and a request to transfer CAS TA-55-008-TAAL from CAU 4000 back to CAU 496 was approved by NDEP on September 11,2006. CAS TA-55-008-TAAL was added to the ''Federal Facility Agreement and Consent Order'' of 1996, based on an interview with a retired TTR worker in 1993. The original interview documented that a rocket was launched from Area 9 to Antelope Lake and was never recovered due to the high frequency of rocket tests being conducted during this timeframe. The interviewee recalled the rocket being an M-55 or N-55 (the M-50 ''Honest John'' rocket was used extensively at TTR from the 1960s to early 1980s). A review of previously conducted interviews with former TTR personnel indicated that the interviewees confused information from several sites. The location of the CAU 496 rocket on Mid Lake is directly south of the TTR rocket launch facility in Area 9 and is consistent with information gathered on the lost rocket during recent interviews. Most pertinently, an interview in 2005 with a

  14. Corrective Action Decision Document/Closure Report for Corrective Action Unit 372: Area 20 Cabriolet/Palanquin Unit Craters, Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick and Sloop, Christy

    2011-04-01

    This Corrective Action Decision Document (CADD)/Closure Report (CR) has been prepared for Corrective Action Unit (CAU) 372, Area 20 Cabriolet/Palanquin Unit Craters, located within Areas 18 and 20 at the Nevada National Security Site, Nevada, in accordance with the Federal Facility Agreement and Consent Order (FFACO). Corrective Action Unit 372 comprises four corrective action sites (CASs): • 18-45-02, Little Feller I Surface Crater • 18-45-03, Little Feller II Surface Crater • 20-23-01, U-20k Contamination Area • 20-45-01, U-20L Crater (Cabriolet) The purpose of this CADD/CR is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 372 based on the implementation of the corrective action of closure in place with administrative controls at all CASs. Corrective action investigation (CAI) activities were performed from November 9, 2009, through December 10, 2010, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 372: Area 20 Cabriolet/Palanquin Unit Craters. The approach for the CAI was divided into two facets: investigation of the primary release of radionuclides and investigation of other releases (migration in washes and chemical releases). The purpose of the CAI was to fulfill data needs as defined during the data quality objective (DQO) process. The CAU 372 dataset of investigation results was evaluated based on a data quality assessment. This assessment demonstrated the dataset is acceptable for use in fulfilling the DQO data needs. Investigation results were evaluated against final action levels (FALs) established in this document. A radiological dose FAL was established of 25 millirem per year based on the Remote Work Area exposure scenario (336 hours of annual exposure). Radiological doses exceeding the FAL were found to be present at all four CASs. It is assumed that radionuclide levels present within the Little Feller I and Cabriolet high

  15. Applications of chiral symmetry

    International Nuclear Information System (INIS)

    Pisarski, R.D.

    1995-03-01

    The author discusses several topics in the applications of chiral symmetry at nonzero temperature. First, where does the rho go? The answer: up. The restoration of chiral symmetry at a temperature T χ implies that the ρ and a 1 vector mesons are degenerate in mass. In a gauged linear sigma model the ρ mass increases with temperature, m ρ (T χ ) > m ρ (0). The author conjectures that at T χ the thermal ρ - a 1 , peak is relatively high, at about ∼1 GeV, with a width approximately that at zero temperature (up to standard kinematic factors). The ω meson also increases in mass, nearly degenerate with the ρ, but its width grows dramatically with temperature, increasing to at least ∼100 MeV by T χ . The author also stresses how utterly remarkable the principle of vector meson dominance is, when viewed from the modern perspective of the renormalization group. Secondly, he discusses the possible appearance of disoriented chiral condensates from open-quotes quenchedclose quotes heavy ion collisions. It appears difficult to obtain large domains of disoriented chiral condensates in the standard two flavor model. This leads to the last topic, which is the phase diagram for QCD with three flavors, and its proximity to the chiral critical point. QCD may be very near this chiral critical point, and one might thereby generated large domains of disoriented chiral condensates

  16. Bootstrap Dynamical Symmetry Breaking

    Directory of Open Access Journals (Sweden)

    Wei-Shu Hou

    2013-01-01

    Full Text Available Despite the emergence of a 125 GeV Higgs-like particle at the LHC, we explore the possibility of dynamical electroweak symmetry breaking by strong Yukawa coupling of very heavy new chiral quarks Q . Taking the 125 GeV object to be a dilaton with suppressed couplings, we note that the Goldstone bosons G exist as longitudinal modes V L of the weak bosons and would couple to Q with Yukawa coupling λ Q . With m Q ≳ 700  GeV from LHC, the strong λ Q ≳ 4 could lead to deeply bound Q Q ¯ states. We postulate that the leading “collapsed state,” the color-singlet (heavy isotriplet, pseudoscalar Q Q ¯ meson π 1 , is G itself, and a gap equation without Higgs is constructed. Dynamical symmetry breaking is affected via strong λ Q , generating m Q while self-consistently justifying treating G as massless in the loop, hence, “bootstrap,” Solving such a gap equation, we find that m Q should be several TeV, or λ Q ≳ 4 π , and would become much heavier if there is a light Higgs boson. For such heavy chiral quarks, we find analogy with the π − N system, by which we conjecture the possible annihilation phenomena of Q Q ¯ → n V L with high multiplicity, the search of which might be aided by Yukawa-bound Q Q ¯ resonances.

  17. Symmetry in Complex Networks

    Directory of Open Access Journals (Sweden)

    Angel Garrido

    2011-01-01

    Full Text Available In this paper, we analyze a few interrelated concepts about graphs, such as their degree, entropy, or their symmetry/asymmetry levels. These concepts prove useful in the study of different types of Systems, and particularly, in the analysis of Complex Networks. A System can be defined as any set of components functioning together as a whole. A systemic point of view allows us to isolate a part of the world, and so, we can focus on those aspects that interact more closely than others. Network Science analyzes the interconnections among diverse networks from different domains: physics, engineering, biology, semantics, and so on. Current developments in the quantitative analysis of Complex Networks, based on graph theory, have been rapidly translated to studies of brain network organization. The brain's systems have complex network features—such as the small-world topology, highly connected hubs and modularity. These networks are not random. The topology of many different networks shows striking similarities, such as the scale-free structure, with the degree distribution following a Power Law. How can very different systems have the same underlying topological features? Modeling and characterizing these networks, looking for their governing laws, are the current lines of research. So, we will dedicate this Special Issue paper to show measures of symmetry in Complex Networks, and highlight their close relation with measures of information and entropy.

  18. Environmental assessment: Transfer of normal and low-enriched uranium billets to the United Kingdom, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1995-11-01

    Under the auspices of an agreement between the U.S. and the United Kingdom, the U.S. Department of Energy (DOE) has an opportunity to transfer approximately 710,000 kilograms (1,562,000 pounds) of unneeded normal and low-enriched uranium (LEU) to the United Kingdom; thus, reducing long-term surveillance and maintenance burdens at the Hanford Site. The material, in the form of billets, is controlled by DOE's Defense Programs, and is presently stored as surplus material in the 300 Area of the Hanford Site. The United Kingdom has expressed a need for the billets. The surplus uranium billets are currently stored in wooden shipping containers in secured facilities in the 300 Area at the Hanford Site (the 303-B and 303-G storage facilities). There are 482 billets at an enrichment level (based on uranium-235 content) of 0.71 weight-percent. This enrichment level is normal uranium; that is, uranium having 0.711 as the percentage by weight of uranium-235 as occurring in nature. There are 3,242 billets at an enrichment level of 0.95 weight-percent (i.e., low-enriched uranium). This inventory represents a total of approximately 532 curies. The facilities are routinely monitored. The dose rate on contact of a uranium billet is approximately 8 millirem per hour. The dose rate on contact of a wooden shipping container containing 4 billets is approximately 4 millirem per hour. The dose rate at the exterior of the storage facilities is indistinguishable from background levels

  19. Corrective Action Investigation Plan for Corrective Action Unit 232: Area 25 Sewage Lagoons, Nevada Test Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    USDOE/NV

    1999-05-01

    The Corrective Action Investigation Plan for Corrective Action Unit 232, Area 25 Sewage Lagoons, has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the U.S. Department of Energy, Nevada Operations Office; the State of Nevada Division of Environmental Protection; and the U. S. Department of Defense. Corrective Action Unit 232 consists of Corrective Action Site 25-03-01, Sewage Lagoon. Corrective Action Unit 232, Area 25 Sewage Lagoons, received sanitary effluent from four buildings within the Test Cell ''C'' Facility from the mid-1960s through approximately 1996. The Test Cell ''C'' Facility was used to develop nuclear propulsion technology by conducting nuclear test reactor studies. Based on the site history collected to support the Data Quality Objectives process, contaminants of potential concern include volatile organic compounds, semivolatile organic compounds, Resource Conservation and Recovery Act metals, petroleum hydrocarbons, polychlorinated biphenyls, pesticides, herbicides, gamma emitting radionuclides, isotopic plutonium, isotopic uranium, and strontium-90. A detailed conceptual site model is presented in Section 3.0 and Appendix A of this Corrective Action Investigation Plan. The conceptual model serves as the basis for the sampling strategy. Under the Federal Facility Agreement and Consent Order, the Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection for approval. Field work will be conducted following approval of the plan. The results of the field investigation will support a defensible evaluation of corrective action alternatives in the Corrective Action Decision Document.

  20. Metal-Free, Site-Selective Peptide Modification by Conversion of "Customizable" Units into β-Substituted Dehydroamino Acids.

    Science.gov (United States)

    Saavedra, Carlos J; Hernández, Dácil; Boto, Alicia

    2018-01-12

    Our site-selective modification of serine or threonine units in peptides allows the generation of β-substituted dehydroamino acids, which increase peptide resistance to hydrolysis and may improve their biological properties. Both the terminal and internal positions can be modified, and different customizable units can be activated separately. Remarkably, high Z selectivity is achieved, even at internal positions. The conversion involves a one-pot oxidative radical scission/phosphorylation process by using the low-toxicity (diacetoxyiodo)benzene/iodine system as the scission reagent. The resulting α-amino phosphonates undergo a Horner-Wadsworth-Emmons reaction to produce the dehydroamino acid derivatives (in a Z/E ratio of usually >98:2) under mild and metal-free conditions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The joint industry development of a recommended practice for the site specific assessment of mobile jackup units

    International Nuclear Information System (INIS)

    Jones, D.E.; Bennett, W.T.; Hoyle, M.J.R.

    1993-01-01

    The mobile self-elevating (drilling) unit, or jack-up, has been central to the exploration and development of offshore oil and gas reserves. In recent years there has been an increased desire to benefit from the potential economics of using these units in longer term production roles either in association with a fixed platform or as a stand-alone facility. However, until recently there had been no concerted effort to develop a consistent and commonly accepted standard for general industry use in site specific assessment of jack-ups. This paper describes the background and work carried out to develop such a standard. The project is nearing completion and has resulted in the publication of a Guideline document. A Recommended Practice and associated Commentary are (at the time of writing) in the final stage of drafting for release to the project sponsors for trial and comment prior to issuing the first Edition early in 1994

  2. Remedial investigation/feasibility study work plan for the 300-FF-1 operable unit, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1990-03-01

    Over 1,400 waste facilities have been identified on the Hanford Site. Most of the waste facilities are located within geographic areas on the Hanford Site that are referred to as the 100, 200, 300, 400, and 1100 areas. The purpose of this work plan is to document the project scoping process and to outline all remedial investigation/feasibility study (RI/FS) activities, to determine the nature and extent of the threat presented by releases of hazardous substances from the operable unit, and to evaluate proposed remedies for such releases. The goal of the 300-FF-1 remedial investigation (RI) is to provide sufficient information needed to conduct the feasibility study (FS), by determining the nature and extent of the threat to public health and the environment posed by releases of hazardous substances from 300-FF-1, and the performance of specific remedial technologies. 62 refs., 28 figs., 48 tabs

  3. Anonymous or confidential HIV counseling and voluntary testing in federally funded testing sites--United States, 1995-1997.

    Science.gov (United States)

    1999-06-25

    Human immunodeficiency virus (HIV) counseling and voluntary testing (CT) programs have been an important part of national HIV prevention efforts since the first HIV antibody tests became available in 1985. In 1995, these programs accounted for approximately 15% of annual HIV antibody testing in the United States, excluding testing for blood donation. CT opportunities are offered to persons at risk for HIV infection at approximately 11,000 sites, including dedicated HIV CT sites, sexually transmitted disease (STD) clinics, drug-treatment centers, hospitals, and prisons. In 39 states, testing can be obtained anonymously, where persons do not have to give their name to get tested. All states provide confidential testing (by name) and have confidentiality laws and regulations to protect this information. This report compares patterns of anonymous and confidential testing in all federally funded CT programs from 1995 through 1997 and documents the importance of both types of testing opportunities.

  4. The Symmetry behind Extended Flavour Democracy and Large Leptonic Mixing

    CERN Document Server

    Silva-Marcos, Joaquim I

    2002-01-01

    We show that there is a minimal discrete symmetry which leads to the extended flavour democracy scenario constraining the Dirac neutrino, the charged lepton and the Majorana neutrino mass term ($M_R$) to be all proportional to the democratic matrix, with all elements equal. In particular, this discrete symmetry forbids other large contributions to $M_R$, such as a term proportional to the unit matrix, which would normally be allowed by a $S_{3L}\\times S_{3R}$ permutation symmetry. This feature is crucial in order to obtain large leptonic mixing, without violating 't Hooft's, naturalness principle.

  5. In search of symmetry lost

    CERN Multimedia

    Wilczek, Frank

    2004-01-01

    Powerful symmetry principles have guided physicists in their quest for nature's fundamental laws. The successful gauge theory of electroweak interactions postulates a more extensive symmetry for its equations than are manifest in the world (8 pages) Powerful symmetry principles have guided physicists in their quest for nature's fundamental laws. The successful gauge theory of electroweak interactions postulates a more extensive symmetry for its equations than are manifest in the world. The discrepancy is ascribed to a pervasive symmetry-breaking field, which fills all space uniformly, rendering the Universe a sort of exotic superconductor. So far, the evidence for these bold ideas is indirect. But soon the theory will undergo a critical test depending on whether the quanta of this symmetry-breaking field, the so-called Higgs particles, are produced at the Large Hadron Collider (due to begin operation in 2007).

  6. Symmetry of crystals and molecules

    CERN Document Server

    Ladd, Mark

    2014-01-01

    This book successfully combines a thorough treatment of molecular and crystalline symmetry with a simple and informal writing style. By means of familiar examples the author helps to provide the reader with those conceptual tools necessary for the development of a clear understanding of what are often regarded as 'difficult' topics. Christopher Hammond, University of Leeds This book should tell you everything you need to know about crystal and molecular symmetry. Ladd adopts an integrated approach so that the relationships between crystal symmetry, molecular symmetry and features of chemical interest are maintained and reinforced. The theoretical aspects of bonding and symmetry are also well represented, as are symmetry-dependent physical properties and the applications of group theory. The comprehensive coverage will make this book a valuable resource for a broad range of readers.

  7. Internalizing social costs in power plant siting: some examples for coal and nuclear plants in the United States

    International Nuclear Information System (INIS)

    Peelle, E.

    1976-01-01

    Selected aspects of the United States experience in one particular type of energy development project, the siting of nuclear and fossil fueled power generating facilities, are examined in terms of how well community-level impacts are internalized. New institutional arrangements being devised and new requirements being made at local, state, regional, and federal levels in response to these dissociations of cost and benefits from large energy development projects are discussed. Selected examples of these new institutional responses are analyzed for adequacy and significance

  8. Postconstruction report of the United Nuclear Corporation Disposal Site at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Oakley, L.B.; Siberell, J.K.; Voskuil, T.L.

    1993-06-01

    Remedial actions conducted under the auspices of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) were completed at the Y-12 United Nuclear Corporation (UNC) Disposal Site in August 1992. The purpose of this Postconstruction Report is to summarize numerous technical reports and provide CERCLA documentation for completion of the remedial actions. Other CERCLA reports, such as the Feasibility Study for the UNC Disposal Site, provide documentation leading up to the remedial action decision. The remedial action chosen, placement of a modified RCRA cap, was completed successfully, and performance standards were either met or exceeded. This remedial action provided solutions to two environmentally contaminated areas and achieved the goal of minimizing the potential for contamination of the shallow groundwater downgradient of the site, thereby providing protection of human health and the environment. Surveillance and maintenance of the cap will be accomplished to ensure cap integrity, and groundwater monitoring downgradient of the site will continue to confirm the acceptability of the remedial action chosen

  9. A successful effort to involve stakeholders in the selection of a site for a corrective action management unit

    International Nuclear Information System (INIS)

    Conway, R.; Merkhofer, M.W.; Oms, E.

    1995-01-01

    As part of the effort to clean up hazardous waste sites, Sandia National Laboratories in New Mexico (SNL/NM) adopted a novel approach to involving stakeholders in a key decision associated with its Environmental Restoration (ER) Project. The decision was where to locate a Corrective Action Management Unit (CAMU), an area designed to consolidate, store, and treat wastes generated from cleanup activities. The decision-making approach was a variation of a technique known as multiattribute utility analysis (MUA). Although MUA has rarely been undertaken during normal Project activities, it proved to be a surprisingly effective means for involving stakeholders in the decision process, generating consensus over a selected site, and enhancing public trust and understanding of Project activities. Requirements and criteria for selecting CAMU sites are provided by the Environmental Protection Agency's (EPA's) CAMU Final Rule (EPA 1993). Recognizing the lack of experience with the Rule and the importance of community understanding and support, the ER Project sought an approach that would allow stakeholders to participate in the site-selection process

  10. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 574: Neptune, Nevada National Security Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2011-08-31

    This Streamlined Approach for Environmental Restoration (SAFER) Plan identifies the activities required for closure of Corrective Action Unit (CAU) 574, Neptune. CAU 574 is included in the Federal Facility Agreement and Consent Order (FFACO) (1996 [as amended March 2010]) and consists of the following two Corrective Action Sites (CASs) located in Area 12 of the Nevada National Security Site: (1) CAS 12-23-10, U12c.03 Crater (Neptune); (2) CAS 12-45-01, U12e.05 Crater (Blanca). This plan provides the methodology for the field activities that will be performed to gather the necessary information for closure of the two CASs. There is sufficient information and process knowledge regarding the expected nature and extent of potential contaminants to recommend closure of CAU 574 using the SAFER process. Based on historical documentation, personnel interviews, site process knowledge, site visits, photographs, field screening, analytical results, the results of the data quality objective (DQO) process (Section 3.0), and an evaluation of corrective action alternatives (Appendix B), closure in place with administrative controls is the expected closure strategy for CAU 574. Additional information will be obtained by conducting a field investigation to verify and support the expected closure strategy and provide a defensible recommendation that no further corrective action is necessary. This will be presented in a Closure Report that will be prepared and submitted to the Nevada Division of Environmental Protection (NDEP) for review and approval.

  11. Corrective Action Decision Document for Corrective Action Unit 204: Storage Bunkers, Nevada Test Site, Nevada: Revision 0, Including Errata Sheet

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2004-04-01

    This Corrective Action Decision Document identifies the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's corrective action alternative recommendation for each of the corrective action sites (CASs) within Corrective Action Unit (CAU) 204: Storage Bunkers, Nevada Test Site (NTS), Nevada, under the Federal Facility Agreement and Consent Order. An evaluation of analytical data from the corrective action investigation, review of current and future operations at each CAS, and a detailed comparative analysis of potential corrective action alternatives were used to determine the appropriate corrective action for each CAS. There are six CASs in CAU 204, which are all located between Areas 1, 2, 3, and 5 on the NTS. The No Further Action alternative was recommended for CASs 01-34-01, 02-34-01, 03-34-01, and 05-99-02; and a Closure in Place with Administrative Controls recommendation was the preferred corrective action for CASs 05-18-02 and 05-33-01. These alternatives were judged to meet all requirements for the technical components evaluated as well as applicable state and federal regulations for closure of the sites and will eliminate potential future exposure pathways to the contaminated media at CAU 204.

  12. Macro and micro geo-spatial environment consideration for landfill site selection in Sharjah, United Arab Emirates.

    Science.gov (United States)

    Al-Ruzouq, Rami; Shanableh, Abdallah; Omar, Maher; Al-Khayyat, Ghadeer

    2018-02-17

    Waste management involves various procedures and resources for proper handling of waste materials in compliance with health codes and environmental regulations. Landfills are one of the oldest, most convenient, and cheapest methods to deposit waste. However, landfill utilization involves social, environmental, geotechnical, cost, and restrictive regulation considerations. For instance, landfills are considered a source of hazardous air pollutants that can cause health and environmental problems related to landfill gas and non-methanic organic compounds. The increasing number of sensors and availability of remotely sensed images along with rapid development of spatial technology are helping with effective landfill site selection. The present study used fuzzy membership and the analytical hierarchy process (AHP) in a geo-spatial environment for landfill site selection in the city of Sharjah, United Arab Emirates. Macro- and micro-level factors were considered; the macro-level contained social and economic factors, while the micro-level accounted for geo-environmental factors. The weighted spatial layers were combined to generate landfill suitability and overall suitability index maps. Sensitivity analysis was then carried out to rectify initial theoretical weights. The results showed that 30.25% of the study area had a high suitability index for landfill sites in the Sharjah, and the most suitable site was selected based on weighted factors. The developed fuzzy-AHP methodology can be applied in neighboring regions with similar geo-natural conditions.

  13. Closure Report for Corrective Action Unit 116: Area 25 Test Cell C Facility, Nevada National Security Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2011-09-29

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 116, Area 25 Test Cell C Facility. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 [as amended March 2010]). CAU 116 consists of the following two Corrective Action Sites (CASs), located in Area 25 of the Nevada National Security Site: (1) CAS 25-23-20, Nuclear Furnace Piping and (2) CAS 25-41-05, Test Cell C Facility. CAS 25-41-05 consisted of Building 3210 and the attached concrete shield wall. CAS 25-23-20 consisted of the nuclear furnace piping and tanks. Closure activities began in January 2007 and were completed in August 2011. Activities were conducted according to Revision 1 of the Streamlined Approach for Environmental Restoration Plan for CAU 116 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2008). This CR provides documentation supporting the completed corrective actions and provides data confirming that closure objectives for CAU 116 were met. Site characterization data and process knowledge indicated that surface areas were radiologically contaminated above release limits and that regulated and/or hazardous wastes were present in the facility.

  14. Corrective Action Decision Document/Closure Report for Corrective Action Unit 504: 16a-Tunnel Muckpile, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2010-03-15

    This Corrective Action Decision Document (CADD)/Closure Report (CR) was prepared by the Defense Threat Reduction Agency (DTRA) for Corrective Action Unit (CAU) 504, 16a-Tunnel Muckpile. This CADD/CR is consistent with the requirements of the Federal Facility Agreement and Consent Order (FFACO) agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. Corrective Action Unit 504 is comprised of four Corrective Action Sites (CASs): • 16-06-01, Muckpile • 16-23-01, Contaminated Burial Pit • 16-23-02, Contaminated Area • 16-99-01, Concrete Construction Waste Corrective Action Site 16-23-01 is not a burial pit; it is part of CAS 16-06-01. Therefore, there is not a separate data analysis and assessment for CAS 16-23-01; it is included as part of the assessment for CAS 16-06-01. In addition to these CASs, the channel between CAS 16-23-02 (Contaminated Area) and Mid Valley Road was investigated with walk-over radiological surveys and soil sampling using hand tools. The purpose of this CADD/CR is to provide justification and documentation supporting the recommendation for closure in place with use restrictions for CAU 504. A CADD was originally submitted for CAU 504 and approved by the Nevada Division of Environmental Protection (NDEP). However, following an agreement between NDEP, DTRA, and the DOE, National Nuclear Security Administration Nevada Site Office to change to a risk-based approach for assessing the corrective action investigation (CAI) data, NDEP agreed that the CAU could be re-evaluated using the risk-based approach and a CADD/CR prepared to close the site.

  15. Corrective Action Plan for Corrective Action Unit 135: Area 25 Underground Storage Tanks, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Cox, D. H.

    2000-01-01

    The Area 25 Underground Storage Tanks site Corrective Action Unit (CAU) 135 will be closed by unrestricted release decontamination and verification survey, in accordance with the Federal Facility Agreement and Consert Order (FFACO, 1996). The CAU includes one Corrective Action Site (CAS). The Area 25 Underground Storage Tanks, (CAS 25-02-01), referred to as the Engine-Maintenance Assembly and Disassembly (E-MAD) Waste Holdup Tanks and Vault, were used to receive liquid waste from all of the radioactive drains at the E-MAD Facility. Based on the results of the Corrective Action Investigation conducted in June 1999 discussed in the Corrective Action Investigation Plan for Corrective Action Unit 135: Area 25 Underground Storage Tanks, Nevada Test Site, Nevada (DOE/NV,1999a), one sample from the radiological survey of the concrete vault interior exceeded radionuclide preliminary action levels. The analytes from the sediment samples that exceeded the preliminary action levels are polychlorinated biphenyls, Resource Conservation and Recovery Act metals, total petroleum hydrocarbons as diesel-range organics, and radionuclides. Unrestricted release decontamination and verification involves removal of concrete and the cement-lined pump sump from the vault. After verification that the contamination has been removed, the vault will be repaired with concrete, as necessary. The radiological- and chemical-contaminated pump sump and concrete removed from the vault would be disposed of at the Area 5 Radioactive Waste Management Site. The vault interior will be field surveyed following removal of contaminated material to verify that unrestricted release criteria have been achieved

  16. Corrective Action Plan for Corrective Action Unit 135: Area 25 Underground Storage Tanks, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    D. H. Cox

    2000-07-01

    The Area 25 Underground Storage Tanks site Corrective Action Unit (CAU) 135 will be closed by unrestricted release decontamination and verification survey, in accordance with the Federal Facility Agreement and Consert Order (FFACO, 1996). The CAU includes one Corrective Action Site (CAS). The Area 25 Underground Storage Tanks, (CAS 25-02-01), referred to as the Engine-Maintenance Assembly and Disassembly (E-MAD) Waste Holdup Tanks and Vault, were used to receive liquid waste from all of the radioactive drains at the E-MAD Facility. Based on the results of the Corrective Action Investigation conducted in June 1999 discussed in the Corrective Action Investigation Plan for Corrective Action Unit 135: Area 25 Underground Storage Tanks, Nevada Test Site, Nevada (DOE/NV,1999a), one sample from the radiological survey of the concrete vault interior exceeded radionuclide preliminary action levels. The analytes from the sediment samples that exceeded the preliminary action levels are polychlorinated biphenyls, Resource Conservation and Recovery Act metals, total petroleum hydrocarbons as diesel-range organics, and radionuclides. Unrestricted release decontamination and verification involves removal of concrete and the cement-lined pump sump from the vault. After verification that the contamination has been removed, the vault will be repaired with concrete, as necessary. The radiological- and chemical-contaminated pump sump and concrete removed from the vault would be disposed of at the Area 5 Radioactive Waste Management Site. The vault interior will be field surveyed following removal of contaminated material to verify that unrestricted release criteria have been achieved.

  17. Probing symmetry and symmetry breaking in resonant soft-x-ray fluorescence spectra of molecules

    Energy Technology Data Exchange (ETDEWEB)

    Glans, P.; Gunnelin, K.; Guo, J. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    Conventional non-resonant soft X-ray emission brings about information about electronic structure through its symmetry and polarization selectivity, the character of which is governed by simple dipole rules. For centro-symmetric molecules with the emitting atom at the inversion center these rules lead to selective emission through the required parity change. For the more common classes of molecules which have lower symmetry or for systems with degenerate core orbitals (delocalized over identical sites), it is merely the local symmetry selectivity that provides a probe of the local atomic orbital contribution to the molecular orbital. For instance, in X-ray spectra of first row species the intensities essentially map the p-density at each particular atomic site, and, in a molecular orbital picture, the contribution of the local p-type atomic orbitals in the LCAO description of the molecular orbitals. The situation is different for resonant X-ray fluorescence spectra. Here strict parity and symmetry selectivity gives rise to a strong frequency dependence for all molecules with an element of symmetry. In addition to symmetry selectivity the strong frequency dependence of resonant X-ray emission is caused by the interplay between the shape of a narrow X-ray excitation energy function and the lifetime and vibrational broadenings of the resonantly excited core states. This interplay leads to various observable effects, such as linear dispersion, resonance narrowing and emission line (Stokes) doubling. Also from the point of view of polarization selectivity, the resonantly excited X-ray spectra are much more informative than the corresponding non-resonant spectra. Examples are presented for nitrogen, oxygen, and carbon dioxide molecules.

  18. Superfund record of decision (EPA Region 4): Marzone Inc. /Chevron Chemical Company Superfund Site, Operable Unit 1, Tifton, GA, September 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-30

    This decision document (Record of Decision) presents the selected remedial action for the Marzone, Inc./Chevron Chemical Company Site in Tift County, Georgia. EPA has organized the work at this Site into two phases or operable units (OUs). Operable Unit No. 1 involves contamination on the 1.68-acre former Marzone pesticide blending area, part of the Slack Property, and railroad drainage ditch past the southwest corner of the horse pasture, and contaminated groundwater related to the Site. This first operable unit is broken down into two separate remedies; one for groundwater and the other for soil.

  19. Trieste lectures on mirror symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Hori, K [Department of Physics and Department of Mathematics, University of Toronto, Toronto, Ontario (Canada)

    2003-08-15

    These are pedagogical lectures on mirror symmetry given at the Spring School in ICTP, Trieste, March 2002. The focus is placed on worldsheet descriptions of the physics related to mirror symmetry. We start with the introduction to general aspects of (2,2) supersymmetric field theories in 1 + 1 dimensions. We next move on to the study and applications of linear sigma model. Finally, we provide a proof of mirror symmetry in a class of models. (author)

  20. Quantum symmetry in quantum theory

    International Nuclear Information System (INIS)

    Schomerus, V.

    1993-02-01

    Symmetry concepts have always been of great importance for physical problems like explicit calculations, classification or model building. More recently, new 'quantum symmetries' ((quasi) quantum groups) attracted much interest in quantum theory. It is shown that all these quantum symmetries permit a conventional formulation as symmetry in quantum mechanics. Symmetry transformations can act on the Hilbert space H of physical states such that the ground state is invariant and field operators transform covariantly. Models show that one must allow for 'truncation' in the tensor product of representations of a quantum symmetry. This means that the dimension of the tensor product of two representations of dimension σ 1 and σ 2 may be strictly smaller than σ 1 σ 2 . Consistency of the transformation law of field operators local braid relations leads us to expect, that (weak) quasi quantum groups are the most general symmetries in local quantum theory. The elements of the R-matrix which appears in these local braid relations turn out to be operators on H in general. It will be explained in detail how examples of field algebras with weak quasi quantum group symmetry can be obtained. Given a set of observable field with a finite number of superselection sectors, a quantum symmetry together with a complete set of covariant field operators which obey local braid relations are constructed. A covariant transformation law for adjoint fields is not automatic but will follow when the existence of an appropriate antipode is assumed. At the example of the chiral critical Ising model, non-uniqueness of the quantum symmetry will be demonstrated. Generalized quantum symmetries yield examples of gauge symmetries in non-commutative geometry. Quasi-quantum planes are introduced as the simplest examples of quasi-associative differential geometry. (Weak) quasi quantum groups can act on them by generalized derivations much as quantum groups do in non-commutative (differential-) geometry

  1. Neutrino masses and family symmetry

    International Nuclear Information System (INIS)

    Grinstein, B.; Preskill, J.; Wise, M.B.

    1985-01-01

    Neutrino masses in the 100 eV-1 MeV range are permitted if there is a spontaneously broken global family symmetry that allows the heavy neutrinos to decay by Goldstone boson emission with a cosmologically acceptable lifetime. The family symmetry may be either abelian or nonabelian; we present models illustrating both possibilities. If the family symmetry is nonabelian, then the decay tau -> μ + Goldstone boson or tau -> e + Goldstone may have an observable rate. (orig.)

  2. Insights from Siting New Nuclear Power Plants in the Central and Eastern United States

    International Nuclear Information System (INIS)

    Munson, Clifford G.; Kugler, Andrew J.

    2011-01-01

    The staff of the U.S. Nuclear Regulatory Commission (NRC) has completed its review for four early site permits and for four standard reactor designs. It is currently reviewing applications for fourteen combined license applications and three additional reactor designs. The staff is applying lessons it has learned from the reviews to date to the review work going forward. The licensing process being used by current applicants differs significantly from that used by the current operating fleet. The previous process required two steps. First an applicant had to obtain a construction permit to build the plant. Then, near the end of construction, the applicant had to obtain an operating license. Under the process in Part 52, an applicant can apply for a combined license (COL) that allows construction and (once certain conditions are met) operation of a new plant - a one-step process. An applicant for a COL may reference an early site permit (ESP13), a standard design certification, both, or neither. In addition to developing Part 52, the NRC also revised CFR Part 100 by adding Subpart B, which includes sections 100.21, 'Non-seismic siting criteria', and 100.23, 'Geologic and seismic siting criteria'. The NRC staff also revised the Standard Review Plan (NUREG-0800) and developed Regulatory Guide (RG) 1.206, 'Combined License Applications for Nuclear Power Plants (LWR Edition).' The NRC staff incorporated into the revision of NUREG-0800 and development of RG 1.206 some early lessons learned from its review of the first three ESPs. Staff work begins before the application is received, as the staff interacts with the applicant to identify issues that will require special treatment or specific staff resources. After the application is submitted, if the NRC finds the application acceptable, the safety and environmental reviews begin, proceeding in parallel. The safety review culminates in the issuance of a safety evaluation report (SER) after it

  3. An introduction to Yangian symmetries

    International Nuclear Information System (INIS)

    Bernard, D.

    1992-01-01

    Some aspects of the quantum Yangians as symmetry algebras of two-dimensional quantum field theories are reviewed. They include two main issues: the first is the classical Heisenberg model, covering non-Abelian symmetries, generators of the symmetries and the semi-classical Yangians, an alternative presentation of the semi-classical Yangians, digression on Poisson-Lie groups. The second is the quantum Heisenberg chain, covering non-Abelian symmetries and the quantum Yangians, the transfer matrix and an alternative presentation of the Yangians, digression on the double Yangians. (K.A.) 15 refs

  4. Killing symmetries in neutron transport

    International Nuclear Information System (INIS)

    Lukacs, B.; Racz, A.

    1992-10-01

    Although inside the reactor zone there is no exact continuous spatial symmetry, in certain configurations neutron flux distribution is close to a symmetrical one. In such cases the symmetrical solution could provide a good starting point to determine the non-symmetrical power distribution. All possible symmetries are determined in the 3-dimensional Euclidean space, and the form of the transport equation is discussed in such a coordinate system which is adapted to the particular symmetry. Possible spontaneous symmetry breakings are pointed out. (author) 6 refs

  5. The conservation of orbital symmetry

    CERN Document Server

    Woodward, R B

    2013-01-01

    The Conservation of Orbital Symmetry examines the principle of conservation of orbital symmetry and its use. The central content of the principle was that reactions occur readily when there is congruence between orbital symmetry characteristics of reactants and products, and only with difficulty when that congruence does not obtain-or to put it more succinctly, orbital symmetry is conserved in concerted reaction. This principle is expected to endure, whatever the language in which it may be couched, or whatever greater precision may be developed in its application and extension. The book ope

  6. Leptogenesis and residual CP symmetry

    International Nuclear Information System (INIS)

    Chen, Peng; Ding, Gui-Jun; King, Stephen F.

    2016-01-01

    We discuss flavour dependent leptogenesis in the framework of lepton flavour models based on discrete flavour and CP symmetries applied to the type-I seesaw model. Working in the flavour basis, we analyse the case of two general residual CP symmetries in the neutrino sector, which corresponds to all possible semi-direct models based on a preserved Z 2 in the neutrino sector, together with a CP symmetry, which constrains the PMNS matrix up to a single free parameter which may be fixed by the reactor angle. We systematically study and classify this case for all possible residual CP symmetries, and show that the R-matrix is tightly constrained up to a single free parameter, with only certain forms being consistent with successful leptogenesis, leading to possible connections between leptogenesis and PMNS parameters. The formalism is completely general in the sense that the two residual CP symmetries could result from any high energy discrete flavour theory which respects any CP symmetry. As a simple example, we apply the formalism to a high energy S 4 flavour symmetry with a generalized CP symmetry, broken to two residual CP symmetries in the neutrino sector, recovering familiar results for PMNS predictions, together with new results for flavour dependent leptogenesis.

  7. Corrective Action Investigation Plan for Corrective Action Unit 366: Area 11 Plutonium Valley Dispersion Sites, Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Matthews

    2011-09-01

    Corrective Action Unit 366 comprises the six corrective action sites (CASs) listed below: (1) 11-08-01, Contaminated Waste Dump No.1; (2) 11-08-02, Contaminated Waste Dump No.2; (3) 11-23-01, Radioactively Contaminated Area A; (4) 11-23-02, Radioactively Contaminated Area B; (5) 11-23-03, Radioactively Contaminated Area C; and (6) 11-23-04, Radioactively Contaminated Area D. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed July 6, 2011, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 366. The presence and nature of contamination at CAU 366 will be evaluated based on information collected from a field investigation. Radiological contamination will be evaluated based on a comparison of the total effective dose (TED) at sample locations to the dose-based final action level (FAL). The TED will be calculated by summing the estimates of internal and external dose. Results from the analysis of soil samples collected from sample plots will be used to calculate internal radiological dose. Thermoluminescent dosimeters placed at each sample location will be used to measure external radiological dose. Based on historical documentation of the releases

  8. Mineralogic Zonation Within the Tuff Confining Unit, Yucca Flat, Nevada Test Site

    International Nuclear Information System (INIS)

    Lance Prothro

    2005-01-01

    Recently acquired mineralogic data from drill hole samples in Yucca Flat show that the tuff confining unit (TCU) can be subdivided into three mineralogic zones based on the relative abundances of primary and secondary mineral assemblages. These zones are (1) an upper zone characterized by the abundance of the zeolite mineral clinoptilolite with lesser amounts of felsic and clay minerals; (2) a middle zone with felsic minerals dominant over clinoptilolite and clay minerals; and (3) a basal argillic zone where clay minerals are dominant over felsic minerals and clinoptilolite. Interpretation of the mineralogic data, along with lithologic, stratigraphic, and geophysical data from approximately 500 drill holes, reveals a three-layer mineralogic model for the TCU that shows all three zones are extensive beneath Yucca Flat. The mineralogic model will be used to subdivide the TCU in the Yucca Flat hydrostratigraphic framework model, resulting in a more accurate and versatile framework model. In addition, the identification of the type, quantity, and distribution of minerals within each TCU layer will permit modelers to better predict the spatial distribution and extent of contaminant transport from underground tests in Yucca Flat, at both the level of the hydrologic source term and the corrective action unit

  9. United States of America. Status of commercial LILW site closure in the USA

    International Nuclear Information System (INIS)

    2001-01-01

    The United States has adopted the requirements of 10 CFR Part 61 for the licensing standards of all new commercial low level radioactive waste disposal facilities. In general, low level waste as addressed in 10 CFR Part 61 is that waste that is not classified as high level waste, transuranic waste, or naturally occurring or accelerator produced radioactive materials. The requirements of this regulation dictate that certain standards be met by any new licensed facility. Obviously, arid locations offer certain advantages over humid locations with regards to controlling moisture infiltration and movement, the primary mechanism for radionuclide transport. Whereas relatively simple thick vegetated caps designed for enhancing evapotranspiration may be suitable for arid locations, more humid facilities may require more elaborate means to provide for the same degree of long term isolation of wastes from the biosphere. In general, the closure systems at low level disposal facilities built in humid areas of the United States tend to have more engineering features than those in more arid locations

  10. Corrective Action Investigation Plan for Corrective Action Unit 561: Waste Disposal Areas, Nevada Test Site, Nevada, Revision 0

    International Nuclear Information System (INIS)

    Grant Evenson

    2008-01-01

    Corrective Action Unit (CAU) 561 is located in Areas 1, 2, 3, 5, 12, 22, 23, and 25 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 561 is comprised of the 10 corrective action sites (CASs) listed below: (1) 01-19-01, Waste Dump; (2) 02-08-02, Waste Dump and Burn Area; (3) 03-19-02, Debris Pile; (4) 05-62-01, Radioactive Gravel Pile; (5) 12-23-09, Radioactive Waste Dump; (6) 22-19-06, Buried Waste Disposal Site; (7) 23-21-04, Waste Disposal Trenches; (8) 25-08-02, Waste Dump; (9) 25-23-21, Radioactive Waste Dump; and (10) 25-25-19, Hydrocarbon Stains and Trench. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on April 28, 2008, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and National Security Technologies, LLC. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 561. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS. The scope of the Corrective Action Investigation for CAU 561 includes the following activities: (1) Move surface debris and/or materials, as needed, to facilitate sampling. (2) Conduct

  11. Closure plan for Corrective Action Unit 94: Building 650 Leachfield, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    1998-03-01

    The Building 650 Leachfield, Corrective Action Unit (CAU) 94, will be clean closed by removal in accordance with the Resource Conservation and Recover Act (RCRA) operational permit and the Federal Facility Agreement and Consent Order. Historically, laboratory effluent was discharged through pipelines leading from the Radiochemistry Laboratory in Building 650 to a distribution box and a series of pipes dispersed across the leachfield. Effluent from the laboratory contained both hazardous and radioactive constituents. Discharge of hazardous and radioactive waste began in 1965. Discharge of radioactive waste ended in 1979 and hazardous waste discharge ended in 1987. From 1987 to 1993 the leachfield was used for the disposal of non-hazardous waste water. The piping leading to the leachfield was sealed in 1993

  12. The Fukushima Daiichi nuclear site. Airborne releases during works on unit 3 in August 2013

    International Nuclear Information System (INIS)

    2014-07-01

    After having briefly recalled the consequences of the earthquake and tsunami on the Fukushima-Daiichi nuclear power station, this document briefly describes what happened to the building of the reactor number 3, and works to be done to dismantle this installation: removal of damaged structures, of debris in the pool, and then removal of fuel from this pool, removal of the core degraded fuel. The removal of structures and debris has been achieved in October 2013, but leaded to radioactive airborne releases. Simulations of atmospheric dispersion have been performed by the IRSN. Radioactive measurements have been also performed, and the evolution of crop contamination between 2011 and 2013 is discussed, notably in the case of rice. Lessons learned can be useful for the dismantling of other units

  13. Observations on Faults and Associated Permeability Structures in Hydrogeologic Units at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Prothro, Lance B.; Drellack, Sigmund L.; Haugstad, Dawn N.; Huckins-Gang, Heather E.; Townsend, Margaret J.

    2009-03-30

    Observational data on Nevada Test Site (NTS) faults were gathered from a variety of sources, including surface and tunnel exposures, core samples, geophysical logs, and down-hole cameras. These data show that NTS fault characteristics and fault zone permeability structures are similar to those of faults studied in other regions. Faults at the NTS form complex and heterogeneous fault zones with flow properties that vary in both space and time. Flow property variability within fault zones can be broken down into four major components that allow for the development of a simplified, first approximation model of NTS fault zones. This conceptual model can be used as a general guide during development and evaluation of groundwater flow and contaminate transport models at the NTS.

  14. Value of information analysis for Corrective Action Unit 97: Yucca Flat, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    IT Corporation Las Vegas

    1999-11-19

    The value-of-information analysis evaluated data collection options for characterizing groundwater transport of contamination associated with the Yucca Flat and Climax Mine Corrective Action Units. Experts provided inputs for the evaluation of 48 characterization options, which included 27 component activities, 12 combinations of activities (subgroups), and 9 combinations of subgroups (groups). The options range from an individual study using existing data and intended to address a relatively narrow uncertainty to a 52-million dollar group of activities designed to collect and analyze new information to broadly address multiple uncertainties. A modified version of the contaminant transport component of the regional model was used to simulate contaminant transport and to estimate the maximum extent of the contaminant boundary, defined as that distance beyond which the committed effective dose equivalent from the residual radionuclides in groundwater will not exceed 4 millirem per year within 1,000 years. These simulations identified the model parameters most responsible for uncertainty over the contaminant boundary and determined weights indicating the relative importance of these parameters. Key inputs were identified through sensitivity analysis; the five selected parameters were flux for flow into Yucca Flat from the north, hydrologic source term, effective porosity and diffusion parameter for the Lower Carbonate Aquifer, and path length from the Volcanic Confining Unit to the Lower Carbonate Aquifer. Four measures were used to quantify uncertainty reduction. Using Bayesian analysis, the options were compared and ranked based on their costs and estimates of their effectiveness at reducing the key uncertainties relevant to predicting the maximum contaminant boundary.

  15. Value of information analysis for Corrective Action Unit 97: Yucca Flat, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    1999-01-01

    The value-of-information analysis evaluated data collection options for characterizing groundwater transport of contamination associated with the Yucca Flat and Climax Mine Corrective Action Units. Experts provided inputs for the evaluation of 48 characterization options, which included 27 component activities, 12 combinations of activities (subgroups), and 9 combinations of subgroups (groups). The options range from an individual study using existing data and intended to address a relatively narrow uncertainty to a 52-million dollar group of activities designed to collect and analyze new information to broadly address multiple uncertainties. A modified version of the contaminant transport component of the regional model was used to simulate contaminant transport and to estimate the maximum extent of the contaminant boundary, defined as that distance beyond which the committed effective dose equivalent from the residual radionuclides in groundwater will not exceed 4 millirem per year within 1,000 years. These simulations identified the model parameters most responsible for uncertainty over the contaminant boundary and determined weights indicating the relative importance of these parameters. Key inputs were identified through sensitivity analysis; the five selected parameters were flux for flow into Yucca Flat from the north, hydrologic source term, effective porosity and diffusion parameter for the Lower Carbonate Aquifer, and path length from the Volcanic Confining Unit to the Lower Carbonate Aquifer. Four measures were used to quantify uncertainty reduction. Using Bayesian analysis, the options were compared and ranked based on their costs and estimates of their effectiveness at reducing the key uncertainties relevant to predicting the maximum contaminant boundary

  16. Cernavoda Unit 2: - BOP 3D model proposal for a possible organization of site activities

    International Nuclear Information System (INIS)

    Ghiesura, G.; Scarsin, Sioli; Orlandi, S.

    1999-01-01

    The scope of this activity is to define characteristics and advantages of the 3D model of Cernavoda BOP to this set up at site for engineering and construction activities. This model will provide a modern and proven tool able to strongly support the site activities with particular regard to the following: 1. engineering activities, - plant arrangement 'double check' for resolution of clashing; - easy management of future design changes; - real time plant configuration updating as soon as any design modification is approved and integrated in the model; - preparation of high quality documentation for procurement, construction and commissioning; - prompt availability of the as built configuration of the plant as soon as the last modification is frozen; 2. material procurement activities, - definition of the priorities in the construction material procurement according to the construction planning by area; - inventory list of equipment, pipes, fittings, valves, cable trays and ventilation ducts to be installed in each construction area; 3. construction activities, - definition of construction sequences, with particular reference in the congested areas, for piping cable trays (electrical and C-and-I) and ventilations ducts; - definition of piping spools by construction contractors; - follow-up of the activities in each area (i.e. construction, painting, insulation, flushing, pressure testing, etc); 4. turn-over and commissioning, - check of the progress. The success of this approach is based on the following: i) proper management of the remote workstations providing easy and reliable access to the model; ii) subdivision of the Integrated Building in construction areas, whose detail design may be allotted to Romanian organizations with multidisciplinary tasks; iii) integration in the model of the remote developed engineering in order to validate the details of the design. (authors)

  17. Interprofessional collaboration and family member involvement in intensive care units: emerging themes from a multi-sited ethnography.

    Science.gov (United States)

    Reeves, Scott; McMillan, Sarah E; Kachan, Natasha; Paradis, Elise; Leslie, Myles; Kitto, Simon

    2015-05-01

    This article presents emerging findings from the first year of a two-year study, which employed ethnographic methods to explore the culture of interprofessional collaboration (IPC) and family member involvement in eight North American intensive care units (ICUs). The study utilized a comparative ethnographic approach - gathering observation, interview and documentary data relating to the behaviors and attitudes of healthcare providers and family members across several sites. In total, 504 hours of ICU-based observational data were gathered over a 12-month period in four ICUs based in two US cities. In addition, 56 semi-structured interviews were undertaken with a range of ICU staff (e.g. nurses, doctors and pharmacists) and family members. Documentary data (e.g. clinical guidelines and unit policies) were also collected to help develop an insight into how the different sites engaged organizationally with IPC and family member involvement. Directed content analysis enabled the identification and categorization of major themes within the data. An interprofessional conceptual framework was utilized to help frame the coding for the analysis. The preliminary findings presented in this paper illuminate a number of issues related to the nature of IPC and family member involvement within an ICU context. These findings are discussed in relation to the wider interprofessional and health services literature.

  18. Proposed plan for interim remedial measures at the 100-HR-1 Operable Unit, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1995-01-01

    This proposed plan identifies the preferred alternative for interim remedial measures for remedial action of radioactive liquid waste disposal sites at the 100-HR-1 Operable Unit, located at the Hanford Site. It also summarizes other remedial alternatives evaluated for interim remedial measures in this operable unit. The intent of interim remedial measures is to speed up actions to address contaminated areas that historically received radioactive liquid waste discharges that pose a potential threat to human health and the environment. This proposed plan is being issued by the Washington State Department of Ecology (Ecology), the lead regulatory agency; the US Environmental Protection Agency (EPA), the support regulatory agency; and the US Department of Energy (DOE), the responsible agency. Ecology, EPA, and DOE are issuing this proposed plan as part of their public participation responsibilities under Section 117(a) of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), commonly known as the ''Superfund Program.'' The proposed plan is intended to be a fact sheet for public review that (1) briefly describes the remedial alternatives analyzed; (2) proposes a preferred alternative; (3) summarizes the information relied upon to recommend the preferred alternative; and (4) provides a basis for an interim action record of decision (ROD). The preferred alternative presented in this proposed plan is removal, treatment (as appropriate), and disposal of contaminated soil and associated structures. Treatment will be conducted if there is cost benefit

  19. Quantum mechanics symmetries

    CERN Document Server

    Greiner, Walter

    1989-01-01

    "Quantum Dynamics" is a major survey of quantum theory based on Walter Greiner's long-running and highly successful courses at the University of Frankfurt. The key to understanding in quantum theory is to reinforce lecture attendance and textual study by working through plenty of representative and detailed examples. Firm belief in this principle led Greiner to develop his unique course and to transform it into a remarkable and comprehensive text. The text features a large number of examples and exercises involving many of the most advanced topics in quantum theory. These examples give practical and precise demonstrations of how to use the often subtle mathematics behind quantum theory. The text is divided into five volumes: Quantum Mechanics I - An Introduction, Quantum Mechanics II - Symmetries, Relativistic Quantum Mechanics, Quantum Electrodynamics, Gauge Theory of Weak Interactions. These five volumes take the reader from the fundamental postulates of quantum mechanics up to the latest research in partic...

  20. Symmetries of cluster configurations

    International Nuclear Information System (INIS)

    Kramer, P.

    1975-01-01

    A deeper understanding of clustering phenomena in nuclei must encompass at least two interrelated aspects of the subject: (A) Given a system of A nucleons with two-body interactions, what are the relevant and persistent modes of clustering involved. What is the nature of the correlated nucleon groups which form the clusters, and what is their mutual interaction. (B) Given the cluster modes and their interaction, what systematic patterns of nuclear structure and reactions emerge from it. Are there, for example, families of states which share the same ''cluster parents''. Which cluster modes are compatible or exclude each other. What quantum numbers could characterize cluster configurations. There is no doubt that we can learn a good deal from the experimentalists who have discovered many of the features relevant to aspect (B). Symmetries specific to cluster configurations which can throw some light on both aspects of clustering are discussed

  1. Holography without translational symmetry

    CERN Document Server

    Vegh, David

    2013-01-01

    We propose massive gravity as a holographic framework for describing a class of strongly interacting quantum field theories with broken translational symmetry. Bulk gravitons are assumed to have a Lorentz-breaking mass term as a substitute for spatial inhomogeneities. This breaks momentum-conservation in the boundary field theory. At finite chemical potential, the gravity duals are charged black holes in asymptotically anti-de Sitter spacetime. The conductivity in these systems generally exhibits a Drude peak that approaches a delta function in the massless gravity limit. Furthermore, the optical conductivity shows an emergent scaling law: $|\\sigma(\\omega)| \\approx {A \\over \\omega^{\\alpha}} + B$. This result is consistent with that found earlier by Horowitz, Santos, and Tong who introduced an explicit inhomogeneous lattice into the system.

  2. Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 356: Mud Pits and Disposal Sites, Nevada Test Site, Nevada (Revision No. 0, August 2001); FINAL

    International Nuclear Information System (INIS)

    2001-01-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the actions necessary for the characterization and closure of Corrective Action Unit (CAU) 356, Mud Pits and Disposal Sites, as identified in the Federal Facility Agreement and Consent Order (FFACO). The CAU, located on the Nevada Test Site in Nevada, consists of seven Corrective Action Sites (CASs): CAS 03-04-01, Area 3 Change House Septic System; CAS 03-09-01, Mud Pit Spill Over; CAS 03-09-03, Mud Pit; CAS 03-09-04, Mud Pit; CAS 03-09-05, Mud Pit; CAS 20-16-01, Landfill; CAS 20-22-21, Drums. Sufficient information and process knowledge from historical documentation and investigations are the basis for the development of the phased approach chosen to address the data collection activities prior to implementing the preferred closure alternative for each CAS. The Phase I investigation will determine through collection of environmental samples from targeted populations (i.e., mud/soil cuttings above textural discontinuity) if contaminants of potential concern (COPCs) are present in concentrations exceeding preliminary action levels (PALs) at each of the CASs. If COPCs are present above PALs, a Phase II investigation will be implemented to determine the extent of contamination to support the appropriate corrective action alternative to complete closure of the site. Groundwater impacts from potentially migrating contaminants are not expected due to the depths to groundwater and limiting hydrologic drivers of low precipitation and high evaporation rates. Future land-use scenarios limit future uses to industrial activities; therefore, future residential uses are not considered. Potential exposure routes to site workers from contaminants of concern in septage and soils include oral ingestion, inhalation, or dermal contact (absorption) through in-advertent disturbance of contaminated structures and/or soils. Diesel within drilling muds is expected to be the primary COPC based on process

  3. Public involvement in the siting of contentious facilities; Lessons from the radioactive waste repository siting programmes in Canada and the United States, with special reference to the Swedish repository siting process

    International Nuclear Information System (INIS)

    Richardson, P.J.

    1997-08-01

    This report describes the conclusion of a two-part programme, begun in 1994 with the overall aim of assisting in the development of an acceptable public participation strategy for use in Sweden for the siting of contentious facilities, with particular reference to the ongoing siting programme for a deep repository for spent nuclear fuel. The first part of the work programme, a global review of siting practice, was reported as SSI Rapport 94-15, in November 1994. This recommended further detailed studies of at least two individual programmes, which have now been carried out in Canada and the United States, and are reported on here. They involved face to face meetings with many of the main stake holders in the two programmes and enabled valuable insight to be gained into the potential problems associated with increased public participation, as well as identifying good practice where it exists. The lessons learned have then been applied to the evolving repository siting process in Sweden. 35 refs

  4. Public involvement in the siting of contentious facilities; Lessons from the radioactive waste repository siting programmes in Canada and the United States, with special reference to the Swedish repository siting process

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, P J [Geosciences for Development and the Environment (United Kingdom)

    1997-08-01

    This report describes the conclusion of a two-part programme, begun in 1994 with the overall aim of assisting in the development of an acceptable public participation strategy for use in Sweden for the siting of contentious facilities, with particular reference to the ongoing siting programme for a deep repository for spent nuclear fuel. The first part of the work programme, a global review of siting practice, was reported as SSI Rapport 94-15, in November 1994. This recommended further detailed studies of at least two individual programmes, which have now been carried out in Canada and the United States, and are reported on here. They involved face to face meetings with many of the main stake holders in the two programmes and enabled valuable insight to be gained into the potential problems associated with increased public participation, as well as identifying good practice where it exists. The lessons learned have then been applied to the evolving repository siting process in Sweden. 35 refs.

  5. Record of Technical Change No.2 for ''Corrective Action Investigation Plan for Corrective Action Unit 143: Area 25 Contaminated Waste Dumps, Nevada Test Site, Nevada''

    International Nuclear Information System (INIS)

    1999-01-01

    This Record of Technical Change provides updates to the technical information included in ''Corrective Action Investigation Plan for Corrective Action Unit 143: Area 25 Contaminated Waste Dumps, Nevada Test Site, Nevada.''

  6. Corrective Action Decision Document for Corrective Action Unit 568. Area 3 Plutonium Dispersion Sites, Nevada National Security Site, Nevada Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick [Nevada Field Ofice, Las Vegas, NV (United States). National Nuclear Security Administration

    2015-08-01

    The purpose of this Corrective Action Decision Document is to identify and provide the rationale for the recommendation of corrective action alternatives (CAAs) for the 14 CASs within CAU 568. Corrective action investigation (CAI) activities were performed from April 2014 through May 2015, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 568: Area 3 Plutonium Dispersion Sites, Nevada National Security Site, Nevada; and in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices. The purpose of the CAI was to fulfill data needs as defined during the DQO process. The CAU 568 dataset of investigation results was evaluated based on a data quality assessment. This assessment demonstrated that the dataset is complete and acceptable for use in fulfilling the DQO data needs. Based on the evaluation of analytical data from the CAI, review of future and current operations at the 14 CASs, and the detailed and comparative analysis of the potential CAAs, the following corrective actions are recommended for CAU 568: • No further action is the preferred corrective action for CASs 03-23-17, 03-23-22, 03-23-26. • Closure in place is the preferred corrective action for CAS 03-23-19; 03-45-01; the SE DCBs at CASs 03-23-20, 03-23-23, 03-23-31, 03-23-32, 03-23-33, and 03-23-34; and the Pascal-BHCA at CAS 03-23-31. • Clean closure is the preferred corrective action for CASs 03-08-04, 03-23-30, and 03-26-04; and the four well head covers at CASs 03-23-20, 03-23-23, 03-23-31, and 03-23-33.

  7. Symmetry and asymmetry in mandelate racemase catalysis

    International Nuclear Information System (INIS)

    Whitman, C.P.; Hegeman, G.D.; Cleland, W.W.; Kenyon, G.L.

    1985-01-01

    Kinetic properties of mandelate racemase catalysis (Vmax, Km, deuterium isotope effects, and pH profiles) were all measured in both directions by the circular dichroic assay of Sharp. These results, along with those of studying interactions of mandelate racemase with resolved, enantiomeric competitive inhibitors [(R)- and (S)-alpha-phenylglycerates], indicate a high degree of symmetry in both binding and catalysis. Racemization of either enantiomer of mandelate in D 2 O did not show an overshoot region of molecular ellipticity in circular dichroic measurements upon approach to equilibrium. Both the absence of such an overshoot region and the high degree of kinetic symmetry are consistent with a one-base acceptor mechanism for mandelate racemase. On the other hand, results of irreversible inhibition with partially resolved, enantiomeric affinity labels [(R)- and (S)-alpha-phenylglycidates] reveal a ''functional asymmetry'' at the active site. Mechanistic proposals, consistent with these results, are presented

  8. Structure of bayerite-based lithium-aluminum layered double hydroxides (LDHs): observation of monoclinic symmetry.

    Science.gov (United States)

    Britto, Sylvia; Kamath, P Vishnu

    2009-12-21

    The double hydroxides of Li with Al, obtained by the imbibition of Li salts into bayerite and gibbsite-Al(OH)(3), are not different polytypes of the same symmetry but actually crystallize in two different symmetries. The bayerite-derived double hydroxides crystallize with monoclinic symmetry, while the gibbsite-derived hydroxides crystallize with hexagonal symmetry. Successive metal hydroxide layers in the bayerite-derived LDHs are translated by the vector ( approximately -1/3, 0, 1) with respect to each other. The exigency of hydrogen bonding drives the intercalated Cl(-) ion to a site with 2-fold coordination, whereas the intercalated water occupies a site with 6-fold coordination having a pseudotrigonal prismatic symmetry. The nonideal nature of the interlayer sites has implications for the observed selectivity of Li-Al LDHs toward anions of different symmetries.

  9. Corrective Action Investigation Plan for Corrective Action Unit 555: Septic Systems Nevada Test Site, Nevada, Rev. No.: 0 with Errata

    International Nuclear Information System (INIS)

    Pastor, Laura

    2005-01-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 555: Septic Systems, Nevada Test Site (NTS), Nevada. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 555 is located in Areas 1, 3 and 6 of the NTS, which is approximately 65 miles (mi) northwest of Las Vegas, Nevada, and is comprised of the five corrective action sites (CASs) shown on Figure 1-1 and listed below: (1) CAS 01-59-01, Area 1 Camp Septic System; (2) CAS 03-59-03, Core Handling Building Septic System; (3) CAS 06-20-05, Birdwell Dry Well; (4) CAS 06-59-01, Birdwell Septic System; and (5) CAS 06-59-02, National Cementers Septic System. An FFACO modification was approved on December 14, 2005, to include CAS 06-20-05, Birdwell Dry Well, as part of the scope of CAU 555. The work scope was expanded in this document to include the investigation of CAS 06-20-05. The Corrective Action Investigation (CAI) will include field inspections, radiological surveys, geophysical surveys, sampling of environmental media, analysis of samples, and assessment of investigation results, where appropriate. Data will be obtained to support corrective action alternative evaluations and waste management decisions. The CASs in CAU 555 are being investigated because hazardous and/or radioactive constituents may be present in concentrations that could potentially pose a threat to human health and the environment. Existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives for the CASs. Additional information will be generated by conducting a CAI

  10. Corrective Action Plan for Corrective Action Unit 262: Area 25 Septic Systems and Underground Discharge Point, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    K. B. Campbell email = campbek@nv.doe.gov

    2002-01-01

    This Corrective Action Plan (CAP) provides selected corrective action alternatives and proposes the closure methodology for Corrective Action Unit (CAU) 262, Area 25 Septic Systems and Underground Discharge Point. CAU 262 is identified in the Federal Facility Agreement and Consent Order (FFACO) of 1996. Remediation of CAU 262 is required under the FFACO. CAU 262 is located in Area 25 of the Nevada Test Site (NTS), approximately 100 kilometers (km) (62 miles [mi]) northwest of Las Vegas, Nevada. The nine Corrective Action Sites (CASs) within CAU 262 are located in the Nuclear Rocket Development Station complex. Individual CASs are located in the vicinity of the Reactor Maintenance, Assembly, and Disassembly (R-MAD); Engine Maintenance, Assembly, and Disassembly (E-MAD); and Test Cell C compounds. CAU 262 includes the following CASs as provided in the FFACO (1996); CAS 25-02-06, Underground Storage Tank; CAS 25-04-06, Septic Systems A and B; CAS 25-04-07, Septic System; CAS 25-05-03, Leachfield; CAS 25-05-05, Leachfield; CAS 25-05-06, Leachfield; CAS 25-05-08, Radioactive Leachfield; CAS 25-05-12, Leachfield; and CAS 25-51-01, Dry Well. Figures 2, 3, and 4 show the locations of the R-MAD, the E-MAD, and the Test Cell C CASs, respectively. The facilities within CAU 262 supported nuclear rocket reactor engine testing. Activities associated with the program were performed between 1958 and 1973. However, several other projects used the facilities after 1973. A significant quantity of radioactive and sanitary waste was produced during routine operations. Most of the radioactive waste was managed by disposal in the posted leachfields. Sanitary wastes were disposed in sanitary leachfields. Septic tanks, present at sanitary leachfields (i.e., CAS 25-02-06,2504-06 [Septic Systems A and B], 25-04-07, 25-05-05,25-05-12) allowed solids to settle out of suspension prior to entering the leachfield. Posted leachfields do not contain septic tanks. All CASs located in CAU 262 are

  11. Corrective Action Investigation Plan for Corrective Action Unit 166: Storage Yards and Contaminated Materials, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    David Strand

    2006-01-01

    Corrective Action Unit 166 is located in Areas 2, 3, 5, and 18 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit (CAU) 166 is comprised of the seven Corrective Action Sites (CASs) listed below: (1) 02-42-01, Cond. Release Storage Yd - North; (2) 02-42-02, Cond. Release Storage Yd - South; (3) 02-99-10, D-38 Storage Area; (4) 03-42-01, Conditional Release Storage Yard; (5) 05-19-02, Contaminated Soil and Drum; (6) 18-01-01, Aboveground Storage Tank; and (7) 18-99-03, Wax Piles/Oil Stain. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on February 28, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 166. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS. The scope of the CAI for CAU 166 includes the following activities: (1) Move surface debris and/or materials, as needed, to facilitate sampling. (2) Conduct radiological surveys. (3) Perform field screening. (4) Collect and submit environmental samples for laboratory analysis to determine if

  12. Corrective Action Plan for Corrective Action Unit 261: Area 25 Test Cell A Leachfield System, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    T. M. Fitzmaurice

    2000-08-01

    This Corrective Action Plan (CAP) has been prepared for the Corrective Action Unit (CAU)261 Area 25 Test Cell A Leachfield System in accordance with the Federal Facility and Consent Order (Nevada Division of Environmental Protection [NDEP] et al., 1996). This CAP provides the methodology for implementing the approved corrective action alternative as listed in the Corrective Action Decision Document (U.S. Department of Energy, Nevada Operations Office, 1999). Investigation of CAU 261 was conducted from February through May of 1999. There were no Constituents of Concern (COCs) identified at Corrective Action Site (CAS) 25-05-07 Acid Waste Leach Pit (AWLP). COCs identified at CAS 25-05-01 included diesel-range organics and radionuclides. The following closure actions will be implemented under this plan: Because COCs were not found at CAS 25-05-07 AWLP, no action is required; Removal of septage from the septic tank (CAS 25-05-01), the distribution box and the septic tank will be filled with grout; Removal of impacted soils identified near the initial outfall area; and Upon completion of this closure activity and approval of the Closure Report by NDEP, administrative controls, use restrictions, and site postings will be used to prevent intrusive activities at the site.

  13. Closure Report for Corrective Action Unit 262: Area 25 Septic Systems and Underground Discharge Point, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Tobiason, D. S.

    2003-01-01

    This Closure Report (CR) documents the activities undertaken to close Corrective Action Unit (CAU) 262: Area 25 Septic Systems and Underground Discharge Point, in accordance with the Federal Facility Agreement and Consent Order (FFACO) of 1996. Site closure was performed in accordance with the Nevada Division of Environmental Protection (NDEP)-approved Corrective Action Plan (CAP) for CAU 262 (U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office [NNSA/NV, 2002a]). CAU 262 is located at the Nevada Test Site (NTS) approximately 105 kilometers (65 miles) northwest of Las Vegas, Nevada. CAU 262 consists of the following nine Corrective Action Sites (CASs) located in Area 25 of the NTS: CAS 25-02-06, Underground Storage tank CAS 25-04-06, Septic Systems A and B CAS 25-04-07, Septic System CAS 25-05-03, Leachfield CAS 25-05-05, Leachfield CAS 25-05-06, Leachfield CAS 25-05-08, Radioactive Leachfield CAS 25-05-12, Leachfield CAS 25-51-01, Dry Well

  14. Corrective Action Plan for Corrective Action Unit 261: Area 25 Test Cell A Leachfield System, Nevada Test Site, Nevada; TOPICAL

    International Nuclear Information System (INIS)

    T. M. Fitzmaurice

    2000-01-01

    This Corrective Action Plan (CAP) has been prepared for the Corrective Action Unit (CAU)261 Area 25 Test Cell A Leachfield System in accordance with the Federal Facility and Consent Order (Nevada Division of Environmental Protection[NDEP] et al., 1996). This CAP provides the methodology for implementing the approved corrective action alternative as listed in the Corrective Action Decision Document (U.S. Department of Energy, Nevada Operations Office, 1999). Investigation of CAU 261 was conducted from February through May of 1999. There were no Constituents of Concern (COCs) identified at Corrective Action Site (CAS) 25-05-07 Acid Waste Leach Pit (AWLP). COCs identified at CAS 25-05-01 included diesel-range organics and radionuclides. The following closure actions will be implemented under this plan: Because COCs were not found at CAS 25-05-07 AWLP, no action is required; Removal of septage from the septic tank (CAS 25-05-01), the distribution box and the septic tank will be filled with grout; Removal of impacted soils identified near the initial outfall area; and Upon completion of this closure activity and approval of the Closure Report by NDEP, administrative controls, use restrictions, and site postings will be used to prevent intrusive activities at the site

  15. Corrective Action Investigation Plan for Corrective Action Unit 528: Polychlorinated Biphenyls Contamination, Nevada Test Site, Nevada, Rev. 0

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2003-05-08

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 528, Polychlorinated Biphenyls Contamination (PCBs), Nevada Test Site (NTS), Nevada, under the Federal Facility Agreement and Consent Order. Located in the southwestern portion of Area 25 on the NTS in Jackass Flats (adjacent to Test Cell C [TCC]), CAU 528 consists of Corrective Action Site 25-27-03, Polychlorinated Biphenyls Surface Contamination. Test Cell C was built to support the Nuclear Rocket Development Station (operational between 1959 and 1973) activities including conducting ground tests and static firings of nuclear engine reactors. Although CAU 528 was not considered as a direct potential source of PCBs and petroleum contamination, two potential sources of contamination have nevertheless been identified from an unknown source in concentrations that could potentially pose an unacceptable risk to human health and/or the environment. This CAU's close proximity to TCC prompted Shaw to collect surface soil samples, which have indicated the presence of PCBs extending throughout the area to the north, east, south, and even to the edge of the western boundary. Based on this information, more extensive field investigation activities are being planned, the results of which are to be used to support a defensible evaluation of corrective action alternatives in the corrective action decision document.

  16. Post-Closure Inspection and Monitoring Report for Corrective Action Unit 110: Area 3 WMD U-3ax/bl Crater, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Bechtel Nevada

    2006-08-01

    This Post-Closure Inspection and Monitoring Report provides the results and inspections and monitoring for Corrective Action Unit 110: Area 3 Waste Management Division U-3ax/bl Crater, Nevada Test Site, Nevada. This report includes an analysis and summary of the site inpsections, repairs and maintenance, meteorological information, and soil moisture monitoring data obtained at Corrective Action Unit 110, for the annual period July 2005 thrugh June 2006.

  17. Symmetry chains and adaptation coefficients

    International Nuclear Information System (INIS)

    Fritzer, H.P.; Gruber, B.

    1985-01-01

    Given a symmetry chain of physical significance it becomes necessary to obtain states which transform properly with respect to the symmetries of the chain. In this article we describe a method which permits us to calculate symmetry-adapted quantum states with relative ease. The coefficients for the symmetry-adapted linear combinations are obtained, in numerical form, in terms of the original states of the system and can thus be represented in the form of numerical tables. In addition, one also obtains automatically the matrix elements for the operators of the symmetry groups which are involved, and thus for any physical operator which can be expressed either as an element of the algebra or of the enveloping algebra. The method is well suited for computers once the physically relevant symmetry chain, or chains, have been defined. While the method to be described is generally applicable to any physical system for which semisimple Lie algebras play a role we choose here a familiar example in order to illustrate the method and to illuminate its simplicity. We choose the nuclear shell model for the case of two nucleons with orbital angular momentum l = 1. While the states of the entire shell transform like the smallest spin representation of SO(25) we restrict our attention to its subgroup SU(6) x SU(2)/sub T/. We determine the symmetry chains which lead to total angular momentum SU(2)/sub J/ and obtain the symmetry-adapted states for these chains

  18. Collective states and crossing symmetry

    International Nuclear Information System (INIS)

    Heiss, W.D.

    1977-01-01

    Collective states are usually described in simple terms but with the use of effective interactions which are supposed to contain more or less complicated contributions. The significance of crossing symmetry is discussed in this connection. Formal problems encountered in the attempts to implement crossing symmetry are pointed out

  19. Singlets of fermionic gauge symmetries

    NARCIS (Netherlands)

    Bergshoeff, E.A.; Kallosh, R.E.; Rahmanov, M.A.

    1989-01-01

    We investigate under which conditions singlets of fermionic gauge symmetries which are "square roots of gravity" can exist. Their existence is non-trivial because there are no fields neutral in gravity. We tabulate several examples of singlets of global and local supersymmetry and κ-symmetry and

  20. ''Natural'' left-right symmetry

    International Nuclear Information System (INIS)

    Mohapatra, R.N.; Pati, J.C.

    1975-01-01

    It is remarked that left-right symmetry of the starting gauge interactions is retained as a ''natural'' symmetry if it is broken in no way except possibly by mass terms in the Lagrangian. The implications of this result for the unification of coupling constants and for parity nonconservation at low and high energies are stressed

  1. Symmetry guide to ferroaxial transitions

    Czech Academy of Sciences Publication Activity Database

    Hlinka, Jiří; Přívratská, J.; Ondrejkovič, Petr; Janovec, Václav

    2016-01-01

    Roč. 116, č. 17 (2016), 1-6, č. článku 177602. ISSN 0031-9007 R&D Projects: GA ČR GA15-04121S Institutional support: RVO:68378271 Keywords : symmetry * symmetry breaking * ferroaxial Transitions * property tensors * Aizu species Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 8.462, year: 2016

  2. Formerly utilized MED/AEC sites remedial action program: radiological survey of the Building Site 421, United States, Watertown Arsenel, Watertown, MA. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-02-01

    This report contains the results of surveys of the current radiological condition of the Building Site 421, United States Arsenal Watertown, Watertown, Massachusetts. Findings of this survey indicate there are four spots involving an area of less than 6000 cm/sup 2/ of identifiable low-level residual radioactivity on the concrete pad which is all that remains of Building Site 421. The largest spot is approximately 5000 cm/sup 2/. The other three spots are 100 cm/sup 2/ or less. The beta-gamma readings at these spots are 8.4 x 10/sup 2/ dis/min-100 cm/sup 2/, 2.2 x 10/sup 5/ dis/min-100 cm/sup 2/, 2.2 x 10/sup 5/ dis/min-100 cm/sup 2/ and 8.5 x 10/sup 4/ dis/min-100 cm/sup 2/. No alpha contamination was found at these locations. Gamma spectral analysis of a chip of contaminated concrete from one of the spots indicates that the contaminant is natural uranium. This contamination is fixed in the concrete and does not present an internal or external exposure hazard under present conditions. A hypothetical hazard analysis under a conservative set of assumed conditions indicates minimal internal hazard. The highest End Window contact reading was 0.09 mR/h. None of the other three spots indicated an elevated direct reading with the End Window Detector. Radon daughter concentrations were determined at three locations on the Building 421 pad. These were 0.00013 WL, 0.00011 WL and 0.00009 WL. According to the Surgeon General's Guidelines found in 10 CFR 712, radon daughter concentrations below 0.03 WL do not require remedial action in structures other than private dwellings and schools. Soil samples taken about the site indicate no elevated levels above the natural background levels in the soil. A gamma spectral analysis of a water sample obtained from the storm sewer line near the Building 421 pad indicates no elevated radioactivity in the sample. It was therefore felt that no contamination is present in this sewer.

  3. Formerly utilized MED/AEC sites remedial action program: radiological survey of the Building Site 421, United States, Watertown Arsenel, Watertown, MA. Final report

    International Nuclear Information System (INIS)

    1980-02-01

    This report contains the results of surveys of the current radiological condition of the Building Site 421, United States Arsenal Watertown, Watertown, Massachusetts. Findings of this survey indicate there are four spots involving an area of less than 6000 cm 2 of identifiable low-level residual radioactivity on the concrete pad which is all that remains of Building Site 421. The largest spot is approximately 5000 cm 2 . The other three spots are 100 cm 2 or less. The beta-gamma readings at these spots are 8.4 x 10 2 dis/min-100 cm 2 , 2.2 x 10 5 dis/min-100 cm 2 , 2.2 x 10 5 dis/min-100 cm 2 and 8.5 x 10 4 dis/min-100 cm 2 . No alpha contamination was found at these locations. Gamma spectral analysis of a chip of contaminated concrete from one of the spots indicates that the contaminant is natural uranium. This contamination is fixed in the concrete and does not present an internal or external exposure hazard under present conditions. A hypothetical hazard analysis under a conservative set of assumed conditions indicates minimal internal hazard. The highest End Window contact reading was 0.09 mR/h. None of the other three spots indicated an elevated direct reading with the End Window Detector. Radon daughter concentrations were determined at three locations on the Building 421 pad. These were 0.00013 WL, 0.00011 WL and 0.00009 WL. According to the Surgeon General's Guidelines found in 10 CFR 712, radon daughter concentrations below 0.03 WL do not require remedial action in structures other than private dwellings and schools. Soil samples taken about the site indicate no elevated levels above the natural background levels in the soil. A gamma spectral analysis of a water sample obtained from the storm sewer line near the Building 421 pad indicates no elevated radioactivity in the sample. It was therefore felt that no contamination is present in this sewer

  4. Fifty years of symmetry operations

    International Nuclear Information System (INIS)

    Wigner, E.P.

    1978-01-01

    The author begins by discussing the application of symmetry principles in classical physics, which began 150 years ago. He then offers a few remarks on the essence of these principles and their role in the structure of physics; events, laws of nature, and invariance principles - kinematic and then dynamic - are treated. After this general discussion of the various types of symmetries, he considers the fundamental differences in their application in classical and quantum physics; the symmetry principles have greater effectiveness in quantum theory. After a few critical remarks of a general nature on the invariance principles, the author reviews the application of symmetry principles in various areas of quantum mechanics: atomic spectra, molecular physics, solid state physics, nuclear physics, and particle physics. He notes that the role of the different symmetries recognized to be approximate provide the most interesting conclusions

  5. Symmetry inheritance of scalar fields

    International Nuclear Information System (INIS)

    Ivica Smolić

    2015-01-01

    Matter fields do not necessarily have to share the symmetries with the spacetime they live in. When this happens, we speak of the symmetry inheritance of fields. In this paper we classify the obstructions of symmetry inheritance by the scalar fields, both real and complex, and look more closely at the special cases of stationary and axially symmetric spacetimes. Since the symmetry noninheritance is present in the scalar fields of boson stars and may enable the existence of the black hole scalar hair, our results narrow the possible classes of such solutions. Finally, we define and analyse the symmetry noninheritance contributions to the Komar mass and angular momentum of the black hole scalar hair. (paper)

  6. Shape analysis with subspace symmetries

    KAUST Repository

    Berner, Alexander

    2011-04-01

    We address the problem of partial symmetry detection, i.e., the identification of building blocks a complex shape is composed of. Previous techniques identify parts that relate to each other by simple rigid mappings, similarity transforms, or, more recently, intrinsic isometries. Our approach generalizes the notion of partial symmetries to more general deformations. We introduce subspace symmetries whereby we characterize similarity by requiring the set of symmetric parts to form a low dimensional shape space. We present an algorithm to discover subspace symmetries based on detecting linearly correlated correspondences among graphs of invariant features. We evaluate our technique on various data sets. We show that for models with pronounced surface features, subspace symmetries can be found fully automatically. For complicated cases, a small amount of user input is used to resolve ambiguities. Our technique computes dense correspondences that can subsequently be used in various applications, such as model repair and denoising. © 2010 The Author(s).

  7. Hyperbolic-symmetry vector fields.

    Science.gov (United States)

    Gao, Xu-Zhen; Pan, Yue; Cai, Meng-Qiang; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian

    2015-12-14

    We present and construct a new kind of orthogonal coordinate system, hyperbolic coordinate system. We present and design a new kind of local linearly polarized vector fields, which is defined as the hyperbolic-symmetry vector fields because the points with the same polarization form a series of hyperbolae. We experimentally demonstrate the generation of such a kind of hyperbolic-symmetry vector optical fields. In particular, we also study the modified hyperbolic-symmetry vector optical fields with the twofold and fourfold symmetric states of polarization when introducing the mirror symmetry. The tight focusing behaviors of these vector fields are also investigated. In addition, we also fabricate micro-structures on the K9 glass surfaces by several tightly focused (modified) hyperbolic-symmetry vector fields patterns, which demonstrate that the simulated tightly focused fields are in good agreement with the fabricated micro-structures.

  8. Discrete symmetries in the MSSM

    Energy Technology Data Exchange (ETDEWEB)

    Schieren, Roland

    2010-12-02

    The use of discrete symmetries, especially abelian ones, in physics beyond the standard model of particle physics is discussed. A method is developed how a general, abelian, discrete symmetry can be obtained via spontaneous symmetry breaking. In addition, anomalies are treated in the path integral approach with special attention to anomaly cancellation via the Green-Schwarz mechanism. All this is applied to the minimal supersymmetric standard model. A unique Z{sup R}{sub 4} symmetry is discovered which solves the {mu}-problem as well as problems with proton decay and allows to embed the standard model gauge group into a simple group, i.e. the Z{sup R}{sub 4} is compatible with grand unification. Also the flavor problem in the context of minimal flavor violation is addressed. Finally, a string theory model is presented which exhibits the mentioned Z{sup R}{sub 4} symmetry and other desirable features. (orig.)

  9. Spontaneous emergence of gauge symmetry

    International Nuclear Information System (INIS)

    Nielsen, H.B.; Brene, N.

    1987-05-01

    Within the framework of the random dynamics project we have demonstrated several mechanisms for breakdown of a preexisting exact gauge symmetry. This note concerns and reviews a mechanism which works essentially in the opposite direction, leading from am accidental approximate symmetry to an exact formal gauge symmetry. It was shown that although this symmetry is a priori only strictly formal, it can under certain circumstances lead to a physical consequence: the corresponding gauge boson becomes massless. In the chaotic models typical for our random dynamics project there is, of course, a strong competition between this mechanism and mechanisms which temd to destroy the symmetry and give mass(es) to the gauge boson(s). (orig.)

  10. Discrete symmetries in the MSSM

    International Nuclear Information System (INIS)

    Schieren, Roland

    2010-01-01

    The use of discrete symmetries, especially abelian ones, in physics beyond the standard model of particle physics is discussed. A method is developed how a general, abelian, discrete symmetry can be obtained via spontaneous symmetry breaking. In addition, anomalies are treated in the path integral approach with special attention to anomaly cancellation via the Green-Schwarz mechanism. All this is applied to the minimal supersymmetric standard model. A unique Z R 4 symmetry is discovered which solves the μ-problem as well as problems with proton decay and allows to embed the standard model gauge group into a simple group, i.e. the Z R 4 is compatible with grand unification. Also the flavor problem in the context of minimal flavor violation is addressed. Finally, a string theory model is presented which exhibits the mentioned Z R 4 symmetry and other desirable features. (orig.)

  11. Axions from chiral family symmetry

    International Nuclear Information System (INIS)

    Chang, D.; Pal, P.B.; Maryland Univ., College Park; Senjanovic, G.

    1985-01-01

    We investigate the possibility that family symmetry, Gsub(F), is spontaneously broken chiral global symmetry. We classify the interesting cases when family symmetry can result in an automatic Peccei-Quinn symmetry U(1)sub(PQ) and thus provide a solution to the strong CP problem. The result disfavors having two or four families. For more than four families, U(1)sub(PQ) is in general automatic. In the case of three families, a unique Higgs sector allows U(1)sub(PQ) in the simplest case of Gsub(F)=[SU(3)] 3 . Cosmological consideration also puts strong constraint on the number of families. For Gsub(F)=[SU(N)] 3 cosmology singles out the three-family (N=3) case as a unique solution if there are three light neutrinos. Possible implication of decoupling theorem as applied to family symmetry breaking is also discussed. (orig.)

  12. Savannah River Site waste vitrification projects initiated throughout the United States: Disposal and recycle options

    International Nuclear Information System (INIS)

    Jantzen, C.M.

    2000-01-01

    A vitrification process was developed and successfully implemented by the US Department of Energy's (DOE) Savannah River Site (SRS) and at the West Valley Nuclear Services (WVNS) to convert high-level liquid nuclear wastes (HLLW) to a solid borosilicate glass for safe long term geologic disposal. Over the last decade, SRS has successfully completed two additional vitrification projects to safely dispose of mixed low level wastes (MLLW) (radioactive and hazardous) at the SRS and at the Oak Ridge Reservation (ORR). The SRS, in conjunction with other laboratories, has also demonstrated that vitrification can be used to dispose of a wide variety of MLLW and low-level wastes (LLW) at the SRS, at ORR, at the Los Alamos National Laboratory (LANL), at Rocky Flats (RF), at the Fernald Environmental Management Project (FEMP), and at the Hanford Waste Vitrification Project (HWVP). The SRS, in conjunction with the Electric Power Research Institute and the National Atomic Energy Commission of Argentina (CNEA), have demonstrated that vitrification can also be used to safely dispose of ion-exchange (IEX) resins and sludges from commercial nuclear reactors. In addition, the SRS has successfully demonstrated that numerous wastes declared hazardous by the US Environmental Protection Agency (EPA) can be vitrified, e.g. mining industry wastes, contaminated harbor sludges, asbestos containing material (ACM), Pb-paint on army tanks and bridges. Once these EPA hazardous wastes are vitrified, the waste glass is rendered non-hazardous allowing these materials to be recycled as glassphalt (glass impregnated asphalt for roads and runways), roofing shingles, glasscrete (glass used as aggregate in concrete), or other uses. Glass is also being used as a medium to transport SRS americium (Am) and curium (Cm) to the Oak Ridge Reservation (ORR) for recycle in the ORR medical source program and use in smoke detectors at an estimated value of $1.5 billion to the general public

  13. Environmental Assessment for the shipment of low enriched uranium billets to the United Kingdom from the Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1992-08-01

    This Environmental Assessment provides the necessary information so that a decision can be made on whether a Finding of No Significant Impact Environmental Impact Statement should be prepared for the proposed action. The proposed action is to transfer 2,592 low enriched uranium billets to the United Kingdom. The billets are currently stored in the 300 Area of the Hanford Site, Richland, Washington. The proposed action would consist of two types of activities: loading and transportation. The loading activities would include placing the billets into the appropriate containers for transportation. The transportation activities would include the tasks required to transport the containers 215 miles (344 km) via highway to the Port of Seattle, Washington, and transfer the containers aboard an ocean cargo vessel for transportation to the United Kingdom. The Department of Energy would only be responsible for conducting the loading activities. The United Kingdom would be responsible for conducting the transportation activities in compliance with all applicable United States and international transportation laws. The tasks associated with the proposed action activities have been performed before and are well defined in terms of requirements and consequences. A risk assessment and a nuclear safety evaluation were performed to address safety issues associated with the proposed action. The risk assessment determined the exposure risk from normal operation and from the maximum credible accident that involves a truck or ship collision followed by a fire that engulfs all the billets in the shipment and the release of the radiological contents of the shipment to the environment. The criticality assessment determined the nuclear safety limits for handling, transporting and storing the shipment under incident-free and accident transport conditions

  14. Corrective Action Decision Document for Corrective Action Unit 240: Area 25 Vehicle Washdown, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    US Department of Energy Nevada Operations Office

    1999-01-01

    This Corrective Action Decision Document identifies and rationalizes the U.S. Department of Energy, Nevada Operations Offices's selection of a recommended corrective action alternative (CAA) appropriate to facilitate the closure of Corrective Action Unit (CAU) 240: Area 25 Vehicle Washdown, Nevada Test Site, Nevada. This corrective action investigation was conducted in accordance with the Corrective Action Investigation Plan for CAU 240 as developed under the Federal Facility Agreement and Consent Order. Located in Area 25 at the Nevada Test Site in Nevada, CAU 240 is comprised of three Corrective Action Sites (CASs): 25-07-01, Vehicle Washdown Area (Propellant Pad); 25-07-02, Vehicle Washdown Area (F and J Roads Pad); and 25-07-03, Vehicle Washdown Station (RADSAFE Pad). In March 1999, the corrective action investigation was performed to detect and evaluate analyte concentrations against preliminary action levels (PALs) to determine contaminants of concern (COCs). There were no COCs identified at CAS 25-07-01 or CAS 25-07-03; therefore, there was no need for corrective action at these two CASs. At CAS 25-07-02, diesel-range organics and radionuclide concentrations in soil samples from F and J Roads Pad exceeded PALs. Based on this result, potential CAAs were identified and evaluated to ensure worker, public, and environmental protection against potential exposure to COCs in accordance with Nevada Administrative Code 445A. Following a review of potential exposure pathways, existing data, and future and current operations in Area 25, two CAAs were identified for CAU 240 (CAS 25-07-02): Alternative 1 - No Further Action and Alternative 2 - Clean Closure by Excavation and Disposal. Alternative 2 was identified as the preferred alternative. This alternative was judged to meet all requirements for the technical components evaluated, compliance with all applicable state and federal regulations for closure of the site, as well as minimizing potential future exposure

  15. Corrective Action Decision Document for Corrective Action Unit 563: Septic Systems, Nevada Test Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Grant Evenson

    2008-02-01

    This Corrective Action Decision Document has been prepared for Corrective Action Unit (CAU) 563, Septic Systems, in accordance with the Federal Facility Agreement and Consent Order (FFACO, 1996; as amended January 2007). The corrective action sites (CASs) for CAU 563 are located in Areas 3 and 12 of the Nevada Test Site, Nevada, and are comprised of the following four sites: •03-04-02, Area 3 Subdock Septic Tank •03-59-05, Area 3 Subdock Cesspool •12-59-01, Drilling/Welding Shop Septic Tanks •12-60-01, Drilling/Welding Shop Outfalls The purpose of this Corrective Action Decision Document is to identify and provide the rationale for the recommendation of a corrective action alternative (CAA) for the four CASs within CAU 563. Corrective action investigation (CAI) activities were performed from July 17 through November 19, 2007, as set forth in the CAU 563 Corrective Action Investigation Plan (NNSA/NSO, 2007). Analytes detected during the CAI were evaluated against appropriate final action levels (FALs) to identify the contaminants of concern (COCs) for each CAS. The results of the CAI identified COCs at one of the four CASs in CAU 563 and required the evaluation of CAAs. Assessment of the data generated from investigation activities conducted at CAU 563 revealed the following: •CASs 03-04-02, 03-59-05, and 12-60-01 do not contain contamination at concentrations exceeding the FALs. •CAS 12-59-01 contains arsenic and chromium contamination above FALs in surface and near-surface soils surrounding a stained location within the site. Based on the evaluation of analytical data from the CAI, review of future and current operations at CAS 12-59-01, and the detailed and comparative analysis of the potential CAAs, the following corrective actions are recommended for CAU 563.

  16. Corrective Action Investigation Plan for Corrective Action Unit 214: Bunkers and Storage Areas Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2003-01-01

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 214 under the Federal Facility Agreement and Consent Order. Located in Areas 5, 11, and 25 of the Nevada Test Site, CAU 214 consists of nine Corrective Action Sites (CASs): 05-99-01, Fallout Shelters; 11-22-03, Drum; 25-99-12, Fly Ash Storage; 25-23-01, Contaminated Materials; 25-23-19, Radioactive Material Storage; 25-99-18, Storage Area; 25-34-03, Motor Dr/Gr Assembly (Bunker); 25-34-04, Motor Dr/Gr Assembly (Bunker); and 25-34-05, Motor Dr/Gr Assembly (Bunker). These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). The suspected contaminants and critical analyte s for CAU 214 include oil (total petroleum hydrocarbons-diesel-range organics [TPH-DRO], polychlorinated biphenyls [PCBs]), pesticides (chlordane, heptachlor, 4,4-DDT), barium, cadmium, chronium, lubricants (TPH-DRO, TPH-gasoline-range organics [GRO]), and fly ash (arsenic). The land-use zones where CAU 214 CASs are located dictate that future land uses will be limited to nonresidential (i.e., industrial) activities. The results of this field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the corrective action decision document

  17. Corrective Action Decision Document for Corrective Action Unit 516: Septic Systems and Discharge Points, Nevada Test Site, Nevada: Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2004-04-28

    This Corrective Action Decision Document (CADD) identifies and rationalizes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's selection of a recommended corrective action alternative appropriate to facilitate the closure of Corrective Action Unit (CAU) 516: Septic Systems and Discharge Points, Nevada Test Site (NTS), Nevada, under the Federal Facility Agreement and Consent Order. Located in Areas 3, 6, and 22 on the NTS, CAU 516 includes six Corrective Action Sites (CASs) consisting of two septic systems, a sump and piping, a clean-out box and piping, dry wells, and a vehicle decontamination area. Corrective action investigation activities were performed from July 22 through August 14, 2003, with supplemental sampling conducted in late 2003 and early 2004. The potential exposure pathways for any contaminants of concern (COCs) identified during the development of the DQOs at CAU 516 gave rise to the following objectives: (1) prevent or mitigate exposure to media containing COCs at concentrations exceeding PALs as defined in the corrective action investigation plan; and (2) prevent the spread of COCs beyond each CAS. The following alternatives have been developed for consideration at CAU 516: Alternative 1 - No Further Action; Alternative 2 - Clean Closure; and Alternative 3 - Closure in Place with Administrative Controls. Alternative 1, No Further Action, is the preferred corrective action for two CASs (06-51-02 and 22-19-04). Alternative 2, Clean Closure, is the preferred corrective action for four CASs (03-59-01, 03-59-02, 06-51-01, and 06-51-03). The selected alternatives were judged to meet all requirements for the technical components evaluated, as well as meeting all applicable state and federal regulations for closure of the site and will further eliminate the contaminated media at CAU 516.

  18. Delineation of site-specific management units in a saline region at the Venice Lagoon margin, Italy, using soil reflectance and apparent electrical conductivity

    Science.gov (United States)

    Site-specific crop management utilizes site-specific management units (SSMUs) to apply inputs when, where, and in the amount needed to increase food productivity, optimize resource utilization, increase profitability, and reduce detrimental environmental impacts. It is the objective of this study to...

  19. Closure Report for Corrective Action Unit 357: Mud Pits and Waste Dump, Nevada Test Site, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    Laura A. Pastor

    2005-04-01

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 357: Mud Pits and Waste Dump, Nevada Test Site (NTS), Nevada. The CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada, U.S. Department of Energy (DOE), and the U.S. Department of Defense (FFACO, 1996). Corrective Action Unit 357 is comprised of 14 Corrective Action Sites (CASs) located in Areas 1, 4, 7, 8, 10, and 25 of the NTS (Figure 1-1). The NTS is located approximately 65 miles (mi) northwest of Las Vegas, Nevada. Corrective Action Unit 357 consists of 11 CASs that are mud pits located in Areas 7, 8, and 10. The mud pits were associated with drilling activities conducted on the NTS in support of the underground nuclear weapons testing. The remaining three CASs are boxes and pipes associated with Building 1-31.2el, lead bricks, and a waste dump. These CAS are located in Areas 1, 4, and 25, respectively. The following CASs are shown on Figure 1-1: CAS 07-09-02, Mud Pit; CAS 07-09-03, Mud Pit; CAS 07-09-04, Mud Pit; CAS 07-09-05, Mud Pit; CAS 08-09-01, Mud Pit; CAS 08-09-02, Mud Pit; CAS 08-09-03, Mud Pit; CAS 10-09-02, Mud Pit; CAS 10-09-04, Mud Pit; CAS 10-09-05, Mud Pit; CAS 10-09-06, Mud Pit, Stains, Material; CAS 01-99-01, Boxes, Pipes; CAS 04-26-03, Lead Bricks; and CAS 25-15-01, Waste Dump. The purpose of the corrective action activities was to obtain analytical data that supports the closure of CAU 357. Environmental samples were collected during the investigation to determine whether contaminants exist and if detected, their extent. The investigation and sampling strategy was designed to target locations and media most likely to be contaminated (biased sampling). A general site conceptual model was developed for each CAS to support and guide the investigation as outlined in the Streamlined Approach for Environmental Restoration (SAFER) Plan (NNSA/NSO, 2003b). This CR

  20. Corrective Action Decision Document/Closure Report for Corrective Action Unit 375: Area 30 Buggy Unit Craters, Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Matthews

    2011-08-01

    Corrective Action Unit 375 comprises three corrective action sites (CASs): (1) 25-23-22, Contaminated Soils Site; (2) 25-34-06, Test Cell A Bunker; and (3) 30-45-01, U-30a, b, c, d, e Craters. The purpose of this CADD/CR is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 375 based on the implementation of corrective action of closure in place with administrative controls at CAS 25-23-22, no further action at CAS 25-34-06, and closure in place with administrative controls and removal of potential source material (PSM) at CAS 30-45-01. Corrective action investigation (CAI) activities were performed from July 28, 2010, through April 4, 2011, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 375: Area 30 Buggy Unit Craters. The approach for the CAI was divided into two facets: investigation of the primary release of radionuclides, and investigation of other releases (migration in washes and chemical releases). The purpose of the CAI was to fulfill data needs as defined during the data quality objective (DQO) process. The CAU 375 dataset of investigation results was evaluated based on the data quality assessment. This assessment demonstrated the dataset is acceptable for use in fulfilling the DQO data needs. Investigation results were evaluated against final action levels (FALs) established in this document. A radiological dose FAL of 25 millirem per year was established based on the Remote Work Area exposure scenario (336 hours of annual exposure). Radiological doses exceeding the FAL were assumed to be present within the default contamination boundaries at CASs 25-23-22 and 30-45-01. No contaminants were identified at CAS 25-34-06, and no corrective action is necessary. Potential source material in the form of lead plate, lead-acid batteries, and oil within an abandoned transformer were identified at CAS 30-45-01, and corrective actions were undertaken that

  1. Approach and plan for cleanup actions in the 100-IU-2 and 100-IU-6 Operable Units of the Hanford Site

    International Nuclear Information System (INIS)

    1996-10-01

    The purpose of this document is to summarize waste site information gathered to date relating to the 100-IU-2 and 100-IU-6 Operable Units (located at the Hanford Site in Richland, Washington), and to plan the extent of evaluation necessary to make cleanup decisions for identified waste sites under the Comprehensive Environmental Response, Compensation, and Liability Act of 1981. This is a streamlined approach to the decision-making process, reducing the time and costs for document preparation and review

  2. 200-BP-11 operable unit and 216-B-3 main pond work/closure plan, Hanford Site, Richland, Washington. Volume 1: Field investigation and sampling strategy

    International Nuclear Information System (INIS)

    1994-09-01

    This document coordinates a Resource Conservation and Recovery Act (RCRA) past-practice work plan for the 200-BP-11 Operable Unit and a RCRA closure/postclosure plan for the 216-B-3 Main Pond and 216-B-3-3 Ditch [treatment, storage, and/or disposal (TSD) unit]. Both RCRA TSD and past-practice waste management units are contained within the 200-BP-11 Operable Unit. The 200-BP-11 Operable Unit is a source operable unit located on the east side of the B Plant Source Aggregate Area in the 200 East Area of the Hanford Site. The operable unit lies just east of the 200 East Area perimeter fence and encompass approximately 476 hectares (1,175 acres). Source operable units include waste management units that are potential sources of radioactive and/or hazardous substance contamination. Source waste management units are categorized in the Hanford Federal Facility Agreement and Consent Order as either RCRA TSD, RCRA past-practice, or Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) past-practice. As listed below and in the Tri-Party Agreement, the 200-BP-11 Operable Unit contains five RCRA past-practice and five RCRA TSD waste management units. Additionally, for RCRA TSD permitting purposes, the RCRA TSD waste management units are subdivided into two RCRA TSD units

  3. Spin, mass, and symmetry

    International Nuclear Information System (INIS)

    Peskin, M.E.

    1994-01-01

    When the strong interactions were a mystery, spin seemed to be just a complication on top of an already puzzling set of phenomena. But now that particle physicists have understood the strong, weak, and electromagnetic interactions, to be gauge theories, with matter built of quarks and leptons, it is recognized that the special properties of spin 1/2 and spin 1 particles have taken central role in the understanding of Nature. The lectures in this summer school will be devoted to the use of spin in unravelling detailed questions about the fundamental interactions. Thus, why not begin by posing a deeper question: Why is there spin? More precisely, why do the basic pointlike constituents of Nature carry intrinsic nonzero quanta of angular momentum? Though the authos has found no definite answer to this question, the pursuit of an answer has led through a wonderful tangle of speculations on the deep structure of Nature. Is spin constructed or is it fundamental? Is it the requirement of symmetry? In the furthest flights taken, it seems that space-time itself is too restrictive a notion, and that this must be generalized in order to gain a full appreciation of spin. In any case, there is no doubt that spin must play a central role in unlocking the mysteries of fundamental physics

  4. Symmetry breaking by bifundamentals

    Science.gov (United States)

    Schellekens, A. N.

    2018-03-01

    We derive all possible symmetry breaking patterns for all possible Higgs fields that can occur in intersecting brane models: bifundamentals and rank-2 tensors. This is a field-theoretic problem that was already partially solved in 1973 by Ling-Fong Li [1]. In that paper the solution was given for rank-2 tensors of orthogonal and unitary group, and U (N )×U (M ) and O (N )×O (M ) bifundamentals. We extend this first of all to symplectic groups. When formulated correctly, this turns out to be straightforward generalization of the previous results from real and complex numbers to quaternions. The extension to mixed bifundamentals is more challenging and interesting. The scalar potential has up to six real parameters. Its minima or saddle points are described by block-diagonal matrices built out of K blocks of size p ×q . Here p =q =1 for the solutions of Ling-Fong Li, and the number of possibilities for p ×q is equal to the number of real parameters in the potential, minus 1. The maximum block size is p ×q =2 ×4 . Different blocks cannot be combined, and the true minimum occurs for one choice of basic block, and for either K =1 or K maximal, depending on the parameter values.

  5. Gravitation and Gauge Symmetries

    CERN Document Server

    Stewart, J

    2002-01-01

    The purpose of this book (I quote verbatim from the back cover) is to 'shed light upon the intrinsic structure of gravity and the principle of gauge invariance, which may lead to a consistent unified field theory', a very laudable aim. The content divides fairly clearly into four sections (and origins). After a brief introduction, chapters 2-6 review the 'Structure of gravity as a theory based on spacetime gauge symmetries'. This is fairly straightforward material, apparently based on a one-semester graduate course taught at the University of Belgrade for about two decades, and, by implication, this is a reasonably accurate description of its level and assumed knowledge. There follow two chapters of new material entitled 'Gravity in flat spacetime' and 'Nonlinear effects in gravity'. The final three chapters, entitled 'Supersymmetry and supergravity', 'Kaluza-Klein theory' and 'String theory' have been used for the basis of a one-semester graduate course on the unification of fundamental interactions. The boo...

  6. Spin, mass, and symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, M.E. [Stanford Univ., CA (United States)

    1994-12-01

    When the strong interactions were a mystery, spin seemed to be just a complication on top of an already puzzling set of phenomena. But now that particle physicists have understood the strong, weak, and electromagnetic interactions, to be gauge theories, with matter built of quarks and leptons, it is recognized that the special properties of spin 1/2 and spin 1 particles have taken central role in the understanding of Nature. The lectures in this summer school will be devoted to the use of spin in unravelling detailed questions about the fundamental interactions. Thus, why not begin by posing a deeper question: Why is there spin? More precisely, why do the basic pointlike constituents of Nature carry intrinsic nonzero quanta of angular momentum? Though the authos has found no definite answer to this question, the pursuit of an answer has led through a wonderful tangle of speculations on the deep structure of Nature. Is spin constructed or is it fundamental? Is it the requirement of symmetry? In the furthest flights taken, it seems that space-time itself is too restrictive a notion, and that this must be generalized in order to gain a full appreciation of spin. In any case, there is no doubt that spin must play a central role in unlocking the mysteries of fundamental physics.

  7. Symmetries in nuclear structure

    CERN Document Server

    Allaart, K; Dieperink, A

    1983-01-01

    The 1982 summer school on nuclear physics, organized by the Nuclear Physics Division of the Netherlands' Physical Society, was the fifth in a series that started in 1963. The number of students attending has always been about one hundred, coming from about thirty countries. The theme of this year's school was symmetry in nuclear physics. This book covers the material presented by the enthusi­ astic speakers, who were invited to lecture on this subject. We think they have succeeded in presenting us with clear and thorough introductory talks at graduate or higher level. The time schedule of the school and the location allowed the participants to make many informal contacts during many social activities, ranging from billiards to surf board sailing. We hope and expect that the combination of a relaxed atmosphere during part of the time and hard work during most of the time, has furthered the interest in, and understanding of, nuclear physics. The organization of the summer school was made possible by substantia...

  8. Quark diquark symmetry breaking

    International Nuclear Information System (INIS)

    Souza, M.M. de

    1980-01-01

    Assuming the baryons are made of quark-diquark pairs, the wave functions for the 126 allowed ground states are written. The quark creation and annihilations operators are generalized to describe the quark-diquark structure in terms of a parameter σ. Assuming that all quark-quark interactions are mediated by gluons transforming like an octet of vector mesons, the effective Hamiltonian and the baryon masses as constraint equations for the elements of the mass matrix is written. The symmetry is the SU(6) sub(quark)x SU(21) sub(diquark) broken by quark-quark interactions respectively invariant under U(6), U(2) sub(spin), U(3) and also interactions transforming like the eighth and the third components of SU(3). In the limit of no quark-diquark structure (σ = 0), the ground state masses is titted to within 1% of the experimental data, except for the Δ(1232), where the error is almost 2%. Expanding the decuplet mass equations in terms of σ and keeping terms only up to the second order, this error is reduced to 67%. (Author) [pt

  9. Regulatory analysis for the resolution of Generic Issue 130: Essential service water system failures at multi-unit sites

    International Nuclear Information System (INIS)

    Leung, V.; Basdekas, D.; Mazetis, G.

    1991-06-01

    The essential service water system (ESWS) is required to provide cooling in nuclear power plants during normal operation and accident conditions. The ESWS typically supports component cooling water heat exchangers, containment spray heat exchangers, high-pressure injection pump oil coolers, emergency diesel generators, and auxiliary building ventilation coolers. Failure of the ESWS function could lead to severe consequences. This report presents the regulatory analysis for GI-130, ''Essential Service Water System Failures at Multi-Unit Sites.'' The risk reduction estimates, cost/benefit analyses, and other insights gained during this effort have shown that implementation of the recommendations will significantly reduce risk and that these improvements are warranted in accordance with the backfit rule, 10 CFR 50.109(a)(3). 19 refs., 16 tabs

  10. Completion Report for the Well ER-6-2 Site Corrective Action Unit 97: Yucca Flat - Climax Mine

    International Nuclear Information System (INIS)

    2008-01-01

    Well ER-6-2 and its satellite hole, Well ER-6-2 No.1, were drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. Well ER-6-2 was drilled in two stages in 1993 and 1994; the satellite hole, Well ER-6-2 No.1 was drilled nearby in 1993 but was abandoned. The wells were drilled as part of a hydrogeologic investigation program for the Yucca Flat-Climax Mine Corrective Action Unit Number 97, in the northeastern portion of the Nevada Test Site. The wells are located in Yucca Flat, within Area 6 of the Nevada Test Site. The wells provided information regarding the radiological and hydrogeological environment in a potentially down-gradient position from tests conducted in northern and central Yucca Flat. Construction of Well ER-6-2 began with a 1.2-meter-diameter surface conductor hole, which was drilled and cased off to a depth of 30.8 meters below the surface. A 50.8-centimeter diameter surface hole was then rotary drilled to the depth of 578.5 meters and cased off to the depth of 530.4 meters. The hole diameter was then reduced to 27.0 centimeters, and the borehole was advanced to a temporary depth of 611.4 meters. The borehole was conventionally cored to a total depth of 1,045 meters with a diameter of 14.0 centimeters. Borehole sloughing required cementing and re-drilling of several zones. The open-hole completion accesses the lower carbonate aquifer, the CP thrust fault, and the upper clastic confining unit. A fluid level depth of 543.2 meters was most recently measured in the open borehole in September 2007. No radionuclides were encountered during drilling. The satellite hole Well ER-6-2 No.1 was drilled approximately 15.2 meters north of Well ER-6-2 on the same drill pad. This was planned to be used as an observation well during future hydrologic testing at Well ER-6-2; however, the satellite hole was abandoned at

  11. LITERATURE SURVEY FOR GROUNDWATER TREATMENT OPTIONS FOR NITRATE IODINE-129 AND URANIUM 200-ZP-1 OPERABLE UNIT HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    BYRNES ME

    2008-06-05

    This literature review presents treatment options for nitrate, iodine-129, and uranium, which are present in groundwater at the 200-ZP-I Groundwater Operable Unit (OU) within the 200 West Area of the Hanford Site. The objective of this review is to determine available methods to treat or sequester these contaminants in place (i.e., in situ) or to pump-and-treat the groundwater aboveground (i.e., ex situ). This review has been conducted with emphasis on commercially available or field-tested technologies, but theoretical studies have, in some cases, been considered when no published field data exist. The initial scope of this literature review included only nitrate and iodine-I 29, but it was later expanded to include uranium. The focus of the literature review was weighted toward researching methods for treatment of nitrate and iodine-129 over uranium because of the relatively greater impact of those compounds identified at the 200-ZP-I OU.

  12. LITERATURE SURVEY FOR GROUNDWATER TREATMENT OPTIONS FOR NITRATE, IODINE-129 AND URANIUM 200-ZP-1 OPERABLE UNIT, HANFORD SITE

    International Nuclear Information System (INIS)

    BYRNES ME

    2008-01-01

    This literature review presents treatment options for nitrate, iodine-129, and uranium, which are present in groundwater at the 200-ZP-I Groundwater Operable Unit (OU) within the 200 West Area of the Hanford Site. The objective of this review is to determine available methods to treat or sequester these contaminants in place (i.e., in situ) or to pump-and-treat the groundwater aboveground (i.e., ex situ). This review has been conducted with emphasis on commercially available or field-tested technologies, but theoretical studies have, in some cases, been considered when no published field data exist. The initial scope of this literature review included only nitrate and iodine-I 29, but it was later expanded to include uranium. The focus of the literature review was weighted toward researching methods for treatment of nitrate and iodine-129 over uranium because of the relatively greater impact of those compounds identified at the 200-ZP-I OU

  13. Corrective Action Investigation Plan for Corrective Action Unit 550: Smoky Contamination Area Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Grant Evenson

    2012-05-01

    Corrective Action Unit (CAU) 550 is located in Areas 7, 8, and 10 of the Nevada National Security Site, which is approximately 65 miles northwest of Las Vegas, Nevada. CAU 550, Smoky Contamination Area, comprises 19 corrective action sites (CASs). Based on process knowledge of the releases associated with the nuclear tests and radiological survey information about the location and shape of the resulting contamination plumes, it was determined that some of the CAS releases are co-located and will be investigated as study groups. This document describes the planned investigation of the following CASs (by study group): (1) Study Group 1, Atmospheric Test - CAS 08-23-04, Atmospheric Test Site T-2C; (2) Study Group 2, Safety Experiments - CAS 08-23-03, Atmospheric Test Site T-8B - CAS 08-23-06, Atmospheric Test Site T-8A - CAS 08-23-07, Atmospheric Test Site T-8C; (3) Study Group 3, Washes - Potential stormwater migration of contaminants from CASs; (4) Study Group 4, Debris - CAS 08-01-01, Storage Tank - CAS 08-22-05, Drum - CAS 08-22-07, Drum - CAS 08-22-08, Drums (3) - CAS 08-22-09, Drum - CAS 08-24-03, Battery - CAS 08-24-04, Battery - CAS 08-24-07, Batteries (3) - CAS 08-24-08, Batteries (3) - CAS 08-26-01, Lead Bricks (200) - CAS 10-22-17, Buckets (3) - CAS 10-22-18, Gas Block/Drum - CAS 10-22-19, Drum; Stains - CAS 10-22-20, Drum - CAS 10-24-10, Battery. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each study group. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed

  14. Corrective Action Investigation Plan for Corrective Action Unit 550: Smoky Contamination Area Nevada National Security Site, Nevada

    International Nuclear Information System (INIS)

    Evenson, Grant

    2012-01-01

    Corrective Action Unit (CAU) 550 is located in Areas 7, 8, and 10 of the Nevada National Security Site, which is approximately 65 miles northwest of Las Vegas, Nevada. CAU 550, Smoky Contamination Area, comprises 19 corrective action sites (CASs). Based on process knowledge of the releases associated with the nuclear tests and radiological survey information about the location and shape of the resulting contamination plumes, it was determined that some of the CAS releases are co-located and will be investigated as study groups. This document describes the planned investigation of the following CASs (by study group): (1) Study Group 1, Atmospheric Test - CAS 08-23-04, Atmospheric Test Site T-2C; (2) Study Group 2, Safety Experiments - CAS 08-23-03, Atmospheric Test Site T-8B - CAS 08-23-06, Atmospheric Test Site T-8A - CAS 08-23-07, Atmospheric Test Site T-8C; (3) Study Group 3, Washes - Potential stormwater migration of contaminants from CASs; (4) Study Group 4, Debris - CAS 08-01-01, Storage Tank - CAS 08-22-05, Drum - CAS 08-22-07, Drum - CAS 08-22-08, Drums (3) - CAS 08-22-09, Drum - CAS 08-24-03, Battery - CAS 08-24-04, Battery - CAS 08-24-07, Batteries (3) - CAS 08-24-08, Batteries (3) - CAS 08-26-01, Lead Bricks (200) - CAS 10-22-17, Buckets (3) - CAS 10-22-18, Gas Block/Drum - CAS 10-22-19, Drum; Stains - CAS 10-22-20, Drum - CAS 10-24-10, Battery. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each study group. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed

  15. Symmetries of dynamically equivalent theories

    Energy Technology Data Exchange (ETDEWEB)

    Gitman, D.M.; Tyutin, I.V. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica; Lebedev Physics Institute, Moscow (Russian Federation)

    2006-03-15

    A natural and very important development of constrained system theory is a detail study of the relation between the constraint structure in the Hamiltonian formulation with specific features of the theory in the Lagrangian formulation, especially the relation between the constraint structure with the symmetries of the Lagrangian action. An important preliminary step in this direction is a strict demonstration, and this is the aim of the present article, that the symmetry structures of the Hamiltonian action and of the Lagrangian action are the same. This proved, it is sufficient to consider the symmetry structure of the Hamiltonian action. The latter problem is, in some sense, simpler because the Hamiltonian action is a first-order action. At the same time, the study of the symmetry of the Hamiltonian action naturally involves Hamiltonian constraints as basic objects. One can see that the Lagrangian and Hamiltonian actions are dynamically equivalent. This is why, in the present article, we consider from the very beginning a more general problem: how the symmetry structures of dynamically equivalent actions are related. First, we present some necessary notions and relations concerning infinitesimal symmetries in general, as well as a strict definition of dynamically equivalent actions. Finally, we demonstrate that there exists an isomorphism between classes of equivalent symmetries of dynamically equivalent actions. (author)

  16. Conceptual site models for groundwater contamination at 100-BC-5, 100-KR-4, 100-HR-3, and 100-FR-3 operable units

    International Nuclear Information System (INIS)

    Peterson, R.E.; Raidl, R.F.; Denslow, C.W.

    1996-09-01

    This document presents technical information on groundwater contamination in the 100-BC-5, 100-KR-4, 100-HR-3, and 100-FR-3 Operable Units on the Hanford Site in Richland, Washington. These operable units are defined for groundwater that underlies the retired plutonium production reactors and their associated support facilities. This technical information supports conceptual site models (CSM) for each operable unit. The goal in maintaining a CSM is to ensure that a reasonable understanding of contamination issues in each groundwater operable unit is available for selecting a final remediation alternative and for developing a record of decision. CSMs are developed for hazardous waste sites to help evaluate potential risks to human health and the environment from exposure to contamination

  17. TECHNICAL EVALUATION OF SOIL REMEDIATION ALTERNATIVES AT THE BUILDING 812 OPERABLE UNIT, LAWRENCE LIVERMORE NATIONAL LABORATORY SITE 300

    Energy Technology Data Exchange (ETDEWEB)

    Eddy-Dilek, C.; Miles, D.; Abitz, R.

    2009-08-14

    The Department of Energy Livermore Site Office requested a technical review of remedial alternatives proposed for the Building 812 Operable Unit, Site 300 at the Lawrence Livermore National Laboratory. The team visited the site and reviewed the alternatives proposed for soil remediation in the draft RI/FS and made the following observations and recommendations. Based on the current information available for the site, the team did not identify a single technology that would be cost effective and/or ecologically sound to remediate DU contamination at Building 812 to current remedial goals. Soil washing is not a viable alternative and should not be considered at the site unless final remediation levels can be negotiated to significantly higher levels. This recommendation is based on the results of soil washing treatability studies at Fernald and Ashtabula that suggest that the technology would only be effective to address final remediation levels higher than 50 pCi/g. The technical review team identified four areas of technical uncertainty that should be resolved before the final selection of a preferred remedial strategy is made. Areas of significant technical uncertainty that should be addressed include: (1) Better delineation of the spatial distribution of surface contamination and the vertical distribution of subsurface contamination in the area of the firing table and associated alluvial deposits; (2) Chemical and physical characterization of residual depleted uranium (DU) at the site; (3) Determination of actual contaminant concentrations in air particulates to support risk modeling; and (4) More realistic estimation of cost for remedial alternatives, including soil washing, that were derived primarily from vendor estimates. Instead of conducting the planned soil washing treatability study, the team recommends that the site consider a new phased approach that combines additional characterization approaches and technologies to address the technical uncertainty in

  18. Technical Evaluation of Soil Remediation Alternatives at the Building 812 Operable Unit, Lawrence Livermore National Laboratory Site 300

    International Nuclear Information System (INIS)

    Eddy-Dilek, C.; Miles, D.; Abitz, R.

    2009-01-01

    The Department of Energy Livermore Site Office requested a technical review of remedial alternatives proposed for the Building 812 Operable Unit, Site 300 at the Lawrence Livermore National Laboratory. The team visited the site and reviewed the alternatives proposed for soil remediation in the draft RI/FS and made the following observations and recommendations. Based on the current information available for the site, the team did not identify a single technology that would be cost effective and/or ecologically sound to remediate DU contamination at Building 812 to current remedial goals. Soil washing is not a viable alternative and should not be considered at the site unless final remediation levels can be negotiated to significantly higher levels. This recommendation is based on the results of soil washing treatability studies at Fernald and Ashtabula that suggest that the technology would only be effective to address final remediation levels higher than 50 pCi/g. The technical review team identified four areas of technical uncertainty that should be resolved before the final selection of a preferred remedial strategy is made. Areas of significant technical uncertainty that should be addressed include: (1) Better delineation of the spatial distribution of surface contamination and the vertical distribution of subsurface contamination in the area of the firing table and associated alluvial deposits; (2) Chemical and physical characterization of residual depleted uranium (DU) at the site; (3) Determination of actual contaminant concentrations in air particulates to support risk modeling; and (4) More realistic estimation of cost for remedial alternatives, including soil washing, that were derived primarily from vendor estimates. Instead of conducting the planned soil washing treatability study, the team recommends that the site consider a new phased approach that combines additional characterization approaches and technologies to address the technical uncertainty in

  19. Astroparticle tests of Lorentz symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Jorge [Karlsruhe Institute of Technology, Karlsruhe (Germany)

    2016-07-01

    Lorentz symmetry is a cornerstone of modern physics. As the spacetime symmetry of special relativity, Lorentz invariance is a basic component of the standard model of particle physics and general relativity, which to date constitute our most successful descriptions of nature. Deviations from exact symmetry would radically change our view of the universe and current experiments allow us to test the validity of this assumption. In this talk, I describe effects of Lorentz violation in cosmic rays and gamma rays that can be studied in current observatories.

  20. Symmetry of quantum molecular dynamics

    International Nuclear Information System (INIS)

    Burenin, A.V.

    2002-01-01

    The paper reviews the current state-of-art in describing quantum molecular dynamics based on symmetry principles alone. This qualitative approach is of particular interest as the only method currently available for a broad and topical class of problems in the internal dynamics of molecules. Besides, a molecule is a physical system whose collective internal motions are geometrically structured, and its perturbation theory description requires a symmetry analysis of this structure. The nature of the geometrical symmetry groups crucial for the closed formulation of the qualitative approach is discussed [ru