WorldWideScience

Sample records for unit references mn

  1. Teores de Fe, Mn, Zn, Cu, Ni E Co em solos de referência de Pernambuco

    Directory of Open Access Journals (Sweden)

    Caroline Miranda Biondi

    2011-06-01

    Full Text Available Metais pesados formam um grupo de elementos com particularidades relevantes e de ocorrência natural no ambiente, como elementos acessórios na constituição de rochas. Esses elementos, apesar de associados à toxidez, exigem tratamento diferenciado em relação aos xenobióticos, uma vez que diversos metais possuem essencialidade (Fe, Mn, Cu, Zn e Ni e benefício (Co comprovados para as plantas. Nesse contexto, o objetivo deste trabalho foi determinar os teores naturais dos metais Fe, Mn, Zn, Ni, Cu e Co nos solos de referência de Pernambuco. Foram coletadas amostras de solo nas três regiões fisiográficas (Zona da Mata, Agreste e Sertão, dos dois primeiros horizontes dos 35 solos de referência do Estado de Pernambuco. A digestão das amostras baseou-se no método 3051A (USEPA, 1998, e a determinação foi efetuada em ICP-OES. Correlações significativas foram estabelecidas entre os metais e entre estes e a fração argila do solo, em ambos os horizontes, indicando a associação comum da maioria dos metais com solos mais argilosos. A maioria dos solos apresentou teores de Fe, Mn, Zn, Cu, Ni e Co menores que os de solos de outras regiões do País, com litologia mais máfica, o que corrobora o fato de que os teores desses elementos são mais diretamente relacionados aos minerais Fe-magnesianos. Os resultados indicam baixo potencial dos solos de Pernambuco em liberar Cu, Co e Ni para plantas, enquanto deficiências de Zn, Fe e Mn são menos prováveis. Os teores naturais de Fe, Mn, Zn, Cu, Ni e Co determinados podem ser utilizados como base para definição dos Valores de Referência de Qualidade para os solos de Pernambuco, de acordo com o preconizado pela legislação nacional.

  2. Spin-resolved photoelectron spectroscopy of Mn{sub 6}Cr single-molecule-magnets and of manganese compounds as reference layers

    Energy Technology Data Exchange (ETDEWEB)

    Helmstedt, Andreas; Gryzia, Aaron; Dohmeier, Niklas; Mueller, Norbert; Brechling, Armin; Sacher, Marc; Heinzmann, Ulrich [Faculty of Physics, Bielefeld University (Germany); Hoeke, Veronika; Glaser, Thorsten [Faculty of Chemistry, Bielefeld University (Germany); Fonin, Mikhail; Ruediger, Ulrich [Department of Physics, University of Konstanz (Germany); Neumann, Manfred [Department of Physics, Osnabrueck University (Germany)

    2011-07-01

    The properties of the manganese-based single-molecule-magnet (SMM) Mn{sub 6}Cr are studied. This molecule exhibits a large spin ground state of S{sub T}=21/2. It contains six manganese centres arranged in two bowl-shaped Mn{sub 3}-triplesalen building blocks linked by a hexacyanochromate. The Mn{sub 6}Cr complex can be isolated with different counterions which compensate for its triply positive charge. The spin polarization of photoelectrons emitted from the manganese centres in Mn{sub 6}Cr SMM after resonant excitation with circularly polarized synchrotron radiation has been measured at selected energies corresponding to the prominent Mn L{sub 3}VV and L{sub 3}M{sub 2,3}V Auger peaks. Spin-resolved photoelectron spectra of the reference substances MnO, Mn{sub 2}O{sub 3} and Mn(II)acetate recorded after resonant excitation at the Mn-L{sub 3}-edge around 640eV are presented as well. The spin polarization value obtained from MnO at room temperature in the paramagnetic state is compared to XMCD measurements of Mn(II)-compounds at 5K and a magnetic field of 5T.

  3. Self-assembled decanuclear Na(I)2Mn(II)4Mn(III)4 complexes: from discrete clusters to 1-D and 2-D structures, with the Mn(II)4Mn(III)4 unit displaying a large spin ground state and probable SMM behaviour.

    Science.gov (United States)

    Langley, Stuart K; Chilton, Nicholas F; Moubaraki, Boujemaa; Murray, Keith S

    2011-12-07

    The synthesis, magnetic characterization and X-ray crystal structures are reported for five new manganese compounds, [Mn(III)(teaH(2))(sal)]·(1/2)H(2)O (1), [Na(I)(2)Mn(II)(4)Mn(III)(4)(teaH)(6)(sal)(4)(N(3))(2)(MeOH)(4)]·6MeOH (2), [Na(I)(2)Mn(II)(4)Mn(III)(4)(teaH)(6)(sal)(4)(N(3))(2)(MeOH)(2)](n)·7MeOH (3), [Na(I)(2)Mn(II)(4)Mn(III)(4)(teaH)(6)(sal)(4)(N(3))(2)(MeOH)(2)](n)·2MeOH·Et(2)O (4) and [K(I)(2)Mn(II)(4)Mn(III)(4)(teaH)(6)(sal)(4)(N(3))(2)(H(2)O)(2)](n)·5MeOH (5). Complex 1 is a mononuclear compound, formed via the reaction of Mn(NO(3))(2)·4H(2)O, triethanolamine (teaH(3)) and salicylic acid (salH(2)) in a basic methanolic solution. Compound 2 is a mixed-valent hetero-metallic cluster made up of a Mn(8)Na(2) decanuclear core and is formed via the reaction of sodium azide (NaN(3)) with 1. Compounds 3-5 are isolated as 1- or 2-D coordination polymers, each containing the decanuclear Mn(8)M(2) (M = Na(+) or K(+)) core building block as the repeating unit. Compound 3 is isolated when 1 is reacted with NaN(3) over a very short reaction time and forms a 1-D coordination polymer. Each unit displays inter-cluster bridges via the O-atoms of teaH(2-) ligands bonding to the sodium ions of an adjacent cluster. Increasing the reaction time appears to drive the formation of 4 which forms 2-D polymeric sheets and is a packing polymorph of 3. The addition of KMnO(4) and NaN(3) to 1 resulted in compound 5, which also forms a 1-D coordination polymer of the decanuclear core unit. The 1-D chains are now linked via inter-cluster potassium and salicylate bridges. Solid state DC susceptibility measurements were performed on compounds 1-5. The data for 1 are as expected for an S = 2 Mn(III) ion, with the isothermal M vs. H data being fitted by matrix diagonalization methods to give values of g and the axial (D) and rhombic (E) zero field splitting parameters of 2.02, -2.70 cm(-1) and 0.36 cm(-1) respectively. The data for 2-5, each with an identical Mn(II)(4)Mn(III)(4

  4. Teores de Fe, Mn, Zn, Cu, Ni E Co em solos de referência de Pernambuco Concentrations of Fe, Mn, Zn, Cu, Ni and Co in benchmark soils of Pernambuco, Brazil

    Directory of Open Access Journals (Sweden)

    Caroline Miranda Biondi

    2011-06-01

    Full Text Available Metais pesados formam um grupo de elementos com particularidades relevantes e de ocorrência natural no ambiente, como elementos acessórios na constituição de rochas. Esses elementos, apesar de associados à toxidez, exigem tratamento diferenciado em relação aos xenobióticos, uma vez que diversos metais possuem essencialidade (Fe, Mn, Cu, Zn e Ni e benefício (Co comprovados para as plantas. Nesse contexto, o objetivo deste trabalho foi determinar os teores naturais dos metais Fe, Mn, Zn, Ni, Cu e Co nos solos de referência de Pernambuco. Foram coletadas amostras de solo nas três regiões fisiográficas (Zona da Mata, Agreste e Sertão, dos dois primeiros horizontes dos 35 solos de referência do Estado de Pernambuco. A digestão das amostras baseou-se no método 3051A (USEPA, 1998, e a determinação foi efetuada em ICP-OES. Correlações significativas foram estabelecidas entre os metais e entre estes e a fração argila do solo, em ambos os horizontes, indicando a associação comum da maioria dos metais com solos mais argilosos. A maioria dos solos apresentou teores de Fe, Mn, Zn, Cu, Ni e Co menores que os de solos de outras regiões do País, com litologia mais máfica, o que corrobora o fato de que os teores desses elementos são mais diretamente relacionados aos minerais Fe-magnesianos. Os resultados indicam baixo potencial dos solos de Pernambuco em liberar Cu, Co e Ni para plantas, enquanto deficiências de Zn, Fe e Mn são menos prováveis. Os teores naturais de Fe, Mn, Zn, Cu, Ni e Co determinados podem ser utilizados como base para definição dos Valores de Referência de Qualidade para os solos de Pernambuco, de acordo com o preconizado pela legislação nacional.Heavy metals are a group of elements with specific features and natural occurrence in the environment, representing an accessory in the formation of rocks. These elements, although associated with toxicity, must be treated different from xenobiotics, since many

  5. Synthesis of Li-Mn-O mesocrystals with controlled crystal phases through topotactic transformation of MnCO3

    Science.gov (United States)

    Dang, Feng; Hoshino, Tatsuhiko; Oaki, Yuya; Hosono, Eiji; Zhou, Haoshen; Imai, Hiroaki

    2013-02-01

    Mesocrystals of Li-Mn-O compounds, such as LiMn2O4, Li2MnO3, and LiMnO2-Li2MnO3, consisting of oriented nanoscale units were selectively produced under hydrothermal conditions from biomimetically prepared MnCO3 mesocrystals. Topotactic transformation through the intermediate phase of Mn5O8 inheriting a hierarchical structure of the MnCO3 precursor was essential for the formation of the mesocrystal compounds. The crystal phases were successfully controlled by varying the conditions for the hydrothermal reactions. The Li-Mn-O mesocrystals have considerable potential as cathodes of Li-ion batteries.Mesocrystals of Li-Mn-O compounds, such as LiMn2O4, Li2MnO3, and LiMnO2-Li2MnO3, consisting of oriented nanoscale units were selectively produced under hydrothermal conditions from biomimetically prepared MnCO3 mesocrystals. Topotactic transformation through the intermediate phase of Mn5O8 inheriting a hierarchical structure of the MnCO3 precursor was essential for the formation of the mesocrystal compounds. The crystal phases were successfully controlled by varying the conditions for the hydrothermal reactions. The Li-Mn-O mesocrystals have considerable potential as cathodes of Li-ion batteries. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr33767g

  6. Magnetic structures of Er6Mn23 and Dy6Mn23

    International Nuclear Information System (INIS)

    Ouladdiaf, B.; Deportes, J.; Rodriguez-Carvajal, J.

    1995-01-01

    The R 6 Mn 23 (R=rare earth) compounds crystallize in the cubic Th 6 Mn 23 -type structure with space group Fm3m. Powder neutron-diffraction experiments were performed on Dy 6 Mn 23 and Er 6 Mn 23 . The magnetic unit cell coincides with the chemical one. The R moments have a ferromagnetic non-collinear arrangement, whereas the Mn moments are parallel to the [1 1 1] direction. The magnetic structures belong to the three-dimensional Γ 5g irreducible representation of Fm3m associated with the wave vector K=[0 0 0]. The spin configurations in both compounds result from the competition between the R-R, R-Mn magnetic interactions and the crystal electric field on the R ions. (orig.)

  7. Synthesis of Li-Mn-O mesocrystals with controlled crystal phases through topotactic transformation of MnCO₃.

    Science.gov (United States)

    Dang, Feng; Hoshino, Tatsuhiko; Oaki, Yuya; Hosono, Eiji; Zhou, Haoshen; Imai, Hiroaki

    2013-03-21

    Mesocrystals of Li-Mn-O compounds, such as LiMn2O4, Li2MnO3, and LiMnO2-Li2MnO3, consisting of oriented nanoscale units were selectively produced under hydrothermal conditions from biomimetically prepared MnCO3 mesocrystals. Topotactic transformation through the intermediate phase of Mn5O8 inheriting a hierarchical structure of the MnCO3 precursor was essential for the formation of the mesocrystal compounds. The crystal phases were successfully controlled by varying the conditions for the hydrothermal reactions. The Li-Mn-O mesocrystals have considerable potential as cathodes of Li-ion batteries.

  8. Theoretical Mn K-edge XANES for Li2MnO3: DFT + U study

    International Nuclear Information System (INIS)

    Tamura, Tomoyuki; Ohwaki, Tsukuru; Ito, Atsushi; Ohsawa, Yasuhiko; Kobayashi, Ryo; Ogata, Shuji

    2012-01-01

    Spectral features of Mn K-edge x-ray absorption near-edge structure (XANES) for Li 2 MnO 3 were calculated using the first-principles full projector augmented wave method with the general gradient approximation plus U method. We demonstrated that the U parameter affects the spectral features in the pre-edge region while it does not affect those in the major absorption region. From the comparison with the experimental spectra and those of reference compounds, we showed that the spectral features of Mn K-edge XANES and the differences in the valence state can be reproduced well. (paper)

  9. Evaluation of a TRU fundamental criterion and reference TRU waste units

    International Nuclear Information System (INIS)

    Klett, R.

    1993-01-01

    The comparison of two options for regulating transuranic (TRU) waste disposal is explained in this paper. The two options are (1) fundamental and derived standards developed specifically for the TRU waste and (2) a family of procedures that use a reference to the TRU waste unit with procedures that use a reference to the TRU waste unit with commercial high-level waste (HLW) criteria. Background information pertaining to both options is covered. A section on criteria specifically for TRUE waste suggests a methodology for developing or adapting fundamental and derived criteria that are consistent with all other aspects of the standards. The section on references TRU waste units covers all the parameter variations that have been suggested for this option. The technical bases of each approach is reviewed, implementation is discussed and their relative attributes and deficiencies are evaluated

  10. Evidence for single-chain magnet behavior in a Mn(III)-Ni(II) chain designed with high spin magnetic units: a route to high temperature metastable magnets.

    Science.gov (United States)

    Clérac, Rodolphe; Miyasaka, Hitoshi; Yamashita, Masahiro; Coulon, Claude

    2002-10-30

    We herein present the synthesis, crystal structure, and magnetic properties of a new heterometallic chain of MnIII and NiII ions, [Mn2(saltmen)2Ni(pao)2(py)2](ClO4)2 (1) (saltmen2- = N,N'-(1,1,2,2-tetramethylethylene) bis(salicylideneiminate) and pao- = pyridine-2-aldoximate). The crystal structure of 1 was investigated by X-ray crystallographic analysis: compound 1 crystallized in monoclinic, space group C2/c (No. 15) with a = 21.140(3) A, b = 15.975(1) A, c = 18.6212(4) A, beta = 98.0586(4) degrees , V = 6226.5(7) A3, and Z = 4. This compound consists of two fragments, the out-of-plane dimer [Mn2(saltmen)2]2+ as a coordination acceptor building block and the neutral mononuclear unit [Ni(pao)2(py)2] as a coordination donor building block, forming an alternating chain having the repeating unit [-Mn-(O)2-Mn-ON-Ni-NO-]n. In the crystal structure, each chain is well separated with a minimum intermetallic distance between Mn and Ni ions of 10.39 A and with the absence of interchain pi overlaps between organic ligands. These features ensure a good magnetic isolation of the chains. The dc and ac magnetic measurements were performed on both the polycrystalline sample and the aligned single crystals of 1. Above 30 K, the magnetic susceptibility of this one-dimensional compound was successfully described in a mean field approximation as an assembly of trimers (Mn...Ni...Mn) with a NiII...MnIII antiferromagnetic interaction (J = -21 K) connected through a ferromagnetic MnIII...MnIII interaction (J'). However, the mean field theory fails to describe the magnetic behavior below 30 K emphasizing the one-dimensional magnetic character of the title compound. Between 5 and 15 K, the susceptibility in the chain direction was fitted to a one-dimensional Ising model leading to the same value of J'. Hysteresis loops are observed below 3.5 K, indicating a magnet-type behavior. In the same range of temperature, combined ac and dc measurements show a slow relaxation of the magnetization

  11. Magnetic structures of Er{sub 6}Mn{sub 23} and Dy{sub 6}Mn{sub 23}

    Energy Technology Data Exchange (ETDEWEB)

    Ouladdiaf, B. [Institut Max von Laue - Paul Langevin, 38 - Grenoble (France); Deportes, J. [Laboratoire de Magnetisme L. Neel, C.N.R.S., BP 166, 38042 Grenoble Cedex 9 (France); Rodriguez-Carvajal, J. [Institut Max von Laue - Paul Langevin, 38 - Grenoble (France)]|[Laboratoire Leon Brillouin (CEA-CNRS), Centre d`Etudes de Saclay, Gif sur Yvette (France)

    1995-08-01

    The R{sub 6}Mn{sub 23} (R=rare earth) compounds crystallize in the cubic Th{sub 6}Mn{sub 23}-type structure with space group Fm3m. Powder neutron-diffraction experiments were performed on Dy{sub 6}Mn{sub 23} and Er{sub 6}Mn{sub 23}. The magnetic unit cell coincides with the chemical one. The R moments have a ferromagnetic non-collinear arrangement, whereas the Mn moments are parallel to the [1 1 1] direction. The magnetic structures belong to the three-dimensional {Gamma}{sub 5g} irreducible representation of Fm3m associated with the wave vector K=[0 0 0]. The spin configurations in both compounds result from the competition between the R-R, R-Mn magnetic interactions and the crystal electric field on the R ions. (orig.).

  12. Mn induced ferromagnetism spin fluctuation enhancement in Sr{sub 2}Ru{sub 1−x}Mn{sub x}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Long; Cai, Jinzhu; Xie, Qiyun; Lv, Bin [Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Mao, Z.Q. [Department of Physics and Engineering Physics, Tulane University, New Orleans, LA 70118 (United States); Wu, X.S., E-mail: xswu@nju.edu.cn [Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China)

    2013-09-15

    We establish that Sr{sub 2}RuO{sub 4} is extremely close to incommensurate spin density wave instability. With increasing Mn content, the RuO{sub 6} octahedron in the unit cell varies. The octahedron of RuO{sub 6} contracts along c-axis for x<0.20, Mn element mainly showing the +3 chemical valence (Mn{sup 3+}), and it expands along c-axis with further increasing Mn content (x>0.20), and Mn element shows the +4 chemical valence (Mn{sup 4+}). Spin-glass-related ferromagnetism enhancement is observed for x>0.20, which indicates the critical ferromagnetic spin fluctuation due to Mn doping in Sr{sub 2}Ru{sub 1−x}Mn{sub x}O{sub 4}. - Highlights: • The chemical valence of Mn ions changed from Mn{sup 3+} to Mn{sup 4+} with the increase of Mn content. • Spin-glass-related ferromagnetism enhancement behavior is observed. • The electrical resistivity can be fitted using Mott's variable-range hopping model. • The evolution of octahedron with increase of Mn content is given. • The spin fluctuation effect plays an important role in the magnetic property.

  13. Fourier transform imaging of impurities in the unit cells of crystals: Mn in GaAs

    Science.gov (United States)

    Lee, T.-L.; Bihler, C.; Schoch, W.; Limmer, W.; Daeubler, J.; Thieß, S.; Brandt, M. S.; Zegenhagen, J.

    2010-06-01

    The lattice sites of Mn in ferromagnetic (Ga,Mn)As thin films were imaged using the x-ray standing wave technique. The model-free images, obtained straightforwardly by Fourier inversion, disclose immediately that the Mn mostly substitutes the Ga with a small fraction residing on minority sites. The images further reveal variations in the Mn concentrations of the different sites upon post-growth treatments. Subsequent model refinement based on the directly reconstructed images resolves with high precision the complete Mn site distributions. It is found that post-growth annealing increases the fraction of substitutional Mn at the expense of interstitial Mn whereas hydrogenation has little influence on the Mn site distribution. Our study offers an element-specific high-resolution imaging approach for accurately determining the detailed site distributions of dilute concentrations of atoms in crystals.

  14. Preparation and properties of a monomeric Mn(IV)-oxo complex.

    Science.gov (United States)

    Parsell, Trenton H; Behan, Rachel K; Green, Michael T; Hendrich, Michael P; Borovik, A S

    2006-07-12

    Manganese-oxo complexes have long been investigated because of their proposed roles in biological and chemical catalysis. However, there are few examples of monomeric complexes with terminal oxo ligands, especially those with oxomanganese(IV) units. A oxomanganese(IV) complex has been prepared from [MnIIIH3buea(O)]2- ([H3buea]3-, tris[(N'-tert-butylureaylato)-N-ethylene]aminato), a monomeric MnIII-O complex in which the oxo ligand arises from cleavage of dioxygen. Treating [MnIIIH3buea(O)]2- with [Cp2Fe]BF4 in either DMF at -45 degrees C or DMSO at room temperature produces [MnIVH3buea(O)]-: lambdamax = 635 nm; nu(Mn-16O) = 737 cm-1; nu(Mn-18O) = 709 cm-1; g = 5.15, 2.44, 1.63, D = 3.0 cm-1, E/D = 0.26, aMn = 66 G (A = 190 MHz). These spectroscopic properties support the assignment of a mononuclear MnIV-oxo complex with an S = 3/2 ground state. Density functional theory supports this assignment and the Jahn-Teller distortion around the high-spin MnIV center that would alter the molecular structure of [MnIVH3buea(O)]- from trigonal symmetry (as indicated by the highly rhombic EPR signal). [MnIVH3buea(O)]- is relatively unstable in DMSO, converting to [MnIIIH3buea(OH)]- via a proposed X-H bond cleavage. [MnIVH3buea(O)]- reacts with 1,2-diphenylhydrazine to from azobenzene (95% yield) and [MnIIIH3buea(OH)]-. The MnIV-oxo does not react with triphenyl- or tricyclohexylphosphine. However, O-atom transfer is observed with methyldiphenylphosphine and dimethylphenylphosphine, producing the corresponding phosphine oxides. These results illustrate the diverse reactivity of the MnIV-oxo unit.

  15. Room temperature ferromagnetism in Mn-doped NiO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Layek, Samar, E-mail: samarlayek@gmail.com; Verma, H.C.

    2016-01-01

    Mn-doped NiO nanoparticles of the series Ni{sub 1−x}Mn{sub x}O (x=0.00, 0.02, 0.04 and 0.06) are successfully synthesized using a low temperature hydrothermal method. Samples up to 6% Mn-doping are single phase in nature as observed from powder x-ray diffraction (XRD) studies. Rietveld refinement of the XRD data shows that all the single phase samples crystallize in the NaCl like fcc structure with space group Fm-3m. Unit cell volume decreases with increasing Mn-doping. Pure NiO nanoparticles show weak ferromagnetism, may be due to nanosize nature. Introduction of Mn within NiO lattice improves the magnetic properties significantly. Room temperature ferromagnetism is found in all the doped samples whereas the magnetization is highest for 2% Mn-doping and then decreases with further doping. The ZFC and FC branches in the temperature dependent magnetization separate well above 350 K indicating transition temperature well above room temperature for 2% Mn-doped NiO Nanoparticle. The ferromagnetic Curie temperature is found to be 653 K for the same sample as measured by temperature dependent magnetization study using vibrating sample magnetometer (VSM) in high vacuum. - Highlights: • Mn-doped NiO nanoparticles are prepared by a simple hydrothermal method. • Unit cell volume decreases with increasing doping concentration. • Mn-doping leads to room temperature ferromagnetism in NiO nanoparticles. • Magnetization is highest for 2% Mn-doping. • Above 2%, magnetization decreases with increasing doping.

  16. Room temperature ferromagnetism in Mn-doped NiO nanoparticles

    International Nuclear Information System (INIS)

    Layek, Samar; Verma, H.C.

    2016-01-01

    Mn-doped NiO nanoparticles of the series Ni_1_−_xMn_xO (x=0.00, 0.02, 0.04 and 0.06) are successfully synthesized using a low temperature hydrothermal method. Samples up to 6% Mn-doping are single phase in nature as observed from powder x-ray diffraction (XRD) studies. Rietveld refinement of the XRD data shows that all the single phase samples crystallize in the NaCl like fcc structure with space group Fm-3m. Unit cell volume decreases with increasing Mn-doping. Pure NiO nanoparticles show weak ferromagnetism, may be due to nanosize nature. Introduction of Mn within NiO lattice improves the magnetic properties significantly. Room temperature ferromagnetism is found in all the doped samples whereas the magnetization is highest for 2% Mn-doping and then decreases with further doping. The ZFC and FC branches in the temperature dependent magnetization separate well above 350 K indicating transition temperature well above room temperature for 2% Mn-doped NiO Nanoparticle. The ferromagnetic Curie temperature is found to be 653 K for the same sample as measured by temperature dependent magnetization study using vibrating sample magnetometer (VSM) in high vacuum. - Highlights: • Mn-doped NiO nanoparticles are prepared by a simple hydrothermal method. • Unit cell volume decreases with increasing doping concentration. • Mn-doping leads to room temperature ferromagnetism in NiO nanoparticles. • Magnetization is highest for 2% Mn-doping. • Above 2%, magnetization decreases with increasing doping.

  17. Single-ion anisotropy and exchange interactions in the cyano-bridged trimers MnIII2MIII(CN)6 (MIII = Co, Cr, Fe) species incorporating [Mn(5-Brsalen)]+ units: an inelastic neutron scattering and magnetic susceptibility study

    DEFF Research Database (Denmark)

    Tregenna-Piggott, Philip L W; Sheptyakov, Denis; Keller, Lukas

    2009-01-01

    expectations based on the unquenched orbital angular momentum of the [Fe(CN)(6)](3-) anion, giving rise to an M(s) approximately +/-9/2 ground state, isolated by approximately 11.5 cm(-1) from the higher-lying levels. The reported INS and magnetic data should now serve as a benchmark against which theoretical...... interactions that define the low-lying states of the Mn-M(III)-Mn trimeric units. Despite the presence of an antiferromagnetic intertrimer interaction, the experimental evidence supports the classification of both the Cr(III) and Fe(III) compounds as single-molecule magnets. The value of 17(2) cm(-1...

  18. The Magnetisation of MnB and its Variation with Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Lundquist, N; Myers, H P

    1960-12-15

    It has been shown that MnB is the only ferromagnetic phase occurring in the Mn-B system. The magnetisation per unit mass at 0 K and in infinite field strength has been found to be 163 corresponding to a Bohr magneton value 1.92 per Mn atom. The Curie temperature in zero field is 300 C. The significance of this magnetic data is discussed.

  19. Effects of dopant ion and Mn valence state in the La1-xAxMnO3 (A=Sr,Ba) colossal magnetoresistance films

    International Nuclear Information System (INIS)

    Choi, Sun Gyu; Wang, Seok-Joo; Park, Hyung-Ho; Hong, MunPyo; Kwon, Kwang-Ho

    2010-01-01

    The structural and electrical properties of Mn-based colossal magnetoresistance (CMR) thin films with controlled tolerance factor and Mn ion valance ratio were studied using crystal structure and chemical bonding character analyses. La 0.7 Sr 0.3 MnO 3 , La 0.7 Ba 0.3 MnO 3 , and La 0.82 Ba 0.18 MnO 3 thin films with different contents of divalent cations and Mn 3+ /Mn 4+ ratios were deposited on amorphous SiO 2 /Si substrate by rf magnetron sputtering at a substrate temperature of 350 deg. C. The films showed the same crystalline structure as the pseudocubic structure. The change in the sheet resistance of films was analyzed according to strain state of the unit cell, chemical bonding character of Mn-O, and Mn 3+ /Mn 4+ ratio controlling the Mn 3+ -O 2- -Mn 4+ conducting path. Mn L-edge x-ray absorption spectra revealed that the Mn 3+ /Mn 4+ ratio changed according to different compositions of Sr or Ba and the Mn 2p core level x-ray photoelectron spectra showed that the Mn 2p binding energy was affected by the covalence of the Mn-O bond and Mn 3+ /Mn 4+ ratio. In addition, O K-edge x-ray absorption spectra showed covalently mixed Mn 3d and O 2p states and matched well with the resistivity changes of CMR films. Temperature coefficient of resistance values were obtained at approximately -2.16%/K to -2.46%/K of the CMR films and were correct for infrared sensor applications.

  20. Characterisation of a natural quartz crystal as a reference material for microanalytical determination of Ti, Al, Li, Fe, Mn, Ga and Ge

    Science.gov (United States)

    Audetat, Andreas; Garbe-Schonberg, Dieter; Kronz, Andreas; Pettke, Thomas; Rusk, Brian G.; Donovan, John J.; Lowers, Heather

    2015-01-01

    A natural smoky quartz crystal from Shandong province, China, was characterised by laser ablation ICP-MS, electron probe microanalysis (EPMA) and solution ICP-MS to determine the concentration of twenty-four trace and ultra trace elements. Our main focus was on Ti quantification because of the increased use of this element for titanium-in-quartz (TitaniQ) thermobarometry. Pieces of a uniform growth zone of 9 mm thickness within the quartz crystal were analysed in four different LA-ICP-MS laboratories, three EPMA laboratories and one solution-ICP-MS laboratory. The results reveal reproducible concentrations of Ti (57 ± 4 μg g-1), Al (154 ± 15 μg g-1), Li (30 ± 2 μg g-1), Fe (2.2 ± 0.3 μg g-1), Mn (0.34 ± 0.04 μg g-1), Ge (1.7 ± 0.2 μg g-1) and Ga (0.020 ± 0.002 μg g-1) and detectable, but less reproducible, concentrations of Be, B, Na, Cu, Zr, Sn and Pb. Concentrations of K, Ca, Sr, Mo, Ag, Sb, Ba and Au were below the limits of detection of all three techniques. The uncertainties on the average concentration determinations by multiple techniques and laboratories for Ti, Al, Li, Fe, Mn, Ga and Ge are low; hence, this quartz can serve as a reference material or a secondary reference material for microanalytical applications involving the quantification of trace elements in quartz.

  1. Synthesis and Properties of Layered-Structured Mn5O8 Nanorods

    DEFF Research Database (Denmark)

    Gao, Tao; Norby, Poul; Krumeich, Frank

    2010-01-01

    Mn5O8 nanorods were prepared by a topotactic conversion of γ-MnOOH nanorod precursors in nitrogen at 400 °C. The as-prepared Mn5O8 nanorods crystallized in a monoclinic structure (space group C2/m) with unit cell dimensions a = 10.3784(2) Å, b = 5.7337(7) Å, c = 4.8668(6) Å, and β = 109.491(6)°, ...

  2. Magnetic properties of MnAs nanoclusters embedded in a GaAs semiconductor matrix

    International Nuclear Information System (INIS)

    Hai, Pham Nam; Takahashi, Keisuke; Yokoyama, Masafumi; Ohya, Shinobu; Tanaka, Masaaki

    2007-01-01

    We have clarified fundamental magnetic properties of MnAs nanoclusters (10 nm in diameter) embedded in a thin GaAs matrix (referred to as GaAs:MnAs) through tunneling magnetoresistance (TMR) characteristics of magnetic tunnel junctions (MTJs) consisting of a GaAs:MnAs thin film and a MnAs metal thin film as ferromagnetic electrodes. Although MnAs nanoclusters have coercive forces as small as 150 Oe at 7 K, they show unusually high blocking temperature, which is as large as 300 K. The remanent magnetization of the MnAs nanocluster system linearly decreases with increasing temperature. Those magnetic behaviors cannot be explained by the non-interacting particle model, revealing the important existence of dipolar interactions in MnAs nanocluster system

  3. Interfacial magnetic coupling in ultrathin all-manganite La0.7Sr0.3MnO3-TbMnO3 superlattices

    KAUST Repository

    Tian, Y. F.

    2014-04-14

    We report the growth and magnetic properties of all-manganite superlattices composed of ultrathin double-exchange ferromagnetic La0.7Sr0.3MnO3 and noncollinear multiferroic TbMnO3 layers. Spontaneous magnetization and hysteresis loops are observed in such superlattices with individual La0.7Sr0.3MnO3 layers as thin as two unit cells, which are accompanied by pronounced exchange bias and enhanced coercivity. Our results indicate substantial interfacial magnetic coupling between spin sublattices in such superlattices, providing a powerful approach towards tailoring the properties of artificial magnetic heterostructures.

  4. Interfacial magnetic coupling in ultrathin all-manganite La0.7Sr0.3MnO3-TbMnO3 superlattices

    KAUST Repository

    Tian, Y. F.; Lebedev, O. I.; Roddatis, V. V.; Lin, W. N.; Ding, J. F.; Hu, S. J.; Yan, S. S.; Wu, Tao

    2014-01-01

    We report the growth and magnetic properties of all-manganite superlattices composed of ultrathin double-exchange ferromagnetic La0.7Sr0.3MnO3 and noncollinear multiferroic TbMnO3 layers. Spontaneous magnetization and hysteresis loops are observed in such superlattices with individual La0.7Sr0.3MnO3 layers as thin as two unit cells, which are accompanied by pronounced exchange bias and enhanced coercivity. Our results indicate substantial interfacial magnetic coupling between spin sublattices in such superlattices, providing a powerful approach towards tailoring the properties of artificial magnetic heterostructures.

  5. Synthesis, Hirshfeld surface analyses and magnetism of a 1D Mn(II ...

    African Journals Online (AJOL)

    A new Mn-based complex of {[Mn(L)2(mi)]·H2O}n (1) (HL = p-hydroxy phenylacetic acid; mi = 1,1'-(1,4-butanediyl)bis(imidazole)), has been synthesized and structurally characterized. Single-crystal X-ray analyses reveal that compound 1 has a dinuclear Mn(II) unit linking by four carboxylate groups. The bridging N-donor ...

  6. Magnetic properties of Tb1-xSmxMn2Si2 silicides

    International Nuclear Information System (INIS)

    Kilic, A.; Kervan, S.; Gencer, A.

    2005-01-01

    The structural and magnetic properties of polycrystalline Tb 1-x Sm x Mn 2 Si 2 (0= 2 Si 2 -type structure with the space group I4/mmm. Substitution of Sm for Tb leads to a linear increase of the lattice constants and the unit cell volume. The lattice constants and the unit cell volume obey Vegard's law. At low temperatures, the rare earth sublattice orders and reconfigures the ordering in the Mn sublattice. The Neel temperature T N (Mn) determined by DSC technique decreases linearly with increase in Sm content x. The results are collected in an x-T magnetic-phase diagram

  7. Mn bioavailability by polarized Caco-2 cells: comparison between Mn gluconate and Mn oxyprolinate

    Directory of Open Access Journals (Sweden)

    Fulgenzi Alessandro

    2011-07-01

    Full Text Available Abstract Background Micronutrient inadequate intake is responsible of pathological deficiencies and there is a need of assessing the effectiveness of metal supplementation, frequently proposed to rebalance poor diets. Manganese (Mn is present in many enzymatic intracellular systems crucial for the regulation of cell metabolism, and is contained in commercially available metal supplements. Methods We compared the effects of two different commercial Mn forms, gluconate (MnGluc and oxyprolinate (MnOxP. For this purpose we used the polarized Caco-2 cells cultured on transwell filters, an established in vitro model of intestinal epithelium. Since micronutrient deficiency may accelerate mitochondrial efficiency, the mitochondrial response of these cells, in the presence of MnGluc and MnOxP, by microscopy methods and by ATP luminescence assay was used. Results In the presence of both MnOxP and MnGluc a sustained mitochondrial activity was shown by mitoTraker labeling (indicative of mitochondrial respiration, but ATP intracellular content remained comparable to untreated cells only in the presence of MnOxP. In addition MnOxP transiently up-regulated the antioxidant enzyme Mn superoxide dismutase more efficiently than MnGluc. Both metal treatments preserved NADH and βNADPH diaphorase oxidative activity, avoided mitochondrial dysfunction, as assessed by the absence of a sustained phosphoERK activation, and were able to maintain cell viability. Conclusions Collectively, our data indicate that MnOxP and MnGluc, and primarily the former, produce a moderate and safe modification of Caco-2 cell metabolism, by activating positive enzymatic mechanisms, thus could contribute to long-term maintenance of cell homeostasis.

  8. Structure and properties of Mn4Cl9: An antiferromagnetic binary hyperhalogen

    Science.gov (United States)

    Li, Yawei; Zhang, Shunhong; Wang, Qian; Jena, Puru

    2013-02-01

    Calculations based on density functional theory show that the structure of Mn4Cl9 anion is that of a Mn atom at the core surrounded by three MnCl3 moieties. Since Mn is predominantly divalent and MnCl3 is known to be a superhalogen with a vertical detachment energy (VDE) of 5.27 eV, Mn4Cl9 can be viewed as a hyperhalogen with the formula unit Mn(MnCl3)3. Indeed, the calculated VDE of Mn4Cl9 anion, namely 6.76 eV, is larger than that of MnCl3 anion. More importantly, unlike previously discovered hyperhalogens, Mn4Cl9 is the first such hyperhalogen species composed of only two constituent atoms. We further show that Mn4Cl9 can be used as a ligand to design molecules with even higher VDEs. For example, Li[Mn(MnCl3)3]2 anion has a VDE of 7.26 eV. These negatively charged clusters are antiferromagnetic with most of the magnetic moments localized at the Mn sites. Our studies show new pathways for creating binary hyperhalogens.

  9. α-MnO2 nanowires transformed from precursor δ-MnO2 by refluxing under ambient pressure: The key role of pH and growth mechanism

    International Nuclear Information System (INIS)

    Zhang Qin; Xiao Zhidong; Feng Xionghan; Tan Wenfeng; Qiu Guohong; Liu Fan

    2011-01-01

    α-MnO 2 nanowires were obtained by reflux treatment of precursor δ-MnO 2 in acidic medium under ambient pressure. The great effects of pH on the transformation of δ-MnO 2 to α-MnO 2 and the concentration of coexistent cations (K + , Mn 2+ ) was investigated in systematically designed experiments by using powder X-ray diffraction and atomic absorption spectrometry analysis. The specific surface area of the products could be simply controlled by adjusting the initial pH value of the suspension. The micro-morphologies during the transition process from the precursors to final products were characterized by SEM and TEM. A dissolution-recrystallization mechanism was proposed to describe the growth process of the one-dimensional nanowire. MnO x units or MnO 6 octahedra was formed firstly from the dissolution of outmost surfaces of δ-MnO 2 , followed by a rearrangement/crystallization to form one-dimensional α-MnO 2 nanowire. In addition, the time-dependent process of dissolution would take place gradually from the external to internal of the precursor.

  10. Site-specific local structure of Mn in artificial manganese ferrite films

    International Nuclear Information System (INIS)

    Kravtsov, E.; Haskel, D.; Cady, A.; Yang, A.; Vittoria, C.; Harris, V. G.; Zuo, X.

    2006-01-01

    Diffraction anomalous fine structure (DAFS) spectroscopy has been applied to resolve site-specific Mn local structure in manganese ferrite films grown under nonequilibrium conditions. The DAFS spectra were measured at a number of Bragg reflections in the vicinity of the Mn absorption K edge. The DAFS data analysis done with an iterative Kramers-Kroenig algorithm made it possible to solve separately the local structure around crystallographically inequivalent Mn sites in the unit cell with nominal octahedral and tetrahedral coordination. The strong preference for Mn to be tetrahedrally coordinated in this compound is not only manifested in the relative site occupancies but also in a strong reduction in coordination number for Mn ions at nominal octahedral sites

  11. Manganese-calcium intermixing facilitates heteroepitaxial growth at the <mn>10mn><mn>1mn>¯>4mn> calcite-water interface

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Man; Riechers, Shawn L.; Ilton, Eugene S.; Du, Yingge; Kovarik, Libor; Varga, Tamas; Arey, Bruce W.; Qafoku, Odeta; Kerisit, Sebastien

    2017-10-01

    In situ atomic force microscopy (AFM) measurements were performed to probe surface precipitates that formed on the (10-14) surface of calcite (CaCO3) single crystals following reaction with Mn2+-bearing aqueous solutions with a range of initial concentrations. Three-dimensional epitaxial islands were observed to precipitate and grow on the surfaces and in situ time-sequenced measurements demonstrated that their growth rates were commensurate with those obtained for epitaxial islands formed on calcite crystals reacted with Cd2+-bearing aqueous solutions of the same range in supersaturation with respect to the pure metal carbonate phase. This finding was unexpected as rhodochrosite (MnCO3) and calcite display a 10% lattice mismatch, based on the area of their (10-14) surface unit cells, whereas the lattice mismatch is only 4% for otavite (CdCO3) and calcite. Coatings of varying thicknesses were therefore synthesized by reacting calcite single crystals with calcite-equilibrated aqueous solutions with concentrations of up to 250 µM MnCl2 and analyzed to determine the composition of the surface precipitates. Ex situ X-ray photoelectron spectroscopy (XPS), scanning transmission electron microscopy (STEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), X-ray reflectivity (XRR), and AFM measurements of the reacted crystals demonstrated the formation of an epitaxial (Mn,Ca)CO3 solid solution with a spatially complex composition atop the calcite surface, whereby the first few nanometers were rich in Ca and the Mn content increased with distance from the original calcite surface, culminating in a topmost region of almost pure MnCO3 for the thickest coatings. These findings explain the measured growth rates (the effective lattice mismatch was much smaller than nominal mismatch) and highlight the strong influence played by the substrate on the composition of surface precipitates in aqueous conditions.

  12. Solvent-mediated secondary building units (SBUs) diversification in a series of MnII-based metal-organic frameworks (MOFs)

    Science.gov (United States)

    Niu, Yan-Fei; Cui, Li-Ting; Han, Jie; Zhao, Xiao-Li

    2016-09-01

    The role of auxiliary solvents in the formation of MOFs has been investigated for a series of MnII-based framework systems. Reactions of 4,4‧,4″-nitrilotribenzoic acid (H3L) with MnII through varying auxiliary solvents of the medium resulted in the formation of diversified multinuclear MnII subunits in four new coordination polymers: [Mn3(L)(HCOO)3(DEF)3] (1), [Mn3(L)2(EtOH)2]·DMF (2), [Mn5(L)4(H2O)2]·2(H2NMe2)+·4DMF·2H2O (3), and [Mn3(L)2(py)4(H2O)]·H2O (4) (H3L=4,4‧,4‧-nitrilotribenzoic acid, DMF=dimethylformamide, DEF=N,N-diethylformamide, py=pyridine). These four compounds were fully characterized by single-crystal X-ray diffraction, showing interesting SBUs variations. For compound 1, it displays a (3,6)-connected kgd net with wheel [Mn6] cluster serving as SBU, whereas in 2, the sequence of Mn3(COO)9(EtOH)2 is repeated by inversion centers located between Mn1 and Mn3 to form an infinite Mn-carboxylate chain, which are further interlinked by L3- ligands to form a 3D architecture. In 3, the pentanuclear Mn5(CO2)12 clusters are interlinked to form a layer, which are further pillared by L3- to generate a 3D network. Compound 4 has a (3,6)-connected network in which the SBU is a linear trimeric Mn3(COO)6(py)4(H2O) cluster. In addition, the thermal stabilities, X-ray powder diffraction of all the compounds were studied, photoluminescence behaviors of compounds 1, 3 and 4 are discussed.

  13. Spin-polarized ballistic conduction through correlated Au-NiMnSb-Au heterostructures

    KAUST Repository

    Morari, C.

    2017-11-20

    We examine the ballistic conduction through Au-NiMnSb-Au heterostructures consisting of up to four units of the half-metallic NiMnSb in the scattering region, using density functional theory (DFT) methods. For a single NiMnSb unit the transmission function displays a spin polarization of around 50% in a window of 1eV centered around the Fermi level. By increasing the number of layers, an almost complete spin polarization of the transmission is obtained in this energy range. Supplementing the DFT calculations with local electronic interactions, of Hubbard-type on the Mn sites, leads to a hybridization between the interface and many-body states. The significant reduction of the spin polarization seen in the density of states is not apparent in the spin polarization of the conduction electron transmission, which suggests that the hybridized interface and many-body induced states are localized.

  14. Binuclear and tetranuclear Mn(II) clusters in coordination polymers derived from semirigid tetracarboxylate and N‑donor ligands: syntheses, new topology structures and magnetism

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiao-Ling [College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934 (China); Liu, Guang-Zhen, E-mail: gzliuly@126.com [College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934 (China); Xin, Ling-Yun [College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934 (China); Wang, Li-Ya [College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934 (China); College of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang, Henan 473061 (China)

    2017-02-15

    Two topologically new Mn(II) coordination polymers, namely ([Mn{sub 2}(H{sub 4}ipca)(4,4′-bpy){sub 1.5}(CH{sub 3}CH{sub 2}OH){sub 0.5}(H{sub 2}O){sub 1.5}]·0.5CH{sub 3}CH{sub 2}OH·2.5H{sub 2}O){sub n} (1) and (Mn{sub 4}(H{sub 4}ipca){sub 2}(bze)(H{sub 2}O){sub 4}){sub n} (2) were prepared by the solvothermal reactions of Mn(II) acetate with 5-(2’,3’-dicarboxylphenoxy)isophthalic acid (H{sub 4}ipca) in the presence of different N-donor coligands (4,4′-bpy=4,4′-bipyridyl and bze=1, 4-bis(1-imidazoly)benzene). The single crystal X-ray diffractions reveal that two complexes display 3D metal-organic frameworks with binuclear and tetranuclear Mn(II) units, respectively. Complex 1 features a (3,4,6)-connected porous framework based on dinuclear Mn(II) unit with the (4.5{sup 2}){sub 2}(4{sup 2}.6{sup 8}.8{sup 3}.9{sup 2})(5{sup 2}.8.9{sup 2}.10) new topology, and complex 2 possesses a (3,8)-connected network based on tetranuclear Mn(II) unit with the (4{sup 2}.6){sub 2}(4{sup 4}.6{sup 14}.7{sup 7}.8{sup 2}.9) new topology. Magnetic analyses indicate that both two compounds show weak antiferromagnetic interactions within binuclear and tetranuclear Mn(II) units. - Graphical abstract: Two topologically new Mn(II) metal-organic frameworks with dinuclear and tetranuclear Mn(II) units respectively were assembled by using 5-(2′,3′-Dicarboxylphenoxy)isophthalic acid and N-donor ancillary coligands. Magnetic analysis revealed the existence of dominant antiferromagnetic interactions within the polynuclear Mn(II) units. - Highlights: • Mixed ligand strategy produces two topologically new MOFs with dinuclear and tetranuclear Mn(II) respectively. • Magnetic fitting gives weak antiferromagnetic interactions within the polynuclear Mn(II) units.

  15. Unsaturated Mn complex decorated hybrid thioarsenates: Syntheses, crystal structures and physical properties

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Cheng-Yang [Key Laboratory of Inorganic Chemistry in Universities of Shandong, Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong 273155 (China); State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 (China); Lei, Xiao-Wu, E-mail: xwlei_jnu@163.com [Key Laboratory of Inorganic Chemistry in Universities of Shandong, Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong 273155 (China); Tian, Ya-Wei; Xu, Jing; Bai, Yi-Qun; Wang, Fei; Zhou, Peng-Fei; Liu, Xiao-Fan [Key Laboratory of Inorganic Chemistry in Universities of Shandong, Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong 273155 (China); Yi, Fei-Yan, E-mail: yifeiyan@nbu.edu.cn [Faculty of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211 (China)

    2016-03-15

    The incorporation of unsaturated [Mn(1,2-dap)]{sup 2+}, [Mn(1,2-dap){sub 2}]{sup 2+}, [Mn(2,2-bipy)]{sup 2+} (1,2-dap=1,2-diaminopropane) complex cations with thioarsenate anions of [As{sup III}S{sub 3}]{sup 3−} and [As{sup V}S{sub 4}]{sup 3−} led to three new hybrid manganese thioarsenates, namely, [Mn(1,2-dap)]{sub 2}MnAs{sub 2}S{sub 6} (1), [Mn(1,2-dap){sub 2}]{[Mn(1,2-dap)]_2As_2S_8} (2) and (NH{sub 4})[Mn(2,2-bipy){sub 2}]AsS{sub 4} (3). In compound 1, the unsaturated [Mn(1,2-dap)]{sup 2+} complexes, [MnS{sub 4}]{sup 6−} tetrahedra and [As{sup III}S{sub 3}]{sup 3−} trigonal-pyramids are condensed to form the 1D [Mn(1,2-dap)]{sub 2}MnAs{sub 2}S{sub 6} chain, whereas compound 2 features 2D layer composed of [Mn(1,2-dap)]{sup 2+} and [Mn(1,2-dap){sub 2}]{sup 2+} complexes as well as [As{sup V}S{sub 4}]{sup 3−} tetrahedral units. For compound 3, two [As{sup V}S{sub 4}]{sup 3−} anions bridge two [Mn(2,2-bipy)]{sup 2+} complex cations into a butterfly like {[Mn(2,2-bipy)]_2As_2S_8}{sup 2−} anionic unit. Magnetic measurements indicate the ferrimagnetic behavior for compound 1 and antiferromagnetic (AF) behaviors for compounds 2–3. The UV–vis diffuse-reflectance measurements and electronic structural calculations based on density functional theory (DFT) revealed the title compounds belong to semiconductors with band gaps of 2.63, 2.21, and 1.97 eV, respectively. The narrow band-gap of compound 3 led to the efficient and stable photocatalytic degradation activity over organic pollutant than N-doped P25 under visible light irradiation. - Highlights: Three new hybrid manganese thioarsenates have been prepared and structurally characterized. These hybrid phases feature interesting magnetic and visible light responding photocatalytic properties.

  16. Contemporary Development of Academic Reference Librarianship in the United States: A 44-Year Content Analysis

    Science.gov (United States)

    Wang, Hanrong; Tang, Yingqi; Knight, Carley

    2010-01-01

    This study analyzes job advertisements to identify the contemporary development of academic reference librarianship in the United States. Results show that more job openings, higher educational backgrounds, more duties & responsibilities, and variety of titles were assigned to academic reference librarian positions from 1966 through 2009.…

  17. Magnetic and electrical properties of epitaxial GeMn

    Energy Technology Data Exchange (ETDEWEB)

    Ahlers, Stefan

    2009-01-15

    In this work, GeMn magnetic semiconductors will be investigated. The fabrication of GeMn thin films with Mn contents up to 11.7% was realised with molecular beam epitaxy. At a fabrication temperature of 60 C, the suppression of Mn{sub x}Ge{sub y} phases could reproducibly be obtained. Dislocation free epitaxy of diamond-lattice type GeMn thin films was observed. In all fabrication conditions where Mn{sub x}Ge{sub y} suppression was feasible, an inhomogeneous dispersion of Mn was observed in form of a self-assembly of nanometre sized, Mn rich regions in a Ge rich matrix. Each Mn rich region exhibits ferromagnetic coupling with high Curie temperatures exceeding, in part, room temperature. The local ferromagnetic ordering leads to the formation of large, spatially separated magnetic moments, which induce a superparamagnetic behaviour of the GeMn thin films. At low temperatures {<=} 20 K, remanent behaviour was found to emerge. X-ray absorption experiments revealed a similarity of the Mn incorporation in diamond-lattice type GeMn thin films and in the hexagonal lattice of the intermetallic Mn{sub 5}Ge{sub 3} phase, respectively. These tetrahedra represent building blocks of the Mn{sub 5}Ge{sub 3} unit cell. The incorporation of Mn{sub 5}Ge{sub 3} building blocks was found to be accompanied by local structural disorder. The electrical properties of GeMn thin films were addressed by transport measurements. It was shown that by using a n-type Ge substrate, a pn energy barrier between epilayers and substrate to suppress parallel substrate conduction paths can be introduced. With the pn barrier concept, first results on the magnetotransport behaviour of GeMn thin films were obtained. GeMn was found to be p-type, but of high resistivity. a series of GeMn thin films was fabricated, where intermetallic Mn{sub x}Ge{sub y} phase separation was supported in a controlled manner. Phase separation was found to result in the formation of partially coherent, nanometre sized Mn{sub 5

  18. Kinetic Investigations of SiMn Slags From Different Mn Sources

    Science.gov (United States)

    Kim, Pyunghwa Peace; Tangstad, Merete

    2018-03-01

    The kinetics of MnO and SiO2 reduction were investigated for Silicomanganese (SiMn) slags using a Thermogravimetric analysis (TGA) between 1773 K and 1923 K (1500 °C and 1650 °C) under CO atmospheric pressure. The charge materials were based on Assmang ore and HC FeMn Slag. Rate models for MnO and SiO2 reduction were applied to describe the metal-producing rates, as shown by the following equations: r_{MnO} = k_{MnO} × A × ( {a_{MnO} - {a_{Mn} }/{K_{T }}} ) r_{{{SiO}2 }} = k_{SiO2} × A × ( {a_{{{SiO}2 }} - {a_{Si} }/{K_{T }}} ). The results show that the choice of raw materials in the charge considerably affected the reduction rate of MnO and SiO2. The highest reduction rate was found to be from charges using HC FeMn slag. The difference in the driving forces was insignificant among the SiMn slags, and the similar slag viscosities could not explain the different reduction rates. Instead, the difference is attributed to small amounts of sulfur and the amount of iron in the charge. In addition, the rate models were applicable to describe the reduction of MnO and SiO2 in SiMn slags.

  19. Chiral Paramagnetic Skyrmion-like Phase in MnSi

    NARCIS (Netherlands)

    Pappas, C.; Lelièvre-Berna, E.; Falus, P.; Bentley, P.M.; Moskvin, E.; Grigoriev, S.; Fouquet, P.; Farago, B.

    2009-01-01

    We present a comprehensive study of chiral fluctuations in the reference helimagnet MnSi by polarized neutron scattering and neutron spin echo spectroscopy, which reveals the existence of a completely left-handed and dynamically disordered phase. This phase may be identified as a spontaneous

  20. Effects of dopant ion and Mn valence state in the La{sub 1-x}A{sub x}MnO{sub 3} (A=Sr,Ba) colossal magnetoresistance films

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sun Gyu; Wang, Seok-Joo; Park, Hyung-Ho; Hong, MunPyo; Kwon, Kwang-Ho [Department of Materials Science and Engineering, Yonsei University, 134 Sinchon-dong, Seodaemun-ku, Seoul 120-749 (Korea, Republic of); Department of Display and Semiconductor Physics, Korea University, Jochiwon, Chungnam 339-700 (Korea, Republic of); Department of Control and Instrumentation Engineering, Korea University, Jochiwon, Chungnam 339-700 (Korea, Republic of)

    2010-01-15

    The structural and electrical properties of Mn-based colossal magnetoresistance (CMR) thin films with controlled tolerance factor and Mn ion valance ratio were studied using crystal structure and chemical bonding character analyses. La{sub 0.7}Sr{sub 0.3}MnO{sub 3}, La{sub 0.7}Ba{sub 0.3}MnO{sub 3}, and La{sub 0.82}Ba{sub 0.18}MnO{sub 3} thin films with different contents of divalent cations and Mn{sup 3+}/Mn{sup 4+} ratios were deposited on amorphous SiO{sub 2}/Si substrate by rf magnetron sputtering at a substrate temperature of 350 deg. C. The films showed the same crystalline structure as the pseudocubic structure. The change in the sheet resistance of films was analyzed according to strain state of the unit cell, chemical bonding character of Mn-O, and Mn{sup 3+}/Mn{sup 4+} ratio controlling the Mn{sup 3+}-O{sup 2-}-Mn{sup 4+} conducting path. Mn L-edge x-ray absorption spectra revealed that the Mn{sup 3+}/Mn{sup 4+} ratio changed according to different compositions of Sr or Ba and the Mn 2p core level x-ray photoelectron spectra showed that the Mn 2p binding energy was affected by the covalence of the Mn-O bond and Mn{sup 3+}/Mn{sup 4+} ratio. In addition, O K-edge x-ray absorption spectra showed covalently mixed Mn 3d and O 2p states and matched well with the resistivity changes of CMR films. Temperature coefficient of resistance values were obtained at approximately -2.16%/K to -2.46%/K of the CMR films and were correct for infrared sensor applications.

  1. Visible-light electroluminescence in Mn-doped GaAs light-emitting diodes

    International Nuclear Information System (INIS)

    Nam Hai, Pham; Maruo, Daiki; Tanaka, Masaaki

    2014-01-01

    We observed visible-light electroluminescence (EL) due to d-d transitions in light-emitting diodes with Mn-doped GaAs layers (here, referred to as GaAs:Mn). Besides the band-gap emission of GaAs, the EL spectra show two peaks at 1.89 eV and 2.16 eV, which are exactly the same as 4 A 2 ( 4 F) → 4 T 1 ( 4 G) and 4 T 1 ( 4 G) → 6 A 1 ( 6 S) transitions of Mn atoms doped in ZnS. The temperature dependence and the current-density dependence are consistent with the characteristics of d-d transitions. We explain the observed EL spectra by the p-d hybridized orbitals of the Mn d electrons in GaAs

  2. Room temperature ferromagnetism in Mn-doped NiO nanoparticles

    Science.gov (United States)

    Layek, Samar; Verma, H. C.

    2016-01-01

    Mn-doped NiO nanoparticles of the series Ni1-xMnxO (x=0.00, 0.02, 0.04 and 0.06) are successfully synthesized using a low temperature hydrothermal method. Samples up to 6% Mn-doping are single phase in nature as observed from powder x-ray diffraction (XRD) studies. Rietveld refinement of the XRD data shows that all the single phase samples crystallize in the NaCl like fcc structure with space group Fm-3m. Unit cell volume decreases with increasing Mn-doping. Pure NiO nanoparticles show weak ferromagnetism, may be due to nanosize nature. Introduction of Mn within NiO lattice improves the magnetic properties significantly. Room temperature ferromagnetism is found in all the doped samples whereas the magnetization is highest for 2% Mn-doping and then decreases with further doping. The ZFC and FC branches in the temperature dependent magnetization separate well above 350 K indicating transition temperature well above room temperature for 2% Mn-doped NiO Nanoparticle. The ferromagnetic Curie temperature is found to be 653 K for the same sample as measured by temperature dependent magnetization study using vibrating sample magnetometer (VSM) in high vacuum.

  3. Solvent-mediated secondary building units (SBUs) diversification in a series of Mn{sup II}-based metal-organic frameworks (MOFs)

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Yan-Fei; Cui, Li-Ting [Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062 (China); Han, Jie, E-mail: chan@ouhk.edu.hk [School of Science & Technology, The Open University of Hong Kong, Kowloon, Hong Kong Special Administrative Region (Hong Kong); Zhao, Xiao-Li, E-mail: xlzhao@chem.ecnu.edu.cn [Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062 (China); State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China)

    2016-09-15

    The role of auxiliary solvents in the formation of MOFs has been investigated for a series of Mn{sup II}-based framework systems. Reactions of 4,4′,4″-nitrilotribenzoic acid (H{sub 3}L) with Mn{sup II} through varying auxiliary solvents of the medium resulted in the formation of diversified multinuclear Mn{sup II} subunits in four new coordination polymers: [Mn{sub 3}(L)(HCOO){sub 3}(DEF){sub 3}] (1), [Mn{sub 3}(L){sub 2}(EtOH){sub 2}]·DMF (2), [Mn{sub 5}(L){sub 4}(H{sub 2}O){sub 2}]·2(H{sub 2}NMe{sub 2}){sup +}·4DMF·2H{sub 2}O (3), and [Mn{sub 3}(L){sub 2}(py){sub 4}(H{sub 2}O)]·H{sub 2}O (4) (H{sub 3}L=4,4′,4′-nitrilotribenzoic acid, DMF=dimethylformamide, DEF=N,N-diethylformamide, py=pyridine). These four compounds were fully characterized by single-crystal X-ray diffraction, showing interesting SBUs variations. For compound 1, it displays a (3,6)-connected kgd net with wheel [Mn{sub 6}] cluster serving as SBU, whereas in 2, the sequence of Mn{sub 3}(COO){sub 9}(EtOH){sub 2} is repeated by inversion centers located between Mn1 and Mn3 to form an infinite Mn-carboxylate chain, which are further interlinked by L{sup 3−} ligands to form a 3D architecture. In 3, the pentanuclear Mn{sub 5}(CO{sub 2}){sub 12} clusters are interlinked to form a layer, which are further pillared by L{sup 3−} to generate a 3D network. Compound 4 has a (3,6)-connected network in which the SBU is a linear trimeric Mn{sub 3}(COO){sub 6}(py){sub 4}(H{sub 2}O) cluster. In addition, the thermal stabilities, X-ray powder diffraction of all the compounds were studied, photoluminescence behaviors of compounds 1, 3 and 4 are discussed. - Graphical abstract: Supramolecular assembly of C{sub 3}-symmetric ligand 4,4′,4″-nitrilotribenzoic acid (H{sub 3}L) with Mn{sup II} through varying auxiliary solvents of the medium resulted in the formation of diversified multinuclear Mn{sup II} subunits in four new coordination polymers. The results exhibit the structures of Mn-SBUs in these

  4. The Mn site in Mn-doped GaAs nanowires: an EXAFS study

    International Nuclear Information System (INIS)

    D’Acapito, F; Rovezzi, M; Boscherini, F; Jabeen, F; Bais, G; Piccin, M; Rubini, S; Martelli, F

    2012-01-01

    We present an EXAFS study of the Mn atomic environment in Mn-doped GaAs nanowires. Mn doping has been obtained either via the diffusion of the Mn used as seed for the nanowire growth or by providing Mn during the growth of Au-induced wires. As a general finding, we observe that Mn forms chemical bonds with As but is not incorporated in a substitutional site. In Mn-induced GaAs wires, Mn is mostly found bonded to As in a rather disordered environment and with a stretched bond length, reminiscent of that exhibited by MnAs phases. In Au-seeded nanowires, along with stretched MnAs coordination, we have found the presence of Mn in a MnAu intermetallic compound. (paper)

  5. Antiferromagnetic MnN layer on the MnGa(001) surface

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero-Sánchez, J., E-mail: guerrero@cnyn.unam.mx; Takeuchi, Noboru

    2016-12-30

    Highlights: • A ferromagnetic Gallium terminated surface is stable before N incorporation. • After N incorporation, an antiferromagnetic MnN layer becomes stable in a wide range of chemical potential. • Spin density distribution shows an antiferromagnetic/ferromagnetic (MnN/MnGa) arrangement at the surface. - Abstract: Spin polarized first principles total energy calculations have been applied to study the stability and magnetic properties of the MnGa(001) surface and the formation of a topmost MnN layer with the deposit of nitrogen. Before nitrogen adsorption, surface formation energies show a stable gallium terminated ferromagnetic surface. After incorporation of nitrogen atoms, the antiferromagnetic manganese terminated surface becomes stable due to the formation of a MnN layer (Mn-N bonding at the surface). Spin density distribution shows a ferromagnetic/antiferromagnetic arrangement in the first surface layers. This thermodynamically stable structure may be exploited to growth MnGa/MnN magnetic heterostructures as well as to look for exchange biased systems.

  6. SYNTHESIS AND ANALYSIS OF La o.9 MnO 3 BY COMBUSTION ...

    African Journals Online (AJOL)

    The Lao.9MnO3 has been synthesized from lanthanum acetylacetonate, manganese acetylacetonate and urea by combustion method at 800oC. The analysis of the synthesized Lao.9MnO3 show it to be a semi-conducting nanopolycrystalline material having orthorhombic geometry with unit-cell parameters: a = 5.50335Ao; ...

  7. Fourier transform spectroscopy of MnH and MnD

    Science.gov (United States)

    Balfour, W. J.; Launila, O.; Klynning, L.

    Two infrared band systems, centred near 846 nm and 1060 nm in both MnH and MnD have been rotationally analysed and shown to have a common lower state. The electronic transitions lie within the quintet manifold and are here designated c 5Σ-a 5Σ and b 5Πi-a 5Σ for the 846 and 1060 nm systems, respectively. In the 846 nm system in MnH all 10 main branches have been found in the 0-0 and 1-1 bands, while in MnD the data are complete only for 0-0. Satellite branches have been identified in the 1060 nm system and all spin and Λ-type doublings have been established. The number of assigned 0-0 branches in the 1060 nm system is 35 for MnH and 37 for MnD. Molecular constants have been determined for all three states involved. Λ-doubling diagrams are presented for b 5Πi state with v = 1, 2 levels in MnH and with the v = 2 level in MnD. Local perturbations in c5Σ (v = 1) in MnH are suspected to originate from the v = 3 level of b 5Πi.

  8. Magneto-elastic coupling in La(Fe, Mn, Si)13Hy within the Bean-Rodbell model

    DEFF Research Database (Denmark)

    Neves Bez, Henrique; Nielsen, Kaspar Kirstein; Norby, Poul

    2016-01-01

    , due to high internal stresses. A promising magnetocaloric material is La(Fe, Mn, Si)13Hy, where the transition temperature can be controlled through the Mn amount. In this work we use XRD measurements to evaluate the temperature dependence of the unit cell volume with a varying Mn amount. The system...... is modelled using the Bean-Rodbell model, which is based on the assumption that the spin-lattice coupling depends linearly on the unit cell volume. This coupling is defined by the model parameter η, where for η > 1 the material undergoes a first order transition and for η ≤ 1 a second order transition. We...

  9. Tuning the magnetic properties of GaAs:Mn/MnAs hybrids via the MnAs cluster shape

    International Nuclear Information System (INIS)

    Nidda, H-A Krug von; Kurz, T; Loidl, A; Hartmann, Th; Klar, P J; Heimbrodt, W; Lampalzer, M; Volz, K; Stolz, W

    2006-01-01

    We report a systematic study of ferromagnetic resonance in granular GaAs:Mn/MnAs hybrids grown on GaAs(001) substrates by metal-organic vapour-phase epitaxy. The ferromagnetic resonance of the MnAs clusters can be resolved at all temperatures below T c . An additional broad absorption is observed below 60 K and is ascribed to localized charge carriers of the GaAs:Mn matrix. The anisotropy of the MnAs ferromagnetic resonance field originates from the magneto-crystalline field and demagnetization effects of the ferromagnetic MnAs clusters embedded in the GaAs:Mn matrix. Its temperature dependence basically scales with magnetization. Comparison of the observed angular dependence of the resonance field with model calculations yields the preferential orientation and shape of the clusters formed in hybrid layers of different thickness (150-1000 nm) grown otherwise at the same growth conditions. The hexagonal axes of the MnAs clusters are oriented along the four cubic GaAs space diagonals. Thin layers contain lens-shaped MnAs clusters close to the surface, whereas thick layers also contain spherical clusters in the bulk of the layer. The magnetic properties of the hexagonal MnAs clusters can be tuned by a controlled variation of the cluster shape

  10. 54Mn release from LMFBR cores

    International Nuclear Information System (INIS)

    Polley, M.V.

    1976-10-01

    The inventory of 54 Mn per unit exposed area of stainless steel in LMFBR cores may be calculated using a formula originally derived at HEDL. This treats the simultaneous production by activation and release by corrosion and diffusion of 54 Mn and assumes that the concentration at the steel surface is zero. The inventory per unit exposed area is calculated as a function of temperature and is compared with that calculated simply by assuming stoichiometric corrosion. An effective diffusion coefficient is used in the calculations which include contributions from both lattice and grain boundary diffusion. A general relationship is derived for the effective diffusion coefficient and it is shown how values may be obtained using the Levine-MacCallum and the Fisher theories of grain boundary diffusion. Values of the lattice diffusion coefficient were obtained by analysing data obtained from sodium loop experiments. The effect on the inventory due to the possible formation of a ferrite layers on the exposed surface is discussed and it is also shown how the inventory over several fuel cycles may be calculated. (U.K.)

  11. Replication of Annual Cycles in Mn in Hudson River Cores: Mn Peaks During High Water Flow

    Science.gov (United States)

    Abbott, D. H.; Hutson, D.; Marrero, A. M.; Block, K. A.; Chang, C.; Cai, Y.

    2017-12-01

    Using the results from an ITRAX, XRF scanner, we previously reported apparent annual cycles in Mn in a single, high sedimentation rate Hudson River core, LWB1-8, taken off Yonkers, NY (Carlson et al., 2016). We replicated these results in three more high sedimentation rate cores and found stratigraphic markers that verify our inferences about the annual nature of the Mn cycles. The three new cores are LWB4-5 taken off Peekskill, NY, and LWB3-44 and LWB3-25, both taken in Haverstraw Bay. The cores are from water depths of 7-9 meters and all have high magnetic susceptibilities (typically > 30 cgs units) in their upper 1 to 2 meters. The high susceptibilities are primarily produced by magnetite from modern industrial combustion. One core, LWB1-8, has reconnaissance Cs dates that verify the annual nature of the cycles. More Cs dates are expected before the meeting. We developed several new methods of verifying the annual nature of our layer counts. The first is looking at the grain size distribution and age of layers with unusually high Mn peaks. Peaks in Si, Ni and Ti and peaks in percentage of coarse material typically accompany the peaks in Mn. Some are visible as yellow sandy layers. The five highest peaks in Mn in LWB1-8 have layer counted ages that correspond (within 1 year in the top meter and within 2 years in the bottom meter) to 1996, 1948, 1913, 1857 and 1790. The latter three events are the three largest historical spring freshets on the Hudson. 1996 is a year of unusually high flow rate during the spring freshet. Based on our work and previous work on Mn cycling in rivers, we infer that the peaks in Mn are produced by extreme erosional events that erode sediment and release pore water Mn into the water column. The other methods of testing our chronology involve marine storms that increase Ca and Sr and a search for fragments of the Peekskill meteorite that fell in October 1992. More information on the latter will be available by the meeting.

  12. High accuracy attitude reference stabilization and pointing using the Teledyne SDG-5 gyro and the DRIRU II inertial reference unit

    Science.gov (United States)

    Green, K. N.; van Alstine, R. L.

    This paper presents the current performance levels of the SDG-5 gyro, a high performance two-axis dynamically tuned gyro, and the DRIRU II redundant inertial reference unit relating to stabilization and pointing applications. Also presented is a discussion of a product improvement program aimed at further noise reductions to meet the demanding requirements of future space defense applications.

  13. On the state of Mn in Mn{sub x}Zn{sub 1−x}O nanoparticles and their surface modification with isonipecotic acid

    Energy Technology Data Exchange (ETDEWEB)

    Jiménez-Hernández, L.; Estévez-Hernández, O. [Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología de Avanzada, Unidad Legaria, Ciudad México, México (Mexico); Instituto de Ciencia y Tecnología de Materiales (IMRE), Universidad de La Habana (Cuba); Hernández, M.P. [Instituto de Ciencia y Tecnología de Materiales (IMRE), Universidad de La Habana (Cuba); Universidad Nacional Autónoma de México (UNAM), Centro de Nanociencias y Nanotecnología (CNyN), Ensenada, Baja California, México (Mexico); Díaz, J.A.; Farías, M.F. [Universidad Nacional Autónoma de México (UNAM), Centro de Nanociencias y Nanotecnología (CNyN), Ensenada, Baja California, México (Mexico); Reguera, E., E-mail: edilso.reguera@gmail.com [Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología de Avanzada, Unidad Legaria, Ciudad México, México (Mexico)

    2017-03-15

    Mn-doped ZnO (Mn{sub x}Zn{sub 1−x}O) nanoparticles were synthesized by the co-precipitation method and coated with isonipecotic acid as capping ligand. The structure, composition and morphology of the resulting nanomaterial were investigated by energy disperse X-ray analysis, X-ray diffraction, and transmission electron microscopy data. Such measurements showed that the solid obtained contains 6 at% of Mn and it is formed by a highly crystalline material with 3–5 nm range of crystallite size, and only a small elongation of its cell parameter with respect to undoped ZnO wurtzite unit cell. Information on the state of manganese atom in the Mn{sub x}Zn{sub 1−x}O nanostructures formed was obtained from X-ray photoelectron (XPS) and electron energy loss (EELS) spectroscopies. XPS and EELS spectra are composed of four peaks, corresponding to two species of Mn(II) and signals from Mn(III) and Mn(IV). Such spectral data on the state of Mn in the material studied is consistent with the mapping of Mn distribution observed in recorded transmission electron microscopy images, which reveal presence of clusters of Mn atoms. Only a fraction of doping Mn atoms were found forming a solid solution with the host ZnO structure. The functionalization of the nanoparticles system with Isonipecotic acid shows that this molecule remains anchored to the nanoparticles surface mainly through its N basic site. The availability of free carboxylate groups in the capping molecule was tested by conjugation to type IV horseradish peroxidase. - Graphical abstract: State of Mn atoms in Mn-doped ZnO nanostructures prepared by the precipitation method, their capping with isonipecotic acid and subsequent conjugation to peroxidase. - Highlights: • State of manganese in manganese-doped zinc oxide nanoparticles. • Isonipecotic acid as surface modifier of ZnO nanoparticles. • Peroxidase conjugation to ZnO nanoparticles modified with isonipecotic acid.

  14. Identification of the interstitial Mn site in ferromagnetic (Ga,Mn)As

    CERN Document Server

    AUTHOR|(CDS)2093111; Wahl, Ulrich; Augustyns, Valerie; Silva, Daniel; Granadeiro Costa, Angelo Rafael; Houben, K; Edmonds, Kevin W; Gallagher, BL; Campion, RP; Van Bael, MJ; Castro Ribeiro Da Silva, Manuel; Martins Correia, Joao; Esteves De Araujo, Araujo Joao Pedro; Temst, Kristiaan; Vantomme, André; Da Costa Pereira, Lino Miguel

    2015-01-01

    We determined the lattice location of Mn in ferromagnetic (Ga,Mn)As using the electron emission channeling technique. We show that interstitial Mn occupies the tetrahedral site with As nearest neighbors (TAs) both before and after thermal annealing at 200 °C, whereas the occupancy of the tetrahedral site with Ga nearest neighbors (TGa) is negligible. TAs is therefore the energetically favorable site for interstitial Mn in isolated form as well as when forming complexes with substitutional Mn. These results shed new light on the long standing controversy regarding TAs versus TGa occupancy of interstitial Mn in (Ga,Mn)As.

  15. Developing prospects of NiAlMn high temperature shape memory alloy

    International Nuclear Information System (INIS)

    Zou Min

    1999-01-01

    The reason and information on high temperature shape memory alloy research are introduced briefly Also, referring to some experimental reports on NiAlMn high temperature shape memory alloy, it is pointed out that ductility and memory property of this alloy can be improved by adapting proper composition and procedure to control its microstructure. Meanwhile, the engineering details must be considered when NiAlMn high temperature shape memory alloy being developed so as to resolve the problems of its practical use

  16. Multireversible redox processes in pentanuclear bis(triple-helical) manganese complexes featuring an oxo-centered triangular {Mn(II)2Mn(III)(μ3-O)}5+ or {Mn(II)Mn(III)2(μ3-O)}6+ core wrapped by two {Mn(II)2(bpp)3}-.

    Science.gov (United States)

    Romain, Sophie; Rich, Jordi; Sens, Cristina; Stoll, Thibaut; Benet-Buchholz, Jordi; Llobet, Antoni; Rodriguez, Montserrat; Romero, Isabel; Clérac, Rodolphe; Mathonière, Corine; Duboc, Carole; Deronzier, Alain; Collomb, Marie-Noëlle

    2011-09-05

    A new pentanuclear bis(triple-helical) manganese complex has been isolated and characterized by X-ray diffraction in two oxidation states: [{Mn(II)(μ-bpp)(3)}(2)Mn(II)(2)Mn(III)(μ-O)](3+) (1(3+)) and [{Mn(II)(μ-bpp)(3)}(2)Mn(II)Mn(III)(2)(μ-O)](4+) (1(4+)). The structure consists of a central {Mn(3)(μ(3)-O)} core of Mn(II)(2)Mn(III) (1(3+)) or Mn(II)Mn(III)(2) ions (1(4+)) which is connected to two apical Mn(II) ions through six bpp(-) ligands. Both cations have a triple-stranded helicate configuration, and a pair of enantiomers is present in each crystal. The redox properties of 1(3+) have been investigated in CH(3)CN. A series of five distinct and reversible one-electron waves is observed in the -1.0 and +1.50 V potential range, assigned to the Mn(II)(4)Mn(III)/Mn(II)(5), Mn(II)(3)Mn(III)(2)/Mn(II)(4)Mn(III), Mn(II)(2)Mn(III)(3)/Mn(II)(3)Mn(III)(2), Mn(II)Mn(III)(4)/Mn(II)(2)Mn(III)(3), and Mn(III)(5)/Mn(II)Mn(III)(4) redox couples. The two first oxidation processes leading to Mn(II)(3)Mn(III)(2) (1(4+)) and Mn(II)(2)Mn(III)(3) (1(5+)) are related to the oxidation of the Mn(II) ions of the central core and the two higher oxidation waves, close in potential, are thus assigned to the oxidation of the two apical Mn(II) ions. The 1(4+) and 1(5+) oxidized species and the reduced Mn(4)(II) (1(2+)) species are quantitatively generated by bulk electrolyses demonstrating the high stability of the pentanuclear structure in four oxidation states (1(2+) to 1(5+)). The spectroscopic characteristics (X-band electron paramagnetic resonance, EPR, and UV-visible) of these species are also described as well as the magnetic properties of 1(3+) and 1(4+) in solid state. The powder X- and Q-band EPR signature of 1(3+) corresponds to an S = 5/2 spin state characterized by a small zero-field splitting parameter (|D| = 0.071 cm(-1)) attributed to the two apical Mn(II) ions. At 40 K, the magnetic behavior is consistent for 1(3+) with two apical S = 5/2 {Mn(II)(bpp)(3)}(-) and one S

  17. DRIRU I/SKIRU - The application of the DTG to spacecraft attitude control. [Dynamically-Tuned Gyro for Inertial Reference Unit systems

    Science.gov (United States)

    Swanson, C. O.

    1982-01-01

    The dynamically tuned gyro (DTG) was developed to replace the floated, rate integrating gyro used for space attitude control, as the DTG fulfills cost, performance, and reliability requirements not satisfied by its predecessor. The use of this gyro in the Dry Gyro Inertial Reference Unit I (DRIRU I) marked the first application of a DTG in a spacecraft attitude reference unit. Design and performance characteristics of DTG application in the Singer-Kearfott Inertial Reference Unit (SKIRU) are outlined, for example its minimal weight (7 lb), and operational reliability. The DTG has accomplished 156,000 failure-free hours, and a chart, logging test performance, indicates that this and other requirements were more than sufficiently satisfied. The unit has an unparalleled life span, with several units still operating after 70,000 to 130,000 hours, and a random drift which always remains under 0.0005 deg/h. Potential for improvements, such as drift performance, are considered.

  18. Mn-DPDP, the first contrast agent for the pancreas

    International Nuclear Information System (INIS)

    Gehl, H.B.; Vorwerk, D.; Klose, K.C.; Raber, H.; Guenther, R.W.

    1990-01-01

    Mn-DPDP, known as a contrast agent for the hepatobiliary system, shows signal intensity increase of the pancreas as well. This paper describes the extent of signal intensity increase in the pancreas as a function of time. Six healthy volunteers were imaged with a 1.5-T MR unit using a T1-weighted gradient-echo sequence. Acquisitions were taken in 3-minute intervals for the first 45 minutes, followed by intervals of 30 minutes for 7 hours after infusion of Mn-DPDP. As a special formulation, 10 μmol per kg Mn-DPDP were infused. The enhancement of the head and the tail of the pancreas were measured and plotted as a function of time; the percentage increase in pancreas signal intensity was calculated and compared with the increase in liver signal intensity

  19. Nano-sized Mn3O4 and β-MnOOH from the decomposition of β-cyclodextrin-Mn: 2. The water-oxidizing activities.

    Science.gov (United States)

    Najafpour, Mohammad Mahdi; Mostafalu, Ramin; Hołyńska, Małgorzata; Ebrahimi, Foad; Kaboudin, Babak

    2015-11-01

    Nano-sized Mn oxides contain Mn3O4, β-MnOOH and Mn2O3 have been prepared by a previously reported method using thermal decomposition of β-cyclodextrin-Mn complexes. In the next step, the water-oxidizing activities of these Mn oxides using cerium(IV) ammonium nitrate as a chemical oxidant are studied. The turnover frequencies for β-MnO(OH) and Mn3O4 are 0.24 and 0.01-0.17 (mmol O2/mol Mns), respectively. Subsequently, water-oxidizing activities of these compounds are compared to the other previously reported Mn oxides. Important factors affecting water oxidation by these Mn oxides are also discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Quantitative estimation of diphtheria and tetanus toxoids. 4. Toxoids as international reference materials defining Lf-units for diphtheria and tetanus toxoids.

    Science.gov (United States)

    Lyng, J

    1990-01-01

    The Lf-unit, which is used in the control of diphtheria and tetanus toxoid production and in some countries also to follow immunization of horses for production of antitoxins, has hitherto been defined by means of antitoxin preparations. A diphtheria toxoid and a tetanus toxoid preparation, both freeze-dried, were examined in an international collaborative study for their suitability to serve as reference reagents in the flocculation tests and for defining the Lf-units. It was shown that flocculation tests using the reference toxoids are very reproducible and reliable and the WHO Expert Committee on Biological Standardization established: the toxoid called DIFT as the International Reference Reagent of Diphtheria Toxoid for Flocculation Test with a defined content of 900 Lf-units of diphtheria toxoid per ampoule; and the toxoid called TEFT as the International Reference Reagent of Tetanus Toxoid for Flocculation Test with a defined content of 1000 Lf-units of diphtheria toxoid per ampoule.

  1. Speciation of Mn(II), Mn(VII) and total manganese in water and food samples by coprecipitation-atomic absorption spectrometry combination

    International Nuclear Information System (INIS)

    Citak, Demirhan; Tuzen, Mustafa; Soylak, Mustafa

    2010-01-01

    A speciation procedure based on the coprecipitation of manganese(II) with zirconium(IV) hydroxide has been developed for the investigation of levels of manganese species. The determination of manganese levels was performed by flame atomic absorption spectrometry (FAAS). Total manganese was determined after the reduction of Mn(VII) to Mn(II) by ascorbic acid. The analytical parameters including pH, amount of zirconium(IV), sample volume, etc., were investigated for the quantitative recoveries of manganese(II). The effects of matrix ions were also examined. The recoveries for manganese(II) were in the range of 95-98%. Preconcentration factor was calculated as 50. The detection limit for the analyte ions based on 3 sigma (n = 21) was 0.75 μg L -1 for Mn(II). The relative standard deviation was found to be lower than 7%. The validation of the presented procedure was performed by analysis of certified reference material having different matrices, NIST SRM 1515 (Apple Leaves) and NIST SRM 1568a (Rice Flour). The procedure was successfully applied to natural waters and food samples.

  2. Characterization of Mn-resistant endophytic bacteria from Mn-hyperaccumulator Phytolacca americana and their impact on Mn accumulation of hybrid penisetum.

    Science.gov (United States)

    Zhang, Wen-Hui; Chen, Wei; He, Lin-Yan; Wang, Qi; Sheng, Xia-Fang

    2015-10-01

    Three hundred Mn-resistant endophytic bacteria were isolated from the Mn-hyperaccumulator, Phytolacca americana, grown at different levels of Mn (0, 1, and 10mM) stress. Under no Mn stress, 90%, 92%, and 11% of the bacteria produced indole acetic acid (IAA), siderophore, and 1-aminocyclopropane-1-carboxylate (ACC) deaminase, respectively. Under Mn stress, 68-94%, 91-92%, and 21-81% of the bacteria produced IAA, siderophore, and ACC deaminase, respectively. Greater percentages of ACC deaminase-producing bacteria were found in the Mn-treated P. americana. Furthermore, the ratios of IAA- and siderophore-producing bacteria were significantly higher in the Mn treated plant leaves, while the ratio of ACC deaminase-producing bacteria was significantly higher in the Mn treated-roots. Based on 16S rRNA gene sequence analysis, Mn-resistant bacteria were affiliated with 10 genera. In experiments involving hybrid penisetum grown in soils treated with 0 and 1000mgkg(-1) of Mn, inoculation with strain 1Y31 was found to increase the root (ranging from 6.4% to 18.3%) and above-ground tissue (ranging from 19.3% to 70.2%) mass and total Mn uptake of above-ground tissues (64%) compared to the control. Furthermore, inoculation with strain 1Y31 was found to increase the ratio of IAA-producing bacteria in the rhizosphere and bulk soils of hybrid penisetum grown in Mn-added soils. The results showed the effect of Mn stress on the ratio of the plant growth-promoting factor-producing endophytic bacteria of P. americana and highlighted the potential of endophytic bacterium as an inoculum for enhanced phytoremediation of Mn-polluted soils by hybrid penisetum plants. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Theoretical Analysis of Moving Reference Planes Associated with Unit Cells of Nonreciprocal Lossy Periodic Transmission-Line Structures

    Directory of Open Access Journals (Sweden)

    S. Lamultree

    2017-04-01

    Full Text Available This paper presents a theoretical analysis of moving reference planes associated with unit cells of nonreciprocal lossy periodic transmission-line structures (NRLSPTLSs by the equivalent bi-characteristic-impedance transmission line (BCITL model. Applying the BCITL theory, only the equivalent BCITL parameters (characteristic impedances for waves propagating in forward and reverse directions and associated complex propagation constants are of interest. An infinite NRLSPTLS is considered first by shifting a reference position of unit cells along TLs of interest. Then, a semi-infinite terminated NRLSPTLS is investigated in terms of associated load reflection coefficients. It is found that the equivalent BCITL characteristic impedances of the original and shifted unit cells are mathematically related by the bilinear transformation. In addition, the associated load reflection coefficients of both unit cells are mathematically related by the bilinear transformation. However, the equivalent BCITL complex propagation constants remain unchanged. Numerical results are provided to show the validity of the proposed theoretical analysis.

  4. Synthesis and characterization of new fluoride-containing manganese vanadates A{sub 2}Mn{sub 2}V{sub 2}O{sub 7}F{sub 2} (A=Rb, Cs) and Mn{sub 2}VO{sub 4}F

    Energy Technology Data Exchange (ETDEWEB)

    Sanjeewa, Liurukara D. [Department of Chemistry and Center for Optical Materials Science and Engineering Technologies (COMSET), Clemson University, Clemson, SC 29634-0973 (United States); McGuire, Michael A. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Smith Pellizzeri, Tiffany M.; McMillen, Colin D. [Department of Chemistry and Center for Optical Materials Science and Engineering Technologies (COMSET), Clemson University, Clemson, SC 29634-0973 (United States); Ovidiu Garlea, V. [Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Willett, Daniel; Chumanov, George [Department of Chemistry and Center for Optical Materials Science and Engineering Technologies (COMSET), Clemson University, Clemson, SC 29634-0973 (United States); Kolis, Joseph W., E-mail: kjoseph@clemson.edu [Department of Chemistry and Center for Optical Materials Science and Engineering Technologies (COMSET), Clemson University, Clemson, SC 29634-0973 (United States)

    2016-09-15

    Large single crystals of A{sub 2}Mn{sub 2}V{sub 2}O{sub 7}F{sub 2} (A=Rb, Cs) and Mn{sub 2}VO{sub 4}F were grown using a high-temperature (~600 °C) hydrothermal technique. Single crystal X-ray diffraction and powder X-ray diffraction were utilized to characterize the structures, which both possess MnO{sub 4}F{sub 2} building blocks. The A{sub 2}Mn{sub 2}V{sub 2}O{sub 7}F{sub 2} series crystallizes as a new structure type in space group Pbcn (No. 60), Z=4 (Rb{sub 2}Mn{sub 2}V{sub 2}O{sub 7}F{sub 2}: a=7.4389(17) Å, b=11.574(3) Å, c=10.914(2) Å; Cs{sub 2}Mn{sub 2}V{sub 2}O{sub 7}F{sub 2}: a=7.5615(15) Å, b=11.745(2) Å, c=11.127(2) Å). The structure is composed of zigzag chains of edge-sharing MnO{sub 4}F{sub 2} units running along the a-axis, and interconnected through V{sub 2}O{sub 7} pyrovanadate groups. Temperature dependent magnetic susceptibility measurements on this interesting one-dimensional structural feature based on Mn{sup 2+} indicated that Cs{sub 2}Mn{sub 2}V{sub 2}O{sub 7}F{sub 2} is antiferromagnetic with a Neél temperature, T{sub N}=~3 K and a Weiss constant, θ, of −11.7(1) K. Raman and infrared spectra were also analyzed to identify the fundamental V–O vibrational modes in Cs{sub 2}Mn{sub 2}V{sub 2}O{sub 7}F{sub 2}. Mn{sub 2}(VO{sub 4})F crystalizes in the monoclinic space group of C2/c (no. 15), Z=8 with unit cell parameters of a=13.559(2) Å, b=6.8036(7) Å, c=10.1408(13) Å and β=116.16(3)°. The structure is associated with those of triplite and wagnerite. Dynamic fluorine disorder gives rise to complex alternating chains of five-and six-coordinate Mn{sup 2+}. These interpenetrating chains are additionally connected through isolated VO{sub 4} tetrahedra to form the condensed structure. - Graphical abstract: New vanadate fluorides A{sub 2}Mn{sub 2}V{sub 2}O{sub 7}F{sub 2} (A=Rb, Cs) and Mn{sub 2}(VO{sub 4})F have been synthesized hydrothermally. Upon cooling, the one-dimensional Mn(II) substructure results in antiferromagnetic

  5. DAFS study of site-specific local structure of Mn in manganese ferrite films

    International Nuclear Information System (INIS)

    Kravtsov, E.; Haskel, D.; Cady, A.; Yang, A.; Vittoria, C.; Zuo, X.; Harris, V.G.

    2006-01-01

    Manganese ferrite (MnFe 2 O 4 ) is a well-known magnetic material widely used in electronics for many years. It is well established that its magnetic behavior is strongly influenced by local structural properties of Mn ions, which are distributed between crystallographically inequivalent tetrahedral and octahedral sites in the unit cell. In order to understand and be able to tune properties of these structures, it is necessary to have detailed site-specific structural information on the system. Here we report on the application of diffraction-anomalous fine structure (DAFS) spectroscopy to resolve site-specific Mn local structures in manganese ferrite films. The DAFS measurements were done at undulator beamline 4-ID-D of the Advanced Photon Source at Argonne National Laboratory. The DAFS spectra (Fig. 1) were measured at several Bragg reflections in the vicinity of the Mn absorption K-edge, having probed separately contributions from tetrahedrally and octahedrally coordinated Mn sites. The DAFS data analysis done with an iterative Kramers-Kroenig algorithm made it possible to solve separately the local structure around different inequivalent Mn sites in the unit cell. The reliability of the data treatment was checked carefully, and it was showed that the site-specific structural parameters obtained with DAFS allow us to describe fluorescence EXAFS spectrum measured independently. Fig. 2 shows individual site contributions to the imaginary part of the resonant scattering amplitude obtained from the treatment of the data of Fig. 1. The analysis of the refined site-specific absorption spectra was done using EXAFS methods based on theoretical standards. We provided direct evidence for the tetrahedral Mn-O bond distance being increased relative to the corresponding Fe-O distance in bulk manganese ferrites. The first coordination shell number was found to be reduced significantly for Mn atoms at these sites. This finding is consistent with the well-known tendency of Mn

  6. Analysis of marine sediment and lobster hepatopancreas reference materials by instrumental photon activation

    International Nuclear Information System (INIS)

    Landsberger, S.; Davidson, W.F.

    1985-01-01

    By use of instrumental photon activation analysis, twelve trace (As, Ba, Cr, Co, Mn, Ni, Pb, Sb, Sr, U, Zn, and Zr) and eight minor (C, Na, Mg, Co, K, Ca, Tl, and Fe) elements were determined in a certified marine sediment standard reference material as well as eight trace (Mn, Ni, Cu, Zn, As, Sr, Cd, and Pb) and four minor (Na, Mg, Cl, and Ca) elements in a certified marine tissue (lobster hepatopancreas) standard reference material. The precision and accuracy of the present results when compared to the accepted values clearly demonstrate the reliability of this nondestructive technique and its applicability to marine environmental or marine geochemical studies. 24 references, 4 figures, 3 tables

  7. Magnetic properties of Pr1-xGdxMn2Ge2 compounds

    International Nuclear Information System (INIS)

    Kilic, A.; Kervan, S.; Oezcan, S.; Gencer, A.

    2004-01-01

    The structure and magnetic properties of the Pr 1-x Gd x Mn 2 Ge 2 (0.0≤x≤1.0) compounds have been investigated by means of X-ray diffraction (XRD), differential scanning calorimetry (DSC) techniques and AC magnetic susceptibility measurements. All compounds crystallize in the ThCr 2 Si 2 -type structure with the space group I4/mmm. The lattice constants and the unit cell volume obey Vegard's law. Samples in this alloy system exhibit a crossover from ferromagnetic ordering for PrMn 2 Ge 2 to antiferromagnetic ordering for GdMn 2 Ge 2 as a function of Gd concentration x. At low temperatures, the rare earth sublattice also orders and reconfigures the ordering in the Mn sublattice. The results are summarized in the x-T magnetic phase diagram

  8. Protective effects of ebselen (Ebs) and para-aminosalicylic acid (PAS) against manganese (Mn)-induced neurotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Marreilha dos Santos, A.P., E-mail: apsantos@ff.ul.pt [I-Med.UL, Department of Toxicology and Food Sciences, Faculty of Pharmacy, University of Lisbon, Lisbon (Portugal); Lucas, Rui L.; Andrade, Vanda; Mateus, M. Luísa [I-Med.UL, Department of Toxicology and Food Sciences, Faculty of Pharmacy, University of Lisbon, Lisbon (Portugal); Milatovic, Dejan; Aschner, Michael [Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Batoreu, M. Camila [I-Med.UL, Department of Toxicology and Food Sciences, Faculty of Pharmacy, University of Lisbon, Lisbon (Portugal)

    2012-02-01

    Chronic, excessive exposure to manganese (Mn) may induce neurotoxicity and cause an irreversible brain disease, referred to as manganism. Efficacious therapies for the treatment of Mn are lacking, mandating the development of new interventions. The purpose of the present study was to investigate the efficacy of ebselen (Ebs) and para-aminosalicylic acid (PAS) in attenuating the neurotoxic effects of Mn in an in vivo rat model. Exposure biomarkers, inflammatory and oxidative stress biomarkers, as well as behavioral parameters were evaluated. Co-treatment with Mn plus Ebs or Mn plus PAS caused a significant decrease in blood and brain Mn concentrations (compared to rats treated with Mn alone), concomitant with reduced brain E{sub 2} prostaglandin (PGE{sub 2}) and enhanced brain glutathione (GSH) levels, decreased serum prolactin (PRL) levels, and increased ambulation and rearing activities. Taken together, these results establish that both PAS and Ebs are efficacious in reducing Mn body burden, neuroinflammation, oxidative stress and locomotor activity impairments in a rat model of Mn-induced toxicity. -- Highlights: ► The manuscript is unique in its approach to the neurotoxicity of Mn. ► The manuscript incorporates molecular, cellular and functional (behavioral) analyses. ► Both PAS and Ebs are effective in restoring Mn behavioral function. ► Both PAS and Ebs are effective in reducing Mn-induced oxidative stress. ► Both PAS and Ebs led to a decrease in Mn-induced neuro-inflammation.

  9. Protective effects of ebselen (Ebs) and para-aminosalicylic acid (PAS) against manganese (Mn)-induced neurotoxicity

    International Nuclear Information System (INIS)

    Marreilha dos Santos, A.P.; Lucas, Rui L.; Andrade, Vanda; Mateus, M. Luísa; Milatovic, Dejan; Aschner, Michael; Batoreu, M. Camila

    2012-01-01

    Chronic, excessive exposure to manganese (Mn) may induce neurotoxicity and cause an irreversible brain disease, referred to as manganism. Efficacious therapies for the treatment of Mn are lacking, mandating the development of new interventions. The purpose of the present study was to investigate the efficacy of ebselen (Ebs) and para-aminosalicylic acid (PAS) in attenuating the neurotoxic effects of Mn in an in vivo rat model. Exposure biomarkers, inflammatory and oxidative stress biomarkers, as well as behavioral parameters were evaluated. Co-treatment with Mn plus Ebs or Mn plus PAS caused a significant decrease in blood and brain Mn concentrations (compared to rats treated with Mn alone), concomitant with reduced brain E 2 prostaglandin (PGE 2 ) and enhanced brain glutathione (GSH) levels, decreased serum prolactin (PRL) levels, and increased ambulation and rearing activities. Taken together, these results establish that both PAS and Ebs are efficacious in reducing Mn body burden, neuroinflammation, oxidative stress and locomotor activity impairments in a rat model of Mn-induced toxicity. -- Highlights: ► The manuscript is unique in its approach to the neurotoxicity of Mn. ► The manuscript incorporates molecular, cellular and functional (behavioral) analyses. ► Both PAS and Ebs are effective in restoring Mn behavioral function. ► Both PAS and Ebs are effective in reducing Mn-induced oxidative stress. ► Both PAS and Ebs led to a decrease in Mn-induced neuro-inflammation.

  10. Structural and magnetic properties of Gd1-xPrxMn2Si2 silicides

    International Nuclear Information System (INIS)

    Kilic, A.; Kervan, S.; Gencer, A.

    2004-01-01

    X-ray powder diffraction, AC susceptibility and differential scanning calorimetry (DSC) studies were performed on the polycrystalline Gd 1-x Pr x Mn 2 Si 2 (0≤x≤1) compounds. All compounds investigated crystallize in the body-centred tetragonal ThCr 2 Si 2 -type structure with the space group I4/mmm. Substitution of Pr for Gd leads to a linear increase of the lattice constants and the unit cell volume. The lattice constants and the unit cell volume obey Vegard's law. At the Curie temperature T C (Gd), the Gd sublattice orders and reconfigures the ordering in the Mn sublattice. This temperature becomes depressed and disappears with increasing Pr content x. The Neel temperature T N (Mn) determined by DSC technique decreases linearly with increasing Pr content x. The results are summarized in the x-T magnetic phase diagram

  11. First-principle investigation on stability of Co-doped spinel λ-Mn4-xCoxO8

    Institute of Scientific and Technical Information of China (English)

    HUANG Ke-long; CHEN Chun-an; LIU Su-qin; LUO Qiong; LIU Zhi-guo

    2007-01-01

    The mechanism of stability of Co-doped spinel λ-MnO2 that is referred to as spinel LiχMn2O4 (χ=0) was studied by using the first-principle calculation method. The total energy and formation enthalpy can be decreased remarkably due to the Co substation,resulting in a more stable structure of λ-MnχCr2-χO4. The bond order and DOS analysis were given in detail to explain the nature of stability improvement. The calculated results show that as the content of Co dopant increases, the bond order of Mn-O becomes larger and the peak of density of states around Fermi level shifts toward lower energy. The charge density distribution illustrates that the Mn-O bonding is ionic and partially covalent, and the covalent Mn-O bonding becomes stronger with the increase of Co dopant content. The results confirm that the Co-doping will enhance the stability of λ-MnO2 and hence improve the electrochemistry performance of LiχMn2O4.

  12. Mn-substituted perovskites RECoxMn1-xO3: a comparison between magnetic properties of LaCoxMn1-xO3 and GdCoxMn1-xO3

    Directory of Open Access Journals (Sweden)

    Barahona, P.

    2008-08-01

    Full Text Available Cooperative phenomena constitute important mechanisms to explain the magnetic properties of the perovskite manganites REMnO3, in which the rare-earth and/or Mn is partially replaced by divalent elements. In this way, the manganese ion changes its valence state (Mn3+ Mn4+, triggering strong magnetic interactions. In this work we describe the case of GdCoxMn1-xO3 (0.0 ≤ x ≤ 1.0 for which the antiferromagnetic interaction between the Gd sublattice and the Mn/Co network leads to a reversal of the magnetic moment at low temperature. No inversion is observed for the LaCoxMn1-xO3 series, in which the ordering temperature may attain a maximum of 235 K for LaCo0.50Mn0.50O3, while it is only 120 K for similar Co/Mn ratio in the case of GdCo0.50Mn0.50O3. Magnetic properties are described in terms of two regimes: one, for x 3 manganite and another one, for x > 0.5, when Mn substitutes Co in the GdCoO3 cobaltite, while the magnetic interactions are maximized at x(Co = 0.50. This hypothesis is discussed in terms of the respective oxidation states of both manganese (Mn3+ / Mn4+ and cobalt (Co2+ / Co3+.El fenómeno cooperativo constituye un importante mecanismo para explicar las propiedades magnéticas de las perovskitas manganitas TRMnO3, en las que el catión de tierra rara, TR, y/o el catión Mn3+ son parcialmente reemplazados por cationes divalentes. Por esta vía el ión de manganeso cambia de estado de valencia (Mn3+ Mn4+, generando fuertes interacciones magnéticas. En el presente trabajo se describe el caso de las soluciones sólidas GdCoxMn1-xO3 (0.0 ≤ x ≤ 1.0 para las que la interacción antiferromagnética entre la subred del Gd3+ y la red Mn/Co lleva a una inversión del momento magnético a baja temperatura. No se ha observado inversión para la serie LaCoxMn1-xO3, en que la temperatura de orden puede alcanzar un máximo de 235K para LaCo0.50Mn0.50O3, mientras que en el caso de GdCo0.50Mn0.50O3, en que sí se observa inversión, la

  13. Translocation of Cd and Mn from Bark to Leaves in Willows on Contaminated Sediments: Delayed Budburst Is Related to High Mn Concentrations

    Directory of Open Access Journals (Sweden)

    Bart Vandecasteele

    2015-04-01

    Full Text Available Changes in the hydrology of sediments in tidal marshes or landfills may affect the uptake of metals in the vegetation. Leaf and stem samples of Salix cinerea (grey sallow were collected during four consecutive growing seasons at six contaminated plots on a polluted dredged sediment landfill and one plot on an uncontaminated reference site. The first three contaminated plots were already emerged in the first half of the first growing season, while the other three were submerged in the first year, but became increasingly dry over the study period. Foliar and stem cutting concentrations for Cd, Zn and Mn increased on the latter three plots over the four years. Willow bark contained high concentrations of Cd, Zn and Mn. In two consecutive greenhouse experiments with willow cuttings from different origins (uncontaminated and contaminated sites and grown under different soil conditions (uncontaminated and contaminated, we observed an important translocation of Mn from bark to shoots. In a third experiment with willow cuttings collected on soils with a range of heavy metal concentrations and, thus, with a broad range of Cd (4–67 mg/kg dry matter, Zn (247–660 mg/kg dry matter and Mn (38–524 mg/kg dry matter concentrations in the bark, high Mn concentrations in the bark were found to affect the budburst of willow cuttings, while no association of delayed budburst with Cd and Zn concentrations in the bark was found. We conclude that wood and, especially, bark are not a sink for metals in living willows. The high Mn concentrations in the bark directly or indirectly caused delayed or restricted budburst of the willow cuttings.

  14. Tempering of Mn and Mn-Si-V dual-phase steels

    Science.gov (United States)

    Speich, G. R.; Schwoeble, A. J.; Huffman, G. P.

    1983-06-01

    Changes in the yield behavior, strength, and ductility of a Mn and a Mn-Si-V d11Al-phase (ferrite-martensite) steel were investigated after tempering one hour at 200 to 600 °C. The change in yield behavior was complex in both steels with the yield strength first increasing and then decreasing as the tempering temperature was increased. This complex behavior is attributed to a combination of factors including carbon segregation to dislocations, a return of discontinuous yielding, and the relief of resid11Al stresses. In contrast, the tensile strength decreased continuously as the tempering temperature was increased in a manner that could be predicted from the change in hardness of the martensite phase using a simple composite strengthening model. The initial tensile ductility (total elongation) of the Mn-Si-V steel was much greater than that of the Mn steel. However, upon tempering up to 400 °C, the ductility of the Mn-Si-V decreased whereas that of the Mn steel increased. As a result, both steels had similar ductilities after tempering at 400 °C or higher temperatures. These results are attributed to the larger amounts of retained austenite in the Mn-Si-V steel (9 pct) compared to the Mn steel (3 pct) and its contribution to tensile ductility by transforming to martensite during plastic straining. Upon tempering at 400 °C, the retained austenite decomposes to bainite and its contribution to tensile ductility is eliminated.

  15. New perovskite-based manganite Pb2Mn2O5

    International Nuclear Information System (INIS)

    Hadermann, Joke; Abakumov, Artem M.; Perkisas, Tyche; D'Hondt, Hans; Tan Haiyan; Verbeeck, Johan; Filonenko, Vladimir P.; Antipov, Evgeny V.; Van Tendeloo, Gustaaf

    2010-01-01

    A new perovskite based compound Pb 2 Mn 2 O 5 has been synthesized using a high pressure high temperature technique. The structure model of Pb 2 Mn 2 O 5 is proposed based on electron diffraction, high angle annular dark field scanning transmission electron microscopy and high resolution transmission electron microscopy. The compound crystallizes in an orthorhombic unit cell with parameters a=5.736(1) A∼√2a p , b=3.800(1) A∼a p , c=21.562(6) A∼4√2a p (a p -the parameter of the perovskite subcell) and space group Pnma. The Pb 2 Mn 2 O 5 structure consists of quasi two-dimensional perovskite blocks separated by 1/2[110] p (101) p crystallographic shear planes. The blocks are connected to each other by chains of edge-sharing MnO 5 distorted tetragonal pyramids. The chains of MnO 5 pyramids and the MnO 6 octahedra of the perovskite blocks delimit six-sided tunnels accommodating double chains of Pb atoms. The tunnels and pyramidal chains adopt two mirror-related configurations ('left' L and 'right' R) and layers consisting of chains and tunnels of the same configuration alternate in the structure according to an -L-R-L-R-sequence. The sequence is sometimes locally violated by the appearance of -L-L- or -R-R-fragments. A scheme is proposed with a Jahn-Teller distortion of the MnO 6 octahedra with two long and two short bonds lying in the a-c plane, along two perpendicular orientations within this plane, forming a d-type pattern. - Graphical abstract: Order of the Jahn-Teller distorted MnO 6 octahedra in Pb 2 Mn 2 O 5 . Two long and two short bonds lie in the a-c plane, along two perpendicular orientations within this plane, forming a d-type pattern.

  16. Valence state of Mn in Ca-doped LaMnO3 studied by high-resolution Mn K ß emission spectroscopy

    NARCIS (Netherlands)

    Tyson, T.A.; Qian, Q.; Kao, C.-C.; Rueff, J.-P.; Groot, F.M.F. de; Croft, M.; Cheong, S.-W.; Greenblatt, M.; Subramanian, M.A.

    1999-01-01

    Mn K ß x-ray emission spectra provide a direct method to probe the effective spin state and charge density on the Mn atom and is used in an experimental study of a class of Mn oxides. Specifically, the Mn K ß line positions and detailed spectral shapes depend on the oxidation and the spin state of

  17. Strong correlation and ferromagnetism in (Ga,Mn)As and (Ga,Mn)N

    International Nuclear Information System (INIS)

    Filippetti, A.; Spaldin, N.A.; Sanvito, S.

    2005-01-01

    The band energies of the ferromagnetic diluted magnetic semiconductors (Ga,Mn)As and (Ga,Mn)N are calculated using a self-interaction-free approach which describes covalent and strongly correlated electrons without adjustable parameters. Both materials are half-metallic, although the contribution of Mn-derived d states to the bands around the Fermi energy is very different in the two cases. In (Ga,Mn)As the bands are strongly p-d hybridized, with a dominance of As p states. In contrast in (Ga,Mn)N the Fermi energy lies within three flat bands of mainly d character that are occupied by two electrons. Thus the Mn ion in (Ga,Mn)N behaves as a deep trap acceptor, with the hole at 1.39 eV above the GaN valence band top, and is in excellent agreement with the experimental data

  18. Effect of Mn and Fe on the Formation of Fe- and Mn-Rich Intermetallics in Al–5Mg–Mn Alloys Solidified Under Near-Rapid Cooling

    Directory of Open Access Journals (Sweden)

    Yulin Liu

    2016-01-01

    Full Text Available Mn was an important alloying element used in Al–Mg–Mn alloys. However, it had to be limited to a low level (<1.0 wt % to avoid the formation of coarse intermetallics. In order to take full advantage of the benefits of Mn, research was carried out to investigate the possibility of increasing the content of Mn by studying the effect of cooling rate on the formation of Fe- and Mn-rich intermetallics at different content levels of Mn and Fe. The results indicated that in Al–5Mg–Mn alloy with low Fe content (<0.1 wt %, intermetallic Al6(Fe,Mn was small in size and amount. With increasing Mn content, intermetallic Al6(Fe,Mn increased, but in limited amount. In high-Fe-containing Al–5Mg–Mn alloys (0.5 wt % Fe, intermetallic Al6(Fe,Mn became the dominant phase, even in the alloy with low Mn content (0.39 wt %. Cooling rate played a critical role in the refinement of the intermetallics. Under near-rapid cooling, intermetallic Al6(Fe,Mn was extremely refined. Even in the high Mn and/or high-Fe-containing alloys, it still demonstrated fine Chinese script structures. However, once the alloy composition passed beyond the eutectic point, the primary intermetallic Al6(Fe,Mn phase displayed extremely coarse platelet-like morphology. Increasing the content of Fe caused intermetallic Al6(Fe,Mn to become the primary phase at a lower Mn content.

  19. Effect of Mn and Fe on the Formation of Fe- and Mn-Rich Intermetallics in Al–5Mg–Mn Alloys Solidified Under Near-Rapid Cooling

    Science.gov (United States)

    Liu, Yulin; Huang, Gaoren; Sun, Yimeng; Zhang, Li; Huang, Zhenwei; Wang, Jijie; Liu, Chunzhong

    2016-01-01

    Mn was an important alloying element used in Al–Mg–Mn alloys. However, it had to be limited to a low level (Al–5Mg–Mn alloy with low Fe content (Al6(Fe,Mn) was small in size and amount. With increasing Mn content, intermetallic Al6(Fe,Mn) increased, but in limited amount. In high-Fe-containing Al–5Mg–Mn alloys (0.5 wt % Fe), intermetallic Al6(Fe,Mn) became the dominant phase, even in the alloy with low Mn content (0.39 wt %). Cooling rate played a critical role in the refinement of the intermetallics. Under near-rapid cooling, intermetallic Al6(Fe,Mn) was extremely refined. Even in the high Mn and/or high-Fe-containing alloys, it still demonstrated fine Chinese script structures. However, once the alloy composition passed beyond the eutectic point, the primary intermetallic Al6(Fe,Mn) phase displayed extremely coarse platelet-like morphology. Increasing the content of Fe caused intermetallic Al6(Fe,Mn) to become the primary phase at a lower Mn content. PMID:28787888

  20. Effect of Mn and Fe on the Formation of Fe- and Mn-Rich Intermetallics in Al-5Mg-Mn Alloys Solidified Under Near-Rapid Cooling.

    Science.gov (United States)

    Liu, Yulin; Huang, Gaoren; Sun, Yimeng; Zhang, Li; Huang, Zhenwei; Wang, Jijie; Liu, Chunzhong

    2016-01-29

    Mn was an important alloying element used in Al-Mg-Mn alloys. However, it had to be limited to a low level (Al-5Mg-Mn alloy with low Fe content (Al₆(Fe,Mn) was small in size and amount. With increasing Mn content, intermetallic Al₆(Fe,Mn) increased, but in limited amount. In high-Fe-containing Al-5Mg-Mn alloys (0.5 wt % Fe), intermetallic Al₆(Fe,Mn) became the dominant phase, even in the alloy with low Mn content (0.39 wt %). Cooling rate played a critical role in the refinement of the intermetallics. Under near-rapid cooling, intermetallic Al₆(Fe,Mn) was extremely refined. Even in the high Mn and/or high-Fe-containing alloys, it still demonstrated fine Chinese script structures. However, once the alloy composition passed beyond the eutectic point, the primary intermetallic Al₆(Fe,Mn) phase displayed extremely coarse platelet-like morphology. Increasing the content of Fe caused intermetallic Al₆(Fe,Mn) to become the primary phase at a lower Mn content.

  1. Development of MnBi permanent magnet: Neutron diffraction of MnBi powder

    Energy Technology Data Exchange (ETDEWEB)

    Cui, J., E-mail: jun.cui@pnnl.gov; Choi, J. P.; Li, G.; Polikarpov, E.; Darsell, J. [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354 (United States); Kramer, M. J.; Zarkevich, N. A.; Wang, L. L.; Johnson, D. D. [Materials Sciences and Engineering Division, Ames Laboratory, Ames, Iowa 50011 (United States); Marinescu, M. [Electron Energy Corporation, Landisville, Pennsylvania 17538 (United States); Huang, Q. Z.; Wu, H. [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6102 (United States); Vuong, N. V.; Liu, J. P. [Department of Physics, University of Texas at Arlington, Arlington, Texas 76019 (United States)

    2014-05-07

    MnBi attracts great attention in recent years for its great potential as permanent magnet materials. MnBi phase is difficult to obtain because of the rather drastic peritectic reaction between Mn and Bi. In this paper, we report our effort on synthesizing high purity MnBi compound using conventional powder metallurgical approaches. Neutron diffraction was carried out to investigate the crystal and nuclear structure of the obtained powder. The result shows that the purity of the obtained powder is about 91 wt. % at 300 K, and the magnetic moment of the Mn atom in MnBi lattice is 4.424 and 4.013 μ{sub B} at 50 K and 300 K, respectively.

  2. Development of MnBi permanent magnet: Neutron diffraction of MnBi powder

    Energy Technology Data Exchange (ETDEWEB)

    Cui, J; Choi, JP; Li, G; Polikarpov, E; Darsell, J; Kramer, MJ; Zarkevich, NA; Wang, LL; Johnson, DD; Marinescu, M; Huang, QZ; Wu, H; Vuong, NV; Liu, JP

    2014-05-07

    MnBi attracts great attention in recent years for its great potential as permanent magnet materials. MnBi phase is difficult to obtain because of the rather drastic peritectic reaction between Mn and Bi. In this paper, we report our effort on synthesizing high purity MnBi compound using conventional powder metallurgical approaches. Neutron diffraction was carried out to investigate the crystal and nuclear structure of the obtained powder. The result shows that the purity of the obtained powder is about 91 wt. % at 300 K, and the magnetic moment of the Mn atom in MnBi lattice is 4.424 and 4.013 mu(B) at 50 K and 300 K, respectively. (C) 2014 AIP Publishing LLC.

  3. Role of the antiferromagnetic pinning layer on spin wave properties in IrMn/NiFe based spin-valves

    Energy Technology Data Exchange (ETDEWEB)

    Gubbiotti, G., E-mail: gubbiotti@fisica.unipg.it; Tacchi, S. [Istituto Officina dei Materiali del CNR (IOM-CNR), Unità di Perugia, I-06123 Perugia (Italy); Del Bianco, L. [Department of Physics and Astronomy, University of Bologna, I-40127 Bologna (Italy); Department of Physics and Earth Sciences and CNISM, University of Ferrara, I-44122 Ferrara (Italy); Bonfiglioli, E.; Giovannini, L.; Spizzo, F.; Zivieri, R. [Department of Physics and Earth Sciences and CNISM, University of Ferrara, I-44122 Ferrara (Italy); Tamisari, M. [Department of Physics and Earth Sciences and CNISM, University of Ferrara, I-44122 Ferrara (Italy); Dipartimento di Fisica e Geologia, Università di Perugia, I-06123 Perugia (Italy)

    2015-05-07

    Brillouin light scattering (BLS) was exploited to study the spin wave properties of spin-valve (SV) type samples basically consisting of two 5 nm-thick NiFe layers (separated by a Cu spacer of 5 nm), differently biased through the interface exchange coupling with an antiferromagnetic IrMn layer. Three samples were investigated: a reference SV sample, without IrMn (reference); one sample with an IrMn underlayer (10 nm thick) coupled to the bottom NiFe film; one sample with IrMn underlayer and overlayer of different thickness (10 nm and 6 nm), coupled to the bottom and top NiFe film, respectively. The exchange coupling with the IrMn, causing the insurgence of the exchange bias effect, allowed the relative orientation of the NiFe magnetization vectors to be controlled by an external magnetic field, as assessed through hysteresis loop measurements by magneto-optic magnetometry. Thus, BLS spectra were acquired by sweeping the magnetic field so as to encompass both the parallel and antiparallel alignment of the NiFe layers. The BLS results, well reproduced by the presented theoretical model, clearly revealed the combined effects on the spin dynamic properties of the dipolar interaction between the two NiFe films and of the interface IrMn/NiFe exchange coupling.

  4. Mn(II,III) oxidation and MnO2 mineralization by an expressed bacterial multicopper oxidase

    Science.gov (United States)

    Butterfield, Cristina N.; Soldatova, Alexandra V.; Lee, Sung-Woo; Spiro, Thomas G.; Tebo, Bradley M.

    2013-01-01

    Reactive Mn(IV) oxide minerals are ubiquitous in the environment and control the bioavailability and distribution of many toxic and essential elements and organic compounds. Their formation is thought to be dependent on microbial enzymes, because spontaneous Mn(II) to Mn(IV) oxidation is slow. Several species of marine Bacillus spores oxidize Mn(II) on their exosporium, the outermost layer of the spore, encrusting them with Mn(IV) oxides. Molecular studies have identified the mnx (Mn oxidation) genes, including mnxG, encoding a putative multicopper oxidase (MCO), as responsible for this two-electron oxidation, a surprising finding because MCOs only catalyze single-electron transfer reactions. Characterization of the enzymatic mechanism has been hindered by the lack of purified protein. By purifying active protein from the mnxDEFG expression construct, we found that the resulting enzyme is a blue (absorption maximum 590 nm) complex containing MnxE, MnxF, and MnxG proteins. Further, by analyzing the Mn(II)- and (III)-oxidizing activity in the presence of a Mn(III) chelator, pyrophosphate, we found that the complex facilitates both electron transfers from Mn(II) to Mn(III) and from Mn(III) to Mn(IV). X-ray absorption spectroscopy of the Mn mineral product confirmed its similarity to Mn(IV) oxides generated by whole spores. Our results demonstrate that Mn oxidation from soluble Mn(II) to Mn(IV) oxides is a two-step reaction catalyzed by an MCO-containing complex. With the purification of active Mn oxidase, we will be able to uncover its mechanism, broadening our understanding of Mn mineral formation and the bioinorganic capabilities of MCOs. PMID:23818588

  5. Self-assembly of linear [Mn II 2 Mn III ] units with end-on azido bridges: the construction of a ferromagnetic chain using S T = 7 high-spin trimers

    KAUST Repository

    Jiang, Yuan; Qin, Lei; Li, Guanghua; Abbas, Ghulam; Cao, Yaqun; Wu, Gang; Han, Tian; Zheng, Yan-Zhen; Qiu, Shilun

    2015-01-01

    © The Royal Society of Chemistry 2015. The controlled organization of high-spin complexes into 1D coordination polymers is a challenge in molecular magnetism. In this work, we report a ferromagnetic Mn trimer Mn3(HL)2(CH3OH)6(Br)4·Br·(CH3OH)21 (H2L

  6. Synthesis and Electrochemistry of Li3MnO4: Mn in the +5 OxidationState

    Energy Technology Data Exchange (ETDEWEB)

    Saint, Juliette.A.; Doeff, Marca M.; Reed, John

    2007-06-19

    Computational and experimental work directed at exploringthe electrochemical properties of tetrahedrally coordinated Mn in the +5oxidation state is presented. Specific capacities of nearly 700 mAh/g arepredicted for the redox processes of LixMnO4 complexes based on twotwo-phase reactions. One is topotactic extractionof Li from Li3MnO4 toform LiMnO4 and the second is topotactic insertion of Li into Li3MnO4 toform Li5MnO4. In experiments, it is found that the redox behavior ofLi3MnO4 is complicated by disproportionation of Mn5+ in solution to formMn4+ and Mn7+ and byother irreversible processes; although an initialcapacity of about 275 mAh/g in lithiumcells was achieved. Strategiesbased on structural considerations to improve the electrochemicalproperties of MnO4n- complexes are given.

  7. Preparation and certification of rice flour reference materials for trace elements analysis

    International Nuclear Information System (INIS)

    Cho, Kyung Haeng; Park, Chang Joon; Woo, Jin Choon; Suh, Jung Ki; Han, Myung Sub; Lee, Jong Hae

    1998-01-01

    Rice flour reference materials were prepared from the unpolished rice grown in korea and certified for elemental composition. The reference materials consist of two samples containing normal and high level. The reference material at elevated level was prepared by spiking to the normal rice flour six toxic elements of As, Cd, Cu, Cr, Hg, Pb with 1.0μg/g on a dry weight basis. Homogeneity of the prepared materials was evaluated through the determination of Ca, Cu, Fe, Mn, Zn by instrumental neutron activation analysis (INAA) and atomic absorption spectrometry (AAS). Small variance of elemental composition among inter-bottled samples assured homogeneity of the prepared materials. The materials were decomposed by high pres-sure digestion and microwave digestion method. INAA, AAS, inductively coupled plasma-atomic absorption spectrometry (ICP-AES), ICP-mass spectrometry (MS) and vapour generation techniques were employed to analyze the reference materials. From this independent analytical results, the certified or reference values are determined for As, Ca, Cd, Cr, Cu, Fe, Hg, K, Mg, Mn, Mo, Na, P, Pb, Se, Zn

  8. Paramagnetic resonance of Mn4+ and Mn2+ centers in lanthanum gallate single crystals

    Science.gov (United States)

    Vazhenin, V. A.; Potapov, A. P.; Guseva, V. B.; Artyomov, M. Yu.

    2010-03-01

    An increase in the manganese concentration in lanthanum gallate in the range 0.5-5.0% has been found to result in a complete replacement of individual Mn4+ ions by Mn2+ ions. The relative concentrations and binding energies of individual Mn4+, Mn3+, and Mn2+ ions have been determined. The spin Hamiltonians of the Mn2+ and Mn4+ centers in the rhombohedral and orthorhombic phases, respectively, have been constructed and the orientation of the principal axes of the fine-structure tensor of Mn4+ at room temperature has been found. The possibility of using electron paramagnetic resonance for determining the rotation angles of oxygen octahedra of lanthanum gallate with respect to the perovskite structure has been discussed.

  9. Origin of the 20-electron structure of Mg3 MnH7 : Density functional calculations

    Science.gov (United States)

    Gupta, M.; Singh, D. J.; Gupta, R.

    2005-03-01

    The electronic structure and stability of the 20-electron complex hydride, Mg3MnH7 is studied using density functional calculations. The heat of formation is larger in magnitude than that of MgH2 . The deviation from the 18-electron rule is explained by the predominantly ionic character of the band structure and a large crystal-field splitting of the Mn d bands. In particular, each H provides one deep band accomodating two electrons, while the Mn t2g bands hold an additional six electrons per formula unit.

  10. Fourier transform infrared emission spectra of MnH and MnD

    Science.gov (United States)

    Gordon, Iouli E.; Appadoo, Dominique R. T.; Shayesteh, Alireza; Walker, Kaley A.; Bernath, Peter F.

    2005-01-01

    Fourier transform infrared emission spectra of MnH and MnD were observed in the ground X7Σ + electronic state. The vibration-rotation bands from v = 1 → 0 to v = 3 → 2 for MnH and from v = 1 → 0 to v = 4 → 3 for MnD were recorded at an instrumental resolution of 0.0085 cm -1. Spectroscopic constants were determined for each vibrational level and equilibrium constants were found from a Dunham-type fit. The equilibrium vibrational constant ( ωe) for MnH was found to be 1546.84518(65) cm -1, the equilibrium rotational constant ( Be) is 5.6856789(103) cm -1 and the eqilibrium bond distance ( re) was determined to be 1.7308601(47) Å.

  11. Multilayers of GaAs/Mn deposited on a substrate of GaAs (001)

    International Nuclear Information System (INIS)

    Bernal-Salamanca, M; Pulzara-Mora, A; Rosales-Rivera, A; Molina-Valdovinos, S; Melendez-Lira, M; Lopez-Lopez, M

    2009-01-01

    In this work GaAs/Mn multilayers were deposited on GaAs (001) substrates by R.F magnetron sputtering technique, varying the deposition time (tg). Scanning electron and atomic force Microscopy studies were realized on the surface of the samples in order to determine the morphology and average roughness. X-ray diffraction spectra show that our samples tend to do amorphous. Raman spectroscopy at room temperature was employed to analyze the structural properties of the samples. We found that for a GaAs film taken as reference, the Raman spectra is dominated by the transverse (TO) and longitudinal (LO) modes located at 266 cm -1 and 291 cm -1 , respectively. However, for the GaAs/Mn multilayers the TO and LO modes decrease dramatically, and the Mn Raman modes in the range of 100 cm -1 and 250 cm -1 are evidenced. Additional new peaks located around 650 and 690 cm -1 are only observed for the samples with high Mn content. By using the mass reduced model we estimate that the Mn related peaks are located at 650.2 cm -1 and 695.2 cm -1 , in good agreement with the experimental data, these peaks are correlated with excitations due to (Mn) m As n localized structures.

  12. Calix[4]arene supported clusters: a dimer of [Mn(III)Mn(II)] dimers

    DEFF Research Database (Denmark)

    Taylor, Stephanie M; McIntosh, Ruaraidh D; Beavers, Christine M

    2011-01-01

    Phosphinate ligands allow for the transformation of a calix[4]arene supported [Mn(III)(2)Mn(II)(2)] tetramer cluster motif into an unusual [Mn(III)Mn(II)](2) dimer of dimers; the clusters self-assemble in the crystal to form bi-layer arrays reminiscent of the typical packing of calixarene solvates....

  13. Laser induced adjustment of the conductivity of rare earth doped Mn-Zn nanoferrite

    Directory of Open Access Journals (Sweden)

    El-Dek S. I.

    2017-10-01

    Full Text Available Two series of Mn-Zn nanoferrites (namely Mn1-xZnxFe2O4 and Mn1-xZnxFe2-yRyO4 were synthesized using standard ceramic technique. X-ray diffraction and FT-IR were employed in the chacterization of the nanopowder. The X-ray density for each sample increased after laser irradiation which was correlated with the decrease in the unit cell volume. The study involved the thermal and frequency variation of the dielectric constant and AC conductivity of the investigated samples before and after laser irradiation. The later altered the conductivity by decreasing its value for the rare earth doped samples except for the Sm3+ doped one. The results suggested the exploitation of Mn-Zn doped rare earth nanoferrites in many technological applications demanding high resistivity.

  14. ENDOR/ESR of Mn atoms and MnH molecules in solid argon

    Science.gov (United States)

    van Zee, R. J.; Garland, D. A.; Weltner, W., Jr.

    1986-09-01

    Mn atoms and MnH molecules, the latter formed by reaction between metal and hydrogen atoms, were trapped in solid argon and their ESR/ENDOR spectra measured at 4 K. At each pumping magnetic field two ENDOR lines were observed for 55Mn(I=5/2) atoms, corresponding to hyperfine transitions within the MS =±1/2 levels. Values of the hyperfine interaction constant and nuclear moment of 55Mn were derived from the six sets of data. For MnH, three sets of signals were detected: a proton ``matrix ENDOR'' line, transitions in the MS =0,±1 levels involving MI (55Mn)=1/2, 3/2, 5/2 levels, and proton transitions corresponding to νH and νH±aH. Analysis yielded the hyperfine constant aH =6.8(1) MHz and the nuclear quadrupole coupling constant Q'(55Mn)=-11.81(2) MHz. The latter compared favorably with a theoretical value derived earlier by Bagus and Schaefer. A higher term in the spin Hamiltonian appeared to be necessary to fit the proton hyperfine data.

  15. Synthesis, crystal structure, and vibrational spectroscopic and UV-visible studies of Cs{sub 2}MnP{sub 2}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Kaoua, Saida; Krimi, Saida [LPCMI, Faculte des Sciences Aien Chok, UH2C, Casablanca (Morocco); Pechev, Stanislav; Gravereau, Pierre; Chaminade, Jean-Pierre [CNRS, Universite de Bordeaux, ICMCB, 87, Avenue du Dr. A. Schweitzer, Pessac (France); Couzi, Michel [CNRS, Universite de Bordeaux, ISM, UMR 5255, F-33400 Talence (France); El Jazouli, Abdelaziz, E-mail: eljazouli_abdelaziz@yahoo.fr [LCMS, URAC 17, Faculte des Sciences Ben M' Sik, UH2MC, Casablanca (Morocco)

    2013-02-15

    A new member of the A{sub 2}MP{sub 2}O{sub 7} diphosphate family, Cs{sub 2}MnP{sub 2}O{sub 7}, has been synthesized and structurally characterized. The crystal structure was determined by single crystal X-Ray diffraction. Cs{sub 2}MnP{sub 2}O{sub 7} crystallizes in the orthorhombic system, space group Pnma ( Music-Sharp-Sign 62), with the unit cell parameters a=16.3398(3), b=5.3872(1), c=9.8872(2) A, Z=4 and V=870.33(3) A{sup 3}. The structure parameters were refined to a final R{sub 1}/wR{sub 2}=0.0194/0.0441 for 1650 observed reflections. The 2D framework of Cs{sub 2}MnP{sub 2}O{sub 7} structure consists of P{sub 2}O{sub 7} and MnO{sub 5} units. The corner-shared MnO{sub 5} and P{sub 2}O{sub 7} units are alternately arranged along the b axis to form [(MnO)P{sub 2}O{sub 7}]{sub {infinity}} chains. These chains are interconnected by an oxygen atom to form sheets parallel to the (b, c) plane. The cesium atoms are located between the sheets in 9- and 10-fold coordinated sites. The infrared and Raman vibrational spectra have been investigated. A factor group analysis leads to the determination of internal modes of (P{sub 2}O{sub 7}) groups. UV-visible spectrum consists of weak bands, between 340 and 700 nm, assigned to the forbidden d-d transitions of Mn{sup 2+} ion, and of a strong band around 250 nm, attributed to the O--Mn charge transfer. - Graphical abstract: Structure of Cs{sub 2}MnP{sub 2}O{sub 7}: The 2D structure of Cs{sub 2}MnP{sub 2}O{sub 7} is built from P{sub 2}O{sub 7} diphosphate groups and MnO{sub 5} square pyramids which share corners and form [(MnO)P{sub 2}O{sub 7}]{sub {infinity}} chains along b axis. These chains are interconnected by an oxygen atom to form wavy (MnP{sub 2}O{sub 7}){sup 2-} sheets parallel to the (b, c) plane. The cesium ions are located between these sheets in the inter-layers space, in zigzag positions. Highlights: Black-Right-Pointing-Pointer A new diphosphate, Cs{sub 2}MnP{sub 2}O{sub 7}, has been synthesized and structurally

  16. Monodispersed MnO nanoparticles with epitaxial Mn{sub 3}O{sub 4} shells

    Energy Technology Data Exchange (ETDEWEB)

    Berkowitz, A E; Rodriguez, G F [Department of Physics, University of California, San Diego La Jolla, CA 92093 (United States); Hong, J I; Fullerton, E E [Center for Magnetic Recording Research, University of California-San Diego La Jolla, CA 92093 (United States); An, K; Hyeon, T [National Creative Research Initiative Center for Oxide Nanocrystalline Materials, Seoul National University, Seoul 151-744 (Korea, Republic of); Agarwal, N; Smith, D J [School of Materials and Department of Physics, Arizona State University, Tempe, AZ 85287 (United States)

    2008-07-07

    We report the microstructural and magnetic properties of monodispersed nanoparticles (NPs) of antiferromagnetic MnO (T{sub N} = 118 K), with epitaxial ferrimagnetic Mn{sub 3}O{sub 4} (T{sub C} = 43 K) shells. Above T{sub C}, an unusually large magnetization is present, produced by the uncompensated spins (UCSs) on the surface of the MnO particles. These spins impart a net anisotropy to the MnO particles that is approximately three orders of magnitude larger than the bulk value. As a result, an anomalously high blocking temperature is exhibited by the MnO particles, and finite coercivity and exchange bias are present above T{sub C}. When field cooled below T{sub C}, a strong exchange bias was established in the Mn{sub 3}O{sub 4} shells as a result of high net anisotropy of the MnO particles. A large coercivity was also observed. Models of several aspects of the behaviour of this unusual system emphasized the essential role of the UCSs on the surfaces of the MnO NPs.

  17. Structure and magnetic transport properties of GdIn{sub 3−x}Mn{sub x} intermetallics

    Energy Technology Data Exchange (ETDEWEB)

    He, Qiang; Guo, Yongquan, E-mail: yqguo@ncepu.edu.cn; Liu, Hanyuan

    2016-03-01

    The crystal structures and magneto-transport properties of GdIn{sub 3−x}Mn{sub x} have been investigated using X-ray diffraction and magnetic and electric measurements. GdIn{sub 3−x}Mn{sub x} crystallize in cubic structure, and their lattice parameters tend to decrease with increasing Mn content due to the size effect at In site by Mn substitution for In. Mn doped GdIn{sub 3−x}Mn{sub x} order antiferromagnetically at low temperature. However, Mn doping into GdIn{sub 3} causes the decrease of Néel temperature due to the distortion of Gd(In,Mn){sub 3} tetrahedron formed by Gd at corners and (In,Mn) at face centers in unit cell. The resistivities of GdIn{sub 3−x}Mn{sub x} are going up with increasing Mn content. The electric phase transition is associated with the magnetic transition, and the magneto-transport follows electron–magnon scattering model in low temperature region and the Stoner spin fluctuation model in high temperature region, respectively. - Highlights: • Novel GdIn{sub 3−x}Mn{sub x} intermetallic compounds have been successfully prepared. • The lattice parameters tend to decrease with increasing Mn content. • GdIn{sub 3−x}Mn{sub x} orders antiferromagnetically at low temperature. • The strong correlation between the electric transport and magnetic state is observed.

  18. Magnetic properties of Heusler alloy Mn2RuGe and Mn2RuGa ribbons

    International Nuclear Information System (INIS)

    Yang, Ling; Liu, Bohua; Meng, Fanbin; Liu, Heyan; Luo, Hongzhi; Liu, Enke; Wang, Wenhong; Wu, Guangheng

    2015-01-01

    Heusler alloys Mn 2 RuGe and Mn 2 RuGa have been prepared by melt-spinning method successfully. Theoretical and experimental studies reveal a ferrimagnetic ground state in the two alloys. The Curie temperatures are 303 K for Mn 2 RuGe and 272 K for Mn 2 RuGa. The calculated total spin moments of Mn 2 RuGe and Mn 2 RuGa are integral values of 2.00 μ B and 1.03 μ B , respectively. And the theoretical spin polarization ratio is also quite high. However, due to the atomic disorder in the ribbons, the saturation moments of them measured at 5 K are smaller than the calculated values, especially that of Mn 2 RuGa. This coincides with the disappearance of the superlattice reflection (111) and (200) peaks in the XRD pattern of Mn 2 RuGa. Annealing Mn 2 RuGa ribbon at 773 K can enhance the atomic ordering. Both saturation magnetic moment and Curie temperature increase obviously after the heat treatment. - Highlights: • Mn 2 RuGe and Mn 2 RuGa have been prepared by melt-spinning successfully. • Ferrimagnetic ground state has been confirmed in Mn 2 RuGe and Mn 2 RuGa. • High spin polarization has been predicted in Mn 2 RuGe. • Melt-spinning can be a possible way to adjust the atomic order of Heusler alloys

  19. Electrochemical performances of LiMnPO4 synthesized from non-stoichiometric Li/Mn ratio.

    Science.gov (United States)

    Xiao, Jie; Chernova, Natasha A; Upreti, Shailesh; Chen, Xilin; Li, Zheng; Deng, Zhiqun; Choi, Daiwon; Xu, Wu; Nie, Zimin; Graff, Gordon L; Liu, Jun; Whittingham, M Stanley; Zhang, Ji-Guang

    2011-10-28

    In this paper, the influences of the lithium content in the starting materials on the final performances of as-prepared Li(x)MnPO(4) (x hereafter represents the starting Li content in the synthesis step which does not necessarily mean that Li(x)MnPO(4) is a single phase solid solution in this work.) are systematically investigated. It has been revealed that Mn(2)P(2)O(7) is the main impurity when Li Li(3)PO(4) begins to form once x > 1.0. The interactions between Mn(2)P(2)O(7) or Li(3)PO(4) impurities and LiMnPO(4) are studied in terms of the structural, electrochemical, and magnetic properties. At a slow rate of C/50, the reversible capacity of both Li(0.5)MnPO(4) and Li(0.8)MnPO(4) increases with cycling. This indicates a gradual activation of more sites to accommodate a reversible diffusion of Li(+) ions that may be related to the interaction between Mn(2)P(2)O(7) and LiMnPO(4) nanoparticles. Among all of the different compositions, Li(1.1)MnPO(4) exhibits the most stable cycling ability probably because of the existence of a trace amount of Li(3)PO(4) impurity that functions as a solid-state electrolyte on the surface. The magnetic properties and X-ray absorption spectroscopy (XAS) of the MnPO(4)·H(2)O precursor, pure and carbon-coated Li(x)MnPO(4) are also investigated to identify the key steps involved in preparing a high-performance LiMnPO(4). This journal is © the Owner Societies 2011

  20. High-pressure phase of the cubic spinel NiMn2O4

    DEFF Research Database (Denmark)

    Åsbrink, S.; Waskowska, A.; Olsen, J. Staun

    1998-01-01

    experimental uncertainty, there is no volume change at the transition. The cia ratio of the tetragonal spinel is almost independent of pressure and equal to 0.91. The phase transition is attributed to the Jahn-Teller-type distortion and the ionic configurationcan be assumed as (Mn3+)(tetr)[Ni2+Mn3+](oct......It has been observed that the fee spinel NiMn2O4 transforms to a tetragonal structure at about 12 GPa. The tetragonal phase does not revert to the cubic phase upon decompression and its unit-cell constants at ambient pressure are a(0)=8.65(8) and c(0)=7.88(15) Angstrom (distorted fee). Within thr......). The bulk modulus of the cubic phase is 206(4) GPa....

  1. Soil Conservation Unit for the Advanced Crop Production and Marketing Course. Student Reference. AGDEX 570.

    Science.gov (United States)

    Stewart, Bob R.; And Others

    This student reference booklet is designed to accompany lessons outlined in the companion instructor's guide on soil conservation. The soil conservation unit builds on competencies gained in Agricultural Science I and II. Informative material is provided for these eight lessons: benefits of conservation, land utilization, how soils are eroded,…

  2. Low-temperature molar heat capacities and entropies of MnO2 (pyrolusite), Mn3O4 (hausmanite), and Mn2O3 (bixbyite)

    Science.gov (United States)

    Robie, R.A.; Hemingway, B.S.

    1985-01-01

    Pyrolusite (MnO2), hausmanite (Mn3O4), and bixbyite (Mn2O3), are important ore minerals of manganese and accurate values for their thermodynamic properties are desirable to understand better the {p(O2), T} conditions of their formation. To provide accurate values for the entropies of these important manganese minerals, we have measured their heat capacities between approximately 5 and 380 K using a fully automatic adiabatically-shielded calorimeter. All three minerals are paramagnetic above 100 K and become antiferromagnetic or ferrimagnetic at lower temperatures. This transition is expressed by a sharp ??-type anomaly in Cpmo for each compound with Ne??el temperatures TN of (92.2??0.2), (43.1??0.2), and (79.45??0.05) K for MnO2, Mn3O4, and Mn2O3, respectively. In addition, at T ??? 308 K, Mn2O3 undergoes a crystallographic transition, from orthorhombic (at low temperatures) to cubic. A significant thermal effect is associated with this change. Hausmanite is ferrimagnetic below TN and in addition to the normal ??-shape of the heat-capacity maxima in MnO2 and Mn2O3, it has a second rounded maximum at 40.5 K. The origin of this subsidiary bump in the heat capacity is unknown but may be related to a similar "anomalous bump" in the curve of magnetization against temperature at about 39 K observed by Dwight and Menyuk.(1) At 298.15 K the standard molar entropies of MnO2, Mn3O4, and Mn2O3, are (52.75??0.07), (164.1??0.2), and (113.7??0.2) J??K-1??mol-1, respectively. Our value for Mn3O4 is greater than that adopted in the National Bureau of Standards tables(2) by 14 per cent. ?? 1985.

  3. XPS and EELS characterization of Mn{sub 2}SiO{sub 4}, MnSiO{sub 3} and MnAl{sub 2}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Grosvenor, A.P., E-mail: andrew.grosvenor@usask.ca [Department of Chemistry, University of Saskatchewan, Saskatoon, SK S7N 5C9 (Canada); Bellhouse, E.M., E-mail: erika.bellhouse@arcelormittal.com [Global R & D—Hamilton, ArcelorMittal Dofasco, 1330 Burlington St. E, Hamilton, ON L8N 3J5 (Canada); Korinek, A., E-mail: korinek@mcmaster.ca [Canadian Centre for Electron Microscopy, Brockhouse Institute for Materials Research, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4M1 (Canada); Bugnet, M., E-mail: bugnetm@mcmaster.ca [Canadian Centre for Electron Microscopy, Brockhouse Institute for Materials Research, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4M1 (Canada); McDermid, J.R., E-mail: mcdermid@mcmaster.ca [Steel Research Centre, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4M1 (Canada)

    2016-08-30

    Graphical abstract: XPS and EELS spectra were acquired from Mn2Al2O4, MnSiO3 and Mn2SiO4 standards and unique features identified that will allow unambiguous identification of these compounds when studying the selective oxidation of advanced steels. - Highlights: • Mn2Al2O4, MnSiO3 and Mn2SiO4 standards were synthesized and characterized using both XPS and EELS. • Unique features in both the XPS high resolution and EELS spectra were identified for all compounds. • The spectra can be used to identify these compounds when studying the selective oxidation of steels. - Abstract: X-ray Photoelectron Spectroscopy (XPS) and Electron Energy Loss Spectroscopy (EELS) are strong candidate techniques for characterizing steel surfaces and substrate-coating interfaces when investigating the selective oxidation and reactive wetting of advanced high strength steels (AHSS) during the continuous galvanizing process. However, unambiguous identification of ternary oxides such as Mn{sub 2}SiO{sub 4}, MnSiO{sub 3}, and MnAl{sub 2}O{sub 4} by XPS or EELS, which can play a significant role in substrate reactive wetting, is difficult due to the lack of fully characterized standards in the literature. To resolve this issue, samples of Mn{sub 2}SiO{sub 4}, MnSiO{sub 3} and MnAl{sub 2}O{sub 4} were synthesized and characterized by XPS and EELS. The unique features of the XPS and EELS spectra for the Mn{sub 2}SiO{sub 4}, MnSiO{sub 3} and MnAl{sub 2}O{sub 4} standards were successfully derived, thereby allowing investigators to fully differentiate and identify these oxides at the surface and subsurface of Mn, Si and Al alloyed AHSS using these techniques.

  4. Mn induced 1 × 2 reconstruction in the τ-MnAl(0 0 1) surface

    Science.gov (United States)

    Guerrero-Sánchez, J.; Takeuchi, Noboru

    2018-05-01

    We report on first principles total energy calculations to describe the structural, electronic and magnetic properties of MnAl(0 0 1) surfaces. We have concentrated in structural models having 1 × 1 and 1 × 2 periodicities, since recent experiments of the similar MnGa(0 0 1) surface have found 1 × 1 and 1 × 2 reconstructions. Our calculations show the existence of two stable structures for different ranges of chemical potential. A 1 × 1 surface is stable for Al-rich conditions, whereas a Mn-induced 1 × 2 reconstruction appears after increasing the Mn chemical potential up to Mn-rich conditions. It is important to notice that experimentally, Mn rich conditions are important for improved magnetic properties. The Mn layers in both structures have ferromagnetic arrangements, but they are aligned antiferromagnetically with the almost no magnetic Al atoms. Moreover, the on top Mn atoms, which produce the 1 × 2 reconstruction, align antiferromagnetically with the second layer Mn atoms. These findings are similar to those obtained experimentally in MnGa thin films grown by molecular beam epitaxy. Therefore, this method could also be used to grow the proposed MnAl films.

  5. Impurity model for mixed-valent Mn3+/Mn4+ ions

    International Nuclear Information System (INIS)

    Schlottmann, P.; Lee, K.

    1997-01-01

    Intermediate valent tri- and tetravalent manganese ions play an important role in LaMnO 3 -based systems. We consider a Mn impurity with five orbitals in cubic symmetry which hybridize with conduction electrons. The exchange interaction in the d shell maximizes the impurity spin. We study the valence of the Mn impurity as a function of the splitting of the e g to t 2g orbitals in zero magnetic field and for the totally spin-polarized state. The lifting of the degeneracy of the e g levels due to a small quadrupolar field, related to the Mn-O bond length or a Jahn-Teller effect, is also investigated. Possible implications on the magnetoresistance are discussed. copyright 1997 The American Physical Society

  6. The Submillimeter Spectrum of MnH and MnD (X7Σ+)

    Science.gov (United States)

    Halfen, D. T.; Ziurys, L. M.

    2008-01-01

    The submillimeter-wave spectrum of the MnH and MnD radicals in their 7Σ+ ground states has been measured in the laboratory using direct absorption techniques. These species were created in the gas phase by the reaction of manganese vapor, produced in a Broida-type oven, with either H2 or D2 gas in the presence of a DC discharge. The N = 0 → 1 transition of MnH near 339 GHz was recorded, which consisted of multiple hyperfine components arising from both the manganese and hydrogen nuclear spins. The N = 2 → 3 transition of MnD near 517 GHz was measured as well, but in this case only the manganese hyperfine interactions were resolved. Both data sets were analyzed with a Hund's case b Hamiltonian, and rotational, fine structure, magnetic hyperfine, and electric quadrupole constants have been determined for the two manganese species. An examination of the magnetic hyperfine constants shows that MnH is primarily an ionic species, but has more covalent character than MnF. MnH is a good candidate species for astronomical searches with Herschel, particularly toward material associated with luminous blue variable stars.

  7. Intramolecular electron transfer in cyanide bridged adducts comprising Ru(II)/Ru(III) tetracarboxylate and [Mn(I)(CO)(CN)((t)BuNC)(4)] units.

    Science.gov (United States)

    Imhof, Wolfgang; Sterzik, Anke; Krieck, Sven; Schwierz, Markus; Hoffeld, Thomas; Spielberg, Eike T; Plass, Winfried; Patmore, Nathan

    2010-07-21

    Reaction of mixed valence ruthenium tetracarboxylates [Ru(2)(II,III)(R(1)COO)(2)(R(2)COO)(2)Cl] (R(1) = Me, R(2) = 2,4,6-(i)Pr-Ph or R(1) = R(2) = (t)Bu) with two equivalents of the octahedral manganese complex [Mn(I)(CO)(CN)((t)BuNC)(4)] leads to the formation of cyanide bridged heteronuclear coordination compounds of the general formula {[Ru(2)(II,III)(R(1)COO)(2)(R(2)COO)(2)][Mn(I)(CO)(CN)((t)BuNC)(4)](2)}Cl. In solution an intramolecular electron transfer from manganese towards the multiply bonded Ru(2) core occurs that is verified by EPR and IR spectroscopy, magnetic measurements and DFT calculations. Nevertheless, disproportionation of an initially formed {Mn(I)-Ru(2)(II,III)-Mn(I)}(+) adduct into {Mn(II)-Ru(2)(II,III)-Mn(I)}(2+) and {Mn(I)-Ru(2)(II,II)-Mn(I)} species cannot be completely ruled out.

  8. Structural and magnetic properties of layered perovskite manganite LaCaBiMn2O7

    Directory of Open Access Journals (Sweden)

    Oubla M.

    2013-09-01

    Full Text Available The layered perovskite oxide, LaCaBiMn2O7, has been prepared by the conventional aqueous solution precipitation method. The powder X-ray diffraction studies suggest that the phase crystallizes with tetragonal unit cell in the space group I4/mmm. The magnetic properties suggest that the ferromagnetic interactions are dominant and manganese ion in the phase is present in mixed valence states Mn3+and Mn4+. The thermomagnetization curve is found to obey the Bloch law. Spin wave stiffness constant D and the approximate value for JMnMnexchange interaction were estimated from the experimental results.

  9. Evaluation of erosion-corrosion resistance in Fe-Mn-Al austenitic steels

    Directory of Open Access Journals (Sweden)

    William Arnulfo Aperador

    2013-04-01

    Full Text Available In this paper, the effects of Mn and Al against corrosion/errosion resistance of three samples of the Fe-Mn-Al austenitic alloys are evaluated. The samples have composition Fe-(4,9 ~ 11,0 wt. (% Al-(17,49 ~ 34,3 wt. (% Mn-(0,43 ~ 1,25 wt. (%C, those were prepared in an induction furnace from high purity materials. The alloys were evaluated in a composed solution of NaCl 0,5 M and Silica in a special chamber and AISI 316 stainless steel as reference material. The electrochemical characterization was performed by Tafel curve polarizations technique. This microstructural characterization was by Scanning Electron Microscopy (SEM. It was observed the significant decrease in the corrosion rate for steels Fermanal with a lower percentage of aluminum and manganese under conditions of dynamic corrosion and erosion-corrosion. SEM allows assessment of the dominant damage mechanisms and corroborated the results obtained by electrochemical measurements.

  10. Controllable synthesis, crystal structure and magnetic properties of Monomer-Dimer Cocrystallized MnIII Salen-type composite material

    Science.gov (United States)

    Wu, Qiong; Wu, Wei; Wu, Yongmei; Li, Weili; Qiao, Yongfeng; Wang, Ying; Wang, Baoling

    2018-04-01

    By the reaction of manganese-Schiff-base complexes with penta-anionic Anderson heteropolyanion, a new supramolecular architecture [Mn2(Salen)2(H2O)2][Mn(Salen)(H2O)2]2Na[IMo6O24]·8H2O (1) (salen = N,N‧-ethylene-bis (salicylideneiminate) has been isolated. Compound 1 was characterized by the single-crystal X-ray diffraction, elemental, IR and thermal gravimetric analyses. Structural analysis reveals that the unit cell simultaneously contains MnIII-Salen dimer and monomer cation fragments, for which the Anderson-type polyanions serve as counter anions. In the packing arrangement, all the MnIII dimers are well separated by polyoxometalate units and form tertiary structure together with MnIII monomers. Interestingly, different from the previous work, in the exact same reaction conditions, we are able to template MnIII-Salen complexes into different configurations by varying the charge state of polyanions. Besides, the magnetic properties of 1 were also examined by using both dc and ac magnetic field of the superconducting quantum interference devices. Most importantly, our fitting of the experimental data to a Heisenberg-type spin model shows that there exists a ferromagnetic exchange interaction ∼5 K between the spins (S = 2) on MnIII in the dimer, while antiferromagnetic ones exist among monomers and dimer (∼2 K). This meta-magnetic state could induce a slight spin frustration at low temperature, which would in turn affect the magnetic behavior. In addition, our ac field measurement of the susceptibilities suggests a typical signature for a single-molecule magnet.

  11. Photoionization study of Ne-like K9+, Ca10+, Sc11+, Ti12+, V13+, Cr14+, Mn15+, and Fe16+ ions using the screening constant by unit nuclear charge method

    International Nuclear Information System (INIS)

    Goyal, Arun; Khatri, Indu; Sow, Malick; Sakho, Ibrahima; Aggarwal, Sunny; Singh, A.K.; Mohan, Man

    2016-01-01

    Photoionization of the 2s 2 2p 6 ( 1 S 0 ) ground state of the Ne-like (Z=19–29) ions is presented in this paper. Resonance energies and total natural width of the 2s2p 6 np 1 P series of the Ne-like K 9+ , Ca 10+ , Sc 11+ , Ti 12+ , V 13+ , Cr 14+ , Mn 15+ , and Fe 16+ are reported. All the calculations are made using the Screening constant by unit nuclear charge (SCUNC) formalism. New data for Ne-like K 9+ , Sc 11+ , Ti 12+ , V 13+ , Cr 14+ , and Mn 15+ ions are tabulated. Good agreements are found with available literature data. - Highlights: • Photoionization of ground state of the Ne-like (Z=19–29) presented. • good agreements with scarce literature data. • New data for Ne-like K 9+ , Sc 11+ , Ti 12+ , V 13+ , Cr 14+ , and Mn 15+ ions. • Useful guidelines for application in laboratory, astrophysics, and plasma physics.

  12. Formation process and superparamagnetic properties of (Mn,Ga)As nanocrystals in GaAs fabricated by annealing of (Ga,Mn)As layers with low Mn content

    DEFF Research Database (Denmark)

    Sadowski, Janusz; Domagala, Jaroslaw Z.; Mathieu, Roland

    2011-01-01

    °C) annealing of (Ga,Mn)As layers with Mn concentrations between 0.1% and 2%, grown by molecular beam epitaxy at 270°C. Decomposition of (Ga,Mn)As is already observed at the lowest annealing temperature of 400°C for layers with initial Mn content of 1% and 2%. Both cubic and hexagonal (Mn......,Ga)As nanocrystals, with similar diameters of 7-10 nm, are observed to coexist in layers with an initial Mn content of 0.5% and 2% after higher-temperature annealing. Measurements of magnetization relaxation in the time span 0.1-10 000 s provide evidence for superparamagnetic properties of the (Mn,Ga)As nanocrystals......X-ray diffraction, transmission electron microscopy, and magnetization measurements are employed to study the structural and magnetic properties of Mn-rich (Mn,Ga)As nanocrystals embedded in GaAs. These nanocomposites are obtained by moderate-temperature (400°C) and high-temperature (560°C and 630...

  13. Magnetic interactions in martensitic Ni-Mn based Heusler systems

    Energy Technology Data Exchange (ETDEWEB)

    Aksoy, Seda

    2010-04-22

    In this work, magnetic, magnetocaloric and structural properties are investigated in Ni-Mn-based martensitic Heusler alloys with the aim to tailor these properties as well as to understand in detail the magnetic interactions in the various crystallographic states of these alloys. We choose Ni{sub 50}Mn{sub 34}In{sub 16} as a prototype which undergoes a martensitic transformation and exhibits field-induced strain and the inverse magnetocaloric effect. Using the structural phase diagram of martensitic Ni-Mn-based Heusler alloys, we substitute gallium and tin for indium to carry these effects systematically closer to room temperature by shifting the martensitic transformation. A magneto-calorimeter is designed and built to measure adiabatically the magnetocaloric effect in these alloys. The temperature dependence of strain under an external magnetic field is studied in Ni{sub 50}Mn{sub 50-x}Z{sub x} (Z: Ga, Sn, In and Sb) and Ni{sub 50}Mn{sub 34}In{sub 16-x}Z{sub x} (Z: Ga and Sn). An argument based on the effect of the applied magnetic field on martensite nucleation is adopted to extract information on the direction of the magnetization easy axis in the martensitic unit cell in Heusler alloys. Parallel to these studies, the structure in the presence of an external field is also studied by powder neutron diffraction. It is demonstrated that martensite nucleation is influenced by cooling the sample under a magnetic field such that the austenite phase is arrested within the martensitic state. The magnetic interactions in Ni{sub 50}Mn{sub 37}Sn{sub 13} and Ni{sub 50}Mn{sub 40}Sb{sub 10} are characterized by using neutron polarization analysis. Below the martensitic transformation temperature, M{sub s}, an antiferromagnetically correlated state is found. Ferromagnetic resonance experiments are carried out on Ni{sub 50}Mn{sub 37}Sn{sub 13} and Ni{sub 50}Mn{sub 34}In{sub 16} to gain more detailed information on the nature of the magnetic interactions. The experimental

  14. Transition probabilities and dissociation energies of MnH and MnD molecules

    International Nuclear Information System (INIS)

    Nagarajan, K.; Rajamanickam, N.

    1997-01-01

    The Frank-Condon factors (vibrational transition probabilities) and r-centroids have been evaluated by the more reliable numerical integration procedure for the bands of A-X system of MnH and MnD molecules, using a suitable potential. By fitting the Hulburt- Hirschfelder function to the experimental potential curve using correlation coefficient, the dissociation energy for the electronic ground states of MnH and MnD molecules, respectively have been estimated as D 0 0 =251±5 KJ.mol -1 and D 0 0 =312±6 KJ.mol -1 . (authors)

  15. AC susceptibility, XRD and DSC studies of Sm1-xGdxMn2Si2 silicides

    International Nuclear Information System (INIS)

    Kervan, S.; Kilic, A.; Gencer, A.

    2004-01-01

    X-ray powder diffraction, AC susceptibility and differential scanning calorimetry (DSC) studies were performed on the polycrystalline Sm 1-x Gd x Mn 2 Si 2 (0≤x≤1) compounds. All compounds investigated crystallize in the body-centered tetragonal ThCr 2 Si 2 -type structure with the space group I4/mmm. Substitution of Gd for Sm leads to a linear decrease of the lattice constants and the unit cell volume. The lattice constants and the unit cell volume obey Vegard's law. At low temperatures, the rare earth sublattice orders and reconfigures the ordering in the Mn sublattice. The samples with x=0.6 and 0.8 exhibit spin reorientation phenomenon. The Neel temperature T N (Mn) determined by DSC technique and the Curie temperature T C (RE) increase linearly with increasing Gd content x. The results are summarized in the x-T magnetic phase diagram

  16. Demographic and clinical characteristics of patients referred to psychiatric unit in a tertiary care hospital

    International Nuclear Information System (INIS)

    Yousafzai, A.W.; Kazim, M.; Jehangiri, A.U.R.

    2015-01-01

    Very few studies from Pakistan have examined the profile of patients seen by psychiatrists in general hospital. The aim of this research is to describe the clinical and demographic characteristics of patients referred to the psychiatric unit of a general hospital over a one year period. Methods: This cross-sectional study was conducted at the Ayub Teaching Hospital, Abbottabad, from January 1st to December 31st 2012. All patients being referred to psychiatry were included in the study over one year period. The information was recorded on a structured questionnaire and analysed the data using SPSS-19.0. Results: Out of the 105 patients referred to the psychiatric unit, 74 (72.3%) were females. A total of 69 (68.5%) patients were married. More than half were uneducated and only number 4 (3%) patients had university qualification. Housewives made up 64.4% of the patient population followed by students (11%). Majority 55 (53%) had less than Rs. 5000/ monthly income. About 30% patients were shifted to psychiatry ward while, nearly one tenth were discharged. In 35% cases the psychiatrist was asked to help in the management, while in 50% cases only opinion was sought. Aggressive and threatening behaviour was source of concern in majority of patients for the primary team while 34% exhibited suicidal behaviour. Depression was most frequent diagnosis in 45 43% patients, followed by conversion disorder 19 (17%) and delirium 16 (14%). Conclusion: The rate of psychiatric referrals is dismal with only one third of the patients being transferred to the psychiatric ward. The major psychiatric diagnosis was depression. Patients with aggressive and threatening behaviour were more frequently referred. (author)

  17. Multilayers of GaAs/Mn deposited on a substrate of GaAs (001)

    Energy Technology Data Exchange (ETDEWEB)

    Bernal-Salamanca, M; Pulzara-Mora, A; Rosales-Rivera, A [Laboratorio de Magnetismo y Materiales Avanzados, Universidad Nacional de Colombia, Sede Manizales, A.A. 127 (Colombia); Molina-Valdovinos, S; Melendez-Lira, M [Physics Department, Centro de Investigacion y Estudios Avanzados del IPN, Av. IPN No. 2508, Apartado Postal 14-740, 07000 Mexico D.F (Mexico); Lopez-Lopez, M, E-mail: aopulzaram@unal.edu.c [Centro de Fisica Aplicada y Tecnologia Avanzada, Universidad Nacional Autonoma de Mexico, Apartado Postal 1-1010, Queretaro 76000 (Mexico)

    2009-05-01

    In this work GaAs/Mn multilayers were deposited on GaAs (001) substrates by R.F magnetron sputtering technique, varying the deposition time (tg). Scanning electron and atomic force Microscopy studies were realized on the surface of the samples in order to determine the morphology and average roughness. X-ray diffraction spectra show that our samples tend to do amorphous. Raman spectroscopy at room temperature was employed to analyze the structural properties of the samples. We found that for a GaAs film taken as reference, the Raman spectra is dominated by the transverse (TO) and longitudinal (LO) modes located at 266 cm{sup -1} and 291 cm{sup -1}, respectively. However, for the GaAs/Mn multilayers the TO and LO modes decrease dramatically, and the Mn Raman modes in the range of 100 cm{sup -1} and 250 cm{sup -1} are evidenced. Additional new peaks located around 650 and 690 cm {sup -1} are only observed for the samples with high Mn content. By using the mass reduced model we estimate that the Mn related peaks are located at 650.2 cm{sup -1} and 695.2 cm{sup -1}, in good agreement with the experimental data, these peaks are correlated with excitations due to (Mn){sub m}As{sub n} localized structures.

  18. Correlation of Mn charge state with the electrical resistivity of Mn doped indium tin oxide thin films

    KAUST Repository

    Kumar, S. R. Sarath

    2010-09-15

    Correlation of charge state of Mn with the increase in resistivity with Mn concentration is demonstrated in Mn-doped indium tin oxide films. Bonding analysis shows that Mn 2p3/2 core level can be deconvoluted into three components corresponding to Mn2+ and Mn4+ with binding energies 640.8 eV and 642.7 eV, respectively, and a Mn2+ satellite at ∼5.4 eV away from the Mn2+ peak. The presence of the satellite peak unambiguously proves that Mn exists in the +2 charge state. The ratio of concentration of Mn2+ to Mn4+ of ∼4:1 suggests that charge compensation occurs in the n-type films causing the resistivity increase.

  19. Correlation of Mn charge state with the electrical resistivity of Mn doped indium tin oxide thin films

    KAUST Repository

    Kumar, S. R. Sarath; Hedhili, Mohamed N.; Alshareef, Husam N.; Kasiviswanathan, S.

    2010-01-01

    Correlation of charge state of Mn with the increase in resistivity with Mn concentration is demonstrated in Mn-doped indium tin oxide films. Bonding analysis shows that Mn 2p3/2 core level can be deconvoluted into three components corresponding to Mn2+ and Mn4+ with binding energies 640.8 eV and 642.7 eV, respectively, and a Mn2+ satellite at ∼5.4 eV away from the Mn2+ peak. The presence of the satellite peak unambiguously proves that Mn exists in the +2 charge state. The ratio of concentration of Mn2+ to Mn4+ of ∼4:1 suggests that charge compensation occurs in the n-type films causing the resistivity increase.

  20. High temperature strength and aging behavior of 12%Cr-15%Mn austenitic steels

    International Nuclear Information System (INIS)

    Miyahara, Kazuya; Bae, Dong-Su; Sakai, Hidenori; Hosoi, Yuzo

    1993-01-01

    High Mn-Cr austenitic steels are still considered to be an important high temperature structural material from the point of view of reduced radio-activation. The objective of the present study is to make a fundamental research of mechanical properties and microstructure of 12%Cr-15%Mn austenitic steels. Especially the effects of alloying elements of V and Ti on the mechanical properties and microstructure evolution of high Mn-Cr steels were studied. Precipitation behaviors of carbides, nitrides and σ phase are investigated and their remarkable effects on the high temperature strength are found. The addition of V was very effective for strengthening the materials with the precipitation of fine VN. Ti was also found to be beneficial for the improvement of high temperature strength properties. The results of high temperature strengths of the 12Cr-15Mn austenitic steels were compared with those of the other candidate and/or reference materials, for example, JFMS (modified 9Cr-2Mo ferritic stainless steel) and JPCAs (modified 316 austenitic stainless steels). (author)

  1. Synthesis and crystal structure of the cesium silver permanganate Cs_3Ag[MnO_4]_4

    International Nuclear Information System (INIS)

    Bauchert, Joerg M.; Henning, Harald; Schleid, Thomas

    2012-01-01

    After successful syntheses and structural refinements of the already known permanganates of cesium (Cs[MnO_4]) and silver (Ag[MnO_4]) we started to blend aqueous solutions of both components in various molar ratios. From crystallization experiments of these mixtures only three species of crystals with different chemical compositions were obtained: tricesium monosilver tetrakispermanganate (Cs_3Ag[MnO_4]_4) and, depending upon the respective ratio, either additional silver permanganate or surplus cesium permanganate, namely. The new title compound crystallizes in the orthorhombic space group Pnnm (no. 58) with two formula units per unit cell and cell dimensions of a = 764.53(4), b = 1883.57(9) and c = 584.34(3) pm. The crystal structure of Cs_3Ag[MnO_4]_4 consists of two crystallographically distinguishable cesium cations. (Cs1)"+ is surrounded by fourteen oxygen atoms constructing a slightly distorted bicapped hexagonal prism. These polyhedra are connected through edge-sharing with two other polyhedra of this kind to form chains along [001]. The chains are linked to each other via sixfold coordinated Ag"+ cations (d(Ag-O) = 238-246 pm), arranged in such a manner that they link three oxygen atoms of two cesium polyhedra, leading to a two-dimensional layer spreading out parallel to the (001) plane. Together with the two crystallographically different tetrahedral oxomanganate(VII) anions [MnO_4]"- (d(Mn-O) = 161-162 pm) the other kind of cesium cations ((Cs2)"+ with CN = 13) finally connect these layers three-dimensionally. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Enhanced Cycleability of Amorphous MnO₂ by Covering on α-MnO₂ Needles in an Electrochemical Capacitor.

    Science.gov (United States)

    Liu, Quanbing; Ji, Shan; Yang, Juan; Wang, Hui; Pollet, Bruno G; Wang, Rongfang

    2017-08-24

    An allomorph MnO₂@MnO₂ core-shell nanostructure was developed via a two-step aqueous reaction method. The data analysis of Scanning Electron Microscopy, Transmission Electron Microscopy, X-Ray Diffraction and N₂ adsorption-desorption isotherms experiments indicated that this unique architecture consisted of a porous layer of amorphous-MnO₂ nano-sheets which were well grown onto the surface of α-MnO₂ nano-needles. Cyclic voltammetry experiments revealed that the double-layer charging and Faradaic pseudo -capacity of the MnO₂@MnO₂ capacitor electrode contributed to a specific capacitance of 150.3 F·g -1 at a current density of 0.1 A·g -1 . Long cycle life experiments on the as-prepared MnO₂@MnO₂ sample showed nearly a 99.3% retention after 5000 cycles at a current density of 2 A·g -1 . This retention value was found to be significantly higher than those reported for amorphous MnO₂-based capacitor electrodes. It was also found that the remarkable cycleability of the MnO₂@MnO₂ was due to the supporting role of α-MnO₂ nano-needle core and the outer amorphous MnO₂ layer.

  3. Influence of Mn-dopant on the properties of α-FeOOH particles precipitated in highly alkaline media

    International Nuclear Information System (INIS)

    Krehula, Stjepko; Music, Svetozar

    2006-01-01

    The effects of Mn-dopant on the formation of solid solutions α-(Fe, Mn)OOH in dependence on the initial concentration ratio r = [Mn]/([Mn] + [Fe]), as well as on the size and morphology of the corresponding particles were investigated using Moessbauer and FT-IR spectroscopies, high-resolution scanning electron microscopy (FE SEM) and an energy dispersive X-ray analyser (EDS). The value of the hyperfine magnetic field of 34.9 T, as recorded for the reference α-FeOOH sample at RT, decreased linearly up to 21.4 T for sample with r = 0.1667. Only a paramagnetic doublet at RT was recorded for sample with r = 0.2308, a ferrite phase was additionally found for r = 0.3333. Fe-OH bending IR bands, δ OH and γ OH , were influenced by the Mn-substitution as manifested through their gradual shifts. FE SEM micrographs showed a great elongation of the starting acicular particles along the c-axis with an increase in Mn-doping. For r = 0.1667 and 0.2308 star-shaped and dendritic twin α-(Fe, Mn)OOH particles were observed. The length of these α-(Fe, Mn)OOH particles decreased, whereas their width increased. The α-Fe 2 O 3 phase was not detected in any of the samples prepared

  4. Magnetic phase change in Mn-doped ZnSnAs2 thin films depending on Mn concentration

    Science.gov (United States)

    Uchitomi, Naotaka; Hidaka, Shiro; Saito, Shin; Asubar, Joel T.; Toyota, Hideyuki

    2018-04-01

    The relationship between Mn concentration and Curie temperature (TC) is studied for Mn-doped ZnSnAs2 ferromagnetic semiconductors, epitaxially grown on InP substrates by molecular beam epitaxy. In the ferromagnetic phase, Mn distributions in a (Zn,Mn,Sn)As2 thin film with 7.2 cation percent (cat. %) Mn are investigated using three-dimensional atom probe tomography. The results indicate an inhomogeneous distribution which spreads to a relatively high Mn concentration of 9.0 at. % (at. %). In the paramagnetic phase, it is found that the paramagnetic to ferromagnetic transition takes place sharply with a TC of 334 K when the Mn doping concentration increases to about 4 cat. % Mn, which corresponds to a magnetic percolation threshold for ferromagnetism in (Zn,Mn,Sn)As2. An effective Curie temperature ⟨TC⟩ is considered to bridge the Curie temperatures obtained experimentally to those calculated theoretically in inhomogeneous magnetic semiconductors. The behavior of magnetism in Mn-doped ZnSnAs2 can be explained by three different phases within the present framework.

  5. A hierarchical nanostructure consisting of amorphous MnO{sub 2}, Mn{sub 3}O{sub 4} nanocrystallites, and single-crystalline MnOOH nanowires for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Chi-Chang; Hung, Ching-Yun [Department of Chemical Engineering, National Tsing Hua University, Hsin-Chu 30013 (China); Chang, Kuo-Hsin [Department of Chemical Engineering, National Tsing Hua University, Hsin-Chu 30013 (China); Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 621 (China); Yang, Yi-Lin [Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 621 (China)

    2011-01-15

    In this communication, a porous hierarchical nanostructure consisting of amorphous MnO{sub 2} (a-MnO{sub 2}), Mn{sub 3}O{sub 4} nanocrystals, and single-crystalline MnOOH nanowires is designed for the supercapacitor application, which is prepared by a simple two-step electrochemical deposition process. Because of the gradual co-transformation of Mn{sub 3}O{sub 4} nanocrystals and a-MnO{sub 2} nanorods into an amorphous manganese oxide, the cycle stability of a-MnO{sub 2} is obviously enhanced by adding Mn{sub 3}O{sub 4}. This unique ternary oxide nanocomposite with 100-cycle CV activation exhibits excellent capacitive performances, i.e., excellent reversibility, high specific capacitances (470 F g{sup -1} in CaCl{sub 2}), high power property, and outstanding cycle stability. The highly porous microstructures of this composite before and after the 10,000-cycle CV test are examined by means of scanning electron microscopy (SEM) and transmission electron microscopy (TEM). (author)

  6. Novel detached system to MnCO3 nanowires: A self-sacrificing template for homomorphous Mn3O4 and α-Mn2O3 nanostructures

    International Nuclear Information System (INIS)

    Lei Shuijin; Peng Xiaomin; Li Xiuping; Liang Zhihong; Yang Yi; Cheng Baochang; Xiao Yanhe; Zhou Lang

    2011-01-01

    Research highlights: → A novel detached system along with solvothermal treatment was developed. → Radially aggregated MnCO 3 nanowires were successfully fabricated. → The detached system, solvent, surfactant and reaction time were important. → MnCO 3 nanowires could act as the self-sacrificing template for Mn 3 O 4 and α-Mn 2 O 3 . - Abstract: MnCO 3 , an important raw material, exhibits attractive properties and significant industrial applications. However, few concerns have been raised on the fabrication of its 1D nanostructures. In this paper, a novel detached system was successfully employed for the preparation of MnCO 3 nanowires by a surfactant-assisted solvothermal treatment using N,N-dimethylformamide as the solvent and cetyltrimethylammonium bromide as the surfactant. X-ray powder diffraction, scanning electron microscopy and transmission electron microscopy were employed to study the crystal structure and morphologies of the products. Experiments showed that the detached system, solvent, surfactant and reaction time were critical for the formation of the MnCO 3 nanowires. The thermal characterization was studied by differential scanning calorimetric analysis and thermogravimetric analysis measurements. The experimental results demonstrated that the as-prepared MnCO 3 nanocrystals can act as an efficient precursor for production of homomorphous Mn 3 O 4 and α-Mn 2 O 3 nanostructures by calcination at 400 deg. C under the atmosphere of argon and air, respectively. A possible growth mechanism for the MnCO 3 nanowires was also proposed.

  7. Suppression of superconductivity in Nb by IrMn in IrMn/Nb bilayers

    KAUST Repository

    Wu, B. L.

    2013-10-10

    Effect of antiferromagnet on superconductivity has been investigated in IrMn/Nb bilayers. Significant suppression of both transition temperature (Tc) and lower critical field (Hc1) of Nb is found in IrMn/Nb bilayers as compared to a single layer Nb of same thickness; the suppression effect is even stronger than that of a ferromagnet in NiFe/Nb bilayers. The addition of an insulating MgO layer at the IrMn-Nb interface nearly restores Tc to that of the single layer Nb, but Hc1 still remains suppressed. These results suggest that, in addition to proximity effect and magnetic impurity scattering, magnetostatic interaction also plays a role in suppressing superconductivity of Nb in IrMn/Nb bilayers. In addition to reduced Tc and Hc1, the IrMn layer also induces broadening in the transition temperature of Nb, which can be accounted for by a finite distribution of stray field from IrMn.

  8. Self-assembly of linear [Mn II 2 Mn III ] units with end-on azido bridges: the construction of a ferromagnetic chain using S T = 7 high-spin trimers

    KAUST Repository

    Jiang, Yuan

    2015-01-01

    © The Royal Society of Chemistry 2015. The controlled organization of high-spin complexes into 1D coordination polymers is a challenge in molecular magnetism. In this work, we report a ferromagnetic Mn trimer Mn3(HL)2(CH3OH)6(Br)4·Br·(CH3OH)21 (H2L = 2-[(9H-fluoren-9-yl)amino]propane-1,3-diol) with the ground spin state of ST = 7 that can be assembled into a one-dimensional coordination chain [Mn3(HL)2(CH3OH)2(Br)4(N3)(H2O)·CH3OH]∞2 using azido bridging ligands. Interestingly, the ferromagnetic nature of 1 is well retained in 2. However, due to the negligible magnetic anisotropy in 1, both 1 and 2 do not show slow-relaxation of magnetization, which indicates that during the process of molecular assembly not only the intratrimer magnetic interaction but also the magnetic anisotropy of the trimer can be reserved.

  9. Quantum tunneling of magnetization in a new [Mn18]2+ single-molecule magnet with s = 13.

    Science.gov (United States)

    Brechin, Euan K; Boskovic, Colette; Wernsdorfer, Wolfgang; Yoo, Jae; Yamaguchi, Akira; Sañudo, E Carolina; Concolino, Thomas R; Rheingold, Arnold L; Ishimoto, Hidehiko; Hendrickson, David N; Christou, George

    2002-08-21

    The reaction between 2-(hydroxyethyl)pyridine (hepH) and a 2:1 molar mixture of [Mn3O(O2CMe)6(py)3](ClO4) and [Mn3O(O2CMe)6(py)3](py) in MeCN leads to isolation of [Mn18O14(O2CMe)18(hep)4(hepH)2(H2O)2](ClO4)2 (1) in 10% yield. The complex is 2MnII,16MnIII and consists of a Mn4O6 central unit to either side of which is attached a Mn7O9 unit. Magnetization data collected in the 2.0-4.0 K and 20-50 kG ranges were fit to yield S = 13, g = 1.86, and D = -0.13 cm-1 = -0.19 K, where D is the axial zero-field splitting parameter. AC susceptibility studies in the 0.04-4.0 K range at frequencies up to 996 Hz display out-of-phase (chiM' ') signals, indicative of a single-molecule magnet (SMM). Magnetization vs applied DC field scans exhibit hysteresis at SMM. DC magnetization decay data were collected on both a microcrystalline sample and a single crystal, and the combined data were used to construct an Arrhenius plot. Between 3.50 and 0.50 K, the relaxation rate is temperature-dependent with an effective barrier to relaxation (Ueff) of 14.8 cm-1 = 21.3 K. Below ca. 0.25 K, the relaxation rate is temperature-independent at 1.3 x 10-8 s-1, indicative of quantum tunneling of magnetization (QTM) between the lowest energy Ms = +/-13 levels of the S = 13 state. Complex 1 is both the largest spin and highest nuclearity SMM to exhibit QTM.

  10. Characterisation of the IAEA-152 milk powder reference material for radioactivity with assigned values traceable to the SI units

    International Nuclear Information System (INIS)

    Altzitzoglou, T.; Bohnstedt, A.

    2008-01-01

    The Institute for Reference Materials and Measurements (IRMM) participated in a research project initiated by the International Atomic Energy Agency (IAEA) to upgrade some of its existing reference materials (RMs). The aim of the project is to improve the RM metrological status by establishing traceability of their assigned values to SI units. The purpose of the work described in this article was to establish traceability to the International System of Units (SI) of the activity concentrations of the radionuclides 134 Cs, 137 Cs, 40 K, and 90 Sr in the IAEA-152 milk powder RM. The choice of the particular RM was based on the concern about radioactivity levels in foodstuff. The sample preparation and the assaying of the activity concentrations in the milk powder, the methods used to achieve instrument calibrations and measurements traceable to the SI units, the data reduction and analysis, and finally, the results obtained are presented

  11. Ionic Strength-Controlled Mn (Hydr)oxide Nanoparticle Nucleation on Quartz: Effect of Aqueous Mn(OH)2.

    Science.gov (United States)

    Jung, Haesung; Jun, Young-Shin

    2016-01-05

    The early formation of manganese (hydr)oxide nanoparticles at mineral-water interfaces is crucial in understanding how Mn oxides control the fate and transport of heavy metals and the cycling of nutrients. Using atomic force microscopy, we investigated the heterogeneous nucleation and growth of Mn (hydr)oxide under varied ionic strengths (IS; 1-100 mM NaNO3). Experimental conditions (i.e., 0.1 mM Mn(2+) (aq) concentration and pH 10.1) were chosen to be relevant to Mn remediation sites. We found that IS controls Mn(OH)2 (aq) formation, and that the controlled Mn(OH)2 (aq) formation can affect the system's saturation and subsequent Mn(OH)2 (s) and further Mn3O4 (s) nanoparticle formation. In 100 mM IS system, nucleated Mn (hydr)oxide particles had more coverage on the quartz substrate than those in 1 mM and 10 mM IS systems. This high IS also resulted in low supersaturation ratio and thus favor heterogeneous nucleation, having better structural matching between nucleating Mn (hydr)oxides and quartz. The unique information obtained in this work improves our understanding of Mn (hydr)oxide formation in natural as well as engineered aqueous environments, such as groundwater contaminated by natural leachate and acid mine drainage remediation.

  12. Crystal structure and thermal expansion of Mn(1-x)Fe(x)Ge.

    Science.gov (United States)

    Dyadkin, Vadim; Grigoriev, Sergey; Ovsyannikov, Sergey V; Bykova, Elena; Dubrovinsky, Leonid; Tsvyashchenko, Anatoly; Fomicheva, L N; Chernyshov, Dmitry

    2014-08-01

    A series of temperature-dependent single-crystal and powder diffraction experiments has been carried out using synchrotron radiation in order to characterize the monogermanides of Mn, Fe and their solid solutions. The MnGe single crystal is found to be enantiopure and we report the absolute structure determination. The thermal expansion, parametrized with the Debye model, is discussed from the temperature-dependent powder diffraction measurements for Mn(1-x)Fe(x)Ge (x = 0, 0.1, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.75, 0.8, 0.9). Whereas the unit-cell dimension and the Debye temperature follow a linear trend as a function of composition, the thermal expansion coefficient deviates from linear dependence with increasing Mn content. No structural phase transformations have been observed for any composition in the temperature range 80-500 K for both single-crystal and powder diffraction, indicating that the phase transition previously observed with neutron powder diffraction most probably has a magnetic origin.

  13. Discovery of ferromagnetism with large magnetic anisotropy in ZrMnP and HfMnP

    Energy Technology Data Exchange (ETDEWEB)

    Lamichhane, Tej N.; Taufour, Valentin; Kaluarachchi, Udhara S.; Bud' ko, Sergey L.; Canfield, Paul C. [Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States); The Ames Laboratory, US Department of Energy, Iowa State University, Ames, Iowa 50011 (United States); Masters, Morgan W. [Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States); Parker, David S. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Thimmaiah, Srinivasa [The Ames Laboratory, US Department of Energy, Iowa State University, Ames, Iowa 50011 (United States)

    2016-08-29

    ZrMnP and HfMnP single crystals are grown by a self-flux growth technique, and structural as well as temperature dependent magnetic and transport properties are studied. Both compounds have an orthorhombic crystal structure. ZrMnP and HfMnP are ferromagnetic with Curie temperatures around 370 K and 320 K, respectively. The spontaneous magnetizations of ZrMnP and HfMnP are determined to be 1.9 μ{sub B}/f.u. and 2.1 μ{sub B}/f.u., respectively, at 50 K. The magnetocaloric effect of ZrMnP in terms of entropy change (ΔS) is estimated to be −6.7 kJ m{sup −3} K{sup −1} around 369 K. The easy axis of magnetization is [100] for both compounds, with a small anisotropy relative to the [010] axis. At 50 K, the anisotropy field along the [001] axis is ∼4.6 T for ZrMnP and ∼10 T for HfMnP. Such large magnetic anisotropy is remarkable considering the absence of rare-earth elements in these compounds. The first principle calculation correctly predicts the magnetization and hard axis orientation for both compounds, and predicts the experimental HfMnP anisotropy field within 25%. More importantly, our calculations suggest that the large magnetic anisotropy comes primarily from the Mn atoms, suggesting that similarly large anisotropies may be found in other 3d transition metal compounds.

  14. Discovery of ferromagnetism with large magnetic anisotropy in ZrMnP and HfMnP

    International Nuclear Information System (INIS)

    Lamichhane, Tej N.; Taufour, Valentin; Kaluarachchi, Udhara S.; Bud'ko, Sergey L.; Canfield, Paul C.; Masters, Morgan W.; Parker, David S.; Thimmaiah, Srinivasa

    2016-01-01

    ZrMnP and HfMnP single crystals are grown by a self-flux growth technique, and structural as well as temperature dependent magnetic and transport properties are studied. Both compounds have an orthorhombic crystal structure. ZrMnP and HfMnP are ferromagnetic with Curie temperatures around 370 K and 320 K, respectively. The spontaneous magnetizations of ZrMnP and HfMnP are determined to be 1.9 μ_B/f.u. and 2.1 μ_B/f.u., respectively, at 50 K. The magnetocaloric effect of ZrMnP in terms of entropy change (ΔS) is estimated to be −6.7 kJ m"−"3 K"−"1 around 369 K. The easy axis of magnetization is [100] for both compounds, with a small anisotropy relative to the [010] axis. At 50 K, the anisotropy field along the [001] axis is ∼4.6 T for ZrMnP and ∼10 T for HfMnP. Such large magnetic anisotropy is remarkable considering the absence of rare-earth elements in these compounds. The first principle calculation correctly predicts the magnetization and hard axis orientation for both compounds, and predicts the experimental HfMnP anisotropy field within 25%. More importantly, our calculations suggest that the large magnetic anisotropy comes primarily from the Mn atoms, suggesting that similarly large anisotropies may be found in other 3d transition metal compounds.

  15. Enhanced electrochemical performance of LiMn2O4 by constructing a stable Mn2+-rich interface

    Science.gov (United States)

    Lu, Zhongpei; Lu, Xiaojun; Ding, Jingjing; Zhou, Ting; Ge, Tao; Yang, Gang; Yin, Fan; Wu, Mingfang

    2017-12-01

    Spinel LiMn2O4 has drawn continuous attentions due to its low cost, good electrochemical performance, environmental friendliness and natural abundant resources. In view of its severe capacity fading, some types of manganese-based compounds with different Mn oxidation states are selected to protect bare LiMn2O4 by constructing a stable coating layer. In this work, LiMn2O4@LiMnPO4 composite, spherical LiMn2O4 (LMO) as core and Mn2+-rich phase of LiMnPO4 (LMP) as shell, is designed and synthesized. Two composites of LiMn2O4 particles coated with 3 wt% and 10 wt% LiMnPO4 have been compared studied. After 100 cycles at 0.5C rate, the two samples deliver capacity retentions of 96.63% and 93.23% of their initial capacities. Moreover, LMO coated by 3 wt% LiMnPO4 delivers 100.3 mAh g-1 after 200 cycles at 10C rate and 76.3 mAh g-1 after 1000 cycles at 20C rate, much higher than bare LiMn2O4 with 90 mAh g-1 and 45.8 mAh g-1, respectively. This core-shell structure with Mn2+-rich phase as a coating layer effectively enhance the material's cycling performance and rate capacity by reducing the contact of LiMn2O4 with electrolyte.

  16. Synthesis and magnetic properties of the thin film exchange spring system of MnBi/FeCo

    Science.gov (United States)

    Sabet, S.; Hildebrandt, E.; Alff, L.

    2017-10-01

    Manganese bismuth thin films with a nominal thickness of ∼40 nm were grown at room temperature onto quartz glass substrate in a DC magnetron sputtering unit. In contrast to the usual multilayer approach, the MnBi films were deposited using a single sputtering target with a stoichiometry of Mn55Bi45 (at. %). A subsequent in-situ annealing step was performed in vacuum in order to form the ferromagnetic LTP of MnBi. X-ray diffraction confirmed the formation of a textured LTP MnBi hard phase after annealing at 330 °C. This film shows a maximum saturation magnetization of 530 emu/cm3, high out-of-plane coercivity of 15 kOe induced by unreacted bismuth. The exchange coupling effect was investigated by deposition of a second layer of FeCo with 1 nm and 2 nm thickness onto the LTP MnBi films. The MnBi/FeCo double layer showed as expected higher saturation magnetization with increasing thickness of the FeCo layer while the coercive field remained constant. The fabrication of the MnBi/FeCo double layer for an exchange spring magnet was facilitated by deposition from a single stoichiometric target.

  17. Formation of Mn3O4(001) on MnO(001): Surface and interface structural stability

    International Nuclear Information System (INIS)

    Bayer, Veronika; Podloucky, Raimund; Franchini, Cesare; Allegretti, Francesco; Xu, Bo; Parteder, Georg; Ramsey, Michael G.; Surnev, Svetlozar; Netzer, Falko P.

    2007-01-01

    X-ray absorption and photoemission spectroscopies, high-resolution electron energy loss spectroscopy, spot profile analysis low energy electron diffraction, and density functional theory calculations are employed to study the growth of (001) oriented Mn 3 O 4 surfaces on a Pd(100)-supported MnO(001) substrate, with the Hausmannite planar lattice constants aligned along the [110] direction of the underlying MnO(001) support. We show that despite the rather large lattice mismatch, abrupt interfaces may exist between rocksalt MnO and Hausmannite. We argue that this process is facilitated by the relatively low computed strain energy and we propose realistic models for the interface. An atop site registry between the Mn(O) atoms of the oxygen rich Mn 3 O 4 termination and the MnO(001) O(Mn) atoms underneath is found to be the energetically most favorable configuration. The significant planar expansion is accompanied by a large compression of the Mn 3 O 4 vertical lattice constant, yielding structural distortion of the O-Mn-O octahedral axis. Spot profile analysis low energy electron diffraction experiments show that the conversion reaction proceeds easily in both directions, thus indicating the reversible redox character of the transition

  18. Mn fraction substitutional site and defects induced magnetism in Mn-implanted 6H-SiC

    Energy Technology Data Exchange (ETDEWEB)

    Bouziane, K., E-mail: Khalid.bouziane@uir.ac.ma [Pôle Energies Renouvelables et Etudes Pétrolières, Université Internationale de Rabat, 11000 – Salé el Jadida, Technopolis (Morocco); Al Azri, M.; Elzain, M. [Department of Physics, College of Science, Sultan Qaboos University, P.O. Box 36, Al-Khodh 123 (Oman); Chérif, S.M. [LSPM (CNRS-UPR 3407), Université Paris, 13-Nord, 99, Avenue Jean Baptiste Clément, 93430 Villetaneuse (France); Mamor, M. [Equipe MSISM, Faculté Poly-Disciplinaire, B.P. 4162 Safi, Université Cadi Ayyad, Marrakech (Morocco); Declémy, A. [Institut P’, CNRS – Université de Poitiers – ENSMA, UPR 3346, SP2MI – Téléport 2, 11 boulevard Marie et Pierre Curie, BP 30179, F-86962 Futuroscope Chasseneuil Cedex (France); Thomé, L. [CSNSM-Orsay, Bât. 108, Université d’Orsay, F-91405 Orsay (France)

    2015-05-25

    Highlights: • Shallow Mn-implanted 6H-SiC crystal. • Correlation between Mn-substitutional site concentration and magnetism. • Correlation between defects nature surrounding Mn site and magnetism. • Correlation of magnetism in Mn-doped SiC to Mn at Si sites and vacancy-related defect. - Abstract: n-type 6H-SiC (0 0 0 1) single crystal substrates were implanted with three fluences of manganese (Mn{sup +}) ions: 5 × 10{sup 15}, 1 × 10{sup 16} and 5 × 10{sup 16} cm{sup −2} with implantation energy of 80 keV at 365 °C to stimulate dynamic annealing. The samples were characterized using Rutherford backscattering channeling spectroscopy (RBS/C), high-resolution X-ray diffraction technique (HRXRD), and Superconducting Quantum Interference Device (SQUID) techniques. Two main defect regions have been identified using RBS/C spectra fitted with the McChasy code combined to SRIM simulations. Intermediate defects depth region is associated with vacancies (D{sub V}) and deeper defect (D{sub N}) essentially related to the Si and C interstitial defects. The defect concentration and the maximum perpendicular strain exhibit similar increasing trend with the Mn{sup +} fluence. Furthermore, the amount of Mn atoms at Si substitutional sites and the corresponding magnetic moment per Mn atom were found to increase with increasing Mn fluence from 0.7 μ{sub B} to 1.7 μ{sub B} and then collapsing to 0.2 μ{sub B}. Moreover, a strong correlation has been found between the magnetic moment and the combination of both large D{sub V}/D{sub N} ratio and high Mn at Si sites. These results are corroborated by our ab initio calculations considering the most stable configurations showing that besides the amount of Mn substituting Si sites, local vacancy-rich environment is playing a crucial role in enhancing the magnetism.

  19. Catalytic Oxidation of NO over MnOx–CeO2 and MnOx–TiO2 Catalysts

    Directory of Open Access Journals (Sweden)

    Xiaolan Zeng

    2016-11-01

    Full Text Available A series of MnOx–CeO2 and MnOx–TiO2 catalysts were prepared by a homogeneous precipitation method and their catalytic activities for the NO oxidation in the absence or presence of SO2 were evaluated. Results show that the optimal molar ratio of Mn/Ce and Mn/Ti are 0.7 and 0.5, respectively. The MnOx–CeO2 catalyst exhibits higher catalytic activity and better resistance to SO2 poisoning than the MnOx–TiO2 catalyst. On the basis of Brunauer–Emmett–Teller (BET, X-ray diffraction (XRD, and scanning transmission electron microscope with mapping (STEM-mapping analyses, it is seen that the MnOx–CeO2 catalyst possesses higher BET surface area and better dispersion of MnOx over the catalyst than MnOx–TiO2 catalyst. X-ray photoelectron spectroscopy (XPS measurements reveal that MnOx–CeO2 catalyst provides the abundance of Mn3+ and more surface adsorbed oxygen, and SO2 might be preferentially adsorbed to the surface of CeO2 to form sulfate species, which provides a protection of MnOx active sites from being poisoned. In contrast, MnOx active sites over the MnOx–TiO2 catalyst are easily and quickly sulfated, leading to rapid deactivation of the catalyst for NO oxidation. Furthermore, temperature programmed desorption with NO and O2 (NO + O2-TPD and in situ diffuse reflectance infrared transform spectroscopy (in situ DRIFTS characterizations results show that the MnOx–CeO2 catalyst displays much stronger ability to adsorb NOx than the MnOx–TiO2 catalyst, especially after SO2 poisoning.

  20. Frequency-domain terahertz transmission spectra of Mn3 and Mn12 single-molecule magnets

    Science.gov (United States)

    Liu, RuiYuan; Zuo, JunWei; Li, YanRong; Zhou, YuRong; Wang, YunPing

    2012-07-01

    Frequency-domain terahertz transmission spectra of Mn3 and Mn12 single molecule magnets (SMMs) have been measured at different temperatures, and hence the anisotropic parameters D 2 and D 4 of the spin Hamiltonian hat H = D_2 hat S_z^2 + D_4 hat S_z^4 have been calculated. For Mn12 SMM, D 2=-10.9 GHz and D 4=-2.59×10-2 GHz, while for Mn3 SMM, D 2=-22.0 GHz and D 4 can be considered negligible. This suggests Mn3 SMM can be considered as a simpler and more suitable candidate for magnetic quantum tunneling research.

  1. Anisotropic strains and magnetoresistance of La0.7Ca0.3MnO3

    International Nuclear Information System (INIS)

    Koo, T.Y.; Park, S.H.; Lee, K.; Jeong, Y.H.

    1997-01-01

    Thin films of perovskite manganite La 0.7 Ca 0.3 MnO 3 were grown epitaxially on SrTiO 3 (100), MgO(100) and LaAlO 3 (100) substrates by the pulsed laser deposition method. Microscopic structures of these thin film samples as well as a bulk sample were fully determined by x-ray diffraction measurements. The unit cells of the three films have different shapes, i.e., contracted tetragonal, cubic, and elongated tetragonal for SrTiO 3 , MgO, and LaAlO 3 , respectively, while the unit cell of the bulk is cubic. It is found that the samples with a cubic unit cell show smaller peak magnetoresistance at low fields (approx-lt 1T) than the noncubic ones do. The present result demonstrates that the magnetoresistance of La 0.7 Ca 0.3 MnO 3 at low fields can be controlled by lattice distortion via externally imposed strains. copyright 1997 American Institute of Physics

  2. Formation of self-organized Mn3O4 nanoinclusions in LaMnO3 films

    Science.gov (United States)

    Pomar, Alberto; Konstantinović, Zorica; Bagués, Nuria; Roqueta, Jaume; López-Mir, Laura; Balcells, Lluis; Frontera, Carlos; Mestres, Narcis; Gutiérrez-Llorente, Araceli; Šćepanović, Maja; Lazarević, Nenad; Popović, Zoran; Sandiumenge, Felip; Martínez, Benjamín; Santiso, José

    2016-09-01

    We present a single-step route to generate ordered nanocomposite thin films of secondary phase inclusions (Mn3O4) in a pristine perovskite matrix (LaMnO3) by taking advantage of the complex phase diagram of manganese oxides. We observed that in samples grown under vacuum growth conditions from a single LaMnO3 stoichiometric target by Pulsed Laser Deposition, the most favourable mechanism to accommodate Mn2+ cations is the spontaneous segregation of self-assembled wedge-like Mn3O4 ferrimagnetic inclusions inside a LaMnO3 matrix that still preserves its orthorhombic structure and its antiferromagnetic bulk-like behaviour. A detailed analysis on the formation of the self-assembled nanocomposite films evidences that Mn3O4 inclusions exhibit an epitaxial relationship with the surrounding matrix that it may be explained in terms of a distorted cubic spinel with slight ( 9º) c-axis tilting. Furthermore, a Ruddlesden-Popper La2MnO4 phase, helping to the stoichiometry balance, has been identified close to the interface with the substrate. We show that ferrimagnetic Mn3O4 columns influence the magnetic and transport properties of the nanocomposite by increasing its coercive field and by creating local areas with enhanced conductivity in the vicinity of the inclusions.

  3. The influence of Mn species on the SO2 removal of Mn-based activated carbon catalysts

    International Nuclear Information System (INIS)

    Qu, Yi-Fan; Guo, Jia-Xiu; Chu, Ying-Hao; Sun, Ming-Chao; Yin, Hua-Qiang

    2013-01-01

    Using Mn(NO 3 ) 2 as precursor, a series of Mn-based activated carbon catalysts were prepared by ultrasound-assisted excessive impregnation method and characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and temperature programmed reduction (TPR). The influences of Mn species and nitric acid pretreatment on the removal role of SO 2 were investigated. MnO and Mn 3 O 4 coexist in catalysts calcined at 650 and 800 °C and exhibit best SO 2 removal ability, whereas Mn 2 O 3 formed in the catalyst calcined at 500 °C and shows poor activity. After treatment by nitric acid, the C=O of activated carbon support increases and the crystal size of MnO decreases, resulting in the enhancement of the catalytic activity. During reaction process, manganese oxides are gradually transferred into MnO 2 . And this change directly results in a decrease of activity. But the SO 2 removal rate has been maintained in the range of 30–40%, indicating that MnO 2 still has a certain SO 2 removal ability.

  4. NMR relaxation studies with MnDPDP

    International Nuclear Information System (INIS)

    Southon, T.E.; Grant, D.; Bjoernerud, A.; Moen, O.M.; Spilling, B.; Martinsen, I.; Refsum, H.

    1997-01-01

    Purpose: Our studies were designed to compare the efficacy of mangafodipir trisodium (MnDPDP, Teslascan) as a tissue-specific MR agent with that of manganese chloride (MnCl 2 ), to compare the efficacy of different doses and rates of administration of MnDPDP, and to collect the data needed for predicting optimum pulse sequences. Material and Methods: The dose response for the relaxation rates R1 and R2 at 0.47 T, and the manganese (Mn) concentrations in rat liver and in the liver, pancreas, heart and adrenals of pigs was determined for both MnDPDP and MnCl 2 administered i.v. Computer simulations were carried out to model the effects of different tissue Mn concentrations and TR on signal intensities and contrast-to-noise ratios. Results: In rat liver and pig organs both compounds produced a positive dose-response in R1 and tissue Mn concentration, and only small or no response in R2. The Mn concentration in rat liver was positively correlated with R1, regardless of the form in which Mn was given, or the rate of administration. Optimal imaging parametes are therefore expected to be different pre- and post-MnDPDP administration. (orig./AJ)

  5. X-Band Electron Paramagnetic Resonance Comparison of Mononuclear Mn(IV)-oxo and Mn(IV)-hydroxo Complexes and Quantum Chemical Investigation of Mn(IV) Zero-Field Splitting.

    Science.gov (United States)

    Leto, Domenick F; Massie, Allyssa A; Colmer, Hannah E; Jackson, Timothy A

    2016-04-04

    X-band electron paramagnetic resonance (EPR) spectroscopy was used to probe the ground-state electronic structures of mononuclear Mn(IV) complexes [Mn(IV)(OH)2(Me2EBC)](2+) and [Mn(IV)(O)(OH)(Me2EBC)](+). These compounds are known to effect C-H bond oxidation reactions by a hydrogen-atom transfer mechanism. They provide an ideal system for comparing Mn(IV)-hydroxo versus Mn(IV)-oxo motifs, as they differ by only a proton. Simulations of 5 K EPR data, along with analysis of variable-temperature EPR signal intensities, allowed for the estimation of ground-state zero-field splitting (ZFS) and (55)Mn hyperfine parameters for both complexes. From this analysis, it was concluded that the Mn(IV)-oxo complex [Mn(IV)(O)(OH)(Me2EBC)](+) has an axial ZFS parameter D (D = +1.2(0.4) cm(-1)) and rhombicity (E/D = 0.22(1)) perturbed relative to the Mn(IV)-hydroxo analogue [Mn(IV)(OH)2(Me2EBC)](2+) (|D| = 0.75(0.25) cm(-1); E/D = 0.15(2)), although the complexes have similar (55)Mn values (a = 7.7 and 7.5 mT, respectively). The ZFS parameters for [Mn(IV)(OH)2(Me2EBC)](2+) were compared with values obtained previously through variable-temperature, variable-field magnetic circular dichroism (VTVH MCD) experiments. While the VTVH MCD analysis can provide a reasonable estimate of the magnitude of D, the E/D values were poorly defined. Using the ZFS parameters reported for these complexes and five other mononuclear Mn(IV) complexes, we employed coupled-perturbed density functional theory (CP-DFT) and complete active space self-consistent field (CASSCF) calculations with second-order n-electron valence-state perturbation theory (NEVPT2) correction, to compare the ability of these two quantum chemical methods for reproducing experimental ZFS parameters for Mn(IV) centers. The CP-DFT approach was found to provide reasonably acceptable values for D, whereas the CASSCF/NEVPT2 method fared worse, considerably overestimating the magnitude of D in several cases. Both methods were poor in

  6. Thermal annealing of recoil 56Mn in strontium permanganate under (n,γ) process

    International Nuclear Information System (INIS)

    Mishra, Shuddhodan P.; Vijaya

    2002-01-01

    Chemical stabilization of recoil 56 Mn in strontium permanganate (hydrous and anhydrous) has been investigated with a special reference to pre-and post-activation thermal annealing treatments. The retention of 56 Mn in neutron irradiated strontium permanganate showed significant variation on thermal annealing in both pre-and post-activation heated target. The recoil re-entry process obeys simple first order kinetics and the activation energy deduced for thermal annealing process is very low as computed by classical Arrhenius plots. The results observed are discussed in the light of existing ideas for understanding the recoil stabilization mechanism of parent reformation and the nature of precursors in permanganates. (author)

  7. Formation of self-organized Mn3O4 nanoinclusions in LaMnO3 films

    Directory of Open Access Journals (Sweden)

    Alberto Pomar

    2016-09-01

    Full Text Available We present a single-step route to generate ordered nanocomposite thin films of secondary phase inclusions (Mn3O4 in a pristine perovskite matrix (LaMnO3 by taking advantage of the complex phase diagram of manganese oxides. We observed that in samples grown under vacuum growth conditions from a single LaMnO3 stoichiometric target by Pulsed Laser Deposition, the most favourable mechanism to accommodate Mn2+ cations is the spontaneous segregation of self-assembled wedge-like Mn3O4 ferrimagnetic inclusions inside a LaMnO3 matrix that still preserves its orthorhombic structure and its antiferromagnetic bulk-like behaviour. A detailed analysis on the formation of the self-assembled nanocomposite films evidences that Mn3O4 inclusions exhibit an epitaxial relationship with the surrounding matrix that it may be explained in terms of a distorted cubic spinel with slight (~9º c-axis tilting. Furthermore, a Ruddlesden-Popper La2MnO4 phase, helping to the stoichiometry balance, has been identified close to the interface with the substrate. We show that ferrimagnetic Mn3O4 columns influence the magnetic and transport properties of the nanocomposite by increasing its coercive field and by creating local areas with enhanced conductivity in the vicinity of the inclusions.

  8. Oxygen-atom transfer chemistry and thermolytic properties of a di-tert-butylphosphate-ligated Mn4O4 cubane.

    Science.gov (United States)

    Van Allsburg, Kurt M; Anzenberg, Eitan; Drisdell, Walter S; Yano, Junko; Tilley, T Don

    2015-03-16

    [Mn4O4{O2P(OtBu)2}6] (1), an Mn4O4 cubane complex combining the structural inspiration of the photosystem II oxygen-evolving complex with thermolytic precursor ligands, was synthesized and fully characterized. Core oxygen atoms within complex 1 are transferred upon reaction with an oxygen-atom acceptor (PEt3), to give the butterfly complex [Mn4O2{O2P(OtBu)2}6(OPEt3)2]. The cubane structure is restored by reaction of the latter complex with the O-atom donor PhIO. Complex 1 was investigated as a precursor to inorganic Mn metaphosphate/pyrophosphate materials, which were studied by X-ray absorption spectroscopy to determine the fate of the Mn4O4 unit. Under the conditions employed, thermolyses of 1 result in reduction of the manganese to Mn(II) species. Finally, the related butterfly complex [Mn4O2{O2P(pin)}6(bpy)2] (pin = pinacolate) is described. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Magnetic properties of PrMn2-xFexGe2-57Fe Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Wang, J L; Campbell, S J; Cadogan, J M; Tegus, O; Studer, A J; Hofmann, M

    2006-01-01

    We have investigated the magnetic behaviour of PrMn 2-x Fe x Ge 2 compounds with x = 0.4, 0.6 and 0.8 over the temperature range 4.2-350 K using ac magnetic susceptibility, dc magnetization and 57 Fe Moessbauer effect spectroscopy, as well as neutron diffraction for the PrMn 1.2 Fe 0.8 Ge 2 compound. Replacement of Mn with Fe leads to contraction of the unit cell and a shortening of the Mn-Mn spacing, resulting in modification of the magnetic structure. PrMn 1.6 Fe 0.4 Ge 2 is an intralayer antiferromagnet at room temperature and ferromagnetic below T C inter ∼230 K with additional ferromagnetic ordering of the Pr sublattice detected below T C Pr ∼30 K. Re-entrant ferromagnetism has been observed in PrMn 1.4 Fe 0.6 Ge 2 with four magnetic transitions (T N intra ∼333 K, T C inter ∼168 K, T N inter ∼152 K and T C Pr ∼40 K). Moreover, it was found that T C inter and T C Pr increase with applied field while T N inter decreases. PrMn 1.2 Fe 0.8 Ge 2 is antiferromagnetic with T N intra ∼242 K and T N inter ∼154 K. The magnetic transition temperatures for all compounds are also marked by changes in the 57 Fe magnetic hyperfine field and the electric quadrupole interaction parameters. The 57 Fe transferred hyperfine field at 4.5 K in PrMn 1.6 Fe 0.4 Ge 2 and PrMn 1.4 Fe 0.6 Ge 2 is reduced (below the ordering temperature of the Pr sublattice) compared with that at 80 K (above T C Pr ), indicating that the transferred hyperfine field from Pr acts in the opposite direction to that from the Mn atoms. The neutron data for PrMn 1.2 Fe 0.8 Ge 2 demonstrate that an anisotropic thermal expansion occurs within the interplanar antiferromagnetic range

  10. Magnetic and transport properties of Ce 6MnSb 15

    Science.gov (United States)

    Godart, Claude; Rogl, Peter; Alleno, Eric; Gonçalves, António P.; Rouleau, Olivier

    2006-05-01

    In our effort to look for new Ce/Yb-based compounds with large unit cell, we studied Ce 6MnSb 15. Rietveld refinements of X-ray powder diffraction confirm that the material crystallizes in orthorhombic structure La 6MnSb 15-type, Imm2 space group, with 2 Ce sites (8e and 4d) and lattice parameters a=15.1643 Å, b=19.3875 Å and c=4.2794 Å, which closely agree with those already published. Magnetic susceptibility results show a paramagnetic behavior and no magnetic order down to 2 K in contrast to antiferromagnetic order previously reported at 7 K. Resistivity shows a metallic behavior and the Seebeck coefficient is very low, typically -2 μV/K.

  11. Shape memory effect in Fe-Mn-Ni-Si-C alloys with low Mn contents

    Energy Technology Data Exchange (ETDEWEB)

    Min, X.H., E-mail: MIN.Xiaohua@nims.go.jp [National Institute for Materials Science, Tsukuba 305-0047 (Japan); Sawaguchi, T.; Ogawa, K. [National Institute for Materials Science, Tsukuba 305-0047 (Japan); Maruyama, T. [Awaji Materia Co., Ltd. 2-3-13, Kanda ogawamachi, Chiyoda, Tokyo 101-0052 (Japan); Yin, F.X. [National Institute for Materials Science, Tsukuba 305-0047 (Japan); Tsuzaki, K. [National Institute for Materials Science, Tsukuba 305-0047 (Japan); Graduate School of Pure and Applied Sciences, University of Tsukuba, Ibaraki 305-0047 (Japan)

    2011-06-15

    Highlights: {yields} A class of new Fe-Mn-Ni-Si-C shape memory alloys with low Mn contents has been designed. {yields} A Mn content for the onset of the {alpha}' martensite is less than 13 mass%, and the {epsilon} martensite still exists in the alloy with a 9 mass% Mn. {yields} The shape recovery strain decreases considerably when the Mn content is reduced from 13 to 11 mass%. {yields} The sudden decrease in the shape recovery strain is mainly caused by the formation of {alpha}' martensite. - Abstract: An attempt was made to develop a new Fe-Mn-Si-based shape memory alloy from a Fe-17Mn-6Si-0.3C (mass%) shape memory alloy, which was previously reported to show a superior shape memory effect without any costly training treatment, by lowering its Mn content. The shape memory effect and the phase transformation behavior were investigated for the as-solution treated Fe-(17-2x)Mn-6Si-0.3C-xNi (x = 0, 1, 2, 3, 4) polycrystalline alloys. The shape recovery strain exceeded 2% in the alloys with x = 0-2, which is sufficient for an industrially applicable shape memory effect; however, it suddenly decreased in the alloys between x = 2 and 3 although the significant shape recovery strain still exceeded 1%. In the alloys with x = 3 and 4, X-ray diffraction analysis and transmission electron microscope observation revealed the existence of {alpha}' martensite, which forms at the intersection of the {epsilon} martensite plates and suppresses the crystallographic reversibility of the {gamma} austenite to {epsilon} martensitic transformation.

  12. Investigation on the electrode process of the Mn(II)/Mn(III) couple in redox flow battery

    International Nuclear Information System (INIS)

    Xue Fangqin; Wang Yongliang; Wang Wenhong; Wang Xindong

    2008-01-01

    The Mn(II)/Mn(III) couple has been recognized as a potential anode for redox flow batteries to take the place of the V(IV)/V(V) in all-vanadium redox battery (VRB) and the Br 2 /Br - in sodium polysulfide/bromine (PSB) because it has higher standard electrode potential. In this study, the electrochemical behavior of the Mn(II)/Mn(III) couple on carbon felt and spectral pure graphite were investigated by cyclic voltammetry, steady polarization curve, electrochemical impedance spectroscopy, transient potential-step experiment, X-ray diffraction and charge-discharge experiments. Results show that the Mn(III) disproportionation reaction phenomena is obvious on the carbon felt electrode while it is weak on the graphite electrode owing to its fewer active sites. The reaction mechanism on carbon felt was discussed in detail. The reversibility of Mn(II)/Mn(III) is best when the sulfuric acid concentration is 5 M on the graphite electrode. Performance of a RFB employing Mn(II)/Mn(III) couple as anolyte active species and V(III)/V(II) as catholyte ones was evaluated with constant-current charge-discharge tests. The average columbic efficiency is 69.4% and the voltage efficiency is 90.4% at a current density of 20 mA cm -2 . The whole energy efficiency is 62.7% close to that of the all-vanadium battery and the average discharge voltage is about 14% higher than that of an all-vanadium battery. The preliminary exploration shows that the Mn(II)/Mn(III) couple is electrochemically promising for redox flow battery

  13. An ab initio study on the structural, electronic and mechanical properties of quaternary full-Heusler alloys FeMnCrSn and FeMnCrSb

    Science.gov (United States)

    Erkişi, Aytaç

    2018-06-01

    The quaternary full Heusler alloys FeMnCrSn and FeMnCrSb, which have face-centred cubic (FCC) crystal structure and conform to ? space group with 216 space number, have been investigated using Generalised Gradient Approximation (GGA) in the Density Functional Theory (DFT) as implemented in VASP (Vienna Ab initio Simulation Package) software. These alloys are considered in ferromagnetic (FM) order. After the investigation of structural stability of these alloys, their mechanical and thermal properties and also electronic band structures have been examined. The calculated spin-polarised electronic band structures and total electronic density of states (DOS) within GGA approximation show that these alloys can exhibit both metallic and half-metallic characters in different structural phases. The calculated formation enthalpies and the plotted energy-volume graphs show that Type-III phase is most stable structural phase for these materials. Also, FeMnCrSb alloy in Type-I/Type-III phases and FeMnCrSn alloy in Type-III phase show half-metallic behaviour with integer total magnetic moments almost 2 and 1 μB per formula unit, respectively, since there are band gaps observed in spin-down states, whereas they have metallic behaviour in majority bands. Other structural phases of both systems are also metallic. Moreover, the calculated elastic constants and the estimated anisotropy shear factors indicate that these materials are stable mechanically in all of three phases except FeMnCrSn in Type-I phase that does not satisfy Born stability criteria in this phase and have high anisotropic behaviour.

  14. Spectro-photometric determinations of Mn, Fe and Cu in aluminum master alloys

    Science.gov (United States)

    Rehan; Naveed, A.; Shan, A.; Afzal, M.; Saleem, J.; Noshad, M. A.

    2016-08-01

    Highly reliable, fast and cost effective Spectro-photometric methods have been developed for the determination of Mn, Fe & Cu in aluminum master alloys, based on the development of calibration curves being prepared via laboratory standards. The calibration curves are designed so as to induce maximum sensitivity and minimum instrumental error (Mn 1mg/100ml-2mg/100ml, Fe 0.01mg/100ml-0.2mg/100ml and Cu 2mg/100ml-10mg/ 100ml). The developed Spectro-photometric methods produce accurate results while analyzing Mn, Fe and Cu in certified reference materials. Particularly, these methods are suitable for all types of Al-Mn, Al-Fe and Al-Cu master alloys (5%, 10%, 50% etc. master alloys).Moreover, the sampling practices suggested herein include a reasonable amount of analytical sample, which truly represent the whole lot of a particular master alloy. Successive dilution technique was utilized to meet the calibration curve range. Furthermore, the workout methods were also found suitable for the analysis of said elements in ordinary aluminum alloys. However, it was observed that Cush owed a considerable interference with Fe, the later one may not be accurately measured in the presence of Cu greater than 0.01 %.

  15. Swelling of Fe-Mn and Fe-Cr-Mn alloys at high neutron fluence

    International Nuclear Information System (INIS)

    Garner, F.A.; Brager, H.R.

    1986-06-01

    Swelling data on neutron-irradiated simple Fe-Cr-Mn and Fe-Mn alloys, as well as commercial Fe-Cr-Mn base alloys are now becoming available at exposure levels approaching 50 dpa. The swelling rate decreases from the ∼1%/dpa found at lower exposures, probably due to the extensive formation of ferritic phases. As expected, commercial alloys swell less than the simple alloys

  16. Search for CP Violation and Measurement of the Branching Fraction in the Decay D<mn>0mn>KS<mn>0mn>KS>0mn>

    Energy Technology Data Exchange (ETDEWEB)

    Dash, N.; Bahinipati, S.; Bhardwaj, V.; Trabelsi, K.; Adachi, I.; Aihara, H.; Al Said, S.; Asner, D. M.; Aulchenko, V.; Aushev, T.; Ayad, R.; Babu, V.; Badhrees, I.; Bakich, A. M.; Bansal, V.; Barberio, E.; Bhuyan, B.; Biswal, J.; Bobrov, A.; Bondar, A.; Bonvicini, G.; Bozek, A.; Bračko, M.; Breibeck, F.; Browder, T. E.; Červenkov, D.; Chang, M. -C.; Chekelian, V.; Chen, A.; Cheon, B. G.; Chilikin, K.; Cho, K.; Choi, Y.; Cinabro, D.; Di Carlo, S.; Doležal, Z.; Drásal, Z.; Dutta, D.; Eidelman, S.; Epifanov, D.; Farhat, H.; Fast, J. E.; Ferber, T.; Fulsom, B. G.; Gaur, V.; Gabyshev, N.; Garmash, A.; Gillard, R.; Goldenzweig, P.; Haba, J.; Hara, T.; Hayasaka, K.; Hayashii, H.; Hedges, M. T.; Hou, W. -S.; Iijima, T.; Inami, K.; Ishikawa, A.; Itoh, R.; Iwasaki, Y.; Jacobs, W. W.; Jaegle, I.; Jeon, H. B.; Jin, Y.; Joffe, D.; Joo, K. K.; Julius, T.; Kahn, J.; Kaliyar, A. B.; Karyan, G.; Katrenko, P.; Kawasaki, T.; Kiesling, C.; Kim, D. Y.; Kim, H. J.; Kim, J. B.; Kim, K. T.; Kim, M. J.; Kim, S. H.; Kim, Y. J.; Kinoshita, K.; Kodyš, P.; Korpar, S.; Kotchetkov, D.; Križan, P.; Krokovny, P.; Kuhr, T.; Kulasiri, R.; Kumar, R.; Kumita, T.; Kuzmin, A.; Kwon, Y. -J.; Lange, J. S.; Lee, I. S.; Li, C. H.; Li, L.; Li, Y.; Li Gioi, L.; Libby, J.; Liventsev, D.; Lubej, M.; Luo, T.; Masuda, M.; Matvienko, D.; Merola, M.; Miyabayashi, K.; Miyata, H.; Mizuk, R.; Mohanty, G. B.; Mohanty, S.; Moon, H. K.; Mori, T.; Mussa, R.; Nakano, E.; Nakao, M.; Nanut, T.; Nath, K. J.; Natkaniec, Z.; Nayak, M.; Niiyama, M.; Nisar, N. K.; Nishida, S.; Ogawa, S.; Okuno, S.; Ono, H.; Pakhlov, P.; Pakhlova, G.; Pal, B.; Pardi, S.; Park, C. -S.; Park, H.; Paul, S.; Pedlar, T. K.; Pesántez, L.; Pestotnik, R.; Piilonen, L. E.; Prasanth, K.; Ritter, M.; Rostomyan, A.; Sahoo, H.; Sakai, Y.; Sandilya, S.; Santelj, L.; Sanuki, T.; Sato, Y.; Savinov, V.; Schneider, O.; Schnell, G.; Schwanda, C.; Schwartz, A. J.; Seino, Y.; Senyo, K.; Sevior, M. E.; Shebalin, V.; Shen, C. P.; Shibata, T. -A.; Shiu, J. -G.; Shwartz, B.; Simon, F.; Sokolov, A.; Solovieva, E.; Starič, M.; Strube, J. F.; Stypula, J.; Sumisawa, K.; Sumiyoshi, T.; Takizawa, M.; Tamponi, U.; Tanida, K.; Tenchini, F.; Uchida, M.; Uglov, T.; Unno, Y.; Uno, S.; Urquijo, P.; Usov, Y.; Van Hulse, C.; Varner, G.; Vorobyev, V.; Vossen, A.; Waheed, E.; Wang, C. H.; Wang, M. -Z.; Wang, P.; Watanabe, M.; Watanabe, Y.; Widmann, E.; Williams, K. M.; Won, E.; Yamashita, Y.; Ye, H.; Yelton, J.; Yook, Y.; Yuan, C. Z.; Yusa, Y.; Zhang, Z. P.; Zhilich, V.; Zhukova, V.; Zhulanov, V.; Zupanc, A.

    2017-10-01

    We report a study of the decay D<mn>0mn>KS<mn>0mn>KS>0mn> using 921 fb-1 of data collected at or near the Υ(4S) and Υ(5S) resonances with the Belle detector at the KEKB asymmetric energy e+e- collider. The measured time-integrated CP asymmetry is ACP(D<mn>0mn>KS<mn>0mn>KS>0mn>) = (-0.02 ± 1.53 ± 0.02 ± 0.17)%, and the branching fraction is B(D<mn>0mn>KS<mn>0mn>KS>0mn>) = (1.321 ± 0.023 ± 0.036 ± 0.044) × 10-4, where the first uncertainty is statistical, the second is systematic, and the third is due to the normalization mode (D<mn>0mn>KS<mn>0mn>π0). These results are significantly more precise than previous measurements available for this mode. The ACP measurement is consistent with the standard model expectation.

  17. Zn–Mn alloy coatings from acidic chloride bath: Effect of deposition conditions on the Zn–Mn electrodeposition-morphological and structural characterization

    Energy Technology Data Exchange (ETDEWEB)

    Loukil, N., E-mail: nloukil87@gmail.com; Feki, M.

    2017-07-15

    Highlights: • Zn-Mn co-deposition from an additives-free chloride bath is possible. • Effect of Mn{sup 2+} ion concentration and current density on Zn-Mn electrodeposition and particularly Mn content into Zn-Mn deposits were investigated. • A dimensionless graph model was used to analyze the effect of Mn{sup 2+} ion concentration as well as the applied potential on Zn-Mn nucleation process. • Effect of current density on the morphology and structure of Zn-Mn alloys deposits. • A transition from crystalline to amorphous structure may occur in the Mn alloy electrodeposits at high current densities. - Abstract: Zn–Mn alloy electrodeposition on steel electrode in chloride bath was investigated using cyclic voltammetric, chronopotentiometric and chronoamperometric techniques. Cyclic voltammetries (CV) reveal a deep understanding of electrochemical behaviors of each metal Zn, Mn, proton discharge and Zn–Mn co-deposition. The electrochemical results show that with increasing Mn{sup 2+} ions concentration in the electrolytic bath, Mn{sup 2+} reduction occurs at lower over-potential leading to an enhancement of Mn content into the Zn–Mn deposits. A dimensionless graph model was used to analyze the effect of Mn{sup 2+} ions concentration on Zn–Mn nucleation process. It was found that the nucleation process is not extremely affected by Mn{sup 2+} concentration. Nevertheless, it significantly depends on the applied potential. Several parameters such as Mn{sup 2+} ions concentration, current density and stirring were investigated with regard to the Mn content into the final Zn–Mn coatings. It was found that the Mn content increases with increasing the applied current density j{sub imp} and Mn{sup 2+} ions concentration in the electrolytic bath. However, stirring of the solution decreases the Mn content in the Zn–Mn coatings. The phase structure and surface morphology of Zn–Mn deposits are characterized by means of X-ray diffraction analysis and Scanning

  18. Consuming America : A Data-Driven Analysis of the United States as a Reference Culture in Dutch Public Discourse on Consumer Goods, 1890-1990

    OpenAIRE

    Wevers, M.J.H.F.

    2017-01-01

    Consuming America offers a data-driven, longitudinal analysis of the historical dynamics that have underpinned a long-term, layered cultural-historical process: the emergence of the United States as a dominant reference culture in Dutch public discourse on consumer goods between 1890 and 1990. The ideas, values, and practices associated with the United States in public discourse remained relatively steady over time, which might explain the country’s longevity as a reference culture and its po...

  19. Local structure in LaMnO3 and CaMnO3 perovskites: A quantitative structural refinement of Mn K-edge XANES data

    International Nuclear Information System (INIS)

    Monesi, C.; Meneghini, C.; Bardelli, F.; Benfatto, M.; Mobilio, S.; Manju, U.; Sarma, D.D.

    2005-01-01

    Hole-doped perovskites such as La 1-x Ca x MnO 3 present special magnetic and magnetotransport properties, and it is commonly accepted that the local atomic structure around Mn ions plays a crucial role in determining these peculiar features. Therefore experimental techniques directly probing the local atomic structure, like x-ray absorption spectroscopy (XAS), have been widely exploited to deeply understand the physics of these compounds. Quantitative XAS analysis usually concerns the extended region [extended x-ray absorption fine structure (EXAFS)] of the absorption spectra. The near-edge region [x-ray absorption near-edge spectroscopy (XANES)] of XAS spectra can provide detailed complementary information on the electronic structure and local atomic topology around the absorber. However, the complexity of the XANES analysis usually prevents a quantitative understanding of the data. This work exploits the recently developed MXAN code to achieve a quantitative structural refinement of the Mn K-edge XANES of LaMnO 3 and CaMnO 3 compounds; they are the end compounds of the doped manganite series La x Ca 1-x MnO 3 . The results derived from the EXAFS and XANES analyses are in good agreement, demonstrating that a quantitative picture of the local structure can be obtained from XANES in these crystalline compounds. Moreover, the quantitative XANES analysis provides topological information not directly achievable from EXAFS data analysis. This work demonstrates that combining the analysis of extended and near-edge regions of Mn K-edge XAS spectra could provide a complete and accurate description of Mn local atomic environment in these compounds

  20. Optical properties of Mn doped ZnO films and wires synthesized by thermal oxidation of ZnMn alloy

    International Nuclear Information System (INIS)

    Sima, M.; Mihut, L.; Vasile, E.; Sima, Ma.; Logofatu, C.

    2015-01-01

    Mn doped ZnO films and wires, having different manganese concentrations were synthesized by thermal oxidation of the corresponding ZnMn alloy films and wires electrodeposited on a gold substrate. Structural and optical properties were addressed with scanning electron microscopy, X-ray diffraction (XRD), Raman scattering and photoluminescence (PL). To estimate the manganese concentration in Mn doped ZnO films, X-ray photoelectron spectroscopy was used. XRD patterns indicate that the incorporation of Mn 2+ ions into the Zn 2+ site of ZnO lattice takes place. Quenching of the ZnO PL appears due to Mn 2+ ions in the ZnO lattice. Moreover, a significant decrease in the green emission of ZnO is reported in the case of the Mn doped ZnO wire array with a Mn concentration of 1.45%. The wurtzite ZnO has a total of 12 phonon modes, namely, one longitudinal acoustic (LA), two transverse acoustic (TA), three longitudinal optical (LO), and six transverse optical branches. Compared to the undoped ZnO, a gradual up-shift of the Raman lines assigned to the 2LA and A 1 (LO) vibrational modes, from 482 and 567 cm −1 to 532 and 580 cm −1 , respectively, takes place for the Mn doped ZnO films having a Mn concentration between 2 and 15%. Additionally, in the case of the Mn doped ZnO films with 7 and 15% Mn concentration, Raman spectra show the appearance and increase in the relative intensity of the ZnO Raman line assigned to the TA + LO vibrational mode in the 600–750 cm −1 spectral range. For the Mn-doped ZnO wires, the presence of the Raman line peaking at 527 cm −1 confirms the insertion of Mn 2+ ions in ZnO lattice. - Highlights: • Mn doped ZnO films and wires grown by thermal oxidation of ZnMn alloy • Incorporation of Mn 2+ ions into Zn 2+ site of ZnO lattice • Appearance of a strong Raman line in the spectral range 600–800 cm −1 at high Mn concentration • Compensation of the oxygen vacancy at higher Mn concentration in ZnO lattice

  1. Interface characteristics in Co2MnSi/Ag/Co2MnSi trilayer

    International Nuclear Information System (INIS)

    Li, Yang; Chen, Hong; Wang, Guangzhao; Yuan, Hongkuan

    2016-01-01

    Highlights: • Inferface DO 3 disorder is most favorable in Co 2 MnSi/Ag/Co 2 MnSi trilayer. • Interface itself and inferface DO 3 disorder destroy the half-metallicity of interface layers. • Magnetoresistance is reduced by the interface itself and interface disorder. • Magnetotransport coefficient is largely reduced by the interface itself and interface disorder. - Abstract: Interface characteristics of Co 2 MnSi/Ag/Co 2 MnSi trilayer have been investigated by means of first-principles. The most likely interface is formed by connecting MnSi-termination to the bridge site between two Ag atoms. As annealed at high temperature, the formation of interface DO 3 disorder is most energetically favorable. The spin polarization is reduced by both the interface itself and interface disorder due to the interface state occurs in the minority-spin gap. As a result, the magneto-resistance ratio has a sharp drop based on the estimation of a simplified modeling.

  2. [Variation in soil Mn fractions as affected by long-term manure amendment using atomic absorption spectrophotometer in a typical grassland of inner Mongolia].

    Science.gov (United States)

    Fu, Ming-ming; Jiang, Yong; Bai, Yong-fei; Zhang, Yu-ge; Xu, Zhu-wen; Li, Bo

    2012-08-01

    The effect of sheep manure amendment on soil manganese fractions was conducted in a 11 year experiment at inner Mongolia grassland, using sequential extraction procedure in modified Community Bureau of Reference, and determined by atomic absorption spectrophotometer. Five treatments with dry sheep manure addition rate 0, 50, 250, 750, and 1500 g x m(-2) x yr(-1), respectively, were carried out in this experiment. Results showed that the recovery rate for total Mn was 91.4%-105.9%, as the percentage recovered from the summation of the improved BCR results with aqua regia extractable contents, and it was 97.2%-102.9% from certified soil reference materials. Plant available exchangeable Mn could be enhanced by 47.89%, but reducible and total Mn contents decreased significantly under heavy application of manure at depth of 0-5 cm. The effect of manure amendment on Mn fractions was greater in 0-5 cm than in 5-10 cm soil layer. The results are benefit to micronutrient fractions determination and nutrient management in grassland soils.

  3. Evaluation of the reference unit method for herbaceous biomass estimation in native grasslands of southwestern South Dakota

    Science.gov (United States)

    Eric D. Boyda

    2013-01-01

    The high costs associated with physically harvesting plant biomass may prevent sufficient data collection, which is necessary to account for the natural variability of vegetation at a landscape scale. A biomass estimation technique was previously developed using representative samples or "reference units", which eliminated the need to harvest biomass from all...

  4. INAA and flame AAS of various vegetable reference materials

    International Nuclear Information System (INIS)

    Djingova, R.; Arpadjan, S.; Kuleff, I.

    1991-01-01

    INAA and flame AAS have been used for the analysis of a large number of vegetable reference materials. Out of all determined elements (28 by INAA and 11 by AAS) nine are common for both methods (Ca, Cd, Co, Cu, Fe, Mg, Mn, Na, Zn) and for these the possibilities of the two methods have been compared. (orig.)

  5. Double perovskite Ca2GdNbO6:Mn4+ deep red phosphor: Potential application for warm W-LEDs

    Science.gov (United States)

    Lu, Zuizhi; Huang, Tianjiao; Deng, Ruopeng; Wang, Huan; Wen, Lingling; Huang, Meixin; Zhou, Liya; Yao, Chunying

    2018-05-01

    A novel Mn4+-doped Ca2GdNbO6 (CGN) phosphor was prepared by high-temperature solid-state reaction. The crystal structure was investigated by X-ray diffraction patterns and unit cell structure. Mn4+ replaced the location of Nb5+ in the CGN lattice, and the value of energy gap (Egap) decreased from 2.16 eV to 1.13 eV, indicating that Mn4+ ions play a great influence on the absorption of CGN hosts. The broad excitation band from 250 nm to 550 nm matches well with commercial near-UV light emitting diodes, and the emission peak centered at 680 nm is due to 2E→4A2g transition in Mn4+ ions. The CIE chromaticity coordinates (0.698, 0.303) of CGN:Mn4+ phosphor was close to standard red color coordinates (0.666, 0.333). These investigations demonstrate CGN:Mn4+ phosphor as an efficient red phosphor for potential applications.

  6. Magnetic anisotropy in GaMnAs; Magnetische Anisotropie in GaMnAs

    Energy Technology Data Exchange (ETDEWEB)

    Daeubler, Joachim

    2009-07-02

    The goal of the present work was the detailed investigation of the impact of parameters like vertical strain, hole concentration, substrate orientation and patterning on the MA in GaMnAs. At first a method is introduced enabling us to determine the MA from angle-dependent magnetotransport measurements. This method was used to analyze the impact of vertical strain {epsilon}{sub zz} on the MA in a series of GaMnAs layers with a Mn content of 5% grown on relaxed InGaAs-templates. While hole concentration and Curie temperature were found to be unaffected by vertical strain, a significant dependence of the MA on {epsilon}{sub zz} was found. The most pronounced dependence was observed for the anisotropy parameter B{sub 2} {sub perpendicular} {sub to}, representing the intrinsic contribution to the MA perpendicular to the layer plane. For this parameter a linear dependence on {epsilon}{sub zz} was found, resulting in a strain-induced transition of the magnetic easy axis with increasing strain from in-plane to out-of-plane at {epsilon}{sub zz} {approx} -0.13%. Post-growth annealing of the samples leads to an outdiffusion and/or regrouping of the highly mobile Mn interstitial donor defects, resulting in an increase in both p and T{sub C}. For the annealed samples, the transition from in-plane to out-of-plane easy axis takes place at {epsilon}{sub zz} {approx} -0.07%. From a comparison of as-grown and annealed samples, B{sub 2} {sub perpendicular} {sub to} was found to be proportional to both p and {epsilon}{sub zz}, B{sub 2} {sub perpendicular} {sub to} {proportional_to} p .{epsilon}{sub zz}. To study the influence of substrate orientation on the magnetic properties of GaMnAs, a series of GaMnAs layers with Mn contents up to 5% was grown on (001)- and (113)A-oriented GaAs substrates. The hole densities and Curie temperatures, determined from magnetotransport measurements, are drastically reduced in the (113)A layers. The differences in the magnetic properties of (113)A- and

  7. Resonant optical alignment and orientation of Mn2+ spins in CdMnTe crystals

    Science.gov (United States)

    Baryshnikov, K. A.; Langer, L.; Akimov, I. A.; Korenev, V. L.; Kusrayev, Yu. G.; Averkiev, N. S.; Yakovlev, D. R.; Bayer, M.

    2015-11-01

    We report on spin orientation and alignment of Mn2 + ions in (Cd,Mn)Te diluted magnetic semiconductor crystals using resonant intracenter excitation with circular- and linear-polarized light. The resulting polarized emission of the magnetic ions is observed at low temperatures when the spin relaxation time of the Mn2 + ions is in the order of 1 ms , which considerably exceeds the photoluminescence decay time of 23 μ s . We demonstrate that the experimental data on optical orientation and alignment of Mn2 + ions can be explained using a phenomenological model that is based on the approximation of isolated centers.

  8. Phase equilibria and stability of the B2 phase in the Ni-Mn-Al and Co-Mn-Al systems

    International Nuclear Information System (INIS)

    Kainuma, R.; Ise, M.; Ishikawa, K.; Ohnuma, I.; Ishida, K.

    1998-01-01

    The phase equilibria and ordering reactions in the composition region up to 50 at.% Al have been investigated in the Ni-Mn-Al and Co-Mn-Al systems at temperatures in the interval 850-1200 C mainly by the diffusion couple method. The compositions of the γ (A1: fcc-Ni, -Co, γ-Mn), γ' (L1 2 : Ni 3 Al), β (B2: NiAl, CoAl, NiMn), β-Mn (A13: β-Mn type), δ-Mn (A2: bcc-Mn) and ε (A3: hcp-(Mn, Al)) phases in equilibrium and the critical boundaries of the A2/B2 continuous ordering transition in the bcc phase region have been determined. It is shown that in the Mn-rich portion of the ternary systems both continuous and discontinuous A2 to B2 ordering transitions exist. The A2+B2 two-phase region in the isothermal sections has a lenticular shape and exists over a wide temperature range. The phase equilibria between the γ, γ', β, β-Mn, δ-Mn and ε phases are presented and the stability of the ordered bcc aluminides is discussed. (orig.)

  9. The influence of Mn species on the SO{sub 2} removal of Mn-based activated carbon catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Yi-Fan [College of Architecture and Environment, Sichuan University, Chengdu 610065 (China); Guo, Jia-Xiu, E-mail: guojiaxiu@scu.edu.cn [College of Architecture and Environment, Sichuan University, Chengdu 610065 (China); National Engineering Technology Research Center for Flue Gas Desulfurization, Chengdu 610065 (China); Chu, Ying-Hao [College of Architecture and Environment, Sichuan University, Chengdu 610065 (China); National Engineering Technology Research Center for Flue Gas Desulfurization, Chengdu 610065 (China); Sun, Ming-Chao [College of Architecture and Environment, Sichuan University, Chengdu 610065 (China); Yin, Hua-Qiang, E-mail: hqyin@scu.edu.cn [College of Architecture and Environment, Sichuan University, Chengdu 610065 (China); National Engineering Technology Research Center for Flue Gas Desulfurization, Chengdu 610065 (China)

    2013-10-01

    Using Mn(NO{sub 3}){sub 2} as precursor, a series of Mn-based activated carbon catalysts were prepared by ultrasound-assisted excessive impregnation method and characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and temperature programmed reduction (TPR). The influences of Mn species and nitric acid pretreatment on the removal role of SO{sub 2} were investigated. MnO and Mn{sub 3}O{sub 4} coexist in catalysts calcined at 650 and 800 °C and exhibit best SO{sub 2} removal ability, whereas Mn{sub 2}O{sub 3} formed in the catalyst calcined at 500 °C and shows poor activity. After treatment by nitric acid, the C=O of activated carbon support increases and the crystal size of MnO decreases, resulting in the enhancement of the catalytic activity. During reaction process, manganese oxides are gradually transferred into MnO{sub 2}. And this change directly results in a decrease of activity. But the SO{sub 2} removal rate has been maintained in the range of 30–40%, indicating that MnO{sub 2} still has a certain SO{sub 2} removal ability.

  10. Structural and magnetic properties of Mg doped YbMnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Sattibabu, Bhumireddi, E-mail: bsb.satti@gmail.com [School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad 500046 (India); Bhatnagar, Anil K., E-mail: anilb42@gmail.com [School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad 500046 (India); School of Physics, University of Hyderabad, Hyderabad 500046 (India); Rayaprol, Sudhindra [UGC-DAE CSR, Mumbai Centre, R-5 Shed, BARC, Mumbai 400085 (India); Mohan, Dasari; Das, Dibakar; Sundararaman, Mahadevan [School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad 500046 (India); Siruguri, Vasudeva [UGC-DAE CSR, Mumbai Centre, R-5 Shed, BARC, Mumbai 400085 (India)

    2014-09-01

    We have studied the effect of Mg doping on structure and magnetism of multiferroic YbMnO{sub 3}. Room temperature neutron diffraction studies were carried out on polycrystalline Yb{sub 1−x}Mg{sub x}MnO{sub 3} (x=0.00 and 0.05) samples to determine phase formation as well as cation distribution and structural properties such as bond length and bond angles. The structural analysis shows that with Mg substitution, there is a marginal change in a and c parameters of the hexagonal unit cell, c/a ratio remains constant for x=0 and 0.05 samples. Due to changes in bond angle and bond lengths on substituting Mg, there is a slight decrease in the distortion of MnO{sub 5} polyhedra. Magnetic measurements show that the Néel temperature (T{sub N}) increases marginally from 85 K for x=0.00 to 89 K for x=0.05 sample.

  11. Preliminary Experiment on Neutron-Induced Mn Activity in Mn-Cd Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Broda, E.

    1942-07-01

    This report was written by E. Broda, J. Gueron and L. Kowarski at the Cavendish Laboratory (Cambridge) in June 1942 and is about a preliminary experiment on neutron-induced Mn activity in Mn-Cd solutions. The description of the experiment and the results can be found also in this report. (nowak)

  12. Analysis of micronucleated erythrocytes in heron nestlings from reference and impacted sites in the Ebro basin (N.E. Spain)

    International Nuclear Information System (INIS)

    Quiros, Laia; Ruiz, Xavier; Sanpera, Carolina; Jover, Lluis; Pina, Benjamin

    2008-01-01

    The frequency of micronuclei (MN) in peripheral erythrocytes was tested for 59 heron nestlings (Ardea purpurea, Egretta garzetta and Bubulcus ibis) sampled at two areas (polluted and reference) on the River Ebro (NE Spain) and at its Delta during Spring 2006. Flow-cytometry analysis revealed higher (three- to six-fold) MN counts in samples from the most polluted site relative to samples from the reference area. Samples from the Delta showed intermediate values. Age, morphometric parameters (weight, tarsus size and bill-head length) and maturation status showed no significant differences among the different populations for each species; nor were they correlated with MN levels. The data suggest that elevated levels of MN in chicks in impacted areas reflected the chemical pollution of their nesting sites. The use of nestlings for this assay appears to be a convenient, non-destructive method to assess the impact of pollution in natural bird populations. - Frequency of micronucleated erythrocytes in peripheral blood of waterbird nestlings correlates with chemical pollution loads in their nesting sites

  13. Optical properties of Mn doped ZnO films and wires synthesized by thermal oxidation of ZnMn alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sima, M., E-mail: msima@infim.ro [National Institute of Materials Physics, 105bis Atomistilor Street, 077125 Magurele (Romania); Mihut, L. [National Institute of Materials Physics, 105bis Atomistilor Street, 077125 Magurele (Romania); Vasile, E. [University “Politehnica”of Bucharest, Faculty of Applied Chemistry and Material Science, Department of Oxide Materials and Nanomaterials, No. 1-7 Gh. Polizu Street, 011061 Bucharest (Romania); Sima, Ma.; Logofatu, C. [National Institute of Materials Physics, 105bis Atomistilor Street, 077125 Magurele (Romania)

    2015-09-01

    Mn doped ZnO films and wires, having different manganese concentrations were synthesized by thermal oxidation of the corresponding ZnMn alloy films and wires electrodeposited on a gold substrate. Structural and optical properties were addressed with scanning electron microscopy, X-ray diffraction (XRD), Raman scattering and photoluminescence (PL). To estimate the manganese concentration in Mn doped ZnO films, X-ray photoelectron spectroscopy was used. XRD patterns indicate that the incorporation of Mn{sup 2+} ions into the Zn{sup 2+} site of ZnO lattice takes place. Quenching of the ZnO PL appears due to Mn{sup 2+} ions in the ZnO lattice. Moreover, a significant decrease in the green emission of ZnO is reported in the case of the Mn doped ZnO wire array with a Mn concentration of 1.45%. The wurtzite ZnO has a total of 12 phonon modes, namely, one longitudinal acoustic (LA), two transverse acoustic (TA), three longitudinal optical (LO), and six transverse optical branches. Compared to the undoped ZnO, a gradual up-shift of the Raman lines assigned to the 2LA and A{sub 1} (LO) vibrational modes, from 482 and 567 cm{sup −1} to 532 and 580 cm{sup −1}, respectively, takes place for the Mn doped ZnO films having a Mn concentration between 2 and 15%. Additionally, in the case of the Mn doped ZnO films with 7 and 15% Mn concentration, Raman spectra show the appearance and increase in the relative intensity of the ZnO Raman line assigned to the TA + LO vibrational mode in the 600–750 cm{sup −1} spectral range. For the Mn-doped ZnO wires, the presence of the Raman line peaking at 527 cm{sup −1} confirms the insertion of Mn{sup 2+} ions in ZnO lattice. - Highlights: • Mn doped ZnO films and wires grown by thermal oxidation of ZnMn alloy • Incorporation of Mn{sup 2+} ions into Zn{sup 2+} site of ZnO lattice • Appearance of a strong Raman line in the spectral range 600–800 cm{sup −1} at high Mn concentration • Compensation of the oxygen vacancy at higher

  14. Switchable Polarization in Mn Embedded Graphene.

    Science.gov (United States)

    Noor-A-Alam, Mohammad; Ullah, Hamid; Shin, Young-Han

    2018-03-14

    Graphene, despite its many unique properties, is neither intrinsically polar due to inversion symmetry nor magnetic. However, based on density functional theory, we find that Mn, one of transition metals, embedded in single or double vacancy (Mn@SV and Mn@DV) in a graphene monolayer induces a dipole moment perpendicular to the sheet, which can be switched from up to down by Mn penetration through the graphene. Such switching could be realized by an external stimuli introduced through the tip of a scanning probe microscope, as already utilized in the studies of molecular switches. We estimate the energy barriers for dipole switching, which are found to be 2.60 eV and 0.28 eV for Mn@SV and Mn@DV, respectively. However, by applying biaxial tensile strain, we propose a mechanism for tuning the barrier. We find that 10% biaxial tensile strain, which is already experimentally achievable in graphene-like two-dimensional materials, can significantly reduce the barrier to 0.16 eV in Mn@SV. Moreover, in agreement with previous studies, we find a high magnetic moment of 3 μ B for both Mn@SV and Mn@DV, promising the potential of these structures in spintronics as well as in nanoscale electro-mechanical or memory devices.

  15. Energy levels of 56Mn

    DEFF Research Database (Denmark)

    Van Assche, P. H. M.; Baader, H. A.; Koch, H. R.

    1971-01-01

    The low-energy spectrum of the 55Mn(n,γ)56 Mn reaction has been studied with a γ-diffraction spectrometer. These data allowed the construction of a level scheme for 56Mn with two previously unobserved doublets. High-energy γ-transitions to the low-energy states have been measured for different...

  16. Foliar Mn accumulation in eastern Australian herbarium specimens: prospecting for 'new' Mn hyperaccumulators and potential applications in taxonomy.

    Science.gov (United States)

    Fernando, Denise R; Guymer, Gordon; Reeves, Roger D; Woodrow, Ian E; Baker, Alan J; Batianoff, George N

    2009-04-01

    The analysis of herbarium specimens has previously been used to prospect for 'new' hyperaccumulators, while the use of foliar manganese (Mn) concentrations as a taxonomic tool has been suggested. On the basis of their geographic and taxonomic affiliations to known Mn hyperaccumulators, six eastern Australian genera from the Queensland Herbarium collection were sampled for leaf tissue analyses. ICP-OES was used to measure Mn and other elemental concentrations in 47 species within the genera Austromyrtus, Lenwebbia, Gossia (Myrtaceae), Macadamia (Proteaceae), Maytenus and Denhamia (Celastraceae). The resulting data demonstrated (a) up to seven 'new' Mn hyperaccumulators, mostly tropical rainforest species; (b) that one of these 'new' Mn hyperaccumulators also had notably elevated foliar Ni concentrations; (c) evidence of an interrelationship between foliar Mn and Al uptake among the Macadamias; (d) considerable variability of Mn hyperaccumulation within Gossia; and (e) the possibility that Maytenus cunninghamii may include subspecies. Gossia bamagensis, G. fragrantissima, G. sankowsiorum, G. gonoclada and Maytenus cunninghamii were identified as 'new' Mn hyperaccumulators, while Gossia lucida and G. shepherdii are possible 'new' Mn hyperaccumulators. Of the three Myrtaceae genera examined, Mn hyperaccumulation appears restricted to Gossia, supporting its recent taxonomic revision. In the context of this present investigation and existing information, a reassesment of the general definition of Mn hyperaccumulation may be warranted. Morphological variation of Maytenus cunninghamii at two extremities was consistent with variation in Mn accumulation, indicating two possible 'new' subspecies. Although caution should be exercised in interpreting the data, surveying herbarium specimens by chemical analysis has provided an effective means of assessing foliar Mn accumulation. These findings should be followed up by field studies.

  17. Na2MnSiO4 as an attractive high capacity cathode material for sodium-ion battery

    Science.gov (United States)

    Law, Markas; Ramar, Vishwanathan; Balaya, Palani

    2017-08-01

    Here we report a polyanion-based cathode material for sodium-ion batteries, Na2MnSiO4, registering impressive sodium storage performances with discharge capacity of 210 mAh g-1 at an average voltage of 3 V at 0.1 C, along with excellent long-term cycling stability (500 cycles at 1 C). Insertion/extraction of ∼1.5 mol of sodium ion per formula unit of the silicate-based compound is reported and the utilisation of Mn2+ ⇋ Mn4+ redox couple is also demonstrated by ex-situ XPS. Besides, this study involves a systematic investigation of influence of the electrolyte additive (with different content) on the sodium storage performance of Na2MnSiO4. The electrolyte additive forms an optimum protective passivation film on the electrode surface, successfully reducing manganese dissolution.

  18. X-ray spectroscopy at the Mn K edge in LaMnO3 : An ab initio study

    NARCIS (Netherlands)

    Hozoi, L.; Vries, A.H. de; Broer, R.

    2001-01-01

    We present ab initio quantum chemical embedded cluster calculations of Mn core-valence and d-d transitions in LaMnO3. The results are also important for the analysis of recent x-ray absorption and x-ray scattering experiments at the Mn K edge in LaMnO3. We find that the first two peaks of the

  19. Phenomenological approach to the spin glass state of (Cu-Mn, Ag-Mn, Au-Mn and Au-Fe) alloys at low temperatures

    International Nuclear Information System (INIS)

    Al-Jalali, Muhammad A.; Kayali, Fawaz A.

    2000-01-01

    Full text.The spin glass of: (Cu-Mn, Ag-Mn, Au-Mn, Au-Fe) alloys has been extensively studied. The availability of published and assured experimental data on the susceptibility x(T) of this alloys has enabled the design and application of phenomenological approach to the spin glass state of these interesting alloys. The use of and advanced (S.P.S.S) computer software has resulted revealing some important features of the spin glass in these alloys, the most important of which is that the spin glass state do not represent as phase change

  20. Ferrite re-crystallization kinetics on a C-Mn steel and on two micro alloyed steels after dual-phase strain; Cinetica de recristalizacao da ferrita em um aco C-Mn e dois acos microligados apos deformacao na regiao bifasica

    Energy Technology Data Exchange (ETDEWEB)

    Simieli, Eider A. [Instituto de Pesquisas Tecnologicas (IPT), Sao Paulo, SP (Brazil)

    1991-12-31

    Ferrite recrystallization was investigated in two micro alloyed steels deformed in the inter critical range. A reference steel was also used, which had a composition of 0,06% C and 1,31% Mn. (author). 15 refs., 7 figs., 3 tabs.

  1. Core-shell structured MnSiO3 supported with CNTs as a high capacity anode for lithium-ion batteries.

    Science.gov (United States)

    Feng, Jing; Li, Qin; Wang, Huijun; Zhang, Min; Yang, Xia; Yuan, Ruo; Chai, Yaqin

    2018-04-17

    Metal silicates are good candidates for use in lithium ion batteries (LIBs), however, their electrochemical performance is hindered by their poor electrical conductivity and volume expansion during Li+ insertion/desertion. In this work, one-dimensional core-shell structured MnSiO3 supported with carbon nanotubes (CNTs) (referred to as CNT@MnSiO3) with good conductivity and electrochemical performance has been successfully synthesized using a solvothermal process under moderate conditions. In contrast to traditional composites of CNTs and nanoparticles, the CNT@MnSiO3 composite in this work is made up of CNTs with a layer of MnSiO3 on the surface. The one-dimensional CNT@MnSiO3 nanotubes provide a useful channel for transferring Li+ ions during the discharge/charge process, which accelerates the Li+ diffusion speed. The CNTs inside the structure not only enhance the conductivity of the composite, but also prevent volume expansion. A high reversible capacity (920 mA h g-1 at 500 mA g-1 over 650 cycles) and good rate performance were obtained for CNT@MnSiO3, showing that this strategy of synthesizing coaxial CNT@MnSiO3 nanotubes offers a promising method for preparing other silicates for LIBs or other applications.

  2. Synthesis, structural and ferromagnetic properties of La1–x Kx MnO3

    Indian Academy of Sciences (India)

    Administrator

    2009-09-05

    Sep 5, 2009 ... Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India .... equation for the formation of samples can be proposed as follows ..... for La-site in LaMnO3 system by the rapid solution com-.

  3. Use of MnO2 and MnO2 SiO2 for sorbing of Sr-90 from liquid rad waste

    International Nuclear Information System (INIS)

    Subiarto; Las, Thamzil; Aan BH, Martin; Utomo, Cahyo Hari

    1998-01-01

    The synthesis of MnO 2 adsorbent and MnO 2 -SiO 2 composite has been done. MnO 2 synthesis is done by the reaction of KMnO 4 , Mn(NO 3 ) 2 .4H 2 O and Na 2 S 2 O 4 ( MnO 2 -A, MnO 2 -B, and MnO 2 -T ). MnO 2 . SiO 2 is made from KMnO 4 , Na 2 SiO 3 , and H 2 O 2 . The result obtained show the best Sr-90 sorption by MnO 2 -A with Kd = 2085.63 ml/g, by MnO 2 -L with Kd = 755.09 ml/g, and by MnO 2 - SiO 2 composite with Kd = 1466.51 ml/g. From this result, we can conclude that MnO 2 -SiO 2 can be expanded for Sr-90 sorption from liquid radioactive waste. (author)

  4. Mn porphyrin-based SOD mimic, MnTnHex-2-PyP(5+), and non-SOD mimic, MnTBAP(3-), suppressed rat spinal cord ischemia/reperfusion injury via NF-κB pathways.

    Science.gov (United States)

    Celic, T; Španjol, J; Bobinac, M; Tovmasyan, A; Vukelic, I; Reboucas, J S; Batinic-Haberle, I; Bobinac, D

    2014-12-01

    Herein we have demonstrated that both superoxide dismutase (SOD) mimic, cationic Mn(III) meso-tetrakis(N-n-hexylpyridinium-2-yl)porphyrin (MnTnHex-2-PyP(5+)), and non-SOD mimic, anionic Mn(III) meso-tetrakis(4-carboxylatophenyl)porphyrin (MnTBAP(3-)), protect against oxidative stress caused by spinal cord ischemia/reperfusion via suppression of nuclear factor kappa B (NF-κB) pro-inflammatory pathways. Earlier reports showed that Mn(III) N-alkylpyridylporphyrins were able to prevent the DNA binding of NF-κB in an aqueous system, whereas MnTBAP(3-) was not. Here, for the first time, in a complex in vivo system-animal model of spinal cord injury-a similar impact of MnTBAP(3-), at a dose identical to that of MnTnHex-2-PyP(5+), was demonstrated in NF-κB downregulation. Rats were treated subcutaneously at 1.5 mg/kg starting at 30 min before ischemia/reperfusion, and then every 12 h afterward for either 48 h or 7 days. The anti-inflammatory effects of both Mn porphyrins (MnPs) were demonstrated in the spinal cord tissue at both 48 h and 7 days. The downregulation of NF-κB, a major pro-inflammatory signaling protein regulating astrocyte activation, was detected and found to correlate well with the suppression of astrogliosis (as glial fibrillary acidic protein) by both MnPs. The markers of oxidative stress, lipid peroxidation and protein carbonyl formation, were significantly reduced by MnPs. The favorable impact of both MnPs on motor neurons (Tarlov score and inclined plane test) was assessed. No major changes in glutathione peroxidase- and SOD-like activities were demonstrated, which implies that none of the MnPs acted as SOD mimic. Increasing amount of data on the reactivity of MnTBAP(3-) with reactive nitrogen species (RNS) (.NO/HNO/ONOO(-)) suggests that RNS/MnTBAP(3-)-driven modification of NF-κB protein cysteines may be involved in its therapeutic effects. This differs from the therapeutic efficacy of MnTnHex-2-PyP(5+) which presumably occurs via reactive

  5. Current Practices of Measuring and Reference Range Reporting of Free and Total Testosterone in the United States.

    Science.gov (United States)

    Le, Margaret; Flores, David; May, Danica; Gourley, Eric; Nangia, Ajay K

    2016-05-01

    The evaluation and management of male hypogonadism should be based on symptoms and on serum testosterone levels. Diagnostically this relies on accurate testing and reference values. Our objective was to define the distribution of reference values and assays for free and total testosterone by clinical laboratories in the United States. Upper and lower reference values, assay methodology and source of published reference ranges were obtained from laboratories across the country. A standardized survey was reviewed with laboratory staff via telephone. Descriptive statistics were used to tabulate results. We surveyed a total of 120 laboratories in 47 states. Total testosterone was measured in house at 73% of laboratories. At the remaining laboratories studies were sent to larger centralized reference facilities. The mean ± SD lower reference value of total testosterone was 231 ± 46 ng/dl (range 160 to 300) and the mean upper limit was 850 ± 141 ng/dl (range 726 to 1,130). Only 9% of laboratories where in-house total testosterone testing was performed created a reference range unique to their region. Others validated the instrument recommended reference values in a small number of internal test samples. For free testosterone 82% of laboratories sent testing to larger centralized reference laboratories where equilibrium dialysis and/or liquid chromatography with mass spectrometry was done. The remaining laboratories used published algorithms to calculate serum free testosterone. Reference ranges for testosterone assays vary significantly among laboratories. The ranges are predominantly defined by limited population studies of men with unknown medical and reproductive histories. These poorly defined and variable reference values, especially the lower limit, affect how clinicians determine treatment. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  6. Structural Series in the Ternary A-Mn-As System (A = Alkali Metal): Double-Layer-Type CsMn4As3 and RbMn4As3 and Tunnel-Type KMn4As3.

    Science.gov (United States)

    Ishida, Junichi; Iimura, Soshi; Hosono, Hideo

    2018-04-16

    New manganese arsenides CsMn 4 As 3 , RbMn 4 As 3 , and KMn 4 As 3 were synthesized by solid-state reaction. They consist of edge-sharing MnAs 4 tetrahedra, which are a building block similar to those of Fe-based superconductors. CsMn 4 As 3 and RbMn 4 As 3 adopt the KCu 4 S 3 -type structure (tetragonal P4/ mmm space group, No. 123) with a Mn 4 As 3 double layer, while KMn 4 As 3 has the CaFe 4 As 3 -type structure (orthorhombic Pnma space group, No. 62) with a Mn 4 As 3 tunnel framework. The structural change from CsMn 4 As 3 and RbMn 4 As 3 to KMn 4 As 3 as well as the structural trend of the other ternary A-Mn-As (A = alkali metal) and AE-Mn-As (AE = alkaline-earth metal) compounds is understood as a consequence of reduction of the coordination number around the A and AE sites owing to the decrease of the ionic radius from Cs + to Mg 2+ . Electrical resistivity measurements confirm that the three new phases are Mott insulators with band gaps of 0.52 (CsMn 4 As 3 ), 0.43 (RbMn 4 As 3 ), and 0.31 eV (KMn 4 As 3 ). Magnetic and heat capacity measurements revealed that CsMn 4 As 3 and RbMn 4 As 3 are antiferromagnets without apparent phase transitions below 400 K, which is similar to the magnetism of LaMnAsO and BaMn 2 As 2 , while the existence of the ferromagnetic component was indicated in KMn 4 As 3 with a magnetic transition at 179 K.

  7. L10-MnGa based magnetic tunnel junction for high magnetic field sensor

    Science.gov (United States)

    Zhao, X. P.; Lu, J.; Mao, S. W.; Yu, Z. F.; Wang, H. L.; Wang, X. L.; Wei, D. H.; Zhao, J. H.

    2017-07-01

    We report on the investigation of the magnetic tunnel junction structure designed for high magnetic field sensors with a perpendicularly magnetized L10-MnGa reference layer and an in-plane magnetized Fe sensing layer. A large linear tunneling magnetoresistance ratio up to 27.4% and huge dynamic range up to 5600 Oe have been observed at 300 K, with a low nonlinearity of 0.23% in the optimized magnetic tunnel junction (MTJ). The field response of tunneling magnetoresistance is discussed to explain the field sensing properties in the dynamic range. These results indicate that L10-MnGa based orthogonal MTJ is a promising candidate for a high performance magnetic field sensor with a large dynamic range, high endurance and low power consumption.

  8. Study of Mn dissolution from LiMn{sub 2}O{sub 4} spinel electrodes using rotating ring-disk collection experiments

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Li-Fang; Ou, Chin-Ching; Striebel, Kathryn A.; Chen, Jenn-Shing

    2003-07-01

    The goal of this research was to measure Mn dissolution from a thin porous spinel LiMn{sub 2}O{sub 4} electrode by rotating ring-disk collection experiments. The amount of Mn dissolution from the spinel LiMn{sub 2}O{sub 4} electrode under various conditions was detected by potential step chronoamperometry. The concentration of dissolved Mn was found to increase with increasing cycle numbers and elevated temperature. The dissolved Mn was not dependent on disk rotation speed, which indicated that the Mn dissolution from the disk was under reaction control. The in situ monitoring of Mn dissolution from the spinel was carried out under various conditions. The ring currents exhibited maxima corresponding to the end-of-charge (EOC) and end-of-discharge (EOD), with the largest peak at EOC. The results suggest that the dissolution of Mn from spinel LiMn{sub 2}O{sub 4} occurs during charge/discharge cycling, especially in a charged state (at >4.1 V) and in a discharged state (at <3.1 V). The largest peak at EOC demonstrated that Mn dissolution took place mainly at the top of charge. At elevated temperatures, the ring cathodic currents were larger due to the increase of Mn dissolution rate.

  9. The single crystal structure determination of Ln{sub 6}MnSb{sub 15} (Ln=La, Ce), Ln{sub 6}Mn{sub 1-x}Zn{sub x}Sb{sub 15} (x∝0.5), and Ln{sub 6}ZnSb{sub 15} (Ln=La-Pr)

    Energy Technology Data Exchange (ETDEWEB)

    Benavides, Katherine A.; McCandless, Gregory T.; Chan, Julia Y. [Texas Univ., Dallas, Richardson, TX (United States). Dept. of Chemistry and Biochemistry

    2017-09-01

    Single crystals of Ln{sub 6}MnSb{sub 15} (Ln=La, Ce), Ln{sub 6}Mn{sub 1-x}Zn{sub x}Sb{sub 15} (x∝0.5), and Ln{sub 6}ZnSb{sub 15} (Ln=La-Pr) have been successfully grown and the compounds adopt the orthorhombic Ln{sub 6}MnSb{sub 15} structure type (space group Immm), with a∝4.3 Aa, b∝15 Aa, and c∝19 Aa. This structure is comprised of antimony nets and antimony ribbons which exhibit positional disorder at connecting points between antimony substructures, in addition to two partially occupied transition metal sites. The unit cell volumes of the La analogs displayed a systematic decrease upon Zn substitution. However, for the Ce{sub 6}Mn{sub 1-x}Zn{sub x}Sb{sub 15} and Pr{sub 6}Mn{sub 1-x}Zn{sub x}Sb{sub 15} (x∝0.5), the volumes deviate from linearity as observed in the parent compounds.

  10. ENTREPRENEURIAL OPPORTUNITIES IN FOOD PROCESSING UNITS (WITH SPECIAL REFERENCES TO BYADGI RED CHILLI COLD STORAGE UNITS IN THE KARNATAKA STATE

    Directory of Open Access Journals (Sweden)

    P. ISHWARA

    2010-01-01

    Full Text Available After the green revolution, we are now ushering in the evergreen revolution in the country; food processing is an evergreen activity. It is the key to the agricultural sector. In this paper an attempt has been made to study the workings of food processing units with special references to Red Chilli Cold Storage units in the Byadgi district of Karnataka State. Byadgi has been famous for Red Chilli since the days it’s of antiquity. The vast and extensive market yard in Byadagi taluk is famous as the second largest Red Chilli dealing market in the country. However, the most common and recurring problem faced by the farmer is inability to store enough red chilli from one harvest to another. Red chilli that was locally abundant for only a short period of time had to be stored against times of scarcity. In recent years, due to Oleoresin, demand for Red Chilli has grow from other countries like Sri Lanka, Bangladesh, America, Europe, Nepal, Indonesia, Mexico etc. The study reveals that all the cold storage units of the study area have been using vapour compression refrigeration system or method. All entrepreneurs have satisfied with their turnover and profit and they are in a good economic position. Even though the average turnover and profits are increased, few units have shown negligible amount of decrease in turnover and profit. This is due to the competition from increasing number of cold storages and early established units. The cold storages of the study area have been storing Red chilli, Chilli seeds, Chilli powder, Tamarind, Jeera, Dania, Turmeric, Sunflower, Zinger, Channa, Flower seeds etc,. But the 80 per cent of the each cold storage is filled by the red chilli this is due to the existence of vast and extensivered chilli market yard in the Byadgi. There is no business without problems. In the same way the entrepreneurs who are chosen for the study are facing a few problems in their business like skilled labour, technical and management

  11. Synthesis of NiO@MnO_2 core/shell nanocomposites for supercapacitor application

    International Nuclear Information System (INIS)

    Chen, Junjiao; Huang, Ying; Li, Chao; Chen, Xuefang; Zhang, Xiang

    2016-01-01

    Graphical abstract: - Highlights: • MnO_2 nanosheets were grown on the surface of porous NiO microtube. • The NiO@MnO_2 nanocomposite exhibits excellent cycle performance. • The nanocomposite exhibits specific capacitance of 266.7 F g"−"1 at 0.5 A g"−"1. - Abstract: In this work, NiO@MnO_2 core/shell nanocomposites were fabricated by a two-step method. The morphology and structure of the nanocomposites were characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction analysis and thermal gravity analysis. In addition, the supercapacitive performances were examined by cyclic voltammogram (CV), galvanostatic charge–discharge and electrochemical impedance spectroscopy (EIS). The electrochemical results indicate that the composite exhibits a specific capacitance of 266.7 F g"−"1 at 0.5 A g"−"1 and excellent cycling stability (81.7% retention after 2000 cycles at 1 A g"−"1). Therefore, this wok offers meaningful reference for supercpacitor applications in the future.

  12. Dynamical control of Mn spin-system cooling by photogenerated carriers in a (Zn,Mn)Se/BeTe heterostructure

    Science.gov (United States)

    Debus, J.; Maksimov, A. A.; Dunker, D.; Yakovlev, D. R.; Tartakovskii, I. I.; Waag, A.; Bayer, M.

    2010-08-01

    The magnetization dynamics of the Mn spin system in an undoped (Zn,Mn)Se/BeTe type-II quantum well was studied by a time-resolved pump-probe photoluminescence technique. The Mn spin temperature was evaluated from the giant Zeeman shift of the exciton line in an external magnetic field of 3 T. The relaxation dynamics of the Mn spin temperature to the equilibrium temperature of the phonon bath after the pump-laser-pulse heating can be accelerated by the presence of free electrons. These electrons, generated by a control laser pulse, mediate the spin and energy transfer from the Mn spin system to the lattice and bypass the relatively slow direct spin-lattice relaxation of the Mn ions.

  13. First-principles analysis of ferroelectric transition in MnSnO3 and MnTiO3 perovskites

    Science.gov (United States)

    Kang, Sung Gu

    2018-06-01

    The ferroelectric instabilities of an artificially adopted Pnma structure in low tolerance perovskites have been explored (Kang et al., 2017) [4], where an unstable A-site environment was reported to be the major driving source for the low tolerance perovskites to exhibit ferroelectric instability. This study examined the ferroelectric transition of two magnetic perovskite materials, MnSnO3 and MnTiO3, in Pnma phase. Phase transitions to the Pnma phase at elevated pressures were observed. MnSnO3, which has a lower (larger) tolerance factor (B-site cation radius), showed a higher ferroelectric mode amplitude than MnTiO3. The distribution of the bond length of Mn-O and the mean quadratic elongation (QE) of octahedra (SnO6 or TiO6) were investigated for structural analysis. However, MnTiO3 showed a larger spontaneous polarization than MnSnO3 due to high Born effective charges of titanium. This study is useful because it provides a valuable pathway to the design of promising multiferroic materials.

  14. Mn L2,3-edge X-ray absorption spectroscopic studies on charge-discharge mechanism of Li2MnO3

    International Nuclear Information System (INIS)

    Kubobuchi, Kei; Mogi, Masato; Imai, Hideto; Ikeno, Hidekazu; Tanaka, Isao; Mizoguchi, Teruyasu

    2014-01-01

    The redox reaction of Mn in Li 2 MnO 3 was studied by X-ray absorption spectroscopy and ab initio multiplet calculation. Associated with the de-intercalation of Li-ion, small but clear spectral changes were observed in Mn-L 2,3 X-ray absorption near edge structure (XANES). The systematic ab initio multiplet calculations of Mn-L 2,3 XANES revealed that the spectral changes in the experiment could not simply be ascribed to the change of the valency from Mn 4+ to Mn 5+ but can be explained well by the changes of local atomic structures around Mn 4+ due to the Li de-intercalation. Our results suggest that the electronic state of oxygen should change during charging in Li 2 MnO 3

  15. Martensitic transformation and magnetic properties of manganese-rich Ni-Mn-In and Ni-Mn-Sn Heusler alloys; Untersuchung der martensitischen Umwandlung und der magnetischen Eigenschaften Mangan-reicher Ni-Mn-In- und Ni-Mn-Sn-Heusler-Legierungen

    Energy Technology Data Exchange (ETDEWEB)

    Krenke, T.

    2007-06-29

    In the present work, the martensitic transition and the magnetic properties of Manganese rich Ni{sub 50}Mn{sub 50-x}Sn{sub x} and Ni{sub 50}Mn{sub 50-y}In{sub y} alloys with 5 at%{<=}x(y){<=}25 at% were investigated. Calorimetry, X-ray and neutron diffraction, magnetization, and strain measurements were performed on polycrystalline samples. It was shown that alloys close to the stoichiometric composition Ni{sub 50}Mn{sub 25}Sn{sub 25} and Ni{sub 50}Mn{sub 25}Sn{sub 25} do not exhibit a structural transition on lowering of the temperature, whereas alloys with x{<=}15 at% Tin and y{<=}16 at% Indium transform martensitically. The structural transition temperatures increase linearly with decreasing Tin or Indium content. The crystal structures of the low temperature martensite are modulated as well as unmodulated. Alloys with compositions close to stoichiometry are dominated by ferromagnetic interactions, whereas those close to the binary composition Ni{sub 50}Mn{sub 50} order antiferromagnetically. Ferromagnetic order and structural instability coexist in a narrow composition range between 13 at%{<=}x{<=}15 at% and 15 at%{<=}x{<=}16 at% for Ni{sub 50}Mn{sub 50-x}Sn{sub x} and Ni{sub 50}Mn{sub 50-y}In{sub y} respectively. As a consequence, interesting magnetoelastic effects are observed. The Ni{sub 50}Mn{sub 34}In{sub 16} alloy shows a magnetic field-induced structural transition, whereby application of an external magnetic field in the martensitic state stabilizes the high temperature L2{sub 1} structure. Evidence for this was given by neutron diffraction experiments in external magnetic fields. Moreover, the structural transition temperatures of this alloy show large magnetic field dependencies. By use of calorimetry, M(T), and strain measurements, changes in M{sub s} up to -11 K/Tesla are observed. Such large values have, until now, not been observed in Heusler alloys. Since during transformation the volume changes reversibly, magnetic field-induced strains of about

  16. Chemical reactions during sintering of Fe-Cr-Mn-Si-Ni-Mo-C-steels with special reference to processing in semi-closed containers

    Directory of Open Access Journals (Sweden)

    Cias A.

    2015-01-01

    Full Text Available Sintering of Cr, Mn and Si bearing steels has recently attracted both experimental and theoretical attention and processing in semiclosed containers has been reproposed. This paper brings together relevant thermodynamic data and considers the kinetics of some relevant chemical reactions. These involve iron and carbon, water vapour, carbon monoxide and dioxide, hydrogen and nitrogen of the sintering atmospheres and the alloying elements Cr, Mn, Mo and Si. The paper concludes by presenting mechanical properties data for three steels sintered in local microatmosphere with nitrogen, hydrogen, nitrogen-5% hydrogen and air as the furnace gas.

  17. Synthesis and crystal structure of the cesium silver permanganate Cs{sub 3}Ag[MnO{sub 4}]{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Bauchert, Joerg M.; Henning, Harald; Schleid, Thomas [Institut fuer Anorganische Chemie, Universitaet Stuttgart (Germany)

    2012-09-15

    After successful syntheses and structural refinements of the already known permanganates of cesium (Cs[MnO{sub 4}]) and silver (Ag[MnO{sub 4}]) we started to blend aqueous solutions of both components in various molar ratios. From crystallization experiments of these mixtures only three species of crystals with different chemical compositions were obtained: tricesium monosilver tetrakispermanganate (Cs{sub 3}Ag[MnO{sub 4}]{sub 4}) and, depending upon the respective ratio, either additional silver permanganate or surplus cesium permanganate, namely. The new title compound crystallizes in the orthorhombic space group Pnnm (no. 58) with two formula units per unit cell and cell dimensions of a = 764.53(4), b = 1883.57(9) and c = 584.34(3) pm. The crystal structure of Cs{sub 3}Ag[MnO{sub 4}]{sub 4} consists of two crystallographically distinguishable cesium cations. (Cs1){sup +} is surrounded by fourteen oxygen atoms constructing a slightly distorted bicapped hexagonal prism. These polyhedra are connected through edge-sharing with two other polyhedra of this kind to form chains along [001]. The chains are linked to each other via sixfold coordinated Ag{sup +} cations (d(Ag-O) = 238-246 pm), arranged in such a manner that they link three oxygen atoms of two cesium polyhedra, leading to a two-dimensional layer spreading out parallel to the (001) plane. Together with the two crystallographically different tetrahedral oxomanganate(VII) anions [MnO{sub 4}]{sup -} (d(Mn-O) = 161-162 pm) the other kind of cesium cations ((Cs2){sup +} with CN = 13) finally connect these layers three-dimensionally. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Suppression of superconductivity in Nb by IrMn in IrMn/Nb bilayers

    KAUST Repository

    Wu, B. L.; Yang, Y. M.; Guo, Z. B.; Wu, Y. H.; Qiu, J. J.

    2013-01-01

    Effect of antiferromagnet on superconductivity has been investigated in IrMn/Nb bilayers. Significant suppression of both transition temperature (Tc) and lower critical field (Hc1) of Nb is found in IrMn/Nb bilayers as compared to a single layer Nb

  19. Foliar Mn accumulation in eastern Australian herbarium specimens: prospecting for ‘new’ Mn hyperaccumulators and potential applications in taxonomy

    Science.gov (United States)

    Fernando, Denise R.; Guymer, Gordon; Reeves, Roger D.; Woodrow, Ian E.; Baker, Alan J.; Batianoff, George N.

    2009-01-01

    Background and Aims The analysis of herbarium specimens has previously been used to prospect for ‘new’ hyperaccumulators, while the use of foliar manganese (Mn) concentrations as a taxonomic tool has been suggested. On the basis of their geographic and taxonomic affiliations to known Mn hyperaccumulators, six eastern Australian genera from the Queensland Herbarium collection were sampled for leaf tissue analyses. Methods ICP-OES was used to measure Mn and other elemental concentrations in 47 species within the genera Austromyrtus, Lenwebbia, Gossia (Myrtaceae), Macadamia (Proteaceae), Maytenus and Denhamia (Celastraceae). Key Results The resulting data demonstrated (a) up to seven ‘new’ Mn hyperaccumulators, mostly tropical rainforest species; (b) that one of these ‘new’ Mn hyperaccumulators also had notably elevated foliar Ni concentrations; (c) evidence of an interrelationship between foliar Mn and Al uptake among the Macadamias; (d) considerable variability of Mn hyperaccumulation within Gossia; and (e) the possibility that Maytenus cunninghamii may include subspecies. Conclusions Gossia bamagensis, G. fragrantissima, G. sankowsiorum, G. gonoclada and Maytenus cunninghamii were identified as ‘new’ Mn hyperaccumulators, while Gossia lucida and G. shepherdii are possible ‘new’ Mn hyperaccumulators. Of the three Myrtaceae genera examined, Mn hyperaccumulation appears restricted to Gossia, supporting its recent taxonomic revision. In the context of this present investigation and existing information, a reassesment of the general definition of Mn hyperaccumulation may be warranted. Morphological variation of Maytenus cunninghamii at two extremities was consistent with variation in Mn accumulation, indicating two possible ‘new’ subspecies. Although caution should be exercised in interpreting the data, surveying herbarium specimens by chemical analysis has provided an effective means of assessing foliar Mn accumulation. These findings should be

  20. Martensitic transformation and magnetic properties of manganese-rich Ni-Mn-In and Ni-Mn-Sn Heusler alloys

    International Nuclear Information System (INIS)

    Krenke, T.

    2007-01-01

    In the present work, the martensitic transition and the magnetic properties of Manganese rich Ni 50 Mn 50-x Sn x and Ni 50 Mn 50-y In y alloys with 5 at%≤x(y)≤25 at% were investigated. Calorimetry, X-ray and neutron diffraction, magnetization, and strain measurements were performed on polycrystalline samples. It was shown that alloys close to the stoichiometric composition Ni 50 Mn 25 Sn 25 and Ni 50 Mn 25 Sn 25 do not exhibit a structural transition on lowering of the temperature, whereas alloys with x≤15 at% Tin and y≤16 at% Indium transform martensitically. The structural transition temperatures increase linearly with decreasing Tin or Indium content. The crystal structures of the low temperature martensite are modulated as well as unmodulated. Alloys with compositions close to stoichiometry are dominated by ferromagnetic interactions, whereas those close to the binary composition Ni 50 Mn 50 order antiferromagnetically. Ferromagnetic order and structural instability coexist in a narrow composition range between 13 at%≤x≤15 at% and 15 at%≤x≤16 at% for Ni 50 Mn 50-x Sn x and Ni 50 Mn 50-y In y respectively. As a consequence, interesting magnetoelastic effects are observed. The Ni 50 Mn 34 In 16 alloy shows a magnetic field-induced structural transition, whereby application of an external magnetic field in the martensitic state stabilizes the high temperature L2 1 structure. Evidence for this was given by neutron diffraction experiments in external magnetic fields. Moreover, the structural transition temperatures of this alloy show large magnetic field dependencies. By use of calorimetry, M(T), and strain measurements, changes in M s up to -11 K/Tesla are observed. Such large values have, until now, not been observed in Heusler alloys. Since during transformation the volume changes reversibly, magnetic field-induced strains of about 0.12 % appear. Additionally, the alloys Ni 50 Mn 35 Sn 15 , Ni 50 Mn 37 Sn 13 , Ni 50 Mn 34 In 16 , Ni 51.5 Mn 33 In

  1. Fate of half-metallicity near interfaces: The case of NiMnSb/MgO and NiMnSi/MgO

    KAUST Repository

    Zhang, Ruijing

    2014-08-27

    The electronic and magnetic properties of the interfaces between the half-metallic Heusler alloys NiMnSb, NiMnSi, and MgO have been investigated using first-principles density-functional calculations with projector augmented wave potentials generated in the generalized gradient approximation. In the case of the NiMnSb/MgO (100) interface, the half-metallicity is lost, whereas the MnSb/MgO contact in the NiMnSb/MgO (100) interface maintains a substantial degree of spin polarization at the Fermi level (∼60%). Remarkably, the NiMnSi/MgO (111) interface shows 100% spin polarization at the Fermi level, despite considerable distortions at the interface, as well as rather short Si/O bonds after full structural optimization. This behavior markedly distinguishes NiMnSi/MgO (111) from the corresponding NiMnSb/CdS and NiMnSb/InP interfaces. © 2014 American Chemical Society.

  2. Epitaxy of (Ga,Mn)As; Epitaxie von (Ga,Mn)As

    Energy Technology Data Exchange (ETDEWEB)

    Utz, Martin

    2012-09-14

    The focus of this work lies on the enhancement of the magnetic properties of the ferromagnetic semiconductor Gallium manganese arsenide (GaMnAs), which is a basic material for the research in spintronics: It is told, how a high sample reproducibility and a strong control over the growth process can be gained by applying band edge spectroscopy and a special procedure for the material flux calibration. Also the most important methods for the electrical characterization of GaMnAs are discussed in a critical manner by showing that the anomalous Hall Effect contributes significantly to the Hall resistance even at room temperature and that Novak's method for the termination of the Curie-temperature provides correct values for layers with low defect concentration. Furthermore it is reported on the considerable enlargement of the useable parameter space of GaMnAs which was enabled by the enhanced control over the growth process: It was possible to grow layers with a very high Manganese content of 22% and Curie temperatures of 172 K and even once were produced which showed a strong magnetic moment despite an insulating behaviour at low temperatures. A last key aspect is the growth and characterization of ultra-thin GaMnAs layers, giving prospects for gating experiments or experiments on the proximity effect as these layers combine high Curie temperatures with insulating behaviour.

  3. Photoelectrochemical performance of Mn-TiO{sub 2} thin films mounted on FTO prepared by sol-gel spin coating

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.C.; Song, G.H. [National Central Univ., Taoyuan, Taiwan (China). Dept. of Mechanical Engineering; Lu, C.W. [Jen-Teh Junior College, Hou- Lung, Taiwan (China). Dept. of Information Management; Tseng, C.J. [National Central Univ., Chung-Li, Taoyuan County, Taiwan (China). Dept. of Mechanical Engineering; Cheng, K.W. [Chang Gung Univ., Tao-Yuan, Taiwan (China). Dept. of Chemical and Materials Engineering

    2009-07-01

    Tin oxide (TiO{sub 2}) sol-gels with Mn{sup 2+} molar ratios ranging from 0 to 0.1 per cent were used to form nano-structured Mn(x)Ti(1-x)O(2) thin films. A layer-by-layer spincoating (LLSC) technique was used, in which 10 very thin and uniform coating layers of Mn(x)Ti(1-x)O(2) were deposited on fluorine doped tin oxide (FTO) glass. Properties of the thin films were determined as a function of annealing temperature and molar ratio of the Mn{sup 2+} ions by X-ray diffraction (XRD), scanning electron microscopy (SEM), Atomic Force microscopy (AFM) and photoelectrochemical (PEC) measurements. The PEC measurements were obtained in a dry-type three-electrode cell consisting of sample, platinized and reference Ag/AgCl electrodes. The results revealed that the Mn(x)Ti(1-x)O(2) thin films have better structure and electrochemical characteristics when the annealing temperature is 550 degrees C. The TiO{sub 2} thin films with Mn{sup 2+} ions also had higher photocurrent than undoped TiO{sub 2}. The optimum Mn{sup 2+} loading in this study was found to be 0.1 ml per cent. The maximum photocurrent of Mn(0.1)Ti(0.9)O(2) thin films is about 0.68 mA/cm2 when the bias potential is 0.8 V (vs.Ag/AgCl).

  4. Effects of Mn and Al on the Intragranular Acicular Ferrite Formation in Rare Earth Treated C-Mn Steel

    Science.gov (United States)

    Song, Mingming; Song, Bo; Yang, Zhanbing; Zhang, Shenghua; Hu, Chunlin

    2017-07-01

    The influence of Al, Mn and rare earth (RE) on microstructure of C-Mn steel was investigated. The capacities of different RE inclusions to induce intragranular acicular ferrite (AF) formation were compared. Result shows that RE treatment could make C-Mn steel from large amounts of intragranular AF. Al killed is detrimental to the formation of intragranular AF in RE-treated C-Mn steel. An upper bainite structure would replace the AF when Al content increased to 0.027 mass %. The optimal Mn content to form AF is about 0.75-1.31 mass %. The effective RE inclusion which could induce AF nucleation is La2O2S. When patches of MnS are attached on the surface of La2O2S inclusion, AF nucleation capacity of RE-containing inclusion could enlarge obviously. The existence of manganese-depleted zone and low lattice misfit would be the main reason of La-containing inclusion inducing AF nucleation in C-Mn steel.

  5. Growth and magnetic properties of multiferroic LaxBi1-xMnO3 thin films

    Science.gov (United States)

    Gajek, M.; Bibes, M.; Wyczisk, F.; Varela, M.; Fontcuberta, J.; Barthélémy, A.

    2007-05-01

    A comparative study of LaxBi1-xMnO3 thin films grown on SrTiO3 substrates is reported. It is shown that these films grow epitaxially in a narrow pressure-temperature range. A detailed structural and compositional characterization of the films is performed within the growth window. The structure and the magnetization of this system are investigated. We find a clear correlation between the magnetization and the unit-cell volume that we ascribe to Bi deficiency and the resultant introduction of a mixed valence on the Mn ions. On these grounds, we show that the reduced magnetization of LaxBi1-xMnO3 thin films compared to the bulk can be explained quantitatively by a simple model, taking into account the deviation from nominal composition and the Goodenough-Kanamori-Anderson rules of magnetic interactions.

  6. Gradual pressure-induced change in the magnetic structure of the noncollinear antiferromagnet Mn3Ge

    Science.gov (United States)

    Sukhanov, A. S.; Singh, Sanjay; Caron, L.; Hansen, Th.; Hoser, A.; Kumar, V.; Borrmann, H.; Fitch, A.; Devi, P.; Manna, K.; Felser, C.; Inosov, D. S.

    2018-06-01

    By means of powder neutron diffraction we investigate changes in the magnetic structure of the coplanar noncollinear antiferromagnet Mn3Ge caused by an application of hydrostatic pressure up to 5 GPa. At ambient conditions the kagomé layers of Mn atoms in Mn3Ge order in a triangular 120∘ spin structure. Under high pressure the spins acquire a uniform out-of-plane canting, gradually transforming the magnetic texture to a noncoplanar configuration. With increasing pressure the canted structure fully transforms into the collinear ferromagnetic one. We observed that magnetic order is accompanied by a noticeable magnetoelastic effect, namely, spontaneous magnetostriction. The latter induces an in-plane magnetostrain of the hexagonal unit cell at ambient pressure and flips to an out-of-plane strain at high pressures in accordance with the change of the magnetic structure.

  7. Homogeneity test of the ceramic reference materials for non-destructive quantitative

    International Nuclear Information System (INIS)

    Li Li; Fong Songlin; Zhu Jihao; Feng Xiangqian; Xie Guoxi; Yan Lingtong

    2010-01-01

    In order to study elemental composition of ancient porcelain samples, we developed a set of ceramic reference materials for non-destructive quantitative analysis. In this paper,homogeneity of Al, Si, K, Ca, Ti, Mn and Fe contents in the ceramic reference materials is investigated by EDXRF. The F test and the relative standard deviation are used to treat the normalized net counts by SPSS. The results show that apart from the DY2 and JDZ4 reference materials, to which further investigation would be needed, homogeneity of the DH, DY3, JDZ3, JDZ6, GY1, RY1, LQ4, YJ1, YY2 and JY2 meets the requirements of ceramic reference materials for non-destructive quantitative analysis. (authors)

  8. X-ray absorption near edge spectroscopy at the Mn K-edge in highly homogeneous GaMnN diluted magnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Sancho-Juan, O.; Cantarero, A.; Garro, N.; Cros, A. [Materials Science Institute, University of Valencia, PO Box 22085, 46071 Valencia (Spain); Martinez-Criado, G.; Salome, M.; Susini, J. [ESRF, Polygone Scientifique Louis Neel, 6 rue Jules Horowitz, 38000 Grenoble (France); Olguin, D. [Dept. de Fisica, CINVESTAV-IPN, 07300 Mexico D.F. (Mexico); Dhar, S.; Ploog, K. [Paul Drude Institute, Hausvogteiplatz 5-7, 10117 Berlin (Germany)

    2006-06-15

    We have studied by X-ray absorption spectroscopy the local environment of Mn in highly homogeneous Ga{sub 1-x}Mn{sub x}N (0.06Mn K-edges. In this report, we focus our attention to the X-ray absorption near edge spectroscopy (XANES) results. The comparison of the XANES spectra corresponding to the Ga and Mn edges indicates that Mn is substitutional to Ga in all samples studied. The XANES spectra measured at the Mn absorption edge shows in the near-edge region a double peak and a shoulder below the absorption edge and the main absorption peak after the edge, separated around 15 eV above the pre-edge structure. We have compared the position of the edge with that of MnO (Mn{sup 2+}) and Mn{sub 2}O{sub 3} (Mn{sup 3+}). All samples studied present the same Mn oxidation state, 2{sup +}. In order to interprete the near-edge structure, we have performed ab initio calculations with a 2 x 2 x 1supercell ({proportional_to}6% Mn) using the full potential linear augmented plane wave method as implemented in the Wien2k code. The calculations show the appearance of Mn anti-bonding t{sub 2g} bands, which are responsible for the pre-edge absorption. The shoulder and main absorption peaks are due to transitions from the valence band 1s-states of Mn to the p-contributions of the conduction bands. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Resonantly enhanced spin-lattice relaxation of Mn2 + ions in diluted magnetic (Zn,Mn)Se/(Zn,Be)Se quantum wells

    Science.gov (United States)

    Debus, J.; Ivanov, V. Yu.; Ryabchenko, S. M.; Yakovlev, D. R.; Maksimov, A. A.; Semenov, Yu. G.; Braukmann, D.; Rautert, J.; Löw, U.; Godlewski, M.; Waag, A.; Bayer, M.

    2016-05-01

    The dynamics of spin-lattice relaxation in the magnetic Mn2 + ion system of (Zn,Mn)Se/(Zn,Be)Se quantum-well structures are studied using optical methods. Pronounced cusps are found in the giant Zeeman shift of the quantum-well exciton photoluminescence at specific magnetic fields below 10 T, when the Mn spin system is heated by photogenerated carriers. The spin-lattice relaxation time of the Mn ions is resonantly accelerated at the cusp magnetic fields. Our theoretical analysis demonstrates that a cusp occurs at a spin-level mixing of single Mn2 + ions and a quick-relaxing cluster of nearest-neighbor Mn ions, which can be described as intrinsic cross-relaxation resonance within the Mn spin system.

  10. Preparation and certification of Sargasso seaweed reference material

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Kensaku

    1988-01-01

    Sargasso seaweed reference material was prepared from Sargassum felvellum obtained from an unpolluted area in Japan. The sargasso samples were washed, freeze-dried, pulverized, sieved to pass a 80-mesh screen and finally homogenized. Collaborative studies on the elemental analysis of the sargasso reference material were performed using various analytical techniques. Certified values are provided for Ag, As, Ca, Cd, Co, Cu, Fe, K, Mg, Mn, Na, Pb, Rb, Sr, V and Zn, based on results of determinations by at least three independent analytical techniques. Reference values are reported for Al, Br, Cl, Cr, Cs, Hg, I, P, S, Sb, Sc, Se, Ti and U. The sargasso certified reference material contains high levels of alkali metals, alkaline earth metals, I, Br, As and U, while the concentration of trace elements may be considered to be at the lower end of the range of reported values for marine brown algae. The sargasso sample will be of practical use in marine and environmental sciences as a certified reference material having an elemental composition close to background levels.

  11. On the “alpha-phase” of Ca2−xSrxMnO4 and extending the chemistry of Sr7−yCayMn4O15 to y>1

    International Nuclear Information System (INIS)

    Craddock, Sarah; Senn, Mark S.

    2017-01-01

    There has been renewed interest in the Ruddlesden-Popper phase (n=2) of composition Ca n+1 Mn n O 3 n+1 in the light of recent research that has highlighted the nature of the improper ferroelectric ground state, which arises due to the couplings between specific combinations of MnO 6 octahedral rotations and tilts. A fruitful route to control these octahedral degrees of freedom, and hence such desired physical properties, is through chemical substitution on the A–site cation i.e. Ca 2−x Sr x MnO 4 for n =1, and in light of this, we have reinvestigated the chemistry of this solid solution. Here we focus on a common impurity phase observed during this synthesis which has been termed the “alpha-phase” in the literature. We show that this impurity phase is actually comprised mainly of a structure related to Sr 7 Mn 4 O 15 but is found here with significantly higher Ca substitution than previously believed possible. Sr 7 Mn 4 O 15 is an interesting structural type in its own right, but has been mainly overlooked to date, exhibiting interesting physics related to low dimensional magnetic ordering and dimer interactions, and we show here that the structural type is a likely candidate for exhibiting a multiferroic ground state. The prospect of being able to tune the lattice and the exchange interactions through further chemical substitution is likely to lead to a renewed interest in this material. - Graphical abstract: Extending the chemistry of Sr 7−y Ca y Mn 4 O 15 beyond y>1, revealing highly anisotropic cation ordering and tunable magnetic properties. - Highlights: • Chemistry of the unique structural type Sr 7 Mn 4 O 15 is extended to high Ca concentrations. • Cation occupancy model is determined, showing highly anisotropic solubility of Ca on the 7 unique Sr crystallographic sites. • Anomalies in the magnetic susceptibility data are discussed with reference to symmetry arguments pointing towards a possible novel multiferroic mechanism in this material.

  12. Synthesis, structure and magnetic behavior of a new three-dimensional Manganese phosphite-oxalate: [C2N2H10][Mn2II(OH2)2(HPO3)2(C2O4)

    International Nuclear Information System (INIS)

    Ramaswamy, Padmini; Mandal, Sukhendu; Natarajan, Srinivasan

    2009-01-01

    A novel manganese phosphite-oxalate, [C 2 N 2 H 10 ][Mn 2 II (OH 2 ) 2 (HPO 3 ) 2 (C 2 O 4 )] has been hydothermally synthesized and its structure determined by single-crystal X-ray diffraction. The structure consists of neutral manganese phosphite layers, [Mn(HPO 3 )] ∞ , formed by MnO 6 octahedra and HPO 3 units, cross-linked by the oxalate moieties. The organic cations occupy the middle of the 8-membered one-dimensional channels. Magnetic studies indicate weak antiferromagnetic interactions between the Mn 2+ ions. - Abstract: A new antiferromagnetic three-dimensional inorganic-organic hybrid compound, [C 2 N 2 H 10 ][Mn 2 II (OH 2 ) 2 (HPO 3 ) 2 (C 2 O 4 )] has been prepared hydrothermally. The compound has neutral manganese layers pillared by oxalate units. The neutral manganese layers are shown here. Display Omitted

  13. BI-RADS categorisation of 2708 consecutive nonpalpable breast lesions in patients referred to a dedicated breast care unit

    International Nuclear Information System (INIS)

    Hamy, A.S.; Giacchetti, S.; Cuvier, C.; Perret, F.; Bonfils, S.; Charveriat, P.; Hocini, H.; Espie, M.; Albiter, M.; Bazelaire, C. de; Roquancourt, A. de

    2012-01-01

    To determine the malignancy rate of nonpalpable breast lesions, categorised according to the Breast Imaging Reporting and Data System (BI-RADS) classification in the setting of a Breast Care Unit. All nonpalpable breast lesions from consecutive patients referred to a dedicated Breast Care Unit were prospectively reviewed and classified into 5 BI-RADS assessment categories (0, 2, 3, 4, and 5). A total of 2708 lesions were diagnosed by mammography (71.6%), ultrasound (8.7%), mammography and ultrasound (19.5%), or MRI (0.2%). The distribution of the lesions by BI-RADS category was: 152 in category 0 (5.6%), 56 in category 2 (2.1%), 742 in category 3 (27.4%), 1523 in category 4 (56.2%) and 235 in category 5 (8.7%). Histology revealed 570 malignant lesions (32.9%), 152 high-risk lesions (8.8%), and 1010 benign lesions (58.3%). Malignancy was detected in 17 (2.3%) category 3 lesions, 364 (23.9%) category 4 lesions and 185 (78.7%) category 5 lesions. Median follow-up was 36.9 months. This pragmatic study reflects the assessment and management of breast impalpable abnormalities referred for care to a specialized Breast Unit. Multidisciplinary evaluation with BI-RADS classification accurately predicts malignancy, and reflects the quality of management. This assessment should be encouraged in community practice appraisal. (orig.)

  14. Three NiAs-Ni 2In Type Structures in the Mn-Sn System

    Science.gov (United States)

    Elding-Pontén, Margareta; Stenberg, Lars; Larsson, Ann-Kristin; Lidin, Sven; Ståhl, Kenny

    1997-03-01

    TheB8-type structure field of the Mn-Sn system has been investigated. Two high temperature phases (HTP1 and HTP2) and one low temperature phase (Mn3Sn2) were found. They all crystallize with the NiAs structure type with part of the trigonal bipyramidal interstices filled by manganese atoms in an ordered manner. The ordering as well as the manganese content is different for the three phases, giving rise to three different orthorhombic superstructures. Mn3Sn2seems to have the lowest manganese content, since the corresponding basal unit cell is smaller than for HTP1-2. Structural models of the phases are based on selected area electron diffraction, X-ray powder diffraction, and preliminary single crystal X-ray measurements. The ideal cell parameters found are (a=7ahex,b=3ahex,c=chex), (a=5ahex,b=3ahex,c=chex), and (a=2ahex,b=3ahex,c=chex) for HTP1, HTP2, and Mn3Sn2, respectively. The crystal structure of Mn3Sn2has been refined by means of the Rietveld method from X-ray powder diffraction data. Mn3Sn2is orthorhombic,Pnma,a=7.5547(2),b=5.4994(2),c=8.5842(2) Å,Z=4. (Pbnmin the setting above.) The compound is isostructural with Ni3Sn2andγ‧-Co3Sn2(H. Fjellvåg and A. Kjekshus,Acta Chem. Scand.A40, 23-30 (1986)). FinalRp=8.97%,Rwp=11.44%, GOF=2.86, andRBragg=4.11% using 43 parameters and 5701 observations and 330 Bragg reflections.

  15. Aluminium alleviates manganese toxicity to rice by decreasing root symplastic Mn uptake and reducing availability to shoots of Mn stored in roots.

    Science.gov (United States)

    Wang, Wei; Zhao, Xue Qiang; Hu, Zhen Min; Shao, Ji Feng; Che, Jing; Chen, Rong Fu; Dong, Xiao Ying; Shen, Ren Fang

    2015-08-01

    Manganese (Mn) and aluminium (Al) phytotoxicities occur mainly in acid soils. In some plant species, Al alleviates Mn toxicity, but the mechanisms underlying this effect are obscure. Rice (Oryza sativa) seedlings (11 d old) were grown in nutrient solution containing different concentrations of Mn(2+) and Al(3+) in short-term (24 h) and long-term (3 weeks) treatments. Measurements were taken of root symplastic sap, root Mn plaques, cell membrane electrical surface potential and Mn activity, root morphology and plant growth. In the 3-week treatment, addition of Al resulted in increased root and shoot dry weight for plants under toxic levels of Mn. This was associated with decreased Mn concentration in the shoots and increased Mn concentration in the roots. In the 24-h treatment, addition of Al resulted in decreased Mn accumulation in the root symplasts and in the shoots. This was attributed to higher cell membrane surface electrical potential and lower Mn(2+) activity at the cell membrane surface. The increased Mn accumulation in roots from the 3-week treatment was attributed to the formation of Mn plaques, which were probably related to the Al-induced increase in root aerenchyma. The results show that Al alleviated Mn toxicity in rice, and this could be attributed to decreased shoot Mn accumulation resulting from an Al-induced decrease in root symplastic Mn uptake. The decrease in root symplastic Mn uptake resulted from an Al-induced change in cell membrane potential. In addition, Al increased Mn plaques in the roots and changed the binding properties of the cell wall, resulting in accumulation of non-available Mn in roots. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Synthesis and magnetic structure of the layered manganese oxide selenide Sr{sub 2}MnO{sub 2}Ag{sub 1.5}Se{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Blandy, Jack N. [Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR (United Kingdom); Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom); Boskovic, Jelena C. [Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR (United Kingdom); Clarke, Simon J., E-mail: simon.clarke@chem.ox.ac.uk [Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR (United Kingdom)

    2017-01-15

    The synthesis of a high-purity sample of the layered oxide selenide Sr{sub 2}MnO{sub 2}Ag{sub 1.5}Se{sub 2} is reported. At ambient temperature it crystallises in the space group I4/mmm with two formula units in the unit cell and lattice parameters a=4.08771(1) Å, c=19.13087(8) Å. The compound displays mixed-valent manganese in a formal oxidation state close to +2.5 and powder neutron diffraction measurements reveal that below the Néel temperature of 63(1) K this results in an antiferromagnetic structure which may be described as A-type, modelled in the magnetic space group P{sub I}4/mnc (128.410 in the Belov, Neronova and Smirnova (BNS) scheme) in which localised Mn moments of 3.99(2) μ{sub B} are arranged in ferromagnetic layers which are coupled antiferromagnetically. In contrast to the isostructural compound Sr{sub 2}MnO{sub 2}Cu{sub 1.5}S{sub 2}, Sr{sub 2}MnO{sub 2}Ag{sub 1.5}Se{sub 2} does not display long range ordering of coinage metal ions and vacancies, nor may significant amounts of the coinage metal readily be deintercalated using soft chemical methods. - Graphical abstract: Sr{sub 2}MnO{sub 2}Ag{sub 1.5}Se{sub 2} containing mixed valent Mn ions undergoes magnetic ordering with ferromagnetic coupling within MnO{sub 2} sheets and antiferromagnetic coupling between MnO{sub 2} sheets. - Highlights: • High purity sample of Sr{sub 2}MnO{sub 2}Ag{sub 1.5}Se{sub 2} obtained. • Magnetic structure determined. • Compared with related mixed-valent manganite oxide chalcogenides.

  17. Kinetics of physico-chemical processes during intensive mechanical processing of ZnO-MnO2 powder mixture

    International Nuclear Information System (INIS)

    Kakazey, M.; Vlasova, M.; Dominguez-Patino, M.; Juarez-Arellano, E.A.; Bykov, A.; Leon, I.; Siqueiros-Diaz, A.

    2011-01-01

    Experimental results of electron paramagnetic resonance spectra, X-ray diffraction, scanning electron microscopy and infrared spectroscopy demonstrate that the kinetic of the physical and chemical processes that takes place during prolonged intensive mechanical processing (MP, 0 MP >3120min) of powder mixtures of 50%wt ZnO+50%wt MnO 2 can be described as a three stage process. (1) 0 MP >30min, particles destruction, formation of superficial defects, fast increment of sample average temperature (from 290 to ∼600K) and annealing of defects with the lowest energy of activation E ac . (2) 30 MP >390min, further particle destruction, slow increment of sample average temperature (from ∼600 to ∼700K), formation and growth of a very disordered layer of β-MnO 2 around ZnO particles, dehydration of MnO 2 , formation of solid solution of Mn 2+ ions in ZnO, formation of nano-quasiamorphous states in the ZnO-MnO 2 mixture and onset of the formation of the ZnMnO 3 phase. (3) 390 MP >3120min, the sample average temperature remains constant (∼700K), the reaction is completed and the spinel ZnMnO 3 phase with a unit cell a=8.431(1) A and space group Fd3-barm is the only phase present in the sample. No ferromagnetism at room temperature was detected in this study. - Highlights: → The kinetics during mechanical processing of ZnO-MnO 2 samples is a three stage process. → First stage, reduction of crystallites size and accumulation of defects. → Second stage, nano-quasiamorphous states formation and onset of the ZnMnO 3 phase. → Third stage, complete reaction to the spinel ZnMnO 3 phase.

  18. Direct evidence of the existence of Mn3+ ions in MnTiO3

    Science.gov (United States)

    Maurya, R. K.; Sharma, Priyamedha; Patel, Ashutosh; Bindu, R.

    2017-08-01

    We investigate the room temperature electronic properties of MnTiO3 synthesised by different preparation conditions. For this purpose, we prepared MnTiO3 under two different cooling rates, one is naturally cooled while the other is quenched in liq.nitrogen. The samples were studied using optical absorbance, photoemission spectroscopy and band structure calculations. We observe significant changes in the structural parameters as a result of quenching. Interestingly, in the parent compound, our combined core level, valence band and optical absorbance studies give evidence of the Mn existence in both 2+ and 3+ states. The fraction of Mn3+ ions has been found to increase on quenching MnTiO3 suggests an increase in oxygen non-stoichiometry. The increase in the fraction of the Mn3+ ions has been manifested a) as slight enhancement in the intensity of the optical absorbance in the visible region. There occurs persistent photo-resistance when the incident light is terminated after shining; b) in the behaviour of the features (close to Fermi level) in the valence band spectra. Hence, the combined analysis of the core level, valence band and optical absorbance spectra suggests that the charge carriers are hole like which further leads to the increase in the electrical conductivity of the quenched sample. The present results provide a recipe to tune the optical absorption in the visible range for its applications in optical sensors, solar cell, etc.

  19. In vivo evaluation of a radiogallium-labeled bifunctional radiopharmaceutical, Ga-DOTA-MN2, for hypoxic tumor imaging.

    Science.gov (United States)

    Sano, Kohei; Okada, Mayumi; Hisada, Hayato; Shimokawa, Kenta; Saji, Hideo; Maeda, Minoru; Mukai, Takahiro

    2013-01-01

    On the basis of the findings obtained by X-ray crystallography of Ga-DOTA chelates and the drug design concept of bifunctional radiopharmaceuticals, we previously designed and synthesized a radiogallium-labeled DOTA chelate containing two metronidazole moieties, (67)Ga-DOTA-MN2, for hypoxic tumor imaging. As expected, (67)Ga-DOTA-MN2 exhibited high in vivo stability, although two carboxyl groups in the DOTA skeleton were conjugated with metronidazole moieties. In this study, we evaluated (67/68)Ga-DOTA-MN2 as a nuclear imaging agent for hypoxic tumors. (67)Ga-labeling of DOTA-MN2 with (67)GaCl(3) was achieved with high radiochemical yield (>85%) by 1-min of microwave irradiation (50 W). The pharmacokinetics of (67)Ga-DOTA-MN2 were examined in FM3A tumor-bearing mice, and compared with those of (67)Ga-DOTA-MN1 containing one metronidazole unit and (67)Ga-DOTA. Upon administration, (67)Ga-DOTA-MN2 exhibited higher accumulation in the implanted tumors than (67)Ga-DOTA. Tumor-to-blood ratios of (67)Ga-DOTA-MN2 were about two-fold higher than those of (67)Ga-DOTA-MN1. Autoradiographic analysis showed the heterogeneous localization of (67)Ga-DOTA-MN2 in the tumors, which corresponds to hypoxic regions suggested by well-established hypoxia marker drug, pimonidazole. Furthermore, in positron emission tomography (PET) study, the tumors of mice administered (68)Ga-labeled DOTA-MN2 were clearly imaged by small-animal PET at 1 h after administration. This study demonstrates the potential usefulness of (67/68)Ga-DOTA-MN2 as a nuclear imaging agent for hypoxic tumors and suggests that two functional moieties, such as metronidazole, can be conjugated to radiogallium-DOTA chelate without reducing the complex stability. The present findings provide useful information about the chemical design of radiogallium-labeled radiopharmaceuticals for PET and single photon emission computed tomography (SPECT) studies.

  20. Effect of Ce addition on microstructure of Al20Cu2Mn3 twin phase in an Al–Cu–Mn casting alloy

    International Nuclear Information System (INIS)

    Chen Zhongwei; Chen Pei; Li Shishun

    2012-01-01

    Highlights: ► Rare earth element Ce can retard the formation of the Al 20 Cu 2 Mn 3 twin phase in an Al–Cu–Mn casting alloy. ► Patterns of the particles of the Al 20 Cu 2 Mn 3 phase in Al–Cu–Mn free Ce alloy are more diverse. ► The symmetry of neighboring components of twins is characterized by glide reflection and reflection. ► The twins of Al 20 Cu 2 Mn 3 phase can enhance the mechanical properties of the Al–Cu–Mn casting alloys. - Abstract: Effects of Ce addition on microstructure of Al 20 Cu 2 Mn 3 twin phase and mechanical properties of an Al–Cu–Mn casting alloy were investigated by transmission electron microscopy, selected area electron diffraction, high resolution transmission electron microscopy and tensile test. The results show that rare earth element Ce can retard the formation of the Al 20 Cu 2 Mn 3 phase in the Al–Cu–Mn alloy. Compared with the Ce containing alloy, patterns of particles of the Al 20 Cu 2 Mn 3 phase in the Al–Cu–Mn free Ce alloy are more diverse. The symmetry of neighboring components of twins is characterized by glide reflection and reflection. In addition, twins of the Al 20 Cu 2 Mn 3 phase can enhance the mechanical properties of the Al–Cu–Mn alloy.

  1. Unpacking Referent Units in Fraction Operations

    Science.gov (United States)

    Philipp, Randolph A.; Hawthorne, Casey

    2015-01-01

    Although fraction operations are procedurally straightforward, they are complex, because they require learners to conceptualize different units and view quantities in multiple ways. Prospective secondary school teachers sometimes provide an algebraic explanation for inverting and multiplying when dividing fractions. That authors of this article…

  2. L1{sub 0} stacked binaries as candidates for hard-magnets. FePt, MnAl and MnGa

    Energy Technology Data Exchange (ETDEWEB)

    Matsushita, Yu-ichiro [Max-Planck Institut fuer Microstrukture Physics, Halle (Germany); Department of Applied Physics, The University of Tokyo (Japan); Madjarova, Galia [Max-Planck Institut fuer Microstrukture Physics, Halle (Germany); Department of Physical Chemistry, Faculty of Chemistry and Pharmacy, Sofia University (Bulgaria); Flores-Livas, Jose A. [Department of Physics, Universitaet Basel (Switzerland); Dewhurst, J.K.; Gross, E.K.U. [Max-Planck Institut fuer Microstrukture Physics, Halle (Germany); Felser, C. [Max Planck Institute for Chemical Physics of Solids, Dresden (Germany); Sharma, S. [Max-Planck Institut fuer Microstrukture Physics, Halle (Germany); Department of Physics, Indian Institute of Technology, Roorkee, Uttarkhand (India)

    2017-08-15

    We present a novel approach for designing new hard magnets by forming stacks of existing binary magnets to enhance the magneto crystalline anisotropy. This is followed by an attempt at reducing the amount of expensive metal in these stacks by replacing it with cheaper metal with similar ionic radius. This strategy is explored using examples of FePt, MnAl and MnGa. In this study a few promising materials are suggested as good candidates for hard magnets: stacked binary FePt{sub 2}MnGa{sub 2} in structure where each magnetic layer is separated by two non-magnetic layers, FePtMnGa and FePtMnAl in hexagonally distorted Heusler structures and FePt{sub 0.5}Ti{sub 0.5}MnAl. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. NMR studies of 55Mn in amorphous CexMn100-x alloys

    International Nuclear Information System (INIS)

    Niki, H.; Okamura, K.; Yogi, M.; Amakai, Y.; Takano, H.; Murayama, S.; Obi, Y.

    2008-01-01

    In order to investigate the heavy-fermion like behavior of amorphous alloy Ce x Mn 100-x , the NMR measurements of 55 Mn (I=5/2 ) in Ce 65 Mn 35 have been carried out from 4.2 to 270 K using powdered sample. A broadened NMR spectrum containing five NQR lines split due to NQR interaction is observed. Quadrupole coupling constant 3e 2 Qq/2I(2I-1)h is gradually changed from about 1.8 MHz at 4.2 K to about 1.6 MHz at 270 K. Temperature dependence of the line width is expressed in the Curie-Weiss law with θ p =-10.5K. The value of Knight shift would be almost constant from 4.2 to 270 K

  4. Structural Directed Growth of Ultrathin Parallel Birnessite on β-MnO2 for High-Performance Asymmetric Supercapacitors.

    Science.gov (United States)

    Zhu, Shijin; Li, Li; Liu, Jiabin; Wang, Hongtao; Wang, Tian; Zhang, Yuxin; Zhang, Lili; Ruoff, Rodney S; Dong, Fan

    2018-02-27

    Two-dimensional birnessite has attracted attention for electrochemical energy storage because of the presence of redox active Mn 4+ /Mn 3+ ions and spacious interlayer channels available for ions diffusion. However, current strategies are largely limited to enhancing the electrical conductivity of birnessite. One key limitation affecting the electrochemical properties of birnessite is the poor utilization of the MnO 6 unit. Here, we assemble β-MnO 2 /birnessite core-shell structure that exploits the exposed crystal face of β-MnO 2 as the core and ultrathin birnessite sheets that have the structure advantage to enhance the utilization efficiency of the Mn from the bulk. Our birnessite that has sheets parallel to each other is found to have unusual crystal structure with interlayer spacing, Mn(III)/Mn(IV) ratio and the content of the balancing cations differing from that of the common birnessite. The substrate directed growth mechanism is carefully investigated. The as-prepared core-shell nanostructures enhance the exposed surface area of birnessite and achieve high electrochemical performances (for example, 657 F g -1 in 1 M Na 2 SO 4 electrolyte based on the weight of parallel birnessite) and excellent rate capability over a potential window of up to 1.2 V. This strategy opens avenues for fundamental studies of birnessite and its properties and suggests the possibility of its use in energy storage and other applications. The potential window of an asymmetric supercapacitor that was assembled with this material can be enlarged to 2.2 V (in aqueous electrolyte) with a good cycling ability.

  5. Synthesis of NiO@MnO{sub 2} core/shell nanocomposites for supercapacitor application

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Junjiao; Huang, Ying, E-mail: chenjunjiao001@163.com; Li, Chao; Chen, Xuefang; Zhang, Xiang

    2016-01-01

    Graphical abstract: - Highlights: • MnO{sub 2} nanosheets were grown on the surface of porous NiO microtube. • The NiO@MnO{sub 2} nanocomposite exhibits excellent cycle performance. • The nanocomposite exhibits specific capacitance of 266.7 F g{sup −1} at 0.5 A g{sup −1}. - Abstract: In this work, NiO@MnO{sub 2} core/shell nanocomposites were fabricated by a two-step method. The morphology and structure of the nanocomposites were characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction analysis and thermal gravity analysis. In addition, the supercapacitive performances were examined by cyclic voltammogram (CV), galvanostatic charge–discharge and electrochemical impedance spectroscopy (EIS). The electrochemical results indicate that the composite exhibits a specific capacitance of 266.7 F g{sup −1} at 0.5 A g{sup −1} and excellent cycling stability (81.7% retention after 2000 cycles at 1 A g{sup −1}). Therefore, this wok offers meaningful reference for supercpacitor applications in the future.

  6. Hydrothermal synthesis of MnO2/CNT nanocomposite with a CNT core/porous MnO2 sheath hierarchy architecture for supercapacitors

    Science.gov (United States)

    Xia, Hui; Wang, Yu; Lin, Jianyi; Lu, Li

    2012-01-01

    MnO2/carbon nanotube [CNT] nanocomposites with a CNT core/porous MnO2 sheath hierarchy architecture are synthesized by a simple hydrothermal treatment. X-ray diffraction and Raman spectroscopy analyses reveal that birnessite-type MnO2 is produced through the hydrothermal synthesis. Morphological characterization reveals that three-dimensional hierarchy architecture is built with a highly porous layer consisting of interconnected MnO2 nanoflakes uniformly coated on the CNT surface. The nanocomposite with a composition of 72 wt.% (K0.2MnO2·0.33 H2O)/28 wt.% CNT has a large specific surface area of 237.8 m2/g. Electrochemical properties of the CNT, the pure MnO2, and the MnO2/CNT nanocomposite electrodes are investigated by cyclic voltammetry and electrochemical impedance spectroscopy measurements. The MnO2/CNT nanocomposite electrode exhibits much larger specific capacitance compared with both the CNT electrode and the pure MnO2 electrode and significantly improves rate capability compared to the pure MnO2 electrode. The superior supercapacitive performance of the MnO2/CNT nancomposite electrode is due to its high specific surface area and unique hierarchy architecture which facilitate fast electron and ion transport.

  7. Unilateral and Bilateral Adrenalectomy for Pheochromocytoma Requires Adjustment of Urinary and Plasma Metanephrine Reference Ranges

    NARCIS (Netherlands)

    Osinga, Thamara E.; van den Eijnden, Maartje H. A.; Kema, Ido P.; Kerstens, Michiel N.; Dullaart, Robin P. F.; de Jong, Wilhelmina H. A.; Sluiter, Wim J.; Links, Thera P.; van der Horst-Schrivers, Anouk N. A.

    Context: Follow-up after adrenalectomy for pheochromocytoma is recommended because of a recurrence risk. During follow-up, plasma and/or urinary metanephrine (MN) and normetanephrine (NMN) are interpreted using reference ranges obtained in healthy subjects. Objective: Because adrenalectomy may

  8. Energy transfer between Pr3+ and Mn2+ in K2YZr(PO4)3: Pr, Mn phosphor

    International Nuclear Information System (INIS)

    Liang Wei; Wang Yuhua

    2011-01-01

    Research highlights: → Pr 3+ , Mn 2+ co-doped K 2 YZr(PO 4 ) 3 phosphor is a novel type of practical visible quantum cutting phosphor in promising application. → The optimal quantum efficiency (QE) of this co-doped system K 2 YZr(PO 4 ) 3 : Pr 3+ , Mn 2+ reached to 126.3%. → The Mn 2+6 A 1g → 4 E g - 4 A 1g transition was found to coincide well with the 1 S 0 → 1 I 6 transition of Pr 3+ . → The energy transfer from Pr 3+ to Mn 2+ was also observed, converting the first photon from the PCE of Pr 3+ into the red emission of Mn 2+ , and the QC process occurred in this Pr 3+ , Mn 2+ co-doped K 2 YZr(PO 4 ) 3 phosphor. - Abstract: Pr 3+ , Mn 2+ co-doped K 2 YZr(PO 4 ) 3 samples were prepared by solid-state reaction method and their photoluminescence (PL) properties were investigated in ultra-violet (UV) and vacuum ultra-violet (VUV) region. The results indicated that in Pr 3+ singly doped K 2 YZr(PO 4 ) 3 sample, the first-step transition ( 1 S 0 → 1 I 6 , 3 P J around 405 nm) of Pr 3+ is near the ultraviolet (UV) range, not useful for practical application. When Mn 2+ was doped as a co-activator ion, the energy of 1 S 0 → 1 I 6 , 3 P J transition can be transferred synchronously from Pr 3+ to Mn 2+ and then emit a visible photon. The optimal quantum efficiency (QE) of this co-doped system K 2 YZr(PO 4 ) 3 : Pr 3+ , Mn 2+ reached to 126.3%, suggesting a novel type of practical visible quantum cutting phosphor in promising application.

  9. Interface adjustment and exchange coupling in the IrMn/NiFe system

    Energy Technology Data Exchange (ETDEWEB)

    Spizzo, F.; Tamisari, M.; Chinni, F.; Bonfiglioli, E.; Del Bianco, L., E-mail: lucia.delbianco@unife.it

    2017-01-01

    The exchange bias effect was investigated, in the 5–300 K temperature range, in samples of IrMn [100 Å]/NiFe [50 Å] (set A) and in samples with inverted layer-stacking sequence (set B), produced at room temperature by DC magnetron sputtering in a static magnetic field of 400 Oe. The samples of each set differ for the nominal thickness (t{sub Cu}) of a Cu spacer, grown at the interface between the antiferromagnetic and ferromagnetic layers, which was varied between 0 and 2 Å. It has been found out that the Cu insertion reduces the values of the exchange field and of the coercivity and can also affect their thermal evolution, depending on the stack configuration. Indeed, the latter also determines a peculiar variation of the exchange bias properties with time, shown and discussed with reference to the samples without Cu of the two sets. The results have been explained considering that, in this system, the exchange coupling mechanism is ruled by the glassy magnetic behavior of the IrMn spins located at the interface with the NiFe layer. Varying the stack configuration and t{sub Cu} results in a modulation of the structural and magnetic features of the interface, which ultimately affects the spins dynamics of the glassy IrMn interfacial component. - Highlights: • Exchange bias effect in IrMn/NiFe samples with interfacial Cu spacer. • A variation of exchange bias with time is observed in as-deposited samples. • Magnetic modification of the interface by varying the stack sequence and Cu thickness. • Interface adjustment affects the dynamics of interfacial IrMn spins. • The exchange bias properties can be tuned by interface adjustment.

  10. Cation Effects on the Layer Structure of Biogenic Mn-Oxides

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, M.; Ginder-Vogel, M; Parikh, S; Feng, X; Sparks, D

    2010-01-01

    Biologically catalyzed Mn(II) oxidation produces biogenic Mn-oxides (BioMnO{sub x}) and may serve as one of the major formation pathways for layered Mn-oxides in soils and sediments. The structure of Mn octahedral layers in layered Mn-oxides controls its metal sequestration properties, photochemistry, oxidizing ability, and topotactic transformation to tunneled structures. This study investigates the impacts of cations (H{sup +}, Ni(II), Na{sup +}, and Ca{sup 2+}) during biotic Mn(II) oxidation on the structure of Mn octahedral layers of BioMnO{sub x} using solution chemistry and synchrotron X-ray techniques. Results demonstrate that Mn octahedral layer symmetry and composition are sensitive to previous cations during BioMnO{sub x} formation. Specifically, H{sup +} and Ni(II) enhance vacant site formation, whereas Na{sup +} and Ca{sup 2+} favor formation of Mn(III) and its ordered distribution in Mn octahedral layers. This study emphasizes the importance of the abiotic reaction between Mn(II) and BioMnO{sub x} and dependence of the crystal structure of BioMnO{sub x} on solution chemistry.

  11. XANES Studies of Mn K and L3,2 Edges in the (Ga,Mn)As Layers Modified by High Temperature Annealing

    International Nuclear Information System (INIS)

    Wolska, A.; Lawniczak-Jablonska, K.; Klepka, M.T.; Jakiela, R.; Demchenko, I.N.; Sadowski, J.; Holub-Krappe, E.; Persson, A.; Arvanitis, D.

    2008-01-01

    Ga 1-x Mn x As is commonly considered as a promising material for microelectronic applications utilizing the electron spin. One of the ways that allow increasing the Curie temperature above room temperature is to produce second phase inclusions. In this paper Ga 1-x Mn x As samples containing precipitations of ferromagnetic MnAs are under consideration. We focus on the atomic and electronic structure around the Mn atoms relating to the cluster formation. The changes in the electronic structure of the Mn, Ga and As atoms in the (Ga,Mn)As layers after high temperature annealing were determined by X-ray absorption near edge spectroscopy. The experimental spectra were compared with the predictions of ab initio full multiple scattering theory using the FEFF 8.4 code. The nominal concentration of the Mn atoms in the investigated samples was 6% and 8%. We do not ob- serve changes in the electronic structure of Ga and As introduced by the presence of the Mn atoms. We find, in contrast, considerable changes in the electronic structure around the Mn atoms. Moreover, for the first time it was possible to indicate the preferred interstitial positions of the Mn atoms. (authors)

  12. Solid state synthesis of Mn{sub 5}Ge{sub 3} in Ge/Ag/Mn trilayers: Structural and magnetic studies

    Energy Technology Data Exchange (ETDEWEB)

    Myagkov, V.G.; Bykova, L.E.; Matsynin, A.A.; Volochaev, M.N.; Zhigalov, V.S.; Tambasov, I.A. [Kirensky Institute of Physics, SB RAS, Krasnoyarsk 660036 (Russian Federation); Mikhlin, Yu L. [Institute of Chemistry and Chemical Technology, SB RAS, Krasnoyarsk 660049 (Russian Federation); Velikanov, D.A. [Kirensky Institute of Physics, SB RAS, Krasnoyarsk 660036 (Russian Federation); Bondarenko, G.N. [Institute of Chemistry and Chemical Technology, SB RAS, Krasnoyarsk 660049 (Russian Federation)

    2017-02-15

    The thin-film solid-state reaction between elemental Ge and Mn across chemically inert Ag layers with thicknesses of (0, 0.3, 1 and 2.2 µm) in Ge/Ag/Mn trilayers was studied for the first time. The initial samples were annealed at temperatures between 50 and 500 °C at 50 °C intervals for 1 h. The initiation temperature of the reaction for Ge/Mn (without a Ag barrier layer) was ~ 120 °C and increased slightly up to ~ 250 °C when the Ag barrier layer thickness increased up to 2.2 µm. In spite of the Ag layer, only the ferromagnetic Mn{sub 5}Ge{sub 3} compound and the Nowotny phase were observed in the initial stage of the reaction after annealing at 500 °C. The cross-sectional studies show that during Mn{sub 5}Ge{sub 3} formation the Ge is the sole diffusing species. The magnetic and cross-sectional transmission electron microscopy (TEM) studies show an almost complete transfer of Ge atoms from the Ge film, via a 2.2 µm Ag barrier layer, into the Mn layer. We attribute the driving force of the long-range transfer to the long-range chemical interactions between reacting Mn and Ge atoms. - Graphical abstract: The direct visualization of the solid state reaction between Mn and Ge across a Ag buffer layer at 500 °C. - Highlights: • The migration of Ge, via an inert 2.2 µm Ag barrier, into a Mn layer. • The first Mn{sub 5}Ge{sub 3} phase was observed in reactions with different Ag layers. • The Ge is the sole diffusing species during Mn{sub 5}Ge{sub 3} formation • The long-range chemical interactions control the Ge atomic transfer.

  13. Control of the magnetic properties of LaMnO3 epitaxial thin films grown by Pulsed Laser Deposition

    Science.gov (United States)

    Martinez, Benjamin; Roqueta, Jaume; Pomar, Alberto; Balcells, Lluis; Frontera, Carlos; Konstantinovic, Zorica; Sandiumenge, Felip; Santiso, Jose; Advanced materials characterization Team; Thin films growth Team

    2015-03-01

    LaMnO3 (LMO), the parent compound of colossal magnetoresistance based manganites has gained renewed attention as a building block in heterostructures with unexpected properties. In its bulk phase, stoichiometric LMO is an A-type antiferromagnetic (AFM) insulator (TN = 140K) with orthorhombic structure that easily accommodate an oxygen excess by generating cationic (La or Mn) vacancies. As a result, a fraction of Mn 3+ changes to Mn 4+ leading to a double-exchange mediated ferromagnetic (FM) behavior. In thin films the AFM phase has been elusive up to now and thin films with FM ordering are usually reported. In this work, we have systematically studied the growth process of LaMnO3 thin films by pulsed laser deposition on SrTiO3 (001) substrates under different oxygen partial pressures (PO2) . A close correlation between the structure (explored by XRD) and the magnetic properties (SQUID measurements) of the films with PO2 has been identified. At high PO2 FM behavior is observed. In contrast, at very low PO2, the results obtained for unit cell volume (close to stoichiometric bulk values) and magnetic moment (0.2 μB/Mn) strongly indicate antiferromagnetic ordering. We acknowledge financial support from the Spanish MINECO (MAT2012-33207).

  14. Decay data evaluation project: Evaluation of 52Mn and 52mMn nuclear decay data

    Science.gov (United States)

    Luca, Aurelian

    2017-09-01

    All nuclear decay data within the 52Fe-52m,52Mn-52Cr decay chain have been evaluated at IFIN-HH, Romania, as part of an IAEA coordinated research project (F41029) and incorporated into the Decay Data Evaluation Project (DDEP). Both 52Fe and daughter 52Mn are two potentially promising radionuclides to be incorporated into suitable radiopharmaceuticals for PET and SPECT imaging. The decay data evaluation of 52Fe has previously been published and reported to the IAEA Nuclear Data Section. Equivalent DDEP evaluations for 52Mn and 52mMn have also been completed recently, and are presented in summary form below. These improved decay data sets have also been reported to the IAEA in detail, and are highly suitable in dose rate calculations for their application in nuclear medicine.

  15. Application of neutron activation analysis to evaluate the health status of equines by means of Cu, Fe, Mn and Zn determinations in their hair

    International Nuclear Information System (INIS)

    Armelin, M.J.A.; Avila, R.L.; Piasentin, R.M.; Saiki, M.

    2001-01-01

    Instrumental neutron activation analysis (INAA) was applied to evaluate the clinical status of equines, belonging to the Military Police of Sao Paulo State, by means of Cu, Fe, Mn and Zn determinations in their hair. Comparison of the results obtained in these analyses with reference values indicated Zn deficiency in the equines, Fe is in the minimum limit and the elements Cu and Mn are within the normal range. (author)

  16. Atomistic spin dynamics simulations on Mn-doped GaAs and CuMn

    Energy Technology Data Exchange (ETDEWEB)

    Hellsvik, Johan, E-mail: johan.hellsvik@fysik.uu.s [Department of Physics and Materials Science, Uppsala University, Box 530, SE-751 21 Uppsala (Sweden)

    2010-01-01

    The magnetic dynamical behavior of two random alloys have been investigated in atomistic spin dynamics (ASD) simulations. For both materials, magnetic exchange parameters calculated with first principles electronic structure methods were used. From experiments it is well known that CuMn is a highly frustrated magnetic system and a good manifestation of a Heisenberg spin glass. In our ASD simulations the behavior of the autocorrelation function indicate spin glass behavior. The diluted magnetic semiconductor (DMS) Mn-doped GaAs is engineered with hopes of high enough Curie temperatures to operate in spintronic devices. Impurities such as As antisites and Mn interstitials change the exhange couplings from being mainly ferromagnetic to also have antiferromagnetic components. We explore how the resulting frustration affects the magnetization dynamics for a varying rate of As antisites.

  17. High resolution imaging of La0.5Ba0.5MnO-LaMnO superlattice

    International Nuclear Information System (INIS)

    Shapoval, O.; Belenchuk, A.; Verbeeck, J.; Moshnyaga, V.

    2013-01-01

    Full text: Artificial low dimensional systems of tailored on atomic layer level manganites is a very promising class of materials for future spintronic applications. The high resolution transmission electron microscopy imaging provides a powerful approach to extract structural, chemical and functional information on atomic level in a real space. Recently, we have reported on the Metalorganic Aerosol Deposition synthesis and properties of superlattices (SL) composed from (LaMnO 3 ) n and (La 0.5 Ba 0.5 MnO 3 ) 2n with n=1-2 of perovskite monolayers. The functional properties of digitally synthesized SL are similar to the optimal doped 'bulk' thin film material. The similarities between their properties can be interpreted in frame of the many-body interactions responsible for the properties of the single-layer and bilayer manganites. This work presents the systematic studies of atomically resolved structure of (LaMnO 3 ) n /(La 0.5 Ba 0.5 MnO 3 ) 2n , n=1 by high angle annular dark field scanning transmission electron microscopy (HAADF STEM) and electron energy loss spectroscopy (EELS). The combination of atomic-resolution Z-contrast and EELS represents a powerful method to link the atomic and electronic structure of solids with macroscopic properties. All images were obtained along orientations and low magnification one shows an overview of a whole 40-nm thick structure, whereas magnified high-resolution images demonstrate an epitaxial growth of LBMO/LMO superlattice on SrTiO 3 substrate. The SL-substrate interface is coherent and free of defects, but reveals a high level of La diffusion into SrTiO 3 . EELS together with STEM are used for probing of a local chemical composition as well as a local electronic state of transition metals and oxygen. Small modulations in the La and Ba EELS signals, which are corresponded to the LBMO and LMO layers, can be observed. The observed features at the substrate interface as well as the SL periodicity in EELS profiles are

  18. Benthic foraminiferal Mn / Ca ratios reflect microhabitat preferences

    Science.gov (United States)

    Koho, Karoliina A.; de Nooijer, Lennart J.; Fontanier, Christophe; Toyofuku, Takashi; Oguri, Kazumasa; Kitazato, Hiroshi; Reichart, Gert-Jan

    2017-06-01

    The Mn / Ca of calcium carbonate tests of living (rose-Bengal-stained) benthic foraminifera (Elphidium batialis, Uvigerina spp., Bolivina spissa, Nonionellina labradorica and Chilostomellina fimbriata) were determined in relation to pore water manganese (Mn) concentrations for the first time along a bottom water oxygen gradient across the continental slope along the NE Japan margin (western Pacific). The local bottom water oxygen (BWO) gradient differs from previous field study sites focusing on foraminiferal Mn / Ca and redox chemistry, therefore allowing further resolution of previously observed trends. The Mn / Ca ratios were analysed using laser ablation inductively coupled plasma-mass spectrometer (ICP-MS), allowing single-chamber determination of Mn / Ca. The incorporation of Mn into the carbonate tests reflects environmental conditions and is not influenced by ontogeny. The inter-species variability in Mn / Ca reflected foraminiferal in-sediment habitat preferences and associated pore water chemistry but also showed large interspecific differences in Mn partitioning. At each station, Mn / Ca ratios were always lower in the shallow infaunal E. batialis, occupying relatively oxygenated sediments, compared to intermediate infaunal species, Uvigerina spp. and B. spissa, which were typically found at greater depth, under more reducing conditions. The highest Mn / Ca was always recorded by the deep infaunal species N. labradorica and C. fimbriata. Our results suggest that although partitioning differs, Mn / Ca ratios in the intermediate infaunal taxa are promising tools for palaeoceanographic reconstructions as their microhabitat exposes them to higher variability in pore water Mn, thereby making them relatively sensitive recorders of redox conditions and/or bottom water oxygenation.

  19. Pathway to 2022: The Ongoing Modernization of the United States National Spatial Reference System

    Science.gov (United States)

    Stone, W. A.; Caccamise, D.

    2017-12-01

    The National Oceanic and Atmospheric Administration's National Geodetic Survey (NGS) mission is "to define, maintain and provide access to the National Spatial Reference System (NSRS) to meet our nation's economic, social, and environmental needs." The NSRS is an assemblage of geophysical and geodetic models, tools, and data, with the most-visible components being the North American Datum of 1983 (NAD83) and the North American Vertical Datum of 1988 (NAVD88), which together provide a consistent spatial reference framework for myriad geospatial applications and positioning requirements throughout the United States. The NGS is engaged in an ongoing and comprehensive multi-year project of modernizing the NSRS, a makeover necessitated by technological developments and user accuracy requirements, all with a goal of providing a modern, accurate, accessible, and globally aligned national positioning framework exploiting the substantial power and utility of the Global Navigation Satellite System - of both today and tomorrow. The modernized NSRS will include four new-generation geometric terrestrial reference frames (replacing NAD83) and a technically unprecedented geopotential datum (replacing NAVD88), all to be released in 2022 (anticipated). This poster/presentation will describe the justification for this modernization effort and will update the status and planned evolution of the NSRS as 2022 draws ever closer. Also discussed will be recent developments, including the publication of "blueprint" documents addressing technical details of various facets of the modernized NSRS and a continued series of public Geospatial Summits. Supporting/ancillary projects such as Gravity for the Redefinition of the American Vertical Datum (GRAV-D), which will result in the generation of a highly accurate gravimetric geoid - or definitional reference surface (zero elevation) - for the future geopotential datum, and Geoid Slope Validation Surveys (GSVS), which are exploring the achievable

  20. Synthesis of highly efficient Mn2O3 catalysts for CO oxidation derived from Mn-MIL-100

    Science.gov (United States)

    Zhang, Xiaodong; Li, Hongxin; Hou, Fulin; Yang, Yang; Dong, Han; Liu, Ning; Wang, Yuxin; Cui, Lifeng

    2017-07-01

    In this work, metal-organic frameworks (MOFs) Mn-MIL-100 were first prepared, which were next used as templates to obtain the irregular porous Mn2O3 cubes through calcination with air at different temperature. The catalysts were characterized by N2 adsorption-desorption, X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), H2-temperature program reduction (H2-TPR) and X-ray photoelectron spectroscopic (XPS). The catalytic activity for CO oxidation over Mn2O3 catalysts was investigated. It was found that calcination temperature had a strong effect on the structure and catalytic activity of Mn2O3 catalyst. Mn2O3 catalyst obtained by calcined at 700 °C (Mn2O3-700) showed a smaller specific surface area, but displayed a high catalytic activity and excellent stability with a complete CO conversion temperature (T98) of 240 °C, which was attributed to the unique structure, a high quantity of surface active oxygen species, smaller particle size, oxygen vacancies and good low temperature reduction behavior. The effect of water vapor on catalytic activity was also examined. The introduction of water vapor to the feedstock induced a positive effect on CO oxidation over Mn2O3-700 catalyst. Furthermore, no obvious drop is observed in activity over catalysts even in the presence of water vapor during 48 h.

  1. Theoretical investigation of the reaction of Mn+ with ethylene oxide.

    Science.gov (United States)

    Li, Yuanyuan; Guo, Wenyue; Zhao, Lianming; Liu, Zhaochun; Lu, Xiaoqing; Shan, Honghong

    2012-01-12

    The potential energy surfaces of Mn(+) reaction with ethylene oxide in both the septet and quintet states are investigated at the B3LYP/DZVP level of theory. The reaction paths leading to the products of MnO(+), MnO, MnCH(2)(+), MnCH(3), and MnH(+) are described in detail. Two types of encounter complexes of Mn(+) with ethylene oxide are formed because of attachments of the metal at different sites of ethylene oxide, i.e., the O atom and the CC bond. Mn(+) would insert into a C-O bond or the C-C bond of ethylene oxide to form two different intermediates prior to forming various products. MnO(+)/MnO and MnH(+) are formed in the C-O activation mechanism, while both C-O and C-C activations account for the MnCH(2)(+)/MnCH(3) formation. Products MnO(+), MnCH(2)(+), and MnH(+) could be formed adiabatically on the quintet surface, while formation of MnO and MnCH(3) is endothermic on the PESs with both spins. In agreement with the experimental observations, the excited state a(5)D is calculated to be more reactive than the ground state a(7)S. This theoretical work sheds new light on the experimental observations and provides fundamental understanding of the reaction mechanism of ethylene oxide with transition metal cations.

  2. Kinetics of physico-chemical processes during intensive mechanical processing of ZnO-MnO{sub 2} powder mixture

    Energy Technology Data Exchange (ETDEWEB)

    Kakazey, M.; Vlasova, M.; Dominguez-Patino, M. [CIICAp-Universidad Autonoma del Estado de Morelos, Cuernavaca (Mexico); Juarez-Arellano, E.A., E-mail: eajuarez@unpa.edu.mx [Universidad del Papaloapan, Tuxtepec, Oaxaca (Mexico); Bykov, A. [Institute for Problems of Materials Science of NASU, Kyiv (Ukraine); Leon, I. [CIQ-Universidad Autonoma del Estado de Morelos, Cuernavaca (Mexico); Siqueiros-Diaz, A. [FCQI-Universidad Autonoma del Estado de Morelos, Cuernavaca (Mexico)

    2011-10-15

    Experimental results of electron paramagnetic resonance spectra, X-ray diffraction, scanning electron microscopy and infrared spectroscopy demonstrate that the kinetic of the physical and chemical processes that takes place during prolonged intensive mechanical processing (MP, 03120min) of powder mixtures of 50%wt ZnO+50%wt MnO{sub 2} can be described as a three stage process. (1) 030min, particles destruction, formation of superficial defects, fast increment of sample average temperature (from 290 to {approx}600K) and annealing of defects with the lowest energy of activation E{sub ac}. (2) 30390min, further particle destruction, slow increment of sample average temperature (from {approx}600 to {approx}700K), formation and growth of a very disordered layer of {beta}-MnO{sub 2} around ZnO particles, dehydration of MnO{sub 2}, formation of solid solution of Mn{sup 2+} ions in ZnO, formation of nano-quasiamorphous states in the ZnO-MnO{sub 2} mixture and onset of the formation of the ZnMnO{sub 3} phase. (3) 3903120min, the sample average temperature remains constant ({approx}700K), the reaction is completed and the spinel ZnMnO{sub 3} phase with a unit cell a=8.431(1) A and space group Fd3-barm is the only phase present in the sample. No ferromagnetism at room temperature was detected in this study. - Highlights: > The kinetics during mechanical processing of ZnO-MnO{sub 2} samples is a three stage process. > First stage, reduction of crystallites size and accumulation of defects. > Second stage, nano-quasiamorphous states formation and onset of the ZnMnO{sub 3} phase. > Third stage, complete reaction to the spinel ZnMnO{sub 3} phase.

  3. Magnetic and electrical properties of several Mn-based amorphous alloys

    Science.gov (United States)

    Obi, Y.; Morita, H.; Fujimori, H.

    1987-03-01

    Magnetic and electrical properties of amorphous Mn-Y, Mn-Zr, and Mn-Nb alloys have been investigated. All these alloys have a temperature-dependent susceptibility which is well fitted by a Curie-Weiss law. This implies the existence of localized magnetic moments associated with the Mn atoms. In addition, amorphous Mn-Y alloys exhibit spin-glass characteristics at low temperature. The experimental results of the electrical resistivity show that the temperature coefficient of resistivity (TCR) of both Mn-Y and Mn-Zr are negative, while Mn-Nb has a positive TCR. On the other hand, the resistivity-temperature curves of Mn-Zr and Mn-Nb have nearly the same tendency but are different from that of Mn-Y.

  4. Anisotropic magnetic structures of the Mn R MnSbO6 high-pressure doubly ordered perovskites (R =La , Pr, and Nd)

    Science.gov (United States)

    Solana-Madruga, Elena; Arévalo-López, Ángel M.; Dos santos-García, Antonio J.; Ritter, Clemens; Cascales, Concepción; Sáez-Puche, Regino; Attfield, J. Paul

    2018-04-01

    A new type of doubly ordered perovskite (also reported as double double perovskite, DDPv) structure combining columnar and rock-salt orders of the cations at the A and B sites, respectively, was recently found at high pressure for Mn R MnSb O6 (R =La -Sm ). Here we report further magnetic structures of these compounds. M n2 + spins align into antiparallel ferromagnetic sublattices along the x axis for MnLaMnSb O6 , while the magnetic anisotropy of P r3 + magnetic moments induces their preferential order along the z direction for MnPrMnSb O6 . The magnetic structure of MnNdMnSb O6 was reported to show a spin-reorientation transition of M n2 + spins from the z axis towards the x axis driven by the ordering of N d3 + magnetic moments. The crystal-field parameters for P r3 + and N d3 + at the 4 e C2 site of their DDPv structure have been semiempirically estimated and used to derive their energy levels and associated wave functions. The results demonstrate that the spin-reorientation transition in MnNdMnSb O6 arises as a consequence of the crystal-field-induced magnetic anisotropy of N d3 + .

  5. Catheter-related infections in a northwestern São Paulo reference unit for burned patients care

    Directory of Open Access Journals (Sweden)

    Cláudio Penido Campos Júnior

    Full Text Available Despite improvements in care and rehabilitation of burned patients, infections still remain the main complication and death cause. Catheter-related infections are among the four most common infections and are associated with skin damage and insertion site colonization. There are few studies evaluating this kind of infection worldwide in this special group of patients. Padre Albino Hospital Burn Care Unit (PAHBCU is the only reference center in the Northwestern São Paulo for treatment of burned patients. This paper presents the results of a retrospective study aiming at describing the epidemiological and clinical features of catheter-related infections at PAHBCU.

  6. Response of MnBi-Bi eutectic to freezing rate changes

    Science.gov (United States)

    Nair, M.; Fu, T.-W.; Wilcox, W. R.; Doddi, K.; Ravishankar, P. S.; Larson, D.

    1982-01-01

    Reference is made to a study by Fu and Wilcox (1981), which treated theoretically the influence on freezing rate of sudden changes in translation rate in the Bridgman-Stockbarger technique. This treatment is extended here to a linear ramped translation rate and an oscillatory freezing rate. It is found that oscillations above a few hertz are highly damped in small-diameter apparatus. An experimental test is carried out of the theoretical predictions for a sudden change of translation rate. The MnBi-Bi eutectic is solidified with current-induced interface demarcation. The experimental results accord reasonably well with theory if the silica ampoule wall is assumed to either (1) contribute only a resistance to heat exchange between the sample and the furnace wall or (2) transmit heat effectively in the axial direction by radiation. In an attempt to explain the fact that a finer microstructure is obtained in space, MnBi-Bi microstructure is determined when the freezing rate is increased or decreased rapidly. Preliminary results suggest that fiber branching does not occur as readily as fiber termination.

  7. Ferromagnetic dinuclear mixed-valence Mn(II)/Mn(III) complexes: building blocks for the higher nuclearity complexes. structure, magnetic properties, and density functional theory calculations.

    Science.gov (United States)

    Hänninen, Mikko M; Välivaara, Juha; Mota, Antonio J; Colacio, Enrique; Lloret, Francesc; Sillanpää, Reijo

    2013-02-18

    A series of six mixed-valence Mn(II)/Mn(III) dinuclear complexes were synthesized and characterized by X-ray diffraction. The reactivity of the complexes was surveyed, and structures of three additional trinuclear mixed-valence Mn(III)/Mn(II)/Mn(III) species were resolved. The magnetic properties of the complexes were studied in detail both experimentally and theoretically. All dinuclear complexes show ferromagnetic intramolecular interactions, which were justified on the basis of the electronic structures of the Mn(II) and Mn(III) ions. The large Mn(II)-O-Mn(III) bond angle and small distortion of the Mn(II) cation from the ideal square pyramidal geometry were shown to enhance the ferromagnetic interactions since these geometrical conditions seem to favor the orthogonal arrangement of the magnetic orbitals.

  8. Structural and magnetic properties of Mn-implanted Si

    International Nuclear Information System (INIS)

    Zhou Shengqiang; Potzger, K.; Zhang Gufei; Muecklich, A.; Eichhorn, F.; Schell, N.; Groetzschel, R.; Schmidt, B.; Skorupa, W.; Helm, M.; Fassbender, J.; Geiger, D.

    2007-01-01

    Structural and magnetic properties in Mn-implanted, p-type Si were investigated. High resolution structural analysis techniques such as synchrotron x-ray diffraction revealed the formation of MnSi 1.7 nanoparticles already in the as-implanted samples. Depending on the Mn fluence, the size increases from 5 nm to 20 nm upon rapid thermal annealing. No significant evidence is found for Mn substituting Si sites either in the as-implanted or annealed samples. The observed ferromagnetism yields a saturation moment of 0.21μ B per implanted Mn at 10 K, which could be assigned to MnSi 1.7 nanoparticles as revealed by a temperature-dependent magnetization measurement

  9. Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries

    Science.gov (United States)

    Armstrong, A. Robert; Bruce, Peter G.

    1996-06-01

    RECHARGEABLE lithium batteries can store more than twice as much energy per unit weight and volume as other rechargeable batteries1,2. They contain lithium ions in an electrolyte, which shuttle back and forth between, and are intercalated by, the electrode materials. The first commercially successful rechargeable lithium battery3, introduced by the Sony Corporation in 1990, consists of a carbon-based negative electrode, layered LiCoO2 as the positive electrode, and a non-aqueous liquid electrolyte. The high cost and toxicity of cobalt compounds, however, has prompted a search for alternative materials that intercalate lithium ions. One such is LiMn2O4, which has been much studied as a positive electrode material4-7 the cost of manganese is less than 1% of that of cobalt, and it is less toxic. Here we report the synthesis and electrochemical performance of a new material, layered LiMnO2, which is structurally analogous to LiCoO2. The charge capacity of LiMnO2 (~270mAhg-1) compares well with that of both LiCoO2 and LiMn2O4, and preliminary results indicate good stability over repeated charge-discharge cycles.

  10. Coupling between magnetic, dielectric properties and crystal structure in MnT2O4 (T = V, Cr, Mn)

    International Nuclear Information System (INIS)

    Suzuki, T; Adachi, K; Katsufuji, T

    2006-01-01

    We measured the temperature dependence of dielectric constant and striction for spinel MnT 2 O 4 (T = V, Cr, Mn) under magnetic field. We found critical changes of the dielectric constant and striction with ferrimagnetic ordering as well as applied magnetic field in MnV 2 O 4 and Mn 3 O 4 , which have orbital degree of freedom in the T 3+ ion. This result indicates the importance of the orbital degree of freedom for the coupling between dielectric, magnetic properties and crystal structure in these spinel compounds

  11. Structural, magnetic and transport properties of Mn3.1Sn0.9 and Mn3.1Sn0.9N compounds

    International Nuclear Information System (INIS)

    Feng, W.J.; Li, D.; Ren, W.J.; Li, Y.B.; Li, W.F.; Li, J.; Zhang, Y.Q.; Zhang, Z.D.

    2007-01-01

    The cubic anti-perovskite Mn 3.1 Sn 0.9 N compound is prepared via nitrogenation of the hexagonal Mn 3.1 Sn 0.9 compound. A magnetic phase diagram of Mn 3.1 Sn 0.9 compound is constructed by analysis of data of its magnetic properties. For Mn 3.1 Sn 0.9 N compound, parasitic ferromagnetism exists in the temperature range of 5-370 K, besides a spin-reorientation at about 280 K. Mn 3.1 Sn 0.9 compound exhibits a metallic conducting behavior, while Mn 3.1 Sn 0.9 N displays a metal-nonmetal transition due to the electron localization caused by the static disorder. The differences of the physical properties between the both compounds, are discussed, in terms of the correlation of the hexagonal DO 19 and the cubic anti-perovskite structures, the reduction of the distances between Mn atoms, and the spin-pairing or charge transfer effect due to the electron donation by N 2p to Mn 3d states after introduction of N atoms into the interstitial sites of Mn 3.1 Sn 0.9 compound

  12. EPR and FTIR spectroscopic studies of MO-Al2O3-Bi2O3-B2O3-MnO2(M = Pb, Zn and Cd) glasses

    Science.gov (United States)

    Lalitha Phani, A. V.; Sekhar, K. Chandra; Chakradhar, R. P. S.; Narasimha Chary, M.; Shareefuddin, Md

    2018-03-01

    Glasses of the system (30-x)MO-xAl2O3-15Bi2O3-54.5B2O3-0.5MnO2 [M = Pb, Zn & Cd] (x = 0, 5, 10 & 15 mol%) were prepared by the normal melt quenching method. The amorphous nature of the prepared glasses was confirmed by the XRD studies. The EPR and FTIR studies were carried out at room temperature (RT). The EPR spectra exhibited three resonance signals at g ≈ 2.0 with a hyperfine structure, an absorption around g = 4.3 and a distinct shoulder at g = 3.3. Deconvoluted spectra were drawn for g ≈ 2.0 to resolve the six hyperfine lines. The electron paramagnetic resonance signal at g ≈ 2.0 indicates that the Mn2+ ions are in nearly perfectly octahedral symmetry. The low field signals at g = 3.3 and g = 4.3 are attributed to the Mn2+ ion which are in distorted rhombic symmetries. The hyperfine (HF) splitting constant (A) values suggested that the bonding between Mn2+ ions and its ligands is ionic in nature. The presence of BO3 and BO4 borate units, metal oxide cation units, Mn2+ and Bi-O bond vibrations in BiO3 units were noticed from the FTIR spectra.

  13. [Degradation of lignocellulose in the corn straw by Bacillus amyloliquefaciens MN-8].

    Science.gov (United States)

    Li, Hong-ya; Li, Shu-na; Wang, Shu-xiang; Wang, Quan; Xue, Yin-yin; Zhu, Bao-cheng

    2015-05-01

    Microbial degradation of lignocellulose is one of the key problems that need to be solved urgently in the process of utilizing biomass resource. Bacillus amyloliquefaciens MN-8 is our previously isolated bacterium capable of degrading lignin. To determine the capability of strain MN-8 to degrade lignocellulose of corn straw, B. amyloliquefaciens MN-8 was inoculated and fermented with solid-state corn straw powder-MSM culture medium. The changes in the enzyme activity and degradation products of lignocellulose were monitored in the process of fermentation using the FTIR and GC/MS. The results showed that B. amyloliquefaciens MN-8 could produce lignin peroxidase, manganese peroxidase, cellulase and hemicellulase enzymes. The activities of all these enzymes reached the peak after being incubated for 10-16 days, and the highest enzyme activities were 55.0, 16.7, 45.4 and 60.5 U · g(-1), respectively. After 24 d of incubation, the degradation percentages of lignin, cellulose and hemicellulose were up to 42.9%, 40.6% and 27.1%, respectively. The spectroscopic data by FTIR indicated that the intensities of characteristic absorption peaks of lignin, cellulose and hemicellulose of the corn straw were decreased, indicating that the lignocellulose was degraded partly after being fermented by B. amyloliquefaciens MN-8. GC/MS analysis also demonstrated that strain MN-8 could degrade lignocellulose efficiently. It could depolymerize lignin into some monomeric compounds with retention of phenylpropane structure unit, such as amphetamine, benzene acetone and benzene propanoic acids, by the rupture of β-O-4 bond connected between lignin monomer, and it further oxidized some monomer compounds into Cα carbonyl compounds, such as 2-amino-1-benzeneacetone and 4-hydroxy-3,5-dimethoxy-acetophenone. The GC/MS analysis of the degradation products of cellulose and hemicellulose showed that there were not only monosaccharide compounds, such as glucose, mannose and galactose, but also some

  14. Li(Zn,Co,MnAs: A bulk form diluted magnetic semiconductor with Co and Mn co-doping at Zn sites

    Directory of Open Access Journals (Sweden)

    Bijuan Chen

    2016-11-01

    Full Text Available We report the synthesis and characterization of a series of bulk forms of diluted magnetic semiconductors Li(Zn1-x-yCoxMnyAs with a crystal structure close to that of III-V diluted magnetic semiconductor (Ga,MnAs. No ferromagnetic order occurs with single (Zn,Co or (Zn, Mn substitution in the parent compound LiZnAs. Only with co-doped Co and Mn ferromagnetic ordering can occur at the Curie temperature ∼40 K. The maximum saturation moment of the this system reached to 2.17μB/Mn, which is comparable to that of Li (Zn,MnAs. It is the first time that a diluted magnetic semiconductor with co-doping Co and Mn into Zn sites is achieved in “111” LiZnAs system, which could be utilized to investigate the basic science of ferromagnetism in diluted magnetic semiconductors. In addition, ferromagnetic Li(Zn,Co,MnAs, antiferromagnetic LiMnAs, and superconducting LiFeAs share square lattice at As layers, which may enable the development of novel heterojunction devices in the future.

  15. Magnetic signature of charge ordering in Li[Mn sub 1 sub . sub 9 sub 6 Li sub 0 sub . sub 0 sub 4]O sub 4 and Li sub 0 sub . sub 2 [Mn sub 1 sub . sub 9 sub 6 Li sub 0 sub . sub 0 sub 4]O sub 4

    CERN Document Server

    Verhoeven, V W J; Mulder, F M

    2002-01-01

    The stoichiometric compound LiMn sub 2 O sub 4 is known to show charge ordering with well-defined Mn sup 3 sup + and Mn sup 4 sup + sites just below room temperature (RT). Above RT the electrons are hopping rapidly between sites. For lithium-ion batteries the material Li[Mn sub 1 sub . sub 9 sub 6 Li sub 0 sub . sub 0 sub 4]O sub 4 is technologically relevant. Due to the small amount of Li on the Mn site, the low-T regular ordering of the Mn charge appears to be destroyed completely, as is evidenced by neutron diffraction in the magnetically ordered state. However, the charges are still fixed in an irregular fashion, as can also be deduced from sup 7 Li nuclear magnetic resonance measurements. In the lithium-extracted compound Li sub 0 sub . sub 2 [Mn sub 1 sub . sub 9 sub 6 Li sub 0 sub . sub 0 sub 4]O sub 4 , predominantly Mn sup 4 sup + is present. Neutron diffraction in the magnetically ordered state shows a well-defined antiferromagnetic ordering, with doubling of the unit cell in three directions. Clear...

  16. Synthesis of highly efficient Mn{sub 2}O{sub 3} catalysts for CO oxidation derived from Mn-MIL-100

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaodong, E-mail: fatzhxd@126.com [Environment and Low-Carbon Research Center, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093 (China); Li, Hongxin; Hou, Fulin; Yang, Yang; Dong, Han; Liu, Ning [Environment and Low-Carbon Research Center, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093 (China); Wang, Yuxin [Institute of Applied Biotechnology, Taizhou Vocation & Technical College, Taizhou, Zhejiang 318000 (China); Cui, Lifeng, E-mail: lifeng.cui@gmail.com [Environment and Low-Carbon Research Center, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093 (China)

    2017-07-31

    Highlights: • The morphology of porous Mn{sub 2}O{sub 3} cubes was inherited from Mn-MIL-100 template. • Mn{sub 2}O{sub 3} obtained at calcined temperature of 700 °C displayed high activity. • Enhanced activity is attributed to surface active oxygen, and reduction behavior. - Abstract: In this work, metal-organic frameworks (MOFs) Mn-MIL-100 were first prepared, which were next used as templates to obtain the irregular porous Mn{sub 2}O{sub 3} cubes through calcination with air at different temperature. The catalysts were characterized by N{sub 2} adsorption-desorption, X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), H{sub 2}-temperature program reduction (H{sub 2}-TPR) and X-ray photoelectron spectroscopic (XPS). The catalytic activity for CO oxidation over Mn{sub 2}O{sub 3} catalysts was investigated. It was found that calcination temperature had a strong effect on the structure and catalytic activity of Mn{sub 2}O{sub 3} catalyst. Mn{sub 2}O{sub 3} catalyst obtained by calcined at 700 °C (Mn{sub 2}O{sub 3}-700) showed a smaller specific surface area, but displayed a high catalytic activity and excellent stability with a complete CO conversion temperature (T{sub 98}) of 240 °C, which was attributed to the unique structure, a high quantity of surface active oxygen species, smaller particle size, oxygen vacancies and good low temperature reduction behavior. The effect of water vapor on catalytic activity was also examined. The introduction of water vapor to the feedstock induced a positive effect on CO oxidation over Mn{sub 2}O{sub 3}-700 catalyst. Furthermore, no obvious drop is observed in activity over catalysts even in the presence of water vapor during 48 h.

  17. Cardiovascular effects of MnDPDP and MnCl2 in dogs with acute ischaemic heart failure

    International Nuclear Information System (INIS)

    Karlsson, J.O.G.; Pedersen, H.K.; Sager, G.; Refsum, H.; Nycomed Imaging AS, Oslo

    1997-01-01

    Purpose: To examine the cardiovascular effects of MnDPDP in a model of acute heart failure in the dog, and to compare these effects with those of MnCl 2 . Material and Methods: The study involved slow i.v. infusion of either 10, 60 and 300 μmol/kg of MnDPDP, or 1, 6 and 30 μmol/kg MnCl 2 , in increasing doses to groups of 5 dogs. Acute ischaemic heart failure was first induced by injection of polystyrene microspheres (50±10 μm) into the left coronary artery until a stable left ventricular end-diastolic pressure of approximately 20 mm Hg was achieved. The following test parameters were measured: Left ventricular end-diastolic pressure; the first derivatives of maximum rate of left ventricular contraction and relaxation; mean aortic pressure; pulmonary artery pressure; right atrial pressure; cardiac ouput; heart rate; QT-time; PQ-time; QRS-width; and plasma catecholamines. Results: Slow infusion of MnDPDP at doses up to and including 12 times the clinical dose was well tolerated in dogs without further depression of cardiovascular function during acute ischaemic heart failure. At 300 μmol/kg, i.e. 60 times the human dose, only minor haemodynamic and electrophysiological effects were seen, and these were similar to those seen after administration of 30 μmol/kg MnCl 2 . (orig./AJ)

  18. NMRON on a mixed halide antiferromagnet, (54Mn)Mn(Cl0.6Br0.4)2.4H2O

    International Nuclear Information System (INIS)

    Chaplin, D.H.; Harker, S.J.; Hutchison, W.D.; Bowden, G.J.

    2000-01-01

    Full text: Recently we reported on the significant gains that can be made in Low Temperature Nuclear Orientation (LTNO) of the magnetically dominant species in an antiferromagnetic single crystal by heterogeneous mixing of the halide ligands. This new approach relies on enhanced nuclear spin lattice relaxation (NSLR) at the magnetic ion, in this case Mn, through broadbanded electronic magnons, in the cooled, single crystal host. Whereas the isomorphous terminal compounds ( 54 Mn)MnCI 2 .4H 2 O and ( 54 Mn)MnBr 2 .4H 2 O, have yielded zero field directional anisotropies of only 5% and 14%, respectively, from the daughter gamma from the long-lived parent 54 Mn, the mixed halides have yielded up to 40% zero field gamma anisotropy at the same base temperature of about 7-8 millikelvin. This improved zero field LTNO provides sufficient sensitivity to enable meaningful NMRON studies of the details of the hyperfine parameters at the Mn site in these mixed halide systems. In this paper we provide the NMRON results for single crystal ( 54 Mn)Mn(CI 0.6 Br 0.4 ) 2 .4H 2 O and compare them with the two terminal compounds which possess surprisingly different NMR responses due to different ratios of magnetic exchange to magnetic anisotropy fields. It is shown that whereas the static magnetic hyperfine field at the Mn nucleus is largely unchanged, and the spin flop field nicely interpolates when compared with the terminal compounds, there are significant differences in the pseudoquadrupolar splittings and sub-resonance linewidths

  19. Luminescence of nanocrystalline ZnSe:Mn2+

    NARCIS (Netherlands)

    Suyver, J.F.; Wuister, S.F.; Kelly, J.J.; Meijerink, A.

    2000-01-01

    The luminescence properties of nanocrystalline ZnSe:Mn^(2+) prepared via an inorganic chemical synthesis are described. Photoluminescence spectra show distinct ZnSe and Mn^(2+) related emissions, both of which are excited via the ZnSe host lattice. The Mn^(2+) emission wavelength and the

  20. Kineococcus radiotolerans Dps forms a heteronuclear Mn-Fe ferroxidase center that may explain the Mn-dependent protection against oxidative stress.

    Science.gov (United States)

    Ardini, Matteo; Fiorillo, Annarita; Fittipaldi, Maria; Stefanini, Simonetta; Gatteschi, Dante; Ilari, Andrea; Chiancone, Emilia

    2013-06-01

    The ferroxidase center of DNA-binding protein from starved cells (Dps) is a major player in the iron oxidation/detoxification process that leads to a decreased reactive oxygen species production. The possible Mn(II) participation in this process has been studied in Dps from Kineococcus radiotolerans, a radiation-resistant bacterium with a high cytosolic Mn/Fe ratio and a high capacity to survive ionizing and stress conditions. The X-ray structure of recombinant K. radiotolerans Dps loaded with Mn(II) has been solved at 2.0Å resolution. Mn(II) binding to K. radiotolerans Dps and its effect on Fe(II) oxidation have been characterized in spectroscopic measurements. In K. radiotolerans Dps, the Fe-Fe ferroxidase center can have a Mn-Fe composition. Mn(II) binds only at the high affinity, so-called A site, whereas Fe(II) binds also at the low affinity, so-called B site. The Mn-Fe and Fe-Fe centers behave distinctly upon iron oxidation by O2. A site-bound Mn(II) or Fe(II) plays a catalytic role, while B site-bound Fe(II) behaves like a substrate and can be replaced by another Fe(II) after oxidation. When H2O2 is the Fe(II) oxidant, single electrons are transferred to aromatic residues near the ferroxidase center and give rise to intra-protein radicals thereby limiting OH release in solution. The presence of the Mn-Fe center results in significant differences in the development of such intra-protein radicals. Mn(II) bound at the Dps ferroxidase center A site undergoes redox cycling provided the B site contains Fe. The results provide a likely molecular mechanism for the protective role of Mn(II) under oxidative stress conditions as it participates in redox cycling in the hetero-binuclear ferroxidase center. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Siderophore-mediated oxidation of Ce and fractionation of HREE by Mn (hydr)oxide-coprecipitation and sorption on MnO2: Experimental evidence for negative Ce-anomalies in abiogenic manganese precipitates

    Science.gov (United States)

    Krämer, Dennis; Tepe, Nathalie; Bau, Michael

    2014-05-01

    )oxides (e.g., Tanaka et al., 2010, Loges et al., 2012). Our experimental results demonstrate that biogenic organic ligands such as hydroxamate siderophores, may produce solutions with positive Ce anomaly (Bau et al., 2013) and may even counteract the surface oxidation of Ce on Mn (hydr)oxides. References Bau, M., Tepe, N., Mohwinkel, D., 2013. Siderophore-promoted transfer of rare earth elements and iron from volcanic ash into glacial meltwater, river and ocean water. Earth Planet. Sci. Lett. 364, 30-36. Christenson E. A. and Schijf J. (2011) Stability of YREE complexes with the trihydroxamate siderophore desferrioxamine B at seawater ionic strength. Geochim. Cosmochim. Acta 75, 7047-7062. Loges, A., Wagner, T., Barth, M., Bau, M., Göb, S., and Markl, G. 2012. Negative Ce anomalies in Mn oxides: The role of Ce4+ mobility during water-mineral interaction. Geochimica and Cosmochimica Acta 86, 296-317 Ohta A. and Kawabe I. (2001) REE (III) adsorption onto Mn dioxide (delta-MnO2) and Fe oxyhydroxide: Ce(III) oxidation by delta-MnO2. Geochim. Cosmochim. Acta 65, 695-703. Tanaka K., Tani Y., Takahashi Y., Tanimizu M., Suzuki Y., Kozai N. and Ohnuki T. (2010) A specific Ce oxidation process during sorption of rare earth elements on biogenic Mn oxide produced by Acremonium sp. strain KR21-2. Geochim. Cosmochim. Acta 74, 5463-5477.

  2. τ-MnAl with high coercivity and saturation magnetization

    Directory of Open Access Journals (Sweden)

    J. Z. Wei

    2014-12-01

    Full Text Available In this paper, high purity τ-Mn54Al46 and Mn54−xAl46Cxalloys were successfully prepared using conventional arc-melting, melt-spinning, and heat treatment process. The magnetic and the structural properties were examined using x-ray diffraction (XRD, powder neutron diffraction and magnetic measurements. A room temperature saturation magnetization of 650.5 kAm-1, coercivity of 0.5 T, and a maximum energy product of (BHmax = 24.7 kJm-3 were achieved for the pure Mn54Al46 powders without carbon doping. The carbon substituted Mn54−xAl46Cx, however, reveals a lower Curie temperature but similar saturation magnetization as compared to the carbon-free sample. The electronic structure of MnAl shows that the Mn atom possesses a magnetic moment of 2.454 μB which results from strong hybridization between Mn-Al and Mn-Mn. We also investigated the volume and c/a ratio dependence of the magnetic moments of Mn and Al. The results indicate that an increase in the intra-atomic exchange splitting due to the cell volume expansion, leads to a large magnetic moment for the Mn atom. The Mn magnetic moment can reach a value of 2.9 μB at a volume expansion rate of ΔV/V ≈ 20%.

  3. Fe-Mn-Si based shape memory alloys

    International Nuclear Information System (INIS)

    Hsu, T.Y.

    2000-01-01

    Characteristics of martensitic transformation fcc(γ)→hcp(ε) in Fe-Mn-Si based alloys are briefly reviewed. By analyzing the influences of constituents and treatments on shape memory effect (SME) in Fe-Mn-Si, the main factors controlling SME are summarized as austenite strengthening, stacking fault energy (probability) and antiferromagnetic temperature. Contribution of thermomechanical training to SME is introduced. The Fe-Mn-Si-RE (rare earth elements) and Fe-Mn-Si-Cr-N alloys are recommended as two novel shape memory alloys with superior SME. (orig.)

  4. Preparation and characterization of the non-stoichiometric La–Mn perovskites

    International Nuclear Information System (INIS)

    Gao, Zhiming; Wang, Huishu; Ma, Hongwei; Li, Zhanping

    2015-01-01

    Six La–Mn oxide samples with La/Mn atomic ratio x = 1.03–0.56 (denoted as sample LaxMn) were prepared by the citrate method with calcination at 700 °C for 5 h, and characterized by X-ray diffraction (XRD), N 2 adsorption–desorption, temperature programmed reduction (TPR) and X-ray photoelectron spectroscopy (XPS). It is confirmed that the four samples with La/Mn atomic ratio at 1.03–0.72 are all single phase perovskites by XRD patterns. Lattice parameters of the perovskites are varying with the La/Mn atomic ratio. As the La/Mn atomic ratio further lowers to 0.63 and 0.56, Mn 3 O 4 phase is formed besides the main phase of perovskite. Lattice vacancy at the A-sites of the perovskites is present for all the six samples, and there are an appreciable number of Mn 4+ ions in the perovskite crystal according to the refinement results of the Rietveld method. XPS analyses indicate that Mn ions are enriched on the surfaces of all the samples. In addition, catalytic activity for methane oxidation is in an order of sample La 0.89 Mn > La 1.03 Mn > La 0.81 Mn > La 0.72 Mn > La 0.63 Mn > La 0.56 Mn. - Highlights: • The samples with La/Mn atomic ratio at 1.03–0.72 are single phase perovskites. • Cationic lattice vacancies are present in the perovskite crystal of the samples. • Surface of the samples is enriched by Mn ions. • The sample La 0.89 Mn is most catalytically active for methane oxidation

  5. Impact of environmental chemistry on mycogenic Mn oxide minerals

    Science.gov (United States)

    Santelli, C. M.; Farfan, G. A.; Post, A.; Post, J. E.

    2012-12-01

    Manganese (Mn) oxide minerals are ubiquitous in aquatic and terrestrial environments and their presence can have broad environmental consequences. In particular, Mn oxides scavenge nutrients and metals, degrade complex organics, and oxidize a variety of inorganic contaminants. The "reactivity" of Mn oxides, however, is highly dependent upon crystallite size, composition, and structure, which are largely determined by environmental factors such as solution chemistry. It is has been suggested that most Mn oxides in terrestrial and aquatic environments are formed by microbial activity; indeed, a diversity of Mn(II)-oxidizing bacteria and fungi have been isolated and their mineral byproducts are consistent with those observed in natural systems. Previous studies showed that Mn(II)-oxidizing Ascomycete fungi produce highly-disordered, nanocrystalline Mn oxides that are structurally similar to synthetic δ-MnO2 or natural vernadite. Unlike related studies with Mn-oxidizing bacteria, Mn oxides produced by these fungi did not "age" or transform to more crystalline mineral phases with time. We hypothesize that fungal growth conditions, in particular the low concentration of cations, are inhibiting secondary mineral formation. The overall goal of this research is to examine the structure and speciation of fungally-precipitated Mn oxides with respect to fungal species, time, and concentration of soluble Mn(II), Na, and Ca - three environmentally relevant cations that promote the transformation of δ-MnO2 to more crystalline mineral phases such as feitknechtite, birnessite, or ranciéite. For this study, we examined the Mn oxides formed by different species of Mn(II)-oxidizing fungi (Pyrenochaeta sp., Stagonospora sp., Plectosphaerella cucumerina., and Acremonium strictum). Isolates were grown for 8 or 16 days in a nutrient lean media consisting of yeast extract, trace elements and 0.2 mM MnCl2 supplemented with varying concentrations of Na, Ca, or Mn(II) compounds. The

  6. Electronic Topological Transitions in CuNiMnAl and CuNiMnSn under pressure from first principles study

    Science.gov (United States)

    Rambabu, P.; Kanchana, V.

    2018-06-01

    A detailed study on quaternary ordered full Heusler alloys CuNiMnAl and CuNiMnSn at ambient and under different compressions is presented using first principles electronic structure calculations. Both the compounds are found to possess ferromagnetic nature at ambient with magnetic moment of Mn being 3.14 μB and 3.35 μB respectively in CuNiMnAl and CuNiMnSn. The total magnetic moment for both the compounds is found to decrease under compression. Fermi surface (FS) topology change is observed in both compounds under pressure at V/V0 = 0.90, further leading to Electronic Topological Transitions (ETTs) and is evidenced by the anomalies visualized in density of states and elastic constants under compression.

  7. Ferromagnetic properties of Mn-doped AlN

    International Nuclear Information System (INIS)

    Li, H.; Bao, H.Q.; Song, B.; Wang, W.J.; Chen, X.L.; He, L.J.; Yuan, W.X.

    2008-01-01

    Mn-doped AlN polycrystalline powders with a wurtzite structure were synthesized by solid-state reactions. A red-orange band at 600 nm, due to Mn 3+ incorporated into the AlN lattice, is observed in the photoluminescence (PL) spectrum at room temperature (RT). Magnetic measurements show the samples possess hysteresis loops up to 300 K, indicating that the obtained powders are ferromagnetic at around RT. The Mn concentration-induced RT ferromagnetism is less than 1 at%. Our results confirm that the RT ferromagnetism can be realized in Mn-doped AlN

  8. IAEA programme of natural matrix reference materials for the determination of radionuclides

    International Nuclear Information System (INIS)

    Strachnov, V.; Valkovic, V.; LaRosa, J.; Dekner, R.; Zeisler, R.

    1993-01-01

    The International Atomic Energy Agency has been providing analytical quality control services (AQCS) to its Member States since the 1960's. The AQCS programme distributes reference materials (RMs), organizes intercomparison runs, and provides training courses for quality assurance in chemical analysis and radioactivity measurements of food, biological, environmental and marine materials. This paper focusses on those aspects of the subject dealing with reference materials and intercomparison runs for the determination of radionuclides. Nineteen natural matrix reference materials are available for the determination of radionuclides. Twelve new intercomparison and reference materials are in preparation or under consideration. The radionuclides of interest include: K-40, Mn-54, Co-60, Sr-90, Tc-99, Ru-106, Ba-133, Cs-134, Cs-137, Pb-210, Ra-226, Th-228, Th-232, Pu-238, Pu-239 + 240. (orig.)

  9. Preparation, characteristics and electrochemical properties of surface-modified LiMn2O4 by doped LiNi0.05Mn1.95O4

    International Nuclear Information System (INIS)

    Yuan, Y.F.; Wu, H.M.; Guo, S.Y.; Wu, J.B.; Yang, J.L.; Wang, X.L.; Tu, J.P.

    2008-01-01

    The surface-modified spinel LiMn 2 O 4 by doped LiNi 0.05 Mn 1.95 O 4 was prepared by a tartaric acid gel method. Transmission electron microscope (TEM) images indicated that some small particles with 100-200 nm in diameter modified the surface of large particle LiMn 2 O 4 . Energy dispersive spectrometry (EDS) showed that the particles were LiNi 0.05 Mn 1.95 O 4 . Electrochemical properties of LiNi 0.05 Mn 1.95 O 4 -modified spinel LiMn 2 O 4 were intensively investigated by the galvanostatic charge-discharge tests, cyclic voltammetry (CV) and AC impedance measurements. The doped LiNi 0.05 Mn 1.95 O 4 -modified LiMn 2 O 4 cathode delivered the same initial discharge capacity as the unmodified LiMn 2 O 4 , but its cyclic stability was evidently improved, the capacity retention ratio reached 96% after 20 cycles, being higher than 89% of the unmodified LiMn 2 O 4 . Cyclic voltammograms of the LiNi 0.05 Mn 1.95 O 4 -modified LiMn 2 O 4 did not markedly change while the semicircle diameter of AC impedance spectra evidently decreased after 20 cycles, which showed that the surface modification with LiNi 0.05 Mn 1.95 O 4 improved the electrochemical activity and cycling stability of LiMn 2 O 4 .

  10. Chronology and References of Volcanic Eruptions and Selected Unrest in the United States, 1980-2008

    Science.gov (United States)

    Diefenbach, Angela K.; Guffanti, Marianne; Ewert, John W.

    2009-01-01

    The United States ranks as one of the top countries in the world in the number of young, active volcanoes within its borders. The United States, including the Commonwealth of the Northern Mariana Islands, is home to approximately 170 geologically active (age activity, unrest, that do not culminate in eruptions. Monitoring volcanic activity in the United States is the responsibility of the U.S. Geological Survey (USGS) Volcano Hazards Program (VHP) and is accomplished with academic, Federal, and State partners. The VHP supports five Volcano Observatories - the Alaska Volcano Observatory (AVO), Cascades Volcano Observatory (CVO), Yellowstone Volcano Observatory (YVO), Long Valley Observatory (LVO), and Hawaiian Volcano Observatory (HVO). With the exception of HVO, which was established in 1912, the U.S. Volcano Observatories have been established in the past 27 years in response to specific volcanic eruptions or sustained levels of unrest. As understanding of volcanic activity and hazards has grown over the years, so have the extent and types of monitoring networks and techniques available to detect early signs of anomalous volcanic behavior. This increased capability is providing us with a more accurate gauge of volcanic activity in the United States. The purpose of this report is to (1) document the range of volcanic activity that U.S. Volcano Observatories have dealt with, beginning with the 1980 eruption of Mount St. Helens, (2) describe some overall characteristics of the activity, and (3) serve as a quick reference to pertinent published literature on the eruptions and unrest documented in this report.

  11. Noncollinear antiferromagnetic Mn3Sn films

    Science.gov (United States)

    Markou, A.; Taylor, J. M.; Kalache, A.; Werner, P.; Parkin, S. S. P.; Felser, C.

    2018-05-01

    Noncollinear hexagonal antiferromagnets with almost zero net magnetization were recently shown to demonstrate giant anomalous Hall effect. Here, we present the structural and magnetic properties of noncollinear antiferromagnetic Mn3Sn thin films heteroepitaxially grown on Y:ZrO2 (111) substrates with a Ru underlayer. The Mn3Sn films were crystallized in the hexagonal D 019 structure with c -axis preferred (0001) crystal orientation. The Mn3Sn films are discontinuous, forming large islands of approximately 400 nm in width, but are chemical homogeneous and characterized by near perfect heteroepitaxy. Furthermore, the thin films show weak ferromagnetism with an in-plane uncompensated magnetization of M =34 kA/m and coercivity of μ0Hc=4.0 mT at room temperature. Additionally, the exchange bias effect was studied in Mn3Sn /Py bilayers. Exchange bias fields up to μ0HEB=12.6 mT can be achieved at 5 K. These results show Mn3Sn films to be an attractive material for applications in antiferromagnetic spintronics.

  12. Molecular orbital (SCF-X-α-SW) theory of Fe2+-Mn3+, Fe3+-Mn2+, and Fe3+-Mn3+ charge transfer and magnetic exchange in oxides and silicates

    Science.gov (United States)

    Sherman, David M.

    1990-01-01

    Metal-metal charge-transfer and magnetic exchange interactions have important effects on the optical spectra, crystal chemistry, and physics of minerals. Previous molecular orbital calculations have provided insight on the nature of Fe2+-Fe3+ and Fe2+-Ti4+ charge-transfer transitions in oxides and silicates. In this work, spin-unrestricted molecular orbital calculations on (FeMnO10) clusters are used to study the nature of magnetic exchange and electron delocalization (charge transfer) associated with Fe3+-Mn2+, Fe3+-Mn3+, and Fe2+-Mn3+ interactions in oxides and silicates. 

  13. (Na,□)5[MnO2]13 nanorods: a new tunnel structure for electrode materials determined ab initio and refined through a combination of electron and synchrotron diffraction data

    Science.gov (United States)

    Mugnaioli, Enrico; Gemmi, Mauro; Merlini, Marco; Gregorkiewitz, Michele

    2016-01-01

    (Nax□1 − x)5[MnO2]13 has been synthesized with x = 0.80 (4), corresponding to Na0.31[MnO2]. This well known material is usually cited as Na0.4[MnO2] and is believed to have a romanèchite-like framework. Here, its true structure is determined, ab initio, by single-crystal electron diffraction tomography (EDT) and refined both by EDT data applying dynamical scattering theory and by the Rietveld method based on synchrotron powder diffraction data (χ2 = 0.690, R wp = 0.051, R p = 0.037, R F2 = 0.035). The unit cell is monoclinic C2/m, a = 22.5199 (6), b = 2.83987 (6), c = 14.8815 (4) Å, β = 105.0925 (16)°, V = 918.90 (4) Å3, Z = 2. A hitherto unknown [MnO2] framework is found, which is mainly based on edge- and corner-sharing octahedra and comprises three types of tunnels: per unit cell, two are defined by S-shaped 10-rings, four by egg-shaped 8-rings, and two by slightly oval 6-rings of Mn polyhedra. Na occupies all tunnels. The so-determined structure excellently explains previous reports on the electrochemistry of (Na,□)5[MnO2]13. The trivalent Mn3+ ions concentrate at two of the seven Mn sites where larger Mn—O distances and Jahn–Teller distortion are observed. One of the Mn3+ sites is five-coordinated in a square pyramid which, on oxidation to Mn4+, may easily undergo topotactic transformation to an octahedron suggesting a possible pathway for the transition among different tunnel structures. PMID:27910840

  14. Dissimilatory Fe(III) and Mn(IV) reduction.

    Science.gov (United States)

    Lovley, D R

    1991-06-01

    The oxidation of organic matter coupled to the reduction of Fe(III) or Mn(IV) is one of the most important biogeochemical reactions in aquatic sediments, soils, and groundwater. This process, which may have been the first globally significant mechanism for the oxidation of organic matter to carbon dioxide, plays an important role in the oxidation of natural and contaminant organic compounds in a variety of environments and contributes to other phenomena of widespread significance such as the release of metals and nutrients into water supplies, the magnetization of sediments, and the corrosion of metal. Until recently, much of the Fe(III) and Mn(IV) reduction in sedimentary environments was considered to be the result of nonenzymatic processes. However, microorganisms which can effectively couple the oxidation of organic compounds to the reduction of Fe(III) or Mn(IV) have recently been discovered. With Fe(III) or Mn(IV) as the sole electron acceptor, these organisms can completely oxidize fatty acids, hydrogen, or a variety of monoaromatic compounds. This metabolism provides energy to support growth. Sugars and amino acids can be completely oxidized by the cooperative activity of fermentative microorganisms and hydrogen- and fatty-acid-oxidizing Fe(III) and Mn(IV) reducers. This provides a microbial mechanism for the oxidation of the complex assemblage of sedimentary organic matter in Fe(III)- or Mn(IV)-reducing environments. The available evidence indicates that this enzymatic reduction of Fe(III) or Mn(IV) accounts for most of the oxidation of organic matter coupled to reduction of Fe(III) and Mn(IV) in sedimentary environments. Little is known about the diversity and ecology of the microorganisms responsible for Fe(III) and Mn(IV) reduction, and only preliminary studies have been conducted on the physiology and biochemistry of this process.

  15. Polycrystalline Mn-alloyed indium tin oxide films

    International Nuclear Information System (INIS)

    Scarlat, Camelia; Schmidt, Heidemarie; Xu, Qingyu; Vinnichenko, Mykola; Kolitsch, Andreas; Helm, Manfred; Iacomi, Felicia

    2008-01-01

    Magnetic ITO films are interesting for integrating ITO into magneto-optoelectronic devices. We investigated n-conducting indium tin oxide (ITO) films with different Mn doping concentration which have been grown by chemical vapour deposition using targets with the atomic ratio In:Sn:Mn=122:12:0,114:12:7, and 109:12:13. The average film roughness ranges between 30 and 50 nm and XRD patterns revealed a polycrystalline structure. Magnetotransport measurements revealed negative magnetoresistance for all the samples, but high field positive MR can be clearly observed at 5 K with increasing Mn doping concentration. Spectroscopic ellipsometry (SE) has been used to prove the existence of midgap states in the Mn-alloyed ITO films revealing a transmittance less than 80%. A reasonable model for the ca. 250 nm thick Mn-alloyed ITO films has been developed to extract optical constants from SE data below 3 eV. Depending on the Mn content, a Lorentz oscillator placed between 1 and 2 eV was used to model optical absorption below the band gap

  16. Effect of Fe substitution at the Ni and Mn sites on the magnetic properties of Ni50Mn35In15 Heusler alloys

    International Nuclear Information System (INIS)

    Halder, Madhumita; Suresh, K.G.

    2015-01-01

    The structural and magnetic properties of Ni 48 Fe 2 Mn 35 In 15 and Ni 50 Mn 34 FeIn 15 Heusler alloys have been investigated. At room temperature, Ni 48 Fe 2 Mn 35 In 15 has L2 1 cubic structure, whereas Ni 50 Mn 34 FeIn 15 shows a two-phase structure due to the martensitic transition. In the case of Ni 48 Fe 2 Mn 35 In 15 , there is only one magnetic transition at 316 K with no martensitic transition. However, in Ni 50 Mn 34 FeIn 15 , we observe the martensitic transition at about 280 K. The Curie temperatures for austenite and martensite phases are 314 and 200 K, respectively. The maximum magnetic entropy changes are found to be 5.5 and 4.5 J kg −1 K −1 for Ni 48 Fe 2 Mn 35 In 15 and Ni 50 Mn 34 FeIn 15 , respectively, for 50 kOe. Ni 50 Mn 34 FeIn 15 exhibits exchange bias behavior, with a bias field of 130 Oe at 5 K. Both the alloys satisfy the empirical relation between the martensitic transition and the valence electron concentration (e/a) ratio. - Highlights: • Structural and magnetic properties of Ni 48 Fe 2 Mn 35 In 15 and Ni 50 Mn 34 FeIn 15 Heusler alloys have been investigated. • Ni 48 Fe 2 Mn 35 In 15 does not undergo a martensitic transition, whereas Ni 50 Mn 34 FeIn 15 shows martensitic transition. • Ni 50 Mn 34 FeIn 15 alloy exhibits exchange bias behavior. • Both alloys satisfy the empirical relation between martensitic transition and valence electron concentration (e/a)

  17. Atomic and magnetic structure of MnF3

    International Nuclear Information System (INIS)

    Hunter, B.A.; Kennedy, B.J.; Vogt, T.

    2003-01-01

    Full text: The magnetic and atomic structure of MnF 3 has been determined from 4K to 300K using neutron powder diffraction. The MnF 3 compound is the archetypical Mn-based colossal magnetoresistive compound. A Neel temperature of approximately 40K was observed from the temperature variation of the magnetic moment. Below the Neel temperature a large negative thermal expansion was observed, in striking similarity to other Mn-based colossal magnetoresistive compounds. The variation in structure is discussed in relation to other Mn-based compounds, particularly as this compound cannot support charge ordering

  18. Mn L{sub 2,3}-edge X-ray absorption spectroscopic studies on charge-discharge mechanism of Li{sub 2}MnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Kubobuchi, Kei, E-mail: kubobuchi@nissan-arc.co.jp [NISSAN ARC Ltd., 1 Natsushima, Yokosuka 237-0061 (Japan); Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan. (Japan); Mogi, Masato; Imai, Hideto [NISSAN ARC Ltd., 1 Natsushima, Yokosuka 237-0061 (Japan); Ikeno, Hidekazu [Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570 (Japan); Tanaka, Isao [Department of Materials Science and Engineering, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501 (Japan); Mizoguchi, Teruyasu, E-mail: teru@iis.u-tokyo.ac.jp [Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan. (Japan)

    2014-02-03

    The redox reaction of Mn in Li{sub 2}MnO{sub 3} was studied by X-ray absorption spectroscopy and ab initio multiplet calculation. Associated with the de-intercalation of Li-ion, small but clear spectral changes were observed in Mn-L{sub 2,3} X-ray absorption near edge structure (XANES). The systematic ab initio multiplet calculations of Mn-L{sub 2,3} XANES revealed that the spectral changes in the experiment could not simply be ascribed to the change of the valency from Mn{sup 4+} to Mn{sup 5+} but can be explained well by the changes of local atomic structures around Mn{sup 4+} due to the Li de-intercalation. Our results suggest that the electronic state of oxygen should change during charging in Li{sub 2}MnO{sub 3}.

  19. Topotactic reduction as a route to new close-packed anion deficient perovskites: structure and magnetism of 4H-BaMnO(2+x).

    Science.gov (United States)

    Hadermann, Joke; Abakumov, Artem M; Adkin, Josephine J; Hayward, Michael A

    2009-08-05

    The anion-deficient perovskite 4H-BaMnO(2+x) has been obtained by a topotactic reduction, with LiH, of the hexagonal perovskite 4H-BaMnO(3-x). The crystal structure of 4H-BaMnO(2+x) was solved using electron diffraction and X-ray powder diffraction and further refined using neutron powder diffraction (S.G. Pnma, a = 10.375(2) A, b = 9.466(2) A, c = 11.276(3) A, at 373 K). The orthorhombic superstructure arises from the ordering of oxygen vacancies within a 4H (chch) stacking of close packed c-type BaO(2.5) and h-type BaO(1.5) layers. The ordering of the oxygen vacancies transforms the Mn(2)O(9) units of face-sharing MnO(6) octahedra into Mn(2)O(7) (two corner-sharing tetrahedra) and Mn(2)O(6) (two edge-sharing tetrahedra) groups. The Mn(2)O(7) and Mn(2)O(6) groups are linked by corner-sharing into a three-dimensional framework. The structures of the BaO(2.5) and BaO(1.5) layers are different from those observed previously in anion-deficient perovskites providing a new type of order pattern of oxygen atoms and vacancies in close packed structures. Magnetization measurements and neutron diffraction data reveal 4H-BaMnO(2+x) adopts an antiferromagnetically ordered state below T(N) approximately 350 K.

  20. CNS bioavailability and radiation protection of normal hippocampal neurogenesis by a lipophilic Mn porphyrin-based superoxide dismutase mimic, MnTnBuOE-2-PyP5+

    Directory of Open Access Journals (Sweden)

    David Leu

    2017-08-01

    Full Text Available Although radiation therapy can be effective against cancer, potential damage to normal tissues limits the amount that can be safely administered. In central nervous system (CNS, radiation damage to normal tissues is presented, in part, as suppressed hippocampal neurogenesis and impaired cognitive functions. Mn porphyrin (MnP-based redox active drugs have demonstrated differential effects on cancer and normal tissues in experimental animals that lead to protection of normal tissues and radio- and chemo-sensitization of cancers. To test the efficacy of MnPs in CNS radioprotection, we first examined the tissue levels of three different MnPs – MnTE-2-PyP5+(MnE, MnTnHex-2-PyP5+(MnHex, and MnTnBuOE-2-PyP5+(MnBuOE. Nanomolar concentrations of MnHex and MnBuOE were detected in various brain regions after daily subcutaneous administration, and MnBuOE was well tolerated at a daily dose of 3 mg/kg. Administration of MnBuOE for one week before cranial irradiation and continued for one week afterwards supported production and long-term survival of newborn neurons in the hippocampal dentate gyrus. MnP-driven S-glutathionylation in cortex and hippocampus showed differential responses to MnP administration and radiation in these two brain regions. A better understanding of how preserved hippocampal neurogenesis correlates with cognitive functions following cranial irradiation will be helpful in designing better MnP-based radioprotection strategies. Keywords: Mn porphyrin, Bioavailability, BMX-001, Hippocampus, Neurogenesis, Radioprotection

  1. Mn2+ anchored CdS polymer nanocomposites: An efficient alternative for Mn2+ doped CdS nanoparticles

    International Nuclear Information System (INIS)

    Saikia, Bhaskar Jyoti; Nath, Bikash Chandra; Borah, Chandramika; Dolui, Swapan Kumar

    2015-01-01

    A chelating bi-functional polymer brushes was prepared via atom transfer radical polymerization using grafting-from methodology. Mn 2+ -anchored CdS-polymer nanocomposites were synthesized using this graft copolymer by simple chelation method resulting in emission at about 620 nm which originates from the fluorescence of manganese ions embedded on the surface of CdS nanoparticles. This method provides an efficient straightforward substitute of Mn 2+ dopped CdS nanoparticles. Optical properties of the composites were investigated which indicates that simple Mn 2+ chelation and subsequent binding of CdS in a polymer matrix can have similar effect in the luminescence property as those synthesized via complex doping methods. Moreover this methodology can be applied for synthesis of any metal anchored nanocomposites proficiently and cost effectively in large-scale production. - Highlights: • A chelating bifunctional copolymer brush was synthesized via ATRP. • CdS nanoparticles and Mn 2+ were coupled with the bifunctional polymer. • Composites showed emission properties similar to Mn 2+ doped CdS nanoparticles. • Side chain length of the polymers also affect the emission properties of the composites.

  2. Cardiovascular effects of MnDPDP and MnCl{sub 2} in dogs with acute ischaemic heart failure

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, J.O.G. [Trondheim Univ. (Norway). Dept. of Physiology and Biomedical Engineering]|[Nycomed Imaging AS, Oslo (Norway). Research and Development; Mortensen, E. [Dept. of Physiology, Inst. of Medical Biology, Univ. of Tromsoe (Norway); Pedersen, H.K. [Dept. of Radiology, The National Hospital, Oslo (Norway); Sager, G. [Dept. of Pharmacology, Inst. of Medical Biology, Univ. of Tromsoe (Norway); Refsum, H. [Inst. for Experimental Medical Research, Ullevaal Hospital, Oslo Univ. (Norway)]|[Nycomed Imaging AS, Oslo (Norway). Research and Development

    1997-07-01

    Purpose: To examine the cardiovascular effects of MnDPDP in a model of acute heart failure in the dog, and to compare these effects with those of MnCl{sub 2}. Material and Methods: The study involved slow i.v. infusion of either 10, 60 and 300 {mu}mol/kg of MnDPDP, or 1, 6 and 30 {mu}mol/kg MnCl{sub 2}, in increasing doses to groups of 5 dogs. Acute ischaemic heart failure was first induced by injection of polystyrene microspheres (50{+-}10 {mu}m) into the left coronary artery until a stable left ventricular end-diastolic pressure of approximately 20 mm Hg was achieved. The following test parameters were measured: Left ventricular end-diastolic pressure; the first derivatives of maximum rate of left ventricular contraction and relaxation; mean aortic pressure; pulmonary artery pressure; right atrial pressure; cardiac ouput; heart rate; QT-time; PQ-time; QRS-width; and plasma catecholamines. Results: Slow infusion of MnDPDP at doses up to and including 12 times the clinical dose was well tolerated in dogs without further depression of cardiovascular function during acute ischaemic heart failure. At 300 {mu}mol/kg, i.e. 60 times the human dose, only minor haemodynamic and electrophysiological effects were seen, and these were similar to those seen after administration of 30 {mu}mol/kg MnCl{sub 2}. (orig./AJ).

  3. Diffusion of $^{52}$Mn in GaAs

    CERN Multimedia

    2002-01-01

    Following our previous diffusion studies performed with the modified radiotracer technique, we propose to determine the diffusion of Mn in GaAs under intrinsic conditions in a previously un-investigated temperature region. The aim of the presently proposed experiments is twofold. \\begin{itemize} \\item A quantitative study of Mn diffusion in GaAs at low Mn concentrations would be decisive in providing new information on the diffusion mechanism involved. \\item As Ga vacancies are expected to be involved in the Mn diffusion process it can be predicted that also the GaAs material growth technique most likely plays a role. To clarify this assumption diffusion experiments will be conducted for GaAs material grown by two different techniques. \\end{itemize} For such experiments we ask for two runs of 3 shifts (total of 6 shifts) with $^{52}$Mn$^{+}$ ion beam.

  4. Synthesis of Li(x)Na(2-x)Mn2S3 and LiNaMnS2 through redox-induced ion exchange reactions

    International Nuclear Information System (INIS)

    Luthy, Joshua A.; Goodman, Phillip L.; Martin, Benjamin R.

    2009-01-01

    Na 2 Mn 2 S 3 was oxidatively deintercalated using iodine in acetonitrile to yield Na 1.3 Mn 2 S 3 , with lattice constants nearly identical to that of the reactant. Lithium was then reductively intercalated into the oxidized product to yield Li 0.7 Na 1.3 Mn 2 S 3 . When heated, this metastable compound decomposed to form a new crystalline compound, LiNaMnS 2 , along with MnS and residual Na 2 Mn 2 S 3 . Single crystal X-ray diffraction structural analysis of LiNaMnS 2 revealed that this compound crystallizes in P-3m1 with cell parameters a=4.0479(6) A, c=6.7759(14) A, V=96.15(3) A 3 (Z=1, wR2=0.0367) in the NaLiCdS 2 structure-type. - Graphical abstract: Structure of LiNaMnS 2 . Li and Mn are statistically distributed in edge-shared tetrahedral environments linked into infinite planes. Sodium ions occupy interlayer sites

  5. Mechano-chemical synthesis K2MF6 (M = Mn, Ni) by cation-exchange reaction at room temperature

    Science.gov (United States)

    Rawat, Pooja; Nagarajan, Rajamani

    2018-02-01

    In order to establish the power of mechanochemistry to produce industrially important phosphors, synthesis of K2MnF6 has been attempted by the successive grinding reactions of manganese (II) acetate with ammonium fluoride and potassium fluoride. The progress of reaction was followed by ex-situ characterization after periodic intervals of time. Cubic symmetry of K2MnF6 was evident from its powder X-ray diffraction pattern which was refined successfully in cubic space group (Fm-3m) with a = 8.4658 (20) Å. Stretching and bending vibration modes of MnF62- octahedral units appeared at 740 and 482 cm-1 in the fourier transformed infrared spectrum. Bands at 405 and 652 cm-1 appeared in the Raman spectrum and they were finger-print positions of cubic K2MnF6. Other than the ligand to metal charge transfer transition at 242 nm, transitions from 4A2g to 4T1g, 4T2g and 2T2g of Mn4+-ion appeared at 352, 429, 474 and 569 nm in the UV-visible diffuse reflectance spectrum of the sample. Red emission due to Mn4+ was observed in the photoluminescence spectrum with a decay time of 0.22 ms. Following the success in forming cubic K2MnF6, this approach has been extended to synthesize cubic K2NiF6 at room temperature. All these results confirmed the susceptibility of acetate salts of transition metals belonging to first-row of the periodic table to facile fluorination at room temperature aided by mechanical forces.

  6. Influence of S/Mn molar ratio on the morphology and optical property of γ-MnS thin films prepared by microwave hydrothermal

    International Nuclear Information System (INIS)

    Yu, Xin; Li-yun, Cao; Jian-feng, Huang; Jia, Liu; Jie, Fei; Chun-yan, Yao

    2013-01-01

    Highlights: ► The influence of the precursor solution molar ratio of S/Mn. ► The degree of orientation of the γ-MnS film decrease slightly with increasing the S/Mn from 2.0 to 4.0. ► Film quality is strongly affected by the initial nucleation. ► The absorption edge obviously shifts to a higher wavelength with the increase of the S/Mn molar ratio from 2.0 to 4.0. - Abstract: Well crystallized γ-MnS thin films were successfully synthesized at low temperature and short processing time via a novel microwave hydrothermal (M-H) process without any complexing agent by using manganese chloride and thioacetamide as source materials. The influence of different S/Mn molar ratio in the precursor solution on the phase compositions, morphologies and optical properties of the as-deposited films was investigated. The as-deposited γ-MnS thin films were characterized by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM) and ultraviolet–visible (UV–vis). Results show that the wurtzite phase γ-MnS thin films with good crystallization can be achieved when S/Mn molar ratio is controlled at 2.0–4.0. The deposited γ-MnS thin films exhibit (1 0 0) orientation growth with the thickness of 300–500 nm. With the increase of S/Mn molar ratio from 2.0 to 4.0, the orientation growth is weakened while the dense and uniform of the as-deposited γ-MnS thin films are obviously improved and the corresponding band gap of the thin films increase from 3.88 to 3.97 eV.

  7. Enhancement of electrochemical performance of LiNi_1_/_3Co_1_/_3Mn_1_/_3O_2 by surface modification with MnO_2

    International Nuclear Information System (INIS)

    Guo, Xin; Cong, Li-Na; Zhao, Qin; Tai, Ling-Hua; Wu, Xing-Long; Zhang, Jing-Ping; Wang, Rong-Shun; Xie, Hai-Ming; Sun, Li-Qun

    2015-01-01

    LiNi_1_/_3Co_1_/_3Mn_1_/_3O_2 is successfully coated with MnO_2 by a chemical deposition method. The X-ray diffraction (XRD), scanning electron microscope (SEM) and high resolution transmission electron microscope (HRTEM) results demonstrate that MnO_2 forms a thin layer on the surface of LiNi_1_/_3Co_1_/_3Mn_1_/_3O_2 without destroying the crystal structure of the core material. Compared with pristine LiNi_1_/_3Co_1_/_3Mn_1_/_3O_2, the MnO_2-coated sample shows enhanced electrochemical performance especially the rate capability. Even at a current density of 750 mA g"−"1, the discharge capacity of MnO_2-coated LiNi_1_/_3Co_1_/_3Mn_1_/_3O_2 is 155.15 mAh g"−"1, while that of the pristine electrode is only 132.84 mAh g"−"1 in the range of 2.5–4.5 V. The cyclic voltammetry (CV) and X-ray photoelectron spectroscopy (XPS) curves show that the MnO_2 coating layer reacts with Li"+ during cycling, which is responsible for the higher discharge capacity of MnO_2-coated LiNi_1_/_3Co_1_/_3Mn_1_/_3O_2. Electrochemical impedance spectroscopy (EIS) results confirmed that the MnO_2 coating layer plays an important role in reducing the charge transfer resistance on the electrolyte–electrode interfaces. - Highlights: • MnO_2 coated LiNi_1_/_3Co_1_/_3Mn_1_/_3O_2 cathode material is synthesized for the first time. • MnO_2 offers available sites for insertion of extracted lithium. • The preserved surface and crystal structures results in the improved kinetics.

  8. Effect of MnO2 doped on physical, structure and optical properties of zinc silicate glasses from waste rice husk ash

    Science.gov (United States)

    Al-Nidawi, Ali Jabbar Abed; Matori, Khamirul Amin; Zakaria, Azmi; Mohd Zaid, Mohd Hafiz

    In this study, an investigation was conducted to explore and synthesize silicate (SiO2) glass from waste rice husk ash (RHA). MnO2 doped zinc silicate glasses with chemical formula [(ZnO)55 + (WRHA)45]100-X[MnO2]X, (where X = 0, 1, 3 and 5 wt%) was prepared by conventional melt quenching technique. The glass samples were characterized using energy dispersive X-ray fluorescence (EDXRF), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Fourier transform infrared (FTIR) spectroscopy, and ultraviolet-visible (UV-Vis) spectroscopy. The results revealed that by increasing the concentration of MnO2, the color of glass samples changed from colorless to brown and the density of glass increased. XRD results showed that a broad halo peak which centered on the low angle (2θ = 30°) indicated the amorphous nature of the glass. FTIR results showed basic structural units of Si-O-Si in non-bridging oxygen, Si-O and Mn-O in the glass network. FESEM result showed a decreasing porosity with an increasing MnO2 content, which was attributed to the Mn ions resort to occupy interstitial sites inside the pores of glass. Besides, the absorption intensity of glass increased and the band gap value decreased with increasing the MnO2 percentage. In this synthesized glass system of MnO2 doped zinc silicate glasses using RHA as a source of silica, the MnO2 affect most of the properties of the glass system under investigation.

  9. Combined in situ PXRD and PDF study of hydrothermal formation of α- and β-MnO2 nanocrystallites

    DEFF Research Database (Denmark)

    Birgisson, Steinar; Shen, Yanbin; Saha, Dipankar

    resolved powder X-ray diffraction (PXRD) and total scattering (TS) data is then measured using synchrotron radiation.[5, 6] By Rietveld refinement of PXRD data, information about the quantity of different crystalline phases, unit cell size, crystallite size and morphology as function of reaction time...... it looks like the smallest α-MnO2 nanocrystallites transform to β-MnO2 first, before subsequent transformation of larger crystallites. 1. Thackeray, M.M., Manganese oxides for lithium batteries. Progress in Solid State Chemistry, 1997. 25(1–2): p. 1-71. 2. Palomares, V., et al., Update on Na-based battery...

  10. IMPROVED log(gf ) VALUES OF SELECTED LINES IN Mn I AND Mn II FOR ABUNDANCE DETERMINATIONS IN FGK DWARFS AND GIANTS

    International Nuclear Information System (INIS)

    Den Hartog, E. A.; Lawler, J. E.; Sobeck, J. S.; Sneden, C.; Cowan, J. J.

    2011-01-01

    The goal of the present work is to produce transition probabilities with very low uncertainties for a selected set of multiplets of Mn I and Mn II. Multiplets are chosen based upon their suitability for stellar abundance analysis. We report on new radiative lifetime measurements for 22 levels of Mn I from the e 8 D, z 6 P, z 6 D, z 4 F, e 8 S, and e 6 S terms and six levels of Mn II from the z 5 P and z 7 P terms using time-resolved laser-induced fluorescence on a slow atom/ion beam. New branching fractions for transitions from these levels, measured using a Fourier-transform spectrometer, are reported. When combined, these measurements yield transition probabilities for 47 transitions of Mn I and 15 transitions of Mn II. Comparisons are made to data from the literature and to Russell-Saunders (LS) theory. In keeping with the goal of producing a set of transition probabilities with the highest possible accuracy and precision, we recommend a weighted mean result incorporating our measurements on Mn I and II as well as independent measurements or calculations that we view as reliable and of a quality similar to ours. In a forthcoming paper, these Mn I/II transition probability data will be utilized to derive the Mn abundance in stars with spectra from both space-based and ground-based facilities over a 4000 A wavelength range. With the employment of a local thermodynamic equilibrium line transfer code, the Mn I/II ionization balance will be determined for stars of different evolutionary states.

  11. Ferri-magnetic order in Mn induced spinel Co_3_−_xMn_xO_4 (0.1≤x≤1.0) ceramic compositions

    International Nuclear Information System (INIS)

    Meena, P.L.; Sreenivas, K.; Singh, M.R.; Kumar, Ashok; Singh, S.P.; Kumar, Ravi

    2016-01-01

    We report structural and magnetic properties of spinel Co_3_−_xMn_xO_4 (x=0.1–1.0) synthesized by solid state reaction technique. Rietveld refinement analysis of X-ray diffraction (XRD) data, revealed the formation of polycrystalline single phase Co_3_−_xMn_xO_4 without any significant structural change in cubic crystal symmetry with Mn substitution, except change in lattice parameter. Temperature dependent magnetization data show changes in magnetic ordering temperature, indicating formation of antiferromagnetic (AFM) and ferrimagnetic (FM) phase at low Mn concentration (x≤0.3) and well-defined FM phase at high Mn concentration (x≥0.5). The isothermal magnetization records established an AFM/FM mixed phase for composition ranging 0.1 0.5. - Highlights: • Synthesis of single phase polycrystalline Co_3_−_xMn_xO_4 ceramic. • Change in magnetic ordering with varying Mn concentration. • The complex spin distribution is contributing to FM ordering with higher Mn.

  12. The novel eutectic microstructures of Si-Mn-P ternary alloy

    International Nuclear Information System (INIS)

    Wu Yaping; Liu Xiangfa

    2010-01-01

    The microstructures of Si-Mn-P alloy manufactured by the technique of combining phosphorus transportation and alloy melting were investigated using electron probe micro-analyzer (EPMA). The phase compositions were determined by energy spectrum and the varieties of eutectic morphologies were discussed. It is found that there is no ternary compound but Si, MnP and MnSi 1.75-x could appear when the Si-Mn-P alloy's composition is proper. Microstructure is greatly refined by rapid solidification technique and the amount of eutectic phases change with faster cooling rates. Moreover, primary Si or MnP are surrounded firstly by the binary eutectic (Si + MnP) and then the ternary eutectic (Si + MnSi 1.75-x + MnP) which also exhibit binary structures due to divorced eutectic determined by the particularity of some Si-Mn-P alloys.

  13. Characterization of natural microporous metal-oxides: the case of todorokite ([Mn2+,Ca,Mg]Mn4+3O7.H2O)

    International Nuclear Information System (INIS)

    Godelitsas, A.; Misaelides, P; Katranas, T.; Klewe-Nebenius, H.; Triantafyllidis, C.; Pavlidou, E.; Anousis, I.

    1998-01-01

    Todorokite is a naturally occurring hydrous Mn-oxide exhibiting a complicated chemical composition. It shows a referred unusual crystal structure characterized by the presence of micropores (tunnels) with a free aperture of 0.69 x 0.69 nm and therefore exceptional physicochemical properties. In order to define the compositional and structural characteristics of the mineral and especially its physicochemical properties. For this purpose a number of characterization techniques were used including XRD, SEM-EDS, XRF, AAS, FT-IR, XPS, TPD, Z-potential measurements and TG/TDA combined with micro-porosimetry. The obtained results were compared to relevant ones concerning other natural microporous materials (e.g. clays, zeolites, micas) and were used to predict potential applications of the material.(author)

  14. Moessbauer study of Mn-Zn and Mn ferrites prepared by wet method

    International Nuclear Information System (INIS)

    Michalk, C.

    1985-01-01

    Moessbauer spectroscopy was employed to study Mn-Zn ferrites before and after low-temperature annealing. The unannealed Mn-Zn ferrite prepared by a wet method and also the sintered material after annealing at 400 deg C in air show the presence of paramagnetic clusters. These findings are explained as being due to nonrandom ordering of Fe 3+ and Zn 2+ ions caused by local charge compensation in the neighbourhood of cation vacancies. A change of cation distribution after annealing at relatively low temperatures was observed. 10 refs., 3 figs. (author)

  15. Exchange interaction in MnPt/FeCo sputtered multilayers

    International Nuclear Information System (INIS)

    Honda, S.; Nawate, M.; Norikane, T.

    2000-01-01

    MnPt single-layer films have been prepared on glass substrates by RF magnetron sputtering for studying the composition dependencies of resistivity and crystalline structure. In the as-deposited state, the resistivity increases with Mn content and reaches the maximum at 69 at%. By annealing, the resistivity of the films having the Mn content around 51 at% increases, closely relating to the growth of the ordered CuAu FCT-type MnPt crystals. For the both film structures of the glass/Cu/FeCo/MnPt/Cu and the glass/MnPt/FeCo/Cu, which have been sputter-deposited on glass substrates, the exchange interaction between MnPt and FeCo layers, and the coercivity of the FeCo layer have been examined as functions of the Mn content, the layer thickness and the annealing temperature. In the as-deposited state, the exchange field (H ex ) is nearly zero up to 75 at% of Mn content, above which the value of H ex increases and shows the maximum at 85 at%, in which the blocking temperature is about 100 deg. C. By annealing, the value of H ex increases for the films of Mn content around 40-60 at%, exhibiting the higher blocking temperature than 360 deg. C. The temperature stability has also been examined using the Rutherford backscattering spectrometry

  16. A facile synthesis of α-MnO2 used as a supercapacitor electrode material: The influence of the Mn-based precursor solutions on the electrochemical performance

    Science.gov (United States)

    Li, Wenyao; Xu, Jiani; Pan, Yishuang; An, Lei; Xu, Kaibing; Wang, Guangjin; Yu, Zhishui; Yu, Li; Hu, Junqing

    2015-12-01

    Three types of α-MnO2 nanomaterials are synthesized in different Mn-based precursor solutions by using a facile electrochemical deposition at the same depositional condition. The relationships between the precursor solutions and corresponding MnO2 nanomaterials' morphology as well as the electrochemical performance have been studied. As an electrode, electrochemical measurements show that the MnO2 deposited in MnCl2 precursor solution (MnO2-P3) exhibits an enhanced specific capacitance (318.9 F g-1 at 2 mV s-1). Moreover, this electrode demonstrates a good rate capability with 44% retention, which is higher than the MnO2-P1 deposited with Mn(CH3COOH)2 solution and the MnO2-P2 deposited with Mn(NO3)2 precursor solution. Besides, the specific capacitance of the MnO2-P3 electrode nearly has 98.2% retention after 2000 cycles, showing good long-term cycle stability. These findings show that the MnO2-P3 is a promising electrode material for supercapacitors.

  17. Synthesis and electrochemical study of Mg{sub 1.5}MnO{sub 3}: A defect spinel cathode for rechargeable magnesium battery

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Partha [Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); US Department of Energy, National Energy Technology Laboratory, Morgantown, WV 26507 (United States); Jampani, Prashanth H., E-mail: pjampani@pitt.edu [Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Hong, DaeHo [Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Gattu, Bharat [Mechanical Engineering and Materials Science, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Poston, James A.; Manivannan, Ayyakkannu [US Department of Energy, National Energy Technology Laboratory, Morgantown, WV 26507 (United States); Datta, Moni Kanchan [Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); US Department of Energy, National Energy Technology Laboratory, Morgantown, WV 26507 (United States); Kumta, Prashant N., E-mail: pkumta@pitt.edu [Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); US Department of Energy, National Energy Technology Laboratory, Morgantown, WV 26507 (United States); Mechanical Engineering and Materials Science, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Chemical and Petroleum Engineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); School of Dental Medicine, University of Pittsburgh, PA 15261 (United States); Center for Complex Engineered Multifunctional Materials, University of Pittsburgh, Pittsburgh, PA 15261 (United States)

    2015-12-15

    Graphical abstract: Mg{sub 1.5}MnO{sub 3}, a defect oxide spinel derived by the Pechini route, was tested as cathode for rechargeable magnesium battery. TEM and XRD analyses of Mg{sub 1.5}MnO{sub 3} shows the formation of ∼100 nm sized nano particles in the cubic defect spinel structure (space group: Fd3m; unit cell: 0.833294 nm). Cyclic voltammetry illustrates a reversible reaction occurring between 0.3 and 1.5 V versus magnesium. Galvanostatic cycling of the Mg{sub 1.5}MnO{sub 3} cathode exhibits a low capacity of ∼12.4 mAh/g up to 20 cycle with ∼99.9% Coulombic efficiency when cycled at a current rate of ∼C/27. XPS (X-ray photoelectron spectroscopy) surface probe of magnesiated/de-magnesiated electrodes confirm a change in the redox center of Mn-ions during intercalation/de-intercalation of Mg-ion from the Mg{sub 1.5}MnO{sub 3} electrode. The low capacity of Mg{sub 1.5}MnO{sub 3} electrode mainly stem from the kinetic limitation of Mg-ion removal from the defect oxide spinel as the electrochemical impedance spectroscopy results of electrodes after 1st and 2nd cycle show that charge transfer resistance, R{sub e}, increases post charge state whereas interfacial resistance, R{sub i}, increases after discharge state, respectively. - Highlights: • Pechini process yields 100 nm sized particles of the defect cubic spinel Mg{sub 1.5}MnO{sub 3}. • Stable capacity of ∼12.4 mAh/g obtained at C/27 rate and 99.9% Coulombic efficiency. • XPS shows change in valence state of Mn{sup 3+}/Mn{sup 4+} center with cycling. • Low capacity stems from increase in charge-transfer and interfacial resistances with cycling. - Abstract: Mg{sub 1.5}MnO{sub 3}, a defect oxide spinel (space group: Fd3m; unit cell: 0.833294 nm) of particle size ∼100 nm derived by the Pechini route was tested as a cathode for rechargeable magnesium battery. Cyclic voltammetry illustrates a reversible reaction occurring in the 0.3–2.0 V potential window versus magnesium. The spinel however

  18. Metal-semiconductor transition at a comparable resistivity level and positive magnetoresistance in Mn3Mn1-x Pd x N thin films

    Science.gov (United States)

    Xu, T.; Ji, G. P.; Cao, Z. X.; Ji, A. L.

    2018-02-01

    Thin films of antiperovskite Mn3Mn1-x Pd x N with x up to 0.36 were grown by reactive magnetron co-sputtering method. All the deposits exhibit a [1 0 0] preferential orientation, with the lattice constant slightly enlarged in samples with ever more Pd atoms partially substituting the MnI atoms in Mn3MnN matrix. The replacement of MnI atoms in antiperovskite structure by Pd atoms, besides reducing the saturation magnetization, also invokes a metal-semiconductor transition which occurs remarkably at a comparable resistivity level. Moreover, a positive magnetoresistance was observed in samples of a high Pd content. These tunable electrical and magnetic properties of ternary antiperovskite compounds might promise some ingenious applications in electronic industry.

  19. Toxicological aspects of photocatalytic degradation of selected xenobiotics with nano-sized Mn-doped TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Ozmen, Murat, E-mail: murat.ozmen@inonu.edu.tr [Inonu University, Faculty of Science, Department of Biology, Malatya (Turkey); Güngördü, Abbas [Inonu University, Faculty of Science, Department of Biology, Malatya (Turkey); Erdemoglu, Sema [Inonu University, Faculty of Science, Department of Chemistry, Malatya (Turkey); Ozmen, Nesrin [Inonu University, Faculty of Education, Department of Science Teaching Program, Malatya (Turkey); Asilturk, Meltem [Akdeniz University, Department of Materials Science and Engineering, Antalya (Turkey)

    2015-08-15

    Highlights: • Undoped and Mn-doped TiO{sub 2} nanoparticles were synthesized and characterized. • The photocatalytic efficiency of the photocatalysts was evaluated for BPA and ATZ. • Toxicity of photocatalysts and photocatalytic by-products were determined. • Mn-doped TiO{sub 2} nanoparticles did not cause significant lethality on X. laevis. • Degradation of BPA caused a significant reduction of lethal effects. - Abstract: The toxic effects of two selected xenobiotics, bisphenol A (BPA) and atrazine (ATZ), were evaluated after photocatalytic degradation using nano-sized, Mn-doped TiO{sub 2}. Undoped and Mn-doped TiO{sub 2} nanoparticles were synthesized. The samples were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), UV–vis-diffuse reflectance spectra (DRS), X-ray fluorescence spectroscopy (XRF), and BET surface area. The photocatalytic efficiency of the undoped and Mn-doped TiO{sub 2} was evaluated for BPA and ATZ. The toxicity of the synthesized photocatalysts and photocatalytic by-products of BPA and ATZ was determined using frog embryos and tadpoles, zebrafish embryos, and bioluminescent bacteria. Possible toxic effects were also evaluated using selected enzyme biomarkers. The results showed that Mn-doped TiO{sub 2} nanoparticles did not cause significant lethality in Xenopus laevis embryos and tadpoles, but nonfiltered samples caused lethality in zebrafish. Furthermore, Mn-doping of TiO{sub 2} increased the photocatalytic degradation capability of nanoparticles, and it successfully degraded BPA and AZT, but degradation of AZT caused an increase of the lethal effects on both tadpoles and fish embryos. Degradation of BPA caused a significant reduction of lethal effects, especially after 2–4 h of degradation. However, biochemical assays showed that both Mn-doped TiO{sub 2} and the degradation by-products caused a significant change of selected biomarkers on X. laevis tadpoles; thus, the ecological risks of Mn

  20. 15 CFR 2008.1 - References.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false References. 2008.1 Section 2008.1 Commerce and Foreign Trade Regulations Relating to Foreign Trade Agreements OFFICE OF THE UNITED STATES TRADE REPRESENTATIVE REGULATIONS TO IMPLEMENT E.O. 12065; OFFICE OF THE UNITED STATES TRADE...

  1. The Fe/Mn constraint on precursors of basaltic achondrites

    Science.gov (United States)

    Delaney, Jeremy S.; Boesenberg, Joseph S.

    1993-01-01

    Most achondritic meteorites have Fe/Mn ratios that are lower than those of carbonaceous chondrites and of course are lower than the solar system abundance ratio of these elements. Models of the origin of achondritic assemblages must, therefore, account for these ratios. Fe/Mn ratios are suggested to be distinctive for samples from each achondrite parent body and for the Earth and Moon, but the correspondence between the Fe/Mn systematics of achondrites and chondritic precursors is unclear. Most models of achondrite genesis involve magmatic differentiation of chondritic precursors. The Fe/Mn difference between achondrites and chondrites is particularly significant since Fe and Mn are geochemically similar elements with similar partitioning behavior in familiar magmatic systems and are generally coupled during crystal-liquid fractionation. In contrast, however, Mn is more volatile than Fe in a nebular setting. Variation of Fe/Mn ratios based on the relative volatility of these elements in the early nebula provides a constraint for models by which the basaltic achondrites (with Fe/Mn ratios approximately = 25-50) are derived from mixtures of nebular components that were enriched in volatile components such as Mn. However, such volatile enriched components have not been identified in chondrites. When the abundance in achondrites of elements of similar volatility is examined, anomalies appear. For example, Na is massively depleted in basaltic achondrites when compared to Mn. These anomalies might be explained using current models but the alternative hypothesis, that Fe/Mn ratio is controlled not by nebular volatility constraints, but by planetary differentiation should be explored.

  2. Spin properties of charged Mn-doped quantum dota)

    Science.gov (United States)

    Besombes, L.; Léger, Y.; Maingault, L.; Mariette, H.

    2007-04-01

    The optical properties of individual quantum dots doped with a single Mn atom and charged with a single carrier are analyzed. The emission of the neutral, negatively and positively charged excitons coupled with a single magnetic atom (Mn) are observed in the same individual quantum dot. The spectrum of the charged excitons in interaction with the Mn atom shows a rich pattern attributed to a strong anisotropy of the hole-Mn exchange interaction slightly perturbed by a small valence-band mixing. The anisotropy in the exchange interaction between a single magnetic atom and a single hole is revealed by comparing the emission of a charged Mn-doped quantum dot in longitudinal and transverse magnetic field.

  3. Neutron diffraction study of the magnetic structures of CeMn2Ge2 and CeMn2Si2

    International Nuclear Information System (INIS)

    Fernandez-Baca, J.A.; Chakoumakos, B.C.; Hill, P.; Ali, N.

    1995-01-01

    The magnetic properties of the layered compounds of the form RMn 2 X 2 (R = Rare Earth, X = Si, Ge) have been thought to be sensitive to the intralayer Mn-Mn distance. Thus it has been reported that the Mn moments in CeMn 2 Si 2 are aligned antiferromagnetically (AF) below T N = 380K, while the Mn moments in CeMn 2 Ge 2 are ferromagnetic (FM) below T C = 316K. Recently, however, there has been some debate about the actual magnetic structures of this family of compounds, and for this reason the authors have performed high-resolution neutron powder diffraction measurements on these compounds for temperatures between 12K and 550K. The measurements indicate that at high temperatures both compounds are paramagnetic. Below T N = 380K CeMn 2 Si 2 becomes a collinear AF, with a structure similar to that reported by Siek et al. in which the magnetic propagation vector is τ = (0 0 1). CeMn 2 Ge 2 on the other hand, exhibits two different magnetic transitions. At T N ∼ 415K there is a transition to a collinear AF phase characterized by the commensurate propagation wavevector τ = (1 0 1). At T C = 318K there is a transition to a conical structure with a ferromagnetic component along the c-axis and a helical component in the ab plane. The helical component is characterized by the incommensurate propagation vector τ = (1 0 1-q z ), where q z is temperature dependent. These findings are consistent with the recent results of Welter et al

  4. Rectal cancer survival in a Brazilian Cancer Reference Unit

    Directory of Open Access Journals (Sweden)

    Romualdo da Silva Corrêa

    2016-10-01

    Full Text Available Colorectal cancer is one of the most common malign tumors in men and women all over the world. In spite of prevention advances in the last few years, worldwide incidence remains significant, about one million per year. Objectives: Evaluate rectal cancer survival in patients diagnosed and surgically treated at the Cancer Reference Unit at Rio Grande do Norte State, Brazil. Methods: Observational retrospective study composed by 135 patients assisted from 2007 to 2014 at Doctor Luiz Antonio Hospital, Natal, Brazil. Data were collected from the patient records revision and survival rates were calculated and analyzed by non-parametric Kaplan–Meier and Wilcoxon tests, respectively. All patients were submitted to surgical treatment, chemotherapy and/or radiotherapy. Results: Overall survival was 62% in seven years, while disease-free survival in one, three and five years was 91.7%, 75.5% and 72.1%, respectively. Conclusion: Overall survival and disease-free survival remained enhanced until the end of the study, suggesting that the treatment protocols used in the institution have shown to be effective. Resumo: O câncer colorretal é um dos tumores malignos mais comuns em homens e mulheres em todo o mundo. Apesar das melhorias na prevenção nos últimos anos, a incidência global ainda é expressiva, cerca de um milhão por ano. Objetivos: Avaliar a sobrevida do câncer de reto nos pacientes diagnosticados e tratados cirurgicamente na Unidade de Referência do Câncer no Rio Grande do Norte, Brasil. Métodos: Estudo observacional retrospectivo composto por 135 pacientes, compreendido no período de 2007 a 2014 no Hospital Dr. Luiz Antônio, Natal, Brasil. Os dados foram coletados através da revisão de prontuários e as sobrevidas foram calculadas e comparadas utilizando, respectivamente, os métodos não-paramétricos de Kaplan-Meier e teste de Wilcoxon. Todos os pacientes foram submetidos a tratamento cirúrgico, quimioterápico e radioter

  5. Ferroelectricity and magnetoelectric coupling in h-YbMnO{sub 3}: Spin reorientation and defect effect

    Energy Technology Data Exchange (ETDEWEB)

    Qiang, Gang; Fang, Yifei; Lu, Xiaowen; Cao, Shixun; Zhang, Jincang, E-mail: jczhang@shu.edu.cn [Materials Genome Institute and Department of Physics, Shanghai University, Shanghai 200444 (China)

    2016-01-11

    Low-temperature magnetic and electric properties in hexagonal multiferroic compound YbMnO{sub 3} were studied. The Mn{sup 3+} spin moments order at T{sub N} = 85 K and reoriented around 43.5 K, leading to the magnetic phase transition from B{sub 2}(P6{sub 3}cm) → A{sub 2}(P6{sub 3}cm). The concomitant ferroelectric polarization is observed and explained microscopically by the destruction of initial symmetric relationship of the polarization between the upper and lower half of the magnetic unit cell. The asymmetry of the polarization vs temperature curves under opposite poling voltage revealed the pinning effect of the defects on the electrical polarization.

  6. High-field torque magnetometry for investigating magnetic anisotropy in Mn12-acetate nanomagnets

    International Nuclear Information System (INIS)

    Cornia, Andrea; Affronte, Marco; Gatteschi, Dante; Jansen, Aloysius G.M.; Caneschi, Andrea; Sessoli, Roberta

    2001-01-01

    The single-molecule superparamagnet [Mn 12 O 12 (OAc) 16 (H 2 O) 4 ]·2AcOH·4H 2 O (Mn 12 -acetate) has attracted considerable attention because it shows exceedingly slow paramagnetic relaxation at low temperature. The cluster has S 4 symmetry in the solid state and comprises four Mn(IV) ions (S=((3)/(2))) and eight Mn(III) ions (S=2) which are magnetically coupled to give an S=10 ground state. The ground manifold is largely split in zero magnetic field and many efforts have been spent to determine the zero-field splitting (zfs) parameters α, β and γ appearing in the fourth-order spin-Hamiltonian H=αS z 2 +βS z 4 +γ(S + 4 +S - 4 )+μ B B·g·S. These are of paramount importance for defining the magnetic anisotropy of the cluster, which in turn determines the slow relaxation of the magnetization and quantum tunneling effects at low temperatures. We want to show that cantilever torque magnetometry in high fields is a suitable technique for determining second- and fourth-order anisotropic contributions in high-spin molecules, such as Mn 12 -acetate. The main advantage of the method lies in its high sensitivity which allows to use very small single crystals. Torque curves have been recorded at 4.2 K by applying the magnetic field (0-28 T) very close to the ab-plane of the tetragonal unit cell. The zfs parameters obtained by this procedure [α=-0.389(5) cm -1 and β=-8.4(5)x10 -4 cm -1 ] are in excellent agreement with those determined by spectroscopic techniques, such as high-frequency EPR and inelastic neutron scattering

  7. Tuning the magnetic interactions in GaAs:Mn/MnAs hybrid structures by controlling shape and position of MnAs nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Elm, Matthias Thomas

    2010-07-01

    In this work the magnetic properties of hexagonal MnAs nanoclusters and their influence on the transport properties of GaAs:Mn /MnAs hybrid structures were studied. Various arrangements of isolated nanoclusters and cluster chains were grown on (111)B-GaAs substrates by SA-MOVPE. The first part of this work deals with the manufacturing process of the different cluster arrangements investigated. By a suitable pre-structuring of the substrate it was possible to influence the cluster size, cluster shape and cluster position systematically. Preparing various arrangements it could be shown that the hexagonal nanoclusters prefer to grow along their a-axes. In the second part, the magnetic properties of the nanoclusters were studied. Ferromagnetic resonance (FMR) measurements show a hard magnetic axis perpendicular to the sample plane, i.e. parallel to the c-axis. By measurements, where the magnetic field was rotated in the sample plane, it could be demonstrated that the orientation of the magnetization can be forced into a certain direction by controlling the cluster shape. These results are confirmed by measurements using magnetic force microscopy. The third part deals with the influence of the nanoclusters and their arrangement on the transport properties of the GaAs:Mn matrix. For temperatures above 30 K the structures investigated show positive as well as negative magnetoresistance effects, which are typical for granular GaAs:Mn/MnAs hybrid structures. This behaviour can be explained in the context of transport in extended band states. The size of the magnetoresistance effects correlates strongly with the respective cluster arrangement of the sample. This behaviour has been predicted theoretically and could be confirmed experimentally in the context of this work. Below 30 K large positive magnetoresistance effects show up for the regular cluster arrangements, which cannot be observed for hybrid structures with random cluster distributions. These large positive

  8. Versatility of MnO2 for lithium battery applications

    CSIR Research Space (South Africa)

    Thackeray, MM

    1993-03-15

    Full Text Available , layered-MnO2, spinel-related Li2O.yMnO2 (y > = 2.5) and ramsdellite-MnO2 materials. An attempt has been made to clarify issues relating to the structural features of 'CDMO'-type materials that are prepared by the reaction of gamma-MnO2 with LiNO3 (or Li...

  9. Luminescence in colloidal Mn2+-doped semiconductor nanocrystals

    International Nuclear Information System (INIS)

    Beaulac, Remi; Archer, Paul I.; Gamelin, Daniel R.

    2008-01-01

    Recent advances in nanocrystal doping chemistries have substantially broadened the variety of photophysical properties that can be observed in colloidal Mn 2+ -doped semiconductor nanocrystals. A brief overview is provided, focusing on Mn 2+ -doped II-VI semiconductor nanocrystals prepared by direct chemical synthesis and capped with coordinating surface ligands. These Mn 2+ -doped semiconductor nanocrystals are organized into three major groups according to the location of various Mn 2+ -related excited states relative to the energy gap of the host semiconductor nanocrystals. The positioning of these excited states gives rise to three distinct relaxation scenarios following photoexcitation. A brief outlook on future research directions is provided. - Graphical abstract: Mn 2+ -doped semiconductor nanocrystals are organized into three major groups according to the location of various Mn 2+ -related excited states relative to the energy gap of the host semiconductor nanocrystals. The positioning of these excited states gives rise to three distinct relaxation scenarios following photoexcitation

  10. The antioxidant, MnTE-2-PyP, prevents side-effects incurred by prostate cancer irradiation.

    Directory of Open Access Journals (Sweden)

    Rebecca E Oberley-Deegan

    Full Text Available Prostate cancer is the most commonly diagnosed cancer, with an estimated 240,000 new cases reported annually in the United States. Due to early detection and advances in therapies, more than 90% of patients will survive 10 years post diagnosis and treatment. Radiation is a treatment option often used to treat localized disease; however, while radiation is very effective at killing tumor cells, normal tissues are damaged as well. Potential side-effects due to prostate cancer-related radiation therapy include bowel inflammation, erectile dysfunction, urethral stricture, rectal bleeding and incontinence. Currently, radiation therapy for prostate cancer does not include the administration of therapeutic agents to reduce these side effects and protect normal tissues from radiation-induced damage. In the current study, we show that the small molecular weight antioxidant, MnTE-2-PyP, protects normal tissues from radiation-induced damage in the lower abdomen in rats. Specifically, MnTE-2-PyP protected skin, prostate, and testes from radiation-induced damage. MnTE-2-PyP also protected from erectile dysfunction, a persistent problem regardless of the type of radiation techniques used because the penile neurovascular bundles lay in the peripheral zones of the prostate, where most prostate cancers reside. Based on previous studies showing that MnTE-2-PyP, in combination with radiation, further reduces subcutaneous tumor growth, we believe that MnTE-2-PyP represents an excellent radioprotectant in combination radiotherapy for cancer in general and specifically for prostate cancer.

  11. Interplay between localization and magnetism in (Ga,Mn)As and (In,Mn)As

    OpenAIRE

    Yuan, Ye; Xu, Chi; Hübner, René; Jakiela, Rafal; Böttger, Roman; Helm, Manfred; Sawicki, Maciej; Dietl, Tomasz; Zhou, Shengqiang

    2017-01-01

    Ion implantation of Mn combined with pulsed laser melting is employed to obtain two representative compounds of dilute ferromagnetic semiconductors (DFSs): Ga1-xMnxAs and In1-xMnxAs. In contrast to films deposited by the widely used molecular beam epitaxy, neither Mn interstitials nor As antisites are present in samples prepared by the method employed here. Under these conditions the influence of localization on the hole-mediated ferromagnetism is examined in two DFSs with a differing strengt...

  12. Ant-cave structured MnCO3/Mn3O4 microcubes by biopolymer-assisted facile synthesis for high-performance pseudocapacitors

    Science.gov (United States)

    Chandra Sekhar, S.; Nagaraju, Goli; Yu, Jae Su

    2018-03-01

    Porous and ant-cave structured MnCO3/Mn3O4 microcubes (MCs) were facilely synthesized via a biopolymer-assisted hydrothermal approach. Herein, chitosan was used as a natural biopolymer, which greatly controls the surface morphology and size of the prepared composite. The amino and hydroxyl group-functionalized chitosan engraves the outer surface of MCs during the hydrothermal process, which designs the interesting morphology of nanopath ways on the surface of MCs. When used as an electrode material for pseudocapacitors, the ant-cave structured MnCO3/Mn3O4 MCs showed superior energy storage values compared to the material prepared without chitosan in aqueous electrolyte solution. Precisely, the prepared ant-cave structured MnCO3/Mn3O4 MCs exhibited a maximum specific capacitance of 116.2 F/g at a current density of 0.7 A/g with an excellent cycling stability of 73.86% after 2000 cycles. Such facile and low-cost synthesis of pseudocapacitive materials with porous nanopaths is favorable for the fabrication of high-performance energy storage devices.

  13. Direct Demonstration of the Emergent Magnetism Resulting from the Multivalence Mn in a LaMnO3 Epitaxial Thin Film System

    DEFF Research Database (Denmark)

    Niu, Wei; Liu, Wenqing; Gu, Min

    2018-01-01

    that play a decisive role in the emergence of ferromagnetism in the otherwise antiferromagnetic LaMnO3 thin films are found. Combining spatially resolved electron energy‐loss spectroscopy, X‐ray absorption spectroscopy, and X‐ray magnetic circular dichroism techniques, it is determined unambiguously...... provide a hitherto‐unexplored multivalence state of Mn on the emergent magnetism in undoped manganite epitaxial thin films, such as LaMnO3 and BiMnO3, and shed new light on all‐oxide spintronic devices....

  14. Influence of Fe substitution on structural and magnetic features of BiMn2O5 nanostructures

    Science.gov (United States)

    Gaikwad, Vishwajit M.; Goyal, Saveena; Yanda, Premakumar; Sundaresan, A.; Chakraverty, Suvankar; Ganguli, Ashok K.

    2018-04-01

    Nanostructures of complex oxides [BiFexMn2-xO5 (x = 0, 1, 2)] have been designed to study their structural, optical and magnetic behaviour. X-ray diffraction data (XRD) revealed orthorhombic phase with Pbam space group. Noticeable expansion in unit cell parameters has been found from BiMn2O5 (x = 0) to BiFe2O4.5 (x = 2). The observed structural changes via tuning of B-site (x = 0-2) played an important role in overall magnetic properties. Transmission electron microscopic images confirm that the average particle size of all the materials are in nano domain range with different morphologies. From optical studies, it has been found that the observed energy band gap values are strongly related to 3d electron numbers. These values appear to be larger than that reported for bulk. Isothermal magnetization plots (at 5 K) show increase in coercivity (Hc) from x = 0 to x = 2. Temperature dependent magnetization studies implied anti-ferromagnetic interactions for BiMn2O5, frustrated magnet for BiFeMnO5 and ferromagnetic behaviour for BiFe2O4.5. Ferromagnetic state of nanostructured BiFe2O4.5 is in contrast with its bulk counterparts.

  15. Establishment of a reference value for chromium in the blood for biological monitoring among occupational chromium workers.

    Science.gov (United States)

    Li, Ping; Li, Yang; Zhang, Ji; Yu, Shan-Fa; Wang, Zhi-Liang; Jia, Guang

    2016-10-01

    The concentration of chromium in the blood (CrB) has been confirmed as a biomarker for occupational chromium exposure, but its biological exposure indices (BEIs) are still unclear, so we collected data from the years 2006 and 2008 (Shandong Province, China) to analyze the relationship between the concentration of chromium in the air (CrA) of the workplaces and CrB to establish a reference value of CrB for biological monitoring of occupational workers. The levels of the indicators for nasal injury, kidney (β2 microglobulin (β2-MG)), and genetic damages (8-hydroxy-deoxyguanosine (8-OHdG) and micronucleus (MN)) were measured in all subjects of the year 2011 (Henan Province, China) to verify the protective effect in this reference value of CrB. Compared with the control groups, the concentrations of CrA and CrB in chromium exposed groups were significantly higher (P value of CrB was recommended to 20 μg/L. The levels of nasal injury, β2-MG, 8-OhdG, and MN were not significantly different between the low chromium exposed group (CrB ≤ 20 μg/L) and the control group, while the levels of β2-MG, 8-OHdG, and MN were statistically different in the high chromium exposed group than that in the control group. This research proved that only in occupational workers, CrB could be used as a biomarker to show chromium exposure in the environment. The recommended reference value of CrB was 20 μg/L. © The Author(s) 2015.

  16. Room Temperature Ferromagnetic Mn:Ge(001

    Directory of Open Access Journals (Sweden)

    George Adrian Lungu

    2013-12-01

    Full Text Available We report the synthesis of a room temperature ferromagnetic Mn-Ge system obtained by simple deposition of manganese on Ge(001, heated at relatively high temperature (starting with 250 °C. The samples were characterized by low energy electron diffraction (LEED, scanning tunneling microscopy (STM, high resolution transmission electron microscopy (HRTEM, X-ray photoelectron spectroscopy (XPS, superconducting quantum interference device (SQUID, and magneto-optical Kerr effect (MOKE. Samples deposited at relatively elevated temperature (350 °C exhibited the formation of ~5–8 nm diameter Mn5Ge3 and Mn11Ge8 agglomerates by HRTEM, while XPS identified at least two Mn-containing phases: the agglomerates, together with a Ge-rich MnGe~2.5 phase, or manganese diluted into the Ge(001 crystal. LEED revealed the persistence of long range order after a relatively high amount of Mn (100 nm deposited on the single crystal substrate. STM probed the existence of dimer rows on the surface, slightly elongated as compared with Ge–Ge dimers on Ge(001. The films exhibited a clear ferromagnetism at room temperature, opening the possibility of forming a magnetic phase behind a nearly ideally terminated Ge surface, which could find applications in integration of magnetic functionalities on semiconductor bases. SQUID probed the co-existence of a superparamagnetic phase, with one phase which may be attributed to a diluted magnetic semiconductor. The hypothesis that the room temperature ferromagnetic phase might be the one with manganese diluted into the Ge crystal is formulated and discussed.

  17. Sensitivity of annual and seasonal reference crop ...

    Indian Academy of Sciences (India)

    scheduling and water resources management. Ref- ... time, and refers to evapotranspiration rate from a reference ... variable per unit increase in independent variable. Sensitivity ...... Pereira L S 2007 Relating water productivity and crop.

  18. Local Structure of Mn in (La1-xHox)2/3Ca1/3MnO3 Studied by X-ray Absorption Fine Structure

    International Nuclear Information System (INIS)

    Pietnoczka, A.; Bacewicz, R.; Antonowicz, J.; Zalewski, W.; Pekala, M.; Drozd, V.; Fagnard, J.F.; Vanderbemden, P.

    2010-01-01

    Results of X-ray absorption fine structure measurements in manganites (La 1-x Ho x ) 2/3 Ca 1/3 MnO 3 with 0.15 3 is doped with a divalent element such as Ca 2+ , substituting for La 3+ , holes are induced in the filled Mn d orbitals. This leads to a strong ferromagnetic coupling between Mn sites. Ca ions in La 1-x Ca x MnO 3 introduce a distortion of the crystal lattice and mixed valence Mn ions (Mn 3+ and Mn 4+ ). On the other hand, in manganites (La 1-x Ho x ) 2/3 Ca 1/3 MnO 3 the substitution of La for Ho causes a lattice distortion and induces a disorder, which reduces a magnetic interaction. The ferromagnetic transition temperature and conductivity decrease very quickly with increasing x. The magnetic and transport properties of compounds depend on the local atomic structure around Mn ions. The information on the bond lengths and Debye-Waller factor are obtained from the extended X-ray absorption fine structure (EXAFS) data analysis. The charge state of Mn is determined from the position of the absorption edge in X-ray absorption near edge structure (XANES) data. XAFS results are in good agreement with magnetic characteristics of the studied materials. (authors)

  19. Binding of higher alcohols onto Mn(12) single-molecule magnets (SMMs): access to the highest barrier Mn(12) SMM.

    Science.gov (United States)

    Lampropoulos, Christos; Redler, Gage; Data, Saiti; Abboud, Khalil A; Hill, Stephen; Christou, George

    2010-02-15

    Two new members of the Mn(12) family of single-molecule magnets (SMMs), [Mn(12)O(12)(O(2)CCH(2)Bu(t))(16)(Bu(t)OH)(H(2)O)(3)].2Bu(t)OH (3.2Bu(t)OH) and [Mn(12)O(12)(O(2)CCH(2)Bu(t))(16)(C(5)H(11)OH)(4)] (4) (C(5)H(11)OH is 1-pentanol), are reported. They were synthesized from [Mn(12)O(12)(O(2)CMe)(16)(H(2)O)(4)].2MeCO(2)H.4H(2)O (1) by carboxylate substitution and crystallization from the appropriate alcohol-containing solvent. Complexes 3 and 4 are new members of the recently established [Mn(12)O(12)(O(2)CCH(2)Bu(t))(16)(solv)(4)] (solv = H(2)O, alcohols) family of SMMs. Only one bulky Bu(t)OH can be accommodated into 3, and even this causes significant distortion of the [Mn(12)O(12)] core. Variable-temperature, solid-state alternating current (AC) magnetization studies were carried out on complexes 3 and 4, and they established that both possess an S = 10 ground state spin and are SMMs. However, the magnetic behavior of the two compounds was found to be significantly different, with 4 showing out-of-phase AC peaks at higher temperatures than 3. High-frequency electron paramagnetic resonance (HFEPR) studies were carried out on single crystals of 3.2Bu(t)OH and 4, and these revealed that the axial zero-field splitting constant, D, is very different for the two compounds. Furthermore, it was established that 4 is the Mn(12) SMM with the highest kinetic barrier (U(eff)) to date. The results reveal alcohol substitution as an additional and convenient means to affect the magnetization relaxation barrier of the Mn(12) SMMs without major change to the ligation or oxidation state.

  20. Synthesis, crystal structure and electrical properties of A-site cation ordered BaErMn2O5 and BaErMn2O6

    International Nuclear Information System (INIS)

    Świerczek, Konrad; Klimkowicz, Alicja; Zheng, Kun; Dabrowski, Bogdan

    2013-01-01

    In this paper, we report on a synthesis procedure, structural and electrical properties of BaErMn 2 O 5 and BaErMn 2 O 6 , A-site double perovskites having layered arrangement of Ba and Er cations. These materials belong to a family of BaLnMn 2 O 5+δ oxides, which up to now were successfully synthesized for Ln=Y and La–Ho lanthanides. Up to our knowledge, this is the first report on the successful synthesis of BaErMn 2 O 5 and BaErMn 2 O 6 , yielding>95 wt% of the considered compounds. Structural characterization of the materials is given at room temperature, together with in situ XRD studies, performed during oxidation of BaErMn 2 O 5 in air, at elevated temperatures up to 500 °C. A complex structural behavior was observed, with oxidation process of BaErMn 2 O 5 occurring at around 300 °C. The oxidized BaErMn 2 O 6 shows a structural phase transition at about 225 °C. Results of structural studies are supported by thermogravimetric measurements of the oxidation process, performed in air, as well as reduction process, preformed in 5 vol% of H 2 in Ar. Additionally, isothermal oxidation/reduction cycles were measured at 500 °C, showing interesting properties of BaErMn 2 O 5+δ , from a point of view of oxygen storage technology. Electrical conductivity of BaErMn 2 O 5 is of the order of 10 −4 S cm −1 at room temperature and shows activated character on temperature with activation energy E a =0.30(1) eV. Positive sign of Seebeck coefficient for this material indicates holes as dominant charge carriers. Oxidized BaErMn 2 O 6 possesses much higher electrical conductivity, almost 0.2 S cm −1 at room temperature. Additional, about 10-fold increase of electrical conductivity, occurring in the vicinity of 225 °C for this material, can be associated with phase transition from charge/orbital-ordered insulator COI(CE) to paramagnetic metal PM phase. The highest conductivity for BaErMn 2 O 6 was measured near 500 °C and is almost equal to 40 S cm −1 , while

  1. Magnetic ordering of GdMn2

    International Nuclear Information System (INIS)

    Ouladdiaf, B.; Ritter, C.; Ballou, R.; Deportes, J.

    1999-01-01

    Complete text of publication follows. GdMn 2 crystallizes in the C15 cubic Laves phase structure. Within this structure Mn atoms lie at the vertices of regular tetrahedra stacked in the diamond arrangement connected by sharing vertices, leading to a strong geometric frustration. An antiferromagnetic magnetic order sets in below T N ∼ 105 K. It gives rise to a large magnetovolume effect (ΔV/V ∼ 1%). Thermal expansion data show two anomalies at 105 K and 35 K. The second anomaly was often interpreted as the ferromagnetic ordering of Gd sublattice. Moessbauer data indicate however, that Gd sublattice orders at T N ∼ 105 K as the Mn moments. Elastic neutron scattering measurements were performed using short wavelength neutron beam (λ = 0.5 A) on D9 at ILL. No magnetic contribution to the nuclear peaks was found excluding thereby any K = [0 0 0] component. However antiferromagnetic peaks indexed by a propagation vector [2/3 2/3 0] were observed leading to a non collinear magnetic arrangement of both Mn and Gd sublattices. The results are discussed by invoking the geometric frustration associated with the Mn atomic packing and the singlet state of the Gd ions. (author)

  2. Effect of MnO2 doped on physical, structure and optical properties of zinc silicate glasses from waste rice husk ash

    Directory of Open Access Journals (Sweden)

    Ali Jabbar Abed Al-Nidawi

    Full Text Available In this study, an investigation was conducted to explore and synthesize silicate (SiO2 glass from waste rice husk ash (RHA. MnO2 doped zinc silicate glasses with chemical formula [(ZnO55 + (WRHA45]100-X[MnO2]X, (where X = 0, 1, 3 and 5 wt% was prepared by conventional melt quenching technique. The glass samples were characterized using energy dispersive X-ray fluorescence (EDXRF, X-ray diffraction (XRD, field emission scanning electron microscopy (FESEM, Fourier transform infrared (FTIR spectroscopy, and ultraviolet–visible (UV–Vis spectroscopy. The results revealed that by increasing the concentration of MnO2, the color of glass samples changed from colorless to brown and the density of glass increased. XRD results showed that a broad halo peak which centered on the low angle (2θ = 30° indicated the amorphous nature of the glass. FTIR results showed basic structural units of Si-O-Si in non-bridging oxygen, Si-O and Mn-O in the glass network. FESEM result showed a decreasing porosity with an increasing MnO2 content, which was attributed to the Mn ions resort to occupy interstitial sites inside the pores of glass. Besides, the absorption intensity of glass increased and the band gap value decreased with increasing the MnO2 percentage. In this synthesized glass system of MnO2 doped zinc silicate glasses using RHA as a source of silica, the MnO2 affect most of the properties of the glass system under investigation. Keywords: Rice husk, Manganese dioxide, Glass, Zinc silicate, Sintering, Optical properties

  3. Large Magnetic Anisotropy in HfMnP

    Science.gov (United States)

    Parker, David; Lamichhane, Tej; Taufour, Valentin; Masters, Morgan; Thimmaiah, Srinivasa; Bud'Ko, Ser'gey; Canfield, Paul

    We present a theoretical and experimental study of two little-studied manganese phosphide ferromagnets, HfMnP and ZrMnP, with Curie temperatures above room temperature. We find an anisotropy field in HfMnP approaching 10 T - larger than that of the permanent magnet workhorse NdFeB magnets. From theory we determine the source of this anisotropy. Our results show the potential of 3d-element-based magnetic materials for magnetic applications.

  4. Electronic transport properties of nanostructured MnSi-films

    Science.gov (United States)

    Schroeter, D.; Steinki, N.; Scarioni, A. Fernández; Schumacher, H. W.; Süllow, S.; Menzel, D.

    2018-05-01

    MnSi, which crystallizes in the cubic B20 structure, shows intriguing magnetic properties involving the existence of skyrmions in the magnetic phase diagram. Bulk MnSi has been intensively investigated and thoroughly characterized, in contrast to MnSi thin film, which exhibits widely varying properties in particular with respect to electronic transport. In this situation, we have set out to reinvestigate the transport properties in MnSi thin films by means of studying nanostructure samples. In particular, Hall geometry nanostructures were produced to determine the intrinsic transport properties.

  5. A Comparative Reference Study for the Validation of HLA-Matching Algorithms in the Search for Allogeneic Hematopoietic Stem Cell Donors and Cord Blood Units

    Science.gov (United States)

    2016-08-15

    donors and cord blood units W. Bochtler1, L. Gragert2, Z. I. Patel3, J. Robinson3,4, D. Steiner5, J. A. Hofmann6, J. Pingel6, A. Baouz7, A. Melis8, J...cord blood units for individual patients is of primary importance. This challenging search process is routinely performed in a donor registry or cord...term ‘ donor ’ to refer to donors of HSCs from bone marrow or peripheral blood and cord blood units and the term ‘ donor registry’ shall include cord blood

  6. Formation of Nano-crystalline Todorokite from Biogenic Mn Oxides

    Energy Technology Data Exchange (ETDEWEB)

    Feng, X.; Zhu, M; Ginder-Vogel, M; Ni, C; Parikh, S; Sparks, D

    2010-01-01

    Todorokite, as one of three main Mn oxide phases present in oceanic Mn nodules and an active MnO{sub 6} octahedral molecular sieve (OMS), has garnered much interest; however, its formation pathway in natural systems is not fully understood. Todorokite is widely considered to form from layer structured Mn oxides with hexagonal symmetry, such as vernadite ({delta}-MnO{sub 2}), which are generally of biogenic origin. However, this geochemical process has not been documented in the environment or demonstrated in the laboratory, except for precursor phases with triclinic symmetry. Here we report on the formation of a nanoscale, todorokite-like phase from biogenic Mn oxides produced by the freshwater bacterium Pseudomonas putida strain GB-1. At long- and short-range structural scales biogenic Mn oxides were transformed to a todorokite-like phase at atmospheric pressure through refluxing. Topotactic transformation was observed during the transformation. Furthermore, the todorokite-like phases formed via refluxing had thin layers along the c* axis and a lack of c* periodicity, making the basal plane undetectable with X-ray diffraction reflection. The proposed pathway of the todorokite-like phase formation is proposed as: hexagonal biogenic Mn oxide {yields} 10-{angstrom} triclinic phyllomanganate {yields} todorokite. These observations provide evidence supporting the possible bio-related origin of natural todorokites and provide important clues for understanding the transformation of biogenic Mn oxides to other Mn oxides in the environment. Additionally this method may be a viable biosynthesis route for porous, nano-crystalline OMS materials for use in practical applications.

  7. Thermoelectric properties of a Mn substituted synthetic tetrahedrite.

    Science.gov (United States)

    Chetty, Raju; D S, Prem Kumar; Rogl, Gerda; Rogl, Peter; Bauer, Ernst; Michor, Herwig; Suwas, Satyam; Puchegger, Stephan; Giester, Gerald; Mallik, Ramesh Chandra

    2015-01-21

    Tetrahedrite compounds Cu(12-x)Mn(x)Sb4S13 (0 ≤x≤ 1.8) were prepared by solid state synthesis. A detailed crystal structure analysis of Cu10.6Mn1.4Sb4S13 was performed by single crystal X-ray diffraction (XRD) at 100, 200 and 300 K confirming the noncentrosymmetric structure (space group I4[combining macron]3m) of a tetrahedrite. The large atomic displacement parameter of the Cu2 atoms was described by splitting the 12e site into a partially and randomly occupied 24g site (Cu22) in addition to the regular 12e site (Cu21), suggesting a mix of dynamic and static off-plane Cu2 atom disorder. Rietveld powder XRD pattern and electron probe microanalysis revealed that all the Mn substituted samples showed a single tetrahedrite phase. The electrical resistivity increased with increasing Mn due to substitution of Mn(2+) at the Cu(1+) site. The positive Seebeck coefficient for all samples indicates that the dominant carriers are holes. Even though the thermal conductivity decreased as a function of increasing Mn, the thermoelectric figure of merit ZT decreased, because the decrease of the power factor is stronger than the decrease of the thermal conductivity. The maximum ZT = 0.76 at 623 K is obtained for Cu12Sb4S13. The coefficient of thermal expansion 13.5 ± 0.1 × 10(-6) K(-1) is obtained in the temperature range from 460 K to 670 K for Cu10.2Mn1.8Sb4S13. The Debye temperature, Θ(D) = 244 K for Cu10.2Mn1.8Sb4S13, was estimated from an evaluation of the elastic properties. The effective paramagnetic moment 7.45 μB/f.u. for Cu10.2Mn1.8Sb4S13 is fairly consistent with a high spin 3d(5) ground state of Mn.

  8. Magnetic structure of the YbMn2SbBi compound

    International Nuclear Information System (INIS)

    Morozkin, A.V.; Manfrinetti, P.

    2011-01-01

    Graphical abstract: Display Omitted Research highlights: → A neutron diffraction investigation in zero applied field of La 2 O 2 S-type YbMn 2 SbBi shows antiferromagnetic ordering below 138(3) K and ferrimagnetic ordering below 112(3) K. → Between 138 and 112 K, the magnetic structure of YbMn 2 SbBi consists of antiferromagnetically coupled ab-plane magnetic moments of the manganese atoms (D 1d magnetic point group). → Below 112(3) K, the magnetic structure of YbMn 2 SbBi becames the sum antiferromagnetic component with D 1d magnetic point group and ferromagnetic one with C 2 magnetic point group. → The magnitude of Yb and Mn magnetic moments in YbMn 2 SbBi at 2 K (M Yb = 3.6(2) μ B , M Mn = 3.5(2) μ B ) correspond to the trivalent state of the Yb ions and tetravalent state of the Mn ions. - Abstract: A neutron diffraction investigation has been carried out on the trigonal La 2 O 2 S-type (hP5, space group P3-bar ml, No. 164; also CaAl 2 Si 2 -type) YbMn 2 SbBi intermetallic compound. The YbMn 2 SbBi presents antiferromagnetic ordering below 138(3) K and ferrimagnetic ordering below 112(3) K. Between 138 and 112 K, the magnetic structure of YbMn 2 SbBi consists of antiferromagnetically coupled ab-plane magnetic moments of the manganese atoms (D 1d magnetic point group). Below 112(3) K, the ferromagnetic components of Yb and Mn begin to develop, and the magnetic structure of YbMn 2 SbBi becames the sum antiferromagnetic component with D 1d magnetic point group and ferromagnetic one with C 2 magnetic point group. The magnitude of Yb and Mn magnetic moments in YbMn 2 SbBi at 2 K (M Yb = 3.6(2) μ B , M Mn = 3.5(2) μ B ) correspond to the trivalent state of the Yb ions and tetravalent state of the Mn ions.

  9. Structural and magnetic properties of Mn nanoparticles prepared by arc-discharge

    International Nuclear Information System (INIS)

    Si, P.Z.; Brueck, E.; Zhang, Z.D.; Tegus, O.; Zhang, W.S.; Buschow, K.H.J.; KlAsse, J.C.P.

    2005-01-01

    Mn nanoparticles are prepared by arc discharge technique. MnO, α-Mn, β-Mn, and γ-Mn are detected by X-ray diffraction, while the presence of Mn 3 O 4 and MnO 2 is revealed by X-ray photoelectron spectroscopy. Transmission electron microscopy observations show that most of the Mn nanoparticles have irregular shapes, rough surfaces and a shell/core structure, with sizes ranging from several nanometers to 80 nm. The magnetic properties of the Mn nanoparticles are investigated between 2 and 350 K at magnetic fields up to 5 T. A magnetic transition occurring near 43 K is attributed to the formation of the ferrimagnetic Mn 3 O 4 . The coercivity of the Mn nanoparticles, arising mainly from Mn 3 O 4 , decreases linearly with increasing temperature below 40 K. Below the blocking temperature T B ∼ 34 K, the hysteresis loops exhibit large coercivity (up to 500 kA/m), owing to finite size effects, and irreversibility in the loops is found up to 4 T, and magnetization is not saturated up to 5 T. The relationship between structure and the magnetic properties are discussed

  10. Role of the reference position on overpotential measurements

    Directory of Open Access Journals (Sweden)

    Figueiredo, F. M.

    1999-12-01

    Full Text Available Steady state polarisation measurements can be affected by electrode microstructure and geometrical arrangement. In particular, the relative position of the reference electrode with respect to the working and counter electrodes may influence the reference potential and therefore effect the overvoltage readings. The influence of the geometrical arrangement of the electrodes on the electrolyte potential lines, was simulated by solving the appropriate Maxwell equations. Simulations were in relatively good agreement with steady state polarisation and impedance spectroscopy results obtained with YSZ|LaMnO3-based cells. The use of impedance spectroscopy to assess the appropriateness of a given electrode configuration is suggested.

    La medida de los estados de polarización fijos puede estar afectada por la microestructura del electrodo y su configuración geométrica. En particular, la posición relativa del electrodo de referencia en relación con los electrodos de trabajo y conteo puede influenciar el potencial de referencia y por lo tanto afectar las lecturas de sobrevoltaje. La influencia de la configuración geométrica de los electrodos sobre las líneas potenciales del electrolito fue simulada por resolución de las ecuaciones de Maxwell apropiadas. Las simulaciones estuvieron en relativamente buen acuerdo con el estado de polariazación fijo y los resultados de espectroscopía de impedancia obtenidos con células basadas en YSZ|LaMnO3. Se sugiere el uso de espectroscopía de impedancias para valorar la conveniencia de una configuración de electrodo.

  11. Asymmetric carbon nanotube-MnO2 two-ply yarn supercapacitors for wearable electronics

    Science.gov (United States)

    Su, Fenghua; Miao, Menghe

    2014-04-01

    Strong and flexible two-ply carbon nanotube yarn supercapacitors are electrical double layer capacitors that possess relatively low energy storage capacity. Pseudocapacitance metal oxides such as MnO2 are well known for their high electrochemical performance and can be coated on carbon nanotube yarns to significantly improve the performance of two-ply carbon nanotube yarn supercapacitors. We produced a high performance asymmetric two-ply yarn supercapacitor from as-spun CNT yarn and CNT@MnO2 composite yarn in aqueous electrolyte. The as-spun CNT yarn serves as negative electrode and the CNT@MnO2 composite yarn as positive electrode. This asymmetric architecture allows the operating potential window to be extended from 1.0 to 2.0 V and results in much higher energy and power densities than the reference symmetric two-ply yarn supercapacitors, reaching 42.0 Wh kg-1 at a lower power density of 483.7 W kg-1, and 28.02 Wh kg-1 at a higher power density of 19 250 W kg-1. The asymmetric supercapacitor can sustain cyclic charge-discharge and repeated folding/unfolding actions without suffering significant deterioration of specific capacitance. The combination of high strength, flexibility and electrochemical performance makes the asymmetric two-ply yarn supercapacitor a suitable power source for flexible electronic devices for applications that require high durability and wearer comfort.

  12. Phase relationships in the Er-Mn-Ti ternary system at 773 K

    International Nuclear Information System (INIS)

    Liu Jingqi; Wang Xina; Tang Mengqi; Su Kunpeng; Yang Xiaomao; Li Chunhui; Li Xueqiang

    2009-01-01

    The Phase relationship in the Er-Mn-Ti ternary system at 773 K has been investigated by X-ray powder diffraction analysis with the aid of differential thermal analysis and optical microanalysis techniques in this work. The existence of eight binary compounds Mn 15 Ti 85, αMnTi, βMnTi, Mn 2 Ti, Mn 5 Ti, ErMn 12, Er 6 Mn 23 and ErMn 2 has been confirmed at 773 K in this system. The maximum solid solubility of Ti in Mn is about 8 at%Ti. The homogeneity range of Mn 2 Ti extends from about 31 at% to 39 at% Ti. The maximum solid solubility of Er in Mn 2 Ti phase is about less than 1 at% Er. No ternary compounds were found in this ternary system at 773K. At 773 K, the isothermal section of phase diagram of Er-Mn-Ti ternary system consists of 11 single-phase regions, 19 two-phase regions and 9 three-phase regions.

  13. Magnetic behavior of Co–Mn co-doped ZnO nanoparticles

    International Nuclear Information System (INIS)

    Li, Hengda; Liu, Xinzhong; Zheng, Zhigong

    2014-01-01

    Here, we report on systematic studies of the magnetic properties of Co and Mn co-doped ZnO nanoparticles prepared by a sol–gel technique. The effect of the concentration of the doping ions on the magnetic properties of Co and Mn co-doped ZnO nanoparticles is presented. X-ray diffraction characterizations (XRD) of co-doped ZnO nanoparticles are all wurtzite structure. The Zn 0.96 Co 0.02 Mn 0.02 O nanoparticles and Zn 0.94 Co 0.02 Mn 0.04 O nanoparticles display ferromagnetic behavior at room temperature. Superconducting quantum interference device (SQUID) magnetometer figures show that with the concentration of the Mn ions increased, the saturation magnetic moment (M s ) increased, and the magnetic is probably due to the co-doping of the Mn ions. Our results demonstrate that the Mn ions doping concentration play an important role in the ferromagnetic properties of Co–Mn co-doped ZnO nanoparticles at room temperature. - Highlights: • The effect of the doping ions on the magnetic properties is presented. • The magnetic is probably due to the co-doping of the Mn ions. • The Mn ions concentration play an important role in the ferromagnetic properties

  14. Perspectives on Inclusive Education with Reference to United Nations

    Science.gov (United States)

    Sharma, Arvind

    2015-01-01

    This essay explores inclusive education and explains the role of United Nations for imparting it to different nations. Undoubtedly, the UN and the United Nations Children's Fund (UNICEF) strive for all children to have equitable access to education as a basic human right. The Convention on the Rights of the Child (CRC) combined with the Convention…

  15. Correlation between magnetoresistance and magnetization in Ag Mn and Au Mn spin glasses

    International Nuclear Information System (INIS)

    Majumdar, A.K.

    1982-08-01

    Magnetization has been measured between 2 and 77 K and mostly up to fields of 20 K Oe in Ag Mn (1.1 and 5.4 at %) and Au Mn (1.8 and 4.6 at %) spin glass samples where the transverse magnetoresistance was measured earlier. It is found for the first time over a wide range of temperature and magnetic field that the negative magnetoresistance varies as the square of the bulk magnetization resulting in an universal curve in the spin glass regime. A theoretical justification is provided in terms of exciting theories. (author)

  16. Preparation of Mn-Zn nanoferrite by mechanical alloying

    International Nuclear Information System (INIS)

    Nasresfahani, M.

    2007-01-01

    Full text: In this research Mn-Zn nanoferrite (Mn x Zn 1-x Fe 2 O 4 ;X=0.3,0.5,0.7)were prepared by mechanical alloying of a mixture of 2 single phase ferrites, MnFe 2 O 4 and ZnFe 2 O 4 . First, ZnFe 2 O 4 and MnFe 2 O 4 were obtained by conventional ceramic technique. In this technique a mixture of related raw materials(ZnO and MnO 2 from merck company and Fe 2 O 3 domestic source) was first mixed and calcined at 1100 C for 3h in air. The starting materials used to prepare Mn-Zn nanoferrite were MnFe 2 O 4 and ZnFe 2 O 4 mixed in the ratio appropriate for the reaction: xMnFe 2 O 4+(1-x) ZnFe 2 O 4 MnxZn 1-x Fe 2 O 4 and milled at different times in SPEX8000M mixer/mill. XRD investigations was used to study the phase formation of the as-milled mixed ferrite. Using XRD patterns and Scherrer's formula, mean crystallite size of the single phase samples were calculated and were in the 10-20 nm. Saturation magnetization(Ms) of the powders was measured at room temperature by a very sensitive home made permeameter. The measured Ms values show that they are smaller than the Ms values associated with the same compound prepared by conventional ceramic technique. The decrease is due to the surface effect in nanoparticles, which can be explained on core-sell model. (authors)

  17. Materials for spintronic: Room temperature ferromagnetism in Zn-Mn-O interfaces

    International Nuclear Information System (INIS)

    Quesada, A.; Garcia, M.A.; Crespo, P.; Hernando, A.

    2006-01-01

    In this paper we study the room temperature ferromagnetism reported on Mn-doped ZnO and ascribed to spin polarization of conduction electrons. We experimentally show that the ferromagnetic behaviour is associated to the coexistence of Mn 3+ and Mn +4 in MnO 2 grains where diffusion of Zn promotes the Mn 4+→ Mn 3+ reduction. Potential uses of this material in spintronic devices are analysed

  18. Non radiative decay of Mn2+ emission in LnMB5O10:Bi,Mn (M = Mg,Cd,Zn)

    International Nuclear Information System (INIS)

    Jagannathan, R.; Rao, R.P.; Kutty, T.R.N.

    1990-01-01

    The family of lanthanide magnesium pentaborates with Tb(3+) and Eu(3+) as activators are efficient phosphor materials, Mn(2+) emission in these hosts in a subject of intensive investigation owing to its inexpensiveness. The energy transfer process from various sensitizers such as Bi(3+), Ce(3+), and Sb(3+) to Mn(2+) in these hosts have been studied in detail. The non radiative decay of Mn 2+ emission in these hosts is detailed in this paper

  19. Preparation and electrochemical characterization of MnOOH nanowire-graphene oxide

    International Nuclear Information System (INIS)

    Wang Lin; Wang Dianlong

    2011-01-01

    Highlights: → MnOOH nanowire-graphene oxide composites are prepared by hydrothermal reaction in distilled water or 5% ammonia aqueous solution at 130 deg. C, with MnO 2 -graphene oxide composites which are synthesized by a redox reaction between KMnO 4 and graphene oxide. → MnO 2 is deoxidized to MnOOH on graphene oxide through hydrothermal reaction without any extra reductants. → It is found that the electrochemical resistance of MnOOH nanowire-graphene oxide composites decreases and the capacitance increases to 76 F g -1 when hydrothermal reaction is conducted in ammonia aqueous solution. → MnOOH nanowire-graphene oxide composites prepared by hydrothermal reaction in 5% ammonia aqueous solution have excellent capacitance retention ratio at scan rate from 5 mV s -1 to 40 mV s -1 . - Abstract: MnOOH nanowire-graphene oxide composites are prepared by hydrothermal reaction in distilled water or 5% ammonia aqueous solution at 130 deg. C with MnO 2 -graphene oxide composites which are synthesized by a redox reaction between KMnO 4 and graphene oxide. Powder X-ray diffraction (XRD) analyses and energy dispersive X-ray analyses (EDAX) show MnO 2 is deoxidized to MnOOH on graphene oxide through hydrothermal reaction without any extra reductants. The electrochemical capacitance of MnOOH nanowire-graphene oxide composites prepared in 5% ammonia aqueous solution is 76 F g -1 at current density of 0.1 A g -1 . Moreover, electrochemical impedance spectroscopy (EIS) suggests the electrochemical resistance of MnOOH nanowire-graphene oxide composites is reduced when hydrothermal reaction is conducted in ammonia aqueous solution. The relationship between the electrochemical capacitance and the structure of MnOOH nanowire-graphene oxide composites is characterized by cyclic voltammetry (CV) and field emission scanning electron microscopy (FESEM). The results indicate the electrochemical performance of MnOOH nanowire-graphene oxide composites strongly depends on their

  20. Synthesis of MnFe2O4@Mn-Co oxide core-shell nanoparticles and their excellent performance for heavy metal removal.

    Science.gov (United States)

    Ma, Zichuan; Zhao, Dongyuan; Chang, Yongfang; Xing, Shengtao; Wu, Yinsu; Gao, Yuanzhe

    2013-10-21

    Magnetic nanomaterials that can be easily separated and recycled due to their magnetic properties have received considerable attention in the field of water treatment. However, these nanomaterials usually tend to aggregate and alter their properties. Herein, we report an economical and environmentally friendly method for the synthesis of magnetic nanoparticles with core-shell structure. MnFe2O4 nanoparticles have been successfully coated with amorphous Mn-Co oxide shells. The synthesized MnFe2O4@Mn-Co oxide nanoparticles have highly negatively charged surface in aqueous solution over a wide pH range, thus preventing their aggregation and enhancing their performance for heavy metal cation removal. The adsorption isotherms are well fitted to a Langmuir adsorption model, and the maximal adsorption capacities of Pb(II), Cu(II) and Cd(II) on MnFe2O4@Mn-Co oxide are 481.2, 386.2 and 345.5 mg g(-1), respectively. All the metal ions can be completely removed from the mixed metal ion solutions in a short time. Desorption studies confirm that the adsorbent can be effectively regenerated and reused.

  1. Synthesis and reaction of [[HC(CMeNAr)2]Mn]2 (Ar = 2,6-iPr2C6H3): the complex containing three-coordinate manganese(I) with a Mn-Mn bond exhibiting unusual magnetic properties and electronic structure.

    Science.gov (United States)

    Chai, Jianfang; Zhu, Hongping; Stückl, A Claudia; Roesky, Herbert W; Magull, Jörg; Bencini, Alessandro; Caneschi, Andrea; Gatteschi, Dante

    2005-06-29

    This paper reports on the synthesis, X-ray structure, magnetic properties, and DFT calculations of [[HC(CMeNAr)2]Mn]2 (Ar = 2,6-iPr2C6H3) (2), the first complex with three-coordinate manganese(I). Reduction of the iodide [[HC(CMeNAr)2]Mn(mu-I)]2 (1) with Na/K in toluene afforded 2 as dark-red crystals. The molecule of 2 contains a Mn2(2+) core with a Mn-Mn bond. The magnetic investigations show a rare example of a high-spin manganese(I) complex with an antiferromagnetic interaction between the two Mn(I) centers. The DFT calculations indicate a strong s-s interaction of the two Mn(I) ions with the open shell configuration (3d54s1). This suggests that the magnetic behavior of 2 could be correctly described as the coupling between two S1 = S2 = 5/2 spin centers. The Mn-Mn bond energy is estimated at 44 kcal mol(-1) by first principle calculations with the B3LYP functional. The further oxidative reaction of 2 with KMnO4 or O2 resulted in the formation of manganese(III) oxide [[HC(CMeNAr)2]Mn(mu-O)]2 (3). Compound 3 shows an antiferromagnetic coupling between the two oxo-bridged manganese(III) centers by magnetic measurements.

  2. Magnetic properties in (Mn,Fe)-codoped ZnO nanowire

    International Nuclear Information System (INIS)

    Cao, Huawei; Lu, Pengfei; Cong, Zixiang; Yu, Zhongyuan; Cai, Ningning; Zhang, Xianlong; Gao, Tao; Wang, Shumin

    2013-01-01

    Using the first-principles density functional theory, we have studied the electronic structures and magnetic properties of Mn/Fe codoped ZnO nanowires systematically. The calculated results of formation energy indicate that the configuration of the lowest energy where Mn and Fe atoms form nearest neighbors on the outer cylindrical surface layer along the [0001] direction, will be determined. The magnetic coupling of 8 types of Mn/Fe codoped ZnO nanowires was investigated and ferromagnetic state was found in certain configurations. The mechanism is from the fierce hybridization between 3d of Mn and Fe with O 2p near the Fermi level. The relative energy difference for configuration VIII is 0.221 eV, which indicates that room temperature ferromagnetism could be obtained in such a system and Mn/Fe codoped ZnO nanowires are a promising nanoscale spintronic material. - Highlights: • The stable structure prefers that Mn/Fe form nearest neighbors on the outer surface. • The fierce p–d hybridization is responsible for ferromagnetic (FM) coupling. • Mn/Fe codoped ZnO nanowire is a promising FM semiconductor material

  3. Magnetic properties in (Mn,Fe)-codoped ZnO nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Huawei [Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), Ministry of Education, Beijing 100876 (China); Lu, Pengfei, E-mail: photon.bupt@gmail.com [Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), Ministry of Education, Beijing 100876 (China); Cong, Zixiang [School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100976 (China); Yu, Zhongyuan; Cai, Ningning; Zhang, Xianlong [Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), Ministry of Education, Beijing 100876 (China); Gao, Tao [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China); Wang, Shumin [Photonics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, 41296 Gothenburg (Sweden); State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China)

    2013-12-02

    Using the first-principles density functional theory, we have studied the electronic structures and magnetic properties of Mn/Fe codoped ZnO nanowires systematically. The calculated results of formation energy indicate that the configuration of the lowest energy where Mn and Fe atoms form nearest neighbors on the outer cylindrical surface layer along the [0001] direction, will be determined. The magnetic coupling of 8 types of Mn/Fe codoped ZnO nanowires was investigated and ferromagnetic state was found in certain configurations. The mechanism is from the fierce hybridization between 3d of Mn and Fe with O 2p near the Fermi level. The relative energy difference for configuration VIII is 0.221 eV, which indicates that room temperature ferromagnetism could be obtained in such a system and Mn/Fe codoped ZnO nanowires are a promising nanoscale spintronic material. - Highlights: • The stable structure prefers that Mn/Fe form nearest neighbors on the outer surface. • The fierce p–d hybridization is responsible for ferromagnetic (FM) coupling. • Mn/Fe codoped ZnO nanowire is a promising FM semiconductor material.

  4. Luminescent characteristic of the CsBr phosphor activated with Eu{sup 2+} and Mn{sup 2+} ions

    Energy Technology Data Exchange (ETDEWEB)

    Téllez-Flores, E., E-mail: bluedays8i@hotmail.com [Programa de Posgrado en Ciencias (Física), Departamento de Investigación en Física, Universidad de Sonora, Rosales y Blvd. Transversal S/N, 83000 Hermosillo, Son., México (Mexico); Aceves, R., E-mail: raceves@cifus.uson.mx [Centro de Investigación en Física, Universidad de Sonora, Apartado Postal 5-88, 83190 Hermosillo, Son., México (Mexico); Pérez-Salas, R., E-mail: rperez@cifus.uson.mx [Centro de Investigación en Física, Universidad de Sonora, Apartado Postal 5-88, 83190 Hermosillo, Son., México (Mexico); Camarillo, I., E-mail: as99@xanum.uam.mx [Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Delegación Iztapalapa, C.P. 09340 México D.F. (Mexico); Caldiño, U., E-mail: cald@xanum.uam.mx [Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Delegación Iztapalapa, C.P. 09340 México D.F. (Mexico)

    2013-12-15

    Spectra of excitation and emission were measured at RT and 15 K in crystals quenched (Q) of CsBr:Eu{sup 2+}, CsBr:Mn{sup 2+} and CsBr:Eu{sup 2+},Mn{sup 2+}. Emission bands at 444, 480, 520 and 570 nm with different relative intensities are generated in the samples after UV excitation. The blue band at 444 nm was ascribed with unknown clusters or aggregated centers (AC) of dipoles type Eu{sup 2+}–V{sub C}{sup −} and insulated dipole centers (IDC) like Eu{sup 2+}–O{sup 2−}. The bands at 480, 520 and 570 nm were assigned to Cs{sub 4}EuBr{sub 6} nanocrystals; AC containing MnBr{sub 4}{sup 2−} units in tetrahedral symmetry and another yet unidentified AC defect, respectively. In crystals of CsBr:Eu{sup 2+},Mn{sup 2+} the excitation and emission spectra taken at 15 K show no clear evidence of an energy transfer mechanism. Instead, the results suggest that the emission is produced by direct excitation of the ions of Eu{sup 2+} and Mn{sup 2+}. Accordingly, single- or double-doped CsBr crystals may contain the same type of defects, either AC and/or IDC. -- Highlights: • The PL consists of several overlapping bands in the entire visible region. • The emission bands were ascribed to dipoles, aggregated and nanocrystals of different nature. • No clear evidence of energy transfer, meaning Eu and Mn pairs are not formed. • The material shows potential characteristics for its use as LED to white emission.

  5. As(III) oxidation by MnO2 during groundwater treatment.

    Science.gov (United States)

    Gude, J C J; Rietveld, L C; van Halem, D

    2017-03-15

    The top layer of natural rapid sand filtration was found to effectively oxidise arsenite (As(III)) in groundwater treatment. However, the oxidation pathway has not yet been identified. The aim of this study was to investigate whether naturally formed manganese oxide (MnO 2 ), present on filter grains, could abiotically be responsible for As(III) oxidation in the top of a rapid sand filter. For this purpose As(III) oxidation with two MnO 2 containing powders was investigated in aerobic water containing manganese(II) (Mn(II)), iron(II) (Fe(II)) and/or iron(III) (Fe(III)). The first MnO 2 powder was a very pure - commercially available - natural MnO 2 powder. The second originated from a filter sand coating, produced over 22 years in a rapid filter during aeration and filtration. Jar test experiments showed that both powders oxidised As(III). However, when applying the MnO 2 in aerated, raw groundwater, As(III) removal was not enhanced compared to aeration alone. It was found that the presence of Fe(II)) and Mn(II) inhibited As(III) oxidation, as Fe(II) and Mn(II) adsorption and oxidation were preferred over As(III) on the MnO 2 surface (at pH 7). Therefore it is concluded that just because MnO 2 is present in a filter bed, it does not necessarily mean that MnO 2 will be available to oxidise As(III). However, unlike Fe(II), the addition of Fe(III) did not hinder As(III) oxidation on the MnO 2 surface; resulting in subsequent effective As(V) removal by the flocculating hydrous ferric oxides. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Thermal behaviour of Cu-Mg-Mn and Ni-Mg-Mn layered double hydroxides and characterization of formed oxides

    Czech Academy of Sciences Publication Activity Database

    Kovanda, F.; Grygar, Tomáš; Dorničák, V.; Rojka, T.; Bezdička, Petr; Jirátová, Květa

    2005-01-01

    Roč. 28, 1-4 (2005), s. 121-136 ISSN 0169-1317 Institutional research plan: CEZ:AV0Z40320502 Keywords : Cu-Mg-Mn basic carbonates * Ni-Mg-Mn hydrotalcite Subject RIV: CA - Inorganic Chemistry Impact factor: 1.324, year: 2005

  7. XAS and XMCD investigation of Mn12 monolayers on gold.

    Science.gov (United States)

    Mannini, Matteo; Sainctavit, Philippe; Sessoli, Roberta; Cartier dit Moulin, Christophe; Pineider, Francesco; Arrio, Marie-Anne; Cornia, Andrea; Gatteschi, Dante

    2008-01-01

    The deposition of Mn(12) single molecule magnets on gold surfaces was studied for the first time using combined X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) methods at low temperature. The ability of the proposed approach to probe the electronic structure and magnetism of Mn(12) complexes without significant sample damage was successfully checked on bulk samples. Detailed information on the oxidation state and magnetic polarization of manganese ions in the adsorbates was obtained from XAS and XMCD spectra, respectively. Partial reduction of metal ions to Mn(II) was clearly observed upon deposition on Au(111) of two different Mn(12) derivatives bearing 16-acetylthio-hexadecanoate and 4-(methylthio)benzoate ligands. The average oxidation state, as well as the relative proportions of Mn(II), Mn(III) and Mn(IV) species, are strongly influenced by the deposition protocol. Furthermore, the local magnetic polarizations are significantly decreased as compared with bulk Mn(12) samples. The results highlight an utmost redox instability of Mn(12) complexes at gold surfaces, presumably accompanied by structural rearrangements, which cannot be easily revealed by standard surface analysis based on X-ray photoelectron spectroscopy and scanning tunnelling microscopy.

  8. High-field torque magnetometry for investigating magnetic anisotropy in Mn{sub 12}-acetate nanomagnets

    Energy Technology Data Exchange (ETDEWEB)

    Cornia, Andrea E-mail: acornia@unimo.it; Affronte, Marco; Gatteschi, Dante; Jansen, Aloysius G.M.; Caneschi, Andrea; Sessoli, Roberta

    2001-05-01

    The single-molecule superparamagnet [Mn{sub 12}O{sub 12}(OAc){sub 16}(H{sub 2}O){sub 4}]{center_dot}2AcOH{center_dot}4H{sub 2}O (Mn{sub 12}-acetate) has attracted considerable attention because it shows exceedingly slow paramagnetic relaxation at low temperature. The cluster has S{sub 4} symmetry in the solid state and comprises four Mn(IV) ions (S=((3)/(2))) and eight Mn(III) ions (S=2) which are magnetically coupled to give an S=10 ground state. The ground manifold is largely split in zero magnetic field and many efforts have been spent to determine the zero-field splitting (zfs) parameters {alpha}, {beta} and {gamma} appearing in the fourth-order spin-Hamiltonian H={alpha}S{sub z}{sup 2}+{beta}S{sub z}{sup 4}+{gamma}(S{sub +}{sup 4}+S{sub -}{sup 4})+{mu}{sub B}B{center_dot}g{center_dot}S. These are of paramount importance for defining the magnetic anisotropy of the cluster, which in turn determines the slow relaxation of the magnetization and quantum tunneling effects at low temperatures. We want to show that cantilever torque magnetometry in high fields is a suitable technique for determining second- and fourth-order anisotropic contributions in high-spin molecules, such as Mn{sub 12}-acetate. The main advantage of the method lies in its high sensitivity which allows to use very small single crystals. Torque curves have been recorded at 4.2 K by applying the magnetic field (0-28 T) very close to the ab-plane of the tetragonal unit cell. The zfs parameters obtained by this procedure [{alpha}=-0.389(5) cm{sup -1} and {beta}=-8.4(5)x10{sup -4} cm{sup -1}] are in excellent agreement with those determined by spectroscopic techniques, such as high-frequency EPR and inelastic neutron scattering.

  9. Synthesis and characterization of composites HoMn_1_-_x(Ni,Co)_xO_3

    International Nuclear Information System (INIS)

    Santos, Cassio Morilla dos

    2011-01-01

    In this work was accomplished the synthesis process and structural and magnetic characterization of HoMn_1_-_X(Ni,Co)_XO_3 compounds of perovskite structure. The samples synthesis were performed through modified polymeric precursor method. After synthesis and solvent removal, the polymer resin formed was treated at 350 deg C/4h for organic constituents removal, followed by heating treatment at 500 deg C/4h and 900 deg C/20h to obtain the crystalline phase. For structural characterization, it was used D10B-XPD beam line of Laboratorio Nacional de Luz Sincrotron (LNLS), where X-rays wavelengths below cobalt, manganese and nickel absorption edge, were used. The formation of HoNi_0_._5_0Mn_0_._5_0O_3, HoCo_0_._5_0Mn_0_._5_0O_3 and HoNi_0_._2_5Co_0_._2_5Mn_0_._5_0O_3 phases were observed by X-ray diffraction technique. By Rietveld refinement method for sample HoNi_0_._2_5Co_0_._2_5Mn_0_._5_0O_3, it was determined that cobalt and nickel had similar occupations at the top and bottom of unit cell, while the manganese preferentially occupied plan 002. The magnetic response of samples was studied through magnetization curves according to the temperature function and the applied magnetic field. The ZFC curves showed a paramagnetic response associated to holmium magnetic moment, and ferromagnetism, antiferromagnetism and ferrimagnetism coexistence, due to sublattices formed by transition metals. The FC curves evidenced the spin reversal phenomenon, associated to the interaction between the sublattice formed by transition metals with sublattices formed by rare-earth, considering a mechanism of antiferromagnetic exchange interaction. (author)

  10. Influence of Mn incorporation for Ni on the magnetocaloric properties of rapidly solidified off-stoichiometric NiMnGa ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Sushmita; Singh, Satnam; Roy, R.K.; Ghosh, M.; Mitra, A.; Panda, A.K., E-mail: akpanda@nmlindia.org

    2016-01-01

    The present investigation addresses the magnetocaloric behaviour in a series of Ni{sub 77−x}Mn{sub x}Ga{sub 23} (x=23, 24, 25, 27 and 29) rapidly solidified alloys prepared in the form of ribbons by melt spinning technique. The approach of the study is to identify the off-stoichiometric composition wherein room temperature magneto-structural transformation is achieved. The alloy chemistry was tailored through Mn incorporation for Ni such that the magnetic and structural transitions were at close proximity to achieve highest entropy value of ΔS equal to 8.51 J Kg{sup −1} K{sup −1} for #Mn{sub 24} ribbon measured at an applied field of 3 T. When such transitions are more staggered as in #Mn{sub 29} the entropy value of ribbon reduced to as low as 1.61 J Kg{sup −1} K{sup −1}. Near room temperature transformations in #Mn{sub 24} ribbon have been observed through calorimetric and thermomagnetic evaluation. Reverse martensitic transformation (martensite→autstenite) temperature indicates not only distinct change in the saturation flux density but also an inter-martensitic phase. Microstructural analysis of #Mn{sub 24} alloy ribbon revealed structural ordering with the existence of plate morphology evidenced for martensitic phase. - Highlights: • Magnetocaloric effect in a series of melt spun NiMnGa ribbon is addressed. • The alloy series revealed austenitic state as well as its presence with martensite. • The morphology of the ribbons has been shown and discussed through phase analysis. • Influence of magnetising field on entropy and relative cooling power is discussed. • Influence of intermartensitic state on magnetization plots have also been shown.

  11. What is the Valence of Mn in Ga(1-x)Mn(x)N?

    Science.gov (United States)

    Nelson, Ryky; Berlijn, Tom; Moreno, Juana; Jarrell, Mark; Ku, Wei

    2015-11-06

    We investigate the current debate on the Mn valence in Ga(1-x)Mn(x)N, a diluted magnetic semiconductor (DMS) with a potentially high Curie temperature. From a first-principles Wannier-function analysis, we unambiguously find the Mn valence to be close to 2+ (d(5)), but in a mixed spin configuration with average magnetic moments of 4μ(B). By integrating out high-energy degrees of freedom differently, we further derive for the first time from first-principles two low-energy pictures that reflect the intrinsic dual nature of the doped holes in the DMS: (1) an effective d(4) picture ideal for local physics, and (2) an effective d(5) picture suitable for extended properties. In the latter, our results further reveal a few novel physical effects, and pave the way for future realistic studies of magnetism. Our study not only resolves one of the outstanding key controversies of the field, but also exemplifies the general need for multiple effective descriptions to account for the rich low-energy physics in many-body systems in general.

  12. Electrical engineer's reference book

    CERN Document Server

    Laughton, M A

    1985-01-01

    Electrical Engineer's Reference Book, Fourteenth Edition focuses on electrical engineering. The book first discusses units, mathematics, and physical quantities, including the international unit system, physical properties, and electricity. The text also looks at network and control systems analysis. The book examines materials used in electrical engineering. Topics include conducting materials, superconductors, silicon, insulating materials, electrical steels, and soft irons and relay steels. The text underscores electrical metrology and instrumentation, steam-generating plants, turbines

  13. Anion Redox Chemistry in the Cobalt Free 3d Transition Metal Oxide Intercalation Electrode Li[Li0.2Ni0.2Mn0.6]O2.

    Science.gov (United States)

    Luo, Kun; Roberts, Matthew R; Guerrini, Niccoló; Tapia-Ruiz, Nuria; Hao, Rong; Massel, Felix; Pickup, David M; Ramos, Silvia; Liu, Yi-Sheng; Guo, Jinghua; Chadwick, Alan V; Duda, Laurent C; Bruce, Peter G

    2016-09-07

    Conventional intercalation cathodes for lithium batteries store charge in redox reactions associated with the transition metal cations, e.g., Mn(3+/4+) in LiMn2O4, and this limits the energy storage of Li-ion batteries. Compounds such as Li[Li0.2Ni0.2Mn0.6]O2 exhibit a capacity to store charge in excess of the transition metal redox reactions. The additional capacity occurs at and above 4.5 V versus Li(+)/Li. The capacity at 4.5 V is dominated by oxidation of the O(2-) anions accounting for ∼0.43 e(-)/formula unit, with an additional 0.06 e(-)/formula unit being associated with O loss from the lattice. In contrast, the capacity above 4.5 V is mainly O loss, ∼0.08 e(-)/formula. The O redox reaction involves the formation of localized hole states on O during charge, which are located on O coordinated by (Mn(4+)/Li(+)). The results have been obtained by combining operando electrochemical mass spec on (18)O labeled Li[Li0.2Ni0.2Mn0.6]O2 with XANES, soft X-ray spectroscopy, resonant inelastic X-ray spectroscopy, and Raman spectroscopy. Finally the general features of O redox are described with discussion about the role of comparatively ionic (less covalent) 3d metal-oxygen interaction on anion redox in lithium rich cathode materials.

  14. Profile of patients with uveitis referred to a multidisciplinary unit in northern Spain.

    Science.gov (United States)

    Fanlo, P; Heras, H; Pérez, D; Tiberio, G; Espinosa, G; Adan, A

    2017-05-01

    To describe the main characteristics of a cohort of patients with uveitis referred to a multidisciplinary unit in northern Spain. Retrospective analysis of clinical records of patients evaluated in the Multidisciplinary Unit of the Navarra Hospital Complex from the period January 2010 until March 2015. An analysis was performed on the demographic characteristics, origin, types of uveitis, laterality, and aetiology. The present series was also compared with 2 previous series from Castilla y León and Barcelona. A total of 500 patients were identified, with a mean age of 47.9±16.4 years, with 50% women. The most frequent type of uveitis was anterior uveitis (65.4%), followed by posterior uveitis (17.6%), panuveitis (15.2%), and intermediate uveitis (1.8%). The origin was unclassifiable in 31.2%, followed by non-infectious systemic disease in 29.2%. Ankylosing spondylitis was the most frequent cause in 10.8% of patients, followed by herpes infection in 9.2%, and toxoplasmosis in 7.8%, respectively. Compared with the 2other cohorts, the present cohort showed a higher proportion of unilateral anterior uveitis. Furthermore, the patients from the Navarra series had a higher prevalence of unilateral and idiopathic uveitis compared to the series from Barcelona. The main characteristics of the present cohort of patients with uveitis are similar to those of patients from other regions of our country. Unilateral anterior uveitis and idiopathic uveitis were the most frequent in our series. Copyright © 2016 Sociedad Española de Oftalmología. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. First-principles spin-transfer torque in CuMnAs |GaP |CuMnAs junctions

    Science.gov (United States)

    Stamenova, Maria; Mohebbi, Razie; Seyed-Yazdi, Jamileh; Rungger, Ivan; Sanvito, Stefano

    2017-02-01

    We demonstrate that an all-antiferromagnetic tunnel junction with current perpendicular to the plane geometry can be used as an efficient spintronic device with potential high-frequency operation. By using state-of-the-art density functional theory combined with quantum transport, we show that the Néel vector of the electrodes can be manipulated by spin-transfer torque. This is staggered over the two different magnetic sublattices and can generate dynamics and switching. At the same time the different magnetization states of the junction can be read by standard tunneling magnetoresistance. Calculations are performed for CuMnAs |GaP |CuMnAs junctions with different surface terminations between the antiferromagnetic CuMnAs electrodes and the insulating GaP spacer. We find that the torque remains staggered regardless of the termination, while the magnetoresistance depends on the microscopic details of the interface.

  16. Facile solvothermal synthesis of graphene-MnOOH nanocomposites

    International Nuclear Information System (INIS)

    Chen Sheng; Zhu Junwu; Huang Huajie; Zeng Guiyu; Nie Fude; Wang Xin

    2010-01-01

    In this paper, we report a facile solvothermal route capable of aligning MnOOH nanocrystals on graphene. X-ray diffraction (XRD) and transmission electron microscopy (TEM) observations indicate that the exfoliated graphene sheets are decorated randomly by MnOOH nanocrystals, forming well-dispersed graphene-MnOOH nanocomposites. Dissolution-crystallization and oriented attachment are speculated to be the vital mechanisms in the synthetic process. The attachment of additives, such as MnOOH nanoparticles, are found to be beneficial for the exfoliation of GO as well as preventing the restack of graphene sheets. Moreover, cyclic voltammetry (CV) analyses suggest that the electrochemical reversibility is improved by anchoring MnOOH on graphene. Notably, the as-fabricated nanocomposites reveal unusual catalytic performance for the thermal decomposition of ammonium perchlorate (AP) due to the concerted effects of graphene and MnOOH. This template-free method is easy to reproduce, and the process proceeds at a low temperature and can be readily extended to prepare other graphene-based nanocomposites. - Graphical abstract: Manganese oxyhydroxide nanocrystals have been successfully attached onto the graphene sheets via an oriented attachment and dissolution-crystallization process, forming a nanocomposite with unusual catalytic capabilities. Display Omitted

  17. Electronic and magnetic properties of MnAu nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Masrour, R., E-mail: rachidmasrour@hotmail.com [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, Safi 46000 (Morocco); LMPHE (URAC 12), Faculty of Science, Mohammed V-Agdal University, Rabat (Morocco); Hlil, E.K. [Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble Cedex 9 (France); Hamedoun, M. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Benyoussef, A. [LMPHE (URAC 12), Faculty of Science, Mohammed V-Agdal University, Rabat (Morocco); Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco); Mounkachi, O; El moussaoui, H. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco)

    2014-03-15

    Self-consistent ab initio calculations, based on DFT (Density Functional Theory) approach and using FLAPW (Full potential Linear Augmented Plane Wave) method, are performed to investigate both electronic and magnetic properties of the MnAu nanoparticles. Polarized spin is included in calculations within the framework of the antiferromagnetic. The Mn magnetic moments where considered to be along c axes. Obtained data from ab initio calculations are used as input for the high temperature series expansions (HTSEs) calculations to compute other magnetic parameters. The zero-field high temperature static susceptibility series of the magnetic moment (m) and nearest-neighbour Heisenberg and XY models on a MnAu nanoparticles is thoroughly analyzed by means of a power series coherent anomaly method (CAM) for different nanoparticles. The exchanges interactions between the magnetic atoms are obtained for MnAu nanoparticles. - Highlights: • The electronic properties of the MnAu nanoparticles are studied using the DFT and FLAPW. • Magnetic moment is computed. • The ab initio calculations are used as input for HTSEs to compute other magnetic parameters. • The exchanges interactions and blocking temperature are obtained for MnAu nanoparticles.

  18. Electronic and magnetic properties of MnAu nanoparticles

    International Nuclear Information System (INIS)

    Masrour, R.; Hlil, E.K.; Hamedoun, M.; Benyoussef, A.; Mounkachi, O; El moussaoui, H.

    2014-01-01

    Self-consistent ab initio calculations, based on DFT (Density Functional Theory) approach and using FLAPW (Full potential Linear Augmented Plane Wave) method, are performed to investigate both electronic and magnetic properties of the MnAu nanoparticles. Polarized spin is included in calculations within the framework of the antiferromagnetic. The Mn magnetic moments where considered to be along c axes. Obtained data from ab initio calculations are used as input for the high temperature series expansions (HTSEs) calculations to compute other magnetic parameters. The zero-field high temperature static susceptibility series of the magnetic moment (m) and nearest-neighbour Heisenberg and XY models on a MnAu nanoparticles is thoroughly analyzed by means of a power series coherent anomaly method (CAM) for different nanoparticles. The exchanges interactions between the magnetic atoms are obtained for MnAu nanoparticles. - Highlights: • The electronic properties of the MnAu nanoparticles are studied using the DFT and FLAPW. • Magnetic moment is computed. • The ab initio calculations are used as input for HTSEs to compute other magnetic parameters. • The exchanges interactions and blocking temperature are obtained for MnAu nanoparticles

  19. Consuming America : A Data-Driven Analysis of the United States as a Reference Culture in Dutch Public Discourse on Consumer Goods, 1890-1990

    NARCIS (Netherlands)

    Wevers, M.J.H.F.

    2017-01-01

    Consuming America offers a data-driven, longitudinal analysis of the historical dynamics that have underpinned a long-term, layered cultural-historical process: the emergence of the United States as a dominant reference culture in Dutch public discourse on consumer goods between 1890 and 1990. The

  20. Electronic and magnetic structures of ferrimagnetic Mn{sub 2}Sb compound

    Energy Technology Data Exchange (ETDEWEB)

    Masrour, R., E-mail: rachidmasrour@hotmail.com [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, 63 46000 Safi (Morocco); LMPHE (URAC 12), Faculty of Science, Mohammed V-Agdal University, Rabat (Morocco); Hlil, E.K. [Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble Cedex 9 (France); Hamedoun, M. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Benyoussef, A. [LMPHE (URAC 12), Faculty of Science, Mohammed V-Agdal University, Rabat (Morocco); Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco); Mounkachi, O.; El moussaoui, H. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco)

    2015-01-15

    The Self-consistent ab initio calculations, based on DFT (Density Functional Theory) approach and using FLAPW (Full potential Linear Augmented Plane Wave) method, are performed to investigate both electronic and magnetic properties of the Mn{sub 2}Sb compound. Polarized spin and spin–orbit coupling are included in calculations within the framework of the antiferromagnetic state between two adjacent Mn{sub 1} and Mn{sub 2} atoms. Magnetic moment considered to lie along (0 0 1) axes are computed. The antiferromagnetic energy of Mn{sub 2}Sb systems is obtained. Obtained data from ab initio calculations are used as input for the high temperature series expansions (HTSEs) calculations to compute other magnetic parameters. The exchange interactions between the magnetic atoms Mn{sub 1}−Mn{sub 2} in Mn{sub 2}Sb are given by using the mean field theory. The HTSEs of the magnetic susceptibility of with the magnetic moments in Mn{sub 2}Sb (m{sub Mn{sub 1}}and m{sub Mn{sub 2}}) through Ising model is given up to tenth order series in (x=J(Mn{sub 1}−Mn{sub 2})/k{sub B}T). The Néel temperature T{sub N}(K) is obtained by HTSEs applied to the magnetic susceptibility series combined with the Padé approximant method. The critical exponent γ associated with the magnetic susceptibility is deduced as well. - Highlights: • Ab initio calculations is using to investigate both electronic and magnetic properties of the Mn{sub 2}Sb compound. • Obtained data from ab initio calculations are used as input for the HTSEs. • The Néel temperature is obtained for Mn{sub 2}Sb compound.

  1. Experimental and first-principles study of ferromagnetism in Mn-doped zinc stannate nanowires

    KAUST Repository

    Deng, Rui; Zhou, Hang; Li, Yong-Feng; Wu, Tao; Yao, Bin; Qin, Jie-Ming; Wan, Yu-Chun; Jiang, Da-Yong; Liang, Qing-Cheng; Liu, Lei

    2013-01-01

    Room temperature ferromagnetism was observed in Mn-doped zinc stannate (ZTO:Mn) nanowires, which were prepared by chemical vapor transport. Structural and magnetic properties and Mn chemical states of ZTO:Mn nanowires were investigated by X-ray diffraction, superconducting quantum interference device (SQUID) magnetometry and X-ray photoelectron spectroscopy. Manganese predominantly existed as Mn2+ and substituted for Zn (Mn Zn) in ZTO:Mn. This conclusion was supported by first-principles calculations. MnZn in ZTO:Mn had a lower formation energy than that of Mn substituted for Sn (MnSn). The nearest neighbor MnZn in ZTO stabilized ferromagnetic coupling. This observation supported the experimental results. © 2013 AIP Publishing LLC.

  2. Experimental and first-principles study of ferromagnetism in Mn-doped zinc stannate nanowires

    KAUST Repository

    Deng, Rui

    2013-07-17

    Room temperature ferromagnetism was observed in Mn-doped zinc stannate (ZTO:Mn) nanowires, which were prepared by chemical vapor transport. Structural and magnetic properties and Mn chemical states of ZTO:Mn nanowires were investigated by X-ray diffraction, superconducting quantum interference device (SQUID) magnetometry and X-ray photoelectron spectroscopy. Manganese predominantly existed as Mn2+ and substituted for Zn (Mn Zn) in ZTO:Mn. This conclusion was supported by first-principles calculations. MnZn in ZTO:Mn had a lower formation energy than that of Mn substituted for Sn (MnSn). The nearest neighbor MnZn in ZTO stabilized ferromagnetic coupling. This observation supported the experimental results. © 2013 AIP Publishing LLC.

  3. Stability and electronic properties of Cd0.75Mn0.25S and Cd0.75Mn0.25Se in B3 phase

    Energy Technology Data Exchange (ETDEWEB)

    Rani, Anita [Guru Nanak College for Girls, Sri Muktsar Sahib, Punjab (India); Kumar, Ranjan [Panjab University, Department of Physics, Chandigarh (India)

    2015-08-15

    We studied the structural, elastic, spin-polarized electronic band structures and magnetic properties of the diluted magnetic semiconductor Cd{sub 1-x}Mn{sub x}S and Cd{sub 1-x} Mn{sub x}Se in zinc blende phase (B3) for x = 0.25 using ab initio method. The calculations were performed by using density functional theory as implemented in the Spanish Initiative for Electronic Simulations with Thousands of Atoms code using local density approximation. Calculated electronic band structures and magnetic properties of Cd{sub 1-x}Mn{sub x}S are discussed in terms of contribution of Mn 3d{sup 5} 4s{sup 2}, Cd 4d{sup 10} 5s{sup 2}, S 3s{sup 2} 3p{sup 4} orbitals. The total magnetic moment is found to be 5.00 μ{sub b} for Cd{sub 1-x}Mn{sub x}S and Cd{sub 1-x}Mn{sub x}Se at x = 0.25. This value indicates that Mn atom adds no hole carrier to the perfect CdS crystal. We determine the spin-exchange splitting energies produced by Mn 3d states, s-d exchange constant N{sub 0}α, and p-d exchange constant N{sub 0}β. We found that Mn-doped systems are ferromagnetic. Calculated results are in good agreement with previous studies. (orig.)

  4. Anthrax and the Geochemistry of Soils in the Contiguous United States

    Directory of Open Access Journals (Sweden)

    Dale W. Griffin

    2014-08-01

    Full Text Available Soil geochemical data from sample sites in counties that reported occurrences of anthrax in wildlife and livestock since 2000 were evaluated against counties within the same states (MN, MT, ND, NV, OR, SD and TX that did not report occurrences. These data identified the elements, calcium (Ca, manganese (Mn, phosphorus (P and strontium (Sr, as having statistically significant differences in concentrations between county type (anthrax occurrence versus no occurrence. Tentative threshold values of the lowest concentrations of each of these elements (Ca = 0.43 wt %, Mn = 142 mg/kg, P = 180 mg/kg and Sr = 51 mg/kg and average concentrations (Ca = 1.3 wt %, Mn = 463 mg/kg, P = 580 mg/kg and Sr = 170 mg/kg were identified from anthrax-positive counties as prospective investigative tools in determining whether an outbreak had “potential” or was “likely” at any given geographic location in the contiguous United States.

  5. Refinement of Modeled Aqueous-Phase Sulfate Production via the Fe- and Mn-Catalyzed Oxidation Pathway

    Directory of Open Access Journals (Sweden)

    Syuichi Itahashi

    2018-04-01

    Full Text Available We refined the aqueous-phase sulfate (SO42− production in the state-of-the-art Community Multiscale Air Quality (CMAQ model during the Japanese model inter-comparison project, known as Japan’s Study for Reference Air Quality Modeling (J-STREAM. In Japan, SO42− is the major component of PM2.5, and CMAQ reproduces the observed seasonal variation of SO42− with the summer maxima and winter minima. However, CMAQ underestimates the concentration during winter over Japan. Based on a review of the current modeling system, we identified a possible reason as being the inadequate aqueous-phase SO42− production by Fe- and Mn-catalyzed O2 oxidation. This is because these trace metals are not properly included in the Asian emission inventories. Fe and Mn observations over Japan showed that the model concentrations based on the latest Japanese emission inventory were substantially underestimated. Thus, we conducted sensitivity simulations where the modeled Fe and Mn concentrations were adjusted to the observed levels, the Fe and Mn solubilities were increased, and the oxidation rate constant was revised. Adjusting the concentration increased the SO42− concentration during winter, as did increasing the solubilities and revising the rate constant to consider pH dependencies. Statistical analysis showed that these sensitivity simulations improved model performance. The approach adopted in this study can partly improve model performance in terms of the underestimation of SO42− concentration during winter. From our findings, we demonstrated the importance of developing and evaluating trace metal emission inventories in Asia.

  6. Electrochemical Properties of Hydrogen-Storage Alloys ZrMn{sub 2}Ni{sub x} and ZrMnNi{sub 1+x} for Ni-MH Secondary Battery

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hye Ryoung [Faculty of Applied Chemistry, Chonnam National University, Kwangju (Korea); Kwon, Ik Hyun [Automobile High-Technology Research Institute, Division of Advanced Materials Engineering, Chonbuk National University, Chonju (Korea)

    2001-04-01

    In order to improve the performance of AB{sub 2}-type hydrogen-storage alloys for Ni-MH secondary battery, AB{sub 2}-type alloys, ZrMn{sub 2}Ni{sub x}(x=0.0, 0.3, 0.6, 0.9 and 1.2) and ZrMnNi{sub 1+x}(x=0.0, 0.1, 0.2, 0.3 and 0.4) were prepared as the Zr-Mn-Ni three component alloys. The hydrogen-storage and the electrochemical properties were investigated. The C14 Laves phase formed in all alloys of ZrMn{sub 2}Ni{sub x}(x=0.0 {approx} 1.2). The equilibrium plateau pressure of the alloy, ZrMn{sub 2}Ni{sub 0.6}-H{sub 2} system, was about 0.5 atm at 30 degree C. Among these alloys, ZrMn{sub 2}Ni{sub 0.6} was the easiest to activate, and it had the largest discharge capacity as well as the best cycling performance. The C14 Laves phase also formed in all alloys of ZrMnNi{sub 1+x}(x=0.0 {approx} 0.4). The equilibrium plateau pressure of the alloy, ZrMnNi{sub 1.0}-H{sub 2} system, was about 0.45 atm at 30 degree C. Among these alloys, ZrMnNi{sub 1.0} was the easiest to activate, taking only 3 charge-discharge cycles, and it had the largest discharge capacity of 42 mAh/g. Among these alloys, ZrMn{sub 2}Ni{sub x}(x=0.0 {approx} 1.2) and ZrMnNi{sub 1+x}(x=0.0 {approx} 0.4), ZrMnNi{sub 1.0} had the largest discharge capacity (maximum value of 42 mAh/g), and it showed the fastest activation and good cycling performance. 23 refs., 4 figs., 2 tabs.

  7. Properties of Mn-doped ZnO nanopowder

    Energy Technology Data Exchange (ETDEWEB)

    Schlenker, E.; Bakin, A.; Wehmann, H.H.; Al-Suleiman, M.; Waag, A. [Technical University Braunschweig, Institute of Semiconductor Technology, Braunschweig (Germany); Schmid, H.; Mader, W. [Universitaet Bonn, Institut fuer Anorganische Chemie, Bonn (Germany); Bremers, H.; Hangleiter, A. [Technical University Braunschweig, Institute of Applied Physics, Braunschweig (Germany); Luedke, J.; Albrecht, M. [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany)

    2008-06-15

    The structural and magnetic properties of Mn-doped ZnO nanopowder are investigated and compared to undoped ZnO crystals. Mn incorporation leads to an increase in the lattice constants as revealed by X-ray diffraction measurements. An inhomogeneous distribution of the Mn atoms within the nanopowder was detected by energy-dispersive X-ray and electron-energy-loss spectroscopy measurements. Magnetic features are investigated by means of SQUID magnetometry on ensembles of powder particles as well as by magnetic force microscopy to study the behavior of single grains. (orig.)

  8. Improvement of the photocatalytic activity of magnetite by Mn-incorporation

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Hudson W.P., E-mail: hudsonwpc@yahoo.com.br; Hammer, Peter, E-mail: peter@iq.unesp.br; Pulcinelli, Sandra H., E-mail: sandrap@iq.unesp.br; Santilli, Celso V., E-mail: santilli@iq.unesp.br; Molina, Eduardo F., E-mail: efmolina@iq.unesp.br

    2014-02-15

    Highlights: • Efficiently methylene blue dye discoloration using an Mn doped magnetite catalyst. • Evidence for isomorphic substitution of Fe{sup 2+} by Mn{sup 2+} in the octahedral structure. • Mechanism of the enhanced photocatalysis induced by active Mn sites. • Importance of the Mn reaction rate constant and effective surface area. -- Abstract: Mn-incorporated Fe{sub 3}O{sub 4} photocatalysts were prepared by a simple co-precipitation method. Photocatalytic discoloration of Methylene Blue (MB) was used to evaluate the performance of these catalysts. The DSC results have shown that the insertion of Mn into Fe{sub 3}O{sub 4} lattice has increased converting Fe{sub 3}O{sub 4} to γ-Fe{sub 2}O{sub 3}. This is accompanied by a decrease of surface area and of crystallinity, as detected by XRD. The analysis of the chemical environment by XPS has shown that Mn{sup 2+} replaces Fe{sup 2+} preferentially in the octahedral sites while Mn{sup 3+} replaces Fe{sup 3+} of inverse spinel sites. The Mn-incorporated samples were significantly more efficient in MB discoloration assisted by UVA irradiation and H{sub 2}O{sub 2}. It was also found that ascorbic acid prevents H{sub 2}O{sub 2} decomposition, by scavenging preferentially ·OOH radicals produced at Mn sites. Finally, the results reported here can contribute for a better comprehension of the activity of composite catalysts and the design of efficient systems for discoloration of organic pollutants.

  9. Magnetic anisotropies of (Ga,Mn)As films and nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Frank

    2011-02-02

    In this work the magnetic anisotropies of the diluted magnetic semiconductor (Ga,Mn)As were investigated experimentally. (Ga,Mn)As films show a superposition of various magnetic anisotropies which depend sensitively on various parameters such as temperature, carrier concentration or lattice strain. However, the anisotropies of lithographically prepared (Ga,Mn)As elements differ significantly from an unpatterned (Ga,Mn)As film. In stripe-shaped structures this behaviour is caused by anisotropic relaxation of the compressive lattice strain. In order to determine the magnetic anisotropies of individual (Ga,Mn)As nanostructures a combination of ferromagnetic resonance and time-resolved scanning Kerr microscopy was employed in this thesis. In addition, local changes of the magnetic anisotropy in circular and rectangular structures were visualized by making use of spatially resolved measurements. Finally, also the influence of the laterally inhomogeneous magnetic anisotropies on the static magnetic properties, such as coercive fields, was investigated employing spatially resolved static MOKE measurements on individual (Ga,Mn)As elements. (orig.)

  10. Oxidative and antibacterial activity of Mn3O4

    International Nuclear Information System (INIS)

    Chowdhury, Al-Nakib; Azam, Md. Shafiul; Aktaruzzaman, Md.; Rahim, Abdur

    2009-01-01

    Mn 3 O 4 nanoparticles with diameter ca. 10 nm were synthesized by the forced hydrolysis of Mn(II) acetate at 80 deg. C. The X-ray diffraction (XRD), Fourier transform infra red (FT-IR) spectroscopy, scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) techniques were employed to study structural features and chemical composition of the nanoparticles. The unique oxidative activity of the Mn 3 O 4 nanoparticles was demonstrated in the polymerization and dye degradation reactions. On adding Mn 3 O 4 suspension to an acidic solution of aniline, yielded immediately green sediment of polyaniline (PANI). The organic dyes, viz., methylene blue (MB) and procion red (PR) were found to be completely decolorized from their aqueous solution on treating the dyes with Mn 3 O 4 suspension in acidic media. The Mn 3 O 4 nanoparticles also showed a clear antibacterial activity against the Vibrio cholerae, Shigella sp., Salmonella sp., and Escherichi coli bacteria that cause cholera, dysentery, typhoid, and diarrhea diseases, respectively.

  11. Single Crystal Growth of Multiferroic Double Perovskites: Yb2CoMnO6 and Lu2CoMnO6

    Directory of Open Access Journals (Sweden)

    Hwan Young Choi

    2017-02-01

    Full Text Available We report on the growth of multiferroic Yb2CoMnO6 and Lu2CoMnO6 single crystals which were synthesized by the flux method with Bi2O3. Yb2CoMnO6 and Lu2CoMnO6 crystallize in a double-perovskite structure with a monoclinic P21/n space group. Bulk magnetization measurements of both specimens revealed strong magnetic anisotropy and metamagnetic transitions. We observed a dielectric anomaly perpendicular to the c axis. The strongly coupled magnetic and dielectric states resulted in the variation of both the dielectric constant and the magnetization by applying magnetic fields, offering an efficient approach to accomplish intrinsically coupled functionality in multiferroics.

  12. Local Structure and Magnetism of (Ga,Mn)As

    CERN Document Server

    AUTHOR|(CDS)2093111; Temst, Kristiaan

    Throughout the years, dilute magnetic semiconductors (DMS) have emerged as promising materials for semiconductor-based spintronics. In particular, (Ga,Mn)As has become the model system in which to explore the physics of carrier-mediated ferromagnetism in semiconductors and the associated spintronic phenomena, with a number of interesting functionalities and demonstrated proof-of-concept devices. It constitutes the perfect example of how the magnetic behavior of DMS materials is strongly influenced by local structure. In this thesis, we address key aspects of the interplay between local structure and ferromagnetism of (Ga,Mn)As. We unambiguously identify the lattice site occupied by interstitial Mn as the tetrahedral interstitial site with As nearest neighbors T(As). We show, furthermore, that the T(As) is the most energetically favorable site regardless of the interstitial atom forming or not complexes with substitutional Mn. We also evaluate the thermal stability of both interstitial and substitutional Mn si...

  13. Lithium intercalation into layered LiMnO2

    DEFF Research Database (Denmark)

    Vitins, G.; West, Keld

    1997-01-01

    Recently Armstrong and Bruce(1) reported a layered modification of lithium manganese oxide, LiMnO2, isostructural with LiCoO2. LiMnO2 obtained by ion exchange from alpha-NaMnO2 synthesized in air is characterized by x-ray diffraction and by electrochemical insertion and extraction of lithium...... in a series of voltage ranges between 1.5 and 4.5 V relative to a lithium electrode. During cycling voltage plateaus at 3.0 and 4.0 V vs. Li develop, indicating that the material is converted from its original layered structure to a spinel structure. This finding is confirmed by x-ray diffraction. Contrary...... to expectations based on thermodynamics, insertion of larger amounts of lithium leads to a more complete conversion. We suggest that a relatively high mobility of manganese leaves Li and Mn randomly distributed in the close-packed oxygen lattice after a deep discharge. This isotropic Mn distribution can...

  14. Magnetism of DyMn2 and HoMn2 - 57Fe and 119Sn Moessbauer studies

    International Nuclear Information System (INIS)

    Krop, K.; Haeufler, T.; Hilscher, G.; Steiner, W.

    1995-01-01

    Moessbauer spectra were measured for two Laves phase compounds DyMn 2 and HoMn 2 in which manganese was substituted to 0.5% with 57 Fe and to 0.2% with 119 Sn. At 4.2 K the 57 Fe and 119 Sn spectra of the Dy compound were unambiguously fitted each with two Zeeman patterns (with relative contributions to the spectra 3:1) corresponding to two different Mn sites - magnetic and nonmagnetic. Transferred hyperfine fields at 119 Sn were found to be proportional to the magnetic moment of Dy and its ferromagnetic component, corroborating the magnetic structure found in neutron diffraction (ND) experiment. The same procedure was carried on with the spectra measured for the Ho compound, but the above mentioned proportionality was not found. ((orig.))

  15. Re-entrant lithium local environments and defect driven electrochemistry of Li- and Mn-rich Li-ion battery cathodes.

    Science.gov (United States)

    Dogan, Fulya; Long, Brandon R; Croy, Jason R; Gallagher, Kevin G; Iddir, Hakim; Russell, John T; Balasubramanian, Mahalingam; Key, Baris

    2015-02-18

    Direct observations of structure-electrochemical activity relationships continue to be a key challenge in secondary battery research. (6)Li magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy is the only structural probe currently available that can quantitatively characterize local lithium environments on the subnanometer scale that dominates the free energy for site occupation in lithium-ion (Li-ion) intercalation materials. In the present study, we use this local probe to gain new insights into the complex electrochemical behavior of activated 0.5(6)Li2MnO3·0.5(6)LiMn(0.5)Ni(0.5)O2, lithium- and manganese-rich transition-metal (TM) oxide intercalation electrodes. We show direct evidence of path-dependent lithium site occupation, correlated to structural reorganization of the metal oxide and the electrochemical hysteresis, during lithium insertion and extraction. We report new (6)Li resonances centered at ∼1600 ppm that are assigned to LiMn6-TM(tet) sites, specifically, a hyperfine shift related to a small fraction of re-entrant tetrahedral TMs (Mn(tet)), located above or below lithium layers, coordinated to LiMn6 units. The intensity of the TM layer lithium sites correlated with tetrahedral TMs loses intensity after cycling, indicating limited reversibility of TM migrations upon cycling. These findings reveal that defect sites, even in dilute concentrations, can have a profound effect on the overall electrochemical behavior.

  16. Trace and rare earth elements fractionation in volcanic- and sediment-hosted Mn ores: a study case of Sardinia (western Italy).

    Science.gov (United States)

    Sinisi, Rosa

    2015-04-01

    and REE in Mn ores from different geological settings and the geochemical processes promoting the metal accumulation. Results clearly showed that in the studied deposits only the contents of trace metals may be referred to uptake process on Mn mineral phases. On the contrary, REE are probably hosted in silicates, such as zircons and clay minerals, that also characterize the mineralization or their presence is due to redox processes not linked to Mn ore deposition. Sinisi R., Mameli P., Mongelli G., Oggiano G. (2012). Different Mn-ores in a continental arc setting: geochemical and mineralogical evidence from Tertiary deposits of Sardinia (Italy). Ore Geology Reviews, 47, 110-125.

  17. MnDOT Library strategic plan : final report.

    Science.gov (United States)

    2017-06-01

    MnDOTs Senior Leadership asked MnDOT Library to develop a Strategic Plan that identifies and reviews the challenges facing the Library over the next five years to better address the evolving needs of the department and users. The strategic plan is...

  18. MnS spheres: Shape-controlled synthesis and its magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Kezhen [Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, 110034 (China); Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071 (China); State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 (China); Wang, Yan-Qin, E-mail: wangyanqin@tyut.edu.cn [Shanxi Key Lab. of Material Strength & Structural Impact, College of Mechanics, Taiyuan University of Technology, Taiyuan, 030024 (China); Rengaraj, Selvaraj, E-mail: srengaraj1971@yahoo.com [Department of Chemistry, College of Science, Sultan Qaboos University, Muscat, 123 (Oman); Al Wahaibi, Bushra [Department of Chemistry, College of Science, Sultan Qaboos University, Muscat, 123 (Oman); Mohamed Jahangir, A.R. [Biyaq Oil Field Services LLC, Mina Al Fahal, Muscat, 123 (Oman)

    2017-06-01

    Sphere-like MnS hierarchical microstructures were successfully synthesized by a simple hydrothermal approach, which are composed of the size tunable and self-assembled nanoparticles. These hierarchical microspheres are γ-MnS phase, which is confirmed by X-ray diffraction (XRD) results, and the stoichiometry of MnS microspheres is checked by XPS measurement. Morphological studies performed by scanning electron microscopy (SEM) method show that the as-prepared γ-MnS samples are hierarchical microspheres. The size and morphology of composed nanoparticles can be turned by the concentration of L-Cystein molecules. Here, L-Cystein not only plays a role of sulfur source but also capping agent. Furthermore, a rational mechanism about the formation and evolution of the products is proposed. The present work shows that the origin of the observed difference of magnetic properties is due to the morphology difference of MnS crystals. - Highlights: • Sphere-like MnS hierarchical microstructures were synthesized and characterized. • The size and morphology of MnS crystals can be turned by the concentration of L-Cystein molecules. • The morphology of MnS hierarchitectures exerts a remarkable effect on their magnetic property.

  19. Neutron scattering study of MnX2 (X = Br, I)

    International Nuclear Information System (INIS)

    Sato, Taku; Kadowaki, Hiroaki.

    1993-01-01

    Successive magnetic phase transitions in MnX 2 (X = Br, I), found by bulk measurements, are studied by neutron scattering experiments. There occur two (T N1 = 2.32K, T N2 = 2.17K) and three (T N1 = 3.95K, T N2 = 3.8K, T N3 = 3.45K) phase transitions in MnBr 2 and MnI 2 , respectively. We have found that magnetic structures of the both compounds in the intermediate temperature phases (MnBr 2 : T N1 > T > T N2 ; MnI 2 : T N1 > T > T N3 ) are transverse sinusoidally-modulated structures with incommensurate wave-vectors which vary as a function of temperature. As the temperature is lowered into the lowest temperature phases, the magnetic structures change via first order transition into ↑↑↓↓ and a helical structure for MnBr 2 and MnI 2 , respectively, which were determined by previous experiments. The successive phase transitions in MnBr 2 are accounted for quantitatively using a mean field approximation of a Hamiltonian consisting of exchange interactions up to third inter- and third intra-layer neighbor sites and the dipolar interaction. (author)

  20. Magnetic properties of Mn-doped ZnO diluted magnetic semiconductors

    International Nuclear Information System (INIS)

    Liu Xuechao; Zhang Huawei; Zhang Tao; Chen Boyuan; Chen Zhizhan; Song Lixin; Shi Erwei

    2008-01-01

    A series of Mn-doped ZnO films have been prepared in different sputtering plasmas by using the inductively coupled plasma enhanced physical vapour deposition. The films show paramagnetic behaviour when they are deposited in an argon plasma. The Hall measurement indicates that ferromagnetism cannot be realized by increasing the electron concentration. However, the room-temperature ferromagnetism is obtained when the films are deposited in a mixed argon-nitrogen plasma. The first-principles calculations reveal that antiferromagnetic ordering is favoured in the case of the substitution of Mn 2+ for Zn 2+ without additional acceptor doping. The substitution of N for O (N O −) is necessary to induce ferromagnetic couplings in the Zn-Mn-O system. The hybridization between N 2p and Mn 3d provides an empty orbit around the Fermi level. The hopping of Mn 3d electrons through the empty orbit can induce the ferromagnetic coupling. The ferromagnetism in the N-doped Zn-Mn-O system possibly originates from the charge transfer between Mn 2+ and Mn 3+ via N O − . The key factor is the empty orbit provided by substituting N for O, rather than the conductivity type or the carrier concentration

  1. Determination of hydrogen solubility in Fe-Mn-C melts

    Energy Technology Data Exchange (ETDEWEB)

    Lob, Alexander; Senk, Dieter [Institute of Ferrous Metallurgy (IEHK), RWTH Aachen University (Germany); Hallstedt, Bengt [Materials Chemistry (MCh), RWTH Aachen University (Germany)

    2011-02-15

    High manganese steels are supposed to be sensitive to hydrogen embrittlement. This can be explained by increased hydrogen solubility in comparison to unalloyed steels. To minimise hydrogen pick up during melting operations, it is necessary to know accurately the hydrogen solubility as function of hydrogen partial pressure, temperature and Mn content. In this work in situ measurements of hydrogen content at 12, 18 and 23 wt.% Mn (and 0.6 wt.% C) using the Hydris {sup registered} system are compared to pin-tube measurements. Below about 7 ppm [H] both methods gave the same results and above 7 ppm [H] the in situ measurement showed slightly higher hydrogen contents because some hydrogen is lost during quenching with the pin-tube method. The measured solubilities were compared with thermodynamic calculations. Using dilute solution theory with data developed for alloyed Fe-based melts with up to 10 wt.% Mn gives reasonable results except that the hydrogen solubility is slightly underestimated for the presently investigated Mn contents. This could be compensated by using an interaction parameter of e{sup Mn}{sub H}=-0.004 instead of e{sup Mn}{sub H}=-0.0012. A Calphad type extrapolation from the binary Fe-H, Mn-H and Fe-Mn systems gave results very close to the experimental ones. This work is a contribution from the collaborative research centre SFB 761 ''Steel - ab initio''. (Copyright copyright 2011 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Moessbauer spectroscopy of Fe-Mn-Cu alloys

    International Nuclear Information System (INIS)

    Paduani, Clederson; Krause, Joao Carlos; Yoschida, M.I. Soares

    2004-01-01

    Full text: Although a continuous series of solid solutions exists between Cu and Mn, Fe and Cu are miscible only a few percent at higher temperatures. In moderately concentrated Cu-Mn alloys the Mn moments are bound to the long ranged antiferromagnetic order and the perpendicular components form an X-Y spin glass. Copper alloys are largely employed in various industrial applications. In this work we study the magnetic properties of iron-rich disordered Fe-Mn-Cu alloys with the bcc structure with the experimental techniques of X-ray diffraction (XRD), Moessbauer spectroscopy (MS) and thermogravimetry (TGA). We investigate the formation of a solid solution with the bcc structure as well as the effect of the composition on the structural and magnetic properties of these alloys. A Rietveld analysis of the XRD diffractograms indicate that all prepared samples are single phase and are well crystallized with a bcc structure. (author)

  3. The influence of Mn on the crystallography and electrochemistry of nonstoichiometric AB5-type hydride-forming compounds

    International Nuclear Information System (INIS)

    Notten, P.H.L.; Latroche, M.; Percheron-Guegan, A.

    1999-01-01

    To design Co-free, low-pressure, hydride-forming compounds for application in rechargeable nickel metal hydride batteries, nonstoichiometric AB x materials were investigated. The influence of both the Mn content and the degree of nonstoichiometry on the crystallography, electrochemical cycling stability, and electrode morphology were studied. The investigated composition was in the range of La(Ni 1-z Mn z ) x with 5.0 le x le 6.0 and 0 le xz le 2.0. The annealing temperature was essential in preparing homogeneous compounds. In agreement with geometric considerations, both the a and c axis of the hexagonal unit cell increase with increasing Mn content. In contrast, the a axis decreases with increasing degree of nonstoichiometry. As proved by neutron-diffraction experiments, the introduction of dumbbell pairs of Ni or Mn atoms on the La positions in the crystal lattice is responsible for this behavior. The electrochemical cycling stability is found to be strongly dependent on both the chemical and nonstoichiometric composition. Electrochemically stable materials are characterized by the absence of a significant particle-size reduction upon electrode cycling, reducing the overall oxidation rate. Unstable materials suffer from severe mechanical cracking through which the oxidation rate is increased. The improved mechanical stability is attributed to the reduced discrete lattice expansion. The most stable compound has a partial hydrogen pressure of only 0.1 bar, which matches well with that desirable in practical NiMH batteries. Neutron-diffraction experiments confirmed the hypothesis that La atoms are replaced by dumbbell pairs of Ni, in the case of the binary LaNi 5.4 , and by Mn atoms in the case of the mn-containing nonstoichiometric compounds. Electron-probe microanalyses and density measurements support the dumbbell hypothesis

  4. [Efficacy of agreements within the Enchede Stroke Service to refer patients with a stroke from the stroke unit in the hospital to a nursing home for short-term rehabilitation

    NARCIS (Netherlands)

    Nijmeijer, N.M.; Stegge, B.M. aan de; Zuidema, S.U.; Sips, H.J.W.; Brouwers, P.J.

    2005-01-01

    OBJECTIVE: To assess the efficacy of agreements within the Enschede Stroke Service to refer patients with a stroke from the stroke unit in the hospital to a nursing home for short-term rehabilitation. DESIGN: Prospective, partly retrospective. METHOD: All patients who were referred from the stroke

  5. Synthesis and characterization of single-phase Mn-doped ZnO

    Science.gov (United States)

    Chattopadhyay, S.; Dutta, S.; Banerjee, A.; Jana, D.; Bandyopadhyay, S.; Chattopadhyay, S.; Sarkar, A.

    2009-05-01

    Different samples of Zn 1-xMn xO series have been prepared using conventional solid-state sintering method. We identified up to what extent doping will enable us to synthesize single-phase polycrystalline Mn-doped ZnO sample, which is one of the prerequisites for dilute magnetic semiconductor, and we have analyzed its some other physical aspects. In synthesizing the samples, proportion of Mn varies from 1 to 5 at%. However, the milling time varied (6, 12, 24, 48 and 96 h) only for 2 at% Mn-doped samples while for other samples (1, 3, 4 and 5 at% Mn doped) the milling time has been fixed to 96 h. Room-temperature X-ray diffraction (XRD) data reveal that all of the prepared samples up to 3 at% of Mn doping exhibit wurtzite-type structure, and no segregation of Mn and/or its oxides has been found. The 4 at% Mn-doped samples show a weak peak of ZnMn 2O 4 apart from the other usual peaks of ZnO and the intensity of this impurity peak has been further increased for 5 at% of Mn doping. So beyond 3 at% doping, single-phase behavior is destroyed. Band gap for all the 2 at% Mn-doped samples has been estimated to be between 3.21 and 3.19 eV and the reason for this low band gap values has been explained through the grain boundary trapping model. The room-temperature resistivity measurement shows an increase of resistivity up to 48 h of milling and with further milling it saturates. The defect state of these samples has been investigated using the positron annihilation lifetime (PAL) spectroscopy technique. Here all the relevant lifetime parameters of positron i.e. free annihilation ( τ1) at defect site ( τ2) and average ( τav) increases with milling time.

  6. Synthesis and characterization of single-phase Mn-doped ZnO

    International Nuclear Information System (INIS)

    Chattopadhyay, S.; Dutta, S.; Banerjee, A.; Jana, D.; Bandyopadhyay, S.; Chattopadhyay, S.; Sarkar, A.

    2009-01-01

    Different samples of Zn 1-x Mn x O series have been prepared using conventional solid-state sintering method. We identified up to what extent doping will enable us to synthesize single-phase polycrystalline Mn-doped ZnO sample, which is one of the prerequisites for dilute magnetic semiconductor, and we have analyzed its some other physical aspects. In synthesizing the samples, proportion of Mn varies from 1 to 5 at%. However, the milling time varied (6, 12, 24, 48 and 96 h) only for 2 at% Mn-doped samples while for other samples (1, 3, 4 and 5 at% Mn doped) the milling time has been fixed to 96 h. Room-temperature X-ray diffraction (XRD) data reveal that all of the prepared samples up to 3 at% of Mn doping exhibit wurtzite-type structure, and no segregation of Mn and/or its oxides has been found. The 4 at% Mn-doped samples show a weak peak of ZnMn 2 O 4 apart from the other usual peaks of ZnO and the intensity of this impurity peak has been further increased for 5 at% of Mn doping. So beyond 3 at% doping, single-phase behavior is destroyed. Band gap for all the 2 at% Mn-doped samples has been estimated to be between 3.21 and 3.19 eV and the reason for this low band gap values has been explained through the grain boundary trapping model. The room-temperature resistivity measurement shows an increase of resistivity up to 48 h of milling and with further milling it saturates. The defect state of these samples has been investigated using the positron annihilation lifetime (PAL) spectroscopy technique. Here all the relevant lifetime parameters of positron i.e. free annihilation (τ 1 ) at defect site (τ 2 ) and average (τ av ) increases with milling time.

  7. Phase relations and gibbs energies in the system Mn-Rh-O

    Science.gov (United States)

    Jacob, K. T.; Sriram, M. V.

    1994-07-01

    Phase relations in the system Mn-Rh-O are established at 1273 K by equilibrating different compositions either in evacuated quartz ampules or in pure oxygen at a pressure of 1.01 × 105 Pa. The quenched samples are examined by optical microscopy, X-ray diffraction, and energy-dispersive X-ray analysis (EDAX). The alloys and intermetallics in the binary Mn-Rh system are found to be in equilibrium with MnO. There is only one ternary compound, MnRh2O4, with normal spinel structure in the system. The compound Mn3O4 has a tetragonal structure at 1273 K. A solid solution is formed between MnRh2O4 and Mn3O4. The solid solution has the cubic structure over a large range of composition and coexists with metallic rhodium. The partial pressure of oxygen corresponding to this two-phase equilibrium is measured as a function of the composition of the spinel solid solution and temperature. A new solid-state cell, with three separate electrode compartments, is designed to measure accurately the chemical potential of oxygen in the two-phase mixture, Rh + Mn3-2xRh2xO4, which has 1 degree of freedom at constant temperature. From the electromotive force (emf), thermodynamic mixing properties of the Mn3O4-MnRh2O4 solid solution and Gibbs energy of formation of MnRh2O4 are deduced. The activities exhibit negative deviations from Raoult’s law for most of the composition range, except near Mn3O4, where a two-phase region exists. In the cubic phase, the entropy of mixing of the two Rh3+ and Mn3+ ions on the octahedral site of the spinel is ideal, and the enthalpy of mixing is positive and symmetric with respect to composition. For the formation of the spinel (sp) from component oxides with rock salt (rs) and orthorhombic (orth) structures according to the reaction, MnO (rs) + Rh2O3 (orth) → MnRh2O4 (sp), ΔG° = -49,680 + 1.56T (±500) J mol-1 The oxygen potentials corresponding to MnO + Mn3O4 and Rh + Rh2O3 equilibria are also obtained from potentiometric measurements on galvanic

  8. Syntheses, structures, and magnetic properties of three new MnII-[MoIII(CN)7]4- molecular magnets.

    Science.gov (United States)

    Wei, Xiao-Qin; Pi, Qian; Shen, Fu-Xing; Shao, Dong; Wei, Hai-Yan; Wang, Xin-Yi

    2018-05-22

    By reaction of K4[MoIII(CN)7]·2H2O, Mn(ClO4)2·6H2O and bidentate chelating ligands, three new cyano-bridged compounds, namely Mn2(3-pypz)(H2O)(CH3CN)[Mo(CN)7] (1), Mn2(1-pypz)(H2O)(CH3CN)[Mo(CN)7] (2) and Mn2(pyim)(H2O)(CH3CN)[Mo(CN)7] (3) (3-pypz = 2-(1H-pyrazol-3-yl)pyridine, 1-pypz = 2-(1H-pyrazol-1-yl)pyridine, pyim = 2-(1H-imidazol-2-yl)pyridine), have been synthesized and characterized structurally and magnetically. Single crystal X-ray analyses revealed that although the chelating ligands are different, compounds 1 to 3 are isomorphous and crystallize in the same monoclinic space group C2/m. Connected by the bridging cyano groups, one crystallographically unique [Mo(CN)7]4- unit and three crystallographically unique MnII ions of different coordination environments form similar three-dimensional frameworks, which have a four-nodal 3,4,4,7-connecting topological net with a vertex symbol of {43}{44·62}2{410·611}. Magnetic measurements revealed that compounds 1-3 display long-range magnetic ordering with critical temperatures of 64, 66 and 62 K, respectively. These compounds are rare examples of a small number of chelating co-ligand coordinated [Mo(CN)7]4--based magnetic materials. Specifically, the bidentate chelating ligands were successfully introduced into the heptacyanomolybdate system for the first time.

  9. Asymmetric carbon nanotube–MnO2 two-ply yarn supercapacitors for wearable electronics

    International Nuclear Information System (INIS)

    Su, Fenghua; Miao, Menghe

    2014-01-01

    Strong and flexible two-ply carbon nanotube yarn supercapacitors are electrical double layer capacitors that possess relatively low energy storage capacity. Pseudocapacitance metal oxides such as MnO 2 are well known for their high electrochemical performance and can be coated on carbon nanotube yarns to significantly improve the performance of two-ply carbon nanotube yarn supercapacitors. We produced a high performance asymmetric two-ply yarn supercapacitor from as-spun CNT yarn and CNT@MnO 2 composite yarn in aqueous electrolyte. The as-spun CNT yarn serves as negative electrode and the CNT@MnO 2 composite yarn as positive electrode. This asymmetric architecture allows the operating potential window to be extended from 1.0 to 2.0 V and results in much higher energy and power densities than the reference symmetric two-ply yarn supercapacitors, reaching 42.0 Wh kg −1 at a lower power density of 483.7 W kg −1 , and 28.02 Wh kg −1 at a higher power density of 19 250 W kg −1 . The asymmetric supercapacitor can sustain cyclic charge–discharge and repeated folding/unfolding actions without suffering significant deterioration of specific capacitance. The combination of high strength, flexibility and electrochemical performance makes the asymmetric two-ply yarn supercapacitor a suitable power source for flexible electronic devices for applications that require high durability and wearer comfort. (paper)

  10. Making Mn substitutional impurities in InAs using a scanning tunneling microscope.

    Science.gov (United States)

    Song, Young Jae; Erwin, Steven C; Rutter, Gregory M; First, Phillip N; Zhitenev, Nikolai B; Stroscio, Joseph A

    2009-12-01

    We describe in detail an atom-by-atom exchange manipulation technique using a scanning tunneling microscope probe. As-deposited Mn adatoms (Mn(ad)) are exchanged one-by-one with surface In atoms (In(su)) to create a Mn surface-substitutional (Mn(In)) and an exchanged In adatom (In(ad)) by an electron tunneling induced reaction Mn(ad) + In(su) --> Mn(In) + In(ad) on the InAs(110) surface. In combination with density-functional theory and high resolution scanning tunneling microscopy imaging, we have identified the reaction pathway for the Mn and In atom exchange.

  11. Interplay between localization and magnetism in (Ga,Mn)As and (In,Mn)As

    Science.gov (United States)

    Yuan, Ye; Xu, Chi; Hübner, René; Jakiela, Rafal; Böttger, Roman; Helm, Manfred; Sawicki, Maciej; Dietl, Tomasz; Zhou, Shengqiang

    2017-10-01

    Ion implantation of Mn combined with pulsed laser melting is employed to obtain two representative compounds of dilute ferromagnetic semiconductors (DFSs): G a1 -xM nxAs and I n1 -xM nxAs . In contrast to films deposited by the widely used molecular beam epitaxy, neither Mn interstitials nor As antisites are present in samples prepared by the method employed here. Under these conditions the influence of localization on the hole-mediated ferromagnetism is examined in two DFSs with a differing strength of p-d coupling. On the insulating side of the transition, ferromagnetic signatures persist to higher temperatures in I n1 -xM nxAs compared to G a1 -xM nxAs with the same Mn concentration x . This substantiates theoretical suggestions that stronger p-d coupling results in an enhanced contribution to localization, which reduces hole-mediated ferromagnetism. Furthermore, the findings support strongly the heterogeneous model of electronic states at the localization boundary and point to the crucial role of weakly localized holes in mediating efficient spin-spin interactions even on the insulator side of the metal-insulator transition.

  12. Synthesis and characterization of Mn-doped ZnO column arrays

    International Nuclear Information System (INIS)

    Yang Mei; Guo Zhixing; Qiu Kehui; Long Jianping; Yin Guangfu; Guan Denggao; Liu Sutian; Zhou Shijie

    2010-01-01

    Mn-doped ZnO column arrays were successfully synthesized by conventional sol-gel process. Effect of Mn/Zn atomic ratio and reaction time were investigated, and the morphology, tropism and optical properties of Mn-doped ZnO column arrays were characterized by SEM, XRD and photoluminescence (PL) spectroscopy. The result shows that a Mn/Zn atomic ratio of 0.1 and growth time of 12 h are the optimal condition for the preparation of densely distributed ZnO column arrays. XRD analysis shows that Mn-doped ZnO column arrays are highly c-axis oriented. As for Mn-doped ZnO column arrays, obvious increase of photoluminescence intensity is observed at the wavelength of ∼395 nm and ∼413 nm, compared to pure ZnO column arrays.

  13. Detection of stacking faults breaking the [110]/[110] symmetry in ferromagnetic semiconductors (Ga,Mn)As and (Ga,Mn)(As,P)

    International Nuclear Information System (INIS)

    Kopecky, M.; Kub, J.; Maca, F.; Masek, J.; Pacherova, O.; Rushforth, A. W.; Gallagher, B. L.; Campion, R. P.; Novak, V.; Jungwirth, T.

    2011-01-01

    We report on high-resolution x-ray diffraction measurements of (Ga,Mn)As and (Ga,Mn)(As,P) epilayers. We observe a structural anisotropy in the form of stacking faults that are present in the (111) and (111) planes and absent in the (111) and (111) planes. They occupy 10 -2 %-10 -1 % of the ferromagnetic epilayer volume while no stacking faults are detected in the controlled, undoped GaAs epilayer. Full-potential density functional calculations provide additional evidence that the formation of the stacking faults is promoted by Mn attracted to these structural defects. The enhanced Mn density along the common [110] direction of the stacking fault planes produces a symmetry-breaking mechanism of a strength and sense that can account for the uniaxial [110]/[110] magnetocrystalline anisotropy of these ferromagnetic semiconductors.

  14. Beryllium abundances in Hg-Mn stars

    International Nuclear Information System (INIS)

    Boesgaard, A.M.; Heacox, W.D.; Wolff, S.C.; Borsenberger, J.; Praderie, F.

    1982-01-01

    The Hg-Mn stars show anomalous line strengths of many chemical elements including Be. We have observed the Be ii resonance doublet at lambdalambda 3130, 3131 at 6.7 A mm -1 in 43 Hg-Mn stars and 10 normal stars in the same temperature range with the coude spectrograph of the 2.24 m University of Hawaii telescope at Mauna Kea. Measured equivalent widths of the two lines and/or the blend of the doublet have been compared with predictions from (1) LTE model atmospheres and (2) non-LTE line formation on non-LTE model atmospheres. (For strong Be ii lines, the LTE calculations result in more Be by factors of 2 to 4 than do the non-LTE calculations.) Overabundances of factors of 20--2 x 10 4 relative to solar have been found for 75% of the Hg-Mn stars. The 25% with little or no Be are typically among the cooler Hg-Mn stars, but for the stars with Be excesses, there is only marginal evidence for a correlationi of the size of the overabundance and temperature. It is suggested that diffusion driven by radiation pressure is responsible for the observed Be abundance anomalies

  15. Mn valence state and electrode performance of perovskite-type ...

    Indian Academy of Sciences (India)

    increase in the oxidation state of Mn ions was due to the formation of Mn4+ ions and oxygen vacancies. The addition of Cu ions to LSM systems could lead to enhanced electrode performance for oxygen reduction reactions originating from the change in valence of Mn ions. Keywords. Cu-doped LSM; electrical conductivity; ...

  16. X-Ray photoelectron spectroscopy and diffractometry of MnOx catalysts: surface to bulk composition relationships

    International Nuclear Information System (INIS)

    Zaki, M.I.; Kappenstein, C.

    1992-01-01

    Surface and bulk analyses of variously-composed, synthetic MnO x catalysts were carried out by means of X-ray photoelectron spectroscopy (XPS) and diffractometry (XRD), respectively. The data obtained were processed for a comprehensive assessment of bulk and surface compositions, surface oxidation state, and crystalline size. The XPS data processing revealed that a credible assessment of the surface composition (MnO x (OH) y (OH 2 ) z necessitates: (i) the implementation of experimental sensitivity factors determined on a local reference surface maintaining a close chemical similarity to the test materials, and (ii) the fine evaluation of contributions of various oxygen-containing surface species to the O 1s electron emission. The most prominent result of the present investigation is that the exposure of the bulk composition at the surface is quite proportioned. Such a surface to bulk intimacy is thought to enable genesizing the surface composition appropriate for certain catalytic and selectivity, via a possible control over the bulk formation events. (orig.)

  17. Ferri-magnetic order in Mn induced spinel Co{sub 3−x}Mn{sub x}O{sub 4} (0.1≤x≤1.0) ceramic compositions

    Energy Technology Data Exchange (ETDEWEB)

    Meena, P.L., E-mail: plmeena@gmail.com [Department of Physics, Deen Dayal Upadhyaya College (University of Delhi), Shivaji Marg, Karampura, New Delhi 110015 (India); Sreenivas, K. [Department of Physics and Astrophysics, University of Delhi, North Campus, Delhi 110007 (India); Singh, M.R. [Technical Physics and Prototype Engineering Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra 400085 (India); Kumar, Ashok; Singh, S.P. [National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Kumar, Ravi [Beant College of Engineering and Technology, Gurdaspur, Punjab 143521 (India)

    2016-04-01

    We report structural and magnetic properties of spinel Co{sub 3−x}Mn{sub x}O{sub 4} (x=0.1–1.0) synthesized by solid state reaction technique. Rietveld refinement analysis of X-ray diffraction (XRD) data, revealed the formation of polycrystalline single phase Co{sub 3−x}Mn{sub x}O{sub 4} without any significant structural change in cubic crystal symmetry with Mn substitution, except change in lattice parameter. Temperature dependent magnetization data show changes in magnetic ordering temperature, indicating formation of antiferromagnetic (AFM) and ferrimagnetic (FM) phase at low Mn concentration (x≤0.3) and well-defined FM phase at high Mn concentration (x≥0.5). The isothermal magnetization records established an AFM/FM mixed phase for composition ranging 0.10.5. - Highlights: • Synthesis of single phase polycrystalline Co{sub 3−x}Mn{sub x}O{sub 4} ceramic. • Change in magnetic ordering with varying Mn concentration. • The complex spin distribution is contributing to FM ordering with higher Mn.

  18. Surfaces and their effect on the magnetic properties of polycrystalline hollow γ-Mn{sub 2}O{sub 3} and MnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bah, Mohamed A. [Department of Materials Science and Engineering, Newark, DE (United States); Jaffari, G. Hassnain [Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Khan, F.A. [Department of Physics, Bangladesh University of Engineering and Technology, Dhaka 1000 (Bangladesh); Shah, S. Ismat, E-mail: ismat@udel.edu [Department of Materials Science and Engineering, Newark, DE (United States); Department of Physics and Astronomy, Newark, DE (United States)

    2016-07-01

    Graphical abstract: Polycrystalline hollow nanoparticles composed of γ-Mn{sub 2}O{sub 3} and MnO were grown in an inert gas condensation system. Particles where found to range from 15 nm to 30 nm in diameter with different void sizes. Both γ-Mn{sub 2}O{sub 3} and MnO phases were found to exist in a single nanoparticle, and in close proximity. The oxides had different size and random lattice orientations. The morphology of the nanoparticles with the specific oxide is believed to be the leading cause for the observed high coercivity and exchange bias. - Highlights: • Polycrystalline hollow nanoparticles composed of γ-Mn{sub 2}O{sub 3} (ferrimagnetic(FiM)) and MnO (antiferromagnetic(AFM)) crystallites. • γ-Mn{sub 2}O{sub 3} and MnO co-exist in a single nanoparticles. • FC loops exhibited noticeably larger coercivity compared to the ZFC loops. • Compared to the core/shell counter parts, large coercivity and exchange bias, up to 11 kOe and 7 kOe, respectively, were observed at low temperature. • Strong coupling between the FiM and AFM phases. • Large horizontal and vertical shifts. - Abstract: Manganese oxide nanoparticles were prepared in an inert gas condensation system. X-ray Diffraction (XRD) studies revealed presence of multiple manganese oxide phases while high resolution transmission electron microscopy (HRTEM) showed polycrystalline hollow nanoparticle morphology. The additional inner surface of the hollow nanoparticle directly affect the magnetic properties of these particles. Combined physical structure, electronic structure and magnetic susceptibility analyses led to the conclusion that the prepared nanoparticles are polycrystalline and composed of γ-Mn{sub 2}O{sub 3} and MnO crystallites. Magnetic study found a sharp peak around 38 K with no frequency dependence in the AC susceptibility measurement. Large coercivity (H{sub C}) and exchange bias (H{sub EB}) fields, up to 11 kOe and 7 kOe, respectively, were observed below the order

  19. Monte Carlo simulation of roughness effect on magnetic and magnetotransport behavior of La{sub 2/3}Ca{sub 1/3}MnO{sub 3}/La{sub 1/3}Ca{sub 2/3}MnO{sub 3} bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Agudelo-Giraldo, J.D. [PCM Computational Applications, Universidad Nacional de Colombia-Sede Manizales, Km. 9 vía al aeropuerto, Manizales (Colombia); Restrepo-Parra, E., E-mail: erestrepopa@unal.edu.co [PCM Computational Applications, Universidad Nacional de Colombia-Sede Manizales, Km. 9 vía al aeropuerto, Manizales (Colombia); Restrepo, J. [Grupo de Magnetismo y Simulación, Instituto de Física, Universidad de Antioquia, A.A., 1226 Medellín (Colombia)

    2014-02-01

    In this work we address the study of the magnetic and magnetotransport properties of ferromagnetic (FM)/antiferromagnetic (AFM) La{sub 2/3}Ca{sub 1/3}MnO{sub 3}/La{sub 1/3}Ca{sub 2/3}MnO{sub 3} manganites bilayers by means of the standard Monte Carlo method. Simulations, implemented with a single spin flip Metropolis dynamics, were performed in the framework of a three-dimensional classical Heisenberg model. Four different superexchange interactions, with the two different types of ions Mn{sup 3+} and Mn{sup 4+} involved and the orbital differences accounting for the Mn{sup 3+} ions, were considered in the Hamiltonian. Likewise, terms dealing with magnetocrystalline anisotropy and the influence of an external applied magnetic field were also included. Samples were simulated having dimensions L×L×(d{sub FM}+d{sub AFM}) where L, measured in lattice parameter units, stands for the linear and lateral dimension along which periodic boundary conditions were implemented, whereas d{sub FM} and d{sub AFM} stand for the thicknesses of FM and AFM layers respectively with free boundary conditions. Different degrees of roughness at the interface were also simulated in order to analyze its influence on the magnetic and magnetotransport properties of the system. In particular, low-temperature results reveal a trend of the coercive field to increase with roughness contrary to the exchange bias field behavior, which tends to decrease. Both quantities are modulated by oscillations ascribed to the atomic disorder at the interface. Finally, the roughness effect upon the bilayer resistivity and on the metal–insulator temperature is also presented and discussed.

  20. Search for fully compensated ferrimagnet in Co substituted Mn2VGa alloy

    International Nuclear Information System (INIS)

    Deka, Bhargab; Singh, R.K.; Srinivasan, A.

    2015-01-01

    Crystallographic and magnetic properties of bulk (Mn 1−x Co x ) 2 VGa alloys with 0≤x≤0.50 are reported in this work. All the alloys exhibit stable L2 1 structure. Unit cell volume of this series of alloys decreased from 207.5 Å 3 to 195.1 Å 3 as x was increased from 0 to 0.50. All the alloys shows ferrimagnetic behavior with Curie temperature decreasing from 763 K to 367 K with increase in x. Saturation magnetization (M s ) measured for the alloys with x=0, 0.25 and 0.50 are 1.84 μ B /f.u., 0.85 μ B /f.u. and 0.30 μ B /f.u., respectively, as compared to the values of 2.00 μ B /f.u., 1.00 μ B /f.u. and 0 μ B /f.u., predicted by the Slater–Pauling (S–P) rule. While explaining the deviations in the M s from the values predicted by the S–P rule, a fully compensated ferrimagnet is expected in an alloy with total number of valance electrons of 24.1. - Highlights: • (Mn 1−x Co x ) 2 VGa alloys with highly ordered L2 1 structure has been obtained • With Co substitution, magnetization of (Mn 1-x Co x ) 2 VGa alloys reduces to 0.3= B /f.u. • Fully compensated ferrimagnet is expected in the alloy with 24.1 valance electrons

  1. Magnetic and electronic properties of SrMnO3 thin films

    Science.gov (United States)

    Mandal, Arup Kumar; Panchal, Gyanendra; Choudhary, R. J.; Phase, D. M.

    2018-05-01

    Single phase hexagonal bulk SrMnO3 (SMO) was prepared by solid state route and it was used for depositing thin films by pulsed laser deposition (PLD) technique on single crystalline (100) oriented SrTiO3 (STO) substrate. X-ray diffraction shows that the thin film is deposited in cubic SrMnO3 phase. From X-ray absorption at the Mn L edge we observed the mixed valency of Mn (Mn3+& Mn4+) due to strain induced by the lattice mismatching between SMO and STO. Due to this mixed valency of Mn ion in SMO film, the ferromagnetic nature is observed at lower temperature because of double exchange. After post annealing with very low oxygen partial pressure, magnetic and electronic property of SMO films are effectively modified.

  2. Spatial structure of single and interacting Mn acceptors in GaAs

    Science.gov (United States)

    Koenraad, Paul

    2005-03-01

    Ferromagnetic semiconductors such as Ga1-xMnxAs are receiving a lot of attention at the moment because of their application in spintronic devices. However, despite intense study of deep acceptors in III-V semiconductors such as MnGa, little information has been obtained on their electronic properties at the atomic scale. Yet the spatial shape of the Mn acceptor state will influence the hole-mediated Mn-Mn coupling and thus all of the magnetic properties of ferromagnetic semiconductors such as Ga1-xMnxAs. This study presents an experimental and theoretical description of the spatial symmetry of the Mn acceptor wave-function in GaAs. We present measurements of the spatial mapping of the anisotropic wavefunction of a hole localized at a Mn acceptor. To achieve this, we have used the STM tip not only to image the Mn acceptor but also to manipulate its charge state A^0/A^- at room temperature. Within an envelope function effective mass model (EFM) the anisotropy in the acceptor wave-function can be traced to the influence of the cubic symmetry of the GaAs crystal which selects specific d-states that mix into the ground state due to the spin-orbit interaction in the valence band. Comparison with calculations based on a tight-binding model (TBM) for the Mn acceptor structure supports this conclusion. Using the same experimental and theoretical approach we furthermore explored the interaction between Mn acceptors directly by analyzing close Mn-Mn pairs, which were separated by less than 2 nm. We will discuss some implications of these results for Mn delta-doped layers grown on differently oriented growth surfaces.

  3. Manganese superoxide dismutase (MnSOD catalyzes NO-dependent tyrosine residue nitration

    Directory of Open Access Journals (Sweden)

    SRDJAN STOJANOVIC

    2005-04-01

    Full Text Available The peroxynitrite-induced nitration of manganese superoxide dismutase (MnSOD tyrosine residue, which causes enzyme inactivation, is well established. This led to suggestions that MnSOD nitration and inactivation in vivo, detected in various diseases associated with oxidative stress and overproduction of nitric monoxide (NO, conditions which favor peroxynitrite formation, is also caused by peroxynitrite. However, our previous in vitro study demonstrated that exposure of MnSOD to NO led to NO conversion into nitrosonium (NO+ and nitroxyl (NO– species, which caused enzyme modifications and inactivation. Here it is reported that MnSOD is tyrosine nitrated upon exposure to NO, as well as that MnSOD nitration contributes to inactivation of the enzyme. Collectively, these observations provide a compelling argument supporting the generation of nitrating species in MnSOD exposed to NO and shed a new light on MnSOD tyrosine nitration and inactivation in vivo. This may represent a novel mechanism by which MnSOD protects cell from deleterious effects associated with overproduction of NO. However, extensive MnSOD modification and inactivation associated with prolonged exposure to NO will amplify the toxic effects caused by increased cell superoxide and NO levels.

  4. Microstructure of (Ga,Mn)As/GaAs digital ferromagnetic heterostructures

    International Nuclear Information System (INIS)

    Kong, X.; Trampert, A.; Guo, X.X.; Kolovos-Vellianitis, D.; Daeweritz, L.; Ploog, K.H.

    2005-01-01

    We report on the microstructure of (Ga,Mn)As digital ferromagnetic heterostructures grown on GaAs (001) substrates by low-temperature molecular-beam epitaxy. The Mn concentration and the As 4 /Ga beam equivalent pressure (BEP) ratio are varied in the samples containing periods of Mn sheets separated by thin GaAs spacer layers. Transmission electron microscopy studies reveal that decreasing the Mn doping concentration and reducing the BEP ratio lead to smaller composition fluctuations of Mn and more homogeneous (Ga,Mn)As layers with abrupt interfaces. Planar defects are found as the dominant defect in these heterostructures and their density is related to the magnitude of the composition fluctuation. These defects show a noticeable anisotropy in the morphologic distribution parallel to the orthogonal [110] and [110] direction. Along the [110] direction, they are stacking faults, which are preferentially formed in V-shaped pairs and nucleate at the interfaces between (Ga,Mn)As and GaAs layers. Along the [110] direction, the planar defects are isolated thin twin lamellae. The character of the planar defects and their configuration are analyzed in detail

  5. Intrinsic Activity of MnOx-CeO2 Catalysts in Ethanol Oxidation

    Directory of Open Access Journals (Sweden)

    Dimitrios Delimaris

    2017-11-01

    Full Text Available MnOx-CeO2 mixed oxides are considered efficient oxidation catalysts superior to the corresponding single oxides. Although these oxides have been the subject of numerous studies, their fundamental performance indicators, such as turnover frequency (TOF or specific activity, are scarcely reported. The purpose of the present work is to investigate the effect of catalyst composition on the concentration of active sites and intrinsic activity in ethanol oxidation by the employment of temperature-programmed desorption and oxidation of isotopically-labelled ethanol, 12CH313CH2OH. The transformation pathways of preadsorbed ethanol in the absence of gaseous oxygen refer to dehydrogenation to acetaldehyde followed by its dissociation combined with oxidation by lattice oxygen. In the presence of gaseous oxygen, lattice oxygen is rapidly restored and the main products are acetaldehyde, CO2, and water. CO2 forms less easily on mixed oxides than on pure MnOx. The TOF of ethanol oxidation has been calculated assuming that the amount of adsorbed ethanol and CO2 produced during temperature-programmed oxidation (TPO is a reliable indicator of the concentration of the active sites.

  6. Spin coherence in a Mn{sub 3} single-molecule magnet

    Energy Technology Data Exchange (ETDEWEB)

    Abeywardana, Chathuranga [Department of Chemistry, University of Southern California, Los Angeles, California 90089 (United States); Mowson, Andrew M.; Christou, George [Department of Chemistry, University of Florida, Gainesville, Florida 32611 (United States); Takahashi, Susumu, E-mail: susumu.takahashi@usc.edu [Department of Chemistry, University of Southern California, Los Angeles, California 90089 (United States); Department of Physics, University of Southern California, Los Angeles, California 90089 (United States)

    2016-01-25

    Spin coherence in single crystals of the spin S = 6 single-molecule magnet (SMM) [Mn{sub 3}O(O{sub 2}CEt){sub 3}(mpko){sub 3}]{sup +} (abbreviated Mn{sub 3}) has been investigated using 230 GHz electron paramagnetic resonance spectroscopy. Coherence in Mn{sub 3} was uncovered by significantly suppressing dipolar contribution to the decoherence with complete spin polarization of Mn{sub 3} SMMs. The temperature dependence of spin decoherence time (T{sub 2}) revealed that the dipolar decoherence is the dominant source of decoherence in Mn{sub 3} and T{sub 2} can be extended up to 267 ns by quenching the dipolar decoherence.

  7. Synthesis, characterization and electrochemical performance of Al-substituted Li_2MnO_3

    International Nuclear Information System (INIS)

    Torres-Castro, Loraine; Shojan, Jifi; Julien, Christian M.; Huq, Ashfia; Dhital, Chetan; Paranthaman, Mariappan Parans; Katiyar, Ram S.; Manivannan, Ayyakkannu

    2015-01-01

    Graphical abstract: Comparison of the cycling performances for pure Li_2MnO_3 and Al-substituted Li_2MnO_3 compounds at a current density of 10 mAh g"−"1 for 100 cycles. Al-substitution increases the spinel phase and hence improves the cycling behavior. - Highlights: • Pure and Al-doped Li_2MnO_3 compounds were synthesized by a Pechini method. • Presence of monoclinic and spinel phases confirmed by Raman and Neutron diffraction. • Al substitution occurs at both Mn and Li sites in Li_2MnO_3 structure. • Al substitution reduces Mn valence state and promotes spinel phase formation. • Stable cycling capacity of 70 mAh g"−"1 was observed for nominal Li_0_._5Al_0_._5MnO_3. - Abstract: Li_2MnO_3 is known to be electrochemically inactive due to Mn in tetravalent oxidation state. Several compositions such as Li_2MnO_3, Li_1_._5Al_0_._1_7MnO_3, Li_1_._0Al_0_._3_3MnO_3 and Li_0_._5Al_0_._5MnO_3 were synthesized by a sol–gel Pechini method. All the samples were characterized with XRD, Raman, XPS, SEM, Tap density and BET analyzer. XRD patterns indicated the presence of monoclinic phase for pristine Li_2MnO_3 and mixed monoclinic/spinel phases (Li_2_−_xMn_1_−_yAl_x_+_yO_3_+_z) for Al-substituted Li_2MnO_3 compounds. The Al substitution seems to occur both at Li and Mn sites, which could explain the presence of spinel phase. XPS analysis for Mn 2p orbital reveals a significant decrease in binding energy for Li_1_._0Al_0_._3_3MnO_3 and Li_0_._5Al_0_._5MnO_3 compounds. Cyclic voltammetry, charge/discharge cycles and electrochemical impedance spectroscopy were also performed. A discharge capacity of 24 mAh g"−"1 for Li_2MnO_3, 68 mAh g"−"1 for Li_1_._5Al_0_._1_7MnO_3, 58 mAh g"−"1 for Li_1_._0Al_0_._3_3MnO_3 and 74 mAh g"−"1 for Li_0_._5Al_0_._5MnO_3 were obtained. Aluminum substitutions increased the formation of spinel phase which is responsible for cycling.

  8. Magnetocaloric effect in Heusler alloys Ni50Mn34In16 and Ni50Mn34Sn16

    Science.gov (United States)

    Sharma, V. K.; Chattopadhyay, M. K.; Kumar, Ravi; Ganguli, Tapas; Tiwari, Pragya; Roy, S. B.

    2007-12-01

    We present results of detailed ac susceptibility, magnetization and specific heat measurements in Heusler alloys Ni50Mn34In16 and Ni50Mn34Sn16. These alloys undergo a paramagnetic to ferromagnetic transition around 305 K, which is followed by a martensitic transition in the temperature regime around 220 K. Inside the martensite phase both the alloys show signatures of field-induced transition from martensite to austenite phase. Both field- and temperature-induced martensite-austenite transitions are relatively sharp in Ni50Mn34In16. We estimate the isothermal magnetic entropy change and adiabatic temperature change across the various phase transitions in these alloys and investigate the possible influence of these transitions on the estimated magnetocaloric effect. The sharp martensitic transition in Ni50Mn34In16 gives rise to a comparatively large inverse magnetocaloric effect across this transition. On the other hand the magnitudes of the conventional magnetocaloric effect associated with the paramagnetic to ferromagnetic transition are quite comparable in these alloys.

  9. Synthesis and characterization of Mn-doped ZnO diluted magnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Galil, A. [Solid State Physics and Accelerators Department, NCRRT, Atomic Energy Authority, Cairo (Egypt); Balboul, M.R., E-mail: m_balboul@yahoo.com [Solid State Physics and Accelerators Department, NCRRT, Atomic Energy Authority, Cairo (Egypt); Sharaf, A. [Radiation Engineering Department, NCRRT, Atomic Energy Authority, Cairo (Egypt)

    2015-11-15

    In the present work undoped and Mn doped ZnO nanoparticles (ZnO:Mn), diluted magnetic semiconductors, were successfully synthesized by the sol–gel method at room temperature. The morphology of ZnO nanoparticles constituted by flower-like structures with hexagonal morphologies that changed significantly after the incorporation of Mn. Rietveld refinements results showed that Mn ions are successfully doped into ZnO matrix without altering its wurtzite phase. Meanwhile, Raman spectroscopy analyses confirm the wurtzite structure of undoped ZnO and ZnO:Mn nanoparticles. The lattice parameters increase with increasing Mn content due to the large ionic radius of Mn{sup 2+} compared to that of Zn{sup 2+}. Electron spin resonance measurements were performed to gain information about oxidation state and site occupancy of the magnetic Mn ions in the ZnO lattice. Moreover, UV–vis absorption spectra have been utilized to calculate the optical band gap of the undoped ZnO and ZnO:Mn nanoparticles before and after different γ-irradiation doses. The band gap of ZnO:Mn (2%) is 2.62 eV which is noticeably smaller than the 3.26 eV of undoped ZnO. The thermal decomposition properties of the prepared nanoparticle samples were also studied using simultaneous Thermogravimetric analysis in temperature range from 30 to 500 °C.

  10. Tailoring luminescence properties of TiO2 nanoparticles by Mn doping

    International Nuclear Information System (INIS)

    Choudhury, B.; Choudhury, A.

    2013-01-01

    TiO 2 nanoparticles are doped with three different concentrations of Mn, 2%, 4% and 6% respectively. Absorption edge of TiO 2 is shifted from UV to visible region on amplification of Mn content. Room temperature photoluminescence spectra, excited at 320 nm, exhibit band edge and visible emission peaks associated with self trapped excitons, oxygen defects, etc. Doping of Mn increases the width and decreases the intensity of the UV emission peak. Potential fluctuations of impurities increase the width and auger type non-radiative recombination decreases the intensity of the UV emission peak. The intensity ratio of the UV to defect emission band decreases on doping, indicating degradation of structural quality. Excitation of pure and doped nanoparticles at 390 nm results in Mn 2+ emission peaks at 525 nm and 585 nm respectively. Photoluminescence excitation spectra also indicate the presence of Mn 2+ in the crystalline environment of TiO 2 . The oxygen defects and Mn related impurities act as efficient trap centers and increases the lifetime of the charge carriers. -- Highlights: ► Doping of Mn increases the d-spacing of TiO 2 nanoparticles. ► Characteristic d–d electronic transition of Mn 2+ is observed in the absorption spectra. ► Doping of Mn quenches the UV and visible emission peaks of TiO 2 . ► Photoexcitation at 390 nm generates emission peaks of Mn 2+

  11. Certification of the contents (mass fractions) of Cd, Pb, Se, Cu, Zn, Fe and Mn in wholemeal flour and lyophilized brown bread reference materials. Wholemeal flour - CRM no. 189; brown bread - CRM no. 191

    Energy Technology Data Exchange (ETDEWEB)

    Wagstaffe, P J; Griepink, B; Muntau, H; Schramel, P

    1987-01-01

    The report describes the preparation and certification of a wholemeal flour (CRM 189) and a lyophilised brown breas (CRM 191) for their contents (mass fractions) of elements of toxicological and nutritional importance: Cd, Pb, Se, Cu, Zn, Fe and Mn. Indicative values are also given for As, Ca, Cl, Cr, Hg, Mg, Na, Ni, P and K. Details are given of a preliminary intercomparison of methods for these elements in a wholemeal flour sample, homogeneity and stability studies on the two reference materials and the results and evaluation of the certification exercise which involved 21 European Laboratories. Summaries of the certification methods are also presented. The report concludes with a discussion of the most common sources of error in determining the elements of interest and the steps to be taken to control them. With 7 figs., 28 tabs.

  12. Bimetallic Co-Mn Perovskite Fluorides as Highly-Stable Electrode Materials for Supercapacitors.

    Science.gov (United States)

    Shi, Wei; Ding, Rui; Li, Xudong; Xu, Qilei; Ying, Danfeng; Huang, Yongfa; Liu, Enhui

    2017-11-02

    Bimetallic Co-Mn perovskite fluorides (KCo x Mn 1-x F 3 , denoted as K-Co-Mn-F) with various Co/Mn ratios (1:0, 12:1, 6:1, 3:1, 1:1, 1:3, 0:1) were prepared through a one-pot solvothermal strategy and further used as electrode materials for supercapacitors. The optimal K-Co-Mn-F candidate (Co/Mn=6:1) showed a size range of 0.1-1 μm and uniform elemental distribution; exhibiting small changes in XRD peaks and XPS binding energy in comparison to the bare K-Co-F and K-Mn-F, due to the structural/electronic effects. Owing to the stronger synergistic effect of Co/Mn redox species, the K-Co-Mn-F (Co/Mn=6:1) electrode exhibited superior specific capacity and rate behavior (113-100 C g -1 at 1-16 Ag -1 ) together with excellent cycling stability (118 % for 5000 cycles at 8 Ag -1 ), and the activated carbon (AC)//K-Co-Mn-F (Co/Mn=6:1) asymmetric capacitor showed superior energy and power densities (8.0-2.4 Wh kg -1 at 0.14-8.7 kW kg -1 ) along with high cycling stability (90 % for 10 000 cycles at 5 Ag -1 ). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Mid - infrared transmission of polycrystalline (LaSr) (MnNi)O3

    International Nuclear Information System (INIS)

    Laksanawati, W. D.; Kurniawan, B.; Saptari, S. A.

    2016-01-01

    Polycrystalline (LaSr)(MnNi)O 3 was shintesized using sol gel methods with nitrat precursors La(NO 3 ) 3 , Sr(NO 3 ) 2 , Mn(NO 3 ) 2 .4H 2 O, and Ni(NO3)2.6H2O and the different heating process. Sample (LaSr)(MnNi)O 3 with chemical formulation La 0,67 Sr 0,33 Mn 1-x Ni x O 3 with × = 0,05 and 0,10. We report the crystallite structure of La 0,67 Sr 0,33 Mn 1-x Ni x O 3 with x= 0,00 and 0,10 are single phase with characterization by X-ray diffraction. Refinement has result that crystallite size of La 0,67 Sr 0,33 Mn 0,95 Ni 0,05 O 3 is 24,67 and La 0,67 Sr 0,33 Mn 0,9 Ni 0,1 O 3 is 21,84 with crystallite system rombohedral, it show us that increasing at Ni composition influence of decreased crystallite size. Sampel (LaSr)(MnNi)O3 has been characterization with Fourier Transform Infrared with range of wave number from 450 to 4000 cm -1 were chategories at mid infrared wave. The FTIR pattern show to us that the Mn-O-Mn bounded has absorp infrared at wave number 605 cm -1 and the dominant peak at wave number 3750 cm -1 caused the hidroxy compound in sampel La 0,67 Sr 0,33 Mn 0,95 Ni 0,05 O 3 . (paper)

  14. Reduction of mixed Mn-Zr oxides: in situ XPS and XRD studies.

    Science.gov (United States)

    Bulavchenko, O A; Vinokurov, Z S; Afonasenko, T N; Tsyrul'nikov, P G; Tsybulya, S V; Saraev, A A; Kaichev, V V

    2015-09-21

    A series of mixed Mn-Zr oxides with different molar ratios Mn/Zr (0.1-9) have been prepared by coprecipitation of manganese and zirconium nitrates and characterized by X-ray diffraction (XRD) and BET methods. It has been found that at concentrations of Mn below 30 at%, the samples are single-phase solid solutions (MnxZr1-xO2-δ) based on a ZrO2 structure. X-ray photoelectron spectroscopy (XPS) measurements showed that manganese in these solutions exists mainly in the Mn(4+) state on the surface. An increase in Mn content mostly leads to an increase in the number of Mn cations in the structure of solid solutions; however, a part of the manganese cations form Mn2O3 and Mn3O4 in the crystalline and amorphous states. The reduction of these oxides with hydrogen was studied by a temperature-programmed reduction technique, in situ XRD, and near ambient pressure XPS in the temperature range from 100 to 650 °C. It was shown that the reduction of the solid solutions MnxZr1-xO2-δ proceeds via two stages. During the first stage, at temperatures between 100 and 500 °C, the Mn cations incorporated into the solid solutions MnxZr1-xO2-δ undergo partial reduction. During the second stage, at temperatures between 500 and 700 °C, Mn cations segregate on the surface of the solid solution. In the samples with more than 30 at% Mn, the reduction of manganese oxides was observed: Mn2O3 → Mn3O4 → MnO.

  15. A Comparison of Two Yeast MnSODs: Mitochondrial Saccharomyces cerevisiae versus Cytosolic Candida albicans

    International Nuclear Information System (INIS)

    Sheng, Y.; Cabelli, D.; Stich, T.A.; Barnese, K.; Gralla, E.B.; Cascio, D.; Britt, R.D.; Valentine, J.S.

    2011-01-01

    Human MnSOD is significantly more product-inhibited than bacterial MnSODs at high concentrations of superoxide (O 2 - ). This behavior limits the amount of H 2 O 2 produced at high [O 2 - ]; its desirability can be explained by the multiple roles of H 2 O 2 in mammalian cells, particularly its role in signaling. To investigate the mechanism of product inhibition in MnSOD, two yeast MnSODs, one from Saccharomyces cerevisiae mitochondria (ScMnSOD) and the other from Candida albicans cytosol (CaMnSODc), were isolated and characterized. ScMnSOD and CaMnSODc are similar in catalytic kinetics, spectroscopy, and redox chemistry, and they both rest predominantly in the reduced state (unlike most other MnSODs). At high [O 2 - ], the dismutation efficiencies of the yeast MnSODs surpass those of human and bacterial MnSODs, due to very low level of product inhibition. Optical and parallel-mode electron paramagnetic resonance (EPR) spectra suggest the presence of two Mn 3+ species in yeast Mn 3+ SODs, including the well-characterized 5-coordinate Mn 3+ species and a 6-coordinate L-Mn 3+ species with hydroxide as the putative sixth ligand (L). The first and second coordination spheres of ScMnSOD are more similar to bacterial than to human MnSOD. Gln154, an H-bond donor to the Mn-coordinated solvent molecule, is slightly further away from Mn in yeast MnSODs, which may result in their unusual resting state. Mechanistically, the high efficiency of yeast MnSODs could be ascribed to putative translocation of an outer-sphere solvent molecule, which could destabilize the inhibited complex and enhance proton transfer from protein to peroxide. Our studies on yeast MnSODs indicate the unique nature of human MnSOD in that it predominantly undergoes the inhibited pathway at high [O 2 - ].

  16. A facile route to synthesize multiporous MnCo2O4 and CoMn2O4 spinel quasi-hollow spheres with improved lithium storage properties

    Science.gov (United States)

    Li, Jingfa; Xiong, Shenglin; Li, Xiaowei; Qian, Yitai

    2013-02-01

    A facile and general way for the synthesis of porous and hollow complex oxides is highly desirable owing to their significant applications for energy storage and other fields. In this contribution, uniform Mn0.33Co0.67CO3 and Co0.33Mn0.67CO3 microspheres are firstly fabricated solvothermally just by tuning the molar ratio of Mn and Co. Subsequently, the growth of multiporous MnCo2O4 and CoMn2O4 quasi-hollow microspheres by topotactic chemical transformation from the corresponding precursors are realized through a non-equilibrium heat treatment process. Topotactic conversion further demonstrated that the much larger CoMn2O4 pores than those of MnCo2O4 are possibly due to the longer transfer distance of ions. When evaluated as anode materials for LIBs (lithium ion batteries), after 25 cycles at a current density of 200 mA g-1, the resultant MnCo2O4 and CoMn2O4 quasi-hollow microspheres possessed reversible capacities of 755 and 706 mA h g-1, respectively. In particular, the MnCo2O4 samples could deliver a reversible capacity as high as 610 mA h g-1 even at a higher current density of 400 mA g-1 with excellent electrochemical stability after 100 cycles of testing, indicating its potential application in LIBs. We believe that such good performance results from the appropriate pore size and quasi-hollow nature of MnCo2O4 microspheres, which can effectively buffer the large volume variation of anodes based on the conversion reaction during Li+ insertion/extraction. The present strategy is simple but very effective, and due to its versatility, it can be extended to other binary, even ternary complex metal oxides with high-performance in LIBs.A facile and general way for the synthesis of porous and hollow complex oxides is highly desirable owing to their significant applications for energy storage and other fields. In this contribution, uniform Mn0.33Co0.67CO3 and Co0.33Mn0.67CO3 microspheres are firstly fabricated solvothermally just by tuning the molar ratio of Mn and Co

  17. MCD spectroscopy of hexanuclear Mn(III) salicylaldoxime single-molecule magnets.

    Science.gov (United States)

    Bradley, Justin M; Thomson, Andrew J; Inglis, Ross; Milios, Constantinos J; Brechin, Euan K; Piligkos, Stergios

    2010-11-07

    The hexanuclear cages [Mn(6)O(2)(R-sao)(6)L(2)(EtOH)(x)(H(2)O)(y)] "Mn(6)" behave as single-molecule magnets (SMMs) below a characteristic blocking temperature. As with [Mn(12)O(12)(O(2)CR)(16)(H(2)O)(4)] "Mn(12)" the electronic absorption spectra are rather featureless, yielding little information on the electronic structure of the magnetic ions. Low temperature Magnetic Circular Dichroism (MCD) spectra afford greater resolution of the optical transitions and also probe the magnetic properties of the system. Both the ground state spin and blocking temperature of the Mn(6) cages are determined by subtle structural perturbations of a generic Mn(6)O(2) core. Absorbance and MCD spectra are reported for [Mn(6)O(2)(Et-sao)(6){O(2)CPh(Me)(2)}(2)(EtOH)(6)] (1), [Mn(6)O(2)(Et-sao)(6){O(2)CPh}(2)(EtOH)(4)(H(2)O)(2)] (2), [Mn(6)O(2)(sao)(6){O(2)CPh}(2)(EtOH)(4)]·EtOH (3) and the trinuclear precursor [Mn(3)O(Et-sao)(3)(MeOH)(3)](ClO(4)) (4) cast into polymer film. SMM behaviour has previously been observed using magnetic susceptibility measurements on powder and single-crystal samples. The ligand field environment of the magnetic ions is assumed to be similar in (1) and (2) and their different blocking temperatures are attributed to the magnitude of the effective exchange constant. The MCD spectra of (1) and (2), in which the ground state spin S = 12, show that the ligand field environments of the Mn ions are almost identical and that magnetic hysteresis persists for isolated molecules when crystal packing forces are removed. The subtle structural differences between (1) and (2) are manifested in the field dependence of the MCD response at different wavelengths that reflect changes in band polarisation. The MCD spectrum of (3) contains features not apparent in those of (1) and (2). These are attributed to 5-coordinate Mn(iii), which is unique to (3) among the compounds studied. (3) has ground state spin S = 4, a lower blocking temperature and consequently no observable

  18. Synthesis and characterization of single-phase Mn-doped ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Chattopadhyay, S.; Dutta, S.; Banerjee, A.; Jana, D. [Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700 009, West Bengal (India); Bandyopadhyay, S., E-mail: sbaphy@caluniv.ac.i [Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700 009, West Bengal (India); Chattopadhyay, S. [Department of Physics, Taki Government College, Taki 743 429, West Bengal (India); Sarkar, A. [Department of Physics, Bangabasi Morning College, 19 Rajkumar Chakraborty Sarani, Kolkata 700 009, West Bengal (India)

    2009-05-01

    Different samples of Zn{sub 1-x}Mn{sub x}O series have been prepared using conventional solid-state sintering method. We identified up to what extent doping will enable us to synthesize single-phase polycrystalline Mn-doped ZnO sample, which is one of the prerequisites for dilute magnetic semiconductor, and we have analyzed its some other physical aspects. In synthesizing the samples, proportion of Mn varies from 1 to 5 at%. However, the milling time varied (6, 12, 24, 48 and 96 h) only for 2 at% Mn-doped samples while for other samples (1, 3, 4 and 5 at% Mn doped) the milling time has been fixed to 96 h. Room-temperature X-ray diffraction (XRD) data reveal that all of the prepared samples up to 3 at% of Mn doping exhibit wurtzite-type structure, and no segregation of Mn and/or its oxides has been found. The 4 at% Mn-doped samples show a weak peak of ZnMn{sub 2}O{sub 4} apart from the other usual peaks of ZnO and the intensity of this impurity peak has been further increased for 5 at% of Mn doping. So beyond 3 at% doping, single-phase behavior is destroyed. Band gap for all the 2 at% Mn-doped samples has been estimated to be between 3.21 and 3.19 eV and the reason for this low band gap values has been explained through the grain boundary trapping model. The room-temperature resistivity measurement shows an increase of resistivity up to 48 h of milling and with further milling it saturates. The defect state of these samples has been investigated using the positron annihilation lifetime (PAL) spectroscopy technique. Here all the relevant lifetime parameters of positron i.e. free annihilation (tau{sub 1}) at defect site (tau{sub 2}) and average (tau{sub av}) increases with milling time.

  19. Structural characterization of Mg{sub 3}MnH{sub {approx}}{sub 6}--a new high-pressure phase synthesized in a multi-anvil cell at 6 GPa

    Energy Technology Data Exchange (ETDEWEB)

    Blomqvist, Helen; Roennebro, Ewa; Kyoi, Daisuke; Sakai, Tetsuo; Noreus, Dag

    2003-08-25

    With modern X-ray diffraction refinement methods it was shown to be possible to identify a new Mg{sub 3}MnH{sub {approx}}{sub 6} phase from a minute sample volume in spite of poor crystallinity and coexisting impurity phases. The new hydride was synthesized at 6 GPa in a high-pressure multi-anvil cell at 873 K. A monoclinic unit cell was found with a=8.827(2), b=4.657(2), c=4.676(2) A and {beta}=105.74(2) deg., space group P2{sub 1}/m (no. 11), Z=2, V=184.99 A{sup 3}. Manganese is surrounded by a distorted cube of magnesium with average Mn-Mg distances of 2.78(2) A. The cubes share edges in the b and c directions of the unit cell but are separated by a distance of {approx}3.6 A along a, forming a layered structure. The hydrogen positions were not possible to determine, as only a small sample amount could be prepared. If the metal atom structure of the title compound is compared to the already known Mg{sub 3}MnH{sub 7} it can be concluded that Mg{sub 3}MnH{sub {approx}}{sub 6} also consists of manganese hydrido complexes counterbalanced by magnesium ions, but with a different alignment of the magnesium cubes.

  20. Photoluminescence of crystalline and disordered BTO:Mn powder: Experimental and theoretical modeling

    International Nuclear Information System (INIS)

    Gurgel, M.F.C.; Espinosa, J.W.M.; Campos, A.B.; Rosa, I.L.V.; Joya, M.R.; Souza, A.G.; Zaghete, M.A.; Pizani, P.S.; Leite, E.R.; Varela, J.A.; Longo, E.

    2007-01-01

    Disordered and crystalline Mn-doped BaTiO 3 (BTO:Mn) powders were synthesized by the polymeric precursor method. After heat treatment, the nature of visible photoluminescence (PL) at room temperature in amorphous BTO:Mn was discussed, considering results of experimental and theoretical studies. X-ray diffraction (XRD), PL, and UV-vis were used to characterize this material. Rietveld refinement of the BTO:Mn from XRD data was used to built two models, which represent the crystalline BTO:Mn (BTO:Mn c ) and disordered BTO:Mn (BTO:Mn d ) structures. Theses models were analyzed by the periodic ab initio quantum mechanical calculations using the CRYSTAL98 package within the framework of density functional theory at the B3LYP level. The experimental and theoretical results indicated that PL is related with the degree of disorder in the BTO:Mn powders and also suggests the presence of localized states in the disordered structure

  1. MRI characteristics in focal hepatic disease before and after administration of MnDPDP: discriminant analysis as a diagnostic tool

    International Nuclear Information System (INIS)

    Helmberger, Thomas K.; Reiser, Maximilian F.; Jung, Gregor; Sievers, Klaus; Doehring, Wilfried; Meurer, Karoline

    2002-01-01

    The aim of this study was to determine if different types of focal hepatic lesions can be differentiated by specific quantitative and qualitative imaging characteristics pre- and post-Mangafodipir trisodium (MnDPDP) administration using a computerized multivariable, discriminant analysis (DA). In a multicenter trial, 151 patients with focal liver disease were studied at 1.5 and 1.0 T using gradient-recalled echo T1 and fast spin-echo T2-weighted images pre and post MnDPDP (0.005 mmol/kg b.w.) i.v. administration. Analysis could be performed in 141 of 151 of the patients. The variables used in both single variable analysis and DA included contrast-to-noise ratios pre and post MnDPDP, presence of rim enhancement, margin, and heterogeneity of a lesion pre and post MnDPDP. The classification of diagnoses using DA was compared with a standard of reference (HCC in 23%, metastases in 25%, cyst in 13%, FNH in 10%, hemangioma in 11%, and other or no lesion in 18% of the patients; histology in 49%, long-term follow-up in 51% of the cases). In the differentiation of the various hepatic lesions, CNR together with the presence of heterogeneity or rim enhancement as variables for DA gave the highest sensitivity, specificity, and accuracy which ranged between 65 and 93, 44 and 83, and 65 and 86%, respectively. The DA models based on post-MnDPDP variables showed better classification results than the models based on pre-MnDPDP variables. An improvement of accuracy was observed when differentiating HCC from FNH lesion groups (48.9-67.4%; p≤0.05), and when differentiating HCC from metastasis lesion groups (68.3-84.1%; p≤0.01). In all regards there was no difference for T2-weighted images pre and post MnDPDP. By combining quantitative and qualitative variables, DA proved to be a useful tool in lesion discrimination. Due to considerable heterogeneity within some of the lesion type groups, the definite diagnostic impact of MnDPDP cannot be completely established yet, and further

  2. Interfacial reactions of Ba 2YCu 3O 6+z with coated conductor buffer layer, LaMnO 3

    Science.gov (United States)

    Liu, G.; Wong-Ng, W.; Kaduk, J. A.; Cook, L. P.

    2010-03-01

    Chemical interactions between the Ba 2YCu 3O 6+x superconductor and the LaMnO 3 buffer layers employed in coated conductors have been investigated experimentally by determining the phases formed in the Ba 2YCu 3O 6+x-LaMnO 3 system. The Ba 2YCu 3O 6+x-LaMnO 3 join within the BaO-(Y 2O 3-La 2O 3)-MnO 2-CuO x multi-component system is non-binary. At 810 °C ( pO2 = 100 Pa) and at 950 °C in purified air, four phases are consistently present along the join, namely, Ba 2-x(La 1+x-yY y)Cu 3O 6+z, Ba(Y 2-xLa x)CuO 5, (La 1-xY x)MnO 3, (La,Y)Mn 2O 5. The crystal chemistry and crystallography of Ba(Y 2-xLa x)CuO 5 and (La 1-xY x)Mn 2O 5 were studied using the X-ray Rietveld refinement technique. The Y-rich and La-rich solid solution limits for Ba(Y 2-xLa x)CuO 5 are Ba(Y 1.8La 0.2)CuO 5 and Ba(Y 0.1La 1.9)CuO 5, respectively. The structure of Ba(Y 1.8La 0.2)CuO 5 is Pnma (No. 62), a = 12.2161(5) Å, b = 5.6690(2) Å, c = 7.1468(3) Å, V = 494.94(4) Å 3, and D x = 6.29 g cm -3. YMn 2O 5 and LaMn 2O 5 do not form solid solution at 810 °C ( pO2 = 100 Pa) or at 950 °C (in air). The structure of YMn 2O 5 was confirmed to be Pbam (No. 55), a = 7.27832(14) Å, b = 8.46707(14) Å, c = 5.66495(10) Å, and V = 349.108(14) Å 3. A reference X-ray pattern was prepared for YMn 2O 5.

  3. Increasing Mn substitution in magnetic semiconductors through controlled ambient annealing processes

    Energy Technology Data Exchange (ETDEWEB)

    Hollingsworth, J. [Materials Science Program, Department of Mechanical and Aerospace Engineering, UC San Diego, La Jolla, CA 92093-0411 (United States); Bandaru, P.R. [Materials Science Program, Department of Mechanical and Aerospace Engineering, UC San Diego, La Jolla, CA 92093-0411 (United States)], E-mail: pbandaru@ucsd.edu

    2008-06-25

    We report on a controlled ambient annealing technique aimed at increasing the amount of Mn incorporation in III-V semiconductors. The aim is to reduce the number of hole carrier and magnetic element compensating entities, such as Mn interstitials and anti-site defects, to increase the magnetic Curie temperature. The idea is (a) to increase the number of Group III vacancies through annealing in Group V vapor rich conditions and (b) judicious use of crystal field theory to reduce/stabilize Mn interstitials. Our experimental results constitute the highest reportedT{sub c} ({approx}130 K) in Mn doped InSb and Mn doped InP. The possibility of ferrimagnetism in Mn and Cr incorporated GaAs, was noted.

  4. Effect of different factors on phase transformations in Fe-Mn alloys

    International Nuclear Information System (INIS)

    Balychev, Yu.M.; Tkachenko, F.K.

    1983-01-01

    Phase transformations proceeding under Fe-Mn alloy heating are studied and the effect of previous working conditions, particularly, cooling rate on these transformations is investigated. Investigations have been conducted on pure Fe-Mn alloys with 2-15% Mn. Phase transformations are shown to proceed according to α → #betta# and epsilon → #betta# reaction in Fe-Mn alloys containing 2-15% Mn under heating. Cooling rate in the range of approximately 5-1000 deg/min in preliminary working essentially affects phase transformations under subsequent heating

  5. Photoluminescence of ZnS: Mn quantum dot by hydrothermal method

    Directory of Open Access Journals (Sweden)

    Yun Hu

    2018-01-01

    Full Text Available ZnS: Mn quantum dots (QDs with the average grain size from 4.2 to 7.2 nm were synthesized by a hydrothermal method. All samples were cubic zinc blende structure (β-ZnS measured using X-ray diffraction (XRD. And the main diffraction peaks of ZnS: Mn shifted slightly towards higher angle in comparison with the intrinsic ZnS because of the substitution of Mn2+ for Zn2+. Due to the small grain size (4-7 nm effect, the poor dispersion and serious reunion phenomenon for the samples were observed from transmission electron microscopy (TEM. ZnS: Mn QDs had four peaks centered at 466, 495, 522, and 554 nm, respectively, in the photoluminescence (PL spectra, in which the band at 554 nm absent in the intrinsic ZnS: Mn is attributed to the doping of Mn2+ in the lattice sites. As the concentration of Mn2+ increasing from 0% to 0.6 at%, the intensity of the PL emission also increased. But the concentration reached 0.9 at%, quenching of PL emission occurred. The peak in ZnS: Mn QDs observed at 490 cm-1 was originated from the stretching vibration of the Mn–O bonds in the Fourier transform infrared (FTIR spectra. And the small changes about this peak compared with the previous reports at 500 cm-1 can be attributed to the formation of quantum dots. This method we utilized to synthesize ZnS: Mn QDs is very simple, low cost, and applicable for other semiconductor QD materials.

  6. Complete genome sequence of the highly Mn(II) tolerant Staphylococcus sp. AntiMn-1 isolated from deep-sea sediment in the Clarion-Clipperton Zone.

    Science.gov (United States)

    Wang, Xing; Lin, Danqiu; Jing, Xiaohuan; Zhu, Sidong; Yang, Jifang; Chen, Jigang

    2018-01-20

    Staphylococcus sp. AntiMn-1 is a deep-sea bacterium inhabiting seafloor sediment in the Clarion-Clipperton Zone (CCZ) that is highly tolerant to Mn(II) and displays efficient Mn(II) oxidation. Herein, we present the assembly and annotation of its genome. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Effect of Ni, Fe and Mn in different proportions on microstructure and pollutant-catalyzed properties of Ni-Fe-Mn-O negative temperature coefficient ceramic nanocompositions

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Yonglin, E-mail: leiyonglin@163.com [Engineering Research Center of Biomass Materials, Ministry of Education, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Lin, Xiaoyan, E-mail: linxy@swust.edu.cn [Engineering Research Center of Biomass Materials, Ministry of Education, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); Liao, Huiwei, E-mail: liaohw@swust.edu.cn [School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China)

    2017-06-15

    The effect of Ni, Fe and Mn in different proportions on microstructure and pollutant-catalyzed properties of Ni-Fe-Mn-O negative temperature coefficient ceramic nanocompositions was studied. Structural and physical characterization of all the samples was carried out by using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET) method, Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and thermogravimetric (TG). The results revealed that the interplanar spacing decreased with increasing Fe content, the grain size decreased with increasing Ni content, the substitution of Ni{sup 2+} in the tetrahedral sites by Fe{sup 2+} increased with increasing Fe content. And increase of iron could improve Ni-Fe-Mn-O high temperature stability. The low-temperature thermal removal efficiencies of 30 mg/L methyl orange solution for NiFeMnO{sub 4}, Ni{sub 0.6}Fe{sub 0.9}Mn{sub 1.5}O{sub 4,} Ni{sub 0.6}Fe{sub 1.8}Mn{sub 0.6}O{sub 4} and Ni{sub 0.3}Fe{sub 2.1}Mn{sub 0.6}O{sub 4} systems were 83.8%, 75.2%, 78.5% and 60.3% at 2400 min, respectively. And the microwave combining with H{sub 2}O{sub 2} removal efficiencies of 30 mg/L methyl orange solution for NiFeMnO{sub 4}, Ni{sub 0.6}Fe{sub 0.9}Mn{sub 1.5}O{sub 4,} Ni{sub 0.6}Fe{sub 1.8}Mn{sub 0.6}O{sub 4} and Ni{sub 0.3}Fe{sub 2.1}Mn{sub 0.6}O{sub 4} systems were 96.5%,93.8%, 98.7% and 98% at 6.0 min, respectively. These results indicated that the Ni-Fe-Mn-O ceramics with appropriate increase of iron were useful for industrial applications on degrading organic pollute. - Highlights: • The relationship of composition and catalytic properties of Ni-Fe-Mn-O was proposed. • The interplanar spacing decreased with increasing Fe content. • The grain size decreased with increasing Ni content. • The substitution of Ni{sup 2+} in the tetrahedral site by Fe{sup 2+} with increasing Fe content.

  8. Effects of axial coordination on immobilized Mn(salen) catalysts.

    Science.gov (United States)

    Teixeira, Filipe; Mosquera, Ricardo A; Melo, André; Freire, Cristina; Cordeiro, M Natália D S

    2014-11-13

    The consequences of anchoring Mn(salen) catalysts onto a supporting material using one of the vacant positions of the metal center are tackled by studying several Mn(salen) complexes with different axial ligands attached. This is accomplished using Density Functional Theory at the X3LYP/Triple-ζ level of theory and the Atom In Molecules formalism. The results suggest that both Mn(salen) complexes and their oxo derivatives should lie in a triplet ground state. Also, the choice of the axial ligand bears a moderate effect on the energy involved in the oxidation of the former to oxo-Mn(salen) complexes, as well as in the stability of such complexes toward ligand removal by HCl. AIM analysis further suggests that the salen ligand acts as a "charge reservoir" for the metal center, with strong correlations being obtained between the charge of salen and the electron population donated by the axial ligand to the metal center. Moreover, the results suggest that the Mn atom in Mn(salen) complexes holds different hybridization of its valence orbitals depending on the type of axial ligand present in the system.

  9. Boron-doped MnTe semiconductor-sensitized ZnO solar cells

    Indian Academy of Sciences (India)

    Administrator

    The B-doped MnTe semiconductor was grown on ZnO using two stages of the ... nanoparticles (NPs), i.e. MnTe and MnTe2 were observed with a diameter range of approximately ..... Kongkanand A, Tvrdy K, Takechi K, Kuno M and Kamat P.

  10. Magnetic properties of (Mn1-xRux)3Ga alloys

    International Nuclear Information System (INIS)

    Hori, T.; Akimitsu, M.; Miki, H.; Ohoyoama, K.; Yamaguchi, Y.

    2002-01-01

    We found that the pseudo binary alloys Mn 1-x Ru x 3 Ga, with 0.33≤x≤0.67, have an ordered b.c.c. structure. The lattice constant a is almost constant with respect to x: a=6.000 A for x=0.33 and a=5.992 A for x=0.67. For the alloy with x=0.33, i.e. Mn 2 RuGa, the magnetization is almost saturated in a field of 20 kOe. The saturation magnetization at 4.2 K is 23 emu/g, and the Curie temperature, T C , is 460 K. The T C of (Mn 1-x Ru x ) 3 Ga decreases almost linearly with increasing x, and it vanishes around x=0.67 (MnRu 2 Ga). We also determined atomic and magnetic structures from neutron diffraction experiments. The alloy Mn 2 RuGa (x=0.33) has an ordered structure of CuHg 2 Ti type; the magnetic Mn atoms mainly occupy the 4a (0,0,0) and 4d (3/4,3/4,3/4) sites. We also observed that the magnetic moments of Mn atoms on the 4a and 4d sites are antiparallel to each other; values of the magnetic moment are μ a =4.6 and μ d =3.3 μ B per Mn atom. (orig.)

  11. Medium-range reference evapotranspiration forecasts for the contiguous United States based on multi-model numerical weather predictions

    Science.gov (United States)

    Medina, Hanoi; Tian, Di; Srivastava, Puneet; Pelosi, Anna; Chirico, Giovanni B.

    2018-07-01

    Reference evapotranspiration (ET0) plays a fundamental role in agronomic, forestry, and water resources management. Estimating and forecasting ET0 have long been recognized as a major challenge for researchers and practitioners in these communities. This work explored the potential of multiple leading numerical weather predictions (NWPs) for estimating and forecasting summer ET0 at 101 U.S. Regional Climate Reference Network stations over nine climate regions across the contiguous United States (CONUS). Three leading global NWP model forecasts from THORPEX Interactive Grand Global Ensemble (TIGGE) dataset were used in this study, including the single model ensemble forecasts from the European Centre for Medium-Range Weather Forecasts (EC), the National Centers for Environmental Prediction Global Forecast System (NCEP), and the United Kingdom Meteorological Office forecasts (MO), as well as multi-model ensemble forecasts from the combinations of these NWP models. A regression calibration was employed to bias correct the ET0 forecasts. Impact of individual forecast variables on ET0 forecasts were also evaluated. The results showed that the EC forecasts provided the least error and highest skill and reliability, followed by the MO and NCEP forecasts. The multi-model ensembles constructed from the combination of EC and MO forecasts provided slightly better performance than the single model EC forecasts. The regression process greatly improved ET0 forecast performances, particularly for the regions involving stations near the coast, or with a complex orography. The performance of EC forecasts was only slightly influenced by the size of the ensemble members, particularly at short lead times. Even with less ensemble members, EC still performed better than the other two NWPs. Errors in the radiation forecasts, followed by those in the wind, had the most detrimental effects on the ET0 forecast performances.

  12. Moessbauer and magnetic investigation of Fe-Mn alloy

    International Nuclear Information System (INIS)

    Yousif, A.A.

    1994-01-01

    Moessbauer, X-ray, magnetization and susceptibility measurements were performed to study Fe 100-x Mn x , x = 5, 15, 39, 50. The different phases of Fe-Mn were identified, and hyperfine interaction parameters and average magnetic moments of some samples were determined. The average hyperfine field and average magnetic moment decrease as x increases. The influence of the Mn neighbourhood on the derived parameters is discussed in the light of calculations using the first principle discrete variational method in the local density approximation. (orig.)

  13. EG-Assisted Synthesis and Electrochemical Performance of Ultrathin Carbon-Coated LiMnPO4 Nanoplates as Cathodes in Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Liwei Su

    2015-01-01

    Full Text Available Ultrathin carbon-coated LiMnPO4 (ULMP/C nanoplates were prepared through an ethylene glycol- (EG- assisted pyrolysis method. Different from most of LiMnPO4/C works, the obtained ULMP/C possessed relatively small particle size (less than 50 nm in thickness and preferable carbon coating (~1 nm in thickness, 2 wt.%. As a reference, LiMnPO4/C (LMP/C composites were also fabricated via the traditional hydrothermal method. X-ray diffraction (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM, energy dispersive X-ray spectroscopy (EDS, thermogravimetric analysis (TG, galvanostatic charge-discharge, and cyclic voltammetry (CV were performed to characterize the crystalline phase, morphology, structure, carbon content, and electrochemical behaviors of samples. The electrochemical performance of bare and carbon-coated LiMnPO4 was evaluated as cathodes in lithium ion batteries. As a result, the obtained ULMP/C nanoplates demonstrated much higher reversible capacities (110.9 mAh g−1 after 50 cycles at 0.1 C and rate performances than pure LMP and LMP/C composites. This facile and efficient EG-assisted pyrolysis method can enlighten us on exploiting advanced routes to modify active materials with ultrathin and homogeneous carbon layers.

  14. Magnetocaloric effect in In doped YbMnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Sattibabu, Bhumireddi, E-mail: bsb.satti@gmail.com [School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad 500046 (India); Department of Electronics and Physics, Institute of Science, GITAM University, Visakhapatnam 530045 (India); Bhatnagar, A.K., E-mail: anilb42@gmail.com [School of Physics, University of Hyderabad, Hyderabad 500046 (India); Vinod, K.; Mani, Awadhesh [Condensed Matter Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)

    2017-06-01

    Magnetic and magnetocaloric (MCE) properties of Yb{sub 0.9}In{sub 0.1}MnO{sub 3} and Yb{sub 0.8}In{sub 0.2}MnO{sub 3} polycrystalline samples are presented in this paper. Isothermal magnetization measurements reveal a field induced magnetic transition. Magnetic entropy change of 2.34±0.35 J/mole-K for Yb{sub 0.9}In{sub 0.1}MnO{sub 3} and 2.64±0.38 J/mole-K for Yb{sub 0.8}In{sub 0.2}MnO{sub 3} field change ΔH =10 KOe is observed around the ferromagnetic ordering temperature of Yb{sup 3+}. Values of relative cooling power for the same field change are found to be 38.03±9 J /mol, and 40.90±10 J/mol for Yb{sub 0.9}In{sub 0.1}MnO{sub 3} and Yb{sub 0.8}In{sub 0.2}MnO{sub 3}, respectively. These values suggest In doped YbMnO{sub 3} may be a potential candidate for magnetic refrigerant at low temperatures.

  15. Unraveling the role of animal heme peroxidases in superoxide mediated Mn oxide formation

    Science.gov (United States)

    Learman, D. R.; Hansel, C. M.

    2013-12-01

    Manganese(III,IV) oxides are important in the environment as they can impact the fate of a broad range of nutrients (e.g. carbon and phosphate) and contaminates (e.g. lead and chromium). Bacteria play a valuable role in the production of Mn oxides, yet the mechanisms and physiological reasons remain unclear. Roseobacter sp. AzwK-3b, an organism within the abundant and ubiquitous Roseobacter clade, has recently been shown to oxidize Mn(II) via a novel pathway that involves enzymatic extracellular superoxide production. However, in reactions with only Mn(II) and abiotically generated superoxide, we find superoxide alone is not enough to produce Mn(III,IV) oxides. Scavenging of the byproduct hydrogen peroxide (via the addition of catalase) is required to generate Mn oxides via abiotic reaction of Mn(II) with superoxide. Thus, R. AzwK-3b must produce superoxide and also scavenge hydrogen peroxide to form Mn oxides. Further, in-gel Mn(II) oxidation assay revealed a protein band that could generate Mn oxides in the presence of soluble Mn(II). This Mn(II)-oxidizing protein band was excised from the gel and the peptides identified via mass spectrometry. An animal heme peroxidase (AHP) was the predominant protein found in this band. This protein is homologous to the AHPs previously implicated as a Mn(II)-oxidizing enzyme within the Alphaproteobacteria, Erythrobacter SD-21 and Aurantimonas manganoxydans strain SI85-9A1. Currently, protein expression of the AHPs in R. AzwK-3b is being examined to determine if expression is correlated with Mn(II) concentration or oxidative stress. Our data suggests that AHPs do not directly oxidize Mn(II) but rather plays a role in scavenging hydrogen peroxide and/or producing an organic Mn(III) ligand that complexes Mn(III) and likely aids in Mn oxide precipitation.

  16. The Al-rich region of the Al–Fe–Mn alloy system

    International Nuclear Information System (INIS)

    Balanetskyy, S.; Pavlyuchkov, D.; Velikanova, T.; Grushko, B.

    2015-01-01

    Highlights: • Constitution of Al–Fe–Mn was studied above 50 at.% Al at 650–1070 °C. • AlMn (A2) and AlFe (B2) phases form a continuous compositional region. • Al 8 Mn 5 and Al 8 Fe 5 γ-brass type phases form a continuous compositional region. • Al 13 Fe 4 , Al 5 Fe 2 , Al 2 Fe, Al 6 Mn, Al 11 Mn 4 , γ 2 exhibit wide ternary extensions. • Four ternary intermetallics were revealed. - Abstract: Phase equilibria in the Al-rich region of the Al–Fe–Mn alloy system were studied at 1070, 1020, 950, 875, 800, 740, 695 and 650 °C. The continuous region of the bcc solid solution was estimated between the Al–Mn and Al–Fe terminals. Also the isostructural high-temperature Al–Mn and Al–Fe γ 1 -phases (γ-brass type structure) form continuous regions. The Al 6 Mn, high-temperature T-Al 11 Mn 4 and low-temperature γ 2 phases dissolve up to 9.0, 14.5 and 31.0 at.% Fe, respectively, while the M-Al 13 Fe 4 , Al 5 Fe 2 and Al 2 Fe phases dissolve up to 15.5, 11.5 and 10.0 at.% Mn, respectively. The thermodynamically stable decagonal D 3 -phase with periodicity of 1.25 nm in the specific direction and two periodic intermetallics designated φ (P6 3 /mmc; a = 0.7554, c = 0.7872 nm) and κ (P6 3 /m; a = 1.7630, c = 1.2506 nm) were identified. An additional ternary phase of unknown structure was also revealed

  17. Determination of Na, Cl, Ca, Mg, Mn and K in milk samples by activation analysis

    International Nuclear Information System (INIS)

    Kira, Carmen S.; Maihara, Vera A.

    2000-01-01

    In the present work cow milk samples distributed for Sao Paulo government institutions, by means of the 'Viva leite' programme, have been monitored. The concentrations of Ca, Cl, K, Mg, Mn and Na were determined in five milk samples and in three different kinds of commercial powder milk, by instrumental neutron activation. For quality control, the reference materials NIST whole milk powder and non fat milk powder were analysed. The results obtained are in the range of the concentrations mentioned in the literature for these elements. (author)

  18. Standard reference material certification: contribution of NAA with a TRIGA reactor

    International Nuclear Information System (INIS)

    Orvini, E.; Speziali, M.; Salvini, A.; Herborg, C.

    2002-01-01

    Pavia has cooperative links with the major international agencies devoted to the certification of SRMs or CRMs as the Bureau Communautaire de Reference (BCR), the European Institute for Reference Materials and Measurement (IRMM), the USA National Institute of Standards and Technology (NIST) and the International Atomic Energy Agency (IAEA). During these cooperative works, a large amount of analytical data obtained with NAA has been compared, and meaningful methodological information achieved with respect to accuracy and precision in the analysis of several elements at different concentrations in various matrices. Analytical data on As, Cd, Cr, Co, Cu, Cs, Fe, Zn, K, Sc, U, Th, Al, Sb, Mn, V, Hg, Sr, Rb, Se,Pt, all the Rare Earths and halogens Br, Cl, I, have been obtained and contributed for the final certification

  19. Study of intergranular embrittlement in Fe-12Mn alloys

    International Nuclear Information System (INIS)

    Lee, H.J.

    1982-06-01

    A high resolution scanning Auger microscopic study has been performed on the intergranular fracture surfaces of Fe-12Mn steels in the as-austenitized condition. Fracture mode below the ductile-brittle transition temperature was intergranular whenever the alloy was quenched from the austenite field. The intergranular fracture surface failed to reveal any consistent segregation of P, S, As, O, or N. The occasional appearance of S or O on the fracture surface was found to be due to a low density precipitation of MnS and MnO 2 along the prior austenite boundaries. An AES study with Ar + ion-sputtering showed no evidence of manganese enrichment along the prior austenite boundaries, but a slight segregation of carbon which does not appear to be implicated in the tendency toward intergranular fracture. Addition of 0.002% B with a 1000 0 C/1h/WQ treatment yielded a high Charpy impact energy at liquid nitrogen temperature, preventing the intergranular fracture. High resolution AES studies showed that 3 at. % B on the prior austenite grain boundaries is most effective in increasing the grain boundary cohesive strength in an Fe-12Mn alloy. Trace additions of Mg, Zr, or V had negligible effects on the intergranular embrittlement. A 450 0 C temper of the boron-modified alloys was found to cause tempered martensite embrittlement, leading to intergranular fracture. The embrittling treatment of the Fe-12Mn alloys with and without boron additions raised the ductile-brittle transition by 150 0 C. This tempered martensite embrittlement was found to be due to the Mn enrichment of the fracture surface to 32 at. % Mn in the boron-modified alloy and 38 at. % Mn in the unmodified alloy. The Mn-enriched region along the prior austenite grain boundaries upon further tempering is believed to cause nucleation of austenite and to change the chemistry of the intergranular fracture surfaces. 61 figures

  20. On the “alpha-phase” of Ca{sub 2−x}Sr{sub x}MnO{sub 4} and extending the chemistry of Sr{sub 7−y}Ca{sub y}Mn{sub 4}O{sub 15} to y>1

    Energy Technology Data Exchange (ETDEWEB)

    Craddock, Sarah; Senn, Mark S.

    2017-04-15

    There has been renewed interest in the Ruddlesden-Popper phase (n=2) of composition Ca{sub n+1}Mn{sub n}O{sub 3} {sub n+1} in the light of recent research that has highlighted the nature of the improper ferroelectric ground state, which arises due to the couplings between specific combinations of MnO{sub 6} octahedral rotations and tilts. A fruitful route to control these octahedral degrees of freedom, and hence such desired physical properties, is through chemical substitution on the A–site cation i.e. Ca{sub 2−x}Sr{sub x}MnO{sub 4} for n =1, and in light of this, we have reinvestigated the chemistry of this solid solution. Here we focus on a common impurity phase observed during this synthesis which has been termed the “alpha-phase” in the literature. We show that this impurity phase is actually comprised mainly of a structure related to Sr{sub 7}Mn{sub 4}O{sub 15} but is found here with significantly higher Ca substitution than previously believed possible. Sr{sub 7}Mn{sub 4}O{sub 15} is an interesting structural type in its own right, but has been mainly overlooked to date, exhibiting interesting physics related to low dimensional magnetic ordering and dimer interactions, and we show here that the structural type is a likely candidate for exhibiting a multiferroic ground state. The prospect of being able to tune the lattice and the exchange interactions through further chemical substitution is likely to lead to a renewed interest in this material. - Graphical abstract: Extending the chemistry of Sr{sub 7−y}Ca{sub y}Mn{sub 4}O{sub 15} beyond y>1, revealing highly anisotropic cation ordering and tunable magnetic properties. - Highlights: • Chemistry of the unique structural type Sr{sub 7}Mn{sub 4}O{sub 15} is extended to high Ca concentrations. • Cation occupancy model is determined, showing highly anisotropic solubility of Ca on the 7 unique Sr crystallographic sites. • Anomalies in the magnetic susceptibility data are discussed with reference to

  1. Characterization of Danio rerio Mn2+-dependent ADP-ribose/CDP-alcohol diphosphatase, the structural prototype of the ADPRibase-Mn-like protein family.

    Directory of Open Access Journals (Sweden)

    Joaquim Rui Rodrigues

    Full Text Available The ADPRibase-Mn-like protein family, that belongs to the metallo-dependent phosphatase superfamily, has different functional and structural prototypes. The functional one is the Mn(2+-dependent ADP-ribose/CDP-alcohol diphosphatase from Rattus norvegicus, which is essentially inactive with Mg(2+ and active with low micromolar Mn(2+ in the hydrolysis of the phosphoanhydride linkages of ADP-ribose, CDP-alcohols and cyclic ADP-ribose (cADPR in order of decreasing efficiency. The structural prototype of the family is a Danio rerio protein with a known crystallographic structure but functionally uncharacterized. To estimate the structure-function correlation with the same protein, the activities of zebrafish ADPRibase-Mn were studied. Differences between zebrafish and rat enzymes are highlighted. The former showed a complex activity dependence on Mn(2+, significant (≈25% Mg(2+-dependent activity, but was almost inactive on cADPR (150-fold less efficient than the rat counterpart. The low cADPR hydrolase activity agreed with the zebrafish genome lacking genes coding for proteins with significant homology with cADPR-forming enzymes. Substrate-docking to zebrafish wild-type protein, and characterization of the ADPRibase-Mn H97A mutant pointed to a role of His-97 in catalysis by orientation, and to a bidentate water bridging the dinuclear metal center as the potential nucleophile. Finally, three structural elements that delimit the active site entrance in the zebrafish protein were identified as unique to the ADPRibase-Mn-like family within the metallo-dependent phosphatase superfamily.

  2. Capacitive properties of PANI/MnO2 synthesized via simultaneous-oxidation route

    International Nuclear Information System (INIS)

    Zhang Jie; Shu Dong; Zhang Tianren; Chen Hongyu; Zhao Haimin; Wang Yongsheng; Sun Zhenjie; Tang Shaoqing; Fang Xueming; Cao Xiufang

    2012-01-01

    Highlights: ► PANI/MnO 2 composite was synthesized by the simultaneous-oxidation route. ► Good contact in inter-molecule level between PANI and MnO 2 improves the conductivity. ► The separation between PANI and MnO 2 prevents the aggregation of nano-composite. ► The maximum specific capacitance of the PANI/MnO 2 electrode is 320 F/g. ► The as-prepared PANI/MnO 2 exhibits excellent cycle stability of 84% capacitance retention after 10,000 cycles. - Abstract: Polyaniline (PANI) and manganese dioxide (MnO 2 ) composite (PANI/MnO 2 ) was synthesized via a simultaneous-oxidation route. In this route, all reactants were dispersed homogenously in precursor solution and existed as ions and molecules, and involved reactions of ions and molecules generating PANI and MnO 2 simultaneously. In this way, PANI molecule and MnO 2 molecule contact each other and arrange alternately in the composite. The inter-molecule contact improves the conductivity of the composite. The alternative arrangement of PANI molecules and MnO 2 molecules separating each other, and prevents the aggregation of PANI and cluster of MnO 2 so as to decrease the particle size of the composite. The morphology, structure, porous and capacitive properties are characterized by scanning electron microscopy, X-ray diffraction spectroscopy, X-ray photoelectron spectroscopy, Branauer–Emmett–Teller test, thermogravimetric analysis, Fourier transform infrared spectroscopy, cyclic voltammetry, charge–discharge test and the electrochemical impedance measurements. The results show that MnO 2 is predominant in the PANI/MnO 2 composite and the composite exhibits larger specific surface area than pure MnO 2 . The maximum specific capacitance of the composite electrode reaches up to 320 F/g by charge–discharge test, 1.56 times higher than that of MnO 2 (125 F/g). The specific capacitance retains approximately 84% of the initial value after 10,000 cycles, indicating the good cycle stability.

  3. High-Strength Ultra-Fine-Grained Hypereutectic Al-Si-Fe-X (X = Cr, Mn) Alloys Prepared by Short-Term Mechanical Alloying and Spark Plasma Sintering.

    Science.gov (United States)

    Průša, Filip; Bláhová, Markéta; Vojtěch, Dalibor; Kučera, Vojtěch; Bernatiková, Adriana; Kubatík, Tomáš František; Michalcová, Alena

    2016-11-30

    In this work, Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn (wt %) alloys were prepared by a combination of short-term mechanical alloying and spark plasma sintering. The microstructure was composed of homogeneously dispersed intermetallic particles forming composite-like structures. X-ray diffraction analysis and TEM + EDS analysis determined that the α-Al along with α-Al 15 (Fe,Cr)₃Si₂ or α-Al 15 (Fe,Mn)₃Si₂ phases were present, with dimensions below 130 nm. The highest hardness of 380 ± 7 HV5 was observed for the Al-20Si-10Fe-6Mn alloy, exceeding the hardness of the reference as-cast Al-12Si-1Cu-1 Mg-1Ni alloy (121 ± 2 HV5) by nearly a factor of three. Both of the prepared alloys showed exceptional thermal stability with the hardness remaining almost the same even after 100 h of annealing at 400 °C. Additionally, the compressive strengths of the Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn alloys reached 869 MPa and 887 MPa, respectively, and had virtually the same values of 870 MPa and 865 MPa, respectively, even after 100 h of annealing. More importantly, the alloys showed an increase in ductility at 400 °C, reaching several tens of percent. Thus, both of the investigated alloys showed better mechanical properties, including superior hardness, compressive strength and thermal stability, as compared to the reference Al-10Si-1Cu-1Mg-1Ni alloy, which softened remarkably, reducing its hardness by almost 50% to 63 ± 8 HV5.

  4. High-Strength Ultra-Fine-Grained Hypereutectic Al-Si-Fe-X (X = Cr, Mn) Alloys Prepared by Short-Term Mechanical Alloying and Spark Plasma Sintering

    Science.gov (United States)

    Průša, Filip; Bláhová, Markéta; Vojtěch, Dalibor; Kučera, Vojtěch; Bernatiková, Adriana; Kubatík, Tomáš František; Michalcová, Alena

    2016-01-01

    In this work, Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn (wt %) alloys were prepared by a combination of short-term mechanical alloying and spark plasma sintering. The microstructure was composed of homogeneously dispersed intermetallic particles forming composite-like structures. X-ray diffraction analysis and TEM + EDS analysis determined that the α-Al along with α-Al15(Fe,Cr)3Si2 or α-Al15(Fe,Mn)3Si2 phases were present, with dimensions below 130 nm. The highest hardness of 380 ± 7 HV5 was observed for the Al-20Si-10Fe-6Mn alloy, exceeding the hardness of the reference as-cast Al-12Si-1Cu-1 Mg-1Ni alloy (121 ± 2 HV5) by nearly a factor of three. Both of the prepared alloys showed exceptional thermal stability with the hardness remaining almost the same even after 100 h of annealing at 400 °C. Additionally, the compressive strengths of the Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn alloys reached 869 MPa and 887 MPa, respectively, and had virtually the same values of 870 MPa and 865 MPa, respectively, even after 100 h of annealing. More importantly, the alloys showed an increase in ductility at 400 °C, reaching several tens of percent. Thus, both of the investigated alloys showed better mechanical properties, including superior hardness, compressive strength and thermal stability, as compared to the reference Al-10Si-1Cu-1Mg-1Ni alloy, which softened remarkably, reducing its hardness by almost 50% to 63 ± 8 HV5. PMID:28774094

  5. Low temperature magnetic structure of MnSe

    Indian Academy of Sciences (India)

    Abstract. In this paper we report low temperature neutron diffraction studies on MnSe in order to understand the anomalous behaviour of their magnetic and transport prop- erties. Our study indicates that at low temperatures MnSe has two coexisting crystal structures, high temperature NaCl and hexagonal NiAs. NiAs phase ...

  6. Performance and Aging of Mn/MnO2 as an Environmentally Friendly Energetic Time Delay Composition

    Science.gov (United States)

    2014-04-16

    16,20−22 Thermochemical predictions of this reaction were made using Cheetah v6.023 at a constant pressure of 1 atm. Figure 2 shows that the...three experiments at 40, 50, and 60 wt % Mn. Similar to Figure 2. Predicted adiabatic combustion temperature vs Mn content using Cheetah v6.0. Figure 3...Bastea, S.; Fried, L. E.; Glaesemann, K. R.; Howard, W. M.; Kuo, I.-F.; Souers, P. C. Cheetah 6.0 User Manual; Technical Report for Lawrence

  7. Redox Reactions between Mn(II) and Hexagonal Birnessite Change Its Layer Symmetry.

    Science.gov (United States)

    Zhao, Huaiyan; Zhu, Mengqiang; Li, Wei; Elzinga, Evert J; Villalobos, Mario; Liu, Fan; Zhang, Jing; Feng, Xionghan; Sparks, Donald L

    2016-02-16

    Birnessite, a phyllomanganate and the most common type of Mn oxide, affects the fate and transport of numerous contaminants and nutrients in nature. Birnessite exhibits hexagonal (HexLayBir) or orthogonal (OrthLayBir) layer symmetry. The two types of birnessite contain contrasting content of layer vacancies and Mn(III), and accordingly have different sorption and oxidation abilities. OrthLayBir can transform to HexLayBir, but it is still vaguely understood if and how the reverse transformation occurs. Here, we show that HexLayBir (e.g., δ-MnO2 and acid birnessite) transforms to OrthLayBir after reaction with aqueous Mn(II) at low Mn(II)/Mn (in HexLayBir) molar ratios (5-24%) and pH ≥ 8. The transformation is promoted by higher pH values, as well as smaller particle size, and/or greater stacking disorder of HexLayBir. The transformation is ascribed to Mn(III) formation via the comproportionation reaction between Mn(II) adsorbed on vacant sites and the surrounding layer Mn(IV), and the subsequent migration of the Mn(III) into the vacancies with an ordered distribution in the birnessite layers. This study indicates that aqueous Mn(II) and pH are critical environmental factors controlling birnessite layer structure and reactivity in the environment.

  8. Electrochemical performance studies of MnO2 nanoflowers recovered from spent battery

    International Nuclear Information System (INIS)

    Ali, Gomaa A.M.; Tan, Ling Ling; Jose, Rajan; Yusoff, Mashitah M.; Chong, Kwok Feng

    2014-01-01

    Highlights: • MnO 2 is recovered from spent zinc–carbon batteries as nanoflowers structure. • Recovered MnO 2 nanoflowers show high specific capacitance. • Recovered MnO 2 nanoflowers show stable electrochemical cycling up to 900 cycles. • Recovered MnO 2 nanoflowers show low resistance in EIS data. - Abstract: The electrochemical performance of MnO 2 nanoflowers recovered from spent household zinc–carbon battery is studied by cyclic voltammetry, galvanostatic charge/discharge cycling and electrochemical impedance spectroscopy. MnO 2 nanoflowers are recovered from spent zinc–carbon battery by combination of solution leaching and electrowinning techniques. In an effort to utilize recovered MnO 2 nanoflowers as energy storage supercapacitor, it is crucial to understand their structure and electrochemical performance. X-ray diffraction analysis confirms the recovery of MnO 2 in birnessite phase, while electron microscopy analysis shows the MnO 2 is recovered as 3D nanostructure with nanoflower morphology. The recovered MnO 2 nanoflowers exhibit high specific capacitance (294 F g −1 at 10 mV s −1 ; 208.5 F g −1 at 0.1 A g −1 ) in 1 M Na 2 SO 4 electrolyte, with stable electrochemical cycling. Electrochemical data analysis reveal the great potential of MnO 2 nanoflowers recovered from spent zinc–carbon battery in the development of high performance energy storage supercapacitor system

  9. Characterization of Mn doped ZnO nanopowder

    Energy Technology Data Exchange (ETDEWEB)

    Schlenker, Eva; Bakin, Andrey; Al-Suleiman, Mohamed; Wehmann, Hergo-Heinrich; Waag, Andreas [Institute of Semiconductor Technology, TU Braunschweig (Germany); Schmid, Herbert; Mader, Werner [Institute for Inorganic Chemistry, University Bonn (Germany); Bremers, Heiko; Hangleiter, Andreas [Institute of Applied Physics, TU Braunschweig (Germany)

    2008-07-01

    In the quest of materials for spintronic applications, diluted magnetic semiconductors recently attracted much attention. The main challenge is finding a ferromagnetic material with Curie temperature T{sub c}>300 K whose magnetic properties can be controlled electrically. The interest was particularly focused on Zn(TM)O since theoretical calculations predict that ZnO containing Mn could exhibit ferromagnetism with T{sub c} above room temperature. In the present study, the structural and magnetic properties of Mn doped ZnO nanopowder are investigated and compared to undoped ZnO crystals. Doping of ZnO with Mn results in increased lattice constants as revealed by XRD. However, an inhomogeneous distribution of the Mn dopants within the nanopowder was revealed by energy-dispersive X-ray and electron energy-loss spectroscopy. Magnetic properties are investigated by means of SQUID measurements on aggregates of powder particles as well as by MFM to study the behavior of single grains. The MFM image differs significantly from the topography as imaged by AFM and suggests the existence of long-ranging magnetic signals emerging from the sample.

  10. Structure of MnSi on SiC(0001)

    Science.gov (United States)

    Meynell, S. A.; Spitzig, A.; Edwards, B.; Robertson, M. D.; Kalliecharan, D.; Kreplak, L.; Monchesky, T. L.

    2016-11-01

    We report on the growth and magnetoresistance of MnSi films grown on SiC(0001) by molecular beam epitaxy. The growth resulted in a textured MnSi(111) film with a predominantly [1 1 ¯0 ] MnSi (111 )∥[11 2 ¯0 ] SiC(0001) epitaxial relationship, as demonstrated by transmission electron microscopy, reflection high energy electron diffraction, and atomic force microscopy. The 500 ∘C temperature required to crystallize the film leads to a dewetting of the MnSi layer. Although the sign of the lattice mismatch suggested the films would be under compressive stress, the films acquire an in-plane tensile strain likely driven by the difference in thermal expansion coefficients between the film and substrate during annealing. As a result, the magnetoresistive response demonstrates that the films possess a hard-axis out-of-plane magnetocrystalline anisotropy.

  11. Magnetic exchange interactions in Mn doped ZnSnAs{sub 2} chalcopyrite

    Energy Technology Data Exchange (ETDEWEB)

    Bouhani-Benziane, H.; Sahnoun, O. [Laboratoire de Physique Quantique de la Matière et Modélisation Mathématique (LPQ3M), University of Mascara (Algeria); Sahnoun, M., E-mail: sahnoun_cum@yahoo.fr [Laboratoire de Physique Quantique de la Matière et Modélisation Mathématique (LPQ3M), University of Mascara (Algeria); Department of Chemistry, University of Fribourg (Switzerland); Driz, M. [Laboratoire de Sciences des Matériaux (LSM), University of Sidi Bel Abbes (Algeria); Daul, C. [Department of Chemistry, University of Fribourg (Switzerland)

    2015-12-15

    Accurate ab initio full-potential augmented plane wave (FP-LAPW) electronic calculations within generalized gradient approximation have been performed for Mn doped ZnSnAs{sub 2} chalcopyrites, focusing on their electronic and magnetic properties as a function of the geometry related to low Mn-impurity concentration and the spin magnetic alignment (i.e., ferromagnetic vs antiferromagnetic). As expected, Mn is found to be a source of holes and localized magnetic moments of about 4 µ{sub B} per Mn atom are calculated which are sufficiently large. The defect calculations are firstly performed by replacing a single cation (namely Zn and Sn) with a single Mn atom in the pure chalcopyrite ZnSnAs{sub 2} supercell, and their corresponding formation energies show that the substitution of a Sn atom (rather than Zn) by Mn is strongly favored. Thereafter, a comparison of total energy differences between ferromagnetic (FM) and antiferromagnetic (AFM) are given. Surprisingly, the exchange interaction between a Mn pairs is found to oscillate with the distance between them. Consequently, the AFM alignment is energetically favored in Mn-doped ZnSnAs{sub 2} compounds, except for low impurity concentration associated with lower distances between neighboring Mn impurities, in this case the stabilization of FM increases. Moreover, the ferromagnetic alignment in the Mn-doped ZnSnAs{sub 2} systems behaves half-metallic; the valence band for majority spin orientation is partially filled while there is a gap in the density of states for the minority spin orientation. This semiconducting gap of ~1 eV opened up in the minority channel and is due to the large bonding–antibonding splitting from the p–d hybridization. Our findings suggest that the Mn-doped ZnSnAs{sub 2} chalcopyrites could be a different class of ferromagnetic semiconductors. - Highlights: • ab initio calculations were performed on Mn doped ZnSnAs{sub 2} chalcopyrite. • Substitution of a Sn atom (rather than Zn) by Mn

  12. MWCNT-MnFe2O4 nanocomposite for efficient hyperthermia applications

    Science.gov (United States)

    Seal, Papori; Hazarika, Monalisa; Paul, Nibedita; Borah, J. P.

    2018-04-01

    In this work we present synthesis of multi-walled carbon nanotube (MWCNT)-Manganese ferrite (MnFe2O4) nanocomposite and its probable application in hyperthermia. MnFe2O4 nanoparticles were synthesized by co-precipitation method. X ray diffractogram (XRD) confirms the formation of cubic phase of MnFe2O4 with preferred crystallographic orientation along (311) plane. High resolution electron microscope (HRTEM) image of the composites confirms the presence of MnFe2O4 spherical nanoparticles on the surface of CNT which are bound strongly to the surface. MWCNT-MnFe2O4 nanocomposite were prepared after acid functionalization of MWCNT. Vibrational features of the synthesized samples were confirmed through Fourier transformed infra-red spectroscopy (FTIR). FTIR spectra of acid functionalized MWCNT shows a peak positioned at ˜1620cm-1 which corresponds to C=O functional group of carboxylic acid. Prepared MnFe2O4 nanoparticles and MWCNT-MnFe2O4 nanocomposites were subjected to hyperthermia studies.

  13. The Enhancement of Mg Corrosion Resistance by Alloying Mn and Laser-Melting

    Directory of Open Access Journals (Sweden)

    Youwen Yang

    2016-03-01

    Full Text Available Mg has been considered a promising biomaterial for bone implants. However, the poor corrosion resistance has become its main undesirable property. In this study, both alloying Mn and laser-melting were applied to enhance the Mg corrosion resistance. The corrosion resistance, mechanical properties, and microstructure of rapid laser-melted Mg-xMn (x = 0–3 wt % alloys were investigated. The alloys were composed of dendrite grains, and the grains size decreased with increasing Mn. Moreover, Mn could dissolve and induce the crystal lattice distortion of the Mg matrix during the solidification process. Mn ranging from 0–2 wt % dissolved completely due to rapid laser solidification. As Mn contents further increased up to 3 wt %, a small amount of Mn was left undissolved. The compressive strength of Mg-Mn alloys increased first (up to 2 wt % and then decreased with increasing Mn, while the hardness increased continuously. The refinement of grains and the increase in corrosion potential both made contributions to the enhancement of Mg corrosion resistance.

  14. Mn doped GaN nanoparticles synthesized by rapid thermal treatment in ammonia

    International Nuclear Information System (INIS)

    Šimek, P.; Sedmidubský, D.; Huber, Š.; Klímová, K.; Maryško, M.; Mikulics, M.; Sofer, Z.

    2015-01-01

    We present a novel route for the synthesis of manganese doped GaN nanoparticles. Nanoparticles in the form of hexagonal discs were synthesized by rapid thermal treatment of manganese doped ammonium hexafluorogallate in ammonium atmosphere. The morphology of GaN:Mn nanoparticles was investigated using scanning electron microscopy. A concentration over 0.7 wt.% of Mn was observed by X-ray fluorescence and electron microprobe. Structural and electronic properties were investigated using X-ray diffraction, Raman spectroscopy and micro-photoluminescence with excitation wavelength of 325 nm and 532 nm. The magnetic properties between 4.5 K and 300 K were investigated by a superconducting quantum interference device (SQUID) magnetometer. GaN:Mn nanoparticles show a purely paramagnetic behavior which can be interpreted in terms of Mn 2+ ions exhibiting an antiferromagnetic interaction. - Highlights: • A new method for the synthesis of Mn doped GaN nanoparticles. • GaN:Mn nanoparticles form hexagonal discs. • None ferromagnetic ordering observed in GaN:Mn nanoparticles. • The concentration of Mn in GaN:Mn nanoparticles reach up to 0.8 wt.%

  15. 12 CFR 404.3 - Public reference facilities.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 4 2010-01-01 2010-01-01 false Public reference facilities. 404.3 Section 404.3 Banks and Banking EXPORT-IMPORT BANK OF THE UNITED STATES INFORMATION DISCLOSURE Procedures for Disclosure of Records Under the Freedom of Information Act. § 404.3 Public reference facilities. Ex-Im Bank...

  16. Synthesis, structural properties and thermal stability of Mn-doped hydroxyapatite

    Science.gov (United States)

    Paluszkiewicz, Czesława; Ślósarczyk, Anna; Pijocha, Dawid; Sitarz, Maciej; Bućko, Mirosław; Zima, Aneta; Chróścicka, Anna; Lewandowska-Szumieł, Małgorzata

    2010-07-01

    Hydroxyapatite (HA) - Ca 10(PO 4) 6(OH) 2 is a basic inorganic model component of hard biological tissues, such as bones and teeth. The significant property of HA is its ability to exchange Ca 2+ ions, which influences crystallinity, physico-chemical and biological properties of modified hydroxyapatite materials. In this work, FTIR, Raman spectroscopy, XRD, SEM and EDS techniques were used to determine thermal stability, chemical and phase composition of Mn containing hydroxyapatite (MnHA). Described methods confirmed thermal decomposition and phase transformation of MnHA to αTCP, βTCP and formation of Mn 3O 4 depending on sintering temperature and manganese content. In vitro biological evaluation of Mn-modified HA ceramics was also performed using human osteoblast cells.

  17. Pseudo Dirac dispersion in Mn-intercalated graphene on SiC

    KAUST Repository

    Kahaly, M. Upadhyay

    2013-07-01

    The atomic and electronic structures of bulk C6Mn, bulk C 8Mn, and Mn-intercalated graphene on SiC(0 0 0 1) and SiC(0001̄) are investigated by density functional theory. We find for both configurations of Mn-intercalated graphene a nonmagnetic state, in agreement with the experimental situation for SiC(0 0 0 1), and explain this property. The electronic structures around the Fermi energy are dominated by Dirac-like cones at energies consistent with data from angular resolved photoelectron spectroscopy [Gao et al., ACS Nano. 6 (2012) 6562]. However, our results demonstrate that the corresponding states trace back to hybridized Mn d orbitals, and not to the graphene. © 2013 Elsevier B.V. All rights reserved.

  18. Pseudo Dirac dispersion in Mn-intercalated graphene on SiC

    KAUST Repository

    Kahaly, M. Upadhyay; Kaloni, Thaneshwor P.; Schwingenschlö gl, Udo

    2013-01-01

    The atomic and electronic structures of bulk C6Mn, bulk C 8Mn, and Mn-intercalated graphene on SiC(0 0 0 1) and SiC(0001̄) are investigated by density functional theory. We find for both configurations of Mn-intercalated graphene a nonmagnetic state, in agreement with the experimental situation for SiC(0 0 0 1), and explain this property. The electronic structures around the Fermi energy are dominated by Dirac-like cones at energies consistent with data from angular resolved photoelectron spectroscopy [Gao et al., ACS Nano. 6 (2012) 6562]. However, our results demonstrate that the corresponding states trace back to hybridized Mn d orbitals, and not to the graphene. © 2013 Elsevier B.V. All rights reserved.

  19. Determination of trace elements in the human hair reference material, HH-I, by neutron activation analysis and atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Coetzee, P.; Pieterse, H.

    1986-01-01

    Analytical procedures are presented and problem areas identified with regard to the determination of trace elements in IAEA powdered human hair reference material, HH-I, of limited sample size (100-200 mg), by NAA and graphite furnace AAS. Results obtained for the twelve elements As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Sb, Se, and Zn studied in human hair and other biological reference material like orchard leaves, seaplant material, and copepod compare satisfactorily with the certified values

  20. Manganese in the shell of the bivalve Mytilus edulis: Seawater Mn or physiological control?

    Science.gov (United States)

    Freitas, Pedro S.; Clarke, Leon J.; Kennedy, Hilary; Richardson, Christopher A.

    2016-12-01

    Manganese in the shell calcite of marine bivalves has been suggested to reflect ambient seawater Mn concentrations, thus providing a high-resolution archive of past seawater Mn concentrations. However, a quantitative relationship between seawater Mn and shell Mn/Ca ratios, as well as clear understanding of which process(es) control(s) shell Mn/Ca, are still lacking. Blue mussels, Mytilus edulis, were grown in a one-year duration field experiment in the Menai Strait, U.K., to study the relationship between seawater particulate and dissolved Mn2+ concentrations and shell calcite Mn/Ca ratios. Shell Mn/Ca showed a well-defined intra-annual double-peak, with maximum values during early spring and early summer and low values during autumn and winter. Seawater particulate Mn peaked during winter and autumn, with a series of smaller peaks during spring and summer, whereas dissolved Mn2+ exhibited a marked single maximum during late-spring to early-summer, being low during the remainder of the year. Consequently, neither seawater particulate Mn nor dissolved Mn2+ concentrations explain the intra-annual variation of shell Mn/Ca ratios. A physiological control on shell Mn/Ca ratios is evident from the strong similarity and timing of the double-peaked intra-annual variations of Mn/Ca and shell growth rate (SGR), the latter corresponding to periods of increased metabolic activity (as indicated by respiration rate). It is thus likely that in M. edulis SGR influences shell Mn/Ca by altering the concentration or activity of Mn2+ within the extra-pallial fluid (EPF), by changing the flux of Mn into or the proportion of protein bound Mn within the EPF. By linking shell Mn/Ca ratios to the endogenous and environmental factors that determine growth and metabolic activity, this study helps to explain the lack of a consistent relationship between shell Mn/Ca in marine bivalve shell calcite and seawater particulate and dissolved Mn2+ concentrations. The use of Mn content from M. edulis

  1. Magnetic structure and spin dynamics of the ground state of the molecular cluster Mn12O12 acetate studied by 55Mn NMR

    International Nuclear Information System (INIS)

    Furukawa, Y.; Watanabe, K.; Kumagai, K.; Borsa, F.; Gatteschi, D.

    2001-01-01

    55 Mn nuclear magnetic resonance (NMR) measurements have been carried out in an oriented powder sample of Mn12 acetate at low temperature (1.4--3 K) in order to investigate locally the static and dynamic magnetic properties of the molecule in its high-spin S=10 ground state. We report the observation of three 55 MnNMR lines under zero external magnetic field. From the resonance frequency and the width of the lines we derive the internal hyperfine field and the quadrupole coupling constant at each of the three nonequivalent Mn ion sites. From the field dependence of the spectrum we obtain a direct confirmation of the standard picture, in which spin moments of Mn 4+ ions (S=3/2) of the inner tetrahedron are polarized antiparallel to that of Mn 3+ ions (S=2) of the outer ring with no measurable canting from the easy axis up to an applied field of 6 T. It is found that the splitting of the 55 Mn-NMR lines when a magnetic field is applied at low temperature allows one to monitor the off-equilibrium population of the molecules in the different low lying magnetic states. The measured nuclear spin-lattice relaxation time T 1 strongly depends on temperature and magnetic field. The behavior could be fitted well by considering the local-field fluctuations at the nuclear 55 Mn site due to the thermal reorientation of the total S=10 spin of the molecule. From the fit of the data one can derive the product of the spin-phonon coupling constant times the mean-square value of the fluctuating hyperfine field. The two constants could be estimated separately by making some assumptions. The comparison of the mean-square fluctuation from relaxation with the static hyperfine field from the spectrum suggests that nonuniform terms (q≠0) are important in describing the spin dynamics of the local Mn moments in the ground state

  2. A Hollow-Structured Manganese Oxide Cathode for Stable Zn-MnO₂ Batteries.

    Science.gov (United States)

    Guo, Xiaotong; Li, Jianming; Jin, Xu; Han, Yehu; Lin, Yue; Lei, Zhanwu; Wang, Shiyang; Qin, Lianjie; Jiao, Shuhong; Cao, Ruiguo

    2018-05-05

    Aqueous rechargeable zinc-manganese dioxide (Zn-MnO₂) batteries are considered as one of the most promising energy storage devices for large scale-energy storage systems due to their low cost, high safety, and environmental friendliness. However, only a few cathode materials have been demonstrated to achieve stable cycling for aqueous rechargeable Zn-MnO₂ batteries. Here, we report a new material consisting of hollow MnO₂ nanospheres, which can be used for aqueous Zn-MnO₂ batteries. The hollow MnO₂ nanospheres can achieve high specific capacity up to ~405 mAh g −1 at 0.5 C. More importantly, the hollow structure of birnessite-type MnO₂ enables long-term cycling stability for the aqueous Zn-MnO₂ batteries. The excellent performance of the hollow MnO₂ nanospheres should be due to their unique structural properties that enable the easy intercalation of zinc ions.

  3. Sonocatalytic Degradation of Antibiotics Tetracycline by Mn-Modified Diatomite

    OpenAIRE

    Guo, Yiping; Mi, Xiao; Li, Guoting; Chen, Xi

    2017-01-01

    Mn-modified diatomite was prepared by wet impregnation and subsequent calcinations processes. It was used as catalyst for sonocatalytic degradation of antibiotics tetracycline. Characterizations by scanning electron microscopy and X-ray diffraction pattern showed that the morphology and crystal structure of the modified diatomite were similar to these of raw diatomite. Despite containing very limited amount of Mn oxides, the Mn-modified diatomite showed much higher sonocatalytic activity than...

  4. The Impact of Environmental Mn Exposure on Insect Biology

    Directory of Open Access Journals (Sweden)

    Yehuda Ben-Shahar

    2018-03-01

    Full Text Available Manganese (Mn is an essential trace element that acts as a metal co-factor in diverse biochemical and cellular functions. However, chronic environmental exposure to high levels of Mn is a well-established risk factor for the etiology of severe, atypical parkinsonian syndrome (manganism via its accumulation in the basal ganglia, pallidum, and striatum brain regions, which is often associated with abnormal dopamine, GABA, and glutamate neural signaling. Recent studies have indicated that chronic Mn exposure at levels that are below the risk for manganism can still cause behavioral, cognitive, and motor dysfunctions via poorly understood mechanisms at the molecular and cellular levels. Furthermore, in spite of significant advances in understanding Mn-induced behavioral and neuronal pathologies, available data are primarily for human and rodents. In contrast, the possible impact of environmental Mn exposure on brain functions and behavior of other animal species, especially insects and other invertebrates, remains mostly unknown both in the laboratory and natural habitats. Yet, the effects of environmental exposure to metals such as Mn on insect development, physiology, and behavior could also have major indirect impacts on human health via the long-term disruptions of food webs, as well as direct impact on the economy because of the important role insects play in crop pollination. Indeed, laboratory and field studies indicate that chronic exposures to metals such as Mn, even at levels that are below what is currently considered toxic, affect the dopaminergic signaling pathway in the insect brain, and have a major impact on the behavior of insects, including foraging activity of important pollinators such as the honey bee. Together, these studies highlight the need for a better understanding of the neuronal, molecular, and genetic processes that underlie the toxicity of Mn and other metal pollutants in diverse animal species, including insects.

  5. Electron microscopic study on SrGdMnO4

    International Nuclear Information System (INIS)

    Nakano, Hiromi; Ishizawa, Nobuo; Kamegashira, Naoki; Zulhadjri; Shishido, Toetsu

    2006-01-01

    Single crystals of SrGdMnO 4 have been synthesized by the floating zone method. The structure was characterized as the K 2 NiF 4 -type, using X-ray diffraction (XRD) and a transmission electron microscope (TEM). Presence of weak reflections breaking the archetypal tetragonal symmetry was observed from the selected area diffraction (SAD). The compound was found to have an orthorhombic unit cell of a ≅ b = 0.532(4) nm, c = 1.271(6) nm, by taking the a and b axes along the diagonal directions on the basal plane of the tetragonal archetype. Structural change occurred around 1018 K. The weak reflections disappeared in the SAD pattern, suggesting that crystal is of the archetype above 1018 K

  6. Grain-size effects on PIXE and INAA analysis of IAEA-336 lichen reference material

    Science.gov (United States)

    Marques, A. P.; Freitas, M. C.; Wolterbeek, H. Th.; Verburg, T. G.; De Goeij, J. J. M.

    2007-02-01

    IAEA-336 lichen certified reference material was used to compare outcomes from INAA and PIXE elemental analyses, in relationship with grain size. The IAEA material (grain size lichen reference material's particle size distribution follows a bimodal distribution, which is turning more and more monomodal after further fine sieving. Replicates of each fraction were analysed by INAA and PIXE. Results for Cl, K, Mn, Fe and Zn by both techniques were compared by application of z-values tested against the criterion ∣ z∣ limited amount of lichen material as "seen" in the PIXE analysis and the grain size distribution in the lichen material were no causes of measurable differences between the results of both techniques. However, fractionation into smaller grain sizes showed to be associated with lower element content, for Na, Cl, K, Mn and Sr even up to a factor of 2. The observed increases of the proportion of algae in the smaller grain-size fractions and the possible accumulation capacity for certain elements in the fungal part of the lichen may explain the observed phenomenon. The sieving process and consequently the discarding of part of the material have lead to a change of the properties of the original sample, namely algae/fungus percentage and elemental contents.

  7. Microwave-assisted synthesis of high-voltage nanostructured LiMn1.5Ni0.5O4 spinel: tuning the Mn3+ content and electrochemical performance

    CSIR Research Space (South Africa)

    Jafta, CJ

    2013-08-01

    Full Text Available on the Mn3+ concentration and electrochemistry of the LiMn1.5Ni0.5O4 spinel. It is shown that microwave is capable of tuning the Mn3+ content of the spinel for enhanced electrochemical performance (high capacity, high capacity retention, excellent rate...

  8. Late administration of Mn porphyrin-based SOD mimic enhances diabetic complications

    Directory of Open Access Journals (Sweden)

    Dana K. Ali

    2013-01-01

    Full Text Available Mn(III N-alkylpyridylporphyrins (MnPs have demonstrated protection in various conditions where increased production of reactive oxygen/reactive nitrogen species (ROS/RNS, is a key pathological factors. MnPs can produce both pro-oxidative and antioxidative effects depending upon the cellular redox environment that they encounter. Previously we reported (Free Radic. Res. 39: 81–8, 2005 that when the treatment started at the onset of diabetes, Mn(III meso-tetrakis(N-methylpyridinium-2-ylporphyrin, MnTM-2-PyP5+ suppressed diabetes-induced oxidative stress. Diabetes, however, is rarely diagnosed at its onset. The aim of this study was to investigate if MnTM-2-PyP5+ can suppress oxidative damage and prevent diabetic complications when administered more than a week after the onset of diabetes. Diabetes was induced by streptozotocin. The MnP-based treatment started 8 days after the onset of diabetes and continued for 2 months. The effect of the treatment on activities of glutathione peroxidase, superoxide dismutase, catalase, glutathione reductase, glucose-6-phosphate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, and glyoxalases I and II as well as malondialdehyde and GSH/GSSG ratio were determined in kidneys. Kidney function was assessed by measuring lysozyme and total protein in urine and blood urea nitrogen. Vascular damage was evaluated by assessing vascular reactivity. Our data showed that delayed administration of MnTM-2-PyP5+ did not protect against oxidative damage and did not prevent diabetic complications. Moreover, MnTM-2-PyP5+ contributed to the kidney damage, which seems to be a consequence of its pro-oxidative action. Such outcome can be explained by advanced oxidative damage which already existed at the moment the therapy with MnP started. The data support the concept that the overall biological effect of a redox-active MnP is determined by (i the relative concentrations of oxidants and reductants, i.e. the cellular redox

  9. Mn-AlInN: a new diluted magnetic semiconductor

    International Nuclear Information System (INIS)

    Majid, Abdul; Ali, Akbar; Sharif, Rehana; Zhu, J.J.

    2009-01-01

    Mn ions have been incorporated into MOCVD grown Al 1-x In x N/GaN thin films by ion implantation to achieve the room temperature ferromagnetism in the samples. Magnetic characterizations revealed the presence of two ferromagnetic transitions: one has Curie points at ∝260 K and the other above room temperature. In-diffusion of indium caused by the Mn implantation leads to the partition of AlInN epilayer into two diluted magnetic semiconductor sub-layers depending on the Mn concentration. The Curie temperature of 260 K is assigned to the layer having lower concentration, whereas T c above room temperature is assumed to be associated to the layer having higher Mn concentration. (orig.)

  10. Synthesis of flower-like LiMnPO4/C with precipitated NH4MnPO4·H2O as precursor

    International Nuclear Information System (INIS)

    Liu Jiali; Hu Dongge; Huang Tao; Yu Aishui

    2012-01-01

    Highlights: ► Flower-like NH 4 MnPO 4 ·H 2 O is obtained by novel precipitating method. ► It is used as the precursor to synthesize LiMnPO 4 /C. ► Subsequent heat treatment would not destroy the precursor morphology. ► As-prepared LiMnPO 4 /C showed discharge capacity of 85 mAh/g at 0.05 C. - Abstract: Ammonium magnesium phosphate monohydrate (NH 4 MnPO 4 ·H 2 O) precursor was prepared by a novel precipitating process with manganese citrate complexes as intermediate. The morphology of the precursor observed by Scanning Electron Microscope (SEM) was flower-like which was self-assembled by plate-like particles. Further analysis by X-ray diffraction (XRD) revealed that the lattice of the plate crystal was orientated along (0 1 0) plane. By solid-state reaction of the precursor, with lithium acetate and glucose as carbon source, pure olivine structured LiMnPO 4 /C composite was obtained and meanwhile, the original flower-like morphology could be retained.

  11. One-pot synthesis of a Ni–Mn3O4 nanocomposite for supercapacitors

    International Nuclear Information System (INIS)

    Xu, Guo-rong; Shi, Jin-jin; Dong, Wen-hao; Wen, Ya; Min, Xiang-ping; Tang, An-ping

    2015-01-01

    Highlights: • Ni–Mn 3 O 4 nanocomposites have been synthesized simply. • Mn 3 O 4 particles were deposited on surface of Ni particles with OH functional groups. • Ni–Mn 3 O 4 composites could be quickly conditioned to birnessite-type MnO 2 . • A specific capacitance of 230 F g −1 was obtained for Ni (17.3%)–Mn 3 O 4 nanocomposite. - Abstract: Ni–Mn 3 O 4 nanocomposite has been prepared successfully by chemical oxidation in an alkaline solution of Mn 2+ on the surface of Ni nanoparticles with OH functional groups using one-pot method. The obtained Ni–Mn 3 O 4 nanocomposite was characterized using a scanning electron microscope (SEM), a transmission electron microscope (TEM), X-ray diffraction (XRD) analysis and various electrochemical techniques, such as cyclic voltammetry (CV), galvanostatic charge/discharge (GC/D) and electrochemical impedance spectroscopy (EIS). The average crystal sizes of Mn 3 O 4 were found to decrease linearly with increasing Ni content in the Ni–Mn 3 O 4 composite. The Ni–Mn 3 O 4 nanocomposite could be easily conditioned and inverted to birnessite-type MnO 2 . A specific capacitance of 230 F g −1 (based on pure Mn 3 O 4 ) was obtained for the Ni (17.3%)–Mn 3 O 4 nanocomposite at a current rate of 0.25 A g −1 , and 94% of the initial capacitance was retained after 1000 GC/D cycles at a current rate of 1 A g −1 . It is concluded that the Ni–Mn 3 O 4 nanocomposite is a promising electrode materials for supercapacitors

  12. The effect of pressure on the structural, electronic, magnetic, and thermodynamic properties of the Mn{sub 2}RuGe inverse Heusler alloy

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ting, E-mail: songting_lzjtu@163.com [State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050 (China); College of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050 (China); School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070 (China); Sun, Xiao-Wei [School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070 (China); Tian, Jun-Hong [School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070 (China); Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China); Wei, Xiao-Ping; Wan, Gui-Xin [School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070 (China); Ma, Qin, E-mail: maqin_lut@yeah.net [State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050 (China); College of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050 (China)

    2017-04-15

    In the frame of density functional theory, first-principles calculations based on generalized gradient approximation and quasi-harmonic Debye approximation model in which the phononic effects are taken into account have been carried out to investigate the structural, electronic, magnetic, and thermodynamic properties of full-Heusler alloy Mn{sub 2}RuGe in CuHg{sub 2}Ti-type structure in the pressure range of 0–50 GPa. Present calculations predict that Mn{sub 2}RuGe is a ferrimagnet with an optimized lattice parameter of 5.854 Å. The calculated total magnetic moment of 2.01 μ{sub B} per formula unit is very close to integer value and agree well with the Slater-Pauling rule, where the partial spin moments of Mn (A) and Mn (B) which mainly contribute to the total magnetic moment are 2.66 μ{sub B} and −0.90 μ{sub B}, respectively. In the study of the energy band structures and density of states, Mn{sub 2}RuGe exhibits half-metallicity with an indirect gap of 0.235 eV in the spin-down channels, and the shifting of bands towards higher energies in spin-down channel under high pressure. Meanwhile, the high-pressure thermodynamic properties of Mn{sub 2}RuGe, such as the pressure-volume-temperature relationship, bulk modulus, thermal expansivity, heat capacity, Debye temperature, and Grüneisen parameter are evaluated systematically in the temperature range of 0–900 K. This set of data is considered as the useful information to understand the high-pressure and high-temperature properties for the Mn{sub 2}RuZ-type Heusler alloy family.

  13. Hydrogen absorption properties of U6Mn and U6Ni

    International Nuclear Information System (INIS)

    Ito, H.; Yamawaki, M.; Yamamoto, T.

    1998-01-01

    The hydrogen absorption properties of U, U 6 Mn and U 6 Ni were investigated at hydrogen pressures below 10 5 Pa. The pressure-composition (P-C) isotherms of U, U 6 Mn and U 6 Ni were obtained and the amounts of absorbed hydrogen for U, U 6 Mn and U 6 Ni were determined to be 3, 16.6 and 16.0 for x in MH x , where M is U, U 6 Mn and U 6 Ni, respectively. The desorption plateau pressures at 573 K decreased in the order: U 6 Mn-H>U 6 Ni-H>U-H. In addition, the results for the amounts of absorbed hydrogen suggests the formation of ternary hydrides U 6 MnH 18 and U 6 NiH 14 . (orig.)

  14. Preparation of submicrocrystal LiMn2O4 used Mn3O4 as precursor and its electrochemical performance for lithium ion battery

    International Nuclear Information System (INIS)

    Liu, Bao-Sheng; Wang, Zhen-Bo; Zhang, Yin; Yu, Fu-Da; Xue, Yuan; Ke, Ke; Li, Fang-Fei

    2015-01-01

    Graphical abstract: Spinal LiMn 2 O 4 particles synthesized at 800 °C for 12 h has the best crystallinity with a submicron size and smallest cation disorder, resulting in a superior capacity retention ratio of 90.4% after 200 cycles at 1 °C at room temperature, which possesses an initial capacity of 106.8 mA h/g. - Highlights: • High purity spinel LiMn 2 O 4 was synthesized from industrial grade raw materials. • LiMn 2 O 4 prepared by optimal conditions has the smallest cation mixing. • Optimized LiMn 2 O 4 has the highest initial capacity with 112.9 mA h/g. • Capacity retention of optimized LiMn 2 O 4 is 90.4% after 200 cycles at 1 °C. - Abstract: Spinel LiMn 2 O 4 has been synthesized by solid state reaction with industrial grade Mn 3 O 4 and Li 2 CO 3 as precursors without purification, and its electrochemical performance for lithium ion battery has been investigated by CR2025 coin cell. The results of X-ray diffraction (XRD) patterns and scanning electron microscope (SEM) images show that the size of LiMn 2 O 4 particles grow up with increasing temperature of calcination, and the sample synthesized at 800 °C for 12 h has the best crystallinity with a submicron size. It can deliver initial capacity of 112.9 mA h/g with capacity retention ratio of 89.1% after 200 cycles at charge/discharge rate of 1 C. The results of cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) also show that it has the highest electrochemical activity and lowest charge transfer impedance

  15. Some studies about the NaCl:Ca2+ :Mn2+ and NaCl: Cd2+ :Mn2+ dosemeters

    International Nuclear Information System (INIS)

    Verdiguel G, H.; Flores J, C.; Camarillo G, E.; Espejel P, R.; Cabrera B, E.; Hernandez A, J.; Murrieta S, H.; Cruz Z, E.; Ramos B, S.; Negron, A.

    2002-01-01

    Nowadays, a great interest by counting with dosemeters of characteristics such as a high stability, of easy operation and easier production exists. Looking for a commitment with all these characteristics,a possibility to use the system NaCl: Ca 2+ :Mn 2+ and NaCl: Cd 2+ :Mn 2+ as dosemeters was studied. The studies were realized irradiating with gamma radiation from a 60 Co source. The crystals that were used as samples did not suffer any thermal treatment previous to irradiation. The supplied doses were 10, 30, 60, 100, 300, and 600 rads. 24 hours after irradiation the thermoluminescent response was obtained. In the case of the system NaCl: Ca 2+ :Mn 2+ several thermoluminescent bands were observed (BTL). Two concentrations of Mn 2+ with only one concentration of Ca 2+ (1%) were studied. For the case of the smaller concentration of Mn 2+ (0.1%) 4 BTL were observed, whereas for a greater concentration (0.3%) just 2 BTL were detected. The positions of the maximum of the BTL peaks differ for both concentrations, this possible due to what the nature of the traps for both cases differs by the type of precipitates present in the net. For the case of the system NaCl: Cd 2+ (1%) :Mn 2+ (0.1% and 0.5%) a similar situation to the previous was found, although in this case for both manganese concentrations just 2 BTL were observed; however all the peaks seem to be the superposition of several bands. Despite the apparent complexity of the thermoluminescent response, such response as function of the dose shows that both systems present a stable response to gamma radiation in the interval from 10 to 600 rads. In the case of calcium it is had a response of linear type of the Tl intensity depending on the dose, whereas for the cadmium system a supra linear response seems to exist. Nowadays, studies for determining the BTL origin being carried out. (Author)

  16. Structural characterization of layered Na0.5Co0.5Mn0.5O2 material as a promising cathode for sodium-ion batteries

    Science.gov (United States)

    Manikandan, Palanisamy; Heo, Seongwoo; Kim, Hyun Woo; Jeong, Hu Young; Lee, Eungje; Kim, Youngsik

    2017-09-01

    Layered Na0.5Co0.5Mn0.5O2 material is synthesized through a facile mixed hydroxy-carbonate route using (Co0.5Mn0.5)2(OH)2CO3 precursor and well characterized as a hexagonal layered structure under P63/mmc space group. The lattice parameters and unit cell volume (a = 2.8363 Å, c = 11.3152 Å and V = 78.83 Å3) are calculated by Rietveld refinement analysis. A flaky-bundle morphology is obtained to the layered Na0.5Co0.5Mn0.5O2 material with the hexagonal flake size ∼30 nm. Advanced transmission electron microscopic images are revealed the local structure of the layered Na0.5Co0.5Mn0.5O2 material with contrasting bright dots and faint dark dots corresponding to the Co/Mn and Na atoms. Two oxidation and reduction peaks are occurred in a cyclic voltammetric analysis corresponding to Co3+/Co4+ and Mn3+/Mn4+ redox processes. These reversible processes are attributed to the intercalation/de-intercalation of Na+ ions into the host structure of layered Na0.5Co0.5Mn0.5O2 material. Accordingly, the sodium cell is delivered the initial charge-discharge capacity 53/144 mAh g-1 at 0.5 C, which cycling studies are extended to rate capability test at 1 C, 3 C and 5C. Eventually, the Na-ion full-cell is yielded cathode charge-discharge capacity 55/52 mAh g-1 at 0.212 mA and exhibited as a high voltage cathode for Na-ion batteries.

  17. A Wireless Swing Angle Measurement Scheme Using Attitude Heading Reference System Sensing Units Based on Microelectromechanical Devices

    Directory of Open Access Journals (Sweden)

    Bingtuan Gao

    2014-11-01

    Full Text Available Feasible real-time swing angle measurement is significant to improve the efficiency and safety of industrial crane systems. This paper presents a wireless microelectromechanical system (MEMS-based swing angle measurement system. The system consists of two attitude heading reference system (AHRS sensing units with a wireless communication function, which are mounted on the hook (or payload and the jib (or base of the crane, respectively. With a combination of a three-axis accelerometer, a three-axis gyroscope and a three-axis magnetometer, the standard extended Kalman filter (EKF is used to estimate the desired orientation of the payload and the base. Wireless ZigBee communication is employed to transmit the orientation of the payload to the sensing unit mounted on the base, which measures the orientation of the base. Because several physical parameters from the payload to the base can be acquired from the original crane control system, the swing angles of the payload can be calculated based on the two measured orientation parameters together with the known physical parameters. Experiments were performed to show the feasibility and effectiveness of the proposed swing angle measurement system.

  18. Electron diffraction study of {alpha}-AlMnSi crystals including non-crystallographic axes

    Energy Technology Data Exchange (ETDEWEB)

    Song, G.L.; Bursill, L.A.

    1997-06-01

    The structure of crystalline {alpha}-AlMnSi is examined by electron diffraction. Six distinct zone axes are examined, including both normal crystallographic and non-crystallographic zones axes, allowing the space group symmetry to be studied. Electron diffraction patterns characteristic of Pm3-bar were obtained for thicker specimens. However, for very thin specimens, as used for HRTEM imaging, the electron diffraction patterns were characteristic of Im3-bar space group symmetry. The structural basis of the Pm3-bar to Im3-bar transformation may be understood in terms of an analysis of the icosahedral structural elements located at the corners and body-centers of the cubic unit cell. A method for indexing the non-crystallographic zone axis diffraction patterns is described. An electron diffraction pattern of the 5-fold axis of the quasicrystalline phase i-AlMnSi is also included; this is compared with the experimental results and calculations for the [0{tau}1] axis of Pm3-bar and Im3-bar crystalline phases. 26 refs., 4 tabs., 7 figs.

  19. Superparamagnetic and ferrimagnetic behavior of nanocrystalline ZnO(MnO)

    Science.gov (United States)

    Kuryliszyn-Kudelska, I.; Dobrowolski, W.; Arciszewska, M.; Romčević, N.; Romčević, M.; Hadžić, B.; Sibera, D.; Narkiewicz, U.

    2018-04-01

    We have studied the magnetic properties of nanocrystals of ZnO:MnO prepared by traditional wet chemistry method. The detailed structural and morphological characterization was performed. The results of systematic measurements of AC magnetic susceptibility as a function of temperature and frequency as well as DC magnetization are reported. We observed two different types of magnetic behavior depending on the concentration doping. For samples with low nominal content (up to 30 wt% of MnO), superparamagnetic behavior was observed. We attribute the observed superparamagnetism to the presence of nanosized ZnMnO3 phase. For nanocrystals doped above nominal 60 wt% of MnO ferrimagnetism was detected with TC at around 42 K. This magnetic behavior we assign to the presence of nanosized Mn3O4 phase.

  20. Structural and Magnetic Properties of Co-Mn-Sb Thin films

    Energy Technology Data Exchange (ETDEWEB)

    Meinert, M.; Schmalhorst, J.-M.; Ebke, D.; Liu, N. N.; Thomas, A.; Reiss, G.; Kanak, J.; Stobiecki, T.; Arenholz, E.

    2009-12-17

    Thin Co-Mn-Sb films of different compositions were investigated and utilized as electrodes in alumina based magnetic tunnel junctions with CoFe counterelectrode. The preparation conditions were optimized with respect to magnetic and structural properties. The Co-Mn-Sb/Al-O interface was analyzed by x-ray absorption spectroscopy and magnetic circular dichroism with particular focus on the element-specific magnetic moments. Co-Mn-Sb crystallizes in different complex cubic structures depending on its composition. The magnetic moments of Co and Mn are ferromagnetically coupled in all cases. A tunnel magnetoresistance ratio of up to 24% at 13 K was found and indicates that Co-Mn-Sb is not a ferromagnetic half-metal. These results are compared to recent works on the structure and predictions of the electronic properties.

  1. Effect of Mn content on structural, optical, opto-thermal and electrical properties of ZnO:Mn sprayed thin films compounds

    International Nuclear Information System (INIS)

    Mimouni, R.; Kamoun, O.; Yumak, A.; Mhamdi, A.; Boubaker, K.; Petkova, P.; Amlouk, M.

    2015-01-01

    Highlights: • Proposing an original explanation to the difference between manganese-doped zinc oxide and undoped behavior. • Presenting an original effective electrical and fluorescence-related calculation scheme. • Outlining original AC–DC investigation protocol. - Abstract: Manganese-doped zinc oxide thin films (ZnO:Mn) at different percentages (0–3%) were deposited on glass substrates using a chemical spray technique. The effects of manganese element content on structural, optical, opto-thermal and electrical conductivity of ZnO:Mn thin films were investigated by means of X-ray diffraction, optical measurement, Photoluminescence spectroscopy and impedance spectroscopy. XRD analysis revealed that all films consist of single phase ZnO and were well crystallized in würtzite phase with the crystallites preferentially oriented towards (0 0 2) direction parallel to c-axis. Doping manganese resulted in a slight decrease in the optical band gap energy of the films and a noticeably change in optical constants. The UV peak positions for ZnO:Mn samples slightly red shift to the longer wavelength in comparison with the pure ZnO which can be attributed to the change in the acceptor level induced by the substitutional Mn 2+ and the band-gap narrowing of ZnO with the Mn dopant. We have performed original AC and DC conductivity studies inspired from Jonscher and small polaron models. These studies helped establishing significant correlation between temperature and activation energy and Mn content. From the spectroscopy impedance analysis we investigated the frequency relaxation phenomenon and the circuit equivalent circuit of such thin films. Finally, all results have been discussed, as an objective of the actual work, in terms of the manganese doping concentration

  2. Determination of the Cl, Mg, Mn and Na, in samples of Tradescantia pallida

    International Nuclear Information System (INIS)

    Rossi, Joao Guilherme G.A.; Saiki, Mitiko

    2009-01-01

    The growing number of industries and automotive vehicles are causing the increase of the air pollution. Less expensive methodologies are been studying for the evaluation of these pollution levels. This work evaluates the concentrations of Cl, Mg, Mn and Na, present in the leaves of Tradescantia pallida viewing validation of the specie for use in the bio monitoring of the air pollution. Those leaves were collected and analysed using the short irradiation of the neutron activation analysis technique. The certified reference material INCT-MPH-2 Mixed Polish Herbs were analysed for the quality control of the results and presented very good accuracy, with relative errors less than 4.2 %, and good precision less than 8.7 %. The element concentrations (in μg g -1 ) obtained in the T. pallida samples analysed showed variation from 2324 to 33897 for Cl, from 3602 to 14450 for Mg, from 132 to 314 for Mn, and 21 to 615 for Na. Values obtained in the analyses of Tradescantia present great variability in the element concentrations. The short irradiation showed to be appropriated for determination of the elements studied in the bio monitoring of air pollution

  3. Internal Friction of Austenitic Fe-Mn-C-Al Alloys

    Science.gov (United States)

    Lee, Young-Kook; Jeong, Sohee; Kang, Jee-Hyun; Lee, Sang-Min

    2017-12-01

    The internal friction (IF) spectra of Fe-Mn-C-Al alloys with a face-centered-cubic (fcc) austenitic phase were measured at a wide range of temperature and frequency ( f) to understand the mechanisms of anelastic relaxations occurring particularly in Fe-Mn-C twinning-induced plasticity steels. Four IF peaks were observed at 346 K (73 °C) (P1), 389 K (116 °C) (P2), 511 K (238 °C) (P3), and 634 K (361 °C) (P4) when f was 0.1 Hz. However, when f increased to 100 Hz, whereas P1, P2, and P4 disappeared, only P3 remained without the change in peak height, but with the increased peak temperature. P3 matches well with the IF peak of Fe-high Mn-C alloys reported in the literature. The effects of chemical composition and vacancy (v) on the four IF peaks were also investigated using various alloys with different concentrations of C, Mn, Al, and vacancy. As a result, the defect pair responsible for each IF peak was found as follows: a v-v pair for P1, a C-v pair for P2, a C-C pair for P3, and a C-C-v complex (major effect) + a Mn-C pair (minor effect) for P4. These results showed that the IF peaks of Fe-Mn-C-Al alloys reported previously were caused by the reorientation of C in C-C pairs, not by the reorientation of C in Mn-C pairs.

  4. Cell survival after the combined action of manganese (MnCl2) and X-rays in synchronized Chinese hamster cells

    International Nuclear Information System (INIS)

    Skreb, Y.; Nagy, B.

    1984-01-01

    The interactions between the effects of manganese chloride and X-rays were studied in synchronized populations of V79 Chinese hamster fibroblasts. The cells were selected by shaking off asynchronous cultures for detachment of mitotic cells which were plated in petri dishes and exposed to various treatments. Irradiation was carried out with a Philips RT-100 X-ray unit. A final concentration of 0.25 mM MnCl 2 was used. The main parameter was the colony forming ability of the surviving cell fraction. When MnCl 2 was administered over 1 h, its toxicity was low regardless of the phase of the cell cycle. Administered separately, 2 Gy irradiation produced only a slight decrease in survival, less marked in the S phase. However, the two agents together induced a synergistic inhibition of the surviving fraction in the S phase when the metal was given immediately after irradiation. If manganese wad administered 3 h after irradiation the two inhibitory effects apparently remained only additive. It seems that MnCl 2 can impair some repair processes starting immediately after irradiation. (orig.)

  5. In situ synthesis and characterization of fine-patterned La and Mn co-doped BiFeO{sub 3} film

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Fuxue, E-mail: yanfuxue@126.com; Zhao, Gaoyang, E-mail: zhaogy@xaut.edu.cn; Song, Na; Zhao, Nana; Chen, Yuanqing

    2013-09-05

    Highlights: •La and Mn co-doped BiFeO{sub 3} film was prepared by a photosensitive sol–gel method. •XRD and Raman spectra confirmed single-phase rhombohedral structure with space group R3c. •Fine-patterned BLFMO film was obtained by a direct-patterning technique. •The saturation magnetization and Pr were enhanced in the fine-patterned BLFMO film. -- Abstract: La and Mn co-doped BiFeO{sub 3} (BLFMO) film was prepared by a photosensitive sol–gel method utilizing bismuth nitrate, lanthanum nitrate, manganese nitrate and ferric nitrate as starting materials. After a chelating reaction between benzoylacetone (BzAcH) and metallic ions, the precursor solution presented photosensitivity. Through a direct patterning process, a fine-patterned BLFMO film was obtained. The phase constituents, morphology, electric and magnetic properties of the as-prepared BLFMO film were characterized by X-ray diffractometer (XRD), Raman spectroscopy, scanning electron microscopy (SEM), ferroelectric testing unit, LCR Meter and vibrating sample magnetometer (VSM). The Mn dopant enhanced the saturation magnetization and remnant polarization of the BLFMO film.

  6. MnWO{sub 4} nanocapsules: Synthesis, characterization and its electrochemical sensing property

    Energy Technology Data Exchange (ETDEWEB)

    Muthamizh, Selvamani; Suresh, Ranganathan; Giribabu, Krishnamoorthy; Manigandan, Ramadoss; Praveen Kumar, Sivakumar; Munusamy, Settu; Narayanan, Vengidusamy, E-mail: vnnara@yahoo.co.in

    2015-01-15

    Highlights: • Synthesis of MnWO{sub 4} nanocapsules without use of any other external reagent. • High crystalline MnWO{sub 4} was obtained with phase purity. • Electrochemical sensing platform based on MnWO{sub 4} for sensing quercetin. • Micromolar detection ability of MnWO{sub 4} modified GCE. - Abstract: Manganese tungstate (MnWO{sub 4}) was synthesized by surfactant free precipitation method. MnWO{sub 4} was characterized by using various spectroscopic techniques. The phase, crystalline nature and the morphological analysis were carried out using XRD, scanning electron microscopy (SEM), and high resolution transmission electron microscopy (HR-TEM). Further, FT-IR, Raman, and DRS-UV–Vis spectral analysis were carried out in order to ascertain the optical property and the presence of functional groups. From the analysis, the morphology of the MnWO{sub 4} was observed to be in capsules with breadth and thickness were in nm range. The oxidation state of tungsten (W), and manganese (Mn) were investigated using X-ray photo electron spectroscopy (XPS) and electron paramagnetic resonance spectroscopy (EPR). The synthesized MnWO{sub 4} nanocapsules were used to modify glassy carbon electrode (GCE) to detect quercetin.

  7. Preparation and electrochemical properties of lamellar MnO{sub 2} for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Jun; Wei, Tong [Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China); Cheng, Jie [Research Institute of Chemical Defense, Beijing 100083 (China); Fan, Zhuangjun, E-mail: fanzhj666@163.com [Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China); Zhang, Milin [Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China)

    2010-02-15

    Lamellar birnessite-type MnO{sub 2} materials were prepared by changing the pH of the initial reaction system via hydrothermal synthesis. The interlayer spacing of MnO{sub 2} with a layered structure increased gradually when the initial pH value varied from 12.43 to 2.81, while the MnO{sub 2}, composed of {alpha}-MnO{sub 2} and {gamma}-MnO{sub 2}, had a rod-like structure at pH 0.63. Electrochemical studies indicated that the specific capacitance of birnessite-type MnO{sub 2} was much higher than that of rod-like MnO{sub 2} at high discharge current densities due to the lamellar structure with fast intercalation/deintercalation of protons and high utilization of MnO{sub 2}. The initial specific capacitance of MnO{sub 2} prepared at pH 2.81 was 242.1 F g{sup -1} at 2 mA cm{sup -2} in 2 mol L{sup -1} (NH{sub 4}){sub 2}SO{sub 4} aqueous electrolyte. The capacitance increased by about 8.1% of initial capacitance after 200 cycles at a current density of 100 mA cm{sup -2}.

  8. Energy transfer of the quantum-cutter couple Pr{sup 3+}–Mn{sup 2+} in CaF{sub 2}:Pr{sup 3+}, Mn{sup 2+} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmanoski, Ana [Karlsruhe Institute of Technology (KIT), Institute of Inorganic Chemistry, Engesserstraße 15, D-76131 Karlsruhe (Germany); Pankratov, Vladimir, E-mail: vpank@latnet.lv [Research Center of Molecular Materials, University of Oulu, PO Box 3000, 90014 Oulu (Finland); Feldmann, Claus, E-mail: claus.feldmann@kit.edu [Karlsruhe Institute of Technology (KIT), Institute of Inorganic Chemistry, Engesserstraße 15, D-76131 Karlsruhe (Germany)

    2016-11-15

    CaF{sub 2}:Pr (1 mol%), CaF{sub 2}:Mn (5 mol%) and CaF{sub 2}:Pr,Mn (1 mol%, 5 mol%) nanoparticles are prepared via a microwave-mediated synthesis in ionic liquids. The nanoparticles are highly crystalline and exhibit particle diameters <50 nm.In contrast to bulk-CaF{sub 2}:Pr,Mn,energy transfer between Pr{sup 3+}and Mn{sup 2+}under {sup 1}S{sub 0}→{sup 1}I{sub 6} relaxation on Pr{sup 3+} and {sup 4}G({sup 4}T{sub 1g})→{sup 6}S(A{sub 1g}) emission of Mn{sup 2+} is observed for the first time. Such energy transfer represents the essential first step of the quantum-cutting cascade via the Pr{sup 3+}–Mn{sup 2+} couple, which is most interesting as both expected photons – {sup 3}P{sub 0}→{sup 3}H{sub 4} emission of Pr{sup 3+}and {sup 4}G({sup 4}T{sub 1g})→{sup 6}S(A{sub 1g}) emission of Mn{sup 2+} – are emitted in the green spectral range. While bulk crystals were said not to show energy transfer due to prohibiting selection rules, vacuum ultraviolet (VUV) spectroscopy of CaF{sub 2}:Pr, Mn nanoparticles firstly proves efficient Pr{sup 3+}→Mn{sup 2+} energy transfer, which can be ascribed to the reduced site symmetry and considerable spin–orbit interaction in the nanocrystals.

  9. Kinetics of Solute Partitioning During Intercritical Annealing of a Medium-Mn Steel

    Science.gov (United States)

    Kamoutsi, H.; Gioti, E.; Haidemenopoulos, Gregory N.; Cai, Z.; Ding, H.

    2015-11-01

    The evolution of austenite fraction and solute partitioning (Mn, Al, and C) during intercritical annealing was calculated for a medium-Mn steel containing 11 pct Mn. Austenite growth takes place in three stages. The first stage is growth under non-partitioning local equilibrium (NPLE) controlled by carbon diffusion in ferrite. The second stage is growth under partitioning local equilibrium (PLE) controlled by diffusion of Mn in ferrite. The third stage is shrinkage of austenite under PLE controlled by diffusion of Mn in austenite. During PLE growth, the austenite is progressively enriched in Mn. Compositional spikes evolve early during NPLE growth and broaden with annealing temperature and time.

  10. Synthesis and Optical Properties of MnS–ZnS and MnS–CdS Nanoparticles in Montmorillonite.

    Science.gov (United States)

    Kabilaphat, Jirabhorn; Poosimma, Poonsuk; Khaorapapong, Nithima; Intachai, Sonchai; Ogawa, Makoto

    2017-02-01

    The incorporation of metal sulfide mixture, manganese sulfide and zinc sulfide (MnS–ZnS) or manganese sulfide and cadmium sulfide (MnS–CdS), in two types of montmorillonites (sodium montmorillonite and cetyltrimethylammonium modified montmorillonite) was investigated. The hybrids were characterized by powder X-ray diffraction, thermogravimetric-differential thermal analysis, transmission electron microscopy (TEM), and Raman, UV-visible and photoluminescence spectroscopies. The experimental evidences such as the expansion of the interlayer spaces and the presence of the absorption and photoluminescence due to MnS, ZnS and/or CdS revealed that the mixed metal sulfides formed in the interlayer space of montmorillonites. TEM images of the hybrids showed diskor plate-shaped nanoparticles with a mean diameter of ca. 2 nm. The increase of the luminescence intensities of the hybrids was assumed to be caused by quantum confinement effect in the interlayer space of montmorillonite.

  11. Magnetism and charge transfer in PrNiO{sub 3}-La{sub 0.7}Ca{sub 0.3}MnO{sub 3} heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Bluschke, Martin; Frano, Alex [Max-Planck-Institute for Solid State Research, Stuttgart (Germany); Helmholz-Zentrum Berlin (Germany); Schierle, Enrico; Weschke, Eugen [Helmholz-Zentrum Berlin (Germany); Hepting, Matthias; Minola, Matteo; Christiani, Georg; Logvenov, Gennady; Benckiser, Eva; Keimer, Bernhard [Max-Planck-Institute for Solid State Research, Stuttgart (Germany)

    2015-07-01

    Heterostructures of the bulk antiferromagnet PrNiO{sub 3} (PNO) and the bulk ferromagnetic metal La{sub 0.7}Ca{sub 0.3}MnO{sub 3} (LCMO) are grown by pulsed laser deposition on LaSrAlO{sub 4} substrates for a systematic series of superlattice geometries. A characterization of the structural, magnetization, and transport properties is combined with the results of soft x-ray absorption and resonant scattering measurements to understand how the bulk properties of the individual components are modified via epitaxial strain and heterostructuring. In particular the PNO-LCMO interface is studied. A net transfer of electrons from Mn to Ni sites is observed near the interface. In addition the saturation magnetization and Curie temperature of the ferromagnetic response are found to be reduced compared to bulk LCMO. The antiferromagnetic order characteristic of bulk PNO is observed in superlattices containing 8 unit cells of PNO per bilayer, but suppressed below the detection limit for thinner 4 unit cell layers. Finally a transition between metallic and insulating behaviour in PNO is observed as the layer thickness is reduced from 12 to 4 unit cells, whereas the LCMO layers studied (4-18 unit cells) were insulating in all cases.

  12. Structure and properties of CdO-B2O3 and CdO-MnO-B2O3 glasses; Criteria of getting the fraction of four coordinated boron atoms from infrared spectra

    Science.gov (United States)

    Doweidar, H.; El-Damrawi, G.; El-Stohy, Sh.

    2017-11-01

    IR spectra of CdO-B2O3 and xCdO·(50 - x)MnO·50B2O3 glasses (0 ≤ x ≤ 50 mol%) have been analyzed. The fraction N4 of four coordinated boron atoms obtained from the integrated area under the IR spectra of CdO-B2O3 glasses is markedly higher than the reported NMR values. In both cases, N4 does not change with CdO content. The difference between N4 values of both techniques has been correlated with the relative absorption coefficient of BO4 unit with respect to BO3 unit, as suggested by Chryssikos et al. N4 data of xCdO·(50 - x)MnO·50B2O3 glasses could be used to calculate the fraction of modifier and former CdO and MnO in the borate matrix, as a function of composition. There is a linear increase in both the density and molar volume with increasing CdO content. The change has been correlated with the contribution of CdO and MnO. Electric conduction is assumed to take place via hopping of small polarons. There is a decrease in conductivity with increasing CdO concentration, which suggests that the electrons related to Cd sites are more localized than those at Mn sites.

  13. Exchange anisotropy and micromagnetic properties of PtMn/NiFe bilayers

    International Nuclear Information System (INIS)

    Pokhil, Taras; Linville, Eric; Mao, Sining

    2001-01-01

    Magnetic microstructure, exchange induced uniaxial and unidirectional anisotropy and structural transformation have been studied in PtMn/NiFe bilayer films and small elements as a function of annealing time. The relationship between the fcc-fct ordering phase transformation in PtMn and the development of exchange induced magnetic properties in PtMn/NiFe bilayers is complicated by the fact that the transformation occurs throughout the entire volume of the PtMn film, while the exchange between the layers is predominantly an interface effect. Consequently, the development of the exchange anisotropy should depend primarily on the character of the structural transformation at the interface between PtMn and NiFe. The purpose of this article is to correlate the volume phase transformation in PtMn to the development of exchange anisotropy and micromagnetic behavior in PtMn/NiFe bilayers. The interface structure can be inferred from the anisotropy and micromagnetic measurements, leading to a model that explains the relationship between the volume and interface transformation structures in PtMn, and magnetic properties of the bilayers. The structure and magnetic properties were characterized by x-ray diffraction, vibrating sample magnetometry, and magnetic force microscopy. [copyright] 2001 American Institute of Physics

  14. Fabrication and mechanical properties of quasicrystal-reinforced Al-Mn-Mm alloys

    International Nuclear Information System (INIS)

    Jun, Joong-Hwan; Kim, Jeong-Min; Kim, Ki-Tae; Jung, Woon-Jae

    2007-01-01

    Microstructures and room temperature mechanical properties of quasicrystal-reinforced Al 94-x Mn 6 Mm x (Mm: misch metal, x = 0-6 at.%) alloys have been studied systematically. Cylindrical rod samples with 3 mm in diameter were synthesized by injection-casting into a Cu mould and analyzed by means of X-ray diffractometry, differential scanning calorimetry, optical microscopy and scanning electron microscopy with energy-dispersive X-ray spectrometry. Mechanical properties of the cylindrical rods were measured at room temperature by compression tests. The Al 94 Mn 6 alloy contains hexagonal-shape particles and long needle-shape Al 6 Mn precipitates surrounded by α-Al matrix. An addition of Mm into the Al 94 Mn 6 alloy generates icosahedral quasicrystalline phase (IQC) with an extinction of hexagonal and Al 6 Mn phases, and the fraction of IQC increases continuously with an increase in Mm content. Compressive yield strength (σ cys ) and ultimate compressive strength (σ ucs ) of the Al-Mn-Mm alloys are improved with Mm content up to 4%, whereas elongation is steeply deteriorated by the Mm addition. The Al 90 Mn 6 Mm 4 alloy exhibits the highest 570 and 783 MPa of σ cys and σ ucs , respectively, both of which are comparable to those of Al 90 Mn 6 Ce 4 alloy

  15. Structural, optical and magnetic characterizations of Mn-doped MgO nanoparticles

    International Nuclear Information System (INIS)

    Azzaza, S.; El-Hilo, M.; Narayanan, S.; Judith Vijaya, J.; Mamouni, N.; Benyoussef, A.; El Kenz, A.; Bououdina, M.

    2014-01-01

    Structural, optical and room temperature magnetic properties of Mn-doped MgO nanoparticles with Mn fractions (5–50 at.%), were investigated. The as-prepared pure MgO, with grain size of about 15 nm, exhibits two magnetization components, one is diamagnetic and another is superparamagnetic. After removing the diamagnetic contribution, the magnetization curve exhibits superparamagnetic behavior which may be attributed to vacancy defects. As the Mn content increases, the lattice parameter decreases, the ferromagnetism appears and the emission bands were considerably blue shifted. First principle electronic structure calculations reveal the decrease of both the gap and the Curie temperature with increasing Mn concentration. The obtained results suggest that both Mn doping and oxygen vacancies play an important role in the development of room temperature ferromagnetism. - Graphical abstract: The measured room temperature magnetization curve for the Mn doped MgO with 5 at.%, 10 at.% and 20 at.%. - Highlights: • Combination of experimental and calculation methods. • Decrease of both the gap and the Curie temperature with increasing Mn content. • Ferromagnetism in MgO originate from interactions between defects

  16. Structural Variation of LaMnO3+δ by Oxygen Nonstoichiometry

    Science.gov (United States)

    Niwa, Eiki; Maeda, Hiroki; Hashimoto, Takuya; Mizusaki, Junichiro

    2013-07-01

    The relationship between oxygen content and crystal structure of LaMnO3+δ, which is mother phase of cathode material for solid oxide fuel cells, has been investigated by X-ray diffraction, thermogravimetry and iodometric titration. It was confirmed that LaMnO3+δ with different oxygen content can be prepared by controlling sintering temperature in static air. Crystal system of LaMnO3.17±0.02 and LaMnO3.13±0.01 at room temperature was rhombohedral with space group of Rbar {3}c, whereas crystal structure of LaMnO3.08±0.01 was orthorhombic whose space group was proposed to be Pmna (No. 53). With increase of oxygen content in LaMnO3+δ, molar volume decreased and higher crystal symmetry was obtained.

  17. Synthesis, microstructure and EPR of CaMnO3 and EuxCa1-xMnO3 manganite, obtained by coprecipitation

    International Nuclear Information System (INIS)

    Santiago T, M.; Hernandez C, L.; Legorreta G, F.; Montiel S, H.; Alvarez L, G.; Flores G, M. A.

    2011-01-01

    The synthesis of CaMnO 3 and Eu x Ca 1-x MnO 3 obtained by coprecipitation method is showed. The synthesized samples were characterized by X-ray diffraction and scanning electronic microscopy, the powders showed orthorhombic structure and pnma space group. When it was doped with Europium, their morphology tendency was spherical. Measurements were carried out on electron paramagnetic resonance (EPR) with constant frequency = 9.4 GHz (band X) and dc magnetic field (H dc) 0-0.8 T, measurements were at 300 K and 77 K. EPR spectra showed significant differences between both samples, indicating that the substitution of divalent alkaline earth cations by trivalent rare earth ions, allowing the formation of a mixed valence state of manganese, Mn 3+ and Mn 4+ . A 77 K, the manganite of concentration x = 0.30 had a magnetic ordering, noted by the presence of hysteresis. (Author)

  18. Golgi localized barley MTP8 proteins facilitate Mn transport

    DEFF Research Database (Denmark)

    Pedas, Pai Rosager; Schiller, Michaela; Hegelund, Josefine Nymark

    2014-01-01

    Many metabolic processes in plants are regulated by manganese (Mn) but limited information is available on the molecular mechanisms controlling cellular Mn homeostasis. In this study, a yeast assay was used to isolate and characterize two genes, MTP8.1 and MTP8.2 , which encode membrane...... in yeast, MTP8.1 and MTP8.2 were found to be Mn transporters catalysing Mn efflux in a similar manner as the Golgi localized endogenous yeast protein Pmr1p. The level of MTP8.1 transcripts in barley roots increased with external Mn supply ranging from deficiency to toxicity, while MTP8.2 transcripts...

  19. Facile synthesis and Li-ion storage properties of porous Mn-based oxides microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Xiaojuan, E-mail: houxiaojuan@nuc.edu.cn [Key Laboratory of Instrumentation Science & Dynamic Measurement of Ministry of Education, School of Instrument and Electronics, North University of China, Taiyuan, Shanxi Province 030051 (China); Zhu, Jie [Key Laboratory of Instrumentation Science & Dynamic Measurement of Ministry of Education, School of Instrument and Electronics, North University of China, Taiyuan, Shanxi Province 030051 (China); School of Computer and Remote Sensing Information Technology, North China Institute of Aerospace Engineering, Langfang, Hebei Province 065000 (China); Shi, Shuzheng [School of Mechanical Engineering, Hebei University of Architecture, Zhangjiakou, Hebei Province 075000 (China); He, Jian; Mu, Jiliang; Geng, Wenping; Chou, Xiujian; Xue, Chenyang [Key Laboratory of Instrumentation Science & Dynamic Measurement of Ministry of Education, School of Instrument and Electronics, North University of China, Taiyuan, Shanxi Province 030051 (China)

    2017-05-15

    Highlights: • The Mn{sub 2}O{sub 3}, MnCo{sub 2}O{sub 4} and CoMn{sub 2}O{sub 4} microspheres were fabricated with the same method. • Capacities present an increasing trend as with the increasing percentage of Co element. • Plateaus present a lower trend as with the increasing percentage of Mn element. • Mn{sub 2}O{sub 3} microspheres present the most excellent cycling stability. - Abstract: Porous nanosheets assembled Mn-based oxides (Mn{sub 2}O{sub 3}, MnCo{sub 2}O{sub 4} and CoMn{sub 2}O{sub 4}) microspheres of diameters about 3–6 μm and pore size distribution mainly around 10 nm have been synthesized by the same facile solvothermal route without any surfactant followed by a calcination process. In virtue of the porous nanosheets constructed microspheres, the Mn-based oxides microspheres Mn{sub 2}O{sub 3} present specific capacities of 650 mAh/g after 100 charge and discharge cycles. Additionally among the three Mn-based oxides the representative specific capacities present an increasing trend as with the increasing percentage of Co element, the plateau of charge and discharge present a lower trend as with the increasing percentage of Mn element which is more suitable as anode materials in high output full batteries. Then the oxides with different components could be applied in different conditions such as the need for high specific capacity or high output lithium-ion batteries. Consequently the easy fabrication of microspheres and excellent electrochemical performances demonstrate Mn-based oxides’ great potential in lithium-ion batteries.

  20. Mn-AlInN: a new diluted magnetic semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Majid, Abdul; Ali, Akbar [Quaid-i-Azam University, Advance Materials Physics Laboratory, Physics Department, Islamabad (Pakistan); Sharif, Rehana [University of Engineering and Technology, Department of Physics, Lahore (Pakistan); Zhu, J.J. [Chinese Academy of Sciences, State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Beijing (China)

    2009-09-15

    Mn ions have been incorporated into MOCVD grown Al{sub 1-x}In{sub x}N/GaN thin films by ion implantation to achieve the room temperature ferromagnetism in the samples. Magnetic characterizations revealed the presence of two ferromagnetic transitions: one has Curie points at {proportional_to}260 K and the other above room temperature. In-diffusion of indium caused by the Mn implantation leads to the partition of AlInN epilayer into two diluted magnetic semiconductor sub-layers depending on the Mn concentration. The Curie temperature of 260 K is assigned to the layer having lower concentration, whereas T{sub c} above room temperature is assumed to be associated to the layer having higher Mn concentration. (orig.)