WorldWideScience

Sample records for unit separation processes

  1. Minimization of entropy production in separate and connected process units

    Energy Technology Data Exchange (ETDEWEB)

    Roesjorde, Audun

    2004-08-01

    The objective of this thesis was to further develop a methodology for minimizing the entropy production of single and connected chemical process units. When chemical process equipment is designed and operated at the lowest entropy production possible, the energy efficiency of the equipment is enhanced. We have found for single process units that the entropy production could be reduced with up to 20-40%, given the degrees of freedom in the optimization. In processes, our results indicated that even bigger reductions were possible. The states of minimum entropy production were studied and important painter's for obtaining significant reductions in the entropy production were identified. Both from sustain ability and economical viewpoints knowledge of energy efficient design and operation are important. In some of the systems we studied, nonequilibrium thermodynamics was used to model the entropy production. In Chapter 2, we gave a brief introduction to different industrial applications of nonequilibrium thermodynamics. The link between local transport phenomena and overall system description makes nonequilibrium thermodynamics a useful tool for understanding design of chemical process units. We developed the methodology of minimization of entropy production in several steps. First, we analyzed and optimized the entropy production of single units: Two alternative concepts of adiabatic distillation; diabatic and heat-integrated distillation, were analyzed and optimized in Chapter 3 to 5. In diabatic distillation, heat exchange is allowed along the column, and it is this feature that increases the energy efficiency of the distillation column. In Chapter 3, we found how a given area of heat transfer should be optimally distributed among the trays in a column separating a mixture of propylene and propane. The results showed that heat exchange was most important on the trays close to the re boiler and condenser. In Chapter 4 and 5, we studied how the entropy

  2. Reactive-Separator Process Unit for Lunar Regolith Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's plans for a lunar habitation outpost call out for process technologies to separate hydrogen sulfide and sulfur dioxide gases from regolith product gas...

  3. INDEPENDENT TECHNICAL ASSESSMENT OF MANAGEMENT OF STORMWATER AND WASTEWATER AT THE SEPARATIONS PROCESS RESEARCH UNIT (SPRU) DISPOSITION PROJECT, NEW YORK

    Energy Technology Data Exchange (ETDEWEB)

    Abitz, R.; Jackson, D.; Eddy-Dilek, C.

    2011-06-27

    The U.S. Department of Energy (DOE) is currently evaluating the water management procedures at the Separations Process Research Unit (SPRU). The facility has three issues related to water management that require technical assistance: (1) due to a excessive rainfall event in October, 2010, contaminated water collected in basements of G2 and H2 buildings. As a result of this event, the contractor has had to collect and dispose of water offsite; (2) The failure of a sump pump at a KAPL outfall resulted in a Notice of Violation issued by the New York State Department of Environment and Conservation (NYSDEC) and subsequent Consent Order. On-site water now requires treatment and off-site disposition; and (3) stormwater infiltration has resulted in Strontium-90 levels discharged to the storm drains that exceed NR standards. The contractor has indicated that water management at SPRU requires major staff resources (at least 50 persons). The purpose of this review is to determine if the contractor's technical approach warrants the large number of staff resources and to ensure that the technical approach is compliant and in accordance with federal, state and NR requirements.

  4. POLONIUM SEPARATION PROCESS

    Science.gov (United States)

    Karraker, D.G.

    1959-07-14

    A liquid-liquid extraction process is presented for the recovery of polonium from lead and bismuth. According to the invention an acidic aqueous chloride phase containing the polonium, lead, and bismuth values is contacted with a tributyl phosphate ether phase. The polonium preferentially enters the organic phase which is then separated and washed with an aqueous hydrochloric solution to remove any lead or bismuth which may also have been extracted. The now highly purified polonium in the organic phase may be transferred to an aqueous solution by extraction with aqueous nitric acid.

  5. Hydrogen separation process

    Science.gov (United States)

    Mundschau, Michael [Longmont, CO; Xie, Xiaobing [Foster City, CA; Evenson, IV, Carl; Grimmer, Paul [Longmont, CO; Wright, Harold [Longmont, CO

    2011-05-24

    A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to a hydrogen separation membrane system comprising a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to an integrated water gas shift/hydrogen separation membrane system wherein the hydrogen separation membrane system comprises a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for pretreating a membrane, comprising: heating the membrane to a desired operating temperature and desired feed pressure in a flow of inert gas for a sufficient time to cause the membrane to mechanically deform; decreasing the feed pressure to approximately ambient pressure; and optionally, flowing an oxidizing agent across the membrane before, during, or after deformation of the membrane. A method of supporting a hydrogen separation membrane system comprising selecting a hydrogen separation membrane system comprising one or more catalyst outer layers deposited on a hydrogen transport membrane layer and sealing the hydrogen separation membrane system to a porous support.

  6. Battery separator manufacturing process

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, N.I.; Sugarman, N.

    1974-12-27

    A battery with a positive plate, a negative plate, and a separator of polymeric resin having a degree of undesirable hydrophobia, solid below 180/sup 0/F, extrudable as a hot melt, and resistant to degradation by at least either acids or alkalies positioned between the plates is described. The separator comprises a nonwoven mat of fibers, the fibers being comprised of the polymeric resin and a wetting agent in an amount of 0.5 to 20 percent by weight based on the weight of the resin with the amount being incompatible with the resin below the melting point of the resin such that the wetting agent will bloom over a period of time at ambient temperatures in a battery, yet being compatible with the resin at the extrusion temperature and bringing about blooming to the surface of the fibers when the fibers are subjected to heat and pressure.

  7. Determine separations process strategy decision

    Energy Technology Data Exchange (ETDEWEB)

    Slaathaug, E.J.

    1996-01-01

    This study provides a summary level comparative analysis of selected, top-level, waste treatment strategies. These strategies include No Separations, Separations (high-level/low-level separations), and Deferred Separations of the tank waste. These three strategies encompass the full range of viable processing alternatives based upon full retrieval of the tank wastes. The assumption of full retrieval of the tank wastes is a predecessor decision and will not be revisited in this study.

  8. Separation process using microchannel technology

    Science.gov (United States)

    Tonkovich, Anna Lee; Perry, Steven T.; Arora, Ravi; Qiu, Dongming; Lamont, Michael Jay; Burwell, Deanna; Dritz, Terence Andrew; McDaniel, Jeffrey S.; Rogers, Jr.; William A.; Silva, Laura J.; Weidert, Daniel J.; Simmons, Wayne W.; Chadwell, G. Bradley

    2009-03-24

    The disclosed invention relates to a process and apparatus for separating a first fluid from a fluid mixture comprising the first fluid. The process comprises: (A) flowing the fluid mixture into a microchannel separator in contact with a sorption medium, the fluid mixture being maintained in the microchannel separator until at least part of the first fluid is sorbed by the sorption medium, removing non-sorbed parts of the fluid mixture from the microchannel separator; and (B) desorbing first fluid from the sorption medium and removing desorbed first fluid from the microchannel separator. The process and apparatus are suitable for separating nitrogen or methane from a fluid mixture comprising nitrogen and methane. The process and apparatus may be used for rejecting nitrogen in the upgrading of sub-quality methane.

  9. Signal processing unit

    Energy Technology Data Exchange (ETDEWEB)

    Boswell, J.

    1983-01-01

    The architecture of the signal processing unit (SPU) comprises an ROM connected to a program bus, and an input-output bus connected to a data bus and register through a pipeline multiplier accumulator (pmac) and a pipeline arithmetic logic unit (palu), each associated with a random access memory (ram1,2). The system pulse frequency is from 20 mhz. The pmac is further detailed, and has a capability of 20 mega operations per second. There is also a block diagram for the palu, showing interconnections between the register block (rbl), separator for bus (bs), register (reg), shifter (sh) and combination unit. The first and second rams have formats 64*16 and 32*32 bits, respectively. Further data are a 5-v power supply and 2.5 micron n-channel silicon gate mos technology with about 50000 transistors.

  10. Efficient separations & processing crosscutting program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    The Efficient Separations and Processing Crosscutting Program (ESP) was created in 1991 to identify, develop, and perfect chemical and physical separations technologies and chemical processes which treat wastes and address environmental problems throughout the DOE complex. The ESP funds several multiyear tasks that address high-priority waste remediation problems involving high-level, low-level, transuranic, hazardous, and mixed (radioactive and hazardous) wastes. The ESP supports applied research and development (R & D) leading to the demonstration or use of these separations technologies by other organizations within the Department of Energy (DOE), Office of Environmental Management.

  11. Separation processes, I: Azeotropic rectification

    Directory of Open Access Journals (Sweden)

    Milojević Svetomir

    2005-01-01

    Full Text Available In a series of two articles, the problems of azeotrope separation (part I and the design of separation units (part II were analyzed. The basic definition and equations of vapour-liquid equilibria for ideal and non-ideal systems, the importance of the activity coefficient calculation necessary for the analysis of non-ideal equilibrium systems, as well as theoretical aspects of azeotrope rectification and the determination of the optimal third component (modifier or azeotrope agent are presented in the first part.

  12. Causal and causally separable processes

    Science.gov (United States)

    Oreshkov, Ognyan; Giarmatzi, Christina

    2016-09-01

    outcomes for each party, these correlations form a polytope whose facets define causal inequalities. The case of quantum correlations in this paradigm is captured by the process matrix formalism. We investigate the link between causality and the closely related notion of causal separability of quantum processes, which we here define rigorously in analogy with the link between Bell locality and separability of quantum states. We show that causality and causal separability are not equivalent in general by giving an example of a physically admissible tripartite quantum process that is causal but not causally separable. We also show that there are causally separable quantum processes that become non-causal if extended by supplying the parties with entangled ancillas. This motivates the concepts of extensibly causal and extensibly causally separable (ECS) processes, for which the respective property remains invariant under extension. We characterize the class of ECS quantum processes in the tripartite case via simple conditions on the form of the process matrix. We show that the processes realizable by classically controlled quantum circuits are ECS and conjecture that the reverse also holds.

  13. Olefin separation membrane and process

    Science.gov (United States)

    Pinnau, Ingo; Toy, Lora G.; Casillas, Carlos

    1997-01-01

    A membrane and process for separating unsaturated hydrocarbons from fluid mixtures. The membrane and process differ from previously known membranes and processes, in that the feed and permeate streams can both be dry, the membrane need not be water or solvent swollen, and the membrane is characterized by a selectivity for an unsaturated hydrocarbon over a saturated hydrocarbon having the same number of carbon atoms of at least about 20, and a pressure-normalized flux of said unsaturated hydrocarbon of at least about 5.times.10.sup.-6 cm.sup.3 (STP)/cm.sup.2 .multidot.s.multidot.cmHg, said flux and selectivity being measured with a gas mixture containing said unsaturated and saturated hydrocarbons, and in a substantially dry environment.

  14. SEPARATION PROCESS FOR THORIUM SALTS

    Science.gov (United States)

    Bridger, G.L.; Whatley, M.E.; Shaw, K.G.

    1957-12-01

    A process is described for the separation of uranium, thorium, and rare earths extracted from monazite by digesting with sulfuric acid. By carefully increasing the pH of the solution, stepwise, over the range 0.8 to 5.5, a series of selective precipitations will be achieved, with the thorium values coming out at lower pH, the rare earths at intermediate pH and the uranium last. Some mixed precipitates will be obtained, and these may be treated by dissolving in HNO/sub 3/ and contacting with dibutyl phosphate, whereby thorium or uranium are taken up by the organic phase while the rare earths preferentially remain in the aqueous solution.

  15. Evaluation of phase separator number in hydrodesulfurization (HDS) unit

    Science.gov (United States)

    Jayanti, A. D.; Indarto, A.

    2016-11-01

    The removal process of acid gases such as H2S in natural gas processing industry is required in order to meet sales gas specification. Hydrodesulfurization (HDS)is one of the processes in the refinery that is dedicated to reduce sulphur.InHDS unit, phase separator plays important role to remove H2S from hydrocarbons, operated at a certain pressure and temperature. Optimization of the number of separator performed on the system is then evaluated to understand the performance and economics. From the evaluation, it shows that all systems were able to meet the specifications of H2S in the desired product. However, one separator system resulted the highest capital and operational costs. The process of H2S removal with two separator systems showed the best performance in terms of both energy efficiency with the lowest capital and operating cost. The two separator system is then recommended as a reference in the HDS unit to process the removal of H2S from natural gas.

  16. Conceptual design of distillation-based hybrid separation processes.

    Science.gov (United States)

    Skiborowski, Mirko; Harwardt, Andreas; Marquardt, Wolfgang

    2013-01-01

    Hybrid separation processes combine different separation principles and constitute a promising design option for the separation of complex mixtures. Particularly, the integration of distillation with other unit operations can significantly improve the separation of close-boiling or azeotropic mixtures. Although the design of single-unit operations is well understood and supported by computational methods, the optimal design of flowsheets of hybrid separation processes is still a challenging task. The large number of operational and design degrees of freedom requires a systematic and optimization-based design approach. To this end, a structured approach, the so-called process synthesis framework, is proposed. This article reviews available computational methods for the conceptual design of distillation-based hybrid processes for the separation of liquid mixtures. Open problems are identified that must be addressed to finally establish a structured process synthesis framework for such processes.

  17. 45 CFR 302.12 - Single and separate organizational unit.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 2 2010-10-01 2010-10-01 false Single and separate organizational unit. 302.12... HUMAN SERVICES STATE PLAN REQUIREMENTS § 302.12 Single and separate organizational unit. (a) The State plan shall provide for the establishment or designation of a single and separate organizational unit to...

  18. Wet separation processes as method to separate limestone and oil shale

    Science.gov (United States)

    Nurme, Martin; Karu, Veiko

    2015-04-01

    Biggest oil shale industry is located in Estonia. Oil shale usage is mainly for electricity generation, shale oil generation and cement production. All these processes need certain quality oil shale. Oil shale seam have interlayer limestone layers. To use oil shale in production, it is needed to separate oil shale and limestone. A key challenge is find separation process when we can get the best quality for all product types. In oil shale separation typically has been used heavy media separation process. There are tested also different types of separation processes before: wet separation, pneumatic separation. Now oil shale industry moves more to oil production and this needs innovation methods for separation to ensure fuel quality and the changes in quality. The pilot unit test with Allmineral ALLJIG have pointed out that the suitable new innovation way for oil shale separation can be wet separation with gravity, where material by pulsating water forming layers of grains according to their density and subsequently separates the heavy material (limestone) from the stratified material (oil shale)bed. Main aim of this research is to find the suitable separation process for oil shale, that the products have highest quality. The expected results can be used also for developing separation processes for phosphorite rock or all others, where traditional separation processes doesn't work property. This research is part of the study Sustainable and environmentally acceptable Oil shale mining No. 3.2.0501.11-0025 http://mi.ttu.ee/etp and the project B36 Extraction and processing of rock with selective methods - http://mi.ttu.ee/separation; http://mi.ttu.ee/miningwaste/

  19. Continuous chemical processes in centrifugal contact separators

    NARCIS (Netherlands)

    Kwant, Gerard J.; Heeres, Hero

    2008-01-01

    The invention relates to the use of a centrifugal contact-separator for carrying out a non-radioactive reaction in a liquid-liquid emulsion formed from two immiscible liquids. The invention also relates to a process for carrying out a reaction in a centrifugal contact-separator, and to a process for

  20. Separating, baling and processing waste

    Directory of Open Access Journals (Sweden)

    Komazec Gordana

    2011-01-01

    Full Text Available The economy based on the exploitation of fossil fuels has entered the phase of disappearance, and a new one is being formed under the influence of the third industrial revolution. The third industrial revolution is developing from the process of the resolution of serious problems that have appeared in the ecosystem, and demands a new platform of interaction between the world's governments, civil society and the business world [Stigson 2008]. The consumer society that was developing until the beginning of the 21st century started from the premise that we cannot expect charity from nature. Regardless of their renewability and speed of renewal, natural resources should have been used in the measure in which humanity needed it. Needs rose uncontrollably, damaging the basic principle by which the balance of the biosphere was maintained - the parity of community members' insignificance. The man with the technosphere prevailed over the biosphere. Since nothing is provided for free and nature knows best, the beginning of the 21st century is seeing renewed attempts to establish a co-evolution of nature and society. This necessitates radical changes in people's work, lifestyle and thinking. The problem of waste requires a total break with previous practices. The existing 6.6 billion people annually produce between 2.5 and 4 billion tons of waste (The Millennium Development Goals Report 2008. Developed countries such as, e.g., the US, annually produce about 700 kilograms of waste per person, while poor countries, such as, e.g., the urban parts of India, produce only 150 kilograms per person annually. Each resident of the EU leaves behind 500 kg of waste per year. Serbia has the same civilization problems. In addition, as a transition country, it is in a position to decide the extent to which this problem will be in the hands of state companies and how much will be left to private capital owners. Moreover, Serbia is creating a development strategy that also

  1. Separation process design for isolation and purification of natural products

    DEFF Research Database (Denmark)

    Malwade, Chandrakant R.

    selection of separation techniques and operating conditions. The key factor in designing separation processes with multiple unit operations is to determine the synergy between them which in turn demands molecular level understanding of process streams. Therefore, the methodology is fortified with process......, thereby providing process information crucial for determining synergistic effects between different unit operations. In this work, the formulated methodology has been used to isolate and purify artemisinin, an antimalarial drug, from dried leaves of the plant Artemisia annua. A process flow sheet...... is generated consisting of maceration, flash column chromatography and crystallization unit operations for extraction, partial purification and final purification of artemisinin, respectively. PAT framework is used extensively to characterize the process streams at molecular level and the generated process...

  2. A Reverse Osmosis System for an Advanced Separation Process Laboratory.

    Science.gov (United States)

    Slater, C. S.; Paccione, J. D.

    1987-01-01

    Focuses on the development of a pilot unit for use in an advanced separations process laboratory in an effort to develop experiments on such processes as reverse osmosis, ultrafiltration, adsorption, and chromatography. Discusses reverse osmosis principles, the experimental system design, and some experimental studies. (TW)

  3. Dynamic modeling of ultrafiltration membranes for whey separation processes

    NARCIS (Netherlands)

    Saltık, M.B.; Özkan, Leyla; Jacobs, Marc; Padt, van der Albert

    2017-01-01

    In this paper, we present a control relevant rigorous dynamic model for an ultrafiltration membrane unit in a whey separation process. The model consists of a set of differential algebraic equations and is developed for online model based applications such as model based control and process monitori

  4. Apparatus and process for separating hydrogen isotopes

    Science.gov (United States)

    Heung, Leung K; Sessions, Henry T; Xiao, Xin

    2013-06-25

    The apparatus and process for separating hydrogen isotopes is provided using dual columns, each column having an opposite hydrogen isotopic effect such that when a hydrogen isotope mixture feedstock is cycled between the two respective columns, two different hydrogen isotopes are separated from the feedstock.

  5. Pervaporation: A Novel Process for Ethanol Separation using Fermentation

    Directory of Open Access Journals (Sweden)

    Sanjay H. Amaley

    2015-02-01

    Full Text Available Various separation processes were used in the chemical industry along with their corresponding separating agents. The separation processes play a critical role in various chemical process industries, including the removal of impurities from raw materials, purification of products, separation of recycle streams, and removal of contaminants from air and effluents. Hence it can be intensified by integrating of existing and new unit operations, it offers a huge increase in efficiency and controllability, thereby saving a lot of raw materials and energy, reducing waste production, increasing yield and quality and improving production safety. This review, deals on the development and implementation of small scale continuous processes and processing systems helping chemical industries to get more out of their processes.

  6. Supercritical separation process for complex organic mixtures

    Science.gov (United States)

    Chum, Helena L.; Filardo, Giuseppe

    1990-01-01

    A process is disclosed for separating low molecular weight components from complex aqueous organic mixtures. The process includes preparing a separation solution of supercritical carbon dioxide with an effective amount of an entrainer to modify the solvation power of the supercritical carbon dioxide and extract preselected low molecular weight components. The separation solution is maintained at a temperature of at least about 70.degree. C. and a pressure of at least about 1,500 psi. The separation solution is then contacted with the organic mixtures while maintaining the temperature and pressure as above until the mixtures and solution reach equilibrium to extract the preselected low molecular weight components from the organic mixtures. Finally, the entrainer/extracted components portion of the equilibrium mixture is isolated from the separation solution.

  7. Process intensification technologies for biodiesel production reactive separation processes

    CERN Document Server

    Kiss, A A

    2014-01-01

    This book is among the first to address the novel process intensification technologies for biodiesel production, in particular the integrated reactive separations. It provides a comprehensive overview illustrated with many industrially relevant examples of novel reactive separation processes used in the production of biodiesel (e.g. fatty acid alkyl esters): reactive distillation, reactive absorption, reactive extraction, membrane reactors, and centrifugal contact separators. Readers will also learn about the working principles, design and control of integrated processes, while also getting a

  8. Process for separating hafnium and zirconium

    NARCIS (Netherlands)

    Xiao, Y.; Van Sandwijk, A.

    2010-01-01

    The invention is directed to a process for separating a mixture comprising hafnium and zirconium. The process of the present invention comprises a step in which a molten metal phase comprising zirconium and hafnium dissolved in a first metal M1 and a second metal M2 is contacted with a molten salt

  9. Process for separating hafnium and zirconium

    NARCIS (Netherlands)

    Xiao, Y.; Van Sandwijk, A.

    2010-01-01

    The invention is directed to a process for separating a mixture comprising hafnium and zirconium. The process of the present invention comprises a step in which a molten metal phase comprising zirconium and hafnium dissolved in a first metal M1 and a second metal M2 is contacted with a molten salt p

  10. Process for separating nitrogen from methane using microchannel process technology

    Science.gov (United States)

    Tonkovich, Anna Lee; Qiu, Dongming; Dritz, Terence Andrew; Neagle, Paul; Litt, Robert Dwayne; Arora, Ravi; Lamont, Michael Jay; Pagnotto, Kristina M.

    2007-07-31

    The disclosed invention relates to a process for separating methane or nitrogen from a fluid mixture comprising methane and nitrogen, the process comprising: (A) flowing the fluid mixture into a microchannel separator, the microchannel separator comprising a plurality of process microchannels containing a sorption medium, the fluid mixture being maintained in the microchannel separator until at least part of the methane or nitrogen is sorbed by the sorption medium, and removing non-sorbed parts of the fluid mixture from the microchannel separator; and (B) desorbing the methane or nitrogen from the sorption medium and removing the desorbed methane or nitrogen from the microchannel separator. The process is suitable for upgrading methane from coal mines, landfills, and other sub-quality sources.

  11. Air separation by the Moltox process

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, D. C.

    1981-04-01

    The report describes results of a development program on a new and energy saving process for air separation. The Moltox process involves reversibly reacting oxygen in air with a recirculating salt solution, such that oxygen is extracted without depressurizing the remaining nitrogen. Energy savings of approximately 50% are indicated for this process compared to conventional cryogenic air separation. The development program consisted of design, construction, and operation of a 6 liter/minute pilot plant; optimization of the process flowsheet through computer modelling; investigation of engineering aspects of the process including corrosion, safety, and NO/sub x/ generation; and an economic comparison to conventional cryogenic practice. All objectives were satisfactorily achieved except for continuous operation of the pilot plant, and the modifications necessary to achieve that have been identified. Economically the Moltox process shows a substantial advantage over large scale cryogenic plants which are powered by fuel vice electricity.

  12. Membrane device and process for mass exchange, separation, and filtration

    Science.gov (United States)

    Liu, Wei; Canfield, Nathan L.

    2016-11-15

    A membrane device and processes for fabrication and for using are disclosed. The membrane device may include a number of porous metal membranes that provide a high membrane surface area per unit volume. The membrane device provides various operation modes that enhance throughput and selectivity for mass exchange, mass transfer, separation, and/or filtration applications between feed flow streams and permeate flow streams.

  13. Study on the Effect of the Separating Unit Optimization on the Economy of Stable Isotope Separation

    Directory of Open Access Journals (Sweden)

    YANG Kun

    2015-01-01

    Full Text Available An economic criterion called as yearly net profit of single separating unit (YNPSSU was presented to evaluate the influence of structure optimization on the economy. Using YNPSSU as a criterion, economic analysis was carried out for the structure optimization of separating unit in the case of separating SiF4 to obtain the 28Si and 29Si isotope. YNPSSU was calculated and compared with that before optimization. The results showed that YNPSSU was increased by 12.3% by the structure optimization. Therefore, the structure optimization could increase the economy of the stable isotope separation effectively.

  14. Thermodynamics for separation-process technology

    Energy Technology Data Exchange (ETDEWEB)

    Prausnitz, J.M.

    1995-10-01

    When contemplating or designing a separation process, every chemical engineer at once recognizes the thermodynamic boundary conditions that must be satisfied: when a mixture is continuously processed to yield at least partially purified products, energy and mass must be conserved and work must be done. In his daily tasks, a chemical engineer uses thermodynamic concepts as tacit, almost subconscious, knowledge. Thus, qualitative thermodynamics significantly informs process conception at its most fundamental level. However, quantitative design requires detailed knowledge of thermodynamic relations and physical chemistry. Most process engineers, concerned with flow sheets and economics, cannot easily command that detailed knowledge and therefore it is advantageous for them to maintain close contact with those specialists who do. Quantitative chemical thermodynamics provides an opportunity to evaluate possible separation processes not only because it may give support to the process engineer`s bold imagination but also because, when coupled with molecular models, it can significantly reduce the experimental effort required to determine an optimum choice of process alternatives. Six examples are presented to indicate the application of thermodynamics for conventional and possible future separation processes.

  15. UPGRADING NATURAL GAS VIA MEMBRANE SEPARATION PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    S.A.Stern; P.A. Rice; J. Hao

    2000-03-01

    The objective of the present study is to assess the potential usefulness of membrane separation processes for removing CO{sub 2} and H{sub 2}S from low-quality natural gas containing substantial amounts of both these ''acid'' gases, e.g., up to 40 mole-% CO{sub 2} and 10 mole-% H{sub 2}S. The membrane processes must be capable of upgrading the crude natural gas to pipeline specifications ({le} 2 mole-% CO{sub 2}, {le} 4 ppm H{sub 2}S). Moreover, these processes must also be economically competitive with the conventional separation techniques, such as gas absorption, utilized for this purpose by the gas industry.

  16. Study on the Effect of the Separating Unit Optimization on the Economy of Stable Isotope Separation

    OpenAIRE

    Yang, Kun; MOU Hong

    2015-01-01

    An economic criterion called as yearly net profit of single separating unit (YNPSSU) was presented to evaluate the influence of structure optimization on the economy. Using YNPSSU as a criterion, economic analysis was carried out for the structure optimization of separating unit in the case of separating SiF4 to obtain the 28Si and 29Si isotope. YNPSSU was calculated and compared with that before optimization. The results showed that YNPSSU was increased by 12.3% by the structure optimization...

  17. Sustainable process design & analysis of hybrid separations

    DEFF Research Database (Denmark)

    Kumar Tula, Anjan; Befort, Bridgette; Garg, Nipun

    2016-01-01

    Distillation is an energy intensive operation in chemical process industries. There are around 40,000 distillation columns in operation in the US, requiring approximately 40% of the total energy consumption in US chemical process industries. However, analysis of separations by distillation has...... shown that more than 50% of energy is spent in purifying the last 5-10% of the distillate product. Membrane modules on the other hand can achieve high purity separations at lower energy costs, but if the flux is high, it requires large membrane area. A hybrid scheme where distillation and membrane...... modules are combined such that each operates at its highest efficiency, has the potential for significant energy reduction without significant increase of capital costs. This paper presents a method for sustainable design of hybrid distillation-membrane schemes with guaranteed reduction of energy...

  18. Foam flotation as a separation process

    Science.gov (United States)

    Currin, B. L.

    1986-01-01

    The basic principles of foam separation techniques are discussed. A review of the research concerning bubble-particle interaction and its role in the kinetics of the flotation process is given. Most of the research in this area deals with the use of theoretical models to predict the effects of bubble and particle sizes, of liquid flow, and of various forces on the aperture and retention of particles by bubbles. A discussion of fluid mechanical aspects of particle flotation is given.

  19. Design of Separation Processes with Ionic Liquids

    DEFF Research Database (Denmark)

    2015-01-01

    A systematic methodology for screening and designing of Ionic Liquid (IL)-based separation processes is proposed and demonstrated using several case studies of both aqueous and non-aqueous systems, for instance, ethanol + water, ethanol + hexane, benzene + hexane, and toluene + methylcyclohexane....... The best four ILs of each mixture are [mmim][dmp], [emim][bti], [emim][etso4] and [hmim][tcb], respectively. All of them were used as entrainers in the extractive distillation. A process simulation of each system was carried out and showed a lower both energy requirement and solvent usage as compared...

  20. Improving performance of a tandem simulated moving bed process for sugar separation by making a difference in the adsorbents and the column lengths of the two subordinate simulated moving bed units.

    Science.gov (United States)

    Mun, Sungyong

    2013-02-15

    A tandem simulated moving bed (SMB) process for removal of sulfuric acid and acetic acid from sugars has been developed previously. This process consisted of two four-zone SMB units (Ring I and Ring II), in which the same adsorbent (Dowex99 resin) and the same column length were used. To improve the performance of such a tandem SMB process for sugar separation, it is worth adopting the strategy of making a difference between the column lengths of Ring I and Ring II. The results showed that such strategy could allow the adsorbent beds of both Ring I and Ring II to be fully utilized at the same time, which was impracticable in the previous tandem SMB mode. As a result, the tandem SMB based on such strategy could achieve higher productivity than the previous tandem SMB mode. In addition, the use of different adsorbents (Amberchrom-CG161C in Ring I and Dowex99 in Ring II) was proposed as the second strategy, which was confirmed to be highly effective in improving the productivity of the tandem SMB for sugar separation. Finally, a third strategy was proposed by combing the first and the second strategies. It was found that compared to the previous tandem SMB mode, the third strategy led to more than eleven times the productivity under the constraint of pressure drop ≤100 psi. This was mostly because the third strategy had a remarkable advantage over the previous tandem SMB mode in the aspects of bed utilization and selectivities, which stemmed from the use of different column lengths and the use of different adsorbents respectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Process Requirements for Piping Design in the Cold Box of Air Separation Unit%空分装置冷箱内配管的工艺流程要求

    Institute of Scientific and Technical Information of China (English)

    孙东升; 李超

    2015-01-01

    The principle of piping design is to meet the process requirements, ensure the safety and economic rational?ity of the pipeline and related equipment. Meeting the requirements of the process is the most important task of the piping design,it is saturated gas,liquid or medium of two-phase flow in the pipeline of air separation unit cold box, the process has many requirements for the details of pipelines, and needs the pipeline designers to pay attention.%管道设计的原则是满足工艺流程要求、保证管道及相关设备的安全性和经济性.满足工艺流程要求是管道设计的首要任务,空分装置冷箱管道内是饱和的气体、液体或两相流介质,工艺流程对配管有很多细节要求,需要管道设计人员重视.

  2. THOR Particle Processing Unit PPU

    Science.gov (United States)

    Federica Marcucci, Maria; Bruno, Roberto; Consolini, Giuseppe; D'Amicis, Raffaella; De Lauretis, Marcello; De Marco, Rossana; De Michelis, Paola; Francia, Patrizia; Laurenza, Monica; Materassi, Massimo; Vellante, Massimo; Valentini, Francesco

    2016-04-01

    Turbulence Heating ObserveR (THOR) is the first mission ever flown in space dedicated to plasma turbulence. On board THOR, data collected by the Turbulent Electron Analyser, the Ion Mass Spectrum analyser and the Cold Solar Wind ion analyser instruments will be processed by a common digital processor unit, the Particle Processing Unit (PPU). PPU architecture will be based on the state of the art space flight processors and will be fully redundant, in order to efficiently and safely handle the data from the numerous sensors of the instruments suite. The approach of a common processing unit for particle instruments is very important for the enabling of an efficient management for correlative plasma measurements, also facilitating interoperation with other instruments on the spacecraft. Moreover, it permits technical and programmatic synergies giving the possibility to optimize and save spacecraft resources.

  3. Article separation apparatus and method for unit operations

    Science.gov (United States)

    Pardini, Allan F.; Gervais, Kevin L.; Mathews, Royce A.; Hockey, Ronald L.

    2010-06-22

    An apparatus and method are disclosed for separating articles from a group of articles. The apparatus includes a container for containing one or more articles coupled to a suitable fluidizer for suspending articles within the container and transporting articles to an induction tube. A portal in the induction tube introduces articles singly into the induction tube. A vacuum pulls articles through the induction tube separating the articles from the group of articles in the container. The apparatus and method can be combined with one or more unit operations or modules, e.g., for inspecting articles, assessing quality of articles, or ascertaining material properties and/or parameters of articles, including layers thereof.

  4. Plutonium Chemistry in the UREX+ Separation Processes

    Energy Technology Data Exchange (ETDEWEB)

    ALena Paulenova; George F. Vandegrift, III; Kenneth R. Czerwinski

    2009-10-01

    The project "Plutonium Chemistry in the UREX+ Separation Processes” is led by Dr. Alena Paulenova of Oregon State University under collaboration with Dr. George Vandegrift of ANL and Dr. Ken Czerwinski of the University of Nevada at Las Vegas. The objective of the project is to examine the chemical speciation of plutonium in UREX+ (uranium/tributylphosphate) extraction processes for advanced fuel technology. Researchers will analyze the change in speciation using existing thermodynamics and kinetic computer codes to examine the speciation of plutonium in aqueous and organic phases. They will examine the different oxidation states of plutonium to find the relative distribution between the aqueous and organic phases under various conditions such as different concentrations of nitric acid, total nitrates, or actinide ions. They will also utilize techniques such as X-ray absorbance spectroscopy and small-angle neutron scattering for determining plutonium and uranium speciation in all separation stages. The project started in April 2005 and is scheduled for completion in March 2008.

  5. Approach of Separately Applying Unit Testing to AspectJ Program

    Institute of Scientific and Technical Information of China (English)

    GU Hai-bo; LU Yan-sheng

    2008-01-01

    A unit testing approach for AspectJ programs is proposed to separately test aspect units which have their own states. In the approach, aspects under test are converted to classes before execution of unit testing. In the conversion process, the context information passed through pointcut is transformed into advices, then the advices are converted to class member methods, and conflicts in the conversion result, if any, are resolved finally. The unit testing process consists of generating test cases, executing test cases and checking results.

  6. Potential Applications of Zeolite Membranes in Reaction Coupling Separation Processes

    Directory of Open Access Journals (Sweden)

    Tunde V. Ojumu

    2012-10-01

    Full Text Available Future production of chemicals (e.g., fine and specialty chemicals in industry is faced with the challenge of limited material and energy resources. However, process intensification might play a significant role in alleviating this problem. A vision of process intensification through multifunctional reactors has stimulated research on membrane-based reactive separation processes, in which membrane separation and catalytic reaction occur simultaneously in one unit. These processes are rather attractive applications because they are potentially compact, less capital intensive, and have lower processing costs than traditional processes. Therefore this review discusses the progress and potential applications that have occurred in the field of zeolite membrane reactors during the last few years. The aim of this article is to update researchers in the field of process intensification and also provoke their thoughts on further research efforts to explore and exploit the potential applications of zeolite membrane reactors in industry. Further evaluation of this technology for industrial acceptability is essential in this regard. Therefore, studies such as techno-economical feasibility, optimization and scale-up are of the utmost importance.

  7. Potential Applications of Zeolite Membranes in Reaction Coupling Separation Processes

    Science.gov (United States)

    Daramola, Michael O.; Aransiola, Elizabeth F.; Ojumu, Tunde V.

    2012-01-01

    Future production of chemicals (e.g., fine and specialty chemicals) in industry is faced with the challenge of limited material and energy resources. However, process intensification might play a significant role in alleviating this problem. A vision of process intensification through multifunctional reactors has stimulated research on membrane-based reactive separation processes, in which membrane separation and catalytic reaction occur simultaneously in one unit. These processes are rather attractive applications because they are potentially compact, less capital intensive, and have lower processing costs than traditional processes. Therefore this review discusses the progress and potential applications that have occurred in the field of zeolite membrane reactors during the last few years. The aim of this article is to update researchers in the field of process intensification and also provoke their thoughts on further research efforts to explore and exploit the potential applications of zeolite membrane reactors in industry. Further evaluation of this technology for industrial acceptability is essential in this regard. Therefore, studies such as techno-economical feasibility, optimization and scale-up are of the utmost importance.

  8. Integration of advanced nuclear materials separation processes

    Energy Technology Data Exchange (ETDEWEB)

    Jarvinen, G.D.; Worl, L.A.; Padilla, D.D.; Berg, J.M.; Neu, M.P.; Reilly, S.D.; Buelow, S.

    1998-12-31

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project has examined the fundamental chemistry of plutonium that affects the integration of hydrothermal technology into nuclear materials processing operations. Chemical reactions in high temperature water allow new avenues for waste treatment and radionuclide separation.Successful implementation of hydrothermal technology offers the potential to effective treat many types of radioactive waste, reduce the storage hazards and disposal costs, and minimize the generation of secondary waste streams. The focus has been on the chemistry of plutonium(VI) in solution with carbonate since these are expected to be important species in the effluent from hydrothermal oxidation of Pu-containing organic wastes. The authors investigated the structure, solubility, and stability of the key plutonium complexes. Installation and testing of flow and batch hydrothermal reactors in the Plutonium Facility was accomplished. Preliminary testing with Pu-contaminated organic solutions gave effluent solutions that readily met discard requirements. A new effort in FY 1998 will build on these promising initial results.

  9. Actinide and lanthanide separation process (ALSEP)

    Science.gov (United States)

    Guelis, Artem V.

    2013-01-15

    The process of the invention is the separation of minor actinides from lanthanides in a fluid mixture comprising, fission products, lanthanides, minor actinides, rare earth elements, nitric acid and water by addition of an organic chelating aid to the fluid; extracting the fluid with a solvent comprising a first extractant, a second extractant and an organic diluent to form an organic extractant stream and an aqueous raffinate. Scrubbing the organic stream with a dicarboxylic acid and a chelating agent to form a scrubber discharge. The scrubber discharge is stripped with a simple buffering agent and a second chelating agent in the pH range of 2.5 to 6.1 to produce actinide and lanthanide streams and spent organic diluents. The first extractant is selected from bis(2-ethylhexyl)hydrogen phosphate (HDEHP) and mono(2-ethylhexyl)2-ethylhexyl phosphonate (HEH(EHP)) and the second extractant is selected from N,N,N,N-tetra-2-ethylhexyl diglycol amide (TEHDGA) and N,N,N',N'-tetraoctyl-3-oxapentanediamide (TODGA).

  10. Used nuclear fuel separations process simulation and testing

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, C.; Krebs, J.F.; Copple, J.M.; Frey, K.E.; Maggos, L.E.; Figueroa, J.; Willit, J.L.; Papadias, D.D. [Argonne National Laboratory: 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2013-07-01

    Recent efforts in separations process simulation at Argonne have expanded from the traditional focus on solvent extraction flowsheet design in order to capture process dynamics and to simulate other components, processing and systems of a used nuclear fuel reprocessing plant. For example, the Argonne Model for Universal Solvent Extraction (AMUSE) code has been enhanced to make it both more portable and more readily extensible. Moving away from a spreadsheet environment makes the addition of new species and processes simpler for the expert user, which should enable more rapid implementation of chemical models that simulate evolving processes. The dyAMUSE (dynamic AMUSE) version allows the simulation of transient behavior across an extractor. Electrochemical separations have now been modeled using spreadsheet codes that simulate the electrochemical recycle of fast reactor fuel. The user can follow the evolution of the salt, products, and waste compositions in the electro-refiner, cathode processors, and drawdown as a function of fuel batches treated. To further expand capabilities in integrating multiple unit operations, a platform for linking mathematical models representing the different operations that comprise a reprocessing facility was adapted to enable systems-level analysis and optimization of facility functions. (authors)

  11. Soil washing physical separations test procedure - 300-FF-1 operable unit

    Energy Technology Data Exchange (ETDEWEB)

    Belden, R.D.

    1993-10-08

    This procedure provides the operations approach, a field sampling plan, and laboratory procedures for a soil washing test to be conducted by Alternative Remedial Technologies, Inc. (ART) in the 300-FF-1 area at the Hanford site. The {open_quotes}Quality Assurance Project Plan for the Soil Washing Physical Separations Test, 300-FF-1 Operable Unit,{close_quotes} Hanford, Washington, Alternative Remedial Technologies, Inc., February 1994 (QAPP) is provided in a separate document that presents the procedural and organizational guidelines for this test. This document describes specifications, responsibilities, and general procedures to be followed to conduct physical separation soil treatability tests in the North Process Pond of the 300-FF-1 Operable Unit (OU) at the Hanford Site. These procedures are based on the {open_quotes}300-FF-1 Physical Separations CERCLA Treatability Test Plan, DOE/RL 92-2l,{close_quotes} (DOE-RL 1993).

  12. Experiment and modeling for the separation of guaifenesin enantiomers using simulated moving bed and Varicol units.

    Science.gov (United States)

    Gong, Rujin; Lin, Xiaojian; Li, Ping; Yu, Jianguo; Rodrigues, Alirio E

    2014-10-10

    The separation of guaifenesin enantiomers by both simulated moving bed (SMB) process and Varicol process was investigated experimentally and theoretically, where the columns were packed with cellulose tris 3,5-dimethylphenylcarbamate (Chiralcel OD) stationary phase and a mixture of n-hexane and ethanol was used as mobile phase. The operation conditions were designed based on the separation region with the consideration of mass transfer resistance and axial dispersion, and the experiments to separate guaifenesin enantiomers were carried out on VARICOL-Micro unit using SMB process with the column configuration of 1/2/2/1 and Varicol process with the column configuration of 1/1.5/1.5/1, respectively. Single enantiomer with more than 99.0% purity was obtained in both processes with the productivity of 0.42 genantiomer/dcm(3) CSP for SMB process and 054 genantiomer/dcm(3) CSP for Varicol process. These experimental results obtained from SMB and Varicol processes were compared with those reported from literatures. In addition, according to the numerical simulation, the effects of solid-film mass transfer resistance and axial dispersion on the internal profiles were discussed, and the effect of column configuration on the separation performance of SMB and Varicol processes was analyzed for a few columns system. The feasibility and efficiency for the separation of guaifenesin enantiomers by SMB and Varicol processes were evaluated. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. A general model for membrane-based separation processes

    DEFF Research Database (Denmark)

    Soni, Vipasha; Abildskov, Jens; Jonsson, Gunnar Eigil;

    2009-01-01

    behaviour will play an important role. In this paper, modelling of membrane-based processes for separation of gas and liquid mixtures are considered. Two general models, one for membrane-based liquid separation processes (with phase change) and another for membrane-based gas separation are presented...

  14. Separation processes in biotechnology. Ion-exchange processes.

    Science.gov (United States)

    Shuey, C D

    1990-01-01

    Through the use of several differentiating mechanisms, ion exchangers can separate ionic and nonionic materials, solutions containing only ionic species, and even completely nonionic mixtures. Although the mechanisms are distinct in their mode of operation, the resin characteristics that influence the results are largely the same. A practical understanding of the resin properties involved is all that is necessary to begin to use ion-exchange resins successfully. Ion exchange owes most of its history to water treatment, which has provided the economic and technological driving force in the past for the development of improved resins. However, specialty applications such as those in biotechnology are steadily becoming major factors in industry, perhaps not in shear volumes of resin used, but certainly in the value added by the process. The field of biotechnology no doubt holds many of the exciting new applications for ion exchange.

  15. Generalized Least Energy of Separation for Desalination and Other Chemical Separation Processes

    Directory of Open Access Journals (Sweden)

    Karan H. Mistry

    2013-05-01

    Full Text Available Increasing global demand for fresh water is driving the development and implementation of a wide variety of seawater desalination technologies driven by different combinations of heat, work, and chemical energy. This paper develops a consistent basis for comparing the energy consumption of such technologies using Second Law efficiency. The Second Law efficiency for a chemical separation process is defined in terms of the useful exergy output, which is the minimum least work of separation required to extract a unit of product from a feed stream of a given composition. For a desalination process, this is the minimum least work of separation for producing one kilogram of product water from feed of a given salinity. While definitions in terms of work and heat input have been proposed before, this work generalizes the Second Law efficiency to allow for systems that operate on a combination of energy inputs, including fuel. The generalized equation is then evaluated through a parametric study considering work input, heat inputs at various temperatures, and various chemical fuel inputs. Further, since most modern, large-scale desalination plants operate in cogeneration schemes, a methodology for correctly evaluating Second Law efficiency for the desalination plant based on primary energy inputs is demonstrated. It is shown that, from a strictly energetic point of view and based on currently available technology, cogeneration using electricity to power a reverse osmosis system is energetically superior to thermal systems such as multiple effect distillation and multistage flash distillation, despite the very low grade heat input normally applied in those systems.

  16. A criterion for separating process calculi

    CERN Document Server

    Banti, Federico; Tiezzi, Francesco; 10.4204/EPTCS.41.2

    2010-01-01

    We introduce a new criterion, replacement freeness, to discern the relative expressiveness of process calculi. Intuitively, a calculus is strongly replacement free if replacing, within an enclosing context, a process that cannot perform any visible action by an arbitrary process never inhibits the capability of the resulting process to perform a visible action. We prove that there exists no compositional and interaction sensitive encoding of a not strongly replacement free calculus into any strongly replacement free one. We then define a weaker version of replacement freeness, by only considering replacement of closed processes, and prove that, if we additionally require the encoding to preserve name independence, it is not even possible to encode a non replacement free calculus into a weakly replacement free one. As a consequence of our encodability results, we get that many calculi equipped with priority are not replacement free and hence are not encodable into mainstream calculi like CCS and pi-calculus, t...

  17. Incorporating Memory Effects in Phase Separation Processes

    CERN Document Server

    Koide, T; Ramos, R O; Ramos, Rudnei O.

    2006-01-01

    We consider the modification of the Cahn-Hilliard equation when a time delay process through a memory function is taken into account. We then study the process of spinodal decomposition in fast phase transitions associated with a conserved order parameter. Finite-time memory effects are seen to affect the dynamics of phase transition at short times and have the effect of delaying, in a significant way, the explosive spinodal decomposition. These effects are important in several systems characterized by fast processes, like nonequilibrium dynamics in the early universe and in relativistic heavy-ion collisions.

  18. Separation Strategies for Processing of Dilute Liquid Streams

    Directory of Open Access Journals (Sweden)

    Sujata Mandal

    2011-01-01

    Full Text Available Processing of dilute liquid streams in the industries like food, agro-, biotechnology, pharmaceuticals, environment, and so forth needs special strategy for the separation and purification of the desired product and for environment friendly disposal of the waste stream. The separation strategy adopted to achieve the goal is extremely important from economic as well as from environmental point of view. In the present paper we have reviewed the various aspects of some selected universal separation strategies such as adsorption, membrane separation, electrophoresis, chromatographic separation, and electroosmosis that are exercised for processing of dilute liquid streams.

  19. Robust design of binary countercurrent adsorption separation processes

    Energy Technology Data Exchange (ETDEWEB)

    Storti, G. (Univ. degli Studi di Padova (Italy)); Mazzotti, M.; Morbidelli, M.; Carra, S. (Piazza Leonardo da Vinci, Milano (Italy))

    1993-03-01

    The separation of a binary mixture, using a third component having intermediate adsorptivity as desorbent, in a four section countercurrent adsorption separation unit is considered. A procedure for the optimal and robust design of the unit is developed in the frame of Equilibrium Theory, using a model where the adsorption equilibria are described through the constant selectivity stoichiometric model, while mass-transfer resistances and axial mixing are neglected. By requiring that the unit achieves complete separation, it is possible to identify a set of implicity constraints on the operating parameters, that is, the flow rate ratios in the four sections of the unit. From these constraints explicit bounds on the operating parameters are obtained, thus yielding a region in the operating parameters space, which can be drawn a priori in terms of the adsorption equilibrium constants and the feed composition. This result provides a very convenient tool to determine both optimal and robust operating conditions. The latter issue is addressed by first analyzing the various possible sources of disturbances, as well as their effect on the separation performance. Next, the criteria for the robust design of the unit are discussed. Finally, these theoretical findings are compared with a set of experimental results obtained in a six port simulated moving bed adsorption separation unit operated in the vapor phase.

  20. Evaluation and Modification of Processes for Bioethanol Separation and Production

    Directory of Open Access Journals (Sweden)

    Johnner P Sitompul

    2012-04-01

    Full Text Available This paper concerns on process evaluation and modification for bioethanol separation and production by applying pinch technology. Further, the paper is also focused on obtaining a most energy-efficient process among several processes. Three basic process configurations of bioethanol separation and production were selected for this study. The three separations and production systems are Othmer process, Barbet process and a separation process that operates under vacuum condition. Basically, each process is combination of Danish Distilleries process with a separation system yielding 95% (v/v bioethanol. The production capacity of the plant is estimated about 4 x 107 litre of bioethanol 95% (v/v per year. The result of the studies shows that the most energy efficient process among the three processes evaluated is the Othmer process, followed by the Barbet process and the process involving vacuum operation. The evaluation also shows that further energy saving can be carried for Barbet and Othmer process configuration when Tmin = 10oC for heat exchange possible.

  1. Thermodynamic Analysis of Nanoporous Membrane Separation Processes

    Science.gov (United States)

    Rogers, David; Rempe, Susan

    2011-03-01

    We give an analysis of desalination energy requirements in order to quantify the potential for future improvements in desalination membrane technology. Our thermodynamic analysis makes it possible to draw conclusions from the vast array of equilibrium molecular dynamics simulations present in the literature as well as create a standardized comparison for measuring and reporting experimental reverse osmosis material efficiency. Commonly employed methods for estimating minimum desalination energy costs have been revised to include operations at positive input stream recovery ratios using a thermodynamic cycle analogous to the Carnot cycle. Several gaps in the statistical mechanical theory of irreversible processes have also been identified which may in the future lead to improved communication between materials engineering models and statistical mechanical simulation. Simulation results for silica surfaces and nanochannels are also presented. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  2. Process Design for Separating C4 Mixtures by Extractive Distillation

    Institute of Scientific and Technical Information of China (English)

    雷志刚; 陈标华; 李建伟

    2003-01-01

    C4 components are useful in industry and should be separated as individuals. A new process was proposed to separate them by extractive distillation, with the advantages of low equipment investment, energy consumption and liquid load in the columns. One principle to improve the extractive distillation process was put forward. Moreover, the analysis of operation state of the new process was done. There were eight operation states found for the whole process, but only one operation state was desirable. This work provides a way to effectively separate C4 mixtures and helps the reasonable utilization of C4 resource.

  3. ON DEVELOPING CLEANER ORGANIC UNIT PROCESSES

    Science.gov (United States)

    Organic waste products, potentially harmful to the human health and the environment, are primarily produced in the synthesis stage of manufacturing processes. Many such synthetic unit processes, such as halogenation, oxidation, alkylation, nitration, and sulfonation are common to...

  4. Separation processes using expulsion from dilute supercritical solutions

    Science.gov (United States)

    Cochran, Jr., Henry D.

    1993-01-01

    A process for separating isotopes as well as other mixtures by utilizing the behavior of dilute repulsive or weakly attractive elements of the mixtures as the critical point of the solvent is approached.

  5. Simulation of a Novel Single-column Cryogenic Air Separation Process Using LNG Cold Energy

    Science.gov (United States)

    Jieyu, Zheng; Yanzhong, Li; Guangpeng, Li; Biao, Si

    In this paper, a novel single-column air separation process is proposed with the implementation of heat pump technique and introduction of LNG coldenergy. The proposed process is verifiedand optimized through simulation on the Aspen Hysys® platform. Simulation results reveal that thepower consumption per unit mass of liquid productis around 0.218 kWh/kg, and the total exergy efficiency of the systemis 0.575. According to the latest literatures, an energy saving of 39.1% is achieved compared with those using conventional double-column air separation units.The introduction of LNG cold energy is an effective way to increase the system efficiency.

  6. Automated separation process for radioanalytical purposes at nuclear power plants.

    Science.gov (United States)

    Nagy, L G; Vajda, N; Vodicska, M; Zagyvai, P; Solymosi, J

    1987-10-01

    Chemical separation processes have been developed to remove the matrix components and thus to determine fission products, especially radioiodine nuclides, in the primary coolant of WWER-type nuclear reactors. Special procedures have been elaborated to enrich long-lived nuclides in waste waters to be released and to separate and enrich caesium isotopes in the environment. All processes are based mainly on ion-exchange separations using amorphous zirconium phosphate. Automated equipment was constructed to meet the demands of the plant personnel for serial analysis.

  7. Fuel cell repeater unit including frame and separator plate

    Energy Technology Data Exchange (ETDEWEB)

    Yamanis, Jean; Hawkes, Justin R; Chiapetta, Jr., Louis; Bird, Connie E; Sun, Ellen Y; Croteau, Paul F

    2013-11-05

    An example fuel cell repeater includes a separator plate and a frame establishing at least a portion of a flow path that is operative to communicate fuel to or from at least one fuel cell held by the frame relative to the separator plate. The flow path has a perimeter and any fuel within the perimeter flow across the at least one fuel cell in a first direction. The separator plate, the frame, or both establish at least one conduit positioned outside the flow path perimeter. The conduit is outside of the flow path perimeter and is configured to direct flow in a second, different direction. The conduit is fluidly coupled with the flow path.

  8. Performance of biofuel processes utilising separate lignin and carbohydrate processing.

    Science.gov (United States)

    Melin, Kristian; Kohl, Thomas; Koskinen, Jukka; Hurme, Markku

    2015-09-01

    Novel biofuel pathways with increased product yields are evaluated against conventional lignocellulosic biofuel production processes: methanol or methane production via gasification and ethanol production via steam-explosion pre-treatment. The novel processes studied are ethanol production combined with methanol production by gasification, hydrocarbon fuel production with additional hydrogen produced from lignin residue gasification, methanol or methane synthesis using synthesis gas from lignin residue gasification and additional hydrogen obtained by aqueous phase reforming in synthesis gas production. The material and energy balances of the processes were calculated by Aspen flow sheet models and add on excel calculations applicable at the conceptual design stage to evaluate the pre-feasibility of the alternatives. The processes were compared using the following criteria: energy efficiency from biomass to products, primary energy efficiency, GHG reduction potential and economy (expressed as net present value: NPV). Several novel biorefinery concepts gave higher energy yields, GHG reduction potential and NPV.

  9. Bone marrow processing for transplantation using Cobe Spectra cell separator.

    Science.gov (United States)

    Veljković, Dobrila; Nonković, Olivera Šerbić; Radonjić, Zorica; Kuzmanović, Miloš; Zečević, Zeljko

    2013-06-01

    Concentration of bone marrow aspirates is an important prerequisite prior to infusion of ABO incompatible allogeneic marrow and prior to cryopreservation and storage of autologous marrow. In this paper we present our experience in processing 15 harvested bone marrow for ABO incompatible allogeneic and autologous bone marrow (BM) transplantation using Cobe Spectra® cell separator. BM processing resulted in the median recovery of 91.5% CD34+ cells, erythrocyte depletion of 91% and volume reduction of 81%. BM processing using cell separator is safe and effective technique providing high rate of erythrocyte depletion and volume reduction, and acceptable recovery of the CD34+ cells.

  10. SOLVENT EXTRACTION PROCESS FOR SEPARATING ACTINIDE AND LANTHANIDE METAL VALUES

    Science.gov (United States)

    Hildebrandt, R.A.; Hyman, H.H.; Vogler, S.

    1962-08-14

    A process of countercurrently extracting an aqueous mineral acid feed solution for the separation of actinides from lanthanides dissolved therern is described. The feed solution is made acid-defrcient with alkali metal hydroxide prior to.contact with acid extractant; during extraction, however, acid is transferred from organic to aqueous solution and the aqueous solution gradually becomes acid. The acid-deficient phase ' of the process promotes the extraction of the actinides, while the latter acid phase'' of the process improves retention of the lanthanides in the aqueous solution. This provides for an improved separation. (AEC)

  11. Analysis of thermodynamics of two-fuel power unit integrated with a carbon dioxide separation plant

    Directory of Open Access Journals (Sweden)

    Kotowicz Janusz

    2014-12-01

    Full Text Available The article presents the results of thermodynamic analysis of the supercritical coal-fired power plant with gross electrical output of 900 MW and a pulverized coal boiler. This unit is integrated with the absorption-based CO2 separation installation. The heat required for carrying out the desorption process, is supplied by the system with the gas turbine. Analyses were performed for two variants of the system. In the first case, in addition to the gas turbine there is an evaporator powered by exhaust gases from the gas turbine expander. The second expanded variant assumes the application of gas turbine combined cycle with heat recovery steam generator and backpressure steam turbine. The way of determining the efficiency of electricity generation and other defined indicators to assess the energy performance of the test block was showed. The size of the gas turbine system was chosen because of the need for heat for the desorption unit, taking the value of the heat demand 4 MJ/kg CO2. The analysis results obtained for the both variants of the installation with integrated CO2 separation plant were compared with the results of the analysis of the block where the separation is not conducted.

  12. Analysis of thermodynamics of two-fuel power unit integrated with a carbon dioxide separation plant

    Science.gov (United States)

    Kotowicz, Janusz; Bartela, Łukasz; Mikosz, Dorota

    2014-12-01

    The article presents the results of thermodynamic analysis of the supercritical coal-fired power plant with gross electrical output of 900 MW and a pulverized coal boiler. This unit is integrated with the absorption-based CO2 separation installation. The heat required for carrying out the desorption process, is supplied by the system with the gas turbine. Analyses were performed for two variants of the system. In the first case, in addition to the gas turbine there is an evaporator powered by exhaust gases from the gas turbine expander. The second expanded variant assumes the application of gas turbine combined cycle with heat recovery steam generator and backpressure steam turbine. The way of determining the efficiency of electricity generation and other defined indicators to assess the energy performance of the test block was showed. The size of the gas turbine system was chosen because of the need for heat for the desorption unit, taking the value of the heat demand 4 MJ/kg CO2. The analysis results obtained for the both variants of the installation with integrated CO2 separation plant were compared with the results of the analysis of the block where the separation is not conducted.

  13. Hydrogen-methane separation processes and related phenomena. [112 references

    Energy Technology Data Exchange (ETDEWEB)

    Saunders, J.T.; Wang, S.S.; Yang, R.T.

    1981-01-01

    A thorough and up-dated literature survey has been conducted on processes for separating hydrogen and methane. This was done in conjunction with our work of developing a more energy-efficient and lower-cost process based on cyclic, fixed-bed processes using coal chars as the sorbents. Although the review has covered all hydrocarbon separation processes, the focuses were on physical adsorption phenomena and theories (for both single and mixed gases), surface and pore characteristics of coals and heat-treated coals, and the continuous or semi-continuous chromatographic separation methods. There has been a sharply increasing interest in the past 10 to 15 years in developing processes for hydrocarbon separation based on adsorption/desorption; this is particularly true since the energy costs became increasingly higher recently. The rigorous work on competitive adsorption and on the cyclic (including parametric pumping) processes has all been done in the past 13 years. On the other hand, it is disappointing to find the absence of knowledge on adsorption on coal chars and the lack of it on adsorption on raw coals as well.

  14. Recent achievements in facilitated transport membranes for separation processes

    Directory of Open Access Journals (Sweden)

    H. C. Ferraz

    2007-03-01

    Full Text Available Membrane separation processes have been extensively used for some important industrial separations, substituting traditional methods. However, some applications require the development of new membranes. In this work, we discuss recent progress achieved in this field, focusing on gas and liquid separation using facilitated transport membranes. The advantages of using a carrier species either in a liquid membrane or fixed in a polymer matrix to enhance both the flux and the selectivity of the transport are summarized. The most probable transport mechanisms in these membranes are presented and the improvements needed to spread this technology are also discussed. As examples, we discuss our very successful experiences in air fractioning, olefin/paraffin separation and sugar recovery using liquid and fixed carrier membranes.

  15. Caustic Recycling Pilot Unit to Separate Sodium from LLW at Hanford Site - 12279

    Energy Technology Data Exchange (ETDEWEB)

    Pendleton, Justin; Bhavaraju, Sai; Priday, George; Desai, Aditya; Duffey, Kean; Balagopal, Shekar [Ceramatec Inc., Salt Lake City, UT 84119 (United States)

    2012-07-01

    As part of the Department of Energy (DOE) sponsored Advanced Remediation Technologies initiative, a scheme was developed to combine Continuous Sludge Leaching (CSL), Near-Tank Cesium Removal (NTCR), and Caustic Recycling Unit (CRU) using Ceramatec technology, into a single system known as the Pilot Near-Tank Treatment System (PNTTS). The Cesium (Cs) decontaminated effluent from the NTCR process will be sent to the caustic recycle process for recovery of the caustic which will be reused in another cycle of caustic leaching in the CSL process. Such an integrated mobile technology demonstration will give DOE the option to insert this process for sodium management at various sites in Hanford, and will minimize the addition of further sodium into the waste tanks. This allows for recycling of the caustic used to remove aluminum during sludge washing as a pretreatment step in the vitrification of radioactive waste which will decrease the Low Level Waste (LLW) volume by as much as 39%. The CRU pilot process was designed to recycle sodium in the form of pure sodium hydroxide. The basis for the design of the 1/4 scale pilot caustic recycling unit was to demonstrate the efficient operation of a larger scale system to recycle caustic from the NTCR effluent stream from the Parsons process. The CRU was designed to process 0.28 liter/minute of NTCR effluent, and generate 10 M concentration of 'usable' sodium hydroxide. The proposed process operates at 40 deg. C to provide additional aluminum solubility and then recover the sodium hydroxide to the point where the aluminum is saturated at 40 deg. C. A system was developed to safely separate and vent the gases generated during operation of the CRU with the production of 10 M sodium hydroxide. Caustic was produced at a rate between 1.9 to 9.3 kg/hr. The CRU was located inside an ISO container to allow for moving of the unit close to tank locations to process the LLW stream. Actual tests were conducted with the NTCR effluent

  16. Innovative SANEX process for trivalent actinides separation from PUREX raffinate

    Energy Technology Data Exchange (ETDEWEB)

    Sypula, Michal

    2013-07-01

    Recycling of nuclear spent fuel and reduction of its radiotoxicity by separation of long-lived radionuclides would definitely help to close the nuclear fuel cycle ensuring sustainability of the nuclear energy. Partitioning of the main radiotoxicity contributors followed by their conversion into short-lived radioisotopes is known as partitioning and transmutation strategy. To ensure efficient transmutation of the separated elements (minor actinides) the content of lanthanides in the irradiation targets has to be minimised. This objective can be attained by solvent extraction using highly selective ligands that are able to separate these two groups of elements from each other. The objective of this study was to develop a novel process allowing co-separation of minor actinides and lanthanides from a high active acidic feed solution with subsequent actinide recovery using just one cycle, so-called innovative SANEX process. The conditions of each step of the process were optimised to ensure high actinide separation efficiency. Additionally, screening tests of several novel lipophilic and hydrophilic ligands provided by University of Twente were performed. These tests were aiming in better understanding the influence of the extractant structural modifications onto An(III)/Ln(III) selectivity and complexation properties. Optimal conditions for minor actinides separation were found and a flow-sheet of a new innovative SANEX process was proposed. Tests using a single centrifugal contactor confirmed high Eu(III)/Am(III) separation factor of 15 while the lowest SF{sub Ln/Am} obtained was 6,5 (for neodymium). In addition, a new masking agent for zirconium was found as a substitution for oxalic acid. This new masking agent (CDTA) was also able to mask palladium without any negative influence on An(III)/Ln(III). Additional tests showed no influence of CDTA on plutonium present in the feed solution unlike oxalic acid which causes Pu precipitation. Therefore, CDTA was proposed as

  17. Production of stable isotopes utilizing the plasma separation process

    Science.gov (United States)

    Bigelow, T. S.; Tarallo, F. J.; Stevenson, N. R.

    2005-12-01

    A plasma separation process (PSP) is being operated at Theragenics Corporation's®, Oak Ridge, TN, facility for the enrichment of stable isotopes. The PSP utilizes ion cyclotron mass discrimination to separate isotopes on a relatively large scale. With a few exceptions, nearly any metallic element could be processed with PSP. Output isotope enrichment factor depends on natural abundance and mass separation and can be fairly high in some cases. The Theragenics™ PSP facility is believed to be the only such process currently in operation. This system was developed and formerly operated under the US Department of Energy Advanced Isotope Separation program. Theragenics™ also has a laboratory at the PSP site capable of harvesting the isotopes from the process and a mass spectrometer system for analyzing enrichment and product purity. Since becoming operational in 2002, Theragenics™ has utilized the PSP to separate isotopes of several elements including: dysprosium, erbium, gadolinium, molybdenum and nickel. Currently, Theragenics™ is using the PSP for the separation of 102Pd, which is used as precursor for the production of 103Pd. The 103Pd radioisotope is the active ingredient in TheraSeed®, which is used in the treatment of early stage prostate cancer and being investigated for other medical applications. New industrial, medical and research applications are being investigated for isotopes that can be enriched on the PSP. Pre-enrichment of accelerator or reactor targets offers improved radioisotope production. Theragenics operates 14 cyclotrons for proton activation and has access to HFIR at ORNL for neutron activation of radioisotopes.

  18. Optimal Start-Up and Operation Policy for an Ultrafiltration Membrane Unit in Whey Separation The work presented here is generated by the Institute for Sustainable Process Technology (ISPT) project IMPROVISE

    NARCIS (Netherlands)

    Bahadir Saltik, M.; Özkan, Leyla; Jacobs, Marc; Padt, van der Albert

    2016-01-01

    Membrane filtration systems are preferred unit operations in industrial applications due to their mild operating conditions. However the performance of a membrane stack drops over time because of the membrane fouling. This decrease is overcomed by introducing clean membrane stacks. The associated

  19. A PSYCHOANALYTIC UNDERSTANDING OF THE GRIEVING PROCESS IN LOVING SEPARATION

    Directory of Open Access Journals (Sweden)

    Ohara de Souza Coca

    2017-03-01

    Full Text Available The loving separation is lived as an experience of death in life in which the individual needs to go through the grieving process so the loss can make sense. This study aimed to understand and analyze the grieving process towards the loving separation under a psychoanalytic perspective, and as specific objectives, identify the type of object-choice(anaclitic/ narcissistic of individuals; check if there was some kind of support during the process and analyze existing feelings after loving separation. For this, six participants were submitted a semi-structured interview, with data analyzed using content analysis. As a result, we identified the presence of both object-choices, especially the narcissistic choice in younger; the grieving process made possible changes and transformations; we found family support, friends, spiritual and psychological; and participants had greater individuality after the breakup. We hypothesized that the suffering caused by the relationship generates a defense as a detachment of another that could become a new object of love. In the grief process it’s possible to internalize the good parts of the beloved object, which are integrated into the Ego. Therefore, the good aspects become part of the subject, which can accept the loss. We pointed out that more studies are needed on the specific theme.

  20. Process for separating CO sub 2 from a gaseous mixture

    Energy Technology Data Exchange (ETDEWEB)

    Sapper, R.; Kick, H.

    1990-06-12

    A process is disclosed for the separation of carbon dioxide from gases containing light hydrocarbons and a relatively high proportion of CO{sub 2}. Such gases include natural gases, notably those found in tertiary petroleum extraction processes wherein CO{sub 2} is injected under high pressure into deposits. The process has the objective of improving known separation process and reducing the energy requirements needed for carrying out the process. According to the invention, a 2-stage fractionating procedure is provided. In a first fractionating stage, the entire amount of C1 and C2 hydrocarbons in the gaseous mixture to be treated is separated from the mixture. The overhead portion of the product coming from this stage contains essentially all of the C1 and C2 hydrocarbons as well as a portion of the CO{sub 2}. The bottoms fraction from this stage contains essentially all of the C3+ hydrocarbons and the largest portion of the CO{sub 2}. In a second fractionating stage, the bottoms fraction is pumped to a higher pressure and further distilled into a C3+ hydrocarbon fraction and a CO{sub 2} fraction. At least part of the bottoms heating of the first fractionating stage is effected by liquid withdrawn from the bottoms. This liquid is heated while cooling the head of the second fractionating stage and is then recycled into the bottoms of the first fractionating stage. 1 fig.

  1. Data Sorting Using Graphics Processing Units

    Directory of Open Access Journals (Sweden)

    M. J. Mišić

    2012-06-01

    Full Text Available Graphics processing units (GPUs have been increasingly used for general-purpose computation in recent years. The GPU accelerated applications are found in both scientific and commercial domains. Sorting is considered as one of the very important operations in many applications, so its efficient implementation is essential for the overall application performance. This paper represents an effort to analyze and evaluate the implementations of the representative sorting algorithms on the graphics processing units. Three sorting algorithms (Quicksort, Merge sort, and Radix sort were evaluated on the Compute Unified Device Architecture (CUDA platform that is used to execute applications on NVIDIA graphics processing units. Algorithms were tested and evaluated using an automated test environment with input datasets of different characteristics. Finally, the results of this analysis are briefly discussed.

  2. Studies on Separation Process and Production Technology of Boron Isotope

    Directory of Open Access Journals (Sweden)

    LI Jian-ping

    2014-02-01

    Full Text Available The boron isotopes separation test was performed by chemical exchange reaction in the benzene ether -three boron fluoride system, which resulted to the boron isotopic enrichment of -10 in the liquid phase, the boron isotopic enrichment of -11 in the gas phase. After then, boron isotope separation trial production has been finished. In this process, the exchange column and complex tower normal operating parameters and the complex tower technology have been obtained, the problems of material distillation purification is solved, boron isotopes feasibility with PTFE packing enrichment is verified in an exchange column. Also, effect of operating pressure, flow and other parameters on boron -10 isotopic enrichment experiments and the effect and properties of the PTFE packing have been investigated in the existing system. All the results are very useful for the industrialization of the boron isotopes separation system.

  3. Sound Source Separation with Two Spectrograms by Image Processing

    Science.gov (United States)

    Higuchi, Hiroaki; Asahi, Kensaku; Sagawa, Yuji; Sugie, Noboru

    We propose a method for separating speeches using two spectrograms. First, two spectrograms are generated from voices recorded with a pair of microphones. The onsets and the offsets of the frequency components are extracted as the features using image processing techniques. Then the correspondences of the features between the spectrograms are determined and the intermicrophone time differences are calculated. Each of frequency components with the common onset/offset occurrences and time difference are grouped together as originating one of the speech signals. A set of band-pass filters are generated corresponding to each group of frequency components. Finally, each of the separated speech signals is extracted by applying the set of band-pass filters to the voice signal recorded by a microphone. Experiments were conducted with the mixture of a male speech sound and a female speech sound consisting of Japanese vowel and contain consonant. The evaluation results demonstrated that the separation was done reasonably well with the proposed method.

  4. Countercurrent Process for Lignin Separation from Biomass Matrix

    Energy Technology Data Exchange (ETDEWEB)

    Kiran Kadam; Ed Lehrburger

    2006-03-31

    The overall goal of the project was to test the concept of using a twin-screw extruder to conduct autohydrolysis pretreatment of wheat straw in countercurrent fashion, demonstrate in situ solid/liquid separation, and produce a low-lignin cellulose product using ethanol as an extractant. The resultant solid product is suitable for sugar production through enzymatic hydrolysis and for pulp applications. Pilot-scale equipment was used to successfully demonstrate the process both for sugar and pulp applications.

  5. Analysis and Optimization of Central Processing Unit Process Parameters

    Science.gov (United States)

    Kaja Bantha Navas, R.; Venkata Chaitana Vignan, Budi; Durganadh, Margani; Rama Krishna, Chunduri

    2017-05-01

    The rapid growth of computer has made processing more data capable, which increase the heat dissipation. Hence the system unit CPU must be cooled against operating temperature. This paper presents a novel approach for the optimization of operating parameters on Central Processing Unit with single response based on response graph method. These methods have a series of steps from of proposed approach which are capable of decreasing uncertainty caused by engineering judgment in the Taguchi method. Orthogonal Array value was taken from ANSYS report. The method shows a good convergence with the experimental and the optimum process parameters.

  6. Quantum Central Processing Unit and Quantum Algorithm

    Institute of Scientific and Technical Information of China (English)

    王安民

    2002-01-01

    Based on a scalable and universal quantum network, quantum central processing unit, proposed in our previous paper [Chin. Phys. Left. 18 (2001)166], the whole quantum network for the known quantum algorithms,including quantum Fourier transformation, Shor's algorithm and Grover's algorithm, is obtained in a unitied way.

  7. Syllables as Processing Units in Handwriting Production

    Science.gov (United States)

    Kandel, Sonia; Alvarez, Carlos J.; Vallee, Nathalie

    2006-01-01

    This research focused on the syllable as a processing unit in handwriting. Participants wrote, in uppercase letters, words that had been visually presented. The interletter intervals provide information on the timing of motor production. In Experiment 1, French participants wrote words that shared the initial letters but had different syllable…

  8. Graphics processing unit-assisted lossless decompression

    Science.gov (United States)

    Loughry, Thomas A.

    2016-04-12

    Systems and methods for decompressing compressed data that has been compressed by way of a lossless compression algorithm are described herein. In a general embodiment, a graphics processing unit (GPU) is programmed to receive compressed data packets and decompress such packets in parallel. The compressed data packets are compressed representations of an image, and the lossless compression algorithm is a Rice compression algorithm.

  9. Graphics processing unit-assisted lossless decompression

    Energy Technology Data Exchange (ETDEWEB)

    Loughry, Thomas A.

    2016-04-12

    Systems and methods for decompressing compressed data that has been compressed by way of a lossless compression algorithm are described herein. In a general embodiment, a graphics processing unit (GPU) is programmed to receive compressed data packets and decompress such packets in parallel. The compressed data packets are compressed representations of an image, and the lossless compression algorithm is a Rice compression algorithm.

  10. Separating method and dynamic processes of Nano-Al13

    Institute of Scientific and Technical Information of China (English)

    GAO Baoyu; CHU Yongbao; YUE Qinyan; KONG Chunyan; WANG Xiaona

    2007-01-01

    In order to investigate the characteristics of pure Nano-Al13,Nano-Al13 was separated and purified from a series of poly-aluminum chloride (PAC) solutions which had the same Al13 percentage but different total Al concentrations,by using column chromatography,ethanol-acetone resolving and SO2-4/Ba2+ displacement.The Al13 species yield was characterized,by Al-ferron timed complexation spectropho-tometry and 27Al-NMR (nuclear magnetic resonance).The coagulation efficiency of Nano-Al13,PAC and AlCl3 in synthetic water was also investigated by Jar tests.The dynamic process and aggregation state of kaolin suspensions coagulating with Nano-Al13,PAC and AlCl3 were similarly investigated using a photometric dispersion analyzer 2000 (PDA2000).The experimental results indicated that the ethanol-acetone resolving method was simple and could separate the PAC solution at different concentrations,while column chromatography could separate PAC solutions at low concentrations.The SO42-/Ba2+ displacement method could separate PAC solutions at high concentrations.However,extra inorganic cation and anion could be added in the solution during separation.The coagulation efficiency and dynamic experimental results showed that Nano-Al13 with high positive-charged species was effective in removing turbidity and color.The dynamic process results showed that Nano-Al13 also had the best recovery capability after shearing compared with PAC and AlCl3 because the Nano-Al13 conformation is more effective in charge neutralization.

  11. Nitrogen Trifluoride-Based Fluoride- Volatility Separations Process: Initial Studies

    Energy Technology Data Exchange (ETDEWEB)

    McNamara, Bruce K.; Scheele, Randall D.; Casella, Andrew M.; Kozelisky, Anne E.

    2011-09-28

    This document describes the results of our investigations on the potential use of nitrogen trifluoride as the fluorinating and oxidizing agent in fluoride volatility-based used nuclear fuel reprocessing. The conceptual process uses differences in reaction temperatures between nitrogen trifluoride and fuel constituents that produce volatile fluorides to achieve separations and recover valuable constituents. We provide results from our thermodynamic evaluations, thermo-analytical experiments, kinetic models, and provide a preliminary process flowsheet. The evaluations found that nitrogen trifluoride can effectively produce volatile fluorides at different temperatures dependent on the fuel constituent.

  12. Process for Separation of Petroleum Acids from Crude Oil

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A new technique for separation of petroleum acids from crude oil was proposed. The method relates to processes for treating acidic oils or fractions thereof to reduce or eliminate their acidity by addition of effective amounts of crosslinked polymeric amines such as polypropylene amine and anionic exchange resins having amino-groups. Petroleum acids contained in the mixture can be extracted by a complex solvent. The results indicate that more than 80 % of the petroleum acids are removed and the process does not cause environmental pollution because all the solvents are recovered and reused in the test.

  13. Magnetically assisted chemical separation (MACS) process: Preparation and optimization of particles for removal of transuranic elements

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, L.; Kaminski, M.; Bradley, C.; Buchholz, B.A.; Aase, S.B.; Tuazon, H.E.; Vandegrift, G.F. [Argonne National Lab., IL (United States); Landsberger, S. [Univ. of Illinois, Urbana, IL (United States)

    1995-05-01

    The Magnetically Assisted Chemical Separation (MACS) process combines the selectivity afforded by solvent extractants with magnetic separation by using specially coated magnetic particles to provide a more efficient chemical separation of transuranic (TRU) elements, other radionuclides, and heavy metals from waste streams. Development of the MACS process uses chemical and physical techniques to elucidate the properties of particle coatings and the extent of radiolytic and chemical damage to the particles, and to optimize the stages of loading, extraction, and particle regeneration. This report describes the development of a separation process for TRU elements from various high-level waste streams. Polymer-coated ferromagnetic particles with an adsorbed layer of octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) diluted with tributyl phosphate (TBP) were evaluated for use in the separation and recovery of americium and plutonium from nuclear waste solutions. Due to their chemical nature, these extractants selectively complex americium and plutonium contaminants onto the particles, which can then be recovered from the solution by using a magnet. The partition coefficients were larger than those expected based on liquid[liquid extractions, and the extraction proceeded with rapid kinetics. Extractants were stripped from the particles with alcohols and 400-fold volume reductions were achieved. Particles were more sensitive to acid hydrolysis than to radiolysis. Overall, the optimization of a suitable NMCS particle for TRU separation was achieved under simulant conditions, and a MACS unit is currently being designed for an in-lab demonstration.

  14. A two-dimensional dual-modality tomography technique for a radioactive waste separation process

    Energy Technology Data Exchange (ETDEWEB)

    Cattle, Brian A. [Nexia Solutions Limited, Hinton House, Risley, Warrington WA3 6AS (United Kingdom)]. E-mail: brian.a.cattle@nexiasolutions.com; West, Robert M. [Nexia Solutions University Research Alliance, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2006-09-15

    The monitoring of a waste separation process in the nuclear power industry is considered. Recent advances in gamma ray emission and electrical impedance tomography mean that it is now feasible to unite these two modalities into a novel dual-modality monitoring method. This paper considers a simple model problem for the identification of a boundary between two distinct waste streams in a semi-continuous rotation separator. The simplicity of the problem affords the opportunity to demonstrate the general feasibility of the approach whilst avoiding unnecessary complications.

  15. Separation process design for isolation and purification of natural products

    DEFF Research Database (Denmark)

    Malwade, Chandrakant R.

    Natural products are defined as secondary metabolites produced by plants and form a vast pool of compounds with unlimited chemical and functional diversity. Many of these secondary metabolites are high value added chemicals that are frequently used as ingredients in food, cosmetics, pharmaceutica...... information is used to further optimize the process flow sheet. Chemometric methods have been used to extract molecular level information for understanding the process streams in relation to their separation operations....... and other consumer products. Therefore, process technology towards industrial scale production of such high value chemicals from plants has significant value. Natural products can be obtained in pure form via synthetic or semi-synthetic route, but due to their complicated nature these methods have not been...... developed to the extent of industrial production for majority of natural products. Thus, isolation and purification of such natural products from plants is the most viable way to obtain natural products in pure form. This PhD project is mainly concerned with the design of separation process to isolate...

  16. Bone marrow processing on the Haemonetics V50 cell separator.

    Science.gov (United States)

    Anderson, N A; Cornish, J M; Godwin, V; Gunstone, M J; Oakhill, A; Pamphilon, D H

    1990-01-01

    We have processed 27 bone marrow (BM) harvests using the Haemonetics V50 cell separator with a paediatric plasmapheresis set and programmed for lymphocyte collection. The mean starting volume of 843 mL was processed in 6-8 cycles to a buffy coat (BC) with a mean volume of 230 mL. The mean starting mononuclear cell (MNC) count was 1.22 x 10 8/kg recipient weight, and recovery was 92%. Clonogenic potential of the BC was assessed using CFU-GM assays and recovery was measured after cryopreservation or purging. On 4 occasions where major ABO incompatibility existed between donor and recipient, both BM and BC were consecutively diluted in compatible blood and processed twice. This achieved a calculated reduction in donor erythrocytes of 98%. The procedure was efficient and yielded a BC fraction suitable for cryopreservation and purging. Adequate stem-cells were retained as verified by CFU-GM assays and documentation of stable engraftment.

  17. Separation of metals from incineration wastes using mineral industry processes

    Energy Technology Data Exchange (ETDEWEB)

    Scheizer, G. [Universite de Technologie, Aix-la-Chapelle (Germany)

    1996-12-01

    The incineration of municipal wastes in Federal Republic of Germany produced about 2.7 to 2.8 millions of tons of solid wastes in 1993 which still contain huge amounts of mineral and organic pollutants. Ashes represent the largest part of wastes with about 2.4 millions of tons. Vitrification is an innovative treatment technique which allows a 90% reduction of the waste volume, the complete removal of the organic matter content, and the storage of these waste in an environmentally neutral form. However, metals must be extracted from the ashes prior to the vitrification process. Most metals fall into the 2.4-2.7 g/cm{sup 3} and > 3 g/cm{sup 3} density ranges. The lighter fraction corresponds to aluminium particles and alloys, while the high density fraction is enriched in copper, copper alloys and more particularly in brass. The treatment process, after drying, consist in the use of high intensity magnetic separation devices (permanent neodymium-bore-iron magnets) for the removal of ferrous particles, and in the use of Foucault currents separation devices for non-magnetic metals. At the pilot-scale, the distribution of the processed wastes corresponds to: 62.6 % of non-metallized ashes, 35.5 % of magnetic products, and 1.9% of non-magnetic products. The possible recycling of the metal fraction must be demonstrated by further studies. (J.S.). Abstract only.

  18. 300-FF-1 Operable Unit physical separation of soils pilot plant study

    Energy Technology Data Exchange (ETDEWEB)

    Freeman-Pollard, J.R.

    1994-01-15

    Alternative Remedial Technologies, Inc. (ART) was selected in a competitive selection process to conduct a pilot study for the physical separation of soils in the North Process Pond of the 300 Area at the Hanford Site. In January 1994, ART mobilized its 15 tons-per-hour pilot plant to the site. The plant was initially staged in a commercial area to allow for pretest inspections and minor modifications. The plant was specifically designed for use as a physical separations unit and consisted of a feed hopper, wet screens, hydrocyclones, as well as settling and dewatering equipment. The plant was supported in the field with prescreening equipment, mobile generators, air compressors, and water storage tanks. The plant was moved into the surface contamination area on March 24, 1994. The testing was conducted during the period March 23, 1994 through April 13, 1994. Two soil types were treated during the testing: a natural soil contaminated with low levels of uranium, cesium, cobalt, and heavy metals, and a natural soil contaminated with a uranium carbonate material that was visually recognizable by the presence of a green sludge material in the soil matrix. The ``green`` material contained significantly higher levels of the same contaminants. Both source materials were treated by the plant in a manner that fed the material, produced clean gravel and sand fractions, and concentrated the contaminants in a sludge cake. Process water was recycled during the operations. The testing was extremely successful in that for both source waste streams, it was demonstrated that volume reductions of greater than 90% could be achieved while also meeting the test performance criteria. The volume reduction for the natural soils averaged a 93.8%, while the ``green`` soils showed a 91.4% volume reduction.

  19. Simultaneous Design of Ionic Liquids and Azeotropic Separation Processes

    DEFF Research Database (Denmark)

    Roughton, Brock C.; White, John; Camarda, Kyle V.;

    2011-01-01

    A methodology for the design of azeotrope separation processes using ionic liquids as entrainers is outlined. A Hildebrand solubility parameter group contribution model has been developed to screen for or design an ionic liquid entrainer that is soluble with the azeotropic components. Using...... the best candidate, vapor-liquid equilibria data is predicted using a new ionic liquid UNIFAC model that has been developed. The UNIFAC model is used to confirm the breaking of the azeotrope. The methanol-acetone azeotrope at 1 atm is used as an example. The azeotrope was predicted to break with 10 mol...... % [BMPy][BF4] added. The driving force concept is used to design an extractive distillation process that minimizes energy inputs. The methodology given can be expanded to the use of ionic liquids as entrainers in any azeotropic system of interest....

  20. An improvement in APOR process I-uranium/plutonium separation process

    Institute of Scientific and Technical Information of China (English)

    肖松涛; 李丽; 叶国安; 罗方祥; 刘协春; 杨贺; 兰天

    2015-01-01

    The reduction stripping behavior of Pu(IV) from 30%TBP/OK with hydroxysemicarbazide (HSC) was inves-tigated, and the separation efficiency of HSC and DMHAN-MMH for U/Pu partitioning in Purex process was compared. The results show that HSC can effectively realize the separation of Pu from U;using mixer-settlers to simulate U/Pu separation in 1B bank of PUREX, from 16-stage counter current extraction experiment (in which 6 stages for supplemental extraction, 10 stages for stripping) with flow rate ratio (1BF:1BX:1BS)=4:1:1 in 1B contactor, good result was achieved that the yields are both more than 99.99%for uranium and Pu, the separation factor of plutonium from uranium (SFPu/U) is 2.8 × 104, and separation factor of uranium from plu-tonium (SFU/Pu) is 5.9 × 104. As a stripping reductant, HSC can effectively achieve the separation of Pu from U and the separation effect is nearly the same with DMHAN-MMH, which contributed to replace enough the latter with HSC in the U/Pu separation in Advanced Purex Process Based on Organic Reagent (APOR) process.

  1. Numerical Integration with Graphical Processing Unit for QKD Simulation

    Science.gov (United States)

    2014-03-27

    existing and proposed Quantum Key Distribution (QKD) systems. This research investigates using graphical processing unit ( GPU ) technology to more...Time Pad GPU graphical processing unit API application programming interface CUDA Compute Unified Device Architecture SIMD single-instruction-stream...and can be passed by value or reference [2]. 2.3 Graphical Processing Units Programming with graphical processing unit ( GPU ) requires a different

  2. Fuzzy self-tuning PID control of the operation temperatures in a two-staged membrane separation process

    Institute of Scientific and Technical Information of China (English)

    Lei Wang; Wencai Du; Hai Wang; Hong Wu

    2008-01-01

    A two-staged membrane separation process for hydrogen recovery from refinery gases is introduced. The principle of the gas membrane separation process and the influence of the operation temperatures are analyzed. As the conventional PID controller is difficult to make the operation temperatures steady, a fuzzy self-tuning PID control algorithm is proposed. The application shows that the algorithm is effective, the operation temperatures of both stages can be controlled steadily, and the operation flexibility and adaptability of the hydrogen recovery unit are enhanced with safety. This study lays a foundation to optimize the control of the membrane separation process and thus ensure the membrane performance.

  3. Process study and exergy analysis of a novel air separation process cooled by LNG cold energy

    Science.gov (United States)

    Xu, Wendong; Duan, Jiao; Mao, Wenjun

    2014-02-01

    In order to resolve the problems of the current air separation process such as the complex process, cumbersome operation and high operating costs, a novel air separation process cooled by LNG cold energy is proposed in this paper, which is based on high-efficiency heat exchanger network and chemical packing separation technology. The operating temperature range of LNG cold energy is widened from 133K-203K to 113K-283K by high-efficiency heat exchanger network and air separation pressure is declined from 0.5MPa to about 0.35MPa due to packing separation technology, thereby greatly improve the energy efficiency. Both the traditional and novel air separation processes are simulated with air handling capacity of 20t·h-1. Comparing with the traditional process, the LNG consumption is reduced by 44.2%, power consumption decrease is 211.5 kWh per hour, which means the annual benefit will be up to 1.218 million CNY. And the exergy efficiency is also improved by 42.5%.

  4. Temperature of the Central Processing Unit

    Directory of Open Access Journals (Sweden)

    Ivan Lavrov

    2016-10-01

    Full Text Available Heat is inevitably generated in the semiconductors during operation. Cooling in a computer, and in its main part – the Central Processing Unit (CPU, is crucial, allowing the proper functioning without overheating, malfunctioning, and damage. In order to estimate the temperature as a function of time, it is important to solve the differential equations describing the heat flow and to understand how it depends on the physical properties of the system. This project aims to answer these questions by considering a simplified model of the CPU + heat sink. A similarity with the electrical circuit and certain methods from electrical circuit analysis are discussed.

  5. Graphics Processing Unit Assisted Thermographic Compositing

    Science.gov (United States)

    Ragasa, Scott; McDougal, Matthew; Russell, Sam

    2013-01-01

    Objective: To develop a software application utilizing general purpose graphics processing units (GPUs) for the analysis of large sets of thermographic data. Background: Over the past few years, an increasing effort among scientists and engineers to utilize the GPU in a more general purpose fashion is allowing for supercomputer level results at individual workstations. As data sets grow, the methods to work them grow at an equal, and often greater, pace. Certain common computations can take advantage of the massively parallel and optimized hardware constructs of the GPU to allow for throughput that was previously reserved for compute clusters. These common computations have high degrees of data parallelism, that is, they are the same computation applied to a large set of data where the result does not depend on other data elements. Signal (image) processing is one area were GPUs are being used to greatly increase the performance of certain algorithms and analysis techniques.

  6. Relativistic hydrodynamics on graphics processing units

    CERN Document Server

    Sikorski, Jan; Porter-Sobieraj, Joanna; Słodkowski, Marcin; Krzyżanowski, Piotr; Książek, Natalia; Duda, Przemysław

    2016-01-01

    Hydrodynamics calculations have been successfully used in studies of the bulk properties of the Quark-Gluon Plasma, particularly of elliptic flow and shear viscosity. However, there are areas (for instance event-by-event simulations for flow fluctuations and higher-order flow harmonics studies) where further advancement is hampered by lack of efficient and precise 3+1D~program. This problem can be solved by using Graphics Processing Unit (GPU) computing, which offers unprecedented increase of the computing power compared to standard CPU simulations. In this work, we present an implementation of 3+1D ideal hydrodynamics simulations on the Graphics Processing Unit using Nvidia CUDA framework. MUSTA-FORCE (MUlti STAge, First ORder CEntral, with a~slope limiter and MUSCL reconstruction) and WENO (Weighted Essentially Non-Oscillating) schemes are employed in the simulations, delivering second (MUSTA-FORCE), fifth and seventh (WENO) order of accuracy. Third order Runge-Kutta scheme was used for integration in the t...

  7. Process for separating carbon dioxide from flue gas using sweep-based membrane separation and absorption steps

    Science.gov (United States)

    Wijmans, Johannes G.; Baker, Richard W.; Merkel, Timothy C.

    2012-08-21

    A gas separation process for treating flue gases from combustion processes, and combustion processes including such gas separation. The invention involves routing a first portion of the flue gas stream to be treated to an absorption-based carbon dioxide capture step, while simultaneously flowing a second portion of the flue gas across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas to the combustor.

  8. Design of optimal operating conditions of simulated moving bed adsorptive separation units

    Energy Technology Data Exchange (ETDEWEB)

    Storti, G. (Univ. degli Studi di Padova (Italy)); Baciocchi, R.; Mazzotti, M.; Morbidelli, M. (Politecnico di Milano (Italy). Dipt. di Chimica Fisica Applicata)

    1995-01-01

    The design of the optimal operating conditions for simulated moving bed (SMB) adsorptive separation units is considered. A procedure for the a priori selection of the operating conditions to achieve an assigned separation requirement is developed in the frame of equilibrium theory for the equivalent four section countercurrent unit, using a model where the adsorption equilibria are described through the constant selectivity stoichiometric model, while both mass transfer resistance and axial dispersion are neglected. The space of the operating parameters, i.e. the mass flow rate ratios m[sub j], is divided in regions with different separation regimes. Curves at constant outlets purity and recovery are drawn in the (m[sub 2],m[sub 3]) plane. The introduction of three performance parameters, desorbent requirement, adsorbent requirement, and productivity, allows the development of a procedure for the design of optimal operating conditions. This procedure is completed, accounting for the effect of the switching time on the separation performances, with a detailed model of the SMB unit, considering both axial dispersion and mass transfer resistance. This result constitutes a useful tool for determining the range of operating conditions to achieve an assigned separation requirement and then for selecting the optimal operating condition within this range.

  9. Equilibrium theory-based analysis of nonlinear waves in separation processes.

    Science.gov (United States)

    Mazzotti, Marco; Rajendran, Arvind

    2013-01-01

    Different areas of engineering, particularly separation process technology, deal with one-dimensional, nonstationary processes that under reasonable assumptions, namely negligible dispersion effects and transport resistances, are described by mathematical models consisting of systems of first-order partial differential equations. Their behavior is characterized by continuous or discontinuous composition (or thermal) fronts that propagate along the separation unit. The equilibrium theory (i.e., the approach discussed here to determine the solution to these model equations) predicts this with remarkable accuracy, despite the simplifications and assumptions. Interesting applications are in adsorption, chromatography and ion-exchange, distillation, gas injection, heat storage, sedimentation, precipitation, and dissolution waves. We show how mathematics can enlighten the engineering aspects, and we guide the researcher not only to reach a synthetic understanding of properties of fundamental and applicative interest but also to discover new, unexpected, and fascinating phenomena. The tools presented here are useful to teachers, researchers, and practitioners alike.

  10. Utilization of milli-scale coiled flow inverter in combination with phase separator for continuous flow liquid-liquid extraction processes

    NARCIS (Netherlands)

    Vural Gürsel, Iris; Kurt, Safa Kutup; Aalders, Jasper; Wang, Qi; Noël, Timothy; Nigam, Krishna D P; Kockmann, Norbert; Hessel, Volker

    2016-01-01

    Process-design intensification situated under the umbrella of Novel Process Windows heads for process integration and here most development is needed for flow separators. The vision is to achieve multi-step synthesis in flow on pilot scale. This calls for scale-up of separation units. This study is

  11. Accelerating the Fourier split operator method via graphics processing units

    CERN Document Server

    Bauke, Heiko

    2010-01-01

    Current generations of graphics processing units have turned into highly parallel devices with general computing capabilities. Thus, graphics processing units may be utilized, for example, to solve time dependent partial differential equations by the Fourier split operator method. In this contribution, we demonstrate that graphics processing units are capable to calculate fast Fourier transforms much more efficiently than traditional central processing units. Thus, graphics processing units render efficient implementations of the Fourier split operator method possible. Performance gains of more than an order of magnitude as compared to implementations for traditional central processing units are reached in the solution of the time dependent Schr\\"odinger equation and the time dependent Dirac equation.

  12. Managing Zirconium Chemistry and Phase Compatibility in Combined Process Separations for Minor Actinide Partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Nathalie [Washington State Univ., Pullman, WA (United States); Nash, Ken [Washington State Univ., Pullman, WA (United States); Martin, Leigh [Washington State Univ., Pullman, WA (United States)

    2017-03-17

    In response to the NEUP Program Supporting Fuel Cycle R&D Separations and Waste Forms call DEFOA- 0000799, this report describes the results of an R&D project focusing on streamlining separation processes for advanced fuel cycles. An example of such a process relevant to the U.S. DOE FCR&D program would be one combining the functions of the TRUEX process for partitioning of lanthanides and minor actinides from PUREX(UREX) raffinates with that of the TALSPEAK process for separating transplutonium actinides from fission product lanthanides. A fully-developed PUREX(UREX)/TRUEX/TALSPEAK suite would generate actinides as product(s) for reuse (or transmutation) and fission products as waste. As standalone, consecutive unit-operations, TRUEX and TALSPEAK employ different extractant solutions (solvating (CMPO, octyl(phenyl)-N,Ndiisobutylcarbamoylmethylphosphine oxide) vs. cation exchanging (HDEHP, di-2(ethyl)hexylphosphoric acid) extractants), and distinct aqueous phases (2-4 M HNO3 vs. concentrated pH 3.5 carboxylic acid buffers containing actinide selective chelating agents). The separate processes may also operate with different phase transfer kinetic constraints. Experience teaches (and it has been demonstrated at the lab scale) that, with proper control, multiple process separation systems can operate successfully. However, it is also recognized that considerable economies of scale could be achieved if multiple operations could be merged into a single process based on a combined extractant solvent. The task of accountability of nuclear materials through the process(es) also becomes more robust with fewer steps, providing that the processes can be accurately modeled. Work is underway in the U.S. and Europe on developing several new options for combined processes (TRUSPEAK, ALSEP, SANEX, GANEX, ExAm are examples). There are unique challenges associated with the operation of such processes, some relating to organic phase chemistry, others arising from the

  13. Magnetohydrodynamics simulations on graphics processing units

    CERN Document Server

    Wong, Hon-Cheng; Feng, Xueshang; Tang, Zesheng

    2009-01-01

    Magnetohydrodynamics (MHD) simulations based on the ideal MHD equations have become a powerful tool for modeling phenomena in a wide range of applications including laboratory, astrophysical, and space plasmas. In general, high-resolution methods for solving the ideal MHD equations are computationally expensive and Beowulf clusters or even supercomputers are often used to run the codes that implemented these methods. With the advent of the Compute Unified Device Architecture (CUDA), modern graphics processing units (GPUs) provide an alternative approach to parallel computing for scientific simulations. In this paper we present, to the authors' knowledge, the first implementation to accelerate computation of MHD simulations on GPUs. Numerical tests have been performed to validate the correctness of our GPU MHD code. Performance measurements show that our GPU-based implementation achieves speedups of 2 (1D problem with 2048 grids), 106 (2D problem with 1024^2 grids), and 43 (3D problem with 128^3 grids), respec...

  14. Graphics Processing Units for HEP trigger systems

    Science.gov (United States)

    Ammendola, R.; Bauce, M.; Biagioni, A.; Chiozzi, S.; Cotta Ramusino, A.; Fantechi, R.; Fiorini, M.; Giagu, S.; Gianoli, A.; Lamanna, G.; Lonardo, A.; Messina, A.; Neri, I.; Paolucci, P. S.; Piandani, R.; Pontisso, L.; Rescigno, M.; Simula, F.; Sozzi, M.; Vicini, P.

    2016-07-01

    General-purpose computing on GPUs (Graphics Processing Units) is emerging as a new paradigm in several fields of science, although so far applications have been tailored to the specific strengths of such devices as accelerator in offline computation. With the steady reduction of GPU latencies, and the increase in link and memory throughput, the use of such devices for real-time applications in high-energy physics data acquisition and trigger systems is becoming ripe. We will discuss the use of online parallel computing on GPU for synchronous low level trigger, focusing on CERN NA62 experiment trigger system. The use of GPU in higher level trigger system is also briefly considered.

  15. Kernel density estimation using graphical processing unit

    Science.gov (United States)

    Sunarko, Su'ud, Zaki

    2015-09-01

    Kernel density estimation for particles distributed over a 2-dimensional space is calculated using a single graphical processing unit (GTX 660Ti GPU) and CUDA-C language. Parallel calculations are done for particles having bivariate normal distribution and by assigning calculations for equally-spaced node points to each scalar processor in the GPU. The number of particles, blocks and threads are varied to identify favorable configuration. Comparisons are obtained by performing the same calculation using 1, 2 and 4 processors on a 3.0 GHz CPU using MPICH 2.0 routines. Speedups attained with the GPU are in the range of 88 to 349 times compared the multiprocessor CPU. Blocks of 128 threads are found to be the optimum configuration for this case.

  16. Graphics Processing Units for HEP trigger systems

    Energy Technology Data Exchange (ETDEWEB)

    Ammendola, R. [INFN Sezione di Roma “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Roma (Italy); Bauce, M. [INFN Sezione di Roma “La Sapienza”, P.le A. Moro 2, 00185 Roma (Italy); University of Rome “La Sapienza”, P.lee A.Moro 2, 00185 Roma (Italy); Biagioni, A. [INFN Sezione di Roma “La Sapienza”, P.le A. Moro 2, 00185 Roma (Italy); Chiozzi, S.; Cotta Ramusino, A. [INFN Sezione di Ferrara, Via Saragat 1, 44122 Ferrara (Italy); University of Ferrara, Via Saragat 1, 44122 Ferrara (Italy); Fantechi, R. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); CERN, Geneve (Switzerland); Fiorini, M. [INFN Sezione di Ferrara, Via Saragat 1, 44122 Ferrara (Italy); University of Ferrara, Via Saragat 1, 44122 Ferrara (Italy); Giagu, S. [INFN Sezione di Roma “La Sapienza”, P.le A. Moro 2, 00185 Roma (Italy); University of Rome “La Sapienza”, P.lee A.Moro 2, 00185 Roma (Italy); Gianoli, A. [INFN Sezione di Ferrara, Via Saragat 1, 44122 Ferrara (Italy); University of Ferrara, Via Saragat 1, 44122 Ferrara (Italy); Lamanna, G., E-mail: gianluca.lamanna@cern.ch [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); INFN Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati (Roma) (Italy); Lonardo, A. [INFN Sezione di Roma “La Sapienza”, P.le A. Moro 2, 00185 Roma (Italy); Messina, A. [INFN Sezione di Roma “La Sapienza”, P.le A. Moro 2, 00185 Roma (Italy); University of Rome “La Sapienza”, P.lee A.Moro 2, 00185 Roma (Italy); and others

    2016-07-11

    General-purpose computing on GPUs (Graphics Processing Units) is emerging as a new paradigm in several fields of science, although so far applications have been tailored to the specific strengths of such devices as accelerator in offline computation. With the steady reduction of GPU latencies, and the increase in link and memory throughput, the use of such devices for real-time applications in high-energy physics data acquisition and trigger systems is becoming ripe. We will discuss the use of online parallel computing on GPU for synchronous low level trigger, focusing on CERN NA62 experiment trigger system. The use of GPU in higher level trigger system is also briefly considered.

  17. Efficient separations and processing crosscutting program: Develop and test sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Bray, L.A.

    1995-09-01

    This report summarizes work performed during FY 1995 under the task {open_quotes}Develop and Test Sorbents,{close_quotes} the purpose of which is to develop high-capacity, selective solid extractants to recover cesium, strontium, and technetium from nuclear wastes. This work is being done for the Efficient Separations and Processing Crosscutting Program (ESP), operated by the U.S. Department of Energy`s Office of Environmental Management`s Office of Technology Development. The task is under the direction of staff at Pacific Northwest Laboratory (PNL) with key participation from industrial and university staff at 3M, St. Paul, Minnesota; IBC Advanced Technologies, Inc., American Forks, Utah; AlliedSignal, Inc., Des Plaines, Illinois, and Texas A&M University, College Station, Texas. 3M and IBC are responsible for ligand and membrane technology development; AlliedSignal and Texas A&M are developing sodium titanate powders; and PNL is testing the materials developed by the industry/university team members. Major accomplishments for FY 1995 are summarized in this report.

  18. Integrated separation process for isolation and purification of biosuccinic acid.

    Science.gov (United States)

    Kurzrock, Tanja; Schallinger, Stefan; Weuster-Botz, Dirk

    2011-01-01

    Biotechnologically produced succinic acid has the potential to displace maleic acid and its uses. Therefore, it is of high interest for the chemical, pharmaceutical, and food industry.In addition to optimized production strains and fermentation processes, an efficient separation of succinic acid from the aqueous fermentation broth is indispensable to compete with the current petrochemical production of succinic acid. Isolation and purification of succinic acid from an Escherichia coli fermentation broth were studied with two amine-based reactive extraction systems: (i) trihexylamine in 1-octanol and (ii) diisooctylamine and dihexylamine in a mixture of 1-octanol and 1-hexanol. Back extraction of succinic acid from the organic phase was carried out using an aqueous trimethylamine solution. The trimethylammonium succinate generated after back extraction was split with an evaporation-based crystallization.The focus was on process integration, for example, reuse of the applied amines for extraction and back extraction. It was shown that the maximum trimethylamine concentration for back extraction should not exceed the stoichiometric amount (2 mol trimethylamine/mol the succinic acid in the organic phase) to ensure maximal extraction yields with the reused organic phase in subsequent extractions. Moreover, mixer-settler extraction and back extraction of succinic acid were scaled up from the milliliter- to the liter-scale making use of liquid–liquid centrifuges. The overall yield was 83.5% of the succinic acid from thefermentation supernatant. The final purity of the succinic acid crystals was 99.5%. Organic phase and amines can easily be recycled and reused. © 2011 American Institute of Chemical Engineers

  19. Energy Efficient Iris Recognition With Graphics Processing Units

    National Research Council Canada - National Science Library

    Rakvic, Ryan; Broussard, Randy; Ngo, Hau

    2016-01-01

    .... In the past few years, however, this growth has slowed for central processing units (CPUs). Instead, there has been a shift to multicore computing, specifically with the general purpose graphic processing units (GPUs...

  20. PROCESS FOR CONTINUOUSLY SEPARATING IRRADIATION PRODUCTS OF THORIUM

    Science.gov (United States)

    Hatch, L.P.; Miles, F.T.; Sheehan, T.V.; Wiswall, R.H.; Heus, R.J.

    1959-07-01

    A method is presented for separating uranium-233 and protactinium from thorium-232 containing compositions which comprises irradiating finely divided particles of said thorium with a neutron flux to form uranium-233 and protactinium, heating the neutron-irradiated composition in a fluorine and hydrogen atmosphere to form volatile fluorides of uranium and protactinium and thereafter separating said volatile fluorides from the thorium.

  1. Application of Electromagnetic (EM) Separation Technology to Metal Refining Processes: A Review

    Science.gov (United States)

    Zhang, Lifeng; Wang, Shengqian; Dong, Anping; Gao, Jianwei; Damoah, Lucas Nana Wiredu

    2014-12-01

    Application of electromagnetic (EM) force to metal processing has been considered as an emerging technology for the production of clean metals and other advanced materials. In the current paper, the principle of EM separation was introduced and several schemes of imposing EM field, such as DC electric field with a crossed steady magnetic field, AC electric field, AC magnetic field, and traveling magnetic field were reviewed. The force around a single particle or multi-particles and their trajectories in the conductive liquid under EM field were discussed. Applications of EM technique to the purification of different liquid metals such as aluminum, zinc, magnesium, silicon, copper, and steel were summarized. Effects of EM processing parameters, such as the frequency of imposed field, imposed magnetic flux density, processing time, particle size, and the EM unit size on the EM purification efficiency were discussed. Experimental and theoretical investigations have showed that the separation efficiency of inclusions from the molten aluminum using EM purification could as high as over 90 pct. Meanwhile, the EM purification was also applied to separate intermetallic compounds from metal melt, such as α-AlFeMnSi-phase from the molten aluminum. And then the potential industrial application of EM technique was proposed.

  2. The reliability analysis of a separated, dual fail operational redundant strapdown IMU. [inertial measurement unit

    Science.gov (United States)

    Motyka, P.

    1983-01-01

    A methodology for quantitatively analyzing the reliability of redundant avionics systems, in general, and the dual, separated Redundant Strapdown Inertial Measurement Unit (RSDIMU), in particular, is presented. The RSDIMU is described and a candidate failure detection and isolation system presented. A Markov reliability model is employed. The operational states of the system are defined and the single-step state transition diagrams discussed. Graphical results, showing the impact of major system parameters on the reliability of the RSDIMU system, are presented and discussed.

  3. Silica membranes for hydrogen separation in coal gas processing

    Energy Technology Data Exchange (ETDEWEB)

    Gavalas, G.R.

    1993-01-01

    The general objective of this project was to synthesize permselective membranes suitable for hydrogen separation from coal gas. The specific objectives were: (i) to synthesize membranes by chemical vapor deposition (CVD) of SiO[sub 2] or other oxides on porous support tubes, (ii) characterize the membranes by permeation measurements of various gases and by electron microscopy, and (iii) obtain information about the mechanism and kinetics Of SiO[sub 2] deposition, and model the process of membrane formation. Silica glass and certain other glasses, in dense (nonporous) form, are highly selective to hydrogen permeation. Since this high selectivity is accompanied by low permeability, however, a practical membrane must have a composite structure consisting of a thin layer of the active oxide supported on a porous tube or plate providing mechanical support. In this project the membranes were synthesized by chemical vapor deposition (CVD) of SiO[sub 2], TiO[sub 2], Al[sub 2]O[sub 3] and B[sub 2]O[sub 3] layers inside the walls of porous Vycor tubes (5 mm ID, 7 mm OD, 40 [Angstrom] mean pore diameter). Deposition of the oxide layer was carried out using the reaction of SiCl[sub 4] (or TiCl[sub 4], AlCl[sub 3], BCl[sub 3]) and water vapor at elevated temperatures. The porous support tube was inserted concentrically into a larger quartz tube and fitted with flow lines and pressure gauges. The flow of the two reactant streams was regulated by mass flow controllers, while the temperature was controlled by placing the reactor into a split-tube electric furnace.

  4. Determination of technical and economic parameters of an ionic transport membrane air separation unit working in a supercritical power plant

    Directory of Open Access Journals (Sweden)

    Kotowicz Janusz

    2016-09-01

    Full Text Available In this paper an air separation unit was analyzed. The unit consisted of: an ionic transport membrane contained in a four-end type module, an air compressor, an expander fed by gas that remains after oxygen separation and heat exchangers which heat the air and recirculated flue gas to the membrane operating temperature (850 °C. The air separation unit works in a power plant with electrical power equal to 600 MW. This power plant additionally consists of: an oxy-type pulverized-fuel boiler, a steam turbine unit and a carbon dioxide capture unit. Life steam parameters are 30 MPa/650 °C and reheated steam parameters are 6 MPa/670 °C. The listed units were analyzed. For constant electrical power of the power plant technical parameters of the air separation unit for two oxygen recovery rate (65% and 95% were determined. One of such parameters is ionic membrane surface area. In this paper the formulated equation is presented. The remaining technical parameters of the air separation unit are, among others: heat exchange surface area, power of the air compressor, power of the expander and auxiliary power. Using the listed quantities, the economic parameters, such as costs of air separation unit and of individual components were determined. These quantities allowed to determine investment costs of construction of the air separation unit. In addition, they were compared with investment costs for the entire oxy-type power plant.

  5. Discrete phase model representation of particulate matter (PM) for simulating PM separation by hydrodynamic unit operations.

    Science.gov (United States)

    Dickenson, Joshua A; Sansalone, John J

    2009-11-01

    Modeling the separation of dilute particulate matter (PM) has been a topic of interest since the introduction of unit operations for clarification of rainfall-runoff. One consistent yet controversial issue is the representation of PM and PM separation mechanisms for treatment. While Newton's Law and surface overflow rate were utilized, many historical models represented PM as a lumped gravimetric index largely out of economy and lack of particle analysis methods. As a result such models did not provide information about particle fate in or through a unit operation. In this study, PM discrete phase modeling (DPM) and computational fluid dynamics (CFD) are applied to model PM fate as a function of particle size and flow rate in two common types of hydrodynamic separator (HS) units. The study examines the discretization requirements (as a discretization number, DN) and errors for particle size distributions (PSDs) that range from the common heterodisperse to a monodisperse PSD. PSDs are categorized based on granulometric indices. Results focus on ensuring modeling accuracy while examining the role of size dispersivity and overall PM fineness on DN requirements. The fate of common heterodisperse PSDs is accurately predicted for a DN of 16, whereas a single particle size index, commonly the d(50m), is limited to monodisperse PSDs in order to achieve similar accuracy.

  6. Optimal integrated design of air separation unit and gas turbine block for IGCC systems

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, R.; Grossman, I.; Biegler, L.; Zitney, S.

    2009-01-01

    The Integrated Gasification Combined Cycle (IGCC) systems are considered as a promising technology for power generation. However, they are not yet in widespread commercial use and opportunities remain to improve system feasibility and profitability via improved process integration. This work focuses on the integrated design of gasification system, air separation unit (ASU) and the gas turbine (GT) block. The ASU supplies oxygen to the gasification system and it can also supply nitrogen (if required as a diluent) to the gas turbine block with minimal incremental cost. Since both GT and the ASU require a source of compressed air, integrating the air requirement of these units is a logical starting point for facility optimization (Smith et al., 1997). Air extraction from the GT can reduce or avoid the compression cost in the ASU and the nitrogen injection can reduce NOx emissions and promote trouble-free operation of the GT block (Wimer et al., 2006). There are several possible degrees of integration between the ASU and the GT (Smith and Klosek, 2001). In the case of 'total' integration, where all the air required for the ASU is supplied by the GT compressor and the ASU is expected to be an elevated-pressure (EP) type. Alternatively, the ASU can be 'stand alone' without any integration with the GT. In this case, the ASU operates at low pressure (LP), with its own air compressor delivering air to the cryogenic process at the minimum energy cost. Here, nitrogen may or may not be injected because of the energy penalty issue and instead, syngas humidification may be preferred. A design, which is intermediate between these two cases, involves partial supply of air by the gas turbine and the remainder by a separate air compressor. These integration schemes have been utilized in some IGCC projects. Examples include Nuon Power Plant at Buggenum, Netherlands (both air and nitrogen integration), Polk Power Station at Tampa, US (nitrogen-only integration) and

  7. PO*WW*ER mobile treatment unit process hazards analysis

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, R.B.

    1996-06-01

    The objective of this report is to demonstrate that a thorough assessment of the risks associated with the operation of the Rust Geotech patented PO*WW*ER mobile treatment unit (MTU) has been performed and documented. The MTU was developed to treat aqueous mixed wastes at the US Department of Energy (DOE) Albuquerque Operations Office sites. The MTU uses evaporation to separate organics and water from radionuclides and solids, and catalytic oxidation to convert the hazardous into byproducts. This process hazards analysis evaluated a number of accident scenarios not directly related to the operation of the MTU, such as natural phenomena damage and mishandling of chemical containers. Worst case accident scenarios were further evaluated to determine the risk potential to the MTU and to workers, the public, and the environment. The overall risk to any group from operation of the MTU was determined to be very low; the MTU is classified as a Radiological Facility with low hazards.

  8. Graphics Processing Units and High-Dimensional Optimization.

    Science.gov (United States)

    Zhou, Hua; Lange, Kenneth; Suchard, Marc A

    2010-08-01

    This paper discusses the potential of graphics processing units (GPUs) in high-dimensional optimization problems. A single GPU card with hundreds of arithmetic cores can be inserted in a personal computer and dramatically accelerates many statistical algorithms. To exploit these devices fully, optimization algorithms should reduce to multiple parallel tasks, each accessing a limited amount of data. These criteria favor EM and MM algorithms that separate parameters and data. To a lesser extent block relaxation and coordinate descent and ascent also qualify. We demonstrate the utility of GPUs in nonnegative matrix factorization, PET image reconstruction, and multidimensional scaling. Speedups of 100 fold can easily be attained. Over the next decade, GPUs will fundamentally alter the landscape of computational statistics. It is time for more statisticians to get on-board.

  9. The separation of particulates from supercritical water oxidation processes

    Energy Technology Data Exchange (ETDEWEB)

    Dell`Orco, P.C.; Li, L.; Gloyna, E.F. [Univ. of Texas, Austin (United States)

    1993-01-01

    Small hydrocyclones with batch underflow receivers were assessed for their ability to separate micron-sized particulates from near-critical water solutions. Such particulates are expected from the effluent of a supercritical water oxidation reactor. The separation of micron-sized quartz silica, zirconia, and titania particles was investigated. An empirical expression was developed for the prediction of gross removal efficiencies as a function of a Stokes` number. Particle size distributions provided grade efficiencies for all experiments, and from these data, cut sizes were determined. Gross efficiencies up to 99% were observed for zirconia; cut sizes (d{sub 90} and d{sub 95}) near one micron were measured.

  10. Biodiesel production from integration between reaction and separation system: reactive distillation process.

    Science.gov (United States)

    da Silva, Nívea de Lima; Santander, Carlos Mario Garcia; Batistella, César Benedito; Filho, Rubens Maciel; Maciel, Maria Regina Wolf

    2010-05-01

    Biodiesel is a clean burning fuel derived from a renewable feedstock such as vegetable oil or animal fat. It is biodegradable, non-inflammable, non-toxic, and produces lesser carbon monoxide, sulfur dioxide, and unburned hydrocarbons than petroleum-based fuel. The purpose of the present work is to present an efficient process using reactive distillation columns applied to biodiesel production. Reactive distillation is the simultaneous implementation of reaction and separation within a single unit of column. Nowadays, it is appropriately called "Intensified Process". This combined operation is especially suited for the chemical reaction limited by equilibrium constraints, since one or more of the products of the reaction are continuously separated from the reactants. This work presents the biodiesel production from soybean oil and bioethanol by reactive distillation. Different variables affect the conventional biodiesel production process such as: catalyst concentration, reaction temperature, level of agitation, ethanol/soybean oil molar ratio, reaction time, and raw material type. In this study, the experimental design was used to optimize the following process variables: the catalyst concentration (from 0.5 wt.% to 1.5 wt.%), the ethanol/soybean oil molar ratio (from 3:1 to 9:1). The reactive column reflux rate was 83 ml/min, and the reaction time was 6 min.

  11. Separation: An Integral Aspect of the Staffing Process.

    Science.gov (United States)

    Conley, Valerie Martin

    2001-01-01

    The model of staffing in higher education proposed by Winston and Creamer (1997) includes essential components of recruitment and selection, orientation, supervision, staff development, and performance appraisal. Proposes that the model has a significant oversight-when staff leave their position. Separation is proposed as a necessary component of…

  12. Separation of Process Water using Hydroxy Sodalite Membranes

    NARCIS (Netherlands)

    Khajavi, S.

    2010-01-01

    This thesis describes the synthesis, characterization, and application of Hydroxy Sodalite (H-SOD) membranes in selective separation of water from aqueous solutions and reaction media. The emphasis has been put on the development of a tight membrane film that could be primarily used for water separa

  13. Separation of Process Water using Hydroxy Sodalite Membranes

    NARCIS (Netherlands)

    Khajavi, S.

    2010-01-01

    This thesis describes the synthesis, characterization, and application of Hydroxy Sodalite (H-SOD) membranes in selective separation of water from aqueous solutions and reaction media. The emphasis has been put on the development of a tight membrane film that could be primarily used for water

  14. Grade and Recovery Prediction for Eddy Current Separation Processes

    NARCIS (Netherlands)

    Rem, P.C.; Beunder, E.M.; Kuilman, W.

    1998-01-01

    Grade and recovery of eddy current separation can be estimated on the basis of trajectory simulations for particles of simple shapes. In order to do so, the feed is characterized in terms of a small set of test-particles, each test-particle representing a fraction of the feed of a given size, shape

  15. A calcium oxide sorbent process for bulk separation of carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Silaban, A.; Narcida, M.; Harrison, D.P.

    1992-02-01

    The expected commercialization of coal gasification technology in the US and world-wide will create a need for advanced gas purification and separation processes capable of operating at higher temperatures and in more hostile environments than is common today. For example, a high-temperature, high-pressure process capable of separating CO{sub 2} from coal-derived gas may find application in purifying synthesis gas for H{sub 2}, NH{sub 3}, or CH{sub 3}OH production. High temperature CO{sub 2} removal has the potential for significantly improving the operating efficiency of integrated gasification-molten carbonate fuel cells for electric power generation. This study proved the technical feasibility of a CO{sub 2}-separation process based upon the regenerable noncatalytic gas-solid reaction between CaO and CO{sub 2} to form CACO{sub 3}. Such a process operating at 650{degree}C and 15 atm with 15% CO{sub 2} in the coal gas has the potential for removing in excess of 99% of the CO{sub 2} fed. Selection of a sorbent precursor which, upon calcination, produces high-porosity CaO is important for achieving rapid and complete reaction. The addition of magnesium to the sorbent appears to improve the multicycle durability at a cost of reduced CO{sub 2} capacity per unit mass of sorbent. Reaction conditions, principally calcination and carbonation temperatures, are important factors in multicycle durability. Reaction pressure and CO{sub 2} concentration are important in so far as the initial rapid reaction rate is concerned, but are relatively unimportant in terms of sorbent capacity and durability. Indirect evidence for the simultaneous occurrence of the shift reaction and CO{sub 2}-removal reaction creates the possibility of a direct one-step process for the production of hydrogen from coal-derived gas.

  16. Integration Process for the Habitat Demonstration Unit

    Science.gov (United States)

    Gill, Tracy; Merbitz, Jerad; Kennedy, Kriss; Tn, Terry; Toups, Larry; Howe, A. Scott; Smitherman, David

    2011-01-01

    The Habitat Demonstration Unit (HDU) is an experimental exploration habitat technology and architecture test platform designed for analog demonstration activities. The HDU previously served as a test bed for testing technologies and sub-systems in a terrestrial surface environment. in 2010 in the Pressurized Excursion Module (PEM) configuration. Due to the amount of work involved to make the HDU project successful, the HDU project has required a team to integrate a variety of contributions from NASA centers and outside collaborators The size of the team and number of systems involved With the HDU makes Integration a complicated process. However, because the HDU shell manufacturing is complete, the team has a head start on FY--11 integration activities and can focus on integrating upgrades to existing systems as well as integrating new additions. To complete the development of the FY-11 HDU from conception to rollout for operations in July 2011, a cohesive integration strategy has been developed to integrate the various systems of HDU and the payloads. The highlighted HDU work for FY-11 will focus on performing upgrades to the PEM configuration, adding the X-Hab as a second level, adding a new porch providing the astronauts a larger work area outside the HDU for EVA preparations, and adding a Hygiene module. Together these upgrades result in a prototype configuration of the Deep Space Habitat (DSH), an element under evaluation by NASA's Human Exploration Framework Team (HEFT) Scheduled activates include early fit-checks and the utilization of a Habitat avionics test bed prior to installation into HDU. A coordinated effort to utilize modeling and simulation systems has aided in design and integration concept development. Modeling tools have been effective in hardware systems layout, cable routing, sub-system interface length estimation and human factors analysis. Decision processes on integration and use of all new subsystems will be defined early in the project to

  17. Experimental Validation of Hybrid Distillation-Vapor Permeation Process for Energy Efficient Ethanol-Water Separation

    Science.gov (United States)

    The energy demand of distillation-based systems for ethanol recovery and dehydration can be significant, particularly for dilute solutions. An alternative separation process integrating vapor stripping with a vapor compression step and a vapor permeation membrane separation step,...

  18. Experimental Validation of Hybrid Distillation-Vapor Permeation Process for Energy Efficient Ethanol-Water Separation

    Science.gov (United States)

    The energy demand of distillation-based systems for ethanol recovery and dehydration can be significant, particularly for dilute solutions. An alternative separation process integrating vapor stripping with a vapor compression step and a vapor permeation membrane separation step,...

  19. Comparison of cervical vertebral separation in the supine and seated positions using home traction units.

    Science.gov (United States)

    Fater, Dennis C W; Kernozek, Thomas W

    2008-01-01

    This study was performed for the purpose of comparing the magnitude of cervical vertebral separation during cervical traction in supine and seated positions using home traction units. A repeated measures design with two within-subject factors (type of traction and time) was used. Seventeen asymptomatic volunteers received cervical traction in seated and supine position. Subjects received 5 minutes of static traction in sitting or supine using a force of 13.6 kg while in 15 degrees of neck flexion. A lateral radiograph of the cervical spine was taken before traction force was applied and after five minutes of static traction. Anterior and posterior distances between the inferior border of C2 and the superior border of C7 were measured by a radiologist. After supine traction there were significant increases (p=0.001) in posterior cervical vertebral separation compared to any changes after seated traction. There were no significant changes in anterior vertebral separation during either supine or seated traction positions (p=0.769). Supine cervical traction may be more effective for increasing posterior vertebral separation than seated cervical traction.

  20. The separation of particulates from supercritical water oxidation processes

    Energy Technology Data Exchange (ETDEWEB)

    Dell' Orco, P.C.; Li, L.; Gloyna, E.F.

    1991-01-01

    Small hydrocyclones with batch underflow receivers were assessed for their ability to separate micron-sized particulates from near-critical water solutions. Such particulates are expected from the effluent of a supercritical water oxidation reactor. The separation of micron-sized quartz silica, zirconia, and titania particles was investigated. A model was developed for the prediction of gross removal efficiencies as a function of a Stokes' number. Particle size distributions provided grade efficiencies for all experiments, and from these data, cut sizes were determined. Gross efficiencies up to 99% were observed for zirconia; cut sizes (d{sub 90} and d{sub 95}) near one micron were measured. 19 refs., 5 figs.

  1. EVALUATION OF ALTERNATIVE STRONIUM AND TRANSURANIC SEPARATION PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    SMALLEY CS

    2011-04-25

    In order to meet contract requirements on the concentrations of strontium-90 and transuranic isotopes in the immobilized low-activity waste, strontium-90 and transuranics must be removed from the supernate of tanks 241-AN-102 and 241-AN-107. The process currently proposed for this application is an in-tank precipitation process using strontium nitrate and sodium permanganate. Development work on the process has not proceeded since 2005. The purpose of the evaluation is to identify whether any promising alternative processes have been developed since this issue was last examined, evaluate the alternatives and the baseline process, and recommend which process should be carried forward.

  2. Estimation on separation efficiency of aluminum from base-cap of spent fluorescent lamp in hammer crusher unit.

    Science.gov (United States)

    Rhee, Seung-Whee

    2017-09-01

    In order to separate aluminum from the base-cap of spent fluorescent lamp (SFL), the separation efficiency of hammer crusher unit is estimated by introducing a binary separation theory. The base-cap of SFL is composed by glass fragment, binder, ferrous metal, copper and aluminum. The hammer crusher unit to recover aluminum from the base-cap consists of 3stages of hammer crusher, magnetic separator and vibrating screen. The optimal conditions of rotating speed and operating time in the hammer crusher unit are decided at each stage. At the optimal conditions, the aluminum yield and the separation efficiency of hammer crusher unit are estimated by applying a sequential binary separation theory at each stage. And the separation efficiency between hammer crusher unit and roll crush system is compared to show the performance of aluminum recovery from the base-cap of SFL. Since the separation efficiency can be increased to 99% at stage 3, from the experimental results, it is found that aluminum from the base-cap can be sufficiently recovered by the hammer crusher unit. Copyright © 2017. Published by Elsevier Ltd.

  3. CFD investigations of data centers’ thermal performance for different configurations of CRACs units and aisles separation

    Directory of Open Access Journals (Sweden)

    S.A. Nada

    2016-06-01

    Full Text Available The thermal performance of data centers is numerically studied for different configurations of computer room air conditioning (CRAC units and physical separations of cold and hot aisles. Temperature distribution, air flow characteristics and thermal management of data centers racks array are predicted and evaluated for the different arrangements. Measureable performance indices: supply/return heat index (SHI/RHI, return temperature index (RTI and return cooling index (RCI are used to measure the thermal management effectiveness of data center racks. The results showed that: (i hot air recirculation, cold air bypass and the measurable performance indices of the racks strongly depend on the racks location in the racks array, (ii the CRACs units layout affects the thermal managements of the racks array especially the sides and middle racks in the array, and (iii using cold aisle containments enhances the thermal performance of the data center.

  4. Robust design of countercurrent adsorption separation processes. 4: Desorbent in the feed

    Energy Technology Data Exchange (ETDEWEB)

    Mazzotti, M. [Politecnico di Milano (Italy). Dipt. di Chimica; Storti, G. [Univ. degli Studi di Cagliari (Italy). Dipt. di Ingegneria Chimica e Materiali; Morbidelli, M. [ETH Zentrum, Zuerich (Switzerland). Lab. fuer Technische Chemie

    1997-01-01

    In many instances of practical interest, countercurrent adsorption separations operate on feed streams containing not only the components to be separated but also some desorbent. Criteria for the optimal and robust design and operation of these units are developed by extending previous treatments developed for desorbent-free feedstreams. The effect of the presence of some desorbent (weak, intermediate, or strong) on the location and robustness of the region of complete separation in the operating parameter space is discussed.

  5. The influence of selected parameters on the efficiency and economic charactersistics of the oxy-type coal unit with a membrane-cryogenic oxygen separator

    Directory of Open Access Journals (Sweden)

    Kotowicz Janusz

    2016-03-01

    Full Text Available In this paper a 600 MW oxy-type coal unit with a pulverized bed boiler and a membrane-cryogenic oxygen separator and carbon capture installation was analyzed. A membrane-cryogenic oxygen separation installation consists of a membrane module and two cryogenic distillation columns. In this system oxygen is produced with the purity equal to 95%. Installation of carbon capture was based on the physical separation method and allows to reduce the CO2 emission by 90%. In this work the influence of the main parameter of the membrane process – the selectivity coefficient, on the efficiency of the coal unit was presented. The economic analysis with the use of the break-even point method was carried out. The economic calculations were realized in view of the break-even price of electricity depending on a coal unit availability.

  6. Imaging wet gas separation process by capacitance tomography

    Science.gov (United States)

    Yang, Wuqiang; Nguyen, Van T.; Betting, Marco; Chondronasios, Athanasios; Nattras, Steve; Okimoto, Fred; McCann, Hugh

    2002-03-01

    Natural gas from a well contains water and hydrocarbons. It is necessary to separate the liquid components from such gas streams before use. An innovative type of separation facility, called Twister, has been developed for this purpose, and CFD models have been developed to assist in the design of Twister. However, it is difficult to verify the mathematical models directly and experimentally. To investigate the behavior of Twister and to verify the CFD models, a simulator using air and water vapor was set up in the laboratory. This simulator was instrumented with a highly sensitive electrical capacitance tomography (ECT) system based on an HP LCR meter and a purpose-designed multiplexer. Two ECT sensors, each with 8 measurement electrodes, were built taking into consideration the demanding operational conditions, such as sensitivity, temperature, pressure, geometry and location. This paper presents the first experimental results, showing that water droplets distributions in a flowing gas can be visualized using ECT, and the tomography system developed is robust and offers the possibility for further development to field operations.

  7. Mesh-particle interpolations on graphics processing units and multicore central processing units.

    Science.gov (United States)

    Rossinelli, Diego; Conti, Christian; Koumoutsakos, Petros

    2011-06-13

    Particle-mesh interpolations are fundamental operations for particle-in-cell codes, as implemented in vortex methods, plasma dynamics and electrostatics simulations. In these simulations, the mesh is used to solve the field equations and the gradients of the fields are used in order to advance the particles. The time integration of particle trajectories is performed through an extensive resampling of the flow field at the particle locations. The computational performance of this resampling turns out to be limited by the memory bandwidth of the underlying computer architecture. We investigate how mesh-particle interpolation can be efficiently performed on graphics processing units (GPUs) and multicore central processing units (CPUs), and we present two implementation techniques. The single-precision results for the multicore CPU implementation show an acceleration of 45-70×, depending on system size, and an acceleration of 85-155× for the GPU implementation over an efficient single-threaded C++ implementation. In double precision, we observe a performance improvement of 30-40× for the multicore CPU implementation and 20-45× for the GPU implementation. With respect to the 16-threaded standard C++ implementation, the present CPU technique leads to a performance increase of roughly 2.8-3.7× in single precision and 1.7-2.4× in double precision, whereas the GPU technique leads to an improvement of 9× in single precision and 2.2-2.8× in double precision.

  8. 40 CFR 63.137 - Process wastewater provisions-oil-water separators.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Process wastewater provisions-oil-water... Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater § 63.137 Process wastewater provisions—oil-water separators. (a) For each oil-water separator that receives, manages, or...

  9. Aqueous waste management for minor actinides and lanthanides separation process

    Energy Technology Data Exchange (ETDEWEB)

    Pochon, P.; Boyer, S.; Sans, D

    2004-07-01

    The French strategy of high level radioactive aqueous waste management is an incorporation in glassy fission products containers. Therefore, nitric acid soluble organic reagents needed for minor actinides and lanthanides selective separation from fission product solutions have to be sufficiently removed to reach carbon concentrations compatible with calcinator working. Thus, the ability of reagents to be oxidized under concentration conditions with or without denitration becomes a criteria of selection and have been studied. Further, if not working, other operations like hot hydrogen peroxide oxidation, catalyzed or not, are investigated. Reagents involved in this work are mainly complexing products (N-(2-Hydroxyethyl) Ethylene-diamine-tri-acetic Acid), pH keeping reagents (carboxylic acids like citric, glycolic, tartaric and lactic acid) and alkaline species (Tetramethylammonium hydroxide). Behaviour of acetic acid, which is often the main degradation product, has also been observed. In all cases, reaction products are characterized. (authors)

  10. Physico-chemical separation process of nanoparticles in cosmetic formulations

    Science.gov (United States)

    Retamal Marín, R. R.; Babick, F.; Stintz, M.

    2017-06-01

    Understanding the world of nanoparticles, especially their interactions with the environment, begins with their correct detection and successive quantification. To achieve this purpose, one needs to perform correctly developed standard operating procedures (SOPs). Furthermore, the study of nanoparticles frequently requires their characterisation in complex media (e.g. in cosmetic formulations). In this study, a set of sample preparation procedures for the detection and extraction of NMs in emulsion-based formulations is proposed and their performance for model and real-life products is discussed. A separation or extraction of lipid phases is achieved by means of organic solvents. The polarity of the lipid phases is decisive for selecting an optimum solvent. The use of the Hansen Solubility Parameters (HSP) may clearly support this decision.

  11. Tigers of Sundarbans in India: is the population a separate conservation unit?

    Science.gov (United States)

    Singh, Sujeet Kumar; Mishra, Sudhanshu; Aspi, Jouni; Kvist, Laura; Nigam, Parag; Pandey, Puneet; Sharma, Reeta; Goyal, Surendra Prakash

    2014-01-01

    The Sundarbans tiger inhabits a unique mangrove habitat and are morphologically distinct from the recognized tiger subspecies in terms of skull morphometrics and body size. Thus, there is an urgent need to assess their ecological and genetic distinctiveness and determine if Sundarbans tigers should be defined and managed as separate conservation unit. We utilized nine microsatellites and 3 kb from four mitochondrial DNA (mtDNA) genes to estimate genetic variability, population structure, demographic parameters and visualize historic and contemporary connectivity among tiger populations from Sundarbans and mainland India. We also evaluated the traits that determine exchangeability or adaptive differences among tiger populations. Data from both markers suggest that Sundarbans tiger is not a separate tiger subspecies and should be regarded as Bengal tiger (P. t. tigris) subspecies. Maximum likelihood phylogenetic analyses of the mtDNA data revealed reciprocal monophyly. Genetic differentiation was found stronger for mtDNA than nuclear DNA. Microsatellite markers indicated low genetic variation in Sundarbans tigers (He= 0.58) as compared to other mainland populations, such as northern and Peninsular (Hebetween 0.67- 0.70). Molecular data supports migration between mainland and Sundarbans populations until very recent times. We attribute this reduction in gene flow to accelerated fragmentation and habitat alteration in the landscape over the past few centuries. Demographic analyses suggest that Sundarbans tigers have diverged recently from peninsular tiger population within last 2000 years. Sundarbans tigers are the most divergent group of Bengal tigers, and ecologically non-exchangeable with other tiger populations, and thus should be managed as a separate "evolutionarily significant unit" (ESU) following the adaptive evolutionary conservation (AEC) concept.

  12. Tigers of Sundarbans in India: is the population a separate conservation unit?

    Directory of Open Access Journals (Sweden)

    Sujeet Kumar Singh

    Full Text Available The Sundarbans tiger inhabits a unique mangrove habitat and are morphologically distinct from the recognized tiger subspecies in terms of skull morphometrics and body size. Thus, there is an urgent need to assess their ecological and genetic distinctiveness and determine if Sundarbans tigers should be defined and managed as separate conservation unit. We utilized nine microsatellites and 3 kb from four mitochondrial DNA (mtDNA genes to estimate genetic variability, population structure, demographic parameters and visualize historic and contemporary connectivity among tiger populations from Sundarbans and mainland India. We also evaluated the traits that determine exchangeability or adaptive differences among tiger populations. Data from both markers suggest that Sundarbans tiger is not a separate tiger subspecies and should be regarded as Bengal tiger (P. t. tigris subspecies. Maximum likelihood phylogenetic analyses of the mtDNA data revealed reciprocal monophyly. Genetic differentiation was found stronger for mtDNA than nuclear DNA. Microsatellite markers indicated low genetic variation in Sundarbans tigers (He= 0.58 as compared to other mainland populations, such as northern and Peninsular (Hebetween 0.67- 0.70. Molecular data supports migration between mainland and Sundarbans populations until very recent times. We attribute this reduction in gene flow to accelerated fragmentation and habitat alteration in the landscape over the past few centuries. Demographic analyses suggest that Sundarbans tigers have diverged recently from peninsular tiger population within last 2000 years. Sundarbans tigers are the most divergent group of Bengal tigers, and ecologically non-exchangeable with other tiger populations, and thus should be managed as a separate "evolutionarily significant unit" (ESU following the adaptive evolutionary conservation (AEC concept.

  13. Bibliography of articles and reports on mineral-separation techniques, processes, and applications

    Science.gov (United States)

    Harmon, R. S.

    1971-01-01

    A bibliography of published articles and reports on mineral-separation techniques, processes, and applications is presented along with an author and subject index. This information is intended for use in the mineral-separation facility of the Lunar Receiving Laboratory at the NASA Manned Spacecraft Center and as an aid and reference to persons involved or interested in mineral separation.

  14. Action potential waveform variability limits multi-unit separation in freely behaving rats.

    Directory of Open Access Journals (Sweden)

    Peter Stratton

    Full Text Available Extracellular multi-unit recording is a widely used technique to study spontaneous and evoked neuronal activity in awake behaving animals. These recordings are done using either single-wire or multiwire electrodes such as tetrodes. In this study we have tested the ability of single-wire electrodes to discriminate activity from multiple neurons under conditions of varying noise and neuronal cell density. Using extracellular single-unit recording, coupled with iontophoresis to drive cell activity across a wide dynamic range, we studied spike waveform variability, and explored systematic differences in single-unit spike waveform within and between brain regions as well as the influence of signal-to-noise ratio (SNR on the similarity of spike waveforms. We also modelled spike misclassification for a range of cell densities based on neuronal recordings obtained at different SNRs. Modelling predictions were confirmed by classifying spike waveforms from multiple cells with various SNRs using a leading commercial spike-sorting system. Our results show that for single-wire recordings, multiple units can only be reliably distinguished under conditions of high recording SNR (≥ 4 and low neuronal density (≈ 20,000/ mm(3. Physiological and behavioural changes, as well as technical limitations typical of awake animal preparations, reduce the accuracy of single-channel spike classification, resulting in serious classification errors. For SNR <4, the probability of misclassifying spikes approaches 100% in many cases. Our results suggest that in studies where the SNR is low or neuronal density is high, separation of distinct units needs to be evaluated with great caution.

  15. Modeling of biopharmaceutical processes. Part 2: Process chromatography unit operation

    DEFF Research Database (Denmark)

    Kaltenbrunner, Oliver; McCue, Justin; Engel, Philip;

    2008-01-01

    Process modeling can be a useful tool to aid in process development, process optimization, and process scale-up. When modeling a chromatography process, one must first select the appropriate models that describe the mass transfer and adsorption that occurs within the porous adsorbent...

  16. System and process for efficient separation of biocrudes and water in a hydrothermal liquefaction system

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.; Oyler, James R.; Rotness, Jr, Leslie J.; Schmidt, Andrew J.; Zacher, Alan H.

    2016-08-02

    A system and process are described for clean separation of biocrudes and water by-products from hydrothermal liquefaction (HTL) product mixtures of organic and biomass-containing feedstocks at elevated temperatures and pressures. Inorganic compound solids are removed prior to separation of biocrude and water by-product fractions to minimize formation of emulsions that impede separation. Separation may be performed at higher temperatures that reduce heat loss and need to cool product mixtures to ambient. The present invention thus achieves separation efficiencies not achieved in conventional HTL processing.

  17. Organic-inorganic hybrid membranes in separation processes: a 10-year review

    Directory of Open Access Journals (Sweden)

    V. C. Souza

    2013-12-01

    Full Text Available In relation to some inorganic membranes, polymeric membranes have relatively low separation performance. However, the processing flexibility and low cost of polymers still make them highly attractive for many industrial separation applications. Polymer-inorganic hybrid membranes constitute an emerging research field and have been recently developed to improve the separation properties of polymer membranes because they possess properties of both organic and inorganic membranes such as good hydrophilicity, selectivity, permeability, mechanical strength, and thermal and chemical stability. The structures and processing of polymer-inorganic nanocomposite hybrid membranes, as well as their use in the fields of ultrafiltration, nanofiltration, pervaporation, gas separation and separation mechanism are reviewed.

  18. Influence of mid-point temperature of heavy hydrocarbons separator to the liquefaction process for small LNG plant

    Science.gov (United States)

    Hakim, H. A.; Indarto, A.

    2016-11-01

    In liquefied natural gas (LNG) process production, one of the important units is heavy hydrocarbon removal unit to prevent freezing during liquefaction. For small scale of LNG plant, this unit is usually integrated with main heat exchanger. Feed is obtained from main heat exchanger then flows to separator to separate liquid from gas. The separator operating condition is called as Midpoint condition. Selecting Midpoint conditions have impact to light hydrocarbon losses, Specific Brake Horse Power (SBHP) process, and heating value of LNG. Hence understanding of selecting this condition and its effect to light hydrocarbon losses, SBHP process, and HHV of LNG will help to design more efficient LNG plant. According to study, the lower of Mid-Point temperature will result in lower SBHP, lower of light hydrocarbon losses, and increase LNG of HHV value. Meanwhile, the higher Mid-Point pressure will result in lower SBHP, higher light hydrocarbon losses, and lower LNG of HHV value. The change of Mid-Point pressures have more impact to light hydrocarbon losses than SBHP process.

  19. Birth order effects on the separation process in young adults: an evolutionary and dynamic approach.

    Science.gov (United States)

    Ziv, Ido; Hermel, Orly

    2011-01-01

    The present study analyzes the differential contribution of a familial or social focus in imaginative ideation (the personal fable and imagined audience mental constructs) to the separation-individuation process of firstborn, middleborn, and lastborn children. A total of 160 young adults were divided into 3 groups by birth order. Participants' separation-individuation process was evaluated by the Psychological Separation Inventory, and results were cross-validated by the Pathology of Separation-Individuation Inventory. The Imaginative Ideation Inventory tested the relative dominance of the familial and social environments in participants' mental constructs. The findings showed that middleborn children had attained more advanced separation and were lower in family-focused ideation and higher in nonfamilial social ideation. However, the familial and not the social ideation explained the variance in the separation process in all the groups. The findings offer new insights into the effects of birth order on separation and individuation in adolescents and young adults.

  20. Need for constraints in component-separable color image processing

    Science.gov (United States)

    Thomas, Bruce A.

    1995-03-01

    The component-wise processing of color image data in performed in a variety of applications. These operations are typically carried out using Lookup Table (LUT) based processing techniques, making them well suited for digital implementation. A general exposition of this type of processing is provided, indicating it's remarkable utility along with some of the practical issues that can arise. These motivate a call for the use of constraints in the types of operators that are used during the construction of LUTs. Several particularly useful classes of constrained operators are identified. These lead to an object-oriented approach generalized to operated in a variety of color spaces. The power of this type of framework is then demonstrated via several novel applications in the HSL color space.

  1. Proton Testing of Advanced Stellar Compass Digital Processing Unit

    DEFF Research Database (Denmark)

    Thuesen, Gøsta; Denver, Troelz; Jørgensen, Finn E

    1999-01-01

    The Advanced Stellar Compass Digital Processing Unit was radiation tested with 300 MeV protons at Proton Irradiation Facility (PIF), Paul Scherrer Institute, Switzerland.......The Advanced Stellar Compass Digital Processing Unit was radiation tested with 300 MeV protons at Proton Irradiation Facility (PIF), Paul Scherrer Institute, Switzerland....

  2. Diffusion membrane and process for separating hydrogen from gas mixture

    Energy Technology Data Exchange (ETDEWEB)

    Behr, F.; Schulten, R.; Weirich, W.

    1985-01-29

    For separation of hydrogen and its isotopes by diffusion through a membrane virtually impermeable to other gases, a non-porous hydrogen-permeable metallic membrane is provided on the gas access side with a coating of an alloy of palladium with at least 45 atomic % Cu or at least 50 atomic percent Ag or at least 7 atomic % Y, the membrane itself containing Cu, Ag or Y respectively in a concentration at least equilibrated with the coating at operation temperature. Preferably the membrane consists of a metal of niobium and/or tantalum bases especially of an alloy containing from 10 to 30 % Ti, 3 to 10 % V, 0 to 25 % Nb and at least 30 % Ta, all by weight, and preferably it is of a composition of 20 to 25 % Ti, 5 to 7,5 % V, 0 to 25 Nb, and at least 50 % Ta, being saturated with copper and or silver, while a copper and/or silver palladium alloy coating is used. Such inherently oxidation sensitive membranes can be stabilized by provision of an internal intermediate layer in the form of a melt forming or containing an alkaline metal hydride and/or an alkaline earth metal hydride. A melt containing alkaline metal and/or alkaline earth metal which forms a hydride, brought into contact on the secondary side of a membrane in accordance with the invention, provides a hydrogen sink on the secondary side and inhibits internal hydride formation and secondary side oxidation of the membrane.

  3. Secondary oil recovery process. [two separate surfactant slugs

    Energy Technology Data Exchange (ETDEWEB)

    Fallgatter, W.S.

    1969-01-14

    Oil recovery by two separate surfactant slugs is greater than for either one alone. One slug contains a surfactant(s) in either oil or water. The other slug contains surfactant(s) in thickened water. The surfactants are sodium petroleum sulfonate (Promor SS20), polyoxyethylene sorbitan trioleate (Tween 85), lauric acid diethanolamide (Trepoline L), and sodium tridecyl sulfate polyglycol ether (Trepenol S30T). The thickener is carboxymethyl cellulose (Hercules CMC 70-S Medium thickener) or polyvinyl alcohol (Du Pont Elvanol 50-42). Consolidated sandstone cores were flooded with water, followed with Hawes crude, and finally salt water (5 percent sodium chloride) which recovered about 67 percent of the crude. A maximum of 27.5 percent of the residual oil was recovered by surfactant(s) in oil or water followed by fresh water, then surfactant(s) plus thickener in water followed by fresh water. Either surfactant slug may be injected first. Individually, each of the surfactant slugs can recover from about 3 to 11 percent less residual oil than their total recovery when used consecutively.

  4. Eco-efficient butanol separation in the ABE fermentation process

    NARCIS (Netherlands)

    Patraşcu, Iulian; Bîldea, Costin Sorin; Kiss, Anton A.

    2017-01-01

    Butanol is considered a superior biofuel, as it is more energy dense and less hygroscopic than the more popular ethanol, resulting in higher possible blending ratios with gasoline. However, the production cost of the acetone-butanol-ethanol (ABE) fermentation process is still high, mainly due to the

  5. Separation of isoflavones form okara : process mechanisms & synthesis

    NARCIS (Netherlands)

    Jankowiak, L.

    2014-01-01

    By-product utilisation, more efficient use of resources, and more sustainable processing have become of the utmost importance for society and the food industry. During soymilk production, a by-product called okara is produced in great quantities. Despite being a by-product, okara contains many nutri

  6. Generalized Software Architecture Applied to the Continuous Lunar Water Separation Process and the Lunar Greenhouse Amplifier

    Science.gov (United States)

    Perusich, Stephen; Moos, Thomas; Muscatello, Anthony

    2011-01-01

    This innovation provides the user with autonomous on-screen monitoring, embedded computations, and tabulated output for two new processes. The software was originally written for the Continuous Lunar Water Separation Process (CLWSP), but was found to be general enough to be applicable to the Lunar Greenhouse Amplifier (LGA) as well, with minor alterations. The resultant program should have general applicability to many laboratory processes (see figure). The objective for these programs was to create a software application that would provide both autonomous monitoring and data storage, along with manual manipulation. The software also allows operators the ability to input experimental changes and comments in real time without modifying the code itself. Common process elements, such as thermocouples, pressure transducers, and relative humidity sensors, are easily incorporated into the program in various configurations, along with specialized devices such as photodiode sensors. The goal of the CLWSP research project is to design, build, and test a new method to continuously separate, capture, and quantify water from a gas stream. The application is any In-Situ Resource Utilization (ISRU) process that desires to extract or produce water from lunar or planetary regolith. The present work is aimed at circumventing current problems and ultimately producing a system capable of continuous operation at moderate temperatures that can be scaled over a large capacity range depending on the ISRU process. The goal of the LGA research project is to design, build, and test a new type of greenhouse that could be used on the moon or Mars. The LGA uses super greenhouse gases (SGGs) to absorb long-wavelength radiation, thus creating a highly efficient greenhouse at a future lunar or Mars outpost. Silica-based glass, although highly efficient at trapping heat, is heavy, fragile, and not suitable for space greenhouse applications. Plastics are much lighter and resilient, but are not

  7. Electric currents couple spatially separated biogeochemical processes in marine sediment

    DEFF Research Database (Denmark)

    Nielsen, Lars Peter; Risgaard-Petersen, Nils; Fossing, Henrik;

    2010-01-01

    be coupled by electric currents in nature. Here we provide evidence that electric currents running through defaunated sediment couple oxygen consumption at the sediment surface to oxidation of hydrogen sulphide and organic carbon deep within the sediment. Altering the oxygen concentration in the sea water...... in the sediment was driven by electrons conducted from the anoxic zone. A distinct pH peak in the oxic zone could be explained by electrochemical oxygen reduction, but not by any conventional sets of aerobic sediment processes. We suggest that the electric current was conducted by bacterial nanowires combined...... with pyrite, soluble electron shuttles and outer-membrane cytochromes. Electrical communication between distant chemical and biological processes in nature adds a new dimension to our understanding of biogeochemistry and microbial ecology....

  8. Electric currents couple spatially separated biogeochemical processes in marine sediment

    DEFF Research Database (Denmark)

    Nielsen, Lars Peter; Risgaard-Petersen, Nils; Fossing, Henrik

    2010-01-01

    Some bacteria are capable of extracellular electron transfer, thereby enabling them to use electron acceptors and donors without direct cell contact 1, 2, 3, 4 . Beyond the micrometre scale, however, no firm evidence has previously existed that spatially segregated biogeochemical processes can...... be coupled by electric currents in nature. Here we provide evidence that electric currents running through defaunated sediment couple oxygen consumption at the sediment surface to oxidation of hydrogen sulphide and organic carbon deep within the sediment. Altering the oxygen concentration in the sea water...... in the sediment was driven by electrons conducted from the anoxic zone. A distinct pH peak in the oxic zone could be explained by electrochemical oxygen reduction, but not by any conventional sets of aerobic sediment processes. We suggest that the electric current was conducted by bacterial nanowires combined...

  9. Corrosion study in the chemical air separation (MOLTOX trademark ) process

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Doohee; Wong, Kai P.; Archer, R.A.; Cassano, A.A.

    1988-12-01

    This report presents the results of studies aimed at solving the corrosion problems encountered during operation of the MOLTOX{trademark} pilot plant. These studies concentrated on the screening of commercial and developmental alloys under conditions simulating operation conditions in this high temperature molten salt process. Process economic studies were preformed in parallel with the laboratory testing to ensure that an economically feasible solution would be achieved. In addition to the above DOE co-funded studies, Air Products and Chemicals pursued proprietary studies aimed at developing a less corrosive salt mixture which would potentially allow the use of chemurgically available alloys such as stainless steels throughout the system. These studies will not be reported here; however, the results of corrosion tests in the new less corrosive salt mixtures are reported. Because our own studies on salt chemistry impacts heavily on the overall process and thereby has an influence on the experimental work conducted under this contract, some of the studies discussed here were impacted by our own proprietary data. Therefore, the reasons behind some of the experiments presented herein will not be explained because that information is proprietary to Air Products. 14 refs., 42 figs., 21 tabs.

  10. DD3R zeolite membranes in separation and catalytic processes: Modelling and application

    NARCIS (Netherlands)

    Van den Bergh, J.

    2010-01-01

    Around 2004 the annual energy consumption of the Dutch (petro-)chemical industry was estimated to be 460 PJ of which 200 PJ could be allocated to separation processes [1]. In 2009, 15% of the global energy consumption was required for separation and purification processes to produce commodities. Mor

  11. Hocodems technology in comparison with conventional separation processes for coal preparation

    Energy Technology Data Exchange (ETDEWEB)

    Wilczynski, P. [Heinrich Holter GmbH, Gladbeck (Germany)

    1999-11-01

    The new Hocodems technology, which is an advanced development of the Larcodems process, is presented and compared with conventional separation processes in coal preparation: Ep values and separation densities for a selected particle size range are compared. Comparisons of investment and operating costs are also made. 2 refs., 4 figs., 2 tabs.

  12. DD3R zeolite membranes in separation and catalytic processes: Modelling and application

    NARCIS (Netherlands)

    Van den Bergh, J.

    2010-01-01

    Around 2004 the annual energy consumption of the Dutch (petro-)chemical industry was estimated to be 460 PJ of which 200 PJ could be allocated to separation processes [1]. In 2009, 15% of the global energy consumption was required for separation and purification processes to produce commodities.

  13. Chemical investigations of isotope separation on line target units for carbon and nitrogen beams

    CERN Document Server

    Franberg, H; Gäggeler, H W; Köster, U

    2006-01-01

    Radioactive ion beams (RIBs) are of significant interest in a number of applications. Isotope separation on line (ISOL) facilities provide RIB with high beam intensities and good beam quality. An atom that is produced within the ISOL target will first diffuse out from the target material. During the effusion towards the transfer line and into the ion source the many contacts with the surrounding surfaces may cause unacceptable delays in the transport and, hence, losses of the shorter-lived isotopes. We performed systematic chemical investigations of adsorption in a temperature and concentration regime relevant for ISOL targets and ion source units, with regard to CO/sub x/ and NOmaterials are potential construction materials for the above-mentioned areas. Off-line and on-line tests have been performed using a gas thermochromatography setup with radioactive tracers. The experiments were performed at the production of tracers for atmospheric chemistry (PROTRAC) facility at the Paul Schener Institute in Villigen...

  14. Fitness for service evaluation of a horizontal gas separator in a compressing unit

    Energy Technology Data Exchange (ETDEWEB)

    Seijas, A.; Ledezma, M. [INTEVEP S.A., Los Teques (Venezuela)

    1996-12-01

    An automatic ultrasonic inspection of a horizontal separator revealed cracking in various structural welds of the shell wall. The pressure vessel has been working in a gas compressing unit for several years. A review of the operation history (including fluids, pressure and temperature) indicated the cracking was probably associated with hydrogen induced cracking (HIC). To assure mechanical integrity a Fitness for Service Assessment was conducted based on fracture mechanics procedures. Using the fitness-for-service document and the computer software of the Materials Properties Council (MPC), limiting flaw size curves were obtained. The cracks were evaluated to determine their effect in the structural integrity of the pressure vessel, and to define the inspection program for the future.

  15. Field Demonstration of a Membrane Process to Separate Nitrogen from Natural Gas

    Energy Technology Data Exchange (ETDEWEB)

    Kaaeid Lokhandwala

    2007-03-31

    The original proposal described the construction and operation of a 1 MMscfd treatment system to be operated at a Butcher Energy gas field in Ohio. The gas produced at this field contained 17% nitrogen. During pre-commissioning of the project, a series of well tests showed that the amount of gas in the field was significantly smaller than expected and that the nitrogen content of the wells was very high (25 to 30%). After evaluating the revised cost of the project, Butcher Energy decided that the plant would not be economical and withdrew from the project. Since that time, Membrane Technology and Research, Inc. (MTR) has signed a marketing and sales partnership with ABB Lummus Global, a large multinational corporation. MTR is working with the company's Randall Gas Technology group, a supplier of equipment and processing technology to the natural gas industry. Randall's engineering group found a new site for the project at a North Texas Exploration (NTE) gas processing plant, which met with limited success. However, a small test system was installed at a Twin Bottoms Energy well in Kentucky. This unit operated successfully for six months, and demonstrated the technology's reliability on a small scale. MTR then located an alternative test site with much larger gas flow rates and signed a contract with Towne Exploration in the third quarter of 2006, for a demonstration plant in Rio Vista, California, to be run through May 2007. The demonstration for Towne has already resulted in the sale of two commercial skids to the company; both units will be delivered by the end of 2007. Total sales of nitrogen/natural gas membrane separation units from the partnership with ABB are now approaching $4.0 million.

  16. 17 CFR 274.11d - Form N-6, registration statement of separate accounts organized as unit investment trusts that...

    Science.gov (United States)

    2010-04-01

    ... variable life insurance policies. Form N-6 shall be used as the registration statement to be filed pursuant... statement of separate accounts organized as unit investment trusts that offer variable life insurance... insurance policies to register as unit investment trusts. This form shall also be used for...

  17. Optimal separation of jojoba protein using membrane processes

    Energy Technology Data Exchange (ETDEWEB)

    Nabetani, Hiroshi; Abbott, T.P.; Kleiman, R. [National Center for Agricultural Utilization Research, Peoria, IL (United States)

    1995-05-01

    The efficiency of a pilot-scale membrane system for purifying and concentrating jojoba protein was estimated. In this system, a jojoba extract was first clarified with a microfiltration membrane. The clarified extract was diafiltrated and the protein was purified with an ultrafiltration membrane. Then the protein solution was concentrated with the ultrafiltration membrane. Permeate flux during microfiltration was essentially independent of solids concentration in the feed, in contrast with the permeate flux during ultrafiltration which was a function of protein concentration. Based on these results, a mathematical model which describes the batchwise concentration process with ultrafiltration membranes was developed. Using this model, the combination of batchwise concentration with diafiltration was optimized, and an industrial-scale process was designed. The effect of ethylenediaminetetraacetic acid (EDTA) on the performance of the membrane system was also investigated. The addition of EDTA increased the concentration of protein in the extract and improved the recovery of protein in the final products. The quality of the final product (color and solubility) was also improved. However, EDTA decreased permeate flux during ultrafiltration.

  18. Evaluation of Process Cooling in Subsea Separation, Boosting and Injection Systems (SSBI)

    OpenAIRE

    Gyllenhammar, Svenn Emil

    2012-01-01

    The next generation of subsea process systems will combine the subsea gas compression technology currently under qualification with the previously developed subsea processing technologies, including separation, multiphase pumping and produced water re-injection. These systems will benefit from process cooling. This paper is an evaluation of the use of process cooling in subsea separation, boosting and injection (SSBI) systems including compression. Fouling is the biggest uncertainty, and pote...

  19. Optimized Technology for Residuum Processing in the ARGG Unit

    Institute of Scientific and Technical Information of China (English)

    Pan Luoqi; Yuan hongxing; Nie Baiqiu

    2006-01-01

    The influence of feedstock property on operation in the FCC unit was studied to identify the cause leading to deteriorated products distribution related with increasingly heavier feedstock for the ARGG unit. In order to maximize the economic benefits of the ARGG unit a string of measures, including the modification of catalyst formulation, retention of high catalyst activity, application of mixed termination agents to control the reaction temperature and once-through operation, and optimization of catalyst regeneration technique, were adopted to adapt the ARGG unit to processing of the heavy feedstock with its carbon residue equating to 7% on an average. The heavy oil processing technology has brought about apparent economic benefits.

  20. NOVEL COMPOSITE MEMBRANES FOR HYDROGEN SEPARATION IN GASIFICATION PROCESSES IN VISION 21 ENERGY PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Michael Schwartz

    2004-12-01

    This report describes the work performed, accomplishments and conclusion obtained from the project entitled ''Novel Composite Membranes for Hydrogen Separation in Gasification Processes in Vision 21 Energy Plants'' under the United States Department of Energy Contract DE-FC26-01NT40973. ITN Energy Systems was the prime contractor. Team members included: the Idaho National Engineering and Environmental Laboratory; Nexant Consulting; Argonne National Laboratory and Praxair. The objective of the program was to develop a novel composite membrane structure for hydrogen separation as a key technology module within the future ''Vision 21'' fossil fuel plants. The separation technology module is targeted for use within the gasification module of the ''Vision 21'' fossil fuel plant. The high performance and low-cost manufacturing of the proposed technology will benefit the deployment of ''Vision 21'' fossil fuel plant processes by improving the energy efficiency, flexibility and environmental performance of these plants. Of particular importance is that this technology will also produce a stream of pure carbon dioxide. This allows facile sequestration or other use of this greenhouse gas. These features will benefit the U.S. in allowing for the continued use of domestic fossil fuels in a more energy efficient and environmentally acceptable manner. The program developed and evaluated composite membranes and catalysts for hydrogen separation. Components of the monolithic modules were fabricated by plasma spray processing. The engineering and economic characteristics of the proposed Ion Conducting Ceramic Membrane (ICCM) approach, including system integration issues, were also assessed. This resulted in a comprehensive evaluation of the technical and economic feasibility of integration schemes of ICCM hydrogen separation technology within Vision 21 fossil fuel plants. Several results and conclusion

  1. Can a stepwise steady flow computational fluid dynamics model reproduce unsteady particulate matter separation for common unit operations?

    Science.gov (United States)

    Pathapati, Subbu-Srikanth; Sansalone, John J

    2011-07-01

    Computational fluid dynamics (CFD) is emerging as a model for resolving the fate of particulate matter (PM) by unit operations subject to rainfall-runoff loadings. However, compared to steady flow CFD models, there are greater computational requirements for unsteady hydrodynamics and PM loading models. Therefore this study examines if integrating a stepwise steady flow CFD model can reproduce PM separation by common unit operations loaded by unsteady flow and PM loadings, thereby reducing computational effort. Utilizing monitored unit operation data from unsteady events as a metric, this study compares the two CFD modeling approaches for a hydrodynamic separator (HS), a primary clarifier (PC) tank, and a volumetric clarifying filtration system (VCF). Results indicate that while unsteady CFD models reproduce PM separation of each unit operation, stepwise steady CFD models result in significant deviation for HS and PC models as compared to monitored data; overestimating the physical size requirements of each unit required to reproduce monitored PM separation results. In contrast, the stepwise steady flow approach reproduces PM separation by the VCF, a combined gravitational sedimentation and media filtration unit operation that provides attenuation of turbulent energy and flow velocity.

  2. Zonotopes and zonoids: studies and applications to separation processes

    Energy Technology Data Exchange (ETDEWEB)

    Daoudi, O.

    1995-10-19

    The geometric modeling of mixture manufacturing management in petrochemical engineering led to consider some particular polytopes called zonotopes. The management criterion used implied the resolution of a constraint nonlinear optimization problem. Data`s problem are constituted of some measured specifications of basic product and hence subject to errors. We study the variation of the optimization problem solution with respect to data. We characterize the confident region of the solution when errors are assumed to be Gaussian and independent. Zonoids are the limit, in Hausdorff metric sense, of a sequence of zonotopes. The geometric modeling of continue manufacturing processes led to consider some particular zonoids called zonoids associated to parametric curves. We give some properties of such convex sets, we present a parametrization of the their boundaries surfaces and we study under some hypothesis the regularity of this parametrization knowing the regularity of the parametric curve. Finally, we tackle the problem of approximation of zonoids by zonotopes in Hausdorff metric sense. A constructive method of zonotope sequences which converge to a given zonoids have been established. For each zonotope, element of such sequences, we evaluate the approximation error. The convergence rates of this sequences is given. (author). 69 refs., 77 figs., 24 tabs.

  3. Effect of temperature and active biogas process on passive separation of digested manure

    DEFF Research Database (Denmark)

    Kaparaju, Prasad Laxmi-Narasimha; Angelidaki, Irini

    2008-01-01

    separation was achieved when digested manure was allowed to settle at 55 degrees C with active biogas process (pre-incubated at 55 degrees C) compared to separation at 55 degrees C without active biogas process (autoclaved at 120 degrees C, for 20 min) or at 10 degrees C with active biogas process. Maximum...... solids separation was noticed 24 h after settling in column incubated at 55 degrees C, with active biogas process. Microbiological analyses revealed that proportion of Archaea and Bacteria, absent in the autoclaved material, varied with incubation temperature, time and sampling depth. Short rod shaped...

  4. Efficient separations and processing crosscutting program 1996 technical exchange meeting. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    This document contains summaries of technology development presented at the 1996 Efficient Separations and Processing Crosscutting Program Technical Exchange Meeting. This meeting is held annually to promote a free exchange of ideas among technology developers, potential users and other interested parties within the EM community. During this meeting the following many separation processes technologies were discussed such as ion exchange, membrane separation, vacuum distillation, selective sorption, and solvent extraction. Other topics discussed include: waste forms; testing or inorganic sorbents for radionuclide and heavy metal removal; selective crystallization; and electrochemical treatment of liquid wastes. This is the leading abstract, individual papers have been indexed separately for the databases.

  5. Investigation of a Gas-Solid Separation Process for Cement Raw Meal

    DEFF Research Database (Denmark)

    Maarup, Claus; Hjuler, Klaus; Clement, Karsten

    2015-01-01

    The gas/solid heat exchanger (2D-HX), developed to replace the cyclone preheaters in cement plants is presented. This design aims at reducing construction height and operation costs. The separation process in the 2D-HX is experimentally investigated, and the results show that separation efficienc......The gas/solid heat exchanger (2D-HX), developed to replace the cyclone preheaters in cement plants is presented. This design aims at reducing construction height and operation costs. The separation process in the 2D-HX is experimentally investigated, and the results show that separation...... efficiencies up to 90% can be achieved in the gravitationally driven process. Based on the data, a model of the separation process is developed, utilizing relations from pneumatic transport and cyclone theory. The model fit is acceptable, especially in the area of interest. Based on experimental data, further...

  6. Combustion systems and power plants incorporating parallel carbon dioxide capture and sweep-based membrane separation units to remove carbon dioxide from combustion gases

    Science.gov (United States)

    Wijmans, Johannes G.; Merkel, Timothy C; Baker, Richard W.

    2011-10-11

    Disclosed herein are combustion systems and power plants that incorporate sweep-based membrane separation units to remove carbon dioxide from combustion gases. In its most basic embodiment, the invention is a combustion system that includes three discrete units: a combustion unit, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In a preferred embodiment, the invention is a power plant including a combustion unit, a power generation system, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In both of these embodiments, the carbon dioxide capture unit and the sweep-based membrane separation unit are configured to be operated in parallel, by which we mean that each unit is adapted to receive exhaust gases from the combustion unit without such gases first passing through the other unit.

  7. Engineering evaluation of solids/liquids separation processes applicable to sludge treatment project

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, J.B.

    1998-08-25

    This engineering study looks at the solids/liquids separation unit operations after the acid dissolution of the K Basin sludge treatment. Unit operations considered were centrifugation, filtration (cartridge, cross flow, and high shear filtration) and gravity settling. The recommended unit operations for the solids/liquids separations are based upon the efficiency, complexity, and off-the-shelf availability and adaptability. The unit operations recommended were a Robatel DPC 900 centrifuge followed by a nuclearized 31WM cartridge filter. The Robatel DPC 900 has been successfully employed in the nuclear industry on a world wide scale. The 31WM cartridge filter has been employed for filtration campaigns in both the government and civilian nuclear arenas.

  8. Development of Ultrafiltration Membrane-Separation Technology for Energy-Efficient Water Treatment and Desalination Process

    Energy Technology Data Exchange (ETDEWEB)

    Yim, Woosoon [Univ. of Nevada, Las Vegas, NV (United States); Bae, Chulsung [Rensselaer Polytechnic Inst., Troy, NY (United States)

    2016-10-28

    The growing scarcity of fresh water is a major political and economic challenge in the 21st century. Compared to thermal-based distillation technique of water production, pressure driven membrane-based water purification process, such as ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO), can offer more energy-efficient and environmentally friendly solution to clean water production. Potential applications also include removal of hazardous chemicals (i.e., arsenic, pesticides, organics) from water. Although those membrane-separation technologies have been used to produce drinking water from seawater (desalination) and non-traditional water (i.e., municipal wastewater and brackish groundwater) over the last decades, they still have problems in order to be applied in large-scale operations. Currently, a major huddle of membrane-based water purification technology for large-scale commercialization is membrane fouling and its resulting increases in pressure and energy cost of filtration process. Membrane cleaning methods, which can restore the membrane properties to some degree, usually cause irreversible damage to the membranes. Considering that electricity for creating of pressure constitutes a majority of cost (~50%) in membrane-based water purification process, the development of new nano-porous membranes that are more resistant to degradation and less subject to fouling is highly desired. Styrene-ethylene/butylene-styrene (SEBS) block copolymer is one of the best known block copolymers that induces well defined morphologies. Due to the polarity difference of aromatic styrene unit and saturated ethylene/butylene unit, these two polymer chains self-assemble each other and form different phase-separated morphologies depending on the ratios of two polymer chain lengths. Because the surface of SEBS is hydrophobic which easily causes fouling of membrane, incorporation of ionic group (e,g, sulfonate) to the polymer is necessary to reduces fouling

  9. Parallelization of heterogeneous reactor calculations on a graphics processing unit

    Energy Technology Data Exchange (ETDEWEB)

    Malofeev, V. M., E-mail: vm-malofeev@mail.ru; Pal’shin, V. A. [National Research Center Kurchatov Institute (Russian Federation)

    2016-12-15

    Parallelization is applied to the neutron calculations performed by the heterogeneous method on a graphics processing unit. The parallel algorithm of the modified TREC code is described. The efficiency of the parallel algorithm is evaluated.

  10. Diffusion tensor fiber tracking on graphics processing units.

    Science.gov (United States)

    Mittmann, Adiel; Comunello, Eros; von Wangenheim, Aldo

    2008-10-01

    Diffusion tensor magnetic resonance imaging has been successfully applied to the process of fiber tracking, which determines the location of fiber bundles within the human brain. This process, however, can be quite lengthy when run on a regular workstation. We present a means of executing this process by making use of the graphics processing units of computers' video cards, which provide a low-cost parallel execution environment that algorithms like fiber tracking can benefit from. With this method we have achieved performance gains varying from 14 to 40 times on common computers. Because of accuracy issues inherent to current graphics processing units, we define a variation index in order to assess how close the results obtained with our method are to those generated by programs running on the central processing units of computers. This index shows that results produced by our method are acceptable when compared to those of traditional programs.

  11. Business Process Compliance through Reusable Units of Compliant Processes

    NARCIS (Netherlands)

    Shumm, D.; Turetken, O.; Kokash, N.; Elgammal, A.; Leymann, F.; Heuvel, J. van den

    2010-01-01

    Compliance management is essential for ensuring that organizational business processes and supporting information systems are in accordance with a set of prescribed requirements originating from laws, regulations, and various legislative or technical documents such as Sarbanes-Oxley Act or ISO 17799

  12. Migration of gluten under shear flow: influence of process parameters on separation behaviour

    NARCIS (Netherlands)

    Peighambardoust, S.H.; Goot, van der A.J.

    2010-01-01

    The effect of processing conditions on the shear-induced migration of starch and gluten was described. A shearing device was used to induce a separation of wheat dough into a gluten rich fraction and a starch phase. A two-stage mechanism for separation was observed: first local aggregation of

  13. Integration of biohydrogen fermentation and gas separation processes to recover and enrich hydrogen

    NARCIS (Netherlands)

    Bélafi-Bakó, K.; Búcsú, D.; Pientka, Z.; Bálint, B.; Herbel, Z.; Kovács, K.I.; Wessling, Matthias

    2006-01-01

    An integrated system for biohydrogen production and separation was designed, constructed and operated where biohydrogen was fermented by Thermococcus litoralis, a heterotrophic archaebacterium, and a two-step gas separation process was coupled to recover and concentrate hydrogen. A special liquid

  14. Integration of biohydrogen fermentation and gas separation processes to recover and enrich hydrogen

    NARCIS (Netherlands)

    Bélafi-Bakó, K.; Búcsú, D.; Pientka, Z.; Bálint, B.; Herbel, Z.; Kovács, K.I.; Wessling, M.

    2006-01-01

    An integrated system for biohydrogen production and separation was designed, constructed and operated where biohydrogen was fermented by Thermococcus litoralis, a heterotrophic archaebacterium, and a two-step gas separation process was coupled to recover and concentrate hydrogen. A special liquid se

  15. Impact of backmixing of the aqueous phase on two-component rare earth separation process

    Institute of Scientific and Technical Information of China (English)

    WU Sheng; CHENG Fuxiang; LIAO Chunsheng; YAN Chunhua

    2013-01-01

    Solvent extraction based on mixer-settler is the major industrial method of rare earth (RE) separation.In the mixer-settler extraction process,due to the insufficient settling time in normal circumstances,backmixing of the aqueous phase could have significant impact on the process of RE extraction separation.Therefore on the basis of the extraction equilibrium and mass balance of the mixer-settler extraction process,here we developed a mathematic expression of the aqueous phase backmixing in a two-component separation process,and obtained a quantitative analysis of the backmixing effect on the purification process by the approximations according to certain hypotheses.Two extraction systems of La/Ce and Pr/Nd separation were chosen as the examples to analyze the backmixing effect,and the results showed that the aqueous backmixing had greater influence in the scrubbing segment than in the extraction segment,especially in the system with a high separation factor such as La/Ce separation.Therefore it was suggested that the aqueous backmixing effect should be well attended in the design and application of RE extraction separation.

  16. Filament-strung stand-off elements for maintaining pane separation in vacuum insulating glazing units

    Science.gov (United States)

    Bettger, Kenneth J; Stark, David H

    2013-08-20

    A vacuum insulating glazing unit (VIGU) comprises first and second panes of transparent material, first and second anchors, a plurality of filaments, a plurality of stand-off elements, and seals. The first and second panes of transparent material have edges and inner and outer faces, are disposed with their inner faces substantially opposing one another, and are separated by a gap having a predetermined height. The first and second anchors are disposed at opposite edges of one pane of the VIGU. Each filament is attached at one end to the first anchor and at the other end to the second anchor, and the filaments are collectively disposed between the panes substantially parallel to one another. The stand-off elements are affixed to each filament at predetermined positions along the filament, and have a height substantially equal to the predetermined height of the gap such that the each stand-off element touches the inner surfaces of both panes. The seals are disposed about the edges of the panes, enclosing the stand-off elements within a volume between the panes from which the atmosphere may be evacuated to form a partial vacuum.

  17. Linear polymer separation using carbon-nanotube-modified centrifugal filter units.

    Science.gov (United States)

    Krawczyk, Tomasz; Marian, Karolina; Pawlyta, Mirosława

    2016-02-01

    The separation of linear polymers such as polysaccharides and polyethylene glycol was performed with modified commercial centrifugal filter units. The deposition of a 0.16-0.35 μm layer of modified carbon nanotubes prevented permeation of linear polymers of molecular weight higher than 20 000 Da through the membrane. It allowed facile purification of solution of 0.1 g of polymer samples from small molecules within 25 min by using a bench-top centrifuge. The structure of modified carbon nanotubes was optimized in order to achieve good adhesion to the low binding regenerated cellulose surface and low solubility in aqueous solutions after deposition. The best modification of carbon nanotubes was oxidation and subsequent amide formation of diethanolamine. Introduction of acetic acid groups using sodium chloroacetate worked equally well. The modified filter could be used multiple times without the decrease of the efficiency. The carbon nanotubes layer was stable in aqueous solutions in a pH range of 1-7. The proposed method provides a convenient way of purification of modified polymers in research areas such as drug delivery or macromolecular probes synthesis.

  18. A method to separate process contributions in impedance spectra by variation of test conditions

    DEFF Research Database (Denmark)

    Jensen, Søren Højgaard; Hauch, Anne; Hendriksen, Peter Vang;

    2007-01-01

    Many processes contribute to the overall impedance of an electrochemical cell, and these may be difficult to separate in the impedance spectrum. Here, we present an investigation of a solid oxide fuel cell based on differences in impedance spectra due to a change of operating parameters and present...... the result as the derivative of the impedance with respect to ln(f). The method is used to separate the anode and cathode contributions and to identify various types of processes....

  19. Adsorptive process design for the separation of hexane isomers using zeolites.

    Science.gov (United States)

    Luna-Triguero, A; Gómez-Álvarez, P; Calero, S

    2017-02-15

    The product of catalytic isomerization is a mixture of linear and branched hydrocarbons that are in thermodynamic equilibrium, and their separation becomes necessary in the petrochemical industry. Zeolite 5A is usually industrially used to sieve alkane isomers, but its pore size allows only the separation of linear alkanes from the monobranched and dibranched alkanes by a kinetic mechanism. A more efficient approach to improve the average research octane number would be to adsorptively separate the di-methyl alkanes as products and recycle both the linear and mono-methyl alkanes to the isomerization reactor. Since the microscopic processes of adsorbates in zeolites are generally difficult or impossible to determine by experiments, especially in the case of mixtures, molecular simulation represents an attractive alternative. In this computational study, we propose a conceptual separation process for hexane isomers consisting of several adsorptive steps. Different zeolite topologies were examined for their ability to conduct this separation based on adsorption equilibrium and kinetics.

  20. High Input Voltage, Silicon Carbide Power Processing Unit Performance Demonstration

    Science.gov (United States)

    Bozak, Karin E.; Pinero, Luis R.; Scheidegger, Robert J.; Aulisio, Michael V.; Gonzalez, Marcelo C.; Birchenough, Arthur G.

    2015-01-01

    A silicon carbide brassboard power processing unit has been developed by the NASA Glenn Research Center in Cleveland, Ohio. The power processing unit operates from two sources: a nominal 300 Volt high voltage input bus and a nominal 28 Volt low voltage input bus. The design of the power processing unit includes four low voltage, low power auxiliary supplies, and two parallel 7.5 kilowatt (kW) discharge power supplies that are capable of providing up to 15 kilowatts of total power at 300 to 500 Volts (V) to the thruster. Additionally, the unit contains a housekeeping supply, high voltage input filter, low voltage input filter, and master control board, such that the complete brassboard unit is capable of operating a 12.5 kilowatt Hall effect thruster. The performance of the unit was characterized under both ambient and thermal vacuum test conditions, and the results demonstrate exceptional performance with full power efficiencies exceeding 97%. The unit was also tested with a 12.5kW Hall effect thruster to verify compatibility and output filter specifications. With space-qualified silicon carbide or similar high voltage, high efficiency power devices, this would provide a design solution to address the need for high power electric propulsion systems.

  1. Process for the production of ultrahigh purity silane with recycle from separation columns

    Science.gov (United States)

    Coleman, Larry M. (Inventor)

    1982-01-01

    Tri- and dichlorosilanes formed by hydrogenation in the course of the reaction of metallurgical silicon, hydrogen and recycle silicon tetrachloride are employed as feed into a separation column arrangement of sequential separation columns and redistribution reactors which processes the feed into ultrahigh purity silane and recycle silicon tetrachloride. A slip stream is removed from the bottom of two sequential columns and added to the recycle silicon tetrachloride process stream causing impurities in the slip streams to be subjected to reactions in the hydrogenation step whereby waste materials can be formed and readily separated.

  2. Artery-vein separation via MRA--an image processing approach.

    Science.gov (United States)

    Lei, T; Udupa, J K; Saha, P K; Odhner, D

    2001-08-01

    This paper presents a near-automatic process for separating vessels from background and other clutter as well as for separating arteries and veins in contrast-enhanced magnetic resonance angiographic (CE-MRA) image data, and an optimal method for three-dimensional visualization of vascular structures. The separation process utilizes fuzzy connected object delineation principles and algorithms. The first step of this separation process is the segmentation of the entire vessel structure from the background and other clutter via absolute fuzzy connectedness. The second step is to separate artery from vein within this entire vessel structure via iterative relative fuzzy connectedness. After seed voxels are specified inside artery and vein in the CE-MRA image, the small regions of the bigger aspects of artery and vein are separated in the initial iterations, and further detailed aspects of artery and vein are included in later iterations. At each iteration, the artery and vein compete among themselves to grab membership of each voxel in the vessel structure based on the relative strength of connectedness of the voxel in the artery and vein. This approach has been implemented in a software package for routine use in a clinical setting and tested on 133 CE-MRA studies of the pelvic region and two studies of the carotid system from six different hospitals. In all studies, unified parameter settings produced correct artery-vein separation. When compared with manual segmentation/separation, our algorithms were able to separate higher order branches, and therefore produced vastly more details in the segmented vascular structure. The total operator and computer time taken per study is on the average about 4.5 min. To date, this technique seems to be the only image processing approach that can be routinely applied for artery and vein separation.

  3. Adaptive-optics Optical Coherence Tomography Processing Using a Graphics Processing Unit*

    Science.gov (United States)

    Shafer, Brandon A.; Kriske, Jeffery E.; Kocaoglu, Omer P.; Turner, Timothy L.; Liu, Zhuolin; Lee, John Jaehwan; Miller, Donald T.

    2015-01-01

    Graphics processing units are increasingly being used for scientific computing for their powerful parallel processing abilities, and moderate price compared to super computers and computing grids. In this paper we have used a general purpose graphics processing unit to process adaptive-optics optical coherence tomography (AOOCT) images in real time. Increasing the processing speed of AOOCT is an essential step in moving the super high resolution technology closer to clinical viability. PMID:25570838

  4. Adaptive-optics optical coherence tomography processing using a graphics processing unit.

    Science.gov (United States)

    Shafer, Brandon A; Kriske, Jeffery E; Kocaoglu, Omer P; Turner, Timothy L; Liu, Zhuolin; Lee, John Jaehwan; Miller, Donald T

    2014-01-01

    Graphics processing units are increasingly being used for scientific computing for their powerful parallel processing abilities, and moderate price compared to super computers and computing grids. In this paper we have used a general purpose graphics processing unit to process adaptive-optics optical coherence tomography (AOOCT) images in real time. Increasing the processing speed of AOOCT is an essential step in moving the super high resolution technology closer to clinical viability.

  5. RESEARCH SPECIFIC FLUX OF SOLVENT IN THE PROCESSES OF ULTRAFILTRATION AND REVERSE OSMOSIS OF BIOLOGICAL SOLUTIONS SEPARATION IN BIOCHEMICAL INDUSTRY

    Directory of Open Access Journals (Sweden)

    S. I. Lazarev

    2015-01-01

    Full Text Available This work is devoted to the study of specific solvent stream in baro membrane separation processes in the biochemical industry. The main indicators, which characterize baromembranes technology, are productivity and quality division. Performance of baromembrane separation is estimated by the specific output or specific solvent stream, which is equal to the permeate flow per unit working area of the membrane per unit of time, and also determines the speed of the process of baromembrane division. This parameter depends on the material of the membrane, the nature of the solutes and their concentrations in the solution, the operating pressure, temperature and hydrodynamic processes. The article analyzed the specific solvent flow, which mathematically described by the equation based on Darcy's Law. This law establishes proportional dependence on the driving force of the process, the concentration and type of membrane. For the research was used following technique. The initial stage was to preliminary cleaning of membranes from impurities, checking the integrity of individual units, launching in work mode for a time period of 18 hours. Then there was a preliminary experience for the establishment of a permanent performance with a factor of retention membranes. After that was done a series of basic experiments, the results of which were used for calculate of specific solvent stream. As a result of investigations made certain conclusions. Specific solvent stream decreases with increasing concentration. In ultrafiltration membranes the specific solvent stream is higher than in reverse osmosis membranes. This phenomenon depends on the type of membrane. When the pressure increases the flow of the solvent and performance of baromembrane separation of solutions increases too. Specific solvent stream are influenced by concentrating polarization, gelation and sedimentation, which are formed as a result of increasing pressure and adsorption on the membrane

  6. Dual phase high-temperature membranes for CO2 separation - performance assessment in post- and pre-combustion processes.

    Science.gov (United States)

    Anantharaman, Rahul; Peters, Thijs; Xing, Wen; Fontaine, Marie-Laure; Bredesen, Rune

    2016-10-20

    Dual phase membranes are highly CO2-selective membranes with an operating temperature above 400 °C. The focus of this work is to quantify the potential of dual phase membranes in pre- and post-combustion CO2 capture processes. The process evaluations show that the dual phase membranes integrated with an NGCC power plant for CO2 capture are not competitive with the MEA process for post-combustion capture. However, dual phase membrane concepts outperform the reference Selexol technology for pre-combustion CO2 capture in an IGCC process. The two processes evaluated in this work, post-combustion NGCC and pre-combustion IGCC, represent extremes in CO2 partial pressure fed to the separation unit. Based on the evaluations it is expected that dual phase membranes could be competitive for post-combustion capture from a pulverized coal fired power plant (PCC) and pre-combustion capture from an Integrated Reforming Cycle (IRCC).

  7. Fast Pyrolysis Process Development Unit for Validating Bench Scale Data

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Robert C. [Iowa State Univ., Ames, IA (United States). Biorenewables Research Lab.. Center for Sustainable Environmental Technologies. Bioeconomy Inst.; Jones, Samuel T. [Iowa State Univ., Ames, IA (United States). Biorenewables Research Lab.. Center for Sustainable Environmental Technologies. Bioeconomy Inst.

    2010-03-31

    The purpose of this project was to prepare and operate a fast pyrolysis process development unit (PDU) that can validate experimental data generated at the bench scale. In order to do this, a biomass preparation system, a modular fast pyrolysis fluidized bed reactor, modular gas clean-up systems, and modular bio-oil recovery systems were designed and constructed. Instrumentation for centralized data collection and process control were integrated. The bio-oil analysis laboratory was upgraded with the addition of analytical equipment needed to measure C, H, O, N, S, P, K, and Cl. To provide a consistent material for processing through the fluidized bed fast pyrolysis reactor, the existing biomass preparation capabilities of the ISU facility needed to be upgraded. A stationary grinder was installed to reduce biomass from bale form to 5-10 cm lengths. A 25 kg/hr rotary kiln drier was installed. It has the ability to lower moisture content to the desired level of less than 20% wt. An existing forage chopper was upgraded with new screens. It is used to reduce biomass to the desired particle size of 2-25 mm fiber length. To complete the material handling between these pieces of equipment, a bucket elevator and two belt conveyors must be installed. The bucket elevator has been installed. The conveyors are being procured using other funding sources. Fast pyrolysis bio-oil, char and non-condensable gases were produced from an 8 kg/hr fluidized bed reactor. The bio-oil was collected in a fractionating bio-oil collection system that produced multiple fractions of bio-oil. This bio-oil was fractionated through two separate, but equally important, mechanisms within the collection system. The aerosols and vapors were selectively collected by utilizing laminar flow conditions to prevent aerosol collection and electrostatic precipitators to collect the aerosols. The vapors were successfully collected through a selective condensation process. The combination of these two mechanisms

  8. Computer Aided Design and Analysis of Separation Processes with Electrolyte Systems

    DEFF Research Database (Denmark)

    Takano, Kiyoteru; Gani, Rafiqul; Kolar, P.

    2000-01-01

    A methodology for computer aided design and analysis of separation processes involving electrolyte systems is presented. The methodology consists of three main parts. The thermodynamic part 'creates' the problem specific property model package, which is a collection of pure component and mixture...... property models. The design and analysis part generates process (flowsheet) alternatives, evaluates/analyses feasibility of separation and provides a visual operation path for the desired separation. The simulation part consists of a simulation/calculation engine that allows the screening and validation...... of process alternatives. For the simulation part, a general multi-purpose, multi-phase separation model has been developed and integrated to an existing computer aided system. Application of the design and analysis methodology is highlighted through two illustrative case studies, (C) 2000 Elsevier Science...

  9. Computer Aided Design and Analysis of Separation Processes with Electrolyte Systems

    DEFF Research Database (Denmark)

    A methodology for computer aided design and analysis of separation processes involving electrolyte systems is presented. The methodology consists of three main parts. The thermodynamic part "creates" the problem specific property model package, which is a collection of pure component and mixture...... property models. The design and analysis part generates process (flowsheet) alternatives, evaluates/analyses feasibility of separation and provides a visual operation path for the desired separation. The simulation part consists of a simulation/calculation engine that allows the screening and validation...... of process alternatives. For the simulation part, a general multi-purpose, multi-phase separation model has been developed and integrated to an existing computer aided system. Application of the design and analysis methodology is highlighted through two illustrative case studies....

  10. Plasma separation process facility for large-scale stable isotope production

    Energy Technology Data Exchange (ETDEWEB)

    Bigelow, T.S.; Collins, E.D.; Tracy, J.G. [Oak Ridge National Lab., TN (United States)

    1997-12-01

    A facility for large-scale separation of stable isotopes using the plasma separation process (PSP) is under development at the Oak Ridge National Laboratory. The PSP is capable of separating isotopes at a large throughput rate with medium purity product and at relatively low cost. The PSP has a number of convenient features that make it an attractive technology for general isotope separation purposes. Several isotopes for medical and industrial applications, including {sup 102}Pd, {sup 98}Mo, {sup 203}Tl, {sup 184}W, and others, are expected to be processed in this facility. The large throughput and low processing cost of the PSP will likely lead to new applications for stable isotopes. A description of this facility and its typical throughput capability is presented here.

  11. Computer Aided Design and Analysis of Separation Processes with Electrolyte Systems

    DEFF Research Database (Denmark)

    A methodology for computer aided design and analysis of separation processes involving electrolyte systems is presented. The methodology consists of three main parts. The thermodynamic part "creates" the problem specific property model package, which is a collection of pure component and mixture...... property models. The design and analysis part generates process (flowsheet) alternatives, evaluates/analyses feasibility of separation and provides a visual operation path for the desired separation. The simulation part consists of a simulation/calculation engine that allows the screening and validation...... of process alternatives. For the simulation part, a general multi-purpose, multi-phase separation model has been developed and integrated to an existing computer aided system. Application of the design and analysis methodology is highlighted through two illustrative case studies....

  12. Waste Heat Recovery and Recycling in Thermal Separation Processes: Distillation, Multi-Effect Evaporation (MEE) and Crystallization Processes

    Energy Technology Data Exchange (ETDEWEB)

    Emmanuel A. Dada; Chandrakant B. Panchal; Luke K. Achenie; Aaron Reichl; Chris C. Thomas

    2012-12-03

    Evaporation and crystallization are key thermal separation processes for concentrating and purifying inorganic and organic products with energy consumption over 1,000 trillion Btu/yr. This project focused on a challenging task of recovering low-temperature latent heat that can have a paradigm shift in the way thermal process units will be designed and operated to achieve high-energy efficiency and significantly reduce the carbon footprint as well as water footprint. Moreover, this project has evaluated the technical merits of waste-heat powered thermal heat pumps for recovery of latent heat from distillation, multi-effect evaporation (MEE), and crystallization processes and recycling into the process. The Project Team has estimated the potential energy, economics and environmental benefits with the focus on reduction in CO2 emissions that can be realized by 2020, assuming successful development and commercialization of the technology being developed. Specifically, with aggressive industry-wide applications of heat recovery and recycling with absorption heat pumps, energy savings of about 26.7 trillion Btu/yr have been estimated for distillation process. The direct environmental benefits of this project are the reduced emissions of combustible products. The estimated major reduction in environmental pollutants in the distillation processes is in CO2 emission equivalent to 3.5 billion lbs/year. Energy consumption associated with water supply and treatments can vary between 1,900 kWh and 23,700 kWh per million-gallon water depending on sources of natural waters [US DOE, 2006]. Successful implementation of this technology would significantly reduce the demand for cooling-tower waters, and thereby the use and discharge of water treatment chemicals. The Project Team has also identified and characterized working fluid pairs for the moderate-temperature heat pump. For an MEE process, the two promising fluids are LiNO3+KNO3+NANO3 (53:28:19 ) and LiNO3+KNO3+NANO2

  13. Waste Heat Recovery and Recycling in Thermal Separation Processes: Distillation, Multi-Effect Evaporation (MEE) and Crystallization Processes

    Energy Technology Data Exchange (ETDEWEB)

    Emmanuel A. Dada; Chandrakant B. Panchal; Luke K. Achenie; Aaron Reichl; Chris C. Thomas

    2012-12-03

    Evaporation and crystallization are key thermal separation processes for concentrating and purifying inorganic and organic products with energy consumption over 1,000 trillion Btu/yr. This project focused on a challenging task of recovering low-temperature latent heat that can have a paradigm shift in the way thermal process units will be designed and operated to achieve high-energy efficiency and significantly reduce the carbon footprint as well as water footprint. Moreover, this project has evaluated the technical merits of waste-heat powered thermal heat pumps for recovery of latent heat from distillation, multi-effect evaporation (MEE), and crystallization processes and recycling into the process. The Project Team has estimated the potential energy, economics and environmental benefits with the focus on reduction in CO2 emissions that can be realized by 2020, assuming successful development and commercialization of the technology being developed. Specifically, with aggressive industry-wide applications of heat recovery and recycling with absorption heat pumps, energy savings of about 26.7 trillion Btu/yr have been estimated for distillation process. The direct environmental benefits of this project are the reduced emissions of combustible products. The estimated major reduction in environmental pollutants in the distillation processes is in CO2 emission equivalent to 3.5 billion lbs/year. Energy consumption associated with water supply and treatments can vary between 1,900 kWh and 23,700 kWh per million-gallon water depending on sources of natural waters [US DOE, 2006]. Successful implementation of this technology would significantly reduce the demand for cooling-tower waters, and thereby the use and discharge of water treatment chemicals. The Project Team has also identified and characterized working fluid pairs for the moderate-temperature heat pump. For an MEE process, the two promising fluids are LiNO3+KNO3+NANO3 (53:28:19 ) and LiNO3+KNO3+NANO2

  14. Unit Operations for the Food Industry: Equilibrium Processes & Mechanical Operations

    OpenAIRE

    Guiné, Raquel

    2013-01-01

    Unit operations are an area of engineering that is at the same time very fascinating and most essential for the industry in general and the food industry in particular. This book was prepared in a way to achieve simultaneously the academic and practical perspectives. It is organized into two parts: the unit operations based on equilibrium processes and the mechanical operations. Each topic starts with a presentation of the fundamental concepts and principles, followed by a discussion of ...

  15. Formalizing the Process of Constructing Chains of Lexical Units

    Directory of Open Access Journals (Sweden)

    Grigorij Chetverikov

    2015-06-01

    Full Text Available Formalizing the Process of Constructing Chains of Lexical Units The paper investigates mathematical aspects of describing the construction of chains of lexical units on the basis of finite-predicate algebra. Analyzing the construction peculiarities is carried out and application of the method of finding the power of linear logical transformation for removing characteristic words of a dictionary entry is given. Analysis and perspectives of the results of the study are provided.

  16. Kinetic crystallization separation process of the inositol isomers by controlling metastable zones

    Science.gov (United States)

    Konuki, Kaname; Hirasawa, Izumi

    2013-06-01

    D-chiro-inositol (DCI) is prepared by the immobilized enzyme reaction which uses myo-inositol (MI) as the substrate and the conversion rate is about 13%. The aim of this study was to develop a separation method for high purity DCI crystals from a reaction solution including low purity DCI only by the crystallization process. We succeeded in separating DCI crystals of 96% purity by water cooling crystallization, but it was presumed that scale-up was difficult. Although we tried anti-solvent crystallization similar to water cooling crystallization, high purity DCI crystals were not obtained. Therefore, we proposed the crystallization separation process by controlling metastable zones. The purity of a desired compound is controlled by this process, because solid-liquid separation is achieved before crystallization of compound in metastable zone. By the crystallization using this method, the DCI crystals of 97% purity were obtained. Although the yield per batch is about 50%, the actual yield is improved as the last mother liquor returns into the process of the following batch. When this process was repeated, the purity and the yield of DCI were reproduced and the robustness of this process was proved. It is expected that scale-up of this process will be successful, and this purification method could be applicable to similar systems such as separation of isomers and analogs.

  17. In situ imaging and height reconstruction of phase separation processes in polymer blends during spin coating.

    Science.gov (United States)

    Ebbens, Stephen; Hodgkinson, Richard; Parnell, Andrew J; Dunbar, Alan; Martin, Simon J; Topham, Paul D; Clarke, Nigel; Howse, Jonathan R

    2011-06-28

    Spin coating polymer blend thin films provides a method to produce multiphase functional layers of high uniformity covering large surface areas. Applications for such layers include photovoltaics and light-emitting diodes where performance relies upon the nanoscale phase separation morphology of the spun film. Furthermore, at micrometer scales, phase separation provides a route to produce self-organized structures for templating applications. Understanding the factors that determine the final phase-separated morphology in these systems is consequently an important goal. However, it has to date proved problematic to fully test theoretical models for phase separation during spin coating, due to the high spin speeds, which has limited the spatial resolution of experimental data obtained during the coating process. Without this fundamental understanding, production of optimized micro- and nanoscale structures is hampered. Here, we have employed synchronized stroboscopic illumination together with the high light gathering sensitivity of an electron-multiplying charge-coupled device camera to optically observe structure evolution in such blends during spin coating. Furthermore the use of monochromatic illumination has allowed interference reconstruction of three-dimensional topographies of the spin-coated film as it dries and phase separates with nanometer precision. We have used this new method to directly observe the phase separation process during spinning for a polymer blend (PS-PI) for the first time, providing new insights into the spin-coating process and opening up a route to understand and control phase separation structures.

  18. Modeling Units of Assessment for Sharing Assessment Process Information: towards an Assessment Process Specification

    NARCIS (Netherlands)

    Miao, Yongwu; Sloep, Peter; Koper, Rob

    2009-01-01

    Miao, Y., Sloep, P. B., & Koper, R. (2008). Modeling Units of Assessment for Sharing Assessment Process Information: towards an Assessment Process Specification. Presentation at the ICWL 2008 conference. August, 20, 2008, Jinhua, China.

  19. Performance and techno-economic assessment of several solid-liquid separation technologies for processing dilute-acid pretreated corn stover.

    Science.gov (United States)

    Sievers, David A; Tao, Ling; Schell, Daniel J

    2014-09-01

    Solid-liquid separation of pretreated lignocellulosic biomass slurries is a critical unit operation employed in several different processes for production of fuels and chemicals. An effective separation process achieves good recovery of solute (sugars) and efficient dewatering of the biomass slurry. Dilute acid pretreated corn stover slurries were subjected to pressure and vacuum filtration and basket centrifugation to evaluate the technical and economic merits of these technologies. Experimental performance results were used to perform detailed process simulations and economic analysis using a 2000 tonne/day biorefinery model to determine differences between the various filtration methods and their process settings. The filtration processes were able to successfully separate pretreated slurries into liquor and solid fractions with estimated sugar recoveries of at least 95% using a cake washing process. A continuous vacuum belt filter produced the most favorable process economics.

  20. A method for separating water soluble organics from a process stream by aqueous biphasic extraction

    Energy Technology Data Exchange (ETDEWEB)

    Chaiko, David J.; Mego, William A.

    1997-12-01

    The present invention relates to a method for separating water-miscible organic species from a process stream by aqueous biphasic extraction. In particular, the method includes extracting the organic species into a polymer-rich phase of an aqueous biphase system in which the process stream comprises the salt-rich phase, and, next, separating the polymer from the extracted organic species by contacting the loaded, polymer-rich phase with a water-immiscible organic phase. Alternatively, the polymer can be separated from the extracted organic species by raising the temperature of the loaded, polymer-rich phase above the cloud point, such that the polymer and the water-soluble organic species separate into two distinct aqueous phases. In either case, a substantially salt-free, concentrated aqueous solution containing the organic species is recovered.

  1. Separating business process from user interaction in web-based information

    NARCIS (Netherlands)

    Aberer, Karl; Datta, Anwitaman; Despotovic, Zoran; Wombacher, Andreas

    2003-01-01

    In Web-based information commerce it is diffcult to disentangle presentation from process logic, and sometimes even data is not separate from the presentation. Consequently, it becomes crucial to define an abstract model for business processes and their mapping into an active user interface presenta

  2. CORROSION ISSUES ASSOCIATED WITH AUSTENITIC STAINLESS STEEL COMPONENTS USED IN NUCLEAR MATERIALS EXTRACTION AND SEPARATION PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J.; Louthan, M.; Sindelar, R.

    2012-12-17

    This paper illustrated the magnitude of the systems, structures and components used at the Savannah River Site for nuclear materials extraction and separation processes. Corrosion issues, including stress corrosion cracking, pitting, crevice corrosion and other corrosion induced degradation processes are discussed and corrosion mitigation strategies such as a chloride exclusion program and corrosion release testing are also discussed.

  3. Processing bias in children with separation anxiety disorder, social phobia and generalised anxiety disorder

    NARCIS (Netherlands)

    Kindt, M.; Bögels, S.M.; Morren, M.

    2003-01-01

    The present study examined processing bias in children suffering from anxiety disorders. Processing bias was assessed using of the emotional Stroop task in clinically referred children with separation anxiety disorder (SAD), social phobia (SP), and/or generalised anxiety disorder (GAD) and normal co

  4. Separating business process from user interaction in web-based information

    NARCIS (Netherlands)

    Aberer, Karl; Datta, Anwitaman; Despotovic, Zoran; Wombacher, Andreas

    2003-01-01

    In Web-based information commerce it is diffcult to disentangle presentation from process logic, and sometimes even data is not separate from the presentation. Consequently, it becomes crucial to define an abstract model for business processes and their mapping into an active user interface presenta

  5. RESEARCH AND DEVELOPMENT OF AN INTEGRAL SEPARATOR FOR A CENTRIFUGAL GAS PROCESSING FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    LANCE HAYS

    2007-02-27

    A COMPACT GAS PROCESSING DEVICE WAS INVESTIGATED TO INCREASE GAS PRODUCTION FROM REMOTE, PREVIOUSLY UN-ECONOMIC RESOURCES. THE UNIT WAS TESTED ON AIR AND WATER AND WITH NATURAL GAS AND LIQUID. RESULTS ARE REPORTED WITH RECOMMENDATIONS FOR FUTURE WORK.

  6. Radio-over-fiber as the enabler for joint processing of spatially separated radio signals

    OpenAIRE

    Monteiro P.; Pato S.; Pedro J.; Santos J.; Wake D.; Nkansah A.; Gomes N.; Lopez E.; Gameiro A

    2009-01-01

    An overview of the FUTON project is presented, with emphasis on the optical link design for radio-over-fiber communication and virtual-MIMO functionalities between multiple remote antenna units and a centralized processing site.

  7. Liquid phase methanol LaPorte process development unit: Modification, operation, and support studies

    Energy Technology Data Exchange (ETDEWEB)

    1991-02-02

    The primary focus of this Process Development Unit operating program was to prepare for a confident move to the next scale of operation with a simplified and optimized process. The main purpose of these runs was the evaluation of the alternate commercial catalyst (F21/0E75-43) that had been identified in the laboratory under a different subtask of the program. If the catalyst proved superior to the previous catalyst, then the evaluation run would be continued into a 120-day life run. Also, minor changes were made to the Process Development Unit system to improve operations and reliability. The damaged reactor demister from a previous run was replaced, and a new demister was installed in the intermediate V/L separator. The internal heat exchanger was equipped with an expansion loop to relieve thermal stresses so operation at higher catalyst loadings and gas velocities would be possible. These aggressive conditions are important for improving process economics. (VC)

  8. ENERGY SLUDGE PROCESSING IN A SEPARATE WASTEWATER TREATMENT PLANT DIGESTER POMORZANY IN SZCZECIN

    Directory of Open Access Journals (Sweden)

    Anna Iżewska

    2016-06-01

    Full Text Available Pomorzany Sewage Treatment Plant in Szczecin ensures the required parameters of treated sewage. However, due to higher efficiency of sewage treatment, more sludge is produced after the treatment process. In the examined sludge treatment plant, primary sludge is gravitationally thickened to the content of about 5% of dry matter, and the excessive is thickened in mechanical compactors up to 6% of dry matter. Settlements preliminary and excessive after compaction is discharged to the sludge tank where a pump is forced into two closed digesters. Each digester has the capacity of 5069 m3. At a temperature of about 37 °C a mesophilic digestion is performed. Biogas, that is produced in the chamber, is stored in two-coat tanks with the capacity of 1500 m3 each and after desulphurization with the biosulfex method (which results with obtaining elemental sulphur it is used as fuel in cogeneration units. The aim of this study was to determine amount of energy given by sewage sludge in the form of heat during the process of methane digestion (primary and excessive. These amounts were determined on the basis of chemical energy balance of sewage carried into and out of Separate Sludge Digesters and produced biogas within 24h. The study determined that the percentage value of average chemical energy amount turned into heat and discharged with produced methane in relation to chemical energy of sewage carried into the first digester in Pomorzany Treatment Plant in Szczecin was in the range of 47.86 ± 9.73% for a confidence level of 0.95. On average 80.86 ± 33.65% was emitted with methane and 19.14 ± 33.65% of energy was changed into heat.

  9. Integration of biohydrogen fermentation and gas separation processes to recover and enrich hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Belafi-Bako, K.; Bucsu, D. [Research Institute of Chemical and Process Engineering, University of Veszprem, Egyetem u. 2., 8200 Veszprem (Hungary); Pientka, Z. [Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq. 2., Prague (Czech Republic); Balint, B.; Herbel, Z.; Kovacs, K.L. [Department of Biotechnology and Institute of Biophysics, Biological Research Center, Hungarian Academy of Sciences, University of Szeged, Temesvari krt. 62., 6726 Szeged (Hungary); Wessling, M. [Membrane Technology Group, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands)

    2006-09-15

    An integrated system for biohydrogen production and separation was designed, constructed and operated where biohydrogen was fermented by Thermococcus litoralis, a heterotrophic archaebacterium, and a two-step gas separation process was coupled to recover and concentrate hydrogen. A special liquid seal system was built to deliver, compress and collect the laboratory scale, low volume gas mixtures consisting of hydrogen, nitrogen and carbon dioxide. As a result, gas mixture with 73% high hydrogen content was produced by a combination of a porous and a non-porous gas separation membrane. (author)

  10. Mitigating an increase of specific power consumption in a cryogenic air separation unit at reduced oxygen production

    Science.gov (United States)

    Singla, Rohit; Chowdhury, Kanchan

    2017-02-01

    Specific power consumed in a Linde double column air separation unit (ASU) increases as the quantity of oxygen produced at a given purity is decreased due to the changes of system requirement or market demand. As the plant operates in part load condition, the specific power consumption (SPC) increases as the total power consumption remains the same. In order to mitigate the increase of SPC at lower oxygen production, the operating pressure of high pressure column (HPC) can be lowered by extending the low pressure column (LPC) by a few trays and adding a second reboiler. As the duty of second reboiler in LPC is increased, the recovery of oxygen decreases with a lowering of the HPC pressure. This results in mitigation of the increase of SPC of the plant. A Medium pressure ASU with dual reboiler that produces pressurised gaseous and liquid products of oxygen and nitrogen is simulated in Aspen Hysys 8.6®, a commercial process simulator to determine SPC at varying oxygen production. The effects of reduced pressure of air feed into the cold box on the size of heat exchangers (HX) are analysed. Operation strategy to obtain various oxygen production rates at varying demand is also proposed.

  11. COST ESTIMATION MODELS FOR DRINKING WATER TREATMENT UNIT PROCESSES

    Science.gov (United States)

    Cost models for unit processes typically utilized in a conventional water treatment plant and in package treatment plant technology are compiled in this paper. The cost curves are represented as a function of specified design parameters and are categorized into four major catego...

  12. Determinants of profitability of smallholder palm oil processing units ...

    African Journals Online (AJOL)

    ... of profitability of smallholder palm oil processing units in Ogun state, Nigeria. ... as well as their geographical spread covering the entire land space of the state. ... The F-ratio value is statistically significant (P<0.01) implying that the model is ...

  13. Reflector antenna analysis using physical optics on Graphics Processing Units

    DEFF Research Database (Denmark)

    Borries, Oscar Peter; Sørensen, Hans Henrik Brandenborg; Dammann, Bernd

    2014-01-01

    The Physical Optics approximation is a widely used asymptotic method for calculating the scattering from electrically large bodies. It requires significant computational work and little memory, and is thus well suited for application on a Graphics Processing Unit. Here, we investigate...... the performance of an implementation and demonstrate that while there are some implementational pitfalls, a careful implementation can result in impressive improvements....

  14. Utilizing Graphics Processing Units for Network Anomaly Detection

    Science.gov (United States)

    2012-09-13

    matching system using deterministic finite automata and extended finite automata resulting in a speedup of 9x over the CPU implementation [SGO09]. Kovach ...pages 14–18, 2009. [Kov10] Nicholas S. Kovach . Accelerating malware detection via a graphics processing unit, 2010. http://www.dtic.mil/dtic/tr

  15. Acceleration of option pricing technique on graphics processing units

    NARCIS (Netherlands)

    Zhang, B.; Oosterlee, C.W.

    2010-01-01

    The acceleration of an option pricing technique based on Fourier cosine expansions on the Graphics Processing Unit (GPU) is reported. European options, in particular with multiple strikes, and Bermudan options will be discussed. The influence of the number of terms in the Fourier cosine series expan

  16. Acceleration of option pricing technique on graphics processing units

    NARCIS (Netherlands)

    Zhang, B.; Oosterlee, C.W.

    2014-01-01

    The acceleration of an option pricing technique based on Fourier cosine expansions on the graphics processing unit (GPU) is reported. European options, in particular with multiple strikes, and Bermudan options will be discussed. The influence of the number of terms in the Fourier cosine series expan

  17. Membrane loop process for separating carbon dioxide for use in gaseous form from flue gas

    Energy Technology Data Exchange (ETDEWEB)

    Wijmans, Johannes G; Baker, Richard W; Merkel, Timothy C

    2016-09-06

    The invention is a process involving membrane-based gas separation for separating and recovering carbon dioxide emissions from combustion processes in partially concentrated form, and then transporting the carbon dioxide and using or storing it in a confined manner without concentrating it to high purity. The process of the invention involves building up the concentration of carbon dioxide in a gas flow loop between the combustion step and a membrane separation step. A portion of the carbon dioxide-enriched gas can then be withdrawn from this loop and transported, without the need to liquefy the gas or otherwise create a high-purity stream, to a destination where it is used or confined, preferably in an environmentally benign manner.

  18. Achieving nanoscale horizontal separations in the standard 2 μm PolyMUMPS process

    KAUST Repository

    Elshurafa, Amro M.

    2013-01-25

    This paper shares with the research community how to achieve, effectively and easily, lateral submicron separations in the standard 2 lm PolyMUMPS process without any fabrication intervention or post-processing, based on the oxide sidewall spacer technique. Thousands of nanoseparations were created and successfully tested by visual inspection and by a simple capacitance measurement. The lateral separations attained were less than 440 nm and reached as low as 280 nm. To corroborate the findings, measurements were performed on different capacitors fabricated in different fabrication runs with consistent results. This is the first time that submicron lateral distances are reported in PolyMUMPS using the oxide spacer technique.

  19. Optimisation of the Fischer-Tropsch process using zeolites for tail gas separation.

    Science.gov (United States)

    Perez-Carbajo, J; Gómez-Álvarez, P; Bueno-Perez, R; Merkling, P J; Calero, S

    2014-03-28

    This work is aimed at optimizing a Fischer-Tropsch Gas To Liquid (GTL) process by recycling compounds of the expelled gas mixture using zeolites for the separation. To that end, we have performed a computational study on four structures widely used in industry. A range of Si/Al ratios have been explored and the effects of their distribution assessed. The ability of the considered force fields and molecular models to reproduce experimental results has been widely proved in previously reported studies. Since this tail gas is formed by a five-component mixture, namely carbon dioxide, methane, carbon monoxide, nitrogen and hydrogen, molecular simulations present clear advantages over experiments. In addition, the viability of the Ideal Adsorption Solution Theory (IAST) has been evaluated to easily handle further separation steps. On the basis of the obtained results, we provide a separation scheme to perform sequentially the separation of CO2, CH4, CO, N2 and H2.

  20. Point process models for household distributions within small areal units

    Directory of Open Access Journals (Sweden)

    Zack W. Almquist

    2012-06-01

    Full Text Available Spatio-demographic data sets are increasingly available worldwide, permitting ever more realistic modeling and analysis of social processes ranging from mobility to disease trans- mission. The information provided by these data sets is typically aggregated by areal unit, for reasons of both privacy and administrative cost. Unfortunately, such aggregation does not permit fine-grained assessment of geography at the level of individual households. In this paper, we propose to partially address this problem via the development of point pro- cess models that can be used to effectively simulate the location of individual households within small areal units.

  1. Extensive separations (CLEAN) processing strategy compared to TRUEX strategy and sludge wash ion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Knutson, B.J.; Jansen, G.; Zimmerman, B.D.; Seeman, S.E. [Westinghouse Hanford Co., Richland, WA (United States); Lauerhass, L.; Hoza, M. [Pacific Northwest Lab., Richland, WA (United States)

    1994-08-01

    Numerous pretreatment flowsheets have been proposed for processing the radioactive wastes in Hanford`s 177 underground storage tanks. The CLEAN Option is examined along with two other flowsheet alternatives to quantify the trade-off of greater capital equipment and operating costs for aggressive separations with the reduced waste disposal costs and decreased environmental/health risks. The effect on the volume of HLW glass product and radiotoxicity of the LLW glass or grout product is predicted with current assumptions about waste characteristics and separations processes using a mass balance model. The prediction is made on three principal processing options: washing of tank wastes with removal of cesium and technetium from the supernatant, with washed solids routed directly to the glass (referred to as the Sludge Wash C processing strategy); the previous steps plus dissolution of the solids and removal of transuranic (TRU) elements, uranium, and strontium using solvent extraction processes (referred to as the Transuranic Extraction Option C (TRUEX-C) processing strategy); and an aggressive yet feasible processing strategy for separating the waste components to meet several main goals or objectives (referred to as the CLEAN Option processing strategy), such as the LLW is required to meet the US Nuclear Regulatory Commission Class A limits; concentrations of technetium, iodine, and uranium are reduced as low as reasonably achievable; and HLW will be contained within 1,000 borosilicate glass canisters that meet current Hanford Waste Vitrification Plant glass specifications.

  2. Semi-industrial experimental study on bauxite separation using a cellcolumn integration process

    Institute of Scientific and Technical Information of China (English)

    Ning-ning Zhang; Chang-chun Zhou; Long-fei Cong; Wen-long Cao; You Zhou

    2016-01-01

    The cyclonic-static micro-bubble flotation column (FCSMC) is a highly efficient mineral processing equipment. In this study, a cell-column (FCSMC) integration process was investigated for the separation of bauxite and its feasibility was analyzed on a theoretical basis. The properties of low-grade bauxite ore from Henan Province, China were analyzed. Parameters such as reagent dosage, scraping bubble time, and pressure of the circulating pump during the sorting process were investigated and optimized to improve the flotation efficiency. On the basis of these parameters, continuous separation experiments were conducted. Bauxite concentrate with an aluminum-to-silicon (A/S) mass ratio of 6.37 and a 77.63wt% recovery rate were achieved via a flow sheet consisting of “fast flotation using a flotation cell, one roughing flotation and one cleaning flotation using flotation columns”. Compared with the full-flotation-cells process, the cell-column integration process resulted in an increase of the A/S ratio by 0.41 and the recovery rate by 17.58wt%. Cell-column integration separation technology represents a new approach for the separation of middle-to-low-grade bauxite ore.

  3. Semi-industrial experimental study on bauxite separation using a cell-column integration process

    Science.gov (United States)

    Zhang, Ning-ning; Zhou, Chang-chun; Cong, Long-fei; Cao, Wen-long; Zhou, You

    2016-01-01

    The cyclonic-static micro-bubble flotation column (FCSMC) is a highly efficient mineral processing equipment. In this study, a cell-column (FCSMC) integration process was investigated for the separation of bauxite and its feasibility was analyzed on a theoretical basis. The properties of low-grade bauxite ore from Henan Province, China were analyzed. Parameters such as reagent dosage, scraping bubble time, and pressure of the circulating pump during the sorting process were investigated and optimized to improve the flotation efficiency. On the basis of these parameters, continuous separation experiments were conducted. Bauxite concentrate with an aluminum-to-silicon (A/S) mass ratio of 6.37 and a 77.63wt% recovery rate were achieved via a flow sheet consisting of "fast flotation using a flotation cell, one roughing flotation and one cleaning flotation using flotation columns". Compared with the full-flotation-cells process, the cell-column integration process resulted in an increase of the A/S ratio by 0.41 and the recovery rate by 17.58wt%. Cell-column integration separation technology represents a new approach for the separation of middle-to-low-grade bauxite ore.

  4. Method for separating water soluble organics from a process stream by aqueous biphasic extraction

    Energy Technology Data Exchange (ETDEWEB)

    Chaiko, D.J.; Mego, W.A.

    1999-09-07

    A method for separating water-miscible organic species from a process stream by aqueous biphasic extraction is provided. An aqueous biphase system is generated by contacting a process stream comprised of water, salt, and organic species with an aqueous polymer solution. The organic species transfer from the salt-rich phase to the polymer-rich phase, and the phases are separated. Next, the polymer is recovered from the loaded polymer phase by selectively extracting the polymer into an organic phase at an elevated temperature, while the organic species remain in a substantially salt-free aqueous solution. Alternatively, the polymer is recovered from the loaded polymer by a temperature induced phase separation (cloud point extraction), whereby the polymer and the organic species separate into two distinct solutions. The method for separating water-miscible organic species is applicable to the treatment of industrial wastewater streams, including the extraction and recovery of complexed metal ions from salt solutions, organic contaminants from mineral processing streams, and colorants from spent dye baths.

  5. Method for separating water soluble organics from a process stream by aqueous biphasic extraction

    Energy Technology Data Exchange (ETDEWEB)

    Chaiko, David J. (Naperville, IL); Mego, William A. (Naperville, IL)

    1999-01-01

    A method for separating water-miscible organic species from a process stream by aqueous biphasic extraction is provided. An aqueous biphase system is generated by contacting a process stream comprised of water, salt, and organic species with an aqueous polymer solution. The organic species transfer from the salt-rich phase to the polymer-rich phase, and the phases are separated. Next, the polymer is recovered from the loaded polymer phase by selectively extracting the polymer into an organic phase at an elevated temperature, while the organic species remain in a substantially salt-free aqueous solution. Alternatively, the polymer is recovered from the loaded polymer by a temperature induced phase separation (cloud point extraction), whereby the polymer and the organic species separate into two distinct solutions. The method for separating water-miscible organic species is applicable to the treatment of industrial wastewater streams, including the extraction and recovery of complexed metal ions from salt solutions, organic contaminants from mineral processing streams, and colorants from spent dye baths.

  6. Applicability of product-driven process synthesis to separation processes in food

    NARCIS (Netherlands)

    Jankowiak, L.; Goot, van der A.J.; Trifunovic, O.; Bongers, P.; Boom, R.M.

    2012-01-01

    The demand for more sustainable processing in the food industry is rising but requires structured methodologies to support the fast implementation of new economic and sustainable processes. Product-driven process synthesis (PDPS) is a recently established methodology facilitating the rapid developme

  7. A LINEAR PROGRAMMING MODEL OF THE GASEOUSDIFFUSION ISOTOPE-SEPARATION PROCESS,

    Science.gov (United States)

    ISOTOPE SEPARATION, LINEAR PROGRAMMING ), (*GASEOUS DIFFUSION SEPARATION, LINEAR PROGRAMMING ), (* LINEAR PROGRAMMING , GASEOUS DIFFUSION SEPARATION), NUCLEAR REACTORS, REACTOR FUELS, URANIUM, PURIFICATION

  8. Arbitration Of Family Separation Issues – A Useful Adjunct To Mediation And The Court Process

    Directory of Open Access Journals (Sweden)

    M (Leentjie de Jong

    2014-12-01

    Full Text Available For over half a century now, section 2(a of the Arbitration Act 42 of 1965 has prohibited arbitration in respect of matrimonial and related matters. In this article it will be illustrated that this prohibition is clearly incompatible with present-day demands. Today there is a strong tendency in public policy towards alternative dispute resolution processes such as arbitration. As any recommendations that arbitration should be applied to family law disputes must be anchored in an analysis of the specific character of the arbitral remedy, the article begins by giving a broad overview of the nature of arbitration. This is followed by a discussion of the present-day demand for family arbitration, which examines the problems experienced with the adversarial system of litigation in resolving family law disputes, party autonomy, the development of alternative dispute resolution processes such as mediation and arbitration, the special synergy between mediation and arbitration, the success of arbitration in other fields of law and possible forerunners for family arbitration in South Africa. Inherent in the demand for family law arbitration are the many advantages of arbitration, which are also touched upon. Thirdly, current trends in England, Australia, the United States of America, Canada and India are analysed so as to identify a suitable family law arbitration model for South Africa. Special attention is paid to the matters that should be referred to arbitration – for example, should it be confined to matrimonial property and financial disputes or extended to all matters incidental to divorce or family breakdown, including children's issues? Other questions examined include whether family arbitration should comply with substantive law only, who should act as arbitrators, whether family arbitration should be voluntary or compulsory, what the court's role in the family arbitration process should be, and whether family law arbitration should be

  9. Startup and Operation of a Metal Hydride Based Isotope Separation Process

    Energy Technology Data Exchange (ETDEWEB)

    Scogin, J.H.; Poore, A.S.

    1995-02-27

    Production scale separation of tritium from other hydrogen isotopes at the Savannah River Site (SRS) in Aiken, SC, has been accomplished by several methods. These methods include thermal diffusion (1957--1986), fractional absorption (1964--1968), and cryogenic distillation (1967-present). Most recently, the Thermal Cycling Absorption Process (TCAP), a metal hydride based hydrogen isotope separation system, began production in the Replacement Tritium Facility (RTF) on April 9, 1994. TCAP has been in development at the Savannah River Technology Center since 1980. The production startup of this semi-continuous gas chromatographic separation process is a significant accomplishment for the Savannah River Site and was achieved after years of design, development, and testing.

  10. Startup and operation of a metal hydride based isotope separation process

    Energy Technology Data Exchange (ETDEWEB)

    Scogin, J.H.; Poore, A.S. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1995-10-01

    Production scale separation of tritium from other hydrogen isotopes at the Savannah River Site (SRS) in Aiken, SC, USA, has been accomplished by several methods. These methods include thermal diffusion (1957-1986), fractional absorption (1964-1968), and cryogenic distillation (1967-present). Most recently, the Thermal Cycling Absorption Process (TCAP), a metal hydride based hydrogen isotope separation system, began production in the Replacement Tritium Facility (RTF) on April 9, 1994. TCAP has been in development at the Savannah River Technology Center since 1980. The production startup of this semi-continuous gas chromatographic separation process is a significant accomplishment for the Savannah River Site and was achieved after years of design, development, and testing. 2 refs., 4 figs.

  11. Recovery of Ferric Oxide from Bayer Red Mud by Reduction Roasting-Magnetic Separation Process

    Institute of Scientific and Technical Information of China (English)

    LIU Yanjie; ZUO Kesheng; YANG Guang; SHANG Zhe; ZHANG Jianbin

    2016-01-01

    A great amount of red mud generated from alumina production by Bayer process was considered as a low-grade iron ore with a grade of 5wt% to 30wt% iron. We adopted the reduction roasting-magnetic separation process to recover ferric oxide from red mud. The red mud samples were processed by reduction roasting, grinding and magnetic separating respectively. The effects of different parameters on the recovery rate of iron were studied in detail. The optimum techqical parameters were proposed with 700℃ roasting for 20 min, as 50wt% carbon and 4wt% additive were added. The experimental results indicated that the iron recovery and the grade of total iron were 91% and 60%, respectively. A novel process is applicable to recover ferric oxide from the red mud waste ifnes.

  12. Influence of process conditions on the separation behaviour of starch-gluten systems

    NARCIS (Netherlands)

    Zalm, van der E.E.J.; Goot, van der A.J.; Boom, R.M.

    2009-01-01

    Separation of wheat flour into its constituents starch and gluten was studied using a cone-cone shearing device, with emphasis on the effect of rotation rate, processing time, temperature and water content. This study confirms the two step mechanism previously proposed for the gluten migration:

  13. Systematic screening methodology and energy efficient design of ionic liquid-based separation processes

    DEFF Research Database (Denmark)

    Kulajanpeng, Kusuma; Suriyapraphadilok, Uthaiporn; Gani, Rafiqul

    2016-01-01

    A systematic methodology for the screening of ionic liquids (ILs) as entrainers and for the design of ILs-based separation processes in various homogeneous binary azeotropic mixtures has been developed. The methodology focuses on the homogeneous binary aqueous azeotropic systems (for example, wat...

  14. Process Intensification. Continuous Two-Phase Catalytic Reactions in a Table-Top Centrifugal Contact Separator

    NARCIS (Netherlands)

    Kraai, Gerard N.; Schuur, Boelo; van Zwol, Floris; Haak, Robert M.; Minnaard, Adriaan J.; Feringa, Ben L.; Heeres, Hero J.; de Vries, Johannes G.; Prunier, ML

    2009-01-01

    Production of fine chemicals is mostly performed in batch reactors. Use of continuous processes has many advantages which may reduce the cost of production. We have developed the use of centrifugal contact separators (CCSs) for continuous two-phase catalytic reactions. This equipment has previously

  15. DMS cyclone separation processes for optimization of plastic wastes recycling and their implications.

    Science.gov (United States)

    Gent, Malcolm Richard; Menendez, Mario; Toraño, Javier; Torno, Susana

    2011-06-01

    It is demonstrated that substantial reductions in plastics presently disposed of in landfills can be achieved by cyclone density media separation (DMS). In comparison with the size fraction of plastics presently processed by industrial density separations (generally 6.4 to 9.5 mm), cyclone DMS methods are demonstrated to effectively process a substantially greater range of particle sizes (from 0.5 up to 120 mm). The purities of plastic products and recoveries obtained with a single stage separation using a cylindrical cyclone are shown to attain virtually 100% purity and recoveries >99% for high-density fractions and >98% purity and recoveries were obtained for low-density products. Four alternative schemas of multi-stage separations are presented and analyzed as proposed methods to obtain total low- and high-density plastics fraction recoveries while maintaining near 100% purities. The results of preliminary tests of two of these show that the potential for processing product purities and recoveries >99.98% of both density fractions are indicated. A preliminary economic comparison of capital costs of DMS systems suggests cyclone DMS methods to be comparable with other DMS processes even if the high volume capacity for recycling operations of these is not optimized.

  16. Substitution into more environmental friendly chemicals - test procedures for a gas/oil/water separation process

    Energy Technology Data Exchange (ETDEWEB)

    Rabe, Karsten

    2006-03-15

    According to commitments regarding zero harmful discharge, the operating companies are to substitute environmental harmful production chemicals into more environmental ones. This contribution discusses the influence foam inhibitors, emulsion breakers and emulsions may have on the separation process and presents tests on some of these compounds. (tk)

  17. Compound Cue Processing within the Fast and Frugal Heuristics Approach in Nonlinearly Separable Environments

    Science.gov (United States)

    Garcia-Retamero, Rocio; Hoffrage, Ulrich; Dieckmann, Anja; Ramos, Manuel

    2007-01-01

    Three experiments investigated whether participants used Take The Best (TTB) Configural, a fast and frugal heuristic that processes configurations of cues when making inferences concerning which of two alternatives has a higher criterion value. Participants were presented with a compound cue that was nonlinearly separable from its elements. The…

  18. Communities with Source Separated Organics Programs, United States, 2015, EPA Region 9

    Data.gov (United States)

    U.S. Environmental Protection Agency — This GIS dataset contains polygon features that represent communities with residential organics collection programs in the United States. EPA used US Census Bureau...

  19. Energy minimization of separation processes using conventional/membrane hybrid systems

    Energy Technology Data Exchange (ETDEWEB)

    Gottschlich, D.E.; Roberts, D.L. (SRI International, Menlo Park, CA (USA))

    1990-09-28

    The purpose of this study was to identify the general principles governing the choice of hybrid separation systems over straight membrane or straight nonmembrane systems and to do so by examining practical applications (process design and economics). Our focus was to examine the energy consumption characteristics and overall cost factors of the membrane and nonmembrane technologies that cause hybrid systems to be preferred over nonhybrid systems. We evaluated four cases studies, chosen on the basis of likelihood of commercial viability of a hybrid system and magnitude of energy savings: (1) propane/propylene separation; (2) removal of nitrogen from natural gas; (3) concentration of Kraft black liquor; and (4)solvent deasphalting. For propane/propylene splitting, the membrane proved to be superior to distillation in both thermodynamic efficiency and processing cost (PC) when the product was 95% pure propylene. However, to produce higher purity products, the membrane alone could not perform the separation, and a membrane/distillation hybrid was required. In these cases, there is an optimum amount of separation to be accomplished by the membrane (expressed as the fraction of the total availability change of the membrane/distillation hybrid that takes place in the membrane and defined as {phi}{sub m}, the thermodynamic extent of separation). Qualitative and quantitative guidelines are discussed with regard to choosing a hybrid system. 54 refs., 66 figs., 36 tabs.

  20. Accelerated space object tracking via graphic processing unit

    Science.gov (United States)

    Jia, Bin; Liu, Kui; Pham, Khanh; Blasch, Erik; Chen, Genshe

    2016-05-01

    In this paper, a hybrid Monte Carlo Gauss mixture Kalman filter is proposed for the continuous orbit estimation problem. Specifically, the graphic processing unit (GPU) aided Monte Carlo method is used to propagate the uncertainty of the estimation when the observation is not available and the Gauss mixture Kalman filter is used to update the estimation when the observation sequences are available. A typical space object tracking problem using the ground radar is used to test the performance of the proposed algorithm. The performance of the proposed algorithm is compared with the popular cubature Kalman filter (CKF). The simulation results show that the ordinary CKF diverges in 5 observation periods. In contrast, the proposed hybrid Monte Carlo Gauss mixture Kalman filter achieves satisfactory performance in all observation periods. In addition, by using the GPU, the computational time is over 100 times less than that using the conventional central processing unit (CPU).

  1. Ising Processing Units: Potential and Challenges for Discrete Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Coffrin, Carleton James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nagarajan, Harsha [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bent, Russell Whitford [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-07-05

    The recent emergence of novel computational devices, such as adiabatic quantum computers, CMOS annealers, and optical parametric oscillators, presents new opportunities for hybrid-optimization algorithms that leverage these kinds of specialized hardware. In this work, we propose the idea of an Ising processing unit as a computational abstraction for these emerging tools. Challenges involved in using and bench- marking these devices are presented, and open-source software tools are proposed to address some of these challenges. The proposed benchmarking tools and methodology are demonstrated by conducting a baseline study of established solution methods to a D-Wave 2X adiabatic quantum computer, one example of a commercially available Ising processing unit.

  2. A calcium oxide sorbent process for bulk separation of carbon dioxide. Quarterly progress report, October--December 1991

    Energy Technology Data Exchange (ETDEWEB)

    Silaban, A.; Narcida, M.; Harrison, D.P.

    1992-02-01

    The expected commercialization of coal gasification technology in the US and world-wide will create a need for advanced gas purification and separation processes capable of operating at higher temperatures and in more hostile environments than is common today. For example, a high-temperature, high-pressure process capable of separating CO{sub 2} from coal-derived gas may find application in purifying synthesis gas for H{sub 2}, NH{sub 3}, or CH{sub 3}OH production. High temperature CO{sub 2} removal has the potential for significantly improving the operating efficiency of integrated gasification-molten carbonate fuel cells for electric power generation. This study proved the technical feasibility of a CO{sub 2}-separation process based upon the regenerable noncatalytic gas-solid reaction between CaO and CO{sub 2} to form CACO{sub 3}. Such a process operating at 650{degree}C and 15 atm with 15% CO{sub 2} in the coal gas has the potential for removing in excess of 99% of the CO{sub 2} fed. Selection of a sorbent precursor which, upon calcination, produces high-porosity CaO is important for achieving rapid and complete reaction. The addition of magnesium to the sorbent appears to improve the multicycle durability at a cost of reduced CO{sub 2} capacity per unit mass of sorbent. Reaction conditions, principally calcination and carbonation temperatures, are important factors in multicycle durability. Reaction pressure and CO{sub 2} concentration are important in so far as the initial rapid reaction rate is concerned, but are relatively unimportant in terms of sorbent capacity and durability. Indirect evidence for the simultaneous occurrence of the shift reaction and CO{sub 2}-removal reaction creates the possibility of a direct one-step process for the production of hydrogen from coal-derived gas.

  3. A Universal Quantum Network Quantum Central Processing Unit

    Institute of Scientific and Technical Information of China (English)

    WANG An-Min

    2001-01-01

    A new construction scheme of a universal quantum network which is compatible with the known quantum gate- assembly schemes is proposed. Our quantum network is standard, easy-assemble, reusable, scalable and even potentially programmable. Moreover, we can construct a whole quantum network to implement the generalquantum algorithm and quantum simulation procedure. In the above senses, it is a realization of the quantum central processing unit.

  4. Accelerating Malware Detection via a Graphics Processing Unit

    Science.gov (United States)

    2010-09-01

    Processing Unit . . . . . . . . . . . . . . . . . . 4 PE Portable Executable . . . . . . . . . . . . . . . . . . . . . 4 COFF Common Object File Format...operating systems for the future [Szo05]. The PE format is an updated version of the common object file format ( COFF ) [Mic06]. Microsoft released a new...pro.mspx, Accessed July 2010, 2001. 79 Mic06. Microsoft. Common object file format ( coff ). MSDN, November 2006. Re- vision 4.1. Mic07a. Microsoft

  5. An Architecture of Deterministic Quantum Central Processing Unit

    OpenAIRE

    Xue, Fei; Chen, Zeng-Bing; Shi, Mingjun; Zhou, Xianyi; Du, Jiangfeng; Han, Rongdian

    2002-01-01

    We present an architecture of QCPU(Quantum Central Processing Unit), based on the discrete quantum gate set, that can be programmed to approximate any n-qubit computation in a deterministic fashion. It can be built efficiently to implement computations with any required accuracy. QCPU makes it possible to implement universal quantum computation with a fixed, general purpose hardware. Thus the complexity of the quantum computation can be put into the software rather than the hardware.

  6. Separation and Purification of Mineral Salts from Spacecraft Wastewater Processing via Electrostatic Beneficiation

    Science.gov (United States)

    Miles, John D., II; Lunn, Griffin

    2013-01-01

    Electrostatic separation is a class of material processing technologies commonly used for the sorting of coarse mixtures by means of electrical forces acting on charged or polarized particles. Most if not all of the existing tribo-electrostatic separators had been initially developed for mineral ores beneficiation. It is a well-known process that has been successfully used to separate coal from minerals. Potash (potassium) enrichment where underground salt mines containing large amounts of sodium is another use of this techno logy. Through modification this technology can be used for spacecraft wastewater brine beneficiation. This will add in closing the gap beeen traveling around Earth's Gravity well and long-term space explorations. Food has been brought on all man missions, which is why plant growth for food crops continues to be of interest to NASA. For long-term mission considerations food productions is one of the top priorities. Nutrient recovery is essential for surviving in or past low earth orbit. In our advance bio-regenerative process instead of nitrogen gas produced; soluble nitrate salts that can be recovered for plant fertilizer would be produced instead. The only part missing is the beneficiation of brine to separate the potassium from the sodium. The use of electrostatic beneficiation in this experiment utilizes the electrical charge differences between aluminum and dried brine by surface contact. The helixes within the aluminum tribocharger allows for more surface contact when being agitated. When two materials are in contact, the material with the highest affinity for electrons becomes negatively charged, while the other becomes positively charged. This contact exchange of charge may cause the particles to agglomerate depending on their residence time within the tribocharger, compromising the efficiency of separation. The aim of this experiment is to further the development in electrostatic beneficiation by optimizing the separation of ersatz and

  7. BitTorrent Processing Unit BPU发展观望

    Institute of Scientific and Technical Information of China (English)

    Zone; 杨原青

    2007-01-01

    在电脑发展的早期,无论是运算处理、还是图形处理、还是输入、输出处理,都由CPU(Central Processing Unit,中央处理器)一力承担,然而随着处理专用化发展,1999年NVIDIA率先将图形处理独立出来,提出了GPU(Graphics Processing unit,绘图处理单元)概念。八年过去,现在GPU已经成为图形处理的中坚力量,并让所玩家耳熟能详。而近期,台湾2家公刊则提出了BPU(BitTorrent Processing Unit,BT处理单元)概念。下面,就让我们一起看看,这款极为新鲜的概念产品。

  8. Anaerobic digestion of pig manure fibres from commercial pig slurry separation units

    DEFF Research Database (Denmark)

    Thygesen, Ole; Triolo, Jin M.; Sommer, Sven G.

    2014-01-01

    The composition of manure fibres (MF) from 17 commercially separated pig slurries and seven raw pig slurries were characterised in terms of dry matter (DM), volatile solids (VS), protein, hemicellulose, cellulose and lignin. The average lignocellulose concentration in manure fibres and pig slurries...

  9. Optimized Laplacian image sharpening algorithm based on graphic processing unit

    Science.gov (United States)

    Ma, Tinghuai; Li, Lu; Ji, Sai; Wang, Xin; Tian, Yuan; Al-Dhelaan, Abdullah; Al-Rodhaan, Mznah

    2014-12-01

    In classical Laplacian image sharpening, all pixels are processed one by one, which leads to large amount of computation. Traditional Laplacian sharpening processed on CPU is considerably time-consuming especially for those large pictures. In this paper, we propose a parallel implementation of Laplacian sharpening based on Compute Unified Device Architecture (CUDA), which is a computing platform of Graphic Processing Units (GPU), and analyze the impact of picture size on performance and the relationship between the processing time of between data transfer time and parallel computing time. Further, according to different features of different memory, an improved scheme of our method is developed, which exploits shared memory in GPU instead of global memory and further increases the efficiency. Experimental results prove that two novel algorithms outperform traditional consequentially method based on OpenCV in the aspect of computing speed.

  10. New Applications of Magnetic Separation Using Superconducting Magnets and Colloid Chemical Processes

    Science.gov (United States)

    Takeda, S.; Yu, S.-J.; Nakahira, A.; Izumi, Y.; Nishijima, S.; Watanabe, T.

    2005-07-01

    High gradient magnetic separation (HGMS) can be a promising new environmental purification technique as it produces no contaminants, such as flocculants, and could possibly treat large amounts of waste water within a short time frame. A colloid chemical process for magnetic seeding can allow us to rapidly recover a large quantity of adsorbate and to strongly magnetize individual particles in order to improve the recovery efficiency of magnetic separation. In this paper, we will report on the fundamental study of the magnetic seeding process and purification processes using HGMS, and also on studies of applications of the water treatment system for actual factories. Emphasized is a report on a system constructed for water treatment from a paper-manufacturing factory.

  11. Phase separation coupled with damage processes analysis of phase field models in elastic media

    CERN Document Server

    Heinemann, Christian

    2014-01-01

    The authors explore a unifying model which couples phase separation and damage processes in a system of partial differential equations. The model has technological applications to solder materials where interactions of both phenomena have been observed and cannot be neglected for a realistic description. The equations are derived in a thermodynamically consistent framework and suitable weak formulations for various types of this coupled system are presented. In the main part, existence of weak solutions is proven and degenerate limits are investigated. Contents Modeling of Phase Separation and Damage Processes Notion of Weak Solutions Existence of Weak Solutions Degenerate Limit Target Groups Researchers, academics and scholars in the field of (applied) mathematics Material scientists in the field of modeling damaging processes The Authors Christian Heinemann earned his doctoral degree at the Humboldt-Universität zu Berlin under the supervision of Prof. Dr. Jürgen Sprekels and Dr. Christiane Kraus. He is a ...

  12. Separation of technetium and rare earth metals for co-decontamination process

    Energy Technology Data Exchange (ETDEWEB)

    Riddle, Catherine; Martin, Leigh

    2015-05-01

    Poster. In the US there are several technologies under consideration for the separation of the useful components in used nuclear fuel. One such process is the co-decontamination process to separate U, Np and Pu in a single step and produce a Np/ Pu and a U product stream. Although the behavior of the actinide elements is reasonably well defined in this system, the same is not true for the fission products, mainly Zr, Mo, Ru and Tc. As these elements are cationic and anionic they may interact with each other to extract in a manner not predicted by empirical models such as AMUSE. This poster presentation will discuss the initial results of batch contact testing under flowsheet conditions and as a function of varying acidity and flowsheet conditions to optimize recovery of Tc and minimize extraction of Mo, Zr and Ru with the goal of developing a better understanding of the behavior of these elements in the co-decontamination process.

  13. Separation-individuation processes of adolescent children of parents with multiple sclerosis.

    Science.gov (United States)

    Yahav, R; Vosburgh, J; Miller, A

    2007-01-01

    The current study examines the implications of responsibility and obligation on separation-individuation processes and the appearance of various symptoms of psychological distress in adolescent children of multiple sclerosis (MS) parents. We examined 56 children, between the ages of 10 and 18 years, each with a parent with MS. The results were compared to a control group of 156 children whose parents were healthy. Children's emotions were examined by means of two questionnaires: Youth Self Report (YSR), and Separation Individuation Test of Adolescence (SITA). It was found that children with a MS-affected parent displayed higher levels of depression and anxiety than children from the control group. Furthermore, children in the study group reported a greater degree of separation anxiety, compared to the control group. We conclude with clinical recommendations for developing therapeutic interventions for adolescents to MS-affected parents, as well as for their ill and healthy parents.

  14. Recovering metals from printed circuit board scrap by a mechanical separation process

    Institute of Scientific and Technical Information of China (English)

    XU Min; LI Guang-ming; HE Wen-zhi; LI Hui

    2008-01-01

    A mechanical separation process was developed for recovering metals from printed circuit board (PCB) scrap; it included three steps: impact crushing, sieving and fluidization separation. The mechanism of the technique was based on the difference in the crushabilities of metallic and nonmetallic materials in the PCBs that led to the concentrated distribution of metals in particles of larger sizes and nonmetals mostly in particles of smaller sizes. It was found that crushed PCB particles from 0.125 mm to 1.000 mm contained about 80% of metals in the PCBs. Metals acquired satisfactory liberation in particles smaller than 0.800 mm. The crushed PCB particles were sieved into fractions of different size ranges. Each fraction separately went through a gas-solid fluidized bed operating at a selected optimal gas velocity for the specific size range. Approximately 95% of metals in printed circuit board particles from 0.125 mm to 0.800 mm was recovered by the gas-fluidized bed separator at the selected optimal gas velocity. However, separation of metals from particles smaller than 0.125 mm was not satisfactory. Further study is needed on metal recovery from fine particles.

  15. Effect of inlet and outlet flow conditions on natural gas parameters in supersonic separation process.

    Directory of Open Access Journals (Sweden)

    Yan Yang

    Full Text Available A supersonic separator has been introduced to remove water vapour from natural gas. The mechanisms of the upstream and downstream influences are not well understood for various flow conditions from the wellhead and the back pipelines. We used a computational model to investigate the effect of the inlet and outlet flow conditions on the supersonic separation process. We found that the shock wave was sensitive to the inlet or back pressure compared to the inlet temperature. The shock position shifted forward with a higher inlet or back pressure. It indicated that an increasing inlet pressure declined the pressure recovery capacity. Furthermore, the shock wave moved out of the diffuser when the ratio of the back pressure to the inlet one was greater than 0.75, in which the state of the low pressure and temperature was destroyed, resulting in the re-evaporation of the condensed liquids. Natural gas would be the subsonic flows in the whole supersonic separator, if the mass flow rate was less than the design value, and it could not reach the low pressure and temperature for the condensation and separation of the water vapor. These results suggested a guidance mechanism for natural gas supersonic separation in various flow conditions.

  16. Conceptual process design of extractive distillation processes for ethylbenzene/styrene separation

    NARCIS (Netherlands)

    Jongmans, Mark; Hermens, E.; Raijmakers, M.; Maassen, J.I.W.; Schuur, Boelo; de Haan, A.B.

    2012-01-01

    In the current styrene production process the distillation of the close-boiling ethylbenzene/styrene mixture to obtain an ethylbenzene impurity level of 100 ppm in styrene accounts for 75–80% of the energy requirements. The future target is to reach a level of 1–10 ppm, which will increase the

  17. Mediation with Families in Separation and Divorce in the United Kingdom: Links with Family Therapy.

    Science.gov (United States)

    Robinson, Margaret

    1988-01-01

    Gives a brief account of recent developments in matrimonial law related to divorce, custody, and visitation to the children of divorcing couples. Discusses the development of mediation, its organizational structure, and its place within the context of the legal system of the United Kingdom. Outlines the principles of conciliation. (Author/ABL)

  18. Process energy efficiency in pervaporation and vacuum membrane distillation separation of 2,3-butanediol

    Energy Technology Data Exchange (ETDEWEB)

    Shao, P.; Kumar, A. [National Research Council Canada (Canada)

    2011-10-15

    2,3- butanediol has not been produced lately as a fermentation product. Recovery of 2,3- butanediol by distillation is a very energy-intensive process, due to its low concentration in fermentation broth and strong hydrogen bonding interaction between water molecules. An initiative for recovery, an integrated process comprising solvent extraction and pervaporation (PV), has been proposed. This paper presents the energy efficiency of the pervaporative and vacuum membrane distillation separation processes of 2,3- butanediol. The mass and energy balance of the pervaporation process are simulated using a numerical model that is presented in this paper. From the study, it was observed that the distribution of the evaporation heat required over the membrane is asymmetric and within 60% of the membrane area, more than 85% of the heat was consumed. It was also discovered that recycling permeate improves the recovery process and enhances the energy efficiency of the process.

  19. Bounds for 2-D angle-of-arrival estimation with separate and joint processing

    Directory of Open Access Journals (Sweden)

    Mailaender Laurence

    2011-01-01

    Full Text Available Abstract Cramer-Rao bounds for one- and two-dimensional angle-of-arrival estimation are reviewed for generalized 3-D array geometries. Assuming an elevated sensor array is used to locate sources on a ground plane, we give a simple procedure for drawing x-y location confidence ellipses from the Cramer-Rao covariance matrix. We modify the ordinary bounds for the case of "separate" 1-D estimates and numerically compare this with the full, joint bound. We prove that "separate" processing is optimal for a Uniform Cross Array with a single source, and that it is not optimal for the L-shaped array. A trade-off emerges between location accuracy and array height: for distant sources, increased height generally reduces error. When more than one source is present, significant gains are obtained from joint processing. We also show useful gains for distant sources by adding out-of-plane sensors in an "L + z" configuration with joint processing. These comparisons can aid system designers in deciding between separate and joint processing approaches.

  20. Formation of asymmetrical structured silica controlled by a phase separation process and implication for biosilicification.

    Directory of Open Access Journals (Sweden)

    Jia-Yuan Shi

    Full Text Available Biogenetic silica displays intricate patterns assembling from nano- to microsize level and interesting non-spherical structures differentiating in specific directions. Several model systems have been proposed to explain the formation of biosilica nanostructures. Of them, phase separation based on the physicochemical properties of organic amines was considered to be responsible for the pattern formation of biosilica. In this paper, using tetraethyl orthosilicate (TEOS, Si(OCH2CH34 as silica precursor, phospholipid (PL and dodecylamine (DA were introduced to initiate phase separation of organic components and influence silica precipitation. Morphology, structure and composition of the mineralized products were characterized using a range of techniques including field emission scanning electron microscopy (FESEM, transmission electron microscope (TEM, X-ray diffraction (XRD, thermogravimetric and differential thermal analysis (TG-DTA, infrared spectra (IR, and nitrogen physisorption. The results demonstrate that the phase separation process of the organic components leads to the formation of asymmetrically non-spherical silica structures, and the aspect ratios of the asymmetrical structures can be well controlled by varying the concentration of PL and DA. On the basis of the time-dependent experiments, a tentative mechanism is also proposed to illustrate the asymmetrical morphogenesis. Therefore, our results imply that in addition to explaining the hierarchical porous nanopatterning of biosilica, the phase separation process may also be responsible for the growth differentiation of siliceous structures in specific directions. Because organic amine (e.g., long-chair polyamines, phospholipids (e.g., silicalemma and the phase separation process are associated with the biosilicification of diatoms, our results may provide a new insight into the mechanism of biosilicification.

  1. Modeling Units of Assessment for Sharing Assessment Process Information: towards an Assessment Process Specification

    NARCIS (Netherlands)

    Miao, Yongwu; Sloep, Peter; Koper, Rob

    2008-01-01

    Miao, Y., Sloep, P. B., & Koper, R. (2008). Modeling Units of Assessment for Sharing Assessment Process Information: towards an Assessment Process Specification. In F. W. B. Li, J. Zhao, T. K. Shih, R. W. H. Lau, Q. Li & D. McLeod (Eds.), Advances in Web Based Learning - Proceedings of the 7th

  2. A Novel Strategy for Simulating the Main Fractionator of Delayed Cokers by Separating the De-superheating Process

    Institute of Scientific and Technical Information of China (English)

    LEI Yang; ZHANG Bingjian; HOU Xiaoqiong; CHEN Qinglin

    2013-01-01

    Delayed coking is an important process in refinery to convert heavy residue oils from crude distillation units (CDUs) and fluid catalytic cracking units (FCCUs) into dry gas,liquefied petroleum gas (LPG),gasoline,diesel,gas oils and cokes.The main fractionator,separating superheating reaction vapors from the coke drums into lighter oil products,involves a de-superheating section and a rectifying section,and couldn't be simulated as a whole column directly because of non-equilibrium in the de-superheating section.It is very important to correctly simulate the main fractionator for operational parameter and energy-use optimization of delayed cokers.This paper discusses the principle of de-superheating processes,and then proposes a new simulation strategy.Some key issues such as composition prediction of the reaction vapors,selection of thermodynamic methods,estimation of tray efficiency,etc.are discussed.The proposed simulation approach is applied to two industrial delayed cokers with typical technological processes in a Chinese refinery by using PRO/II.The simulation results obtained are well consistent with the actual operation data,which indicates that the presented approach is suitable to simulate the main fractionators of delayed cokers or other distillation columns consisting of de-superheating sections and rectifying sections.

  3. Conversion of a deasphalting unit for use in the process of supercritical solvent recovery

    Directory of Open Access Journals (Sweden)

    Waintraub S.

    2000-01-01

    Full Text Available In order to reduce energy consumption and to increase deasphalted oil yield, an old PETROBRAS deasphalting unit was converted for use in the process of supercritical solvent recovery. In-plant and pilot tests were performed to determine the ideal solvent-to-oil ratio. The optimum conditions for separation of the supercritical solvent from the solvent-plus-oil liquid mixture were determined by experimental tests in PVT cells. These tests also allowed measurement of the dew and bubble points, determination of the retrograde region, observation of supercritical fluid compressibility and as a result construction of a phase equilibrium diagram.

  4. Fast calculation of HELAS amplitudes using graphics processing unit (GPU)

    CERN Document Server

    Hagiwara, K; Okamura, N; Rainwater, D L; Stelzer, T

    2009-01-01

    We use the graphics processing unit (GPU) for fast calculations of helicity amplitudes of physics processes. As our first attempt, we compute $u\\overline{u}\\to n\\gamma$ ($n=2$ to 8) processes in $pp$ collisions at $\\sqrt{s} = 14$TeV by transferring the MadGraph generated HELAS amplitudes (FORTRAN) into newly developed HEGET ({\\bf H}ELAS {\\bf E}valuation with {\\bf G}PU {\\bf E}nhanced {\\bf T}echnology) codes written in CUDA, a C-platform developed by NVIDIA for general purpose computing on the GPU. Compared with the usual CPU programs, we obtain 40-150 times better performance on the GPU.

  5. Simulation of a Wet Sulfuric Acid Process (WSA for Utilization of Acid Gas Separated from Omani Natural Gas

    Directory of Open Access Journals (Sweden)

    Ahmed Jawad Ali Al-Dallal

    2013-06-01

    Full Text Available In this study, a proposed process for the utilization of hydrogen sulphide separated with other gases from omani natural gas for the production of sulphuric acid by wet sulphuric acid process (WSA was studied. The processwas simulated at an acid gas feed flow of 5000 m3/hr using Aspen ONE- V7.1-HYSYS software. A sensitivity analysis was conducted to determine the optimum conditions for the operation of plant. This included primarily the threepacked bed reactors connected in series for the production of sulphur trioxidewhich represented the bottleneck of the process. The optimum feed temperature and catalyst bed volume for each reactor were estimated and then used in the simulation of the whole process for two cases namely 4 and 6 mole% SO2 stream fed to the first catalytic reactor. The 4mole% SO2 gaves the highest conversion (98% compared with 6 mole% SO2 (94.7%. A valuable quantity of heat was generated from the process. This excess heat could also be transformed into power in a turbine or used as a heating media in neighbouring process units.

  6. Modeling and simulation of membrane separation process using computational fluid dynamics

    Directory of Open Access Journals (Sweden)

    Kambiz Tahvildari

    2016-01-01

    Full Text Available Separation of CO2 from air was simulated in this work. The considered process for removal of CO2 was a hollow-fiber membrane contactor and an aqueous solution of 2-amino-2-metyl-1-propanol (AMP as absorbent. The model was developed based on mass transfer as well as chemical reaction for CO2 and solvent in the contactor. The equations of model were solved using finite element method. Simulation results were compared with experimental data, and good agreement was observed. The results revealed that increasing solvent velocity enhances removal of CO2 in the hollow-fiber membrane contactor. Moreover, it was found that counter-current process mode is more favorable to achieve the highest separation efficiency.

  7. Process to separate alkali metal salts from alkali metal reacted hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, John Howard; Alvare, Javier; Larsen, Dennis; Killpack, Jeff

    2017-06-27

    A process to facilitate gravimetric separation of alkali metal salts, such as alkali metal sulfides and polysulfides, from alkali metal reacted hydrocarbons. The disclosed process is part of a method of upgrading a hydrocarbon feedstock by removing heteroatoms and/or one or more heavy metals from the hydrocarbon feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase containing alkali metal salts and reduced heavy metals, and an upgraded hydrocarbon feedstock. The inorganic phase may be gravimetrically separated from the upgraded hydrocarbon feedstock after mixing at a temperature between about 350.degree. C. to 400.degree. C. for a time period between about 15 minutes and 2 hours.

  8. Zeolite Membranes in Catalysis—From Separate Units to Particle Coatings

    Directory of Open Access Journals (Sweden)

    Radostina Dragomirova

    2015-12-01

    Full Text Available Literature on zeolite membranes in catalytic reactions is reviewed and categorized according to membrane location. From this perspective, the classification is as follows: (i membranes spatially decoupled from the reaction zone; (ii packed bed membrane reactors; (iii catalytic membrane reactors and (iv zeolite capsuled catalyst particles. Each of the resulting four chapters is subdivided by the kind of reactions performed. Over the whole sum of references, the advantage of zeolite membranes in catalytic reactions in terms of conversion, selectivity or yield is evident. Furthermore, zeolite membrane preparation, separation principles as well as basic considerations on membrane reactors are discussed.

  9. The rise of divorce and separation in the United States, 1880-1990.

    Science.gov (United States)

    Ruggles, S

    1997-11-01

    I use the Integrated Public Use Microdata Series to assess the potential effects of local labor-market conditions on long-term trends and race differences in marital instability. The rise of female labor-force participation and the increase in nonfarm employment are closely associated with the growth of divorce and separation. Moreover, higher female labor-force participation among black women and lower economic opportunities for black men may account for race differences in marital instability before 1940, and for most of such differences in subsequent years. However, unmeasured intervening cultural factors are probably responsible for at least part of these effects.

  10. Product- and Process Units in the CRITT Translation Process Research Database

    DEFF Research Database (Denmark)

    Carl, Michael

    The first version of the "Translation Process Research Database" (TPR DB v1.0) was released In August 2012, containing logging data of more than 400 translation and text production sessions. The current version of the TPR DB, (v1.4), contains data from more than 940 sessions, which represents more...... than 300 hours of text production. The database provides the raw logging data, as well as Tables of pre-processed product- and processing units. The TPR-DB includes various types of simple and composed product and process units that are intended to support the analysis and modelling of human text...... reception, production, and translation processes. In this talk I describe some of the functions and features of the TPR-DB v1.4, and how they can be deployed in empirical human translation process research....

  11. Separation of mercury in industrial processes of Polish hard steam coals cleaning

    OpenAIRE

    Wierzchowski Krzysztof; Pyka Ireneusz

    2016-01-01

    Coal use is regarded as one of main sources of anthropogenic propagation of mercury in the environment. The coal cleaning is listed among methods of the mercury emission reduction. The article concerns the statistical assessment of mercury separation between coal cleaning products. Two industrial processes employed in the Polish coal preparation plants are analysed: coal cleaning in heavy media vessels and coal cleaning in jigs. It was found that the arithmetic mean mercury content in coarse ...

  12. Influence of Thermal Processes on the Efficiency of the Energy Separation in a Ranque Vortex Tube

    Science.gov (United States)

    Tyutyuma, V. D.

    2016-11-01

    On the basis of the model of a plane swirling flow in a Ranque vortex tube, in which this flow is represented in the form of a vortex consisting of a vortex flow at the periphery and a forced vortex in the central part, a theoretical analysis of the influence of the thermal processes in this tube on the efficiency of the energy separation in the vortex in it has been performed. The results of calculations were compared with experimental data.

  13. Dynamical theory of primary processes of charge separation in the photosynthetic reaction center.

    Science.gov (United States)

    Lakhno, Victor D

    2005-05-01

    A dynamical theory has been developed for primary separation of charges in the course of photosynthesis. The theory deals with both hopping and superexchange transfer mechanisms. Dynamics of electron transfer from dimeric bacteriochlorophyll to quinone has been calculated. The results obtained agree with experimental data and provide a unified explanation of both the hierarchy of the transfer time in the photosynthetic reaction center and the phenomenon of coherent oscillations accompanying the transfer process.

  14. Intensification of heat and mass transfer by ultrasound: application to heat exchangers and membrane separation processes.

    Science.gov (United States)

    Gondrexon, N; Cheze, L; Jin, Y; Legay, M; Tissot, Q; Hengl, N; Baup, S; Boldo, P; Pignon, F; Talansier, E

    2015-07-01

    This paper aims to illustrate the interest of ultrasound technology as an efficient technique for both heat and mass transfer intensification. It is demonstrated that the use of ultrasound results in an increase of heat exchanger performances and in a possible fouling monitoring in heat exchangers. Mass transfer intensification was observed in the case of cross-flow ultrafiltration. It is shown that the enhancement of the membrane separation process strongly depends on the physico-chemical properties of the filtered suspensions.

  15. Minor actinide separation: simplification of the DIAMEX-SANEX strategy by means of novel SANEX processes

    Energy Technology Data Exchange (ETDEWEB)

    Geist, A. [Karlsruher Institut fuer Technologie - KIT, INE, P. O. Box 3640, 76021 Karlsruhe (Germany); Modolo, G.; Wilden, A.; Kaufholz, P. [Forschungszentrum Juelich GmbH, IEK-6, Juelich (Germany)

    2013-07-01

    The separation of An(III) from PUREX raffinate has previously been demonstrated by applying a DIAMEX process (i.e., co-extraction of An(III) and Ln(III) from HAR) followed by a SANEX process (i.e., selective extraction of An(III) from the DIAMEX product containing An(III) + Ln(III)). In line with process intensification issues, more compact processes have been developed: Recently, a 1c-SANEX process test was successfully performed, directly extracting An(III) from PUREX HAR. More recently, a new i-SANEX process was successfully tested. This process is based on the co-extraction of An(III) + Ln(III) into a TODGA solvent, followed by a selective back-extraction of An(III) by a water soluble complexing agent, in this case SO{sub 3}-Ph-BTP. In both cases, good recoveries were achieved, and very pure product solutions were obtained. However, both 1c-SANEX and i-SANEX used non-CHON chemicals. Nevertheless, these processes are a simplification to the DIAMEX + SANEX process as only one solvent is used. Finally, the new i-SANEX process is the most compact process. (authors)

  16. Experimental and modelling studies on continuous synthesis and refining of biodiesel in a dedicated bench scale unit using centrifugal contactor separator technology

    NARCIS (Netherlands)

    Abduh, Muhammad Yusuf; Martinez, Alberto Fernandez; Kloekhorst, Arjan; Manurung, Robert; Heeres, Hero J.

    2016-01-01

    Continuous synthesis and refining of biodiesel (FAME) using a laboratory scale bench scale unit was explored. The unit consists of three major parts: (i) a continuous centrifugal contactor separator (CCCS) to perform the reaction between sunflower oil and methanol; (ii) a washing unit for the crude

  17. Use of general purpose graphics processing units with MODFLOW.

    Science.gov (United States)

    Hughes, Joseph D; White, Jeremy T

    2013-01-01

    To evaluate the use of general-purpose graphics processing units (GPGPUs) to improve the performance of MODFLOW, an unstructured preconditioned conjugate gradient (UPCG) solver has been developed. The UPCG solver uses a compressed sparse row storage scheme and includes Jacobi, zero fill-in incomplete, and modified-incomplete lower-upper (LU) factorization, and generalized least-squares polynomial preconditioners. The UPCG solver also includes options for sequential and parallel solution on the central processing unit (CPU) using OpenMP. For simulations utilizing the GPGPU, all basic linear algebra operations are performed on the GPGPU; memory copies between the central processing unit CPU and GPCPU occur prior to the first iteration of the UPCG solver and after satisfying head and flow criteria or exceeding a maximum number of iterations. The efficiency of the UPCG solver for GPGPU and CPU solutions is benchmarked using simulations of a synthetic, heterogeneous unconfined aquifer with tens of thousands to millions of active grid cells. Testing indicates GPGPU speedups on the order of 2 to 8, relative to the standard MODFLOW preconditioned conjugate gradient (PCG) solver, can be achieved when (1) memory copies between the CPU and GPGPU are optimized, (2) the percentage of time performing memory copies between the CPU and GPGPU is small relative to the calculation time, (3) high-performance GPGPU cards are utilized, and (4) CPU-GPGPU combinations are used to execute sequential operations that are difficult to parallelize. Furthermore, UPCG solver testing indicates GPGPU speedups exceed parallel CPU speedups achieved using OpenMP on multicore CPUs for preconditioners that can be easily parallelized. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  18. Fast analytical scatter estimation using graphics processing units.

    Science.gov (United States)

    Ingleby, Harry; Lippuner, Jonas; Rickey, Daniel W; Li, Yue; Elbakri, Idris

    2015-01-01

    To develop a fast patient-specific analytical estimator of first-order Compton and Rayleigh scatter in cone-beam computed tomography, implemented using graphics processing units. The authors developed an analytical estimator for first-order Compton and Rayleigh scatter in a cone-beam computed tomography geometry. The estimator was coded using NVIDIA's CUDA environment for execution on an NVIDIA graphics processing unit. Performance of the analytical estimator was validated by comparison with high-count Monte Carlo simulations for two different numerical phantoms. Monoenergetic analytical simulations were compared with monoenergetic and polyenergetic Monte Carlo simulations. Analytical and Monte Carlo scatter estimates were compared both qualitatively, from visual inspection of images and profiles, and quantitatively, using a scaled root-mean-square difference metric. Reconstruction of simulated cone-beam projection data of an anthropomorphic breast phantom illustrated the potential of this method as a component of a scatter correction algorithm. The monoenergetic analytical and Monte Carlo scatter estimates showed very good agreement. The monoenergetic analytical estimates showed good agreement for Compton single scatter and reasonable agreement for Rayleigh single scatter when compared with polyenergetic Monte Carlo estimates. For a voxelized phantom with dimensions 128 × 128 × 128 voxels and a detector with 256 × 256 pixels, the analytical estimator required 669 seconds for a single projection, using a single NVIDIA 9800 GX2 video card. Accounting for first order scatter in cone-beam image reconstruction improves the contrast to noise ratio of the reconstructed images. The analytical scatter estimator, implemented using graphics processing units, provides rapid and accurate estimates of single scatter and with further acceleration and a method to account for multiple scatter may be useful for practical scatter correction schemes.

  19. Congestion estimation technique in the optical network unit registration process.

    Science.gov (United States)

    Kim, Geunyong; Yoo, Hark; Lee, Dongsoo; Kim, Youngsun; Lim, Hyuk

    2016-07-01

    We present a congestion estimation technique (CET) to estimate the optical network unit (ONU) registration success ratio for the ONU registration process in passive optical networks. An optical line terminal (OLT) estimates the number of collided ONUs via the proposed scheme during the serial number state. The OLT can obtain congestion level among ONUs to be registered such that this information may be exploited to change the size of a quiet window to decrease the collision probability. We verified the efficiency of the proposed method through simulation and experimental results.

  20. Heterogeneous Multicore Parallel Programming for Graphics Processing Units

    Directory of Open Access Journals (Sweden)

    Francois Bodin

    2009-01-01

    Full Text Available Hybrid parallel multicore architectures based on graphics processing units (GPUs can provide tremendous computing power. Current NVIDIA and AMD Graphics Product Group hardware display a peak performance of hundreds of gigaflops. However, exploiting GPUs from existing applications is a difficult task that requires non-portable rewriting of the code. In this paper, we present HMPP, a Heterogeneous Multicore Parallel Programming workbench with compilers, developed by CAPS entreprise, that allows the integration of heterogeneous hardware accelerators in a unintrusive manner while preserving the legacy code.

  1. Porting a Hall MHD Code to a Graphic Processing Unit

    Science.gov (United States)

    Dorelli, John C.

    2011-01-01

    We present our experience porting a Hall MHD code to a Graphics Processing Unit (GPU). The code is a 2nd order accurate MUSCL-Hancock scheme which makes use of an HLL Riemann solver to compute numerical fluxes and second-order finite differences to compute the Hall contribution to the electric field. The divergence of the magnetic field is controlled with Dedner?s hyperbolic divergence cleaning method. Preliminary benchmark tests indicate a speedup (relative to a single Nehalem core) of 58x for a double precision calculation. We discuss scaling issues which arise when distributing work across multiple GPUs in a CPU-GPU cluster.

  2. Line-by-line spectroscopic simulations on graphics processing units

    Science.gov (United States)

    Collange, Sylvain; Daumas, Marc; Defour, David

    2008-01-01

    We report here on software that performs line-by-line spectroscopic simulations on gases. Elaborate models (such as narrow band and correlated-K) are accurate and efficient for bands where various components are not simultaneously and significantly active. Line-by-line is probably the most accurate model in the infrared for blends of gases that contain high proportions of H 2O and CO 2 as this was the case for our prototype simulation. Our implementation on graphics processing units sustains a speedup close to 330 on computation-intensive tasks and 12 on memory intensive tasks compared to implementations on one core of high-end processors. This speedup is due to data parallelism, efficient memory access for specific patterns and some dedicated hardware operators only available in graphics processing units. It is obtained leaving most of processor resources available and it would scale linearly with the number of graphics processing units in parallel machines. Line-by-line simulation coupled with simulation of fluid dynamics was long believed to be economically intractable but our work shows that it could be done with some affordable additional resources compared to what is necessary to perform simulations on fluid dynamics alone. Program summaryProgram title: GPU4RE Catalogue identifier: ADZY_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZY_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 62 776 No. of bytes in distributed program, including test data, etc.: 1 513 247 Distribution format: tar.gz Programming language: C++ Computer: x86 PC Operating system: Linux, Microsoft Windows. Compilation requires either gcc/g++ under Linux or Visual C++ 2003/2005 and Cygwin under Windows. It has been tested using gcc 4.1.2 under Ubuntu Linux 7.04 and using Visual C

  3. Exergy Analysis for Air Separation Unit%空分装置有效能分析研究

    Institute of Scientific and Technical Information of China (English)

    姚力; 童莉葛; 谢云飞; 沈鉴彪; 李化治; 李士琦

    2013-01-01

    An exergy analysis is performed to analyse the possibilities of fuel saving in the cryogenic distillation process, which is the main method of air separation unit (ASU). The product exergy analysis for an actual 40000 Nm3/h ASU of Tangshan TangSteel Gases Corporation Limited is evaluated with the developed exergy analysis of ASU (EAASU) system. The process exergy efficiency under design operation of the ASU is 45.25%. The calculation result shows, the molar exergy contained in oxygen is the largest among all gaseous products, liquid argon contains the largest molar exergy among all liquid products, and liquid products get larger exergy value than the gaseous in the same product. In a same environmental condition and with equivalent air feed mass flow, the process would be more efficient on the rated load of expander by improving output of liquid production, especially improving output of liquid Argon. Reference to design conditions of ASU, the process exergy efficiency under different product combination based on EAASU system was also analyzed. When output of liquid production increased by 9% of design operation, the process exergy efficiency would be improved by 0.65% at least. When output of gas oxygen production increased by 10% of design operation, the process exergy efficiency can be improved by 1.56%.%(佣)分析方法是低温法精馏过程分析,也是空气分离过程节能分析的主要方法.本文使用空分有效能分析(EAASU)系统对唐钢气体公司的40000m3/h(标准)空分装置进行了分析,其设计工况的流程效率为45.25%.分析结果表明,气态产品中氧的摩尔(佣)最大,液态产品中氩的摩尔(佣)最大;同种产品中液态摩尔(佣)大于气态摩尔(拥).在相同环境条件和加工空气量的情况下,增加液态产品的产量,尤其是液氩的产量,可以提高空分装置的流程效率.以设计工况作为参照,基于EAASU软件进一步分析了不同产量的流程(拥)效

  4. Active microchannel fluid processing unit and method of making

    Science.gov (United States)

    Bennett, Wendy D [Kennewick, WA; Martin, Peter M [Kennewick, WA; Matson, Dean W [Kennewick, WA; Roberts, Gary L [West Richland, WA; Stewart, Donald C [Richland, WA; Tonkovich, Annalee Y [Pasco, WA; Zilka, Jennifer L [Pasco, WA; Schmitt, Stephen C [Dublin, OH; Werner, Timothy M [Columbus, OH

    2001-01-01

    The present invention is an active microchannel fluid processing unit and method of making, both relying on having (a) at least one inner thin sheet; (b) at least one outer thin sheet; (c) defining at least one first sub-assembly for performing at least one first unit operation by stacking a first of the at least one inner thin sheet in alternating contact with a first of the at least one outer thin sheet into a first stack and placing an end block on the at least one inner thin sheet, the at least one first sub-assembly having at least a first inlet and a first outlet; and (d) defining at least one second sub-assembly for performing at least one second unit operation either as a second flow path within the first stack or by stacking a second of the at least one inner thin sheet in alternating contact with second of the at least one outer thin sheet as a second stack, the at least one second sub-assembly having at least a second inlet and a second outlet.

  5. Process bases and specifications thorium---U-233 separations at the Purex Plant

    Energy Technology Data Exchange (ETDEWEB)

    Nielson, S.M.

    1965-07-26

    The Purex Plant was originally designed for the chemical processing of irradiated natural uranium. It has been used nearly exclusively for this purpose during its approximately ten-year operating lifetime. However, during the winter of 1964--1965, a special processing campaign was planned and accomplished in which approximately 6 tons of irradiated thoria targets were introduced to the plant, and the thorium-232 and uranium-233 were successfully separated and purified on a demonstration basis. For the demonstration thorium processing operation (6-ton test) of the winter of 1964--1965, process specifications were issued. These specifications were necessarily specific to the particular campaign inasmuch as a rather unusual processing scheme was required, by virtue of the small tonnage involved and the equipment limitations of the plant. Thus, for the relatively large operation subsequently planned, other process specifications are required. The purpose of this present document is to provide these specifications. Depending on the manner and extent of thorium -- uranium-233 production developments, these present specifications may have future application, at least in part. In addition to the process specifications, this document includes a section describing the flowsheet, and a section in which the technological bases for good process control are presented. In conjunction with the specifications, these sections are intended to provide the bases for the processing operations required to accomplish the processing objectives in a safe manner, and with minimum effect on equipment service life. All sections are organized in a manner to provide for relatively simple additions or revisions.

  6. Seismic evidence for whole lithosphere separation between Saxothuringian and Moldanubian tectonic units in central Europe

    OpenAIRE

    Heuer, B.; Horst Kämpf; Rainer Kind; W. H. Geissler

    2007-01-01

    The Bohemian Massif is part of the Variscan belt of central Europe. We carried out a high resolution mapping of lithospheric thickness beneath central Europe by investigating 264 teleseismic events recorded at 80 broad band stations in the western Bohemian Massif with the method of S receiver function analysis. A negative phase beneath the Saxothuringian and north-eastern Teplá-Barrandian units at about 9-10 s before the S onset is interpreted as caused by the lithosphere-asthenosphere bounda...

  7. Insights into collaborative separation process of photogenerated charges and superior performance of solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiangyang, E-mail: lxy081276@126.com; Wang, Shun; Zheng, Haiwu; Gu, Yuzong [Institute of Microsystems Physics and School of Physics and Electronics, Henan University, Kaifeng 475004 (China)

    2016-07-25

    ZnO nanowires/Cu{sub 4}Bi{sub 4}S{sub 9} (ZnO/CBS) and ZnO nanowires/CBS-graphene nanoplates (ZnO/CBS-GNs), as well as two types of solar cells were prepared. The photovoltaic responses of CBS-GNs and ZnO/CBS-GNs can be improved with incorporation of GNs. The transient surface photovoltage (TPV) can provide detailed information on the separation and transport of photogenerated carriers. The multichannel separation process from the TPVs indicates that the macro-photoelectric signals can be attributed to the photogenerated charges separated at the interface of CBS/GNs, rather than CBS/ZnO. The multi-interfacial recombination is the major carrier loss, and the hole selective p-V{sub 2}O{sub 5} can efficiently accelerate the charge extraction to the external circuit. The ZnO/CBS-GNs cell exhibits the superior performance, and the highest efficiency is 10.9%. With the adequate interfaces of CBS/GNs, GNs conductive network, energy level matching, etc., the excitons can easily diffuse to the interface of CBS/GNs, and the separated electrons and holes can be collected quickly, inducing the high photoelectric properties. Here, a facile strategy for solid state solar cells with superior performance presents a potential application.

  8. Insights into collaborative separation process of photogenerated charges and superior performance of solar cells

    Science.gov (United States)

    Liu, Xiangyang; Wang, Shun; Zheng, Haiwu; Gu, Yuzong

    2016-07-01

    ZnO nanowires/Cu4Bi4S9 (ZnO/CBS) and ZnO nanowires/CBS-graphene nanoplates (ZnO/CBS-GNs), as well as two types of solar cells were prepared. The photovoltaic responses of CBS-GNs and ZnO/CBS-GNs can be improved with incorporation of GNs. The transient surface photovoltage (TPV) can provide detailed information on the separation and transport of photogenerated carriers. The multichannel separation process from the TPVs indicates that the macro-photoelectric signals can be attributed to the photogenerated charges separated at the interface of CBS/GNs, rather than CBS/ZnO. The multi-interfacial recombination is the major carrier loss, and the hole selective p-V2O5 can efficiently accelerate the charge extraction to the external circuit. The ZnO/CBS-GNs cell exhibits the superior performance, and the highest efficiency is 10.9%. With the adequate interfaces of CBS/GNs, GNs conductive network, energy level matching, etc., the excitons can easily diffuse to the interface of CBS/GNs, and the separated electrons and holes can be collected quickly, inducing the high photoelectric properties. Here, a facile strategy for solid state solar cells with superior performance presents a potential application.

  9. Accelerating Radio Astronomy Cross-Correlation with Graphics Processing Units

    CERN Document Server

    Clark, M A; Greenhill, L J

    2011-01-01

    We present a highly parallel implementation of the cross-correlation of time-series data using graphics processing units (GPUs), which is scalable to hundreds of independent inputs and suitable for the processing of signals from "Large-N" arrays of many radio antennas. The computational part of the algorithm, the X-engine, is implementated efficiently on Nvidia's Fermi architecture, sustaining up to 79% of the peak single precision floating-point throughput. We compare performance obtained for hardware- and software-managed caches, observing significantly better performance for the latter. The high performance reported involves use of a multi-level data tiling strategy in memory and use of a pipelined algorithm with simultaneous computation and transfer of data from host to device memory. The speed of code development, flexibility, and low cost of the GPU implementations compared to ASIC and FPGA implementations have the potential to greatly shorten the cycle of correlator development and deployment, for case...

  10. Significantly reducing registration time in IGRT using graphics processing units

    DEFF Research Database (Denmark)

    Noe, Karsten Østergaard; Denis de Senneville, Baudouin; Tanderup, Kari

    2008-01-01

    Purpose/Objective For online IGRT, rapid image processing is needed. Fast parallel computations using graphics processing units (GPUs) have recently been made more accessible through general purpose programming interfaces. We present a GPU implementation of the Horn and Schunck method...... respiration phases in a free breathing volunteer and 41 anatomical landmark points in each image series. The registration method used is a multi-resolution GPU implementation of the 3D Horn and Schunck algorithm. It is based on the CUDA framework from Nvidia. Results On an Intel Core 2 CPU at 2.4GHz each...... registration took 30 minutes. On an Nvidia Geforce 8800GTX GPU in the same machine this registration took 37 seconds, making the GPU version 48.7 times faster. The nine image series of different respiration phases were registered to the same reference image (full inhale). Accuracy was evaluated on landmark...

  11. Fast free-form deformation using graphics processing units.

    Science.gov (United States)

    Modat, Marc; Ridgway, Gerard R; Taylor, Zeike A; Lehmann, Manja; Barnes, Josephine; Hawkes, David J; Fox, Nick C; Ourselin, Sébastien

    2010-06-01

    A large number of algorithms have been developed to perform non-rigid registration and it is a tool commonly used in medical image analysis. The free-form deformation algorithm is a well-established technique, but is extremely time consuming. In this paper we present a parallel-friendly formulation of the algorithm suitable for graphics processing unit execution. Using our approach we perform registration of T1-weighted MR images in less than 1 min and show the same level of accuracy as a classical serial implementation when performing segmentation propagation. This technology could be of significant utility in time-critical applications such as image-guided interventions, or in the processing of large data sets. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  12. Conceptual Design for the Pilot-Scale Plutonium Oxide Processing Unit in the Radiochemical Processing Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Lumetta, Gregg J.; Meier, David E.; Tingey, Joel M.; Casella, Amanda J.; Delegard, Calvin H.; Edwards, Matthew K.; Jones, Susan A.; Rapko, Brian M.

    2014-08-05

    This report describes a conceptual design for a pilot-scale capability to produce plutonium oxide for use as exercise and reference materials, and for use in identifying and validating nuclear forensics signatures associated with plutonium production. This capability is referred to as the Pilot-scale Plutonium oxide Processing Unit (P3U), and it will be located in the Radiochemical Processing Laboratory at the Pacific Northwest National Laboratory. The key unit operations are described, including plutonium dioxide (PuO2) dissolution, purification of the Pu by ion exchange, precipitation, and conversion to oxide by calcination.

  13. Field Demonstration of a Membrane Process to Separate Nitrogen from Natural Gas: Nineteenth Quarterly Progress Report (Second Quarter 2006)

    Energy Technology Data Exchange (ETDEWEB)

    Kaaeid Lokhandwala

    2006-06-30

    The original proposal described the construction and operation of a 1 MMscfd treatment system to be operated at a Butcher Energy gas field in Ohio. The gas produced at this field contained 17% nitrogen. During pre-commissioning of the project, a series of well tests showed that the amount of gas in the field was significantly smaller than expected and that the nitrogen content of the wells was very high (25 to 30%). After evaluating the revised cost of the project, Butcher Energy decided that the plant would not be economical and withdrew from the project. Since that time, Membrane Technology and Research, Inc. (MTR) signed a marketing and sales partnership with ABB Lummus Global, a large multinational corporation, and is working with the company's Randall Gas Technology group, a supplier of equipment and processing technology to the natural gas industry. Randall's engineering group found a new site for the project at a North Texas Exploration (NTE) gas processing plant, and we continue, but have as yet been unsuccessful in our attempts, to negotiate with Atmos Energy for a final test of the project demonstration unit. In the meantime, MTR has located an alternative testing opportunity and signed a contract for a demonstration plant in Rio Vista, CA. Several commercial sales have resulted from the partnership with ABB, and total sales of nitrogen/natural gas membrane separation units are now approaching $2.6 million.

  14. Exploiting graphics processing units for computational biology and bioinformatics.

    Science.gov (United States)

    Payne, Joshua L; Sinnott-Armstrong, Nicholas A; Moore, Jason H

    2010-09-01

    Advances in the video gaming industry have led to the production of low-cost, high-performance graphics processing units (GPUs) that possess more memory bandwidth and computational capability than central processing units (CPUs), the standard workhorses of scientific computing. With the recent release of generalpurpose GPUs and NVIDIA's GPU programming language, CUDA, graphics engines are being adopted widely in scientific computing applications, particularly in the fields of computational biology and bioinformatics. The goal of this article is to concisely present an introduction to GPU hardware and programming, aimed at the computational biologist or bioinformaticist. To this end, we discuss the primary differences between GPU and CPU architecture, introduce the basics of the CUDA programming language, and discuss important CUDA programming practices, such as the proper use of coalesced reads, data types, and memory hierarchies. We highlight each of these topics in the context of computing the all-pairs distance between instances in a dataset, a common procedure in numerous disciplines of scientific computing. We conclude with a runtime analysis of the GPU and CPU implementations of the all-pairs distance calculation. We show our final GPU implementation to outperform the CPU implementation by a factor of 1700.

  15. The First Prototype for the FastTracker Processing Unit

    CERN Document Server

    Andreani, A; The ATLAS collaboration; Beretta, M; Bogdan, M; Citterio, M; Alberti, F; Giannetti, P; Lanza, A; Magalotti, D; Piendibene, M; Shochet, M; Stabile, A; Tang, J; Tompkins, L

    2012-01-01

    Modern experiments search for extremely rare processes hidden in much larger background levels. As the experiment complexity and the accelerator backgrounds and luminosity increase we need increasingly complex and exclusive selections. We present the first prototype of a new Processing Unit, the core of the FastTracker processor for Atlas, whose computing power is such that a couple of hundreds of them will be able to reconstruct all the tracks with transverse momentum above 1 GeV in the ATLAS events up to Phase II instantaneous luminosities (5×1034 cm-2 s-1) with an event input rate of 100 kHz and a latency below hundreds of microseconds. We plan extremely powerful, very compact and low consumption units for the far future, essential to increase efficiency and purity of the Level 2 selected samples through the intensive use of tracking. This strategy requires massive computing power to minimize the online execution time of complex tracking algorithms. The time consuming pattern recognition problem, generall...

  16. Graphics processing units in bioinformatics, computational biology and systems biology.

    Science.gov (United States)

    Nobile, Marco S; Cazzaniga, Paolo; Tangherloni, Andrea; Besozzi, Daniela

    2016-07-08

    Several studies in Bioinformatics, Computational Biology and Systems Biology rely on the definition of physico-chemical or mathematical models of biological systems at different scales and levels of complexity, ranging from the interaction of atoms in single molecules up to genome-wide interaction networks. Traditional computational methods and software tools developed in these research fields share a common trait: they can be computationally demanding on Central Processing Units (CPUs), therefore limiting their applicability in many circumstances. To overcome this issue, general-purpose Graphics Processing Units (GPUs) are gaining an increasing attention by the scientific community, as they can considerably reduce the running time required by standard CPU-based software, and allow more intensive investigations of biological systems. In this review, we present a collection of GPU tools recently developed to perform computational analyses in life science disciplines, emphasizing the advantages and the drawbacks in the use of these parallel architectures. The complete list of GPU-powered tools here reviewed is available at http://bit.ly/gputools. © The Author 2016. Published by Oxford University Press.

  17. Thermal decomposition behaviour of polyacrylamidomethyltrimethyl ammonium chloride in red mud separation process

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In order to provide references for selecting highly efficient red mud flocculants,the behaviour of polyacrylamidomethyltrimethyl ammonium chloride (PATAC) in red mud separation process was investigated.PATAC was employed as a flocculant for red mud separation from the caustic aluminate liquor at 95 ℃.The used red mud was generated from Chinese diaspore bauxite in Bayer process of alumina production.And the changes of PATAC before or after being treated in caustic solution at 95 ℃ were studied by thermogravimetry (TG) and Fourier transform infrared (FTIR) spectral analysis.The results show that PATAC fails in effectively flocculating red mud and PATAC is readily converted to a quaternary ammonium hydroxide (PATAH) in caustic solution.PATAH can be decomposed to a new polymer (HPATAH) even at 95 ℃.Furthermore,there is an intramolecular hydrogen bond formed in the HPATAH polymer chain with two functional groups of -CH2-OH and -CONH2.Therefore,the poor flocculation property of PATAC for red mud separation can be attributed to the thermal decomposition of PATAC in the caustic red mud slurry at 95 ℃ and the formation of intramolecular hydrogen bond in the polymer chain of HPATAH during the thermal decomposition,which causes the absorbable functional groups of PATAC to decrease greatly.

  18. Design and testing of small scale fish meat bone separator useful for fish processing.

    Science.gov (United States)

    Ali Muhammed, M; Manjunatha, N; Murthy, K Venkatesh; Bhaskar, N

    2015-06-01

    The present study relates to the food processing machinery and, more specifically machine for producing boneless comminuted meat from raw fish fillet. This machine is of belt and drum type meat bone separator designed for small scale fish processing in a continuous mode. The basic principal involved in this machine is compression force. The electric geared motor consists of 1HP and the conveyor belt has a linear velocity of 19 to 22 m min(-1), which was sufficient to debone the fish effectively. During the meat bone separation trials an efficiency up to 75 % on dressed fish weight basis was observed and with a capacity to separate 70 kg h(-1) of meat from fish at the machine speed of 25 rpm. During the trials, it was demonstrated that there was no significant change in the proximate composition of comminuted fish meat when compared to unprocessed fish meat. This design has a greater emphasis on hygiene, provision for cleaning-in-place (CIP) and gives cost effective need and reliability for small scale industries to produce fish meat in turn used for their value added products.

  19. Competition and primary care in the United States: separating fact from fancy.

    Science.gov (United States)

    Siminoff, L

    1986-01-01

    Competitive strategies have been advocated as the solution for the economic ills of the U.S. economy. During the 1980s many economists and health care practitioners are arguing that a competitive strategy will bring down health care costs; these plans emphasize the existence of perverse incentives which reward cost reducing behavior with less revenue. Competitive strategies assume the existence of a "health care marketplace." Historically, the United States health care sector has not conformed to the ideal of the competitive market because of the special characteristics involved in the production and consumption of health care. Consumers have the least power in the health care sector and yet most competitive proposals are explicitly directed at changing consumer behavior, especially in the area of primary care. Much evidence indicates that competitive plans inhibit consumers from using primary care services, increase long-term health care costs, and ultimately require more government regulatory action.

  20. Evaluation of a recycling process for printed circuit board by physical separation and heat treatment.

    Science.gov (United States)

    Fujita, Toyohisa; Ono, Hiroyuki; Dodbiba, Gjergj; Yamaguchi, Kunihiko

    2014-07-01

    Printed circuit boards (PCBs) from discarded personal computer (PC) and hard disk drive were crushed by explosion in water or mechanical comminution in order to disintegrate the attached parts. More parts were stripped from PCB of PC, composed of epoxy resin; than from PCB of household appliance, composed of phenol resin. In an attempt to raise the copper grade of PCB by removing other components, a carbonization treatment was investigated. The crushed PCB without surface-mounted parts was carbonized under a nitrogen atmosphere at 873-1073 K. After screening, the char was classified by size into oversized pieces, undersized pieces and powder. The copper foil and glass fiber pieces were liberated and collected in undersized fraction. The copper foil was liberated easily from glass fiber by stamping treatment. As one of the mounted parts, the multi-layered ceramic capacitors (MLCCs), which contain nickel, were carbonized at 873 K. The magnetic separation is carried out at a lower magnetic field strength of 0.1T and then at 0.8 T. In the +0.5mm size fraction the nickel grade in magnetic product was increased from 0.16% to 6.7% and the nickel recovery is 74%. The other useful mounted parts are tantalum capacitors. The tantalum capacitors were collected from mounted parts. The tantalum-sintered bodies were separated from molded resins by heat treatment at 723-773 K in air atmosphere and screening of 0.5mm. Silica was removed and 70% of tantalum grade was obtained after more than 823K heating and separation. Next, the evaluation of Cu recycling in PCB is estimated. Energy consumption of new process increased and the treatment cost becomes 3 times higher comparing the conventional process, while the environmental burden of new process decreased comparing conventional process. The nickel recovery process in fine ground particles increased energy and energy cost comparing those of the conventional process. However, the environmental burden decreased than the conventional

  1. Separation or binding? Role of the dentate gyrus in hippocampal mnemonic processing.

    Science.gov (United States)

    Lee, Jong Won; Jung, Min Whan

    2017-02-04

    As a major component of the hippocampal trisynaptic circuit, the dentate gyrus (DG) relays inputs from the entorhinal cortex to the CA3 subregion. Although the anatomy of the DG is well characterized, its contribution to hippocampal mnemonic processing is still unclear. A currently popular theory proposes that the primary function of the DG is to orthogonalize incoming input patterns into non-overlapping patterns (pattern separation). We critically review the available data and conclude that the theoretical support and empirical evidence for this theory are not strong. We then review an alternative theory that posits a role for the DG in binding together different types of incoming sensory information. We conclude that 'binding' better captures the contribution of the DG to memory encoding than 'pattern separation'.

  2. A white dwarf cooling age of 8 Gyr for NGC 6791 from physical separation processes

    CERN Document Server

    García-Berro, Enrique; Althaus, Leandro G; Renedo, Isabel; Lorén-Aguilar, Pablo; Córsico, Alejandro H; Rohrmann, René D; Salaris, Maurizio; Isern, Jordi

    2010-01-01

    NGC 6791 is a well studied open cluster1 that it is so close to us that can be imaged down to very faint luminosities. The main sequence turn-off age (~8 Gyr) and the age derived from the termination of the white dwarf cooling sequence (~6 Gyr) are significantly different. One possible explanation is that as white dwarfs cool, one of the ashes of helium burning, 22Ne, sinks in the deep interior of these stars. At lower temperatures, white dwarfs are expected to crystallise and phase separation of the main constituents of the core of a typical white dwarf, 12C and 16O, is expected to occur. This sequence of events is expected to introduce significant delays in the cooling times, but has not hitherto been proven. Here we report that, as theoretically anticipated, physical separation processes occur in the cores of white dwarfs, solving the age discrepancy for NGC 6791.

  3. Application of membrane separation in fruit and vegetable juice processing: a review.

    Science.gov (United States)

    Ilame, Susmit A; Satyavir, V Singh

    2015-01-01

    Fruit and vegetable juices are used due to convenience. The juices are rich in various minerals, vitamins, and other nutrients. To process the juices and their clarification and/or concentration is required. The membranes are being used for these purposes. These processes are preferred over others because of high efficiency and low temperature. Membranes and their characteristics have been discussed in brief for knowing suitability of membranes for fruit and vegetable juices. Membrane separation is low temperature process in which the organoleptic quality of the juice is almost retained. In this review, different membrane separation methods including Microfiltration, Ultrafiltration, and Reverse osmosis for fruit juices reported in the literature are discussed. The major fruit and vegetable juices using membrane processes are including the Reverse osmosis studies for concentration of Orange juice, Carrot juice, and Grape juice are discusses. The Microfiltration and Ultrafiltration are used for clarification of juices of mosambi juice, apple juice, pineapple juice, and kiwifruit juice. The various optimized parameters in membranes studies are pH, TAA, TSS, and AIS. In this review, in addition to above the OD is also discussed, where the membranes are used.

  4. SELECTIVE SEPARATION AND RECOVERY PROCESS —Supercritical fluid extraction and fractionation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A selective separation and recovery process has been developed based on the supercritical fluid extraction and fractionation (SFEF) technology. The solvent used varies from C3 to C5, depending on process objective. Basic research work has been done on the phase behavior, phase equilibria and modeling of a number of systems including petroleum residue, polymers, waxes and lubricants with the light hydrocarbon solvents. Semi-batch pilot and continuous pilot experiments were performed to establish data base for the process design of industrial scale. The effects of operation para-meters, such as temperature, pressure, ratio of solvent to oil and residence time, on separation selectivity and yield of extracts were studied in a wide range. Industrial demonstration plant with a capacity of 15 kt/a was setup and has run for a sufficient long period of time to confirm the design and to obtain the energy cost and economic analysis data for further commercial scale up. It was found that the process offers high efficient products and solvent recovery.

  5. AN ESTIMATE OF THE DETENTION IN THE PROCESS OF REVERSE OSMOSIS SEPARATION BIOLOGICAL SOLUTIONS BIOCHEMICAL INDUSTRIES

    Directory of Open Access Journals (Sweden)

    S. I. Lazarev

    2015-01-01

    Full Text Available Retained on a membrane solute in reverse osmosis separation of biological fluids at the surface of the membrane gradually accumulates and forms a boundary layer, where its concentration is higher than in the bulk. Increased concentration of solute in the solution at the membrane surface causes a diffusive flow of solids from the membrane surface into the bulk solution. After some time in the system t is a stationary state. A convective flow of solute to the membrane surface will be balanced by the sum of the fluxes of solute through the membrane and from the membrane surface into the bulk solution, i.e. in the case of concentration polarization is formed an edge of the diffusion layer. It is established that the concentration-polarization in reverse osmosis separation of the aqueous biological fluids biochemical production is influenced by the flow rate of solvent and the mass transfer coefficient. Experimental study allowed to characterize that by using the process of reverse osmosis can effectively divided, clear, and contaravati industrial solutions biochemical industries. Data at a rate of detention allow to evaluate the influence of concentration polarization on the efficiency of the reverse osmosis separation of industrial solutions. As a result of systematization and evaluation of experimental data and dependencies at a rate of detention found that with increasing the concentration, the rate of detention of solutes decreases. Based on the analysis and modification of the proposed equation for theoretical calculation of detention. Theoretical description of the coefficient detention accurately adequately calculated the modified equation N. V. Churaev, B. V. Deryaguin and V. M. Starov. The numerical values of the empirical coefficients, to calculate and predict the odds of arrest for a similar membrane separation processes industrial solutions. Values obtained correlation coefficients. The correlation coefficients specify that the rate of

  6. Closed cycle construction: an integrated process for the separation and reuse of C&D waste.

    Science.gov (United States)

    Mulder, Evert; de Jong, Tako P R; Feenstra, Lourens

    2007-01-01

    In The Netherlands, construction and demolition (C&D) waste is already to a large extent being reused, especially the stony fraction, which is crushed and reused as a road base material. In order to increase the percentage of reuse of the total C&D waste flow to even higher levels, a new concept has been developed. In this concept, called 'Closed Cycle Construction', the processed materials are being reused at a higher quality level and the quantity of waste that has to be disposed of is minimised. For concrete and masonry, the new concept implies that the material cycle will be completely closed, and the original constituents (clay bricks, gravel, sand, cement stone) are recovered in thermal processes. The mixed C&D waste streams are separated and decontaminated. For this purpose several dry separation techniques are being developed. The quality of the stony fraction is improved so much, that this fraction can be reused as an aggregate in concrete. The new concept has several benefits from a sustainability point of view, namely less energy consumption, less carbon dioxide emission, less waste production and less land use (for excavation and disposal sites). One of the most remarkable benefits of the new concept is that the thermal process steps are fuelled with the combustible fraction of the C&D waste itself. Economically the new process is more or less comparable with the current way of processing C&D waste. On the basis of the positive results of a feasibility study, currently a pilot and demonstration project is being carried out. The aim is to optimise the different process steps of the Closed Cycle Construction process on a laboratory scale, and then to verify them on a large scale. The results of the project are promising, so far.

  7. Real-time radar signal processing using GPGPU (general-purpose graphic processing unit)

    Science.gov (United States)

    Kong, Fanxing; Zhang, Yan Rockee; Cai, Jingxiao; Palmer, Robert D.

    2016-05-01

    This study introduces a practical approach to develop real-time signal processing chain for general phased array radar on NVIDIA GPUs(Graphical Processing Units) using CUDA (Compute Unified Device Architecture) libraries such as cuBlas and cuFFT, which are adopted from open source libraries and optimized for the NVIDIA GPUs. The processed results are rigorously verified against those from the CPUs. Performance benchmarked in computation time with various input data cube sizes are compared across GPUs and CPUs. Through the analysis, it will be demonstrated that GPGPUs (General Purpose GPU) real-time processing of the array radar data is possible with relatively low-cost commercial GPUs.

  8. MASSIVELY PARALLEL LATENT SEMANTIC ANALYSES USING A GRAPHICS PROCESSING UNIT

    Energy Technology Data Exchange (ETDEWEB)

    Cavanagh, J.; Cui, S.

    2009-01-01

    Latent Semantic Analysis (LSA) aims to reduce the dimensions of large term-document datasets using Singular Value Decomposition. However, with the ever-expanding size of datasets, current implementations are not fast enough to quickly and easily compute the results on a standard PC. A graphics processing unit (GPU) can solve some highly parallel problems much faster than a traditional sequential processor or central processing unit (CPU). Thus, a deployable system using a GPU to speed up large-scale LSA processes would be a much more effective choice (in terms of cost/performance ratio) than using a PC cluster. Due to the GPU’s application-specifi c architecture, harnessing the GPU’s computational prowess for LSA is a great challenge. We presented a parallel LSA implementation on the GPU, using NVIDIA® Compute Unifi ed Device Architecture and Compute Unifi ed Basic Linear Algebra Subprograms software. The performance of this implementation is compared to traditional LSA implementation on a CPU using an optimized Basic Linear Algebra Subprograms library. After implementation, we discovered that the GPU version of the algorithm was twice as fast for large matrices (1 000x1 000 and above) that had dimensions not divisible by 16. For large matrices that did have dimensions divisible by 16, the GPU algorithm ran fi ve to six times faster than the CPU version. The large variation is due to architectural benefi ts of the GPU for matrices divisible by 16. It should be noted that the overall speeds for the CPU version did not vary from relative normal when the matrix dimensions were divisible by 16. Further research is needed in order to produce a fully implementable version of LSA. With that in mind, the research we presented shows that the GPU is a viable option for increasing the speed of LSA, in terms of cost/performance ratio.

  9. THE PROCESS OF SEPARATION AND INDIVIDUATION AS THE RISK FACTOR IN PSYCHOSOCIAL DEVELOPMENT OF PERSONS WITH PHYSICAL DISABILITIES

    OpenAIRE

    Simona OZHEK

    2015-01-01

    The process of separation and individuation is a developmental psychological process, which takes place at various phases of child development within his first three years of life. These phases include the Normal Autistic Phase, the Normal Symbiotic Phase, the Separation-Individuation Phase (with sub-phases Differentiation, Practicing and Rapprochement, On the Way to Object Con­stancy) and the Final Separation and Psychological Birth of the Human Infant. Undisturbed transition through the dev...

  10. Selective Separation of Trivalent Actinides from Lanthanides by Aqueous Processing with Introduction of Soft Donor Atoms

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth L. Nash

    2009-09-22

    Implementation of a closed loop nuclear fuel cycle requires the utilization of Pu-containing MOX fuels with the important side effect of increased production of the transplutonium actinides, most importantly isotopes of Am and Cm. Because the presence of these isotopes significantly impacts the long-term radiotoxicity of high level waste, it is important that effective methods for their isolation and/or transmutation be developed. Furthermore, since transmutation is most efficiently done in the absence of lanthanide fission products (high yield species with large thermal neutron absorption cross sections) it is important to have efficient procedures for the mutual separation of Am and Cm from the lanthanides. The chemistries of these elements are nearly identical, differing only in the slightly stronger strength of interaction of trivalent actinides with ligand donor atoms softer than O (N, Cl-, S). Research being conducted around the world has led to the development of new reagents and processes with considerable potential for this task. However, pilot scale testing of these reagents and processes has demonstrated the susceptibility of the new classes of reagents to radiolytic and hydrolytic degradation. In this project, separations of trivalent actinides from fission product lanthanides have been investigated in studies of 1) the extraction and chemical stability properties of a class of soft-donor extractants that are adapted from water-soluble analogs, 2) the application of water soluble soft-donor complexing agents in tandem with conventional extractant molecules emphasizing fundamental studies of the TALSPEAK Process. This research was conducted principally in radiochemistry laboratories at Washington State University. Collaborators at the Radiological Processing Laboratory (RPL) at the Pacific Northwest National Laboratory (PNNL) have contributed their unique facilities and capabilities, and have supported student internships at PNNL to broaden their

  11. Selective Separation of Trivalent Actinides from Lanthanides by Aqueous Processing with Introduction of Soft Donor Atoms

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth L. Nash

    2009-09-22

    Implementation of a closed loop nuclear fuel cycle requires the utilization of Pu-containing MOX fuels with the important side effect of increased production of the transplutonium actinides, most importantly isotopes of Am and Cm. Because the presence of these isotopes significantly impacts the long-term radiotoxicity of high level waste, it is important that effective methods for their isolation and/or transmutation be developed. Furthermore, since transmutation is most efficiently done in the absence of lanthanide fission products (high yield species with large thermal neutron absorption cross sections) it is important to have efficient procedures for the mutual separation of Am and Cm from the lanthanides. The chemistries of these elements are nearly identical, differing only in the slightly stronger strength of interaction of trivalent actinides with ligand donor atoms softer than O (N, Cl-, S). Research being conducted around the world has led to the development of new reagents and processes with considerable potential for this task. However, pilot scale testing of these reagents and processes has demonstrated the susceptibility of the new classes of reagents to radiolytic and hydrolytic degradation. In this project, separations of trivalent actinides from fission product lanthanides have been investigated in studies of 1) the extraction and chemical stability properties of a class of soft-donor extractants that are adapted from water-soluble analogs, 2) the application of water soluble soft-donor complexing agents in tandem with conventional extractant molecules emphasizing fundamental studies of the TALSPEAK Process. This research was conducted principally in radiochemistry laboratories at Washington State University. Collaborators at the Radiological Processing Laboratory (RPL) at the Pacific Northwest National Laboratory (PNNL) have contributed their unique facilities and capabilities, and have supported student internships at PNNL to broaden their

  12. On controllability of an integrated bioreactor and periodically operated membrane separation process

    DEFF Research Database (Denmark)

    Prado Rubio, Oscar Andres; Jørgensen, Sten Bay; Jonsson, Gunnar Eigil

    to understand the controlled operation of the integrated process, it is convenient to use a model based approach supported by experimental evidence. Recently, an integrated bioreactor and electrically driven membrane separation process (Reverse Electro- Enhanced Dialysis - REED) has been proposed as a method...... for intensification of lactic acid fermentation (Rype, 2003). This fermentation has been studied extensively driven by an increasing number of applications of the potential fermentation products. The main limitation of lactic acid bioproduction is that lactic acid bacteria normally are impaired by product inhibition...... at a certain lactate concentration level. Hence, productivity can be enhanced by the in situ lactate removal from the cultivation broth during pH controlled fermentation. This can be done by means of ion exchange membranes and electrical potential gradients. The novelty of the integrated process lies...

  13. Survey of knowledge of hazards of chemicals potentially associated with the advanced isotope separation processes

    Energy Technology Data Exchange (ETDEWEB)

    Chester, R.O.; Kirkscey, K.A.; Randolph, M.L.

    1979-09-01

    Hazards of chemical potentially associated with the advanced isotope separation processes are estimated based on open literature references. The tentative quantity of each chemical associated with the processes and the toxicity of the chemical are used to estimate this hazard. The chemicals thus estimated to be the most potentially hazardous to health are fluorine, nitric acid, uranium metal, uranium hexafluoride, and uranium dust. The estimated next most hazardous chemicals are bromine, hydrobromic acid, hydrochloric acid, and hydrofluoric acid. For each of these chemicals and for a number of other process-associated chemicals the following information is presented: (1) any applicable standards, recommended standards and their basis; (2) a brief discussion to toxic effects including short exposure tolerance, atmospheric concentration immediately hazardous to life, evaluation of exposures, recommended control procedures, chemical properties, and a list of any toxicology reviews; and (3) recommendations for future research.

  14. On the Integration Role of Solvents in Process Synthesis-Design-Intensification: Application to DMC/MeOH separation

    DEFF Research Database (Denmark)

    Gani, Rafiqul; Babi, Deenesh Kavi

    2015-01-01

    Solvents (mass separating agents) play an important role in separation-based processes. For example, consider the separation of an azeotropic mixture. If the azeotrope is not pressure dependent, then a feasible separation technique that can be employed for separation of the azeotrope is usually...... separating agent, find the best (optimal or near-optimal) solvent candidate (or mixture) that can perform the separation subject to economic, environmental and thermo-physical property constraints. This design problem inherently is a mixed integer non-linear programming problem because the property-process...... design problem into manageable sub-problems. In the first stage, a number of solvent candidates are generated based on pre-defined structural constraints, for example, acyclic, cyclic and/or aromatic compounds, etc. In the second stage, the solvent candidates are screened using property constraints...

  15. Simultaneous separation and determination of process-related substances and degradation products of venlafaxine by reversed-phase HPLC.

    Science.gov (United States)

    Nageswara Rao, R; Narasa Raju, A

    2006-12-01

    A simple and rapid gradient RP HPLC method for simultaneous separation and determination of venlafaxine and its related substances in bulk drugs and pharmaceutical formulations has been developed. As many as four process impurities and one degradation product of venlafaxine have been separated on a Kromasil KR100-5C18 (4.6 mm x 250 mm; particle size 5 microm) column with gradient elution using 0.3% diethylamine buffer (pH 3.0) and ACN/methanol (90:10 v/v) as a mobile phase. The column was maintained at 40 degrees C and the eluents were monitored with photo diode array detection at 225 nm. The chromatographic behaviour of all the compounds was examined under variable compositions of different solvents, temperatures, buffer concentrations and pH. The method was validated in terms of accuracy, precision and linearity as per ICH guidelines. The inter- and intraday assay precision was method was successfully applied to the analysis of commercial formulations and the recoveries of venlafaxine were in the range of 99.32-100.67 with %RSD method could be of use not only for rapid and routine evaluation of the quality of venlafaxine in bulk drug manufacturing units but also for the detection of its impurities in pharmaceutical formulations. Forced degradation of venlafaxine was carried out under thermal, photo, acidic, basic and peroxide conditions and the acid degradation products were characterized by ESI-MS/MS, 1H NMR and FT-IR spectral data.

  16. CHROMATOGRAPHIC SEPARATION OF VERAPAMIL RACEMATE USING A VARICOL CONTINUOUS MULTICOLUMN PROCESS

    Directory of Open Access Journals (Sweden)

    R. F. Perna

    2015-12-01

    Full Text Available Abstract Verapamil is a chiral drug that is marketed in its racemic form, but because of the pharmacological effects due to molecule’s chirality, one of the enantiomers is more potent, and the other exhibits different activities of therapeutic interest. The preparative separation of the verapamil enantiomers was performed using a continuous Varicol unit operated on a scale of 1 g/day. Amylose tris(3,5-dimethylphenylcarbamate functioned as the stationary phase, and n-hexane/isopropanol/ethanol mixtures were used as the mobile phase. Diethylamine was used as the additive. The enantiomeric purities were 93.0% for S-(--verapamil and 92.0% for R-(+-verapamil in the raffinate and extract streams, respectively. The unit provided productivities of 0.18 kg of raffinate per day per kg of adsorbent and 0.20 kg of extract per day per kg of adsorbent when using a feed concentration of 12.5 g L-1.

  17. Efficient magnetohydrodynamic simulations on graphics processing units with CUDA

    Science.gov (United States)

    Wong, Hon-Cheng; Wong, Un-Hong; Feng, Xueshang; Tang, Zesheng

    2011-10-01

    Magnetohydrodynamic (MHD) simulations based on the ideal MHD equations have become a powerful tool for modeling phenomena in a wide range of applications including laboratory, astrophysical, and space plasmas. In general, high-resolution methods for solving the ideal MHD equations are computationally expensive and Beowulf clusters or even supercomputers are often used to run the codes that implemented these methods. With the advent of the Compute Unified Device Architecture (CUDA), modern graphics processing units (GPUs) provide an alternative approach to parallel computing for scientific simulations. In this paper we present, to the best of the author's knowledge, the first implementation of MHD simulations entirely on GPUs with CUDA, named GPU-MHD, to accelerate the simulation process. GPU-MHD supports both single and double precision computations. A series of numerical tests have been performed to validate the correctness of our code. Accuracy evaluation by comparing single and double precision computation results is also given. Performance measurements of both single and double precision are conducted on both the NVIDIA GeForce GTX 295 (GT200 architecture) and GTX 480 (Fermi architecture) graphics cards. These measurements show that our GPU-based implementation achieves between one and two orders of magnitude of improvement depending on the graphics card used, the problem size, and the precision when comparing to the original serial CPU MHD implementation. In addition, we extend GPU-MHD to support the visualization of the simulation results and thus the whole MHD simulation and visualization process can be performed entirely on GPUs.

  18. Accelerating sparse linear algebra using graphics processing units

    Science.gov (United States)

    Spagnoli, Kyle E.; Humphrey, John R.; Price, Daniel K.; Kelmelis, Eric J.

    2011-06-01

    The modern graphics processing unit (GPU) found in many standard personal computers is a highly parallel math processor capable of over 1 TFLOPS of peak computational throughput at a cost similar to a high-end CPU with excellent FLOPS-to-watt ratio. High-level sparse linear algebra operations are computationally intense, often requiring large amounts of parallel operations and would seem a natural fit for the processing power of the GPU. Our work is on a GPU accelerated implementation of sparse linear algebra routines. We present results from both direct and iterative sparse system solvers. The GPU execution model featured by NVIDIA GPUs based on CUDA demands very strong parallelism, requiring between hundreds and thousands of simultaneous operations to achieve high performance. Some constructs from linear algebra map extremely well to the GPU and others map poorly. CPUs, on the other hand, do well at smaller order parallelism and perform acceptably during low-parallelism code segments. Our work addresses this via hybrid a processing model, in which the CPU and GPU work simultaneously to produce results. In many cases, this is accomplished by allowing each platform to do the work it performs most naturally. For example, the CPU is responsible for graph theory portion of the direct solvers while the GPU simultaneously performs the low level linear algebra routines.

  19. Activity of fuel batches processed through Hanford separations plants, 1944 through 1989

    Energy Technology Data Exchange (ETDEWEB)

    Watrous, R.A.; Wootan, D.W.

    1997-07-29

    This document provides a printout of the ``Fuel Activity Database`` (version U6) generated by the Hanford DKPRO code and transmitted to the Los Alamos National Laboratory for input to their ``Hanford Defined Waste`` model of waste tank inventories. This fuel activity file consists of 1,276 records--each record representing the activity associated with a batch of spent reactor fuel processed by month (or shorter period) through individual Hanford separations plants between 1944 and 1989. Each record gives the curies for 46 key radionuclides, decayed to a common reference date of January 1, 1994.

  20. Membrane process for separating H{sub 2}S from natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Baker, R.W.

    1995-07-01

    Objective was to develop a membrane process for separating hydrogen sulfide and other impurities (CO{sub 2}, water vapor) from low-quality natural gas. A membrane material was identified with very high H{sub 2}/CH{sub 4} selectivity in the range of 40--60; membrane production was scaled up to commercial size rolls; high-pressure membrane and module development and optimization were completed; and a membrane permeation flux of 4{times}10{sub {minus}6} cm{sup 3}/s{center_dot}cm{sup 2}cmHg, twice as high state-of-the-art cellulose acetate membranes, was achieved.

  1. A continuous membrane microbioreactor system for development of integrated pectin modification and separation processes

    DEFF Research Database (Denmark)

    Zainal Alam, Muhd Nazrul Hisham Bin; Pinelo, Manuel; Samanta, Kama

    2011-01-01

    hydrolysis of the substrate to obtain e.g. value-added oligosaccharides from complex biopolymers. The microbioreactor prototype was fabricated from poly(methylmethacrylate) (PMMA) and poly(dimethylsiloxane) (PDMS) and designed as a loop reactor (working volume approximately 190μL) integrated...... with a regenerated cellulose membrane for separation of low molecular weight products. The main technical considerations and challenges related to establishing the continuous membrane microbioreactor are discussed. The workability of the prototype was validated by comparing the process data at microscale to those...

  2. Synthesis of Nanostructured Anatase Mesoporous Membranes with Photocatalytic and Separation Capabilities for Water Ultrafiltration Process

    Directory of Open Access Journals (Sweden)

    Vahideh Tajer-Kajinebaf

    2013-01-01

    Full Text Available In this work, the nanostructured anatase mesoporous membranes were prepared for water ultrafiltration (UF process with photocatalytic and physical separation capabilities. A macroporous substrate was synthesized from α-Al2O3, then a colloidal titania sol was used for the preparation of the intermediate layer. Also, the membrane top layer was synthesized by deposition and calcination of titania polymeric sol on the intermediate layer. The characterization was performed by DLS, TG-DTA, XRD, BET, FESEM, TEM, and AFM techniques. Also, the filtration experiments were carried out based on separation of methyl orange from aqueous solution by a membrane setup with a dead-end filtration cell. Photocatalytic activity of the membranes was evaluated by methyl orange photodegradation using UV-visible spectrophotometer. The mean particle size of the colloidal and polymeric sols was 14 and 1.5 nm, respectively. The anatase membranes exhibited homogeneity, with the surface area of 32.8 m2/g, the mean pore size of 8.17 nm, and the crystallite size of 9.6 nm. The methyl orange removal efficiency by the mesoporous membrane based on physical separation was determined to be 52% that was improved up to 83% by a coupling photocatalytic technique. Thus, the UF membrane showed a high potential due to its multifunctional capability for water purification applications.

  3. GENETIC ALGORITHM ON GENERAL PURPOSE GRAPHICS PROCESSING UNIT: PARALLELISM REVIEW

    Directory of Open Access Journals (Sweden)

    A.J. Umbarkar

    2013-01-01

    Full Text Available Genetic Algorithm (GA is effective and robust method for solving many optimization problems. However, it may take more runs (iterations and time to get optimal solution. The execution time to find the optimal solution also depends upon the niching-technique applied to evolving population. This paper provides the information about how various authors, researchers, scientists have implemented GA on GPGPU (General purpose Graphics Processing Units with and without parallelism. Many problems have been solved on GPGPU using GA. GA is easy to parallelize because of its SIMD nature and therefore can be implemented well on GPGPU. Thus, speedup can definitely be achieved if bottleneck in GAs are identified and implemented effectively on GPGPU. Paper gives review of various applications solved using GAs on GPGPU with the future scope in the area of optimization.

  4. Centralization of Intensive Care Units: Process Reengineering in a Hospital

    Directory of Open Access Journals (Sweden)

    Arun Kumar

    2010-03-01

    Full Text Available Centralization of intensive care units (ICUs is a concept that has been around for several decades and the OECD countries have led the way in adopting this in their operations. Singapore Hospital was built in 1981, before the concept of centralization of ICUs took off. The hospital's ICUs were never centralized and were spread out across eight different blocks with the specialization they were associated with. Coupled with the acquisitions of the new concept of centralization and its benefits, the hospital recognizes the importance of having a centralized ICU to better handle major disasters. Using simulation models, this paper attempts to study the feasibility of centralization of ICUs in Singapore Hospital, subject to space constraints. The results will prove helpful to those who consider reengineering the intensive care process in hospitals.

  5. Simulating Lattice Spin Models on Graphics Processing Units

    CERN Document Server

    Levy, Tal; Rabani, Eran; 10.1021/ct100385b

    2012-01-01

    Lattice spin models are useful for studying critical phenomena and allow the extraction of equilibrium and dynamical properties. Simulations of such systems are usually based on Monte Carlo (MC) techniques, and the main difficulty is often the large computational effort needed when approaching critical points. In this work, it is shown how such simulations can be accelerated with the use of NVIDIA graphics processing units (GPUs) using the CUDA programming architecture. We have developed two different algorithms for lattice spin models, the first useful for equilibrium properties near a second-order phase transition point and the second for dynamical slowing down near a glass transition. The algorithms are based on parallel MC techniques, and speedups from 70- to 150-fold over conventional single-threaded computer codes are obtained using consumer-grade hardware.

  6. Molecular Dynamics Simulation of Macromolecules Using Graphics Processing Unit

    CERN Document Server

    Xu, Ji; Ge, Wei; Yu, Xiang; Yang, Xiaozhen; Li, Jinghai

    2010-01-01

    Molecular dynamics (MD) simulation is a powerful computational tool to study the behavior of macromolecular systems. But many simulations of this field are limited in spatial or temporal scale by the available computational resource. In recent years, graphics processing unit (GPU) provides unprecedented computational power for scientific applications. Many MD algorithms suit with the multithread nature of GPU. In this paper, MD algorithms for macromolecular systems that run entirely on GPU are presented. Compared to the MD simulation with free software GROMACS on a single CPU core, our codes achieve about 10 times speed-up on a single GPU. For validation, we have performed MD simulations of polymer crystallization on GPU, and the results observed perfectly agree with computations on CPU. Therefore, our single GPU codes have already provided an inexpensive alternative for macromolecular simulations on traditional CPU clusters and they can also be used as a basis to develop parallel GPU programs to further spee...

  7. Integrating post-Newtonian equations on graphics processing units

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Frank; Tiglio, Manuel [Department of Physics, Center for Fundamental Physics, and Center for Scientific Computation and Mathematical Modeling, University of Maryland, College Park, MD 20742 (United States); Silberholz, John [Center for Scientific Computation and Mathematical Modeling, University of Maryland, College Park, MD 20742 (United States); Bellone, Matias [Facultad de Matematica, Astronomia y Fisica, Universidad Nacional de Cordoba, Cordoba 5000 (Argentina); Guerberoff, Gustavo, E-mail: tiglio@umd.ed [Facultad de Ingenieria, Instituto de Matematica y Estadistica ' Prof. Ing. Rafael Laguardia' , Universidad de la Republica, Montevideo (Uruguay)

    2010-02-07

    We report on early results of a numerical and statistical study of binary black hole inspirals. The two black holes are evolved using post-Newtonian approximations starting with initially randomly distributed spin vectors. We characterize certain aspects of the distribution shortly before merger. In particular we note the uniform distribution of black hole spin vector dot products shortly before merger and a high correlation between the initial and final black hole spin vector dot products in the equal-mass, maximally spinning case. More than 300 million simulations were performed on graphics processing units, and we demonstrate a speed-up of a factor 50 over a more conventional CPU implementation. (fast track communication)

  8. Air pollution modelling using a graphics processing unit with CUDA

    CERN Document Server

    Molnar, Ferenc; Meszaros, Robert; Lagzi, Istvan; 10.1016/j.cpc.2009.09.008

    2010-01-01

    The Graphics Processing Unit (GPU) is a powerful tool for parallel computing. In the past years the performance and capabilities of GPUs have increased, and the Compute Unified Device Architecture (CUDA) - a parallel computing architecture - has been developed by NVIDIA to utilize this performance in general purpose computations. Here we show for the first time a possible application of GPU for environmental studies serving as a basement for decision making strategies. A stochastic Lagrangian particle model has been developed on CUDA to estimate the transport and the transformation of the radionuclides from a single point source during an accidental release. Our results show that parallel implementation achieves typical acceleration values in the order of 80-120 times compared to CPU using a single-threaded implementation on a 2.33 GHz desktop computer. Only very small differences have been found between the results obtained from GPU and CPU simulations, which are comparable with the effect of stochastic tran...

  9. Iterative Methods for MPC on Graphical Processing Units

    DEFF Research Database (Denmark)

    2012-01-01

    The high oating point performance and memory bandwidth of Graphical Processing Units (GPUs) makes them ideal for a large number of computations which often arises in scientic computing, such as matrix operations. GPUs achieve this performance by utilizing massive par- allelism, which requires...... on their applicability for GPUs. We examine published techniques for iterative methods in interior points methods (IPMs) by applying them to simple test cases, such as a system of masses connected by springs. Iterative methods allows us deal with the ill-conditioning occurring in the later iterations of the IPM as well...... as to avoid the use of dense matrices, which may be too large for the limited memory capacity of current graphics cards....

  10. Graphics processing units accelerated semiclassical initial value representation molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Tamascelli, Dario; Dambrosio, Francesco Saverio [Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133 Milano (Italy); Conte, Riccardo [Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322 (United States); Ceotto, Michele, E-mail: michele.ceotto@unimi.it [Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano (Italy)

    2014-05-07

    This paper presents a Graphics Processing Units (GPUs) implementation of the Semiclassical Initial Value Representation (SC-IVR) propagator for vibrational molecular spectroscopy calculations. The time-averaging formulation of the SC-IVR for power spectrum calculations is employed. Details about the GPU implementation of the semiclassical code are provided. Four molecules with an increasing number of atoms are considered and the GPU-calculated vibrational frequencies perfectly match the benchmark values. The computational time scaling of two GPUs (NVIDIA Tesla C2075 and Kepler K20), respectively, versus two CPUs (Intel Core i5 and Intel Xeon E5-2687W) and the critical issues related to the GPU implementation are discussed. The resulting reduction in computational time and power consumption is significant and semiclassical GPU calculations are shown to be environment friendly.

  11. Polymer Field-Theory Simulations on Graphics Processing Units

    CERN Document Server

    Delaney, Kris T

    2012-01-01

    We report the first CUDA graphics-processing-unit (GPU) implementation of the polymer field-theoretic simulation framework for determining fully fluctuating expectation values of equilibrium properties for periodic and select aperiodic polymer systems. Our implementation is suitable both for self-consistent field theory (mean-field) solutions of the field equations, and for fully fluctuating simulations using the complex Langevin approach. Running on NVIDIA Tesla T20 series GPUs, we find double-precision speedups of up to 30x compared to single-core serial calculations on a recent reference CPU, while single-precision calculations proceed up to 60x faster than those on the single CPU core. Due to intensive communications overhead, an MPI implementation running on 64 CPU cores remains two times slower than a single GPU.

  12. Graphics Processing Unit Enhanced Parallel Document Flocking Clustering

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Xiaohui [ORNL; Potok, Thomas E [ORNL; ST Charles, Jesse Lee [ORNL

    2010-01-01

    Analyzing and clustering documents is a complex problem. One explored method of solving this problem borrows from nature, imitating the flocking behavior of birds. One limitation of this method of document clustering is its complexity O(n2). As the number of documents grows, it becomes increasingly difficult to generate results in a reasonable amount of time. In the last few years, the graphics processing unit (GPU) has received attention for its ability to solve highly-parallel and semi-parallel problems much faster than the traditional sequential processor. In this paper, we have conducted research to exploit this archi- tecture and apply its strengths to the flocking based document clustering problem. Using the CUDA platform from NVIDIA, we developed a doc- ument flocking implementation to be run on the NVIDIA GEFORCE GPU. Performance gains ranged from thirty-six to nearly sixty times improvement of the GPU over the CPU implementation.

  13. Implementing wide baseline matching algorithms on a graphics processing unit.

    Energy Technology Data Exchange (ETDEWEB)

    Rothganger, Fredrick H.; Larson, Kurt W.; Gonzales, Antonio Ignacio; Myers, Daniel S.

    2007-10-01

    Wide baseline matching is the state of the art for object recognition and image registration problems in computer vision. Though effective, the computational expense of these algorithms limits their application to many real-world problems. The performance of wide baseline matching algorithms may be improved by using a graphical processing unit as a fast multithreaded co-processor. In this paper, we present an implementation of the difference of Gaussian feature extractor, based on the CUDA system of GPU programming developed by NVIDIA, and implemented on their hardware. For a 2000x2000 pixel image, the GPU-based method executes nearly thirteen times faster than a comparable CPU-based method, with no significant loss of accuracy.

  14. CO{sub 2} separation by calcium looping from full and partial fuel oxidation processes

    Energy Technology Data Exchange (ETDEWEB)

    Sivalingam, Senthoorselvan

    2013-06-05

    This thesis work deals with the research and development of calcium looping process for CO{sub 2} separation from full and partial fuel oxidation based power generation systems. CO{sub 2} is the main greenhouse gas and undoubtedly a major contributor to the global warming. It is estimated that more than one third of the total anthropogenic CO{sub 2} emissions come from fossil fuel based heat and power generation. Moreover, fossil fuels are unlikely to be phased out rapidly, since developing alternative energy sources not only take time but also require huge investments and infrastructure. An alternative way to reduce emissions in a medium term is to capture the CO{sub 2} from fossil fueled power plants and store it away from the atmosphere. This process system combining a bunch of technologies is called carbon capture and storage (CCS). CO{sub 2} capture is an important and costly part of CCS and an array of technologies is considered for this. Calcium looping (CaL) is one of such and seems to offer effective and efficient CO{sub 2} separation from fuel oxidation processes. CaL process involves separation of CO{sub 2} at high temperatures (600-700 C) by calcium sorbents (CaO). CO{sub 2} reacts with CaO in a carbonation process and produces CaCO{sub 3}. In a subsequent thermal regeneration (>850 C) called calcination, the CO{sub 2} is released from CaCO{sub 3}. By alternating carbonations and calcinations over multiple cycles, CO{sub 2} is separated from a gas stream. Moreover, the CaL is realised in industrial scale with dual fluidised bed reactors for CO{sub 2} capture (the carbonator) and sorbent regeneration (the calciner). As a process in the development, research is still required in many aspects from thermodynamic modeling to experimental studies. Research works have been carried out in process simulations, sorbent reactivity and optimisation studies in a controlled reactor environment and process parametric studies in a semi-pilot scale CaL test facility

  15. Membrane Separation Processes for Post-Combustion Carbon Dioxide Capture: State of the Art and Critical Overview

    Directory of Open Access Journals (Sweden)

    Belaissaoui Bouchra

    2014-11-01

    Full Text Available Membrane processes have been initially seldom considered within a post-combustion carbon dioxide capture framework. More traditional processes, particularly gas-liquid absorption in chemical solvents, are often considered as the most appropriate solution for the first generation of technologies. In this paper, a critical state of the art of gas separation membranes for CO2 capture is proposed. In a first step, the key performances (selectivity, permeability of different membrane materials such as polymers, inorganic membranes, hybrid matrices and liquid membranes, including recently reported results, are reviewed. In a second step, the process design characteristics of a single stage membrane unit are studied. Purity and energy constraints are analysed as a function of operating conditions and membrane materials performances. The interest of multistage and hybrid systems, two domains which have not sufficiently investigated up to now, are finally discussed. The importance of technico-economical analyses is highlighted in order to better estimate the optimal role of membranes for CCS applications.

  16. Instantaneous and Frequency-Warped Signal Processing Techniques for Auditory Source Separation.

    Science.gov (United States)

    Wang, Avery Li-Chun

    This thesis summarizes several contributions to the areas of signal processing and auditory source separation. The philosophy of Frequency-Warped Signal Processing is introduced as a means for separating the AM and FM contributions to the bandwidth of a complex-valued, frequency-varying sinusoid p (n), transforming it into a signal with slowly-varying parameters. This transformation facilitates the removal of p (n) from an additive mixture while minimizing the amount of damage done to other signal components. The average winding rate of a complex-valued phasor is explored as an estimate of the instantaneous frequency. Theorems are provided showing the robustness of this measure. To implement frequency tracking, a Frequency-Locked Loop algorithm is introduced which uses the complex winding error to update its frequency estimate. The input signal is dynamically demodulated and filtered to extract the envelope. This envelope may then be remodulated to reconstruct the target partial, which may be subtracted from the original signal mixture to yield a new, quickly-adapting form of notch filtering. Enhancements to the basic tracker are made which, under certain conditions, attain the Cramer -Rao bound for the instantaneous frequency estimate. To improve tracking, the novel idea of Harmonic -Locked Loop tracking, using N harmonically constrained trackers, is introduced for tracking signals, such as voices and certain musical instruments. The estimated fundamental frequency is computed from a maximum-likelihood weighting of the N tracking estimates, making it highly robust. The result is that harmonic signals, such as voices, can be isolated from complex mixtures in the presence of other spectrally overlapping signals. Additionally, since phase information is preserved, the resynthesized harmonic signals may be removed from the original mixtures with relatively little damage to the residual signal. Finally, a new methodology is given for designing linear-phase FIR filters

  17. Study on non-saponification extraction process for rare earth separation

    Institute of Scientific and Technical Information of China (English)

    XIAO Yanfei; LONG Zhiqi; HUANG Xiaowei; FENG Zongyu; CUI Dali; WANG Liangshi

    2013-01-01

    The purpose of this study was to overcome the disadvantages of ammonia-nitrogen wastewater pollution and high cost of sodium saponification in rare earth separation process.The study focused on the non-saponification extraction technology with magnesia.The influences of the content and particle size of magnesia,reaction time,reaction temperature,and O/A on cerium extraction rate were also discussed.The results showed that the hydrogen ions of extractant were exchanged by rare earth ions when organic extractant and rare earth solution were mixed with magnesia powder,and then the exchanged hydrogen dissolved magnesia to make the acidity of the system stable.The magnesium ions were not participated in the extraction reaction.Non-saponification extraction process of rare earth had been realized.The cerium extraction rate could reach up to 99% in single stage within the optimal reaction conditions.

  18. Inactive experiments for advanced separation processes prior to high activity trials in ATALANTE

    Energy Technology Data Exchange (ETDEWEB)

    Duhamet, Jean; Lanoe, Jean-Yves; Rivalier, Patrick; Borda, Gilles [Commissariat a l' Energie Atomique (CEA), CEA/DEN/VRH/DTEC/SGCS, Centre de Marcoule - BP 17171, 302007 Bagnols-sur-Ceze cedex (France)

    2008-07-01

    Many trials have been performed in ATALANTE's shielded cells to demonstrate the technical feasibility of processes involving minor actinide separation. They required developments of new extractors as well as a step by step procedure have been used to lower the risks of malfunction during high active operation. The design of the extractors developed by Cea has included shielded cells restrictions, miniaturization to lower the quantity of high active material and wastes and the care for being representative of industrial equipment. After individual shake down inactive tests, with actual phases, each process experiment scheduled in ATALANTE has been tested at G1 Facility in Marcoule. The objective was to reproduce as much as possible all the equipment chosen for active tests. This procedure has demonstrated its efficiency to detect many problems that would have heavy impact if they have been discovered during active trials. It was also used for operators'training. (authors)

  19. Rolling Process Modeling Report: Finite-Element Prediction of Roll Separating Force and Rolling Defects

    Energy Technology Data Exchange (ETDEWEB)

    Soulami, Ayoub [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Paxton, Dean M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burkes, Douglas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-04-23

    Pacific Northwest National Laboratory (PNNL) has been investigating manufacturing processes for the uranium-10% molybdenum (U-10Mo) alloy plate-type fuel for the U.S. high-performance research reactors. This work supports the Convert Program of the U.S. Department of Energy’s National Nuclear Security Administration (DOE/NNSA) Global Threat Reduction Initiative. This report documents modeling results of PNNL’s efforts to perform finite-element simulations to predict roll separating forces and rolling defects. Simulations were performed using a finite-element model developed using the commercial code LS-Dyna. Simulations of the hot rolling of U-10Mo coupons encapsulated in low-carbon steel have been conducted following two different schedules. Model predictions of the roll-separation force and roll-pack thicknesses at different stages of the rolling process were compared with experimental measurements. This report discusses various attributes of the rolled coupons revealed by the model (e.g., dog-boning and thickness non-uniformity).

  20. Thinking in early modernity and the separation process between philosophy and psychology.

    Science.gov (United States)

    Klempe, Sven Hroar

    2015-03-01

    One of the big questions in psychology is when and how psychology disentangled from philosophy. Usually it is referred to the laboratory Wundt established in Leipzig in 1879 as the birth for psychology as an independent science. However this separation process can also be traced in other ways, like by focusing on how the two sciences approach and understand thinking. Although thinking and language were not included in the research in this laboratory, Wundt (1897) regarded thinking as the core of psychology. As a commentary to Papanicolaou (Integr Psychol Behav Sci doi:10.1007/s12124-014-9273-3, 2014), this paper investigates the differences in how psychology and philosophy conceptualized thinking in early Western modernity. Thus one of the findings is that the separation process between the two was more or less initiated by Immanuel Kant. By defining thinking in terms of the pure reason he excluded the psychological understanding of thinking because psychology basically defined thinking in terms of ideas derived from qualia and sensation. Another finding is that psychology itself has not completely realized the differences between the philosophical and the psychological understanding of thinking by having been influenced by Kant's ideal of the pure reason. This may also explain some of the crises psychology went through during the twentieth century.

  1. INTENSIFICATION OF SEPARATION PROCESS OF BAR MATERIAL ON DIMENSIONAL WORKPIECE OF WEDGE-SHAPED KNIVES

    Directory of Open Access Journals (Sweden)

    L. A. Isaevich

    2017-01-01

    Full Text Available Based on the analysis of known methods of separation of bar mix to length determined that the most effective method of forming an annular groove therein plastic tapered section, with a gradual deformation of the metal disc blades recess which is destroyed in the mix zone. In order to reduce the depth of the groove after its shaping proposed to produce in the same local area flexural bar. Based on experimental data obtained an empirical formula relating the dependence of bending rod axis angle on the depth of the annular groove. It is found that the greatest effect on the angle of local bending rod axis in the annular groove zone occurs when changing its depth from 0.5 to 3.0 mm. And this dependence is exponential in nature. Reducing the local axis of the workpiece bending angle for the specified range of the groove depth will be between 8.83º to 2.23º. A further increase in the depth of the annular groove is not practical, because the angle of bending the rod axis with reduced insignificantly. The dependence is valid for the separation process rods tapered disc blades with a local curvature of its axis is almost independent of the original diameter shared assortment. Therefore, the process can be carried out efficiently when the groove depth is not greater than 3.0 mm.

  2. Process simulation of integrated biohydrogen production: hydrogen recovery by membrane separation

    Directory of Open Access Journals (Sweden)

    László Koók

    2014-10-01

    Full Text Available In this project, the production of biohydrogen, as a renewable and sustainable energy source was studied. Biohydrogen was manufactured by using E. coli strain in a batch dark fermentative process integrated with membrane gas separation. Two different methods were applied: Firstly, the amount of the produced gas and component concentrations were measured, but CO2 and H2 gases were not separated. In the second experiment CO2 was removed from the gas mixture via chemical sorption (reacting with NaOH. Both methods use continuous product removal in order to enhance the biohydrogen formation. In addition, process modeling was carried out with a simulation software (SuperPro Designer, Intelligen Inc. so that experimental and computational results could be compared. CO2 and H2 flow rates and fluxes were calculated on the basis of the membrane permeation data obtained by using pure gases and silicone (PDMS hollow-fiber membrane module (PermSelect – MedArray Inc..

  3. The ATLAS Fast Tracker Processing Units - track finding and fitting

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00384270; The ATLAS collaboration; Alison, John; Ancu, Lucian Stefan; Andreani, Alessandro; Annovi, Alberto; Beccherle, Roberto; Beretta, Matteo; Biesuz, Nicolo Vladi; Bogdan, Mircea Arghir; Bryant, Patrick; Calabro, Domenico; Citraro, Saverio; Crescioli, Francesco; Dell'Orso, Mauro; Donati, Simone; Gentsos, Christos; Giannetti, Paola; Gkaitatzis, Stamatios; Gramling, Johanna; Greco, Virginia; Horyn, Lesya Anna; Iovene, Alessandro; Kalaitzidis, Panagiotis; Kim, Young-Kee; Kimura, Naoki; Kordas, Kostantinos; Kubota, Takashi; Lanza, Agostino; Liberali, Valentino; Luciano, Pierluigi; Magnin, Betty; Sakellariou, Andreas; Sampsonidis, Dimitrios; Saxon, James; Shojaii, Seyed Ruhollah; Sotiropoulou, Calliope Louisa; Stabile, Alberto; Swiatlowski, Maximilian; Volpi, Guido; Zou, Rui; Shochet, Mel

    2016-01-01

    The Fast Tracker is a hardware upgrade to the ATLAS trigger and data-acquisition system, with the goal of providing global track reconstruction by the start of the High Level Trigger starts. The Fast Tracker can process incoming data from the whole inner detector at full first level trigger rate, up to 100 kHz, using custom electronic boards. At the core of the system is a Processing Unit installed in a VMEbus crate, formed by two sets of boards: the Associative Memory Board and a powerful rear transition module called the Auxiliary card, while the second set is the Second Stage board. The associative memories perform the pattern matching looking for correlations within the incoming data, compatible with track candidates at coarse resolution. The pattern matching task is performed using custom application specific integrated circuits, called associative memory chips. The auxiliary card prepares the input and reject bad track candidates obtained from from the Associative Memory Board using the full precision a...

  4. The ATLAS Fast TracKer Processing Units

    CERN Document Server

    Krizka, Karol; The ATLAS collaboration

    2016-01-01

    The Fast Tracker is a hardware upgrade to the ATLAS trigger and data-acquisition system, with the goal of providing global track reconstruction by the start of the High Level Trigger starts. The Fast Tracker can process incoming data from the whole inner detector at full first level trigger rate, up to 100 kHz, using custom electronic boards. At the core of the system is a Processing Unit installed in a VMEbus crate, formed by two sets of boards: the Associative Memory Board and a powerful rear transition module called the Auxiliary card, while the second set is the Second Stage board. The associative memories perform the pattern matching looking for correlations within the incoming data, compatible with track candidates at coarse resolution. The pattern matching task is performed using custom application specific integrated circuits, called associative memory chips. The auxiliary card prepares the input and reject bad track candidates obtained from from the Associative Memory Board using the full precision a...

  5. The separation of extractants implemented in the DIAMEX-SANEX process

    Energy Technology Data Exchange (ETDEWEB)

    Heres, Xavier [CEA-Marcoule, DEN/MAR/DRCP/SCPS, BP 17171, 30207 Bagnols-sur-Ceze Cedex (France); Baron, P.; Hill, C.; Ameil, E.; Martinez, I. [CEA-Marcoule, DEN/MAR/DRCP/SCPS, BP 17171, 30207 Bagnols-sur-Ceze Cedex (France); Rivalier, P. [CEA-Marcoule, DEN/MAR/DTEC/SGCS, BP 17171, 30207 Bagnols-sur-Ceze Cedex (France)

    2008-07-01

    DIAMEX-SANEX is a process developed at the Cea to recover selectively the actinides(III) after a COEX{sup TM} or a PUREX process, in order to significantly decrease the radiotoxicity of the ultimate waste produced by the nuclear industry. This liquid-liquid extraction process is based on the DIAMEX process, using a malonamide supplemented by an acidic extractant. Besides an actinide extraction step and a lanthanide stripping step are implemented an actinide(III) stripping step and an extractant splitting step. The latter is carried out to avoid interactions between these two extractants during the first co-extraction step of the actinides and the lanthanides. This paper gives some results obtained with di-n-hexyl phosphoric acid (HDHP), which fulfills the required criteria for process development. Batch experiments or cold counter-current tests showed that it is possible to separate this extractant from DMDOHEMA. HDHP can moreover maintain the lanthanides(III) in the organic phase when the actinides(III) are back extracted from the organic phase. (authors)

  6. The separation of extractants implemented in the DIAMEX-SANEX process

    Energy Technology Data Exchange (ETDEWEB)

    Heres, Xavier [CEA-Marcoule, DEN/MAR/DRCP/SCPS, BP 17171, 30207 Bagnols-sur-Ceze Cedex (France); Baron, P.; Hill, C.; Ameil, E.; Martinez, I. [CEA-Marcoule, DEN/MAR/DRCP/SCPS, BP 17171, 30207 Bagnols-sur-Ceze Cedex (France); Rivalier, P. [CEA-Marcoule, DEN/MAR/DTEC/SGCS, BP 17171, 30207 Bagnols-sur-Ceze Cedex (France)

    2008-07-01

    DIAMEX-SANEX is a process developed at the Cea to recover selectively the actinides(III) after a COEX{sup TM} or a PUREX process, in order to significantly decrease the radiotoxicity of the ultimate waste produced by the nuclear industry. This liquid-liquid extraction process is based on the DIAMEX process, using a malonamide supplemented by an acidic extractant. Besides an actinide extraction step and a lanthanide stripping step are implemented an actinide(III) stripping step and an extractant splitting step. The latter is carried out to avoid interactions between these two extractants during the first co-extraction step of the actinides and the lanthanides. This paper gives some results obtained with di-n-hexyl phosphoric acid (HDHP), which fulfills the required criteria for process development. Batch experiments or cold counter-current tests showed that it is possible to separate this extractant from DMDOHEMA. HDHP can moreover maintain the lanthanides(III) in the organic phase when the actinides(III) are back extracted from the organic phase. (authors)

  7. Beowulf Distributed Processing and the United States Geological Survey

    Science.gov (United States)

    Maddox, Brian G.

    2002-01-01

    Introduction In recent years, the United States Geological Survey's (USGS) National Mapping Discipline (NMD) has expanded its scientific and research activities. Work is being conducted in areas such as emergency response research, scientific visualization, urban prediction, and other simulation activities. Custom-produced digital data have become essential for these types of activities. High-resolution, remotely sensed datasets are also seeing increased use. Unfortunately, the NMD is also finding that it lacks the resources required to perform some of these activities. Many of these projects require large amounts of computer processing resources. Complex urban-prediction simulations, for example, involve large amounts of processor-intensive calculations on large amounts of input data. This project was undertaken to learn and understand the concepts of distributed processing. Experience was needed in developing these types of applications. The idea was that this type of technology could significantly aid the needs of the NMD scientific and research programs. Porting a numerically intensive application currently being used by an NMD science program to run in a distributed fashion would demonstrate the usefulness of this technology. There are several benefits that this type of technology can bring to the USGS's research programs. Projects can be performed that were previously impossible due to a lack of computing resources. Other projects can be performed on a larger scale than previously possible. For example, distributed processing can enable urban dynamics research to perform simulations on larger areas without making huge sacrifices in resolution. The processing can also be done in a more reasonable amount of time than with traditional single-threaded methods (a scaled version of Chester County, Pennsylvania, took about fifty days to finish its first calibration phase with a single-threaded program). This paper has several goals regarding distributed processing

  8. Density functional theory calculation on many-cores hybrid central processing unit-graphic processing unit architectures.

    Science.gov (United States)

    Genovese, Luigi; Ospici, Matthieu; Deutsch, Thierry; Méhaut, Jean-François; Neelov, Alexey; Goedecker, Stefan

    2009-07-21

    We present the implementation of a full electronic structure calculation code on a hybrid parallel architecture with graphic processing units (GPUs). This implementation is performed on a free software code based on Daubechies wavelets. Such code shows very good performances, systematic convergence properties, and an excellent efficiency on parallel computers. Our GPU-based acceleration fully preserves all these properties. In particular, the code is able to run on many cores which may or may not have a GPU associated, and thus on parallel and massive parallel hybrid machines. With double precision calculations, we may achieve considerable speedup, between a factor of 20 for some operations and a factor of 6 for the whole density functional theory code.

  9. Thermochemical Process Development Unit: Researching Fuels from Biomass, Bioenergy Technologies (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2009-01-01

    The Thermochemical Process Development Unit (TCPDU) at the National Renewable Energy Laboratory (NREL) is a unique facility dedicated to researching thermochemical processes to produce fuels from biomass.

  10. Analysis of Unit Process Cost for an Engineering-Scale Pyroprocess Facility Using a Process Costing Method in Korea

    National Research Council Canada - National Science Library

    Sungki Kim; Wonil Ko; Sungsig Bang

    2015-01-01

    ...) metal ingots in a high-temperature molten salt phase. This paper provides the unit process cost of a pyroprocess facility that can process up to 10 tons of pyroprocessing product per year by utilizing the process costing method...

  11. Safety evaluation of cation-exchange resins. [For use in separating and processing radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Kalkwarf, D.R.

    1977-08-01

    Results are presented of a study to evaluate whether sufficient information is available to establish conservative limits for the safe use of cation-exchange resins in separating radionuclides and, if not, to recommend what new data should be acquired. The study was also an attempt to identify in-line analytical techniques for the evaluation of resin degradation during radionuclide processing. The report is based upon a review of the published literature and upon discussions with many people engaged in the use of these resins. It was concluded that the chief hazard in the use of cation-exchange resins for separating radionuclides is a thermal explosion if nitric acid or other strong oxidants are present in the process solution. Thermal explosions can be avoided by limiting process parameters so that the rates of heat and gas generation in the system do not exceed the rates for their transfer to the surroundings. Such parameters include temperature, oxidant concentration, the amounts of possible catalysts, the radiation dose absorbed by the resin and the diameter of the resin column. Current information is not sufficient to define safe upper limits for these parameters. They can be evaluated, however, from equations derived from the Frank-Kamenetskii theory of thermal explosions provided the heat capacities, thermal conductivities and rates of heat evolution in the relevant resin-oxidant mixtures are known. It is recommended that such measurements be made and the appropriate limits be evaluated. A list of additional safety precautions are also presented to aid in the application of these limits and to provide additional margins of safety. In-line evaluation of resin degradation to assess its safety hazard is considered impractical. Rather, it is recommended that the resin be removed from use before it has received the limiting radiation dose, evaluated as described above.

  12. Monte Carlo MP2 on Many Graphical Processing Units.

    Science.gov (United States)

    Doran, Alexander E; Hirata, So

    2016-10-11

    In the Monte Carlo second-order many-body perturbation (MC-MP2) method, the long sum-of-product matrix expression of the MP2 energy, whose literal evaluation may be poorly scalable, is recast into a single high-dimensional integral of functions of electron pair coordinates, which is evaluated by the scalable method of Monte Carlo integration. The sampling efficiency is further accelerated by the redundant-walker algorithm, which allows a maximal reuse of electron pairs. Here, a multitude of graphical processing units (GPUs) offers a uniquely ideal platform to expose multilevel parallelism: fine-grain data-parallelism for the redundant-walker algorithm in which millions of threads compute and share orbital amplitudes on each GPU; coarse-grain instruction-parallelism for near-independent Monte Carlo integrations on many GPUs with few and infrequent interprocessor communications. While the efficiency boost by the redundant-walker algorithm on central processing units (CPUs) grows linearly with the number of electron pairs and tends to saturate when the latter exceeds the number of orbitals, on a GPU it grows quadratically before it increases linearly and then eventually saturates at a much larger number of pairs. This is because the orbital constructions are nearly perfectly parallelized on a GPU and thus completed in a near-constant time regardless of the number of pairs. In consequence, an MC-MP2/cc-pVDZ calculation of a benzene dimer is 2700 times faster on 256 GPUs (using 2048 electron pairs) than on two CPUs, each with 8 cores (which can use only up to 256 pairs effectively). We also numerically determine that the cost to achieve a given relative statistical uncertainty in an MC-MP2 energy increases as O(n(3)) or better with system size n, which may be compared with the O(n(5)) scaling of the conventional implementation of deterministic MP2. We thus establish the scalability of MC-MP2 with both system and computer sizes.

  13. HEHEHP fractional extraction process with three outlets for separation of Am from rare earths

    Institute of Scientific and Technical Information of China (English)

    何培炯; 焦荣洲; 等

    1996-01-01

    Americium is similar to light rare earths in solvent extraction by HEHEHP.So the fractional extraction process with three outlets,which is widely used on rare earth industrial scale,can be applied to separate Am from La,Ce,Pr,Nd and Sm.The better process parameters can be calculated by the material and distribution balance equations stage by stage with given organic loading.In order to recover 0.99 mole fraction of Am and remove 0.90 mole fraction of light rare earths from the feed solution,in which the mole ratios of La Ce,Am,Pr,Nd,Sm are 0.140,0.199,0.005,0.109,0.487,0.060,the total number of stages needed is 43,that is the extraction sector 18,first scrubbing sector 2 and second scrubbing sector 23.The fractional extraction process with three outlets is simpler and more convenient than two fractional extraction processes with two outltes.

  14. Olefins-selective asymmetric carbon molecular sieve hollow fiber membranes for hybrid membrane-distillation processes for olefin/paraffin separations

    KAUST Repository

    Xu, Liren

    2012-12-01

    In this paper, the development of asymmetric carbon molecular sieve (CMS) hollow fiber membranes and advanced processes for olefin/paraffin separations based on the CMS membranes are reported. Membrane-based olefin/paraffin separations have been pursued extensively over the past decades. CMS membranes are promising to exceed the performance upper bound of polymer materials and have demonstrated excellent stability for gas separations. Previously, a substructure collapse phenomenon was found in Matrimid ® precursor derived CMS fiber. To overcome the permeance loss due to the increased separation layer thickness, 6FDA-DAM and 6FDA/BPDA-DAM precursors were selected as potential new precursors for carbon membrane formation. Defect-free asymmetric 6FDA-DAM and 6FDA/BPDA-DAM hollow fibers were successfully fabricated from a dry-jet/wet-quench spinning process. Polymer rigidity, glass-rubber transition and asymmetric morphology were correlated. CMS hollow fiber membranes produced from 6FDA-polymer precursors showed significant improvement in permeance for ethylene/ethane and propylene/propane separations. Further studies revealed that the CMS membranes are olefins-selective, which means the membranes are able to effectively separate olefins (ethylene and propylene) from paraffins (ethane and propane). This unique feature of CMS materials enables advanced hybrid membrane-distillation process designs. By using the olefins-selective membranes, these new processes may provide advantages over previously proposed retrofitting concepts. Further applications of the membranes are explored for hydrocarbons processes. Significant energy savings and even reduced footprint may be achieved in olefins production units. © 2012 Elsevier B.V.

  15. Heterogeneous glycoform separation by process chromatography: I: Monomer purification and characterization.

    Science.gov (United States)

    Li, Yi; Xu, Xuankuo; Shupe, Alan; Yang, Rong; Bai, Kevin; Das, Tapan; Borys, Michael C; Li, Zheng Jian

    2015-07-24

    Fc fusion proteins with high and low sialylation were purified and separated by preparative ion-exchange and hydrophobic interaction chromatography. Heterogeneity in sialylation and glycosylation led to variation in surface charge and hydrophobicity, and resulted in multiple distinct glycoform populations in response to various purification conditions. Monomer with high sialic acid content has higher surface charge and adsorbs stronger to ion-exchange resin, while the less sialylated monomer interacts more favorably with hydrophobic resin. Extensive biophysical characterization was carried out for purified monomers at different level of sialylation. In general, different monomeric glycoforms have different surface charge and hydrophobicity, different thermal stability, and different aggregation propensity. The surface charge corresponds well with sialic acid content, as evidenced by electrophoresis, N-link domain analysis, and zeta potential results. The sialylation also contributes to minor modification of protein size, molecular mass and tertiary structure. Notably, fluorescence emission spectra and thermal transition became less distinguishable when the monomers containing low and high sialic acid were prepared in high ionic strength solution. Such finding reiterates the fact that the electrostatic forces, which are largely dependent on sialic acid content of protein, plays a dominant role in many intra- and inter-molecular interactions. Overall, the characterization data agreed well with separation behaviors and provided valuable insight to control of glycoform profile in purification process. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. PROCESS SIMULATION OF BENZENE SEPARATION COLUMN OF LINEAR ALKYL BENZENE (LABPLANT

    Directory of Open Access Journals (Sweden)

    Zaid A. AbdelRahman

    2013-05-01

    Full Text Available       CHEMCAD process simulator was used for the analysis of existing benzene separation column in LAB plant(Arab Detergent Company/Beiji-Iraq.         Simulated column performance curves were constructed. The variables considered in this study are the thermodynamic model option, top and bottom temperatures, feed temperature, feed composition & reflux ratio. Also simulated columns profiles for the temperature, vapor & liquid flow rates compositions, were constructed. Four different thermodynamic models options (SRK, TSRK, PR, and ESSO were used, affecting the results within 1-25% variation for the most cases.            For Benzene Column (32 real stages, feed stage 14, the simulated results show that bottom temperature above 200 oC the weight fractions of top components, except benzene, increases sharply, where as benzene top weight fraction decreasing sharply. Also, feed temperature above 180 oC  shows same trends. The column profiles remain fairly constant from tray 3 (immediately below condenser to tray 10 (immediately above feed and from tray 15 (immediately below feed to tray 25 (immediately above reboiler. Simulation of the benzene separation column in LAB production plant using CHEMCAD simulator, confirms the real plant operation data. The study gives evidence about a successful simulation with CHEMCAD.

  17. Process for the separation of C sub 2 hydrocarbons from natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, H.; Sapper, R.

    1990-08-21

    A process for the separation of C{sub 2+} hydrocarbons from natural gas under pressure is disclosed, in which the natural gas is cooled, partially condensed, and separated into a liquid fraction and a gaseous fraction. The liquid fraction is subcooled and then expanded into the upper zone of a rectifying column. The gaseous fraction, after engine expansion, is also introduced into the rectifying column. During rectification, a product stream containing essentially C{sub 2+} hydrocarbons and a residual gas stream containing predominantly lower-boiling components are obtained. The residual gas stream is initially heated by heat exchange with the liquid fraction and then heated by heat exchange with the gaseous fraction obtained after partial condensation. The residual gas stream is then further heated by heat exchange with the feed stream of natural gas to be partially condensed. The heated residual gas is then engine expanded and reheated again by heat exchange with the feed stream of natural gas to be partially condensed.

  18. Separation of lignocellulosic materials by combined processes of pre-hydrolysis and ethanol extraction.

    Science.gov (United States)

    Liu, Zehua; Fatehi, Pedram; Jahan, M Sarwar; Ni, Yonghao

    2011-01-01

    In this paper, we proposed a new modification for an ethanol-based pulping process, which would consist of the pre-hydrolysis (pre-extraction) of wood chips for removing hemicelluloses; the ethanol extraction of pre-hydrolyzed wood chips for removing lignin; and the post purification of cellulose, leading to the production of pure cellulose. We also experimentally evaluated the separation of hemicelluloses from the pre-hydrolysis liquor (PHL) obtained from a pulp mill. To remove lignin from the PHL, it was acidified to a pH of 2, which resulted in 47% lignin precipitation. The lignin separation from the acidified PHL was further improved via adding polyethylene oxide and poly aluminum chloride or adding ethyl acetate. To recover the hemicelluloses from the acidified PHL, ethanol was added to the acidified PHL with a volumetric ratio of 4 to 1. The isolated lignin and hemicelluloses were characterized by a Fourier transform infrared spectroscopy (FTIR) and a gas permeation chromatography (GPC). Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Plasma Separation Process: Betacell (BCELL) code: User's manual. [Bipolar barrier junction

    Energy Technology Data Exchange (ETDEWEB)

    Taherzadeh, M.

    1987-11-13

    The emergence of clearly defined applications for (small or large) amounts of long-life and reliable power sources has given the design and production of betavoltaic systems a new life. Moreover, because of the availability of the plasma separation program, (PSP) at TRW, it is now possible to separate the most desirable radioisotopes for betacell power generating devices. A computer code, named BCELL, has been developed to model the betavoltaic concept by utilizing the available up-to-date source/cell parameters. In this program, attempts have been made to determine the betacell energy device maximum efficiency, degradation due to the emitting source radiation and source/cell lifetime power reduction processes. Additionally, comparison is made between the Schottky and PN junction devices for betacell battery design purposes. Certain computer code runs have been made to determine the JV distribution function and the upper limit of the betacell generated power for specified energy sources. A Ni beta emitting radioisotope was used for the energy source and certain semiconductors were used for the converter subsystem of the betacell system. Some results for a Promethium source are also given here for comparison. 16 refs.

  20. Interface control in organic heterojunction photovoltaic cells by phase separation processes

    Science.gov (United States)

    Heier, Jakob; Castro, Fernando A.; Nüesch, Frank; Hany, Roland

    2007-09-01

    Significant progress is being made in the photovoltaic energy conversion using organic semiconducting materials. One of the focuses of attention is the nanoscale morphology of the donor-acceptor mixture, to ensure efficient charge generation and loss-free charge transport at the same time. Using small molecule and polymer blend systems, recent efforts highlight the problems to ensure an optimized relationship between molecular structure, morphology and device properties. Here, we present two examples using a host/guest mixture approach for the controlled, sequential design of bilayer organic solar cell architectures that consist of a large interface area with connecting paths to the respective electrodes at the same time. In the first example, we employed polymer demixing during spin coating to produce a rough interface: surface directed spinodal decomposition leads to a 2-dimensional spinodal pattern with submicrometer features at the polymer-polymer interface. The second system consists of a solution of a blend of small molecules, where phase separation into a bilayer during spin coating is followed by dewetting. For both cases, the guest can be removed using a selective solvent after the phase separation process, and the rough host surface can be covered with a second active, semiconducting component. We explain the potential merits of the resulting interdigitated bilayer films, and explore to which extent polymer-polymer and surface interactions can be employed to create surface features in the nanometer range.

  1. Distinct constrictive processes, separated in time and space,divide Caulobacter inner and outer membranes

    Energy Technology Data Exchange (ETDEWEB)

    Judd, Ellen M.; Comolli, Luis R.; Chen, Joseph C.; Downing,Kenneth H.; Moerner, W.E.; McAdams, Harley H.

    2005-05-01

    Cryo-electron microscope tomography (cryoEM) and a fluorescence loss in photobleaching (FLIP) assay were used to characterize progression of the terminal stages of Caulobacter crescentus cell division. Tomographic cryoEM images of the cell division site show separate constrictive processes closing first the inner, and then the outer, membrane in a manner distinctly different from septum-forming bacteria. The smallest observed pre-fission constrictions were 60 nm for both the inner and outer membrane. FLIP experiments had previously shown cytoplasmic compartmentalization, when cytoplasmic proteins can no longer diffuse between the two nascent progeny cell compartments, occurring 18 min before daughter cell separation in a 135 min cell cycle. Here, we used FLIP experiments with membrane-bound and periplasmic fluorescent proteins to show that (1) periplasmic compartmentalization occurs after cytoplasmic compartmentalization, consistent with the cryoEM observations, and (2) inner membrane and periplasmic proteins can diffuse past the FtsZ constriction site, indicating that the cell division machinery does not block membrane diffusion.

  2. Accelerating chemical database searching using graphics processing units.

    Science.gov (United States)

    Liu, Pu; Agrafiotis, Dimitris K; Rassokhin, Dmitrii N; Yang, Eric

    2011-08-22

    The utility of chemoinformatics systems depends on the accurate computer representation and efficient manipulation of chemical compounds. In such systems, a small molecule is often digitized as a large fingerprint vector, where each element indicates the presence/absence or the number of occurrences of a particular structural feature. Since in theory the number of unique features can be exceedingly large, these fingerprint vectors are usually folded into much shorter ones using hashing and modulo operations, allowing fast "in-memory" manipulation and comparison of molecules. There is increasing evidence that lossless fingerprints can substantially improve retrieval performance in chemical database searching (substructure or similarity), which have led to the development of several lossless fingerprint compression algorithms. However, any gains in storage and retrieval afforded by compression need to be weighed against the extra computational burden required for decompression before these fingerprints can be compared. Here we demonstrate that graphics processing units (GPU) can greatly alleviate this problem, enabling the practical application of lossless fingerprints on large databases. More specifically, we show that, with the help of a ~$500 ordinary video card, the entire PubChem database of ~32 million compounds can be searched in ~0.2-2 s on average, which is 2 orders of magnitude faster than a conventional CPU. If multiple query patterns are processed in batch, the speedup is even more dramatic (less than 0.02-0.2 s/query for 1000 queries). In the present study, we use the Elias gamma compression algorithm, which results in a compression ratio as high as 0.097.

  3. Massively Parallel Latent Semantic Analyzes using a Graphics Processing Unit

    Energy Technology Data Exchange (ETDEWEB)

    Cavanagh, Joseph M [ORNL; Cui, Xiaohui [ORNL

    2009-01-01

    Latent Semantic Indexing (LSA) aims to reduce the dimensions of large Term-Document datasets using Singular Value Decomposition. However, with the ever expanding size of data sets, current implementations are not fast enough to quickly and easily compute the results on a standard PC. The Graphics Processing Unit (GPU) can solve some highly parallel problems much faster than the traditional sequential processor (CPU). Thus, a deployable system using a GPU to speedup large-scale LSA processes would be a much more effective choice (in terms of cost/performance ratio) than using a computer cluster. Due to the GPU s application-specific architecture, harnessing the GPU s computational prowess for LSA is a great challenge. We present a parallel LSA implementation on the GPU, using NVIDIA Compute Unified Device Architecture and Compute Unified Basic Linear Algebra Subprograms. The performance of this implementation is compared to traditional LSA implementation on CPU using an optimized Basic Linear Algebra Subprograms library. After implementation, we discovered that the GPU version of the algorithm was twice as fast for large matrices (1000x1000 and above) that had dimensions not divisible by 16. For large matrices that did have dimensions divisible by 16, the GPU algorithm ran five to six times faster than the CPU version. The large variation is due to architectural benefits the GPU has for matrices divisible by 16. It should be noted that the overall speeds for the CPU version did not vary from relative normal when the matrix dimensions were divisible by 16. Further research is needed in order to produce a fully implementable version of LSA. With that in mind, the research we presented shows that the GPU is a viable option for increasing the speed of LSA, in terms of cost/performance ratio.

  4. Towards a Unified Sentiment Lexicon Based on Graphics Processing Units

    Directory of Open Access Journals (Sweden)

    Liliana Ibeth Barbosa-Santillán

    2014-01-01

    Full Text Available This paper presents an approach to create what we have called a Unified Sentiment Lexicon (USL. This approach aims at aligning, unifying, and expanding the set of sentiment lexicons which are available on the web in order to increase their robustness of coverage. One problem related to the task of the automatic unification of different scores of sentiment lexicons is that there are multiple lexical entries for which the classification of positive, negative, or neutral {P,N,Z} depends on the unit of measurement used in the annotation methodology of the source sentiment lexicon. Our USL approach computes the unified strength of polarity of each lexical entry based on the Pearson correlation coefficient which measures how correlated lexical entries are with a value between 1 and −1, where 1 indicates that the lexical entries are perfectly correlated, 0 indicates no correlation, and −1 means they are perfectly inversely correlated and so is the UnifiedMetrics procedure for CPU and GPU, respectively. Another problem is the high processing time required for computing all the lexical entries in the unification task. Thus, the USL approach computes a subset of lexical entries in each of the 1344 GPU cores and uses parallel processing in order to unify 155802 lexical entries. The results of the analysis conducted using the USL approach show that the USL has 95.430 lexical entries, out of which there are 35.201 considered to be positive, 22.029 negative, and 38.200 neutral. Finally, the runtime was 10 minutes for 95.430 lexical entries; this allows a reduction of the time computing for the UnifiedMetrics by 3 times.

  5. High-throughput sequence alignment using Graphics Processing Units

    Directory of Open Access Journals (Sweden)

    Trapnell Cole

    2007-12-01

    Full Text Available Abstract Background The recent availability of new, less expensive high-throughput DNA sequencing technologies has yielded a dramatic increase in the volume of sequence data that must be analyzed. These data are being generated for several purposes, including genotyping, genome resequencing, metagenomics, and de novo genome assembly projects. Sequence alignment programs such as MUMmer have proven essential for analysis of these data, but researchers will need ever faster, high-throughput alignment tools running on inexpensive hardware to keep up with new sequence technologies. Results This paper describes MUMmerGPU, an open-source high-throughput parallel pairwise local sequence alignment program that runs on commodity Graphics Processing Units (GPUs in common workstations. MUMmerGPU uses the new Compute Unified Device Architecture (CUDA from nVidia to align multiple query sequences against a single reference sequence stored as a suffix tree. By processing the queries in parallel on the highly parallel graphics card, MUMmerGPU achieves more than a 10-fold speedup over a serial CPU version of the sequence alignment kernel, and outperforms the exact alignment component of MUMmer on a high end CPU by 3.5-fold in total application time when aligning reads from recent sequencing projects using Solexa/Illumina, 454, and Sanger sequencing technologies. Conclusion MUMmerGPU is a low cost, ultra-fast sequence alignment program designed to handle the increasing volume of data produced by new, high-throughput sequencing technologies. MUMmerGPU demonstrates that even memory-intensive applications can run significantly faster on the relatively low-cost GPU than on the CPU.

  6. Kinematic modelling of disc galaxies using graphics processing units

    Science.gov (United States)

    Bekiaris, G.; Glazebrook, K.; Fluke, C. J.; Abraham, R.

    2016-01-01

    With large-scale integral field spectroscopy (IFS) surveys of thousands of galaxies currently under-way or planned, the astronomical community is in need of methods, techniques and tools that will allow the analysis of huge amounts of data. We focus on the kinematic modelling of disc galaxies and investigate the potential use of massively parallel architectures, such as the graphics processing unit (GPU), as an accelerator for the computationally expensive model-fitting procedure. We review the algorithms involved in model-fitting and evaluate their suitability for GPU implementation. We employ different optimization techniques, including the Levenberg-Marquardt and nested sampling algorithms, but also a naive brute-force approach based on nested grids. We find that the GPU can accelerate the model-fitting procedure up to a factor of ˜100 when compared to a single-threaded CPU, and up to a factor of ˜10 when compared to a multithreaded dual CPU configuration. Our method's accuracy, precision and robustness are assessed by successfully recovering the kinematic properties of simulated data, and also by verifying the kinematic modelling results of galaxies from the GHASP and DYNAMO surveys as found in the literature. The resulting GBKFIT code is available for download from: http://supercomputing.swin.edu.au/gbkfit.

  7. Graphics processing unit-accelerated quantitative trait Loci detection.

    Science.gov (United States)

    Chapuis, Guillaume; Filangi, Olivier; Elsen, Jean-Michel; Lavenier, Dominique; Le Roy, Pascale

    2013-09-01

    Mapping quantitative trait loci (QTL) using genetic marker information is a time-consuming analysis that has interested the mapping community in recent decades. The increasing amount of genetic marker data allows one to consider ever more precise QTL analyses while increasing the demand for computation. Part of the difficulty of detecting QTLs resides in finding appropriate critical values or threshold values, above which a QTL effect is considered significant. Different approaches exist to determine these thresholds, using either empirical methods or algebraic approximations. In this article, we present a new implementation of existing software, QTLMap, which takes advantage of the data parallel nature of the problem by offsetting heavy computations to a graphics processing unit (GPU). Developments on the GPU were implemented using Cuda technology. This new implementation performs up to 75 times faster than the previous multicore implementation, while maintaining the same results and level of precision (Double Precision) and computing both QTL values and thresholds. This speedup allows one to perform more complex analyses, such as linkage disequilibrium linkage analyses (LDLA) and multiQTL analyses, in a reasonable time frame.

  8. Accelerating VASP electronic structure calculations using graphic processing units

    KAUST Repository

    Hacene, Mohamed

    2012-08-20

    We present a way to improve the performance of the electronic structure Vienna Ab initio Simulation Package (VASP) program. We show that high-performance computers equipped with graphics processing units (GPUs) as accelerators may reduce drastically the computation time when offloading these sections to the graphic chips. The procedure consists of (i) profiling the performance of the code to isolate the time-consuming parts, (ii) rewriting these so that the algorithms become better-suited for the chosen graphic accelerator, and (iii) optimizing memory traffic between the host computer and the GPU accelerator. We chose to accelerate VASP with NVIDIA GPU using CUDA. We compare the GPU and original versions of VASP by evaluating the Davidson and RMM-DIIS algorithms on chemical systems of up to 1100 atoms. In these tests, the total time is reduced by a factor between 3 and 8 when running on n (CPU core + GPU) compared to n CPU cores only, without any accuracy loss. © 2012 Wiley Periodicals, Inc.

  9. Parallelizing the Cellular Potts Model on graphics processing units

    Science.gov (United States)

    Tapia, José Juan; D'Souza, Roshan M.

    2011-04-01

    The Cellular Potts Model (CPM) is a lattice based modeling technique used for simulating cellular structures in computational biology. The computational complexity of the model means that current serial implementations restrict the size of simulation to a level well below biological relevance. Parallelization on computing clusters enables scaling the size of the simulation but marginally addresses computational speed due to the limited memory bandwidth between nodes. In this paper we present new data-parallel algorithms and data structures for simulating the Cellular Potts Model on graphics processing units. Our implementations handle most terms in the Hamiltonian, including cell-cell adhesion constraint, cell volume constraint, cell surface area constraint, and cell haptotaxis. We use fine level checkerboards with lock mechanisms using atomic operations to enable consistent updates while maintaining a high level of parallelism. A new data-parallel memory allocation algorithm has been developed to handle cell division. Tests show that our implementation enables simulations of >10 cells with lattice sizes of up to 256 3 on a single graphics card. Benchmarks show that our implementation runs ˜80× faster than serial implementations, and ˜5× faster than previous parallel implementations on computing clusters consisting of 25 nodes. The wide availability and economy of graphics cards mean that our techniques will enable simulation of realistically sized models at a fraction of the time and cost of previous implementations and are expected to greatly broaden the scope of CPM applications.

  10. Kinematic Modelling of Disc Galaxies using Graphics Processing Units

    CERN Document Server

    Bekiaris, Georgios; Fluke, Christopher J; Abraham, Roberto

    2015-01-01

    With large-scale Integral Field Spectroscopy (IFS) surveys of thousands of galaxies currently under-way or planned, the astronomical community is in need of methods, techniques and tools that will allow the analysis of huge amounts of data. We focus on the kinematic modelling of disc galaxies and investigate the potential use of massively parallel architectures, such as the Graphics Processing Unit (GPU), as an accelerator for the computationally expensive model-fitting procedure. We review the algorithms involved in model-fitting and evaluate their suitability for GPU implementation. We employ different optimization techniques, including the Levenberg-Marquardt and Nested Sampling algorithms, but also a naive brute-force approach based on Nested Grids. We find that the GPU can accelerate the model-fitting procedure up to a factor of ~100 when compared to a single-threaded CPU, and up to a factor of ~10 when compared to a multi-threaded dual CPU configuration. Our method's accuracy, precision and robustness a...

  11. Efficient graphics processing unit-based voxel carving for surveillance

    Science.gov (United States)

    Ober-Gecks, Antje; Zwicker, Marius; Henrich, Dominik

    2016-07-01

    A graphics processing unit (GPU)-based implementation of a space carving method for the reconstruction of the photo hull is presented. In particular, the generalized voxel coloring with item buffer approach is transferred to the GPU. The fast computation on the GPU is realized by an incrementally calculated standard deviation within the likelihood ratio test, which is applied as color consistency criterion. A fast and efficient computation of complete voxel-pixel projections is provided using volume rendering methods. This generates a speedup of the iterative carving procedure while considering all given pixel color information. Different volume rendering methods, such as texture mapping and raycasting, are examined. The termination of the voxel carving procedure is controlled through an anytime concept. The photo hull algorithm is examined for its applicability to real-world surveillance scenarios as an online reconstruction method. For this reason, a GPU-based redesign of a visual hull algorithm is provided that utilizes geometric knowledge about known static occluders of the scene in order to create a conservative and complete visual hull that includes all given objects. This visual hull approximation serves as input for the photo hull algorithm.

  12. A Note on the Properties of Generalised Separable Spatial Autoregressive Process

    Directory of Open Access Journals (Sweden)

    Mahendran Shitan

    2009-01-01

    Full Text Available Spatial modelling has its applications in many fields like geology, agriculture, meteorology, geography, and so forth. In time series a class of models known as Generalised Autoregressive (GAR has been introduced by Peiris (2003 that includes an index parameter δ. It has been shown that the inclusion of this additional parameter aids in modelling and forecasting many real data sets. This paper studies the properties of a new class of spatial autoregressive process of order 1 with an index. We will call this a Generalised Separable Spatial Autoregressive (GENSSAR Model. The spectral density function (SDF, the autocovariance function (ACVF, and the autocorrelation function (ACF are derived. The theoretical ACF and SDF plots are presented as three-dimensional figures.

  13. Simultaneous design of ionic liquid entrainers and energy efficient azeotropic separation processes

    DEFF Research Database (Denmark)

    Roughton, Brock C.; Christian, Brianna; White, John;

    2012-01-01

    A methodology and tool set for the simultaneous design of ionic liquid entrainers and azeotropic separation processes is presented. By adjusting the cation, anion, and alkyl chain length on the cation, the properties of the ionic liquid can be adjusted to design an entrainer for a given azeotropic...... mixture. Several group contribution property models available in literature have been used along with a newly developed group contribution solubility parameter model and UNIFAC model for ionic liquids (UNIFAC-IL). For a given azeotropic mixture, an ionic liquid is designed using a computer-aided molecular...... material and energy requirements when compared to an ionic liquid known to experimentally break a given azeotrope but not designed using CAMD methods. The acetone–methanol and ethanol–water azeotropes are provided as examples....

  14. pH control structure design for a periodically operated membrane separation process

    DEFF Research Database (Denmark)

    Prado Rubio, Oscar Andres; Jørgensen, Sten Bay; Jonsson, Gunnar Eigil

    2012-01-01

    A bioreactor integrated with an electrically driven membrane separation process (Reverse Electro-Enhanced Dialysis – REED) is under investigation as potential technology for intensifying lactic acid bioproduction. In this contribution the pH regulation issue in the periodically operated REED module...... is studied. A methodology for control structure design is proposed to handle the dynamic system. A sensitivity analysis is used for the conceptual design of the control structure. Dynamic simulations are employed to evaluate the sensitivity index. From the analysis a periodic input-resetting control...... structure is selected. The system controls pH using the imposed current density and resets the current density manipulating the hydroxide inlet concentration to the dialysate channel. The control structure is satisfactorily achieving a desired pH at the outlet of the feed channel in REED from period...

  15. A NEW PROCESS DEVELOPED FOR SEPARATION OF LIGNIN FROM AMMONIUM HYDROXIDE PRETREATMENT SOLUTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, S.; Gorensek, M.; Milliken, C.

    2010-12-14

    A method is described for separating lignin from liquid solutions resulting from the pretreatment of lignocellulosic materials such as switchgrass with ammonium hydroxide. The method involves a sequence of steps including acidification, evaporation, and precipitation or centrifugation that are performed under defined conditions, and results in a relatively pure, solid lignin product. The method is tested on ammonium hydroxide solutions containing lignin extracted from switchgrass. Experimental results show that the method is capable of recovering between 66-95% of dissolved lignin as a precipitated solid. Cost estimates of pilot-scale and industrial-scale expressions of the process indicate that breakeven lignin prices of $2.36/kg and $0.78/kg, respectively, may be obtainable with this recovery method.

  16. Separate Perceptual and Neural Processing of Velocity- and Disparity-Based 3D Motion Signals.

    Science.gov (United States)

    Joo, Sung Jun; Czuba, Thaddeus B; Cormack, Lawrence K; Huk, Alexander C

    2016-10-19

    Although the visual system uses both velocity- and disparity-based binocular information for computing 3D motion, it is unknown whether (and how) these two signals interact. We found that these two binocular signals are processed distinctly at the levels of both cortical activity in human MT and perception. In human MT, adaptation to both velocity-based and disparity-based 3D motions demonstrated direction-selective neuroimaging responses. However, when adaptation to one cue was probed using the other cue, there was no evidence of interaction between them (i.e., there was no "cross-cue" adaptation). Analogous psychophysical measurements yielded correspondingly weak cross-cue motion aftereffects (MAEs) in the face of very strong within-cue adaptation. In a direct test of perceptual independence, adapting to opposite 3D directions generated by different binocular cues resulted in simultaneous, superimposed, opposite-direction MAEs. These findings suggest that velocity- and disparity-based 3D motion signals may both flow through area MT but constitute distinct signals and pathways. Recent human neuroimaging and monkey electrophysiology have revealed 3D motion selectivity in area MT, which is driven by both velocity-based and disparity-based 3D motion signals. However, to elucidate the neural mechanisms by which the brain extracts 3D motion given these binocular signals, it is essential to understand how-or indeed if-these two binocular cues interact. We show that velocity-based and disparity-based signals are mostly separate at the levels of both fMRI responses in area MT and perception. Our findings suggest that the two binocular cues for 3D motion might be processed by separate specialized mechanisms. Copyright © 2016 the authors 0270-6474/16/3610791-12$15.00/0.

  17. Insects associated with the composting process of solid urban waste separated at the source

    Directory of Open Access Journals (Sweden)

    Gladis Estela Morales

    2010-01-01

    Full Text Available Sarcosaprophagous macroinvertebrates (earthworms, termites and a number of Diptera larvae enhance changes in the physical and chemical properties of organic matter during degradation and stabilization processes in composting, causing a decrease in the molecular weights of compounds. This activity makes these organisms excellent recyclers of organic matter. This article evaluates the succession of insects associated with the decomposition of solid urban waste separated at the source. The study was carried out in the city of Medellin, Colombia. A total of 11,732 individuals were determined, belonging to the classes Insecta and Arachnida. Species of three orders of Insecta were identified, Diptera, Coleoptera and Hymenoptera. Diptera corresponding to 98.5% of the total, was the most abundant and diverse group, with 16 families (Calliphoridae, Drosophilidae, Psychodidae, Fanniidae, Muscidae, Milichiidae, Ulidiidae, Scatopsidae, Sepsidae, Sphaeroceridae, Heleomyzidae, Stratiomyidae, Syrphidae, Phoridae, Tephritidae and Curtonotidae followed by Coleoptera with five families (Carabidae, Staphylinidae, Ptiliidae, Hydrophilidae and Phalacaridae. Three stages were observed during the composting process, allowing species associated with each stage to be identified. Other species were also present throughout the whole process. In terms of number of species, Diptera was the most important group observed, particularly Ornidia obesa, considered a highly invasive species, and Hermetia illuscens, both reported as beneficial for decomposition of organic matter.

  18. Undergraduate Game Degree Programs in the United Kingdom and United States: A Comparison of the Curriculum Planning Process

    Science.gov (United States)

    McGill, Monica M.

    2010-01-01

    Digital games are marketed, mass-produced, and consumed by an increasing number of people and the game industry is only expected to grow. In response, post-secondary institutions in the United Kingdom (UK) and the United States (US) have started to create game degree programs. Though curriculum theorists provide insight into the process of…

  19. Undergraduate Game Degree Programs in the United Kingdom and United States: A Comparison of the Curriculum Planning Process

    Science.gov (United States)

    McGill, Monica M.

    2010-01-01

    Digital games are marketed, mass-produced, and consumed by an increasing number of people and the game industry is only expected to grow. In response, post-secondary institutions in the United Kingdom (UK) and the United States (US) have started to create game degree programs. Though curriculum theorists provide insight into the process of…

  20. Processes for separating the noble fission gases xenon and krypton from waste gases from nuclear plants

    Energy Technology Data Exchange (ETDEWEB)

    Henrich, E.; Hufner, R.; Weirich, F.

    1983-08-23

    A process is claimed for separating the noble fission gases xenon and krypton from a prepurified waste gas from a nuclear plant. The prepurified waste gas is brought into contact with liquid Cl/sub 2/CF/sub 2/ as an absorption agent in a first column at an operating pressure which is less than or equal to normal pressure, whereby Xe, Kr, N/sub 2/O, CO/sub 2/, O/sub 2/ and N/sub 2/ are absorbed by the agent. Subsequently, the liquid absorption agent containing the absorbed gases is heated to substantially the boiling temperature of Cl/sub 2/CF/sub 2/ at the operating pressure for vaporizing part of the liquid absorption agent and desorbing the absorbed Kr, N/sub 2/ and O/sub 2/ to thereby separate the Kr and Xe from one another. The desorbed Kr, N/sub 2/ and O/sub 2/ gases are separated from the vaporized absorption agent. The liquid absorption agent which has not been vaporized is treated to recover Xe, N/sub 2/O and CO/sub 2/. Waste gas containing Kr, N/sub 2/ and O/sub 2/ from the head of the first column is brought into contact with liquid Cl/sub 2/CF/sub 2/ as an absorption agent in a second column, at an operating pressure which is less than or equal to normal pressure, whereby Kr, N/sub 2/ and O/sub 2/ are absorbed. Subsequently, the liquid absorption agent in the second column containing the absorbed Kr, N/sub 2/ and O/sub 2/ is heated substantially the boiling temperature of the Cl/sub 2/CF/sub 2/ at the operating pressure for vaporizing part of the liquid absorption agent and desorbing the absorbed N/sub 2/ and O/sub 2/. The liquid Cl/sub 2/CF/sub 2/ which has not been vaporized is treated to recover KR. An apparatus is provided for performing the process.

  1. Remote Maintenance Design Guide for Compact Processing Units

    Energy Technology Data Exchange (ETDEWEB)

    Draper, J.V.

    2000-07-13

    Oak Ridge National Laboratory (ORNL) Robotics and Process Systems (RPSD) personnel have extensive experience working with remotely operated and maintained systems. These systems require expert knowledge in teleoperation, human factors, telerobotics, and other robotic devices so that remote equipment may be manipulated, operated, serviced, surveyed, and moved about in a hazardous environment. The RPSD staff has a wealth of experience in this area, including knowledge in the broad topics of human factors, modular electronics, modular mechanical systems, hardware design, and specialized tooling. Examples of projects that illustrate and highlight RPSD's unique experience in remote systems design and application include the following: (1) design of a remote shear and remote dissolver systems in support of U.S. Department of Energy (DOE) fuel recycling research and nuclear power missions; (2) building remotely operated mobile systems for metrology and characterizing hazardous facilities in support of remote operations within those facilities; (3) construction of modular robotic arms, including the Laboratory Telerobotic Manipulator, which was designed for the National Aeronautics and Space Administration (NASA) and the Advanced ServoManipulator, which was designed for the DOE; (4) design of remotely operated laboratories, including chemical analysis and biochemical processing laboratories; (5) construction of remote systems for environmental clean up and characterization, including underwater, buried waste, underground storage tank (UST) and decontamination and dismantlement (D&D) applications. Remote maintenance has played a significant role in fuel reprocessing because of combined chemical and radiological contamination. Furthermore, remote maintenance is expected to play a strong role in future waste remediation. The compact processing units (CPUs) being designed for use in underground waste storage tank remediation are examples of improvements in systems

  2. LACAN Code for global simulation of SILVA laser isotope separation process; L.A.C.A.N.: Code de simulation globale du procede de separation isotopique par laser Silva

    Energy Technology Data Exchange (ETDEWEB)

    Quaegebeur, J.P.; Goldstein, S.

    1991-12-31

    Functions used for the definition of a SILVA separator require quite a lot of dimensional and operating parameters. Sizing a laser isotope separation plant needs the determination of these parameters for optimization. In the LACAN simulation code, each elementary physical process is described by simplified models. An example is given for a uranium isotope separation plant whose separation power is optimized with 6 parameters.

  3. Membrane-assisted vapor stripping: energy efficient hybrid distillation-vapor permeation process for alcohol-water separation

    Science.gov (United States)

    BACKGROUND: Energy efficient alternatives to distillation for alcohol recovery from dilute solution are needed to improve biofuel sustainability. A process integrating steam stripping with a vapor compression step and a vapor permeation membrane separation step is proposed. The...

  4. Evaluation, engineering and development of advanced cyclone processes. Final separating media evaluation and test report (FSMER). Appendices

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    This report consists of appendices pertaining to the separating media evaluation (calcium nitrate solution) and testing for an advanced cyclone process. Appendices include: materials safety data, aqueous medium regeneration, pH control strategy, and other notes and data.

  5. Membrane-assisted vapor stripping: energy efficient hybrid distillation-vapor permeation process for alcohol-water separation

    Science.gov (United States)

    BACKGROUND: Energy efficient alternatives to distillation for alcohol recovery from dilute solution are needed to improve biofuel sustainability. A process integrating steam stripping with a vapor compression step and a vapor permeation membrane separation step is proposed. The...

  6. Quantification of Cell-Free DNA in Red Blood Cell Units in Different Whole Blood Processing Methods

    Directory of Open Access Journals (Sweden)

    Andrew W. Shih

    2016-01-01

    Full Text Available Background. Whole blood donations in Canada are processed by either the red cell filtration (RCF or whole blood filtration (WBF methods, where leukoreduction is potentially delayed in WBF. Fresh WBF red blood cells (RBCs have been associated with increased in-hospital mortality after transfusion. Cell-free DNA (cfDNA is released by neutrophils prior to leukoreduction, degraded during RBC storage, and is associated with adverse patient outcomes. We explored cfDNA levels in RBCs prepared by RCF and WBF and different storage durations. Methods. Equal numbers of fresh (stored ≤14 days and older RBCs were sampled. cfDNA was quantified by spectrophotometry and PicoGreen. Separate regression models determined the association with processing method and storage duration and their interaction on cfDNA. Results. cfDNA in 120 RBC units (73 RCF, 47 WBF were measured. Using PicoGreen, WBF units overall had higher cfDNA than RCF units (p=0.0010; fresh WBF units had higher cfDNA than fresh RCF units (p=0.0093. Using spectrophotometry, fresh RBC units overall had higher cfDNA than older units (p=0.0031; fresh WBF RBCs had higher cfDNA than older RCF RBCs (p=0.024. Conclusion. Higher cfDNA in fresh WBF was observed compared to older RCF blood. Further study is required for association with patient outcomes.

  7. Modeling of the separation performance of nanofiltration membranes and its role in the applications of nanofiltration technology in product separation processes

    Institute of Scientific and Technical Information of China (English)

    SHANG Weijuan; WANG Daxin; WANG Xiaolin

    2007-01-01

    Although there is a voluminous literature on the determination of structural parameters (the pore radius,the ratio of membrane porosity to membrane thickness) of a nanofiltration (NF) membrane and its separation performance (such as the rejection and the permeation flux) by the simplified Teorell-Meyer-Sievers (TMS) model,little of this research comments on other theories and the consequences of linking modeling evaluation to technological application.Theories used to predict the separation performance of an NF membrane usually include:the non-equilibrium thermodynamic model,the pore model,the space charge model,the TMS model,the electrostatic and steric-hindrance model,and the semiempirical model.In the article,we briefly trace the origins or the general ideas of the above-mentioned theories.From there,recent researches on the characterization of membrane structural parameters and electrical properties (such as the surface charge density qw) are reviewed.We then turn to research on the separation performance of an NF membrane for single-component solutions of inorganic electrolytes,neutral organic solutions,and a mixture solution of electrolytes or that of an electrolyte and neutral organic solute.Afterwards,we outline the applications of NF technology in the processes of product separation and conclude with a discussion on the role of models in such applications.

  8. A Block-Asynchronous Relaxation Method for Graphics Processing Units

    Energy Technology Data Exchange (ETDEWEB)

    Antz, Hartwig [Karlsruhe Inst. of Technology (KIT) (Germany); Tomov, Stanimire [Univ. of Tennessee, Knoxville, TN (United States); Dongarra, Jack [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Manchester (United Kingdom); Heuveline, Vincent [Karlsruhe Inst. of Technology (KIT) (Germany)

    2011-11-30

    In this paper, we analyze the potential of asynchronous relaxation methods on Graphics Processing Units (GPUs). For this purpose, we developed a set of asynchronous iteration algorithms in CUDA and compared them with a parallel implementation of synchronous relaxation methods on CPU-based systems. For a set of test matrices taken from the University of Florida Matrix Collection we monitor the convergence behavior, the average iteration time and the total time-to-solution time. Analyzing the results, we observe that even for our most basic asynchronous relaxation scheme, despite its lower convergence rate compared to the Gauss-Seidel relaxation (that we expected), the asynchronous iteration running on GPUs is still able to provide solution approximations of certain accuracy in considerably shorter time then Gauss- Seidel running on CPUs. Hence, it overcompensates for the slower convergence by exploiting the scalability and the good fit of the asynchronous schemes for the highly parallel GPU architectures. Further, enhancing the most basic asynchronous approach with hybrid schemes – using multiple iterations within the ”subdomain” handled by a GPU thread block and Jacobi-like asynchronous updates across the ”boundaries”, subject to tuning various parameters – we manage to not only recover the loss of global convergence but often accelerate convergence of up to two times (compared to the effective but difficult to parallelize Gauss-Seidel type of schemes), while keeping the execution time of a global iteration practically the same. This shows the high potential of the asynchronous methods not only as a stand alone numerical solver for linear systems of equations fulfilling certain convergence conditions but more importantly as a smoother in multigrid methods. Due to the explosion of parallelism in todays architecture designs, the significance and the need for asynchronous methods, as the ones described in this work, is expected to grow.

  9. Flocking-based Document Clustering on the Graphics Processing Unit

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Xiaohui [ORNL; Potok, Thomas E [ORNL; Patton, Robert M [ORNL; ST Charles, Jesse Lee [ORNL

    2008-01-01

    Abstract?Analyzing and grouping documents by content is a complex problem. One explored method of solving this problem borrows from nature, imitating the flocking behavior of birds. Each bird represents a single document and flies toward other documents that are similar to it. One limitation of this method of document clustering is its complexity O(n2). As the number of documents grows, it becomes increasingly difficult to receive results in a reasonable amount of time. However, flocking behavior, along with most naturally inspired algorithms such as ant colony optimization and particle swarm optimization, are highly parallel and have found increased performance on expensive cluster computers. In the last few years, the graphics processing unit (GPU) has received attention for its ability to solve highly-parallel and semi-parallel problems much faster than the traditional sequential processor. Some applications see a huge increase in performance on this new platform. The cost of these high-performance devices is also marginal when compared with the price of cluster machines. In this paper, we have conducted research to exploit this architecture and apply its strengths to the document flocking problem. Our results highlight the potential benefit the GPU brings to all naturally inspired algorithms. Using the CUDA platform from NIVIDA? we developed a document flocking implementation to be run on the NIVIDA?GEFORCE 8800. Additionally, we developed a similar but sequential implementation of the same algorithm to be run on a desktop CPU. We tested the performance of each on groups of news articles ranging in size from 200 to 3000 documents. The results of these tests were very significant. Performance gains ranged from three to nearly five times improvement of the GPU over the CPU implementation. This dramatic improvement in runtime makes the GPU a potentially revolutionary platform for document clustering algorithms.

  10. Handling geophysical flows: Numerical modelling using Graphical Processing Units

    Science.gov (United States)

    Garcia-Navarro, Pilar; Lacasta, Asier; Juez, Carmelo; Morales-Hernandez, Mario

    2016-04-01

    Computational tools may help engineers in the assessment of sediment transport during the decision-making processes. The main requirements are that the numerical results have to be accurate and simulation models must be fast. The present work is based on the 2D shallow water equations in combination with the 2D Exner equation [1]. The resulting numerical model accuracy was already discussed in previous work. Regarding the speed of the computation, the Exner equation slows down the already costly 2D shallow water model as the number of variables to solve is increased and the numerical stability is more restrictive. On the other hand, the movement of poorly sorted material over steep areas constitutes a hazardous environmental problem. Computational tools help in the predictions of such landslides [2]. In order to overcome this problem, this work proposes the use of Graphical Processing Units (GPUs) for decreasing significantly the simulation time [3, 4]. The numerical scheme implemented in GPU is based on a finite volume scheme. The mathematical model and the numerical implementation are compared against experimental and field data. In addition, the computational times obtained with the Graphical Hardware technology are compared against Single-Core (sequential) and Multi-Core (parallel) CPU implementations. References [Juez et al.(2014)] Juez, C., Murillo, J., & Garca-Navarro, P. (2014) A 2D weakly-coupled and efficient numerical model for transient shallow flow and movable bed. Advances in Water Resources. 71 93-109. [Juez et al.(2013)] Juez, C., Murillo, J., & Garca-Navarro, P. (2013) . 2D simulation of granular flow over irregular steep slopes using global and local coordinates. Journal of Computational Physics. 225 166-204. [Lacasta et al.(2014)] Lacasta, A., Morales-Hernndez, M., Murillo, J., & Garca-Navarro, P. (2014) An optimized GPU implementation of a 2D free surface simulation model on unstructured meshes Advances in Engineering Software. 78 1-15. [Lacasta

  11. Viscoelastic Finite Difference Modeling Using Graphics Processing Units

    Science.gov (United States)

    Fabien-Ouellet, G.; Gloaguen, E.; Giroux, B.

    2014-12-01

    Full waveform seismic modeling requires a huge amount of computing power that still challenges today's technology. This limits the applicability of powerful processing approaches in seismic exploration like full-waveform inversion. This paper explores the use of Graphics Processing Units (GPU) to compute a time based finite-difference solution to the viscoelastic wave equation. The aim is to investigate whether the adoption of the GPU technology is susceptible to reduce significantly the computing time of simulations. The code presented herein is based on the freely accessible software of Bohlen (2002) in 2D provided under a General Public License (GNU) licence. This implementation is based on a second order centred differences scheme to approximate time differences and staggered grid schemes with centred difference of order 2, 4, 6, 8, and 12 for spatial derivatives. The code is fully parallel and is written using the Message Passing Interface (MPI), and it thus supports simulations of vast seismic models on a cluster of CPUs. To port the code from Bohlen (2002) on GPUs, the OpenCl framework was chosen for its ability to work on both CPUs and GPUs and its adoption by most of GPU manufacturers. In our implementation, OpenCL works in conjunction with MPI, which allows computations on a cluster of GPU for large-scale model simulations. We tested our code for model sizes between 1002 and 60002 elements. Comparison shows a decrease in computation time of more than two orders of magnitude between the GPU implementation run on a AMD Radeon HD 7950 and the CPU implementation run on a 2.26 GHz Intel Xeon Quad-Core. The speed-up varies depending on the order of the finite difference approximation and generally increases for higher orders. Increasing speed-ups are also obtained for increasing model size, which can be explained by kernel overheads and delays introduced by memory transfers to and from the GPU through the PCI-E bus. Those tests indicate that the GPU memory size

  12. OPTIMIZING OF TIO2 SEPARATION FROM BANGKA ILMENITE BY LEACHING PROCESS USING HCL

    Directory of Open Access Journals (Sweden)

    Sayekti Wahyuningsih

    2016-09-01

    Full Text Available Separation of titanium dioxide (TiO2 from ilmenite Bangka has been done byleaching processusing HCl. Before the leaching process, ilmenite was roastedat 900oC for pre-oxidation (preliminary - oxidation. Leaching process carried out by variation of HCl concentration and Fe0 reducing agents. While the re-deposition of dissolved Ti4+ ion achieved by hydrolysis - condensation using 2-propanol-H2O solvents. Leaching the pre-oxidazed ilmenite shows the phase change of pseudobrokite (Fe2TiO5 into hematite (Fe2O3 and synthetic rutile (TiO2. Formation of the synthetic rutile was characterized by the loss of intensity of Fe2TiO5 at 26.65º and the increasing intensity of rutile TiO2 at 27.49º.The dissolution rate of both titanium and iron was found to be increased, generally, by increasing acid concentration in case of HCl as well as by increasing ilmenite: Fe0 ratio. Precipitation of the dissolved titania with 2-propanol -H2Oof 8:2(v /v produced anatase TiO2 due to the hydrolysis and condensation of Ti-tetra isopropoxide complexes.

  13. Pyrometallurgical separation processes of radionuclides contained in the irradiated nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    De Cordoba, Guadalupe; Caravaca, Concha; Quinones, Javier; Gonzalez de la Huebra, Angel

    2005-01-01

    Faced with the new options for the high level waste management, the ''Partitioning and Transmutation (P and T)'' of the radio nuclides contained in the irradiated nuclear fuel appear as a promising option from different points of view, such as environmental risk, radiotoxic inventory reduction, economic, etc.. The present work is part of a research project called ''PYROREP'' of the 5th FWP of the EU that studied the feasibility of the actinide separation from the rest of fission products contained in the irradiated nuclear fuel by pyrometallurgical processes with the aim of their transmutation. In order to design these processes it is necessary to determine basic thermodynamic and kinetic data of the radionuclides contained in the nuclear fuel in molten salt media. The electrochemical study of uranium, samarium and molybdenum in the eutectic melt LiCl - KCl has been performed at a tungsten electrode in the temperature range of 450 - 600 deg C in order to obtain these basic properties. (Author)

  14. Separating macroecological pattern and process: comparing ecological, economic, and geological systems.

    Directory of Open Access Journals (Sweden)

    Benjamin Blonder

    Full Text Available Theories of biodiversity rest on several macroecological patterns describing the relationship between species abundance and diversity. A central problem is that all theories make similar predictions for these patterns despite disparate assumptions. A troubling implication is that these patterns may not reflect anything unique about organizational principles of biology or the functioning of ecological systems. To test this, we analyze five datasets from ecological, economic, and geological systems that describe the distribution of objects across categories in the United States. At the level of functional form ('first-order effects', these patterns are not unique to ecological systems, indicating they may reveal little about biological process. However, we show that mechanism can be better revealed in the scale-dependency of first-order patterns ('second-order effects'. These results provide a roadmap for biodiversity theory to move beyond traditional patterns, and also suggest ways in which macroecological theory can constrain the dynamics of economic systems.

  15. Separating macroecological pattern and process: comparing ecological, economic, and geological systems.

    Science.gov (United States)

    Blonder, Benjamin; Sloat, Lindsey; Enquist, Brian J; McGill, Brian

    2014-01-01

    Theories of biodiversity rest on several macroecological patterns describing the relationship between species abundance and diversity. A central problem is that all theories make similar predictions for these patterns despite disparate assumptions. A troubling implication is that these patterns may not reflect anything unique about organizational principles of biology or the functioning of ecological systems. To test this, we analyze five datasets from ecological, economic, and geological systems that describe the distribution of objects across categories in the United States. At the level of functional form ('first-order effects'), these patterns are not unique to ecological systems, indicating they may reveal little about biological process. However, we show that mechanism can be better revealed in the scale-dependency of first-order patterns ('second-order effects'). These results provide a roadmap for biodiversity theory to move beyond traditional patterns, and also suggest ways in which macroecological theory can constrain the dynamics of economic systems.

  16. Experiments on gas-ash separation processes in volcanic umbrella plumes

    Science.gov (United States)

    Holasek, Rick E.; Woods, Andrew W.; Self, Stephen

    1996-03-01

    We present a series of analogue laboratory experiments which simulate the separation of ash and gas and the formation of secondary intrusions from finite volcanic umbrella plumes. We examined the lateral spreading of mixtures of freshwater and particles released into a laboratory tank containing a uniformly stratified aqueous solution. For times smaller than the sedimentation time of particles through the intrusion, the current remains coherent and intrudes laterally. As some of the particles settle into the underlying ambient fluid, a layer of particle-depleted fluid develops below the upper surface of the current and the density of the residual fluid is reduced. Over longer times, the intrusion ceases to be coherent, with small fingers of relatively buoyant, particle-depleted fluid rising from the upper part of the intrusion into the overlying fluid. Meanwhile, the lateral motion of the injected solution induces a return flow in the ambient fluid which sweeps some of the particles sedimenting from the lower surface of the intrusion inwards. As a result, relatively dense particle-laden fluid collects below the intrusion and then sinks into the underlying fluid. Eventually this fluid reaches a new neutral buoyancy height, where it intrudes to form a second laterally spreading current below the original intrusion. The process then repeats to form further weaker intrusions below. These results of the separation of the ash and volcanic gas in an umbrella plume are consistent with field observations at Sakurajima volcano where positively charged plumes, thought to consist of volcanic gas, have been observed above negatively charged plumes of ash. This work also suggests that volcanic aerosols may form up to a kilometer above the original injection height of the ash. In a strong wind shear, this could result in very different trajectories of the ash and gas and so be important for evaluating the impact of ash plumes on both aviation safety and volcanic aerosol formation

  17. Study of selective heating at ion cyclotron resonance for the plasma separation process

    Science.gov (United States)

    Compant La Fontaine, A.; Pashkovsky, V. G.

    1995-12-01

    The plasma separation process by ion cyclotron resonance heating (ICRH) is studied both theoretically and experimentally on two devices: the first one called ERIC (Ion Cyclotron Resonance Experiment) at Saclay (France) [P. Louvet, Proceedings of the 2nd Workshop on Separation Phenomena in Liquids and Gases, Versailles, France, 1989, edited by P. Louvet, P. Noe, and Soubbaramayer (Centre d'Etudes Nucléaires de Saclay and Cité Scientifique Parcs et Technopoles, Ile de France Sud, France, 1989), Vol. 1, p. 5] and the other one named SIRENA at the Kurchatov Institute, Moscow, Russia [A. I. Karchevskii et al., Plasma Phys. Rep. 19, 214 (1993)]. The radio frequency (RF) transversal magnetic field is measured by a magnetic probe both in plasma and vacuum and its Fourier spectrum versus the axial wave number kz is obtained. These results are in agreement with the electromagnetic (EM) field calculation model based on resolution of Maxwell equations by a time-harmonic scheme studied here. Various axial boundary conditions models used to compute the EM field are considered. The RF magnetic field is weakly influenced by the plasma while the electric field components are strongly disturbed due to space-charge effects. In the plasma the transversal electric field is enhanced and the kz spectrum is narrower than in vacuum. The calculation of the resonant isotope heating is made by the Runge-Kutta method. The influence of ion-ion collisions, inhomogeneity of the static magnetic field B0, and the RF transversal magnetic field component on the ion acceleration is examined. These results are successfully compared with experiments of a minor isotope 44Ca heating measurements, made with an energy analyzer.

  18. Study of selective heating at ion cyclotron resonance for the plasma separation process

    Energy Technology Data Exchange (ETDEWEB)

    Compant La Fontaine, A. [Direction du Cycle du Combustible/Departement des Procedes d` Enrichissement, Service de Physique, d` Experimentation et d` Analyse, Commissariat a l` Energie Atomique, Centre d` Etudes de Saclay, 91191 Gif-sur-Yvette Cedex (France); Pashkovsky, V.G. [Molecular Physics Institute, RRC Kurchatov Institute 123182, Moscow (Russian Federation)

    1995-12-01

    The plasma separation process by ion cyclotron resonance heating (ICRH) is studied both theoretically and experimentally on two devices: the first one called ERIC (Ion Cyclotron Resonance Experiment) at Saclay (France) [P. Louvet, {ital Proceedings} {ital of} {ital the} 2{ital nd} {ital Workshop} {ital on} {ital Separation} {ital Phenomena} {ital in} {ital Liquids} {ital and} {ital Gases}, Versailles, France, 1989, edited by P. Louvet, P. Noe, and Soubbaramayer (Centre d`Etudes Nucleaires de Saclay and Cite Scientifique Parcs et Technopoles, Ile de France Sud, France, 1989), Vol. 1, p. 5] and the other one named SIRENA at the Kurchatov Institute, Moscow, Russia [A. I. Karchevskii {ital et} {ital al}., Plasma Phys. Rep. {bold 19}, 214 (1993)]. The radio frequency (RF) transversal magnetic field is measured by a magnetic probe both in plasma and vacuum and its Fourier spectrum versus the axial wave number {ital k}{sub {ital z}} is obtained. These results are in agreement with the electromagnetic (EM) field calculation model based on resolution of Maxwell equations by a time-harmonic scheme studied here. Various axial boundary conditions models used to compute the EM field are considered. The RF magnetic field is weakly influenced by the plasma while the electric field components are strongly disturbed due to space-charge effects. In the plasma the transversal electric field is enhanced and the {ital k}{sub {ital z}} spectrum is narrower than in vacuum. The calculation of the resonant isotope heating is made by the Runge--Kutta method. The influence of ion--ion collisions, inhomogeneity of the static magnetic field {ital B}{sub 0}, and the RF transversal magnetic field component on the ion acceleration is examined. These results are successfully compared with experiments of a minor isotope {sup 44}Ca heating measurements, made with an energy analyzer. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  19. Calculation of HELAS amplitudes for QCD processes using graphics processing unit (GPU)

    CERN Document Server

    Hagiwara, K; Okamura, N; Rainwater, D L; Stelzer, T

    2009-01-01

    We use a graphics processing unit (GPU) for fast calculations of helicity amplitudes of quark and gluon scattering processes in massless QCD. New HEGET ({\\bf H}ELAS {\\bf E}valuation with {\\bf G}PU {\\bf E}nhanced {\\bf T}echnology) codes for gluon self-interactions are introduced, and a C++ program to convert the MadGraph generated FORTRAN codes into HEGET codes in CUDA (a C-platform for general purpose computing on GPU) is created. Because of the proliferation of the number of Feynman diagrams and the number of independent color amplitudes, the maximum number of final state jets we can evaluate on a GPU is limited to 4 for pure gluon processes ($gg\\to 4g$), or 5 for processes with one or more quark lines such as $q\\bar{q}\\to 5g$ and $qq\\to qq+3g$. Compared with the usual CPU-based programs, we obtain 60-100 times better performance on the GPU, except for 5-jet production processes and the $gg\\to 4g$ processes for which the GPU gain over the CPU is about 20.

  20. Design of the Laboratory-Scale Plutonium Oxide Processing Unit in the Radiochemical Processing Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Lumetta, Gregg J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Meier, David E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tingey, Joel M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Casella, Amanda J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Delegard, Calvin H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Edwards, Matthew K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Orton, Robert D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rapko, Brian M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smart, John E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-05-01

    This report describes a design for a laboratory-scale capability to produce plutonium oxide (PuO2) for use in identifying and validating nuclear forensics signatures associated with plutonium production, as well as for use as exercise and reference materials. This capability will be located in the Radiochemical Processing Laboratory at the Pacific Northwest National Laboratory. The key unit operations are described, including PuO2 dissolution, purification of the Pu by ion exchange, precipitation, and re-conversion to PuO2 by calcination.

  1. Oxygen permeation and thermo-chemical stability of oxygen separation membrane materials for the oxyfuel process

    Energy Technology Data Exchange (ETDEWEB)

    Ellett, Anna Judith

    2009-07-01

    The reduction of CO{sub 2} emissions, generally held to be one of the most significant contributors to global warming, is a major technological issue. CO{sub 2} Capture and Storage (CCS) techniques applied to large stationary sources such as coal-fired power plants could efficiently contribute to the global carbon mitigation effort. The oxyfuel process, which consists in the burning of coal in an oxygen-rich atmosphere to produce a flue gas highly concentrated in CO{sub 2}, is a technology considered for zero CO{sub 2} emission coal-fired power plants. The production of this O{sub 2}-rich combustion gas from air can be carried out using high purity oxygen separation membranes. Some of the most promising materials for this application are mixed ionic-electronic conducting (MIEC) materials with perovskite and K{sub 2}NiF{sub 4} perovskite-related structures. The present work examines the selection of La{sub 0.58}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (LSCF58), La{sub 2}NiO{sub 4+{delta}}, Pr{sub 0.58}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (PSCF58) and Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} (BSCF50) as membrane materials for the separation of O{sub 2} and N{sub 2} in the framework of the oxyfuel process with flue gas recycling. Annealing experiments were carried out on pellets exposed to CO{sub 2}, water vapour, O{sub 2} and Cr{sub 2}O{sub 3} in order to determine the thermo-chemical resistance to the atmospheres and the high temperature conditions present during membrane operation in a coal-fired power plant. The degradation of their microstructure was investigated using Scanning Electron Microscopy (SEM) in combination with electron dispersive spectroscopy (EDS) as well as X-Ray Diffraction (XRD). Also, the oxygen permeation fluxes of selected membranes were investigated as a function of temperature. The membrane materials selected were characterised using thermo-analytical techniques such as precision thermogravimetric

  2. The production of fuels and chemicals from food processing wastes using a novel fermenter separator

    Energy Technology Data Exchange (ETDEWEB)

    Dale, M.C.; Venkatesh, K.V.; Choi, Hojoon; Moelhman, M.; Saliceti, L.; Okos, M.R.; Wankat, P.C.

    1991-12-01

    During 1991, considerable progress was made on the waste utilization project. Two small Wisconsin companies have expressed an interest in promoting and developing the ICRS technology. Pilot plant sites at (1) Hopkinton, IA, for a sweet whey plant, and Beaver Dam WI, for an acid whey site have been under development siting ICRS operations. The Hopkinton, IA site is owned and operated by Permeate Refining Inc., who have built a batch ethanol plant across the street from Swiss Valley Farms cheddar cheese operations. Permeate from Swiss Valley is piped across to PRI. PRI has signed a contract to site a 300--500,000 gallon/yr to ICRS pilot plant. They feel that the lower labor, lower energy, continuous process offered by the ICRS will substantially improve their profitability. Catalytics, Inc, is involved with converting whey from a Kraft cream cheese operation to ethanol and yeast. A complete project including whey concentration, sterilization, and yeast growth has been designed for this site. Process design improvements with the ICRS focussed on ethanol recovery techniques during this year's project. A solvent absorption/extractive distillation (SAED) process has been developed which offers the capability of obtaining an anhydrous ethanol product from vapors off 3 to 9% ethanol solutions using very little energy for distillation. Work on products from waste streams was also performed. a. Diacetyl as a high value flavor compound was very successfully produced in a Stirred Tank Reactor w/Separation. b. Yeast production from secondary carbohydrates in the whey, lactic acid, and glycerol was studied. c. Lactic acid production from cellulose and lactose studies continued. d. Production of anti-fungal reagents by immobilized plant cells; Gossypol has antifungal properties and is produced by G. arboretum.

  3. Performance evaluation of a non-woven lithium ion battery separator prepared through a paper-making process

    Science.gov (United States)

    Huang, Xiaosong

    2014-06-01

    Porous separator functions to electrically insulate the negative and positive electrodes yet communicate lithium ions between the two electrodes when infiltrated with a liquid electrolyte. The separator must fulfill numerous requirements (e.g. permeability, wettability, and thermal stability) in order to optimize the abuse tolerance and electrochemical performance of a battery. Non-woven mat separators have advantages such as high porosity and heat resistance. However, their applications in lithium ion batteries are very limited as their inadequate pore structures could cause accelerated battery performance degradation and even internal short. This work features the development of thermally stable non-woven composite separators using a low cost paper-making process. The composite separators offer significantly improved thermal dimensional stability and exhibit superior wettability by the liquid electrolyte compared to a conventional polypropylene separator. The open porous structures of the non-woven composite separators also resulted in high effective ionic conductivities. The electrochemical performance of the composite separators was tested in coin cells. Stable cycle performances and improved rate capabilities have been observed for the coin cells with these composite separators.

  4. Process for separating metallic from semiconducting single-walled carbon nanotubes

    Science.gov (United States)

    Sun, Ya-Ping (Inventor)

    2008-01-01

    A method for separating semiconducting single-walled carbon nanotubes from metallic single-walled carbon nanotubes is disclosed. The method utilizes separation agents that preferentially associate with semiconducting nanotubes due to the electrical nature of the nanotubes. The separation agents are those that have a planar orientation, .pi.-electrons available for association with the surface of the nanotubes, and also include a soluble portion of the molecule. Following preferential association of the separation agent with the semiconducting nanotubes, the agent/nanotubes complex is soluble and can be solubilized with the solution enriched in semiconducting nanotubes while the residual solid is enriched in metallic nanotubes.

  5. Treatment of fatliquoring effluent from a tannery using membrane separation process: experimental and modeling.

    Science.gov (United States)

    Prabhavathy, C; De, Sirshendu

    2010-04-15

    Treatment of fatliquoring effluent generated from a tannery, using a hybrid separation process involving gravity settling, two step coagulation, nanofiltration and reverse osmosis is presented in this study. The optimum dose of coagulation, i.e., 0.5% (w/v) of ferrous sulfate followed by 0.15% (w/v) calcium oxide resulted in reduction of chemical oxygen demand from 13,688 to 4921 mg/l. Low pressure nanofiltration of the supernatant was carried out in the range of 828-1242 kPa. Chemical oxygen demand of the nanofiltration permeate varied from about 1300-2700 mg/l depending upon the operating conditions. To bring the chemical oxygen demand value less than the allowable permissible limit in India (250 mg/l), nanofiltration permeate was subjected to reverse osmosis (operating pressure range from 1313 to 1724 kPa). The final treated effluent, i.e., reverse osmosis permeate had chemical oxygen demand values in the range of 117-174 mg/l. The membrane filtration experiments included flow in laminar, laminar with turbulent promoter and turbulent flow regimes. Using a combination of osmotic pressure and solution diffusion model for both nanofiltration and reverse osmosis, three transport coefficients, namely, the effective osmotic coefficient, solute diffusivity and solute permeability through the membrane were obtained by comparing the permeate flux and permeate concentrations using the model calculated values and the experimental data. The calculated data agreed closely with the experimental values.

  6. Proceedings of the Efficient Separations and Processing Cross-Cutting Program Annual Technical Exchange Meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    This document contains summaries of technology development presented at the 1995 Efficient Separations and Processing Cross-Cutting Program (ESP) Annual Technical Exchange Meeting. The ESP is sponsored by the US Department of Energy`s Office of Environmental Management (EM), Office of Technology Development. The meeting is held annually to promote a free exchange of ideas among technology developers, potential users (for example, EM focus areas), and other interested parties within EM. During this meeting, developers of ESP-funded technologies describe the problems and needs addressed by their technologies; the technical approach, accomplishments, and resolution of issues; the strategy and schedule for commercialization; and evolving potential applications. Presenters are asked to address the following areas: Target waste management problem, waste stream, or data need; scientific background and technical approach; technical accomplishments and resolution of technical issues; schedule and strategy for commercializing and implementing the technology or acquiring needed data; potential alternate applications of the technology or data, including outside of DOE/EM. The meeting is not a program review of the individual tasks or subtasks; but instead focuses on the technical aspects and implementation of ESP-sponsored technology or data. The meeting is also attended by members of the ESP Technical Review Team, who have the opportunity at that time to review the ESP as a whole.

  7. Separation of mercury in industrial processes of Polish hard steam coals cleaning

    Directory of Open Access Journals (Sweden)

    Wierzchowski Krzysztof

    2016-01-01

    Full Text Available Coal use is regarded as one of main sources of anthropogenic propagation of mercury in the environment. The coal cleaning is listed among methods of the mercury emission reduction. The article concerns the statistical assessment of mercury separation between coal cleaning products. Two industrial processes employed in the Polish coal preparation plants are analysed: coal cleaning in heavy media vessels and coal cleaning in jigs. It was found that the arithmetic mean mercury content in coarse and medium coal size fractions for clean coal from heavy media vessels, amounts 68.9 μg/kg, and most of the results lay below the mean value, while for rejects it amounts 95.5 μg/kg. It means that it is for around 25 μg/kg greater than in the clean coal. The arithmetic mean mercury content in raw coal smalls amounts around 118 mg/kg. The cleaning of smalls in jigs results in clean coal and steam coal blends characterized by mean mercury content 96.8 μg/kg and rejects with mean mercury content 184.5 μg/kg.

  8. ELECTROCHEMICALLY-MODULATED SEPARATIONS FOR DESTRUCTIVE AND NONDESTRUCTIVE ANALYSIS FOR PROCESS MONITORING AND SAFEGUARDS MEASURMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Green, Michael A.; Arrigo, Leah M.; Liezers, Martin; Orton, Christopher R.; Douglas, Matthew; Peper, Shane M.; Schwantes, Jon M.; Duckworth, Douglas C.

    2010-05-07

    A timely, accurate, and precise analysis of uranium reprocessing streams is import for process monitoring and nuclear material accountability. For material accountancy, it is critical to detect both acute and chronic diversions of nuclear materials. Therefore, both on-line nondestructive (NDA) and destructive analysis (DA) approaches are desirable. Current methods for DA involve grab sampling and laboratory based column extractions that are costly, hazardous, and time consuming. Direct on-line gamma measurements of Pu, while desirable, are not possible due to contributions from other actinides and fission products. Electrochemically-modulated separation (EMS) is a straightforward, cost effective alternative technology being investigated at Pacific Northwest National Laboratory for highly selective, slip-stream sampling of U or Pu from reprocessing streams. The EMS selectivity results from simultaneous surface and redox chemistry that allows the affinity of the electrode to be turned “on” or “off” under potential control. Once isolated, the accumulated Pu can be measured by gamma spectroscopy or retained in a small quantity (nanogram-milligram) to reduce radiological concerns and to facilitate transport to laboratory based mass spectrometry instrumentation. In this study, we investigate both destructive and nondestructive applications of EMS. First, nondestructive Pu gamma analysis is performed using dissolved BWR spent fuel. Reduction factors for actinide and fission products and initial estimates of measurement uncertainties were measured. The methodology for DA sampling will also be reported for both Pu and U.

  9. Separate channels for processing form, texture, and color: evidence from FMRI adaptation and visual object agnosia.

    Science.gov (United States)

    Cavina-Pratesi, C; Kentridge, R W; Heywood, C A; Milner, A D

    2010-10-01

    Previous neuroimaging research suggests that although object shape is analyzed in the lateral occipital cortex, surface properties of objects, such as color and texture, are dealt with in more medial areas, close to the collateral sulcus (CoS). The present study sought to determine whether there is a single medial region concerned with surface properties in general or whether instead there are multiple foci independently extracting different surface properties. We used stimuli varying in their shape, texture, or color, and tested healthy participants and 2 object-agnosic patients, in both a discrimination task and a functional MR adaptation paradigm. We found a double dissociation between medial and lateral occipitotemporal cortices in processing surface (texture or color) versus geometric (shape) properties, respectively. In Experiment 2, we found that the medial occipitotemporal cortex houses separate foci for color (within anterior CoS and lingual gyrus) and texture (caudally within posterior CoS). In addition, we found that areas selective for shape, texture, and color individually were quite distinct from those that respond to all of these features together (shape and texture and color). These latter areas appear to correspond to those associated with the perception of complex stimuli such as faces and places.

  10. Separate processing of texture and form in the ventral stream: evidence from FMRI and visual agnosia.

    Science.gov (United States)

    Cavina-Pratesi, C; Kentridge, R W; Heywood, C A; Milner, A D

    2010-02-01

    Real-life visual object recognition requires the processing of more than just geometric (shape, size, and orientation) properties. Surface properties such as color and texture are equally important, particularly for providing information about the material properties of objects. Recent neuroimaging research suggests that geometric and surface properties are dealt with separately within the lateral occipital cortex (LOC) and the collateral sulcus (CoS), respectively. Here we compared objects that differed either in aspect ratio or in surface texture only, keeping all other visual properties constant. Results on brain-intact participants confirmed that surface texture activates an area in the posterior CoS, quite distinct from the area activated by shape within LOC. We also tested 2 patients with visual object agnosia, one of whom (DF) performed well on the texture task but at chance on the shape task, whereas the other (MS) showed the converse pattern. This behavioral double dissociation was matched by a parallel neuroimaging dissociation, with activation in CoS but not LOC in patient DF and activation in LOC but not CoS in patient MS. These data provide presumptive evidence that the areas respectively activated by shape and texture play a causally necessary role in the perceptual discrimination of these features.

  11. An integrated MEMS infrastructure for fuel processing: hydrogen generation and separation for portable power generation

    Science.gov (United States)

    Varady, M. J.; McLeod, L.; Meacham, J. M.; Degertekin, F. L.; Fedorov, A. G.

    2007-09-01

    Portable fuel cells are an enabling technology for high efficiency and ultra-high density distributed power generation, which is essential for many terrestrial and aerospace applications. A key element of fuel cell power sources is the fuel processor, which should have the capability to efficiently reform liquid fuels and produce high purity hydrogen that is consumed by the fuel cells. To this end, we are reporting on the development of two novel MEMS hydrogen generators with improved functionality achieved through an innovative process organization and system integration approach that exploits the advantages of transport and catalysis on the micro/nano scale. One fuel processor design utilizes transient, reverse-flow operation of an autothermal MEMS microreactor with an intimately integrated, micromachined ultrasonic fuel atomizer and a Pd/Ag membrane for in situ hydrogen separation from the product stream. The other design features a simpler, more compact planar structure with the atomized fuel ejected directly onto the catalyst layer, which is coupled to an integrated hydrogen selective membrane.

  12. Reproducibility of Mammography Units, Film Processing and Quality Imaging

    Science.gov (United States)

    Gaona, Enrique

    2003-09-01

    The purpose of this study was to carry out an exploratory survey of the problems of quality control in mammography and processors units as a diagnosis of the current situation of mammography facilities. Measurements of reproducibility, optical density, optical difference and gamma index are included. Breast cancer is the most frequently diagnosed cancer and is the second leading cause of cancer death among women in the Mexican Republic. Mammography is a radiographic examination specially designed for detecting breast pathology. We found that the problems of reproducibility of AEC are smaller than the problems of processors units because almost all processors fall outside of the acceptable variation limits and they can affect the mammography quality image and the dose to breast. Only four mammography units agree with the minimum score established by ACR and FDA for the phantom image.

  13. Improving the Quotation Process of an After-Sales Unit

    OpenAIRE

    Matilainen, Janne

    2013-01-01

    The purpose of this study was to model and analyze the quotation process of area managers at a global company. Process improvement requires understanding the fundamentals of the process. The study was conducted a case study. Data comprised of internal documentation of the case company, literature, and semi-structured, themed interviews of process performers and stakeholders. The objective was to produce model of the current state of the process. The focus was to establish a holistic view o...

  14. Application of chemical, biological and membrane separation processes in textile industry with recourse to zero effluent discharge--a case study.

    Science.gov (United States)

    Nandy, T; Dhodapkar, R S; Pophali, G R; Kaul, S N; Devotta, S

    2005-09-01

    Environmental concerns associated with textile processing had placed the textile sector in a Southern State of India under serious threat of survival. The textile industries were closed under the orders of the Statutory Board for reason of inadequate compliance to environmental discharge norms of the State for the protection of the drinking water source of the State capital. In compliance with the direction of the Board for zero effluent discharge, advanced treatment process have been implemented for recovery of boiler feed quality water with recourse to effluent recycling/reuse. The paper describes to a case study on the adequacy assessment of the full scale effluent treatment plant comprising chemical, biological and filtration processes in a small scale textile industry. In addition, implementation of measures for discernable improvement in the performance of the existing units through effective operation & maintenance, and application of membrane separation processes leading to zero effluent discharge is also highlighted.

  15. Co-occurrence of Photochemical and Microbiological Transformation Processes in Open-Water Unit Process Wetlands.

    Science.gov (United States)

    Prasse, Carsten; Wenk, Jannis; Jasper, Justin T; Ternes, Thomas A; Sedlak, David L

    2015-12-15

    The fate of anthropogenic trace organic contaminants in surface waters can be complex due to the occurrence of multiple parallel and consecutive transformation processes. In this study, the removal of five antiviral drugs (abacavir, acyclovir, emtricitabine, lamivudine and zidovudine) via both bio- and phototransformation processes, was investigated in laboratory microcosm experiments simulating an open-water unit process wetland receiving municipal wastewater effluent. Phototransformation was the main removal mechanism for abacavir, zidovudine, and emtricitabine, with half-lives (t1/2,photo) in wetland water of 1.6, 7.6, and 25 h, respectively. In contrast, removal of acyclovir and lamivudine was mainly attributable to slower microbial processes (t1/2,bio = 74 and 120 h, respectively). Identification of transformation products revealed that bio- and phototransformation reactions took place at different moieties. For abacavir and zidovudine, rapid transformation was attributable to high reactivity of the cyclopropylamine and azido moieties, respectively. Despite substantial differences in kinetics of different antiviral drugs, biotransformation reactions mainly involved oxidation of hydroxyl groups to the corresponding carboxylic acids. Phototransformation rates of parent antiviral drugs and their biotransformation products were similar, indicating that prior exposure to microorganisms (e.g., in a wastewater treatment plant or a vegetated wetland) would not affect the rate of transformation of the part of the molecule susceptible to phototransformation. However, phototransformation strongly affected the rates of biotransformation of the hydroxyl groups, which in some cases resulted in greater persistence of phototransformation products.

  16. Nested reactor chamber and operation for Hg-196 isotope separation process

    Science.gov (United States)

    Grossman, M.W.

    1991-10-08

    The present invention is directed to an apparatus for use in [sup 196]Hg separation and its method of operation. Specifically, the present invention is directed to a nested reactor chamber useful for [sup 196]Hg isotope separation reactions avoiding the photon starved condition commonly encountered in coaxial reactor systems. 6 figures.

  17. Separation, Characterization and Fouling Potential of Sludge Waters from Different Biological Wastewater Treatment Processes

    KAUST Repository

    Xue, Jinkai

    2011-07-01

    The major limitation, which hinders the wider application of membrane technology and increases the operating costs of membranes involved in wastewater treatment plants, is membrane fouling induced by organic matter. Extracellular polymeric products (EPS) and soluble microbial products (SMP) are the two most mentioned major foulants in publications, for which the debate on precise definitions seems to be endless. Therefore, a concept of sludge water, which conceptually covers both EPS and SMP, has been developed in this research. A standard procedure of sludge water separation, which is centrifugation at 4000g for 15 min followed by 1.2μm glass fiber filter filtration, was established based on separation experiments with membrane tank sludge from the KAUST MBR wastewater treatment plant. Afterwards, sludge waters from the KAUST MBR WWTP anoxic tank, aerobic tank and membrane tank as well as sludge waters from the Jeddah WWTP anoxic tank, aerobic tank and secondary effluent were produced through the previously developed standard procedure. The obtained sludge water samples were thereafter characterized with TOC/COD, LC-­‐OCD and F-­‐EEM, which showed that KAUST anoxic/ aerobic /membrane tank sludge waters had similar characteristics for all investigated parameters, yet the influent naturally had a higher DOC and biopolymer concentration. Moreover, lower TOC/COD, negligible biopolymers and low levels of humics were found in KAUST effluent. Compared with the KAUST MBR WWTP, the Jeddah WWTP’s sludge waters generally had higher DOC and biopolymer concentrations. To investigate sludge water fouling potential, the KAUST membrane tank sludge water as well as the Jeddah secondary effluent were filtrated through a membrane array consisting of an ultrafiltration (UF) Millipore RC10kDa at the first step followed by a nanofiltration (NF) KOCH Acid/Base stable NF200 at the second step. It was found that cake layer and standard blocking occurred simultaneously during both

  18. Unit Operation Experiment Linking Classroom with Industrial Processing

    Science.gov (United States)

    Benson, Tracy J.; Richmond, Peyton C.; LeBlanc, Weldon

    2013-01-01

    An industrial-type distillation column, including appropriate pumps, heat exchangers, and automation, was used as a unit operations experiment to provide a link between classroom teaching and real-world applications. Students were presented with an open-ended experiment where they defined the testing parameters to solve a generalized problem. The…

  19. Effect of energetic dissipation processes on the friction unit tribological

    Directory of Open Access Journals (Sweden)

    Moving V. V.

    2007-01-01

    Full Text Available In article presented temperature influence on reological and fric-tion unit coefficients cast iron elements. It has been found that surface layer formed in the temperature friction has good rub off resistance. The surface layer structural hardening and capacity stress relaxation make up.

  20. The minimum heat consumption for heat-driven binary separation processes with linear phenomenological heat transfer law

    Institute of Scientific and Technical Information of China (English)

    SHU LiWei; CHEN LinGen; SUN FengRui

    2009-01-01

    The optimal performance of heat-driven binary separation processes with linear phenomenological heat transfer law(q∝△(T-1))is analyzed by taking the processes as heat engines which work between high-and low-temperature reservoirs and produce enthalpy and energy flows out of the system,and the temperatures of the heat reservoirs are assumed to be time-and space-variables.A numerical method is employed to solve convex optimization problem and Lagrangian function is employed to solve the average optimal control problem.The dimensionless entropy production rate coefficient and dimensionless enthalpy flow rate coefficient are adopted to indicate the major influence factors on the performance of the separation process,such as the properties of different materials and various separation requirements for the separation process.The dimensionless minimum average entropy production rate and dimensionless minimum average heat consumption of the heat-driven binary separation processes are obtained.The obtained results are compared with those obtained with the Newtonian heat transfer law(q∝△(T)).

  1. Optimal performance of single-column chromatography and simulated moving bed processes for the separation of optical isomers

    Science.gov (United States)

    Medi, Bijan; Kazi, Monzure-Khoda; Amanullah, Mohammad

    2013-06-01

    Chromatography has been established as the method of choice for the separation and purification of optically pure drugs which has a market size of about 250 billion USD. Single column chromatography (SCC) is commonly used in the development and testing phase of drug development while multi-column Simulated Moving Bed (SMB) chromatography is more suitable for large scale production due to its continuous nature. In this study, optimal performance of SCC and SMB processes for the separation of optical isomers under linear and overloaded separation conditions has been investigated. The performance indicators, namely productivity and desorbent requirement have been compared under geometric similarity for the separation of a mixture of guaifenesin, and Tröger's base enantiomers. SCC process has been analyzed under equilibrium assumption i.e., assuming infinite column efficiency, and zero dispersion, and its optimal performance parameters are compared with the optimal prediction of an SMB process by triangle theory. Simulation results obtained using actual experimental data indicate that SCC may compete with SMB in terms of productivity depending on the molecules to be separated. Besides, insights into the process performances in terms of degree of freedom and relationship between the optimal operating point and solubility limit of the optical isomers have been ascertained. This investigation enables appropriate selection of single or multi-column chromatographic processes based on column packing properties and isotherm parameters.

  2. The minimum heat consumption for heat-driven binary separation processes with linear phenomenological heat transfer law

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The optimal performance of heat-driven binary separation processes with linear phenomenological heat transfer law(q∝△(T-1)) is analyzed by taking the processes as heat engines which work between high-and low-temperature reservoirs and produce enthalpy and energy flows out of the system,and the temperatures of the heat reservoirs are assumed to be time-and space-variables.A numerical method is employed to solve convex optimization problem and Lagrangian function is employed to solve the average optimal control problem.The dimensionless entropy production rate coefficient and dimensionless enthalpy flow rate coefficient are adopted to indicate the major influence factors on the performance of the separation process,such as the properties of different materials and various separation requirements for the separation process.The dimensionless minimum average entropy production rate and dimensionless minimum average heat consumption of the heat-driven binary separation processes are obtained.The obtained results are compared with those obtained with the Newtonian heat transfer law(q∝△(T)).

  3. On the hazard rate process for imperfectly monitored multi-unit systems

    Energy Technology Data Exchange (ETDEWEB)

    Barros, A. [Institut des Sciences et Techonologies de l' Information de Troyes (ISTIT-CNRS), Equipe de Modelisation et Surete des Systemes, Universite de Technologie de Troyes (UTT), 12, rue Marie Curie, BP2060, 10010 Troyes cedex (France)]. E-mail: anne.barros@utt.fr; Berenguer, C. [Institut des Sciences et Techonologies de l' Information de Troyes (ISTIT-CNRS), Equipe de Modelisation et Surete des Systemes, Universite de Technologie de Troyes (UTT), 12, rue Marie Curie, BP2060, 10010 Troyes cedex (France); Grall, A. [Institut des Sciences et Techonologies de l' Information de Troyes (ISTIT-CNRS), Equipe de Modelisation et Surete des Systemes, Universite de Technologie de Troyes (UTT), 12, rue Marie Curie, BP2060, 10010 Troyes cedex (France)

    2005-12-01

    The aim of this paper is to present a stochastic model to characterize the failure distribution of multi-unit systems when the current units state is imperfectly monitored. The definition of the hazard rate process existing with perfect monitoring is extended to the realistic case where the units failure time are not always detected (non-detection events). The so defined observed hazard rate process gives a better representation of the system behavior than the classical failure rate calculated without any information on the units state and than the hazard rate process based on perfect monitoring information. The quality of this representation is, however, conditioned by the monotony property of the process. This problem is mainly discussed and illustrated on a practical example (two parallel units). The results obtained motivate the use of the observed hazard rate process to characterize the stochastic behavior of the multi-unit systems and to optimize for example preventive maintenance policies.

  4. Prevalence and Seasonality of the Amphibian Chytrid Fungus Batrachochytrium dendrobatidis Along Widely Separated Longitudes Across the United States.

    Science.gov (United States)

    Petersen, Christopher E; Lovich, Robert E; Phillips, Christopher A; Dreslik, Michael J; Lannoo, Michael J

    2016-06-01

    The chytrid fungus Batrachochytrium dendrobatidis (Bd) has been implicated in amphibian declines on almost all continents. We report on prevalence and intensity of Bd in the United States amphibian populations across three longitudinally separated north-to-south transects conducted at 15 Department of Defense installations during two sampling periods (late-spring/early summer and mid to late summer). Such a standardized approach minimizes the effects of sampling and analytical bias, as well as human disturbance (by sampling restricted military bases), and therefore permits a cleaner interpretation of environmental variables known to affect chytrid dynamics such as season, temperature, rainfall, latitude, and longitude. Our prevalence of positive samples was 20.4% (137/670), and our mean intensity was 3.21 zoospore equivalents (SE = 1.03; range 0.001-103.59). Of the 28 amphibian species sampled, 15 tested positive. Three sites had no evidence of Bd infection; across the remaining 12 Bd-positive sites, neither infection prevalence nor intensity varied systematically. We found a more complicated pattern of Bd prevalence than anticipated. Early season samples showed no trend associated with increasing temperature and precipitation and decreasing (more southerly) latitudes; while in late season samples, the proportion of infected individuals decreased with increasing temperature and precipitation and decreasing latitudes. A similar pattern held for the east-west gradient, with the highest prevalence associated with more easterly/recently warmer sites in the early season then shifting to more westerly/recently cooler sites in the later season. Bd intensity across bases and sampling periods was comparatively low. Some of the trends in our data have been seen in previous studies, and our results offer further continental-level Bd sampling over which more concentrated local sampling efforts can be overlaid.

  5. Effects of Clown Doctors on Child and Caregiver Anxiety at the Entrance to the Surgery Care Unit and Separation from Caregivers

    Science.gov (United States)

    Arriaga, Patrícia; Pacheco, Catarina

    2016-01-01

    This study investigated the effects of hospital Clown Doctors intervention on child and caregiver preoperative anxiety at the entrance to the surgery care unit and separation from caregivers. A total of 88 children (aged 4-12 years) were assigned to one of the following two groups: Clown Doctors intervention or control group (standard care).…

  6. Separation Process of Polydisperse Particles in the Plasma of Radio-frequency Discharge

    Directory of Open Access Journals (Sweden)

    D.G. Batryshev

    2014-07-01

    Full Text Available Method of separation of polydisperse particles in the plasma of radio-frequency (RF discharge is considered. Investigation of plasma equipotential field gave conditions for separation. The purpose of this work was an obtaining of monodisperse particles in the plasma of RF discharge. Samples of monodisperse microparticles of silica and alumina were obtained. The size and chemical composition of samples were studied on a scanning electron microscope Quanta 3D 200i (SEM, USA FEI company. Average size of separated silica nanoparticles is 600 nm, silica and alumina microparticles is 5 mkm.

  7. The United States Military Entrance Processing Command (USMEPCOM) Uses Six Sigma Process to Develop and Improve Data Quality

    Science.gov (United States)

    2007-06-01

    mecpom.army.mil Original title on 712 A/B: The United States Military Entrance Processing Command (USMEPCOM) uses Six Sigma process to develop and...Entrance Processing Command (USMEPCOM) uses Six Sigma Process to Develop and Improve Data Quality 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...Processing Command (USMEPCOM) uses Six Sigma Process to Develop and Improve Data Quality 3 • USMEPCOM Overview/History • Purpose • Define: What is Important

  8. Radial Basis Function Neural Networks-Based Modeling of the Membrane Separation Process: Hydrogen Recovery from Refinery Gases

    Institute of Scientific and Technical Information of China (English)

    Lei Wang; Cheng Shao; Hai Wang; Hong Wu

    2006-01-01

    Membrane technology has found wide applications in the petrochemical industry, mainly in the purification and recovery of the hydrogen resources. Accurate prediction of the membrane separation performance plays an important role in carrying out advanced process control (APC). For the first time, a soft-sensor model for the membrane separation process has been established based on the radial basis function (RBF) neural networks. The main performance parameters, i.e, permeate hydrogen concentration, permeate gas flux, and residue hydrogen concentration, are estimated quantitatively by measuring the operating temperature, feed-side pressure, permeate-side pressure, residue-side pressure, feed-gas flux, and feed-hydrogen concentration excluding flow structure, membrane parameters, and other compositions. The predicted results can gain the desired effects. The effectiveness of this novel approach lays a foundation for integrating control technology and optimizing the operation of the gas membrane separation process.

  9. Silica membranes for hydrogen separation in coal gas processing. Final report, January 1993

    Energy Technology Data Exchange (ETDEWEB)

    Gavalas, G.R.

    1993-03-01

    The general objective of this project was to synthesize permselective membranes suitable for hydrogen separation from coal gas. The specific objectives were: (i) to synthesize membranes by chemical vapor deposition (CVD) of SiO{sub 2} or other oxides on porous support tubes, (ii) characterize the membranes by permeation measurements of various gases and by electron microscopy, and (iii) obtain information about the mechanism and kinetics Of SiO{sub 2} deposition, and model the process of membrane formation. Silica glass and certain other glasses, in dense (nonporous) form, are highly selective to hydrogen permeation. Since this high selectivity is accompanied by low permeability, however, a practical membrane must have a composite structure consisting of a thin layer of the active oxide supported on a porous tube or plate providing mechanical support. In this project the membranes were synthesized by chemical vapor deposition (CVD) of SiO{sub 2}, TiO{sub 2}, Al{sub 2}O{sub 3} and B{sub 2}O{sub 3} layers inside the walls of porous Vycor tubes (5 mm ID, 7 mm OD, 40 {Angstrom} mean pore diameter). Deposition of the oxide layer was carried out using the reaction of SiCl{sub 4} (or TiCl{sub 4}, AlCl{sub 3}, BCl{sub 3}) and water vapor at elevated temperatures. The porous support tube was inserted concentrically into a larger quartz tube and fitted with flow lines and pressure gauges. The flow of the two reactant streams was regulated by mass flow controllers, while the temperature was controlled by placing the reactor into a split-tube electric furnace.

  10. Real-time monitoring system for improving corona electrostatic separation in the process of recovering waste printed circuit boards.

    Science.gov (United States)

    Li, Jia; Zhou, Quan; Xu, Zhenming

    2014-12-01

    Although corona electrostatic separation is successfully used in recycling waste printed circuit boards in industrial applications, there are problems that cannot be resolved completely, such as nonmetal particle aggregation and spark discharge. Both of these problems damage the process of separation and are not easy to identify during the process of separation in industrial applications. This paper provides a systematic study on a real-time monitoring system. Weight monitoring systems were established to continuously monitor the separation process. A Virtual Instrumentation program written by LabVIEW was utilized to sample and analyse the mass increment of the middling product. It includes four modules: historical data storage, steady-state analysis, data computing and alarm. Three kinds of operating conditions were used to verify the applicability of the monitoring system. It was found that the system achieved the goal of monitoring during the separation process and realized the function of real-time analysis of the received data. The system also gave comprehensible feedback on the accidents of material blockages in the feed inlet and high-voltage spark discharge. With the warning function of the alarm system, the whole monitoring system could save the human cost and help the new technology to be more easily applied in industry. © The Author(s) 2014.

  11. Control properties of hybrid distillation processes for the separation of biobutanol

    DEFF Research Database (Denmark)

    Sánchez-Ramírez, Eduardo; Alcocer-García, Heriberto; Quiroz-Ramírez, Juan José

    2017-01-01

    BACKGROUND: Butanol produced from fermentation has attracted the interest of research groups because its physicochemical properties show several enhancements over bioethanol. Recent studies have proposed alternative methods to separate and purify biobutanol from a fermentation broth. These altern...

  12. Electrochemically Modulated Gas/Liquid Separation Technology for In Situ Resource Utilization Process Streams Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this phase I program MicroCell Technologies, LLC (MCT) proposes to demonstrate the feasibility of an electrochemically modulated phase separator for in situ...

  13. A Ten-Step Process for Developing Teaching Units

    Science.gov (United States)

    Butler, Geoffrey; Heslup, Simon; Kurth, Lara

    2015-01-01

    Curriculum design and implementation can be a daunting process. Questions quickly arise, such as who is qualified to design the curriculum and how do these people begin the design process. According to Graves (2008), in many contexts the design of the curriculum and the implementation of the curricular product are considered to be two mutually…

  14. 76 FR 13973 - United States Warehouse Act; Processed Agricultural Products Licensing Agreement

    Science.gov (United States)

    2011-03-15

    ... Farm Service Agency United States Warehouse Act; Processed Agricultural Products Licensing Agreement... warehouse licenses may be issued under the United States Warehouse Act (USWA). Through this notice, FSA is... processed agricultural products that are stored in climate controlled, cooler, and freezer warehouses....

  15. SIMULATION OF THE PROCESS OF FLOW SEPARATION AT THE ENTRANCE OF SQUARE ASPIRATING PORT

    Directory of Open Access Journals (Sweden)

    Olga A. Averkova

    2014-01-01

    Full Text Available We consider the flow at the inlet to the suction square hole with sharp edges, which is located in an infinite space. The purpose of this study is to construct a mathematical model of flow separation at the entrance to square suction canal with sharp edges, located in infinite space, by using square vortex frameworks. As a part of ideology of the method of discrete vortices in the non-stationary quasi-axisymmetric formulation, we constructed the mathematical model of separated flow at the inlet to the square aspirating pipe and its software-algorithmic implementation. We have determined the velocity field at the entrance to suction channel and a line of flow separation. Determine the velocity field in typical cross-sections of the suction channel, dimensions of the efficient absorption, compression ratio of the jet. Were received analytical formulas for calculating separation surfaces current. Profiling the entrance opening of the suction hole detected on the outlines separation surface will improve the acoustic and aerodynamic properties of the exhaust systems. The obtained results can be useful for designing of local exhaust ventilation of reduced energy consumption.

  16. Chemical process to separate iron oxides particles in pottery sample for EPR dating

    Science.gov (United States)

    Watanabe, S.; Farias, T. M. B.; Gennari, R. F.; Ferraz, G. M.; Kunzli, R.; Chubaci, J. F. D.

    2008-12-01

    Ancient potteries usually are made of the local clay material, which contains relatively high concentration of iron. The powdered samples are usually quite black, due to magnetite, and, although they can be used for thermoluminescene (TL) dating, it is easiest to obtain better TL reading when clearest natural or pre-treated sample is used. For electron paramagnetic resonance (EPR) measurements, the huge signal due to iron spin-spin interaction, promotes an intense interference overlapping any other signal in this range. Sample dating is obtained by dividing the radiation dose, determined by the concentration of paramagnetic species generated by irradiation, by the natural dose so as a consequence, EPR dating cannot be used, since iron signal do not depend on radiation dose. In some cases, the density separation method using hydrated solution of sodium polytungstate [Na 6(H 2W 12O 40)·H 2O] becomes useful. However, the sodium polytungstate is very expensive in Brazil; hence an alternative method for eliminating this interference is proposed. A chemical process to eliminate about 90% of magnetite was developed. A sample of powdered ancient pottery was treated in a mixture (3:1:1) of HCl, HNO 3 and H 2O 2 for 4 h. After that, it was washed several times in distilled water to remove all acid matrixes. The original black sample becomes somewhat clearer. The resulting material was analyzed by plasma mass spectrometry (ICP-MS), with the result that the iron content is reduced by a factor of about 9. In EPR measurements a non-treated natural ceramic sample shows a broad spin-spin interaction signal, the chemically treated sample presents a narrow signal in g = 2.00 region, possibly due to a radical of (SiO 3) 3-, mixed with signal of remaining iron [M. Ikeya, New Applications of Electron Spin Resonance, World Scientific, Singapore, 1993, p. 285]. This signal increases in intensity under γ-irradiation. However, still due to iron influence, the additive method yielded too

  17. Stimuli-responsive Membranes: Smart Tools for Controllable Mass-transfer and Separation Processes

    Institute of Scientific and Technical Information of China (English)

    褚良银; 谢锐; 巨晓洁

    2011-01-01

    As emerging artificial biomimetic membranes, smart or intelligent membranes that are able to respond to environmental stimuli are attracting ever-increasing interests from various fields. Their permeation properties including hydraulic permeability and diffusional permeability can be dramatically controlled or adjusted self-regulatively in response to small chemical and/or physical stimuli in their environments. Such environmental stimuli-responsive smart membranes could find myriad applications in numerous fields ranging from controlled release to separations. Here the trans-membrane mass-transfer and membrane separation is introduced as the beginning to initiate the requirement of smart membranes, and then bio-inspired design of environmental stimuli-responsive smart membranes and four essential elements for smart membranes are introduced and discussed. Next, smart membrane types and their applications as smart tools for controllable mass-transfer in controlled release and separations are reviewed. The research tooics in the near future are also suggested.

  18. Experience gained from the development and results from tests of the equipment of the Kalinin NPP Unit 4 regeneration and intermediate steam separation and reheating system

    Science.gov (United States)

    Trifonov, N. N.; Sukhorukov, Yu. G.; Ermolov, V. F.; Svyatkin, F. A.; Nikolaenkova, E. K.; Sintsova, T. G.; Grigor'eva, E. B.; Esin, S. B.; Ukhanova, M. G.; Golubev, E. A.; Bik, S. P.; Tren'kin, V. B.

    2014-06-01

    The equipment of the Kalinin NPP Unit 4 regeneration, intermediate separation, and steam reheating (ISSR) systems is described and the results of their static and dynamic tests are presented. It was shown from an analysis of test results that the equipment of the regeneration and ISSR systems produce the design thermal and hydraulic characteristics in static and dynamic modes of its operation. Specialists of the Central boiler-Turbine Institute Research and Production Association have developed procedures and computer programs for calculating the system of direct-contact horizontal low-pressure heaters (connected according to the gravity circuit arrangement jointly with the second-stage electrically-driven condensate pumps) and the ISSR system, the results of which are in satisfactory agreement with experimental data. The drawbacks of the layout solutions due to which cavitation failure of the pumps may occur are considered. Technical solutions aimed at securing stable operation of the equipment of regeneration and ISSR systems are proposed. The process arrangement for heating the chamber-type high-pressure heaters adopted at the Kalinin NPP is analyzed. The version of this circuit developed at the Central Boiler-Turbine Institute Research and Production Association that allows the heating rate equal to 1°C/min to be obtained is proposed.

  19. Evidence of a sensory processing unit in the mammalian macula

    Science.gov (United States)

    Chimento, T. C.; Ross, M. D.

    1996-01-01

    We cut serial sections through the medial part of the rat vestibular macula for transmission electron microscopic (TEM) examination, computer-assisted 3-D reconstruction, and compartmental modeling. The ultrastructural research showed that many primary vestibular neurons have an unmyelinated segment, often branched, that extends between the heminode (putative site of the spike initiation zone) and the expanded terminal(s) (calyx, calyces). These segments, termed the neuron branches, and the calyces frequently have spine-like processes of various dimensions with bouton endings that morphologically are afferent, efferent, or reciprocal to other macular neural elements. The major questions posed by this study were whether small details of morphology, such as the size and location of neuronal processes or synapses, could influence the output of a vestibular afferent, and whether a knowledge of morphological details could guide the selection of values for simulation parameters. The conclusions from our simulations are (1) values of 5.0 k omega cm2 for membrane resistivity and 1.0 nS for synaptic conductance yield simulations that best match published physiological results; (2) process morphology has little effect on orthodromic spread of depolarization from the head (bouton) to the spike initiation zone (SIZ); (3) process morphology has no effect on antidromic spread of depolarization to the process head; (4) synapses do not sum linearly; (5) synapses are electrically close to the SIZ; and (6) all whole-cell simulations should be run with an active SIZ.

  20. Using High Performance Computing to Examine the Processes of Neurogenesis Underlying Pattern Separation/Completion of Episodic Information.

    Energy Technology Data Exchange (ETDEWEB)

    Aimone, James Bradley [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Betty, Rita [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    Using High Performance Computing to Examine the Processes of Neurogenesis Underlying Pattern Separation/Completion of Episodic Information - Sandia researchers developed novel methods and metrics for studying the computational function of neurogenesis, thus generating substantial impact to the neuroscience and neural computing communities. This work could benefit applications in machine learning and other analysis activities.

  1. 14 CFR Special Federal Aviation... - Process for Requesting Waiver of Mandatory Separation Age for a Federal Aviation Administration...

    Science.gov (United States)

    2010-01-01

    ... Separation Age for a Federal Aviation Administration Air Traffic Control Specialist In Flight Service... Federal Special Federal Aviation Regulation No. 103 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION..., SFAR 103 Special Federal Aviation Regulation No. 103—Process for Requesting Waiver of Mandatory...

  2. The Decision-Making Processes of Early Childhood Teachers When Working with Children Experiencing Parental Separation and Divorce

    Science.gov (United States)

    Mahony, L.; Lunn, J.; Petriwskyj, A.; Walsh, K.

    2015-01-01

    In this study, the pedagogical decision-making processes of 21 Australian early childhood teachers working with children experiencing parental separation and divorce were examined. Transcripts from interviews and a focus group with teachers were analysed using grounded theory methodology. The findings showed that as teachers interacted with young…

  3. Option pricing with COS method on Graphics Processing Units

    NARCIS (Netherlands)

    B. Zhang (Bo); C.W. Oosterlee (Cornelis)

    2009-01-01

    htmlabstractIn this paper, acceleration on the GPU for option pricing by the COS method is demonstrated. In particular, both European and Bermudan options will be discussed in detail. For Bermudan options, we consider both the Black-Scholes model and Levy processes of infinite activity. Moreover, th

  4. Option pricing with COS method on Graphics Processing Units

    NARCIS (Netherlands)

    Zhang, B.; Oosterlee, C.W.

    2009-01-01

    In this paper, acceleration on the GPU for option pricing by the COS method is demonstrated. In particular, both European and Bermudan options will be discussed in detail. For Bermudan options, we consider both the Black-Scholes model and Levy processes of infinite activity. Moreover, the influence

  5. Enrichment of the metallic components from waste printed circuit boards by a mechanical separation process using a stamp mill.

    Science.gov (United States)

    Yoo, Jae-Min; Jeong, Jinki; Yoo, Kyoungkeun; Lee, Jae-Chun; Kim, Wonbaek

    2009-03-01

    Printed circuit boards incorporated in most electrical and electronic equipment contain valuable metals such as Cu, Ni, Au, Ag, Pd, Fe, Sn, and Pb. In order to employ a hydrometallurgical route for the recycling of valuable metals from printed circuit boards, a mechanical pre-treatment step is needed. In this study, the metallic components from waste printed circuit boards have been enriched using a mechanical separation process. Waste printed circuit boards shredded to milled using a stamp mill to liberate the various metallic components, and then the milled printed circuit boards were classified into fractions of 5.0mm. The fractions of milled printed circuit boards of size zig-zag classifier. The >5.0mm fraction and the heavy fraction were subjected to two-step magnetic separation. Through the first magnetic separation at 700 Gauss, 83% of the nickel and iron, based on the whole printed circuit boards, was recovered in the magnetic fraction, and 92% of the copper was recovered in the non-magnetic fraction. The cumulative recovery of nickel-iron concentrate was increased by a second magnetic separation at 3000 Gauss, but the grade of the concentrate decreased remarkably from 76% to 56%. The cumulative recovery of copper concentrate decreased, but the grade increased slightly from 71.6% to 75.4%. This study has demonstrated the feasibility of the mechanical separation process consisting of milling/size classification/gravity separation/two-step magnetic separation for enriching metallic components such as Cu, Ni, Al, and Fe from waste printed circuit boards.

  6. Tribo-charging properties of waste plastic granules in process of tribo-electrostatic separation.

    Science.gov (United States)

    Li, Jia; Wu, Guiqing; Xu, Zhenming

    2015-01-01

    Plastic products can be found everywhere in people's daily life. With the consistent growth of plastic consumption, more and more plastic waste is generated. Considering the stable chemical and physics characteristics of plastic, regular waste management methods are not suitable for recycling economic strategy of each government, which has become a serious environmental problem. Recycling plastic waste is considered to be the best way to treat it, because it cannot only deduce the waste but also save the energy to produce new virgin plastic. Tribo-electrostatic separation is strongly recommended for plastic separation as it can preserve the original properties of plastic and has little additional pollution. In this study, plastic granules are generated by crushing plastic waste in waste electric and electronic equipment. The tribo-charging properties of plastic waste were studied by vibrating tribo-charging and cyclone tribo-charging. The triboelectric series obtained by vibrating was: (-)-PE-PS-PC-PVC-ABS-PP-(+), while the triboelectric series obtained by cyclone was (-)-PE-PS-PC-PVC-ABS-PP-(+). Further, the cyclone charging was more effective and stable than vibrating charging. The impact factors experiments showed that small particle size was better changed than large ones and were more suitable recycled by tribo-electrostatic separation. High relative humidity was identified as impede charging effect. The results of this study will help defining the operating parameters of subsequent separator.

  7. Process innovation in the sugar industry : Chromatographic sugar separation using SMB technology

    NARCIS (Netherlands)

    Bussmann, P.; Vroon, R.; Timmer, J.; Boon, F.; Bruijn, J.M. de

    2007-01-01

    The chromatographic separation of sugar from raw juice was identified as a promising alternative for the current juice purification. Simulated moving bed technology (SMB) was chosen as the most suitable technology on the basis of the purification, limited degree of dilution and increased sugar

  8. Separation process for very concentrated emulsions and suspensions in the food industry

    NARCIS (Netherlands)

    Dinther, van A.M.C.; Schroën, C.G.P.H.; Boom, R.M.

    2013-01-01

    Separation of concentrated food suspensions and emulsions by e.g. microfiltration is currently not possible and therefore preceded by dilution, wasting energy and water. A new approach is shown, with sieves having pores much larger than the micron-sized droplets, low cross-flow velocities and a non-

  9. Separation of FFA from Partially Hydrogenated Soybean Oil Hydrolysate by Means of Membrane Processing

    DEFF Research Database (Denmark)

    Jala, Ram Chandra Reddy; Guo, Zheng; Xu, Xuebing

    2011-01-01

    Different types of commercial porous and non-porous polymeric membranes have been investigated for their capabilities to separate free fatty acids (FFA) from hydrolysate of partially hydrogenated soybean oil. A regenerated cellulose (RC, PLAC) membrane exhibited the most prominent difference...

  10. Structural Composite Supercapacitors: Electrical and Mechanical Impact of Separators and Processing Conditions

    Science.gov (United States)

    2013-09-01

    VARTM setup. ....................................................................................................4 Figure 4. Lap shear strength of...resin transfer molding ( VARTM ). Stacks were generated by alternating a single ply of carbon fabric with the desired number of separator plies. For...the samples were a total of 5 in long. Additional copper tape was attached perpendicular to the copper tape end tabs, extending out from the VARTM

  11. Influence of riser-induced slugs on the downstream separation processes

    DEFF Research Database (Denmark)

    Pedersen, Simon; Løhndorf, Petar Durdevic; Yang, Zhenyu

    2017-01-01

    linked to a de-oiling hydrocyclone, based on experimental tests performed on a laboratory testing facility. Several scenarios are compared, while three PID controllers’ coefficients are kept constant for all the tests: The separator pressure, water level, and hydrocyclone pressure-drop-ratio (PDR...

  12. The production of chemicals from food processing wastes using a novel fermenter separator. Annual progress report, January 1993--March 1994

    Energy Technology Data Exchange (ETDEWEB)

    Dale, M.C.; Venkatesh, K.V.; Choi, H.; Salicetti-Piazza, L.; Borgos-Rubio, N.; Okos, M.R.; Wankat, P.C.

    1994-03-15

    The basic objective of this project is to convert waste streams from the food processing industry to usable fuels and chemicals using novel bioreactors. These bioreactors should allow economical utilization of waste (whey, waste sugars, waste starch, bottling wastes, candy wastes, molasses, and cellulosic wastes) by the production of ethanol, acetone/butanol, organic acids (acetic, lactic, and gluconic), yeast diacetyl flavor, and antifungal compounds. Continuous processes incorporating various processing improvements such as simultaneous product separation and immobilized cells are being developed to allow commercial scale utilization of waste stream. The production of ethanol by a continuous reactor-separator is the process closest to commercialization with a 7,500 liter pilot plant presently sited at an Iowa site to convert whey lactose to ethanol. Accomplishments during 1993 include installation and start-up of a 7,500 liter ICRS for ethanol production at an industry site in Iowa; Donation and installation of a 200 liter yeast pilot Plant to the project from Kenyon Enterprises; Modeling and testing of a low energy system for recovery of ethanol from vapor is using a solvent absorption/extractive distillation system; Simultaneous saccharification/fermentation of raw corn grits and starch in a stirred reactor/separator; Testing of the ability of `koji` process to ferment raw corn grits in a `no-cook` process.

  13. The Cilium: Cellular Antenna and Central Processing Unit

    OpenAIRE

    Malicki, Jarema J.; Johnson, Colin A.

    2017-01-01

    Cilia mediate an astonishing diversity of processes. Recent advances provide unexpected insights into the regulatory mechanisms of cilium formation, and reveal diverse regulatory inputs that are related to the cell cycle, cytoskeleton, proteostasis, and cilia-mediated signaling itself. Ciliogenesis and cilia maintenance are regulated by reciprocal antagonistic or synergistic influences, often acting in parallel to each other. By receiving parallel inputs, cilia appear to integrate multiple si...

  14. Uniting Gradual and Abrupt set Processes in Resistive Switching Oxides

    Science.gov (United States)

    Fleck, Karsten; La Torre, Camilla; Aslam, Nabeel; Hoffmann-Eifert, Susanne; Böttger, Ulrich; Menzel, Stephan

    2016-12-01

    Identifying limiting factors is crucial for a better understanding of the dynamics of the resistive switching phenomenon in transition-metal oxides. This improved understanding is important for the design of fast-switching, energy-efficient, and long-term stable redox-based resistive random-access memory devices. Therefore, this work presents a detailed study of the set kinetics of valence change resistive switches on a time scale from 10 ns to 104 s , taking Pt /SrTiO3/TiN nanocrossbars as a model material. The analysis of the transient currents reveals that the switching process can be subdivided into a linear-degradation process that is followed by a thermal runaway. The comparison with a dynamical electrothermal model of the memory cell allows the deduction of the physical origin of the degradation. The origin is an electric-field-induced increase of the oxygen-vacancy concentration near the Schottky barrier of the Pt /SrTiO3 interface that is accompanied by a steadily rising local temperature due to Joule heating. The positive feedback of the temperature increase on the oxygen-vacancy mobility, and thereby on the conductivity of the filament, leads to a self-acceleration of the set process.

  15. Integrated System for Design and Analysis of Separation Processes with Electrolyte Systems

    DEFF Research Database (Denmark)

    Takano, Kiyoteru; Gani, Rafiqul; Ishikawa, T.

    2000-01-01

    A thermodynamic insights based algorithm for integrated design and analysis of crystallization processes with electrolyte systems is presented. This algorithm consists of a thermodynamic calculation part, a process design/analysis part and a process simulation part, which are integrated through...... a calculation engine. The main feature of the algorithm is the use of thermodynamic insights, not only to identify and generate the feasible process alternatives, but also to obtain good initial estimates for the process simulation part, and for visualization of process synthesis/design. The main steps...... of the integrated system are illustrated through two case studies where one represents an industrial crystallization process....

  16. Experimental Conditions to Obtain Photopolymerization Induced Phase Separation Process in Liquid Crystal-Photopolymer Composite Materials under Laser Exposure

    Directory of Open Access Journals (Sweden)

    Manuel Ortuño

    2014-01-01

    Full Text Available We analyze the experimental conditions necessary to obtain a photopolymerization induced phase separation process inside liquid crystal-photopolymer composite materials. Composites stored for 24 hours perform poorly in hologram recording but a good result is obtained if they are used recently prepared. We use a procedure combining heat and sonication to disarrange the liquid crystal structures formed during storage of the composite. We also propose incoherent light treatment after recording the hologram in order to evaluate if the phase separation evolved correctly during hologram recording.

  17. Analysis of Unit Process Cost for an Engineering-Scale Pyroprocess Facility Using a Process Costing Method in Korea

    Directory of Open Access Journals (Sweden)

    Sungki Kim

    2015-08-01

    Full Text Available Pyroprocessing, which is a dry recycling method, converts spent nuclear fuel into U (Uranium/TRU (TRansUranium metal ingots in a high-temperature molten salt phase. This paper provides the unit process cost of a pyroprocess facility that can process up to 10 tons of pyroprocessing product per year by utilizing the process costing method. Toward this end, the pyroprocess was classified into four kinds of unit processes: pretreatment, electrochemical reduction, electrorefining and electrowinning. The unit process cost was calculated by classifying the cost consumed at each process into raw material and conversion costs. The unit process costs of the pretreatment, electrochemical reduction, electrorefining and electrowinning were calculated as 195 US$/kgU-TRU, 310 US$/kgU-TRU, 215 US$/kgU-TRU and 231 US$/kgU-TRU, respectively. Finally the total pyroprocess cost was calculated as 951 US$/kgU-TRU. In addition, the cost driver for the raw material cost was identified as the cost for Li3PO4, needed for the LiCl-KCl purification process, and platinum as an anode electrode in the electrochemical reduction process.

  18. COSTS AND PROFITABILITY IN FOOD PROCESSING: PASTRY TYPE UNITS

    Directory of Open Access Journals (Sweden)

    DUMITRANA MIHAELA

    2013-08-01

    Full Text Available For each company, profitability, products quality and customer satisfaction are the most importanttargets. To attaint these targets, managers need to know all about costs that are used in decision making. Whatkind of costs? How these costs are calculated for a specific sector such as food processing? These are only a fewquestions with answers in our paper. We consider that a case study for this sector may be relevant for all peoplethat are interested to increase the profitability of this specific activity sector.

  19. Space Object Collision Probability via Monte Carlo on the Graphics Processing Unit

    Science.gov (United States)

    Vittaldev, Vivek; Russell, Ryan P.

    2017-09-01

    Fast and accurate collision probability computations are essential for protecting space assets. Monte Carlo (MC) simulation is the most accurate but computationally intensive method. A Graphics Processing Unit (GPU) is used to parallelize the computation and reduce the overall runtime. Using MC techniques to compute the collision probability is common in literature as the benchmark. An optimized implementation on the GPU, however, is a challenging problem and is the main focus of the current work. The MC simulation takes samples from the uncertainty distributions of the Resident Space Objects (RSOs) at any time during a time window of interest and outputs the separations at closest approach. Therefore, any uncertainty propagation method may be used and the collision probability is automatically computed as a function of RSO collision radii. Integration using a fixed time step and a quartic interpolation after every Runge Kutta step ensures that no close approaches are missed. Two orders of magnitude speedups over a serial CPU implementation are shown, and speedups improve moderately with higher fidelity dynamics. The tool makes the MC approach tractable on a single workstation, and can be used as a final product, or for verifying surrogate and analytical collision probability methods.

  20. Application of Decomposition Methodology to Solve Integrated Process Design and Controller Design Problems for Reactor-Separator-Recycle System

    DEFF Research Database (Denmark)

    Abd.Hamid, Mohd-Kamaruddin; Sin, Gürkan; Gani, Rafiqul

    2010-01-01

    This paper presents the integrated process design and controller design (IPDC) for a reactor-separator-recycle (RSR) system and evaluates a decomposition methodology to solve the IPDC problem. Accordingly, the IPDC problem is solved by decomposing it into four hierarchical stages: (i) pre-analysi...... to the solution of IPDC problems for RSR systems.......This paper presents the integrated process design and controller design (IPDC) for a reactor-separator-recycle (RSR) system and evaluates a decomposition methodology to solve the IPDC problem. Accordingly, the IPDC problem is solved by decomposing it into four hierarchical stages: (i) pre...... the design of a RSR system involving consecutive reactions, A B -> C and shown to provide effective solutions that satisfy design, control and cost criteria. The advantage of the proposed methodology is that it is systematic, makes use of thermodynamic-process knowledge and provides valuable insights...

  1. Separation process for lanthanides based on solvation properties of non ionic surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Draye, M.; Favre-Reguillon, A.; Foos, J.; Cote, G

    2004-07-01

    In the present study, cloud-point extraction is used with a lipophilic chelating agent (8-hydroxyquinoline) to extract and separate lanthanum (III) and gadolinium (III) from an aqueous solution. The methodology used is based on the formation of lanthanide (III) organic complexes that are soluble in a micellar phase of non-ionic surfactant. The lanthanide (III) complexes are then extracted into the surfactant-rich phase at a temperature above the cloud-point temperature. The cloud-point temperature, the structure of the lipophilic part of the nonionic surfactant and the chelating agent - metal molar ratio are identified as factors determining the extraction efficiency and selectivity. With Triton X-114, high selectivity and decontamination factor for Gd(III) is observed indicating that micelle mediated extraction involving cloud-point extraction is promising for the specific separation of actinide ions from nuclear waste solution. (authors)

  2. Simulation of Flash Separation in Polyethylene Industrial Processing: Comparison of SRK and SL Equations of State

    OpenAIRE

    Costa, Glória Meyberg Nunes; Guerrieri, Y.; Kislansky, S.; F.L.P. Pessoa; Melo, Silvio Alexandre Beisl Vieira de; Embiruçu, Marcelo

    2009-01-01

    Texto completo: Acesso restrito. p. 8613–8628. The Soave−Redlich−Kwong (SRK) and the Sanchez and Lacombe (SL) equations of state are applied to the flash simulation of polyethylene industrial separators, specifically low-density polyethylene (eight resins) and linear low-density polyethylene (25 resins). Three mixing rules are used in the SRK equation: van der Waals (VDW) one-fluid, Wong−Sandler, and LCVM (linear combination of the Vidal and Michelsen mixing rules). The latter two mixing r...

  3. 空分装置安全运行性能的提升与优化%Safety Operation Performance Improvement and Optimization of Air Separation Unit

    Institute of Scientific and Technical Information of China (English)

    王辉

    2013-01-01

    从已发生的故障以及存在的安全隐患出发,对可能出现的故障原因进行综合分析,通过设备换型、技术升级等方法对空分装置进行了改进。改造后的效果显著,有效地保障了制氧机组的安全运行及人身安全。%To the faults and the potential safety problems in operation of an air separation unit ,this paper analyzes the possible causes of fault after a comprehensive analysis ,through upgrading the equipment and technical method ,the air separation unit is improved . The remarkable effect has been got ,and the effective protection of the oxygen manufacture equipment and personal safety has been achieved .

  4. ENTREPRENEURIAL OPPORTUNITIES IN FOOD PROCESSING UNITS (WITH SPECIAL REFERENCES TO BYADGI RED CHILLI COLD STORAGE UNITS IN THE KARNATAKA STATE

    Directory of Open Access Journals (Sweden)

    P. ISHWARA

    2010-01-01

    Full Text Available After the green revolution, we are now ushering in the evergreen revolution in the country; food processing is an evergreen activity. It is the key to the agricultural sector. In this paper an attempt has been made to study the workings of food processing units with special references to Red Chilli Cold Storage units in the Byadgi district of Karnataka State. Byadgi has been famous for Red Chilli since the days it’s of antiquity. The vast and extensive market yard in Byadagi taluk is famous as the second largest Red Chilli dealing market in the country. However, the most common and recurring problem faced by the farmer is inability to store enough red chilli from one harvest to another. Red chilli that was locally abundant for only a short period of time had to be stored against times of scarcity. In recent years, due to Oleoresin, demand for Red Chilli has grow from other countries like Sri Lanka, Bangladesh, America, Europe, Nepal, Indonesia, Mexico etc. The study reveals that all the cold storage units of the study area have been using vapour compression refrigeration system or method. All entrepreneurs have satisfied with their turnover and profit and they are in a good economic position. Even though the average turnover and profits are increased, few units have shown negligible amount of decrease in turnover and profit. This is due to the competition from increasing number of cold storages and early established units. The cold storages of the study area have been storing Red chilli, Chilli seeds, Chilli powder, Tamarind, Jeera, Dania, Turmeric, Sunflower, Zinger, Channa, Flower seeds etc,. But the 80 per cent of the each cold storage is filled by the red chilli this is due to the existence of vast and extensivered chilli market yard in the Byadgi. There is no business without problems. In the same way the entrepreneurs who are chosen for the study are facing a few problems in their business like skilled labour, technical and management

  5. Performance enhancement of open loop gas recovery process by centrifugal separation of gases

    Science.gov (United States)

    Kalmani, S. D.; Joshi, A. V.; Bhattacharya, S.; Hunagund, P. V.

    2016-11-01

    The proposed INO-ICAL detector [1] is going to be instrumented with 28800 RPCs (Resistive Plate Chamber). These RPCs (2 × 2 m2 size) will consist of two glass electrodes separated by 2 mm and will use a gas mixture of Freon R134a, isobutane and sulphur hexafluoride (in the ratio of 95.3:4.5:0.2). An Open Ended System (OES), in which the gas mixture is vented to the atmosphere after a single passage through the detector, is most commonly used for small detector setups. However, OES cannot be used with the INO-ICAL detector due to reasons of cost and pollution. It is necessary, therefore, to recirculate the gas mixture in a closed loop. In a Closed Loop gas System (CLS) [2] the gas mixture is purified and recirculated after flowing through the RPC. The impurities which get accumulated in the gas mixture due to leaks or formation of radicals are removed by suitable filters. The Open Loop System (OLS) [3] is based on the separation and recovery of major gas components after passage of the gas mixture through the RPCs. and has the advantage that it does not need filters for removal of impurities. However a CLS is found to be more efficient than OLS in the recovery of gases in the mixture. In this paper we discuss centrifugal separation [4] as a technique to extract major gas constituents and use this technique to improve the efficiency of OLS. Results from preliminary trial runs are reported.

  6. Coupling membrane separation and photocatalytic oxidation processes for the degradation of pharmaceutical pollutants.

    Science.gov (United States)

    Martínez, F; López-Muñoz, M J; Aguado, J; Melero, J A; Arsuaga, J; Sotto, A; Molina, R; Segura, Y; Pariente, M I; Revilla, A; Cerro, L; Carenas, G

    2013-10-01

    The coupling of membrane separation and photocatalytic oxidation has been studied for the removal of pharmaceutical pollutants. The retention properties of two different membranes (nanofiltration and reverse osmosis) were assessed. Comparable selectivity on the separation of pharmaceuticals were observed for both membranes, obtaining a permeate stream with concentrations of each pharmaceutical below 0.5 mg L(-)(1) and a rejected flux highly concentrated (in the range of 16-25 mg L(-)(1) and 18-32 mg L(-)(1) of each pharmaceutical for NF-90 and BW-30 membranes, respectively), when an initial stream of six pharmaceuticals was feeding to the membrane system (10 mg L(-)(1) of each pharmaceutical). The abatement of concentrated pharmaceuticals of the rejected stream was evaluated by means of heterogeneous photocatalytic oxidation using TiO2 and Fe2O3/SBA-15 in presence of hydrogen peroxide as photo-Fenton system. Both photocatalytic treatments showed remarkable removals of pharmaceutical compounds, achieving values between 80 and 100%. The nicotine was the most refractory pollutant of all the studied pharmaceuticals. Photo-Fenton treatment seems to be more effective than TiO2 photocatalysis, as high mineralization degree and increased nicotine removal were attested. This work can be considered an interesting approach of coupling membrane separation and heterogeneous photocatalytic technologies for the successful abatement of pharmaceutical compounds in effluents of wastewater treatment plants. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. A novel apparatus for countercurrent sorption separation processes using fibrous sorbents

    NARCIS (Netherlands)

    Diederen, A.M.; Zee, G. van; Veenman, A.W.; Graauw, J. de

    1998-01-01

    This paper discusses a technical feasibility study on continuous countercurrent sorption equipment using mechanically transported fibrous sorbent materials such as fiber beds and open-cell foam. A pilot unit was developed and tested and the apparatus performed adequately. Under the conditions applie

  8. Scrap tyre recycling process with molten zinc as direct heat transfer and solids separation fluid: A new reactor concept.

    Science.gov (United States)

    Riedewald, Frank; Goode, Kieran; Sexton, Aidan; Sousa-Gallagher, Maria J

    2016-01-01

    Every year about 1.5 billion tyres are discarded worldwide representing a large amount of solid waste, but also a largely untapped source of raw materials. The objective of the method was to prove the concept of a novel scrap tyre recycling process which uses molten zinc as the direct heat transfer fluid and, simultaneously, uses this media to separate the solids products (i.e. steel and rCB) in a sink-float separation at an operating temperature of 450-470 °C. This methodology involved: •construction of the laboratory scale batch reactor,•separation of floating rCB from the zinc,•recovery of the steel from the bottom of the reactor following pyrolysis.

  9. Solution processing of polymer semiconductor: Insulator blends-Tailored optical properties through liquid-liquid phase separation control

    KAUST Repository

    Hellmann, Christoph

    2014-12-17

    © 2014 Wiley Periodicals, Inc. It has been demonstrated that the 0-0 absorption transition of poly(3-hexylthiophene) (P3HT) in blends with poly(ethylene oxide) (PEO) could be rationally tuned through the control of the liquid-liquid phase separation process during solution deposition. Pronounced J-like aggregation behavior, characteristic for systems of a low exciton band width, was found for blends where the most pronounced liquid-liquid phase separation occurred in solution, leading to domains of P3HT and PEO of high phase purity. Since liquid-liquid phase separation could be readily manipulated either by the solution temperature, solute concentration, or deposition temperature, to name a few parameters, our findings promise the design from the out-set of semiconductor:insulator architectures of pre-defined properties by manipulation of the interaction parameter between the solutes as well as the respective solute:solvent system using classical polymer science principles.

  10. Effects of Clown Doctors on child and caregiver anxiety at the entrance to the surgery care unit and separation from caregivers

    OpenAIRE

    Patrícia Arriaga; Catarina Pacheco

    2016-01-01

    This study investigated the effects of hospital Clown Doctors intervention on child and caregiver preoperative anxiety at the entrance to the surgery care unit and separation from caregivers. A total of 88 children (aged 4-12 years) were assigned to one of the following two groups: Clown Doctors intervention or control group (standard care). Independent observational records using the modified Yale Preoperative Anxiety Scale instrument assessed children’s anxiety, while the State-Trait Anxiet...

  11. The Cilium: Cellular Antenna and Central Processing Unit.

    Science.gov (United States)

    Malicki, Jarema J; Johnson, Colin A

    2017-02-01

    Cilia mediate an astonishing diversity of processes. Recent advances provide unexpected insights into the regulatory mechanisms of cilium formation, and reveal diverse regulatory inputs that are related to the cell cycle, cytoskeleton, proteostasis, and cilia-mediated signaling itself. Ciliogenesis and cilia maintenance are regulated by reciprocal antagonistic or synergistic influences, often acting in parallel to each other. By receiving parallel inputs, cilia appear to integrate multiple signals into specific outputs and may have functions similar to logic gates of digital systems. Some combinations of input signals appear to impose higher hierarchical control related to the cell cycle. An integrated view of these regulatory inputs will be necessary to understand ciliogenesis and its wider relevance to human biology. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Professional Competence of the Head of External Relations Unit and its Development in the Study Process

    OpenAIRE

    Turuševa, Larisa

    2010-01-01

    Dissertation Annotation Larisa Turuševa’s promotion paper „Professional Competence of the Head of External Relations Unit and its Development in the Study Process” is a fulfilled research on the development of Professional competence of the heads of external relations units, conditions for the study programme development. A model of professional competence of the head of external relations unit is worked out, its indicators and levels are described. A study process model for th...

  13. Low cost solar array project production process and equipment task. A Module Experimental Process System Development Unit (MEPSDU)

    Science.gov (United States)

    1981-01-01

    Technical readiness for the production of photovoltaic modules using single crystal silicon dendritic web sheet material is demonstrated by: (1) selection, design and implementation of solar cell and photovoltaic module process sequence in a Module Experimental Process System Development Unit; (2) demonstration runs; (3) passing of acceptance and qualification tests; and (4) achievement of a cost effective module.

  14. Three-dimensional numerical investigation of the separation process in a vortex tube at different operating conditions

    Science.gov (United States)

    Rafiee, Seyed Ehsan; Sadeghiazad, M. M.

    2016-06-01

    Air separators provide safe, clean, and appropriate air flow to engines and are widely used in vehicles with large engines such as ships and submarines. In this operational study, the separation process inside a Ranque-Hilsch vortex tube cleaning (cooling) system is investigated to analyze the impact of the operating gas type on the vortex tube performance; the operating gases used are air, nitrogen, oxygen, carbon dioxide and nitrogen dioxide. The computational fluid dynamic model used is equipped with a three-dimensional structure, and the steady-state condition is applied during computations. The standard k-ɛ turbulence model is employed to resolve nonlinear flow equations, and various key parameters, such as hot and cold exhaust thermal drops, and power separation rates, are described numerically. The results show that nitrogen dioxide creates the greatest separation power out of all gases tested, and the numerical results are validated by good agreement with available experimental data. In addition, a comparison is made between the use of two different boundary conditions, the pressure-far-field and the pressure-outlet, when analyzing complex turbulent flows inside the air separators. Results present a comprehensive and practical solution for use in future numerical studies.

  15. The Aluminum Deep Processing Project of North United Aluminum Landed in Qijiang

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>On April 10,North United Aluminum Company respectively signed investment cooperation agreements with Qijiang Industrial Park and Qineng Electricity&Aluminum Co.,Ltd,signifying the landing of North United Aluminum’s aluminum deep processing project in Qijiang.

  16. Factors Controlling Redox Speciation of Plutonium and Neptunium in Extraction Separation Processes

    Energy Technology Data Exchange (ETDEWEB)

    Paulenova, Alena [Principal Investigator; Vandegrift, III, George F. [Collaborator

    2013-09-24

    The objective of the project was to examine the factors controlling redox speciation of plutonium and neptunium in UREX+ extraction in terms of redox potentials, redox mechanism, kinetics and thermodynamics. Researchers employed redox-speciation extractions schemes in parallel to the spectroscopic experiments. The resulting distribution of redox species w studied uring spectroscopic, electrochemical, and spectro-electrochemical methods. This work reulted in collection of data on redox stability and distribution of redox couples in the nitric acid/nitrate electrolyte and the development of redox buffers to stabilize the desired oxidation state of separated radionuclides. The effects of temperature and concentrations on the redox behavior of neptunium were evaluated.

  17. Integration of Bioreactor and Membrane Separation Processes: A Model Based Approach

    DEFF Research Database (Denmark)

    Prado Rubio, Oscar Andres

    to as Reverse Electro-Enhanced Dialysis (REED). Unconsumed substrate and biomass are effectively recycled to the fermenter. In the second membrane separation stage, the lactate is recovered and concentrated as lactic acid using Electrodialysis with bipolar membranes (EDBM), while sodium hydroxide is regenerated...... test. Satisfactory results are obtained regulating the pH and managing the input constraints. The design and operability of the integrated bioreactor and REED module are investigated using the developed models and control structure. The study involves two different case studies: continuous lactic acid...

  18. Computer simulation of phase separation and ordering processes in low-dimensional systems

    DEFF Research Database (Denmark)

    Mouritsen, O.G.; Shah, P.J.; Vitting Andersen, J.

    1991-01-01

    properties, and a possible universal classification of the late-stage dynamics. Evidence from kinetic lattice model calculations using computer-simulation techniques is presented in favor of a universal description of the dynamics in terms of algebraic growth laws with exponents which only depend...... on the nature of the conservation laws in effect. Atomic and molecular overlayers on solid surfaces and weakly-coupled atomic layers of certain three-dimensional crystals constitute a particularly suitable class of systems for studying fundamental aspects of ordering dynamics and phase separation in two...

  19. Integration of Bioreactor and Membrane Separation Processes: A Model Based Approach

    DEFF Research Database (Denmark)

    Prado Rubio, Oscar Andres

    to as Reverse Electro-Enhanced Dialysis (REED). Unconsumed substrate and biomass are effectively recycled to the fermenter. In the second membrane separation stage, the lactate is recovered and concentrated as lactic acid using Electrodialysis with bipolar membranes (EDBM), while sodium hydroxide is regenerated...... test. Satisfactory results are obtained regulating the pH and managing the input constraints. The design and operability of the integrated bioreactor and REED module are investigated using the developed models and control structure. The study involves two different case studies: continuous lactic acid...

  20. Treatment of Oily Wastewater by Flotation -Magnetic Separation Process%气浮—磁分离工艺处理含油废水

    Institute of Scientific and Technical Information of China (English)

    杨瑞洪; 钱琛; 赵云龙; 邓阳清

    2011-01-01

    采用气浮—磁分离工艺处理某石化企业的含油废水,重点考察了磁分离单元的工艺条件对除油率的影响.实验结果表明磁分离单元的最佳工艺条件为:絮凝剂聚合氯化铝加入量25 mg/L,磁种加入量100 mg/L,磁场强度40 mT,搅拌条件为先以150 r/min的转速搅拌2 min,再以50 r/min的转速搅拌5 min.在最佳工艺条件下进行气浮—磁分离工艺除油实验,在进水油质量浓度平均为29.5 mg/L时,气浮单元出水油质量浓度平均为8.5 mg/L,除油率平均为71.1%;磁分离单元出水油质量浓度平均为4.7 mg/L,除油率平均为44.1%;总除油率平均为83.8%.%The oily wastewater of a petrochemical enterprise was treated by flotation - magnetic separation process. The effects of the process conditions in the magnetic separation unit on the oil removal rate were studied especially. The optimum process conditions are as follows; flocculant PAC dosage 25 mg/L, magnetic seed dosage 100 mg/L, magnetic field strength 40 mT, stirring time 2 min with 150 r/min of rotation speed, stirring time 5 min with 50 r/min of rotation speed. Under theses conditions, and when the average oil mass concentration of the influence is 29.5 mg/L, the average oil mass concentration of the effluent from the flotation unit is 8.5 mg/L with 71.1% of oil removal rate, and that of the effluent from the magnetic separation unit is 4.7 mg/L with 44.1% of oil removal rate. The average total oil removal rate is 83. 8%.