WorldWideScience

Sample records for unit replacement steam

  1. Steam generator replacement in Bruce A Unit 1 and Unit 2

    International Nuclear Information System (INIS)

    Hart, R.S.

    2006-01-01

    The Bruce A Generating Station consists of four 900 MW class CANDU units. The reactor and Primary Heat Transport System for each Unit are housed within a reinforced concrete reactor vault. A large duct running below the reactor vaults accommodates the shared fuel handling system, and connects the four reactor vaults to the vacuum building. The reactor vaults, fuelling system duct and the vacuum building constitute the station vacuum containment system. Bruce A Unit 2 was shut down in 1995 and Bruce A Units 1, 3 and 4 were shutdown in 1997. Bruce A Units 3 and 4 were returned to service in late 2003 and are currently operating. Units 1 and 2 remain out of service. Bruce Power is currently undertaking a major rehabilitation of Bruce A Unit 1 and Units 2 that will extend the in-service life of these units by at least 25 years. Replacement of the Steam Generators (eight in each unit) is required; this work was awarded to SNC-Lavalin Nuclear (SLN). The existing steam drums (which house the steam separation and drying equipment) will be retained. Unit 2 is scheduled to be synchronized with the grid in 2009, followed by Unit 1 in 2009. Each Bruce A unit has two steam generating assemblies, one located above and to each end of the reactor. Each steam generating assembly consists of a horizontal cylindrical steam drum and four vertical Steam Generators. The vertical Steam Generators connect to individual nozzles that are located on the underside of the Steam Drum (SD). The steam drums are located in concrete shielding structures (steam drum enclosures). The lower sections of the Steam Generators penetrate the top of the reactor vaults: the containment pressure boundary is established by bellows assemblies that connect between the reactor vault roof slab and the Steam Generators. Each Steam Generators is supported from the bottom by a trapeze that is suspended from the reactor vault top structure. The Steam Generator Replacement (SGR) methodology developed by SLN for Unit 1

  2. Steam generator replacement in Bruce A Unit 1 and Unit 2

    International Nuclear Information System (INIS)

    Hart, R.S.

    2007-01-01

    The Bruce A Generating Station consists of four 900 MW class CANDU units. The reactor and Primary Heat Transport System for each Unit are housed within a reinforced concrete reactor vault. A large duct running below the reactor vaults accommodates the shared fuel handling system, and connects the four reactor vaults to the vacuum building. The reactor vaults, fuelling system duct and the vacuum building constitute the station vacuum containment system. Bruce A Unit 2 was shut down in 1995 and Bruce A Units 1, 3 and 4 were shutdown in 1997. Bruce A Units 3 and 4 were returned to service in late 2003 and are currently operating. Units 1 and 2 remain out of service. Bruce Power is currently undertaking a major rehabilitation of Bruce A Unit 1 and Unit 2 that will extend the in-service tile of these units by at least 25 years. Replacement of the Steam Generators (eight in each unit) is required; this work was awarded to SNC-Lavalin Nuclear (SLN). The existing steam drums (which house the steam separation and drying equipment) will be retained. Unit 2 is scheduled to be synchronized with the grid in 2009, followed by Unit 1 in 2009. Each Bruce A unit has two steam generating assemblies, one located above and to each end of the reactor. Each steam generating assembly consists of a horizontal cylindrical steam drum and four vertical Steam Generators. The vertical Steam Generators connect to individual nozzles that are located on the underside of the Steam Drum (SD). The steam drums are located in concrete shielding structures (steam drum enclosures). The lower sections of the Steam Generators penetrate the top of the reactor vaults: the containment pressure boundary is established by bellows assemblies that connect between the reactor vault roof slab and the Steam Generators. Each Steam Generators is supported from he bottom by a trapeze that is suspended from the reactor vault top structure. The Steam Generator Replacement (SGR) methodology developed by SLN for Unit 1

  3. Primary separator replacement for Bruce Unit 8 steam generators

    International Nuclear Information System (INIS)

    Roy, S.B.; Mewdell, C.G.; Schneider, W.G.

    2000-01-01

    During a scheduled maintenance outage of Bruce Unit 8 in 1998, it was discovered that the majority of the original primary steam separators were damaged in two steam generators. The Bruce B steam generators are equipped with GXP type primary cyclone separators of B and W supply. There were localized perforations in the upper part of the separators and large areas of generalized wall thinning. The degradation was indicative of a flow related erosion corrosion mechanism. Although the unit- restart was justified, it was obvious that corrective actions would be necessary because of the number of separators affected and the extent of the degradation. Repair was not considered to be a practical option and it was decided to replace the separators, as required, in Unit 8 steam generators during an advanced scheduled outage. GXP separators were selected for replacement to minimize the impact on steam generator operating characteristics and analysis. The material of construction was upgraded from the original carbon steel to stainless steel to maximize the assurance of full life. The replacement of the separators was a first of a kind operation not only for Ontario Power Generation and B and W but also for all CANDU plants. The paper describes the degradations observed and the assessments, the operating experience, manufacture and installation of the replacement separators. During routine inspection in 1998, many of the primary steam separators in two of steam generators at Bruce Nuclear Division B Unit 8 were observed to have through wall perforations. This paper describes assessment of this condition. It also discusses the manufacture and testing of replacement primary steam separators and the development and execution of the replacement separator installation program. (author)

  4. North Anna Power Station - Unit 1: Overview of steam generator replacement project activities

    International Nuclear Information System (INIS)

    Gettler, M.W.; Bayer, R.K.; Lippard, D.W.

    1993-01-01

    The original steam generators at Virginia Electric and Power Company's (Virginia Power) North Anna Power Station (NAPS) Unit 1 have experienced corrosion-related degradation that require periodic inspection and plugging of steam generator tubes to ensure their continued safe and reliable operation. Despite improvements in secondary water chemistry, continued tube degradation in the steam generators necessitated the removal from service of approximately 20.3 percent of the tubes by plugging, (18.6, 17.3, and 25.1 for steam generators A, B, and C, respectively). Additionally, the unit power was limited to 95 % during, its last cycle of operation. Projections of industry and Virginia Power experience indicated the possibility of mid-cycle inspections and reductions in unit power. Therefore, economic considerations led to the decision to repair the steam generators (i.e., replace the steam generator lower assemblies). Three new Model 51F Steam Generator lower assembly units were ordered from Westinghouse. Virginia Power contracted Bechtel Power Corporation to provide the engineering and construction support to repair the Unit 1 steam generators. On January 4, 1993, after an extended coastdown period, North Anna Unit 1 was brought off-line and the 110 day (breaker-to-breaker) Steam Generator Replacement Project (SGRP) outage began. As of this paper, the outage is still in progress

  5. Replacement of steam generators at arkansas nuclear one, unit-2 (ano-2)

    International Nuclear Information System (INIS)

    Wilson, R.M.; Buford, A.

    2001-01-01

    The Arkansas Nuclear One, Unit-2 steam generators, originally supplied by Combustion Engineering, began commercial operation in 1980 producing a gross electrical output of 958 MW. After several years of successful operation, the owner decided that the tube degradation rates of the original steam generators were too high for the plant to meet the performance requirements for the full 40-year license period. The contract to supply replacement steam generators (RSGs) was awarded to Westinghouse Electric Company in 1996. Installation of these RSGs took place in the last months of 2000. This paper compares the design features of the original and re-placement steam generators with emphasis on design and reliability enhancements achieved. (author)

  6. International examples of steam generator replacement

    International Nuclear Information System (INIS)

    Wiechmann, K.

    1993-01-01

    Since 1979-1980 a total of twelve nuclear power plants world-wide have had their steam generators replaced. The replacement of the Combustion steam generators in the Millstone-2 plant in the United States was completed very recently. Steam generator replacement activities are going on at present in four plants. In North Anna, the steam generators have been under replacement since January 1990. In Japan, preparations have been started for Genkai-1. Since January 1992, the two projects in Beznau-1, Switzerland, and Doel-3, Belgium, have bee planned and executed in parallel. Why steam generator replacement? There are a number of defect mechanisms which give rise to the need for early steam generator replacement. One of the main reasons is the use of Inconel-600 as material for the heating tubes. Steam generator heating tubes made of Inconel-600 have been known to exhibit their first defects due to stress corrosion cracking after less than one year of operation. (orig.) [de

  7. Steam generator replacement at Bruce A: approach, results, and lessons learned

    International Nuclear Information System (INIS)

    Tomkiewicz, W.; Savage, B.; Smith, J.

    2008-01-01

    Steam Generator Replacement is now complete in Bruce A Units 1 and 2. In each reactor, eight steam generators were replaced; these were the first CANDU steam generator replacements performed anywhere in the world. The plans for replacement were developed in 2004 and 2005, and were summarized in an earlier paper for the CNS Conference held in November, 2006. The present paper briefly summarizes the methodologies and special processes used such as metrology, cutting and welding and heavy lifting. The paper provides an update since the earlier report and focuses on the project achievements to date, such as: - A combination of engineered methodology, laser metrology and precise remote machining led to accurate first time fit-ups of each new replacement steam generator and steam drums - Lessons learned in the first unit led to schedule improvements in the second unit - Dose received was lowest recorded for any steam generator replacement project. The experience gained and lessons learned from Units 1 and 2 will be valuable in planning and executing future replacement steam generator projects. A video was presented

  8. Steam generator replacement at Surry Power Station

    International Nuclear Information System (INIS)

    McKay, H.S.

    1982-01-01

    The purposes of the steam generator repair program at Surry Power Station were to repair the tube degradation caused by corrosion-related phenomena and to restore the integrity of the steam generators to a level equivalent to new equipment. The repair program consisted of (1) replacing the existing lower-shell assemblies with new ones and (2) adding new moisture separation equipment to the upper-shell assemblies. These tasks required that several pieces of reactor coolant piping, feedwater piping, main steam piping, and the steam generator be cut and refurbished for reinstallation after the new lower shell was in place. The safety implications and other potential effects of the repair program both during the repair work and after the unit was returned to power were part of the design basis of the repair program. The repair program has been completed on Unit 2 without any adverse effects on the health and safety of the general public or to the personnel engaged in the repair work. Before the Unit 1 repair program began, a review of work procedures and field changes for the Unit 2 repair was conducted. Several major changes were made to avoid recurrence of problems and to streamline procedures. Steam generator replacements was completed on June 1, 1981, and the unit is presently in the startup phase of the outrage

  9. Technical development and its application on steam generator replacement

    International Nuclear Information System (INIS)

    Morita, Sadahiko; Hanzawa, Katsumi; Sato, Hajime; Kannoto, Yasuo.

    1995-01-01

    Twenty-two PWR nuclear power plants are now under commercial operation in Japan. Eight of these plants are scheduled to have their steam generators replaced by up-graded units as a social responsibility for improved reliability, economy and easier maintenance. To carry out steam generator replacement, main coolant pipe cutting and restoration techniques, remote controlled welding machines and other remote controlled equipment, templating techniques with which the new steam generator primary nozzles will fit the existing primary pipes correctly were developed. An adequate training program was carried out to establish these techniques and they were then applied in replacement work on site. The steam generators of the three plants were replaced completely in 1994. These newly developed techniques are to be applied in upcoming plants and replaced plants will be much reliable. (author)

  10. Use of mock-up training to reduce personnel exposure at the North Anna Unit 1 Steam Generator Replacement Project

    Energy Technology Data Exchange (ETDEWEB)

    Henry, H.G. [Virginia Power, Mineral, VA (United States); Reilly, B.P. [Bechtel Power Corp., Gaithersburg, MD (United States)

    1995-03-01

    The North Anna Power Station is located on the southern shore of Lake Anna in Louisa County, approximately forty miles northwest of Richmond, Virginia. The two 910 Mw nuclear units located on this site are owned by Virginia Electric and Power Company (Virginia Power) and Old Dominion Electric Cooperative and operated by Virginia Power. Fuel was loaded into Unit 1 in December 1977, and it began commercial operation in June 1978. Fuel was loaded into Unit 2 in April 1980 and began commercial operation in December 1980. Each nuclear unit includes a three-coolant-loop pressurized light water reactor nuclear steam supply system that was furnished by Westinghouse Electric Corporation. Included within each system were three Westinghouse Model 51 steam generators with alloy 600, mill-annealed tubing material. Over the years of operation of Unit 1, various corrosion-related phenomena had occurred that affected the steam generators tubing and degraded their ability to fulfill their heat transfer function. Advanced inspection and repair techniques helped extend the useful life of the steam generators, but projections based on the results of the inspections indicated that the existing steam generators tubing and degraded their ability to fullfill their heat transfer function. Advanced inspection and repair techniques helped extend the useful life of the steam generators, but projections based on the results of the inspections indicated that the existing steam generators would not last their design life and must be repaired. To this end Virginia Power determined that a steam generator replacement (SGR) program was necessary to remove the old steam generator tube bundles and lower shell sections, including the channel heads (collectively called the lower assemblies), and replace them with new lower assemblies incorporating design features that will prevent the degradation problems that the old steam generators had experienced.

  11. Steam-generator replacement sets new marks

    International Nuclear Information System (INIS)

    Beck, R.L.

    1995-01-01

    This article describes how, in one of the most successful steam-generator replacement experiences at PWRs worldwide, the V C Summer retrofit exceeded plant goals for critical-path duration, radiation, exposure, and radwaste generation. Intensive planning and teamwork, combined with the firm support of station management and the use of mockups to prepare the work crews for activity in a radiological environment, were key factors in the record performance achieved by South Carolina Electric and Gas Co (SCE and G) in replacing three steam generators at V C Summer nuclear station. The 97-day, two-hour breaker-to-breaker replacement outage -- including an eight-day delay for repair of leak in a small-bore seal-injection line of a reactor coolant pump (unrelated to the replacement activities) -- surpassed the project goal by over one day. Moreover, the outage was only 13 hours shy of the world record held by Virginia Power Co's North Anna Unit 1

  12. Steam generator replacement at Kansai Electric Power Co., Inc

    International Nuclear Information System (INIS)

    Kimura, S.; Dodo, Takashi; Negishi, Kazuo

    1995-01-01

    Eleven nuclear units are in operation at the Kansai Electric Power Co., Inc.. In seven of them, Mihama-1·2·3, Takahama-1·2, and Ohi-1·2, comparatively long duration for tube inspection and repair have been required during late annual outages. KEPCO decided to replace all steam generators in these 7 units with the latest model which was improved upon the past degradation experiences, as a result of comprehensive considerations including public confidence in nuclear power generation, maintenability, and economic efficiency. This report presents the design improvements in new steam generators, replacement techniques, and so on. (author)

  13. Design and performance of BWC replacement steam generators for PWR systems

    International Nuclear Information System (INIS)

    Klarner, R.; Steinmoeller, F.; Millman, J.; Schneider, W.

    1998-01-01

    In recent years, Babcock and Wilcox Canada (BWC) has provided a number of PWR Replacement Steam Generators (RSGS) to replace units that had experienced extensive Alloy 600 tube degradation. BWC RSG units are in operation at Northeast Utilities' Millstone Unit 2, Rochester Gas and Electric's Ginna Station, Duke Energy's Catawba Unit 1, McGuire Unit 1 and 2, Florida Power and Light's St. Lucie Unit 1 and Commonwealth Edison's Byron 1 Station. Extensive start-up performance characteristics have been obtained for Millstone 2, Ginna, McGuire 1, and Catawba 1 RSGS. The Millstone 2, Ginna and Catawba 1 RSGs have also undergone extensive inspections following their first cycle of operation. The design and start-up performance characteristics of these RSGs are presented. The BWC Replacement Steam generators were designed to fit the existing envelope of pressure boundary dimensions to ensure licensability and integration into the Nuclear Steam Supply System. The RSGs were provided with a tube bundle of Alloy 690TT tubing, sized to match or exceed the original steam generator (OSG) thermal performance including provision for the reduced thermal conductivity of Alloy 690 relative to Alloy 600. The RSG tube bundle configurations provide a higher circulation design relative to the OSG, and feature corrosion resistant lattice grid and U-bend tube supports which provide effective anti-vibration support. The tube bundle supports accommodate relatively unobstructed flow and allow unrestrained structural interactions during thermal transients. Efficient steam separators assure low moisture carryover as well as high circulation. Performance measurements obtained during start-up verify that the BWC RSGs meet or exceed the specified thermal and moisture carryover performance requirements. RSG water level stability results at nor-mal operation and during plant transients have been excellent. Visual and ECT inspections have confirmed minimal deposition and 100% tube integrity following

  14. New steam generators slated for nuclear units

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This article is a brief discussion of Duke Power's plans to replace steam generators at its McGuire and Catawba nuclear units. A letter of intent to purchase (from Babcock and Wilcox) the 12 Westinghouse steam generators has been signed, but no constructor has been selected at this time. This action is brought about by the failures of more than 3000 tubes in these units

  15. Steam generator replacement at Doel 3 NPP (Belgium)

    International Nuclear Information System (INIS)

    Danhier, B.

    1993-01-01

    The reasons are presented that led to the conclusion that the most cost-effective strategy for the Doel 3 unit was the immediate replacement of the SG. Discussed are the advantages and drawbacks of the replacement techniques, the so-called 2, 3 and 4 cuts methods. The advantages are emphasized of intensive use of computer aided engineering in this kind of backfitting. The methodology applied to combine a power uprating of 10% over the nominal power with the steam generator replacement is presented. (author) 1 fig

  16. Acceptance test for 900 MWe PWR unit replacement steam generators

    International Nuclear Information System (INIS)

    Gourguechon, B.

    1993-01-01

    During the first half of 1994, the Gravelines 1 steam generators will be replaced (SG replacement procedure). The new SG's differ from the former components notably by the alloy used for the tube bundle, in this case, the high chromium content Inconel 690. So, from this standpoint, they are to be considered as PWR 900 replacement SG first models and their thermal efficiency has consequently to be assessed. This will provide an opportunity of ensuring that the performance of the components delivered is in compliance with requirements and of making the necessary provisions if significant deviations are observed. The EFMT branch, which has been in charge of the instrumentation and acceptance of the different SG first models since the first PWR plants were commissioned, will be responsible for the acceptance tests and the ultimate validation of a performance assessment procedure applicable to the future replacement steam generators. The methods and tests proposed for SG expert appraisal are based on consideration of the importance of primary measurement quality for satisfactory SG assessment and of the new test facilities with which the 900 and 1 300 PWR plants are gradually being equipped. These facilities provide an on-site computer environment for tests compatible with the tools (PATTERN, etc.) used at EFMT and in other departments. This test is the first of this kind performed by EFMT and the test facility of a nuclear power plant. (author). 6 figs

  17. Design and performance of BWC replacement steam generators for PWR systems

    Energy Technology Data Exchange (ETDEWEB)

    Klarner, R.; Steinmoeller, F.; Millman, J.; Schneider, W. [Babcock and Wilcox Canada, Cambridge, Ontario (Canada)

    1998-07-01

    In recent years, Babcock and Wilcox Canada (BWC) has provided a number of PWR Replacement Steam Generators (RSGS) to replace units that had experienced extensive Alloy 600 tube degradation. BWC RSG units are in operation at Northeast Utilities' Millstone Unit 2, Rochester Gas and Electric's Ginna Station, Duke Energy's Catawba Unit 1, McGuire Unit 1 and 2, Florida Power and Light's St. Lucie Unit 1 and Commonwealth Edison's Byron 1 Station. Extensive start-up performance characteristics have been obtained for Millstone 2, Ginna, McGuire 1, and Catawba 1 RSGS. The Millstone 2, Ginna and Catawba 1 RSGs have also undergone extensive inspections following their first cycle of operation. The design and start-up performance characteristics of these RSGs are presented. The BWC Replacement Steam generators were designed to fit the existing envelope of pressure boundary dimensions to ensure licensability and integration into the Nuclear Steam Supply System. The RSGs were provided with a tube bundle of Alloy 690TT tubing, sized to match or exceed the original steam generator (OSG) thermal performance including provision for the reduced thermal conductivity of Alloy 690 relative to Alloy 600. The RSG tube bundle configurations provide a higher circulation design relative to the OSG, and feature corrosion resistant lattice grid and U-bend tube supports which provide effective anti-vibration support. The tube bundle supports accommodate relatively unobstructed flow and allow unrestrained structural interactions during thermal transients. Efficient steam separators assure low moisture carryover as well as high circulation. Performance measurements obtained during start-up verify that the BWC RSGs meet or exceed the specified thermal and moisture carryover performance requirements. RSG water level stability results at nor-mal operation and during plant transients have been excellent. Visual and ECT inspections have confirmed minimal deposition and 100

  18. Steam generator replacement: a story of continuous improvement

    International Nuclear Information System (INIS)

    Sills, M.S.; Wilkerson, R.

    2009-01-01

    This paper provides a review of the history of steam generator replacement in the US focusing on the last five years. From the early replacements in the 1980s, there have been major technology improvements resulting in dramatically shorter outages and reduced radiological exposure for workers. Even though the changes for the last five years have been less dramatic, the improvement trend continues. No two steam generator replacement (SGR) projects are the same and there are some major differences including; the access path for the components to containment (is a construction opening in containment required), type of containment, number of steam generators, one piece or two piece replacement, plant type (Westinghouse, CE or B and W) and plant layout. These differences along with other variables such as delays due to plant operations and other activities not related to the steam generator replacement make analysis of performance data difficult. However, trends in outage performance and owner expectations can be identified. How far this trend will go is also discussed. Along with the trend of improved performance, there is also a significant variation in performance. Some of the contributors to this variation are identified. This paper addresses what is required for a successful outage, meeting the increasing expectations and setting new records. The authors will discuss various factors that contribute to the success of a steam generator replacement. These factors include technical issues and, equally important, organizational interface and the role the customer plays. Recommendations are provided for planning a successful steam generator replacement outage. (author)

  19. Steam generator replacement at the Obrigheim nuclear power station

    International Nuclear Information System (INIS)

    Pickel, E.; Schenk, H.; Huemmler, A.

    1984-01-01

    The Obrigheim Nuclear Power Station (KWO) is equipped with a dual-loop pressurized water reactor of 345 MW electric power; it was built by Siemens in the period 1965 to 1968. By the end of 1983, KWO had produced some 35 billion kWh in 109,000 hours of operation. Repeated leaks in the heater tubes of the two steam generators had occurred since 1971. Both steam generators were replaced in the course of the 1983 annual revision. Kraftwerk Union AG (KWU) was commissioned to plant and carry out the replacement work. Despite the leakages the steam generators had been run safely and reliably over a period of 14 years until their replacement. Replacing the steam generators was completed within twelve weeks. In addition to the KWO staff and the supervising crew of KWU, some 400 external fitters were employed on the job at peak work-load periods. For the revision of the whole plant, work on the emergency systems and replacement of the steam generators a maximum number of approx. 900 external fitters were employed in the plant in addition to some 250 members of the plant crew. The exposure dose of the personnel sustained in the course of the steam generator replacement was 690 man-rem, which was clearly below previous estimates. (orig.) [de

  20. Structural considerations in steam generator replacement

    International Nuclear Information System (INIS)

    Bertheau, S.R.; Gazda, P.A.

    1991-01-01

    Corrosion of the tubes and tube-support structures inside pressurized water reactor (PWR) steam generators has led many utilities to consider a replacement of the generators. Such a project is a major undertaking for a utility and must be well planned to ensure an efficient and cost-effective effort. This paper discusses various structural aspects of replacement options, such as total or partial generator replacement, along with their associated pipe cuts; major structural aspects associated with removal paths through the equipment hatch or through an opening in the containment wall, along with the related removal processes; onsite movement and storage of the generators; and the advantages and disadvantages of the removal alternatives. This paper addresses the major structural considerations associated with a steam generator replacement project. Other important considerations (e.g., licensing, radiological concerns, electrical requirements, facilities for management and onsite administrative activities, storage and fabrication activities, and offsite transportation) are not discussed in this paper, but should be carefully considered when undertaking a replacement project

  1. Three Steam Generator Replacement Projects in 1995

    International Nuclear Information System (INIS)

    Holz, R.; Clavier, G.

    1996-01-01

    Since the companies Siemens AG and Framatome S. A. joined their experience and efforts in the field of steam generator replacements and formed a consortium in 1991, the following projects were performed in 1995: Ringhals 3, Tihange 3 and Asco 1. Further projects will follow in 1996, i. e., Doel 4 and Asco 2. Currently, this European consortium is bidding for the contract to replace the steam generators at the Krsko NPP and hopes to be awarded in 1996. An overview of the way the Consortium Siemens and Framatome approaches SG replacement projects is given based on the projects performed in 1995. Various aspects of project planning, management, licensing, personnel qualification and techniques used on site will be discussed. (author)

  2. Steam generator replacement from ALARA aspects

    International Nuclear Information System (INIS)

    Terry, I.; Breznik, B.

    2003-01-01

    This paper is going to consider radiological related parameters important for steam generator replacement (SGR) implementation. These parameters are identified as ALARA related parameters, owner-contractor relationship, planning, health physics with logistic services, and time required for the replacement. ALARA related parameters such as source or initial dose rate and plant system configuration define the initial conditions for the planning. There is room to optimise work planning. managerial procedures and also the staff during the implementation phase. The overview of these general considerations is based on the following background: using internationally available data and the experience of one of the vendors, i.e. Siemens-Framatome, and management experience of SG replacement which took place at Krsko NPP in the spring of 2000. Generally plant decisions on maintenance or repair procedures under radiation conditions take into account ALARA considerations. But in the main it is difficult to adjudge the results of an ALARA study, usually in the form of a collective dose estimate, because a comparison standard is missing. That is, very often the planned work is of a one-off nature so comparisons are not possible or the scopes are not the same. In such a case the collective doses for other types of work are looked at and a qualitative evaluation is made. In the case of steam generator replacement this is not the case. Over years of steam generator replacements world-wide a standard has been developed gradually. The first part of the following displays an overview of SGR and sets the Krsko SGR in perspective by applying dose analysis. The second part concentrates on the Krsko SGR itself and its ALARA aspects. (authors)

  3. Turbine steam path replacement at the Grafenrheinfeld Nuclear Power Station

    International Nuclear Information System (INIS)

    Weschenfelder, K.D.; Oeynhausen, H.; Bergmann, D.; Hosbein, P.; Termuehlen, H.

    1994-01-01

    In the last few years, replacement of old vintage steam turbine flow path components has been well established as a valid approach to improve thermal performance of aged turbines. In nuclear power plants, performance improvement is generally achieved only by design improvements since performance deterioration of old units is minor or nonexistent. With fossil units operating over decades loss in performance is an additional factor which can be taken into account. Such loss of performance can be caused by deposits, solid particle erosion, loss of shaft and inter-stage seal strips, etc. Improvement of performance is typically guaranteed as output increases for operation at full load. This value can be evaluated as a direct gain in unit capacity without fuel or steam supply increase. Since fuel intake does not change, the relative improvement of the net plant heat rate or efficiency is equal to the relative increase in output. The heat rate improvement is achieved not only at full load but for the entire load range. Such heat rate improvement not only moves a plant up on the load dispatch list increasing its capacity factor, but also extensive fuel savings can pay off for the investment cost of new steam path components. Another important factor is that quite often older turbine designs show a deterioration of their reliability and need costly repairs. With new flow path components an aged steam turbine starts a new useful life

  4. Some economic aspects of steam generator replacements in nuclear power plants

    International Nuclear Information System (INIS)

    Lebegner, J.

    1995-01-01

    The steam generator replacements performed over last decade (about 25 replacements until now), indicate trends towards improved techniques, shorter schedules and reduced total exposure and total costs. The goal of this paper is to give a worldwide review of SG replacement experience with accent on the economic aspect of the SG replacement. The main information about carried out replacements will be presented: cost, schedules, exposures, SG supplier and type, date of replacement, etc. Furthermore, the paper will contain the list of planned steam generator replacements in Europe, Japan and US future replacement plans. Finally, some of NPPs will be described whose initial nominal power has been increased along with SG replacement. (author)

  5. Radiological protection for the ANGRA 1 steam generator replacement outage

    International Nuclear Information System (INIS)

    Oliveira, Magno Jose de; Amaral, Marcos Antonio do; Minelli, Edson; Ferreira, William Alves

    2009-01-01

    The Angra 1 Nuclear Power Plant (NPP) is a Westinghouse two-loop plant with net output before its 1P16 Outage of 632 MWe, with the Old Steam Generators (OSG) type model D3, which were replaced by two new Steam Generators with feed water-ring system. Localized in Angra dos Reis, Rio de Janeiro - Brazil, Angra 1 started in commercial operation in 1985 and, from the beginning problems related to corrosion have appeared in the Inconel 600 alloy of the tubes. The corrosion problems indicated the necessity for a strong control of the tubes thicknesses and, after a time, the ELETRONUCLEAR decided to replace the OSG. In 2009, ELETRONUCLEAR initiated in January 24, the actions for the Steam Generators Replacement - SGR. During the SGR process, several controls were applied in field, which made possible to have no radiological accidents, no dose limits exceeded, and permitted to achieve a very good result in terms of Collective Dose. This paper describes the radiological controls applied for the Angra 1 Steam Generator Replacement Outage, the radiological protection team sizing and distribution and the obtained results. (author)

  6. Life extension and replacement management for RAPS type steam generators

    International Nuclear Information System (INIS)

    Arya, R.C.; Rastogi, A.K.

    1996-01-01

    The steam generating equipment in first four units of Indian PHWRs Rajasthan Atomic Power Station (RAPS) 1-2 and Madras Atomic Power Station (MAPS) 1-2 are hairpin type and comprise of eight boiler assemblies. Each assembly consists of identical, single pass, inverted and vertical hairpin heat exchangers (10 for RAPS and 11 for MAPS) containing 195 monel-400 U tubes of 12.7 mm dia x 1.242 mm thick. The hot heavy water flows through these tubes and imparts heat to feed, light demineralized water entering the shell at the bottom of preheat leg. The heat is generated on the outer surface of the tubes. Details of studies carried out for life extension and replacement management for RAPS type steam generators are given. 1 fig., 5 tabs

  7. Optimization of costs for the DOEL 3 steam generator replacement

    International Nuclear Information System (INIS)

    Leblois, C.

    1994-01-01

    Several aspects of steam generator replacement economics are discussed on the basis of the recent replacement carried out in the Doel 3 unit. The choice between repair of replacement policies, as well as the selection of the intervention date were based on a comparison of costs in which various possible scenarios were examined. The contractual approach for the different works to be performed was also an important point, as well as the project organization in which CAD played an important role. This organization allowed to optimize the outage duration and to realize numerous interventions in the reactor building in parallel with the replacement itself. A last aspect of the optimization of costs is the possibility to uprate the plant power. In the case of Doel 3, the plant restarted with a nominal power increased by 10%, of which 5,7% were possible by the increase of the SG heat transfer area. (Author) 6 refs

  8. LMFBR steam generators in the United Kingdom

    International Nuclear Information System (INIS)

    Anderson, R.; Hayden, O.

    2002-01-01

    Experience has been gained in the UK on the operation of LMFBR Steam Generator Units (SGU) over a period of 20 years from the Dounreay Fast Reactor (DFR) and the Prototype Fast Reactor (PFR). The DFR steam generator featured a double barrier and therefore did not represent a commercial design. PFR, however, faced the challenge of a single wall design and it is experience from this which is most valuable. The PFR reactor went critical in March 1974 and the plant operating history since then has been dominated by experience with leaks in the tube to tube plate welds of the high performance U-tubes SGU's. Operation at high power using the full complement of three secondary sodium circuits was delayed until July 1976 by the occurrence of leaks in the tube to tube plate welds of the superheater and reheater units which are fabricated in stainless steel. Repairs were carried out to the two superheaters and they were returned to service. The reheater tube bundle was removed from circuit after sodium was found to have entered the steam side. When the sodium had been removed and inspection carried out it was decided not to recover the unit. Since 1976 the remaining five stainless steel units have operated satisfactorily. This year a replacement reheater unit has been installed. This is of a new design in 9-Cr-Mo ferritic steel using a sleeve through which the steam tube passes to eliminate the tube to tube plate weld. Despite a few early leaks in evaporator tube to tube plate welds up to 1979, these failures did not initially present a major problem. However, in 1980 the rate of evaporator weld failures increased and despite the successful application of a shot peening process to eliminate stress corrosion failures from the water side of the weld, failures traced to the sodium side continued. A sleeving process was developed for application to complete evaporator units on a production basis with the objective of bypassing the welds at each end of the 500 tubes. The decision

  9. Piping hydrodynamic loads for a PWR power up-rate with steam generator replacement

    International Nuclear Information System (INIS)

    Julie M Jarvis; Allen T Vieira; James M Gilmer

    2005-01-01

    Full text of publication follows: Pipe break hydrodynamic loads are calculated for various systems in a PWR for a Power Up-rate (PUR) with a Steam Generator Replacement (SGR). PUR with SGR can change the system pressures, mass flowrates and pipe routing/configuration. These changes can alter the steam generator piping steam/water hammer loads. This paper discusses the need to benchmark against the original design basis, the use of different modeling techniques, and lessons learned. Benchmarking for licensing in the United States is vital in consideration of 10CFR50.59 and other licensing and safety issues. RELAP5 and its force post-processor R5FORCE are used to model the transient loads for various piping systems such as main feedwater and blowdown systems. Other modeling applications, including the Bechtel GAFT program, are used to evaluate loadings in the main steam piping. Forces are calculated for main steam turbine stop valve closure, feedwater pipe breaks and subsequent check valve slam, and blowdown isolation valve closure. These PUR/SGR forces are compared with the original design basis forces. Modeling techniques discussed include proper valve closure modeling, sonic velocity changes due to pipe material changes, and two phase flow effects. Lessons learned based on analyses done for several PWR PUR with SGR are presented. Lessons learned from these analyses include choosing the optimal replacement piping size and routing to improve system performance without resulting in excessive piping loads. (authors)

  10. Optimization of steam generator replacement with virtual reality modeling

    International Nuclear Information System (INIS)

    Kim, Jeong H.; Suh, Kune Y.

    2008-01-01

    Nuclear power plants (NPPs) have to be carefully examined and maintained up to the point of replacing major components during the overhaul period for continued operation. Most understandably the cost of maintenance and upgrading will tend to increase with the NPP power. There is thus an escalating need for developing an optimized process management method to reduce the cost involved. Albeit the steam generators (SGs) may not directly affect the expected lifespan of NPP, thousands of tubes with diameter on the order of 3 cm in the SG operating at 320degC and 16 MPa may well tend to be called Achilles' heel of the pressurized water reactors (PWRs). For instance, the SGs of Kori Nuclear Unit 1 (KNU 1) were replaced in October 1998 after 20 years of service on account of aging and potential threat to operational safety. In the same year the SG tubes of Ulchin Nuclear Units 1 and 2 were ruptured to result in leakage of the primary coolant to the secondary side. As a result their SGs are planned to be replaced in a few years. There is, however, a limit to improving the replacement process by trial and error in practice on account of the size of NPP with the ensuing complexity in process management. This paper proposes an optimization method for the SG replacement process based on the KNU 1 experience in 1998. The whole process was simulated accounting for interactions of each part in virtual reality utilizing the computer aided design solution CATIA, and the digital process management solution DELMIA. (author)

  11. A drier unit for steam separators

    International Nuclear Information System (INIS)

    Peyrelongue, J.-P.

    1973-01-01

    Description is given of a drier unit adapted to equip a water separator mounted in a unit for treating a wet steam fed from a high pressure enclosure, so as to dry and contingently superheat said steam prior to injecting same into a turbine low pressure stage. This drier unit is constituted by at least a stack of separating sheets maintained in parallel relationship and at a slight angle with respect to the horizontal so as to allow the water provided by wet steam to flow toward a channel communicating with a manifold, and by means for guiding the steam between the sheets and evenly distributing it. This can be applied to steam turbines in nuclear power stations [fr

  12. Design and manufacture of steam generators for replacement

    International Nuclear Information System (INIS)

    Hirano, Hiroshi; Kuri, Syuhei

    1995-01-01

    The basic specification of the steam generators for replacement as heat exchangers (the pressure, temperature, flow rate and thermal output on primary and secondary sides) is set same as that of steam generators before replacement, but the latest design reflecting the operation experience obtained so far and taking the countermeasures for preventing heating tube damage in it is adopted, such as the heating tubes made of TT 690 alloy, the tube support plates with four-lobe shape tube holes made of stainless steel, the stainless steel rest fittings of three in one set and so on. After the heating tube break accident in Mihama No. 2 plant, the quality control was further strengthened. The comparison of the specifications of the steam generators of respective plants before and after the replacement is shown. The main objective of improving steam generators is the heightening of the reliability of heating tubes against intergranular attack and primary water stress corrosion cracking. The improvements of heating tube material, tube support plate material, secondary side heat flow, the shape of tube holes of tube support plates, the method of expanding heating tubes, and vibration-controlling fittings are explained. As to the manufacturing procedure and quality control, the manufacture of raw materials, the build-up welding of tube plates, the manufacture of lower half shell plates, the tube hole making of support plates, the insection of outer cylinder, flow rate distribution plate. Support plates and heating tubes, the sealing welding and expanding of heating tubes, the fixing of rest fittings, the manufacture and fixing of water chamber cover, the manufacture of upper half shell, the fixing of parts inside it, the final joint and inspection are described. (K.I.)

  13. Surry Power Station secondary water chemistry improvement since steam generator replacement and the unit two feedwater pipe rupture

    International Nuclear Information System (INIS)

    Swindell, E.T.

    1988-01-01

    Surry Power Station has two Westinghouse-designed three-loop PWRs of 811 MWe design rating. The start of commercial operation was in July, 1972 in No.1 plant, and May, 1973 in No.2 plant. Both plants began the operation using controlled phosphate chemistry for the steam generators. In 1975, both plants were converted to all volatile treatment on the secondary side due to the tube wall thinning corrosion in the steam generators, which was associated with the phosphate sludge that was building up on the tube sheets and created acidic condition. Thereafter, condenser and air leakage and steam generator denting occurred, and after the operation of 8 years 2 month of No.1 plant and 5 years 9 months of No.2 plant, the steam generators were replaced. A major plant improvement program was designed and implemented from 1979 to 1980. The improvement in new steam generators, the modification for preventing corrosion, the addition of a steam generator blowdown recovery system, the reconstruction of condensers, the installation of full flow, deep bed condensate polishers, the addition of Dionex 8,000 on-line ion chromatograph, a long term maintenance agreement with Westinghouse and so on are reported. (Kako, I.)

  14. Replacement of steam generators at Dampierre 1 France

    International Nuclear Information System (INIS)

    Bacot, J.; Chorain, M.; Collot, Y.; Dorimini, G.

    1991-01-01

    1990 was the year of the first steam generator replacement operation on EdF's facilities. The site chosen was Dampierre 1 (900 MW PWR unit with 3 primary coolant loops). The project was a thorough success characterized by: (1) A work schedule which was entirely met and even improved on: 70 work days from the end of fuel unloading authorizing start of work in the reactor building up to the end of refitting in readiness for the primary circuit hydraulic tests, i.e. a gain of one week compared with the forecast work schedule, (2) A final dosimetry less than 230 man-rem for a target of 450 man-rem, (3) Safety: no serious accidents during the 300,000 hours worked. It also provided practical proof of French industry's capacity to undertake an SGR operation. (author)

  15. Quad Cities Unit 2 Main Steam Line Acoustic Source Identification and Load Reduction

    International Nuclear Information System (INIS)

    DeBoo, Guy; Ramsden, Kevin; Gesior, Roman

    2006-01-01

    The Quad Cities Units 1 and 2 have a history of steam line vibration issues. The implementation of an Extended Power Up-rate resulted in significant increases in steam line vibration as well as acoustic loading of the steam dryers, which led to equipment failures and fatigue cracking of the dryers. This paper discusses the results of extensive data collection on the Quad Cities Unit 2 replacement dryer and the Main Steam Lines. This data was taken with the intent of identifying acoustic sources in the steam system. Review of the data confirmed that vortex shedding coupled column resonance in the relief and safety valve stub pipes were the principal sources of large magnitude acoustic loads in the main steam system. Modifications were developed in sub-scale testing to alter the acoustic properties of the valve standpipes and add acoustic damping to the system. The modifications developed and installed consisted of acoustic side branches that were attached to the Electromatic Relief Valve (ERV) and Main Steam Safety Valve (MSSV) attachment pipes. Subsequent post-modification testing was performed in plant to confirm the effectiveness of the modifications. The modifications have been demonstrated to reduce vibration loads at full Extended Power Up-rate (EPU) conditions to levels below those at Original Licensed Thermal Power (OLTP). (authors)

  16. On economic efficiency of nuclear power unit life extension using steam-gas topping plant

    International Nuclear Information System (INIS)

    Kuznetsov, Y.N.; Lisitsa, F.D.; Smirnov, V.G.

    2001-01-01

    The different options for life extension of the operating nuclear power units have been analyzed in the report with regard for their economic efficiency. A particular attention is given to the option envisaging the reduction of reactor power output and its subsequent compensation with a steam-gas topping plant. Steam generated at its heat-recovery boilers is proposed to be used for the additional loading of the nuclear plant turbine so as to reach its nominal output. It would be demonstrated that the implementation of this option allows to reduce total costs in the period of power plant life extension by 24-29% as compared with the alternative use of the replacing steam-gas unit and the saved resources could be directed, for instance, for decommissioning of a reactor facility. (authors)

  17. 300 Area steam plant replacement, Hanford Site, Richland, Washington: Environmental assessment

    International Nuclear Information System (INIS)

    1997-03-01

    Steam to support process operations and facility heating is currently produced by a centralized oil-fired plant located in the 300 Area and piped to approximately 26 facilities in the 300 Area. This plant was constructed during the 1940s and, because of tis age, is not efficient, requires a relatively large operating and maintenance staff, and is not reliable. The US Department of Energy is proposing an energy conservation measure for a number of buildings in the 300 Area of the Hanford Site. This action includes replacing the centralized heating system with heating units for individual buildings or groups of buildings, constructing new natural gas pipelines to provide a fuel source for many of these units and constructing a central control building to operate and maintain the system. A new steel-sided building would be constructed in the 300 Area in a previously disturbed area at least 400 m (one-quarter mile) from the Columbia River, or an existing 300 Area building would be modified and used. This Environmental Assessment evaluates alternatives to the proposed actions. Alternatives considered are: (1) the no action alternative; (2) use of alternative fuels, such as low-sulfur diesel oil; (3) construction of a new central steam plant, piping and ancillary systems; (4) upgrade of the existing central steam plant and ancillary systems; and (5) alternative routing of the gas distribution pipeline that is a part of the proposed action. A biological survey and culture resource review and survey were also conducted

  18. Functional characterization of steam jet-cooked buckwheat flour as a fat replacer in cake-baking.

    Science.gov (United States)

    Min, Bockki; Lee, Seung Mi; Yoo, Sang-Ho; Inglett, George E; Lee, Suyong

    2010-10-01

    With rising consumer awareness of obesity, the food industry has a market-driven impetus to develop low-fat or fat-free foods with acceptable taste and texture. Fancy buckwheat flour was thus subjected to steam jet-cooking and the performance of the resulting product in cake-baking was evaluated as a fat replacer. Steam jet-cooking caused structural breakdown and starch gelatinization of buckwheat flour, thus increasing its water hydration properties. In the pasting measurements, steam jet-cooked buckwheat flour exhibited high initial viscosity, while no peak viscosity was observed. Also, the suspensions of steam jet-cooked buckwheat flour exhibited shear-thinning behaviors, which were well characterized by the power law model. When shortening in cakes was replaced with steam jet-cooked buckwheat gels, the specific gravity of cake batters significantly increased, consequently affecting cake volume after baking. However, shortening replacement with steam jet-cooked buckwheat up to 20% by weight appeared to be effective in producing cakes as soft as the control without volume loss. When buckwheat flour was thermomechanically modified by steam jet-cooking, it was successfully incorporated into cake formulations for shortening up to 20% by weight, producing low-fat cakes with comparable volume and textural properties to the control. Copyright © 2010 Society of Chemical Industry.

  19. The role of the safety analysis organization in steam generators replacement and reactor vessel head replacement evaluations

    International Nuclear Information System (INIS)

    Choe, Whee G.; Boatwright, W.J.

    2004-01-01

    When a major component in a nuclear power plant is replaced, especially the steam generators, the plant operator is presented a rare opportunity to learn from operating experience and significantly improve the performance, reliability and robustness of the plant. In addition to the use of improved materials, improved design margins can be built into the component specification that can later be used to provide meaningful operating margins. A Safety Analysis organization that is well-integrated with other plant organizations and possesses a detailed knowledge of the plant design and licensing bases can effectively balance the wants and needs of each organization to optimize the benefits realized by the plant as a whole. Knowledge of the assumptions, limitations, and available margins, both analytical and operating, can be used to specify a replacement steam generator design that optimizes costs and operating improvements. The work scope required to support the new design can be controlled through carefully selected and evaluated restrictions in operations, development of alternate operating strategies, and imposition of appropriate limitations. The important point is that the effective Safety Analysis organization must possess both the breadth and depth of knowledge of the plant design and operations and proactively use this information to support the replacement steam generator project. (author)

  20. The steam generator repair project of the Donald C. Cook Nuclear Plant, Unit 2

    International Nuclear Information System (INIS)

    White, J.D.

    1993-01-01

    Donald C. Cook Nuclear Plant Unit 2 is part of a two unit nuclear complex located in southwestern Michigan and owned and operated by the Indiana Michigan Power Company. The Cook Nuclear Plant is a pressurized water reactor (PWR) plant with four Westinghouse Series 51 steam generators housed in an ice condenser containment. This paper describes the program undertaken by Indiana Michigan Power and the American Electric Power Service Corporation (AEPSC) to repair the Unit 2 steam generators. (Both Indiana Michigan Power and AEPSC arc subsidiaries of American Electric Power Company, Incorporated (AEP). AEPSC provides management and technical support services to Indiana Michigan Power and the other AEP operating companies.) Eddy current examinations, in a series of refueling and forced outages between November 1983 and July 1986 resulted in 763 (5.6%) plugged tubes. In order to maintain adequate reactor core cooling, a limit of 10% is placed on the allowable percentage of steam generator tubes that can be removed from service by plugging. Additionally, sections of tubes were removed for metallurgical analysis and confirmed that the degradation was due to intergranular stress corrosion cracking. In developing the decision on how to repair the steam generators, four alternative actions were considered for addressing these problems: retubing in place, sleeving, operating at 80% reactor power to lower temperature and thus reduce the rate of corrosion, replacing steam generator lower assemblies

  1. Units 3 and 4 steam generators new water level control system

    International Nuclear Information System (INIS)

    Dragoev, D.; Genov, St.

    2001-01-01

    The Steam Generator Water Level Control System is one of the most important for the normal operation systems, related to the safety and reliability of the units. The main upgrading objective for the SG level and SGWLC System modernization is to assure an automatic maintaining of the SG level within acceptable limits (below protections and interlocks) from 0% to 100% of the power in normal operation conditions and in case of transients followed by disturbances in the SG controlled parameters - level, steam flow, feedwater flow and/or pressure/temperature. To achieve this objective, the computerized controllers of new SG water level control system follows current computer control technology and is implemented together with replacement of the feedwater control valves and the needed I and C equipment. (author)

  2. Restart Testing Program for piping following steam generator replacement at North Anna Unit 1

    International Nuclear Information System (INIS)

    Bain, R.A.; Bayer, R.K.

    1993-01-01

    In order to provide assurance that the effects of performing steam generator replacement (SGR) at North Anna unit 1 had no adverse impact on plant piping systems, a cold functional verification restart testing program was developed. This restart testing program was implemented in lieu of a hot functional testing program normally used during the initial startup of a nuclear plant. A review of North Anna plant-specific and generic U.S. Nuclear Regulatory Commission requirements for restart testing was performed to ensure that no mandatory hot functional testing was required. This was determined to be the case, and the development of a cold functional test program was initiated. The cold functional test had inherent advantages as compared to the hot functional testing, while still providing assurance of piping system adequacy. The advantages of the cold verification program included reducing risk to personnel from hot piping, increasing the accuracy of measurements with the improvement in work conditions, eliminating engineering activities during the heatup process, and being able to record measurements as construction work was completed allowing for rework or repair of components if required. To ensure the effectiveness of the cold verification program, a project procedure was generated to identify the personnel, equipment, and measurement requirements. An engineering calculation was issued to document the scope of the restart test program, and an additional calculation was developed to provide acceptance criteria for the critical commodity measurements

  3. Steam generator replacement project in 2000

    International Nuclear Information System (INIS)

    Cerjak, J.; Holz, R.; Haus, J.; Gloaguen, C.

    1999-01-01

    NE Krsko has awarded the contract for the Steam Generator Replacement Project, which is one of the modernization projects in Krsko, to the Consortium of Siemens / Framatome in February 1998. This paper deals with the various aspects of the project: scope planning, engineering, preparation of modification packages for licensing, management, major techniques used, etc., showing also the status of the activities for the project which are scheduled to be performed in April through June 2000. The project is being performed on a turnkey basis, that means the Consortium is performing all engineering, preparation of the modification packages and site activities; NE Krsko is dealing with the licensing of the project.(author)

  4. Cleaning device for steam units in a nuclear power plant

    International Nuclear Information System (INIS)

    Sasamuro, Takemi.

    1978-01-01

    Purpose: To prevent radioactive contamination upon dismantling and inspection of steam units such as a turbine to a building containing such units and the peripheral area. Constitution: A steam generator indirectly heated by steam supplied from steam generating source in a separate system containing no radioactivity is provided to produce cleaning steam. A cleaning steam pipe is connected by way of a stop valve between separation valve of a nuclear power plant steam pipe and a high pressure turbine. Upon cleaning, the separation valve is closed, and steam supplied from the cleaning steam pipe is flown into a condenser. The water thus condensated is returned by way of a feed water heater and a condenser to a water storage tank. (Nakamura, S.)

  5. Electropolishing of replacement steam generator channel heads at Millstone-2 PWR

    International Nuclear Information System (INIS)

    Hudson, M.J.B.; Raney, H.; Raney, D.; Spalaris, C.N.

    1992-07-01

    A field application of EPRI-developed steam generator electropolishing technique was performed at Millstone-2 PWR. The process was qualified under previous programs on a laboratory scale, but it was thought appropriate to scale up application to full size components. Replacement of steam generators at Millstone-2 provided a unique opportunity to demonstrate that electropolishing can be applied safely and at a cost which was judged to be recoverable after a small number of fuel cycles. The project, preparation, electropolishing and cleanup, was completed at the reactor site in 25 working days. An alternate, less costly electrolyte solution was qualified for use in future applications

  6. Acceptance test for 900 MWe PWR unit replacement steam generators; Essai de reception des generateurs de vapeur de remplacement des tranches REP 900

    Energy Technology Data Exchange (ETDEWEB)

    Gourguechon, B.

    1993-12-31

    During the first half of 1994, the Gravelines 1 steam generators will be replaced (SG replacement procedure). The new SG`s differ from the former components notably by the alloy used for the tube bundle, in this case, the high chromium content Inconel 690. So, from this standpoint, they are to be considered as PWR 900 replacement SG first models and their thermal efficiency has consequently to be assessed. This will provide an opportunity of ensuring that the performance of the components delivered is in compliance with requirements and of making the necessary provisions if significant deviations are observed. The EFMT branch, which has been in charge of the instrumentation and acceptance of the different SG first models since the first PWR plants were commissioned, will be responsible for the acceptance tests and the ultimate validation of a performance assessment procedure applicable to the future replacement steam generators. The methods and tests proposed for SG expert appraisal are based on consideration of the importance of primary measurement quality for satisfactory SG assessment and of the new test facilities with which the 900 and 1 300 PWR plants are gradually being equipped. These facilities provide an on-site computer environment for tests compatible with the tools (PATTERN, etc.) used at EFMT and in other departments. This test is the first of this kind performed by EFMT and the test facility of a nuclear power plant. (author). 6 figs.

  7. Development of radiation protection technology for application of the retired steam generator, Kori Unit no. 1

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. H.; Jang, D. C.; Song, K. S.; Lee, S. J.; Ahn, C. S.; Kim, D. H.; Im, Y. K.; Kim, H. D. [Hanil Nuclear Co., Ltd., Anyang (Korea, Republic of)

    2005-04-15

    It is a field study to develop and verify maintenance technologies such as verification and technology development of ECT (Eddy current test) using failure, heat tube excavation and field pressure test regarding the utilization of retired steam generator using 2 units of Retired Steam Generator in Kori 1 that was replaced for the first time in Korea in 1998. Since May, 2003, our team has investigated Retired Steam Generator which was stored in Radioactive waste warehouse in Korea Hydro and Nuclear Power Kori unit no.1 Branch, in order to study natural fault ECT signal acquisition, maintenance technology verification, small tubes/samples abstraction. A temporal task zone was made focusing on 'Man Way at the bottom of Chamber 'A'.' The purpose of the study is to establish Radiological Protection and Radioactive Waste Treatment Plan by setting ALARA (As Low As Reasonably Achievable) goal systematically, which is the basic concept of Radiological Protection and reduction in exposure of radiological workers to radioactive materials with proper Radiological Protection countermeasures according to the changes in radioactivity, to prevent expansion from contamination and to manage 'Radioactive Waste Reduction Activities' effectively.

  8. Defining line replaceable units

    NARCIS (Netherlands)

    Parada Puig, J. E.; Basten, R. J I

    2015-01-01

    Defective capital assets may be quickly restored to their operational condition by replacing the item that has failed. The item that is replaced is called the Line Replaceable Unit (LRU), and the so-called LRU definition problem is the problem of deciding on which item to replace upon each type of

  9. Project No. 6 - Replacement of the heating and steam plant

    International Nuclear Information System (INIS)

    2000-01-01

    At present the Ignalina NPP facilities and Visaginas town are supplied with heat and steam from the district heating facility at Ignalina NPP. A back-up system, dating from 1979, supplies heat and steam when the district heating system is under repair or in case of outages of units 1 and 2. The existing back-up system does no longer meet with applicable technical and safety standards. A breakdown of the back-up system might result in the interruption of the supply to Ignalina NPP of heat and steam necessary for a number of processes, including waste management. Reconstruction of the existing boiler houses is not economically viable option, nor recommendable, for safety reasons, as it would mean the temporary closing of the back-up system. Project activities includes the design, construction and commissioning of the proposed facility, including all licensing documentation

  10. Steam supply and power cogeneration at Yanshan Petrochemical Co., Ltd.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose of reducing greenhouse effect gas emissions, a project was studied for the improvement of cogeneration facilities with steam supply of 600t/h and electric output of 55MW at Beijing Yanshan Petrochemical Co., China. In Plan A, fuel is changed from heavy oil to natural gas, and two heavy oil boilers are replaced with two gas turbines and two exhaust heat recovery steam generators for steam supply of 241t/h per unit and electric output of 136.9MW per unit. In Plan B, the boilers are replaced with three gas turbines and three exhaust heat recovery steam generators for steam supply of 210t/h per unit and electric output of 79.5MW per unit. The initial investment is 700 million yuan {+-} 100 million yuan in Plan A, and 500 million yuan {+-} 100 million yuan in Plan B. The generating cost is 0.403 yuan/kWh in Plan A, and 0.455 yuan/kWh in Plan B. It was concluded that without Plan A, the project will not be economically successful. In Plan A, the energy conservation will be 887,847 toe/y heavy oil equivalent, which increases productivity. Further, the amount of greenhouse effect gas emissions will be 2,747,187 t-CO2/y. (NEDO)

  11. 24 CFR 970.31 - Replacement units.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Replacement units. 970.31 Section... PUBLIC HOUSING PROGRAM-DEMOLITION OR DISPOSITION OF PUBLIC HOUSING PROJECTS § 970.31 Replacement units. Notwithstanding any other provision of law, replacement public housing units may be built on the original public...

  12. Handling steam generator problems: the strategy for Ringhals 3 and 4

    International Nuclear Information System (INIS)

    Larsen, G.

    1992-01-01

    An examination in Sweden of twelve Pressurized Water Reactor steam generator tubes (six from Ringhals 3 and six from Ringhals 4) revealed that several had cracks in the roll transition zone, all tubes had shallow intergranular attacks at support plate (TSP) intersections, and some from Ringhals 3 had cracks in the TSP position due to intergranular stress corrosion. It was concluded that this could drastically limit the possibility of successfully operating Ringhals 3 (which entered commercial operation in 1981) to 2010, the year when all nuclear power in Sweden will be phased out. Two possible ways to deal with the problem were investigated: replace the steam generators and uprate the plant; operate with the existing steam generators and reduce the rate of degradation by lowering the primary water temperature, with most failed tubes repaired by sleeving. The analysis showed that replacement of the Ringhals 3 steam generators would be a good investment. As there were no attacks in the TSP intersections at Ringhals 4, which started commercial operation in 1983, it was assumed possible to operate this unit until 2010 without any temperature reduction. The economic evaluation for Ringhals 4 nevertheless indicated that it would be cost effective to replace the steam generators and uprate Ringhals 4 to 112%. However, a new economic study showed that it will still be cost effective to replace the steam generators at Ringhals 3, but it is not clear that there is still a case for replacement at Ringhals 4. Ringhals 3 steam generators will be replaced in 1995, while Ringhals 4 will continue to operate with the existing steam generators. (Author)

  13. Consolidated nuclear steam generator

    International Nuclear Information System (INIS)

    Jabsen, F.S.; Schluderberg, D.C.; Paulson, A.E.

    1978-01-01

    An improved system of providing power has a unique generating means for nuclear reactors with a number of steam generators in the form of replaceable modular units of the expendable type to attain the optimum in effective and efficient vaporization of fluid during the generating power. The system is most adaptable to undrground power plants and marine usage

  14. Future steam generator designs. Single wall designs

    International Nuclear Information System (INIS)

    Hayden, O.

    1978-01-01

    The easily removable 'U' tube design style adopted in the UK for the existing PFR Steam Generators, the Replacement Units now in production and for the future CDFR, gives the operator an extremely valuable option in the event of a water/steam leak occurring inside the Steam Generator. He can choose to shut-down, attempt to find the leak, assess damage, repair, revalidate and return to service in situ, or he can elect to remove the defect unit and replace with a 'proven' spare before returning the circuit to power. With the latter approach the resultant outage time is a known entity of about two weeks. If a repair is attempted in situ, predictions of outage time can become a matter of guesswork since one has no 'guaranteed' method of leak location and the assessment of secondary damage may be very time consuming, depending on the size and type of the original leak together with the particular design style of the Steam Generator. A further significant advantage of the removable 'U' tube design concept is that periodic interchanging of bundles with a spare enables routine chemical cleaning and thorough scheduled tube inspections, with specimen tube sample removal if required for monitoring purposes. If necessary, bundle decontamination can be undertaken to assess engineering deterioration to various degrees of thoroughness ranging from 100% equivalent factory final assembly inspection, to partial decontamination operating via a glovebox type of maintenance bag arrangement, examining local points of both shell and tube areas of the bundle. Many lessons from the last five years' experience of PFR will be incorporated into the design of the CDFR and PFR Steam Generators have two very good examples of how the designer can ease or severely handicap the operator in coping with sodium/water leakages. Good, quick access to tube ends is achieved in the existing PFR Evaporator by simply unbolting the steam/water closure head, but on the superheater and reheater hand-caps have

  15. Future steam generator designs. Single wall designs

    Energy Technology Data Exchange (ETDEWEB)

    Hayden, O [Nuclear Power Company Ltd, Warrington, Cheshire (United Kingdom)

    1978-10-01

    The easily removable 'U' tube design style adopted in the UK for the existing PFR Steam Generators, the Replacement Units now in production and for the future CDFR, gives the operator an extremely valuable option in the event of a water/steam leak occurring inside the Steam Generator. He can choose to shut-down, attempt to find the leak, assess damage, repair, revalidate and return to service in situ, or he can elect to remove the defect unit and replace with a 'proven' spare before returning the circuit to power. With the latter approach the resultant outage time is a known entity of about two weeks. If a repair is attempted in situ, predictions of outage time can become a matter of guesswork since one has no 'guaranteed' method of leak location and the assessment of secondary damage may be very time consuming, depending on the size and type of the original leak together with the particular design style of the Steam Generator. A further significant advantage of the removable 'U' tube design concept is that periodic interchanging of bundles with a spare enables routine chemical cleaning and thorough scheduled tube inspections, with specimen tube sample removal if required for monitoring purposes. If necessary, bundle decontamination can be undertaken to assess engineering deterioration to various degrees of thoroughness ranging from 100% equivalent factory final assembly inspection, to partial decontamination operating via a glovebox type of maintenance bag arrangement, examining local points of both shell and tube areas of the bundle. Many lessons from the last five years' experience of PFR will be incorporated into the design of the CDFR and PFR Steam Generators have two very good examples of how the designer can ease or severely handicap the operator in coping with sodium/water leakages. Good, quick access to tube ends is achieved in the existing PFR Evaporator by simply unbolting the steam/water closure head, but on the superheater and reheater hand-caps have

  16. An Isothermal Steam Expander for an Industrial Steam Supplying System

    Directory of Open Access Journals (Sweden)

    Chen-Kuang Lin

    2015-01-01

    Full Text Available Steam is an essential medium used in the industrial process. To ensure steam quality, small and middle scale boilers are often adopted. However, because a higher steam pressure (compared to the necessary steam pressure is generated, the boiler’s steam pressure will be reduced via a pressure regulator before the steam is directed through the process. Unfortunately, pressure is somewhat wasted during the reducing process. Therefore, in order to promote energy efficiency, a pressure regulator is replaced by a steam expander. With this steam expander, the pressure will be transformed into mechanical energy and extracted during the expansion process. A new type of isothermal steam expander for an industrial steam supplying system will be presented in the paper. The isothermal steam expander will improve the energy efficiency of a traditional steam expander by replacing the isentropic process with an isothermal expansion process. With this, steam condensation will decrease, energy will increase, and steam quality will be improved. Moreover, the mathematical model of the isothermal steam expander will be established by using the Schmidt theory, the same principle used to analyze Stirling engines. Consequently, by verifying the correctness of the theoretical model for the isothermal steam expander using experimental data, a prototype of 100 c.c. isothermal steam expander is constructed.

  17. Replacement of outboard main steam isolation valves in a boiling water reactor plant

    Energy Technology Data Exchange (ETDEWEB)

    Schlereth, J.R.; Pennington, D.

    1996-12-01

    Most Boiling Water Reactor plants utilize wye pattern globe valves for main steam isolation valves for both inboard and outboard isolation. These valves have required a high degree of maintenance attention in order to pass the plant local leakage rate testing (LLRT) requirements at each outage. Northern States Power made a decision in 1993 to replace the outboard valves at it`s Monticello plant with double disc gate valves. The replacement of the outboard valves was completed during the fall outage in 1994. During the spring outage in April of 1996 the first LLRT testing was performed with excellent results. This presentation will address the decision process, time requirements and planning necessary to accomplish the task as well as the performance results and cost effectiveness of replacing these components.

  18. Replacement of outboard main steam isolation valves in a boiling water reactor plant

    International Nuclear Information System (INIS)

    Schlereth, J.R.; Pennington, D.

    1996-01-01

    Most Boiling Water Reactor plants utilize wye pattern globe valves for main steam isolation valves for both inboard and outboard isolation. These valves have required a high degree of maintenance attention in order to pass the plant local leakage rate testing (LLRT) requirements at each outage. Northern States Power made a decision in 1993 to replace the outboard valves at it's Monticello plant with double disc gate valves. The replacement of the outboard valves was completed during the fall outage in 1994. During the spring outage in April of 1996 the first LLRT testing was performed with excellent results. This presentation will address the decision process, time requirements and planning necessary to accomplish the task as well as the performance results and cost effectiveness of replacing these components

  19. Steam generator tube integrity requirements and operating experience in the United States

    International Nuclear Information System (INIS)

    Karwoski, K.J.

    2009-01-01

    Steam generator tube integrity is important to the safe operation of pressurized-water reactors. For ensuring tube integrity, the U.S. Nuclear Regulatory Commission uses a regulatory framework that is largely performance based. This performance-based framework is supplemented with some prescriptive requirements. The framework recognizes that there are three combinations of tube materials and heat treatments currently used in the United States and that the operating experience depends, in part, on the type of material used. This paper summarizes the regulatory framework for ensuring steam generator tube integrity, it highlights the current status of steam generators, and it highlights some of the steam generator issues and challenges that exist in the United States. (author)

  20. Feed water distribution pipe replacement at Loviisa NPP

    Energy Technology Data Exchange (ETDEWEB)

    Savolainen, S.; Elsing, B. [Imatran Voima Loviisa NPP (Finland)

    1995-12-31

    Imatran Voima Oy operates two WWER-440 reactors. Unit 1 has been operating since 1977 and unit 2 since 1981. First damages of feed water distribution (FWD) pipe were observed in 1989. The FWD-pipe T-connection had suffered from severe erosion corrosion damages. Similar damages have been been found also in other WWER-440 type NPPs. In 1989 the nozzles of the steam generator YB11 were inspected. No signs of the damages or signs of erosion were detected. The first damaged nozzles were found in 1992 in steam generators of both units. In 1992 it was started studying different possibilities to either repair or replace the damaged FWD-pipes. Due to the difficult conditions for repairing the damaged nozzles it was decided to study different FWD-pipe constructions. In 1991 two new feedwater distributors had been implemented at Dukovany NPP designed by Vitckovice company. Additionally OKB Gidropress had presented their design for new collector. In spring 1994 all the six steam generators of Rovno NPP unit 1 were replaced with FWD-pipes designed by OKB Gidropress. After the implementation an experimental program with the new systems was carried out. Due to the successful experiments at Rovno NPP Unit 1 it was decided to implement `Gidropress solution` during 1994 refueling outage into the steam generator YB52 at Loviisa 2. The object of this paper is to discuss the new FWD-pipe and its effects on the plant safety during normal and accident conditions. (orig.).

  1. Feed water distribution pipe replacement at Loviisa NPP

    Energy Technology Data Exchange (ETDEWEB)

    Savolainen, S; Elsing, B [Imatran Voima Loviisa NPP (Finland)

    1996-12-31

    Imatran Voima Oy operates two WWER-440 reactors. Unit 1 has been operating since 1977 and unit 2 since 1981. First damages of feed water distribution (FWD) pipe were observed in 1989. The FWD-pipe T-connection had suffered from severe erosion corrosion damages. Similar damages have been been found also in other WWER-440 type NPPs. In 1989 the nozzles of the steam generator YB11 were inspected. No signs of the damages or signs of erosion were detected. The first damaged nozzles were found in 1992 in steam generators of both units. In 1992 it was started studying different possibilities to either repair or replace the damaged FWD-pipes. Due to the difficult conditions for repairing the damaged nozzles it was decided to study different FWD-pipe constructions. In 1991 two new feedwater distributors had been implemented at Dukovany NPP designed by Vitckovice company. Additionally OKB Gidropress had presented their design for new collector. In spring 1994 all the six steam generators of Rovno NPP unit 1 were replaced with FWD-pipes designed by OKB Gidropress. After the implementation an experimental program with the new systems was carried out. Due to the successful experiments at Rovno NPP Unit 1 it was decided to implement `Gidropress solution` during 1994 refueling outage into the steam generator YB52 at Loviisa 2. The object of this paper is to discuss the new FWD-pipe and its effects on the plant safety during normal and accident conditions. (orig.).

  2. Coupled RELAP5/PANTHER/COBRA steam line break accident analysis in support of licensing DOEL 2 power uprate and steam generator replacement

    International Nuclear Information System (INIS)

    Zhang, J.; Bosso, S.; Henno, X.; Ouliddren, K.; Schneidesch, C.R.; Hove, W. van

    2004-01-01

    The nuclear reactor accident analyses using best estimate codes provide a better understanding and more accurate modeling of the key physical phenomena, which allows a more realistic evaluation of the conservatism and margins in the final safety analysis report (FSAR) accident analysis. The use of the best estimate codes and methods is necessary to meet the increasing technical, licensing and regulatory requirements for major plant changes (e.g. steam generator replacement), power uprate, core design optimization (cycle extension), as well as Periodic Safety Review. Since 1992, Tractebel Engineering (TE) has developed and applied a deterministic bounding approach to FASR accident analysis using the best estimate system thermal hydraulic code RELAP5/MOD2.5 and the subchannel thermal hydraulic code COBRA-3C. This approach has been accepted by the Belgian Safety Authorities, and turned out to be cost effective for most of the non-LOCA transient analyses. Since this approach adapts a decoupled modeling of the core responses, the analysis results often involved too large un-quantified conservatisms, due to either simplistic approximations for asymmetric accidents with strong 3D core neutronics - plant thermal hydraulics interactions, or additional penalties introduced from 'incoherent' initial/boundary conditions for separate plant and core analyses. Therefore, an external dynamic coupling between the RELAP5/MOD2.5 code and the 3-D neutronic code PANTHER was implemented since 1997 via the transient analysis code linkage program TALINK. Furthermore, a static linkage between the PANTHER code and the COBRA-3C code was developed for on-line calculation of (Departure from Nucleate Boiling Ratio (DNBR). TE intends to use the coupled code package for licensing non-symmetric FSAR accident analysis. The TE coupled code package has been applied to develop a main steam line break (MSLB) accident analysis methodology [using the TE deterministic bounding approach. The methodology

  3. The economic aspect of transition to power units with supercritical steam parameters

    Energy Technology Data Exchange (ETDEWEB)

    V.R. Kotler

    2007-09-15

    Information on the development and use of power units for supercritical and ultrasupercritical steam parameters in the United States, as well as in Europe and Japan, is presented. It is shown that increasing the parameters of steam reduces not only the fuel consumption, but also the specific emissions of toxic and greenhouse gases. Results of a calculation carried out at the EPRI (the United States) are presented, which show that it is advisable to construct power units for supercritical parameters only at certain (sufficiently high) price of the fuel being fired.

  4. Fuqing nuclear power of nuclear steam turbine generating unit No.1 at the implementation and feedback

    International Nuclear Information System (INIS)

    Cao Yuhua; Xiao Bo; He Liu; Huang Min

    2014-01-01

    The article introduces the Fuqing nuclear power of nuclear steam turbine generating unit no.l purpose, range of experience, experiment preparation, implementation, feedback and response. Turn of nuclear steam turbo-generator set flush, using the main reactor coolant pump and regulator of the heat generated by the electric heating element and the total heat capacity in secondary circuit of reactor coolant system (steam generator secondary side) of saturated steam turbine rushed to 1500 RPM, Fuqing nuclear power of nuclear steam turbine generating unit no.1 implementation of the performance of the inspection of steam turbine and its auxiliary system, through the test problems found in the clean up in time, the nuclear steam sweep turn smooth realization has accumulated experience. At the same time, Fuqing nuclear power of nuclear steam turbine generating unit no.1 at turn is half speed steam turbine generator non-nuclear turn at the first, with its smooth realization of other nuclear power steam turbine generator set in the field of non-nuclear turn play a reference role. (authors)

  5. Innovation of blow-down system in steam generators of a VVER 440 unit

    International Nuclear Information System (INIS)

    Matal, O.; Simo, T.; Mancev, M.D.

    1997-01-01

    The impurities getting into the steam generator with the feedwater are continually removed by the blowdown and unit sludge system. The mostly non-symmetrical type of pipe branches under steam generators at WWER-440 units causes nonuniform blowdown flow rates at the halves of the steam generator; this often leads to a blocking of the pipe with the lower flow rate. The most simple way of hydraulically equalizing the blowdown pipes is to implement symmetric blowdown pipes and to install efficient throttling elements in the pipe. The proposed innovation will make it possible to re-distribute the blowdown flow rates and to reduce more effectively the concentrations of impurities in steam generators. (M.D.)

  6. The impact of steam generator replacement on PWR primary system contamination

    International Nuclear Information System (INIS)

    Dacquait, F.; Marteau, H.; Guinard, L.; Ranchoux, G.; Taunier, S.; Wintergerst, M.; Bretelle, J.L.; Rocher, A.

    2010-01-01

    This paper analyses the impact of Steam Generator Replacement (SGR) on PWR primary circuit contamination. It presents a comparison of the activities deposited inside the primary system and released during refuelling outages after SGR with three different SG tube alloys (600, 690 and 800) and different SG tube manufacturing processes. A SGR has a great impact on the primary system contamination. After SGR, whatever the SG tube material is, the typical variations are the following: The 58 Co contamination increases for 1 to 3 cycles, and then decreases to very low levels in some cases, mainly depending on the manufacturing process of the replacement SG tubes; The 60 Co Co contamination tends to decrease on the primary coolant pipes and increases by a lower rate on the new SG tubes. This analysis highlights the importance on contamination levels after SGR of both the corrosion product deposits on the primary surfaces before SGR and the surface finish of the SG tubes related to their manufacturing process. (author)

  7. Evaluation of Waterford Steam Electric Station Unit 3 technical specifications

    International Nuclear Information System (INIS)

    Baxter, D.E.; Bruske, S.J.

    1985-09-01

    This document was prepared for the Nuclear Regulatory Commission (NRC) to assist them in determining whether the Waterford Steam Electric Station Unit 3 Technical Specifications (T/S), which govern plant systems configurations and operations, are in conformance with the requirements of the Final Safety Analysis Report (FSAR) as amended, and the requirements of the Safety Evaluation Report (SER) as supplemented. A comparative audit of the FSAR as amended, and the SER as supplemented was performed with the Waterford T/S. Several discrepancies were identified and subsequently resolved by the cognizant NRC reviewer. Pending completion of the resolutions noted in Part 3 of this report, the Waterford Steam Electric Station Unit 3 T/S, to the extent reviewed, are in conformance with the FSAR and SER

  8. Proposal of organisation and ALARA procedures for maintenance site: application to replacement of steam generator

    International Nuclear Information System (INIS)

    Lochard, J.; Lefaure, C.

    1989-08-01

    This report proposes generic organization and ALARA procedures for preparing a maintenance site at a NPP. After a short description of the ALARA principle, it describes the proposition for French sites. They are grouped according to the following: motivation, organisation, means. They are illustrated by the example of steam generator replacement. Three special points concerning preparation of the site are developed: education; training of operators; review of the project

  9. Heat balance calculation and feasibility analysis for initial startup of Fuqing nuclear turbine unit with non-nuclear steam

    International Nuclear Information System (INIS)

    He Liu; Xiao Bo; Song Yumeng

    2014-01-01

    Non-nuclear steam run up compared with nuclear steam run up, can verify the design, manufacture, installation quality of the unit, at the same time shorten the follow-up duration of the entire group ready to start debugging time. In this paper, starting from the first law of thermodynamics, Analyzed Heat balance Calculation and Feasibility analysis for Initial startup of Fuqing nuclear Turbine unit with Non-nuclear steam, By the above calculation, to the system requirements and device status on the basis of technical specifications, confirmed the feasibility of Non-nuclear steam running up in theory. After the implementation of the Non-nuclear turn of Fuqing unit, confirmed the results fit with the actual process. In summary, the Initial startup of Fuqing turbine unit with Non-nuclear steam is feasible. (authors)

  10. Safety evaluation report related to steam generator repair at H.B. Robinson Steam Electric Plant, Unit No. 2. Docket No. 50-261

    International Nuclear Information System (INIS)

    1983-11-01

    A Safety Evaluation Report was prepared for the H.B. Robinson Steam Electric Plant Unit No. 2 by the Office of Nuclear Reactor Regulation. This report considers the safety aspects of the proposed steam generator repair at H.B. Robinson Steam Electric Plant Unit No. 2. The report focuses on the occupational radiation exposure associated with the proposed repair program. It concludes that there is reasonable assurance that the health and safety on the public will not be endangered by the conduct of the proposed action, such activities will be conducted in compliance with the Commission's regulations, and the issuance of this amendment will not be inimical to the common defense and security or the health and safety of the public

  11. Pre-service baseline inspection using x-probe of Oconee replacement steam generators

    International Nuclear Information System (INIS)

    Addario, M.; Shipp, P.; Davis, K.; Fogal, C.

    2003-01-01

    The eddy current method has been the industry standard for inspecting steam generator tubing for many years and the level of sophistication of coil technology has continued to evolve during that time. State of the art array probe systems now employ multiple sensitivity zones in the probe to better detect and characterize defects in an efficient manner. Owners and regulators of nuclear power plants are interested in the most effective and efficient inspection possible. The ultimate goal has been to meet or exceed new and existing regulatory and design requirements by maximizing the quantity and quality of eddy current data collected while minimizing both the time needed to perform the inspection and the radiation exposure. The X-Probe is an example of this new eddy current array technology. Qualified to detect all types of known defects in steam generator tubing, the technology is comprised of a system of probe, data acquisition instrumentation, computer and human interface software. Recently, Duke Power, along with Babcock and Wilcox Canada and the system developer R/D Tech, collaborated to implement this technology in a first of a kind full scale pre-service inspection of replacement steam generators for Duke Power's Oconee nuclear generating station at Babcock and Wilcox Canada's Cambridge plant. The discussion in this paper will briefly describe the X-Probe technology, describe the system required to perform the inspection, present the general results of the inspection and finally draw some comparative benefit conclusions for both pre-service and in-service applications. (author)

  12. Three steam generator replacement projects in 1995: Consortium Siemens Framatome is well prepared to contribute its experience to the SGR at the Krsko NPP

    International Nuclear Information System (INIS)

    Holz, R.; Clavier, G.

    1996-01-01

    Since the companies Siemens AG and Framatome S.A. joined their experience and efforts in the field of steam generators replacements and formed a consortium in 1991, the following projects were performed in 1995: Ringhals 3, Tihange 3 and Asco 2. Further projects will follow in 1996, i.e., Doel 4 and Asco 2. Currently, this European consortium is bidding for the contract to replace the steam generators at the Krsko NPP and hopes to be awarded in 1996. An overview of the way the Consortium Siemens and Framatome approaches SG replacement projects is given based on the projects performed in 1995. Various aspects of project planning, management, licensing, personnel qualification and techniques used on site will be discussed. (author)

  13. 15 years steam generator experience in German PWR power plants; part II: replacement of two completely assembled steam generators within ten weeks

    International Nuclear Information System (INIS)

    Scheuktanz, G.; Bouecker, R.; Riess, R.; Soellner, P.; Stieding, L.; Termeuhlen, H.

    1984-01-01

    This paper reports on the replacement of two steam generators at the Obrigheim power plant during a 10-week period, including a description of the methods and equipment used to do so. It is concluded that the method should be used only if transportation conditions within the reactor building preclude a complete system exchange and that one of the main reasons for the success of this operation was the very close relationship established between plant personnel and the equipment supplier and contractor, a relationship which began when the project was in the planning stage

  14. Maintenance or replacement of primary equipments

    International Nuclear Information System (INIS)

    Branchu, J.

    1995-01-01

    The principal materials, such as the primary equipments of a PWR type steam generator, have a finite service life. Framatome, builder of steam generators and maintenance contractor of Electricite de France has developed a methodology for the maintenance or the replacement of primary equipments. The paper describes the methodology followed by Framatome to identify and localize the wear mode and to treat or repair the component. Four failure modes have been considered: crack propagation, rubbing/vibration wear, neutron irradiation and corrosion propagation under permanent stress. A kinetic modelling of wear propagation has been computerized and validated using mechanical tests on Inconel 600 mockups. These analyses have allow to determine the strategy of repair or replacement of vessel heads for each unit. The method is evaluated taking into account the risk assessment, cost, dosimetry, efficiency and time delay involved. (J.S.). 1 fig., 3 photos

  15. Steam generators - problems and prognosis

    International Nuclear Information System (INIS)

    Tapping, R.L.

    1997-05-01

    Steam-generator problems, largely a consequence of corrosion and fouling, have resulted in increased inspection requirements and more regulatory attention to steam-generator integrity. In addition, utilities have had to develop steam-generator life-management strategies, including cleaning and replacement, to achieve design life. This paper summarizes the pertinent data to 1993/1994, and presents an overview of current steam-generator management practices. (author)

  16. Search and Retrieval of Foreign Objects for the Steam Generator of Wolsung NPP Unit 1

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Woo-Tae; Lee, Kyung-Ho [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    We developed a foreign object search and retrieval (FOSAR) system for Wolsung NPP unit 1 steam generators. The steam generators of Wolsung NPP unit 1 have one 2.5 inch hand hole and two 4 inch hand holes. The FOSAR system was designed to be installed through 4 inch hand holes. Using permanent magnet, the FOSAR system was firmly attached to the vertical annulus wall of the steam generator. We successfully developed the FOSAR system for Wolsung NPP unit 1. Using the developed FOSAR system, technicians successfully found and removed various foreign objects. Most of the foreign objects, we found, were made of carbon steel sheet, therefore magnet tool was the most useful to remove it. Alligator tool was sometimes used. Based on the experience during the FOSAR activities, we are developing a lancing system for Wolsung NPP unit 1. It will be designed and manufactured until November 2016.

  17. Search and Retrieval of Foreign Objects for the Steam Generator of Wolsung NPP Unit 1

    International Nuclear Information System (INIS)

    Jeong, Woo-Tae; Lee, Kyung-Ho

    2016-01-01

    We developed a foreign object search and retrieval (FOSAR) system for Wolsung NPP unit 1 steam generators. The steam generators of Wolsung NPP unit 1 have one 2.5 inch hand hole and two 4 inch hand holes. The FOSAR system was designed to be installed through 4 inch hand holes. Using permanent magnet, the FOSAR system was firmly attached to the vertical annulus wall of the steam generator. We successfully developed the FOSAR system for Wolsung NPP unit 1. Using the developed FOSAR system, technicians successfully found and removed various foreign objects. Most of the foreign objects, we found, were made of carbon steel sheet, therefore magnet tool was the most useful to remove it. Alligator tool was sometimes used. Based on the experience during the FOSAR activities, we are developing a lancing system for Wolsung NPP unit 1. It will be designed and manufactured until November 2016

  18. Corrosion Product Measurements to ensure integrity of the Steam Generators in Beznau NPP

    International Nuclear Information System (INIS)

    Mailand, Irene; Franz, Patrick; Venz, Hartmut

    2012-09-01

    The Nuclear Power Plant Beznau comprises two identical 380 MWe PWR units with two loops each, commissioned in 1969 and 1971. Westinghouse was responsible for the primary part of the plant and BBC/ABB for the secondary circuit. The original materials used in the secondary systems were made of several copper-based alloys, such as for the Condensers, the Low Pressure Pre-heaters and the Moisture Separator Re-heater. The original Steam Generator Tubes were made of Inconel 600 MA. Regarding its age, the NPP Beznau has to be qualified as an old plant. However, in fact particularly in the last 20 years the plant has undergone an extensive modernisation programme in which about 1.5 billion Swiss Francs have been invested. Important measures were the replacements of the Steam Generators with tubes comprising Inconel 690 TT which was realized at unit 1 in 1993 and at unit 2 in 1999. Copper was completely banished from the secondary system and replaced by stainless and chromium steel. The Condensers were fitted with titanium tubes. The secondary water chemistry had to be changed by these replacements and moved step by step from Low-AVT with a pH of about 9.3 to High-AVT with a pH of 9.8 to 9.9, currently. To ensure the integrity of the new Steam Generators as well as of the whole Secondary System a corrosion product programme was introduced at the end of the Nineties. Several investigations which are performed periodically are represented by analyses of corrosion products, measurements of sludge mass and composition in the Steam Generators, Hide-Out-Return- and mass balance measurements of corrosion products in the whole circuit. Objectives of these investigations are assessments of the efficiency of the water chemistry and trend considerations regarding to the transport of corrosion products and pollutants into the Steam Generator, as well as of the potential danger of deposits and stored or absorbed pollutants. The main target of all measures is to avoid any chemical

  19. A Geothermal Energy Supported Gas-steam Cogeneration Unit as a Possible Replacement for the Old Part of a Municipal CHP Plant (TEKO

    Directory of Open Access Journals (Sweden)

    L. Böszörményi

    2001-01-01

    Full Text Available The need for more intensive utilization of local renewable energy sources is indisputable. Under the current economic circumstances their competitiveness in comparison with fossil fuels is rather low, if we do not take into account environmental considerations. Integrating geothermal sources into combined heat and power production in a municipal CHP plant would be an excellent solution to this problem. This concept could lead to an innovative type of power plant - a gas-steam cycle based, geothermal energy supported cogeneration unit.

  20. 75 FR 82414 - Carolina Power & Light Company; H. B. Robinson Steam Electric Plant, Unit No. 2; Exemption

    Science.gov (United States)

    2010-12-30

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-261; NRC-2010-0062] Carolina Power & Light Company; H. B. Robinson Steam Electric Plant, Unit No. 2; Exemption 1.0 Background Carolina Power & Light... authorizes operation of the H.B. Robinson Steam Electric Plant, Unit 2 (HBRSEP). The license provides, among...

  1. 75 FR 11579 - Carolina Power & Light Company H. B. Robinson Steam Electric Plant, Unit No. 2; Exemption

    Science.gov (United States)

    2010-03-11

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-261; NRC-2010-0062] Carolina Power & Light Company H. B. Robinson Steam Electric Plant, Unit No. 2; Exemption 1.0 Background Carolina Power & Light... of the H. B. Robinson Steam Electric Plant, Unit 2 (HBRSEP). The license provides, among other things...

  2. AGE RELATED DEGRADATION OF STEAM GENERATOR INTERNALS BASED ON INDUSTRY RESPONSES TO GENERIC LETTER 97-06

    International Nuclear Information System (INIS)

    SUBUDHI, M.; SULLIVAN, JR. E.J.

    2002-01-01

    THIS PAPER PRESENTS THE RESULTS OF AN AGING ASSESSMENT OF THE NUCLEAR POWER INDUSTRY RESPONSES TO NRC GENERIC LETTER 97-06 ON THE DEGRADATION OF STEAM GENERATOR INTERNALS EXPERIENCED AT ELECTRICITE DE FRANCE (EDF) PLANTS IN FRANCE AND AT A UNITED STATES PRESSURIZED WATER REACTOR (PWR). WESTINGHOUSE (W), COMBUSTION ENGINEERING (CE), AND BABCOCK AND WILCOX (BW) STEAM GENERATOR MODELS, CURRENTLY IN SERVICE AT U.S. NUCLEAR POWER PLANTS, POTENTIALLY COULD EXPERIENCE DEGRADATION SIMILAR TO THATFOUND AT EDF PLANTS AND THE U.S. PLANT. THE STEAM GENERATORS IN MANY OF THE U.S. PWRS HAVE BEEN REPLACED WITH STEAM GENERATORS WITH STEAM GENERATORS WITH IMPROVED DESIGNS AND MATERIALS. THESE REPLACEMENT STEAM GENERATORS HAVE BEEN MANUFACTURED IN THE U.S. AND ABROAD. DURING THIS ASSESSMENT, EACH OF THE THREE OWNERS GROUPS (W,CE, AND BW) IDENTIFIED FOR ITS STEAM GENERATOR, MODELS ALL THE POTENTIAL INTERNAL COMPONENTS THAT ARE VULNERABLE TO DEGRADATION WHILE IN SERVICE. EACH OWNERS GROUPDEVELOPED INSPEC TION AND MONITORING GUIDANCE AND RECOMMENDATIONS FOR ITS PARTICULAR STEAM GENERATOR MODELS. THE NUCLEAR ENERGY INSTITUTE INCORPORATED IN NEI 97-06 STEAM GENERATOR PROGRAM GUIDELINES, A REQUIREMENT TO MONITOR SECONDARY SIDE STEAM GENERATOR COMPONENTS IF THEIR FAILURE COULD PREVENT THE STEAM GENERATOR FROM FULFILLING ITS INTENDED SAFETY-RELATED FUNCTION. LICENSEES INDICATED THAT THEY IMPLEMENTED OR PLANNED TO IMPLEMENT, AS APPROPRIATE FOR THEIR STEAM GENERATORS, THEIR OWNERS GROUPRECOMMENDATIONS TO ADDRESS THE LONG-TERM EFFECTS OF THE POTENTIAL DEGRADATION MECHANISMS ASSOCIATED WITH THE STEAM GENERATOR INTERNALS

  3. Investigation of separation and hydrodynamic characteristics of steam generators used at the NPPs running on PWR-1000 reactors

    International Nuclear Information System (INIS)

    Ageev, A.G.; Korolkov, B.M.; Nigmatulin, B.I.; Vasileva, R.V.; Nekrasov, A.V.; Titiv, V.F.; Tarankov, G.A.

    1997-01-01

    The tests were accomplished at the steam generator of unit 5 of the Novovoronezh nuclear power plant. The outbursts of the steam-water mixture from the gap between the steam generator housing and the submerged perforated screen rim at the side of the inlet coolant manifold were investigated. Tests of the steam generator with a modified steam separation system were carried out on the Balakovo nuclear power plant. The gilled separator of the steam generator was replaced with a steam collecting perforated screen, while the gap between the steam generator housing and the heat exchange bundle rim was closed with additional perforated screens at the side of the inlet manifold. This new solution of moisture separation is better. (M.D.)

  4. Steam generator life-management, reliability, maintenance and refurbishment

    International Nuclear Information System (INIS)

    Spekkens, P.

    2012-01-01

    SGC 2012 is a different kind of a conference - it has its own focus, initiatives and objectives and differs from its predecessors. It originated as the Steam Generator and Heat Exchanger Conference in 1990 - a time when premature degradation of steam generators with Alloy 600 tubes was rampant world-wide, and some CANDU steam generators had started to experience significant fouling and corrosion issues. The six previous steam generator conferences were held on a regular cycle, in a very similar format and with a similar theme. We are now in a different era in steam generators. The Alloy 600 tubing has been largely replaced by more robust materials, and the CANDU steam generators have been brought under much more intense and effective life cycle management. Performance of steam generators has improved greatly, and they are no longer considered at risk of limiting the life of the units. Indeed, most Incoloy 800 steam generators in CANDU units are considered to be capable of operating reliably through the 'second life' of the units and are not being replaced during refurbishments. Given this changing environment, the scope of this conference has been expanded from one to three areas: steam generators and heat exchangers as before, but also; controls, valves and pumps, and; reactor components and systems, Programs A, B and C, respectively. The conference is targeting to address the needs and interests of the operating utilities, and to 'focus on what needs attention'. As a means of 'focusing on what needs attention' an 'Issue-Identification and Definition' program was initiated last winter. The Issue-Identification Team operating with COG President Bob Morrison as its Executive Lead, worked to identify issues requiring attention in the three areas of interest. Of the many issues identified by the Team and elaborated on by the Program Developers of this conference, four were recommended for special attention: A. 'Operate Clean - Build Clean - Plant Wide': Despite their

  5. Turbine casing bolts; a life assessment and bolt replacement strategy

    Energy Technology Data Exchange (ETDEWEB)

    Bulloch, J H [ESB, Power Generation, Dublin (Ireland)

    1999-12-31

    The present presentation describes a detailed study concerning the life assessment and replacement strategy of large turbine casing bolts in a 120 MW steam raising unit. After 122000 hours service, circa 1991/92, the Cr-Mo-V steel casing bolts, involving a total of 184 bolts, from two identical 120 MW units, termed Units 1 and 2, were examined to establish the extent of Reverse Temper Embrittlement, RTE, and creep damage suffered during service. The bolt replacement plans for the two units were as follows; Unit 1 bolts were completely replaced with new bolts while Unit 2 embrittled bolts were withdrawn from service and replaced with Non- Embrittled bolts from Unit 1; basically Unit 2 bolts were made up from a mixture of Unit 1 and 2 Non- Embrittled bolts which had been in service for 122000 hours. Remnant life assessments, concerning both embrittlement and creep damage aspects, were earned out on this series of easing bolts at service times 122000, 150000 and 200000 hours. These assessments involved the use of general embrittlement and creep damage laws which were empirically derived and concerned such parameters as microstructural grain size, bulk phosphorus content and accumulated service strain. (orig.) 7 refs.

  6. Turbine casing bolts; a life assessment and bolt replacement strategy

    Energy Technology Data Exchange (ETDEWEB)

    Bulloch, J.H. [ESB, Power Generation, Dublin (Ireland)

    1998-12-31

    The present presentation describes a detailed study concerning the life assessment and replacement strategy of large turbine casing bolts in a 120 MW steam raising unit. After 122000 hours service, circa 1991/92, the Cr-Mo-V steel casing bolts, involving a total of 184 bolts, from two identical 120 MW units, termed Units 1 and 2, were examined to establish the extent of Reverse Temper Embrittlement, RTE, and creep damage suffered during service. The bolt replacement plans for the two units were as follows; Unit 1 bolts were completely replaced with new bolts while Unit 2 embrittled bolts were withdrawn from service and replaced with Non- Embrittled bolts from Unit 1; basically Unit 2 bolts were made up from a mixture of Unit 1 and 2 Non- Embrittled bolts which had been in service for 122000 hours. Remnant life assessments, concerning both embrittlement and creep damage aspects, were earned out on this series of easing bolts at service times 122000, 150000 and 200000 hours. These assessments involved the use of general embrittlement and creep damage laws which were empirically derived and concerned such parameters as microstructural grain size, bulk phosphorus content and accumulated service strain. (orig.) 7 refs.

  7. Steam generation unit in a simple version of biomass based small cogeneration unit

    Directory of Open Access Journals (Sweden)

    Sornek Krzysztof

    2014-01-01

    Full Text Available The organic Rankine cycle (ORC is a very promising process for the conversion of low or medium temperature heat to electricity in small and micro scale biomass powered systems. Classic ORC is analogous to Clausius–Rankine cycle in a steam power plant, but instead of water it uses low boiling, organic working fluids. Seeking energy and economical optimization of biomass-based ORC systems, we have proposed some modifications e.g. in low boiling fluid circuit construction. Due to the fact that the operation of a micro steam turbine is rather inefficient from the technical and economic point of view, a specially modified air compressor can be used as a steam piston engine. Such engine should be designed to work at low pressure of the working medium. Studies regarding the first version of the prototype installation were focused on the confirmation of applicability of a straw boiler in the prototype ORC power system. The results of the previous studies and the studies described in the paper (on the new cogeneration unit confirmed the high potential of the developed solution. Of course, many further studies have to be carried out.

  8. Strategic management of steam generators

    International Nuclear Information System (INIS)

    Hernalsteen, P.; Berthe, J.

    1991-01-01

    This paper addresses the general approach followed in Belgium for managing any kind of generic defect affecting a Steam Generator tubebundle. This involves the successive steps of: problem detection, dedicated sample monitoring, implementation of preventive methods, development of specific plugging criteria, dedicated 100% inspection, implementation of repair methods, adjusted sample monitoring and repair versus replacement strategy. These steps are illustrated by the particular case of Primary Water Stress Corrosion Cracking in tube roll transitions, which is presently the main problem for two Belgian units Doele-3 and Tihange-2. (author)

  9. Operational control and maintenance integrity of typical and atypical coil tube steam generating systems

    Energy Technology Data Exchange (ETDEWEB)

    Beardwood, E.S.

    1999-07-01

    Coil tube steam generators are low water volume to boiler horsepower (bhp) rating, rapid steaming units which occupy substantially less space per boiler horsepower than equivalent conventional tire tube and water tube boilers. These units can be retrofitted into existing steam systems with relative ease and are more efficient than the generators they replace. During the early 1970's they became a popular choice for steam generation in commercial, institutional and light to medium industrial applications. Although these boiler designs do not require skilled or certified operators, an appreciation for a number of the operational conditions that result in lower unscheduled maintenance, increased reliability and availability cycles would be beneficial to facility owners, managers, and operators. Conditions which afford lower operating and maintenance costs will be discussed from a practical point of view. An overview of boiler design and operation is also included. Pitfalls are provided for operational and idle conditions. Water treatment application, as well as steam system operations not conducive to maintaining long term system integrity; with resolutions, will be addressed.

  10. Examination of steam generator alloy 800 NG tube from the Almaraz unit 2 NPP

    International Nuclear Information System (INIS)

    Diego, G. de; Gomez Briceno, D.; Maffiotte, C.; Baladia, M.; Arias, C.J.

    2015-01-01

    The steam generators of Almaraz Unit 2 were replaced in 1997 by the model 61W/D3 (Siemens) with Alloy 800NG steam generator tubes. Denting indications were firstly detected in 2006 in the SG-3. Crack indications were identified in 2009. At the end of 2011, three tubes were recovered from this steam generator to carry out destructive examination in order to identify the root cause of the tubes degradation. Analysis of deposits point out the existence of multiples elements in the removed OD (Outer Diameter) deposits as well as in the deposits at the free tube under sludge and at the transition zone. Deposits are more abundant at the transition zone than at free tube. About 10% Na concentration has been detected, whereas S and Cl appear in small concentrations. Si appears regularly and Cr, Ni concentrations in the deposits are similar. Multiple intergranular cracks have been detected at 3 mm above the last contact point between the tube and the TS (tube support), in a band of around 5 mm, practically in the whole perimeter of the tube. Fracture surface of crack-B was partially covered by a Si rich layer, whereas fracture surface of crack-A seems to be cleaner. However, no significant differences in composition, except higher amount of S in crack-B, were found in the deposits of both cracks. EDX mapping and Auger profiles point out Ni enrichment with slight Cr enrichment or depletion and Fe depletion. The comparison of Auger profiles with available results for Alloy 800 tested in caustic and acid sulfate environments seems to indicate that the environment inside the cracks detected in the tube R67C48 is neutral or moderately caustic

  11. Manufacture of steam generator units and components for the AGR power stations at Heysham II and Torness

    International Nuclear Information System (INIS)

    Glasgow, J.R.; Parkin, K.

    1984-01-01

    The current AGR Steam Generator is a development of the successful once-through units supplied for the Oldbury Magnox and Hinkley B/Hunterston B AGR power stations. In this paper a brief outline of the evolution of the steam generator design from the earlier gas cooled reactor stations is presented. A description of the main items of fabrication development is given. The production facilities for the manufacture of the units are described. Reference is also made to some of the work on associated components. The early experience on the construction site of installation of the steam generators is briefly outlined. (author)

  12. Manufacture of steam generator units and components for the AGR power stations at Heysham II and Torness

    Energy Technology Data Exchange (ETDEWEB)

    Glasgow, J R; Parkin, K [N.E.I. Nuclear Systems Ltd., Gateshead, Tyne and Wear (United Kingdom)

    1984-07-01

    The current AGR Steam Generator is a development of the successful once-through units supplied for the Oldbury Magnox and Hinkley B/Hunterston B AGR power stations. In this paper a brief outline of the evolution of the steam generator design from the earlier gas cooled reactor stations is presented. A description of the main items of fabrication development is given. The production facilities for the manufacture of the units are described. Reference is also made to some of the work on associated components. The early experience on the construction site of installation of the steam generators is briefly outlined. (author)

  13. Electrosleeve process for in-situ nuclear steam generator repair

    International Nuclear Information System (INIS)

    Renaud, E.; Brennenstuhl, A.M.; Stewart, D.R.; Gonzalez, F.

    2000-01-01

    Degradation of steam generator tubing by localized corrosion is a widespread problem in the nuclear industry that can lead to costly forced outages, unit derating, steam generator replacement or even the permanent shutdown of a reactor. In response to the onset of steam generator degradation at Ontario Power Generation's Pickering Nuclear Generating Station (PNGS) Unit 5, and the determined unsuitability of conventional repair methods (mechanically expanded or welded sleeves) for Alloy 400, an alternative repair technology was developed. Electrosleeve is a non-intrusive, low-temperature process that involves the electrodeposition of a nanocrystalline nickel microalloy forming a continuously bonded, structural layer over the internal diameter of the degraded region. This technology is designed to provide a long-term pressure boundary repair, fully restoring the structural integrity of the damaged region to its original state. This paper describes the Electrosleeve process for steam generator tubing repair and the unique properties of the advanced sleeve material. The successful installation of fourteen Electrosleeves that have been in service for more than six years in Alloy 400 tubing at the Pickering-S CANDU unit, and the more recent (Nov. 99) extension of the technology to Alloy 600 by the installation of 57 sleeves in a U.S. pressurized water reactor (PWR) at Callaway, is presented. The Electrosleeve process has been granted a conditional license by the U.S. Nuclear Regulatory Commission (NRC). In Canada, the process of licensing Electrosleeve with the CNSC / TSSA has begun. (author)

  14. Upgrading the SPP-500-1 moisture separators-steam reheaters used in the Leningrad NPP turbine units

    Science.gov (United States)

    Legkostupova, V. V.; Sudakov, A. V.

    2015-03-01

    The specific features of existing designs of moisture separators-steam reheaters (MSRs) and experience gained with using them at nuclear power plants are considered. Main factors causing damage to and failures of MSRs are described: nonuniform distribution of wet steam flow among the separation modules, breakthrough of moisture through the separator (and sometimes also through the steam reheater), which may lead to the occurrence of additional thermal stresses and, hence, to thermal-fatigue damage to or stress corrosion cracking of metal. MSR failure results in a less efficient operation of the turbine unit as a whole and have an adverse effect on the reliability of the low-pressure cylinder's last-stage blades. By the time the design service life of the SPP-500-1 MSRs had been exhausted in power units equipped with RBMK-1000 reactors, the number of damages inflicted to both the separation part and to the pipework and heating surface tubes was so large, that a considerable drop of MSR effectiveness and turbine unit efficiency as a whole occurred. The design of the upgraded separation part used in the SPP-500-1 MSR at the Leningrad NPP is described and its effectiveness is shown, which was confirmed by tests. First, efforts taken to achieve more uniform distribution of moisture content over the perimeter and height of steam space downstream of the separation modules and to bring it to values close to the design ones were met with success. Second, no noticeable effect of the individual specific features of separation modules on the moisture content was revealed. Recommendations on elaborating advanced designs of moisture separators-steam reheaters are given: an MSR arrangement in which the separator is placed under or on the side from the steam reheater; axial admission of wet steam for ensuring its uniform distribution among the separation modules; inlet chambers with an extended preliminary separation system and devices for uniformly distributing steam flows in the

  15. Nuclear facilities: repair and replacement technologies

    International Nuclear Information System (INIS)

    2005-01-01

    The oldest operating reactors are more than 35 years old and are now facing major maintenance operations. The first replacement of a pressurizer took place in autumn 2005 at the St-Lucie plant (Usa) while steam generators have been currently replaced since 1983. Nuclear industry has to adapt to this new market by proposing innovative technological solutions in the reactor maintenance field. This document gathers the 9 papers presented at the conference. The main improvements concern repair works on internal components of PWR-type reactors, the replacement of major components of the primary coolant circuit and surface treatments to limit the propagation of damages. The first paper shows that adequate design and feedback experience are good assets to manage the ageing of a nuclear unit. Another paper shows that a new repair method of a relief valve can avoid its replacement. (A.C.)

  16. Vibration Spectrum Analysis for Indicating Damage on Turbine and Steam Generator Amurang Unit 1

    Directory of Open Access Journals (Sweden)

    Beny Cahyono

    2017-12-01

    Full Text Available Maintenance on machines is a mandatory asset management activity to maintain asset reliability in order to reduce losses due to failure. 89% of defects have random failure mode, the proper maintenance method is predictive maintenance. Predictive maintenance object in this research is Steam Generator Amurang Unit 1, which is predictive maintenance is done through condition monitoring in the form of vibration analysis. The conducting vibration analysis on Amurang Unit 1 Steam Generator is because vibration analysis is very effective on rotating objects. Vibration analysis is predicting the damage based on the vibration spectrum, where the vibration spectrum is the result of separating time-based vibrations and simplifying them into vibrations based on their frequency domain. The transformation of time-domain-wave into frequency-domain-wave is using the application of FFT, namely AMS Machinery. The measurement of vibration value is done on turbine bearings and steam generator of Unit 1 Amurang using Turbine Supervisory Instrument and CSI 2600 instrument. The result of this research indicates that vibration spectrum from Unit 1 Amurang Power Plant indicating that there is rotating looseness, even though the vibration value does not require the Unit 1 Amurang Power Plant to stop operating (shut down. This rotating looseness, at some point, can produce some indications that similar with the unbalance. In order to avoid more severe vibrations, it is necessary to do inspection on the bearings in the Amurang Unit 1 Power Plant.

  17. Draft environmental statement related to steam generator repair at H.B. Robinson Steam Electric Plant Unit No. 2, (Docket No. 50-261)

    International Nuclear Information System (INIS)

    1983-09-01

    The staff has considered the environmental impacts and economic costs of the proposed steam generator repair at the H.B. Robinson Steam Electric Plant Unit No. 2 along with reasonable alternatives to the proposed action. The staff has concluded that the proposed repair will not significantly affect the quality of the human environment and that there are no preferable alternatives to the proposed action. Furthermore, any impacts from the repair program are outweighted by its benefits

  18. Report on US-Japan 1983 meetings on steam generators

    International Nuclear Information System (INIS)

    1984-04-01

    This is a report on a trip to Japan by personnel of the US Nuclear Regulatory Commission in 1983 to exchange information on steam generators of nuclear power plants. Steam generators of Japanese pressurized water reactors have experienced nearly all of the forms of degradation that have been experienced in US recirculating-type steam generators, except for denting and pitting. More tubes have been plugged per year of reactor operation in Japanese than in US steam generators, but much of the Japanese tube plugging is preventative rather than the result of leaks experienced. The number of leaks per reactor year is much smaller for Japanese than for US steam generators. No steam generators have been replaced in Japan while several have been replaced in the US. The Japanese experience may be related to their very stringent inspection and maintenance programs for steam generators

  19. Characterization and dissolution studies of Bruce Unit 3 steam generator secondary side deposits

    International Nuclear Information System (INIS)

    Semmler, J.

    1998-01-01

    The physical and chemical properties of secondary side steam generator deposits in the form of powder and flake obtained from Bruce Nuclear Generating Station A (BNGS A) Unit 3 were studied. The chemical phases present in both types of deposits, collected prior to the 1994 chemical cleaning during the pre-clean water lancing campaign, were magnetite (Fe 3 O 4 ), metallic copper (Cu), hematite (Fe 2 O 3 ) and cuprous oxide (Cu 2 O). The major difference between the chemical composition of the powder and the flake was the presence of zinc silicate (Zn 2 SiO 4 ) and several unidentified silicate phases containing Ca, Al, Mn, and Mg in the flake. The flake deposit had high hardness values, high electrical resistivity, low porosity and a lower dissolution rate in the EPRI-SGOG (Electric Power Research Institute-Steam Generator Owner's Group) chemical cleaning solvents compared to the powder deposit. Differences in the deposit properties after chemical cleaning of the Unit 3 steam generators and after laboratory cleaning were noted. The presence of silicates in the deposit inhibit magnetite dissolution

  20. Anti vibration bars replacement in Vandellos II steam generators

    International Nuclear Information System (INIS)

    Vinyes, R.; Leal, R.

    1994-01-01

    C.N. Vandellos II is equipped with three steam generators Westinghouse model F. The number of tubes is 5626 each SG and the material Inconel 600TT. During the first inservice inspection, in 1989, tube wall thickness reductions were observed due to fretting in zones of contact with the tubes anti vibration bars. In the 2 nd shutdown for refueling (1990) all the tubes subject to this type of degradation were inspected by eddy currents, occurring a significative increase in number of tubes affected as well as the quantity of plugged tubes for that reason. Additionally, Westinghouse performed visual inspection and dimensional control of gaps in the tube bundles. Taking in account the results, the replacement with AVBs of new design was decided. AVBs new design is more complex than the original due to the combination of flexible and expandable bars in order to eliminate gaps between tubes an bars an assure proper bundle support. Given that the installation has to be done under water for shielding, all unions are bolted so that no welding is required. Each one of the bars, 333 per SG, is attached to a support structure consisting in 6 retaining plates and 4 bridge plates. (Author)

  1. Through wall degradation problem of the turbine extraction steam drain piping due to liquid drop impingement and measures taken for this problem at Fukushima Dai-ichi Nuclear Power Plant Unit 6

    International Nuclear Information System (INIS)

    Inagaki, Takeyuki; Kobayashi, Teruaki; Shimada, Shigeru; Inoue, Ryousuke; Usuba, Satoshi; Kimura, Takeo

    2011-01-01

    Through wall degradation was found on the extraction steam drain piping of Unit 6 of Fukushima Dai-ichi Nuclear Power Plant owned by Tokyo Electric Power Company after replacement of the turbine rotors with those of higher thermal efficiency. The mechanism of this degradation was loss of material due to liquid drop impingement. Since the estimated life time of the piping based on wall thickness measurements before the replacement was at least 9 years, the rapid wall thinning occurred after the replacement. This paper describes a summary of the phenomenon, its degradation mechanism and root cause, a temporary measurement taken for an immediate action and permanent measures taken during the next refueling outage. (author)

  2. Results of Steam-Water-Oxygen Treatment of the Inside of Heating Surfaces in Heat-Recovery Steam Generators of the PGU-800 Power Unit at the Perm' District Thermal Power Station

    Science.gov (United States)

    Ovechkina, O. V.; Zhuravlev, L. S.; Drozdov, A. A.; Solomeina, S. V.

    2018-05-01

    Prestarting, postinstallation steam-water-oxygen treatment (SWOT) of the natural circulation/steam reheat heat-recovery steam generators (HRSG) manufactured by OAO Krasny Kotelshchik was performed at the PGU-800 power unit of the Perm District Thermal Power Station (GRES). Prior to SWOT, steam-oxygen cleaning, passivation, and preservation of gas condensate heaters (GCH) of HRSGs were performed for 10 h using 1.3MPa/260°C/70 t/h external steam. After that, test specimens were cut out that demonstrated high strength of the passivating film. SWOT of the inside of the heating surfaces was carried out during no-load operation of the gas turbine unit with an exhaust temperature of 280-300°C at the HRSG inlet. The steam turbine was shutdown, and the generated steam was discharged into the atmosphere. Oxygen was metered into the discharge pipeline of the electricity-driven feed pumps and downcomers of the evaporators. The behavior of the concentration by weight of iron compounds and the results of investigation of cutout specimens by the drop or potentiometric method indicate that the steam-water-oxygen process makes it possible to remove corrosion products and reduce the time required to put a boiler into operation. Unlike other processes, SWOT does not require metal-intensive cleaning systems, temporary metering stations, and structures for collection of the waste solution.

  3. BWR Steam Dryer Alternating Stress Assessment Procedures

    Energy Technology Data Exchange (ETDEWEB)

    Morante, R. J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hambric, S. A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ziada, S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-12-01

    This report presents an overview of Boiling Water Reactor (BWR) steam dryer design; the fatigue cracking failures that occurred at the Quad Cities (QC) plants and their root causes; a history of BWR Extended Power Uprates (EPUs) in the USA; and a discussion of steam dryer modifications/replacements, alternating stress mechanisms on steam dryers, and structural integrity evaluations (static and alternating stress).

  4. The EBR-II steam generating system - operation, maintenance, and inspection

    International Nuclear Information System (INIS)

    Buschman, H.W.; Penney, W.H.; Longua, K.J.

    2002-01-01

    The Experimental Breeder Reactor II (EBR-II) has operated for 20 years at the Idaho National Engineering Laboratory near Idaho Falls. EBR-II is a Liquid Metal Fast Breeder Reactor (LMFBR) with integrated power producing capability. EBR-II has operated at a capacity factor over 70% in the past few years. Superheated steam is produced by eight natural circulation evaporators, two superheaters, and a conventional steam drum. Steam throttle conditions are 438 C and 8.62 MPa. The designs of the evaporators and superheaters are essentially identical; both are counterflow units with low pressure nonradioactive sodium on the shell side. During the 20 years of operation, components of the steam generator have been subjected to a variety of inspections including visual, dimensional, and ultrasonic. One superheater was removed from service because of anomalous performance and was replaced with an evaporator which was removed, examined, and converted into a superheater. Overall operating experience of the system has been excellent and essentially trouble free. Inspections have not revealed any conditions that are performance or life limiting. (author)

  5. Steam turbine of WWER-1000 unit

    International Nuclear Information System (INIS)

    Drahy, J.

    1986-01-01

    The manufacture was started by Skoda of a saturated steam, 1,000 MW, 3,000 rpm turbine designed for the Temelin nuclear power plant. The turbine provides steam for heating water for district heating, this either with an output of 893 MW for a three-stage water heating at 150/60 degC, or of 570 MW for a two-stage water heating at 120/60 degC. The turbine features one high-pressure and three identical low-pressure stages. The pressure gradient between the high-pressure and the low-pressure parts was optimized with respect to the thermal efficiency of the cycle and to the thermodynamic efficiency of the low-pressure part. A value of 0.79 MPa was selected corresponding to the maximum through-flow of steam entering the turbine. This makes 5,495 t/h, the admission steam parameters are 273.3 degC and 5.8 MPa. The feed water temperature is 220.9 degC. 300 cold starts, 1,000 starts after shutdowns for 55 to 88 hours and 600 starts after shutdown for 8 hours are envisaged for the entire turbine service life. (Z.M.). 5 figs., 1 tab., 6 refs

  6. 76 FR 77022 - In the Matter of Carolina Power & Light Company, H.B. Robinson Steam Electric Plant, Unit No. 2...

    Science.gov (United States)

    2011-12-09

    ... and 72-3] In the Matter of Carolina Power & Light Company, H.B. Robinson Steam Electric Plant, Unit No. 2, H. B. Robinson Steam Electric Plant, Unit 2, Independent Spent Fuel Storage Installation; Order Approving Indirect Transfer of Control of Licenses I. Carolina Power & Light Company (CP&L, the licensee) is...

  7. Analysis of experimental characteristics of multistage steam-jet electors of steam turbines

    Science.gov (United States)

    Aronson, K. E.; Ryabchikov, A. Yu.; Brodov, Yu. M.; Brezgin, D. V.; Zhelonkin, N. V.; Murmanskii, I. B.

    2017-02-01

    A series of questions for specification of physical gas dynamics model in flow range of steam-jet unit and ejector computation methodology, as well as functioning peculiarities of intercoolers, was formulated based on analysis of experimental characteristics of multistage team-jet steam turbines. It was established that coefficient defining position of critical cross-section of injected flow depends on characteristics of the "sound tube" zone. Speed of injected flow within this tube may exceed that of sound, and pressure jumps in work-steam decrease at the same time. Characteristics of the "sound tube" define optimal axial sizes of the ejector. According to measurement results, the part of steam condensing in the first-stage coolant constitutes 70-80% of steam amount supplied into coolant and is almost independent of air content in steam. Coolant efficiency depends on steam pressure defined by operation of steam-jet unit of ejector of the next stage after coolant of steam-jet stage, temperature, and condensing water flow. As a rule, steam entering content of steam-air mixture supplied to coolant is overheated with respect to saturation temperature of steam in the mixture. This should be taken into account during coolant computation. Long-term operation causes changes in roughness of walls of the ejector's mixing chamber. The influence of change of wall roughness on ejector characteristic is similar to the influence of reverse pressure of the steam-jet stage. Until some roughness value, injection coefficient of the ejector stage operating in superlimiting regime hardly changed. After reaching critical roughness, the ejector switches to prelimiting operating regime.

  8. ANALISIS KEJADIAN STEAM GENERATOR TUBE RUPTURE (SGTR BERDASARKAN SKENARIO MIHAMA UNIT 2

    Directory of Open Access Journals (Sweden)

    Andi Sofrany Ekariansyah

    2015-03-01

    Full Text Available Pada tanggal 9 Februari 1991, terjadi kecelakaan putusnya pipa pemanas pembangkit uap (Steam Generator Tube Rupture/SGTR pada PLTN Mihama Unit 2. Dari kejadian tersebut, diperoleh catatan sekuensi kecelakaan berupa aktuasi sistem proteksi dan fitur keselamatan terekayasa dalam memitigasi kebocoran dari sistem primer ke sistem sekunder. Urutan sekuensi tersebut kemudian diterapkan pada PWR standar Jepang untuk disimulasikan menggunakan program perhitungan RELAP5/SCDAP/Mod3.2. Tujuannya untuk mengevaluasi konsekuensi yang terjadi bila kecelakaan tersebut terjadi pada PWR standar Jepang. Parameter yang dibandingkan adalah laju alir kebocoran, perubahan tekanan primer dan sekunder dan perubahan level di dalam pressurizer. Hasil simulasi menunjukkan perbedaan lama waktu kejadian SGTR hingga berhentinya kebocoran yang berlangsung lebih pendek pada PWR standar Jepang. Selain itu jumlah pendingin primer yang bocor dan jumlah uap yang terlepas dari MSRV tercatat lebih besar daripada PWR Mihama unit 2. Karakter aliran kebocoran, fluktuasi tekanan primer, dan level pressurizer sedikit berbeda pada tahap-tahap awal kejadian, namun relatif sama pada tahap akhir ketika aliran kebocoran dapat dihentikan. Hasil simulasi juga menunjukkan perlunya tindakan operator secara manual yang ditunjukkan dari isolasi sistem air umpan bantu (AFW pada pembangkit uap yang bocor, aktuasi katup pelepas uap (MSRV pada pembangkit uap yang utuh dan aktuasi auxiliary spray dan power operated relief valve (PORV pada pressurizer untuk mengantisipasi kejadian sebagai bagian dari prosedur operasi darurat. Kata kunci: SGTR, PWR Mihama Unit 2, PWR standar Jepang   On February 9,1991, a Steam Generator Tube Rupture (SGTR took place at the Mihama Unit No. 2. From that event, the accident sequence representing the actuation of protection system and engineered safety feature to mitigate the leak from primary system to secondary system is recorded. That sequence is then applied on the

  9. Passive system with steam-water injector for emergency supply of NPP steam generators

    International Nuclear Information System (INIS)

    Il'chenko, A.G.; Strakhov, A.N.; Magnitskij, D.N.

    2009-01-01

    The calculation results of reliability indicators of emergency power supply system and emergency feed-water supply system of serial WWER-1000 unit are presented. To ensure safe water supply to steam generators during station blackout it was suggested using additional passive emergency feed-water system with a steam-water injector working on steam generators dump steam. Calculated analysis of steam-water injector operating capacity was conducted at variable parameters of steam at the entrance to injector, corresponding to various moments of time from the beginning of steam-and-water damping [ru

  10. Research perspectives on the evaluation of steam generator tube integrity

    International Nuclear Information System (INIS)

    Muscara, J.; Diercks, D. R.; Majumdar, S.; Kupperman, D. S.; Bakhtiari, S.; Shack, W. J.

    2001-01-01

    Industry effects have been largely successful in managing degradation of steam generator tubes due to wastage, pitting, and denting, but fretting, SCC and intergranular attack have proved more difficult to manage. Although steam generator replacements are proceeding there is substantial industry interest in operating with degraded steam generators, and significant numbers of plants will continue to do so. In most cases degradation of steam generator tubing by stress corrosion cracking is still managed by plug or repair on detection, because current NDE techniques for characterization of flaws are not accurate enough to permit continued operation. This paper reviews some of the historical background that underlies current steam generator degradation management strategies and outlines some of the additional research that must be done to provide more effective management of degradation in current generators and provide greater assurance of satisfactory performance in replacement steam generators

  11. Design of SMART steam generator cassette

    International Nuclear Information System (INIS)

    Kim, Y. W.; Kim, J. I.; Jang, M. H.

    2001-01-01

    Basic design development for the steam generator to be installed in the integral reactor SMART has been performed. Optimization of the steam generator shape, determination of the basic dimension and confirmation of the structural strength have been carried out. Individual steam generator cassette can be replaced in the optimized design concept of steam generator. Shape design of the steam generator cassette has been done on the computer based on 3-D CAE strategy. The structural integrity of the developed steam generator was investigated by performing the dynamic analysis for the steam generator cassette, flow induced vibration analysis for the tube bundle, and the thermo-mechanical analysis for the module header and tube. As for the manufacturing of steam generator, the numerical and the experimental simulation have been carried to control the amount of spring back and to eliminate residual stress. SMART steam generator cassette was developed by a sequential research of the aforementioned activities

  12. A steam separator-superheater apparatus

    International Nuclear Information System (INIS)

    Androw, Jean; Bessouat, Roger; Peyrelongue, J.-P.

    1973-01-01

    Description is given of a separator-superheater apparatus comprising an outer enclosure containing a separating-unit and a steam superheating unit according to the main patent. The present addition relates to an improvement in that apparatus, characterized in that the separating unit and the superheating unit, mounted in two distinct portions of the outer enclosure, are divided into the same number of sub-units of each unit being identical and operating in parallel, and in that to each separator sub-unit is associated a superheater sub-unit, said sub-units being mounted in series and located in one in the other of the enclosure two portions, respectively. This can be applied to the treatment of the exhaust steam of a turbine high pressure body, prior to re-injecting said steam into the low pressure body [fr

  13. Cogeneration steam turbines from Siemens: New solutions

    Science.gov (United States)

    Kasilov, V. F.; Kholodkov, S. V.

    2017-03-01

    The Enhanced Platform system intended for the design and manufacture of Siemens AG turbines is presented. It combines organizational and production measures allowing the production of various types of steam-turbine units with a power of up to 250 MWel from standard components. The Enhanced Platform designs feature higher efficiency, improved reliability, better flexibility, longer overhaul intervals, and lower production costs. The design features of SST-700 and SST-900 steam turbines are outlined. The SST-700 turbine is used in backpressure steam-turbine units (STU) or as a high-pressure cylinder in a two-cylinder condensing turbine with steam reheat. The design of an SST-700 single-cylinder turbine with a casing without horizontal split featuring better flexibility of the turbine unit is presented. An SST-900 turbine can be used as a combined IP and LP cylinder (IPLPC) in steam-turbine or combined-cycle power units with steam reheat. The arrangements of a turbine unit based on a combination of SST-700 and SST-900 turbines or SST-500 and SST-800 turbines are presented. Examples of this combination include, respectively, PGU-410 combinedcycle units (CCU) with a condensing turbine and PGU-420 CCUs with a cogeneration turbine. The main equipment items of a PGU-410 CCU comprise an SGT5-4000F gas-turbine unit (GTU) and STU consisting of SST-700 and SST-900RH steam turbines. The steam-turbine section of a PGU-420 cogeneration power unit has a single-shaft turbine unit with two SST-800 turbines and one SST-500 turbine giving a power output of N el. STU = 150 MW under condensing conditions.

  14. Safety analysis program for steam generators replacement and power uprate at Tihange 2 nuclear power plant

    International Nuclear Information System (INIS)

    Delhaye, X.; Charlier, A.; Damas, Ph.; Druenne, H.; Mandy, C.; Parmentier, F.; Pirson, J.; Zhang, J.

    2002-01-01

    The Belgian Tihange 2 nuclear power plant went into commercial operation in 1983 producing a thermal power of 2785 MW. Since the commissioning of the plant the steam generators U-tubes have been affected by primary stress corrosion cracking. In order to avoid further degradation of the performance and an increase in repair costs, Electrabel, the owner of the plant, decided in 1997 to replace the 3 steam generators. This decision was supported by the feasibility study performed by Tractebel Energy Engineering which demonstrated that an increase of 10% of the initial power together with a fuel cycle length of 18 months was achieved. Tractebel Energy Engineering was entrusted by Electrabel as the owner's engineer to manage the project. This paper presents the role of Tractebel Energy Engineering in this project and the safety analysis program necessary to justify the new operation point and the fuel cycle extension to 18 months re-analysis of FSAR chapter 15 accidents and verification of the capacity of the safety and auxiliary systems. The FSAR chapter 15 accidents were reanalyzed jointly by Framatome and Tractebel Energy Engineering while the systems verifications were carried out by Tractebel Energy Engineering. (author)

  15. An expert system for diagnostics and estimation of steam turbine components condition

    Science.gov (United States)

    Murmansky, B. E.; Aronson, K. E.; Brodov, Yu. M.

    2017-11-01

    The report describes an expert system of probability type for diagnostics and state estimation of steam turbine technological subsystems components. The expert system is based on Bayes’ theorem and permits to troubleshoot the equipment components, using expert experience, when there is a lack of baseline information on the indicators of turbine operation. Within a unified approach the expert system solves the problems of diagnosing the flow steam path of the turbine, bearings, thermal expansion system, regulatory system, condensing unit, the systems of regenerative feed-water and hot water heating. The knowledge base of the expert system for turbine unit rotors and bearings contains a description of 34 defects and of 104 related diagnostic features that cause a change in its vibration state. The knowledge base for the condensing unit contains 12 hypotheses and 15 evidence (indications); the procedures are also designated for 20 state parameters estimation. Similar knowledge base containing the diagnostic features and faults hypotheses are formulated for other technological subsystems of turbine unit. With the necessary initial information available a number of problems can be solved within the expert system for various technological subsystems of steam turbine unit: for steam flow path it is the correlation and regression analysis of multifactor relationship between the vibration parameters variations and the regime parameters; for system of thermal expansions it is the evaluation of force acting on the longitudinal keys depending on the temperature state of the turbine cylinder; for condensing unit it is the evaluation of separate effect of the heat exchange surface contamination and of the presence of air in condenser steam space on condenser thermal efficiency performance, as well as the evaluation of term for condenser cleaning and for tube system replacement and so forth. With a lack of initial information the expert system enables to formulate a diagnosis

  16. Research perspectives on the evaluation of steam generator tube integrity

    International Nuclear Information System (INIS)

    Muscara, J.; Diercks, D.R.; Majumdar, S.; Kupperman, D.S.; Bakhtiari, S.; Shack, W.J.

    2002-01-01

    Industry efforts have been largely successful in managing degradation of steam generator tubes due to wastage, pitting, and denting, but fretting, stress corrosions cracking (SCC) and intergranular attack have proved more difficult to manage. Although steam generator replacements are proceeding, there is substantial industry interest in operating with degraded steam generators, and significant numbers of plants will continue to do so. In most cases degradation of steam generator tubing by stress corrosion cracking is still managed by 'plug or repair on detection' because current NDE techniques for characterization of flaws and the knowledge of SCC crack growth rates are not accurate enough to permit continued operation. Replacement generators with improved designs and materials have performed well to date, but previous experience with the appearance of some types of SCC in Alloy 600 after 10 years or more of operation and laboratory results suggest additional understanding of corrosion performance of these materials is needed. This paper reviews some of the historical background that underlies current steam generator degradation management strategies and outlines some of the additional research that must be done to provide more effective management of degradation in current generators and provide greater assurance of satisfactory performance in replacement steam generators. (author)

  17. Steam generator tube integrity program

    International Nuclear Information System (INIS)

    Dierks, D.R.; Shack, W.J.; Muscara, J.

    1996-01-01

    A new research program on steam generator tubing degradation is being sponsored by the U.S. Nuclear Regulatory Commission (NRC) at Argonne National Laboratory. This program is intended to support a performance-based steam generator tube integrity rule. Critical areas addressed by the program include evaluation of the processes used for the in-service inspection of steam generator tubes and recommendations for improving the reliability and accuracy of inspections; validation and improvement of correlations for evaluating integrity and leakage of degraded steam generator tubes, and validation and improvement of correlations and models for predicting degradation in steam generator tubes as aging occurs. The studies will focus on mill-annealed Alloy 600 tubing, however, tests will also be performed on replacement materials such as thermally-treated Alloy 600 or 690. An overview of the technical work planned for the program is given

  18. Steam-water separator

    International Nuclear Information System (INIS)

    Modrak, T.M.; Curtis, R.W.

    1978-01-01

    A two-stage steam-water separating device is introduced, where the second stage is made as a cyclone separator. The water separated here is collected in the first stage of the inner tube and is returned to the steam raising unit. (TK) [de

  19. Procedure for generating steam and steam generator for operating said procedure

    International Nuclear Information System (INIS)

    Chlique, Bernard.

    1975-01-01

    This invention concerns the generation of steam by bringing the water to be vaporised into indirect thermal exchange relation with the heating steam which condenses when passing in series, along alternate routes, through bundles of tubes immersed in a vaporising chamber. A number of steam generators working on this principle already exist. The purpose of the invention is to modify the operating method of these steam generators by means of a special disposition making it possible to build a compact unit including an additional bundle of tubes heated by the condensates collected at the outlet of each bundle through which the heating steam passes [fr

  20. Fast-Valving of Large Steam Turbine Units as a Means of Power System Security Enhancement

    Directory of Open Access Journals (Sweden)

    Bogdan Sobczak

    2014-03-01

    Full Text Available Fast-valving assists in maintaining system stability following a severe transmission system fault by reducing the turbine mechanical power. Fast-valving consists in rapid closing and opening of steam valves in an adequate manner to reduce the generator accelerating power following the recognition of a severe fault. FV can be an effective and economical method of meeting the performance requirements of a power system in the presence of an increase in wind and solar generation in the power system, newly connected large thermal units and delaying of building new transmission lines. The principle of fast-valving and advantages of applying this technique in large steam turbine units was presented in the paper. Effectiveness of fast-valving in enhancing the stability of the Polish Power Grid was analyzed. The feasibility study of fast-valving application in the 560 MW unit in Kozienice Power Station (EW SA was discussed.

  1. Third international seminar on horizontal steam generators

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The Third International Seminar on Horizontal Steam Generators held on October 18-20, 1994 in Lappeenranta, consisted of six sessions dealing with the topics: thermal hydraulic experiments and analyses, primary collector integrity, management of primary-to-secondary leakage accidents, feedwater collector replacement and discussion of VVER-440 steam generator safety issues.

  2. Third international seminar on horizontal steam generators

    International Nuclear Information System (INIS)

    1995-01-01

    The Third International Seminar on Horizontal Steam Generators held on October 18-20, 1994 in Lappeenranta, consisted of six sessions dealing with the topics: thermal hydraulic experiments and analyses, primary collector integrity, management of primary-to-secondary leakage accidents, feedwater collector replacement and discussion of VVER-440 steam generator safety issues

  3. Third international seminar on horizontal steam generators

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The Third International Seminar on Horizontal Steam Generators held on October 18-20, 1994 in Lappeenranta, consisted of six sessions dealing with the topics: thermal hydraulic experiments and analyses, primary collector integrity, management of primary-to-secondary leakage accidents, feedwater collector replacement and discussion of VVER-440 steam generator safety issues.

  4. In-core monitor housing replacement at Fukushima Daiichi Unit No.4

    International Nuclear Information System (INIS)

    Arai, Tomoyuki

    1999-01-01

    The in-core monitor (ICM) housing replacement of a Boiling Water Reactor (BWR) has been completed at Fukushima-Daiichi Unit No. 4 (1F4) of the Tokyo Electric Power Company (TEPCO) in Japan. Since cracking of the inside surface of an ICM housing was found in this unit, the ICM housing was replaced with one made of low-carbon stainless steel (SS) to improve Intergranular Stress Corrosion Cracking (IGSCC) resistance. This project is the first application of the replacement procedure for the ICM housing and employs various advanced technologies. The outline of the ICM housing replacement project and applied technologies are discussed in this paper. (author)

  5. Pressure tube replacement in Pickering NGS A units 1 and 2

    International Nuclear Information System (INIS)

    Irvine, H.S.; Bennett, E.J.; Talbot, K.H.

    1986-10-01

    Being able to technically and economically replace the most radioactive components (excluding the nuclear fuel) in operating reactors will help to ensure the ongoing acceptance of nuclear power as a viable energy source for the future. Ontario Hydro is well along the path to meeting the above objective for its CANDU-PHW reactors. Following the failure of a Zircaloy-II pressure tube in unit 2 of Pickering NGS A in August, 1983, Ontario Hydro has embarked on a program to replace all Zircaloy-II pressure tubes in units 1 and 2 at Pickering. This program integrates the in-house research, design, construction, and operating skills of a large utility (Ontario Hydro) with the skills of a national nuclear organization (Atomic Energy of Canada Limited) and the private engineering sector of the Canadian nuclear industry. The paper describes the background to the pressure tube failure in Pickering unit 2 and to the efforts incurred in understanding the failure mechanism and how similar failures are not expected for the zirconium-niobium pressure tube material used in all other large CANDU-PHW units after units 1 and 2 of Pickering NGS A. The tooling developed for the pressure tube replacement program is described as well as the organization to undertake the program in an operating nuclear station. The retubing of units 1 and 2 at Pickering NGS A is nearing a successful completion and shows the benefits of being able to integrate the various skills required for this success. Pressure tube replacement in a CANDU-PHW reactor is equivalent to replacement of the reactor vessel in a LWR. The fact that this replacement can be done economically and with acceptable radiation dose to workers augurs well for the continued viability of the use of nuclear energy for the benefit of mankind. (author)

  6. Review of the research proposal for the steam generator retired from Kori unit 1

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joung Soo; Han, Joung Ho; Kim, Hong Pyo; Lim, Yun Soo; Lee, Deok Hyun; Hwang, Seong Sik; Hur, Do Haeng [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-03-01

    The tubes of the steam generator retired form Kori unit 1 have many different kinds of failures, such as denting pitting, wastage, ODSCC, PWSCC.Korea Electric Power Research Institute (KEPRI) submitted a research proposal for the steam generator to the Korea Institute S and T Evaluation and Planning (KSITEP). The KISTEP requested Korea Atomic Energy Research Institute to review the proposal by organizing a committee which should be composed of the specialists of the related domestic research institutes. Opinions of the committee on the objectives, research fields, economic benefit and validity in the research proposal were reviewed and suggested optimal research fields to be fulfilled successfully for the retired steam generator. Also, the rolls for the participants in the research works were allocated, which is critical in order to do the project effectively. 6 figs., 5 tabs. (Author)

  7. MILA Antenna Control Unit Replacement Project

    Science.gov (United States)

    Bresette, Jeremy

    2007-01-01

    The Air to Ground Subsystem (AGS) Antenna Control Units at the MILA Ground Network Tracking Station are at end-of-life and are being replaced. AGS consists of two antennas at MILA (Quad-Helix and Teltrac). Software was taken from the existing Subsystem Controller and modified for the Antenna Control Unit (ACU). The software is capable of receiving and sending commands to and from the ACU. Moving the azimuth clockwise, counterclockwise, moving the elevation up or down, turning servo power on and off, and inputting azimuth and elevation angles are commands that the antenna can receive.

  8. Device for inspection and/or repair of a pipe of a steam raising unit of a nuclear power station

    International Nuclear Information System (INIS)

    Vermaat, H.P.

    1986-01-01

    Eddy current sensors are introduced into the pipe from the steam raising unit chamber. The two-part device on the supporting pillar is used to support the sensors and to position them, and so is an arm connected to it via a clutch. It is accommodated inside the steam raising chamber, but can be operated remotely from outside the steam raising chamber. This reduces the radiation loading of the operating staff. (DG) [de

  9. Burst protection device for largely cylindrical steam raising units, preferably of pressurized water nuclear power stations

    International Nuclear Information System (INIS)

    Mutzl, J.

    1978-01-01

    This burst protection device controls forces to be expected in an accident by resolving them into axial (vertical) and radial (horizontal) components, which are taken by a large number of elements stressed in tension. The steam raising unit is surrounded by a containment, but remains easily accessible. The containment consists of a steel jacket, lid and floor. Several cylindrical sections above one another form the steel jacket, which surrounds the steam raising unit with an intermediate insulating layer of concrete. The insulating concrete cylinder is of several times the thickness of the steel jacket, and also consists of cylindrical sections. An outer supporting ring for the lid and floor of the containment have outside diameters which project beyond the jacket. Prestressed circumferential vertical tension ropes between the supporting ring and floor take any additional tensional forces. The lid is domed with downward curvature towards the upper boiler dome. Internal bursting forces produce compressive stresses in the lid, which thus pass along its outside diameter into the surrounding ring. The lid, which is devided along one diameter, makes dismantling and access to the boiler easy even with a central steam pipe going upwards. The floor of the burst protection is also the floor of the steam raising unit. It is of several times the thickness of the tube floor, which, with its spacing above the floor forms the usual inlet and outlet space for the reactor cooling water. The main coolant pump installed there is driven by an external motor through a floor penetration. (HP) [de

  10. Effects of Chemistry Parameters of Primary Water affecting Leakage of Steam Generator Tube Cracks

    Energy Technology Data Exchange (ETDEWEB)

    Shin, D. M.; Cho, N. C.; Kang, Y. S.; Lee, K. H. [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    Degradation of steam generator (SG) tubes can affect pressure boundary tightness. As a defense-in-depth measure, primary to secondary leak monitoring program for steam generators is implemented, and operation is allowed under leakage limits in nuclear power plants. Chemistry parameters that affect steam generator tube leakage due to primary water stress corrosion cracking (PWSCC) are investigated in this study. Tube sleeves were installed to inhibit leakage and improve tube integrity as a part of maintenance methods. Steam generators occurred small leak during operation have been replaced with new steam generators according to plant maintenance strategies. The correlations between steam generator leakage and chemistry parameters are presented. Effects of primary water chemistry parameters on leakage from tube cracks were investigated for the steam generators experiencing small leak. Unit A experienced small leakage from steam generator tubes in the end of operation cycle. It was concluded that increased solubility of oxides due to high pHT could make leakage paths, and low boron concentration lead to less blockage in cracks. Increased dissolved hydrogen may retard crack propagations, but it did not reduce leak rate of the leaking steam generator. In order to inhibit and reduce leakage, pH{sub T} was controlled by servicing cation bed operation. The test results of decreasing pHT indicate low pHT can reduce leak rate of PWSCC cracks in the end of cycle.

  11. Effects of Chemistry Parameters of Primary Water affecting Leakage of Steam Generator Tube Cracks

    International Nuclear Information System (INIS)

    Shin, D. M.; Cho, N. C.; Kang, Y. S.; Lee, K. H.

    2016-01-01

    Degradation of steam generator (SG) tubes can affect pressure boundary tightness. As a defense-in-depth measure, primary to secondary leak monitoring program for steam generators is implemented, and operation is allowed under leakage limits in nuclear power plants. Chemistry parameters that affect steam generator tube leakage due to primary water stress corrosion cracking (PWSCC) are investigated in this study. Tube sleeves were installed to inhibit leakage and improve tube integrity as a part of maintenance methods. Steam generators occurred small leak during operation have been replaced with new steam generators according to plant maintenance strategies. The correlations between steam generator leakage and chemistry parameters are presented. Effects of primary water chemistry parameters on leakage from tube cracks were investigated for the steam generators experiencing small leak. Unit A experienced small leakage from steam generator tubes in the end of operation cycle. It was concluded that increased solubility of oxides due to high pHT could make leakage paths, and low boron concentration lead to less blockage in cracks. Increased dissolved hydrogen may retard crack propagations, but it did not reduce leak rate of the leaking steam generator. In order to inhibit and reduce leakage, pH_T was controlled by servicing cation bed operation. The test results of decreasing pHT indicate low pHT can reduce leak rate of PWSCC cracks in the end of cycle

  12. Steam generator operating experience: Update for 1984-1986

    International Nuclear Information System (INIS)

    Frank, L.; Stokley, J.

    1988-06-01

    This report summarizes operational events and degradation mechanisms affecting pressurized water reactor steam generator integrity, provides updated inspection results reported in 1984, 1985, and 1986, and highlights both prevalent problem areas and advances in improved equipment test practices, preventive measures, repair techniques, and replacement procedures. It describes equipment design features of the three major suppliers and discusses 68 plants in detail. Steam generator degradation mechanisms include intergranular stress corrosion cracking, primary water stress corrosion cracking, pitting, intergranular attack, and vibration wear that effects tube integrity and causes leakage. Plugging, sleeving heat treatment, peening, chemical cleaning, and steam generator replacements are described and regulatory instruments and inspection guidelines for nondestructive evaluations and girth weld cracking are discusses. The report concludes that although degradation mechanisms are generally understood, the elimination of unscheduled plant shutdowns and costly repairs resulting from leaking tubes has not been achieved. Highlights of steam generator research and unresolved safety issues are discussed. 21 refs., 8 tabs

  13. Fifth CNS international steam generator conference

    International Nuclear Information System (INIS)

    2006-01-01

    The Fifth CNS International Steam Generator Conference was held on November 26-29, 2006 in Toronto, Ontario, Canada. In contrast with other conferences which focus on specific aspects, this conference provided a wide ranging forum on nuclear steam generator technology from life-cycle management to inspection and maintenance, functional and structural performance characteristics to design architecture. The 5th conference has adopted the theme: 'Management of Real-Life Equipment Conditions and Solutions for the Future'. This theme is appropriate at a time of transition in the industry when plants are looking to optimize the performance of existing assets, prevent costly degradation and unavailability, while looking ahead for new steam generator investments in life-extension, replacements and new-build. More than 50 technical papers were presented in sessions that gave an insight to the scope: life management strategies; fouling, cleaning and chemistry; replacement strategies and new build design; materials degradation; condition assessment/fitness for service; inspection advancements and experience; and thermal hydraulic performance

  14. Mathematical modeling of control system for the experimental steam generator

    Science.gov (United States)

    Podlasek, Szymon; Lalik, Krzysztof; Filipowicz, Mariusz; Sornek, Krzysztof; Kupski, Robert; Raś, Anita

    2016-03-01

    A steam generator is an essential unit of each cogeneration system using steam machines. Currently one of the cheapest ways of the steam generation can be application of old steam generators came from army surplus store. They have relatively simple construction and in case of not so exploited units - quite good general conditions, and functionality of mechanical components. By contrast, electrical components and control systems (mostly based on relay automatics) are definitely obsolete. It is not possible to use such units with cooperation of steam bus or with steam engines. In particular, there is no possibility for automatically adjustment of the pressure and the temperature of the generated steam supplying steam engines. Such adjustment is necessary in case of variation of a generator load. The paper is devoted to description of improvement of an exemplary unit together with construction of the measurement-control system based on a PLC. The aim was to enable for communication between the steam generator and controllers of the steam bus and steam engines in order to construction of a complete, fully autonomic and maintenance-free microcogeneration system.

  15. Analysis of steam-generator tube-rupture events combined with auxiliary-feedwater control-system failure for Three Mile Island-Unit 1 and Zion-Unit 1 pressurized water reactors

    International Nuclear Information System (INIS)

    Nassersharif, B.

    1986-01-01

    A steam-generator tube-rupture (SGTR) event combined with loss of all offsite alternating-current power and failure of the auxiliary-feedwater (AFW) control system has been investigated for the Three Mile Island-Unit 1 (TMI-1) and Zion-Unit 1 (Zion-1) pressurized water reactors. The Transient Reactor Analysis Code was used to simulate the accident sequence for each plant. The objectives of the study were to predict the plant transient response with respect to tube-rupture flow termination, extent of steam generator overfill, and thermal-hydraulic conditions in the steam lines. Two transient cases were calculated: (1) a TMI-1 SGTR and runaway-AFW transient, and (2) a Zion-1 SGTR and runaway-AFW transient. Operator actions terminated the tube-rupture flow by 1342 s (22.4 min) and 1440 s (24.0 min) for TMI-1 and Zion-1, respectively, but AFW injection was continued. The damaged steam generator (DSG) overfilled by 1273 s (21.2 min) for the TMI-1 calculation and by 1604 s (26.7 min) for the Zion-1 calculation. The DSG steam lines were completely filled by 1500 s (25 min) and 2000 s (33.3 min) for TMI-1 and Zion-1, respectively. The maximum subcooling in the steam lines was approx.63 K (approx.113 0 F) for TMI-1 and approx.44 K (approx.80 0 F) for Zion-1

  16. Steam generator reliability improvement project

    International Nuclear Information System (INIS)

    Blomgren, J.C.; Green, S.J.

    1987-01-01

    Upon successful completion of its research and development technology transfer program, the Electric Power Research Institute's Steam Generator Owners Group (SGOG II) will disband in December 1986 and be replaced in January 1987 by a successor project, the Steam Generator Reliability Project (SGRP). The new project, funded in the EPRI base program, will continue the emphasis on reliability and life extension that was carried forward by SGOG II. The objectives of SGOG II have been met. Causes and remedies have been identified for tubing corrosion problems, such as stress corrosion cracking and pitting, and steam generator technology has been improved in areas such as tube wear prediction and nondestructive evaluation (NDE). These actions have led to improved reliability of steam generators. Now the owners want to continue with a centrally managed program that builds on what has been learned. The goal is to continue to improve steam generator reliability and solve small problems before they become large problems

  17. Steam generator reliability improvement project

    International Nuclear Information System (INIS)

    Blomgren, J.C.; Green, S.J.

    1987-01-01

    Upon successful completion of its research and development technology transfer program, the Electric Power Research Institute's (EPRI's) Steam Generator Owners Group (SGOG II) will disband in December 1986, and be replaced in January 1987, by a successor project, the Steam Generator Reliability Project (SGRP). The new project, funded in the EPRI base program, will continue to emphasize reliability and life extension, which were carried forward by SGOG II. The objectives of SGOG II have been met. Causes and remedies have been identified for tubing corrosion problems such as stress corrosion cracking and pitting, and steam generator technology has been improved in areas such as tube wear prediction and nondestructive evaluation. These actions have led to improved reliability of steam generators. Now the owners want to continue with a centrally managed program that builds on what has been learned. The goal is to continue to improve steam generator reliability and to solve small problems before they become large problems

  18. Evaluation of Hybrid Power Plants using Biomass, Photovoltaics and Steam Electrolysis for Hydrogen and Power Generation

    Science.gov (United States)

    Petrakopoulou, F.; Sanz, J.

    2014-12-01

    Steam electrolysis is a promising process of large-scale centralized hydrogen production, while it is also considered an excellent option for the efficient use of renewable solar and geothermal energy resources. This work studies the operation of an intermediate temperature steam electrolyzer (ITSE) and its incorporation into hybrid power plants that include biomass combustion and photovoltaic panels (PV). The plants generate both electricity and hydrogen. The reference -biomass- power plant and four variations of a hybrid biomass-PV incorporating the reference biomass plant and the ITSE are simulated and evaluated using exergetic analysis. The variations of the hybrid power plants are associated with (1) the air recirculation from the electrolyzer to the biomass power plant, (2) the elimination of the sweep gas of the electrolyzer, (3) the replacement of two electric heaters with gas/gas heat exchangers, and (4) the replacement two heat exchangers of the reference electrolyzer unit with one heat exchanger that uses steam from the biomass power plant. In all cases, 60% of the electricity required in the electrolyzer is covered by the biomass plant and 40% by the photovoltaic panels. When comparing the hybrid plants with the reference biomass power plant that has identical operation and structure as that incorporated in the hybrid plants, we observe an efficiency decrease that varies depending on the scenario. The efficiency decrease stems mainly from the low effectiveness of the photovoltaic panels (14.4%). When comparing the hybrid scenarios, we see that the elimination of the sweep gas decreases the power consumption due to the elimination of the compressor used to cover the pressure losses of the filter, the heat exchangers and the electrolyzer. Nevertheless, if the sweep gas is used to preheat the air entering the boiler of the biomass power plant, the efficiency of the plant increases. When replacing the electric heaters with gas-gas heat exchangers, the

  19. Mathematical modeling of control system for the experimental steam generator

    Directory of Open Access Journals (Sweden)

    Podlasek Szymon

    2016-01-01

    Full Text Available A steam generator is an essential unit of each cogeneration system using steam machines. Currently one of the cheapest ways of the steam generation can be application of old steam generators came from army surplus store. They have relatively simple construction and in case of not so exploited units – quite good general conditions, and functionality of mechanical components. By contrast, electrical components and control systems (mostly based on relay automatics are definitely obsolete. It is not possible to use such units with cooperation of steam bus or with steam engines. In particular, there is no possibility for automatically adjustment of the pressure and the temperature of the generated steam supplying steam engines. Such adjustment is necessary in case of variation of a generator load. The paper is devoted to description of improvement of an exemplary unit together with construction of the measurement-control system based on a PLC. The aim was to enable for communication between the steam generator and controllers of the steam bus and steam engines in order to construction of a complete, fully autonomic and maintenance-free microcogeneration system.

  20. Development of a steam generator lancing system

    International Nuclear Information System (INIS)

    Jeong, Woo-Tae; Kim, Seok-Tae; Hong, Sung-Yull

    2006-01-01

    It is recommended to clean steam generators of nuclear power plants during plant outages. Under normal operations, sludge is created and constantly accumulates in the steam generators. The constituents of this sludge are different depending on each power plant characteristics. The sludge of the Kori Unit 1 steam generator, for example, was found to be composed of 93% ferrous oxide, 3% carbon and 1% of silica oxide and nickel oxide each. The research to develop a lancing system that would remove sludge deposits from the tubesheet of a steam generator was started in 1998 by the Korea Electric Power Research Institute (KEPRI) of the Korea Electric Power Corporation (KEPCO). The first commercial domestic lancing system in Korea, and KALANS-I Lancing System, was completed in 2000 for Kori Unit 1 for cleaning the tubesheet of its Westinghouse Delta-60 steam generator. Thereafter, the success of the development and site implementation of the KALANS-I lancing system for YGN Units 1 and 2 and Ulchin Units 3 and 4 was also realized in 2004 for sludge removal at those sites. The upper bundle cleaning system for Westinghouse model F steam generators is now under development

  1. Decontamination of Steam Generator tube using Abrasive Blasting Technology

    International Nuclear Information System (INIS)

    Min, B. Y.; Kim, G. N.; Choi, W. K.; Lee, K. W.; Kim, D. H.; Kim, K. H.; Kim, B. T.

    2010-01-01

    As a part of a technology development of volume reduction and self disposal for large metal waste project, We at KAERI and our Sunkwang Atomic Energy Safety (KAES) subcontractor colleagues are demonstrating radioactively contaminated steam generator tube by abrasive blasting technology at Kori-1 NPP. A steam generator is a crucial component in a PWR (pressurized Water Reactor). It is the crossing between the primary, contaminated, circuit and the secondary waste-steam circuit. The heat from the primary reactor coolant loop is transferred to the secondary side in thousands of small tubes. Due to several problems in the material of those tube, like SCC (Stress Corrosion Cracking), insufficient control in water chemistry, which can be cause of tube leakage, more and more steam generators are replaced today. Only in Korea, already 2 of them are replaced and will be replaced in the near future. The retired 300 ton heavy Steam generator was stored at the storage waste building of Kori NPP site. The steam generator waste has a large volume, so that it is necessary to reduce its volume by decontamination. A waste reduction effect can be obtained through decontamination of the inner surface of a steam generator. Therefore, it is necessary to develop an optimum method for decontamination of the inner surface of bundle tubes. The dry abrasive blasting is a very interesting technology for the realization of three-dimensional microstructures in brittle materials like glass or silicon. Dry abrasive blasting is applicable to most surface materials except those that might be shattered by the abrasive. It is most effective on flat surface and because the abrasive is sprayed and can also applicable on 'hard to reach' areas such as inner tube ceilings or behind equipment. Abrasive decontamination techniques have been applied in several countries, including Belgium, the CIS, France, Germany, Japan, the UK and the USA

  2. Steam generator design requirements for ACR-1000

    International Nuclear Information System (INIS)

    Subash, S.; Hau, K.

    2006-01-01

    Atomic Energy of Canada Limited (AECL) has developed the ACR-1000 (Advanced CANDU Reactor-1000 ) to meet market expectations for enhanced safety of plant operation, high capacity factor, low operating cost, increased operating life, simple component replacement, reduced capital cost, and shorter construction schedule. The ACR-1000 design is based on the use of horizontal fuel channels surrounded by a heavy water moderator, the same feature as in all CANDU reactors. The major innovation in the ACR-1000 is the use of low enriched uranium fuel, and light water as the coolant, which circulates in the fuel channels. This results in a compact reactor core design and a reduction of heavy water inventory, both contributing to a significant decrease in capital cost per MWe produced. The ACR-1000 plant is a two-unit, integrated plant with each unit having a nominal gross output of about 1165 MWe with a net output of approximately 1085 MWe. The plant design is adaptable to a single unit configuration, if required. This paper focuses on the technical considerations that went into developing some of the important design requirements for the steam generators for the ACR-1000 plant and how these requirements are specified in the Technical Specification, which is the governing document for the steam generator (SG) detail design. Layout of these SGs in the plant is briefly described and their impacts on the SG design. (author)

  3. High-temperature oxidation of Zircaloy in hydrogen-steam mixtures

    International Nuclear Information System (INIS)

    Chung, H.M.; Thomas, G.R.

    1982-09-01

    Oxidation rates of Zircaloy-4 cladding tubes have been measured in hydrogen-steam mixtures at 1200 to 1700 0 C. For a given isothermal oxidation temperature, the oxide layer thicknesses have been measured as a function of time, steam supply rate, and hydrogen overpressure. The oxidation rates in the mixtures were compared with similar data obtained in pure steam and helium-steam environments under otherwise identical conditions. The rates in pure steam and helium-steam mixtures were equivalent and comparable to the parabolic rates obtained under steam-saturated conditions and reported in the literature. However, when the helium was replaced with hydrogen of equivalent partial pressure, a significantly smaller oxidation rate was observed. For high steam-supply rates, the oxidation kinetics in a hydrogen-steam mixture were parabolic, but the rate was smaller than for pure steam or helium-steam mixtures. Under otherwise identical conditions, the ratio of the parabolic rate for hydrogen-steam to that for pure steam decreased with increasing temperature and decreasing steam-supply rate

  4. Impact of flow induced vibration acoustic loads on the design of the Laguna Verde Unit 2 steam dryer

    International Nuclear Information System (INIS)

    Forsyth, D. R.; Wellstein, L. F.; Theuret, R. C.; Han, Y.; Rajakumar, C.; Amador C, C.; Sosa F, W.

    2015-09-01

    Industry experience with Boiling Water Reactors (BWRs) has shown that increasing the steam flow through the main steam lines (MSLs) to implement an extended power up rate (EPU) may lead to amplified acoustic loads on the steam dryer, which may negatively affect the structural integrity of the component. The source of these acoustic loads has been found to be acoustic resonance of the side branches on the MSLs, specifically, coupling of the vortex shedding frequency and natural acoustic frequency of safety relief valves (SRVs). The resonance that results from this coupling can contribute significant acoustic energy into the MSL system, which may propagate upstream into the reactor pressure vessel steam dome and drive structural vibration of steam dryer components. This can lead to high-cycle fatigue issues. Lock-in between the vortex shedding frequency and SRV natural frequency, as well as the ability for acoustic energy to propagate into the MSL system, are a function of many things, including the plant operating conditions, geometry of the MSL/SRV junction, and placement of SRVs with respect to each other on the MSLs. Comision Federal de Electricidad and Westinghouse designed, fabricated, and installed acoustic side branches (ASBs) on the MSLs which effectively act in the system as an energy absorber, where the acoustic standing wave generated in the side-branch is absorbed and dissipated inside the ASB. These ASBs have been very successful in reducing the amount of acoustic energy which propagates into the steam dome. In addition, modifications to the Laguna Verde Nuclear Power Plant Unit 2 steam dryer have been completed to reduce the stress levels in critical locations in the dryer. The objective of this paper is to describe the acoustic side branch concept and the design iterative processes that were undertaken at Laguna Verde Unit 2 to achieve a steam dryer design that meets the guidelines of the American Society of Mechanical Engineers, Boiler and Pressure

  5. Impact of flow induced vibration acoustic loads on the design of the Laguna Verde Unit 2 steam dryer

    Energy Technology Data Exchange (ETDEWEB)

    Forsyth, D. R.; Wellstein, L. F.; Theuret, R. C.; Han, Y.; Rajakumar, C. [Westinghouse Electric Company LLC, Cranberry Township, PA 16066 (United States); Amador C, C.; Sosa F, W., E-mail: forsytdr@westinghouse.com [Comision Federal de Electricidad, Central Nucleoelectrica Laguna Verde, Km 42.5 Carretera Cardel-Nautla, 91680 Alto Lucero, Veracruz (Mexico)

    2015-09-15

    Industry experience with Boiling Water Reactors (BWRs) has shown that increasing the steam flow through the main steam lines (MSLs) to implement an extended power up rate (EPU) may lead to amplified acoustic loads on the steam dryer, which may negatively affect the structural integrity of the component. The source of these acoustic loads has been found to be acoustic resonance of the side branches on the MSLs, specifically, coupling of the vortex shedding frequency and natural acoustic frequency of safety relief valves (SRVs). The resonance that results from this coupling can contribute significant acoustic energy into the MSL system, which may propagate upstream into the reactor pressure vessel steam dome and drive structural vibration of steam dryer components. This can lead to high-cycle fatigue issues. Lock-in between the vortex shedding frequency and SRV natural frequency, as well as the ability for acoustic energy to propagate into the MSL system, are a function of many things, including the plant operating conditions, geometry of the MSL/SRV junction, and placement of SRVs with respect to each other on the MSLs. Comision Federal de Electricidad and Westinghouse designed, fabricated, and installed acoustic side branches (ASBs) on the MSLs which effectively act in the system as an energy absorber, where the acoustic standing wave generated in the side-branch is absorbed and dissipated inside the ASB. These ASBs have been very successful in reducing the amount of acoustic energy which propagates into the steam dome. In addition, modifications to the Laguna Verde Nuclear Power Plant Unit 2 steam dryer have been completed to reduce the stress levels in critical locations in the dryer. The objective of this paper is to describe the acoustic side branch concept and the design iterative processes that were undertaken at Laguna Verde Unit 2 to achieve a steam dryer design that meets the guidelines of the American Society of Mechanical Engineers, Boiler and Pressure

  6. A study on the evaluation of vibration effect and the development of vibration reduction method for Wolsung unit 1 main steam piping

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun; Kim, Yeon Whan [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center; Kim, Tae Ryong; Park, Jin Ho [Korea Atomic Energy Research Inst., Daeduk (Korea, Republic of)

    1996-08-01

    The main steam piping of nuclear power plant which runs between steam generator and high pressure turbine has been experienced to have a severe effect on the safe operation of the plant due to the vibration induced by the steam flowing inside the piping. The imposed cyclic loads by the vibration could result in the degradation of the related structures such as connection parts between main instruments, valves, pipe supports and building. The objective of the study is to reduce the vibration level of Wolsung nuclear power plant unit 1 main steam pipeline by analyzing vibration characteristics of the piping, identifying sources of the vibration and developing a vibration reduction method .The location of the maximum vibration is piping between the main steam header and steam chest .The stress level was found to be within the allowable limit .The main vibration frequency was found to be 4{approx}6 Hz which is the same as the natural frequency from model test .A vibration reduction method using pipe supports of energy absorbing type(WEAR)is selected .The measured vibration level after WEAR installation was reduced about 36{approx}77% in displacement unit (author). 36 refs., 188 figs.

  7. Steam generator leak detection at Bruce A Unit 1

    International Nuclear Information System (INIS)

    Maynard, K.J.; McInnes, D.E.; Singh, V.P.

    1997-01-01

    A new steam generator leak detection system was recently developed and utilized at Bruce A. The equipment is based on standard helium leak detection, with the addition of moisture detection and several other capability improvements. All but 1% of the Unit 1 Boiler 03 tubesheet was inspected, using a sniffer probe which inspected tubes seven at a time and followed by individual tube inspections. The leak search period was completed in approximately 24 hours, following a prerequisite period of several days. No helium leak indications were found anywhere on the boiler. A single water leak indication was found, which was subsequently confirmed as a through-wall defect by eddy current inspection. (author)

  8. Technical Specifications, Comanche Peak Steam Electric Station, Unit 1 (Docket No. 50-445)

    International Nuclear Information System (INIS)

    1990-04-01

    The Technical Specifications for Comanche Peak Steam Electric Station, Unit 1 were prepared by the US Nuclear Regulatory Commission. They set forth the limits, operating conditions, and other requirements applicable to a nuclear reactor facility, as set forth in Section 50.36 of Title 10 of the Code of Federal Regulations Part 50, for the protection of the health and safety of the public

  9. Effects of shutdown chemistry on steam generator radiation levels at Point Beach Unit 2. Interim report

    International Nuclear Information System (INIS)

    Kormuth, J.W.

    1982-05-01

    A refueling shutdown chemistry test was conducted at a PWR, Point Beach Unit 2. The objective was to yield reactor coolant chemistry data during the cooldown/shutdown process which might establish a relationship between shutdown chemistry and its effects on steam generator radiation fields. Of particular concern were the effects of the presence of hydrogen in the coolant as contrasted to an oxygenated coolant. Analysis of reactor coolant samples showed a rapid soluble release (spike) in Co-58, Co-60, and nickel caused by oxygenation of the coolant. The measurement of radioisotope specific activities indicates that the material undergoing dissolution during the shutdown originated from different sources which had varying histories of activation. The test program developed no data which would support theories that oxygenation of the coolant while the steam generators are full of water contributes to increased steam generator radiation levels

  10. MHD repowering of a 250 MWe unit of the TVA Allen Steam Plant

    International Nuclear Information System (INIS)

    Chapman, J.N.; Attig, R.C.

    1992-01-01

    In this paper coal fired MHD repowering is considered for the TVA Allen Steam Plant. The performance of the repowered plant is presented. Cost comparisons are made of the cost of repowering with MHD versus the cost of meeting similar standards by installing scrubbers and selective catalytic NO x reduction (SCNR). For repowering of a single 250 MW e unit, the costs favor scrubbing and SCNR. If one considers a single repowering of all three 250 MW e units by a single MHD topping cycle and boiler, MHD repowering is more economical. Environmental emissions from the repowered plant are estimated

  11. NIF Laser Line Replaceable Units (LRUs)

    International Nuclear Information System (INIS)

    Larson, D W

    2003-01-01

    The National Ignition Facility (NIF) is designed with its high value optical systems in cassettes called Line Replaceable Units (LRUs). Virtually all of the NIF's active components are assembled in one of the ∼4000 electrical and optical LRUs that serve between two and eight of NIF's 192 laser beam lines. Many of these LRUs are optomechanical assemblies that are roughly the size of a telephone booth. The primary design challenges for this hardware include meeting stringent mechanical precision, stability and cleanliness requirements. Pre-production units of each LRU type have been fielded on the first bundle of NIF and used to demonstrate that NIF meets its performance objectives. This presentation provides an overview of the NIF LRUs, their design and production plans for building out the remaining NIF bundles

  12. Embedded piezoelectrics for sensing and energy harvesting in total knee replacement units

    Science.gov (United States)

    Wilson, Brooke E.; Meneghini, Michael; Anton, Steven R.

    2015-04-01

    The knee replacement is the second most common orthopedic surgical intervention in the United States, but currently only 1 in 5 knee replacement patients are satisfied with their level of pain reduction one year after surgery. It is imperative to make the process of knee replacement surgery more objective by developing a data driven approach to ligamentous balance, which increases implant life. In this work, piezoelectric materials are considered for both sensing and energy harvesting applications in total knee replacement implants. This work aims to embed piezoelectric material in the polyethylene bearing of a knee replacement unit to act as self-powered sensors that will aid in the alignment and balance of the knee replacement by providing intraoperative feedback to the surgeon. Postoperatively, the piezoelectric sensors can monitor the structural health of the implant in order to perceive potential problems before they become bothersome to the patient. Specifically, this work will present on the use of finite element modeling coupled with uniaxial compression testing to prove that piezoelectric stacks can be utilized to harvest sufficient energy to power sensors needed for this application.

  13. Overview of the United States steam generator development programs

    Energy Technology Data Exchange (ETDEWEB)

    Kaspar, P W; Lowe, P A

    1975-07-01

    The LMFBR steam generator development program of the USA was initiated to support the development of reliable designs and meaningful performance data for these critical components. Since the steam generators include the structural boundary between heated sodium and water, the consequences of small flaws in the materials that form the boundary are significant. Successful development and demonstration of commercial LMFBR power plants requires the consideration of many factors in addition to the design, construction and operation of a particular plant. Additional factors which must be assessed include: economics, reliability, safety, environment, operability, maintainability and conservation of the resources. In terms of the steam generator these items led to the selection of a single wall tube design using a forced recirculating system for the present Clinch River Breeder Reactor. There are strong economic incentives to use a once-through steam generating system in future designs.

  14. Tachometric flowmeters for measuring circulation water parameters in steam generators of the NPPs running on pressurized water reactors

    International Nuclear Information System (INIS)

    Ageev, A.G.; Korolkov, B.M.; Nigmatulin, B.I.; Belov, V.I.; Vasileva, R.V.; Trubkin, N.I.

    1997-01-01

    Tachometric flowmeters used in steam generators for determining the velocity and direction of the flow have a limited service life owing to the use of corundum for the bearing assembly components. Various materials were investigated for the feasibility of using them as alternatives for replacing the corundum bearing and guide bushing under conditions close to the conditions in steam generators: 7 MPa, 260 degC. Good results were obtained with bearing assemblies fabricated from corrosion-resistant steel. Testing of the transducer design and optimization of the technique was accomplished in the course of testing steam generators of the WWER-1000 reactor at the Balakovskaya nuclear power plant. The velocity and direction of flow in the steam generator were measured within a wide range of unit power ratings up to the values corresponding to full power output. The service life of the transducers proved to be not less than 720 hours. The transducer parameters remained unchanged over the entire operation period. (M.D.)

  15. Replacement of sub-systems

    International Nuclear Information System (INIS)

    Rosen, S.E.

    1992-01-01

    This paper describes a number of quality aspects related to replacement of important systems or components in a nuclear power station. Reference is given to the steam generator replacement and power uprating performed at Ringhals 2 in Sweden in 1989. Since quality is a wide concept there has been put special emphasis in this paper to the important aspects that traditionally are not connected to quality. (author) 1 fig

  16. 75 FR 8753 - Carolina Power & Light Company, Brunswick Steam Electric Plant, Units 1 and 2; Environmental...

    Science.gov (United States)

    2010-02-25

    ... Dusenbury of the North Carolina Department of Environment and Natural Resources regarding the environmental... & Light Company, Brunswick Steam Electric Plant, Units 1 and 2; Environmental Assessment and Finding of No... identification of licensing and regulatory actions requiring environmental assessments,'' the NRC prepared an...

  17. Replacement of fine particle purification filter of the PHT purification system - 15083

    International Nuclear Information System (INIS)

    Lee, D.S.

    2015-01-01

    The increase of chalk river unidentified deposit (CRUD), a particulate corrosion product in PHT (primary heat transport) system with increased operating years of a nuclear power plant causes: -) the problems of increased heavy water decomposition and deuterium formation reaction due to catalytic reaction with CRUD, -) damage to PHT pump seal due to a corrosion product, -) damage to fuel channel closure seal, and increased radiation exposure of workers due to elevated dose rate in steam generator water chamber. Wolsung unit 3 and 4 have replaced fine filter media in PHT purification system in phases reducing the pore size of the filter media (5 μm → 2 μm → 1 μm → 0.45 μm) to solve this problem. The phased replacement of fine filter media by the one with a smaller pore size reduced CRUD in PHT system significantly and also radiation dose rate in steam generator water chamber. Accordingly, many problems related to the aging of a plant (including increased radiation exposure of workers during outage, damage to mechanical seal of PHT pump) have been solved. (author)

  18. Generic steam generator life cycle management from a utility perspective

    International Nuclear Information System (INIS)

    Baker, R.L.

    1993-01-01

    Steam generator repairs and replacements, which have occurred over the last 10 years, have lead many utilities to evaluate the economics of continued maintenance on existing steam generators against the economics of steam generator replacement. Such an endeavor requires an assessment of the expected rate and types of degradation. In addition, an identification of possible preventative or remedial measures and their potential effectiveness must be made. To arrive at an assessment of the economic impact of various combinations of potential courses of action many utilities have employed in-house developed or customized commercial programs to convert technical assessments into economic impact evaluations. This paper intends to give the reader an introduction to the technical issues and insight into a method of addressing the economic impact of possible management strategies. 52 refs., 17 figs., 2 tabs

  19. Steam generator operation and maintenance

    International Nuclear Information System (INIS)

    Lee, C.K.

    2004-01-01

    Corrosion of steam generator tube has resulted in the need for extensive repair and replacement of steam generators. Over the past two decades, steam generator problems in the United States were viewed to be one of the most significant contributor to lost generation in operating PWR plants. When the SGOG-I (Steam Generator Owners Groups) was formed in early 1977, denting was responsible for almost 90% of the tube plugging. By the end of 1982, this figure was reduced to less than 2%. During the existence of SGOG-II (from 1982 to 1986), IGA/SCC (lntergranular Attack/Stress Corrosion Cracking) in the tube sheet, primary side SCC, pitting, and fretting surfaced as the primary causes of tube degradation. Although significant process has been made with wastage and denting, the utilities experience shows that the percentage of reactors plugging tubes and the percentage of tubes being plugged each year has remained relatively constant. The diversity of the damage mechanisms means that no one solution is likely to resolve all problems. The task of maintaining steam generator integrity continues to be formidable and challenging. As the older problems were brought under control, many new problems emerged. SGOG-II (Steam Generator Owners Group program from 1982 to 1986) has focused on these problem areas such as tube stress corrosion cracking (SCC) and intergranular attack (IGA) in the open tube sheet crevice, primary side tube cracking, pitting in the lower span, and tube fretting in preheated section and anti-vibration bar (AVB) locations. Primary Water Stress Corrosion Cracking (PWSCC) in the tube to tubesheet roll transition has been a wide spread problem in the Recirculation Steam Generators (RSG) during this period. Although significant progress has been made in resolving this problem, considerable work still remains. One typical problem in the Once Through Steam Generator (OTSG) was the tube support plate broached hole fouling which affects the OTSG steam generating

  20. Results of the 4th regular inspection in Unit 1 of the Mihama Nuclear Power Station

    International Nuclear Information System (INIS)

    1981-01-01

    The 4th regular inspection of Unit 1 in the Mihama Nuclear Power Station was made from July, 1975, to December, 1980, on its reactor and associated facilities. The respective stages of inspection during the years are described. The inspection by external appearance examination, disassembling leakage inspection and performance tests indicated crackings in piping for fuel-replacement water tank, the container penetration of recirculation pipe for residual-heat removal, and main steam-relief valve, and leakage in one fuel assembly. Radiation exposure of the personnel during the inspection was less than the permissible dose. Radiation exposure data for the personnel are given in tables. The improvements and repairs done accordingly were as follows: reapir of the piping for a fuel-replacement tank and recirculation piping for residual-heat removal, replacement of the main steam-relief valve, plugging of heating tubes for the steam-generator, replacement of pins and covers for control-rod guide pipes, improvement of safety protection system and installation of rare gas monitor. (J.P.N.)

  1. Steam turbines for the future

    International Nuclear Information System (INIS)

    Trassl, W.

    1988-01-01

    Approximately 75% of the electrical energy produced in the world is generated in power plants with steam turbines (fossil and nuclear). Although gas turbines are increasingly applied in combined cycle power plants, not much will change in this matter in the future. As far as the steam parameters and the maximum unit output are concerned, a certain consolidation was noted during the past decades. The standard of development and mathematical penetration of the various steam turbine components is very high today and is applied in the entire field: For saturated steam turbines in nuclear power plants and for steam turbines without reheat, with reheat and with double reheat in fossil-fired power plants and for steam turbines with and without reheat in combined cycle power plants. (orig.) [de

  2. Process and device for the protection of steam-raising units, particularly of nuclear reactors

    International Nuclear Information System (INIS)

    Beyer, W.; Wieling, N.; Stellwag, B.

    1986-01-01

    To protect the housing against corrosion by chemical conditioning of the feedwater, the redox potential of the feedwater and the corrosion potential of at least one pipe of the pipe bundle is continuously determined during operation of the steam raising unit. With potentials indicating the danger of corrosion, the quality of the secondary water can be improved by suitable measures. (orig./HP) [de

  3. Nuclear steam generator tube to tubesheet joint optimization

    International Nuclear Information System (INIS)

    McGregor, Rod

    1999-01-01

    Industry-wide problems with Stress Corrosion Cracking in the Nuclear Steam Generator tube-to-tubesheet joint have led to costly repairs, plugging, and replacement of entire vessels. To improve corrosion resistance, new and replacement Steam Generator developments typically employ the hydraulic tube expansion process (full depth) to minimize tensile residual stresses and cold work at the critical transition zone between the expanded and unexpanded tube. These variables have undergone detailed study using specialized X-ray diffraction and analytical techniques. Responding to increased demands from Nuclear Steam Generator operators and manufacturers to credit the leak-tightness and strength contributions of the hydraulic expansion, various experimental tasks with complimentary analytical modelling were applied to improve understanding and control of tube to hole contact pressure. With careful consideration to residual stress impact, design for strength/leak tightness optimization addresses: Experimentally determined minimum contact pressure levels necessary to preclude incipient leakage into the tube/hole interface. The degradation of contact pressure at surrounding expansions caused by the sequential expansion process. The transient and permanent contact pressure variation associated with tubesheet hole dilation during Steam Generator operation. An experimental/analytical simulation has been developed to reproduce cyclic Steam Generator operating strains on the tubesheet and expanded joint. Leak tightness and pullout tests were performed during and following simulated Steam Generator operating transients. The overall development has provided a comprehensive understanding of the fabrication and in-service mechanics of hydraulically expanded joints. Based on this, the hydraulic expansion process can be optimized with respect to critical residual stress/cold work and the strength/leakage barrier criteria. (author)

  4. Tube structural integrity evaluation of Palo Verde Unit 1 steam generators for axial upper-bundle cracking

    International Nuclear Information System (INIS)

    Woodman, B.W.; Begley, J.A.; Brown, S.D.; Sweeney, K.; Radspinner, M.; Melton, M.

    1995-01-01

    The analysis of the issue of upper bundle axial ODSCC as it apples to steam generator tube structural integrity in Unit 1 at the Palo Verde Nuclear generating Station is presented in this study. Based on past inspection results for Units 2 and 3 at Palo Verde, the detection of secondary side stress corrosion cracks in the upper bundle region of Unit 1 may occur at some future date. The following discussion provides a description and analysis of the probability of axial ODSCC in Unit 1 leading to the exceedance of Regulatory Guide 1.121 structural limits. The probabilities of structural limit exceedance are estimated as function of run time using a conservative approach. The chosen approach models the historical development of cracks, crack growth, detection of cracks and subsequent removal from service and the initiation and growth of new cracks during a given cycle of operation. Past performance of all Palo Verde Units as well as the historical performance of other steam generators was considered in the development of cracking statistics for application to Unit 1. Data in the literature and Unit 2 pulled tube examination results were used to construct probability of detection curves for the detection of axial IGSCC/IGA using an MRPC (multi-frequency rotating panake coil) eddy current probe. Crack growth rates were estimated from Unit 2 eddy current inspection data combined with pulled tube examination results and data in the literature. A Monte-Carlo probabilistic model is developed to provide an overall assessment of the risk of Regulatory Guide exceedance during plant operation

  5. Extending service life of steam generators by sleeving tubes

    International Nuclear Information System (INIS)

    Gutzwiller, J.E.

    1982-01-01

    Steam generator tubes that are failing due to IGA in the tubesheet crevice can be kept in service by using the basic sealable sleeve design developed by BandW. Variations of the present sleeve design could significantly reduce the number of tubes that must be plugged each year. Sleeving had the potential of keeping 28 percent more tubes in service during 1979. Lowering the overall rate at which tubes are removed from service by plugging will reduce the probability of having to derate the plant or replace the steam generator. Considering tomorrow's replacement power costs, sleeving to keep tubes in service is a practical and sound investment

  6. Recent technology for nuclear steam turbine-generator units

    International Nuclear Information System (INIS)

    Moriya, Shin-ichi; Kuwashima, Hidesumi; Ueno, Takeshi; Ooi, Masao

    1988-01-01

    As the next nuclear power plants subsequent to the present 1,100 MWe plants, the technical development of ABWRs was completed, and the plan for constructing the actual plants is advanced. As for the steam turbine and generator facilities of 1,350 MWe output applied to these plants, the TC6F-52 type steam turbines using 52 in long blades, moisture separation heaters, butterfly type intermediate valves, feed heater drain pumping-up system and other new technologies for increasing the capacity and improving the thermal efficiency were adopted. In this paper, the outline of the main technologies of those and the state of examination when those are applied to the actual plants are described. As to the technical fields of the steam turbine system for ABWRs, the improvement of the total technologies of the plants was promoted, aiming at the good economical efficiency, reliability and thermal efficiency of the whole facilities, not only the main turbines. The basic specification of the steam turbine facilities for 50 Hz ABWR plants and the main new technologies applied to the turbines are shown. The development of 52 in long last stage blades, the development of the analysis program for the coupled vibration of the large rotor system, the development of moisture separation heaters, the turbine control system, condensate and feed water system, and the generators are described. (Kako, I.)

  7. Radiation control in the core shroud replacement project of Fukushima-Daiichi NPS Unit no.2

    International Nuclear Information System (INIS)

    Kokubun, Yasunori; Haraguchi, Kazuyuki; Yoshizawa, Yuji; Yamada, Yasuo

    2000-01-01

    In Fukushima-Daiichi NPS Unit no.2, the core shroud replacement was made following that of Unit no.3. This project involves replacement of wide-ranging equipment, with the project extending over a long period of time. This was expected to increase the dose equivalent of workers. Accordingly, various measures to lower the dose equivalent were planned and implemented. We outline radiation controls implemented during the project period. The shroud replacement project was a preventive maintenance project which consisted of replacing the core shroud and other internals with those less susceptible to stress corrosion cracking. Problems related to radiation control during the replacement project of Unit no.3 the year before last were summarized. We studied, planned, and implemented measures to be reflected in the project for Unit no.2. This was done to lower the dose equivalent as much as possible while paying due attention to safety and economy. For radiation control during the project for Unit no.2, experiments with Unit no.3 were fully exploited and any effective measures taken at that time were adopted in this project. Problems pointed out after that project with Unit no.3 resulted in new or improved measures being taken with Unit no.2. Measures taken over from the project with Unit no.3; a. Daily analysis of difference between expected and actual dose equivalents b. Dose reduction measures, chemical decontamination, temporary shield, flushing, etc.; New or improved measures; a. Dose reduction measures: Mechanical removal of radiation sources, strengthening of shield, etc.; b. Automatic remote control system; c. Use of new protective devices. With measures implemented as described above, the dose equivalent during shroud replacement of Unit no.2 was reduced by about 30% when compared with that (11.5 persons · Sv) in the case of Unit no.3. Implemented radiation controls will be checked and reviewed in future for reflection in projects with other units. (author)

  8. Steam Generator Lancing and FOSAR for HANUL Nuclear Power Plant Unit 2

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Woo-Tae [Korea Hydro and Nuclear Power Co. Ltd. Central Research Institute, Daejeon (Korea, Republic of); Kim, Sang-Tae; Yoon, Sang-Jung; Seo, Hong-Chang [Sae-An Engineering Corporation, Seoul (Korea, Republic of)

    2015-05-15

    Sludge weight removed during the deposit removal operation was 10.68 kg. Annulus, tubelane, and in-bundle area of the steam generators were searched for possible foreign objects. Three foreign objects were found and removed. Mock-up training before the operation was helpful to finish the service as scheduled. Sludge lancing and FOSAR were Sludge lancing and FOSAR were successfully completed for Hanul nuclear power plant unit 2 during the 19''t''h outage. Mock-up training before the service was helpful for the operators to finish the job on time. Inspection, barrel spray, final barrel/flushing, and sludge collector cleaning was completed for the three steam generators 'A', 'B', and 'C.' Six bag filters and 42 cartridge filters were consumed to remove 10.68 kg of sludge. Three foreign objects were found and removed. One foreign object (HU2R19SGB01) was found in SG 'B', and two objects (HU2R19SGC01, HU2R19SGC02) were found in SG 'C.'.

  9. Materials choices for the advanced LWR steam generators

    International Nuclear Information System (INIS)

    Paine, J.P.N.; Shoemaker, C.E.; McIlree, A.R.

    1987-01-01

    Current light water reactor (LWR) steam generators have been affected by a variety of corrosion and mechanical damage degradation mechanisms. Included are wear caused by tube vibration, intergranular corrosion, pitting, and thinning or wastage of the steam generator tubing and accelerated corrosion of carbon steel supports (denting). The Electric Power Research Institute (EPRI) and the Steam Generator Owners Groups (I, II) have sponsored laboratory and field studies to provide ameliorative actions for the majority of the damage forms experienced to date. Some of the current corrosion mechanisms are aggravated or caused by unique materials choices or materials interactions. New materials have been proposed and at least partially qualified for use in replacement model steam generators, including an advanced LWR design. In so far as possible, the materials choices for the advanced LWR steam generator avoid the corrosion pitfalls seemingly inherent in the current designs. The EPRI Steam Generator Project staff has recommended materials and design choices for a new steam generator. Based on these recommendations we believe that the advanced LWR steam generators will be much less affected by corrosion and mechanical damage mechanisms than are now experienced

  10. Design, development and operating experience with wet steam turbines

    International Nuclear Information System (INIS)

    Bolter, J.R.

    1989-01-01

    The paper first describes the special characteristics of wet steam units. It then goes on to discuss the principal features of the units manufactured by the author's company, the considerations on which the designs were based, and the development work carried out to validate them. Some of the design features such as the separator/reheater units and the arrangements for water extraction in the high pressure turbine are unconventional. An important characteristic of all nuclear plant is the combination of high capital cost and low fuel cost, and the consequent emphasis placed on high availability. The paper describes some service problems experienced with wet steam plant and how these were overcome with minimum loss of generation. The paper also describes a number of the developments for future wet steam plant which have evolved from these experiences, and from research and development programmes aimed at increasing the efficiency and reliability of both conventional and wet steam units. Blading, rotor construction and separator/reheater units are considered. (author)

  11. Seeking optimal renal replacement therapy delivery in intensive care units.

    Science.gov (United States)

    Kocjan, Marinka; Brunet, Fabrice P

    2010-01-01

    Globally, critical care environments within health care organizations strive to provide optimal quality renal replacement therapy (RRT), an artificial replacement for lost kidney function. Examination of RRT delivery model literature and a case study review of the multidisciplinary-mixed RRT delivery model utilized within a closed medical surgical intensive care unit illustrates the organizational and clinical management of specialized resource and multidisciplinary roles. The successful utilization of a specific RRT delivery model is dependent upon resource availability.

  12. Nuclear facilities: repair and replacement technologies; Installations nucleaires: technologies de reparation et de remplacement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The oldest operating reactors are more than 35 years old and are now facing major maintenance operations. The first replacement of a pressurizer took place in autumn 2005 at the St-Lucie plant (Usa) while steam generators have been currently replaced since 1983. Nuclear industry has to adapt to this new market by proposing innovative technological solutions in the reactor maintenance field. This document gathers the 9 papers presented at the conference. The main improvements concern repair works on internal components of PWR-type reactors, the replacement of major components of the primary coolant circuit and surface treatments to limit the propagation of damages. The first paper shows that adequate design and feedback experience are good assets to manage the ageing of a nuclear unit. Another paper shows that a new repair method of a relief valve can avoid its replacement. (A.C.)

  13. Corrosion by galvanic coupling on the steam generator auxiliary feedwater pumps at the level of the steam-tight boxes

    International Nuclear Information System (INIS)

    Dordonat, M.; Huet, M.

    1994-01-01

    Corrosion by galvanic coupling in steam generator auxiliary pump is coming from electroplated chromium cracks for the rotor steel, and from chemical KANIGEN nickel cracks for the steam-tight boxes black steel. To avoid galvanic coupling between Cr coating and the rotor steel, first an electrolytic Ni coating is done followed by an electrolytic Cr coating. To avoid galvanic coupling between black steel and graphite rings, black steel is replaced by 316L steel. (A.B.). 1 ref., 7 figs

  14. Study of ex-vessel steam explosion risk of Reactor Pit Flooding System and structural response of containment for CPR1000"+ Unit

    International Nuclear Information System (INIS)

    Zhang Juanhua; Chen Peng

    2015-01-01

    Reactor Pit Flooding System is one of the special mitigation measures for severe accident for CPR1000"+ Unit. If the In-Vessel Relocation function of Reactor Pit Flooding System is failed, there is the steam explosion risk in reactor cavity. This paper firstly adopts MC3D code to build steam explosion model in order to calculate the pressure load and impulses of steam explosion that are as the input data of containment structural response analysis. The next step is to model the containment structure and analyze the structural response by ABAQUS code. The analysis results show that the integral damage induced by steam explosion to the external containment wall is shallow, and the containment structural integrity can be maintained. The risk and damage to the containment integrity reduced by steam explosion of RPF is small, and it does not influence the design and implementation of RPF. (author)

  15. Life extension of MAPS-2 by replacement of boiler hairpin type heat exchangers

    International Nuclear Information System (INIS)

    Tripathi, J.C.; Rastogi, S.K.; Rastogi, A.K.

    2006-01-01

    The steam generating equipment in MAPS-1 and 2 are Hairpin type comprises of eight boiler assemblies arranged in two banks of four boilers each. Each hairpin type heat exchangers consist of 195 Monel-400 tubes of 12.7 mm OD x 1.24 mm WT. One boiler assembly consists of eleven inverted U type heat exchangers (called hairpin type heat exchangers) mounted in parallel on inlet and outlet heavy water manifolds and connected to steam drum through individual short riser. Heavy water flows through these tubes where as feed water enters the shell at the bottom of one leg called pre-heat leg. After commissioning of MAPS-2 in 1985, five hairpins of MAPS-2 developed leak during the course of operation by the year 1999. Absence of physical access for health assessment of steam generator tube and lack of provision for tube sheet cleaning to remove the deposits on feed water side had caused pile and resulted in tube failures by under deposit pitting corrosion. All the 88 hairpins of MAPS-2 were replaced to extend the plant life when MAPS-2 was taken out of grid for En-masse Coolant Channel Replacement job (EMCCR) in the year 2001 - 03. The long shutdown of MAPS units for EMCCR was considered to be cost effective since unscheduled plant shut downs on account of tube leaks could be avoided. (author)

  16. Optimal Operations and Resilient Investments in Steam Networks

    Energy Technology Data Exchange (ETDEWEB)

    Bungener, Stéphane L., E-mail: stephane.bungener@a3.epfl.ch [Industrial Process and Energy Systems Engineering, École Polytechnique Fédérale de Lausanne, Lausanne (Switzerland); Van Eetvelde, Greet [Environmental and Spatial Management, Faculty of Engineering and Architecture, Ghent University, Ghent (Belgium); Maréchal, François [Industrial Process and Energy Systems Engineering, École Polytechnique Fédérale de Lausanne, Lausanne (Switzerland)

    2016-01-20

    Steam is a key energy vector for industrial sites, most commonly used for process heating and cooling, cogeneration of heat and mechanical power as a motive fluid or for stripping. Steam networks are used to carry steam from producers to consumers and between pressure levels through letdowns and steam turbines. The steam producers (boilers, heat and power cogeneration units, heat exchangers, chemical reactors) should be sized to supply the consumers at nominal operating conditions as well as peak demand. First, this paper proposes an Mixed Integer Linear Programing formulation to optimize the operations of steam networks in normal operating conditions and exceptional demand (when operating reserves fall to zero), through the introduction of load shedding. Optimization of investments based on operational and investment costs are included in the formulation. Though rare, boiler failures can have a heavy impact on steam network operations and costs, leading to undercapacity and unit shutdowns. A method is therefore proposed to simulate steam network operations when facing boiler failures. Key performance indicators are introduced to quantify the network’s resilience. The proposed methods are applied and demonstrated in an industrial case study using industrial data. The results indicate the importance of oversizing key steam producing equipments and the value of industrial symbiosis to increase industrial site resilience.

  17. Optimal Operations and Resilient Investments in Steam Networks

    International Nuclear Information System (INIS)

    Bungener, Stéphane L.; Van Eetvelde, Greet; Maréchal, François

    2016-01-01

    Steam is a key energy vector for industrial sites, most commonly used for process heating and cooling, cogeneration of heat and mechanical power as a motive fluid or for stripping. Steam networks are used to carry steam from producers to consumers and between pressure levels through letdowns and steam turbines. The steam producers (boilers, heat and power cogeneration units, heat exchangers, chemical reactors) should be sized to supply the consumers at nominal operating conditions as well as peak demand. First, this paper proposes an Mixed Integer Linear Programing formulation to optimize the operations of steam networks in normal operating conditions and exceptional demand (when operating reserves fall to zero), through the introduction of load shedding. Optimization of investments based on operational and investment costs are included in the formulation. Though rare, boiler failures can have a heavy impact on steam network operations and costs, leading to undercapacity and unit shutdowns. A method is therefore proposed to simulate steam network operations when facing boiler failures. Key performance indicators are introduced to quantify the network’s resilience. The proposed methods are applied and demonstrated in an industrial case study using industrial data. The results indicate the importance of oversizing key steam producing equipments and the value of industrial symbiosis to increase industrial site resilience.

  18. 76 FR 66333 - Carolina Power & Light Company, H.B. Robinson Steam Electric Plant, Unit No. 2; Environmental...

    Science.gov (United States)

    2011-10-26

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-261; NRC-2011-0247] Carolina Power & Light Company, H.B. Robinson Steam Electric Plant, Unit No. 2; Environmental Assessment and Finding of No Significant... Facility Operating License No. DPR-23, issued to Carolina Power & Light Company (the licensee), for...

  19. Clean energy for a new generation. Steam generator life cycle management and Bruce restart

    International Nuclear Information System (INIS)

    Newman, G.W.

    2009-01-01

    In the mid to late 1990s, Ontario Hydro decided to lay-up and write-down the Bruce A Nuclear Reactors. Upon transition to Bruce Power L.P., Canada's first and only private nuclear operator, new life and prospects were injected into the site, local economy and the provincial energy portfolio. The first step in this provincial power recovery initiative involved restart of Bruce Units 3 and 4 in the 2003/04 time-frame. Units 3 and 4 have performed beyond expectation during the last five-year operating interval. A combination of steam generator and fuel channel issues precluded a similar restart of Units 1 and 2. Enter the refurbishment of Bruce Units 1 and 2. This first-of-a-kind undertaking within the Canadian nuclear power industry is testament to the demonstrated industry leadership by Bruce Power L.P., their investors and the significant vendor community contribution that is supporting this major power infrastructure enhancement. Initiated as a 'turn-key' project solution separated from the operating units, this major refurbishment project has evolved to a fully managed in-house refurbishment project with the continued support from the broader vendor community. As part of this first-of-kind undertaking, Bruce Power L.P. is in the process of accomplishing such initiatives as a complete fuel channel re-tube (i.e. full core calandria and pressure tube replacement), replacement of all boilers (i.e. 16 in total) and the majority of feeder pipe replacement. Complimentary major upgrades and replacement of the remainder of plant equipment including both nuclear and non-nuclear valves, heat exchangers, electrical infrastructure, service water systems and components, all while meeting a parallel evolving/maturing regulatory environment related to achieving compliance with IAEA derived modern codes and standards. Returning to ground level, boiler replacement is a key part of the refurbishment undertaking and this further reflected a meeting of the 'old' and the 'new'. Pre

  20. Reliability study: steam generation and distribution system, Portsmouth Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Baker, F.E.; Davis, E.L.; Dent, J.T.; Walters, D.E.; West, R.M.

    1982-10-01

    A reliability study for determining the ability of the Steam Generation and Distribution System to provide reliable and adequate service through the year 2000 has been completed. This study includes an evaluation of the X-600 Steam Plant and the steam distribution system. The Steam Generation and Distribution System is in good overall condition, but to maintain this condition, the reliability study team made twelve recommendations. Eight of the recommendations are for repair or replacement of existing equipment and have a total estimated cost of $540,000. The other four recommendations are for additional testing, new procedure implementation, or continued investigations

  1. MINAC radiography performed on susquehanna Steam Electric Station Unit 1

    International Nuclear Information System (INIS)

    Bognet, J.C.

    1986-01-01

    Ten welds were volumetrically examined with a manual and automated ultrasonic (UT) system during a Susquehanna Steam Electric Station (SES) Unit 1 preservice inspection. The automated system had been recently developed and several problems were encountered in this first field application. The ten welds examined had a Sweepolet-to-Risor weld configuration, which further complicated the examination effort. This weld configuration has corrosion-resistant cladding applied to the outside and inside circumference and, as a result of an installation/removal/reinstallation sequence during plant construction, is often referred to as the double weld. After several attempts to obtain interpretable UT data failed (e.g., repeatable data), the examination effort was terminated. PP and L opted to pursue using the Miniature Linear Accelerator (MINAC) to perform radiographic examination. The results were referenced in the Susquehanna SES Unit 1 outage summary report and submitted to the NRC. The total effort was viewed as a complete success with no impact to the overall outage duration. All welds previously attempted by automated and manual UT were successfully examined using the MINAC

  2. Babcock and Wilcox Canada steam generators past, present and future

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.C. [Babcock and Wilcox Canada, Cambridge, Ontario (Canada)

    1998-07-01

    The steam generators in all of the domestic CANDU Plants, and most of the foreign CANDU plants, were supplied by Babcock and Wilcox Canada, either on their own or in co-operation with local manufacturers. More than 200 steam generators have been supplied. In addition, Babcock and Wilcox Canada has taken the technology which evolved out of the CANDU steam generators and has adapted the technology to supply of replacement steam generators for PWR's. There is enough history and operating experience, plus laboratory experience, to point to the future directions which will be taken in steam generator design. This paper documents the steam generators which have been supplied, the experience in operation and maintenance, what has worked and not worked, and how the design, materials, and operating and maintenance philosophy have evolved. The paper also looks at future requirements in the market, and the continuing research and product development going on at Babcock and Wilcox to address the future steam generator requirements. (author)

  3. Babcock and Wilcox Canada steam generators past, present and future

    International Nuclear Information System (INIS)

    Smith, J.C.

    1998-01-01

    The steam generators in all of the domestic CANDU Plants, and most of the foreign CANDU plants, were supplied by Babcock and Wilcox Canada, either on their own or in co-operation with local manufacturers. More than 200 steam generators have been supplied. In addition, Babcock and Wilcox Canada has taken the technology which evolved out of the CANDU steam generators and has adapted the technology to supply of replacement steam generators for PWR's. There is enough history and operating experience, plus laboratory experience, to point to the future directions which will be taken in steam generator design. This paper documents the steam generators which have been supplied, the experience in operation and maintenance, what has worked and not worked, and how the design, materials, and operating and maintenance philosophy have evolved. The paper also looks at future requirements in the market, and the continuing research and product development going on at Babcock and Wilcox to address the future steam generator requirements. (author)

  4. Use of reinforced soil wall to support steam generator transfer

    International Nuclear Information System (INIS)

    Davie, J.R.; Wang, J.T.; Gladstone, R.A.

    1991-01-01

    Consumers Power Company had the two steam generators at its Palisades Nuclear Plant in Michigan replaced in November 1990. This replacement was accomplished through a 26-foot wide by 28-foot high opening cut into the wall of the containment building, about 45 feet above the original ground surface. Because this ground surface was at an approximately 3-H:1-V slope, leveling was required before replacement in order to provide access for the steam generators and adequate support for the heavy-duty gantry crane system used to transfer the generators. A 25-foot high reinforced soil wall was constructed to achieve the level surface. This paper describes the design and construction of the heavily loaded reinforced soil wall, including ground improvement measures required to obtain adequate wall stability. The performance of the wall under test loading will also be presented and discussed

  5. Use of pulsed-neutron capture logs to identify steam breakthrough

    International Nuclear Information System (INIS)

    Masse, P.J.; Gosney, T.C.; Long, D.L.

    1991-01-01

    This paper reports on identification of steam-breakthrough zones in a stacked sand/shale sequence with variable lateral continuity which is difficult. Such identification, however, would allow the modification of field operations to enhance recovery through improved vertical sweep and heat injection. Twenty pulsed-neutron capture (PNC) logs were run to identify the steam-breakthrough zone(s) in a seven-pattern area of Mobil's Middle expansion (MIDX) Steamflood Project in the South Belridge field. These PNC data were combined with data from recent replacement wells and a detailed geologic analysis. Evaluation of this combined information allowed identification of potential steam-breakthrough zone(s), and operations were modified to reduce and eliminate steam breakthrough

  6. Chemical control and design considerations for CANDU-PHW steam generators

    International Nuclear Information System (INIS)

    Frost, C.R.; Churchill, B.R.

    1978-01-01

    Ontario Hydro presently operates eight nuclear power units with a total capacitiy of about 4000 MW(e) net. Operating experience has been with Monel-400 and with Inconel-600 tubed steam generators using sodium phosphate or all volatile control of the boiler steam and water system. With a heavy water Heat Transport System, steam generator tube integrity is an essential ingredient of economical power production. Only three steam generator tube failures have occurred so far in about 40 unit-years operation. None was attributable to corrosion. Factors in the good reliability are, careful engineering design, good quality control at all stages of tubing and steam generator manufacture and close chemical control. The continuing evolution of our steam generator design means that future requirements will be more stringent. (author)

  7. Upgraded Steam Generator Lancing System for Uljin NPP no.2

    International Nuclear Information System (INIS)

    Kim, Seok Tae; Jeong, Woo Tae; Hong, Sung Yull

    2005-01-01

    KEPRI(Korea Electric Power Research Institute) has developed various types of steam generator lancing systems since 1998. In this paper, we introduce a new lancing system with new improvements from the previous steam generator lancing system for Uljin NPP #2(nuclear power plant) constructed by KEPRI. The previous lancing system is registered as KALANS R -II and was developed for System-80 type steam generators. The previous lancing system was applied to Uljin unit #3 and it lowered radiation exposure of operators in comparison to manually operated lancing systems. And it effectively removed sludge accumulated around kidney bean zone in the Uljin unit #3 steam generators. But the previous lancing system could only clean partially the steam generators of Uljin unit #4. This was because the rail of the previous lancing system interfered with a part of the steam generator. Therefore we developed a new lancing system that can solve the interference problem. This new lancing system was upgraded from the previous lancing system. Also, a new lancing system for System-80 S/G will be introduced in this paper

  8. Measure Guideline. Steam System Balancing and Tuning for Multifamily Residential Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jayne [Partnership for Advanced Residential Retrofit (PARR), Chicago, IL (United States); Ludwig, Peter [Partnership for Advanced Residential Retrofit (PARR), Chicago, IL (United States); Brand, Larry [Partnership for Advanced Residential Retrofit (PARR), Chicago, IL (United States)

    2013-04-01

    This guideline provides building owners, professionals involved in multifamily audits, and contractors insights for improving the balance and tuning of steam systems. It provides readers an overview of one-pipe steam heating systems, guidelines for evaluating steam systems, typical costs and savings, and guidelines for ensuring quality installations. It also directs readers to additional resources for details not included here. Measures for balancing a distribution system that are covered include replacing main line vents and upgrading radiator vents. Also included is a discussion on upgrading boiler controls and the importance of tuning the settings on new or existing boiler controls. The guideline focuses on one-pipe steam systems, though many of the assessment methods can be generalized to two-pipe steam systems.

  9. Steam atmosphere drying concepts using steam exhaust recompression

    Energy Technology Data Exchange (ETDEWEB)

    DiBella, F.A. (TECOGEN, Inc., Waltham, MA (United States))

    1992-08-01

    In the US industrial drying accounts for approximately 1.5 quads of energy use per year. Annual industrial dryer expenditures are estimated to be in the $500 million range. Industrial drying is a significant energy and monetary expense. For the thermal drying processes in which water is removed via evaporation from the feedstock, attempts have been made to reduce the consumption of energy using exhaust waste heat recovery techniques, improved dryer designs, or even the deployment of advanced mechanical dewatering techniques. Despite these efforts, it is obvious that a large amount of thermal energy is often still lost if the latent heat of evaporation from the evaporated water cannot be recovered and/or in some way be utilized as direct heat input into the dryer. Tecogen Inc. is conducting research and development on an industrial drying concept. That utilizes a directly or indirectly superheated steam cycle atmosphere with exhaust steam recompression to recover the latent heat in the exhaust that would otherwise be lost. This approach has the potential to save 55 percent of the energy required by a conventional air dryer. Other advantages to the industrial dryer user include: A 35-percent reduction in the yearly cost per kg[sub evap] to dry wet feedstock, Reduced airborne emissions, Reduced dry dust fire/explosion risks, Hot product not exposed to oxygen thus, the product quality is enhanced, Constant rate drying in steam atmosphere, Reduced dryer size and cost, Reduced dryer heat losses due to lower dryer inlet temperatures. Tecogen has projected that the steam atmosphere drying system is most suitable as a replacement technology for state-of-the-art spray, flash, and fluidized bed drying systems. Such systems are utilized in the food and kindred products; rubber products; chemical and allied products; stone, clay, and glass; textiles; and pulp and paper industrial sectors.

  10. Steam atmosphere drying concepts using steam exhaust recompression

    Energy Technology Data Exchange (ETDEWEB)

    DiBella, F.A. [TECOGEN, Inc., Waltham, MA (United States)

    1992-08-01

    In the US industrial drying accounts for approximately 1.5 quads of energy use per year. Annual industrial dryer expenditures are estimated to be in the $500 million range. Industrial drying is a significant energy and monetary expense. For the thermal drying processes in which water is removed via evaporation from the feedstock, attempts have been made to reduce the consumption of energy using exhaust waste heat recovery techniques, improved dryer designs, or even the deployment of advanced mechanical dewatering techniques. Despite these efforts, it is obvious that a large amount of thermal energy is often still lost if the latent heat of evaporation from the evaporated water cannot be recovered and/or in some way be utilized as direct heat input into the dryer. Tecogen Inc. is conducting research and development on an industrial drying concept. That utilizes a directly or indirectly superheated steam cycle atmosphere with exhaust steam recompression to recover the latent heat in the exhaust that would otherwise be lost. This approach has the potential to save 55 percent of the energy required by a conventional air dryer. Other advantages to the industrial dryer user include: A 35-percent reduction in the yearly cost per kg{sub evap} to dry wet feedstock, Reduced airborne emissions, Reduced dry dust fire/explosion risks, Hot product not exposed to oxygen thus, the product quality is enhanced, Constant rate drying in steam atmosphere, Reduced dryer size and cost, Reduced dryer heat losses due to lower dryer inlet temperatures. Tecogen has projected that the steam atmosphere drying system is most suitable as a replacement technology for state-of-the-art spray, flash, and fluidized bed drying systems. Such systems are utilized in the food and kindred products; rubber products; chemical and allied products; stone, clay, and glass; textiles; and pulp and paper industrial sectors.

  11. LMFBR steam generator development: duplex bayonet tube steam generator. Volume II

    International Nuclear Information System (INIS)

    DeFur, D.D.

    1975-04-01

    This report represents the culmination of work performed in fulfillment of ERDA Contract AT(11-1)-2426, Task Agreement 2, in which alternate steam generator designs were developed and studied. The basic bayonet tube generator design previously developed by C-E under AEC Contract AT(11-1)-3031 was expanded by incorporating duplex heat transfer tubes to enhance the unit's overall safety and reliability. The effort consisted of providing and evaluating conceptual designs of the evaporator, superheater and reheater components for a large plant LMFBR steam generator (950 MWt per heat transport loop)

  12. Replacement of major nuclear power plant components for service life extension

    International Nuclear Information System (INIS)

    Novak, S.

    1987-01-01

    Problems are discussed associated with replacement of nuclear power plant components with the aim to extend their original scheduled life. The existing foreign experience shows that it is technically feasible to replace practically all basic components for which the necessity of replacement is established. Data is summed up on the replacement of steam generators in US and West German nuclear power plants showing the duration of the job, the total consumption of manhours, the collective dose equivalent and the cost. Attention is also focused on implemented and projected replacements of circulation pipes in nuclear power plants abroad. Based on these figures, the cost is estimated of the replacement of the reactor vessel and the steam generators for WWER-440 nuclear power plants. The conclusion is arrived at that even based on a conservative estimate, the extension by 20 years of the service life of a nuclear power plant is economically more effective than the construction of a new plant. (Z.M.) 2 tabs., 15 refs., 3 figs

  13. Targeted steam injection using horizontal wells with limited entry perforations

    Energy Technology Data Exchange (ETDEWEB)

    Boone, T. J.; Youck, D. G.; Sun, S. [Imperial Oil Resources, Calgary, AB (Canada)

    1998-12-31

    An experimental horizontal well using limited-entry perforations as a method for distributing steam to different zones was used to replace ten vertical injection wells. The well was located between rows of vertical wells in a reservoir that has been subjected to more than ten years of operation under cyclic steam stimulation. The limited-entry perforations enabled steam to be targeted at the cold regions of the reservoir. This paper presents an assessment of the well based on theoretical calculations, measured injection pressures and rates and 3-D seismic imaging. All the data collected during the experiment support the conclusion that effective steam distribution along the well has been achieved. It was also concluded that this technology has significant potential for SAGD applications as a mechanism for achieving improved steam distribution at a much reduced cost. 5 refs., 8 figs.

  14. Results of the 5th regular inspection of Unit 1 in the Hamaoka Nuclear Power Station

    International Nuclear Information System (INIS)

    1983-01-01

    The 5th regular inspection of Unit 1 in the Hamaoka Nuclear Power Station was carried out from March 27 to July 27, 1982. Inspection was made on the reactor proper, reactor cooling system, instrumentation/control system, radiation control facility, etc. By the examinations of external appearance, leakage, performance, etc., no abnormality was observed. In the regular inspection, personnel exposure dose was all below the permissible level. The works done during the inspection were the following: the replacement of control rod drives, the replacement of core support-plate plugs, the repair of steam piping, steam extraction pipes and feed water heaters, the repair of a waste-liquid concentrator, the installation of barriers and leak detectors, the installation of drain sump monitors in a containment vessel, the replacement of concentrated liquid waste pumps, the employment of type B fuel. (Mori, K.)

  15. The detection, causes and repair of the small steam leaks in the PFR evaporator units

    International Nuclear Information System (INIS)

    Smedley, J.A.; Broomfield, A.M.; Anderson, R.

    1984-01-01

    The occurrence of a number of small steam leaks into the gas space above the sodium in the evaporator units of the UKAEA's Prototype Fast Reactor at Dounreay has had a significant impact on plant availability. The paper describes experience with the leak detection system and the phenomena which have caused the leaks and an outline is given of the measures which have been introduced to remedy the problem. (author)

  16. Effectiveness of a steam cleaning unit for disinfection in a veterinary hospital.

    Science.gov (United States)

    Wood, Cheryl L; Tanner, Benjamin D; Higgins, Laura A; Dennis, Jeffrey S; Luempert, Louis G

    2014-12-01

    To evaluate whether the application of steam to a variety of surface types in a veterinary hospital would effectively reduce the number of bacteria. 5 surface types. Steam was applied as a surface treatment for disinfection to 18 test sites of 5 surface types in a veterinary hospital. A pretreatment sample was obtained by collection of a swab specimen from the left side of each defined test surface. Steam disinfection was performed on the right side of each test surface, and a posttreatment sample was then collected in the same manner from the treated (right) side of each test surface. Total bacteria for pretreatment and posttreatment samples were quantified by heterotrophic plate counts and for Staphylococcus aureus, Pseudomonas spp, and total coliforms by counts on selective media. Significant reductions were observed in heterotrophic plate counts after steam application to dog runs and dog kennel floors. A significant reduction in counts of Pseudomonas spp was observed after steam application to tub sinks. Bacterial counts were reduced, but not significantly, on most other test surfaces that had adequate pretreatment counts for quantification. Development of health-care-associated infections is of increasing concern in human and veterinary medicine. The application of steam significantly reduced bacterial numbers on a variety of surfaces within a veterinary facility. Steam disinfection may prove to be an alternative or adjunct to chemical disinfection within veterinary practices.

  17. Fourth international seminar on horizontal steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Tuomisto, H. [ed.] [IVO Group, Vantaa (Finland); Purhonen, H. [ed.] [VTT, Espoo (Finland); Kouhia, V. [ed.] [Lappeenranta Univ. of Technology (Finland)

    1997-12-31

    The general objective of the International Seminars of Horizontal Steam Generator Modelling has been the improvement in understanding of realistic thermal hydraulic behaviour of the generators when performing safety analyses for VVER reactors. The main topics presented in the fourth seminar were: thermal hydraulic experiments and analyses, primary collector integrity, feedwater distributor replacement, management of primary-to-secondary leakage accidents and new developments in the VVER safety technology. The number of participants, representing designers and manufacturers of the horizontal steam generators, plant operators, engineering companies, research organizations, universities and regulatory authorities, was 70 from 10 countries.

  18. Fourth international seminar on horizontal steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Tuomisto, H [ed.; IVO Group, Vantaa (Finland); Purhonen, H [ed.; VTT, Espoo (Finland); Kouhia, V [ed.; Lappeenranta Univ. of Technology (Finland)

    1998-12-31

    The general objective of the International Seminars of Horizontal Steam Generator Modelling has been the improvement in understanding of realistic thermal hydraulic behaviour of the generators when performing safety analyses for VVER reactors. The main topics presented in the fourth seminar were: thermal hydraulic experiments and analyses, primary collector integrity, feedwater distributor replacement, management of primary-to-secondary leakage accidents and new developments in the VVER safety technology. The number of participants, representing designers and manufacturers of the horizontal steam generators, plant operators, engineering companies, research organizations, universities and regulatory authorities, was 70 from 10 countries.

  19. Fourth international seminar on horizontal steam generators

    International Nuclear Information System (INIS)

    Tuomisto, H.; Purhonen, H.; Kouhia, V.

    1997-01-01

    The general objective of the International Seminars of Horizontal Steam Generator Modelling has been the improvement in understanding of realistic thermal hydraulic behaviour of the generators when performing safety analyses for VVER reactors. The main topics presented in the fourth seminar were: thermal hydraulic experiments and analyses, primary collector integrity, feedwater distributor replacement, management of primary-to-secondary leakage accidents and new developments in the VVER safety technology. The number of participants, representing designers and manufacturers of the horizontal steam generators, plant operators, engineering companies, research organizations, universities and regulatory authorities, was 70 from 10 countries

  20. Evaluation on mechanical and corrosion properties of steam generator tubing materials

    International Nuclear Information System (INIS)

    Kim, In Sup; Lee, Byong Whi; Lee, Sang Kyu; Lee, Young Ho; Kim, Jun Whan; Lee, Ju Seok; Kwon, Hyuk Sang; Kim, Su Jung

    1998-06-01

    Steam generator is one of the major components of nuclear reactor pressure boundary. It's main function os transferring heat which generated in the reactor to turbine generator through steam generator tube. In these days, steam generator tubing materials of operating plant are used Inconel 600 alloys. But according to the operation time, there are many degradation phenomena which included mechanical damage due to flow induced vibration and corrosion damage due to PWSCC, IGA/SCC and pitting etc. Recently Inconel 690 alloys are selected as new and replacement steam generator tubes for domestic nuclear power plant. But there are few study about mechanical and corrosion properties of Inconel 600 and 690. The objectives of this study is to evaluate and compare mechanical and corrosion propertied of steam generator tube materials

  1. Evaluation on mechanical and corrosion properties of steam generator tubing materials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Sup; Lee, Byong Whi; Lee, Sang Kyu; Lee, Young Ho; Kim, Jun Whan; Lee, Ju Seok; Kwon, Hyuk Sang; Kim, Su Jung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1998-06-15

    Steam generator is one of the major components of nuclear reactor pressure boundary. It's main function os transferring heat which generated in the reactor to turbine generator through steam generator tube. In these days, steam generator tubing materials of operating plant are used Inconel 600 alloys. But according to the operation time, there are many degradation phenomena which included mechanical damage due to flow induced vibration and corrosion damage due to PWSCC, IGA/SCC and pitting etc. Recently Inconel 690 alloys are selected as new and replacement steam generator tubes for domestic nuclear power plant. But there are few study about mechanical and corrosion properties of Inconel 600 and 690. The objectives of this study is to evaluate and compare mechanical and corrosion propertied of steam generator tube materials.

  2. Development, implementation and operational experience with 900 mm R1T pocket-type bearings at Oskarshamn unit 3 nuclear steam turbine generator

    International Nuclear Information System (INIS)

    Peel, P.; Roos, A.

    2015-01-01

    The Oskarshamn unit 3 nuclear steam turbine generator in Sweden is operated by OKG and, following the extensive PULS upgrade project, delivers an increased rated output of 1450 MW making it the most powerful BWR unit worldwide. Several turbine bearing incidents occurred in 2009 and 2010, which initiated a detailed root cause analysis to determine the reasons and propose appropriate mitigation measures to ensure reliable unit operation. Together with OKG, ALSTOM Power implemented a short-term solution to operate the unit over the winter period of 2010-11. Subsequently, during the annual outage in June 2011, a permanent solution involving a R1T pocket-type bearing design was installed at three shaft-line positions. Since the 1980's, R1T bearings with diameters from 250 to 670 mm have been operating in numerous full-speed (3000/3600 rpm) steam turbine generators. However, this was the first application of a R1T bearing developed at a diameter of 900 mm and for half-speed operation. This paper presents an overview of the bearing development and details the successful operational feedback gathered to date on the three installed bearings. In comparison with the three tilting pad bearing design, which has typically been used on large half-speed ALSTOM Power steam turbine generators to date, it confirms the R1T bearing design as a viable alternative. (authors)

  3. Long-term damage management strategies for optimizing steam generator performance

    International Nuclear Information System (INIS)

    Egan, G.R.; Besuner, P.M.; Fox, J.H.; Merrick, E.A.

    1991-01-01

    Minimizing long-term impact of steam generator operating, maintenance, outage, and replacement costs is the goal of all pressurized water reactor utilities. Recent research results have led to deterministic controls that may be implemented to optimize steam generator performance and to minimize damage accumulation. The real dilemma that utilities encounter is the decision process that needs to be made in the face of uncertain data. Some of these decisions involve the frequency and extent of steam generator eddy current tube inspections; the definition of operating conditions to minimize the rate of corrosion reactions (T (hot) , T (cold) ; and the imposition of strict water quality management guidelines. With finite resources, how can a utility decide which damage management strategy provides the most return for its investment? Aptech Engineering Services, Inc. (APTECH) developed a damage management strategy that starts from a deterministic analysis of a current problem- primary water stress corrosion cracking (PWSCC). The strategy involves a probabilistic treatment that results in long-term performance optimization. By optimization, we refer to minimizing the total cost of operating the steam generator. This total includes the present value costs of operations, maintenance, outages, and replacements. An example of the application of this methodology is presented. (author)

  4. Parametric Optimization of Biomass Steam-and-Gas Plant

    Directory of Open Access Journals (Sweden)

    V. Sednin

    2013-01-01

    Full Text Available The paper contains a parametric analysis of the simplest scheme of a steam-and gas plant for the conditions required for biomass burning. It has been shown that application of gas-turbine and steam-and-gas plants can significantly exceed an efficiency of steam-power supply units which are used at the present moment. Optimum thermo-dynamical conditions for application of steam-and gas plants with the purpose to burn biomass require new technological solutions in the field of heat-exchange equipment designs.

  5. Future development LMFBR-steam generators SNR2

    International Nuclear Information System (INIS)

    Essebaggers, J.; Pors, J.G.

    1975-01-01

    The development work for steam generators for large LMFBR plants by Neratoom will be reviewed consisting of: 1. Development engineering information. 2. Concept select studies followed by conceptual designs of selected models. 3. Development manufacturing techniques. 4. Detail design of a prototype unit. 5. Testing of sub-constructions for prototype steam generators. In this presentation item 1 and 2 above will be high lighted, identifying the development work for the SNR-2 steam generators on short term basis. (author)

  6. Proceedings of the NEA/CSNI-UNIPEDE Specialist Meeting on Operating Experience with Steam Generators

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-07-01

    The long history of operating experience with pressurized water reactors has indicated that the steam generators are of primary importance in nuclear power plant design and operation; this is furthermore confirmed by analyzing the data of the Incident Reporting System (IRS). It is for this reason that the OECD/NEA Committee on the Safety of Nuclear Installations organizes, in cooperation with UNIPEDE, a Specialist Meeting on 'Operating Experience with Steam Generators'. This Specialist Meeting, held in Brussels, Belgium, in September 1991, is hosted by the Belgian Government and AIB-Vincotte Nuclear. In addition to being a follow-up to the October 1984 meeting (organized by the CSNI and UNIPEDE in Stockholm, Sweden), this Meeting reviews the current state-of-the-art of steam generator technology thus providing a forum for the exchange of related experience in operation, inspection, maintenance, repair, modifications, replacement, and licensing requirements pertaining to steam generators. Forty-seven papers are presented in eight sessions entitled: Operating Experience (two sessions), Structural Integrity and Licensing Issues, Analysis and Prediction of Degradation Mechanisms, Inservice Inspection Methods, Preventive and Corrective Actions (two sessions) and Replacement of Steam Generators. There are furthermore two panel sessions entitled 'Observed Degradation Mechanisms and Licensing Positions', and 'Inspection, Repair and Replacement Strategies'. These proceedings consist of a compilation of the papers presented at the Meeting, which is attended by more than one hundred and fifty participants from fifteen countries and several international organisations.

  7. A reflux capsule steam generator for sodium cooled reactors

    International Nuclear Information System (INIS)

    Lantz, E.

    Pressurized water reactor plants at numerous sites have sustained significant leakage through their steam generators. The consequent shutdowns for repairs and replacements have damaged their economics. This experience suggests that if steam generators for liquid metal fast breeder reactors (LMFBR's) continue to be built as presently designed some of them will have similar problems. Because of their larger capital investment, the consequent damage to the economics of LMFBR's could be more serious. Reflux capsules provide a way to separate sodium from water and to reduce thermal stresses in steam generators for sodium cooled reactors. Their use would also eliminate the need for a primary heat exchanger and a secondary sodium loop pump. (author)

  8. Lifetime management of the nuclear units in France

    International Nuclear Information System (INIS)

    Combes, J-P.; Godin, R.

    1994-01-01

    A systematic design study entitled 'Lifetime Project' has been initiated at Electricite de France, to estimate, plan, and maximize the life span of the French PWR plants. It is estimated that the present units will have a lifetime of 30 to 50 years. The life of a unit will be determined by that of its components, by economic considerations (whether it is cheaper to repair or replace the unit), and by safety considerations, which may be affected by changing safety standards. A 'periodic safety reassessment' takes place about every ten years. A list of 18 critical components can be summarized by saying that the main concerns are: radiation embrittlement of and within the reactor vessel, the steam generators, the concrete containment (which can not be replaced), instrumentation and control. Examination of samples from decommissioned plants, such as Chooz A, will provide valuable evidence of mechanisms of degradation due to aging

  9. Importance of deposit information in the design and execution of steam generator chemical cleaning

    International Nuclear Information System (INIS)

    Flores, O.; Remark, J.

    1997-01-01

    During the planning stages of the chemical cleaning of the San Onofre Nuclear Generating Station (SONGS) units 2 and 3 steam generators, it was determined that an understanding of the steam generator deposit loading and composition was essential to the design and success of the project. It was also determined that qualification testing, preferably with actual deposits from the SONGS steam generators, was also essential. SONGS units 2 and 3 have Combustion Engineering (CE)-designed pressurized water reactors. Each unit has two CE model 3410 steam generators. Each steam generator has 9350 alloy 600 tubes with 1.9-cm (3/4 in.) outside diameter. Unit 2 began commercial operation in 1983, and unit 3, in 1984. The purpose of this technical paper is to explain the effort and methodology for deposit composition, characterization, and quantification. In addition, the deposit qualification testing and design of the cleaning are discussed

  10. Shiraz solar power plant operation with steam engine

    International Nuclear Information System (INIS)

    Yaghoubi, M.; Azizian, K.

    2004-01-01

    The present industrial developments and daily growing need of energy, as well as economical and environmental problem caused by fossil fuels consumption, resulted certain constraint for the future demand of energy. During the past two decades great attention has been made to use renewable energy for different sectors. In this regard for the first time in Iran, design and construction of a 250 K W Solar power plant in Shiraz, Iran is being carried out and it will go to operation within next year. The important elements of this power plant is an oil cycle and a steam cycle, and several studies have been done about design and operation of this power plant, both for steady state and transient conditions. For the steam cycle, initially a steam turbine was chosen and due to certain limitation it has been replaced by a steam engine. The steam engine is able to produce electricity with hot or saturated vapor at different pressures and temperatures. In this article, the effects of installing a steam engine and changing its vapor inlet pressure and also the effects of sending hot or saturated vapor to generate electricity are studied. Various cycle performance and daily electricity production are determined. The effects of oil cycle temperature on the collector field efficiency, and daily, monthly and annual amount of electricity production is calculated. Results are compared with the steam cycle output when it contains a steam turbine. It is found that with a steam engine it is possible to produce more annual electricity for certain conditions

  11. The decommissioning of the BR3 steam generator

    International Nuclear Information System (INIS)

    Denissen, L.

    2006-01-01

    A steam generator is a crucial component in a PWR (Pressurized Water Reactor). It is the crossing between the primary, contaminated, circuit and the secondary water-steam circuit. The heat from the primary reactor coolant loop is transferred to the secondary side in thousands of small tubes. Due to several problems in the material of those tubes, like SCC (Stress Corrosion Cracking), insufficient control in water chemistry, which can be the cause of tube leakage, more and more steam generators are replaced today. Only in Belgium, already 17 of them are replaced. The old 300 ton heavy SGs are stored at the 2 nuclear power plants of Doel and Tihange . While it was foreseen in the BR3 strategy to dismantle the steam generator (only 30 ton), we took the opportunity to search for a complete package in the decommissioning of a steam generator. The complete management consists of a decontamination of the primary side followed by the complete dismantling. The first step, the decontamination with MEDOC (water box + tube bundle) has already been achieved in 2002. It has led to an important DF (Decontamination Factor) between 100 and 1000 and an important dose rate reduction. This hard chemical decontamination process has been described earlier in the scientific report 2002 (The BR3 steam generator decontamination with the MEDOC process - M. Ponnet). The second step, the complete dismantling of the SG has been executed in 2005. With the BR3 SG, the main goal was to dismantle it in a safe way and to free release a maximum of material. We've used two cutting tools to perform the job: A HPWJC (High Pressure Water Jet Cutting) tool in combination with a hydraulic robot and a water cooled diamond cable. The last technique was done in close collaboration with the external company Husqvarna. It was important to have an idea of the performance, the efficiency of the cable and the quantity and the type of secondary waste

  12. The temperature control and water quality regulation for steam generator secondary side hydrostatic test

    International Nuclear Information System (INIS)

    Xiao Bo; Liu Dongyong

    2014-01-01

    The secondary side hydrostatic test for the steam generator of M310 unit is to verify the pressure tightness of steam generator secondary side tube sheet and related systems. As for the importance of the steam generator, the water temperature and water quality of hydrostatic test has strict requirements. The discussion on the water temperature control and water quality regulation for the secondary loop hydrostatic test of Fuqing Unit 1 contribute greatly to the guiding work for the preparation of the steam generator pressure test for M310 unit. (authors)

  13. Steam generator waterlancing at DNGS

    International Nuclear Information System (INIS)

    Seppala, D.; Malaugh, J.

    1995-01-01

    Darlington Nuclear Generating Station (DNGS) is a four 900 MW Unit nuclear station forming part of the Ontario Hydro East System. There are four identical steam generators(SGs) per reactor unit. The Darlington SGs are vertical heat exchangers with an inverted U-tube bundle in a cylindrical shell. The DNGS Nuclear Plant Life Assurance Group , a department of DNGS Engineering Services have taken a Proactive Approach to ensure long term SG integrity. Instead of waiting until the tubesheets are covered by a substantial and established hard deposit; DNGS plan to clean each steam generator's tubesheet, first half lattice tube support assembly and bottom of the thermal plate every four years. The ten year business plan provides for cleaning and inspection to be conducted on all four SGs in each unit during maintenance outages (currently scheduled for every four years)

  14. C30 Support Plate for Replacing Function of Service Pool 1 at Unit 2

    International Nuclear Information System (INIS)

    Zsoldos, F.

    2006-01-01

    Paks NPP had a serious event at Unit 2 in April 2003. This event was connected to Service Pool 1, there was a cleaning tank int he pool to clean the fuel assemblies from sediments. The sediment problem has occurred at three of our four units, the cause of this problem was the decontamination of the steam generators. We have not made any decontamination at Unit 4 only, and there is no any problem at Unit 4 at all. The plant tried out the mentioned cleaning method at Unit 2 first time, and the event happened at that time. Because of the event the function of Service Pool 1 was not available, the damaged fuel and the cleaning tank is in the pool at this moment. We got the permission from the authority body to operate again Unit 2. This operation, the planned campaign was a short one because of the limited possibility to set up a proper core from the fuel assemblies what were available. Because of the short campaign we had to prepare a proper solution to accomplish the refuelling at Unit 2. The main obstacle was the unavailable functionality of Service Pool 1 which used to carry in fresh fuel and carry out the spent fuel with usage of C30 casks (we have two C30 casks, as it shown in their names the casks can contain 30 fuel assemblies, fresh or spent fuel depending on the given activity have to be done). The plant started to find out what would be the proper solution to replace the function of Service Pool 1 and the C30 support plate was found out as the possible solution to this problem. This C30 support plate is ready to launch the C30 casks or containers with the fresh or spent fuel into the reactor. It means that this C30 support plate is adjusted to the reactor main surface and in this way it ready to serve replacing Service Pool 1. Of course the reactor is empty during the preparation phase of the refuelling. First we carry out the spent fuel from the spent fuel pool, after that the fresh fuel is carried in and just after these preparing activities can be started

  15. Dependence of steam generator vibrations on feedwater pressure

    International Nuclear Information System (INIS)

    Sadilek, J.

    1989-01-01

    Vibration sensors are attached to the bottom of the steam generator jacket between the input and output primary circuit collectors. The effective vibration value is recorded daily. Several times higher vibrations were observed at irregular intervals; their causes were sought, and the relation between the steam generator vibrations measured at the bottom of its vessel and the feedwater pressure was established. The source of the vibrations was found to be in the feedwater tract of the steam generator. The feedwater tract is described and its hydraulic characteristics are given. Vibrations were measured on the S02 valve. It is concluded that vibrations can be eliminated by reducing the water pressure before the control valves and by replacing the control valves with ones with more suitable control characteristics. (E.J.). 3 figs., 1 tab., 3 refs

  16. Failure analysis of retired steam generator tubings

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hong Pyo; Kim, J. S.; Hwang, S. S. and others

    2005-04-15

    Degradation of steam generator leads to forced outage and extension of outage, which causes increase in repair cost, cost of purchasing replacement power and radiation exposure of workers. Steam generator tube rupture incident occurred in Uljin 4 in 2002, which made public sensitive to nuclear power plant. To keep nuclear energy as a main energy source, integrity of steam generator should be demonstrated. Quantitative relationship between ECT(eddy current test) signal and crack size is needed in assesment of integrity of steam generator in pressurized water reactor. However, it is not fully established for application in industry. Retired steam generator of Kori 1 has many kinds of crack such as circumferential and axial primary water stress corrosion crack and outer diameter stress corrosion crack(ODSCC). So, it can be used in qualifying and improving ECT technology and in condition monitoring assesment for crack detected in ISI(in service inspection). In addition, examination of pulled tube of Kori 1 retired steam generator will give information about effectiveness of non welded sleeving technology which was employed to repair defect tubes and remedial action which was applied to mitigate ODSCC. In this project, hardware such as semi hot lab. for pulled tube examination and modification transportation cask for pulled tube and software such as procedure of transportation of radioactive steam generator tube and non-destructive and destructive examination of pulled tube were established. Non-destructive and destructive examination of pulled tubes from Kori 1 retired steam generator were performed in semi hot lab. Remedial actions applied to Kori 1 retired steam generator, PWSCC trend and bulk water chemistry and crevice chemistry in Kori 1 were evaluated. Electrochemical decontamination technology for pulled tube was developed to reduce radiation exposure and enhance effectiveness of pulled tube examination. Multiparameter algorithm developed at ANL, USA was

  17. Future development of large steam turbines

    International Nuclear Information System (INIS)

    Chevance, A.

    1975-01-01

    An attempt is made to forecast the future of the large steam turbines till 1985. Three parameters affect the development of large turbines: 1) unit output; and a 2000 to 2500MW output may be scheduled; 2) steam quality: and two steam qualities may be considered: medium pressure saturated or slightly overheated steam (light water, heavy water); light enthalpie drop, high pressure steam, high temperature; high enthalpic drop; and 3) the quality of cooling supply. The largest range to be considered might be: open system cooling for sea-sites; humid tower cooling and dry tower cooling. Bi-fluid cooling cycles should be also mentioned. From the study of these influencing factors, it appears that the constructor, for an output of about 2500MW should have at his disposal the followings: two construction technologies for inlet parts and for high and intermediate pressure parts corresponding to both steam qualities; exhaust sections suitable for the different qualities of cooling supply. The two construction technologies with the two steam qualities already exist and involve no major developments. But, the exhaust section sets the question of rotational speed [fr

  18. Prevalence of Total Hip and Knee Replacement in the United States.

    Science.gov (United States)

    Maradit Kremers, Hilal; Larson, Dirk R; Crowson, Cynthia S; Kremers, Walter K; Washington, Raynard E; Steiner, Claudia A; Jiranek, William A; Berry, Daniel J

    2015-09-02

    Descriptive epidemiology of total joint replacement procedures is limited to annual procedure volumes (incidence). The prevalence of the growing number of individuals living with a total hip or total knee replacement is currently unknown. Our objective was to estimate the prevalence of total hip and total knee replacement in the United States. Prevalence was estimated using the counting method by combining historical incidence data from the National Hospital Discharge Survey and the Healthcare Cost and Utilization Project (HCUP) State Inpatient Databases from 1969 to 2010 with general population census and mortality counts. We accounted for relative differences in mortality rates between those who have had total hip or knee replacement and the general population. The 2010 prevalence of total hip and total knee replacement in the total U.S. population was 0.83% and 1.52%, respectively. Prevalence was higher among women than among men and increased with age, reaching 5.26% for total hip replacement and 10.38% for total knee replacement at eighty years. These estimates corresponded to 2.5 million individuals (1.4 million women and 1.1 million men) with total hip replacement and 4.7 million individuals (3.0 million women and 1.7 million men) with total knee replacement in 2010. Secular trends indicated a substantial rise in prevalence over time and a shift to younger ages. Around 7 million Americans are living with a hip or knee replacement, and consequently, in most cases, are mobile, despite advanced arthritis. These numbers underscore the substantial public health impact of total hip and knee arthroplasties. Copyright © 2015 by The Journal of Bone and Joint Surgery, Incorporated.

  19. Identification of leaky steam generators by iodine mapping technique and development of tools for cutting of tubes of steam generators of Indian PHWRS

    International Nuclear Information System (INIS)

    Subba Rao, D.

    2006-01-01

    Kakrapar Atomic Power Station (2X220 MWe) located in Mandvi Taluka of Surat District in the state of Gujarat is the fifth Nuclear Power Station of the country. It has got an excellent record in the field of operation, safety, public awareness and emergency preparedness. KAPS Unit -1 achieved first criticality in Sep-1992 and was declared for commercial operation in may-1993. KAPS Unit -2 achieved first criticality in Jan-1995 and was declared for commercial operation in Sep-1995. So far station has generated about 30 billion units.Unit-1 achieved 98.4% and was graded as a world's No.1 in year 2002 amongst all CANDU type reactors. KAPS Unit -1 has made another record of operating continuously for more than 300 days in Indian PHWR s operating history. This paper mainly deals with the Indian PHWRs Steam Generators (SG) tube leaks, leaky steam generator identification by Iodine mapping, and development of special tool for cutting, removal and plugging of leaky tubes. These Steam Generators are designed by M/s Kraft Werke Union (KWU) of Siemens Group, West Germany, and Manufactured by M/s ENSA, SPAIN for Unit- 1 and by M/s MAN-GHH, Germany for Unit- 2. First time in October-2002 one of the Steam Generators of Unit-1 developed tube leak. To identify leaky Steam Generator, KAPS has established a method of Iodine mapping. With that the leaky SG was identified in very short time and corrective actions were taken immediately. Total three tube leaks (two in SG-4 of Unit-1 and one in SG-1 of unit-2) were experienced in both Units'. Following observations were made on SG tubes failure: All failures were in cold leg side; All Failures / deterioration locations were in front of main feed water nozzle; All Failures / deterioration locations were observed to be just above tube support plate (TSP) number 4 or 5; Deterioration ( i.e. wall thinning) observed from OD side and these tubes were adjacent to failed tubes; In all the three incidents, failed / deteriorated tubes were

  20. Energy Analysis of Cascade Heating with High Back-Pressure Large-Scale Steam Turbine

    Directory of Open Access Journals (Sweden)

    Zhihua Ge

    2018-01-01

    Full Text Available To reduce the exergy loss that is caused by the high-grade extraction steam of traditional heating mode of combined heat and power (CHP generating unit, a high back-pressure cascade heating technology for two jointly constructed large-scale steam turbine power generating units is proposed. The Unit 1 makes full use of the exhaust steam heat from high back-pressure turbine, and the Unit 2 uses the original heating mode of extracting steam condensation, which significantly reduces the flow rate of high-grade extraction steam. The typical 2 × 350 MW supercritical CHP units in northern China were selected as object. The boundary conditions for heating were determined based on the actual climatic conditions and heating demands. A model to analyze the performance of the high back-pressure cascade heating supply units for off-design operating conditions was developed. The load distributions between high back-pressure exhaust steam direct supply and extraction steam heating supply were described under various conditions, based on which, the heating efficiency of the CHP units with the high back-pressure cascade heating system was analyzed. The design heating load and maximum heating supply load were determined as well. The results indicate that the average coal consumption rate during the heating season is 205.46 g/kWh for the design heating load after the retrofit, which is about 51.99 g/kWh lower than that of the traditional heating mode. The coal consumption rate of 199.07 g/kWh can be achieved for the maximum heating load. Significant energy saving and CO2 emission reduction are obtained.

  1. PWR steam generator chemical cleaning. Phase I: solvent and process development. Volume II

    International Nuclear Information System (INIS)

    Larrick, A.P.; Paasch, R.A.; Hall, T.M.; Schneidmiller, D.

    1979-01-01

    A program to demonstrate chemical cleaning methods for removing magnetite corrosion products from the annuli between steam generator tubes and the tube support plates in vertical U-tube steam generators is described. These corrosion products have caused steam generator tube ''denting'' and in some cases have caused tube failures and support plate cracking in several PWR generating plants. Laboratory studies were performed to develop a chemical cleaning solvent and application process for demonstration cleaning of the Indian Point Unit 2 steam generators. The chemical cleaning solvent and application process were successfully pilot-tested by cleaning the secondary side of one of the Indian Point Unit 1 steam generators. Although the Indian Point Unit 1 steam generators do not have a tube denting problem, the pilot test provided for testing of the solvent and process using much of the same equipment and facilities that would be used for the Indian Point Unit 2 demonstration cleaning. The chemical solvent selected for the pilot test was an inhibited 3% citric acid-3% ascorbic acid solution. The application process, injection into the steam generator through the boiler blowdown system and agitation by nitrogen sparging, was tested in a nuclear environment and with corrosion products formed during years of steam generator operation at power. The test demonstrated that the magnetite corrosion products in simulated tube-to-tube support plate annuli can be removed by chemical cleaning; that corrosion resulting from the cleaning is not excessive; and that steam generator cleaning can be accomplished with acceptable levels of radiation exposure to personnel

  2. A feasibility study on active ultrasonic techniques for water into sodium leak detection on FBR steam generator units

    International Nuclear Information System (INIS)

    Girard, J.P.; Garnaud, P.; Journeau, C.; Demarais, R.

    1990-01-01

    In the framework of the European Fast Breeder Project one of the aims is to provide the ferritic straight tube steam generator with a fast and reliable leak detection system. The first studies of water sodium leaks, based on the passive listening of noise source, are described. Considerable experience has been acquired of this technique and one of the conclusions is that a high level of reliability may require a sophisticated surveillance algorithm. Further works on the subject should lead to demonstration phase in 1993-1995 on a real and representative steam generator unit in order to have the benefit of a long term run of the surveillance method prior to industrial use in a compulsory safety system. 1 ref., 10 figs

  3. The Creys Malville FBR Super Phenix steam generators

    International Nuclear Information System (INIS)

    Baque, P.; Zuber, T.; Saur, J.M.; Cambillard, E.

    1980-08-01

    After briefly recalling the French experience on sodium steam generators, the authors describe the design concepts of the Superphenix units and give their main characteristics. A short summary of the realized R and D program precedes the description of the four 750-MWt steam generators, the fabrication of which is in progress by Creusot-Loire at Chalon sur Saone (France). The studies started for the next French fast breeder reactors and their steam generators are mentioned

  4. Corrosion and Rupture of Steam Generator Tubings in PWRs

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Seong Sik; Kim, Hong Pyo

    2007-08-15

    This report is intended to provide corrosion engineers in the filed of nuclear energy with information on the corrosion and rupture behavior of steam generator tubing in PWRs. Various types of corrosion in PWR steam generator tubing have been reported all around the world, and countermeasures such as the addition of corrosion inhibitors, a water chemistry control, a tube plugging and sleeving have been applied. Steam generators equipped with alloy 600 tubing, which are not so resistant to a stress corrosion cracking (SCC), have generally been replaced with new steam generators made of alloy 690 TT (Thermally treated). Pull tube examination results which were performed of KAERI are summarized. The tubes were affected by a pitting, SCC, and a denting. Nondestructive examination method for the tubes and repair techniques are also reviewed. In addition, the regulatory guidance of some countries are reviewed. As a part of a tube integrity project in Korea, some results on a tube rupture and leak behaviors for axial cracks are also mentioned.

  5. Corrosion and Rupture of Steam Generator Tubings in PWRs

    International Nuclear Information System (INIS)

    Hwang, Seong Sik; Kim, Hong Pyo

    2007-08-01

    This report is intended to provide corrosion engineers in the filed of nuclear energy with information on the corrosion and rupture behavior of steam generator tubing in PWRs. Various types of corrosion in PWR steam generator tubing have been reported all around the world, and countermeasures such as the addition of corrosion inhibitors, a water chemistry control, a tube plugging and sleeving have been applied. Steam generators equipped with alloy 600 tubing, which are not so resistant to a stress corrosion cracking (SCC), have generally been replaced with new steam generators made of alloy 690 TT (Thermally treated). Pull tube examination results which were performed of KAERI are summarized. The tubes were affected by a pitting, SCC, and a denting. Nondestructive examination method for the tubes and repair techniques are also reviewed. In addition, the regulatory guidance of some countries are reviewed. As a part of a tube integrity project in Korea, some results on a tube rupture and leak behaviors for axial cracks are also mentioned

  6. Experimental research regarding the corrosion of incoloy-800 and SA 508 cl.2 in the CANDU steam generator

    International Nuclear Information System (INIS)

    Lucan, D.; Fulger, M.; Savu, G.; Velciu, L.

    2004-01-01

    Steam generators (SGs) are crucial components of pressurized water reactors. The failure of the steam generator as a result of tube degradation by corrosion has been a major cause of Pressurized Water Reactor (PWR) plant unavailability. Steam generator problems have caused major economic losses in terms of lost electricity production through forced unit outages and, in cases of extreme damage, as additional direct cost for large-scale repair or replacement of steam generators. Steam generator tubes are susceptible to failure by a variety of mechanisms, the vast majority of which are related a corrosion. The feedwater that enters into the steam generators under normal operating conditions is extremely pure, but nevertheless contains low levels (generally in the μg/l concentration range) of impurities such as iron, chloride, sulphate, silicate, etc. When water is converted to steam and exits the steam generator, the non-volatile impurities are left behind. As a result, their concentration in the bulk steam generator water is considerably higher than those in the feedwater. Nevertheless, the concentrations of corrosive impurities are still generally sufficiently low that the bulk water is not significantly aggressive towards steam generator materials. The excellent performance to date of CANDU steam generators can be attributed, in part, to their design and performance characteristics, which typically involve higher recirculation ratios and lower heat fluxes and temperatures. The purpose of this paper consists in assessment of generalized corrosion behaviour of the tubes materials (Incoloy-800) and tubesheet material (carbon steel SA 508 cl.2) at the normal secondary circuit parameters (temperature-260 deg C, pressure-5.1MPa). The testing environment was the demineralized water without impurities, at pH=9.5 regulated with morpholine and ciclohexilamine (all volatile treatment - AVT). The results are presented like micrographies and graphics representing loss of metal

  7. Chemical cleaning of nuclear (PWR) steam generators

    International Nuclear Information System (INIS)

    Welty, C.S. Jr.; Mundis, J.A.

    1982-01-01

    This paper reports on a significant research program sponsored by a group of utilities (the Steam Generator Owners Group), which was undertaken to develop a process to chemically remove corrosion product deposits from the secondary side of pressurized water reactor (PWR) power plant steam generators. Results of this work have defined a process (solvent system and application methods) that is capable of removing sludge and tube-to-tube support plate crevice corrosion products generated during operation with all-volatile treatment (AVT) water chemistry. Considers a plant-specific test program that includes all materials in the steam generator to be cleaned and accounts for the physical locations (proximity and contact) of those materials. Points out that prior to applying the process in an operational unit, the utility, with the participation of the NSSR vendor, must define allowable total corrosion to the materials of construction of the unit

  8. Status of the CRBRP steam-generator design

    International Nuclear Information System (INIS)

    Schmidt, J.E.; Martinez, R.S.; Murdock, J.F.

    1981-06-01

    Fabrication of the Prototype Unit is near completion and will be delivered to the test site in August, 1981. The Plant Unit design is presently at an advanced stage and will result in steam generator units fully capable of meeting all the requiments of the CRBRP Power Plant

  9. Proceedings of steam generator sludge deposition in recirculating and once through steam generator upper tube bundle and support plates

    International Nuclear Information System (INIS)

    Baker, R.L.; Harvego, E.A.

    1992-01-01

    The development of remedial measures of shot peening have given nuclear utilities viable measures to address primary water stress corrosion cracking to extend steam generator life. The nuclear utility industry is now faced with potential replacement of steam generators in nuclear power plants due to stress corrosion cracking and intergranular attach in crevice locations on the secondary side of steam generators at tube support plates and at the crevice at the top of the tube sheet. Significant work has been done on developing and understanding of the effects of sludge buildup on the corrosion process at these locations. This session was envisioned to provide a forum for the development of an understanding of the mechanisms which control the transport and deposition of sludge on the secondary side of steam generators. It is hoped that this information will aid utilities in monitoring the progression of fouling of these crevices by further knowledge in where to look for the onset of support plate crevice fouling. An understanding of the progression of fouling from upper tube support plates to those lower in the steam generator where higher temperatures cause the corrosion process to initiate first can aid the nuclear utility industry in developing remedial measures for this condition and in providing a forewarning of when to apply such remedial measures

  10. Corrosion products behavior and source term reduction : guidelines and feedback for EDF PWRs, concerning the B/Li coordinations and steam generators replacement

    International Nuclear Information System (INIS)

    Taunier, S.; Wintergerst, M.; De Bouvier, O.; Pokor, C.; Carrette, F.; Toivonen, A.; Ranchoux, G.; Bretelle, J.L.

    2010-01-01

    The release of corrosion products by the various components of the primary system into the cooling water may induce some issues on reactor control and on radiation dose rates. Heavy crud deposits may occur on the fuel clad surface and lead to axial offset anomalies (AOA) and in extreme cases, to fuel failures. This deposition phenomenon is apparently associated with steam generator (SG) materials, water chemistry, thermal hydraulics, fuel cleaning or reactor operation history. Moreover, under intense neutron flux, these corrosion products are activated and their dissolution and deposition in the primary system may further increase the out-of-core radioactive contamination and result in radiation dose rates. Several ways are available to reduce the amount and transportation of corrosion products in the primary coolant. A first approach is related to the materials used in the primary system. As one of the main contributors to the release of corrosion products, the Ni-alloy used for the steam generators (SG) tubes has to be properly selected, manufactured and 'passivated'. The paper presents the recent feedback regarding the primary coolant chemistry and radiochemistry after Steam Generators Replacements (SGR). The modified startup procedure of the plant after SGR is also described, as well as its potential benefits on the primary coolant behavior. A second approach is to optimize the primary water chemistry to reduce the release and the transport of the corrosion products through the pH control. This kind of control is important, since higher fuel enrichments are currently used in our reactors, in order to get longer production cycles through higher burn-ups. To ensure the core reactivity control in the PWRs, the concentration of boric acid is increased in the primary water at the beginning of cycle (BOC). As a consequence, the resulting lower pH can induce a higher release of corrosion products from the steam generators. That is why, to keep an almost

  11. Steam 80 steam generator instrumentation

    International Nuclear Information System (INIS)

    Carson, W.H.; Harris, H.H.

    1980-01-01

    This paper describes two special instrumentation packages in an integral economizer (preheater) steam generator of one of the first System 80 plants scheduled to go into commercial operation. The purpose of the instrumentation is to obtain accurate operating information from regions of the secondary side of the steam generator inaccessible to normal plant instrumentation. In addition to verification of the System 80 steam generator design predictions, the data obtained will assist in verification of steam generator thermal/hydraulic computer codes developed for generic use in the industry

  12. Inducement of IGA/SCC in Inconel 600 steam generator tubing during unit outages

    Energy Technology Data Exchange (ETDEWEB)

    Durance, D.; Sedman, K. [Bruce Power, Tiverton, Ontario (Canada); Roberts, J. [CANTECH Associates Ltd., Burlington, Ontario (Canada); King, P. [Babcock and Wilcox Canada, Cambridge, Ontario (Canada); Gorman, J. [Dominion Engineering, Reston, VA (United States); Allen, R. [Kinectrics, Inc., Toronto, Ontario (Canada)

    2008-07-01

    The degradation of Unit 4 SG tubing by IGA/SCC has limited both the operating period and end of life predictions for Unit 4 since restart in late 2003. The circumferential IGA/SCC has been most significant in SG4 with substantial increases in both initiation and growth rates from 2005 through the spring of 2007. A detailed review of the occurrence of circumferential OD IGA/SCC at the RTZ in the HL TTS region of Bruce 4 steam generator tubes has led a conclusion that it is probable that the IGA/SCC has been the result of attack by partially reduced sulfur species such as tetrathionates and thiosulfates during periods of low temperature exposure. It is believed that attack of this type has mostly likely occurred during startup evolutions following outages as the result the development of aggressive reduced sulfur species in the TTS region during periods when the boilers were fully drained for maintenance activities. The modification of outage practices to limit secondary side oxygen ingress in the spring of 2007 has apparently arrested the degradation and has had significant affects on the allowable operating interval and end of life predictions for the entire unit. (author)

  13. Inducement of IGA/SCC in Inconel 600 steam generator tubing during unit outages

    International Nuclear Information System (INIS)

    Durance, D.; Sedman, K.; Roberts, J.; King, P.; Gorman, J.; Allen, R.

    2008-01-01

    The degradation of Unit 4 SG tubing by IGA/SCC has limited both the operating period and end of life predictions for Unit 4 since restart in late 2003. The circumferential IGA/SCC has been most significant in SG4 with substantial increases in both initiation and growth rates from 2005 through the spring of 2007. A detailed review of the occurrence of circumferential OD IGA/SCC at the RTZ in the HL TTS region of Bruce 4 steam generator tubes has led a conclusion that it is probable that the IGA/SCC has been the result of attack by partially reduced sulfur species such as tetrathionates and thiosulfates during periods of low temperature exposure. It is believed that attack of this type has mostly likely occurred during startup evolutions following outages as the result the development of aggressive reduced sulfur species in the TTS region during periods when the boilers were fully drained for maintenance activities. The modification of outage practices to limit secondary side oxygen ingress in the spring of 2007 has apparently arrested the degradation and has had significant affects on the allowable operating interval and end of life predictions for the entire unit. (author)

  14. Equipment for inspection and carrying out repairs, if required, for tube bundles of steam raising units

    International Nuclear Information System (INIS)

    Gugel, G.

    1976-01-01

    The equipment solves the problem of being able to inspect and possibly to repair U-tubes of a vertical steam raising unit standing on a tube floor, without draining the primary medium and bringing the test equipment and tools into the inside of the boiler first. This is achieved by leaving a considerable part of the equipment permanently in the hemispherical space under the tube floor and operating it from the outside, on the other side of the concrete shielding. An inspection tube is threaded in turn horizontally through a concrete shield, a tube duct in the heat insulation of the steam raising unit, and through a hole in the hemispherical space under the tube floor into this space. The end of an angle tube can be moved axially from outside the concrete shield and can be rotated in a semicircle above the tube axis. By interposing a, for example, 12 part distributor with 12 short, differently bent tubes 12 adjacent tubes opening into the tube floor can be controlled and tested, by axial movement of the angle tube together with the distributor, e.g. 4 x 12 other U tubes. A turbulent flow sensor, for example, can be introduced through the angle tube and distributor. In the non-operational condition the equipment is moved into a recess via a supporting angle and stopped there. (ORU) [de

  15. Disposal and handling of nuclear steam generator chemical cleaning wastes

    International Nuclear Information System (INIS)

    Larrick, A.P.; Schneidmiller, D.

    1978-01-01

    A large number of pressurized water nuclear reactor electrical generating plants have experienced a corrosion-related problem with their steam generators known as denting. Denting is a mechanical deformation of the steam generator tubes that occurs at the tube support plates. Corrosion of the tube support plates occurs within the annuli through which the tubes pass and the resulting corrosion oxides, which are larger in volume than the original metal, compress and deform the tubes. In some cases, the induced stresses have been severe enough to cause tube and/or support cracking. The problem was so severe at the Turkey Point and Surrey plants that the tubing is being replaced. For less severe cases, chemical cleaning of the oxides, and other materials which deposit in the annuli from the water, is being considered. A Department of Energy-sponsored program was conducted by Consolidated Edison Co. of New York which identified several suitable cleaning solvents and led to in-plant chemical cleaning pilot demonstrations in the Indian Point Unit 1 steam generators. Current programs to improve the technology are being conducted by the Electric Power Research Institute, and the three PWR NSSS vendors with the assistance of numerous consultants, vendors, and laboratories. These programs are expected to result in more effective, less corrosive solvents. However, after a chemical cleaning is conducted, a large problem still remains- that of disposing of the spent wastes. The paper summarizes some of the methods currently available for handling and disposal of the wastes

  16. Steam Cured Self-Consolidating Concrete and the Effects of Limestone Filler

    Science.gov (United States)

    Aqel, Mohammad A.

    The purpose of this thesis is to determine the effect and the mechanisms associated with replacing 15% of the cement by limestone filler on the mechanical properties and durability performance of self-consolidating concrete designed and cured for precast/prestressed applications. This study investigates the role of limestone filler on the hydration kinetics, mechanical properties (12 hours to 300 days), microstructural and durability performance (rapid chloride permeability, linear shrinkage, sulfate resistance, freeze-thaw resistance and salt scaling resistance) of various self-consolidating concrete mix designs containing 5% silica fume and steam cured at a maximum holding temperature of 55°C. This research also examines the resistance to delayed ettringite formation when the concrete is steam cured at 70°C and 82°C and its secondary consequences on the freeze-thaw resistance. The effect of several experimental variables related to the concrete mix design and also the curing conditions are examined, namely: limestone filler fineness, limestone filler content, cement type, steam curing duration and steam curing temperature. In general, the results reveal that self-consolidating concrete containing 15% limestone filler, steam cured at 55°C, 70°C and 82°C, exhibited similar or superior mechanical and transport properties as well as long term durability performance compared to similar concrete without limestone filler. When the concrete is steam cured at 55°C, the chemical reactivity of limestone filler has an important role in enhancing the mechanical properties at 16 hours (compared to the concrete without limestone filler) and compensating for the dilution effect at 28 days. Although, at 300 days, the expansion of all concrete mixes are below 0.05%, the corresponding freeze-thaw durability factors vary widely and are controlled by the steam curing temperature and the chemical composition of the cement. Overall, the material properties indicate that the use

  17. Model studies of the vertical steam generator thermal-hydraulic characteristics

    International Nuclear Information System (INIS)

    Desyatun, V.F.; Moskvichev, V.F.; Ulasov, V.M.; Morozov, V.G.; Burkov, V.K.; Grebennikov, V.N.

    1984-01-01

    Results of investigations conducted to clarify the calculation technique and to test the workability of the main elements and units of the PGV-250 vertical steam generator of saturated steam are considered. The steam generating capacity of the plant is 1486 t/h, thermal power is 792 MW. Steam generation follows a multiple circulation scheme. The heat surface comprises 330-shields. The investigations are carried out with a model which reproduces all the main elements of the steam generator xcluding the economizer section. The flow rates of feed water, generated steam and coolant of the first circuit as well as temperature, pressure and humidity of the generated steam past the separator are determined. The average heat transfer factors of the heat surface are calculated on the base of the data obtained and a conclusion is drawn on the correctness of the thermohydraulic calculation technique used in development of the PGV-250 steam generator design. Temperature pulsations and heat surface steaming are not observed. The steam humidity at the outlet and steam capture into sinking tubes are within permissible values

  18. Proposal of organisation and ALARA procedures for maintenance site: application to replacement of steam generator; Propositions d'organisation et procedures ALARA pour la preparation des chantiers de maintenance: application au RGV

    Energy Technology Data Exchange (ETDEWEB)

    Lochard, J; Lefaure, C

    1989-08-01

    This report proposes generic organization and ALARA procedures for preparing a maintenance site at a NPP. After a short description of the ALARA principle, it describes the proposition for French sites. They are grouped according to the following: motivation, organisation, means. They are illustrated by the example of steam generator replacement. Three special points concerning preparation of the site are developed: education; training of operators; review of the project.

  19. Three-Dimensional Modeling of a Steam-Line Break in a Boiling Water Reactor

    International Nuclear Information System (INIS)

    Tinoco, Hernan

    2002-01-01

    Because of weld problems, the core grids of Units 1 and 2 at the Forsmark nuclear power plant have been replaced by grids of a new design, consisting of a single machined piece without welds. The qualifying structural analysis has been carried out considering dynamic loads, which implies that even loss-of-coolant accidents have to be included. Therefore, a detailed time description of the loads acting on the different internal parts of the reactor is needed. To achieve sufficient space and time resolution, a computational fluid dynamics (CFD) analysis was considered to be a viable alternative.A CFD analysis of a steam-line break in the boiling water reactor of Unit 2 is the subject of this work. The study is based on the assumption that the timescale of the transient analysis is smaller than the relaxation time of the water-steam system. Therefore, a simulation of only the upper, steam part of the reactor with no two-phase effects (flashing) is feasible.The results obtained display a rather complex behavior of the decompression process, forcing the analysis of the pressure field to be accomplished through animation. In contrast, the computed instantaneous forces over different internal parts oscillate regularly and are approximately twice the forces estimated in the past by simpler methods, with frequencies of 30 to 40 Hz; top amplitudes of ∼1.64 MN; and relatively low damping, ∼25% after 0.5 s.According to the present results, this type of modeling is physically meaningful for simulation timescales smaller than the water-steam relaxation time, i.e., ∼0.5 s at reactor conditions. At larger times, a two-phase model is necessary to describe the decompression process since two-phase effects are dominant. The results have not yet been validated with experiments, but validation computations will be run in the future for comparison with results of the Marviken tests

  20. Method for repairing a steam turbine or generator rotor

    International Nuclear Information System (INIS)

    Clark, R.E.; Amos, D.R.

    1987-01-01

    A method is described for repairing low alloy steel steam turbine or generator rotors, the method comprising: a. machining mating attachments on a replacement end and a remaining portion of the original rotor; b. mating the replacement end and the original rotor; c. welding the replacement end to the original rotor by narrow-gap gas metal arc or submerged arc welding up to a depth of 1/2-2 inches from the rotor surface; d. gas tungsten arc welding the remaining 1/2-2 inches; e. boring out the mating attachment and at least the inside 1/4 inch of the welding; and f. inspecting the bore

  1. Operating experiences with 1 MW steam generator

    Energy Technology Data Exchange (ETDEWEB)

    Sano, A; Kanamori, A; Tsuchiya, T

    1975-07-01

    1 MW steam generator, which was planned as the first stage of steam generator development in Power Reactor and Nuclear Fuel Corp. (PNC) in Japan, is a single-unit, once-through, integrated shell and tube type with multi-helical coil tubes. It was completed in Oarai Engineering Center of PNC in March of 1971, and the various performance tests were carried out up to April, 1972. After the dismantle of the steam generator for structural inspection and material test, it was restored with some improvements. In this second 1 MW steam generator, small leak occurred twice during normal operation. After repairing the failure, the same kind of performance tests as the first steam generator were conducted in order to verify the thermal insulation effect of argon gas in downcomer zone from March to June, 1974. In this paper the above operating experiences were presented including the outline of some performance test results. (author)

  2. A study on the optimal replacement periods of digital control computer's components of Wolsung nuclear power plant unit 1

    International Nuclear Information System (INIS)

    Mok, Jin Il; Seong, Poong Hyun

    1993-01-01

    Due to the failure of the instrument and control devices of nuclear power plants caused by aging, nuclear power plants occasionally trip. Even a trip of a single nuclear power plant (NPP) causes an extravagant economical loss and deteriorates public acceptance of nuclear power plants. Therefore, the replacement of the instrument and control devices with proper consideration of the aging effect is necessary in order to prevent the inadvertent trip. In this paper we investigated the optimal replacement periods of the control computer's components of Wolsung nuclear power plant Unit 1. We first derived mathematical models of optimal replacement periods to the digital control computer's components of Wolsung NPP Unit 1 and calculated the optimal replacement periods analytically. We compared the periods with the replacement periods currently used at Wolsung NPP Unit 1. The periods used at Wolsung is not based on mathematical analysis, but on empirical knowledge. As a consequence, the optimal replacement periods analytically obtained and those used in the field show a little difference. (Author)

  3. Mechanical design of a sodium heated steam generator

    International Nuclear Information System (INIS)

    Chetal, S.C.

    1975-01-01

    FBTR steam generator is a once through type unit consisting of four 12.5 MW thermal modules generating a total of 74 tons per hour of steam at 125 bar and 480 0 C. This paper outlines the mechanical design of such type of steam generator with emphasis on special design problems associated with this type of sodium to water steam heat exchanger, namely, thermal cycling of transition zone where nucleate boiling changes over to film boiling, application of pressure vessel design criteria for transient pressures, thermal stress evaluation resulting from differential expansion between shell and tube in this typical configuration, sodium headers support design, thermal sleeve, design, thermal shock analysis in thick tubes, thermal stress resulting from stratification and stability of expansion bends against vibration. Some of the possible design changes for the future large size steam generator are outlined. (author)

  4. Status of steam generator tubing integrity at Jaslovske Bohunice NPP

    International Nuclear Information System (INIS)

    Cepcek, S.

    1997-01-01

    Steam generator represents one of the most important component of nuclear power plants. Especially, loss of tubing integrity of steam generators can lead to the primary coolant leak to secondary circuit and in worse cases to the unit shut down or to the PTS events occurrence. Therefore, to ensure the steam generator tubing integrity and the current knowledge about tube degradation propagation and development is of the highest importance. In this paper the present status of steam generator tubing integrity in operated NPP in Slovak Republic is presented

  5. Development of axial tomography technique for the study of steam explosion

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Young; Seo, S. W.; You, S. [Handong Golbal Univ., Pohang (Korea, Republic of)

    2006-05-15

    In this report, axial tomography applying to steam explosion is implemented. When steam explosion experiment is performed, we have seen the difficulty with physical modeling due to the complex phenomena of generated steam, propagation of shock wave and bubble breakup and coalescence. Hence, the uncertainty due to these phenomena is occurred. The fast and global measurement of the steam distribution is imperative to understand the complex phenomena performed during the steam explosion, KAERI have developed the fast and global measuring instrument to monitor such phenomena of axial steam distribution. Generally, X-ray is used as measuring method, but this method is very expensive and has limited measurement area. So we need new method that can substitute X-ray method and in this research, ECT method is replaced. The research is performed dividing within two parts: Software and Hardware. In the software part, the electric field analysis code and algorithm for inverse projection were developed. And, in the hardware part, capacitance measurement circuit is developed to measure up to fF level. Operable axial tomography was analyzed with concept design of axial tomography appropriate to steam explosion accident and analysis code for axial electric field analysis and inverse algorithm were developed, moreover, designing signal analysis system for axial tomography was performed.

  6. Environmentally Friendly Replacement of Mature 200 MW Coal-Fired Power Blocks with 2 Boilers Working on One 500 MW Class Steam Turbine Generator (2on1 Unit Concept)

    Science.gov (United States)

    Grzeszczak, Jan; Grela, Łukasz; Achter, Thomas

    2017-12-01

    The paper covers problems of the owners of a fleet of long-operated conventional power plants that are going to be decommissioned soon in result of failing to achieve new admissible emissions levels or exceeding pressure elements design lifetime. Energoprojekt-Katowice SA, Siemens AG and Rafako SA presents their joint concept of the solution which is a 2on1 concept - replacing two unit by two ultra-supercritical boilers feeding one turbine. Polish market has been taken as an example.

  7. Final Environmental Statement related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445 and 50-446)

    International Nuclear Information System (INIS)

    1989-10-01

    In September 1981, the staff of the Nuclear Regulatory Commission (NRC) issued its Final Environmental Statement (NUREG-0775) related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445 and 50-446), located in Somervell County, Texas, approximately 40 miles southwest of Fort Worth, Texas. The NRC has prepared this supplement to NUREG-0775 to present its evaluation of the alternative of operating Comanche Peak with the installation of further severe-accident-mitigation design features. The NRC has discovered no substantial changes in the proposed action as previously evaluated in the Final Environmental Statement that are relevant to environmental concerns and bearing on the licensing of Comanche Peak Steam Electric Station, Units 1 and 2. 6 refs., 3 tabs

  8. Evaluating Steam Generator Tubing Corrosion through Shutdown Nickel and Cobalt Releases

    International Nuclear Information System (INIS)

    Marks, Chuck; Little, Mike; Krull, Peter; Dennis Hussey; Kenny Epperson

    2012-09-01

    During power operation in PWRs, steam generator tubing corrodes. In PWRs with nickel alloy steam generator tubing this leads to the release of nickel into the coolant. While not structurally significant, this process leads to corrosion product deposition on the fuel surfaces that can threaten fuel integrity, provide a site for boron precipitation, and, through activation and subsequent release, lead to increased out-of-core radiation fields. During shutdown, decreases in temperature and pH and an increase in the oxidation potential lead to dissolution of some corrosion products from the core. This work evaluated the masses of corrosion products released during shutdown as a proxy for steam generator tubing corrosion rates. The masses were evaluated for trends with time (e.g., the number of cycles) and for the influence of design and operating features such as tubing manufacturer, plant design (e.g., three loop versus four loop), and operating chemistry program. This project utilized the EPRI PWR Chemistry Monitoring and Assessment database. Data from over 20 units, many over several cycles, were assessed. The focus was on corrosion product release from Alloy 690TT tubing and all data were from units that had replaced steam generators. Data were analyzed using models developed from corrosion rate test data reported in the literature with a heavy reliance on data from the EDF BOREAL testing. The most striking result of this analysis was a clear division between plants that exhibited corrosion with a falling rate (i.e., following an exponential decay as has been observed, for example, in the BOREAL testing) and those that showed a constant corrosion rate, sustained for many outages. This difference appears to be most closely correlated with the manufacturer of the tubing. Within the two distinct plant groups (decaying corrosion rate and constant corrosion rate), details of the trends were evaluated for correlation with zinc addition history, plant type, and operating

  9. Damodar Valley Corporation, Chandrapura Unit 2 Thermal Power Station Residual Life Assessment Summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    The BHEL/NTPC/PFC/TVA teams assembled at the DVC`s Chadrapura station on July 19, 1994, to assess the remaining life of Unit 2. The workscope was expanded to include major plant systems that impact the unit`s ability to sustain generation at 140 MW (Units 1-3 have operated at average rating of about 90 MW). Assessment was completed Aug. 19, 1994. Boiler pressure parts are in excellent condition except for damage to primary superheater header/stub tubes and economizer inlet header stub tubes. The turbine steam path is in good condition except for damage to LP blading; the spar rotor steam path is in better condition and is recommended for Unit 2. Nozzle box struts are severely cracked from the flame outs; the cracks should not be repaired. HP/IP rotor has surface cracks at several places along the steam seal areas; these cracks are shallow and should be machined out. Detailed component damage assessments for above damaged components have been done. The turbine auxiliary systems have been evaluated; cooling tower fouling/blockage is the root cause for the high turbine back pressure. The fuel processing system is one of the primary root causes for limiting unit capacity. The main steam and hot reheat piping systems were conservatively designed and have at least 30 years left;deficiencies needing resolution include restoration of insulation, replacement of 6 deformed hanger clamp/bolts, and adjustment of a few hanger settings. The cold reheat piping system is generally in good condition; some areas should be re-insulated and the rigid support clamps/bolts should be examined. The turbine extraction piping system supports all appeared to be functioning normally.

  10. Analysis on the Current Status of Chemical Decontamination Technology of Steam Generators in the Oversea Nuclear Power Plants (NPPs)

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Taebin; Kim, Sukhoon; Kim, Juyoul; Kim, Juyub; Lee, Seunghee [FNC Technology Co. Ltd., Yongin (Korea, Republic of)

    2015-10-15

    The steam generators in Hanbit Unit 3 and 4 are scheduled to be replaced in 2018 and 2019, respectively. Nevertheless, the wastes from the dismantled steam generators are currently just on-site stored in the NPP because there are no disposal measures for the waste and lack of the decontamination techniques for large-sized metallic equipment. In contrast, in the oversea NPPs, there are many practical cases of chemical decontamination not only for oversized components in the NPPs such as reactor pressure vessel and steam generator, but also for major pipes. Chemical decontamination technique is more effective in decontaminating the components with complicated shape compared with mechanical one. Moreover, a high decontamination factor can be obtained by using strong solvent, and thereby most of radionuclides can be removed. Due to these advantages, the chemical decontamination has been used most frequently for operation of decontaminating the large-sized equipment. In this study, an analysis on the current status of chemical decontamination technique used for the steam generators of the foreign commercial NPPs was performed. In this study, the three major chemical decontamination processes were reviewed, which are applied to the decommissioning process of the steam generators in the commercial NPPs of the United States, Germany, and Belgium. The three processes have the different features in aspect of solvent, while those are based in common on the oxidation and reduction between the target metal surface and solvents. In addition, they have the same goals for improving the decontamination efficiency and decreasing the amount of the secondary waste generation. Based on the analysis results on component sub-processes and major advantages and disadvantages of each process, Table 2 shows the key fundamental technologies for decontamination of the steam generator in Korea and the major considerations in the development process of each technology. It is necessary to prepare

  11. Some causes of vibrations recorded by in-service diagnostic systems in steam generators of units 1 and 2 of Dukovany nuclear power plant

    International Nuclear Information System (INIS)

    Sadilek, J.; Matal, O.

    1989-01-01

    A brief description is presented of the design of the steam generators of the first and second units of the Dukovany nuclear power plant. Attention is also given to the feed water systems and the diagnostic systems. The causes are analyzed of the irregularly occurring vibrations in the steam generators in service. It is demonstrated that the source of the vibrations transmitted to the steam generators are the valves in the feeding tract. The vibrations are induced by dynamic forces from the feed water. Reducing the water pressure at the delivery of the electric feed pumps by reducing the size of the rotor, etc., does not remove all vibrations. It is therefore recommended that valves be ins+alled with better regulating characteristics. (Z.M.). 6 figs., 1 tab., 3 refs

  12. Mitigation of organically bound sulphate from water treatment plants at Bruce NGS and impact on steam generator secondary side chemistry control

    Energy Technology Data Exchange (ETDEWEB)

    Nashiem, R.; Davloor, R.; Harper, B.; Smith, K. [Bruce Power, Tiverton, Ontario (Canada); Gauthier, C. [CTGIX Services Inc., Burlington, Ontario (Canada); Schexnailder, S. [GE Water and Process Technologies, Dallas, Texas (United States)

    2010-07-01

    Bruce Power is the source of more than 20 per cent of Ontario's electricity and currently operates six reactor units at the Bruce Nuclear Generating Station A (two units) and B (four units) stations located on Lake Huron. This paper discusses the challenges faced and operating experience (OPEX) gained in meeting WANO 1.0 chemistry performance objectives for steam generator secondary side chemistry control, particularly with control of steam generator sulphates. A detailed sampling and analysis program conducted as part of this study concluded that a major contributor to steam generator (SG) elevated sulphates is Organically Bound Sulphate (OBS) in Water Treatment Plants (WTP) effluent. The Bruce A and B WTPs consist of clarification with downstream sand and carbon filtration for Lake Water pre-treatment, which are followed by conventional Ion Exchange (IX) demineralization. Samples taken from various locations in the process stream were analyzed for a variety of parameters including both organic bound and inorganic forms of sulphate. The results are inconclusive with respect to finding the definitive source of OBS. This is primarily due to the condition that the OBS in the samples, which are in relatively low levels, are masked during chemical analysis by the considerably higher inorganic sulphate background. Additionally, it was also determined that on-line Total Organic Carbon (TOC) levels at different WTP locations did not always correlate well with OBS levels in the effluent, such that TOC could not be effectively used as a control parameter to improve OBS performance of the WTP operation. Improvement efforts at both plants focused on a number of areas including optimization of clarifier operation, replacement of IX resins, addition of downstream mobile polishing trailers, testing of new resins and adsorbents, pilot-scale testing with a Reverse Osmosis (RO) rig, review of resin regeneration and backwashing practices, and operating procedure improvements

  13. Mitigation of organically bound sulphate from water treatment plants at Bruce NGS and impact on steam generator secondary side chemistry control

    International Nuclear Information System (INIS)

    Nashiem, R.; Davloor, R.; Harper, B.; Smith, K.; Gauthier, C.; Schexnailder, S.

    2010-01-01

    Bruce Power is the source of more than 20 per cent of Ontario's electricity and currently operates six reactor units at the Bruce Nuclear Generating Station A (two units) and B (four units) stations located on Lake Huron. This paper discusses the challenges faced and operating experience (OPEX) gained in meeting WANO 1.0 chemistry performance objectives for steam generator secondary side chemistry control, particularly with control of steam generator sulphates. A detailed sampling and analysis program conducted as part of this study concluded that a major contributor to steam generator (SG) elevated sulphates is Organically Bound Sulphate (OBS) in Water Treatment Plants (WTP) effluent. The Bruce A and B WTPs consist of clarification with downstream sand and carbon filtration for Lake Water pre-treatment, which are followed by conventional Ion Exchange (IX) demineralization. Samples taken from various locations in the process stream were analyzed for a variety of parameters including both organic bound and inorganic forms of sulphate. The results are inconclusive with respect to finding the definitive source of OBS. This is primarily due to the condition that the OBS in the samples, which are in relatively low levels, are masked during chemical analysis by the considerably higher inorganic sulphate background. Additionally, it was also determined that on-line Total Organic Carbon (TOC) levels at different WTP locations did not always correlate well with OBS levels in the effluent, such that TOC could not be effectively used as a control parameter to improve OBS performance of the WTP operation. Improvement efforts at both plants focused on a number of areas including optimization of clarifier operation, replacement of IX resins, addition of downstream mobile polishing trailers, testing of new resins and adsorbents, pilot-scale testing with a Reverse Osmosis (RO) rig, review of resin regeneration and backwashing practices, and operating procedure improvements

  14. Reactor Core Internals Replacement of Ikata Units 1 and 2

    International Nuclear Information System (INIS)

    Ikeda, K.; Ishikawa, T.; Miyoshi, T.; Takagi, T.

    2012-01-01

    This paper presents an overview of the reactor core internals replacement project carried out at the Ikata Nuclear Power Station in Japan, which was the first of its kind among PWRs in the world. Failure of baffle former bolts was first reported in 1989 at Bugey 2 in France. Since then, similar incidents have been reported in Belgium and in the U.S., but not in Japan. However, the possibility of these bolts failing in Japanese plants cannot be denied in the future as operating hours increase. Ageing degradation mechanisms for the reactor core internals include irradiation-assisted stress corrosion cracking of baffle former bolts and mechanical wear of control rod guide cards. Two different approaches can be taken to address these ageing issues: to inspect and repair whenever a problem is found; and to replace the entire core internals with those of a new design having advanced features to prevent ageing degradation problems. The choice of our company was the latter. This paper explains the reasons for the choice and summarizes the replacement project activities at Ikata Units 1 and 2 as well as the improvements incorporated in the new design. (author)

  15. Steam generator life cycle management: Ontario Power Generation (OPG) experience

    International Nuclear Information System (INIS)

    Maruska, C.C.

    2002-01-01

    A systematic managed process for steam generators has been implemented at Ontario Power Generation (OPG) nuclear stations for the past several years. One of the key requirements of this managed process is to have in place long range Steam Generator Life Cycle Management (SG LCM) plans for each unit. The primary goal of these plans is to maximize the value of the nuclear facility through safe and reliable steam generator operation over the expected life of the units. The SG LCM plans integrate and schedule all steam generator actions such as inspection, operation, maintenance, modifications, repairs, assessments, R and D, performance monitoring and feedback. This paper discusses OPG steam generator life cycle management experience to date, including successes, failures and how lessons learned have been re-applied. The discussion includes relevant examples from each of the operating stations: Pickering B and Darlington. It also includes some of the experience and lessons learned from the activities carried out to refurbish the steam generators at Pickering A after several years in long term lay-up. The paper is structured along the various degradation modes that have been observed to date at these sites, including monitoring and mitigating actions taken and future plans. (author)

  16. Replacement energy costs for nuclear electricity-generating units in the United States: 1997--2001. Volume 4

    International Nuclear Information System (INIS)

    VanKuiken, J.C.; Guziel, K.A.; Tompkins, M.M.; Buehring, W.A.

    1997-09-01

    This report updates previous estimates of replacement energy costs for potential short-term shutdowns of 109 US nuclear electricity-generating units. This information was developed to assist the US Nuclear Regulatory Commission (NRC) in its regulatory impact analyses, specifically those that examine the impacts of proposed regulations requiring retrofitting of or safety modifications to nuclear reactors. Such actions might necessitate shutdowns of nuclear power plants while these changes are being implemented. The change in energy cost represents one factor that the NRC must consider when deciding to require a particular modification. Cost estimates were derived from probabilistic production cost simulations of pooled utility system operations. Factors affecting replacement energy costs, such as random unit failures, maintenance and refueling requirements, and load variations, are treated in the analysis. This report describes an abbreviated analytical approach as it was adopted to update the cost estimates published in NUREG/CR-4012, Vol. 3. The updates were made to extend the time frame of cost estimates and to account for recent changes in utility system conditions, such as change in fuel prices, construction and retirement schedules, and system demand projects

  17. Sensitivity of measured steam oxidation kinetics to atmospheric control and impurities

    Energy Technology Data Exchange (ETDEWEB)

    Sooby Wood, E., E-mail: sooby@lanl.gov [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM (United States); Terrani, K.A. [Nuclear Fuels Materials Group, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Nelson, A.T. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM (United States)

    2016-08-15

    The most direct means of improving the ability of water cooled reactors to withstand excessive cladding oxidation during a loss of coolant accident is to either modify or replace zirconium cladding. It is important to understand what level of agreement is to be expected as a function of systematic differences in steam oxidation testing techniques and instrumentation among testing facilities. The present study was designed to assess the sensitivities of some of the current and proposed reactor cladding materials. Steam oxidation sensitivity of Zircaloy-2, FeCrAl and Mo to O{sub 2} impurities in steam were examined. It was shown that the effect of O{sub 2} impurities is negligible for the two former materials while significant in the case of Mo.

  18. Spanish approach to research and development applied to steam generator tubes structural integrity and life management

    International Nuclear Information System (INIS)

    Lozano, J.; Bollini, G.J.

    1997-01-01

    The operating experience acquired from certain Spanish Nuclear Power Plant steam generators shows that the tubes, which constitute the second barrier to release of fission products, are susceptible to mechanical damage and corrosion as a result of a variety of mechanisms, among them wastage, pitting, intergranular attack (IGA), stress-corrosion cracking (SCC), fatigue-induced cracking, fretting, erosion/corrosion, support plate denting, etc. These problems, which are common in many plants throughout the world, have required numerous investments by the plants (water treatment plants, replacement of secondary side materials such as condensers and heaters, etc.), have meant costs (operation, inspection and maintenance) and have led to the unavailability of the affected units. In identifying and implementing all these preventive and corrective measures, the Spanish utilities have moved through three successive stages: in the initial stage, the main source of information and of proposals for solutions was the Plant Vendor, whose participation in this respect was based on his own Research and Development programs; subsequently, the Spanish utilities participated jointly in the EPRI Steam Generator Owners Group, collaborating in financing; finally, the Spanish utilities set up their own Steam Generator Research and Development program, while maintaining relations with EPRI programs and those of other countries through information interchange

  19. Technical specifications: Susquehanna Steam Electric Station, Unit No. 2 (Docket No. 50-388). Appendix A to License No. NPF-22

    International Nuclear Information System (INIS)

    1984-03-01

    Susquehanna Steam Electric Station, Unit 2 Technical Specifications were prepared by the US Nuclear Regulatory Commission to set forth the limits, operating conditions, and other requirements applicable to a nuclear reactor facility as set forth in Section 50.36 of 10 CFR Part 50 for the protection of the health and safety of the public

  20. Direct injection of superheated steam for continuous hydrolysis reaction

    KAUST Repository

    Wang, Weicheng

    2012-09-01

    The primary intent for previous continuous hydrolysis studies was to minimize the reaction temperature and reaction time. In this work, hydrolysis is the first step of a proprietary chemical process to convert lipids to sustainable, drop-in replacements for petroleum based fuels. To improve the economics of the process, attention is now focused on optimizing the energy efficiency of the process, maximizing the reaction rate, and improving the recovery of the glycerol by-product. A laboratory-scale reactor system has been designed and built with this goal in mind.Sweet water (water with glycerol from the hydrolysis reaction) is routed to a distillation column and heated above the boiling point of water at the reaction pressure. The steam pressure allows the steam to return to the reactor without pumping. Direct injection of steam into the hydrolysis reactor is shown to provide favorable equilibrium conditions resulting in a high quality of FFA product and rapid reaction rate, even without preheating the inlet water and oil and with lower reactor temperatures and lower fresh water demand. The high enthalpy of the steam provides energy for the hydrolysis reaction. Steam injection offers enhanced conditions for continuous hydrolysis of triglycerides to high-purity streams of FFA and glycerol. © 2012 Elsevier B.V.

  1. Soviet steam generator technology: fossil fuel and nuclear power plants

    International Nuclear Information System (INIS)

    Rosengaus, J.

    1987-01-01

    In the Soviet Union, particular operational requirements, coupled with a centralized planning system adopted in the 1920s, have led to a current technology which differs in significant ways from its counterparts elsewhere in the would and particularly in the United States. However, the monograph has a broader value in that it traces the development of steam generators in response to the industrial requirements of a major nation dealing with the global energy situation. Specifically, it shows how Soviet steam generator technology evolved as a result of changing industrial requirements, fuel availability, and national fuel utilization policy. The monograph begins with a brief technical introduction focusing on steam-turbine power plants, and includes a discussion of the Soviet Union's regional power supply (GRES) networks and heat and power plant (TETs) systems. TETs may be described as large central co-generating stations which, in addition to electricity, provide heat in the form of steam and hot water. Plants of this type are a common feature of the USSR today. The adoption of these cogeneration units as a matter of national policy has had a central influence on Soviet steam generator technology which can be traced throughout the monograph. The six chapters contain: a short history of steam generators in the USSR; steam generator design and manufacture in the USSR; boiler and furnace assemblies for fossil fuel-fired power stations; auxiliary components; steam generators in nuclear power plants; and the current status of the Soviet steam generator industry. Chapters have been abstracted separately. A glossary is included containing abbreviations and acronyms of USSR organizations. 26 references

  2. Steam feeding redundancy for turbine-drives of feed pumps at WWER-1000 NPP

    International Nuclear Information System (INIS)

    Nesterov, Yu.V.; Shmukler, B.I.

    1987-01-01

    The system of steam supply for feed pump driving turbines (T) at the South Ukrainian Unit 1 according to the centralized redundancy principle is described. T is feeded through the collector of water auxiliary sytem (CWAS) to which steam from the third steam extraction line of turbine is supplied under thenormal regime. Under the reduction of turbine load, live steam from the steam generator is supplied to CWAS through the pressure regulator, possesing 10 s speed of responce. In this case the level reduction in the steam generator makes up 170 mm

  3. Replacement of the moderator cell unit of JRR-3's cold neutron source facility

    International Nuclear Information System (INIS)

    Hazawa, Tomoya; Nagahori, Kazuhisa; Kusunoki, Tsuyoshi

    2006-10-01

    The moderator cell of the JRR-3's cold neutron source (CNS) facility, converts thermal neutrons into cold neutrons by passing through liquid cold hydrogen. The cold neutrons are used for material and life science research such as the neutron scattering. The CNS has been operated since the start of JRR-3's in 1990. The moderator cell containing liquid hydrogen is made of stainless steel. The material irradiation lifetime is limited to 7 years due to irradiation brittleness. The first replacement was done by using a spare part made in France. This replacement work of 2006 was carried out by using the domestic moderator cell unit. The following technologies were developed for the moderator cell unit production. 1) Technical development of black treatment on moderator cell surface to increase radiation heat. 2) Development of bending technology of concentric triple tubes consisting from inside tube, Outside tube and Vacuum insulation tube. 3) Development of manufacturing technique of the moderator cell with complicated shapes. According to detail planed work procedures, replacement work was carried out. As results, the working days were reduced to 80% of old ones. The radiation dose was also reduced due to reduction of working days. It was verified by measurement of neutrons characteristics that the replaced moderator cell has the same performance as that of the old moderator cell. The domestic manufacturing of the moderator cell was succeeded. As results, the replacement cost was reduced by development of domestic production technology. (author)

  4. Evaluation of Steam Generator Level behavior for Determination of Turbine Runback rate on COPs trip for Yonggwang 1 and 2 Power Uprating Units

    International Nuclear Information System (INIS)

    Lee, Kyung Jin; Hwang, Su Hyun; Yoo, Tae Geun; Chung, Soon Il; An, Byung Chang; Park, Jung Gu

    2010-01-01

    4.5% power uprate project has been progressing for the first time in Yonggwang 1 and 2(YGN1 and 2). Reviews for design change due to the power uprate were accomplished. Steam generator level behavior was one of the most important parameters because it could be cause of reactor trip or turbine trip. As the results of the reviews, YGN1 and 2 had to reassess it for change of turbine runback rate when turbine runback occurs due to the condensate operating pumps (COP) trip. This study has been carried out for evaluating the steam generator level behavior for determination of turbine runback rate on COPs trip for Yonggwang 1 and 2 Power Uprating Units. The steam generator water level evaluation program for YGN1 and 2 (SLEP-Y1) has been developed for it. The program includes models for the steam generator water level response. SLEP-Y1 is programmed with advanced continuous system simulation language (ACSL). The language has been used to simulate physical systems as a commercial tool used to evaluate system designs

  5. Analysis of fast reactor steam generator performance

    International Nuclear Information System (INIS)

    Hulme, G.; Curzon, A.F.

    1992-01-01

    A computer model for the prediction of flow and temperature fields within a fast reactor steam generator unit is described. The model combines a commercially available computational fluid dynamics (CFD) solver (PHOENICS) with a steam-tube calculation and provides solutions for the fully coupled flow and temperature fields on both the shell side and the tube side. The model includes the inlet and outlet headers and the bottom end stagnant zone. It also accounts for the effects of support grids and edge-gaps. Two and three dimensional and transient calculations have been performed for both straight tube and J-tube units. Examples of the application of the model are presented. (7 figures) (Author)

  6. PWR steam generator chemical cleaning. Phase II. Final report

    International Nuclear Information System (INIS)

    1980-01-01

    Two techniques believed capable of chemically dissolving the corrosion products in the annuli between tubes and support plates were developed in laboratory work in Phase I of this project and were pilot tested in Indian Point Unit No. 1 steam generators. In Phase II, one of the techniques was shown to be inadequate on an actual sample taken from an Indian Point Unit No. 2 steam generator. The other technique was modified slightly, and it was demonstrated that the tube/support plate annulus could be chemically cleaned effectively

  7. Evaluation of material integrity on electricity generator water steam cycles component (Main Steam Pipe)

    International Nuclear Information System (INIS)

    Sudardjo; Histori; Triyadi, Ari

    1998-01-01

    The evaluation of material integrity on electricity generator component has been done. That component was main steam pipe of Unit II Suralaya Coal Fired Power Plant. evaluation was done by replication technique. The damage was found are two porosity's, from two point samples of six points sample population. Based on cavity evaluation in steels, which proposed by Neubauer and Wedel that porosity's still at class A damage. For class A damage, its means no remedial action would be required until next major scheduled maintenance outage. That porosity's was grouped on isolated cavities and not need ti repair that main steam pipe component less than three year after replication test

  8. Multi-layer casing of a steam turbine for high steam pressures and temperatures

    International Nuclear Information System (INIS)

    Remberg, A.

    1978-01-01

    In previous turbine casings there is no sealing provided between the inner layer and the outer layer, so that the steam pressure acts fully on the casing top and on the shaft seal housing situated there. To reduce the displacement which occurs there due to pressure differences in the various steam spaces, the normal inner casing is made with the shaft sealing housing in an inner layer, which cannot be divided in the axial direction. The inner layer can be inserted from the high pressure side into the unit outer casing. A horizontal section through the turbine in the attached drawing makes the construction and operation of the invention clear. (GL) [de

  9. Steam generators regulatory practices and issues in Spain

    International Nuclear Information System (INIS)

    Mendoza, C.; Castelao, C.; Ruiz-Colino, J.; Figueras, J.M.

    1997-01-01

    This paper presents the actual status of Spanish Steam Generator tubes, actions developed by PWR plant owners and submitted to CSN, and regulatory activities related to tube degradation mechanisms analysis; NDT tube inspection techniques; tube, tubesheet and TSPs integrity studies; tube plugging/repair criteria; preventive and corrective measures including whole SGs replacement; tube leak measurement methods and other operational aspects

  10. Impact of the economic downturn on total joint replacement demand in the United States: updated projections to 2021.

    Science.gov (United States)

    Kurtz, Steven M; Ong, Kevin L; Lau, Edmund; Bozic, Kevin J

    2014-04-16

    Few studies have explored the role of the National Health Expenditure and macroeconomics on the utilization of total joint replacement. The economic downturn has raised questions about the sustainability of growth for total joint replacement in the future. Previous projections of total joint replacement demand in the United States were based on data up to 2003 using a statistical methodology that neglected macroeconomic factors, such as the National Health Expenditure. Data from the Nationwide Inpatient Sample (1993 to 2010) were used with United States Census and National Health Expenditure data to quantify historical trends in total joint replacement rates, including the two economic downturns in the 2000s. Primary and revision hip and knee arthroplasty were identified using codes from the International Classification of Diseases, Ninth Revision, Clinical Modification. Projections in total joint replacement were estimated using a regression model incorporating the growth in population and rate of arthroplasties from 1993 to 2010 as a function of age, sex, race, and census region using the National Health Expenditure as the independent variable. The regression model was used in conjunction with government projections of National Health Expenditure from 2011 to 2021 to estimate future arthroplasty rates in subpopulations of the United States and to derive national estimates. The growth trend for the incidence of joint arthroplasty, for the overall United States population as well as for the United States workforce, was insensitive to economic downturns. From 2009 to 2010, the total number of procedures increased by 6.0% for primary total hip arthroplasty, 6.1% for primary total knee arthroplasty, 10.8% for revision total hip arthroplasty, and 13.5% for revision total knee arthroplasty. The National Health Expenditure model projections for primary hip replacement in 2020 were higher than a previously projected model, whereas the current model estimates for total

  11. Safety Evaluation Report related to the operation of Comanche Peak Steam Electric Station, Unit 2 (Docket No. 50-446)

    International Nuclear Information System (INIS)

    1992-09-01

    This document supplement 25 to the Safety Evaluation Report related to the operation of the Comanche Peak Steam Electric Station (CPSES), Unit 2 (NUREG-0797), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission (NRC). The facility is located in Somervell County, Texas, approximately 40 miles southwest of Fort Worth, Texas. This supplement reports the status of certain issues that had not been resolved when the Safety Evaluation Report and Supplements 1, 2, 3, 4, 6, 12, 21, 22, 23, and 24 to that report were published. This supplement deals primarily with Unit 2 issues; however, it also references evaluations for several Unit 1 licensing items resolved since Supplement 24 was issued

  12. Recent technology for BWR nuclear steam turbine unit

    International Nuclear Information System (INIS)

    Moriya, Shin-ichi; Masuda, Toyohiko; Kashiwabara, Katsuto; Oshima, Yoshikuni

    1990-01-01

    As to the ABWR plants which is the third improvement standard boiling water reactor type plants, already the construction of a plant of 1356 MWe class for 50 Hz is planned. Hitachi Ltd. has accumulated the technology for the home manufacture of a whole ABWR plant including a turbine. As the results, the application of a butterfly type combination intermediate valve to No.5 plant in Kashiwazaki Kariwa Nuclear Power Station, Tokyo Electric Power Co., Inc., which began the commercial operation recently and later plants, the application of a moisture separating heater to No.4 plant in Hamaoka Nuclear Power Station, Chubu Electric Power Co., Inc., which is manufactured at present and later plants and so on were carried out. As to the steam turbine facilities for nuclear power generation manufactured by Hitachi Ltd., three turbines of 1100 MWe class for 50 Hz and one turbine for 60 Hz are in operation. As the new technologies for the steam turbines, the development of 52 in long last stage blades, the new design techniques for the rotor system, the moisture separating heater, the butterfly type combination intermediate valve, cross-around pipes and condensate and feedwater system are reported. (K.I.)

  13. Final environmental statement related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2: (Docket Nos. 50-445 and 50-446)

    International Nuclear Information System (INIS)

    1981-09-01

    The proposed action is the issuance of operating licenses to the Texas Utilities Generating Company for the startup and operation of Units 1 and 2 of the Comanche Peak Steam Electric Station located on Squaw Creek Reservoir in Somervell County, Texas, about 7 km north-northeast of Glen Rose, Texas, and about 65 km southwest of Fort Worth in north-central Texas. The information in this environmental statement represents the second assessment of the environmental impact associated with the Comanche Peak Steam Electric Station pursuant to the guidelines of the National Environmental Policy Act of 1969 (NEPA) and 10 CFR Part 51 of the Commission's Regulations. After receiving an application to construct this station, the staff carried out a review of impact that would occur during its construction and operation. This evaluation was issued as a Final Environmental Statement -- Construction Phase. After this environmental review, a safety review, an evaluation by the Advisory Committee on Reactor Safeguards, and public hearings in Glen Rose, Texas, the US Atomic Energy Commission (now US Nuclear Regulatory Commission) issued construction permits for the construction of Units 1 and 2 of the Comanche Peak Steam Electric Station. 16 figs., 34 tabs

  14. Development and application of the lancing system of delta-60 steam generator-Kori nuclear power plant unit 1

    International Nuclear Information System (INIS)

    Jeong, W. T.; Han, D. Y.; Ahn, N. S.; Jo, B. H.; Hong, Y. W.

    2001-01-01

    A lancing system for removing the deposits on the tube sheet of a nuclear steam generator using high pressure water was developed and applied to Kori Nuclear Power Plant( NPP) Unit 1. As the place where the lancing system is to be installed is relatively high radioactive area, every part consisting the equipment is carefully selected to be radiation resistant. The lancing robot was designed to be water proof to aviod possible malfunction of the lancing robot because of high pressure water. To minimize radiation exposure to operators, the system was designed considering easy installation and maintenance in mind. Water ejection nozzle are designed to have high strength with special material and heat treatment so as to lessen abrasion caused by high pressure ejection. The lancing system showed good performance during the on-site lancing using the system for Delta-60 steam generator of Kori NPP No. 1 in October 2000

  15. How to replace a reactor pressure vessel

    International Nuclear Information System (INIS)

    Huber, R.

    1996-01-01

    A potential life extending procedure for a nuclear reactor after, say, 40 years of service life, might in some circumstances be the replacement of the reactor pressure vessel. Neutron induced degradation of the vessel might make replacement by one of a different material composition desirable, for example. Although the replacement of heavy components, such as steam generators, has been possible for many years, the pressure vessel presents a much more demanding task if only because it is highly irradiated. Some preliminary feasibility studies by Siemens are reported for the two removal strategies that might be considered. These are removal of the entire pressure vessel in one piece and dismantling it into sections. (UK)

  16. Evaluation of acoustic resonance at branch section in main steam line. Part 1. Effects of steam wetness on acoustic resonance

    International Nuclear Information System (INIS)

    Uchiyama, Yuta; Morita, Ryo

    2011-01-01

    The power uprating of the nuclear power plant (NPP) is conducted in United States, EU countries and so on, and also is planned in Japan. However, the degradation phenomena such as flow-induced vibration and wall thinning may increase or expose in the power uprate condition. In U.S. NPP, the dryer had been damaged by high cycle fatigue due to acoustic-induced vibration under a 17% extended power uprating (EPU) condition. This is caused by acoustic resonance at the stub pipes of safety relief valves (SRVs) in the main steam lines (MSL). Increased velocity by uprating excites the pressure fluctuations and makes large amplitude resonance. To evaluate the acoustic resonance at the stub pipes of SRVs in actual BWR, it is necessary to clarify the acoustic characteristics in steam flow. Although there are several previous studies about acoustic resonance, most of them are not steam flow but air flow. Therefore in this study, to investigate the acoustic characteristics in steam flow, we conducted steam flow experiments in each dry and wet steam conditions, and also nearly saturated condition. We measured pressure fluctuation at the top of the single stub pipe and in main steam piping. As a result, acoustic resonance in dry steam flow could be evaluated as same as that in air flow. It is clarified that resonance amplitude of fluctuating pressure at the top of the stub pipe in wet steam was reduced to one-tenth compared with that in dry. (author)

  17. Analysis of the Instability Phenomena Caused by Steam in High-Pressure Turbines

    Directory of Open Access Journals (Sweden)

    Paolo Pennacchi

    2011-01-01

    Full Text Available Instability phenomena in steam turbines may happen as a consequence of certain characteristics of the steam flow as well as of the mechanical and geometrical properties of the seals. This phenomenon can be modeled and the raise of the steam flow and pressure causes the increase of the cross coupled coefficients used to model the seal stiffness. As a consequence, the eigenvalues and eigenmodes of the mathematical model of the machine change. The real part of the eigenvalue associated with the first flexural normal mode of the turbine shaft may become positive causing the conditions for unstable vibrations. The original contribution of the paper is the application of a model-based analysis of the dynamic behavior of a large power unit, affected by steam-whirl instability phenomena. The model proposed by the authors allows studying successfully the experimental case. The threshold level of the steam flow that causes instability conditions is analyzed and used to define the stability margin of the power unit.

  18. Control system for fluid heated steam generator

    Science.gov (United States)

    Boland, J.F.; Koenig, J.F.

    1984-05-29

    A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

  19. Trip report: United States LMFBR Steam Generator Team. IAEA symposium, Bensberg, Germany, October 14--17, 1974

    International Nuclear Information System (INIS)

    1974-01-01

    Information is presented concerning steam generator design characteristics for the AFR reactor, SNR reactor, PHENIX reactor, SUPER PHENIX reactor, MONJU reactor, and BN-350 reactor; steam generator development programs for West Germany, France, Japan, U. K., and the U. S. S. R.; and the fabrication and inspection of steam generator components. Steam generator performance and maintenance requirements for operating LMFBR reactors are reviewed. (U.S.)

  20. Simulation and design of distillation units for treatment of sulfite pulping condensates to recover methanol and furfural. Part I. Incorporation with an evaporation unit and use of secondary steam

    Energy Technology Data Exchange (ETDEWEB)

    Zacchi, G.; Aly, G.

    1979-06-01

    A distillation unit was simulated using DESTLA, a computer program for steady-state calculations of general multicomponent distillation units. Vapor-liquid and liquid-liquid equilibria were both computed by EQUIL, a computer program for computation and plotting of such equilibria. The simulations resulted in a distillation unit consisting of three columns. Energy consumed in the first column dominates the operating costs of the unit. The first of the three different alternatives studied for satisfying the energy requirements of the first column is presented. Incorporating the first column into an evaporation unit yields low steam consumption. However, a decrease in evaporation capacity due to the temperature drop in the first column and complex control design are the disadvantages associated with this alternative.

  1. Forced circulation type steam generator simulation code: HT4

    International Nuclear Information System (INIS)

    Okamoto, Masaharu; Tadokoro, Yoshihiro

    1982-08-01

    The purpose of this code is a understanding of dynamic characteristics of the steam generator, which is a component of High-temperature Heat Transfer Components Test Unit. This unit is a number 4th test section of Helium Engineering Demonstration Loop (HENDEL). Features of this report are as follows, modeling of the steam generator, a basic relationship for the continuity equation, numerical analysis techniques of a non-linear simultaneous equation and computer graphics output techniques. Forced circulation type steam generator with strait tubes and horizontal cut baffles, applied in this code, have be designed at the Over All System Design of the VHTRex. The code is for use with JAERI's digital computer FACOM M200. About 1.5 sec required for each time step reiteration, then about 40 sec cpu time required for a standard problem. (author)

  2. Time program using in automatization of steam turbines start-up

    International Nuclear Information System (INIS)

    Lejzerovich, A.Sh.; Melamed, A.D.

    Examples and arguments for developing time programs of changing basic parameters of automated start-up of TPP and NPP high-power steam turbines are considered. Basic parameters subject to controlled changing at automatization of turbine start-up are rotation frequency, loading and temperature of steam supplied to the turbine. Principle facility schemes of program regulation of steam temperature at the start-up are presented. The facility scheme of loading the NPP wet steam turbine is given. The principles of developing time programs, of changing basic parameters of automated start-up enable realizing transient processes close to theoretically optimum processes at arbitrary prestart-up state of the turbine by means of rather simple autatic facilities. In particular, for automated temperature increase of steam supplied to the turbine of TES power units and AES turbine loading, it is advisable to use programs in the form of linear dependence of velocity of changing the controlled parameter on the given value, the initial level, from which the parameter increase with a regulated velocity is realized, is given in the form of analogue dependence on the turbine prestart-up state. The programs described and the schemes of their realization have been approved at the automatization of 300 MW power unit starts up with the K-300-240 turbine and K-220-44 turbine as well as used when creating control system for turbines of 500 MW and higher for designed TPP and NPP power units

  3. Development and application of an entrainment model for the PWR U-tube steam generators for main steam line break analysis

    International Nuclear Information System (INIS)

    Song, Dong-Soo; Park, Young-Chan

    2004-01-01

    The purpose of this paper is to present the analyses that were performed to develop and use an entrainment model for pressurized water reactor U-tube steam generators (SG) for main steam line break (MSLB) analyses. The entrainment model was developed using the RETRAN-3D computer program, and the model was benchmarked against experimental data of moisture carryover during a simulated MSLB accident. The application methodology was also developed to incorporate into the MSLB mass and energy release calculations for Kori Unit 1. This methodology utilizes LOFTRAN and RETRAN-3D codes in an iterative sequence of cases in which the LOFTRAN nuclear steam supply system model provides boundary conditions for the RETRAN-3D broken loop steam generator model, and the RETRAN-3D model provides the entrainment data that is input back into the LOFTRAN model. FORTRAN programs were developed to facilitate the sequencing of these iterative calculations. As a result of applying the entrainment model to Kori Unit 1, the temperature calculated inside Containment during MSLB accident using the CONTEMP-LT computer program decreased by about 25degC. Consequently this entrainment model provides a significant benefit by decreasing the temperature envelop for environment qualification as well as decreasing the peak Containment pressure. (author)

  4. Gentilly 2 divider plate replacement

    International Nuclear Information System (INIS)

    Forest, J.; Klisel, E.; McClellan, G.; Schnelder, W.

    1995-01-01

    The steam generators at the Gentilly 2 Nuclear Plant in operation since 1983 were built with primary divider plates of a bolted panel configuration. During a routine outage inspection, it was noted that two bolts had dislodged from the divider and were located lying in the primary head. Subsequent inspections revealed erosion damage to a substantial number of divider plate bolts and to a lesser extent, to the divider plate itself. After further inspection and repair the units were returned to operation, however, it was determined that a permanent replacement of the primary divider plates was going to be necessary. After evaluation of various options, it was decided that the panel type dividers would be replaced with a single piece floating design. The divider itself was to be of a one piece all-welded arrangement to be constructed from individual panels to be brought in through the manways. In view of the strength limitations of the bolted attachment of the upper seat bar to the tubesheet, a new welded seat bar was provided. To counteract erosion concerns, the new divider is fitted with erosion resistant inserts or weld buildup and with improved sealing features in order to minimize leakage and erosion. At an advanced stage in the design and manufacture of the components, the issue of divider strength during LOCA conditions came into focus. Analysis was performed to determine the strength and/or failure characteristics of the divider to a variety of small and large LOCA conditions. The paper describes the diagnosis of the original divider plates and the design, manufacture, field mobilization, installation and subsequent operation of the replacement divider plates. (author)

  5. Design Evolution and Verification of the A-3 Chemical Steam Generator

    Science.gov (United States)

    Kirchner, Casey K.

    2009-01-01

    operate as expected. The generator which will undergo this testing is of the most recent A-3 configuration, and will be instrumented far in excess of what is normally required for operation. The extra data will allow for easier troubleshooting and more complete knowledge of expected generator performance. In addition, the early testing will give SSC personnel experience in operating the CSG systems, which will expedite the process of installation and activation at A-3. Each Chemical Steam Generator is supported by a complement of valves, instruments, and flow control devices, with the entire assembly called a "module." The generators will be installed in groups of three, historically called "units". A module is so called because of its modular ability to be replaced or serviced without disturbing the other two modules installed on the same unit. A module is pictured in Figure 1, shown with its generator secured by white bands in its shipping (vs. installed) configuration. The heritage system at WSTF is composed of a single unit (three generator modules), pictured in Figure 2 as it was installed in 1965. In contrast, A-3 will have nine units operating in parallel to achieve vacuum conditions appropriate for testing the J-2X engine. Each of the combustors operates in two modes and achieves the so-called "full-steam" mode after all three of its stages ignite. Ignition of the first stage is achieved by exciting a spark plug; the second stage and main stage are lit by the flame front of the previous stage. The main stage burns approximately 97% of the total propellant flow and uses the heat energy to vaporize water into superheated steam. While the main stage remains unlit, the combustor is in so-called "idle" mode. In the WSTF system, this idle mode is not optimized for water usage, and does not need to be, as the water is pumped from a large reservoir. The water supply at A-3 will be contained in tanks with finite volume, so water optimization is preferred for the modnized

  6. Steam generators under construction for the SNR-300 power plant

    Energy Technology Data Exchange (ETDEWEB)

    Essebaggers, J

    1975-07-01

    The prototype straight tube and the helical coil-steam generator has been designed and fabricated of which the straight tube steam generator has been successfully tested for over 3000 hours at prototypical conditions and is presently being dismantled for detailed examination of critical designed features. The prototype helical coil steam generator is presently under testing in the 50 MWt test facility at TNO-Hengelo with approximately 500 hours of operation at full load conditions. In an earlier presentation the design and fabrication of the prototype steam generators have been presented, while for this presentation the production units for SNR-300 will be discussed. Some preliminary information will be presented at this meeting of the dismantling operations of the prototype straight tube steam generator. (author)

  7. Steam generators under construction for the SNR-300 power plant

    International Nuclear Information System (INIS)

    Essebaggers, J.

    1975-01-01

    The prototype straight tube and the helical coil-steam generator has been designed and fabricated of which the straight tube steam generator has been successfully tested for over 3000 hours at prototypical conditions and is presently being dismantled for detailed examination of critical designed features. The prototype helical coil steam generator is presently under testing in the 50 MWt test facility at TNO-Hengelo with approximately 500 hours of operation at full load conditions. In an earlier presentation the design and fabrication of the prototype steam generators have been presented, while for this presentation the production units for SNR-300 will be discussed. Some preliminary information will be presented at this meeting of the dismantling operations of the prototype straight tube steam generator. (author)

  8. Results of the secondary side chemical cleaning of the steam generators

    International Nuclear Information System (INIS)

    Doma, A.; Patek, G.

    2001-01-01

    A significant amount of deposit has developed on the secondary side of the heat transfer tubes of the steam generators (SG) of the Paks Nuclear Power Plant units in course of the years. More than 99.5% of the deposit is made up of magnetite (Fe 3 O 4 ) generated in the secondary circuit of the power plant. Those deposits lead to the decrease of the heat transfer. Even more important is its role from the point of view of operational reliability of the steam generators, leak tightness between the primary and secondary sides. The first series of cleaning took place following 8-9 years of operation of the units. Following the first cleaning cycle the transport of the corrosion products into the steam generators did not change, and thus obviously new cleaning was required. Periodical cleaning of the steam generators shall be assured. (R.P.)

  9. Fluidelastic instability analysis of steam generator U-tubes at antivibration bar-inactive modes

    International Nuclear Information System (INIS)

    Lee, S.K.; Jo, J.C.

    1995-01-01

    This paper presents the results of thermal-hydraulic and fluidelastic U-tube instability analyses performed for the vertical type pressurized water reactor (PWR) steam generator model being employed at Kori units 2, 3 and 4, and Yonggwang units 1 and 2 in Korea. The thermal-hydraulic analysis for providing the detailed three-dimensional two-phase flow field in the secondary side of the steam generator was accomplished using the ATHOS3 steam generator thermal-hydraulic analysis code. The UTVA2 code designed for calculating both the free vibration responses and fluidelastic stability ratio of a specific U-tube under consideration was used to assess the potential for fluidelastic instability of the steam generator U-tubes at various conditions of antivibration bar (AVB)-inactive modes. The results of the fluidelastic instability analysis were discussed in comparison with those obtained for the steam generator U-tubes at AVB-active mode

  10. Modeling, Simulation and Optimization of Hydrogen Production Process from Glycerol using Steam Reforming

    International Nuclear Information System (INIS)

    Park, Jeongpil; Cho, Sunghyun; Kim, Tae-Ok; Shin, Dongil; Lee, Seunghwan; Moon, Dong Ju

    2014-01-01

    For improved sustainability of the biorefinery industry, biorefinery-byproduct glycerol is being investigated as an alternate source for hydrogen production. This research designs and optimizes a hydrogen-production process for small hydrogen stations using steam reforming of purified glycerol as the main reaction, replacing existing processes relying on steam methane reforming. Modeling, simulation and optimization using a commercial process simulator are performed for the proposed hydrogen production process from glycerol. The mixture of glycerol and steam are used for making syngas in the reforming process. Then hydrogen are produced from carbon monoxide and steam through the water-gas shift reaction. Finally, hydrogen is separated from carbon dioxide using PSA. This study shows higher yield than former U.S.. DOE and Linde studies. Economic evaluations are performed for optimal planning of constructing domestic hydrogen energy infrastructure based on the proposed glycerol-based hydrogen station

  11. Characteristics of U-tube assembly design for CANDU 6 type steam generators

    International Nuclear Information System (INIS)

    Park, Jun Su; Jeong, Seung Ha

    1996-06-01

    Since the first operation of nuclear steam generator early 1960s, its performance requirements have been met but the steam generator problems have been met but the steam generator problems have been major cause of reducing the operational reliability, plant safety and availability. U-tube assembly of steam generator forms the primary system pressure boundary of the plant and have experienced several types of tube degradation problems. Tube failure and leakage resulting from the degradation will cause radioactive contamination of secondary system by the primary coolant, and this may lead to unplanned plant outages and costly repair operations such as tube plugging or steam generator replacement. For the case of steam generators for heavy water reactors, e.g. Wolsong 2, 3, and 4 NPP, a high cost of heavy water will be imposed additionally. During the plant operation, steam generator tubes can potentially be subject to adverse environmental conditions which will cause damages to U-tube assembly. Types of the damage depend upon the combined effects of design factors, materials and chemical environment of steam generator, and they are the pure water stress corrosion cracking, intergranular attack, pitting, wastage, denting, fretting and fatigue, etc. In this report, a comprehensive review of major design factors of recirculating steam generators has been performed against the potential tube damages. Then the design characteristics of CANDU-type Wolsong steam generator were investigated in detail, including tube material, thermalhydraulic aspects, tube-to-tubesheet joint, tube supports, water chemistry and sludge management. 9 tabs., 18 figs., 38 refs. (Author) .new

  12. Flow Instabilities and Main Steam Line Vibrations in a Pressurized Water Reactor

    International Nuclear Information System (INIS)

    Henriksson, Mats; Westin, Johan; Granhall, Tord; Andersson, Lars; Bjerke, Lars-Erik

    2002-01-01

    Severe vibrational problems occurred in the main steam system of a PWR nuclear power plant, about 18 months after a steam generator replacement had been carried out. The magnitude of the vibrations reached levels at which the operators had to reduce power in order to stay within the operating limits imposed by the nuclear inspectorate. To solve the problem the following analyses methods were employed: - Testing the influence on vibration level from different modes of plant operation; - Analyses of plant measurement data; - Calculations of: hydraulic behaviour of the system, structural dynamic behaviour of the system, flow at the steam generator outlet. Scale model testing of the steam generator outlet region. Hydraulic flow disturbances in the main steam system were measured using pressure and strain gauges, which made it possible to track individual pressure pulses propagating through the main steam system. Analyses showed that the pressure pulses causing the vibration originated from the vicinity of the steam generator outlet. By using computer codes for network fluid flow analyses the pressure pulses found in the measurement traces could be generated in calculations. Careful studies of the flow at the steam generator outlet region, using model testing in a 1:3 scale model as well as transient 3D CFD calculations, gave clear indications that flow separation occurred at the steam generator outlet nozzle and at the first bend. Finally, by substituting the outlet nozzle for a different design with a multi-port nozzle, the steam line vibration problem has been solved. (authors)

  13. Simulation of main steam and feedwater system of full scope simulator for Qinshan 300 MW Nuclear Power Unit

    International Nuclear Information System (INIS)

    Zhao Xiaoyu

    1996-01-01

    The simulation of main steam and feedwater system is the most important and maximal part in secondary circuit model, including all of main steam and feedwater's thermal-hydraulic properties, except heat-exchange of secondary side of steam generator. It simulates main steam header, steam power in each stage of turbine, moisture separator-reheater, deaerator, condenser, high pressure and low pressure heater, auxiliary feedwater and main steam bypass in full scope

  14. Device to measure level in a steam drum of NPP

    International Nuclear Information System (INIS)

    Vinogradov, Yu.A.

    1988-01-01

    Gravitation-hydrostatic device for measuring coolant level in a steam drum of NPP is described. The device enables to improve the accuracy and sensitivity of measuring coolant level above and below the submerged perforated sheet of the steam drum and decrease the amount of levelling vessels in the unit by 50%. 1 fig

  15. Technical specifications for the provision of heat and steam sources for INPP and Visaginas. Final report

    International Nuclear Information System (INIS)

    2003-01-01

    In October 1999, the National Energy Strategy was approved by the Lithuanian Parliament. The National Energy Strategy included the decision to close Unit-1 of INPP before 2005. Later is has been decided to close Unit 2 before the end of 2009 as well. The closure and decommissioning will have heavy impact on the heat supply for the city of Visaginas. Unit 1 and Unit 2 of INPP supplies hot water and steam to INPP for process purposes and for space heating of residential and commercial buildings. When Unit 1 is permanently shut down, reliable heat and steam sources independent of the power plants own heat and steam generation facilities are required for safety reasons in the event of shutdown of the remaining unit for maintenance or in an emergency. These steam and heat sources must be operational before single unit operation is envisaged. Provision of a reliable independent heat and steam source is therefore urgent. After both reactors are shut down permanently, a steam source will be needed at the plant for radioactive waste storage and disposal. INPP and DEA has performed a feasibility study for the provision of a reliable heat source for Ignalina Nuclear Power Plant and Visaginas, and the modernisation of Visaginas district heating system. The objective of this project is to prepare technical specifications for the provision of new heat and steam sources for INPP and Visaginas, and for rehabilitation of the heat transmission pipeline between INPP, the back-up boiler station and Visaginas City. The results of the study are presented in detail in the reports and technical specifications: 1. Transient analysis for Visaginas DH system, 2. Non-destructive testing of boiler stations, pump stations and transmission lines, 3. Conceptual design, 4. Technical specifications, Package 1 to 6. The study has suggested: 1. Construction of new steam boiler station, 2. Construction of new heat only boiler station, 3. Renovation of existing back-up heat only boiler station, 4

  16. Optimization of steam generators of NPP with WWER in operation with variable load

    Science.gov (United States)

    Parchevskii, V. M.; Shchederkina, T. E.; Gur'yanova, V. V.

    2017-11-01

    The report addresses the issue of the optimal water level in the horizontal steam generators of NPP with WWER. On the one hand, the level needs to be kept at the lower limit of the allowable range, as gravity separation, steam will have the least humidity and the turbine will operate with higher efficiency. On the other hand, the higher the level, the greater the supply of water in the steam generator, and therefore the higher the security level of the unit, because when accidents involving loss of cooling of the reactor core, the water in the steam generators, can be used for cooling. To quantitatively compare the damage from higher level to the benefit of improving the safety was assessed of the cost of one cubic meter of water in the steam generators, the formulated objective function of optimal levels control. This was used two-dimensional separation characteristics of steam generators. It is demonstrated that the security significantly shifts the optimal values of the levels toward the higher values, and this bias is greater the lower the load unit.

  17. On possibility of application of the parallel-mixed type coolant flow scheme to NPP steam generators linked with superheaters

    International Nuclear Information System (INIS)

    Malkis, V.A.; Lokshin, V.A.

    1983-01-01

    Optimum distribution of the coolant straight-through flow between the superheater, evaporator and economizer is determined and the parallel-mixed type flow scheme is compared with other schemes. The calculations are performed for the 250 MW(e) steam generator for the WWER-1000 reactor unit the inlet and outlet primary coolant temperature of which is 324 and 290 deg C, respectively, while the feed water and saturation temperatures are 220 and 278.5 deg C, respectively. The rated superheating temperature is 300 deg C. The comparison of different schemes has been performed according to the average temperature head value at the steam-generator under the condition of equality as well as essential difference in the heat transfer coefficients in certain steam-generator sections. The calculations have shown that the use of parallel-mixed type flow permits to essentially increase the temperature head of the steam generator. At a constant heat transfer coefficient in all steam generator sections the highest temperature head is reached. At relative flow rates in the steam generator, economizer and evaporator equal to 6, 8 and 86%, respectively. The superheated steam generator temperature head in this case by 12% exceeds the temperature head of the WWER-1000 reactor unit wet steam generator. In case of heat transfer coefficient reduction in the superheater by a factor of three, the choice of the primary coolant, optimum distribution permits to maintain the steam generator temperature head at the level of the WWER-1000 reactor unit wet-steam steam generator. The use of the parallel-mixed type flow scheme permits to design a steam generator of slightly superheated steam for the parameters of the WWER-1000 unit

  18. Steam turbine cycle

    International Nuclear Information System (INIS)

    Okuzumi, Naoaki.

    1994-01-01

    In a steam turbine cycle, steams exhausted from the turbine are extracted, and they are connected to a steam sucking pipe of a steam injector, and a discharge pipe of the steam injector is connected to an inlet of a water turbine. High pressure discharge water is obtained from low pressure steams by utilizing a pressurizing performance of the steam injector and the water turbine is rotated by the high pressure water to generate electric power. This recover and reutilize discharged heat of the steam turbine effectively, thereby enabling to improve heat efficiency of the steam turbine cycle. (T.M.)

  19. Safety Evaluation Report related to the operation of Comanche Peak Steam Electric Station, Unit 2 (Docket No. 50-446)

    International Nuclear Information System (INIS)

    1993-02-01

    Supplement 26 to the Safety Evaluation Report related to the operation of the Comanche Peak Steam Electric Station (CPSES), Unit 2, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission (NRC). The facility is located in Somervell County, Texas, approximately 40 miles southwest of Fort Worth, Texas. This supplement reports the status of certain issues that had not been resolved when the Safety Evaluation Report and Supplements 1, 2, 3, 4, 6, 12, 21, 22, 23, 24, and 25 to that report were published. This supplement deals primarily with Unit 2 issues; however, it also references evaluations for several licensing issues that relate to Unit 1, which have been resolved since Supplement 25 was issued

  20. Steam condenser

    International Nuclear Information System (INIS)

    Masuda, Fujio

    1980-01-01

    Purpose: To enable safe steam condensation by providing steam condensation blades at the end of a pipe. Constitution: When high temperature high pressure steam flows into a vent pipe having an opening under water in a pool or an exhaust pipe or the like for a main steam eacape safety valve, non-condensable gas filled beforehand in the steam exhaust pipe is compressed, and discharged into the water in the pool. The non-condensable gas thus discharged from the steam exhaust pipe is introduced into the interior of the hollow steam condensing blades, is then suitably expanded, and thereafter exhausted from a number of exhaust holes into the water in the pool. In this manner, the non-condensable gas thus discharged is not directly introduced into the water in the pool, but is suitable expanded in the space of the steam condensing blades to suppress extreme over-compression and over-expansion of the gas so as to prevent unstable pressure vibration. (Yoshihara, H.)

  1. Strategic elements of steam cycle chemistry control practices at TXU's Comanche Peak steam electric station

    International Nuclear Information System (INIS)

    Fellers, B.; Stevens, J.; Nichols, G.

    2002-01-01

    Early industry experience defined the critical importance of Chemistry Control Practices to maintaining long-term performance of PWR steam generators. These lessons provided the impetus for a number of innovations and alternate practices at Comanche Peak. For example, advanced amine investigations and implementation of results provided record low iron transport and deposition. The benefits of the surface-active properties of dimethyl-amine exceeded initial expectations. Operation of pre-coat polishers and steam generator blowdown demineralizers in the amine cycle enabled optimization of amine concentrations and stable pH control. The strategy for coordinated control of oxygen and hydrazine dosing complemented the advanced amine program for protective oxide stabilization. Additionally, a proactive chemical cleaning was performed on Unit 1 to prevent degradations from general fouling of steam generator tube-tube support plate (TSP) and top-of-tubesheet (TTS) crevices. This paper shares the results of these innovations and practices. Also, the bases, theory, and philosophy supporting the strategic elements of program will be presented. (authors)

  2. Predicting tube repair at French nuclear steam generators using statistical modeling

    Energy Technology Data Exchange (ETDEWEB)

    Mathon, C., E-mail: cedric.mathon@edf.fr [EDF Generation, Basic Design Department (SEPTEN), 69628 Villeurbanne (France); Chaudhary, A. [EDF Generation, Basic Design Department (SEPTEN), 69628 Villeurbanne (France); Gay, N.; Pitner, P. [EDF Generation, Nuclear Operation Division (UNIE), Saint-Denis (France)

    2014-04-01

    Electricité de France (EDF) currently operates a total of 58 Nuclear Pressurized Water Reactors (PWR) which are composed of 34 units of 900 MWe, 20 units of 1300 MWe and 4 units of 1450 MWe. This report provides an overall status of SG tube bundles on the 1300 MWe units. These units are 4 loop reactors using the AREVA 68/19 type SG model which are equipped either with Alloy 600 thermally treated (TT) tubes or Alloy 690 TT tubes. As of 2011, the effective full power years of operation (EFPY) ranges from 13 to 20 and during this time, the main degradation mechanisms observed on SG tubes are primary water stress corrosion cracking (PWSCC) and wear at anti-vibration bars (AVB) level. Statistical models have been developed for each type of degradation in order to predict the growth rate and number of affected tubes. Additional plugging is also performed to prevent other degradations such as tube wear due to foreign objects or high-cycle flow-induced fatigue. The contribution of these degradation mechanisms on the rate of tube plugging is described. The results from the statistical models are then used in predicting the long-term life of the steam generators and therefore providing a useful tool toward their effective life management and possible replacement.

  3. A Novel Method for Preparing Auxetic Foam from Closed-cell Polymer Foam Based on Steam Penetration and Condensation (SPC) Process.

    Science.gov (United States)

    Fan, Donglei; Li, Minggang; Qiu, Jian; Xing, Haiping; Jiang, Zhiwei; Tang, Tao

    2018-05-31

    Auxetic materials are a class of materials possessing negative Poisson's ratio. Here we establish a novel method for preparing auxetic foam from closed-cell polymer foam based on steam penetration and condensation (SPC) process. Using polyethylene (PE) closed-cell foam as an example, the resultant foams treated by SPC process present negative Poisson's ratio during stretching and compression testing. The effect of steam-treated temperature and time on the conversion efficiency of negative Poisson's ratio foam is investigated, and the mechanism of SPC method for forming re-entrant structure is discussed. The results indicate that the presence of enough steam within the cells is a critical factor for the negative Poisson's ratio conversion in the SPC process. The pressure difference caused by steam condensation is the driving force for the conversion from conventional closed-cell foam to the negative Poisson's ratio foam. Furthermore, the applicability of SPC process for fabricating auxetic foam is studied by replacing PE foam by polyvinyl chloride (PVC) foam with closed-cell structure or replacing water steam by ethanol steam. The results verify the universality of SPC process for fabricating auxetic foams from conventional foams with closed-cell structure. In addition, we explored potential application of the obtained auxetic foams by SPC process in the fabrication of shape memory polymer materials.

  4. Leak detection of steam or water into sodium in steam generators of liquid-metal fast breeder reactors

    International Nuclear Information System (INIS)

    Hans, R.; Dumm, K.

    1977-01-01

    The leakage of water or steam into sodium in LMFBR steam generators, including a study of how leaks are detected and located as well as the potential damage that could be caused by such leaks, is surveyed. The most interesting steam generator designs evolving in those countries that develop and construct LMFBRs are presented. The relevant protection measures are described. Fault conditions are defined and descriptions given of possible sequences of events leading to abnormal conditions in a steam generator. Taking into account theory, the potential of the hydrogen and oxygen detection systems is discussed. Different hydrogen and oxygen detection systems are fully described. In so far as interesting technical solutions are concerned, previously developed devices have also been taken into account. The way oxygen detection supplements hydrogen detection is described by listing the available oxygen measuring devices and the relevant theory. Only a few sonic and accelerometer measurements have been made on complete steam generator units so there is little system data available. Descriptions, however, have been included to give the state of the art achieved for the sensors and the achieved sensitivities or band widths. The potential of this monitoring method is made evident by adding the technical data of the sensors. Furthermore, the available systems for monitoring medium and large leakages are described. Finally, recommendations are made concerning steam generator development and the application of hydrogen and oxygen detection systems, as well as acoustic measuring methods for small-leakage detection

  5. Steam injection to increase oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Leutwyler, K; Bigelow, H L

    1966-03-01

    Speculation is made as to the possibility that future reserves can be increased with steam energy from the first day of production. Boilers and auxilary equipment for this operation should be designed especially for free air operations. The appropriate treatment of the water used is critical in controlling certain problems. Since this operation has been planned for working at temperatures of approximately 315$C, one of the best downhole units for such an operation is found to be the Retrievable Thermal Seal Packer. Expansion joints solve the problem of temperature inhibiting movement causing permanent corkscrew deformity. Conventional sealing material on the tubing threads is not suitable at high temperatures. A band of Teflon does the job well but its use is unjustified by cost and personnel untrained in its use. However, an excellent sealing material has been developed that fills all requirements. General suggestions for the use of steam injection include the good cementing jobs; treatment of the entire system as an integral unit; use of asbestos to insulate is of doubtful value because of the subsequent problems it causes; starting of the steam injection conservatively allows the cement and tubing to heat together. It is believed that this procedure helps reduce the possibility of vertical fractures in the cement.

  6. Improvement of Steam Turbine Operational Performance and Reliability with using Modern Information Technologies

    Science.gov (United States)

    Brezgin, V. I.; Brodov, Yu M.; Kultishev, A. Yu

    2017-11-01

    The report presents improvement methods review in the fields of the steam turbine units design and operation based on modern information technologies application. In accordance with the life cycle methodology support, a conceptual model of the information support system during life cycle main stages (LC) of steam turbine unit is suggested. A classifying system, which ensures the creation of sustainable information links between the engineer team (manufacture’s plant) and customer organizations (power plants), is proposed. Within report, the principle of parameterization expansion beyond the geometric constructions at the design and improvement process of steam turbine unit equipment is proposed, studied and justified. The report presents the steam turbine unit equipment design methodology based on the brand new oil-cooler design system that have been developed and implemented by authors. This design system combines the construction subsystem, which is characterized by extensive usage of family tables and templates, and computation subsystem, which includes a methodology for the thermal-hydraulic zone-by-zone oil coolers design calculations. The report presents data about the developed software for operational monitoring, assessment of equipment parameters features as well as its implementation on five power plants.

  7. 900 MW CP1 nuclear steam turbine retrofit thermal effects on low pressure diaphragms

    International Nuclear Information System (INIS)

    Buguin, A.; Gruau, P.; Lamarque, F.; Huggett, J.

    2015-01-01

    The steam turbines of the Koeberg units 1 and 2 operated by ESKOM in South Africa have been retrofitted in order to mitigate the generic problems of stress corrosion cracking of the original shrunk-on disk rotor design. As already done in Belgium and France, the implementation of welded rotors improves the turbine reliability and availability. Moreover, the new technology implemented associated with a new steam path allows a significant performance improvement. With a wealth of experience in CP1 retrofit, ALSTOM has put in place new technical features in the steam path in order to further improve the heat rate. Among them, steam balance holes drilled in the rotor disks have exacerbated the thermal sensitivity of the LP diaphragms. During the commissioning of the Unit 1 LP turbines following the retrofit, the load increase led to unacceptable vibrations. An investigation program was launched to determine the root causes of the problem. This paper presents the findings following the turbine inspection, as well as the recommendations and modifications to allow a smooth return to service of the unit. In addition, the results of the root cause analysis of the vibration incident are explained. Based on finite element calculations and site measurements, ALSTOM has established that the diaphragm thermal behavior, intensified by the steam balance holes, has led to radial rubbing. It was also established that the phenomena had no effect on the diaphragms mechanical integrity. Design changes have been proposed to ensure a safe and reliable long term operation of the units. These modifications have been successfully implemented onto the Koeberg Unit 2 Nuclear Steam Turbine commissioned in November 2012. (authors)

  8. Modernization of the Nuclear Power Plant Krsko with new steam generators

    International Nuclear Information System (INIS)

    Holz, R.; Stach, U.; Gloaguen, C.

    2000-01-01

    The contract for the replacement of two steam generators at NPP Krsko was awarded in February 1998 to the Consortium SIEMENS AG FRAMATOME S.A.. The time frame for the replacement outage was scheduled from April to June 2000. The replacement itself started with the plant shut down on 15 th of April 2000 and the plant was back on line on 15 th of June, so that after an intensive engineering period of more than two years the plant was off line only 62 days, as scheduled. This document deals with the various aspects of the replacement phase itself and the techniques used. During the last years conference the engineering and licensing phase of the project have been presented. (author)

  9. Modernization of the Nuclear Power Plant Krsko with new steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Holz, R; Stach, U [Siemens AG, Erlangen, Offenbach (Germany); Gloaguen, C [Framatome, Paris (France)

    2000-07-01

    The contract for the replacement of two steam generators at NPP Krsko was awarded in February 1998 to the Consortium SIEMENS AG FRAMATOME S.A.. The time frame for the replacement outage was scheduled from April to June 2000. The replacement itself started with the plant shut down on 15{sup th} of April 2000 and the plant was back on line on 15{sup th} of June, so that after an intensive engineering period of more than two years the plant was off line only 62 days, as scheduled. This document deals with the various aspects of the replacement phase itself and the techniques used. During the last years conference the engineering and licensing phase of the project have been presented. (author)

  10. Validation of Ulchin Units 1, 2 CONTEMPT Model Prior to the Production of EQ Envelope Curve

    International Nuclear Information System (INIS)

    Hwang, Su Hyun; Kim, Min Ki; Hong, Soon Joon; Lee, Byung Chul; Suh, Jeong Kwan; Lee, Jae Yong; Song, Dong Soo

    2010-01-01

    The Ulchin Units 1, 2 will be refurbished with RSG (Replacement of Steam Generator) and PU (Power Uprate). The current EQ (Environmental Qualification) envelope curve should be modified according to RSG and PU. The containment P/T (Pressure/Temperature) analysis in Ulchin Units 1, 2 FSAR was done using EDF computer program PAREO6. PAREO6 uses the same assumptions as the US NRC CONTEMPT program, and the results given by both programs are in good agreement. It is utilized to determine pressure and temperature variations in a PWR containment subsequent to a reactor coolant or secondary system pipe break. But PAREO6 cannot be available to the production of EQ envelope curve, so CONTEMPT code should be used instead of PAREO6. It is essential to validate the CONTEMPT OSG (Original Steam Generator) model prior to the production of EQ envelope curve considering RSG and PU. This study has been performed to validate the CONTEMPT model of Ulchin Units 1, 2 by comparing the CONTEMPT results with the PAERO6 results in Ulchin Units 1, 2 FSAR

  11. Validation of Ulchin Units 1, 2 CONTEMPT Model Prior to the Production of EQ Envelope Curve

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Su Hyun; Kim, Min Ki; Hong, Soon Joon; Lee, Byung Chul [FNC Technology Co., SNU, Seoul (Korea, Republic of); Suh, Jeong Kwan; Lee, Jae Yong; Song, Dong Soo [KEPCO Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    The Ulchin Units 1, 2 will be refurbished with RSG (Replacement of Steam Generator) and PU (Power Uprate). The current EQ (Environmental Qualification) envelope curve should be modified according to RSG and PU. The containment P/T (Pressure/Temperature) analysis in Ulchin Units 1, 2 FSAR was done using EDF computer program PAREO6. PAREO6 uses the same assumptions as the US NRC CONTEMPT program, and the results given by both programs are in good agreement. It is utilized to determine pressure and temperature variations in a PWR containment subsequent to a reactor coolant or secondary system pipe break. But PAREO6 cannot be available to the production of EQ envelope curve, so CONTEMPT code should be used instead of PAREO6. It is essential to validate the CONTEMPT OSG (Original Steam Generator) model prior to the production of EQ envelope curve considering RSG and PU. This study has been performed to validate the CONTEMPT model of Ulchin Units 1, 2 by comparing the CONTEMPT results with the PAERO6 results in Ulchin Units 1, 2 FSAR

  12. A Comparison of Organic and Steam Rankine Cycle Power Systems for Waste Heat Recovery on Large Ships

    Directory of Open Access Journals (Sweden)

    Jesper Graa Andreasen

    2017-04-01

    Full Text Available This paper presents a comparison of the conventional dual pressure steam Rankine cycle process and the organic Rankine cycle process for marine engine waste heat recovery. The comparison was based on a container vessel, and results are presented for a high-sulfur (3 wt % and low-sulfur (0.5 wt % fuel case. The processes were compared based on their off-design performance for diesel engine loads in the range between 25% and 100%. The fluids considered in the organic Rankine cycle process were MM(hexamethyldisiloxane, toluene, n-pentane, i-pentane and c-pentane. The results of the comparison indicate that the net power output of the steam Rankine cycle process is higher at high engine loads, while the performance of the organic Rankine cycle units is higher at lower loads. Preliminary turbine design considerations suggest that higher turbine efficiencies can be obtained for the ORC unit turbines compared to the steam turbines. When the efficiency of the c-pentane turbine was allowed to be 10% points larger than the steam turbine efficiency, the organic Rankine cycle unit reaches higher net power outputs than the steam Rankine cycle unit at all engine loads for the low-sulfur fuel case. The net power production from the waste heat recovery units is generally higher for the low-sulfur fuel case. The steam Rankine cycle unit produces 18% more power at design compared to the high-sulfur fuel case, while the organic Rankine cycle unit using MM produces 33% more power.

  13. Integration between direct steam generation in linear solar collectors and supercritical carbon dioxide Brayton power cycles

    OpenAIRE

    Coco Enríquez, Luis; Muñoz Antón, Javier; Martínez-Val Peñalosa, José María

    2015-01-01

    Direct Steam Generation in Parabolic Troughs or Linear Fresnel solar collectors is a technology under development since beginning of nineties (1990's) for replacing thermal oils and molten salts as heat transfer fluids in concentrated solar power plants, avoiding environmental impacts. In parallel to the direct steam generation technology development, supercritical Carbon Dioxide Brayton power cycles are maturing as an alternative to traditional Rankine cycles for increasing net plant efficie...

  14. Steam process supply optimization for Arcelormittal Tubarao consumers; Otimizacao do sistema de fornecimento de vapor de processo para a usina (AMT)

    Energy Technology Data Exchange (ETDEWEB)

    Loss, Gecimar; Oliveira, Heron Domingues de; Silva, Jose Geraldo Lessa; Beccalli, Marcelo; Calente, Paulo Sergio Boni; Monteiro, Sergio Anderson [Companhia Siderurgica de Tubarao ArcelorMittal, Serra, ES (Brazil)

    2010-07-01

    The ArcelorMittal Tubarao Energy Production area is compounded by three units: Air Separation Units, Thermal Power Plants and Thermal Recovery Power Plants. The Thermo Power Plants are co-generated units responsible to generate electrical, mechanical (Blast Furnace blower) energy and also provide Steam to complement the facility internal consumption mainly provided by CDQ plant (CDQ - Coke Dry Quenching). Since RH2 (steel treatment process) start up, the steam consumption increased and the Thermal Power Plant contribution raised to attend this new demand. Solutions were needed to guarantee the steam supply by the Power Plant even in low steam header stoppages for maintenance, since the lack of steam caused by shortage in Power Plant steam supply resulting in steel production diminution in this new scenario. (author)

  15. Steam turbines for nuclear power stations in Czechoslovakia and their use for district heating

    International Nuclear Information System (INIS)

    Drahy, J.

    1989-01-01

    The first generation of nuclear power stations in Czechoslavakia is equipped with 440 MW e pressurized water reactors. Each reactor supplies two 220 MW, 3000 rpm condensing type turbosets operating with saturated steam. After the completion of heating water piping systems, all of the 24 units of 220 MW in Czechoslovak nuclear power stations will be operated as dual purpose units, delivering both electricity and heat. At the present time, second-generation nuclear power stations, with 1000 MW e PWRs, are being built. Each such plant is equipped with one 1000 MW full-speed saturated steam turbine. The turbine is so designed as to permit the extraction of steam corresponding to the following quantities of heat: 893 MJ/s with three-stage water heating (150/60 0 C); and 570 MJ/s with two-stage water heating (120/60 0 C). The steam is taken from uncontrolled steam extraction points. (author)

  16. Optimal replacement and inspection periods of safety and control boards in Wolsung nuclear power plant unit 1

    International Nuclear Information System (INIS)

    Mok, Jin Il

    1993-02-01

    In nuclear power plants, the safety and control systems are important for operating and maintaining safety of nuclear power plants. Due to the failure of the instrument and control devices of nuclear power plants caused by aging, nuclear power plants occasionally trip. Since the start of first commercial operation of Kori nuclear power plant (NPP) unit 1, the trips caused by instrument and control systems account for 28% of total trips of NPPs in Korea. Even a single trip of a nuclear power plant causes an extravagant economical loss and deteriorates public acceptance of nuclear power plants. Therefore, the replacement of the instrument and control devices with proper consideration of the aging effect is necessary in order to prevent the inadvertent trip. In this work we investigated the optimal replacement periods of the digital control computer's (DCC) and the programmable digital comparator's (PDC) electronic circuit boards of Wolsung nuclear power plant Unit 1. We first derived mathematical models which calculate optimal replacement periods for electronic circuit boards of digital control computer (DCC) and for those of the programmable digital comparator (PDC) in Wolsung NPP unit 1. And we analytically obtained the optimal replacement periods of electronic circuit boards by using these models. We compared these periods with the replacement periods currently used at Wolsung NPP Unit. The periods used at Wolsung is not based on mathematical analysis, but on empirical knowledge. As a consequence, the optimal replacement periods analytically obtained for the electronic circuit boards of DCC and those used in the field shown small difference : the optimal replacement periods analytically obtained for the electronic circuit boards of PDC are shorter than those used in the field in general. The engineered safeguards of Wolsung nuclear power plant unit 1 contains redundant systems of 2-out-of-3 logic which are not operating under normal conditions but they are called

  17. Steam generator tube rupture effects on a LOCA

    International Nuclear Information System (INIS)

    LaChance, J.L.

    1979-01-01

    A problem currently experienced in commercial operating pressurized water reactors (PWR) in the United States is the degradation of steam generator tubes. Safety questions have arisen concerning the effect of these degraded tubes rupturing during a postulated loss-of-coolant accident (LOCA). To determine the effect of a small number of tube ruptures on the behavior of a large PWR during a postulated LOCA, a series of computer simulations was performed. The primary concern of the study was to determine whether a small number (10 or less of steam generator tubes rupturing at the beginning surface temperatures. Additional reflood analyses were performed to determine the system behavior when from 10 to 60 tubes rupture at the beginning of core reflood. The FLOOD4 code was selected as being the most applicable code for use in this study after an extensive analysis of the capabilities of existing codes to perform simulations of a LOCA with concurrent steam generator tube ruptures. The results of the study indicate that the rupturing of 10 or less steam generator tubes in any of the steam generators during a 200% cold leg break will not result in a significant increase in the peak cladding temperature. However, because of the vaporization of the steam generator secondary water in the primary side of the steam generator, a significant increase in the core pressure occurs which retards the reflooding process

  18. Darlington steam generator life assurance program

    International Nuclear Information System (INIS)

    Jelinski, E.; Dymarski, M.; Maruska, C.; Cartar, E.

    1995-01-01

    The Darlington Nuclear Generating Station belonging to Ontario Hydro is one of the most modern and advanced nuclear generating stations in the world. Four reactor units each generate 881 net MW, enough to provide power to a major city, and representing approximately 20% of the Ontario grid. The nuclear generating capacity in Ontario represents approximately 60% of the grid. In order to look after this major asset, many proactive preventative and predictive maintenance programs are being put in place. The steam generators are a major component in any power plant. World wide experience shows that nuclear steam generators require specialized attention to ensure reliable operation over the station life. This paper describes the Darlington steam generator life assurance program in terms of degradation identification, monitoring and management. The requirements for chemistry control, surveillance of process parameters, surveillance of inspection parameters, and the integration of preventative and predictive maintenance programs such as water lancing, chemical cleaning, RIHT monitoring, and other diagnostics to enhance our understanding of life management issues are identified and discussed. We conclude that we have advanced proactive activities to avoid and to minimize many of the problems affecting other steam generators. An effective steam generator maintenance program must expand the knowledge horizon to understand life limiting processes and to analyze and synthesize observations with theory. (author)

  19. An Improved Steam Injection Model with the Consideration of Steam Override

    OpenAIRE

    He , Congge; Mu , Longxin; Fan , Zifei; Xu , Anzhu; Zeng , Baoquan; Ji , Zhongyuan; Han , Haishui

    2017-01-01

    International audience; The great difference in density between steam and liquid during wet steam injection always results in steam override, that is, steam gathers on the top of the pay zone. In this article, the equation for steam override coefficient was firstly established based on van Lookeren’s steam override theory and then radius of steam zone and hot fluid zone were derived according to a more realistic temperature distribution and an energy balance in the pay zone. On this basis, th...

  20. Monitoring method for steam generator operation

    International Nuclear Information System (INIS)

    Tamaoki, Tetsuo

    1991-01-01

    In an LMFBR plant having an once-through steam generator, reduction of life of a heat transfer pipe caused by heat cycle fatigue is monitored by early finding for the occurrence of abnormality in the inside of the steam generator and by continuous monitoring for the position of departure from nucleate boiling (DNB), which are difficult with existent static characteristic analysis codes. That is, RMS values of fluctuations in temperature signals sent from thermocouples for measuring the fluid temperature in the vicinity of heat transfer pipe disposed along a primary channel of the once-through type steam generator. The abnormality in heat transfer performance is monitored by the distribution change of the RMS values. Subsequently, DNB point on the side of water and steam is determined by the distribution of the RMS value. Then, accumulated values of the product between the time in which the starting point stays in the DNB region and a life consumption amount per unit time given in accordance with the operation condition are monitored. Accordingly, thermal fatigue failure of the heat transfer pipe due to temperature fluctuation in the DNB region is monitored. (I.S.)

  1. Steam turbine installations

    International Nuclear Information System (INIS)

    Bainbridge, A.

    1976-01-01

    The object of the arrangement described is to enable raising steam for driving steam turbines in a way suited to operating with liquid metals, such as Na, as heat transfer medium. A preheated water feed, in heat transfer relationship with the liquid metals, is passed through evaporator and superheater stages, and the superheated steam is supplied to the highest pressure stage of the steam turbine arrangement. Steam extracted intermediate the evaporator and superheater stages is employed to provide reheat for the lower pressure stage of the steam turbine. Only a major portion of the preheated water feed may be evaporated and this portion separated and supplied to the superheater stage. The feature of 'steam to steam' reheat avoids a second liquid metal heat transfer and hence represents a simplification. It also reduces the hazard associated with possible steam-liquid metal contact. (U.K.)

  2. Process for superheating the steam generated by a light water nuclear reactor

    International Nuclear Information System (INIS)

    Vakil, H.B.; Brown, D.H.

    1976-01-01

    A process is submitted for superheating the pressurised steam generated in a light water nuclear reactor in which the steam is brought to 340 0 C at least. This superheated steam is used to operate a turbo-generator unit. The characteristic of the process is that an exothermal chemical reaction is used to generate the heat utilised during the superheating stage. The chemical reaction is a mechanisation, oxidation-reduction or hydrogenation reaction [fr

  3. Effects of band-steaming on microbial activity and abundance in organic farming soil

    DEFF Research Database (Denmark)

    Elsgaard, Lars; Jørgensen, Martin Heide; Elmholt, Susanne

    2010-01-01

    Band-steaming of arable soil at 80-90 ◦C kill off weed seeds prior to crop establishment which allows an extensive intra-row weed control. Here we evaluated the side-effects of in situ band-steaming on soil respiration, enzyme activities, and numbers of culturable bacteria and fungi in an organic...... insignificant or slightly stimulatory (P recovery during 90 days after band-steaming. Bacterial colony-forming units increased after soil steaming...... whereas the number of fungal propagules was reduced by 50% (P recovery potential...

  4. Replacement Power Facility site selection report

    Energy Technology Data Exchange (ETDEWEB)

    Wike, L.D.; Toole, G.L.; Specht, W.L.

    1992-06-01

    The Department of Energy (DOE) has proposed the construction and operation of a Replacement Power Facility (RPF) for supplementing and replacing existing sources of steam and possibly electricity at the Savannah River Site (SRS). DOE is preparing an Environmental Impact Statement (EIS) for this project As part of the impact analysis of the proposed action, the EIS will include a detailed description of the environment where the RPF will be constructed. This description must be specific to the recommended site at SRS, which contains more than 300 square miles of land including streams, lakes, impoundments, wetlands, and upland areas. A formal site-selection process was designed and implemented to identify the preferred RPF site.

  5. Evaluation of a dryer in a steam generator

    International Nuclear Information System (INIS)

    Xue Yunkui; Liu Shixun; Guandao, Xie; Chen Junliang

    1998-01-01

    The hooked-vane-type dryer is used in vertical, natural circulation steam generators used in PWR-type nuclear power stations. it separates the fine droplets of water carried by steam so that the steam generator outlet steam moisture is below 0.25%. Such low moisture is demanded to ensure a safe and economic operation of the unit. The dryer is composed of hooked vanes and a draining structure. A series of tests to screen different designs were performed using air-water mixture. The paper presents the results of the investigation of the effect of the number of drainage hooks , the bending angle , distance between two adjacent vanes, and other geometrical parameters on the performance of a hooked-vane-type steam dryer. It indicates that the dryer still works effectively when the moisture of the steam at the dryer inlet changes in a wide range, and that the performance of the dryer is closely related to the geometry of the draining structure . On the basis of the results of this program, a draining structure with an original design was selected and it is presented in the paper. The performance of the selected draining structure is better than that of similar structures in China and abroad. (author)

  6. Estimating probable flaw distributions in PWR steam generator tubes

    International Nuclear Information System (INIS)

    Gorman, J.A.; Turner, A.P.L.

    1997-01-01

    This paper describes methods for estimating the number and size distributions of flaws of various types in PWR steam generator tubes. These estimates are needed when calculating the probable primary to secondary leakage through steam generator tubes under postulated accidents such as severe core accidents and steam line breaks. The paper describes methods for two types of predictions: (1) the numbers of tubes with detectable flaws of various types as a function of time, and (2) the distributions in size of these flaws. Results are provided for hypothetical severely affected, moderately affected and lightly affected units. Discussion is provided regarding uncertainties and assumptions in the data and analyses

  7. Secondary coolant circuit operation tests: steam generator feedwater supply

    International Nuclear Information System (INIS)

    Beroux, M.

    1985-01-01

    No one important accident occurred during the start-up tests of the 1300MWe P4 series, concerning the feedwater system of steam generators (SG). This communication comments on some incidents, that the tests allowed to detect very soon and which had no consequences on the operation of units: 1) Water hammer in feedwater tubes, and incidents met in the emergency steam generator water supply circuit. The technological differences between SG 900 and 1300 are pointed out, and the measures taken to prevent this problem are presented. 2) Incidents met on the emergency feedwater supply circuit of steam generators; mechanical or functional modifications involved by these incidents [fr

  8. Wolsong Unit 1 restart chemistry procedures during retubing outage

    International Nuclear Information System (INIS)

    Yun, Hyunran; Lee, Sarang; Moon, Yunyong; Kim, Seoyul

    2015-01-01

    Lay-up is aimed at protecting systems from degradation during outage, mainly by minimizing corrosion and particularly, when the outage is longer than 16 weeks. Due to the intrinsic design of CANDU reactors, their horizontal fuel channels should be replaced for another service life time. This poster presents the lay-up guidelines and methods recommended for re-tubing outage based on the first re-tubing operation made in Korea (at the Wolsung Unit 1). It is shown that dry lay-up with specific gas blanket was the sole choice for the primary heat transfer system, the moderator system and the steam cycle system while wet lay-up under circulation was recommended for the end shield cooling system and the liquid zone control system. The water filled part of steam generators, of the liquid zone control system and of the end shield cooling system was maintained normal

  9. Study on Relative COP Changes with Increasing Heat Input Temperatures of Double Effect Steam Absorption Chillers

    Directory of Open Access Journals (Sweden)

    Abd Majid Mohd Amin

    2016-01-01

    Full Text Available Absorption chillers at cogeneration plants generate chilled water using steam supplied by heat recovery steam generators. The chillers are mainly of double effect type. The COP of double effect varies from 0.7 to 1.2 depending on operation and maintenance practices of the chillers. Heat input to the chillers during operations could have impact on the COP of the chillers. This study is on relative COP changes with increasing the heat input temperatures for a steam absorption chiller at a gas fueled cogeneration plant. Reversible COP analysis and zero order model were used for evaluating COP of the chiller for 118 days operation period. Results indicate increasing COP trends for both the reversible COP and zero model COP. Although the zero model COP are within the range of double effect absorption chiller, it is not so for the actual COP. The actual COP is below the range of normal double effect COP. It is recommended that economic replacement analysis to be undertaken to assess the feasibility either to repair or replace the existing absorption chiller.

  10. Changing the simualtor's steam generator

    International Nuclear Information System (INIS)

    Ruiz Martin, J.A.; Ortega Pascual, F.

    2006-01-01

    Two Spanish nuclear power plants (two PWR units each one) have planned to change their Westinghouse D-3 steam generators (SGo henceforth) for a new model, 61W/D3 from Siemens/KWU (SGn henceforth), during 1995/1997. This is the reason why TECNATOM has developed during 1994's last term, a new software for the full scope simulator that incorporates the modifications related to the steam generator substiution programme. This allows an anticipated training on the procedures, not only for normal, but for emergency procedures. As it is a component which has not yet been included in these plants, there are not real references or operative experience data. Therefore, the design of the validation strategy was one of the key points in this work. (author)

  11. The modification of main steam safety valves in Qinshan phase Ⅱ expansion project

    International Nuclear Information System (INIS)

    Chen Haiqiao

    2012-01-01

    The main steam safety valves of NPP steam system are second- class nuclear safety component. It used to limit the pressure of SG secondary side and main steam system via emitting steam into the environment. At present, the main steam safety valves have mechanical valves and assisted power valves. According to the experience of power plants at home and abroad, including Qinshan Phase Ⅱ unit 1/2 experience feedback, Qinshan Phase Ⅱ expansion project made modification on valve type, setting value and valve body. This paper introduce the characteristics of different safety valve types, the modification of main steam safety valves and the modification analysis on safety issues.security and impact on the other systems in Qinshan Phase Ⅱ expansion project. (author)

  12. Ontario Hydro's operating experience with steam generators with specifics on Bruce A and Bruce B problems

    Energy Technology Data Exchange (ETDEWEB)

    Eatock, J W; Patterson, R W [Ontario Hydro, Toronto, ON (Canada); Dyck, R W [Ontario Hydro, Central Production Services Division, Toronto, ON (Canada)

    1991-04-01

    The performance of the steam generators in Ontario Hydro nuclear power stations is reviewed. This performance has generally been outstanding compared to world averages, with very low tube failure and plugging rates. Steam generator problems have made only minor contributions to Ontario Hydro nuclear station incapability factors. The mechanisms responsible for the the observed tube degradation and failures are described. The majority of the leaks have been due fatigue in the U-bend of the Bruce 'A' steam generators. There have been very few failures attributed to corrosion of the three tube materials used in Ontario Hydro steam generators. Recent performance has been deteriorating primarily due to deposit accumulation in the steam generators. Plugging of the broached holes in the upper support plates at Bruce 'A' has caused some derating of two units. Increases have been observed in the primary heat transport system reactor inlet temperature of several units. These increases may be attributed to steam generator tube surface fouling. In addition, several units have accumulated deep, hard sludge piles on the tube sheet, although little damage been observed. Recently some fretting of tubes has been observed at BNGSB in the U-bend support region. Remedial measures are being taken to address the current problems. Solutions are being evaluated to reduce the generation of corrosion products in the feedtrain and their subsequent transport to the steam generators. (author)

  13. Ontario Hydro's operating experience with steam generators with specifics on Bruce A and Bruce B problems

    International Nuclear Information System (INIS)

    Eatock, J.W.; Patterson, R.W.; Dyck, R.W.

    1991-01-01

    The performance of the steam generators in Ontario Hydro nuclear power stations is reviewed. This performance has generally been outstanding compared to world averages, with very low tube failure and plugging rates. Steam generator problems have made only minor contributions to Ontario Hydro nuclear station incapability factors. The mechanisms responsible for the the observed tube degradation and failures are described. The majority of the leaks have been due fatigue in the U-bend of the Bruce 'A' steam generators. There have been very few failures attributed to corrosion of the three tube materials used in Ontario Hydro steam generators. Recent performance has been deteriorating primarily due to deposit accumulation in the steam generators. Plugging of the broached holes in the upper support plates at Bruce 'A' has caused some derating of two units. Increases have been observed in the primary heat transport system reactor inlet temperature of several units. These increases may be attributed to steam generator tube surface fouling. In addition, several units have accumulated deep, hard sludge piles on the tube sheet, although little damage been observed. Recently some fretting of tubes has been observed at BNGSB in the U-bend support region. Remedial measures are being taken to address the current problems. Solutions are being evaluated to reduce the generation of corrosion products in the feedtrain and their subsequent transport to the steam generators. (author)

  14. A nuclear power unit with a Babcock type steam generating system-analysis of the break-down in the Three Mile Island power plant

    International Nuclear Information System (INIS)

    Werner, A.

    1980-01-01

    Installations of the primary and the secondary circuits and basic automatic control and protection systems for a nuclear power unit with Babcock type vertical, once-through steam generator are described. On this background the course of the break-down in the Three Mile Island power plant at Harrisburg is presented and analysed. (author)

  15. Optimal selection of Orbital Replacement Unit on-orbit spares - A Space Station system availability model

    Science.gov (United States)

    Schwaab, Douglas G.

    1991-01-01

    A mathematical programing model is presented to optimize the selection of Orbital Replacement Unit on-orbit spares for the Space Station. The model maximizes system availability under the constraints of logistics resupply-cargo weight and volume allocations.

  16. United States Advanced Ultra-Supercritical Component Test Facility for 760°C Steam Power Plants ComTest Project

    Energy Technology Data Exchange (ETDEWEB)

    Hack, Horst [Electric Power Research Institute (EPRI); Purgert, Robert Michael [Energy Industries of Ohio

    2017-12-13

    Following the successful completion of a 15-year effort to develop and test materials that would allow coal-fired power plants to be operated at advanced ultra-supercritical (A-USC) steam conditions, a United States-based consortium is presently engaged in a project to build an A-USC component test facility (ComTest). A-USC steam cycles have the potential to improve cycle efficiency, reduce fuel costs, and reduce greenhouse gas emissions. Current development and demonstration efforts are focused on enabling the construction of A-USC plants, operating with steam temperatures as high as 1400°F (760°C) and steam pressures up to 5000 psi (35 MPa), which can potentially increase cycle efficiencies to 47% HHV (higher heating value), or approximately 50% LHV (lower heating value), and reduce CO2 emissions by roughly 25%, compared to today’s U.S. fleet. A-USC technology provides a lower-cost method to reduce CO2 emissions, compared to CO2 capture technologies, while retaining a viable coal option for owners of coal generation assets. Among the goals of the ComTest facility are to validate that components made from advanced nickel-based alloys can operate and perform under A-USC conditions, to accelerate the development of a U.S.-based supply chain for the full complement of A-USC components, and to decrease the uncertainty of cost estimates for future A-USC power plants. The configuration of the ComTest facility would include the key A-USC technology components that were identified for expanded operational testing, including a gas-fired superheater, high-temperature steam piping, steam turbine valve, and cycling header component. Membrane walls in the superheater have been designed to operate at the full temperatures expected in a commercial A-USC boiler, but at a lower (intermediate) operating pressure. This superheater has been designed to increase the temperature of the steam supplied by the host utility boiler up to 1400°F (760

  17. Review of the data bases for making decisions regarding Trojan steam generator replacement options

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.; Gilbert, E.R.

    1992-03-01

    The central focus for this assessment has been to compare the corrosion behavior of two steam generator (SG) tube materials: Inconel 600 TT and Inconel 690 TT from (a) SG operating experience, and (b) laboratory data. The scope and results of the comparisons are summarized in this section. They provide the basis for projecting SG longevity

  18. Nuclear reactor fuel replacement system

    International Nuclear Information System (INIS)

    Kayano, Hiroyuki; Joge, Toshio.

    1976-01-01

    Object: To permit the direction in which a fuel replacement unit is moving to be monitored by the operator. Structure: When a fuel replacement unit approaches an intermediate goal position preset in the path of movement, renewal of data display on a goal position indicator is made every time the goal position is changed. With this renewal, the prevailing direction of movement of the fuel replacement unit can be monitored by the operator. When the control of movement is initiated, the co-ordinates of the intermediate goal point A are displayed on a goal position indicator. When the replacement unit reaches point A, the co-ordinates of the next intermediate point B are displayed, and upon reaching point B the co-ordinates of the (last) goal point C are displayed. (Nakamura, S.)

  19. Draft environmental statement related to steam-generator repair at Point Beach Nuclear Plant, Unit No. 1. Docket No. 50-266

    International Nuclear Information System (INIS)

    1983-07-01

    The staff has considered the environmental impacts and economic costs of the proposed steam generator repair at the Point Beach Nuclear Plant Unit No. 1 along with reasonable alternatives to the proposed action. The staff has concluded that the proposed repair will not significantly affect the quality of the human environment and that there are no preferable alternatives to the proposed action. Furthermore, any impacts from the repair program are outweighed by its benefits

  20. Final environmental statement related to steam-generator repair at Point Beach Nuclear Plant, Unit No. 1 (Docket No. 50-266)

    International Nuclear Information System (INIS)

    1983-09-01

    The staff hhas considered the environental impacts and economic costs of the proposed steam generator repair at the Point Beach Nuclear Plant, Unit No. 1 along with reasonable alternatives to the proposed action. The staff has concluded that the proposed repair will not significantly affect the quality of the human environment and that there are no preferable alternatives to the proposed action. Furthermore, any impacts from the repair program are outweighed by its benefits

  1. Replacement of a cracked pressure tube in Bruce GS unit 2

    International Nuclear Information System (INIS)

    Dunn, J.T.

    1982-06-01

    In 1982 February, a primary heat transport system leak was detected in the annulus gas system by on-line instrumentation. The source of the leak was found to be a small axial crack in the pressure tube of fuel channel X-14. This fuel channel was removed and replaced by station maintenance staff, and the unit was returned to service five weeks after it had been shut down. The cracked pressure tube was sent to Chalk River Nuclear Laboratories for examination, and the crack was found to be very similar to those found in Pickering GS units 3 and 4 in 1974-75. It was caused by delayed hydride cracking during the period of high residual stress between the time of rolling and the pre-service stress relief

  2. Wolsong 3 and 4 steam generator tube inspection

    International Nuclear Information System (INIS)

    Jang, Kyoung Sik; Son, Tai Bong; Kwon, Dong Ki; Choi, Jin Hyuk

    2001-01-01

    During the pre-service inspection for Wolsong unit 3 and 4 in 1997/1998 respectively, 17 distorted roll transition indications (over expanded beyond tubesheet secondary face) were identified at the unit 4 (S/G B, D). Six(6) tubes out of these tubes were plugged in 1998. However the first periodic inspection identified additional 110 indications in 1999 and 2000. The additionally identified 110 indication call, not reported at the pre-service inspection, are; 2 not-finally-expanded-tubes and 108 distorted roll transition tubes. Design limit of each steam generator tube plugging is 6.4.%. Plugging was performed by the steam generator manufacturer under the warranty. When distorted roll transition indications were first identified on the unit 4 in 1998 the degree of over-expansion was measured using an inner dial-gage to make the disposition of nonconformance report. 2 Not-finally-expanded-tubes were plugged and 10 tubes out of 108 distorted roll transition tubes were also plugged as a preventive measure

  3. Steam Digest 2002

    Energy Technology Data Exchange (ETDEWEB)

    2003-11-01

    Steam Digest 2002 is a collection of articles published in the last year on steam system efficiency. DOE directly or indirectly facilitated the publication of the articles through it's BestPractices Steam effort. Steam Digest 2002 provides a variety of operational, design, marketing, and program and program assessment observations. Plant managers, engineers, and other plant operations personnel can refer to the information to improve industrial steam system management, efficiency, and performance.

  4. Internal oxidation as a mechanism for steam generator tube degradation

    Energy Technology Data Exchange (ETDEWEB)

    Gendron, T.S. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Scott, P.M. [Framatome, Paris (France); Bruemmer, S.M. [Pacific Northwest National Laboratory, Richland, WA (United States); Thomas, L.E. [Washington State Univ., School of Mechanical and Materials Engineering, Pullman, WA (United States)

    1999-12-01

    Internal oxidation has been proposed as a plausible mechanism for intergranular stress-corrosion cracking (IGSCC) of alloy 600 steam generator tubing. This theory can reconcile the main thermodynamic and kinetic characteristics of the observed cracking in hydrogenated primary water. Although secondary-side IG attack or IGSCC is commonly attributed to the presence of strong, caustic or acidic solutions, more recent evidence suggests that this degradation takes place in a near neutral environment, possibly dry polluted steam. As a result, internal oxidation is also a feasible mechanism for secondary side degradation. The present paper reviews experimental work conducted in an attempt to determine the validity of this mechanism. The consequences for the expected behaviour of alloys 690 and 800 replacement materials are also described. (author)

  5. Internal oxidation as a mechanism for steam generator tube degradation

    Energy Technology Data Exchange (ETDEWEB)

    Gendron, T.S. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Scott, P.M. [Framatome, Paris (France); Bruemmer, S.M. [Pacific Northwest National Lab., Richland, Washington (United States); Thomas, L.E. [Washington State Univ., School of Mechanical and Materials Engineering, Pullman, WA (United States)

    1998-07-01

    Internal oxidation has been proposed as a plausible mechanism for intergranular stress corrosion cracking (IGSCC) of alloy 600 steam generator tubing. This theory can reconcile the main thermodynamic and kinetic characteristics of the observed cracking in hydrogenated primary water. Although secondary side IG attack or IGSCC is commonly attributed to the presence of strong caustic or acidic solutions, more recent evidence suggests that this degradation takes place in a near-neutral environment, possibly dry polluted steam. As a result, internal oxidation is also a feasible mechanism for secondary side degradation. The present paper reviews experimental work carried out in an attempt to determine the validity of this mechanism. The consequences for the expected behaviour of alloys 690 and 800 replacement materials are also described. (author)

  6. Internal oxidation as a mechanism for steam generator tube degradation

    International Nuclear Information System (INIS)

    Gendron, T.S.; Scott, P.M.; Bruemmer, S.M.; Thomas, L.E.

    1998-01-01

    Internal oxidation has been proposed as a plausible mechanism for intergranular stress corrosion cracking (IGSCC) of alloy 600 steam generator tubing. This theory can reconcile the main thermodynamic and kinetic characteristics of the observed cracking in hydrogenated primary water. Although secondary side IG attack or IGSCC is commonly attributed to the presence of strong caustic or acidic solutions, more recent evidence suggests that this degradation takes place in a near-neutral environment, possibly dry polluted steam. As a result, internal oxidation is also a feasible mechanism for secondary side degradation. The present paper reviews experimental work carried out in an attempt to determine the validity of this mechanism. The consequences for the expected behaviour of alloys 690 and 800 replacement materials are also described. (author)

  7. Lifetime analysis of the THTR steam generator and piping system

    International Nuclear Information System (INIS)

    Kemter, F.; Gloeckner, H.J.; Fritz, H.U.; Koenig, H.

    1989-01-01

    For the life monitoring during operation of the water / steam circuit operated in the high temperature area and the steam-raising units in the THTR, the life monitoring program SLAP was developed. For highly loaded components the current components exploitation and the remaining available life can be determined during operation. A survey is given of the procedure in determining the life exploitation and of the program structure of SLAP. (DG) [de

  8. The study of reactions influencing the biomass steam gasification process

    Energy Technology Data Exchange (ETDEWEB)

    C. Franco; F. Pinto; I. Gulyurtlu; I. Cabrita [INETI-DEECA, Lisbon (Portugal)

    2003-05-01

    Steam gasification studies were carried out in an atmospheric fluidised bed. The gasifier was operated over a temperature range of 700 900{sup o}C whilst varying a steam/biomass ratio from 0.4 to 0.85 w/w. Three types of forestry biomass were studied: Pinus pinaster (softwood), Eucalyptus globulus and holm-oak (hardwood). The energy conversion, gas composition, higher heating value and gas yields were determined and correlated with temperature, steam/biomass ratio, and species of biomass used. The results obtained seemed to suggest that the operating conditions were optimised for a gasification temperature around 830{sup o}C and a steam/biomass ratio of 0.6 0.7 w/w, because a gas richer in hydrogen and poorer in hydrocarbons and tars was produced. These conditions also favoured greater energy and carbon conversions, as well the gas yield. The main objective of the present work was to determine what reactions were dominant within the operation limits of experimental parameters studied and what was the effect of biomass type on the gasification process. As biomass wastes usually have a problem of availability because of seasonal variations, this work analysed the possibility of replacing one biomass species by another, without altering the gas quality obtained. 19 refs., 8 figs. 2 tabs.

  9. Steam-Generator Integrity Program/Steam-Generator Group Project

    International Nuclear Information System (INIS)

    1982-10-01

    The Steam Generator Integrity Program (SGIP) is a comprehensive effort addressing issues of nondestructive test (NDT) reliability, inservice inspection (ISI) requirements, and tube plugging criteria for PWR steam generators. In addition, the program has interactive research tasks relating primary side decontamination, secondary side cleaning, and proposed repair techniques to nondestructive inspectability and primary system integrity. The program has acquired a service degraded PWR steam generator for research purposes. This past year a research facility, the Steam Generator Examination Facility (SGEF), specifically designed for nondestructive and destructive examination tasks of the SGIP was completed. The Surry generator previously transported to the Hanford Reservation was then inserted into the SGEF. Nondestructive characterization of the generator from both primary and secondary sides has been initiated. Decontamination of the channelhead cold leg side was conducted. Radioactive field maps were established in the steam generator, at the generator surface and in the SGEF

  10. Technical Feasible Study for Future Solar Thermal Steam Power Station in Malaysia

    Science.gov (United States)

    Bohari, Z. H.; Atira, N. N.; Jali, M. H.; Sulaima, M. F.; Izzuddin, T. A.; Baharom, M. F.

    2017-10-01

    This paper proposed renewable energy which is potential to be used in Malaysia in generating electricity to innovate and improve current operating systems. Thermal and water act as the resources to replace limited fossil fuels such as coal which is still widely used in energy production nowadays. Thermal is also known as the heat energy while the water absorbs energy from the thermal to produce steam energy. By combining both of the sources, it is known as thermal steam renewable energy. The targeted area to build this power station has constant high temperature and low humidity which can maximize the efficiency of generating power.

  11. An assessment of underground and aboveground steam system failures in the SRS waste tank farms

    International Nuclear Information System (INIS)

    Hsu, T.C.; Shurrab, M.S.; Wiersma, B.J.

    1997-01-01

    Underground steam system failures in waste tank farms at the Savannah River Site (SRS) increased significantly in the 3--4 year period prior to 1995. The primary safety issues created by the failures were the formation of sub-surface voids in soil and the loss of steam jet transfer and waste evaporation capability, and the loss of heating and ventilation to the tanks. The average annual cost for excavation and repair of the underground steam system was estimated to be several million dollars. These factors prompted engineering personnel to re-consider long-term solutions to the problem. The primary cause of these failures was the inadequate thermal insulation utilized for steam lines associated with older tanks. The failure mechanisms were either pitting or localized general corrosion on the exterior of the pipe beneath the thermal insulation. The most realistic and practical solution is to replace the underground lines by installing aboveground steam systems, although this option will incur significant initial capital costs. Steam system components, installed aboveground in other areas of the tank farms have experienced few failures, while in continuous use. As a result, piecewise installation of temporary aboveground steam systems have been implemented in F-area whenever opportunities, i.e., failures, present themselves

  12. Steam drums

    International Nuclear Information System (INIS)

    Crowder, R.

    1978-01-01

    Steam drums are described that are suitable for use in steam generating heavy water reactor power stations. They receive a steam/water mixture via riser headers from the reactor core and provide by means of separators and driers steam with typically 0.5% moisture content for driving turbines. The drums are constructed as prestressed concrete pressure vessels in which the failure of one or a few of the prestressing elements does not significantly affect the overall strength of the structure. The concrete also acts as a radiation shield. (U.K.)

  13. Thermal circuit and supercritical steam generator of the BGR-300 nuclear power plant

    International Nuclear Information System (INIS)

    Afanas'ev, B.P.; Godik, I.B.; Komarov, N.F.; Kurochnkin, Yu.P.

    1979-01-01

    Secondary coolant circuit and a steam generator for supercritical steam parameters of the BGR-300 reactor plant are described. The BGR-300 plant with a 300 MW(e) high-temperature gas-cooled fast reactor is developed as a pilot commercial plant. It is shown that the use of a supercritical pressure steam increases the thermal efficiency of the plant and descreases thermal releases to the environment, permits to use home-made commercial turbine plants of large unit power. The proposed supercritical pressure steam generator has considerable advantages from the viewpoint of heat transfer and hydrodynamical processes

  14. A State-of-the-Art Report on Technologies of Volume Reduction and Self-Disposal for Large Metal Wastes including the Steam Generator of Nuclear Power Plants

    International Nuclear Information System (INIS)

    Lee, Kune Woo; Choi, W. K.; Kim, G. Y.

    2009-06-01

    This report focuses on technologies of volume reduction and self-disposal for large metal wastes including the steam generator of nuclear power plants. This report consists of the cases of treatments and foreign and domestic technologies for steam generator replacement

  15. Electrosleeve process for in-situ nuclear steam generator repair

    International Nuclear Information System (INIS)

    Barton, R.A.; Moran, T.E.; Renaud, E.

    1997-01-01

    Degradation of steam generator (SG) tubing by localized corrosion is a widespread problem in the nuclear industry that can lead to costly forced out-ages, unit de-rating, SG replacement or even the permanent shutdown of a reactor. In response to the onset of SG tubing degradation at Ontario Hydro's Pickering Nuclear Generating Station (PNGS) Unit 5, and the determined unsuitability of conventional repair methods (mechanically expanded or welded sleeves) for Alloy 400, an alternative repair technology was developed. Electrosleeve is a non-intrusive, low-temperature process that involves the electrodeposition of a nanocrystalline nickel microalloy forming a continuously bonded, structural layer over the internal diameter of the degraded region. This technology is designed to provide a long-term pressure boundary repair, fully restoring the structural integrity of the damaged region to its original state. This paper describes the Electrosleeve process for SG tubing repair and the unique properties of the advanced sleeve material. The successful installation of Electrosleeves that have been in service for more than three years in Alloy 400 SG tubing at the Pickering-5 CANDU unit, the more recent extension of the technology to Alloy 600 and its demonstration in a U.S. pressurized water reactor (PWR), is presented. A number of PWR operators have requested plant operating technical specification changes to permit Electrosleeve SG tube repair. Licensing of the Electrosleeve by the U.S. Nuclear Regulatory Commission (NRC) is expected imminently. (author)

  16. Steam saving during maintenance of the 50-MW Unit 7 at Los Azufres geothermal field, Michoacan; Ahorro de vapor durante el mantenimiento de la Unidad 7 de 50 MW en el campo geotermico de Los Azufres, Michoacan

    Energy Technology Data Exchange (ETDEWEB)

    Medina Barajas, Elvia Nohemi; Ruiz Lemus, Alejandro [Comision Federal de Electricidad, Gerencia de Proyectos Geotermoelectricos, Residencia de Los Azufres, Morelia, Michoacan (Mexico)]. E-mail: elvia-medina@cfe.gob.mx

    2011-07-15

    Commercial-steam production in the southern area of Los Azufres, Mich., Mexico, Geothermal Field began in 1982 with the operation of Unit 2, the backpressure 5-MW unit, and continued in 1988 when the 50-MW condensing Unit 7 was commissioned. Today to supply steam to Unit 7, it is necessary to gather steam from 15 production wells, amounting 450 tons per hour (t/h) under operating conditions. During maintenance periods for Unit 7, production wells are removed from the steam-supply system but continue producing steam that is discharged to the atmosphere-a loss affecting the economic life of the geothermal reservoir. Therefore several actions have been proposed and tried to save the steam and preserve the geothermal resource. This paper presents the results of the actions and the technical and economic benefits obtained from them. [Spanish] La produccion de vapor con fines comerciales en la zona sur del campo geotermico de Los Azufres, Mich., Mexico, empezo en 1982 con la puesta en marcha de la Unidad 2 de 5 MW a contrapresion, para continuar en 1988 con la Unidad 7 de 50 MW a condensacion. Para cumplir con el suministro de vapor a la U-7, a la fecha es necesario integrar la produccion de 15 pozos productores, que producen un total de 450 toneladas por hora (t/h) a condiciones de operacion. Durante los periodos de mantenimiento de la U-7 los pozos son desintegrados del sistema de suministro, pero continuan produciendo vapor, el cual es descargado a la atmosfera sin ningun provecho, lo que representa una perdida que afecta la vida util del yacimiento geotermico. Por ello se han propuesto y aplicado diversas acciones operativas en cada uno de esos pozos con el objetivo de ahorrar vapor y preservar el recurso geotermico. En este trabajo se presentan los resultados de esas acciones y los beneficios tecnicos y economicos obtenidos.

  17. Operating experience with steam generator water chemistry in Japanese PWR plants

    International Nuclear Information System (INIS)

    Onimura, K.; Hattori, T.

    1991-01-01

    Since the first PWR plant in Japan started its commercial operation in 1970, seventeen plants are operating as of the end of 1990. First three units initially applied phosphate treatment as secondary water chemistry control and then changed to all volatile treatment (AVT) due to phosphate induced wastage of steam generator tubing. The other fourteen units operate exclusively under AVT. In Japan, several corrosion phenomena of steam generator tubing, resulted from secondary water chemistry, have been experienced, but occurrence of those phenomena has decreased by means of improvement on impurity management, boric acid treatment and high hydrazine operation. Recently secondary water chemistry in Japanese plants are well maintained in every stage of operation. This paper introduces brief summary of the present status of steam generators and secondary water chemistry in Japan and ongoing activities of investigation for future improvement of reliability of steam generator. History and present status of secondary water chemistry in Japanese PWRs were introduced. In order to get improved water chemistry, the integrity of secondary system equipments is essential and the improvement in water chemistry has been achieved with the improvement in equipments and their usage. As a result of those efforts, present status of secondary water is excellent. However, further development for crevice chemistry monitoring technique and an advanced water chemistry data management system is desired for the purpose of future improvement of reliability of steam generator

  18. PORST: a computer code to analyze the performance of retrofitted steam turbines

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.; Hwang, I.T.

    1980-09-01

    The computer code PORST was developed to analyze the performance of a retrofitted steam turbine that is converted from a single generating to a cogenerating unit for purposes of district heating. Two retrofit schemes are considered: one converts a condensing turbine to a backpressure unit; the other allows the crossover extraction of steam between turbine cylinders. The code can analyze the performance of a turbine operating at: (1) valve-wide-open condition before retrofit, (2) partial load before retrofit, (3) valve-wide-open after retrofit, and (4) partial load after retrofit.

  19. Functional performance of the helical coil steam generator, Consolidated Nuclear Steam Generator (CNSG) IV system. Executive summary report

    International Nuclear Information System (INIS)

    Watson, G.B.

    1975-10-01

    The objective of this project was to study the functional performance of the CNSG - IV helical steam generator to demonstrate that the generator meets steady-state and transient thermal-hydraulic performance specifications and that secondary flow instability will not be a problem. Economic success of the CNSG concepts depends to a great extent on minimizing the size of the steam generator and the reactor vessel for ship installation. Also, for marine application the system must meet stringent specifications for operating stability, transient response, and control. The full-size two-tube experimental unit differed from the CNSG only in the number of tubes and the mode of primary flow. In general, the functional performance test demonstrated that the helical steam generator concept will exceed the specified superheat of 35F at 100% load. The experimental measured superheat at comparable operating conditions was 95F. Testing also revealed that available computer codes accurately predict trends and overall performance characteristics

  20. Steam generator materials performance in high temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Chafey, J.E.; Roberts, D.I.

    1980-11-01

    This paper reviews the materials technology aspects of steam generators for HTGRs which feature a graphite-moderated, uranium-thorium, all-ceramic core and utilizes high-pressure helium as the primary coolant. The steam generators are exposed to gas-side temperatures approaching 760 0 C and produce superheated steam at 538 0 C and 16.5 MPa (2400 psi). The prototype Peach Bottom I 40-MW(e) HTGR was operated for 1349 EFPD over 7 years. Examination after decommissioning of the U-tube steam generators and other components showed the steam generators to be in very satisfactory condition. The 330-MW(e) Fort St. Vrain HTGR, now in the final stages of startup, has achieved 70% power and generated more than 1.5 x 10 6 MWh of electricity. The steam generators in this reactor are once-through units of helical configuration, requiring a number of new materials factors including creep-fatigue and water chemistry control. Current designs of larger HTGRs also feature steam generators of helical once-through design. Materials issues that are important in these designs include detailed consideration of time-dependent behavior of both base metals and welds, as required by current American Society of Mechanical Engineers (ASME) Code rules, evaluation of bimetallic weld behavior, evaluation of the properties of large forgings, etc

  1. Gentilly-2 and Point Lepreau divider plate replacement

    International Nuclear Information System (INIS)

    Schneider, W.; McClellan, G.; Weston, S.

    1996-01-01

    The steam generators at Hydro Quebec's Gentilly-2 and New Brunswick Power's Point Lepreau Nuclear Plants have been in operation since 1983, and were built with primary divider plates of a bolted panel configuration. During a routine outage inspection at Gentilly-2, it was noted that two bolts had dislodged from the divider plate and were located lying in the primary head. Subsequent inspections revealed erosion damage to a a substantial number of divider plate bolts and to a lesser extent, to the divider plate itself. After further inspection and repair the units were returned to operation, however, it was determined that a permanent replacement of the primary divider plates was going to be necessary. Upon evaluation of various options, it was decided that the panel type divider plates would be replaced with a single piece floating design. The divider plate itself was to be of one piece all-welded arrangement to be constructed from individual panels to be brought in through the manways. In view of the strength limitations of the bolted attachment of the upper seat bar to the tubesheet, a new welded seat was was provided. To counteract erosion concerns, the new divider plate is fitted with erosion resistant inserts of weld buildup and with improved sealing features in order to minimize leakage and erosion. At an advanced stage in the design and manufacture of the components, the issue of divider plate strength during loss of coolant accident (LOCA) conditions came into focus. Analysis was performed to determine the strength and/or failure characteristics of the divider plate to a variety of small and large LOCA conditions. Subsequently, Point Lepreau decided to replace their divider plates to address LOCA concerns. The paper describes the diagnosis of the original divider plates and the design. manufacture, field mobilization, installation and subsequent operation of the replacement divider plates. (author)

  2. An Improved Steam Injection Model with the Consideration of Steam Override

    Directory of Open Access Journals (Sweden)

    He Congge

    2017-01-01

    Full Text Available The great difference in density between steam and liquid during wet steam injection always results in steam override, that is, steam gathers on the top of the pay zone. In this article, the equation for steam override coefficient was firstly established based on van Lookeren’s steam override theory and then radius of steam zone and hot fluid zone were derived according to a more realistic temperature distribution and an energy balance in the pay zone. On this basis, the equation for the reservoir heat efficiency with the consideration of steam override was developed. Next, predicted results of the new model were compared with these of another analytical model and CMG STARS (a mature commercial reservoir numerical simulator to verify the accuracy of the new mathematical model. Finally, based on the validated model, we analyzed the effects of injection rate, steam quality and reservoir thickness on the reservoir heat efficiency. The results show that the new model can be simplified to the classic model (Marx-Langenheim model under the condition of the steam override being not taken into account, which means the Marx-Langenheim model is corresponding to a special case of this new model. The new model is much closer to the actual situation compared to the Marx-Langenheim model because of considering steam override. Moreover, with the help of the new model, it is found that the reservoir heat efficiency is not much affected by injection rate and steam quality but significantly influenced by reservoir thickness, and to ensure that the reservoir can be heated effectively, the reservoir thickness should not be too small.

  3. A steam generating unit identification using subspace methods

    International Nuclear Information System (INIS)

    Poshtan, J.; Mojallali, H.

    2002-01-01

    A Valid boiler model is a tool for the improvement of the steam generation control system and hence results boiler efficiency enhancement. However, methods of obtaining such a model are not readily found in the open literature and are often specific to a particular plant. This paper presents boiler model using a new method in system identification called S ubspace methods . This method is shown to provide an accurate state space model for boiler in a few numbers of operations, directly from input-output data without any prior knowledge of the system equations and any requirement to several stages of testing

  4. Studies on Steam Absorption Chillers Performance at a Cogeneration Plant

    Directory of Open Access Journals (Sweden)

    Abd Majid Mohd Amin

    2014-07-01

    Full Text Available Absorption chillers at cogeneration plants generate chilled water using steam supplied by heat recovery steam generators. The chillers can be of either single-effect or double effect configuration and the coefficient of performance (COP depends on the selection made. The COP varies from 0.7 to 1.2 depending on the types of chillers. Single effect chillers normally have COP in the range of 0.68 to 0.79. Double effect chillers COP are higher and can reach 1.2. However due to factors such as inappropriate operations and maintenance practices, COP could drop over a period of time. In this work the performances of double effect steam absorption chillers at a cogeneration plant were studied. The study revealed that during the period of eleven years of operation the COP of the chillers deteriorated from 1.25 to 0.6. Regression models on the operation data indicated that the state of deterioration was projected to persist. Hence, it would be recommended that the chillers be considered for replacement since they had already undergone a series of costly repairs.

  5. Embalse steam generators - status in 2009

    International Nuclear Information System (INIS)

    Luna, P.; Yetisir, M.; Roy, S.; MacEacheron, R.

    2009-01-01

    without major intervention led to a decision to replace the steam generators. This paper identifies the active degradation mechanisms affecting the steam generator performance and the actions taken since 2004 with an emphasis on the activities of 2007 to mitigate their impacts. The processes followed the actions taken in 2007 leading to return to service. The results of the root cause analysis along with the recommendations to change the secondary side chemistry are included. The tube inspection data were used in the development of a successful condition assessment tool to characterize the tube support plates. This characterization was the key step in the completion of a successful FFS evaluation. Additional actions implemented by Embalse to ensure safe and continued operation of the steam generators are also included. (author)

  6. Development and validation of a CFD-based steam reformer model

    DEFF Research Database (Denmark)

    Kær, Søren Knudsen; Dahlqvist, Mathis; Saksager, Anders

    2006-01-01

    Steam reforming of liquid biofuels (ethanol, bio-diesel etc.) represents a sustainable source of hydrogen for micro Combined Heat and Power (CHP) production as well as Auxiliary Power Units (APUs). In relation to the design of the steam reforming reactor several parameter are important including...... for expensive prototypes. This paper presents an advanced Computational Fluid Dynamics based model of a steam reformer. The model was implemented in the commercial CFD code Fluent through the User Defined Functions interface. The model accounts for the flue gas flow as well as the reformate flow including...... a detailed mechanism for the reforming reactions. Heat exchange between the flue gas and reformate streams through the reformer reactor walls was also included as a conjugate heat transfer process.  From a review of published models for the catalytic steam reforming of ethanol and preliminary predictions...

  7. Operating experience of the EBR-II steam generating system

    International Nuclear Information System (INIS)

    Buschman, H.W.; Penney, W.H.; Quilici, M.D.; Radtke, W.H.

    1981-01-01

    The Experimental Breeder Reactor II (EBR-II) is a Liquid Metal Fast Breeder Reactor (LMFBR) with integrated power producing capability. Superheated steam is produced by eight natural circulation evaporators, two superheaters, and a conventional steam drum. Steam throttle conditions are 438 C (820 F) and 8.62 MPa (1250 psi). The designs of the evaporators and superheaters are essentially identical; both are counterflow units with low pressure nonradioactive sodium on the shell side. Safety and reliability are maximized by using duplex tubes and tubesheets. The performance of the system has been excellent and essentially trouble free. The operating experience of EBR-II provides confidence that the technology can be applied to commercial LMFBR's for an abundant supply of energy for the future. 5 refs

  8. Steam sterilization does not require saturated steam

    NARCIS (Netherlands)

    van Doornmalen Gomez Hoyos, J. P.C.M.; Paunovic, A.; Kopinga, K.

    2017-01-01

    The most commonly applied method to sterilize re-usable medical devices in hospitals is steam sterilization. The essential conditions for steam sterilization are derived from sterilization in water. Microbiological experiments in aqueous solutions have been used to calculate various time–temperature

  9. Steam generator issues in the United States

    International Nuclear Information System (INIS)

    Strosnider, J.R.

    1997-01-01

    Alloy 600 steam generator tubes in the US have exhibited degradation mechanisms similar to those observed in other countries. Effective programs have been implemented to address several degradation mechanisms including: wastage; mechanical wear; pitting; and fatigue. These degradation mechanisms are fairly well understood as indicated by the ability to effectively mitigate/manage them. Stress corrosion cracking (SCC) is the dominant degradation mechanism in the US. SCC poses significant inspection and management challenges to the industry and the regulators. The paper also addresses issues of research into SCC, inspection programs, plugging, repair strategies, water chemistry, and regulatory control. Emerging issues in the US include: parent tube cracking at sleeve joints; detection and repair of circumferential cracks; free span cracking; inspection and cracking of dented regions; and severe accident analysis

  10. Steam generators and fuel engineering utilizing solid, liquid, gaseous and special fuels

    Energy Technology Data Exchange (ETDEWEB)

    Thor, G

    1983-01-01

    Provided were technological specifications and details in the design of brown coal fired steam generators, produced in the German Democratic Republic. These steam generators range in their capacity between 1.6 and more than 1,000 t/h. The appropriate coal feeding systems, water supply and cleaning equipment, coal pulverizers and ash removal units are also manufactured. Various schemes show the design of a 25 to 64 t/h, a 320 t/h and an 815 t/h brown coal steam generator. Specifications are given for series of fuel pulverizers available, for the water circulation system and steam evaporators. The VEB Dampferzeugerbau Berlin also offers steam generators for saliniferous brown coal with a steam capacity up to 125 t/h, steam generators for pulverized black coal with a capacity up to 350 t/h and oil and gas fired generators up to 250 t/h. The company has experience in combustion of biomass (sugar cane waste) with oil in steam generators of more than 100 t/h capacity, and in projecting firing systems for other biofuels including rice, peanut and coconut hulls, wood and bark. Multi-biofuel firing in combination with coal for steam generation is also regarded as possible. (In English)

  11. Safety-evaluation report related to the operation of Waterford Steam Electric Station, Unit No. 3. Docket No. 50-382

    International Nuclear Information System (INIS)

    1983-06-01

    Supplement 5 to the Safety Evaluation Report for the application filed by Louisiana Power and Light Company for a license to operate the Waterford Steam Electric Station, Unit 3 (Docket No. 50-382), located in St. Charles Parish, Louisiana has been prepared by the Office of Nuclear Reactor Regulation of the Nuclear Regulatory Commission. The purpose of this supplement is to update the Safety Evaluation Report by providing the staff's evaluation of information submitted by the applicant since the Safety Evaluation Report and its four previous Supplements were issued

  12. Safety Evaluation Report related to the operation of Waterford Steam Electric Station, Unit No. 3 (Docket No. 50-382)

    International Nuclear Information System (INIS)

    1985-03-01

    Supplement 10 to the Safety Evaluation Report for the application filed by Louisiana Power and Light Company for a license to operate the Waterford Steam Electric Station, Unit 3 (Docket No. 50-382), located in St. Charles Parish, Louisiana, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The purpose of this supplement is to update the Safety Evaluation Report by providing the staff's evaluation of information submitted by the licensee since the Safety Evaluation Report and its nine previous supplements were issued

  13. Steam Pressure-Reducing Station Safety and Energy Efficiency Improvement Project

    Energy Technology Data Exchange (ETDEWEB)

    Lower, Mark D [ORNL; Christopher, Timothy W [ORNL; Oland, C Barry [ORNL

    2011-06-01

    The Facilities and Operations (F&O) Directorate is sponsoring a continuous process improvement (CPI) program. Its purpose is to stimulate, promote, and sustain a culture of improvement throughout all levels of the organization. The CPI program ensures that a scientific and repeatable process exists for improving the delivery of F&O products and services in support of Oak Ridge National Laboratory (ORNL) Management Systems. Strategic objectives of the CPI program include achieving excellence in laboratory operations in the areas of safety, health, and the environment. Identifying and promoting opportunities for achieving the following critical outcomes are important business goals of the CPI program: improved safety performance; process focused on consumer needs; modern and secure campus; flexibility to respond to changing laboratory needs; bench strength for the future; and elimination of legacy issues. The Steam Pressure-Reducing Station (SPRS) Safety and Energy Efficiency Improvement Project, which is under the CPI program, focuses on maintaining and upgrading SPRSs that are part of the ORNL steam distribution network. This steam pipe network transports steam produced at the ORNL steam plant to many buildings in the main campus site. The SPRS Safety and Energy Efficiency Improvement Project promotes excellence in laboratory operations by (1) improving personnel safety, (2) decreasing fuel consumption through improved steam system energy efficiency, and (3) achieving compliance with applicable worker health and safety requirements. The SPRS Safety and Energy Efficiency Improvement Project being performed by F&O is helping ORNL improve both energy efficiency and worker safety by modifying, maintaining, and repairing SPRSs. Since work began in 2006, numerous energy-wasting steam leaks have been eliminated, heat losses from uninsulated steam pipe surfaces have been reduced, and deficient pressure retaining components have been replaced. These improvements helped ORNL

  14. Application of an eddy current technique to steam generator U-bend characterization. Final report

    International Nuclear Information System (INIS)

    Cramer, W.E.; de la Pintiere, L.; Narita, S.; Bergander, M.J.

    1982-04-01

    Eddy current nondestructive testing techniques are used widely throughout the utility industry for the early detection of tube damage in critical power plant components such as steam generators. In this project, the application of an eddy current technique for the characterization of U-bend transitions in the first row tubing in Westinghouse 51 Series Steam Generators has been investigated. A method has been developed for detection of the opposite transition in the U-bend and for defining its severity. Investigation included two different types of U-bend transitions. Using the developed eddy current method for U-bend characterization, on-site inspection was performed on all tubes in the first row in four 51 Series steam generators in Power Plant Unit No. 2 and in one 51 Series steam generator in Power Plant Unit No. 1. The advantages and limitations of the developed method as well as the recommendations for further investigations are included

  15. Moisture separators and reheaters for wet steam turbines

    International Nuclear Information System (INIS)

    Gibbins, J.

    1979-01-01

    Moisture separator reheater (M.S.R.) units are now a well established feature of the wet steam cycle as associated with the various types of water cooled reactor. This paper describes the development of M.S.Rs. as supplied by GEC for turbine generators of up to 1200 MW ratings covering the design procedures used and the features required to ensure efficient and reliable operation. In addition to details of the M.S.R. design, the desirable features of the steam supply, venting and drain control systems are also discussed. The recent developments, as provided on current projects, are described. (author)

  16. Electricity from geothermal steam

    Energy Technology Data Exchange (ETDEWEB)

    Wheatcroft, E L.E.

    1959-01-01

    The development of the power station at Wairakei geothermal field is described. Wairakei is located at the center of New Zealand's volcanic belt, which lies within a major graben which is still undergoing some degree of downfaulting. A considerable number of wells, some exceeding 610 m, have been drilled. Steam and hot water are produced from both deep and shallow wells, which produce at gauge pressures of 1.5 MPa and 0.6 MPa, respectively. The turbines are fed by low, intermediate, and high pressure mains. The intermediate pressure turbine bank was installed as a replacement for a heavy water production facility which had originally been planned for the development. Stage 1 includes a 69 MW plant, and stage 2 will bring the capacity to 150 MW. A third stage, which would bring the output up to 250 MW had been proposed. The second stage involves the installation of more high pressure steam turbines, while the third stage would be powered primarily by hot water flashing. Generation is at 11 kV fed to a two-section 500 MVA board. Each section of the board feeds through a 40 MVA transformer to a pair of 220 V transmission lines which splice into the North Island grid. Other transformers feed 400 V auxiliaries and provide local supply.

  17. Device for inspection and/or repair of tubes of a steam raising unit for nuclear reactors

    International Nuclear Information System (INIS)

    Wollensack, W.

    1985-01-01

    The device is situated in a chamber bounded by a pipe floor, the hemispherical floor of the steam raising unit and a wall extending between the pipe floor and this hemi-spherical floor. By using lifting gear which can be anchored in the pipe floor, a supporting leg is introduced into the chamber. Pegs of this supporting leg turned towards the pipe floor act to stop the supporting leg in the pipe floor. To make positioning of the pegs in the pipe floor easier, the lifting gear is provided with a guide turned towards the supporting leg. The guide has a spacer, which is fixed to the supporting leg and guides this along a wall of the chamber. (orig./HP) [de

  18. Implications of small water leak reactions on sodium heated steam generator design

    Energy Technology Data Exchange (ETDEWEB)

    Smedley, J A

    1975-07-01

    Various types of sodium water reactions have been looked on as possibly causing hazard conditions in sodium heated steam generator units ranging from the very improbable boiler tube double ended guillotine fracture to the almost certain occurrence of micro-leaks. Within this range small water leaks reactions have attracted particular interest and the present paper looks at the principles of associating the reactions with detection and protection systems for Commercial Fast Reactors. A method is developed for assessing whether adequate protection has been provided against the effects of small water leak reactions in a steam generator unit. (author)

  19. Design Concept of Array ECT Sensor for Steam Generator Tubing Inspection

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Chan Hee; Lee, Tae Hun; Yoo, Hyun Ju [Korea Hydro and Nuclear Power Co. Ltd. CRI, Daejeon (Korea, Republic of)

    2015-05-15

    The eddy current testing, which is one of the nondestructive examination methods, is widely used for the inspection of heat exchangers including steam generator tubing in the nuclear power plant. It uses electromagnetic induction to detect flaws in conductive materials. Two types of eddy current probes are conventionally used for the inspection of steam generator tubing according to the main purpose. One is the bobbin probe technology and the other is the rotating probe. During the inspection, they have restrictions for the flaw detection or the inspection speed. An array probe can be alternative to the bobbin and rotating probes. The design concept of array coils with high sensitivity is described in this paper. It is expected that the eddy current testing using this type of array sensors may provide high detectability and resolution for flaws in steam generator tubing. Eddy current technology has some barriers for the inspection of steam generator tubing in the nuclear power plant. Bobbin probes offer poor circumferential crack detection and rotating probes are time and money consuming due to the mechanical rotation. Array probe inspection technique can replace bobbin and rotating probe techniques due to its sensitivity for flaw detection and inspection speed. In general, circular-shaped coils are considered in an array eddy current probe.

  20. Safety evaluation report related to the operation of Susquehanna Steam Electric Station, Units 1 and 2 (Docket Nos. 50-387 and 50-388). Suppl.6

    International Nuclear Information System (INIS)

    1984-03-01

    In April 1981, the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-0776) regarding the application of the Pennsylvania Power and Light Company (the applicant and/or licensee) and the Allegheny Electric Cooperative, Inc. (co-applicant) for licenses to operate the Susquehanna Steam Electric Station, Units 1 and 2, located on a site in Luzerne County, Pennsylvania. This supplement to NUREG-0776 addresses the remaining issues that required resolution before licensing operation of Unit 2 and closes them out

  1. HTGR steam generator development

    International Nuclear Information System (INIS)

    Schuetzenduebel, W.G.; Hunt, P.S.; Weber, M.

    1976-01-01

    More than 40 gas-cooled reactor plants have produced in excess of 400 reactor years of operating experience which have proved a reasonably high rate of gas-cooled reactor steam generator availability. The steam generators used in these reactors include single U-tube and straight-tube steam generators as well as meander type and helically wound or involute tube steam generators. It appears that modern reactors are being equipped with helically wound steam generators of the once-through type as the end product of steam generator evolution in gas-cooled reactor plants. This paper provides a general overview of gas-cooled reactor steam generator evolution and operating experience and shows how design criteria and constraints, research and development, and experience data are factored into the design/development of modern helically wound tube steam generators for the present generation of gas-cooled reactors

  2. Super titanium blades for advanced steam turbines

    International Nuclear Information System (INIS)

    Coulon, P.A.

    1990-01-01

    In 1986, the Alsthom Steam Turbines Department launched the manufacture of large titanium alloy blades: airfoil length of 1360 mm and overall length of 1520 mm. These blades are designed for the last-stage low pressure blading of advanced steam turbines operating at full speed (3000 rpm) and rating between 300 and 800 MW. Using titanium alloys for steam turbine exhaust stages as substitutes for chrome steels, due to their high strength/density ratio and their almost complete resistance to corrosion, makes it possible to increase the length of blades significantly and correspondingly that steam passage section (by up to 50%) with a still conservative stresses level in the rotor. Alsthom relies on 8 years of experience in the field of titanium, since as early as 1979 large titanium blades (airfoil length of 1240 mm, overall length of 1430 mm) were erected for experimental purposes on the last stage of a 900 MW unit of the Dampierre-sur-Loire power plant and now totals 45,000 operating hours without problems. The paper summarizes the main properties (chemical, mechanical and structural) recorded on very large blades and is based in particular on numerous fatigue corrosion test results to justify the use of the Ti 6 Al 4 V alloy in a specific context of micrographic structure

  3. CANDU-PHW fuel channel replacement experience

    International Nuclear Information System (INIS)

    Dunn, J.T.; Kakaria, B.K.

    1982-09-01

    One of the main characteristics of the CANDU pressurized heavy water reactor is the use of pressure tubes rather than one large pressure vessel to contain the fuel and coolant. This provides an inherent design capability to permit their replacement in an expeditious manner, without seriously affecting the high capacity factors of the reactor units. Of th eight Ontario Hydro commercial nuclear generating units, the lifetime performance places seven of them (including two that have had some of their fuel channels replaced), in the top ten positions in the world's large nuclear-electric unit performance ranking. Pressure tube cracks in the rolled joint region have resulted in 70 fuel channels being replaced in three reactor units, the latest being at the Bruce Nuclear Generating Station 'A', Unit 2 in February 1982. The rolled joint design and rolling procedures have been modified to eliminate this problem on CANDU units subsequent to Bruce 'A'. This paper describes the CANDU pressure tube performance history and expectations, and the tooling and procedures used to carry out the fuel channel replacement

  4. Response of the steam generator VVER 1000 to a steam line break

    International Nuclear Information System (INIS)

    Novotny, J.; Novotny, J. Jr.

    2003-01-01

    Dynamic effects of a steam line break in the weld of the steam pipe and the steam collector on the steam generator system are analyzed. Modelling of a steam line break may concern two cases. The steam line without a restraint and the steam line protected by a whip restraint with viscous elements applied at the postulated break cross-section. The second case is considered. Programme SYSTUS offers a special element the stiffness and viscous damping coefficients of which may be defined as dependent on the relative displacement and velocity of its nodes respectively. A circumferential crack is simulated by a sudden decrease of longitudinal and lateral stiffness coefficients of these special SYSTUS elements to zero. The computation has shown that one can simulate the pipe to behave like completely broken during a time interval of 0,0001 s or less. These elements are used to model the whip restraint with viscous elements and viscous dampers of the GERB type as well. In the case of a whip restraint model the stiffness coefficient-displacement relation and damping coefficient - velocity relation are chosen to fit the given characteristics of the restraint. The special SYSTUS elements are used to constitute Maxwell elements modelling the elasto-plastic and viscous properties of the GERB dampers applied to the steam generator. It has been ascertained that a steam line break at the postulated weld crack between the steam pipe and the steam generator collector cannot endanger the integrity of the system even in a case of the absence of a whip restraint effect. (author)

  5. Steam System Balancing and Tuning for Multifamily Residential Buildings in Chicagoland - Second Year of Data Collection

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jayne [Partnership for Advanced Residential Retrofit, Chicago, IL (United States); Ludwig, Peter [Partnership for Advanced Residential Retrofit, Chicago, IL (United States); Brand, Larry [Partnership for Advanced Residential Retrofit, Chicago, IL (United States)

    2013-08-01

    Steam heated buildings often suffer from uneven heating as a result of poor control of the amount of steam entering each radiator. In order to satisfy the heating load to the coldest units, other units are overheated. As a result, some tenants complain of being too hot and open their windows in the middle of winter, while others complain of being too cold and are compelled to use supplemental heat sources.

  6. Some engineering aspects of the steam generator system for the United States LMFBR demonstration plant

    International Nuclear Information System (INIS)

    Tippets, F.E.

    1975-01-01

    This paper describes the main design features of the steam generator system for the Clinch River Breeder Reactor Plant and the engineering approach being employed for some of the critical elements of this system, including in particular the sodium-steam/water boundary, the efforts to have this boundary be of highest integrity, and the system features to safely accommodate any failure of the boundary. (author)

  7. Some engineering aspects of the steam generator system for the United States LMFBR demonstration plant

    Energy Technology Data Exchange (ETDEWEB)

    Tippets, F E

    1975-07-01

    This paper describes the main design features of the steam generator system for the Clinch River Breeder Reactor Plant and the engineering approach being employed for some of the critical elements of this system, including in particular the sodium-steam/water boundary, the efforts to have this boundary be of highest integrity, and the system features to safely accommodate any failure of the boundary. (author)

  8. Second unit scheduling concerns on a dual-unit nuclear project

    International Nuclear Information System (INIS)

    Block, H.R.; Mazzini, R.A.

    1978-01-01

    This paper explores the planning and scheduling problems of Unit 2 of the Susquehanna steam electric station. The causes of these problems and methods to avoid or mitigate their consequences are discussed. The Susquehanna steam electric station has two boiling water reactors rated at 1,100 MW each. Topics considered include cost factors, structures, equipment, engineering and home office, construction services, completion data phasing, work sequencing, structural dependences, and segregation. Substatial cost and schedule benefits can result if two nuclear units are designed and constructed as one integral station, and if maximum sharing of facilities and services between the units occurs. It is concluded that the cost benefits of highly integrated dual unit construction outweigh the schedule and logistical problems caused by that approach

  9. Feasability of the direct generation of hydrogen for fuel-cell-powered vehicles by on-board steam reforming of naphta

    NARCIS (Netherlands)

    Darwish, Naif A.; Hilal, Nidal; Versteeg, Geert; Heesink, Albertus B.M.

    2004-01-01

    A process flow sheet for the production of hydrogen to run a 50 kW fuel-cell-powered-vehicle by steam reforming of naphtha is presented. The major units in the flow sheet involve a desulfurization unit, a steam reformer, a low temperature (LT) shift reactor, a methanation reactor, and a membrane

  10. Feasibility of the direct generation of hydrogen for fuel-cell-powered vehicles by on-board steam reforming of naphtha

    NARCIS (Netherlands)

    Darwish, Naif A.; Hilal, Nidal; Versteeg, Geert; Heesink, Bert

    2004-01-01

    A process flow sheet for the production of hydrogen to run a 50 kW fuel-cell-powered-vehicle by steam reforming of naphtha is presented. The major units in the flow sheet involve a desulfurization unit, a steam reformer, a low temperature (LT) shift reactor, a methanation reactor, and a membrane

  11. Studying heat integration options for steam-gas power plants retrofitted with CO2 post-combustion capture

    International Nuclear Information System (INIS)

    Carapellucci, Roberto; Giordano, Lorena; Vaccarelli, Maura

    2015-01-01

    Electricity generation from fossil fuels has become a focal point of energy and climate change policies due to its central role in modern economics and its leading contribution to greenhouse gas emissions. Carbon capture and sequestration (CCS) is regarded by the International Energy Agency as an essential part of the technology portfolio for carbon mitigation, as it can significantly reduce CO 2 emissions while ensuring electricity generation from fossil fuel power plants. This paper studies the retrofit of natural gas combined cycles (NGCCs) with an amine-based post-combustion carbon capture system. NGCCs with differently rated capacities were analysed under the assumptions that the heat requirement of the capture system was provided via a steam extraction upstream of the low-pressure steam turbine or by an auxiliary unit that was able to reduce the power plant derating related to the energy needs of the CCS system. Different types of auxiliary units were investigated based on power plant size, including a gas turbine cogeneration plant and a supplementary firing unit or boiler fed by natural gas or biomass. Energy and economic analyses were performed in order to evaluate the impact of type and layout of retrofit option on energy, environmental and economic performance of NGCCs with the CCS system. - Highlights: • Steam-gas power plants with an amine-based CO 2 capture unit are examined. • The study concerns three combined cycles with different capacity and plant layout. • Several options to fulfil the heat requirement of the CCS system are explored. • Steam extraction significantly reduces the capacity of steam-gas power plant. • An auxiliary combined heat and power unit allows to reduce power plant derating

  12. Safety Evaluation Report related to the operation of Waterford Steam Electric Station, Unit No. 3 (Docket No. 50-382). Supplement 9

    International Nuclear Information System (INIS)

    1984-12-01

    Supplement 9 to the Safety Evaluation Report for Louisiana Power and Light's application for a license to operate Waterford Steam Electric Station, Unit 3 (Docket No. 50-382), located in St. Charles Parish, Louisiana, has been jointly prepared by the Office of Nuclear Reactor Regulation and the Region IV Office of the US Nuclear Regulatory Commission. This supplement provides the results of the staff's completion of its evaluation of approximately 350 allegations and concerns of poor construction practices at the Waterford 3 facility

  13. Steam Turbine Flow Path Seals (a Review)

    Science.gov (United States)

    Neuimin, V. M.

    2018-03-01

    Various types of shroud, diaphragm, and end seals preventing idle leak of working steam are installed in the flow paths of steam turbine cylinders for improving their efficiency. Widely known labyrinth seals are most extensively used in the Russian turbine construction industry. The category of labyrinth seals also includes seals with honeycomb inserts. The developers of seals with honeycomb inserts state that the use of such seals makes it possible to achieve certain gain due to smaller leaks of working fluid and more reliable operation of the system under the conditions in which the rotor rotating parts may rub against the stator elements. However, a positive effect can only be achieved if the optimal design parameters of the honeycomb structure are fulfilled with due regard to the specific features of its manufacturing technology and provided that this structure is applied in a goal-seeking manner in the seals of steam and gas turbines and compressors without degrading their vibration stability. Calculated and preliminary assessments made by experts testify that the replacement of conventional labyrinth seals by seals with honeycomb inserts alone, due to which the radial gaps in the shroud seal can be decreased from 1.5 to 0.5 mm, allows the turbine cylinder efficiency to be increased at the initial stage by approximately 1% with the corresponding gain in the turbine set power output. The use of rectangular-cellular seals may result, according to estimates made by their developers, in a further improvement of turbine efficiency by 0.5-1.0%. The labor input required to fabricate such seals is six to eight times smaller than that to fabricate labyrinth seals with honeycomb inserts. Recent years have seen the turbine construction companies of the United States and Germany advertising the use of abradable (sealing) coatings (borrowed from the gas turbine construction technology) in the turbine designs instead of labyrinth seals. The most efficient performance of

  14. The effect of steam separataor efficiency on transient following a steam line break

    International Nuclear Information System (INIS)

    Choi, J.H.; Ohn, M.Y.; Lee, N.H.; Hwang, S.T.; Lee, S.K.

    1996-01-01

    Detailed thermalhydraulic simulations for CANDU 6 steam line break inside containment are performed to predict the response of the primary and secondary circuits. The analysis is performed using the thermalhydraulic computer code, CATHENA, with a coupled primary and secondary circuit model. A two-loop representation of the primary and secondary circuits is modelled. The secondary circuit model includes the feedwater line from the deaerator storage tank, multi-node steam generators and the steam line up to the turbine. Two cases were carried out using different assumptions for the efficiency of the steam separators. Case 1 assumes the efficiency of the steam separators becomes zero when the water level in the steam drum increases to the elevation of primary cyclones, or the outlet flow from the steam generator becomes higher than 150 % of normal flow. Case 2 assumes the efficiency becomes zero only when the water level in the steam drum reaches the elevation of primary cyclones. The simulation results show that system responses are sensitive to the assumption for the efficiency of the steam separators and case 1 gives higher discharge energy. Fuel cooling is assured, since primary circuit is cooled down sufficiently by the steam generators for both cases. (author)

  15. Steam separator-superheater with drawing of a fraction of the dried steam

    International Nuclear Information System (INIS)

    Bessouat, Roger; Marjollet, Jacques.

    1976-01-01

    This invention concerns a vertical separator-superheater of the steam from a high pressure expansion turbine before it is admitted to an expansion turbine at a lower pressure, by heat exchange with steam under a greater pressure, and drawing of a fraction of the dried steam before it is superheated. Such drawing off is necessary in the heat exchange systems of light water nuclear reactors. Its purpose is to provide a separator-superheater that provides an even flow of non superheated steam and a regular distribution of the steam to be superheated to the various superheating bundles, with a significantly uniform temperature of the casing, thereby preventing thermal stresses and ensuring a minimal pressure drop. The vertical separator-superheater of the invention is divided into several vertical sections comprising as from the central area, a separation area of the steam entrained water and a superheater area and at least one other vertical section with only a separation area of the steam entrained water [fr

  16. Heat transfer performance comparison of steam and air in gas turbine cooling channels with different rib angles

    Science.gov (United States)

    Shi, Xiaojun; Gao, Jianmin; Xu, Liang; Li, Fajin

    2013-11-01

    Using steam as working fluid to replace compressed air is a promising cooling technology for internal cooling passages of blades and vanes. The local heat transfer characteristics and the thermal performance of steam flow in wide aspect ratio channels ( W/ H = 2) with different angled ribs on two opposite walls have been experimentally investigated in this paper. The averaged Nusselt number ratios and the friction factor ratios of steam and air in four ribbed channels were also measured under the same test conditions for comparison. The Reynolds number range is 6,000-70,000. The rib angles are 90°, 60°, 45°, and 30°, respectively. The rib height to hydraulic diameter ratio is 0.047. The pitch-to-rib height ratio is 10. The results show that the Nusselt number ratios of steam are 1.19-1.32 times greater than those of air over the range of Reynolds numbers studied. For wide aspect ratio channels using steam as the coolant, the 60° angled ribs has the best heat transfer performance and is recommended for cooling design.

  17. Applied methodology for replacement pipe arcs in integral pipelines TE 'Oslomej'

    Directory of Open Access Journals (Sweden)

    Temelkoska Bratica K.

    2016-01-01

    Full Text Available The integral pipelines in thermal power plants present a linear spatial bearing construction with high operating parameters, complex static and dynamic load. The integral pipelines along its entire length are hanging on construction spring hangers from the boiler building, where the boiler is placed, next to the machine hall where the turbine is placed. Therefore, it is important to monitor the condition and to remove any possible defects from the applied methods. This paper describes the methodology of replacement of the pipe arch on one of the integral pipelines-the line for hot superheated steam. In addition, in this paper are given the method methods that led to this methodology for testing and evaluation of the condition of the pipe arch material that had been in exploitation and the new pipe arch that will be embedded. Furthermore the approach, the technology of replacement, anchoring of the steam line, technology of welding etc., as well as the preparation of the final design of constructed condition are also covered in this paper.

  18. Fission product retention during faults involving steam generator tube rupture

    International Nuclear Information System (INIS)

    Rodliffe, R.S.

    1983-08-01

    In some PWR fault conditions, such as stuck open safety relief valve in the secondary circuit or main steam line break, the release of fission products to the atmosphere may be increased by the leakage of primary coolant into the secondary circuit following steam generator tube rupture. The release may be reduced by retention either within the primary circuit or within the affected steam generator unit (SGU). The mechanisms leading to retention are reviewed and quantified where possible. The parameters on which any analysis will be most critically dependent are identified. Fission product iodine and caesium may be retained in the secondary side of a SGU either by partition to retained water or by droplet deposition on surfaces and subsequent evaporation to dryness. Two extreme simplifications are considered: SGU 'dry', i.e. the secondary side is steam filled, and SGU 'wet', i.e. the tube bundle is covered with water. Consideration is given to: the distribution of fission products between gaseous and aerosol forms; mechanisms for droplet formation, deposition and resuspension; fission product retention during droplet or film evaporation primary coolant mixing and droplet scrubbing in a wet SGU; and the performance of moisture separators and steam driers. (author)

  19. The influence of lead on stress corrosion cracking of steam generator tubing

    International Nuclear Information System (INIS)

    Ryan Curtis Wolfe

    2015-01-01

    Lead (Pb) is present at low concentrations on the secondary side of steam generators, but is known to accumulate in steam generator sludge and become concentrated in crevices and cracks. Pb is known to have played a role in the degradation of Alloy 600MA tubing, necessitating the replacement of those steam generators. There is new evidence which indicates that Pb has also played a role in the stress corrosion cracking (SCC) of Alloy 600TT. Furthermore. laboratory testing indicates that advanced tubing alloys such as Alloy 690TT and Alloy 800NG area also susceptible to this attack. In response to these vulnerabilities, utilities are attempting to manufacture tubing using processes which will impart optimal corrosion resistance, fabricate and operate SG's to minimize stress in the tubing, undertake efforts to identify and remove the sources of Pb, reduce the existing inventory of Pb using chemical or mechanical cleaning processes, and maintain rigorous chemistry controls. Research is warranted to qualify chemical methods to mitigate PbSCC that may be observed in service. This presentation will review work performed through the Electric Power Research Institute (EPRI) to address the issue of Pb-assisted stress corrosion cracking of steam generator tubing. (author)

  20. Improving electron beam weldability of heavy steel plates for PWR-steam generator

    International Nuclear Information System (INIS)

    Tomita, Yukio; Mabuchi, Hidesato; Koyama, Kunio

    1996-01-01

    Installation and replacement of many PWR-steam generators are planned inside and outside Japan. The steel plates for steam generators are heavy in thickness, and increase the number of welding passes and prolong the welding time. Electron beam welding (EBW) can greatly reduce the welding period compared with conventional welding methods (narrow-gap gas metal arc welding (GMAW) and submerged arc welding (SAW)). The problems in applying EBW are to prevent weld defects and to improve the toughness of the weld metal. Defect-free welding procedures were successfully established even in thick steel plates. The factors that deteriorate weld-metal (WM) toughness of EBW were investigated. The manufacturing process, which utilizes a new secondary refining process at steelmaking and a high-torque mill at plate mill in actual mass-production, were established. EBW base metal and WM have better properties including fracture toughness than those of conventional welding processes. As a result, an application of EBW to the fabrication of PWR-steam generators has become possible. Large amounts of ASTM A533 Gr B Cl 2 (JIS SQV2B) steel plates in actual PWR-steam generators have come to be produced (more than 1,500 ton) by applying EBW. (author)

  1. Dynamic performances of wet turbine and steam-separator-superheater and their mathematical simulation as objects of temperature control

    International Nuclear Information System (INIS)

    Golovach, E.A.

    1985-01-01

    A mathematical model of a turbine and steam-separator-superheater (SSS) as applied to solution of the tasks of steam temperature regulaton after SSS has been developed. SSS as objects of steam temperature control are considerably less inertial, than intermediate superheaters (IS) of power units in thermal power plants, since for typical SSS and IS considered the duration of transition process according to steam temperature after SSS is 5-10 times loweA than for IS

  2. Physics of steam generators and visit of Saint-Marcel plant

    International Nuclear Information System (INIS)

    Gillet, N.; Gloaguen, C.; Holcblat, A.; Borsoi, L.; Adobes, A.; David, F.; Greiner, E.; Pascal-Ribot, S.; Gauchet, J.P.; Mercier, L.; Leomy, F.

    2004-01-01

    This document gathers the transparencies presented at the 6. technical session of the French nuclear energy society (SFEN) in June 2004. The main topic was the physics of steam generators: 1 - description (G. Paudroux, J.Y. Guena, M. Petit); 2 - thermo-hydraulics (A. Holcblat, F. David, S. Pascal-Ribot); 3 - mechanics (N. Gillet, L. Borsoi, A. Adobes); 4 - monitoring and maintenance means (J.P. Gauchet, L. Mercier, F. Leomy); 5 - replacement (C. Gloaguen, E. Greiner). (J.S.)

  3. Opinion on serviceability of Bugey 3 reactor steam generators until their replacement foreseen in September 2010

    International Nuclear Information System (INIS)

    2010-04-01

    This document briefly reports the damage characterization of tubular bundles in steam generators of the Bugey 3 reactor, discusses the actions which are foreseen to prevent a tube failure risk, and discusses the risk of leakage during operation. Recommendations are formulated about investigation on the corrosion, and about prediction computation to be performed

  4. Operating results of 220 MW SKODA saturated steam turbines

    International Nuclear Information System (INIS)

    Drahy, J.

    1992-01-01

    One of the steam turbines produced by the SKODA Works, the 220 MW steam turbine for saturated admission steam of a speed of 3000 r.p.m. is described; it is used in nuclear power plants with 400 MW PWR type reactors. 16 units of 8 turbines each have been in operation in the Jaslovske Bohunice and Dukovany power plants with the total period of operation of all machines exceeding 750,000 hours. The 220 MW steam turbine consists of a two-flow high-pressure section and of two identical two-flow low-pressure sections. The pressure of saturated steam at the inlet of the high-pressure section is 4.32 MPa (the corresponding temperature of the saturation limit being 255 degC) and during the expansion in the high-pressure section it drops to 0.6 MPa; steam moisture reaches 12%. In a separator and two-stage reheater using blend steam, the steam is freed of the moisture and is reheated to a temperature of 217 degC. Some operational problems are discussed, as are the loss of the material of the stator parts of the high-pressure section due to corrosion-erosion wear and corrosion-erosion wear of the guide wheels of the high-pressure section, and measures are presented carried out for the reduction of the corrosion-erosion effects of wet steam. One of the serious problems were the fatigue fractures of the blades of the 4th high-pressure stage, which appeared after 20 000 to 24 000 hours of operation in the dented tee-root. The guide wheels of the 4th stage were substituted by new guide wheels with uniform pitch of the channels and with increased number of guide blades. Also discussed are the dynamic behavior of the low-pressure section of the bridge structure, the operating reliability and the heat off-take for water heating of long-distance heating systems. (Z.S.) 9 figs

  5. The testing of a steam-water separating device used for vertical steam generators

    International Nuclear Information System (INIS)

    Ding Xunshen; Cui Baoyuan; Xue Yunkui; Liu Shixun

    1989-01-01

    The air-water screening tests of a steam-water separating device used for vertical steam generators at low pressure are introduced. The article puts emphasis on the qualification test of the steam-water separating device at hot conditions in a high temperature and pressure water test rig. The performance of the comprehensive test of the steam-water separating device indicates that the humidity of the steam at the drier exit is much less than the specified amount of 0.25%

  6. Power Plant Replacement Study

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Gary

    2010-09-30

    This report represents the final report for the Eastern Illinois University power plant replacement study. It contains all related documentation from consideration of possible solutions to the final recommended option. Included are the economic justifications associated with the chosen solution along with application for environmental permitting for the selected project for construction. This final report will summarize the results of execution of an EPC (energy performance contract) investment grade audit (IGA) which lead to an energy services agreement (ESA). The project includes scope of work to design and install energy conservation measures which are guaranteed by the contractor to be self-funding over its twenty year contract duration. The cost recovery is derived from systems performance improvements leading to energy savings. The prime focus of this EPC effort is to provide a replacement solution for Eastern Illinois University's aging and failing circa 1925 central steam production plant. Twenty-three ECMs were considered viable whose net impact will provide sufficient savings to successfully support the overall project objectives.

  7. Power Plant Replacement Study

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Gary

    2010-09-30

    This report represents the final report for the Eastern Illinois University power plant replacement study. It contains all related documentation from consideration of possible solutions to the final recommended option. Included are the economic justifications associated with the chosen solution along with application for environmental permitting for the selected project for construction. This final report will summarize the results of execution of an EPC (energy performance contract) investment grade audit (IGA) which lead to an energy services agreement (ESA). The project includes scope of work to design and install energy conservation measures which are guaranteed by the contractor to be self-funding over its twenty year contract duration. The cost recovery is derived from systems performance improvements leading to energy savings. The prime focus of this EPC effort is to provide a replacement solution for Eastern Illinois University’s aging and failing circa 1925 central steam production plant. Twenty-three ECMs were considered viable whose net impact will provide sufficient savings to successfully support the overall project objectives.

  8. Dynamic model of YGN 3 and 4 steam generators for natural circulation mode

    International Nuclear Information System (INIS)

    Sohn, Jong Joo

    1995-02-01

    A dynamic model for the secondary side of Yonggwang nuclear power plant units 3 and 4 (YGN 3 and 4) steam generator model is developed to improve the accuracy of the present performance analysis code. The new model is based on the one-dimensional three region model to predict the local quality and void fraction distribution along the U-tube length. The local quality concept is used instead of the Wilson bubble rise correlation to simulate the steam generators in the natural circulation mode. The new model can be applicable to the plants in the power operation modes such as load maneuvering transients in which the steam generator internal flow is maintained in the natural circulation mode. To validate the new model, the code predictions are compared with the actual plant data measured for the selected load maneuvering tests performed during the YGN units 3 power ascension test period. The results from the improved model show better agreement with the plant data than those from the present code. Especially, the new model's capability of accurately simulating the steam generator water level behavior during the fast transients such as a large load rejection event is demonstrated

  9. Research on simulation of supercritical steam turbine system in large thermal power station

    Science.gov (United States)

    Zhou, Qiongyang

    2018-04-01

    In order to improve the stability and safety of supercritical steam turbine system operation in large thermal power station, the body of the steam turbine is modeled in this paper. And in accordance with the hierarchical modeling idea, the steam turbine body model, condensing system model, deaeration system model and regenerative system model are combined to build a simulation model of steam turbine system according to the connection relationship of each subsystem of steam turbine. Finally, the correctness of the model is verified by design and operation data of the 600MW supercritical unit. The results show that the maximum simulation error of the model is 2.15%, which meets the requirements of the engineering. This research provides a platform for the research on the variable operating conditions of the turbine system, and lays a foundation for the construction of the whole plant model of the thermal power plant.

  10. Recent operating experiences with steam generators in Japanese NPPs

    International Nuclear Information System (INIS)

    Yashima, Seiji

    1997-01-01

    In 1994, the Genkai-3 of Kyushu Electric Power Co., Inc. and the Ikata-3 of Shikoku Electric Power Co., Inc. started commercial operation, and now 22 PWR plants are being operated in Japan. Since the first PWR plant now 22 PWR plants are being operated in was started to operate, Japanese PWR plants have had an operating experience of approx. 280 reactor-years. During that period, many tube degradations have been experienced in steam generators (SGs). And, in 1991, the steam generator tube rupture (SGTR) occurred in the Mihama-2 of Kansai Electric Power Co., Inc. However, the occurrence of tube degradation of SGs has been decreased by the instructions of the MITI as regulatory authorities, efforts of Electric Utilities, and technical support from the SG manufacturers. Here the author describes the recent SGs in Japan about the following points. (1) Recent Operating Experiences (2) Lessons learned from Mihama-2 SGTR (3) SG replacement (4) Safety Regulations on SG (5) Research and development on SG

  11. Study of tritium permeation through Peach Bottom Steam Generator tubes

    International Nuclear Information System (INIS)

    Yang, L.; Baugh, W.A.; Baldwin, N.L.

    1977-06-01

    The report describes the equipment developed, samples tested, procedures used, and results obtained in the tritium permeation tests conducted on steam generator tubing samples which were removed from the Peach Bottom Unit No. 1 reactor

  12. Steam Reforming of Low-Level Mixed Waste

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-01-01

    Under DOE Contract No. DE-AR21-95MC32091, Steam Reforming of Low-Level Mixed Waste, ThermoChem has successfully designed, fabricated and operated a nominal 90 pound per hour Process Development Unit (PDU) on various low-level mixed waste surrogates. The design construction, and testing of the PDU as well as performance and economic projections for a 500- lb/hr demonstration and commercial system are described. The overall system offers an environmentally safe, non-incinerating, cost-effective, and publicly acceptable method of processing LLMW. The steam-reforming technology was ranked the No. 1 non-incineration technology for destruction of hazardous organic wastes in a study commissioned by the Mixed Waste Focus Area published April 1997.1 The ThermoChem steam-reforming system has been developed over the last 13 years culminating in this successful test campaign on LLMW surrogates. Six surrogates were successfidly tested including a 750-hour test on material simulating a PCB- and Uranium- contaminated solid waste found at the Portsmouth Gaseous Diffusion Plant. The test results indicated essentially total (>99.9999oA) destruction of RCRA and TSCA hazardous halogenated organics, significant levels of volume reduction (> 400 to 1), and retention of radlonuclides in the volume-reduced solids. Cost studies have shown the steam-reforming system to be very cost competitive with more conventional and other emerging technologies.

  13. Strategies for steam

    International Nuclear Information System (INIS)

    Hennagir, T.

    1996-01-01

    This article is a review of worldwide developments in the steam turbine and heat recovery steam generator markets. The Far East is driving the market in HRSGs, while China is driving the market in orders placed for steam turbine prime movers. The efforts of several major suppliers are discussed, with brief technical details being provided for several projects

  14. Assessment of vibration anomalies of main steam lines at Palo Verde-3

    International Nuclear Information System (INIS)

    Amr, A.; Landstrom, C.; Maxwell, H.; Miller, J.S.; Lynch, J.J.

    1996-01-01

    Historically, flow induced vibration in piping systems that transport liquid has presented problems for plant designers. When evaluating a vibration problem, it is always important to determine the forcing frequencies from different phenomena and the natural frequencies of the system as an integral part of establishing the root cause of the problem. Since in most cases of large vibration and noise levels, the natural frequency of the system and the frequency of the flow induced vibration are very close, determining the natural frequency of the system is important. Palo Verde Unit-3 exhibited a vibration problem where identification of the root cause was difficult. A Palo Verde team was created which consisted of engineers from different on-site departments and support from consultants. The process used to determine the root cause for the vibration/noise problem on Main Steam Supply System (MSSS) steam line 2 at Palo Verde Unit 3 is discussed in this paper. Since the root cause was not readily apparent, a finite element model was constructed to determine the natural frequency of the piping system. The finite element model consisted of a portion of the main steam lines, including a sample line which traverses the main steam line

  15. Experience of Ko-Ri Unit 1 water chemistry

    International Nuclear Information System (INIS)

    Tae Il Lee

    1983-01-01

    The main focus is placed on operational experience in secondary system water chemistry (especially the steam generator) of the Ko-Ri nuclear power plant Unit 1, Republic of Korea, but primary side chemistry is also discussed. The major concern of secondary water chemistry in a PWR is that the condition of the steam generator be well maintained. Full flow deep bed condensate polishers have recently been installed and operation started in July 1982. Boric acid treatment of the steam generator was stopped and only the all volatile treatment method was used thereafter. A review of steam generator integrity, the chemistry control programme, secondary water quality, etc. is considered to be of great value regarding the operation of Unit 1 and future units now under startup testing or construction in the Republic of Korea. (author)

  16. Study group meeting on steam generators for LMFBR's. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-07-01

    The Meeting organised by IAEA international working group on fast reactors which considered that the subject of sodium heated steam generators was a topic which needed study by the experts of several disciplines. For example: people who design such steam generators, specialists in the field of sodium water reactions, experts in material and water chemistry and members of the utilities who would be the customers for such units. Besides the exchange of large amount of information, it was considered that further special studies were necessary for the following subjects: materials; maintenance and repair; operating procedures and control of steam generators. A separate study of sodium-water reactions was recommended considering the safety aspects related to large water leakage and economic advantage of possible detection and protection against small water leaks.

  17. Study group meeting on steam generators for LMFBR's. Summary report

    International Nuclear Information System (INIS)

    1975-07-01

    The Meeting organised by IAEA international working group on fast reactors which considered that the subject of sodium heated steam generators was a topic which needed study by the experts of several disciplines. For example: people who design such steam generators, specialists in the field of sodium water reactions, experts in material and water chemistry and members of the utilities who would be the customers for such units. Besides the exchange of large amount of information, it was considered that further special studies were necessary for the following subjects: materials; maintenance and repair; operating procedures and control of steam generators. A separate study of sodium-water reactions was recommended considering the safety aspects related to large water leakage and economic advantage of possible detection and protection against small water leaks

  18. Condensation of steam

    International Nuclear Information System (INIS)

    Prisyazhniuk, V.A.

    2002-01-01

    An equation for nucleation kinetics in steam condensation has been derived, the equation taking into account the concurrent and independent functioning of two nucleation mechanisms: the homogeneous one and the heterogeneous one. The equation is a most general-purpose one and includes all the previously known condensation models as special cases. It is shown how the equation can be used in analyzing the process of steam condensation in the condenser of an industrial steam-turbine plant, and in working out new ways of raising the efficiency of the condenser, as well as of the steam-turbine plant as a whole. (orig.)

  19. Investigations on a new internally-heated tubular packed-bed methanol–steam reformer

    KAUST Repository

    Nehe, Prashant

    2015-05-01

    Small-scale reformers for hydrogen production through steam reforming of methanol can provide an alternative solution to the demand of continuous supply of hydrogen gas for the operation of Proton Exchange Membrane Fuel Cells (PEMFCs). A packed-bed type reformer is one of the potential designs for such purpose. An externally heated reformer has issues of adverse lower temperature in the core of the reformer and significant heat loss to the environment thus impacting its performance. Experimental and numerical studies on a new concept of internally heated tubular packed-bed methanol-steam reformer have been reported in this paper with improved performance in terms of higher methanol conversion and reduced heat losses to surroundings. CuO/ZnO/Al2O3 is used as the catalyst for the methanol-steam reforming reaction and a rod-type electric heater at the center of the reactor is used for supplying necessary heat for endothermic steam reforming reaction. The vaporizer and the reformer unit with a constant volume catalyst bed are integrated in the annular section of a tubular reformer unit. The performance of the reformer was investigated at various operating conditions like feed rate of water-methanol mixture, mass of the catalyst and reforming temperature. The experimental and numerical results show that the methanol conversion and CO concentration increase with internal heating for a wide range of operating conditions. The developed reformer unit generates 50-80W (based on lower heating value) of hydrogen gas for applications in PEMFCs. For optimized design and operating conditions, the reformer unit produced 298sccm reformed gas containing 70% H2, 27% CO2 and 3% CO at 200-240°C which can produce a power output of 25-32W assuming 60% fuel cell efficiency and 80% of hydrogen utilization in a PEMFC. © 2015 Hydrogen Energy Publications, LLC.

  20. Steam regulation for 5 MW back-pressure units when a failure occurs in the Los Humeros, Pue., field, Mexico; Regulacion del vapor en caso de falla a unidades a contrapresion de 5 MW en el campo de Los Humeros, Pue., Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Rosales Lopez, Cesar [Comision Federal de Electricidad, Puebla (Mexico)]. E-mail: cesar.rosales@cfe.gob.mx

    2006-07-15

    Four out of the seven back-pressure power units of 5 MW operating in the Los Humeros geothermal field, State of Puebla, Mexico, are fed by one steam pipe gathering the steam produced by nine wells. When a failure occurred in any of the units and the excedence valve had to be open to deviate the steam, a decrease in the steam flow for the remaining units was noted, along with lower electrical generation. The cause for that is analyzed and explained in this paper by comparing the interconnected steam supply system to an electric circuit. A way to maintain a uniform and continuous supply of steam in the Los Humeros field has been found. It was implemented several months ago and the problem has not reoccurred. [Spanish] Cuatro de las siete unidades de 5 MW a contrapresion que operan en el campo geotermico de Los Humeros, Puebla, son alimentadas por un solo vaporducto que reune el vapor de nueve pozos productores. Cuando ocurria una falla en alguna de estas unidades y se abria por completo la valvula de excedencia para desviar el vapor, se observaba una reduccion en el flujo de vapor que llegaba a las otras tres unidades, lo que a su vez ocasionaba que la generacion de electricidad se redujera notoriamente. En este trabajo se analiza y explica la causa de ello, mediante la comparacion de este sistema interconectado de suministro de vapor con un circuito electrico, y se explica la solucion que se encontro e implemento en el campo de Los Humeros para regular el suministro continuo y uniforme de vapor, con resultados satisfactorios a varios meses de su implementacion en las cuatro unidades interconectadas.

  1. Design specifications to ensure flow-induced vibration and fretting-wear performance in CANDU steam generators and heat exchangers

    International Nuclear Information System (INIS)

    Janzen, V.P.; Han, Y.; Pettigrew, M.J.

    2009-01-01

    Preventing flow-induced vibration and fretting-wear problems in steam generators and heat exchangers requires design specifications that bring together specific guidelines, analysis methods, requirements and appropriate performance criteria. This paper outlines the steps required to generate and support such design specifications for CANDU nuclear steam generators and heat exchangers, and relates them to typical steam-generator design features and computer modeling capabilities. It also describes current issues that are driving changes to flow-induced vibration and fretting-wear specifications that can be applied to the design process for component refurbishment, replacement or new designs. These issues include recent experimental or field evidence for new excitation mechanisms, e.g., the possibility of in-plane fluidelastic instability of U-tubes, the demand for longer reactor and component lifetimes, the need for better predictions of dynamic properties and vibration response, e.g., two-phase random-turbulence excitation, and requirements to consider system 'excursions' or abnormal scenarios, e.g., a main steam line break in the case of steam generators. The paper describes steps being taken to resolve these issues. (author)

  2. Design and development of steam generators for the AGR power stations at Heysham II/Torness

    Energy Technology Data Exchange (ETDEWEB)

    Charcharos, A N; Jones, A G [National Nuclear Corp. Ltd., Cheshire (United Kingdom)

    1984-07-01

    The current AGR steam generator design is a development of the successful once-through units supplied for the Oldbury Magnox and Hinkley/Hunterston AGR power stations. These units have demonstrated proven control and reliability in service. In this paper the factors which have dictated the design and layout of the latest AGR steam generators are described and reference made to the latest high temperature design techniques that have been employed. Details of development work to support the design and establish the performance characteristics over the range of plant operating conditions are also given. To comply with current UK safety standards, the AGR steam generators and associated plant are designed to accommodate seismic loadings. In addition, provision is made for an independent heat removal system for post reactor trip operations. (author)

  3. Design and development of steam generators for the AGR power stations at Heysham II/Torness

    International Nuclear Information System (INIS)

    Charcharos, A.N.; Jones, A.G.

    1984-01-01

    The current AGR steam generator design is a development of the successful once-through units supplied for the Oldbury Magnox and Hinkley/Hunterston AGR power stations. These units have demonstrated proven control and reliability in service. In this paper the factors which have dictated the design and layout of the latest AGR steam generators are described and reference made to the latest high temperature design techniques that have been employed. Details of development work to support the design and establish the performance characteristics over the range of plant operating conditions are also given. To comply with current UK safety standards, the AGR steam generators and associated plant are designed to accommodate seismic loadings. In addition, provision is made for an independent heat removal system for post reactor trip operations. (author)

  4. Steam generator tube degradation at the Doel 4 plant influence on plant operation and safety

    International Nuclear Information System (INIS)

    Scheveneels, G.

    1997-01-01

    The steam generator tubes of Doel 4 are affected by a multitude of corrosion phenomena. Some of them have been very difficult to manage because of their extremely fast evolution, non linear evolution behavior or difficult detectability and/or measurability. The exceptional corrosion behavior of the steam generator tubes has had its drawbacks on plant operation and safety. Extensive inspection and repair campaigns have been necessary and have largely increased outage times and radiation exposure to personnel. Although considerable effort was invested by the utility to control corrosion problems, non anticipated phenomena and/or evolution have jeopardized plant safety. The extensive plugging and repairs performed on the steam generators have necessitated continual review of the design basis safety studies and the adaptation of the protection system setpoints. The large asymmetric plugging has further complicated these reviews. During the years many preventive and recently also defence measures have been implemented by the utility to manage corrosion and to decrease the probability and consequences of single or multiple tube rupture. The present state of the Doel 4 steam generators remains troublesome and further examinations are performed to evaluate if continued operation until June '96, when the steam generators will be replaced, is justified

  5. Control system for a nuclear power producing unit

    International Nuclear Information System (INIS)

    Durrant, O.W.

    1978-01-01

    The invention provides in a control system for a nuclear power producing unit comprising a pressurized water reactor, a once-through steam generator provided with feedwater supply means, a turbine-generator supplied with steam from the steam generator and means maintaining a flow of pressurized water through the reactor and steam generator. The combination comprising; means generating a feed forward control signal proportional to the desired power output of the power producing unit, a second means for adjusting the reactor heat release, a third means for adjusting the rate of flow of feedwater to the steam generator, the second and third means solely responsive to and operated in parallel from the feed forward control signal whereby the reactor heat release and the rate of flow of feedwater to the steam generator are each maintained in a discrete functional relationship to the feed forward control signal

  6. Fabrication and inspection development for CRBRP steam generators

    International Nuclear Information System (INIS)

    McClung, R.W.; Slaughter, G.M.; Spalaris, C.N.; Lillie, A.F.

    1975-09-01

    One of the critical nonnuclear elements of the CRBRP is the steam generator that transfers the heat from the sodium system to the high-pressure steam system but must maintain integrity and separation of the two fluids. The construction material is 2 1 / 4 Cr--1 Mo alloy steel with high-purity (e.g. vacuum arc remelt) material being used for the tubing and tubesheets. For confidence in successful manufacturing of the several evaporator and superheater modules, key development activities are under way (1) for procurement of high-quality components, (2) to assure proper assembly (with emphasis on welding), and (3) to assure that adequate nondestructive testing methods are available to examine the units. (auth)

  7. Safety evaluation report related to the operation of Waterford Steam Electric Station, Unit No. 3 (Docket No. 50-382). Supplement No. 7

    International Nuclear Information System (INIS)

    1984-09-01

    Supplement 7 to the Safety Evaluation Report for Louisiana Power and Light's application for a license to operate Waterford Steam Electric Station, Unit 3 (Docket No. 50-382), located in St. Charles Parish, Louisiana, has been jointly prepared by the Office of Nuclear Reactor Regulation and the Region IV Office of the US Nuclear Regulatory Commission. This supplement provides the results to date of the staff's evaluation of approximately 350 allegations and concerns of poor construction practices at the Waterford 3 facility

  8. Steam generator

    International Nuclear Information System (INIS)

    Fenet, J.-C.

    1980-01-01

    Steam generator particularly intended for use in the coolant system of a pressurized water reactor for vaporizing a secondary liquid, generally water, by the primary cooling liquid of the reactor and comprising special arrangements for drying the steam before it leaves the generator [fr

  9. Steam generator with perfected dryers

    International Nuclear Information System (INIS)

    Fenet, J.C.

    1987-01-01

    This steam generator has vertically superposed array of steam dryers. These dryers return the steam flow of 180 0 . The return of the water is made by draining channels to the steam production zone [fr

  10. How to compute the power of a steam turbine with condensation, knowing the steam quality of saturated steam in the turbine discharge

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez Albarran, Manuel Jaime; Krever, Marcos Paulo Souza [Braskem, Sao Paulo, SP (Brazil)

    2009-07-01

    To compute the power and the thermodynamic performance in a steam turbine with condensation, it is necessary to know the quality of the steam in the turbine discharge and, information of process variables that permit to identifying with high precision the enthalpy of saturated steam. This paper proposes to install an operational device that will expand the steam from high pressure point on the shell turbine to atmosphere, both points with measures of pressure and temperature. Arranging these values on the Mollier chart, it can be know the steam quality value and with this data one can compute the enthalpy value of saturated steam. With the support of this small instrument and using the ASME correlations to determine the equilibrium temperature and knowing the discharge pressure in the inlet of surface condenser, the absolute enthalpy of the steam discharge can be computed with high precision and used to determine the power and thermodynamic efficiency of the turbine. (author)

  11. Public Opinion shifts to the favour of nuclear energy due to steam generator transport

    International Nuclear Information System (INIS)

    Lengar, I.; Nemec, T.

    2000-01-01

    In late August and early September of 1999, nuclear energy topics occupied a central place in the Slovenian media because of the transport of two new steam generators to the Krsko nuclear power plant, and also due to the protest action of an Austrian Green peace group. Before these events, the public opinion in Slovenia was not in favour or nuclear energy ;and Green peace had a good reputation. In September it has lost much credibility because of their clumsy :action of protest, and in just one month this caused a shift of public opinion in Slovenia towards support of Slovenian's only nuclear power plant. The Green peace protest action occurred during the transport of the two new steam generators to Krsko. By replacement of the old steam generators the operation of the Krsko NPP will be extended until 2023. The transport envoy travelled during the first half of September '99 across a considerable part of Slovene territory, passing by the capital of Ljubljana. (authors)

  12. Sludge Lancing and Visual Inspection of Steam Generator for KORI Nuclear Power Plant Unit 3

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Woo-Tae [Korea Hydro and Nuclear Power Co. Ltd. Central Research Institute, Daejeon(Korea, Republic of); Kim, Sang-Tae; Hong, Jae-Yung; Jeong, Yun-Soon [Sae-An Engineering Corporation, Seoul (Korea, Republic of)

    2015-05-15

    Annulus, tube-lane, and in-bundle area of the steam generators were searched for possible foreign objects. No new foreign objects were found. Two foreign objects which were found during previous outage were impossible to remove. Mock-up training before the operation was helpful to finish the service as scheduled. Sludge lancing of the three steam generators was made using FOLAS-I lancing system. FOSAR operations were done using video probe and special tools of Sae-An Engineering Cooperation. The weight of sludge removed from SG 'A', 'B', and 'C' was 177kg, 134kg, 117kg respectively. Bag filters for and cartridge filters consumed for SG 'A', 'B', and 'C' was (53,414), (75,243), and (61,171) respectively. Foreign object search operation for the annulus, the tube lane, and in-bundle area of the steam generators found nothing. Retrieval of the two remaining foreign objects from the previous outage was tried but failed.

  13. Sludge Lancing and Visual Inspection of Steam Generator for KORI Nuclear Power Plant Unit 3

    International Nuclear Information System (INIS)

    Jeong, Woo-Tae; Kim, Sang-Tae; Hong, Jae-Yung; Jeong, Yun-Soon

    2015-01-01

    Annulus, tube-lane, and in-bundle area of the steam generators were searched for possible foreign objects. No new foreign objects were found. Two foreign objects which were found during previous outage were impossible to remove. Mock-up training before the operation was helpful to finish the service as scheduled. Sludge lancing of the three steam generators was made using FOLAS-I lancing system. FOSAR operations were done using video probe and special tools of Sae-An Engineering Cooperation. The weight of sludge removed from SG 'A', 'B', and 'C' was 177kg, 134kg, 117kg respectively. Bag filters for and cartridge filters consumed for SG 'A', 'B', and 'C' was (53,414), (75,243), and (61,171) respectively. Foreign object search operation for the annulus, the tube lane, and in-bundle area of the steam generators found nothing. Retrieval of the two remaining foreign objects from the previous outage was tried but failed

  14. Depth-Sizing Technique for Crack Indications in Steam Generator Tubing

    International Nuclear Information System (INIS)

    Cho, Chan Hee; Lee, Hee Jeong; Kim, Hong Deok

    2009-01-01

    The nuclear power plants have been safely operated by plugging the steam generator tubes which have the crack indications. Tube rupture events can occur if analysts fail to detect crack indications during in-service inspection. There are various types of crack indication in steam generator tubes and they have been detected by the eddy current test. The integrity assessment should be performed using the crack-sizing results from eddy current data when the crack indication is detected. However, it is not easy to evaluate the crack-depth precisely and consistently due to the complexity of the methods. The current crack-sizing methods were reviewed in this paper and the suitable ones were selected through the laboratory tests. The retired steam generators of Kori Unit 1 were used for this study. The round robin tests by the domestic qualified analysts were carried out and the statistical models were introduced to establish the appropriate depth-sizing techniques. It is expected that the proposed techniques in this study can be utilized in the Steam Generator Management Program

  15. Safety evaluation report related to the operation of Waterford Steam Electric Station, Unit No. 3 (Docket No. 50-382). Suppl.6

    International Nuclear Information System (INIS)

    1984-06-01

    Supplement 6 to the Safety Evaluation Report for the application filed by Louisiana Power and Light Company for a license to operate the Waterford Steam Electric Station, Unit 3 (Docket No. 50-382), located in St. Charles Parish, Louisiana, has been prepared by the Office of Nuclear Reactor Regulation of the Nuclear Regulatory Commission. The purpose of this supplement is to update the Safety Evaluation Report by providing the staff's evaluation of information submitted by the applicant since the Safety Evaluation Report and its five previous supplements were issued

  16. Worldwide assessment of steam-generator problems in pressurized-water-reactor nuclear power plants

    International Nuclear Information System (INIS)

    Woo, H.H.; Lu, S.C.

    1981-01-01

    Objective is to assess the reliability of steam generators of pressurized water reactor (PWR) power plants in the United States and abroad. The assessment is based on operation experience of both domestic and foreign PWR plants. The approach taken is to collect and review papers and reports available from the literature as well as information obtained by contacting research institutes both here and abroad. This report presents the results of the assessment. It contains a general background of PWR plant operations, plant types, and materials used in PWR plants. A review of the worldwide distribution of PWR plants is also given. The report describes in detail the degradation problems discovered in PWR steam generators: their causes, their impacts on the performance of steam generators, and the actions to mitigate and avoid them. One chapter is devoted to operating experience of PWR steam generators in foreign countries. Another discusses the improvements in future steam generator design

  17. Vibration Analysis for Steam Dryer of APR1400 Steam Generator

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sung-heum; Ko, Doyoung [KHNP CRI, Daejeon (Korea, Republic of); Cho, Minki [Doosan Heavy Industry, Changwon (Korea, Republic of)

    2016-10-15

    This paper is related to comprehensive vibration assessment program for APR1400 steam generator internals. According to U.S. Nuclear Regulatory Commission, Regulatory Guide 1.20 (Rev.3, March 2007), we conducted vibration analysis for a steam dryer as the second steam separator of steam generator internals. The vibration analysis was performed at the 100 % power operating condition as the normal operation condition. The random hydraulic loads were calculated by the computational fluid dynamics and the structural responses were predicted by power spectral density analysis for the probabilistic method. In order to meet the recently revised U.S. NRC RG 1.20 Rev.3, the CVAP against the potential adverse flow effects in APR1400 SG internals should be performed. This study conducted the vibration response analysis for the SG steam dryer as the second moisture separator at the 100% power condition, and evaluated the structural integrity. The predicted alternating stress intensities were evaluated to have more than 17.78 times fatigue margin compared to the endurance limit.

  18. Optimizing the Heat Exchanger Network of a Steam Reforming System

    DEFF Research Database (Denmark)

    Nielsen, Mads Pagh; Korsgaard, Anders Risum; Kær, Søren Knudsen

    2004-01-01

    Proton Exchange Membrane (PEM) based combined heat and power production systems are highly integrated energy systems. They may include a hydrogen production system and fuel cell stacks along with post combustion units optionally coupled with gas turbines. The considered system is based on a natural...... stationary numerical system model was used and process integration techniques for optimizing the heat exchanger network for the reforming unit are proposed. Objective is to minimize the system cost. Keywords: Fuel cells; Steam Reforming; Heat Exchanger Network (HEN) Synthesis; MINLP....... gas steam reformer along with gas purification reactors to generate clean hydrogen suited for a PEM stack. The temperatures in the various reactors in the fuel processing system vary from around 1000°C to the stack temperature at 80°C. Furthermore, external heating must be supplied to the endothermic...

  19. Steam Digest: Volume IV

    Energy Technology Data Exchange (ETDEWEB)

    2004-07-01

    This edition of the Steam Digest is a compendium of 2003 articles on the technical and financial benefits of steam efficiency, presented by the stakeholders of the U.S. Department of Energy's BestPractices Steam effort.

  20. Steam Digest Volume IV

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-07-01

    This edition of the Steam Digest is a compendium of 2003 articles on the technical and financial benefits of steam efficiency, presented by the stakeholders of the U.S. Department of Energy's BestPractices Steam effort.

  1. Calculation of Steam Volume Fraction in Subcooled Boiling

    Energy Technology Data Exchange (ETDEWEB)

    Rouhani, S Z

    1967-06-15

    An analysis of subcooled boiling is presented. It is assumed that heat is removed by vapor generation, heating of the liquid that replaces the detached bubbles, and to some extent by single phase heat transfer. Two regions of subcooled boiling are considered and a criterion is provided for obtaining the limiting value of subcooling between the two regions. Condensation of vapor in the subcooled liquid is analysed and the relative velocity of vapor with respect to the liquid is neglected in these regions. The theoretical arguments result in some equations for the calculation of steam volume fraction and true liquid subcooling.

  2. Final environmental statement related to the operation of H.B. Robinson Nuclear Steam-Electric Plant, Unit 2: (Docket No. 50-261)

    International Nuclear Information System (INIS)

    1975-04-01

    The proposed action is the continuation of Facility Operating License DPR-23 to Carolina Power and Light Company for H.B. Robinson Unit 2. Unit 2, located adjacent to Lake Robinson in Darlington County, near Hartsville, South Carolina, employs a pressurized water reactor to produce up to 2200 megawatts thermal (MWt). A steam turbine-generator uses this heat to provide 700 megawatts electric (MWe) of net electrical power capacity. A design power level of 2300 MWt (730 MWe) has been requested and is considered in the assessments contained in this statement. The exhaust steam is cooled by a flow of water obtained from the discharged to a 2250-acre cooling lake, Lake Robinson. Land areas disturbed during construction of the plant, but not used, have been seeded to native grasses, trees, and shrubs. Construction of a cooling water discharge canal extension resulted in alteration of about 100 acres of wildlife habitat. Subsequently, the canal banks were seeded with pines and legumes. Some erosion has taken place in the pine-seeded areas. Some small fish are killed by impingement on the water intake screens. Organisms passing through the screens very likely do not survive their passage through the circulating water system. Operation of the plant will cause an increase in the temperature of Black Creek below Lake Robinson. A small impact exists due to production and, after processing, disposal or release of sanitary and chemical wastes. Unit 2 may discharge up to 500 pounds/day of chemicals (primarily sulfates). Under conditions of low flow into and out of the lake, this increases the sulfate concentration in the lake by less than 1 ppM over the normal 7.7 ppM

  3. Steam generator thermal sleeve reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Caton, E.; Askari, A.; Volder, P. [Babcock and Wilcox Canada Ltd., Cambridge, Ontario (Canada)]. E-mail: eecaton@babcock.com

    2003-07-01

    'Full text:' Successful implementation of a physically difficult repair program requires collaboration of the design and construction functions of an organization to ensure that goals are shared and rework or on-the-fly design changes are not required. Furthermore, in a nuclear facility this collaboration results in the optimal safety condition as dose uptake is minimized with a well planned job. The replacement of the degraded thermal sleeves in the Pickering A Steam Generator feedwater nozzles posed this type of problem. The project may be summarized as follows: i) problem analysis, ii) identification of design parameters and limitations, iii) integration of field engineering and design engineering solutions, iv) installation. Integration of the design engineering and field engineering design parameters ensured that the most effective solution was implemented. (author)

  4. Methodology for the physical and chemical exergetic analysis of steam boilers

    International Nuclear Information System (INIS)

    Ohijeagbon, Idehai O.; Waheed, M. Adekojo; Jekayinfa, Simeon O.

    2013-01-01

    This paper presents a framework of thermodynamic, energy and exergy, analyses of industrial steam boilers. Mass, energy, and exergy analysis were used to develop a methodology for evaluating thermodynamic properties, energy and exergy input and output resources in industrial steam boilers. Determined methods make available an analytic procedure for the physical and chemical exergetic analysis of steam boilers for appropriate applications. The energy and exergy efficiencies obtained for the entire boiler was 69.56% and 38.57% at standard reference state temperature of 25 °C for an evaporation ratio of 12. Chemical exergy of the material streams was considered to offer a more comprehensive detail on energy and exergy resource allocation and losses of the processes in a steam boiler. - Highlights: ► We evaluated thermodynamic properties and performance variables associated with material streams. ► We analysed resources allocation, and magnitude of exergetic losses in steam boilers. ► Chemical exergy of material streams contributed to improved exergy values. ► High operational parameter will lead to higher boiler exergy. ► Exergy destroyed was higher in the combustion as against the heat exchanging unit

  5. Pulsed high-pressure (PHP) drain-down of steam generating system

    International Nuclear Information System (INIS)

    Petrusek, R.A.

    1991-01-01

    This patent describes an improved method of draining down contained reactor-coolant water from the inverted vertical U-tubes of at least one vertical-type steam generator in which the upper inverted U-shaped ends of the tubes are closed and the lower ends thereof are open, the steam generator having a channel head at its lower end including a vertical dividing wall defining a primary water inlet side and a primary water outlet side of the generator, the steam generator having chemical volume control system means and residual heat removal system means, and the steam generator being part of a nuclear-powered steam generating system wherein the reactor-coolant water is normally circulated from and back into the reactor via a loop comprising the steam generator and inlet and outlet conduits connected to the lower end of the steam generator, and the reactor being in communication with pressurizer means and comprising the steps of introducing a gas which is inert to the system and which is under pressure above atmospheric pressure into at least one of the downwardly facing open ends of each of the U-tubes from below the tubesheet in which the open ends of the U-tubes are mounted adjacent the lower end of the steam generator while permitting the water to flow out from the open ends of the U-tubes, the improvement in combination therewith for substantially increasing the effectiveness and efficiency of such water removal from the tubes. It includes determining the parameters effecting a first average volumetric rate of removal for a predetermined period of time, infra, of the reactor-coolant water from the inverted vertical U-tubes, the specific unit for the first average volumetric rate expressing properties identical with the properties expressed in a second average volumetric rate maintained in a later mentioned step

  6. Selling steam

    International Nuclear Information System (INIS)

    Zimmer, M.J.; Goodwin, L.M.

    1991-01-01

    This article addresses the importance of steam sales contract is in financing cogeneration facilities. The topics of the article include the Public Utility Regulatory Policies Act provisions and how they affect the marketing of steam from qualifying facilities, the independent power producers market shift, and qualifying facility's benefits

  7. Wet steam wetness measurement in a 10 MW steam turbine

    Directory of Open Access Journals (Sweden)

    Kolovratník Michal

    2014-03-01

    Full Text Available The aim of this paper is to introduce a new design of the extinction probes developed for wet steam wetness measurement in steam turbines. This new generation of small sized extinction probes was developed at CTU in Prague. A data processing technique is presented together with yielded examples of the wetness distribution along the last blade of a 10MW steam turbine. The experimental measurement was done in cooperation with Doosan Škoda Power s.r.o.

  8. Chemical cleaning of steam generators: application to Nogent 1

    International Nuclear Information System (INIS)

    Fiquet, J.M.; Veysset, J.P.; Esteban, L.; Saurin, P.

    1991-01-01

    EDF has patented a chemical cleaning process for PWR steam generators, based on the use of a mixture or organic acids in order to dissolve iron oxides and copper with a single solution and clean dented crevices. Qualification tests have permitted to demonstrate effectiveness of the solution and its innocuousness related to steam generator materials. The process, the licence of which belongs to SOMAFER RA and Framatome has been implemented in France at Nogent. The goal was to dissolve iron oxides allowing metallic particles, aggregated on the tubesheet, to be released and mechanically removed. The effectiveness was satisfactory and this treatment is to be extended to other units. (author)

  9. Televisual inspection of cleanliness in secondary side of steam generator

    International Nuclear Information System (INIS)

    Zhou Shoukang; Ding Xunshen

    1995-01-01

    For U-type tube steam generator (UTSG), the deposit will be piled on the low velocity area of tubesheet, tube bundle and support plates during operation. The deposit is the hidden region of pollutant, and the concentration effect will create the corrosion situation in secondary side of steam generator. So, it is very necessary to inspect the cleanliness of SG. The paper introduces the technique of cleanliness inspection with the VP3 1TV apparatus. The steam generator cleanliness inspection of GNP unit 1 and 2, after installation, major transients and commercial operation, shows that the 1TV technique not only provides the cleanliness condition of tubesheet, and removes the loose foreign object, but also provides the basis for the determination of lancing procedure, confirms the result of lancing, and gets the cleanliness conclusion according to the appropriate qualified standard

  10. Determining the potential volume of industrial process steam to be generated in nuclear facilities

    International Nuclear Information System (INIS)

    Jobsky, T.

    1990-01-01

    The present study serves to determine the market potential of nuclear energy for industrial process steam supply according to branches and sites in the Federal Republic of Germany (excluding the new East German Laender). On the nuclear plant side two HTR reference plants with different unit powers of 200 MWth (HTR-Modul) and 100 MWth are investigated. An essential result in analysing the nuclear market potential is the finding that the number of potential users and sites will triple if smaller unit sizes were introduced. This corresponds to an increase in nuclear plant potential from 28 units of 200 MWth each to 91 units of 100 MWth on the assumptions made in this study. A comparison of economic efficiency between fossil-fired power production plants and the HTR-Modul shows the competitiveness of nuclear process steam and electricity production in the base load range. A single-site evaluation for the centres of energy demand competes conceptually with a combined heat supply by nuclear long-distance energy. This integrated supply concept makes it possible to supply considerably more industrial companies with process steam while reducing the number of sites, since the heat requirements of smaller sites can also be covered by the integrated system. (orig.) [de

  11. Pressure drop, steam content and turbulent cross exchange in water/steam flows

    International Nuclear Information System (INIS)

    Teichel, H.

    1978-01-01

    For describing the behaviour of two-phase flows of water and steam with the help of calculating patterns, a number of empirical correlations are required. - In this article, correlations for the friction pressure drop in water/steam flows are compared, as well as for the steam mass and the volumetric steam content with each other and with the test results on simple geometries. As the mutual effect between cooling chanels plays an important part at the longitudinal flow through bar bundles, the appertaining equations are evaluated, in addition. (orig.) 891 HP [de

  12. MEDEA, Steady-State Pressure and Temperature Distribution in He H2O Steam Generator

    International Nuclear Information System (INIS)

    Hansen, Ulf

    1976-01-01

    number of steam generator sections is 4. The steam generator is divided into small heat exchanger elements (or mesh points) not exceeding 300. MEDEA is restricted to helium and water. Helium could however easily be replaced by any other non-boiling fluid by changing the programmed material properties of helium

  13. Safety measures for the main control board replacement project at Ikata units 1 and 2

    International Nuclear Information System (INIS)

    Hashimoto, Nozomu; Tada, Kenji

    2013-01-01

    When Units 1 and 2 of the Ikata Power Station underwent replacement of their main control boards, control cabinets, and associated equipment, it was necessary to remove all the control boards, cabinets, and cables from the control building including from the main control room. This meant the loss of operation and monitoring functions in the main control room and functions of control cabinets. To maintain the operation and monitoring functions required under plant shutdown conditions, temporary operation and monitoring equipment (i.e., temporary main control board) was installed in the temporary main control room. The advance preparations included a trial switching from the permanent to the temporary main control board to identify and address potential problems in advance. When the replacement work was underway, a work schedule sheet posted in the temporary and the permanent control rooms was used to prevent human errors caused by operators’ recognition errors. Monitoring and control signals were switched from the old boards to the temporary boards and from the temporary boards to the new boards at appropriate timings to ensure plant safety during the replacement operation. (author)

  14. Non-contact control of the working condition of mechanical units of the steam compressor for desalination plant

    Science.gov (United States)

    Danilin, A. I.; Chernyavsky, A. Zh.; Danilin, S. A.; Neverov, V. V.; Voroh, D. A.; Blagin, E. V.

    2018-03-01

    New methods and means for monitoring working condition of the rotating elements of steam compressor unit such as blade ring of the impeller and gears of multiplier are considered. Blade control is carried out by the signalling device of pre-emergency deformation of impeller blades. Control of the gears condition is carried out by apparatus system which allows to analyse change of the signal form caused by the gears wear. Influence of the wear types on the typical information parameters of the analysed signals is described. Technical characteristics of the devices and experimental research results are presented. Described control systems allow to detect deviations equal to 1-2% from initial condition. Application of such systems gives the opportunity to improve fault diagnosis and maintenance in 2-3 times.

  15. Technical and economic studies of small reactors for supply of electricity and steam

    International Nuclear Information System (INIS)

    Spiewak, I.; Klepper, O.H.; Fuller, L.C.

    1977-01-01

    Several years ago conventional opinion held that nuclear power plants must be very large to be competitive with fossil fuels. This situation has changed markedly in most countries within recent years, as oil and gas supplies have become more scarce and costly. Studies have been carried out of several nuclear steam supply systems in the small and intermediate size range. Detail studies are reported of the Consolidated Nuclear Steam Generator (CNSG), a 313 MW(t) pressurized water reactor being developed by Babcock and Wilcox, as applied to industrial energy needs. Both conventional and barge-mounted nuclear steam supply systems are considered. Conceptual studies have been started of pressurized and boiling water reactors in the range of 1000 MW(t), which are envisioned for utility operation for supply of electric power and steam. Design studies of a 500 MW(t) high temperature reactor are also reported. The small reactors are expected to have higher unit costs than the large commercial plants, but to have compensating advantages in higher plant availability, shorter construction schedule and greater siting flexibility. Studies are also reported of power cycle parameters and cost allocations for extraction of steam from steam turbine plants. This steam could be used for industrial energy, district heating or desalination

  16. Technical and economic studies of small reactors for supply of electricity and steam

    International Nuclear Information System (INIS)

    Spiewak, I.; Klepper, O.H.; Fuller, L.C.

    1977-02-01

    Several years ago conventional opinion held that nuclear power plants must be very large to be competitive with fossil fuels. This situation has changed markedly in most countries within recent years, as oil and gas supplies have become more scarce and costly. Studies have been carried out for several nuclear steam supply systems in the small and intermediate size range. Detail studies are reported of the Consolidated Nuclear Steam Generator (CNSG), a 365 MW(th) pressurized water reactor being developed by Babcock and Wilcox, as applied to industrial energy needs. Both conventional and barge-mounted nuclear steam supply systems are considered. Conceptual studies have been started of pressurized and boiling water reactors in the range of 1000 MW(th), which are envisioned for utility operation for supply of electric power and steam. Design studies of a 500 MW(th) high temperature reactor are also reported. The small reactors are expected to have higher unit costs than the large commercial plants, but to have compensating advantages in higher plant availability, shorter construction schedule, and greater siting flexibility. Studies are also reported of power cycle parameters and cost allocations for extraction of steam from steam turbine plants. This steam could be used for industrial energy, district heating, or desalination

  17. Steam reforming as a method to treat Hanford underground storage tank (UST) wastes

    International Nuclear Information System (INIS)

    Miller, J.E.; Kuehne, P.B.

    1995-07-01

    This report summarizes a Sandia program that included partnerships with Lawrence Livermore National Laboratory and Synthetica Technologies, Inc. to design and test a steam reforming system for treating Hanford underground storage tank (UST) wastes. The benefits of steam reforming the wastes include the resolution of tank safety issues and improved radionuclide separations. Steam reforming destroys organic materials by first gasifying, then reacting them with high temperature steam. Tests indicate that up to 99% of the organics could be removed from the UST wastes by steam exposure. In addition, it was shown that nitrates in the wastes could be destroyed by steam exposure if they were first distributed as a thin layer on a surface. High purity alumina and nickel alloys were shown to be good candidates for materials to be used in the severe environment associated with steam reforming the highly alkaline, high nitrate content wastes. Work was performed on designing, building, and demonstrating components of a 0.5 gallon per minute (gpm) system suitable for radioactive waste treatment. Scale-up of the unit to 20 gpm was also considered and is feasible. Finally, process demonstrations conducted on non-radioactive waste surrogates were carried out, including a successful demonstration of the technology at the 0.1 gpm scale

  18. Technical and economic studies of small reactors for supply of electricity and steam

    International Nuclear Information System (INIS)

    Spiewak, I.; Klepper, O.H.; Fuller, L.C.

    1977-01-01

    Several years ago conventional opinion held that nuclear power plants must be very large to be competitive with fossil fuels. This situation has changed markedly in most countries within recent years, as oil and gas supplies have become more scarce and costly. Studies have been carried out of several nuclear steam supply systems in the small and intermediate size range. Detail studies are reported of the Consolidated Nuclear Steam Generator (CNSG), a 313MW(th) pressurized water reactor being developed by Babcock and Wilcox, as applied to industrial energy needs. Both conventional and barge-mounted nuclear steam supply systems are considered. Conceptual studies have been started of pressurized and boiling water reactors in the range of 1000MW(th), which are envisioned for utility operation for supply of electric power and steam. Design studies of a 500MW(th) high temperature reactor are also reported. The small reactors are expected to have higher unit costs than the large commercial plants, but to have compensating advantages in higher plant availability, shorter construction schedule and greater siting flexibility. Studies are also reported of power cycle parameters and cost allocations for extraction of steam from steam turbine plants. This steam could be used for industrial energy, district heating or desalination. (author)

  19. An opportunity for capacity up-rating of 1000 MW steam turbine plant in Kozloduy NPP

    International Nuclear Information System (INIS)

    Popov, D.

    2005-01-01

    In connection with earlier and forced decommissioning of the Kozloduy NPP units 1 - 4, an alternative has to be found in order to substitute these capacities. As a reasonable options, capacity up-rating of 1000 MW steam turbine plants without nuclear reactor thermal capacity increase, is investigated in the present study. The cooling water for these units is delivered by Danube river. The cooling water temperatures substantially decrease during the winter months. These changes create an opportunity for steam back end pressure reduction. It was found that when the cooling water temperature decreases from 15 0 C to 3 0 C, the steam back end pressure is on the decrease of from 3.92 kPa to 2.3 kPa. As a result capacity of the plant could be raised up to 50 MW without any substantial equipment and systems change

  20. What is geothermal steam worth?

    International Nuclear Information System (INIS)

    Thorhallsson, S.; Ragnarsson, A.

    1992-01-01

    Geothermal steam is obtained from high-temperature boreholes, either directly from the reservoir or by flashing. The value of geothermal steam is similar to that of steam produced in boilers and lies in its ability to do work in heat engines such as turbines and to supply heat for a wide range of uses. In isolated cases the steam can be used as a source of chemicals, for example the production of carbon dioxide. Once the saturated steam has been separated from the water, it can be transported without further treatment to the end user. There are several constraints on its use set by the temperature of the reservoir and the chemical composition of the reservoir fluid. These constraints are described (temperature of steam, scaling in water phase, gas content of steam, well output) as are the methods that have been adopted to utilize this source of energy successfully. Steam can only be transported over relatively short distances (a few km) and thus has to be used close to the source. Examples are given of the pressure drop and sizing of steam mains for pipelines. The path of the steam from the reservoir to the end user is traced and typical cost figures given for each part of the system. The production cost of geothermal steam is estimated and its sensitivity to site-specific conditions discussed. Optimum energy recovery and efficiency is important as is optimizing costs. The paper will treat the steam supply system as a whole, from the reservoir to the end user, and give examples of how the site-specific conditions and system design have an influence on what geothermal steam is worth from the technical and economic points of view

  1. Condensers for measuring steam quality at the inlet of back-pressure units of the Los Azufres, Mich., geothermal field; Condensadores para medir la calidad del vapor a la entrada de las turbinas a contrapresion del campo geotermico de Los Azufres, Mich.

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval Medina, Fernando; Gonzalez Gonzalez, Rubi; Reyes Delgado, Lisette; Medina Martinez, Moises [Comision Federal de Electricidad, Gerencia de Proyectos Geotermoelectricos, Residencia de Los Azufres (Mexico)]. E-mail: fernando.sandoval@cfe.gob.mx

    2007-01-15

    Electrical conductivity is an indirect measurement of the quality of the steam supplied to power units. In the Los Azufres, Mich., geothermal field, the electrical conductivity once was measured in a discrete and periodic way by condensing steam samples through a water-cooled condenser. In an attempt to continuously measure conductivity, conductivity meters were installed where the units discharged, but the values proved unstable and unrepresentative. Thereafter, taking into account that steam quality should be measured at the steam delivery-reception point, equipment was designed and tested for continuously condensing steam. Finally it was possible to get an air-cooled condenser able to condense 500 milliliters per minute, enough to collect a representative flow of the steam and to measure its electrical conductivity. The equipment was installed in all seven back-pressure units operating in the field and to date has been operating in an optimal manner. [Spanish] La conductividad electrica es una medida indirecta de la calidad del vapor que se suministra a las unidades turbogeneradoras. En el campo geotermico de Los Azufres, Mich., la conductividad electrica se media en forma puntual y periodica, condensando muestras de vapor por medio de un serpentin enfriado con agua. Despues, ante la necesidad de medirla en forma continua, se instalaron conductivimetros en las descargas de las unidades, pero los valores resultaron muy inestables y poco representativos. Considerando, ademas, que la calidad del vapor debe medirse en el punto de entrega-recepcion, se disenaron y probaron equipos para condensar vapor de manera continua, lograndose construir un condensador enfriado por aire que logra condensar un flujo de 500 mililitros por minuto, cantidad suficiente para tener un flujo representativo del vapor que alimenta a las turbinas y medirle su conductividad electrica. Se instalaron estos equipos en las siete unidades turbogeneradoras a contrapresion que funcionan en el campo

  2. Indian Point 2 steam generator tube rupture analyses

    International Nuclear Information System (INIS)

    Dayan, A.

    1985-01-01

    Analyses were conducted with RETRAN-02 to study consequences of steam generator tube rupture (SGTR) events. The Indian Point, Unit 2, power plant (IP2, PWR) was modeled as a two asymmetric loops, consisting of 27 volumes and 37 junctions. The break section was modeled once, conservatively, as a 150% flow area opening at the wall of the steam generator cold leg plenum, and once as a 200% double-ended tube break. Results revealed 60% overprediction of breakflow rates by the traditional conservative model. Two SGTR transients were studied, one with low-pressure reactor trip and one with an earlier reactor trip via over temperature ΔT. The former is more typical to a plant with low reactor average temperature such as IP2. Transient analyses for a single tube break event over 500 seconds indicated continued primary subcooling and no need for steam line pressure relief. In addition, SGTR transients with reactor trip while the pressurizer still contains water were found to favorably reduce depressurization rates. Comparison of the conservative results with independent LOFTRAN predictions showed good agreement

  3. Allothermal steam gasification of biomass in cyclic multi-compartment bubbling fluidized-bed gasifier/combustor - new reactor concept.

    Science.gov (United States)

    Iliuta, Ion; Leclerc, Arnaud; Larachi, Faïçal

    2010-05-01

    A new reactor concept of allothermal cyclic multi-compartment fluidized bed steam biomass gasification is proposed and analyzed numerically. The concept combines space and time delocalization to approach an ideal allothermal gasifier. Thermochemical conversion of biomass in periodic time and space sequences of steam biomass gasification and char/biomass combustion is simulated in which the exothermic combustion compartments provide heat into an array of interspersed endothermic steam gasification compartments. This should enhance unit heat integration and thermal efficiency and procure N(2)-free biosyngas with recourse neither to oxygen addition in steam gasification nor contact between flue and syngas. The dynamic, one-dimensional, multi-component, non-isothermal model developed for this concept accounts for detailed solid and gas flow dynamics whereupon gasification/combustion reaction kinetics, thermal effects and freeboard-zone reactions were tied. Simulations suggest that allothermal operation could be achieved with switch periods in the range of a minute supporting practical feasibility for portable small-scale gasification units. Copyright 2009 Elsevier Ltd. All rights reserved.

  4. Alternative method for steam generation for thermal oxidation of silicon

    Science.gov (United States)

    Spiegelman, Jeffrey J.

    2010-02-01

    Thermal oxidation of silicon is an important process step in MEMS device fabrication. Thicker oxide layers are often used as structural components and can take days or weeks to grow, causing high gas costs, maintenance issues, and a process bottleneck. Pyrolytic steam, which is generated from hydrogen and oxygen combustion, was the default process, but has serious drawbacks: cost, safety, particles, permitting, reduced growth rate, rapid hydrogen consumption, component breakdown and limited steam flow rates. Results from data collected over a 24 month period by a MEMS manufacturer supports replacement of pyrolytic torches with RASIRC Steamer technology to reduce process cycle time and enable expansion previously limited by local hydrogen permitting. Data was gathered to determine whether Steamers can meet or exceed pyrolytic torch performance. The RASIRC Steamer uses de-ionized water as its steam source, eliminating dependence on hydrogen and oxygen. A non-porous hydrophilic membrane selectively allows water vapor to pass. All other molecules are greatly restricted, so contaminants in water such as dissolved gases, ions, total organic compounds (TOC), particles, and metals can be removed in the steam phase. The MEMS manufacturer improved growth rate by 7% over the growth range from 1μm to 3.5μm. Over a four month period, wafer uniformity, refractive index, wafer stress, and etch rate were tracked with no significant difference found. The elimination of hydrogen generated a four-month return on investment (ROI). Mean time between failure (MTBF) was increased from 3 weeks to 32 weeks based on three Steamers operating over eight months.

  5. A State of the Art Report on Wear Damage of Steam Generator Tubes

    International Nuclear Information System (INIS)

    Lim, Yun Soo; Kim, Joung Soo; Kim, Hong Pyo; Hwang, Seong Sik; Jung, Man Kyo

    2004-10-01

    The recent status on wear damage of steam generator tubes caused by flow-induced vibration was investigated, and the criteria for structural integrity evaluation of the wear-damaged tubes were reviewed. It was surveyed how the wear damage of tubes could be affected by main parameters, such as, materials properties and their combination, impact load and vibration amplitude/frequency, contact areas and diametral clearance between the tube and tube support plate, wear test duration, and test temperature. Finally, corrosive wear, which means the combined action of corrosion and wear simultaneously, was also surveyed in this report. There has been only a few works concerned on the wear damage of steam generator tubes in Korea, compared with the leading foreign research institutes. Especially, the experience related to the wear characteristics of Alloy 690, which has become a replacement material for Alloy 600 as steam generator tubes, is far from satisfactory. Systematic studies, therefore, concerned with structural integrity of tubes as well as improvement of were resistance of Alloy 690 in the PWR environment are needed

  6. Creep of Sylramic-iBN Fiber Tows at Elevated Temperature in Air and in Silicic Acid-Saturated Steam

    Science.gov (United States)

    2015-06-01

    CREEP OF SYLRAMIC-iBN FIBER TOWS AT ELEVATED TEMPERATURE IN AIR AND IN SILICIC ACID-SATURATED STEAM ...protection in the United States. AFIT-ENY-15-J-46 CREEP OF SYLRAMIC-iBN FIBER TOWS AT ELEVATED TEMPERATURE IN AIR AND IN SILICIC ACID-SATURATED STEAM ...DISTRIBUTION UNLIMITED. AFIT-ENY-15-J-46 CREEP OF SYLRAMIC-iBN FIBER TOWS AT ELEVATED TEMPERATURE IN AIR AND IN SILICIC ACID-SATURATED STEAM

  7. Steam Digest 2001

    Energy Technology Data Exchange (ETDEWEB)

    2002-01-01

    Steam Digest 2001 chronicles BestPractices Program's contributions to the industrial trade press for 2001, and presents articles that cover technical, financial and managerial aspects of steam optimization.

  8. Decomposition of some amines and amino acids in steam generator environments

    International Nuclear Information System (INIS)

    Jayaweera, P.; Hettiarachchi, S.; Millett, P.J.

    1994-01-01

    Hydrothermal decomposition rate constants and high temperature pH values of some selected high-molecular weight amines and amino acids were measured under simulated steam generator conditions. These amines and amino acids were evaluated as potential crevice buffering agents for steam generator applications in pressurized water reactors. The study showed that, although the high molecular weight amines undergo hydrothermal decomposition, they have a better buffer capacity than their low molecular weight counterparts at 290 C. The amines provide effective crevice buffering by increasing the pH of the simulated crevice solution by as much as 2.84 to 4.24 units. However, volatility data for the amines and amino acids are needed before in-plant testing to ensure that amines can concentrate sufficiently in steam generator crevices to provide effective buffering

  9. LMFBR steam generator leak detection development in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Magee, P M; Gerrels, E E; Greene, D A [General Electric Company, Sunnyvale, CA (United States); McKee, J [Argonne National Laboratory, Argonne, IL (United States)

    1978-10-01

    Leak detection for Liquid Metal Fast Breeder Reactor steam generators is an important economic factor in the shutdown, repair and restart of a plant. Development of leak detection systems in the U.S. has concentrated on four areas: (1) chemical (H{sub 2} and O{sub 2}) leak detection meters; (2) acoustic leak detection/location techniques; (3) investigation of leak behavior (enlargement, damage effects, plugging and unplugging); and (4) data management for plant operations. This paper discusses the status, design aspects, and applications of leak detection technology for LMFBR plants. (author)

  10. LMFBR steam generator leak detection development in the United States

    International Nuclear Information System (INIS)

    Magee, P.M.; Gerrels, E.E.; Greene, D.A.; McKee, J.

    1978-01-01

    Leak detection for Liquid Metal Fast Breeder Reactor steam generators is an important economic factor in the shutdown, repair and restart of a plant. Development of leak detection systems in the U.S. has concentrated on four areas: (1) chemical (H 2 and O 2 ) leak detection meters; (2) acoustic leak detection/location techniques; (3) investigation of leak behavior (enlargement, damage effects, plugging and unplugging); and (4) data management for plant operations. This paper discusses the status, design aspects, and applications of leak detection technology for LMFBR plants. (author)

  11. A three-dimensional laboratory steam injection model allowing in situ saturation measurements. [Comparing steam injection and steam foam injection with nitrogen and without nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Demiral, B.M.R.; Pettit, P.A.; Castanier, L.M.; Brigham, W.E.

    1992-08-01

    The CT imaging technique together with temperature and pressure measurements were used to follow the steam propagation during steam and steam foam injection experiments in a three dimensional laboratory steam injection model. The advantages and disadvantages of different geometries were examined to find out which could best represent radial and gravity override flows and also fit the dimensions of the scanning field of the CT scanner. During experiments, steam was injected continuously at a constant rate into the water saturated model and CT scans were taken at six different cross sections of the model. Pressure and temperature data were collected with time at three different levels in the model. During steam injection experiments, the saturations obtained by CT matched well with the temperature data. That is, the steam override as observed by temperature data was also clearly seen on the CT pictures. During the runs where foam was present, the saturation distributions obtained from CT pictures showed a piston like displacement. However, the temperature distributions were different depending on the type of steam foam process used. The results clearly show that the pressure/temperature data alone are not sufficient to study steam foam in the presence of non-condensible gas.

  12. Age replacement models: A summary with new perspectives and methods

    International Nuclear Information System (INIS)

    Zhao, Xufeng; Al-Khalifa, Khalifa N.; Magid Hamouda, Abdel; Nakagawa, Toshio

    2017-01-01

    Age replacement models are fundamental to maintenance theory. This paper summarizes our new perspectives and hods in age replacement models: First, we optimize the expected cost rate for a required availability level and vice versa. Second, an asymptotic model with simple calculation is proposed by using the cumulative hazard function skillfully. Third, we challenge the established theory such that preventive replacement should be non-random and only corrective replacement should be made for the unit with exponential failure. Fourth, three replacement policies with random working cycles are discussed, which are called overtime replacement, replacement first, and replacement last, respectively. Fifth, the policies of replacement first and last are formulated with general models. Sixth, age replacement is modified for the situation when the economical life cycle of the unit is a random variable with probability distribution. Finally, models of a parallel system with constant and random number of units are taken into considerations. The models of expected cost rates are obtained and optimal replacement times to minimize them are discussed analytically and computed numerically. Further studies and potential applications are also indicated at the end of discussions of the above models. - Highlights: • Optimization of cost rate for availability level is discussed and vice versa. • Asymptotic and random replacement models are discussed. • Overtime replacement, replacement first and replacement last are surveyed. • Replacement policy with random life cycle is given. • A parallel system with random number of units is modeled.

  13. Repowering options for steam power plants

    International Nuclear Information System (INIS)

    Wen, H.; Gopalarathinam, R.

    1992-01-01

    Repowering an existing steam power plant with a gas turbine offers an attractive alternative to a new plant or life extension, especially for unit sizes smaller than 300 MWe. Gas turbine repowering improves thermal efficiency and substantially increases the plant output. Based on recent repowering studies and projects, this paper examines gas turbine repowering options for 100 MWe, 200 MWe and 300 MWe units originally designed for coal firing and currently firing either coal or natural gas. Also discussed is the option for a phased future conversion of the repowered unit to fire coal-derived gas, should there be a fluctuation in the price or availability of natural gas. A modular coal gasification plant designed to shorten the conversion time is presented. Repowering options, performance, costs, and availability impacts are discussed for selected cases

  14. Research of impact of kind resuperheat and structure of system regenerative feed water to thermodynamic efficiency of cycle with steam-coolant reactor

    Directory of Open Access Journals (Sweden)

    Maykova Svetlana

    2017-01-01

    Full Text Available The first key problems of modern nuclear reactors are inability of closed nuclear cycle, problems with spent nuclear fuel, poor effectiveness of nuclear fuel and heat-exchange equipment usage. Dealing with problems consists in usage of fast-neutron reactors with steam coolant. Scientific men analyzed neutron-physical processes in steam-cooled fast reactor and consulted that creation of the reactor is viable. In consequence of low steam activation a single-loop steam cycle may be create. The cycle is easy and fool-proof. Core thermomechanical equipment has mastered and has relatively low metal content. Results of calculation are showing that nuclear unit with steam-coolant fast neutron reactor is more efficient than widely used unit with reactor VVER. Usage of simple scheme with four regenerative feedwater heaters the absolute efficiency ratio is more than 43%.

  15. Four-unit fixed dental prostheses replacing the maxillary incisors supported by two narrow-diameter implants - a five-year case series.

    Science.gov (United States)

    Moráguez, Osvaldo; Vailati, Francesca; Grütter, Linda; Sailer, Irena; Belser, Urs C

    2017-07-01

    (1) To determine the survival rate of 10 four-unit fixed dental prostheses (FDPs) replacing the four maxillary incisors, supported by 20 narrow-diameter implants (NDIs), (2) to assess the incidence of mechanical and biological complications, and (3) to evaluate bone level changes longitudinally after final FDP insertion. Ten patients (six women, four men), mean age 49.4 ± 12.6 years, were treated with a four-unit anterior maxillary FDP (six screw-retained; four cemented). Biological parameters, eventual technical complications, radiographic measurements, and study casts were assessed at 1 (baseline), 3, and 5 years after implant placement. A multilevel logistic regression test was performed on clinical parameters and bone level changes (significance level P four-unit FDP to replace the four missing maxillary incisors may be considered a predictable treatment modality. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Sodium and steam leak simulation studies for fluidized bed steam generators

    International Nuclear Information System (INIS)

    Keeton, A.R.; Vaux, W.G.; Lee, P.K.; Witkowski, R.E.

    1976-01-01

    An experimental program is described which was conducted to study the effects of sodium or steam leaking into an operating fluidized bed of metal or ceramic particles at 680 to 800 0 K. This effort was part of the early development studies for a fluidized-bed steam generator concept using helium as the fluidizing gas. Test results indicated that steam and small sodium leaks had no effect on the quality of fluidization, heat transfer coefficient, temperature distribution, or fluidizing gas pressure drop across the bed. Large sodium leaks, however, immediately upset the operation of the fluidized bed. Both steam and sodium leaks were detected positively and rapidly at an early stage of a leak by instruments specifically selected to accomplish this

  17. ACQUA97 - a Fortran subroutine to evaluate the IAPWS-IF97 equations of state for water and steam

    International Nuclear Information System (INIS)

    Veloso, Marcelo A.; Dias, Marcio S.; Fortini, Maria Auxiliadora

    2007-01-01

    Fundamental to subroutine ACQUA97 is the IAPWS-IF97 formulation for the thermodynamic properties of water and steam adopted by the International Association for the Properties of Water and Steam (IAPWS) in 1997. This new formulation is designed specifically for industrial applications, and replaces the previous industrial formulation, IFC-67, that has formed the basis of steam tables used in many areas of steam power industry throughout the world since the late 1960's. ACQUA97 has been programmed to compute the thermodynamic properties of water and steam (pressure, temperature, specific volume, specific entropy, specific enthalpy, and internal specific energy) and their main first partial derivatives for several combinations of two independent variables. One of the independent variable is either pressure or temperature. Vapor-liquid saturation properties are calculated at specified temperature or pressure. Transport properties (dynamic viscosity and thermal conductivity) and vapor-liquid surface tension are also calculated with formulations adopted by IAPWS. Any of the above mentioned thermophysical properties can be computed by this single subroutine from a simple main program supplied by the user. ACQUA97 might be very useful to those who deal with design and evaluation of thermal power plants. (author)

  18. DEMONSTRATION BULLETIN STEAM ENHANCED REMEDIATION STEAM TECH ENVIRONMENTAL SERVICES, INC.

    Science.gov (United States)

    Steam Enhanced Remediation is a process in which steam is injected into the subsurface to recover volatile and semivolatile organic contaminants. It has been applied successfully to recover contaminants from soil and aquifers and at a fractured granite site. This SITE demonstra...

  19. Safety Evaluation Report related to the operation of Waterford Steam Electric Station, Unit No. 3 (Docket No. 50-382). Supplement No. 8

    International Nuclear Information System (INIS)

    1984-12-01

    Supplement 8 to the Safety Evaluation Report for the application filed by Louisiana Power and Light Company for a license to operate the Waterford Steam Electric Station, Unit 3 (Docket No. 50-382), located in St. Charles Parish, Louisiana, has been prepared by the Office of Nuclear Reactor Regulation of the Nuclear Regulatory Commission. The purpose of this supplement is to update the Safety Evaluation Report by providing the staff's evaluation of information submitted by the applicant since the Safety Evaluation Report and its seven previous supplements were issued

  20. Slurry steam generator program and baseline eddy current examination

    International Nuclear Information System (INIS)

    Clark, R.A.; Doctor, P.G.

    1985-01-01

    The Steam Generator Group Project was initiated in January 1982 with formation of consortium including NRC, EPRI, Japanese, French, and Italian participants. The project utilizes a retired-from-service nuclear steam generator established in a specially designed facility which houses the unit in its normal vertical operating position. The most important objectives deal with validation of nondestructive examination (NDE) techniques used to characterize steam generators during service. This research generator offers the first opportunity to characterize a statistically significant number of service-induced defects nondestructively followed by destructive metallographic confirmation. The project seeks to establish the reliability of defect detection and the accuracy of sizing defects via current state-of-the-art NDE. Other service degraded tubes will be burst tested to establish remaining service integrity. The integrity information and NDE reliability results will serve as inputs to establish a model for steam generator in-service inspections, and provide a data base for evaluation of tube plugging criteria. In addition to NDE validation goals, the project will use the service degraded generator as a specimen for demonstration/proof testing of repair and maintenance techniques, including chemical cleaning/decontamination technologies. In addition to the efforts associated with NDE, a multitude of other project tasks have continued through 1984, and results are presented

  1. Surry steam generator program and baseline eddy current examination

    International Nuclear Information System (INIS)

    Clark, R.A.; Doctor, P.G.

    1985-01-01

    The Steam Generator Group Project was initiated in January 1982 with formation of consortium including NRC, EPRI, Japanese, French, and Italian participants. The project utilizes a retired-from-service nuclear steam generator established in a specially designed facility which houses the unit in its normal vertical operating position. The most important objectives deal with validation of nondestructive examination (NDE) techniques used to characterize steam generators during service. This research generator offers the first opportunity to characterize a statistically significant number of service-induced defects nondestructively followed by destructive metallographic confirmation. The project seeks to establish the reliability of defect detection and the accuracy of sizing defects via current state-of-the-art NDE. Other service degraded tubes will be burst tested to establish remaining service integrity. The integrity information and NDE reliability results will serve as inputs to establish a model for steam generator in-service inspections, and provide a data base for evaluation of tube plugging criteria. In addition to NDE validation goals, the project will use the service degraded generator as a specimen for demonstration/proof testing of repair and maintenance techniques, including chemical cleaning/decontamination technologies. In addition to the efforts associated with NDE, a multitude of other project tasks have continued through 1984, and results are presented

  2. Steam generator life management

    International Nuclear Information System (INIS)

    Tapping, R.L.; Nickerson, J.; Spekkens, P.; Maruska, C.

    1998-01-01

    Steam generators are a critical component of a nuclear power reactor, and can contribute significantly to station unavailability, as has been amply demonstrated in Pressurized Water Reactors (PWRs). CANDU steam generators are not immune to steam generator degradation, and the variety of CANDU steam generator designs and tube materials has led to some unexpected challenges. However, aggressive remedial actions, and careful proactive maintenance activities, have led to a decrease in steam generator-related station unavailability of Canadian CANDUs. AECL and the CANDU utilities have defined programs that will enable existing or new steam generators to operate effectively for 40 years. Research and development work covers corrosion and mechanical degradation of tube bundles and internals, chemistry, thermal hydraulics, fouling, inspection and cleaning, as well as provision for specially tool development for specific problem solving. A major driving force is development of CANDU-specific fitness-for-service guidelines, including appropriate inspection and monitoring technology to measure steam generator condition. Longer-range work focuses on development of intelligent on-line monitoring for the feedwater system and steam generator. New designs have reduced risk of corrosion and fouling, are more easily inspected and cleaned, and are less susceptible to mechanical damage. The Canadian CANDU utilities have developed programs for remedial actions to combat degradation of performance (Gentilly-2, Point Lepreau, Bruce A/B, Pickering A/B), and have developed strategic plans to ensure that good future operation is ensured. This report shows how recent advances in cleaning technology are integrated into a life management strategy, discusses downcomer flow measurement as a means of monitoring steam generator condition, and describes recent advances in hideout return as a life management tool. The research and development program, as well as operating experience, has identified

  3. Two different modelling methods of the saturated steam turbine load rejection

    International Nuclear Information System (INIS)

    Negreanu, Gabriel-Paul; Oprea, Ion

    1999-01-01

    One of the most difficult operation regimes of a steam turbine is the load rejection. It happens usually when the main switchgear of the unit closes unexpectedly due to some external or internal causes. In this moment, the rotor balance collapses: the motor momentum is positive, the resistant momentum is zero and the rotation velocity increases rapidly. When this process occurs, the over-speed protection should activate the emergency stop valves and the control and intercept valves in order to stop the steam admission into the turbine. The paper presents two differential approaches of the fluid dynamic processes from the flow sections of the saturated steam turbine of the NPP, where the laws of mass and energy conservation are applied. In this manner, the 'power and speed versus time' diagrams can be drawn. The main parameters of such technical problem are the closure low of the valves, the large volume of internal cavities, the huge inertial momentum of the rotor and especially the moisture of the steam that evaporates when the pressure decreases and generates an extra power in the turbine. (authors)

  4. A fast prediction of plant behaviour in the steam generator tube rupture accident at Mihama unit 2 using a similar case

    International Nuclear Information System (INIS)

    Gofuku, Akio; Tanaka, Yutaka; Numoto, Atsushi; Yoshikawa, Hidekazu.

    1996-01-01

    It is important to predict fast and accurately future trend of behaviour of a nuclear power plant in an emergency situation. The case-based reasoning is a strong tool for this purpose because it solves a problem by effectively using past similar cases. This study investigates the applicability of the case-based reasoning as a fast prediction technique of plant behaviour. This paper discusses a prediction of initial plant behaviour in the steam generator tube rupture accident happened at the Mihama nuclear power plant unit 2 by using the behaviour data of an accident of the same type happened at Prairie Island nuclear power plant unit 1. The prediction results coincide well with the reported plant behaviour although there are several important differences in the detailed plant specifications and operator actions between the two SGTR accidents. (author)

  5. Steam generator tube failures

    International Nuclear Information System (INIS)

    MacDonald, P.E.; Shah, V.N.; Ward, L.W.; Ellison, P.G.

    1996-04-01

    A review and summary of the available information on steam generator tubing failures and the impact of these failures on plant safety is presented. The following topics are covered: pressurized water reactor (PWR), Canadian deuterium uranium (CANDU) reactor, and Russian water moderated, water cooled energy reactor (VVER) steam generator degradation, PWR steam generator tube ruptures, the thermal-hydraulic response of a PWR plant with a faulted steam generator, the risk significance of steam generator tube rupture accidents, tubing inspection requirements and fitness-for-service criteria in various countries, and defect detection reliability and sizing accuracy. A significant number of steam generator tubes are defective and are removed from service or repaired each year. This wide spread damage has been caused by many diverse degradation mechanisms, some of which are difficult to detect and predict. In addition, spontaneous tube ruptures have occurred at the rate of about one every 2 years over the last 20 years, and incipient tube ruptures (tube failures usually identified with leak detection monitors just before rupture) have been occurring at the rate of about one per year. These ruptures have caused complex plant transients which have not always been easy for the reactor operators to control. Our analysis shows that if more than 15 tubes rupture during a main steam line break, the system response could lead to core melting. Although spontaneous and induced steam generator tube ruptures are small contributors to the total core damage frequency calculated in probabilistic risk assessments, they are risk significant because the radionuclides are likely to bypass the reactor containment building. The frequency of steam generator tube ruptures can be significantly reduced through appropriate and timely inspections and repairs or removal from service

  6. Preliminary design study of removable integral steam generator units of the multiple helically wound tube type for a 1250 MW(th) H.T.G.C. reactor

    International Nuclear Information System (INIS)

    Gilli, P.V.; Fritz, K.; Lippitsch, J.; Sandri, A.H.; Weiss, B.

    1965-11-01

    The possibilities of designing a multiple steam generator for a 1250 MW(th) High Temperature Gas-Cooled Reactor, consisting of 18 units which are able to pass through 5 ft diam. holes in the integral prestressed concrete pressure vessel are investigated. A lay-out and design with bundles of multi-start helical tubes is evolved, particular attention being paid to the questions of tube blanking and removal of the unit, and of selection of materials for superheater and reheater tubes. Thermal and stress calculations have been carried out, using the Waagner-Biro Computer Code ADURHELIX. (author)

  7. Steam generators, turbines, and condensers. Volume six

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Volume six covers steam generators (How steam is generated, steam generation in a PWR, vertical U-tube steam generators, once-through steam generators, how much steam do steam generators make?), turbines (basic turbine principles, impulse turbines, reaction turbines, turbine stages, turbine arrangements, turbine steam flow, steam admission to turbines, turbine seals and supports, turbine oil system, generators), and condensers (need for condensers, basic condenser principles, condenser arrangements, heat transfer in condensers, air removal from condensers, circulating water system, heat loss to the circulating water system, factors affecting condenser performance, condenser auxiliaries)

  8. On the reliability of steam generator performance at nuclear power plants with WWER type reactors

    International Nuclear Information System (INIS)

    Styrikovich, M.A.; Margulova, T.Kh.

    1974-01-01

    The problem of ensuring reliable operation of steam generators in a nuclear power plant with a water-cooled, water-moderated reactor (WWER) was studied. At a nuclear power plant with a vertical steam generator (specifically, a Westinghouse product) the steam generator tubes were found to have been penetrated. Shutdown was due to corrosion disintegration of the austenitic stainless steel, type 18/8, used as pipe material for the heater surface. The corrosion was the result of the action of chlorine ions concentrated in the moisture contained in the iron oxide films deposited in low parts of the tube bundle, directly at the tube plate. Blowing through did not ensure complete removal of the film, and in some cases the construction features of the steam generator made removal of the film practically impossible. Replacement of type 18/8 stainless steel by other construction material, e.g., Inconel, did not give good results. To ensure reliable operation of vertical steam generators in domestic practice, the generators are designed without a low tube plate (a variant diagram of the vertical steam generator of such construction for the water-cooled, water-moderated reactor 1000 is presented). When low tube plates are used the film deposition is intolerable. For organization of a non-film regime a complex treatment of the feed water is used, in which the amount of complexion is calculated from the stoichmetric ratios with the composition of the feed water. It is noted that, if 100% condensate purification is used with complexon processing of the feed water to the generator, we can calculate the surface of the steam-generator heater without considering the outer placement on the tubes. In this the cost of the steam generator and all the nuclear power plants with WWER type reactors is decreased even with installation of a 100% condensate purification. It is concluded that only simultaneous solution of construction and water-regime problems will ensure relaible operation of

  9. Horizontal steam generator thermal-hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Ubra, O. [SKODA Praha Company, Prague (Czechoslovakia); Doubek, M. [Czech Technical Univ., Prague (Czechoslovakia)

    1995-09-01

    Horizontal steam generators are typical components of nuclear power plants with pressure water reactor type VVER. Thermal-hydraulic behavior of horizontal steam generators is very different from the vertical U-tube steam generator, which has been extensively studied for several years. To contribute to the understanding of the horizontal steam generator thermal-hydraulics a computer program for 3-D steady state analysis of the PGV-1000 steam generator has been developed. By means of this computer program, a detailed thermal-hydraulic and thermodynamic study of the horizontal steam generator PGV-1000 has been carried out and a set of important steam generator characteristics has been obtained. The 3-D distribution of the void fraction and 3-D level profile as functions of load and secondary side pressure have been investigated and secondary side volumes and masses as functions of load and pressure have been evaluated. Some of the interesting results of calculations are presented in the paper.

  10. Enhancement of enzymatic saccharification of Eucalyptus globulus: steam explosion versus steam treatment.

    Science.gov (United States)

    Martin-Sampedro, Raquel; Revilla, Esteban; Villar, Juan C; Eugenio, Maria E

    2014-09-01

    Steam explosion and steam pre-treatment have proved capable of enhancing enzymatic saccharification of lignocellulosic materials. However, until now, these methods had not been compared under the same operational conditions and using the same raw material. Both pre-treatments lead to increased yields in the saccharification of Eucalyptus globulus; but results have been better with steam pre-treatments, despite the more accessible surface of exploded samples. The reason for this finding could be enzymatic inhibition: steam explosion causes a more extensive extraction of hemicelluloses and releases a greater amount of degradation products which can inhibit enzymatic action. Enzymatic inhibition is also dependent on the amount and chemical structure of lignin, which was also a contributing factor to the lower enzymatic yields obtained with the most severe pre-treatment. Thus, the highest yields (46.7% glucose and 73.4% xylose yields) were obtained after two cycle of steam treatment, of 5 and 3 min, at 183°C. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Chemical cleaning of PWR steam generators: application at Nogent 1

    International Nuclear Information System (INIS)

    Fiquet, J.M.; Veysset, J.P.; Esteban, L.; Saurin, P.

    1990-01-01

    EDF has developed and patented a chemical cleaning process for PWR steam generators, based on the use of a mixture of organic acids in order to: - dissolve iron oxides and copper with a single solution; - clean dented crevices. Qualification tests have permitted to demonstrate effectiveness of the solution and its inocuousness related to steam generator materials. The process, the license of which belongs to SOMAFER R.A. and FRAMATOME, has been implemented in France at Nogent. The goal was to dissolve iron oxides allowing metallic particles, aggregated on the tubesheet, to be released and mechanically removed. The effectiveness was satisfactory and this treatment is to be extended to other units [fr

  12. Steam and sodium leak simulation in a fluidized-bed steam generator

    International Nuclear Information System (INIS)

    Vaux, W.G.; Keeton, A.R.; Keairns, D.L.

    1977-01-01

    A fluidized-bed steam generator for the liquid metal fast breeder reactor enhances plant availability and minimizes the probability of a water/sodium reaction. An experimental test program was conceived to assess design criteria and fluidized-bed operation under conditions of water, steam, and sodium leaks. Sodium, steam, and water were leaked into helium-fluidized beds of metal and ceramic particles at 900 F. Test results show the effects of leaks on the heat transfer coefficient, quality of fluidization, leak detection, and cleanup procedures

  13. Loss of feed flow, steam generator tube rupture and steam line break thermohydraulic experiments

    International Nuclear Information System (INIS)

    Mendler, O.J.; Takeuchi, K.; Young, M.Y.

    1986-10-01

    The Westinghouse Model Boiler No. 2 (MB-2) steam generator test model at the Engineering Test Facility in Tampa, Florida, was reinstrumented and modified for performing a series of tests simulating steam generator accident transients. The transients simulated were: loss of feed flow, steam generator tube rupture, and steam line break events. This document presents a description of (1) the model boiler and the associated test facility, (2) the tests performed, and (3) the analyses of the test results

  14. Loss of feed flow, steam generator tube rupture and steam line break thermohydraulic experiments

    Energy Technology Data Exchange (ETDEWEB)

    Mendler, O J; Takeuchi, K; Young, M Y

    1986-10-01

    The Westinghouse Model Boiler No. 2 (MB-2) steam generator test model at the Engineering Test Facility in Tampa, Florida, was reinstrumented and modified for performing a series of tests simulating steam generator accident transients. The transients simulated were: loss of feed flow, steam generator tube rupture, and steam line break events. This document presents a description of (1) the model boiler and the associated test facility, (2) the tests performed, and (3) the analyses of the test results.

  15. Steam generators: critical components in nuclear steam supply systems

    Energy Technology Data Exchange (ETDEWEB)

    Stevens-Guille, P D

    1974-02-28

    Steam generators are critical components in power reactors. Even small internal leaks result in costly shutdowns for repair. Surveys show that leaks have affected one half of all water-cooled reactors in the world with steam generators. CANDU reactors have demonstrated the highest reliability. However, AECL is actively evolving new technology in design, manufacture, inspection and operation to maintain reliability. (auth)

  16. The Evaluation of Steam Generator Level Measurement Model for OPR1000 Using RETRAN-3D

    International Nuclear Information System (INIS)

    Doo Yong Lee; Soon Joon Hong; Byung Chul Lee; Heok Soon Lim

    2006-01-01

    Steam generator level measurement is important factor for plant transient analyses using best estimate thermal hydraulic computer codes since the value of steam generator level is used for steam generator level control system and plant protection system. Because steam generator is in the saturation condition which includes steam and liquid together and is the place that heat exchange occurs from primary side to secondary side, computer codes are hard to calculate steam generator level realistically without appropriate level measurement model. In this paper, we prepare the steam generator models using RETRAN-3D that include geometry models, full range feedwater control system and five types of steam generator level measurement model. Five types of steam generator level measurement model consist of level measurement model using elevation difference in downcomer, 1D level measurement model using fluid mass, 1D level measurement model using fluid volume, 2D level measurement model using power and fluid mass, and 2D level measurement model using power and fluid volume. And we perform the evaluation of the capability of each steam generator level measurement model by simulating the real plant transient condition, the title is 'Reactor Trip by The Failure of The Deaerator Level Control Card of Ulchin Unit 3'. The comparison results between real plant data and RETRAN-3D analyses for each steam generator level measurement model show that 2D level measurement model using power and fluid mass or fluid volume has more realistic prediction capability compared with other level measurement models. (authors)

  17. Steam power plant

    International Nuclear Information System (INIS)

    Campbell, J.W.E.

    1981-01-01

    This invention relates to power plant forced flow boilers operating with water letdown. The letdown water is arranged to deliver heat to partly expanded steam passing through a steam reheater connected between two stages of the prime mover. (U.K.)

  18. Modelling of steam condensation in the primary flow channel of a gas-heated steam generator

    International Nuclear Information System (INIS)

    Kawamura, H.; Meister, G.

    1982-10-01

    A new simulation code has been developed for the analysis of steam ingress accidents in high temperatures reactors which evaluates the heat transfer in a steam generator headed by a mixture of helium and water steam. Special emphasis is laid on the analysis of steam condensation in the primary circuit of the steam generator. The code takes wall and bulk condensation into account. A new method is proposed to describe the entrainment of water droplets in the primary gas flow. Some typical results are given. Steam condensation in the primary channel may have a significant effect on temperature distributions. The effect on the heat transferred by the steam generator, however, is found to be not so prominent as might be expected. The reason is discussed. A simplified code will also be described, which gives results with reasonable accuracy within much shorter execution times. This code may be used as a program module in a program simulating the total primary circuit of a high temperature reactor. (orig.) [de

  19. The Invisibility of Steam

    Science.gov (United States)

    Greenslade, Thomas B., Jr.

    2014-01-01

    Almost everyone "knows" that steam is visible. After all, one can see the cloud of white issuing from the spout of a boiling tea kettle. In reality, steam is the gaseous phase of water and is invisible. What you see is light scattered from the tiny droplets of water that are the result of the condensation of the steam as its temperature…

  20. Deliberate ignition of hydrogen-air-steam mixtures in condensing steam environments

    International Nuclear Information System (INIS)

    Blanchat, T.K.; Stamps, D.W.

    1997-05-01

    Large scale experiments were performed to determine the effectiveness of thermal glow plug igniters to burn hydrogen in a condensing steam environment due to the presence of water sprays. The experiments were designed to determine if a detonation or accelerated flame could occur in a hydrogen-air-steam mixture which was initially nonflammable due to steam dilution but was rendered flammable by rapid steam condensation due to water sprays. Eleven Hydrogen Igniter Tests were conducted in the test vessel. The vessel was instrumented with pressure transducers, thermocouple rakes, gas grab sample bottles, hydrogen microsensors, and cameras. The vessel contained two prototypic engineered systems: (1) a deliberate hydrogen ignition system and (2) a water spray system. Experiments were conducted under conditions scaled to be nearly prototypic of those expected in Advanced Light Water Reactors (such as the Combustion Engineering (CE) System 80+), with prototypic spray drop diameter, spray mass flux, steam condensation rates, hydrogen injection flow rates, and using the actual proposed plant igniters. The lack of any significant pressure increase during the majority of the burn and condensation events signified that localized, benign hydrogen deflagration(s) occurred with no significant pressure load on the containment vessel. Igniter location did not appear to be a factor in the open geometry. Initially stratified tests with a stoichiometric mixture in the top showed that the water spray effectively mixes the initially stratified atmosphere prior to the deflagration event. All tests demonstrated that thermal glow plugs ignite hydrogen-air-steam mixtures under conditions with water sprays near the flammability limits previously determined for hydrogen-air-steam mixtures under quiescent conditions. This report describes these experiments, gives experimental results, and provides interpretation of the results. 12 refs., 127 figs., 16 tabs