WorldWideScience

Sample records for unit power output

  1. Wide Output Range Power Processing Unit for Electric Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A power supply concept capable of operation over 25:1 and 64:1 impedance ranges at full power has been successfully demonstrated in our Phase I effort at...

  2. Wide Output Range Power Processing Unit for Electric Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Hall thrusters can be operated over a wide range of specific impulse while maintaining high efficiency. However S/C power system constraints on electric propulsion...

  3. Two-Stage Robust Security-Constrained Unit Commitment with Optimizable Interval of Uncertain Wind Power Output

    Directory of Open Access Journals (Sweden)

    Dayan Sun

    2017-01-01

    Full Text Available Because wind power spillage is barely considered, the existing robust unit commitment cannot accurately analyze the impacts of wind power accommodation on on/off schedules and spinning reserve requirements of conventional generators and cannot consider the network security limits. In this regard, a novel double-level robust security-constrained unit commitment formulation with optimizable interval of uncertain wind power output is firstly proposed in this paper to obtain allowable interval solutions for wind power generation and provide the optimal schedules for conventional generators to cope with the uncertainty in wind power generation. The proposed double-level model is difficult to be solved because of the invalid dual transform in solution process caused by the coupling relation between the discrete and continuous variables. Therefore, a two-stage iterative solution method based on Benders Decomposition is also presented. The proposed double-level model is transformed into a single-level and two-stage robust interval unit commitment model by eliminating the coupling relation, and then this two-stage model can be solved by Benders Decomposition iteratively. Simulation studies on a modified IEEE 26-generator reliability test system connected to a wind farm are conducted to verify the effectiveness and advantages of the proposed model and solution method.

  4. Exercise efficiency of low power output cycling.

    Science.gov (United States)

    Reger, M; Peterman, J E; Kram, R; Byrnes, W C

    2013-12-01

    Exercise efficiency at low power outputs, energetically comparable to daily living activities, can be influenced by homeostatic perturbations (e.g., weight gain/loss). However, an appropriate efficiency calculation for low power outputs used in these studies has not been determined. Fifteen active subjects (seven females, eight males) performed 14, 5-min cycling trials: two types of seated rest (cranks vertical and horizontal), passive (motor-driven) cycling, no-chain cycling, no-load cycling, cycling at low (10, 20, 30, 40 W), and moderate (50, 60, 80, 100, 120 W) power outputs. Mean delta efficiency was 57% for low power outputs compared to 41.3% for moderate power outputs. Means for gross (3.6%) and net (5.7%) efficiencies were low at the lowest power output. At low power outputs, delta and work efficiency values exceeded theoretical values. In conclusion, at low power outputs, none of the common exercise efficiency calculations gave values comparable to theoretical muscle efficiency. However, gross efficiency and the slope and intercept of the metabolic power vs mechanical power output regression provide insights that are still valuable when studying homeostatic perturbations.

  5. Coupling output of multichannel high power microwaves

    Science.gov (United States)

    Li, Guolin; Shu, Ting; Yuan, Chengwei; Zhang, Jun; Yang, Jianhua; Jin, Zhenxing; Yin, Yi; Wu, Dapeng; Zhu, Jun; Ren, Heming; Yang, Jie

    2010-12-01

    The coupling output of multichannel high power microwaves is a promising technique for the development of high power microwave technologies, as it can enhance the output capacities of presently studied devices. According to the investigations on the spatial filtering method and waveguide filtering method, the hybrid filtering method is proposed for the coupling output of multichannel high power microwaves. As an example, a specific structure is designed for the coupling output of S/X/X band three-channel high power microwaves and investigated with the hybrid filtering method. In the experiments, a pulse of 4 GW X band beat waves and a pulse of 1.8 GW S band microwave are obtained.

  6. REGULATION OF INSTANTANEOUS POWER OUTPUT VALUE IN MAGNETRON WITH CONTINUOUS GENERATION MODE (M-105-, M-112-TYPES BEING PART OF PLASMA TECHNOLOGICAL UNIT

    Directory of Open Access Journals (Sweden)

    S. V. Bordusov

    2010-01-01

    Full Text Available The paper presents results of investigations pertaining to the possibility of regulating instantaneous power output  in a magnetron of M-105 (M-112-type by changing the capacity value of a capacitor in structure diagram for doubling voltage of high-voltage power supply on the basis of a step-up transformer operating in the saturation regime.

  7. Output beam analysis of high power COIL

    Institute of Scientific and Technical Information of China (English)

    Deli Yu(于德利); Fengting Sang(桑凤亭); Yuqi Jin(金玉奇); Yizhu Sun(孙以珠)

    2003-01-01

    As the output power of a chemical oxygen iodine laser (COIL) increases, the output laser beam instabilityappears as the far-field beam spot drift and deformation for the large Fresnel number unstable resonator.In order to interpret this phenomenon, an output beam mode simulation code was developed with the fastFourier transform method. The calculation results show that the presence of the nonuniform gain in COILproduces a skewed output intensity distribution, which causes the mirror tilt and bulge due to the thermalexpansion. With the output power of COIL increases, the mirror surfaces, especially the back surface ofthe scraper mirror, absorb more and more heat, which causes the drift and deformation of far field beamspot seriously. The initial misalignment direction is an important factor for the far field beam spot driftingand deformation.

  8. Capital Power:From Input to Output

    Institute of Scientific and Technical Information of China (English)

    You Wanlong; Alice

    2009-01-01

    @@ After thirty yeas "going out" of China overseas investment,we learn from our failed lessons and also successful experience.Chinese enterprises are now standing at a new starting point of "going out".China is transforming from "capital input power" to "capital output power".

  9. Uncertainties in predicting solar panel power output

    Science.gov (United States)

    Anspaugh, B.

    1974-01-01

    The problem of calculating solar panel power output at launch and during a space mission is considered. The major sources of uncertainty and error in predicting the post launch electrical performance of the panel are considered. A general discussion of error analysis is given. Examples of uncertainty calculations are included. A general method of calculating the effect on the panel of various degrading environments is presented, with references supplied for specific methods. A technique for sizing a solar panel for a required mission power profile is developed.

  10. Solar Power Station Output Inverter Control Design

    Directory of Open Access Journals (Sweden)

    J. Bauer

    2011-04-01

    Full Text Available The photovoltaic applications spreads in these days fast, therefore they also undergo great development. Because the amount of the energy obtained from the panel depends on the surrounding conditions, as intensity of the sun exposure or the temperature of the solar array, the converter must be connected to the panel output. The Solar system equipped with inverter can supply small loads like notebooks, mobile chargers etc. in the places where the supplying network is not present. Or the system can be used as a generator and it shall deliver energy to the supply network. Each type of the application has different requirements on the converter and its control algorithm. But for all of them the one thing is common – the maximal efficiency. The paper focuses on design and simulation of the low power inverter that acts as output part of the whole converter. In the paper the design of the control algorithm of the inverter for both types of inverter application – for islanding mode and for operation on the supply grid – is discussed. Attention is also paid to the design of the output filter that should reduce negative side effects of the converter on the supply network.

  11. Experimental Investigation on Power Output in Aged Wind Turbines

    Directory of Open Access Journals (Sweden)

    N. Murugan

    2012-01-01

    Full Text Available An investigation on the power output on effect of tower height with same diameter of rotor was conducted in a wind turbine site. As the wind acceleration is varying with height, 3 levels were selected according to the availability of tower. The responses of power output with respect to variation of wind speed are changing for the tower heights of 30, 40, and 50 m. The study showed that the actual ideal power output and measured real power output follow the same trend within range of operating wind speed. The empirical model used for calculation of actual ideal power output was compared with real power output and the overall concepts in power output also had been analysed.

  12. High output power electric motors with bulk HTS elements

    Science.gov (United States)

    Kovalev, L. K.; Ilushin, K. V.; Kovalev, K. L.; Penkin, V. T.; Poltavets, V. N.; Koneev, S. M.-A.; Akimov, I. I.; Gawalek, W.; Oswald, B.; Krabbes, G.

    2003-04-01

    New types of electric machines with the rotors containing bulk HTS (YBCO and Bi-Ag) elements are presented. Different schematics of hysteresis, reluctance, “trapped field” and composed synchronous HTS machines are discussed. The two-dimensional mathematical models describing the processes in such types of HTS machines were developed on the basis of the theoretical analysis of the electrodynamic and hysteresis processes in the single-domain and polycrystal YBCO ceramic samples and plate shape Bi-Ag elements. The test results of the series of hysteresis, reluctance, “trapped field” and composed with permanent magnets HTS motors with output power rating 0.1-18 kW and current frequency 50 and 400 Hz are given. These results show that in the media of liquid nitrogen the specific output power per one weight unit of HTS motors is 4-7 times better than for conventional electric machines. Comparison of the theoretical and experimental characteristics of the developed HTS motors show that they are in good agreement. The test results for liquid nitrogen cryogenic pump system with hysteresis 500 W HTS motor are discussed. The designs and first test results of HTS motor operating in the media of liquid nitrogen with output power 100 kW and power factor more than 0.8 are given. Future development and applications of new types of HTS motors for aerospace technology, on-land industry and transport systems are discussed.

  13. 考虑单位购电成本变动的风电场出力偏差约束%Constraint of Wind Farm's Output Deviation Considering Change in Power Purchase Unit Cost

    Institute of Scientific and Technical Information of China (English)

    李泓泽; 王宝; 郭森; 苏晨博

    2013-01-01

    为将风电场出力存在偏差时电网公司单位购电成本变化量控制在可接受的范围内,有必要确定其最大变动范围.本文通过构建含风电场的优化调度模型,并借助于原对偶内点算法对其求解,定量识别了风电场出力存在偏差时电网公司单位购电成本变化量及其主要影响因素,进而基于回归分析方法测度了风电场出力偏差幅度的最大变动范围.算例结果验证了该方法的合理性和有效性.%According to the output deviation of wind farm,it is necessary to determine its maximum change range to constrain the change in Grid Company's power purchase unit cost within the acceptable range.This paper quantitatively identifies the change in Grid Company's power purchase unit cost as well as its main influencing factors when wind farm has output deviation by establishing an optimal dispatching model with wind farm considered and applying the primal-dual interior point algorithm to its solving.Subsequently,the maximum change range of wind farm's output deviation is measured on the basis of regression analysis.The results of test example demonstrate the rationality and validity of the proposed method.

  14. Output power control for large wind power penetration in small power system

    Energy Technology Data Exchange (ETDEWEB)

    Senjyu, Tomonobu; Kaneko, Toshiaki; Uehara, Akie; Yona, Atsushi; Sekine, Hideomi [University of the Ryukyus, 1 Senbaru, Nishihara-cho, Nakagami, Okinawa 903-0213 (Japan); Kim, Chul-Hwan [Sungkyunkwan University, Suwon 440-746 (Korea)

    2009-11-15

    Nowadays, wind turbine generator (WTG) is increasingly required to provide control capabilities regarding output power. Under this scenario, this paper proposes an output power control of WTG using pitch angle control connected to small power systems. By means of the proposed method, output power control of WTG considering states of power system becomes possible, and in general both conflicting objectives of output power leveling and acquisition power increase are achieved. In this control approach, WTG is given output power command by fuzzy reasoning which has three inputs for average wind speed, variance of wind speed, and absolute average of frequency deviation. Since fuzzy reasoning is used, it is possible to define output power command corresponding to wind speed condition and changing capacity of power system momentarily. Moreover, high performance pitch angle control based on output power command is achieved by generalized predictive control (GPC). The simulation results by using actual detailed model for wind power system show the effectiveness of the proposed method. (author)

  15. Solar Power Station Output Inverter Control Design

    OpenAIRE

    Bauer, J.; Lettl, J.

    2011-01-01

    The photovoltaic applications spreads in these days fast, therefore they also undergo great development. Because the amount of the energy obtained from the panel depends on the surrounding conditions, as intensity of the sun exposure or the temperature of the solar array, the converter must be connected to the panel output. The Solar system equipped with inverter can supply small loads like notebooks, mobile chargers etc. in the places where the supplying network is not present. Or the system...

  16. Investigation on the integral output power model of a large-scale wind farm

    Institute of Scientific and Technical Information of China (English)

    BAO Nengsheng; MA Xiuqian; NI Weidou

    2007-01-01

    The integral output power model of a large-scale wind farm is needed when estimating the wind farm's output over a period of time in the future.The actual wind speed power model and calculation method of a wind farm made up of many wind turbine units are discussed.After analyzing the incoming wind flow characteristics and their energy distributions,and after considering the multi-effects among the wind turbine units and certain assumptions,the incoming wind flow model of multi-units is built.The calculation algorithms and steps of the integral output power model of a large-scale wind farm are provided.Finally,an actual power output of the wind farm is calculated and analyzed by using the practical measurement wind speed data.The characteristics of a large-scale wind farm are also discussed.

  17. Verification of hourly forecasts of wind turbine power output

    Energy Technology Data Exchange (ETDEWEB)

    Wegley, H.L.

    1984-08-01

    A verification of hourly average wind speed forecasts in terms of hourly average power output of a MOD-2 was performed for four sites. Site-specific probabilistic transformation models were developed to transform the forecast and observed hourly average speeds to the percent probability of exceedance of an hourly average power output. (This transformation model also appears to have value in predicting annual energy production for use in wind energy feasibility studies.) The transformed forecasts were verified in a deterministic sense (i.e., as continuous values) and in a probabilistic sense (based upon the probability of power output falling in a specified category). Since the smoothing effects of time averaging are very pronounced, the 90% probability of exceedance was built into the transformation models. Semiobjective and objective (model output statistics) forecasts were made compared for the four sites. The verification results indicate that the correct category can be forecast an average of 75% of the time over a 24-hour period. Accuracy generally decreases with projection time out to approx. 18 hours and then may increase due to the fairly regular diurnal wind patterns that occur at many sites. The ability to forecast the correct power output category increases with increasing power output because occurrences of high hourly average power output (near rated) are relatively rare and are generally not forecast. The semiobjective forecasts proved superior to model output statistics in forecasting high values of power output and in the shorter time frames (1 to 6 hours). However, model output statistics were slightly more accurate at other power output levels and times. Noticeable differences were observed between deterministic and probabilistic (categorical) forecast verification results.

  18. Power output during women's World Cup road cycle racing.

    Science.gov (United States)

    Ebert, Tammie R; Martin, David T; McDonald, Warren; Victor, James; Plummer, John; Withers, Robert T

    2005-12-01

    Little information exists on the power output demands of competitive women's road cycle racing. The purpose of our investigation was to document the power output generated by elite female road cyclists who achieved success in FLAT and HILLY World Cup races. Power output data were collected from 27 top-20 World Cup finishes (19 FLAT and 8 HILLY) achieved by 15 nationally ranked cyclists (mean +/- SD; age: 24.1+/-4.0 years; body mass: 57.9+/-3.6 kg; height: 168.7+/-5.6 cm; VO2max 63.6+/-2.4 mL kg(-1) min(-1); peak power during graded exercise test (GXT(peak power)): 310+/-25 W). The GXT determined GXT(peak power), VO2peak lactate threshold (LT) and anaerobic threshold (AT). Bicycles were fitted with SRM powermeters, which recorded power (W), cadence (rpm), distance (km) and speed (km h(-1)). Racing data were analysed to establish time in power output and metabolic threshold bands and maximal mean power (MMP) over different durations. When compared to HILLY, FLAT were raced at a similar cadence (75+/-8 vs. 75+/-4 rpm, P=0.93) but higher speed (37.6+/-2.6 vs. 33.9+/-2.7 km h(-1), P=0.008) and power output (192+/-21 vs. 169+/-17 W, P=0.04; 3.3+/-0.3 vs. 3.0+/-0.4 W kg(-1), P=0.04). During FLAT races, riders spent significantly more time above 500 W, while greater race time was spent between 100 and 300 W (LT-AT) for HILLY races, with higher MMPs for 180-300 s. Racing terrain influenced the power output profiles of our internationally competitive female road cyclists. These data are the first to define the unique power output requirements associated with placing well in both flat and hilly women's World Cup cycling events.

  19. Impact of Altitude on Power Output during Cycling Stage Racing.

    Science.gov (United States)

    Garvican-Lewis, Laura A; Clark, Bradley; Martin, David T; Schumacher, Yorck Olaf; McDonald, Warren; Stephens, Brian; Ma, Fuhai; Thompson, Kevin G; Gore, Christopher J; Menaspà, Paolo

    2015-01-01

    The purpose of this study was to quantify the effects of moderate-high altitude on power output, cadence, speed and heart rate during a multi-day cycling tour. Power output, heart rate, speed and cadence were collected from elite male road cyclists during maximal efforts of 5, 15, 30, 60, 240 and 600 s. The efforts were completed in a laboratory power-profile assessment, and spontaneously during a cycling race simulation near sea-level and an international cycling race at moderate-high altitude. Matched data from the laboratory power-profile and the highest maximal mean power output (MMP) and corresponding speed and heart rate recorded during the cycling race simulation and cycling race at moderate-high altitude were compared using paired t-tests. Additionally, all MMP and corresponding speeds and heart rates were binned per 1000 m (3000 m) according to the average altitude of each ride. Mixed linear modelling was used to compare cycling performance data from each altitude bin. Power output was similar between the laboratory power-profile and the race simulation, however MMPs for 5-600 s and 15, 60, 240 and 600 s were lower (p ≤ 0.005) during the race at altitude compared with the laboratory power-profile and race simulation, respectively. Furthermore, peak power output and all MMPs were lower (≥ 11.7%, p ≤ 0.001) while racing >3000 m compared with rides completed near sea-level. However, speed associated with MMP 60 and 240 s was greater (p sea-level. A reduction in oxygen availability as altitude increases leads to attenuation of cycling power output during competition. Decrement in cycling power output at altitude does not seem to affect speed which tended to be greater at higher altitudes.

  20. Auxetic piezoelectric energy harvesters for increased electric power output

    Science.gov (United States)

    Li, Qiang; Kuang, Yang; Zhu, Meiling

    2017-01-01

    This letter presents a piezoelectric bimorph with auxetic (negative Poisson's ratio) behaviors for increased power output in vibration energy harvesting. The piezoelectric bimorph comprises a 2D auxetic substrate sandwiched between two piezoelectric layers. The auxetic substrate is capable of introducing auxetic behaviors and thus increasing the transverse stress in the piezoelectric layers when the bimorph is subjected to a longitudinal stretching load. As a result, both 31- and 32-modes are simultaneously exploited to generate electric power, leading to an increased power output. The increasing power output principle was theoretically analyzed and verified by finite element (FE) modelling. The FE modelling results showed that the auxetic substrate can increase the transverse stress of a bimorph by 16.7 times. The average power generated by the auxetic bimorph is 2.76 times of that generated by a conventional bimorph.

  1. LOAD THAT MAXIMIZES POWER OUTPUT IN COUNTERMOVEMENT JUMP

    Directory of Open Access Journals (Sweden)

    Pedro Jimenez-Reyes

    2016-02-01

    Full Text Available ABSTRACT Introduction: One of the main problems faced by strength and conditioning coaches is the issue of how to objectively quantify and monitor the actual training load undertaken by athletes in order to maximize performance. It is well known that performance of explosive sports activities is largely determined by mechanical power. Objective: This study analysed the height at which maximal power output is generated and the corresponding load with which is achieved in a group of male-trained track and field athletes in the test of countermovement jump (CMJ with extra loads (CMJEL. Methods: Fifty national level male athletes in sprinting and jumping performed a CMJ test with increasing loads up to a height of 16 cm. The relative load that maximized the mechanical power output (Pmax was determined using a force platform and lineal encoder synchronization and estimating the power by peak power, average power and flight time in CMJ. Results: The load at which the power output no longer existed was at a height of 19.9 ± 2.35, referring to a 99.1 ± 1% of the maximum power output. The load that maximizes power output in all cases has been the load with which an athlete jump a height of approximately 20 cm. Conclusion: These results highlight the importance of considering the height achieved in CMJ with extra load instead of power because maximum power is always attained with the same height. We advise for the preferential use of the height achieved in CMJEL test, since it seems to be a valid indicative of an individual's actual neuromuscular potential providing a valid information for coaches and trainers when assessing the performance status of our athletes and to quantify and monitor training loads, measuring only the height of the jump in the exercise of CMJEL.

  2. Battery Energy Storage System for PV Output Power Leveling

    Directory of Open Access Journals (Sweden)

    Rajkiran Singh

    2014-01-01

    Full Text Available Fluctuating photovoltaic (PV output power reduces the reliability in power system when there is a massive penetration of PV generators. Energy storage systems that are connected to the PV generators using bidirectional isolated dc-dc converter can be utilized for compensating the fluctuating PV power. This paper presents a grid connected energy storage system based on a 2 kW full-bridge bidirectional isolated dc-dc converter and a PWM converter for PV output power leveling. This paper proposes two controllers: a current controller using the d-q synchronous reference and a phase-shift controller. The main function of the current controller is to regulate the voltage at the high-side dc, so that the voltage ratio of the high-voltage side (HVS with low-voltage side (LVS is equal to the transformer turns ratio. The phase-shift controller is employed to manage the charging and discharging modes of the battery based on PV output power and battery voltage. With the proposed system, unity power factor and efficient active power injection are achieved. The feasibility of the proposed control system is investigated using PSCAD simulation.

  3. Intelligent coordinated control of power-plant main steam pressure and power output

    Institute of Scientific and Technical Information of China (English)

    刘红波; 李少远; 柴天佑

    2004-01-01

    An intelligent coordinated control strategy has been proposed and successfully applied to a 300MW boiler-turbine unit i.e. Unit 1 of Yuanbaoshan power plant in China. Load following operation of coal-fired boiler-turbine unit in the power plant leads to changes in operating points which result in nonlinear variations of the plant variables and parameters. For the variation of operating condition and slowly varying dynamics, an intelligent control scheme has been developed by combining fuzzy self-tuning with adaptive control and auto-tuning techniques. As there exist strong couplings between control loops of main steam pressure and power output in the unit, a new design for static decoupler aimed at decoupling for setpoints and unmeasured pulverized coal disturbance of the system at the same time is presented. Satisfactory industrial application results show that such a control system has enhanced adaptability and robustness to the complex process, and better control performance and high economic benefit have been obtained.

  4. Quantum dot amplifiers with high output power and low noise

    DEFF Research Database (Denmark)

    Berg, Tommy Winther; Mørk, Jesper

    2003-01-01

    Quantum dot semiconductor optical amplifiers have been theoretically investigated and are predicted to achieve high saturated output power, large gain, and low noise figure. We discuss the device dynamics and, in particular, show that the presence of highly inverted barrier states does not limit ...

  5. Modeling the power output of piezoelectric energy harvesters

    KAUST Repository

    Al Ahmad, Mahmoud

    2011-04-30

    Design of experiments and multiphysics analyses were used to develop a parametric model for a d 33-based cantilever. The analysis revealed that the most significant parameters influencing the resonant frequency are the supporting layer thickness, piezoelectric layer thickness, and cantilever length. On the other hand, the most important factors affecting the charge output arethe piezoelectric thickness and the interdigitated electrode dimensions. The accuracy of the developed model was confirmed and showed less than 1% estimation error compared with a commercial simulation package. To estimate the power delivered to a load, the electric current output from the piezoelectric generator was calculated. A circuit model was built and used to estimate the power delivered to a load, which compared favorably to experimentally published power data on actual cantilevers of similar dimensions. © 2011 TMS.

  6. Mechanical power output during running accelerations in wild turkeys.

    Science.gov (United States)

    Roberts, Thomas J; Scales, Jeffrey A

    2002-05-01

    We tested the hypothesis that the hindlimb muscles of wild turkeys (Meleagris gallopavo) can produce maximal power during running accelerations. The mechanical power developed during single running steps was calculated from force-plate and high-speed video measurements as turkeys accelerated over a trackway. Steady-speed running steps and accelerations were compared to determine how turkeys alter their running mechanics from a low-power to a high-power gait. During maximal accelerations, turkeys eliminated two features of running mechanics that are characteristic of steady-speed running: (i) they produced purely propulsive horizontal ground reaction forces, with no braking forces, and (ii) they produced purely positive work during stance, with no decrease in the mechanical energy of the body during the step. The braking and propulsive forces ordinarily developed during steady-speed running are important for balance because they align the ground reaction force vector with the center of mass. Increases in acceleration in turkeys correlated with decreases in the angle of limb protraction at toe-down and increases in the angle of limb retraction at toe-off. These kinematic changes allow turkeys to maintain the alignment of the center of mass and ground reaction force vector during accelerations when large propulsive forces result in a forward-directed ground reaction force. During the highest accelerations, turkeys produced exclusively positive mechanical power. The measured power output during acceleration divided by the total hindlimb muscle mass yielded estimates of peak instantaneous power output in excess of 400 W kg(-1) hindlimb muscle mass. This value exceeds estimates of peak instantaneous power output of turkey muscle fibers. The mean power developed during the entire stance phase increased from approximately zero during steady-speed runs to more than 150 W kg(-1) muscle during the highest accelerations. The high power outputs observed during accelerations

  7. A study on electric power management for power producer-suppliers utilizing output of megawatt-solar power plants

    Directory of Open Access Journals (Sweden)

    Hirotaka Takano

    2016-01-01

    Full Text Available The growth in penetration of photovoltaic generation units (PVs has brought new power management ideas, which achieve more profitable operation, to Power Producer-Suppliers (PPSs. The expected profit for the PPSs will improve if they appropriately operate their controllable generators and sell the generated electricity to contracted customers and Power Exchanges together with the output of Megawatt-Solar Power Plants (MSPPs. Moreover, we can expect that the profitable cooperation between the PPSs and the MSPPs decreases difficulties in the supply-demand balancing operation for the main power grids. However, it is necessary that the PPSs treat the uncertainty in output prediction of PVs carefully. This is because there is a risk for them to pay a heavy imbalance penalty. This paper presents a problem framework and its solution to make the optimal power management plan for the PPSs in consideration with the electricity procurement from the MSPPs. The validity of the authors’ proposal is verified through numerical simulations and discussions of their results.

  8. Generating units performances: power system requirements

    Energy Technology Data Exchange (ETDEWEB)

    Fourment, C.; Girard, N.; Lefebvre, H.

    1994-08-01

    The part of generating units within the power system is more than providing power and energy. Their performance are not only measured by their energy efficiency and availability. Namely, there is a strong interaction between the generating units and the power system. The units are essential components of the system: for a given load profile the frequency variation follows directly from the behaviour of the units and their ability to adapt their power output. In the same way, the voltage at the units terminals are the key points to which the voltage profile at each node of the network is linked through the active and especially the reactive power flows. Therefore, the customer will experience the frequency and voltage variations induced by the units behaviour. Moreover, in case of adverse conditions, if the units do not operate as well as expected or trip, a portion of the system, may be the whole system, may collapse. The limitation of the performance of a unit has two kinds of consequences. Firstly, it may result in an increased amount of not supplied energy or loss of load probability: for example if the primary reserve is not sufficient, a generator tripping may lead to an abnormal frequency deviation, and load may have to be shed to restore the balance. Secondly, the limitation of a unit performance results in an economic over-cost for the system: for instance, if not enough `cheap` units are able to load-following, other units with higher operating costs have to be started up. We would like to stress the interest for the operators and design teams of the units on the one hand, and the operators and design teams of the system on the other hand, of dialog and information exchange, in operation but also at the conception stage, in order to find a satisfactory compromise between the system requirements and the consequences for the generating units. (authors). 11 refs., 4 figs.

  9. Maximum Power Output of Quantum Heat Engine with Energy Bath

    CERN Document Server

    Liu, Shengnan

    2016-01-01

    The difference between quantum isoenergetic process and quantum isothermal process comes from the violation of the law of equipartition of energy in the quantum regime. To reveal an important physical meaning of this fact, here we study a special type of quantum heat engine consisting of three processes: isoenergetic, isothermal and adiabatic processes. Therefore, this engine works between the energy and heat baths. Combining two engines of this kind, it is possible to realize the quantum Carnot engine. Furthermore, considering finite velocity of change of the potential shape, here an infinite square well with moving walls, the power output of the engine is discussed. It is found that the efficiency and power output are both closely dependent on the initial and final states of the quantum isothermal process. The performance of the engine cycle is shown to be optimized by control of the occupation probability of the ground state, which is determined by the temperature and the potential width. The relation betw...

  10. Power-output regularization in global sound equalization

    DEFF Research Database (Denmark)

    Stefanakis, Nick; Sarris, J.; Cambourakis, G.

    2008-01-01

    The purpose of equalization in room acoustics is to compensate for the undesired modification that an enclosure introduces to signals such as audio or speech. In this work, equalization in a large part of the volume of a room is addressed. The multiple point method is employed with an acoustic...... power-output penalty term instead of the traditional quadratic source effort penalty term. Simulation results demonstrate that this technique gives a smoother decline of the reproduction performance away from the control points....

  11. Call-related factors influencing output power from mobile phones.

    Science.gov (United States)

    Hillert, Lena; Ahlbom, Anders; Neasham, David; Feychting, Maria; Järup, Lars; Navin, Roshan; Elliott, Paul

    2006-11-01

    Mobile phone use is increasing but there is also concern for adverse health effects. Well-designed prospective studies to assess several health outcomes are required. In designing a study of mobile phone use, it is important to assess which factors need to be considered in classifying the exposure to radiofrequency fields (RF). A pilot study was performed in Sweden and in the UK 2002 to 2003 to test the feasibility of recruiting a cohort of mobile phone users from a random population sample and from mobile phone subscription lists for a prospective study. As one part of this pilot study, different factors were evaluated regarding possible influence on the output power of the phones. By local switch logging, information on calls made from predefined subscriptions or dedicated handsets were obtained and the output power of phones during calls made indoors and outdoors, in moving and stationary mode, and in rural as well in urban areas were compared. In this experiment, calls were either 1, 1.5 or 5 min long. The results showed that high mobile phone output power is more frequent in rural areas whereas the other factors (length of call, moving/stationary, indoor/outdoor) were of less importance. Urban and rural area should be considered in an exposure index for classification of the exposure to RF from mobile phones and may be assessed by first base station during mobile phone calls or, if this information is not available, possibly by using home address as a proxy.

  12. Maximum Power Output of Quantum Heat Engine with Energy Bath

    Directory of Open Access Journals (Sweden)

    Shengnan Liu

    2016-05-01

    Full Text Available The difference between quantum isoenergetic process and quantum isothermal process comes from the violation of the law of equipartition of energy in the quantum regime. To reveal an important physical meaning of this fact, here we study a special type of quantum heat engine consisting of three processes: isoenergetic, isothermal and adiabatic processes. Therefore, this engine works between the energy and heat baths. Combining two engines of this kind, it is possible to realize the quantum Carnot engine. Furthermore, considering finite velocity of change of the potential shape, here an infinite square well with moving walls, the power output of the engine is discussed. It is found that the efficiency and power output are both closely dependent on the initial and final states of the quantum isothermal process. The performance of the engine cycle is shown to be optimized by control of the occupation probability of the ground state, which is determined by the temperature and the potential width. The relation between the efficiency and power output is also discussed.

  13. Distribution of power output when establishing a breakaway in cycling.

    Science.gov (United States)

    Abbiss, Chris R; Menaspà, Paolo; Villerius, Vincent; Martin, David T

    2013-07-01

    A number of laboratory-based performance tests have been designed to mimic the dynamic and stochastic nature of road cycling. However, the distribution of power output and thus physical demands of high-intensity surges performed to establish a breakaway during actual competitive road cycling are unclear. Review of data from professional road-cycling events has indicated that numerous short-duration (5-15 s), high-intensity (~9.5-14 W/kg) surges are typically observed in the 5-10 min before athletes' establishing a breakaway (ie, riding away from a group of cyclists). After this initial high-intensity effort, power output declined but remained high (~450-500 W) for a further 30 s to 5 min, depending on race dynamics (ie, the response of the chase group). Due to the significant influence competitors have on pacing strategies, it is difficult for laboratory-based performance tests to precisely replicate this aspect of mass-start competitive road cycling. Further research examining the distribution of power output during competitive road racing is needed to refine laboratory-based simulated stochastic performance trials and better understand the factors important to the success of a breakaway.

  14. Multi-decadal Variability of the Wind Power Output

    Science.gov (United States)

    Kirchner Bossi, Nicolas; García-Herrera, Ricardo; Prieto, Luis; Trigo, Ricardo M.

    2014-05-01

    The knowledge of the long-term wind power variability is essential to provide a realistic outlook on the power output during the lifetime of a planned wind power project. In this work, the Power Output (Po) of a market wind turbine is simulated with a daily resolution for the period 1871-2009 at two different locations in Spain, one at the Central Iberian Plateau and another at the Gibraltar Strait Area. This is attained through a statistical downscaling of the daily wind conditions. It implements a Greedy Algorithm as classificator of a geostrophic-based wind predictor, which is derived by considering the SLP daily field from the 56 ensemble members of the longest homogeneous reanalysis available (20CR, 1871-2009). For calibration and validation purposes we use 10 years of wind observations (the predictand) at both sites. As a result, a series of 139 annual wind speed Probability Density Functions (PDF) are obtained, with a good performance in terms of wind speed uncertainty reduction (average daily wind speed MAE=1.48 m/s). The obtained centennial series allow to investigate the multi-decadal variability of wind power from different points of view. Significant periodicities around the 25-yr frequency band, as well as long-term linear trends are detected at both locations. In addition, a negative correlation is found between annual Po at both locations, evidencing the differences in the dynamical mechanisms ruling them (and possible complementary behavior). Furthermore, the impact that the three leading large-scale circulation patterns over Iberia (NAO, EA and SCAND) exert over wind power output is evaluated. Results show distinct (and non-stationary) couplings to these forcings depending on the geographical position and season or month. Moreover, significant non-stationary correlations are observed with the slow varying Atlantic Multidecadal Oscillation (AMO) index for both case studies. Finally, an empirical relationship is explored between the annual Po and the

  15. Using machine learning to predict wind turbine power output

    Science.gov (United States)

    Clifton, A.; Kilcher, L.; Lundquist, J. K.; Fleming, P.

    2013-06-01

    Wind turbine power output is known to be a strong function of wind speed, but is also affected by turbulence and shear. In this work, new aerostructural simulations of a generic 1.5 MW turbine are used to rank atmospheric influences on power output. Most significant is the hub height wind speed, followed by hub height turbulence intensity and then wind speed shear across the rotor disk. These simulation data are used to train regression trees that predict the turbine response for any combination of wind speed, turbulence intensity, and wind shear that might be expected at a turbine site. For a randomly selected atmospheric condition, the accuracy of the regression tree power predictions is three times higher than that from the traditional power curve methodology. The regression tree method can also be applied to turbine test data and used to predict turbine performance at a new site. No new data are required in comparison to the data that are usually collected for a wind resource assessment. Implementing the method requires turbine manufacturers to create a turbine regression tree model from test site data. Such an approach could significantly reduce bias in power predictions that arise because of the different turbulence and shear at the new site, compared to the test site.

  16. Reliability of power output during eccentric sprint cycling.

    Science.gov (United States)

    Brughelli, Matt; Van Leemputte, Marc

    2013-01-01

    The purpose of this study was to determine the reliability of power outputs during maximal intensity eccentric cycling over short durations (i.e., eccentric sprint cycling) on a "motor-driven" isokinetic ergometer. Fourteen physically active male subjects performed isokinetic eccentric cycling sprints at 40, 60, 80, 100, and 120 revolutions per minute (rpm) on 4 separate occasions (T1-T4). Each sprint lasted for 6 seconds, and absolute measures of mean power (MP) and peak power (PP) per revolution were recorded. Significant increases in MP and PP were observed between T1 and subsequent trials, but no significant differences were identified between T2, T3, and T4. The coefficient of variation (CV) and intraclass correlation coefficient (ICC) were calculated to reflect within-subject and between-session reliability of MP and PP at each cadence. The CV improved to below 10% for cadences of 60, 80, 100, and 120 rpm between T3 and T4, and the majority of ICC values improved to above 0.90. The remaining ICC values remained in the moderate range between T3 and T4 (i.e., 0.82-0.89). Coefficient of variation and ICC values for the 40 rpm cadence remained at unacceptable levels throughout the 4 trials and thus should be avoided in future investigations. The results of this study indicate that reliable power outputs may be obtained after 2 familiarization sessions during eccentric sprint cycling at cadences ranging from 60 to 120 rpm.

  17. Power output uniformity and power output capabilities of a guidewire-compatible cylindrical light-diffusing catheter

    Science.gov (United States)

    Anderson, Steven C.; Narciso, Hugh L., Jr.; Mai, David; Doiron, Daniel R.

    1994-07-01

    Cardiovascular Photodynamic Therapy requires the uniform application of laser energy over the length of an atherosclerotic lesion, thus ensuring equal treatment to all parts of the lesion. The total amount of laser energy delivered to the lesion also affects the results of the treatment. Uniform light distribution both radially and axially of a cylindrical diffuser during Photodynamic Therapy prevents miscalculated dosimetry and uneven treatment. Maximizing the amount of laser power delivered to the cylindrical diffuser tip (without inducing temperature elevation) minimizes the exposure time thus reducing the overall treatment time. Power output uniformity and power output capabilities are thus crucial factors in the design of a cardiovascular cylindrical diffuser. This paper will discuss the output characteristics and performance of six guidewire compatible cylindrical diffusers. Each diffuser consists of an array of fiber optics surrounding an inner guidewire lumen. This assembly is covered by an outer sheath. The fibers launch into an elastomer which contains a scattering medium. In this way a light diffusing tip is created. The total length of the fiber system is 3.0 meters. The total length of the difffuser tip is 2.0 cm.

  18. Dendritic bundles, minicolumns, columns, and cortical output units

    Directory of Open Access Journals (Sweden)

    Giorgio Innocenti

    2010-03-01

    Full Text Available The search for the fundamental building block of the cerebral cortex has highlighted three structures, perpendicular to the cortical surface: i columns of neurons with radially invariant response properties, e.g., receptive field position, sensory modality, stimulus orientation or direction, frequency tuning etc. ii minicolumns of radially aligned cell bodies and iii bundles, constituted by the apical dendrites of pyramidal neurons with cell bodies in different layers. The latter were described in detail, and sometimes quantitatively, in several species and areas. It was recently suggested that the dendritic bundles consist of apical dendrites belonging to neurons projecting their axons to specific targets. We review the concept above and suggest that another structural and computational unit of cerebral cortex is the cortical output unit (COU, i.e. an assembly of bundles of apical dendrites and their parent cell bodies including each of the outputs to distant cortical or subcortical structures, of a given cortical locus (area or part of an area. This somato-dendritic assembly receives inputs some of which are common to the whole assembly and determine its radially invariant response properties, others are specific to one or more dendritic bundles, and determine the specific response signature of neurons in the different cortical layers and projecting to different targets.

  19. Some observations on stray magnetic fields and power outputs from short-wave diathermy equipment

    Energy Technology Data Exchange (ETDEWEB)

    Lau, R.W.M.; Dunscombe, P.B.

    1984-04-01

    Recent years have seen increasing interest in the possible hazards arising from the use of nonionizing electromagnetic radiation. Relatively large and potentially hazardous fields are to be found in the vicinity of short-wave and microwave equipment used in physiotherapy departments to produce therapeutic temperature rises. This note reports the results of measurements of the stray magnetic field and power output of a conventional short-wave diathermy unit when applied to tissue-equivalent phantoms. The dependence of these quantities on the variables, i.e. power setting of the unit, capacitor plate size, phantom size and phantom-capacitor plate separation, are discussed.

  20. A model to predict the power output from wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Landberg, L. [Riso National Lab., Roskilde (Denmark)

    1997-12-31

    This paper will describe a model that can predict the power output from wind farms. To give examples of input the model is applied to a wind farm in Texas. The predictions are generated from forecasts from the NGM model of NCEP. These predictions are made valid at individual sites (wind farms) by applying a matrix calculated by the sub-models of WASP (Wind Atlas Application and Analysis Program). The actual wind farm production is calculated using the Riso PARK model. Because of the preliminary nature of the results, they will not be given. However, similar results from Europe will be given.

  1. Listening to music affects diurnal variation in muscle power output.

    Science.gov (United States)

    Chtourou, H; Chaouachi, A; Hammouda, O; Chamari, K; Souissi, N

    2012-01-01

    The purpose of this investigation was to assess the effects of listening to music while warming-up on the diurnal variations of power output during the Wingate test. 12 physical education students underwent four Wingate tests at 07:00 and 17:00 h, after 10 min of warm-up with and without listening to music. The warm-up consisted of 10 min of pedalling at a constant pace of 60 rpm against a light load of 1 kg. During the Wingate test, peak and mean power were measured. The main finding was that peak and mean power improved from morning to afternoon after no music warm-up (pmusic warm-up. Moreover, peak and mean power were significantly higher after music than no music warm-up during the two times of testing. Thus, as it is a legal method and an additional aid, music should be used during warm-up before performing activities requiring powerful lower limbs' muscles contractions, especially in the morning competitive events.

  2. Model output statistics applied to wind power prediction

    Energy Technology Data Exchange (ETDEWEB)

    Joensen, A.; Giebel, G.; Landberg, L. [Risoe National Lab., Roskilde (Denmark); Madsen, H.; Nielsen, H.A. [The Technical Univ. of Denmark, Dept. of Mathematical Modelling, Lyngby (Denmark)

    1999-03-01

    Being able to predict the output of a wind farm online for a day or two in advance has significant advantages for utilities, such as better possibility to schedule fossil fuelled power plants and a better position on electricity spot markets. In this paper prediction methods based on Numerical Weather Prediction (NWP) models are considered. The spatial resolution used in NWP models implies that these predictions are not valid locally at a specific wind farm. Furthermore, due to the non-stationary nature and complexity of the processes in the atmosphere, and occasional changes of NWP models, the deviation between the predicted and the measured wind will be time dependent. If observational data is available, and if the deviation between the predictions and the observations exhibits systematic behavior, this should be corrected for; if statistical methods are used, this approaches is usually referred to as MOS (Model Output Statistics). The influence of atmospheric turbulence intensity, topography, prediction horizon length and auto-correlation of wind speed and power is considered, and to take the time-variations into account, adaptive estimation methods are applied. Three estimation techniques are considered and compared, Extended Kalman Filtering, recursive least squares and a new modified recursive least squares algorithm. (au) EU-JOULE-3. 11 refs.

  3. Changes in muscle coordination and power output during sprint cycling.

    Science.gov (United States)

    O'Bryan, Steven J; Brown, Nicholas A T; Billaut, François; Rouffet, David M

    2014-07-25

    This study investigated the changes in muscle coordination associated to power output decrease during a 30-s isokinetic (120rpm) cycling sprint. Modifications in EMG amplitude and onset/offset were investigated from eight muscles [gluteus maximus (EMGGMAX), vastus lateralis and medialis obliquus (EMGVAS), medial and lateral gastrocnemius (EMGGAS), rectus femoris (EMGRF), biceps femoris and semitendinosus (EMGHAM)]. Changes in co-activation of four muscle pairs (CAIGMAX/GAS, CAIVAS/GAS, CAIVAS/HAM and CAIGMAX/RF) were also calculated. Substantial power reduction (60±6%) was accompanied by a decrease in EMG amplitude for all muscles other than HAM, with the greatest deficit identified for EMGRF (31±16%) and EMGGAS (20±14%). GASonset, HAMonset and GMAXonset shifted later in the pedalling cycle and the EMG offsets of all muscles (except GASoffset) shifted earlier as the sprint progressed (Ppower reduction during fatiguing sprint cycling is accompanied by marked reductions in the EMG activity of bi-articular GAS and RF and co-activation level between GAS and main power producer muscles (GMAX and VAS). The observed changes in RF and GAS EMG activity are likely to result in a redistribution of the joint powers and alterations in the orientation of the pedal forces. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Increased Photovoltaic Power Output via Diffractive Spectrum Separation

    Science.gov (United States)

    Kim, Ganghun; Dominguez-Caballero, Jose A.; Lee, Howard; Friedman, Daniel J.; Menon, Rajesh

    2013-03-01

    In this Letter, we report the preliminary demonstration of a new paradigm for photovoltaic power generation that utilizes a broadband diffractive-optical element (BDOE) to efficiently separate sunlight into laterally spaced spectral bands. These bands are then absorbed by single-junction photovoltaic cells, whose band gaps correspond to the incident spectral bands. We designed such BDOEs by utilizing a modified version of the direct-binary-search algorithm. Gray scale lithography was used to fabricate these multilevel optics. They were experimentally characterized with an overall optical efficiency of 70% over a wavelength range of 350-1100 nm, which was in excellent agreement with simulation predictions. Finally, two prototype devices were assembled: one with a pair of copper indium gallium selenide based photovoltaic devices, and another with GaAs and c-Si photovoltaic devices. These devices demonstrated an increase in output peak electrical power of ˜42% and ˜22%, respectively, under white-light illumination. Because of the optical versatility and manufacturability of the proposed BDOEs, the reported spectrum-splitting approach provides a new approach toward low-cost solar power.

  5. Increased photovoltaic power output via diffractive spectrum separation.

    Science.gov (United States)

    Kim, Ganghun; Dominguez-Caballero, Jose A; Lee, Howard; Friedman, Daniel J; Menon, Rajesh

    2013-03-22

    In this Letter, we report the preliminary demonstration of a new paradigm for photovoltaic power generation that utilizes a broadband diffractive-optical element (BDOE) to efficiently separate sunlight into laterally spaced spectral bands. These bands are then absorbed by single-junction photovoltaic cells, whose band gaps correspond to the incident spectral bands. We designed such BDOEs by utilizing a modified version of the direct-binary-search algorithm. Gray scale lithography was used to fabricate these multilevel optics. They were experimentally characterized with an overall optical efficiency of 70% over a wavelength range of 350-1100 nm, which was in excellent agreement with simulation predictions. Finally, two prototype devices were assembled: one with a pair of copper indium gallium selenide based photovoltaic devices, and another with GaAs and c-Si photovoltaic devices. These devices demonstrated an increase in output peak electrical power of ∼ 42% and ∼ 22%, respectively, under white-light illumination. Because of the optical versatility and manufacturability of the proposed BDOEs, the reported spectrum-splitting approach provides a new approach toward low-cost solar power.

  6. Muscle coordination is key to the power output and mechanical efficiency of limb movements.

    Science.gov (United States)

    Wakeling, J M; Blake, O M; Chan, H K

    2010-02-01

    The purpose of this study was to determine which features of muscle mechanics and muscle coordination affect the power output from a limb during locomotion. Eight subjects were tested while cycling at maximum exertion for 25 min on a stationary dynamometer. Cadence and load were varied to span a range of power outputs and myoelectric activity was measured from 10 muscles in the leg. Cycle-by-cycle variations in muscle coordination, cadence and power output were observed and the EMG intensity across all muscles was used as an estimate of the metabolic cost for each cycle. Data for the cycles at greatest power output were separated into three groups: maximum power, 80% power but lower EMG intensity and 80% power and higher EMG intensity. Torque-angular velocity relations were determined for the ankle and knee joints. During cycling at maximum power output the ankle joint was not extending at the velocity necessary for maximum power output; thus, maximum limb power occurs when some of the individual muscles cannot be generating maximum power output. Increases in EMG intensity occurred with no increase in power output from the limb: these corresponded to decreases in the efficiency and changes in coordination. Increases in power were achieved that were not matched by equivalent increases in EMG intensity, but did occur with changes in coordination. It is proposed that the power output from the limb is limited by the coordination pattern of the muscles rather than the maximum power output from any one muscle itself.

  7. Basic study on dynamic reactive-power control method with PV output prediction for solar inverter

    Directory of Open Access Journals (Sweden)

    Ryunosuke Miyoshi

    2016-01-01

    Full Text Available To effectively utilize a photovoltaic (PV system, reactive-power control methods for solar inverters have been considered. Among the various methods, the constant-voltage control outputs less reactive power compared with the other methods. We have developed a constant-voltage control to reduce the reactive-power output. However, the developed constant-voltage control still outputs unnecessary reactive power because the control parameter is constant in every waveform of the PV output. To reduce the reactive-power output, we propose a dynamic reactive-power control method with a PV output prediction. In the proposed method, the control parameter is varied according to the properties of the predicted PV waveform. In this study, we performed numerical simulations using a distribution system model, and we confirmed that the proposed method reduces the reactive-power output within the voltage constraint.

  8. High output power reluctance electric motors with bulk high-temperature superconductor elements

    Science.gov (United States)

    Kovalev, L. K.; Ilushin, K. V.; Penkin, V. T.; Kovalev, K. L.; Larionoff, A. E.; M-A Koneev, S.; Modestov, K. A.; Larionoff, S. A.; Poltavets, V. N.; Akimov, I. I.; Alexandrov, V. V.; Gawalek, W.; Oswald, B.; Krabbes, G.

    2002-05-01

    We present new types of electric machines with the rotors containing bulk high-temperature superconductor (HTS) - YBCO and Bi-Ag - elements. We discuss different schematics of hysteresis, reluctance, 'trapped field' and composed synchronous HTS machines. The two-dimensional mathematical models describing the processes in such types of HTS machines were developed on the basis of the theoretical analysis of the electrodynamic and hysteresis processes in the single-domain and polycrystal YBCO ceramic samples and plate shape Bi-Ag elements. We give the test results of the series of hysteresis, reluctance, 'trapped field' and composed with permanent magnets HTS motors with an output power rating of 0.1-18 kW and current frequencies 50 Hz and 400 Hz. These results show that in the media of liquid nitrogen the specific output power per one unit weight of the HTS motor is four to seven times better than for conventional electric machines. A comparison of the theoretical and experimental characteristics of the developed HTS motors show that they are in good agreement. We discuss the test results for a liquid nitrogen cryogenic pump system with a hysteresis 500 W HTS motor. We describe several designs of new HTS motors operating in the media of liquid nitrogen with an output power 125 kW (and more) and a power factor of more than 0.8. We discuss future applications of new types of HTS motors for aerospace technology, on-land industry and transport systems.

  9. The mechanical power output of the pectoralis muscle of cockatiel (Nymphicus hollandicus): the in vivo muscle length trajectory and activity patterns and their implications for power modulation.

    Science.gov (United States)

    Morris, Charlotte R; Askew, Graham N

    2010-08-15

    In order to meet the varying demands of flight, pectoralis muscle power output must be modulated. In birds with pectoralis muscles with a homogeneous fibre type composition, power output can be modulated at the level of the motor unit (via changes in muscle length trajectory and the pattern of activation), at the level of the muscle (via changes in the number of motor units recruited), and at the level of the whole animal (through the use of intermittent flight). Pectoralis muscle length trajectory and activity patterns were measured in vivo in the cockatiel (Nymphicus hollandicus) at a range of flight speeds (0-16 m s(-1)) using sonomicrometry and electromyography. The work loop technique was used to measure the mechanical power output of a bundle of fascicles isolated from the pectoralis muscle during simulated in vivo length change and activity patterns. The mechanical power-speed relationship was U-shaped, with a 2.97-fold variation in power output (40-120 W kg(-1)). In this species, modulation of neuromuscular activation is the primary strategy utilised to modulate pectoralis muscle power output. Maximum in vivo power output was 22% of the maximum isotonic power output (533 W kg(-1)) and was generated at a lower relative shortening velocity (0.28 V(max)) than the maximum power output during isotonic contractions (0.34 V(max)). It seems probable that the large pectoralis muscle strains result in a shift in the optimal relative shortening velocity in comparison with the optimum during isotonic contractions as a result of length-force effects.

  10. Nonlinear inversion-based output tracking control of a boiler-turbine unit

    Institute of Scientific and Technical Information of China (English)

    Fang FANG; Jizhen LIU; Wen TAN

    2005-01-01

    The capability to perform fast load-following has been an important issue in the power industry. An output tracking control system of a boiler-turbine unit is developed. The system is composed of stable inversion and feedback controller.The stable inversion is implemented as a feedforward controller to improve the load-following capability, and the feedback controller is utilized to guarantee the stability and robustness of the whole system. Loop-shaping H∞ method is used to design the feedback controller and the final controller is reduced to a multivariable PI form. The output tracking control system takes account of the multivariable, nonlinear and coupling behavior of boiler-turbine system, and the simulation tests show that the control system works well and can be widely applied.

  11. Maximizing Output Power of a Solar Panel via Combination of Sun Tracking and Maximum Power Point Tracking by Fuzzy Controllers

    OpenAIRE

    Mohsen Taherbaneh; A. H. Rezaie; H. Ghafoorifard; Rahimi, K; M. B. Menhaj

    2010-01-01

    In applications with low-energy conversion efficiency, maximizing the output power improves the efficiency. The maximum output power of a solar panel depends on the environmental conditions and load profile. In this paper, a method based on simultaneous use of two fuzzy controllers is developed in order to maximize the generated output power of a solar panel in a photovoltaic system: fuzzy-based sun tracking and maximum power point tracking. The sun tracking is performed by changing the solar...

  12. Smoothing of wind farm output power using prediction based flywheel energy storage system

    Science.gov (United States)

    Islam, Farzana

    Being socially beneficial, economically competitive and environment friendly, wind energy is now considered to be the world's fastest growing renewable energy source. However, the stochastic nature of wind imposes a considerable challenge in the optimal management and operation of wind power system. Wind speed prediction is critical for wind energy conversion system since it greatly influences the issues related to effective energy management, dynamic control of wind turbine, and improvement of the overall efficiency of the power generation system. This thesis focuses on integration of energy storage system with wind farm, considering wind speed prediction in the control scheme to overcome the problems associated with wind power fluctuations. In this thesis, flywheel energy storage system (FESS) with adjustable speed rotary machine has been considered for smoothing of output power in a wind farm composed of a fixed speed wind turbine generator (FSWTG). Since FESS has both active and reactive power compensation ability, it enhances the stability of the system effectively. An efficient energy management system combined with supervisory control unit (SCU) for FESS and wind speed prediction has been developed to improve the smoothing of the wind farm output effectively. Wind speed prediction model is developed by artificial neural network (ANN) which has advantages over the conventional prediction scheme including data error tolerance and ease in adaptability. The model for prediction with ANN is developed in MATLAB/Simulink and interfaced with PSCAD/EMTDC. Effectiveness of the proposed control system is illustrated using real wind speed data in various operating conditions.

  13. On units combination and commitment optimization for electric power production

    Institute of Scientific and Technical Information of China (English)

    谭忠富; 何永秀

    2004-01-01

    Electric power system is one of the most important and complex engineering in modern society, supplying main and general power for social production and social life. Meanwhile, since it is a productive system with both high input and output, it has an obvious economic significance to improve its operating efficiency. For an example, an unit is 10 GW year. It will be discussed mainly that how to establish optimization model and its numerical algorithm for operating management of the electric power system. The idea on establishing optimization model is how to dispatch work state of units or power plants, so that total cost of fuel consumption for generation is reduced to the minimum. Here the dispatch is to decide which unit or plant to operate, which unit or plant to stop running, how much power should be generated for those operating units or plants at each given time interval.

  14. 75 FR 3985 - Trade Regulation Rule Relating to Power Output Claims for Amplifiers Utilized in Home...

    Science.gov (United States)

    2010-01-26

    ... receive information useful to their purchasing decision, or, at worst, could be deceived by certain power... CFR Part 432 Trade Regulation Rule Relating to Power Output Claims for Amplifiers Utilized in Home... Rule Relating to Power Output Claims for Amplifiers Utilized in Home Entertainment Products...

  15. Abnormally High Power Output of Wind Turbine in Cold Weather: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Christophe Leclerc

    2003-01-01

    Full Text Available According to popular belief, air temperature effects on wind turbine power output are produced solely by air density variations, and power is proportional to air density. However, some cases have been reported, all involving stall-controlled wind turbines, in which unexpected high power output was observed at very low temperatures.

  16. Non-invasive prediction of blood lactate response to constant power outputs from incremental exercise tests.

    Science.gov (United States)

    Sullivan, C S; Casaburi, R; Storer, T W; Wasserman, K

    1995-01-01

    We determined the ability of gas exchange analyses during incremental exercise tests (IXT) to predict blood lactate levels associated with a range of constant power output cycle ergometer tests. Twenty-seven healthy young men performed duplicate IXT and four 15-min constant power output tests at intensities ranging from moderate to very severe, before and after a training program. End-exercise blood lactate levels were approximated from superficial venous samples obtained 60 s after each constant power output test. From IXT, the power outputs corresponding to peak oxygen uptake (Wmax) and lactic acidosis threshold (WLAT), were determined. We examined the ability of four measures of exercise intensity to predict blood lactate levels for power outputs above the LAT: (1) power output (W), (2) power difference (W-WLAT), (3) power fraction (W/Wmax) and (4) power difference to delta ratio [(W-WLAT)/(Wmax-WLAT)]. Correlation coefficients were r = 0.38, 0.69, 0.75, and 0.81, respectively. The best linear regression prediction equation was: lactate (mmol.l-1) = 12.2[(W-WLAT)/(Wmax-WLAT)] + 0.7 mmol.l-1. This relationship was not significantly affected by training, despite increased values of LAT and peak oxygen uptake. Normalizing exercise intensity to the range of power outputs between WLAT and Wmax provided an estimate of blood lactate response to constant power outputs with a standard error of the estimate of 1.66 mmol.l-1.

  17. Enhancing the power output of the VA-955 UHF-TV klystron

    Energy Technology Data Exchange (ETDEWEB)

    Bowen, O.N.; Lawson, J.Q.

    1977-01-01

    The Varian VA-955 UHF-TV klystron is rated at 50 kW CW, and four of these klystrons were used to provide 200 kW of RF power for lower hybrid heating experiments on the ATC machine at 800 MHz. These proven, production-type tubes were wanted to generate more power for larger type machines, such as the PDX. Varian was asked whether the tubes were capable of higher-power operation in pulsed applications. They replied that they had no experimental data but felt that the tubes were capable of greatly enhanced performance under pulsed conditions. By using cathode modulation instead of modulating anode control of the klystron, and thus limiting the time that high voltage is applied to the cathode, it was shown that the tube is capable of an output power of 200 kW for tens of milliseconds compared to its normal CW rating of 50 kW. A description is given of the experimental results, the required modifications to the klystron and output transmission circuit, the details of operation of the regulating modulator used to perform the experiment. Upgrade kits are now being fabricated to allow 200 kW operation of the two 50 kW units which were lent to General Atomic for Doublet II experiments.

  18. Hovercraft auxiliary power units (APUs)

    Energy Technology Data Exchange (ETDEWEB)

    Russell, B.J.

    1983-08-01

    Auxiliary power units (APU) manufactured by British firms for use in hovercraft are characterized. Both diesel and gas-turbine APUs are found to be well suited to the demands of this application. The design features, dimensions, performance data, and installation requirements are discussed for the SS 90, SS 923, DA-1, BA-1, HM 5, and Gevaudan 9 APUs, as well as the TRS 18 gas-turbine smoke generator. The progress made in improving the fuel efficiency of gas turbines and reducing the weight of diesel engines is considered significant.

  19. Numerical Calculation of the Output Power of a MHD Generator

    Directory of Open Access Journals (Sweden)

    Adrian CARABINEANU

    2014-12-01

    Full Text Available Using Lazăr Dragoş’s analytic solution for the electric potential we perform some numerical calculations in order to find the characteristics of a Faraday magnetohydrodymamics (MHD power generator (total power, useful power and Joule dissipation power.

  20. The Improved Power of the Central Lobe in the Beam Combination and High Power Output

    Institute of Scientific and Technical Information of China (English)

    LIU Hou-Kang; WEI Yun-Rong; DONG Jing-Xing; LOU Qi-Hong; XUE Yu-Hao; LI Zhen; HE Bing; ZHOU Jun; DING Ya-Qian; JIAO Meng-Li; LIU Chi; QI Yun-Feng

    2012-01-01

    In order to increase the power fraction of the central lobe in the coherent beam combination of lasers in an array,the effects of the distance factor of near-field distribution on far-field interference patterns are calculated and demonstrated experimentally.An improved beam array of interwoven distribution is demonstrated to enable the power in the central lobe to reach 41%.An optimized mirror array is carefully designed to obtain a high duty ratio,which is up to 53.3% at a high power level.By using these optimized methods and designs,the passive phase locking of eight Yb-doped fiber amplifiers with ring cavities are obtained,and a pleasing interference pattern with 87% visibility is observed.The maximum coherent output power of the system is up to 1066 W.%In order to increase the power fraction of the central lobe in the coherent beam combination of lasers in an array, the effects of the distance factor of near-field distribution on far-field interference patterns are calculated and demonstrated experimentally. An improved beam array of interwoven distribution is demonstrated to enable the power in the central lobe to reach 41%. An optimized mirror array is carefully designed to obtain a high duty ratio, which is up to 53.3% at a high power level. By using these optimized methods and designs, the passive phase locking of eight Yb-doped fiber amplifiers with ring cavities are obtained, and a pleasing interference pattern with 87% visibility is observed. The maximum coherent output power of the system is up to 1066 W.

  1. Examining the Variability of Wind Power Output in the Regulation Time Frame: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, B. M.; Shedd, S.; Florita, A.

    2012-08-01

    This work examines the distribution of changes in wind power for different time scales in the regulation time frame as well as the correlation of changes in power output for individual wind turbines in a wind plant.

  2. High Input Voltage, Silicon Carbide Power Processing Unit Performance Demonstration

    Science.gov (United States)

    Bozak, Karin E.; Pinero, Luis R.; Scheidegger, Robert J.; Aulisio, Michael V.; Gonzalez, Marcelo C.; Birchenough, Arthur G.

    2015-01-01

    A silicon carbide brassboard power processing unit has been developed by the NASA Glenn Research Center in Cleveland, Ohio. The power processing unit operates from two sources: a nominal 300 Volt high voltage input bus and a nominal 28 Volt low voltage input bus. The design of the power processing unit includes four low voltage, low power auxiliary supplies, and two parallel 7.5 kilowatt (kW) discharge power supplies that are capable of providing up to 15 kilowatts of total power at 300 to 500 Volts (V) to the thruster. Additionally, the unit contains a housekeeping supply, high voltage input filter, low voltage input filter, and master control board, such that the complete brassboard unit is capable of operating a 12.5 kilowatt Hall effect thruster. The performance of the unit was characterized under both ambient and thermal vacuum test conditions, and the results demonstrate exceptional performance with full power efficiencies exceeding 97%. The unit was also tested with a 12.5kW Hall effect thruster to verify compatibility and output filter specifications. With space-qualified silicon carbide or similar high voltage, high efficiency power devices, this would provide a design solution to address the need for high power electric propulsion systems.

  3. Expansion machine for a low power-output steam Rankine-cycle engine

    Energy Technology Data Exchange (ETDEWEB)

    Badr, O.; Naik, S.; O' Callaghan, P.W.; Probert, S.D. (Cranfield Inst. of Tech., Bedford (United Kingdom). School of Mechanical Engineering)

    1991-01-01

    The performance of the expansion device in a rankine-cycle engine is one of the major parameters dictating the engine's overall energy-conversion efficiency. In this paper the screening process undertaken to choose the most suitable expansion machine for a steam Rankine-cycle engine, operating principally as a 'mini' combined heat-and-power unit, is described. In the low power-output range (i.e. 5-20 kW) envisaged rotary, positive-displacement machines offer many advantages compared with turbines and reciprocating-piston expanders. So rotary-vane, helical-screw and Wankel-type expansion devices were short listed. However further assessments, based upon operational problems and cost effectiveness, led finally to the choice of the Wankel-type expander for the proposed application. Nevertheless, for this machine to be commercially successful, existing designs need to be modified and optimised. (author).

  4. Transmission Power Control using Small-Capacity UPFC under Output Voltage Saturation

    Science.gov (United States)

    Kuroda, Takeshi; Takeshita, Takaharu; Fujita, Hideki

    This paper presents a fast transmission power control scheme using a UPFC (Unified Power Flow Controller) under the output voltage saturation. For practical use of the UPFC, the fast and stable power response and the reduced power converter capacity are desired. The authors propose the fast and stable control scheme under the output voltage saturation of the reduced capacity UPFC. The effectiveness of the proposed control algorithm of the UPFC has been verified by experiments.

  5. PI and Fuzzy Control Strategies for High Voltage Output DC-DC Boost Power Converter - Hardware Implementation and Analysis

    DEFF Research Database (Denmark)

    Padmanaban, Sanjeevi Kumar; Blaabjerg, Frede; Siano, Pierluigi

    2016-01-01

    converter with inbuilt voltage-lift technique and overcome the aforementioned deficiencies. Further, the control strategy is adapted based on proportional-integral (P-I) and fuzzy logic, closed-loop controller to regulate the outputs and ensure the performances. Complete hardware prototype of EHV converter......This paper presents the control strategies by Proportional-Integral (P-I) and Fuzzy Logic (FL) for a DC-DC boost power converter for high output voltage configuration. Standard DC-DC converters are traditionally used for high voltage direct current (HVDC) power transmission systems. But, lack its...... performances in terms of efficiency, reduced transfer gain and increased cost with sensor units. Moreover, the internal self-parasitic components reduce the output voltage and efficiency of classical high voltage converters (HVC). This investigation focused on extra high-voltage (EHV) DC-DC boost power...

  6. Method for Prediction of the Power Output from Photovoltaic Power Plant under Actual Operating Conditions

    Science.gov (United States)

    Obukhov, S. G.; Plotnikov, I. A.; Surzhikova, O. A.; Savkin, K. D.

    2017-04-01

    Solar photovoltaic technology is one of the most rapidly growing renewable sources of electricity that has practical application in various fields of human activity due to its high availability, huge potential and environmental compatibility. The original simulation model of the photovoltaic power plant has been developed to simulate and investigate the plant operating modes under actual operating conditions. The proposed model considers the impact of the external climatic factors on the solar panel energy characteristics that improves accuracy in the power output prediction. The data obtained through the photovoltaic power plant operation simulation enable a well-reasoned choice of the required capacity for storage devices and determination of the rational algorithms to control the energy complex.

  7. effect of light curing unit characteristics on light intensity output ...

    African Journals Online (AJOL)

    2013-09-09

    Sep 9, 2013 ... Objective: To determine the characteristics of light curing units (LCUs) in dental clinics in Nairobi and ... generation which has dogged the new generation of. LEDs without ..... Knezevic A, Tarle Z, Meniga A, Sutalo J, Pichler G.

  8. High Power Tm3+-Doped Fiber Lasers Tuned by a Variable Reflective Output Coupler

    Directory of Open Access Journals (Sweden)

    Yulong Tang

    2008-01-01

    Full Text Available Wide wavelength tuning by a variable reflective output coupler is demonstrated in high-power double-clad Tm3+-doped silica fiber lasers diode-pumped at ∼790  nm. Varying the output coupling from 96% to 5%, the laser wavelength is tuned over a range of 106  nm from 1949 to 2055  nm. The output power exceeds 20  W over 90-nm range and the maximum output power is 32  W at 1949  nm for 51-W launched pump power, corresponding to a slope efficiency of ∼70%. Assisted with different fiber lengths, the tuning range is expanded to 240  nm from 1866 to 2107  nm with the output power larger than 10  W.

  9. Magnetic Bearing Amplifier Output Power Filters for Flywheel Systems

    Science.gov (United States)

    Lebron-Velilla, Ramon C.; Jansen, Ralph H.; Palazzolo, Alan; Thomas, Erwin; Kascak, Peter E.; Birchenough, Arthur G.; Dever, Timothy P.

    2003-01-01

    Five power filters and two types of power amplifiers were tested for use with active magnetic bearings for flywheel applications. Filter topologies included low pass filters and low pass filters combined with trap filters at the PWM switching frequency. Two state and three state PWM amplifiers were compared. Each system was evaluated based on current magnitude at the switching frequency, voltage magnitude at 500 kHz, and power consumption. The base line system was a two state amplifier without a power filter. The recommended system is a three state power amplifier with a 50 kHz low pass filter and a 27 kHz trap filter. This system uses 5.57 W. It reduces the switching current by an order of magnitude and the 500 kHz voltage by two orders of magnitude. The relative power consumption varied depending on the test condition between 60 to 130 percent of the baseline.

  10. Modeling of Electric Power Consumption by Industrial Enterprises with Ambiguous Interrelation between Power Consumption and Report Output

    Directory of Open Access Journals (Sweden)

    D. R. Moroz

    2007-01-01

    Full Text Available The paper gives description of a method for modeling electric power consumption by industrial enterprises with a complicated technological process that differs in accounting parameters of power consumption distribution laws and volume of output. The proposed method permits reliably to evaluate specific technological consumption of electric power and a direct component of electric power consumption.

  11. Technique for enhancing the power output of an electrostatic generator employing parametric resonance

    Science.gov (United States)

    Post, Richard F.

    2016-02-23

    A circuit-based technique enhances the power output of electrostatic generators employing an array of axially oriented rods or tubes or azimuthal corrugated metal surfaces for their electrodes. During generator operation, the peak voltage across the electrodes occurs at an azimuthal position that is intermediate between the position of minimum gap and maximum gap. If this position is also close to the azimuthal angle where the rate of change of capacity is a maximum, then the highest rf power output possible for a given maximum allowable voltage at the minimum gap can be attained. This rf power output is then coupled to the generator load through a coupling condenser that prevents suppression of the dc charging potential by conduction through the load. Optimized circuit values produce phase shifts in the rf output voltage that allow higher power output to occur at the same voltage limit at the minimum gap position.

  12. nLight Demonstrates World Record Output Power at 1470nm

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Diode Laser Bar Outputs 88W CW in Eyesafe Wavelength Range nLight, a leading manufacturer of high-power semiconductor lasers, today announced that it has achieved a new world record for output power from a single 1-cm InP diode laser bar. The 50 percent fill factor bar produced 88W continuous-wave (CW) power at1470 nm. The bar was mounted on the company's commercially available CascadesTM microchannel water-cooled package.

  13. a novel strategy for raising the unit output of large synchronous ...

    African Journals Online (AJOL)

    Dr Obe

    magnetic structure to amplify Xd/Xq ratio on which the reluctance output power depends ... Keywords: Xd/Xq ratio, modified q-axis reactance Xq mmf, permeance and flux density distributions, ... Machines without rotating windings therefore.

  14. Advisory system for the diagnosis of lost electric output in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Gyunyoung Heo; Soon Heung Chang [Korea Advanced Institute of Science and Technology, Daejeon (Korea). Dept. of Nuclear and Quantum Engineering; Seong Soo Choi [Atomic Creative Technology, Daejeon (Korea); Gwang Hee Choi; Moon Hak Jee [Korea Power Electric Research Institute, Daejeon (Korea)

    2005-11-15

    The enhancement of efficiency is world-wide trend to survive under intense competition. In recent years, the efficiency in the power industry is also one of the important topics. In case of nuclear power plants(NPPs), the period and quality of maintenance is an especially important factor to increase efficiency as well as availability. Therefore, the accurate identification of the root causes for lost electric output is indispensable to decrease the period and to increase quality of maintenance. The diagnosis in NPPs is more difficult because the turbine cycle of NPPs uses saturated steam as working fluid. In this study, authors tried to develop an advisory system with the quantitative diagnosis model consisting of statistical regression analysis and Bayesian network for the support of nuclear turbine cycle diagnosis. The proposed advisory system includes the knowledge-base representing the normal or abnormal behavior of nuclear turbine cycle. Authors selected 34 boundary parameters that independently influence to electric output. Using the data collected from a turbine cycle simulation tool, the statistical correlation between a boundary parameter and electric output was analyzed. To give the belief, that is the degree of accuracy, of root causes under various uncertainty sources, belief module for the boundary parameters is developed on the basis of Bayesian network. In conclusion, this diagnosis module can give the impacts of the root causes and their uncertainty simultaneously, so we call it 'Lost MW calculator'. After the validation using simulated data and actual performance data, this module was installed in Younggwang NPP units 3 and 4 in Korea. (author)

  15. Performance of improved magnetostrictive vibrational power generator, simple and high power output for practical applications

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Toshiyuki, E-mail: ueno@ec.t.kanazawa-u.ac.jp [Kanazawa University, Kakuma-machi, Kanazawa-city, Ishikawa 920-1192 (Japan)

    2015-05-07

    Vibration based power generation technology is utilized effectively in various fields. Author has invented novel vibrational power generation device using magnetostrictive material. The device is based on parallel beam structure consisting of a rod of iron-gallium alloy wound with coil and yoke accompanied with permanent magnet. When bending force is applied on the tip of the device, the magnetization inside the rod varies with induced stress due to the inverse magnetostrictive effect. In vibration, the time variation of the magnetization generates voltage on the wound coil. The magnetostrictive type is advantageous over conventional such using piezoelectric or moving magnet types in high efficiency and high robustness, and low electrical impedance. Here, author has established device configuration, simple, rigid, and high power output endurable for practical applications. In addition, the improved device is lower cost using less volume of Fe-Ga and permanent magnet compared to our conventional, and its assembly by soldering is easy and fast suitable for mass production. Average power of 3 mW/cm{sup 3} under resonant vibration of 212 Hz and 1.2 G was obtained in miniature prototype using Fe-Ga rod of 2 × 0.5× 7 mm{sup 3}. Furthermore, the damping effect was observed, which demonstrates high energy conversion of the generator.

  16. Power output of offshore wind farms in relation to atmospheric stability

    NARCIS (Netherlands)

    Alblas, L.; Bierbooms, W.; Veldkamp, D.

    2014-01-01

    Atmospheric stability is known to influence wind farm power output, by affecting power losses due to wakes. This research tries to answer what atmospheric stability does to the power production and how conventional simulations using the Jensen wake model compare and can be improved. Data is used fro

  17. Output Impedance Shaping for Frequency Compensation of MOS Audio Power Amplifiers

    NARCIS (Netherlands)

    van der Zee, Ronan A.R.; Mostert, Fred

    2009-01-01

    A frequency compensation technique for MOS audio power amplifiers is presented that allows the frequency compensation capacitors around the power transistors to be smaller than the circuit parasitics without power or stability penalty. Stability is analysed by inspecting the output impedance of the

  18. Power output of offshore wind farms in relation to atmospheric stability

    NARCIS (Netherlands)

    Alblas, L.; Bierbooms, W.A.A.M.; Veldkamp, D.

    2014-01-01

    Atmospheric stability is known to influence wind farm power output, by affecting power losses due to wakes. This research tries to answer what atmospheric stability does to the power production and how conventional simulations using the Jensen wake model compare and can be improved. Data is used

  19. Improving the Output Power Stability of a High Concentration Photovoltaic System with Supercapacitors: A Preliminary Evaluation

    Directory of Open Access Journals (Sweden)

    Yu-Pei Huang

    2015-01-01

    Full Text Available The output power of a high concentration photovoltaic (HCPV system is very sensitive to fluctuating tracking errors and weather patterns. To help compensate this shortcoming, supercapacitors have been successfully incorporated into photovoltaic systems to improve their output power stability. This study examined the output power stability improvement of an HCPV module with a supercapacitor integrated into its circuit. Furthermore, the equivalent model of the experimental circuit is presented and analyzed. Experimental results suggest that integrating a supercapacitor into an HCPV module could improve its output power stability and further extend its acceptance angle. This paper provides preliminary data of the improvement and its evaluation method, which could be utilized for further improvements to an HCPV system.

  20. Polymer electrolyte fuel cell mini power unit for portable application

    Science.gov (United States)

    Urbani, F.; Squadrito, G.; Barbera, O.; Giacoppo, G.; Passalacqua, E.; Zerbinati, O.

    This paper describes the design, realisation and test of a power unit based on a polymer electrolyte fuel cell, operating at room temperature, for portable application. The device is composed of an home made air breathing fuel cell stack, a metal hydride tank for H 2 supply, a dc-dc converter for power output control and a fan for stack cooling. The stack is composed by 10 cells with an active surface of 25 cm 2 and produces a rated power of 15 W at 6 V and 2 A. The stack successfully runs with end-off fed hydrogen without appreciable performance degradation during the time. The final assembled system is able to generate 12 W at 9.5 V, and power a portable DVD player for 3 h in continuous. The power unit has collected about 100 h of operation without maintenance.

  1. Polymer electrolyte fuel cell mini power unit for portable application

    Energy Technology Data Exchange (ETDEWEB)

    Urbani, F.; Squadrito, G.; Barbera, O.; Giacoppo, G.; Passalacqua, E. [CNR-ITAE, via Salita S. Lucia sopra Contesse n. 5, 98126 S. Lucia, Messina (Italy); Zerbinati, O. [Universita del Piemonte Orientale, Dip. di Scienze dell' Ambiente e della Vita, via Bellini 25/g, 15100 Alessandria (Italy)

    2007-06-20

    This paper describes the design, realisation and test of a power unit based on a polymer electrolyte fuel cell, operating at room temperature, for portable application. The device is composed of an home made air breathing fuel cell stack, a metal hydride tank for H{sub 2} supply, a dc-dc converter for power output control and a fan for stack cooling. The stack is composed by 10 cells with an active surface of 25 cm{sup 2} and produces a rated power of 15 W at 6 V and 2 A. The stack successfully runs with end-off fed hydrogen without appreciable performance degradation during the time. The final assembled system is able to generate 12 W at 9.5 V, and power a portable DVD player for 3 h in continuous. The power unit has collected about 100 h of operation without maintenance. (author)

  2. Water Power Calculator Temperature and Analog Input/Output Module Ambient Temperature Testing

    Energy Technology Data Exchange (ETDEWEB)

    Mark D. McKay

    2011-02-01

    Water Power Calculator Temperature and Analog input/output Module Ambient Temperature Testing A series of three ambient temperature tests were conducted for the Water Power Calculator development using the INL Calibration Laboratory’s Tenney Environmental Chamber. The ambient temperature test results demonstrate that the Moore Industries Temperature Input Modules, Analog Input Module and Analog Output Module, ambient temperature response meet or exceed the manufactures specifications

  3. Continuous-wave high specific output power Ar-He-Xe laser with transverse RF excitation

    NARCIS (Netherlands)

    Udalov, Yu.B.; Peters, P.J.M.; Heeman-Ilieva, M.B.; Witteman, W.J.; Ochkin, V.N.

    1994-01-01

    A transverse RF excited gas discharge has been successfully used to produce a CW Ar-He-Xe laser. A maximum output power of 330 mW has been obtained from an experimental device with 37 cm active length and a 2.25 (DOT) 2.25 cm2 cross-section. This corresponds to a specific output power of about 175 m

  4. Maximizing Output Power of a Solar Panel via Combination of Sun Tracking and Maximum Power Point Tracking by Fuzzy Controllers

    Directory of Open Access Journals (Sweden)

    Mohsen Taherbaneh

    2010-01-01

    Full Text Available In applications with low-energy conversion efficiency, maximizing the output power improves the efficiency. The maximum output power of a solar panel depends on the environmental conditions and load profile. In this paper, a method based on simultaneous use of two fuzzy controllers is developed in order to maximize the generated output power of a solar panel in a photovoltaic system: fuzzy-based sun tracking and maximum power point tracking. The sun tracking is performed by changing the solar panel orientation in horizontal and vertical directions by two DC motors properly designed. A DC-DC converter is employed to track the solar panel maximum power point. In addition, the proposed system has the capability of the extraction of solar panel I-V curves. Experimental results present that the proposed fuzzy techniques result in increasing of power delivery from the solar panel, causing a reduction in size, weight, and cost of solar panels in photovoltaic systems.

  5. Artificial Neural Networks to Predict the Power Output of a PV Panel

    Directory of Open Access Journals (Sweden)

    Valerio Lo Brano

    2014-01-01

    Full Text Available The paper illustrates an adaptive approach based on different topologies of artificial neural networks (ANNs for the power energy output forecasting of photovoltaic (PV modules. The analysis of the PV module’s power output needed detailed local climate data, which was collected by a dedicated weather monitoring system. The Department of Energy, Information Engineering, and Mathematical Models of the University of Palermo (Italy has built up a weather monitoring system that worked together with a data acquisition system. The power output forecast is obtained using three different types of ANNs: a one hidden layer Multilayer perceptron (MLP, a recursive neural network (RNN, and a gamma memory (GM trained with the back propagation. In order to investigate the influence of climate variability on the electricity production, the ANNs were trained using weather data (air temperature, solar irradiance, and wind speed along with historical power output data available for the two test modules. The model validation was performed by comparing model predictions with power output data that were not used for the network's training. The results obtained bear out the suitability of the adopted methodology for the short-term power output forecasting problem and identified the best topology.

  6. Effects of loading and size on maximum power output and gait characteristics in geckos.

    Science.gov (United States)

    Irschick, Duncan J; Vanhooydonck, Bieke; Herrel, Anthony; Andronescu, Anemone

    2003-11-01

    Stride length, stride frequency and power output are all factors influencing locomotor performance. Here, we first test whether mass-specific power output limits climbing performance in two species of geckos (Hemidactylus garnoti and Gekko gecko) by adding external loads to their bodies. We then test whether body size has a negative effect on mass-specific power output. Finally, we test whether loading affects kinematics in both gecko species. Lizards were induced to run vertically on a smooth wooden surface with loads of 0-200% of body mass (BM) in H. garnoti and 0-100% BM in G. gecko. For each stride, we calculated angular and linear kinematics (e.g. trunk angle, stride length), performance (maximum speed) and mean mass-specific power output per stride. The addition of increasingly large loads caused an initial increase in maximum mass-specific power output in both species, but for H. garnoti, mass-specific power output remained constant at higher loads (150% and 200% BM), even though maximum velocity declined. This result, in combination with the fact that stride frequency showed no evidence of leveling off as speed increased in either species, suggests that power limits maximum speed. In addition, the large gecko (G. gecko) produced significantly less power than the smaller H. garnoti, despite the fact that both species ran at similar speeds. This difference disappeared, however, when we recalculated power output based on higher maximum speeds for unloaded G. gecko moving vertically obtained by other researchers. Finally, the addition of external loads did not affect speed modulation in either species: both G. gecko and H. garnoti increase speed primarily by increasing stride frequency, regardless of loading condition. For a given speed, both species take shorter but more strides with heavier loads, but for a given load, G. gecko attains similar speeds to H. garnoti by taking longer but fewer strides.

  7. Modelling and Prediction of Photovoltaic Power Output Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Aminmohammad Saberian

    2014-01-01

    Full Text Available This paper presents a solar power modelling method using artificial neural networks (ANNs. Two neural network structures, namely, general regression neural network (GRNN feedforward back propagation (FFBP, have been used to model a photovoltaic panel output power and approximate the generated power. Both neural networks have four inputs and one output. The inputs are maximum temperature, minimum temperature, mean temperature, and irradiance; the output is the power. The data used in this paper started from January 1, 2006, until December 31, 2010. The five years of data were split into two parts: 2006–2008 and 2009-2010; the first part was used for training and the second part was used for testing the neural networks. A mathematical equation is used to estimate the generated power. At the end, both of these networks have shown good modelling performance; however, FFBP has shown a better performance comparing with GRNN.

  8. Portable Power And Digital-Communication Units

    Science.gov (United States)

    Levin, Richard R.; Henry, Paul K.; Rosenberg, Leigh S.

    1992-01-01

    Conceptual network of electronic-equipment modules provides electrical power and digital radio communications at multiple sites not served by cables. System includes central communication unit and portable units powered by solar photovoltaic arrays. Useful to serve equipment that must be set up quickly at remote sites or buildings that cannot be modified to provide cable connections.

  9. Evaluating the contribution of lower extremity kinetics to whole body power output during the power snatch.

    Science.gov (United States)

    Lee, Sangwoo; DeRosia, Kyle D; Lamie, Landon M

    2017-09-21

    This study evaluated the contribution of lower extremity (hip, knee and ankle) net joint torques (NJT) to whole body power (WBP) output during the power snatch (PS). Ten experienced weightlifters (five males and five females) performed five trials of the PS with 60% of one repetition maximum. Lower extremity NJT and WBP were extracted through a three-dimensional motion analyses and used for data analyses. Pearson correlation coefficients were obtained to observe the relationship between lower extremity NJT and WBP. Multiple-regression (stepwise) analyses was also conducted to evaluate the contribution of lower extremity NJT to WBP during the PS with the hip, knee and ankle NJT being the independent variables. Hip NJT was characterised as a significant positive correlation with WBP (r = 0.47, p < 0.01), while knee NJT showed a significant negative correlation with WBP (r = -0.34, p < 0.05). A significant inter-correlation was also observed between hip NJT and knee NJT (r = -0.66, p < 0.01). Hip NJT was identified as a significant contributor to WBP during the PS. Practically, this study suggested that training skills allowing weightlifters to utilise hip extensor muscle action would help to improve WBP during the PS.

  10. CRITICAL UNIT STREAM POWER FOR SEDIMENT TRANSPORT

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Yang's (1996) sediment transport theory based on unit stream power is one of the most accurate theories, but in his equations the use of product of slope and critical velocity instead for critical unit stream power is not suitable. Dimensionless critical unit stream power required at incipient motion can be derived from the principle of conservation of power as a function of dimensionless particle diameter and relative roughness. Based on a lot of data sets, this new criterion was developed. By use of this new criteria, Yang's (1973) sand transport formula and his 1984 gravel transport formula could be improved when sediment concentration is less than about 100 ppm by weight.

  11. Counter rotating type hydroelectric unit suitable for tidal power station

    Energy Technology Data Exchange (ETDEWEB)

    Kanemoto, T [Faculty of Engineering, Kyushu Institute of Technology, Sensui 1-1, Tobata, Kitakyushu 804-8550 (Japan); Suzuki, T, E-mail: turbo@tobata.isc.kyutech.ac.j [Graduate School of Engineering, Kyushu Institute of Technology, Sensui 1-1, Tobata, Kitakyushu 804-8550 (Japan)

    2010-08-15

    The counter rotating type hydroelectric unit, which is composed of the axial flow type tandem runners and the peculiar generator with double rotational armatures,was proposed to utilize effectively the tidal power. In the unit, the front and the rear runners counter drive the inner and the outer armatures of the generator, respectively. Besides, the flow direction at the rear runner outlet must coincide with the flow direction at the front runner inlet, because the angular momentum through the rear runner must coincides with that through the front runner. That is, the flow runs in the axial direction at the rear runner outlet while the axial inflow at the front runner inlet. Such operations are suitable for working at the seashore with rising and falling tidal flows, and the unit may be able to take place of the traditional bulb type turbines. The tandem runners were operated at the on-cam conditions, in keeping the induced frequency constant. The output and the hydraulic efficiency are affected by the adjustment of the front and the blade setting angles. The both optimum angles giving the maximum output and/or efficiency were presented at the various discharges/heads. To promote more the tidal power generation by this type unit, the runners were also modified so as to be suitable for both rising and falling flows. The hydraulic performances are acceptable while the output is determined mainly by the trailing edge profiles of the runner blades.

  12. Combustion Power Unit--400: CPU-400.

    Science.gov (United States)

    Combustion Power Co., Palo Alto, CA.

    Aerospace technology may have led to a unique basic unit for processing solid wastes and controlling pollution. The Combustion Power Unit--400 (CPU-400) is designed as a turboelectric generator plant that will use municipal solid wastes as fuel. The baseline configuration is a modular unit that is designed to utilize 400 tons of refuse per day…

  13. Stretch-induced enhancement of mechanical power output in human multijoint exercise with countermovement.

    Science.gov (United States)

    Takarada, Y; Hirano, Y; Ishige, Y; Ishii, N

    1997-11-01

    The relation between the eccentric force developed during a countermovement and the mechanical power output was studied in squatting exercises under nominally isotonic load (50% of 1-repetition maximum). The subjects (n = 5) performed squatting exercises with a countermovement at varied deceleration rates before lifting the load. The ground reaction force and video images were recorded to obtain the power output of the body. Net muscle moments acting at hip, knee, and ankle joints were calculated from video recordings by using inverse dynamics. When an intense deceleration was taken at the end of downward movement, large eccentric force was developed, and the mechanical power subsequently produced during the lifting movement was consistently larger than that produced without the countermovement. Both maximal and mean power outputs during concentric actions increased initially with the eccentric force, whereas they began to decline when the eccentric force exceeded approximately 1.4 times the sum of load and body weight. Video-image analysis showed that this characteristic relation was predominantly determined by the torque around the knee joint. Electromyographic analyses showed no consistent increase in time-averaged integrated electromyograph from vastus lateralis with the power output, suggesting that the enhancement of power output is primarily caused by the prestretch-induced improvement of an intrinsic force-generating capability of the agonist muscle.

  14. Optimal cycling time trial position models: aerodynamics versus power output and metabolic energy.

    Science.gov (United States)

    Fintelman, D M; Sterling, M; Hemida, H; Li, F-X

    2014-06-03

    The aerodynamic drag of a cyclist in time trial (TT) position is strongly influenced by the torso angle. While decreasing the torso angle reduces the drag, it limits the physiological functioning of the cyclist. Therefore the aims of this study were to predict the optimal TT cycling position as function of the cycling speed and to determine at which speed the aerodynamic power losses start to dominate. Two models were developed to determine the optimal torso angle: a 'Metabolic Energy Model' and a 'Power Output Model'. The Metabolic Energy Model minimised the required cycling energy expenditure, while the Power Output Model maximised the cyclists׳ power output. The input parameters were experimentally collected from 19 TT cyclists at different torso angle positions (0-24°). The results showed that for both models, the optimal torso angle depends strongly on the cycling speed, with decreasing torso angles at increasing speeds. The aerodynamic losses outweigh the power losses at cycling speeds above 46km/h. However, a fully horizontal torso is not optimal. For speeds below 30km/h, it is beneficial to ride in a more upright TT position. The two model outputs were not completely similar, due to the different model approaches. The Metabolic Energy Model could be applied for endurance events, while the Power Output Model is more suitable in sprinting or in variable conditions (wind, undulating course, etc.). It is suggested that despite some limitations, the models give valuable information about improving the cycling performance by optimising the TT cycling position.

  15. Fiber laser pumped high power mid-infrared laser with picosecond pulse bunch output.

    Science.gov (United States)

    Wei, Kaihua; Chen, Tao; Jiang, Peipei; Yang, Dingzhong; Wu, Bo; Shen, Yonghang

    2013-10-21

    We report a novel quasi-synchronously pumped PPMgLN-based high power mid-infrared (MIR) laser with picosecond pulse bunch output. The pump laser is a linearly polarized MOPA structured all fiberized Yb fiber laser with picosecond pulse bunch output. The output from a mode-locked seed fiber laser was directed to pass through a FBG reflector via a circulator to narrow the pulse duration from 800 ps to less than 50 ps and the spectral FWHM from 9 nm to 0.15 nm. The narrowed pulses were further directed to pass through a novel pulse multiplier through which each pulse was made to become a pulse bunch composing of 13 sub-pulses with pulse to pulse time interval of 1.26 ns. The pulses were then amplified via two stage Yb fiber amplifiers to obtain a linearly polarized high average power output up to 85 W, which were then directed to pass through an isolator and to pump a PPMgLN-based optical parametric oscillator via quasi-synchronization pump scheme for ps pulse bunch MIR output. High MIR output with average power up to 4 W was obtained at 3.45 micron showing the feasibility of such pump scheme for ps pulse bunch MIR output.

  16. Detecting, categorizing and forecasting large romps in wind farm power output using meteorological observations and WPPT

    DEFF Research Database (Denmark)

    Cutler, N.; Kay, M.; Jacka, K.

    2007-01-01

    (swings) in power output. In addition to this, detected large ramps are studied in detail and categorized. WPPT combines wind speed and direction forecasts from the Australian Bureau of Meteorology regional numerical weather prediction model, MesoLAPS, with real-time wind power observations to make hourly...

  17. Mid-infrared laser with 1.2 W output power based on PPLT

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The optical parametric oscillator (OPO) based on the periodically poled lithium tantalate (PPLT) crystal (40 mm×5 mm×1 mm) is fabricated. The OPO is pumped by a Q-switched Nd:YAG laser working at 1.064 μm. An average idler output power (around 3.8 μm) of 1.2 W and signal output power (around 1.48 μm) of 3 W are obtained when the pump power is 20 W.

  18. Improving power output of inertial energy harvesters by employing principal component analysis of input acceleration

    Science.gov (United States)

    Smilek, Jan; Hadas, Zdenek

    2017-02-01

    In this paper we propose the use of principal component analysis to process the measured acceleration data in order to determine the direction of acceleration with the highest variance on given frequency of interest. This method can be used for improving the power generated by inertial energy harvesters. Their power output is highly dependent on the excitation acceleration magnitude and frequency, but the axes of acceleration measurements might not always be perfectly aligned with the directions of movement, and therefore the generated power output might be severely underestimated in simulations, possibly leading to false conclusions about the feasibility of using the inertial energy harvester for the examined application.

  19. Reproducibility of cardiac power output and other cardiopulmonary exercise indices in patients with chronic heart failure.

    Science.gov (United States)

    Jakovljevic, Djordje G; Seferovic, Petar M; Nunan, David; Donovan, Gay; Trenell, Michael I; Grocott-Mason, Richard; Brodie, David A

    2012-02-01

    Cardiac power output is a direct measure of overall cardiac function that integrates both flow- and pressure-generating capacities of the heart. The present study assessed the reproducibility of cardiac power output and other more commonly reported cardiopulmonary exercise variables in patients with chronic heart failure. Metabolic, ventilatory and non-invasive (inert gas re-breathing) central haemodynamic measurements were undertaken at rest and near-maximal exercise of the modified Bruce protocol in 19 patients with stable chronic heart failure. The same procedure was repeated 7 days later to assess reproducibility. Cardiac power output was calculated as the product of cardiac output and mean arterial pressure. Resting central haemodynamic variables demonstrate low CV (coefficient of variation) (ranging from 3.4% for cardiac output and 5.6% for heart rate). The CV for resting metabolic and ventilatory measurements ranged from 8.2% for respiratory exchange ratio and 14.2% for absolute values of oxygen consumption. The CV of anaerobic threshold, peak oxygen consumption, carbon dioxide production and respiratory exchange ratio ranged from 3.8% (for anaerobic threshold) to 6.4% (for relative peak oxygen consumption), with minute ventilation having a CV of 11.1%. Near-maximal exercise cardiac power output and cardiac output had CVs of 4.1 and 2.2%, respectively. Cardiac power output demonstrates good reproducibility suggesting that there is no need for performing more than one cardiopulmonary exercise test. As a direct measure of cardiac function (dysfunction) and an excellent prognostic marker, it is strongly advised in the assessment of patients with chronic heart failure undergoing cardiopulmonary exercise testing.

  20. Power output in vertical jumps: Does optimum loading depend on activity profiles?

    Science.gov (United States)

    Pazin, Nemanja; Berjan, Bobana; Nedeljkovic, Aleksandar; Markovic, Goran; Jaric, Slobodan

    2013-01-01

    The previously proposed Maximum Dynamic Output hypothesis (MDO; i.e. the optimum load for maximizing the power output during jumping is one's own body) was tested on individuals of various activity profiles. Forty males (10 strength-trained athletes, 10 speed-trained athletes, 10 physically active non-athletes, and 10 sedentary individuals) performed different vertical jumps on a force plate while a pulley system was used to either reduce or increase the subject's body weight by 10–30%. As expected, an increase in external loading resulted in a significant increase (p < 0.001) in force output and a concomitant decrease of peak jumping velocity in all groups of participants. The main finding, however, was that all groups revealed the maximum peak and mean power output at approximately the subjects’ own body weight although their weight represented prominently different percentage of their maximum dynamic strength. While a significant (p < 0.05), albeit moderate, 'group × load' interaction in one jump was observed for the peak power output, the individual optimum load for maximizing the power output number did not differ among the groups. Although apparently further research on various types of movements is needed, the present results provide, so far, the strongest support of the MDO hypothesis. PMID:22864398

  1. Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems.

    Science.gov (United States)

    Zhang, Xiao-Sheng; Han, Meng-Di; Wang, Ren-Xin; Zhu, Fu-Yun; Li, Zhi-Hong; Wang, Wei; Zhang, Hai-Xia

    2013-03-13

    An attractive method to response the current energy crisis and produce sustainable nonpolluting power source is harvesting energy from our living environment. However, the energy in our living environment always exists in low-frequency form, which is very difficult to be utilized directly. Here, we demonstrated a novel sandwich-shape triboelectric nanogenerator to convert low-frequency mechanical energy to electric energy with double frequency. An aluminum film was placed between two polydimethylsiloxane (PDMS) membranes to realize frequency multiplication by twice contact electrifications within one cycle of external force. The working mechanism was studied by finite element simulation. Additionally, the well-designed micro/nano dual-scale structures (i.e., pyramids and V-shape grooves) fabricated atop PDMS surface was employed to enhance the device performance. The output peak voltage, current density, and energy volume density achieved 465 V, 13.4 μA/cm(2), and 53.4 mW/cm(3), respectively. This novel nanogenerator was systematically investigated and also demonstrated as a reliable power source, which can be directly used to not only lighten five commercial light-emitting diodes (LEDs) but also drive an implantable 3-D microelectrode array for neural prosthesis without any energy storage unit or rectification circuit. This is the first demonstration of the nanogenerator for directly driving biomedical microsystems, which extends the application fields of the nanogenerator and drives it closer to practical applications.

  2. Multi-Output Power Converter, Operated from a Regulated Input Bus, for the Sireus Rate Sensor

    Directory of Open Access Journals (Sweden)

    Torrecilla Marcos Compadre

    2017-01-01

    Full Text Available This paper describes a DC to DC converter designed to meet the power supply requirements of the SiREUS Coarse Rate Sensor (CRS which is a 3-axis MEMS Rate Sensor (MRS that uses a resonating ring gyro and will be used in different ESA missions. The converter supplies +5V, −5V, 3.3V, 1.8V and 40V and it has been designed and prototyped by Clyde Space Ltd with the EQM and FM units being manufactured by Selex ES. The first model was designed for a 28V un-regulated bus and the second model presented here has been designed for a 50V regulated bus. PWM voltage regulation was not used because of the noise requirements and the regulated input bus allowed an unregulated power stage approach. There are also stringent volume and interface constraints, which also affected the design. For such reasons, a fixed dutycycle, quasi-resonant single-ended topology with output linear regulators has been implemented; having the advantages of providing low switching losses, low radiated and conducted noise and no over-voltage failure mode. This paper highlights the techniques used to satisfy stringent noise and protection requirements of the load.

  3. Determinants of mobile phone output power in a multinational study: implications for exposure assessment

    DEFF Research Database (Denmark)

    Vrijheid, M; Madsen, Stine Mann; di Vecchia, Paolo

    2009-01-01

    OBJECTIVES: The output power of a mobile phone is directly related to its radiofrequency (RF) electromagnetic field strength, and may theoretically vary substantially in different networks and phone use circumstances due to power control technologies. To improve indices of RF exposure for epidemi......OBJECTIVES: The output power of a mobile phone is directly related to its radiofrequency (RF) electromagnetic field strength, and may theoretically vary substantially in different networks and phone use circumstances due to power control technologies. To improve indices of RF exposure...... with urban use of the SMP were observed principally in Sweden where the study covered very sparsely populated areas. CONCLUSIONS: Average power levels are substantially higher than the minimum levels theoretically achievable in GSM networks. Exposure indices could be improved by accounting for average power...

  4. A combined compensation method for the output voltage of an insulated core transformer power supply

    Science.gov (United States)

    Yang, L.; Yang, J.; Liu, K. F.; Qin, B.; Chen, D. Z.

    2014-06-01

    An insulated core transformer (ICT) power supply is an ideal high-voltage generator for irradiation accelerators with energy lower than 3 MeV. However, there is a significant problem that the structure of the segmented cores leads to an increase in the leakage flux and voltage differences between rectifier disks. A high level of consistency in the output of the disks helps to achieve a compact structure by improving the utilization of both the rectifier components and the insulation distances, and consequently increase the output voltage of the power supply. The output voltages of the disks which are far away from the primary coils need to be improved to reduce their inhomogeneity. In this study, by investigating and comparing the existing compensation methods, a new combined compensation method is proposed, which increases the turns on the secondary coils and employs parallel capacitors to improve the consistency of the disks, while covering the entire operating range of the power supply. This method turns out to be both feasible and effective during the development of an ICT power supply. The non-uniformity of the output voltages of the disks is less than 3.5% from no-load to full-load, and the power supply reaches an output specification of 350 kV/60 mA.

  5. Matching of Silicon Thin-Film Tandem Solar Cells for Maximum Power Output

    Directory of Open Access Journals (Sweden)

    C. Ulbrich

    2013-01-01

    Full Text Available We present a meaningful characterization method for tandem solar cells. The experimental method allows for optimizing the output power instead of the current. Furthermore, it enables the extraction of the approximate AM1.5g efficiency when working with noncalibrated spectra. Current matching of tandem solar cells under short-circuit condition maximizes the output current but is disadvantageous for the overall fill factor and as a consequence does not imply an optimization of the output power of the device. We apply the matching condition to the maximum power output; that is, a stack of solar cells is power matched if the power output of each subcell is maximal at equal subcell currents. The new measurement procedure uses additional light-emitting diodes as bias light in the JV characterization of tandem solar cells. Using a characterized reference tandem solar cell, such as a hydrogenated amorphous/microcrystalline silicon tandem, it is possible to extract the AM1.5g efficiency from tandems of the same technology also under noncalibrated spectra.

  6. Determinants of VO(2) kinetics at high power outputs during a ramp exercise protocol.

    Science.gov (United States)

    Lucía, Alejandro; Rivero, José-Luis L; Pérez, Margarita; Serrano, Antonio L; Calbet, José A L; Santalla, Alfredo; Chicharro, José L

    2002-02-01

    To determine the relationship between the additional, nonlinear increase in oxygen uptake (Delta VO(2)) that occurs at high power outputs during a ramp cycle ergometer test, on one hand; and possible explanatory mechanisms of the phenomenon, such as cardiorespiratory work, blood lactate, fitness level, or muscle fiber distribution, on the other. Ten healthy, sedentary young adults (age (mean +/- SEM), 22 +/- 1 yr) were chosen as subjects. A muscle biopsy specimen was taken from the vastus lateralis of the right leg to determine fiber type distribution by immunohistochemical identification of myosin heavy chain (MHC) isoforms. During the ramp tests (power output increases of 5 W every 15-s interval), the ventilatory threshold (VT) and lactate threshold (LT) were measured. We defined Delta VO(2) as the difference between "true" VO(2) values observed at the maximal power output (VO(2)obs) and those expected (VO(2)exp) from the previous linear VO2:power output relationship below the VT. A nonlinear increase was observed in VO2 (Delta VO(2) = 239 +/- 79 mL x min(-1), P < 0.05 for VO(2)obs vs VO(2)exp), which was significantly correlated with the percentage of type IIX fibers (r = 0.80, P < 0.05). No other correlations were found between Delta VO(2) and possible explanatory mechanisms. A greater percentage of type IIX fibers is associated with a higher excess VO(2) at high power outputs (above VT).

  7. High-Power Er3+/Yb3+ Codoped Double-Cladding Fibre Amplifier with More Than 2 W Output Power

    Institute of Scientific and Technical Information of China (English)

    LIU Yan-Ge; FENG Xin-Huan; LI Li-Jun; LI Yao; YUAN Shu-Zhong; KAI Gui-Yun; LI Yi-Gang; DONG Xiao-Yi

    2005-01-01

    @@ A high-power Er3+/Yb3+-codoped double-cladding all-fibre amplifier was successfully demonstrated and experimentally investigated. The amplifier could be operated with a maximum output power of 2.18 W and 2.11 W at 1541nm and 1550nm wavelengths, respectively, when the maximum pump power was 6.07W. The power conversion efficiency was up to 35.6% and 34.4% at the two wavelengths, respectively. The output power and the gain were greater than 2.00 W and 20.0dB, respectively, in the wavelength range from 1539nm to 1565nm for 20.0mW input signal power. The gain fluctuation and the noise figure around 1550nm wavelength were less than 0.3 dB and 6.0 dB, respectively.

  8. Power Output Improvement of PV Module for Agricultural Use by Using Inexpensive Sunlight Concentrator

    Institute of Scientific and Technical Information of China (English)

    NISHIMURA Ryo

    2010-01-01

    PV modules are used as stand alone power sources for agricultural equipments such as lifting pumps in farms,where the power infrastructure is not yet improved.In order to expand the agricultural use of PV module,the cost of PV generation should be reduced.In this paper,the power output performance of a commercial PV module was improved by using a sunlight concentrator that could be assembled inexpensively and a simple sun-tracking method.

  9. Using a nonparametric PV model to forecast AC power output of PV plants

    OpenAIRE

    Almeida, Marcelo Pinho; Perpiñan Lamigueiro, Oscar; Narvarte Fernández, Luis

    2015-01-01

    In this paper, a methodology using a nonparametric model is used to forecast AC power output of PV plants using as inputs several forecasts of meteorological variables from a Numerical Weather Prediction (NWP) model and actual AC power measurements of PV plants. The methodology was built upon the R environment and uses Quantile Regression Forests as machine learning tool to forecast the AC power with a confidence interval. Real data from five PV plants was used to validate the methodology, an...

  10. Smoothing of Grid-connected Wind-Diesel Power Output Using Energy Capacitor System

    Directory of Open Access Journals (Sweden)

    Adel A. Elbaset

    2014-06-01

    Full Text Available This paper presents a small hybrid power system consists of two types of power generation; wind turbine and diesel generation, DG connected to power distribution system. The fluctuations like random nature of wind power, turbulent wind, and sudden changes in load demand create imbalances in power distribution that can affect the frequency and the voltage in the power system. So, addition of Energy capacitor System, ECS is useful for compensation of fluctuating power, since it is capable of controlling both active and reactive power simultaneously and can smooth the output power flow. Hence, this paper proposes herein a dynamic model and simulation of a grid connected wind/DG based-ECS with power flow controllers between load and generation. Moreover, the paper presents a study to analyze the leveling of output fluctuation of wind power with the installation of ECS. To control the power exchanged between the ECS system and the AC grid, a load Following Control, LFC based supervisor is proposed with the aim to minimize variations of the power generated by the diesel generator. The interesting performance of the proposed supervisor is shown with the help of simulations. The computer simulation program is confirmed on a realistic circuit model which implemented in the Simulink environment of Matlab and works as if on line.

  11. Geothermal power generation in United States

    Science.gov (United States)

    Braun, Gerald W.; McCluer, H. K.

    1993-03-01

    Geothermal energy is an indigenous environmentally benign heat source with the potential for 5000-10,000 GWe of power generation in the United States. Approximately 2535 MWe of installed capacity is currently operating in the U.S. with contracted power costs down to 4.6 cents/kWh. This paper summarizes: 1) types of geothermal resources; 2) power conversion systems used for geothermal power generation; 3) environmental aspects; 4) geothermal resource locations, potential, and current power plant development; 5) hurdles, bottlenecks, and risks of geothermal power production; 6) lessons learned; and 7) ongoing and future geothermal research programs.

  12. A VCO with Harmonic Suppressed and Output Power Improved Using Defected Ground Structure

    Directory of Open Access Journals (Sweden)

    Haiwen Liu

    2003-01-01

    microstrip line with DGS has a wide low-pass band for the fundamental frequency and a stopband for the second harmonic with good performance. To evaluate the effects of DGS on microwave VCOs, two GaAs field-effect transistor (FET VCOs have been designed and fabricated. One of them has a 50Ω microstrip line with DGS at the output section, while the other has only a 50Ω straight line. Measured results show that DGS suppresses the second harmonic more than −20 dBm at the output and yields improved output power by 3−5%.

  13. Enhanced power output of an electrospun PVDF/MWCNTs-based nanogenerator by tuning its conductivity

    Science.gov (United States)

    Yu, Hao; Huang, Tao; Lu, Mingxia; Mao, Mengye; Zhang, Qinghong; Wang, Hongzhi

    2013-10-01

    PVDF nanofibre-based piezoelectric nanogenerators are directly prepared via electrospinning without any post-poling treatment. The effect of the addition of multi-walled carbon nanotubes (MWCNTs) on the fibre diameter, mechanical properties, β-phase composition, surface and volume conductivities, output voltage and output power are investigated. Increased surface conductivity of the poly-vinylidene fluoride (PVDF) nanofibre mats, which plays an important role in the enhancement of output power, is first found by the addition of an appropriate amount of MWCNTs. The maximum generated piezo-voltage exhibited by PVDF nanofibre mats in the presence of 5 wt% MWCNTs is as high as 6 V, while the average capacitor charging power is 81.8 nW, increases of 200% and 44.8%, respectively, compared with bare PVDF nanofibre mats.

  14. Anomalous TWTA output power spikes and their effect on a digital satellite communications system

    Science.gov (United States)

    May, Brian D.; Kerczewski, Robert J.; Svoboda, James S.

    1992-01-01

    Several 30 GHz, 60 W traveling wave tube amplifiers (TWTA) were manufactured for the NASA Lewis Research Center's High Burst Rate Link Evaluation Terminal Project. An unusual operating problem characterized by anomalous nonperiodic output power spikes, common to all of the TWTAs proved during testing to significantly affect the performance of a digitally-modulated data transmission test system. Modifications made to the TWTAs significantly curtailed the problem and allowed acceptable system performance to be obtained. This paper presents a discussion of the TWTA output power spike problem, possible causes of the problem, and the solutions implemented by the manufacturer which improved the TWTA performance to an acceptable level. The results of the testing done at NASA Lewis on the TWTAs both before and after the improvement made by Hughes are presented, and the effects of the output power spikes on the performance of the test system are discussed.

  15. Development of Compact Ozonizer with High Ozone Output by Pulsed Power

    Science.gov (United States)

    Tanaka, Fumiaki; Ueda, Satoru; Kouno, Kanako; Sakugawa, Takashi; Akiyama, Hidenori; Kinoshita, Youhei

    Conventional ozonizer with a high ozone output using silent or surface discharges needs a cooling system and a dielectric barrier, and therefore becomes a large machine. A compact ozonizer without the cooling system and the dielectric barrier has been developed by using a pulsed power generated discharge. The wire to plane electrodes made of metal have been used. However, the ozone output was low. Here, a compact and high repetition rate pulsed power generator is used as an electric source of a compact ozonizer. The ozone output of 6.1 g/h and the ozone yield of 86 g/kWh are achieved at 500 pulses per second, input average power of 280 W and an air flow rate of 20 L/min.

  16. High-power Er:YAG laser with quasi-top-hat output beam.

    Science.gov (United States)

    Kim, J W; Mackenzie, J I; Hayes, J R; Clarkson, W A

    2012-05-01

    A simple method for simultaneously exciting the fundamental (TEM00) transverse mode and first order Laguerre-Gaussian (LG01) donut mode in an end-pumped solid-state laser to yield a quasi-top-hat output beam is reported. This approach has been applied to an Er:YAG laser, in-band pumped by an Er,Yb fiber laser, yielding 9.6 W of continuous-wave output at 1645 nm in a top-hat-like beam with beam propagation factor (M2)<2.1 for 24 W of incident pump power at 1532 nm. The corresponding slope efficiency with respect to incident pump power was 49%. The prospects of further scaling of output power and improved overall efficiency are considered.

  17. Acute effect of static stretching on power output during concentric dynamic constant external resistance leg extension.

    Science.gov (United States)

    Yamaguchi, Taichi; Ishii, Kojiro; Yamanaka, Masanori; Yasuda, Kazunori

    2006-11-01

    The purpose of the present study was to clarify the effect of static stretching on muscular performance during concentric isotonic (dynamic constant external resistance [DCER]) muscle actions under various loads. Concentric DCER leg extension power outputs were assessed in 12 healthy male subjects after 2 types of pretreatment. The pretreatments included (a) static stretching treatment performing 6 types of static stretching on leg extensors (4 sets of 30 seconds each with 20-second rest periods; total duration 20 minutes) and (b) nonstretching treatment by resting for 20 minutes in a sitting position. Loads during assessment of the power output were set to 5, 30, and 60% of the maximum voluntary contractile (MVC) torque with isometric leg extension in each subject. The peak power output following the static stretching treatment was significantly (p extensive static stretching significantly reduces power output with concentric DCER muscle actions under various loads. Common power activities are carried out by DCER muscle actions under various loads. Therefore, the result of the present study suggests that relatively extensive static stretching decreases power performance.

  18. Validation of a six second cycle test for the determination of peak power output.

    Science.gov (United States)

    Herbert, Peter; Sculthorpe, Nick; Baker, Julien S; Grace, Fergal M

    2015-01-01

    The present study examined the agreement between peak power output during a standard Wingate anaerobic test (WAnT) and a six second 'all-out' test on a Wattbike Pro. Nine males (40.7 ± 19.4 yrs, 1.76 ± 0.03 cm, 82.11 ± 8.9 kg) underwent three testing protocols on separate days. The protocols consisted 30 second WAnT (WAnT30), a modified WAnT over 6 seconds (WAnT6) and a 6 second peak power test (PPT6). PPT6 was correlated with WAnT30 (r = 0.9; p power between any trial. PPT6 resulted in significantly greater power outputs than in WAnT30 and WAnT6 (p power output compared with WAnT30. This identifies that PPT6 and WAnT6 as short duration 'all-out' tests that have practical applications for researchers and coaches who wish to assess peak power output without the fatiguing effects associated with a standard WAnT.

  19. A dual mode charge pump with adaptive output used in a class G audio power amplifier*

    Institute of Scientific and Technical Information of China (English)

    Feng Yong; Peng Zhenfei; Yang Shanshan; Hong Zhiliang; Liu Yang

    2011-01-01

    A dual mode charge pump to produce an adaptive power supply for a class G audio power amplifier is presented. According to the amplitude of the input signals, the charge pump has two level output voltage rails available to save power. It operates both in current mode at high output load and in pulse frequency modulation (PFM) at light load to reduce the power dissipation. Also, dynamic adjustment of the power stage transistor size based on load current at the PFM mode is introduced to reduce the output voltage ripple and prevent the switching frequency from audio range. The prototype is implemented in 0.18μm 3.3 V CMOS technology. Experimental results show that the maximum power efficiency of the charge pump is 79.5% @ 0.5x mode and 83.6% @ lx mode. The output voltage ripple is less than 15 mV while providing 120 mA of the load current at PFM control and less than 18 mV while providing 300 mA of the load current at current mode control. An analytical model for ripple voltage and efficiency calculation of the proposed PFM control demonstrates reasonable agreement with measured results.

  20. A dual mode charge pump with adaptive output used in a class G audio power amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Feng Yong; Peng Zhenfei; Yang Shanshan; Hong Zhiliang [State Key Laboratory of ASIC and System, Fudan University Shanghai 201203 (China); Liu Yang, E-mail: zlhong@fudan.edu.cn [Shanghai Design Center, Analog Devices, Shanghai 200021 (China)

    2011-04-15

    A dual mode charge pump to produce an adaptive power supply for a class G audio power amplifier is presented. According to the amplitude of the input signals, the charge pump has two level output voltage rails available to save power. It operates both in current mode at high output load and in pulse frequency modulation (PFM) at light load to reduce the power dissipation. Also, dynamic adjustment of the power stage transistor size based on load current at the PFM mode is introduced to reduce the output voltage ripple and prevent the switching frequency from audio range. The prototype is implemented in 0.18 {mu}m 3.3 V CMOS technology. Experimental results show that the maximum power efficiency of the charge pump is 79.5% - 0.5x mode and 83.6% - 1x mode. The output voltage ripple is less than 15 mV while providing 120 mA of the load current at PFM control and less than 18 mV while providing 300 mA of the load current at current mode control. An analytical model for ripple voltage and efficiency calculation of the proposed PFM control demonstrates reasonable agreement with measured results. (semiconductor integrated circuits)

  1. The influence of tendon compliance on muscle power output and efficiency during cyclic contractions.

    Science.gov (United States)

    Lichtwark, G A; Barclay, C J

    2010-03-01

    Muscle power output and efficiency during cyclical contractions are influenced by the timing and duration of stimulation of the muscle and the interaction of the muscle with its mechanical environment. It has been suggested that tendon compliance may reduce the energy required for power production from the muscle by reducing the required shortening of the muscle fibres. Theoretically this may allow the muscle to maintain both high power output and efficiency during cyclical contraction; however, this has yet to be demonstrated experimentally. To investigate how tendon compliance might act to increase muscle power output and/or efficiency, we attached artificial tendons of varying compliance to muscle fibre bundles in vitro and measured power output and mechanical efficiency during stretch-shorten cycles (2 Hz) with a range of stretch amplitudes and stimulation patterns. The results showed that peak power, average power output and efficiency (none of which can have direct contributions from the compliant tendon) all increased with increasing tendon compliance, presumably due to the tendon acting to minimise muscle energy use by allowing the muscle fibres to shorten at optimal speeds. Matching highly compliant tendons with a sufficiently large amplitude length change and appropriate stimulation pattern significantly increased the net muscle efficiency compared with stiff tendons acting at the same frequency. The maximum efficiency for compliant tendons was also similar to the highest value measured under constant velocity and force conditions, which suggests that tendon compliance can maximise muscle efficiency in the conditions tested here. These results provide experimental evidence that during constrained cyclical contractions, muscle power and efficiency can be enhanced with compliant tendons.

  2. Optimal design parameters of the bicycle-rider system for maximal muscle power output.

    Science.gov (United States)

    Yoshihuku, Y; Herzog, W

    1990-01-01

    The purpose of this study was to find the optimal values of design parameters for a bicycle-rider system (crank length, pelvic inclination, seat height, and rate of crank rotation) which maximize the power output from muscles of the human lower limb during bicycling. The human lower limb was modelled as a planar system of five rigid bodies connected by four smooth pin joints and driven by seven functional muscle groups. The muscles were assumed to behave according to an adapted form of Hill's equation. The dependence of the average power on the design parameters was examined. The instantaneous power of each muscle group was studied and simultaneous activity of two seemingly antagonistic muscle groups was analyzed. Average peak power for one full pedal revolution was found to be around 1100 W. The upper body position corresponding to this peak power output was slightly reclined, and the pedalling rate was 155 rpm for a nominal crank length of 170 mm.

  3. Smoothing Control of Wind Farm Output by Using Kinetic Energy of Variable Speed Wind Power Generators

    Science.gov (United States)

    Sato, Daiki; Saitoh, Hiroumi

    This paper proposes a new control method for reducing fluctuation of power system frequency through smoothing active power output of wind farm. The proposal is based on the modulation of rotaional kinetic energy of variable speed wind power generators through power converters between permanent magnet synchronous generators (PMSG) and transmission lines. In this paper, the proposed control is called Fluctuation Absorption by Flywheel Characteristics control (FAFC). The FAFC can be easily implemented by adding wind farm output signal to Maximum Power Point Tracking control signal through a feedback control loop. In order to verify the effectiveness of the FAFC control, a simulation study was carried out. In the study, it was assumed that the wind farm consisting of PMSG type wind power generator and induction machine type wind power generaotors is connected with a power sysem. The results of the study show that the FAFC control is a useful method for reducing the impacts of wind farm output fluctuation on system frequency without additional devices such as secondary battery.

  4. Somatotype-variables related to muscle torque and power output in female volleyball players.

    Science.gov (United States)

    Buśko, Krzysztof; Lewandowska, Joanna; Lipińska, Monika; Michalski, Radosław; Pastuszak, Anna

    2013-01-01

    The purpose of this study was to investigate the relationship between somatotype, muscle torque, maximal power output and height of rise of the body mass centre measured in akimbo counter movement jump (ACMJ), counter movement jump (CMJ) and spike jump (SPJ), and power output measured in maximal cycle ergometer exercise bouts in female volleyball players. Fourteen players participated in the study. Somatotype was determined using the Heath-Carter method. Maximal muscle torque was measured under static conditions. Power output was measured in 5 maximal cycle ergometer exercise bouts, 10 s each, at increasing external loads equal to 2.5, 5.0, 7.5, 10.0 and 12.5% of body weight (BW). All jump trials (ACMJ, SPJ and CMJ) were performed on a force plate. The mean somatotype of volleyball players was: 4.9-3.5-2.5. The value of the sum of muscle torque of the left upper extremities was significantly correlated only with mesomorphic component. Mesomorphic and ectomorphic components correlated significantly with values of maximal power measured during ACMJ and CMJ. Power output measured in maximal cycle ergometer exercise bouts at increasing external loads equal to 2.5, 5.0 and 7.5% of BW was significantly correlated with endomorphy, mesomorphy and ectomorphy.

  5. A New Maximum Power Point Estimator Control Strategy to Maximize Output Power of the Double Stator Permanent Magnet Generator

    Directory of Open Access Journals (Sweden)

    Norhisam Misron

    2016-08-01

    Full Text Available A new control estimator to maximize the power generated with a maximum power point estimator is introduced. The power mapping characteristics from the double-stator generator are modeled as a mathematical equation which is used to develop the estimator for maximum power tracking to maximize the generated power. The proposed estimator automatically traces the instantaneous maximum power at various load conditions. However, to stabilize the output voltage, a boost converter is used from the inverter side. The developed double-stator generator is tested with the new estimator for the maximizing power generation capability under laboratory conditions. The experimental results confirm that with the new estimator, the average power generation capability is increased by 12% and the peak value is increase by 22%.

  6. Factors that influence the radiofrequency power output of GSM mobile phones.

    Science.gov (United States)

    Erdreich, Linda S; Van Kerkhove, Maria D; Scrafford, Carolyn G; Barraj, Leila; McNeely, Mark; Shum, Mona; Sheppard, Asher R; Kelsh, Michael

    2007-08-01

    Epidemiological studies of mobile phone use and risk of brain cancer have relied on self-reported use, years as a subscriber, and billing records as exposure surrogates without addressing the level of radiofrequency (RF) power output. The objective of this study was to measure environmental, behavioral and engineering factors affecting the RF power output of GSM mobile phones during operation. We estimated the RF-field exposure of volunteer subjects who made mobile phone calls using software-modified phones (SMPs) that recorded output power settings. Subjects recruited from three geographic areas in the U.S. were instructed to log information (place, time, etc.) for each call made and received during a 5-day period. The largest factor affecting energy output was study area, followed by user movement and location (inside or outside), use of a hands-free device, and urbanicity, although the two latter factors accounted for trivial parts of overall variance. Although some highly statistically significant differences were identified, the effects on average energy output rate were usually less than 50% and were generally comparable to the standard deviation. These results provide information applicable to improving the precision of exposure metrics for epidemiological studies of GSM mobile phones and may have broader application for other mobile phone systems and geographic locations.

  7. Wind Farm Dynamic Equivalence Based on the Wind Turbine Output Active Power Sequence Clustering

    Directory of Open Access Journals (Sweden)

    Zhang Ge

    2016-01-01

    Full Text Available In order to reduce the complexity of simulation model containing wind farms in the context of keeping the accuracy static, this paper put forward a kind of Dynamic Equivalence method aiming at making output characteristic of the connecting point of wind farm consistent. Based on the output power sequence of wind turbines, geometric template matching algorithm is used to obtain the characteristic of that power sequence and then Attribute Threshold Clustering Algorithm is used to classify wind turbine. In each cluster, the parameter of wind turbine is made equal according to the principle of constant power output character and then be distinguished according to AMPSO. At last, this paper takes a practical wind farm as an example and respectively simulates the conditions of fault of system side and variation of wind speed, which is used in comparing the output characteristic of detailed model and Equivalent model. Results show that the output characteristic of the connecting point of wind farm keeps consistent after equivalent and that the Clustering Algorithm can reflect the operating characteristics of the wind turbine in the whole moment of any time period. It can also be saw that Equivalent method is reasonable and effective, which has certain value in engineering application.

  8. New Driver For The Powerful Output Rf Amplifier Of Mmf Dtl Rf System

    CERN Document Server

    Kvasha, A I; Vassilyev, A G

    2004-01-01

    More than 30 years ago a few powerful vacuum tubes were specially designed and produced in the former design office Swetlana for the Moscow meson factory DTL RF system. Among them was tetrode GI-51A with output pulse RF power up to 300 kW at frequency 198.2 MHz, which was used as driver for RF power amplifier with output RF pulse power (2-3) MW. In connection with well-known events in our country manufacture of these tubes, including GI-51A was finished about 10 years ago. In "SED-SPb" (successor of the design office Swetlana) triode GI-57A was offered instead of GI-51A. In this paper results of calculations and design of RF amplifier with new triode are presented. Preliminary results of RF amplifier tests, also presented in the paper, showed that triode GI-57A will be able successfully used in the DTL RF system channels.

  9. Output power stability of a HCN laser using a stepping motor for the EAST interferometer system

    Science.gov (United States)

    Zhang, J. B.; Wei, X. C.; Liu, H. Q.; Shen, J. J.; Zeng, L.; Jie, Y. X.

    2015-11-01

    The HCN laser on EAST is a continuous wave glow discharge laser with 3.4 m cavity length and 120 mW power output at 337 μ m wavelength. Without a temperature-controlled system, the cavity length of the laser is very sensitive to the environmental temperature. An external power feedback control system is applied on the HCN laser to stabilize the laser output power. The feedback system is composed of a stepping motor, a PLC, a supervisory computer, and the corresponding control program. One step distance of the stepping motor is 1 μ m and the time response is 0.5 s. Based on the power feedback control system, a stable discharge for the HCN laser is obtained more than eight hours, which satisfies the EAST experiment.

  10. Floating type ocean wave power station equipped with hydroelectric unit

    Science.gov (United States)

    Okamoto, Shun; Kanemoto, Toshiaki; Umekage, Toshihiko

    2013-10-01

    The authors have invented the unique ocean wave power station, which is composed of the floating type platform with a pair of the floats lining up at the interval of one wave pitch and the counter-rotating type wave power unit, its runners are submerged in the seawater at the middle position of the platform. Such profiles make the flow velocity at the runner is twice faster than that of the traditional fixed/caisson type OWC, on the ideal flow conditions. Besides, the runners counter-rotate the inner and the outer armatures of the peculiar generator, respectively, and the relative rotational speed is also twice faster than the speed of the single runner/armature. Such characteristics make the runner diameter large, namely the output higher, as requested, because the torque of the power unit never act on the floating type platform. At the preliminary reseach, this paper verifies to get the power using a Wells type single runner installed in the model station. The runner takes the output which is affected by the oscillating amplitude of the platform, the rotational speed and the inertia force of the runner, etc.

  11. Generalized design of high performance shunt active power filter with output LCL filter

    DEFF Research Database (Denmark)

    Tang, Yi; Loh, Poh Chiang; Wang, Peng

    2012-01-01

    , the proposed SAPF offers superior switching harmonic suppression using much reduced passive filtering elements. Its output currents thus have high slew rate for tracking the targeted reference closely. Smaller inductance of the LCL filter also means smaller harmonic voltage drop across the passive output......This paper concentrates on the design, control, and implementation of an LCL-filter-based shunt active power filter (SAPF), which can effectively compensate for harmonic currents produced by nonlinear loads in a three-phase three-wire power system. With an LCL filter added at its output...... filter, which in turn minimizes the possibility of overmodulation, particularly for cases where high modulation index is desired. These advantages, together with overall system stability, are guaranteed only through proper consideration of critical design and control issues, like the selection of LCL...

  12. Output power levels from mobile phones in different geographical areas; implications for exposure assessment

    OpenAIRE

    Lonn, S; Forssen, U; P. Vecchia; Ahlbom, A; Feychting, M

    2004-01-01

    Background: The power level used by the mobile phone is one of the most important factors determining the intensity of the radiofrequency exposure during a call. Mobile phone calls made in areas where base stations are densely situated (normally urban areas) should theoretically on average use lower output power levels than mobile phone calls made in areas with larger distances between base stations (rural areas).

  13. Predictability of the Power Output of Three Wave Energy Technologies in the Danish North Sea

    DEFF Research Database (Denmark)

    Chozas, Julia Fernandez; Jensen, N. E. Helstrup; Sørensen, H. C.;

    2013-01-01

    The paper addresses an important challenge towards the integration of the electricity generated by wave energy converters into the electric grid. Particularly, it looks into the role of wave energy within day-ahead electricity markets. For that the predictability of the theoretical power outputs ....... The best compromise between forecast accuracy and mean power production results when considering the combined production of the three converters. © 2013 Elsevier Ltd. All rights reserved....

  14. Body size and countermovement depth confound relationship between muscle power output and jumping performance

    Science.gov (United States)

    Markovic, Srdjan; Dragan, Mirkov; Nedeljkovic, Aleksandar; Jaric, Slobodan

    2013-01-01

    A number of studies based on maximum vertical jumps have presumed that the maximum jump height reveals the maximum power of lower limb muscles, as well as the tested muscle power output predicts the jumping performance. The objective of the study was to test the hypothesis that both the body size and countermovement depth confound the relationship between the muscle power output and performance of maximum vertical jumps. Sixty young and physically active males were tested on the maximum countermovement (CMJ) and squat jumps (SJ). The jumping performance (Hmax), peak (Ppeak) and the average power output (Pavg) during the concentric phase, countermovement depth (only in CMJ) and body mass as an index of body size were assessed. To assess the power-performance relationship, the correlations between Hmax with both Ppeak and Pavg were calculated without and with controlling for the effects of body mass, as well as for the countermovement depth. The results revealed moderate power-performance relationships (range 0.55power output with the performance of maximum vertical jumps. Regarding routine assessments of muscle power from jumping performance and vice versa, the use of CMJ is recommended, while Ppeak, rather than Pavg, should be the variable of choice. PMID:24280557

  15. Multilateral comparisons of output, productivity, and purchasing power parities in manufacturing

    NARCIS (Netherlands)

    Pilat, D; Rao, DSP

    This paper presents multilateral comparisons of output, productivity and purchasing power parities in manufacturing, for 1975 and 1987. Two multilateral approaches are considered, namely the Geary-Khamis method and the generalized Theil-Tornqvist method based on the EKS procedure. The paper

  16. Green Input-Output Model for Power Company Theoretical & Application Analysis

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on the theory of marginal opportunity cost, one kind of green input-output table and models of powercompany are put forward in this paper. For an appliable purpose, analysis of integrated planning, cost analysis, pricingof the power company are also given.

  17. Maximizing Output Power in a Cantilevered Piezoelectric Vibration Energy Harvester by Electrode Design

    Science.gov (United States)

    Du, Sijun; Jia, Yu; Seshia, Ashwin

    2015-12-01

    A resonant vibration energy harvester typically comprises of a clamped anchor and a vibrating shuttle with a proof mass. Piezoelectric materials are embedded in locations of high strain in order to transduce mechanical deformation into electric charge. Conventional design for piezoelectric vibration energy harvesters (PVEH) usually utilizes piezoelectric material and metal electrode layers covering the entire surface area of the cantilever with no consideration provided to examining the trade-off involved with respect to maximizing output power. This paper reports on the theory and experimental verification underpinning optimization of the active electrode area of a cantilevered PVEH in order to maximize output power. The analytical formulation utilizes Euler-Bernoulli beam theory to model the mechanical response of the cantilever. The expression for output power is reduced to a fifth order polynomial expression as a function of the electrode area. The maximum output power corresponds to the case when 44% area of the cantilever is covered by electrode metal. Experimental results are also provided to verify the theory.

  18. Increase of power output by change of ion transport direction in a plant microbial fuel cell

    NARCIS (Netherlands)

    Timmers, R.A.; Strik, D.P.B.T.B.; Hamelers, H.V.M.; Buisman, C.J.N.

    2013-01-01

    The plant microbial fuel cell (PMFC) is a technology for the production of renewable and clean bioenergy based on photosynthesis. To increase the power output of the PMFC, the internal resistance (IR) must be reduced. The objective of the present study was to reduce the membrane resistance by changi

  19. [Effect of Cu2+ on the power output of dual-chamber microbial fuel cell].

    Science.gov (United States)

    Mu, Shu-Jun; Li, Xiu-Fen; Ren, Yue-Ping; Wang, Xin-Hua

    2014-07-01

    After addition of Cu2+ into the anodic and/or cathodic chamber, the effect of Cu2+ on the internal resistance and its distribution, power output and coulombic efficiency of dual-chamber microbial fuel cell (MFC) was investigated in this manuscript with the aid of analyzing the distribution of copper speciation. It could provide helpful information for correlative research on treatment of copper-containing wastewater by MFC. It showed that the addition of 10 mg x L(-1) Cu2+ into the anodic chamber inhibited the microbial activity, and increased the anodic activation resistance as well as the apparent internal resistance, consequently reduced the power output and coulombic efficiency of the system. However, the addition of 500 mg x L(-1) Cu2+ into the cathodic chamber significantly reduced the cathodic activation resistance as well as the apparent internal resistance, while improved the power output and the coulombic efficiency. Cu2+ in the anodic chamber was not transfered into the cathodic chamber. When adding Cu2+ into the cathodic chamber, it was mainly reduced and deposited on the cathodic chamber. It could also be transferred/diffused to the anodic chamber across the proton exchange membrane (2.8%) because of its concentration difference, thus affecting the microbial activity and power output. Only a small amount of Cu2+ remained in the supernatant of the cathodic chamber at the end of experiment.

  20. Intelligent Monitoring and Predicting Output Power Losses of Solar Arrays Based on Particle Filtering

    Directory of Open Access Journals (Sweden)

    Hongzheng Fang

    2013-01-01

    Full Text Available Solar arrays are the main source of energy to the on-orbit satellite, whose output power largely determines the life cycle of on-orbit satellites. Monitoring and further forecasting the output power of solar arrays by using the real-time observational data are very important for the study of satellite design and on-orbit satellite control. In this paper, we firstly describe the dynamical model of output power with summarizing the influencing factors of attenuation for solar arrays and elaborating the evolution trend of influencing factors which change with time. Based on the empirical model, a particle filtering algorithm is formulated to predict the output power of solar arrays and update the model parameters, simultaneously. Finally, using eight-year observational data of voltage and current from a synchronous on-orbit satellite, an experiment is carried out to illustrate the reliability and accuracy of the particle filtering method. Comparative results with classical curve fitting also are presented with statistical root mean square error and mean relative error analysis.

  1. CMOS upconversion mixer with filterless carrier feedthrough cancelation and output power tuning

    NARCIS (Netherlands)

    Sanchez Gaspariano, Luis Abraham; Annema, Anne-Johan; Muniz Montero, Carlos; Diaz Sanchez, Alejandro

    2014-01-01

    The synthesis, design and implementation of a CMOS upconversion mixer that both can adjust, by means of a DC voltage control, its output power and that cancels the carrier feedthrough is presented. Aiming at very low cost medical implant applications, a prototype of the architecture was implemented

  2. A 5 cm single-discharge CO2 laser having high power output

    NARCIS (Netherlands)

    Ernst, G.J.; Boer, A.G.

    1980-01-01

    A single-discharge self-sustained CO2 laser has been constructed with a gap distance of 5 cm. The system has a very simple construction; it produces a very uniform discharge with an output power of 50 Joules per liter for a CO2 : N2 : He = 1 : 1 : 3 mixture. The efficiency can be as high as 19%.

  3. Solar power water distillation unit

    Science.gov (United States)

    Hameed, Kamran; Muzammil Khan, Muhammad; Shahrukh Ateeq, Ijlal; Omair, Syed Muhammad; Ahmer, Muhammad; Wajid, Abdul

    2013-06-01

    Clean drinking water is the basic necessity for every human being, but about 1.1 billion people in the world lacked proper drinking water. There are many different types of water purification processes such as filtration, reverse osmosis, ultraviolet radiation, carbon absorption, but the most reliable processes are distillation and boiling. Water purification, such as distillation, is especially important in regions where water resources or tap water is not suitable for ingesting without boiling or chemical treatment. In design project It treats the water by combining different methods such as Filtration, Distillation and a technique called concentrated solar power (CSP). Distillation is literally the method seen in nature, whereby: the sun heats the water on the earth's surface, the water is turned into a vapor (evaporation) and rises, leaving contaminants behind, to form clouds. As the upper atmosphere drops in temperature the vapors cool and convert back to water to form water. In this project distillation is achieved by using a parabolic mirror which boils water at high temperature. Filtration is done by sand filter and carbon filter. First sand filter catches the sand particles and the carbon filter which has granules of active carbon is used to remove odor dissolved gases from water. This is the Pre-treatment of water. The filtered water is then collected in a water container at a focus of parabolic mirror where distillation process is done. Another important feature of designed project is the solar tracking of a parabolic mirror which increases the efficiency of a parabolic mirror [1],[2].

  4. Low Power Very High Frequency Switch-Mode Power Supply with 50 V Input and 5 V Output

    DEFF Research Database (Denmark)

    Madsen, Mickey Pierre; Knott, Arnold; Andersen, Michael A. E.

    2014-01-01

    This paper presents the design of a resonant converter with a switching frequency in the very high frequencyrange (30-300 MHz), a large step down ratio (10 times) and low output power (1 W). Several different invertersand rectifiers are analyzed and compared. The class E inverter and rectifier ar...

  5. Space Shuttle Orbiter auxiliary power unit status

    Science.gov (United States)

    Reck, M.; Loken, G.; Horton, J.; Lukens, W.; Scott, W.; Baughman, J.; Bauch, T.

    An overview of the United States Space Shuttle Orbiter APU, which provides power to the Orbiter vehicle hydraulic system, is presented. Three complete APU systems, each with its own separate fuel system, supply power to three dedicated hydraulic systems. These in turn provide power to all Orbiter vehicle critical flight functions including launch, orbit, reentry, and landing. The basic APU logic diagram is presented. The APU includes a hydrazine-powered turbine that drives a hydraulic pump and various accessories through a high-speed gearbox. The APU also features a sophisticated thermal management system designed to ensure safe and reliable operation in the various launch, orbit, reentry, and landing environments.

  6. Electrospun ion gel nanofibers for flexible triboelectric nanogenerator: electrochemical effect on output power

    Science.gov (United States)

    Ye, Byeong Uk; Kim, Byoung-Joon; Ryu, Jungho; Lee, Joo Yul; Baik, Jeong Min; Hong, Kihyon

    2015-10-01

    A simple fabrication route for ion gel nanofibers in a triboelectric nanogenerator was demonstrated. Using an electrospinning technique, we could fabricate a large-area ion gel nanofiber mat. The triboelectric nanogenerator was demonstrated by employing an ion gel nanofiber and the device exhibited an output power of 0.37 mW and good stability under continuous operation.A simple fabrication route for ion gel nanofibers in a triboelectric nanogenerator was demonstrated. Using an electrospinning technique, we could fabricate a large-area ion gel nanofiber mat. The triboelectric nanogenerator was demonstrated by employing an ion gel nanofiber and the device exhibited an output power of 0.37 mW and good stability under continuous operation. Electronic supplementary information (ESI) available: I. Experimental section. II. FTIR and XRD spectra of ion gel nanofiber. III. Output voltage of TENG with various polymer nanofibers. IV. Output voltage of TENG under different connection types. V. Output voltage of TENG with 20 wt% ion gel nanofibers. See DOI: 10.1039/c5nr02602d

  7. Design and Construction Multi Output Power Transmition with Single Prime Mover on Agricultural Products Machine

    Science.gov (United States)

    Koten, V. K.; Tanamal, C. E.

    2017-03-01

    Manufacturing agricultural products by the farmers, people or person who involve in medium industry, small industry, and households industry still be done in separately. Although the power on primemover is enough, in operations, primemover was only to move one of several agricultural products machine. This study attempts to design and construct power transmition multi output with single primemover; a single construction that allows primemover move some agricultur products machine in the same or not. This study begins with the determination of production capacity and the power to destroy products, the determination of resources and rotation, normalization of resources and rotation, the determination of the type material used, the size determination of each machine elements, construction machine elements, and assemble machine elements into a construction multi output power transmition with single primemover on agricultural products machine. The results show that with a input normalization 4 PK (2984 Watt), rotation 2000 rpm, the strength of material 60 kg/mm2, and several operating consideration, thus obtained size of machine elements through calculation. Based on the size, the machine elements is made through the use of some machine tools and assembled to form a multi output power transmition with single primemover.

  8. Wind tunnel study of the power output spectrum in a micro wind farm

    Science.gov (United States)

    Bossuyt, Juliaan; Howland, Michael F.; Meneveau, Charles; Meyers, Johan

    2016-09-01

    Instrumented small-scale porous disk models are used to study the spectrum of a surrogate for the power output in a micro wind farm with 100 models of wind turbines. The power spectra of individual porous disk models in the first row of the wind farm show the expected -5/3 power law at higher frequencies. Downstream models measure an increased variance due to wake effects. Conversely, the power spectrum of the sum of the power over the entire wind farm shows a peak at the turbine-to-turbine travel frequency between the model turbines, and a near -5/3 power law region at a much wider range of lower frequencies, confirming previous LES results. Comparison with the spectrum that would result when assuming that the signals are uncorrelated, highlights the strong effects of correlations and anti-correlations in the fluctuations at various frequencies.

  9. Output power enhancement from ZnO nanorods piezoelectric nanogenerators by Si microhole arrays.

    Science.gov (United States)

    Baek, Seong-Ho; Hasan, Md Roqibul; Park, Il-Kyu

    2016-02-12

    We demonstrate the enhancement of output power from a ZnO nanorod (NR)-based piezoelectric nanogenerator by using Si microhole (Si-μH) arrays. The depth-controlled Si-μH arrays were fabricated by using the deep reactive ion etching method. The ZnO NRs were grown along the Si-μH surface, in holes deeper than 20 μm. The polymer layer, polydimethylsiloxane, which acts a stress diffuser and electrical insulator, was successfully penetrated into the deep Si-μH arrays. Optical investigations show that the crystalline quality of the ZnO NRs on the Si-μH arrays was not degraded, even though they were grown on the deeper Si-μH arrays. As the depth of the Si-μH arrays increase from 0 to 20 μm, the output voltage was enhanced by around 8.1 times while the current did not increase. Finally, an output power enhancement of ten times was obtained. This enhancement of the output power was consistent with the increase in the surface area, and was mainly attributed to the accumulation of the potentials generated by the series-connected ZnO NR-based nanogenerators, whose number increases as the depth of the Si-μH increases.

  10. Supercontinuum Generation with Output Power of 1.7 W Pumped by a Picosecond Laser Pulse

    Science.gov (United States)

    Pan, Er-Ming; Ruan, Shuang-Chen; Guo, Chun-Yu; Wang, Yun-Cai; Wei, Hui-Feng

    2010-10-01

    By using a photonic crystal fiber, a supercontinuum source with output power up to 1.7W, pumped by a passively mode-locked diode-pumped Nd:YVO4 picosecond laser is obtained. A spectral width of the supercontinuum is 1700 nm (500-2200 nm) with the 5 dB spectral width approximately 1000 nm (1200-2200 nm). This high power wide band supercontinuum source meets the demand of many applications such as optical coherence tomography, frequency metrology and wavelength-division-multiplexing systems. The evolution of the supercontinuum with the increasing pump power is presented and analyzed.

  11. Theoretical study of enhancing the piezoelectric nanogenerator's output power by optimizing the external force's shape

    Science.gov (United States)

    Xu, Qi; Qin, Yong

    2017-07-01

    The average power is one of the key parameters of piezoelectric nanogenerators (PENGs). In this paper, we demonstrate that the PENG's output can be gigantically improved by choosing driving force with an appropriate shape. When the load resistance is 100 MΩ and the driven forces have a magnitude of 19.6 nN, frequency of 10 Hz, the average power of PENG driven by square shaped force is six orders of magnitude higher than that driven by triangular shaped and sinusoidal shaped forces. These results are of importance for optimizing the average power of the PENGs in practical applications.

  12. Linear Robust Output Regulation in a Class of Switched Power Converters

    Directory of Open Access Journals (Sweden)

    Josep M. Olm

    2010-01-01

    Full Text Available This article addresses the robust output regulation problem for a class of nonlinear switched power converters after its linearization by means of a change of the control vector variable. The methodology employs a dynamic state feedback control law and considers parametric uncertainty due to unknown values of resistive loads. Restrictions arising from the fact that the control gains exhibit fixed values are taken into account. The proposed technique is exemplified with the output voltage regulation of a Noninverting Buck-Boost converter and tested through realistic numerical simulations.

  13. Output Regulation of Large-Scale Hydraulic Networks with Minimal Steady State Power Consumption

    DEFF Research Database (Denmark)

    Jensen, Tom Nørgaard; Wisniewski, Rafal; De Persis, Claudio;

    2014-01-01

    that the system is overactuated is exploited for minimizing the steady state electrical power consumption of the pumps in the system, while output regulation is maintained. The proposed control actions are decentralized in order to make changes in the structure of the hydraulic network easy to implement.......An industrial case study involving a large-scale hydraulic network is examined. The hydraulic network underlies a district heating system, with an arbitrary number of end-users. The problem of output regulation is addressed along with a optimization criterion for the control. The fact...

  14. Dynamic Floating Output Stage for Low Power Buffer Amplifier for LCD Application

    Directory of Open Access Journals (Sweden)

    Hari Shanker Srivastava

    2015-02-01

    Full Text Available This topic proposes low-power buffer means low quiescent current buffer amplifier. A dynamic floating current node is used at the output of two-stage amplifier to increase the charging and discharging of output capacitor as well as settling time of buffer. It is designed for 10 bit digital analog converter to support for LCD column driver it is implemented in 180 nm CMOS technology with the quiescent current of 5 µA for 30 pF capacitance, the settling time calculated as 4.5µs, the slew rate obtained as 5V/µs and area on chip is 30×72µ

  15. Pipe rupture incident of Hamaoka Nuclear Power Station Unit-1

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Yushi; Nakagami, Motonori; Hayashi, Haruhisa; Ichikawa, Yoshihiro [Chubu Electric Power Co. Inc., Nagoya (Japan)

    2002-11-01

    At the Hamaoka Nuclear Power Station Unit-1 (540 MWe of electric output; BWR-4 type) of the Chubu Electric Power Co., Ltd., an incident of pipe rupture of residual heat removal system on steam condenser system occurred on November, 2001. This incident gave no effects on outer parts of the station, because safety system apparatuses in the station worked adequately from a standpoint of accidental phenomenon. On the other hand, on its forming processes, as it is no similar case at the nuclear power stations in and out of Japan, to securely carry out countermeasures for preventing a recurrence of the incidence, its cause was striven to elucidate thoroughly. This paper was introduced about contents and results on site surveys, and surveys such as tests, analysis, and so on performed for about a half year after the incident, for preventing a recurrence of similar incidents. (G.K.)

  16. Incorrect calculation of power outputs masks the ergogenic capacity of creatine supplementation.

    Science.gov (United States)

    Havenetidis, Konstadinos; Cooke, Carlton B; Butterly, Ron; King, Roderick F G J

    2006-10-01

    This study assessed the effect of incorrect calculation of power output measurement on the ergogenic properties of creatine. Fifteen males performed repeated Wingate anaerobic tests, under baseline, placebo, and creatine conditions. Statistics showed significant differences (p supplemented conditions compared with placebo conditions, whereas no significant differences existed between the baseline and placebo conditions. However, the performance enhancement effect of creatine became significant only when the corrected (for the inertia of the flywheel) method was employed for measuring peak and minimum power. Mean (+/- SD) values across all cycle sprints for placebo versus creatine were 1033 +/- 100 W versus 1130 +/- 95 W for peak power and 385 +/- 78 W versus 427 +/- 70 W for minimum power. No significant differences were shown using the uncorrected method for peak power (756 +/- 97 W versus 786 +/- 88 W) and minimum power 440 +/- 64 W pre versus 452 +/- 65 W post). In conclusion, the present study suggests that the potentiating effect of creatine might be underestimated if the inertial effects of the flywheel are not considered in power output determination.

  17. Relationships between muscle power output using the stretch-shortening cycle and eccentric maximum strength.

    Science.gov (United States)

    Miyaguchi, Kazuyoshi; Demura, Shinichi

    2008-11-01

    This study aimed to examine the relationships between muscle power output using the stretch-shortening cycle (SSC) and eccentric maximum strength under elbow flexion. Eighteen young adult males pulled up a constant light load (2 kg) by ballistic elbow flexion under the following two preliminary conditions: 1) the static relaxed muscle state (SR condition), and 2) using the SSC with countermovement (SSC condition).Muscle power was determined from the product of the pulling velocity and the load mass by a power measurement instrument that adopted the weight-loading method. We assumed the pulling velocity to be the subject's muscle power parameters as a matter of convenience, because we used a constant load. The following two parameters were selected in reference to a previous study: 1) peak velocity (m x s(-1)) (peak power) and 2) 0.1-second velocity during concentric contraction (m x s(-1)) (initial power). Eccentric maximum strength by elbow flexion was measured by a handheld dynamometer.Initial power produced in the SSC condition was significantly larger than that in the SR condition. Eccentric maximum strength showed a significant and high correlation (r = 0.70) with peak power in the SSC condition but not in the SR condition. Eccentric maximum strength showed insignificant correlations with initial power in both conditions. In conclusion, it was suggested that eccentric maximum strength is associated with peak power in the SSC condition, but the contribution of the eccentric maximum strength to the SSC potentiation (initial power) may be low.

  18. Simulation of one-minute power output from utility-scale photovoltaic generation systems.

    Energy Technology Data Exchange (ETDEWEB)

    Stein, Joshua S.; Ellis, Abraham; Hansen, Clifford W.

    2011-08-01

    We present an approach to simulate time-synchronized, one-minute power output from large photovoltaic (PV) generation plants in locations where only hourly irradiance estimates are available from satellite sources. The approach uses one-minute irradiance measurements from ground sensors in a climatically and geographically similar area. Irradiance is translated to power using the Sandia Array Performance Model. Power output is generated for 2007 in southern Nevada are being used for a Solar PV Grid Integration Study to estimate the integration costs associated with various utility-scale PV generation levels. Plant designs considered include both fixed-tilt thin-film, and single-axis-tracked polycrystalline Si systems ranging in size from 5 to 300 MW{sub AC}. Simulated power output profiles at one-minute intervals were generated for five scenarios defined by total PV capacity (149.5 MW, 222 WM, 292 MW, 492 MW, and 892 MW) each comprising as many as 10 geographically separated PV plants.

  19. 3D simulations on output power fluctuation in a short bunch rf-linac FEL

    Science.gov (United States)

    Sentoku, Y.; Furukawa, H.; Mima, K.; Taguchi, T.; Kuruma, S.; Yasuda, H.; Yamanaka, C.; Nakai, S.

    1995-04-01

    A space-time dependent 3D simulation code has been developed in order to analyze the RF-linac FEL oscillator dynamics. Our simulation code employed both the transverse mode spectral method and the longitudinal finite difference method. The electron beam is modeled by a group of super particles which have a density profile in the time domain. In this model the electron beam is able to determine the energy spread and the finite emittance. This simulation code enables us to describe the transverse mode competition and the slippage effects in the resonator cavity. In this paper, a high power infrared FEL with a short bunch electron beam is investigated. The output power fluctuation with cavity desynchronism is simulated with this code. Especially, we investigated the effects of the transverse mode competition, energy spread, and the finite emittance of the electron beam on the output fluctuation. Using FELIX parameters, the FEL oscillator is simulated for 300 passes. The output power oscillates periodically in the case of single transverse mode and not in the case of multi-transverse modes. In a warm beam with multi-transverse modes, the emission is higher than that with a single mode, and the optical pulse shape is almost the after 100 passes. Furthermore, the phase space motion of the laser field is periodic and stable. As a result of the simulation, we recommend that high power infrared FEL operation should include multi-transverse modes in order to get higher emission and a more stable optical pulse.

  20. Power Efficient Division and Square Root Unit

    DEFF Research Database (Denmark)

    Liu, Wei; Nannarelli, Alberto

    2012-01-01

    shows that division and square root units based on the digit-recurrence algorithm offer the best tradeoff delay-area-power. Moreover, the two operations can be combined in a single unit. Here, we present a radix-16 combined division and square root unit obtained by overlapping two radix-4 stages......Although division and square root are not frequent operations, most processors implement them in hardware to not compromise the overall performance. Two classes of algorithms implement division or square root: digit-recurrence and multiplicative (e.g., Newton-Raphson) algorithms. Previous work...

  1. Measurement of output power density from mobile phone as a function of input sound frequency.

    Science.gov (United States)

    Calabrò, Emanuele; Magazù, Salvatore

    2013-01-01

    Measurements of power density emitted by a mobile phone were carried out as a function of the sound frequency transmitted by a sound generator, ranging from 250 to 14000 Hz. Output power density was monitored by means of the selective radiation meter Narda SRM 3000 in spectrum analysis mode, and the octave frequency analysis of each tone used for the experimental design was acquired by the sound level meter Larson Davis LxT Wind. Vodafone providers were used for mobile phone calls with respect to various local base station in Southern-Italy. A relationship between the mobile phone microwaves power density and the sound frequencies transmitted by the sound generator was observed. In particular, microwaves power density level decreases significantly at sound frequency values larger than 4500 Hz. This result can be explained assuming that discontinuous transmission mode of global system for mobile communications is powered not only in silence-mode, but also at frequencies larger than 4500 Hz.

  2. Limits and Optimization of Power Input or Output of Actual Thermal Cycles

    Directory of Open Access Journals (Sweden)

    Emin Açıkkalp

    2013-08-01

    Full Text Available In classical thermodynamic, maximum power obtained from system (or minimum power supplied to system defined as availability (exergy, but availability term is only used for reversible systems. In reality, there is no reversible system, all systems are irreversible, because reversible cycles doesn’t include constrains like time or size and they operates in quasi-equilibrium state. Purpose of this study is to define limits of the all basic thermodynamic cycles and to provide finite-time exergy models for irreversible cycles and to obtain the maximum (or minimum available power for irreversible (finite-time exergy cycles. In this study, available power optimization and performance limits were defined all basic irreversible thermodynamic cycles, by using first and second law of thermodynamic. Finally, these results were evaluated in terms of cycles’ first and second law efficiency, COP, power output (or input and exergy destruction.

  3. Exploring the Power Output of Small Wind Turbines in Urban San Antonio, Texas

    Science.gov (United States)

    Casillas, Jose; Sperduti, Stephanie; Cardenas, Rosa

    2015-03-01

    The means of transporting power from a centralized power plant by transmission lines has several disadvantages. Electricity transmission and distribution networks are costly, require long planning processes and are unsightly to residents. These networks are also susceptible to natural disasters creating massive disruptions to consumers. For these reasons distributed power sources such as solar panels and small wind turbines are becoming a more desirable and viable means of energy production. We report on the status of a study to determine the maximum output power of small wind turbines in urban San Antonio, Texas. Wind speed data along with power measurements from small wind turbines in urban San Antonio will be reported. U.S. Department of Education Title V HSI-STEM and Articulation Award No. P031C110145.

  4. Estimation of marginal abatement costs for undesirable outputs in India's power generation sector: An output distance function approach.

    OpenAIRE

    Manish Gupta

    2005-01-01

    Many production activities generate undesirable byproducts in conjunction with the desirable outputs they produce. The present study uses an output distance function approach and its duality with the revenue function to estimate the marginal abatement cost of CO2 emissions from a sample of thermal plants in India. Two sets of exercises have been undertaken. The marginal abatement cost is first estimated without considering the distinction between the clean and the dirty plants (model-1) and t...

  5. Robust nanogenerators based on graft copolymers via control of dielectrics for remarkable output power enhancement

    Science.gov (United States)

    Lee, Jae Won; Cho, Hye Jin; Chun, Jinsung; Kim, Kyeong Nam; Kim, Seongsu; Ahn, Chang Won; Kim, Ill Won; Kim, Ju-Young; Kim, Sang-Woo; Yang, Changduk; Baik, Jeong Min

    2017-01-01

    A robust nanogenerator based on poly(tert-butyl acrylate) (PtBA)–grafted polyvinylidene difluoride (PVDF) copolymers via dielectric constant control through an atom-transfer radical polymerization technique, which can markedly increase the output power, is demonstrated. The copolymer is mainly composed of α phases with enhanced dipole moments due to the π-bonding and polar characteristics of the ester functional groups in the PtBA, resulting in the increase of dielectric constant values by approximately twice, supported by Kelvin probe force microscopy measurements. This increase in the dielectric constant significantly increased the density of the charges that can be accumulated on the copolymer during physical contact. The nanogenerator generates output signals of 105 V and 25 μA/cm2, a 20-fold enhancement in output power, compared to pristine PVDF–based nanogenerator after tuning the surface potential using a poling method. The markedly enhanced output performance is quite stable and reliable in harsh mechanical environments due to the high flexibility of the films. On the basis of these results, a much faster charging characteristic is demonstrated in this study. PMID:28560339

  6. Method of automatic regulation of output of the feed unit of a conveyer

    Energy Technology Data Exchange (ETDEWEB)

    Smetana, A.V.; Feofilov, G.P.; Karpov, B.G.

    1979-11-15

    A method is proposed for regulating the output of a feed unit of a conveyer for fuel supply of an TES operating on solid fuel. Regulation of each feeder 7-8-9 is done by the corresponding regulator 13-14-15 by changing the output according to the lower signal of the drive of a common conveyer 1. In order to improve reliability and quality of operation of the feed unit, an additional signal is supplied to each regulator of output 13-14-15 of the feeders which equals the distance between the signal averaged for the levels in all the bins 4-5-6 and the signal for the level in the given bin. Loading of the conveyer is stabilized at the assigned level by changing the rotations of the drives 10-11-12 of feeders 7-8-9 from regulators 13-14-15 for output of the feeders to which the signal is supplied from sensor 3 for load of the engine 2 of conveyer 1. In order to balance the level in the bins 4-5-6, supply to each regulator of output of the feeders of additional signals is stipulated equal to h /SUB cp/ -h /SUB i/ (i=1, 2, 3). The signals from the level sensors 16-17-18 enter the averaging block 19, from whose outlet h /SUB cp/ =h/sub 1/+h/sub 32/+h/sub 3/ is fed to the block of summation 20-21-22 to which signals are also supplied from the level sensors 16-17-18. The total signal does not influence the contour for regulating the conveyer load. The signals coming to each of the regulators change the output of its feeder so that the levels of the bulk material in the bins will be leveled. Thus, maximum loading of the conveyer with fuel is implemented, and at the same time misalignment of the levels in the bins is eliminated. The specific consumption of electricity is diminished, the reliability and quality of operation of the feed unit are improved, the personnel are freed of the need to trace the fuel level in the bins.

  7. Super short term forecasting of photovoltaic power generation output in micro grid

    Science.gov (United States)

    Gong, Cheng; Ma, Longfei; Chi, Zhongjun; Zhang, Baoqun; Jiao, Ran; Yang, Bing; Chen, Jianshu; Zeng, Shuang

    2017-01-01

    The prediction model combining data mining and support vector machine (SVM) was built. Which provide information of photovoltaic (PV) power generation output for economic operation and optimal control of micro gird, and which reduce influence of power system from PV fluctuation. Because of the characteristic which output of PV rely on radiation intensity, ambient temperature, cloudiness, etc., so data mining was brought in. This technology can deal with large amounts of historical data and eliminate superfluous data, by using fuzzy classifier of daily type and grey related degree. The model of SVM was built, which can dock with information from data mining. Based on measured data from a small PV station, the prediction model was tested. The numerical example shows that the prediction model is fast and accurate.

  8. Blue Superluminescent Light-Emitting Diodes with Output Power above 100 mW for Picoprojection

    Science.gov (United States)

    Kopp, Fabian; Eichler, Christoph; Lell, Alfred; Tautz, Sönke; Ristić, Jelena; Stojetz, Bernhard; Höß, Christine; Weig, Thomas; Schwarz, Ulrich T.; Strauss, Uwe

    2013-08-01

    We present a blue InGaN research and development superluminescent light-emitting diode (SLED) that is suitable for picoprojection. The SLED reaches an output power of >100 mW with a peak wavelength of 443 nm and a spectral bandwidth of >2.6 nm as well as a single-mode far-field driven in cw mode at 25 °C. In order to figure out an optimized waveguide design, which enables such a high output power at lowest operation current, we compare the performance of diodes with curved and tilted shaped ridges in detail, using the lasing threshold current as a criterion for lasing or superluminescence, respectively.

  9. Counter-rotating type pump-turbine unit cooperating with wind power unit

    Science.gov (United States)

    Murakami, Tengen; Kanemoto, Toshiaki

    2013-02-01

    This serial research proposes the hybrid power system combined the wind power unit with the counter-rotating type pump-turbine unit, to provide the constant output for the grid system, even at the suddenly fluctuating/turbulent wind. In this paper, the tandem impellers of the counter-rotating type pumping unit was operated at the turbine mode, and the performances and the flow conditions were investigated numerically and experimentally. The 3-D turbulent flows in the runners were simulated at the steady state condition by using the commercial CFD code of ANSYS-CFX ver.12 with the SST turbulence model. While providing the pump unit for the turbine mode, the maximum hydraulic efficiency is close to one of the counter-rotating type hydroelectric unit designed exclusively for the turbine mode. Besides, the runner/impeller of the unit works evidently so as to coincide the angular momentum change through the front runners/impellers with that through the rear runners/impellers, namely to take the axial flow at not only the inlet but also the outlet without the guide vanes. These results show that this type of unit is effective to work at not only the pumping but also the turbine modes.

  10. Efficiency at maximum power output of linear irreversible Carnot-like heat engines.

    Science.gov (United States)

    Wang, Yang; Tu, Z C

    2012-01-01

    The efficiency at maximum power output of linear irreversible Carnot-like heat engines is investigated based on the assumption that the rate of irreversible entropy production of the working substance in each "isothermal" process is a quadratic form of the heat exchange rate between the working substance and the reservoir. It is found that the maximum power output corresponds to minimizing the irreversible entropy production in two isothermal processes of the Carnot-like cycle, and that the efficiency at maximum power output has the form η(mP)=η(C)/(2-γη(C)), where η(C) is the Carnot efficiency, while γ depends on the heat transfer coefficients between the working substance and two reservoirs. The value of η(mP) is bounded between η(-)≡η(C)/2 and η(+)≡η(C)/(2-η(C)). These results are consistent with those obtained by Chen and Yan [J. Chem. Phys. 90, 3740 (1989)] based on the endoreversible assumption, those obtained by Esposito et al. [Phys. Rev. Lett. 105, 150603 (2010)] based on the low-dissipation assumption, and those obtained by Schmiedl and Seifert [Europhys. Lett. 81, 20003 (2008)] for stochastic heat engines which in fact also satisfy the low-dissipation assumption. Additionally, we find that the endoreversible assumption happens to hold for Carnot-like heat engines operating at the maximum power output based on our fundamental assumption, and that the Carnot-like heat engines that we focused on do not strictly satisfy the low-dissipation assumption, which implies that the low-dissipation assumption or our fundamental assumption is a sufficient but non-necessary condition for the validity of η(mP)=η(C)/(2-γη(C)) as well as the existence of two bounds, η(-)≡η(C)/2 and η(+)≡η(C)/(2-η(C)).

  11. The first in Poland demonstrative ORC power plant of low power output

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, Wladyslaw; Borsukiewicz-Gozdur, Aleksandra; Stachel, Aleksander A. [West Pomeranian Univ. of Technology, Szczecin (Poland); Klonowicz, Wojciech; Hanausek, Pawel [Turboservice Sp. z o.o., Lodz (Poland); Klonowicz, Piotr; Magiera, Radomir [Lodz Univ. of Technology (Poland)

    2010-07-01

    A description of the power plant working according to the organic Clausius-Rankine cycle (ORC) and developed at the Department of Heat Engineering (KTC), West Pomeranian University of Technology in Szczecin, is presented. The ORC power plant is powered by the low temperature heat of hot water with the temperature of up to 100 C. The hot water heat is here converted into mechanical energy that is generated by a turbine and used to drive a centrifugal air compressor. The ORC turbine is supplied with dry, saturated vapour of the R227ea working fluid of low boiling point. The working fluid vapour is generated in a combined preheater-evaporator heat exchanger. The results of calculations and experimental measurements are presented and supplemented with conclusions derived from the ORC power plant operation. Perspective modernization of the ORC power plant scheme is also outlined. (orig.)

  12. Balancing Europe's wind power output through spatial deployment informed by weather regimes.

    Science.gov (United States)

    Grams, Christian M; Beerli, Remo; Pfenninger, Stefan; Staffell, Iain; Wernli, Heini

    2017-08-01

    As wind and solar power provide a growing share of Europe's electricity1, understanding and accommodating their variability on multiple timescales remains a critical problem. On weekly timescales, variability is related to long-lasting weather conditions, called weather regimes2-5, which can cause lulls with a loss of wind power across neighbouring countries6. Here we show that weather regimes provide a meteorological explanation for multi-day fluctuations in Europe's wind power and can help guide new deployment pathways which minimise this variability. Mean generation during different regimes currently ranges from 22 GW to 44 GW and is expected to triple by 2030 with current planning strategies. However, balancing future wind capacity across regions with contrasting inter-regime behaviour - specifically deploying in the Balkans instead of the North Sea - would almost eliminate these output variations, maintain mean generation, and increase fleet-wide minimum output. Solar photovoltaics could balance low-wind regimes locally, but only by expanding current capacity tenfold. New deployment strategies based on an understanding of continent-scale wind patterns and pan-European collaboration could enable a high share of wind energy whilst minimising the negative impacts of output variability.

  13. A New Method for Increasing Output Power of a Three-Cavity Transit-Time Oscillator

    Institute of Scientific and Technical Information of China (English)

    HE Jun-Tao; ZHONG Hui-Huang; QIAN Bao-Liang; LIU Yong-Gui

    2004-01-01

    We propose a new method to increase the output power of a three-cavity transit-time oscillator (TC-TTO).Conventional transit-time effect oscillators, such as the split-cavity oscillator (SCO), super-Reltron, and TC-TTO (or double-foil SCO), etc., have a common feature that the span of any modulating cavity is uniform. The new method is to vary the three-cavity spans from uniform to nonuniform. Its configuration is called the nonuniform three-cavity transit-time oscillator (NTC-TTO). Numerical simulations show that the electron-beam is modulated more deeply in certain NTC-TTOs than that in the TC-TTO with the same whole modulating length, and the output microwave power in certain NTC-TTOs is higher than that in the TC-TTO. The experimental results are in agreement with those of the numerical simulations. The results show that the new method can increase the output power of a microwave tube based on the TC-TTO.

  14. Diode end-pumped 1123-nm Nd:YAG laser with 2.6-W output power

    Institute of Scientific and Technical Information of China (English)

    Zhiqiang Cai; Meng Chen; Zhigang Zhang; Rui Zhou; Wuqi Wen; Xin Ding; Jianquan Yao

    2005-01-01

    We present a compact and high output power diode end-pumped Nd:YAG laser which operates at the wavelength of 1123 nm. Continuous wave (CW) laser output of 2.6 W was achieved at the incident pump power of 15.9 W, indicating an overall optical-optical conversion efficiency of 16.4%, and the slope efficiency was 18%.

  15. Use of variable cross-section pipes to stabilize the helium-neon laser radiation output power

    Energy Technology Data Exchange (ETDEWEB)

    Klimentova, T.M.; Leontiev, V.G.; Ostapchenko, E.P.; Pozdina, T.L.; Chernikov, P.N.

    1980-03-01

    The possibility for the use of the sectional active elements to increase the output power stability of a helium-neon laser at the wavelength of 0.63 ..mu..m is shown. It is found that at definite diameters and lengths of the sections the output power changes slightly with a change in the discharge current and the medium pressure.

  16. Modeling and Optimization of Coordinative Operation of Hydro-wind-photovoltaic Considering Power Generation and Output Fluctuation

    Science.gov (United States)

    Wang, Xianxun; Mei, Yadong

    2017-04-01

    Coordinative operation of hydro-wind-photovoltaic is the solution of mitigating the conflict of power generation and output fluctuation of new energy and conquering the bottleneck of new energy development. Due to the deficiencies of characterizing output fluctuation, depicting grid construction and disposal of power abandon, the research of coordinative mechanism is influenced. In this paper, the multi-object and multi-hierarchy model of coordinative operation of hydro-wind-photovoltaic is built with the aim of maximizing power generation and minimizing output fluctuation and the constraints of topotaxy of power grid and balanced disposal of power abandon. In the case study, the comparison of uncoordinative and coordinative operation is carried out with the perspectives of power generation, power abandon and output fluctuation. By comparison from power generation, power abandon and output fluctuation between separate operation and coordinative operation of multi-power, the coordinative mechanism is studied. Compared with running solely, coordinative operation of hydro-wind-photovoltaic can gain the compensation benefits. Peak-alternation operation reduces the power abandon significantly and maximizes resource utilization effectively by compensating regulation of hydropower. The Pareto frontier of power generation and output fluctuation is obtained through multiple-objective optimization. It clarifies the relationship of mutual influence between these two objects. When coordinative operation is taken, output fluctuation can be markedly reduced at the cost of a slight decline of power generation. The power abandon also drops sharply compared with operating separately. Applying multi-objective optimization method to optimize the coordinate operation, Pareto optimal solution set of power generation and output fluctuation is achieved.

  17. Predictability of the Power Output of Three Wave Energy Technologies in the Danish North Sea

    DEFF Research Database (Denmark)

    Chozas, Julia Fernandez; Jensen, N. E. Helstrup; Sørensen, H. C.;

    2011-01-01

    of the study is to provide an indication on the accuracy of the forecast of i) wave parameters, ii) the normalised theoretical power productions from each of the selected technologies (Pelamis, Wave Dragon and Wavestar), and iii) the normalised theoretical power production of a combination of the three devices...... of the normalised theoretical power outputs of Pelamis, Wave Dragon and Wavestar are 44%, 52% and 62%, respectively. The best compromise between forecast accuracy and mean power production results when considering the combined production of the three devices.......The paper addresses an important challenge ahead the integration of the electricity generated by wave energy conversion technologies into the electric grid. Particularly, it looks into the role of wave energy within the day-ahead electricity market. For that the predictability of the theoretical...

  18. Research reactor power controller design using an output feedback nonlinear receding horizon control method

    Energy Technology Data Exchange (ETDEWEB)

    Etchepareborda, Andres [Department of Nuclear Engineering, Argentine National Atomic Energy Commission, Centro Atomico Bariloche, Av. E. Bustillo 9500, Bariloche 8400 (Argentina)]. E-mail: etche@cab.cnea.gov.ar; Lolich, Jose [INVAP S.E., Moreno 1089, Bariloche 8400 (Argentina)

    2007-02-15

    A constrained, output feedback nonlinear receding horizon control (NRHC) method is applied to design a research reactor power controller. The method uses a nonlinear plant model subject to state, control and terminal set constraints; a nonlinear cost function; and a high gain observer. The controller regulates reactor power from 1% to 100% of full power; considers known disturbances, such as reactivity insertions and changes in core inlet flow and temperature; and includes upper limits constraints on neutron flux, neutron flux rate, core outlet temperature and core inlet-outlet temperature difference. Simulation results show an excellent performance for power regulation and known disturbances rejection: all process variables are kept within the admissible limits avoiding the actuation of the safety systems.

  19. Maximum Output Power Control Using Short-Circuit Current and Open-Circuit Voltage of a Solar Panel

    Science.gov (United States)

    Kato, Takahiro; Miyake, Takuma; Tashima, Daisuke; Sakoda, Tatsuya; Otsubo, Masahisa; Hombu, Mitsuyuki

    2012-10-01

    A control method to optimize the output power of a solar cell is necessary because the output of a solar cell strongly depends on solar radiation. We here proposed two output power control methods using the short-circuit current and open-circuit voltage of a solar panel. One of them used a current ratio and a voltage ratio (αβ control), and the other used a current ratio and a short-circuit current-electric power characteristic coefficient (αγ control). The usefulness of the αβ and the αγ control methods was evaluated. The results showed that the output power controlled by our proposed methods was close to the maximum output power of a solar panel.

  20. Peak power tunable mid-infrared oscillator pumped by a high power picosecond pulsed fiber amplifier with bunch output

    Science.gov (United States)

    Wei, Kaihua; Guo, Yan; Lai, Xiaomin; Fan, Shanhui

    2016-07-01

    A high power mid-infrared optical parametric oscillator (OPO) with picosecond pulse bunch output is experimentally demonstrated. The pump source was a high power master oscillation power amplifier (MOPA) picosecond pulsed fiber amplifier. The seed of the MOPA was a gain-switched distributed Bragg reflector (DBR) laser diode (LD) with picosecond pulse operation at a high repetition rate. The seed laser was amplified to 50 W by two-stage pre-amplifiers and a large mode area (LMA) Yb fiber based power-amplifier. A fiber-pigtailed acousto-optic modulator with the first order diffraction transmission was inserted into the second pre-amplifier to form a picosecond pulse bunch train and to change the peak power simultaneously. The power-amplified pulse bunches were focused to pump a wavelength-tunable OPO for emitting high power mid-infrared laser. By adjusting the OPO cavity length, the maximum average idler powers obtained at 3.1, 3.3 and 3.5 μm were 7, 6.6 and 6.4 W respectively.

  1. Predicting Power Output of Upper Body using the OMNI-RES Scale

    Science.gov (United States)

    Bautista, Iker J.; Chirosa, Ignacio J.; Tamayo, Ignacio Martín; González, Andrés; Robinson, Joseph E.; Chirosa, Luis J.; Robertson, Robert J.

    2014-01-01

    The main aim of this study was to determine the optimal training zone for maximum power output. This was to be achieved through estimating mean bar velocity of the concentric phase of a bench press using a prediction equation. The values for the prediction equation would be obtained using OMNI–RES scale values of different loads of the bench press exercise. Sixty males (age 23.61 2.81 year; body height 176.29 6.73 cm; body mass 73.28 4.75 kg) voluntarily participated in the study and were tested using an incremental protocol on a Smith machine to determine one repetition maximum (1RM) in the bench press exercise. A linear regression analysis produced a strong correlation (r = −0.94) between rating of perceived exertion (RPE) and mean bar velocity (Velmean). The Pearson correlation analysis between real power output (PotReal) and estimated power (PotEst) showed a strong correlation coefficient of r = 0.77, significant at a level of p = 0.01. Therefore, the OMNI–RES scale can be used to predict Velmean in the bench press exercise to control the intensity of the exercise. The positive relationship between PotReal and PotEst allowed for the identification of a maximum power-training zone. PMID:25713677

  2. Predicting Power Output of Upper Body using the OMNI-RES Scale

    Directory of Open Access Journals (Sweden)

    Bautista Iker J.

    2014-12-01

    Full Text Available The main aim of this study was to determine the optimal training zone for maximum power output. This was to be achieved through estimating mean bar velocity of the concentric phase of a bench press using a prediction equation. The values for the prediction equation would be obtained using OMNI-RES scale values of different loads of the bench press exercise. Sixty males ( voluntarily participated in the study and were tested using an incremental protocol on a Smith machine to determine one repetition maximum (1RM in the bench press exercise. A linear regression analysis produced a strong correlation (r = -0.94 between rating of perceived exertion (RPE and mean bar velocity (Velmean. The Pearson correlation analysis between real power output (PotReal and estimated power (PotEst showed a strong correlation coefficient of r = 0.77, significant at a level of p = 0.01. Therefore, the OMNI-RES scale can be used to predict Velmean in the bench press exercise to control the intensity of the exercise. The positive relationship between PotReal and PotEst allowed for the identification of a maximum power-training zone.

  3. The average output power of a wind turbine in a turbulent wind

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, A.; Sheinman, Y. (Faculty of Aerospace Engineering, Technion, Israel Institute of Technology, Haifa (Israel))

    1994-05-01

    Turbulence has an important influence on the average output power of a wind turbine taken over a certain period of time. The wind dynamics is coupled to the turbine dynamic characteristics and results in a fairly complicated behavior. Thus, the common 'static' model of calculating the average power, which is based on the turbine power curve and the average wind speed, may result in increasing errors. This paper presents three different models for calculating the average output power, taking into account the dynamic characteristics of the phenomenon. These models include direct time integration using accurate wind data and a detailed dynamic model of the turbine, a quasi-steady approach which is much simpler to apply and takes into account the wind dynamics, and an improved efficient model that also includes the influence of the dynamic characteristics of the turbine. The last improved model is based on a study of the turbine response to a sinusoidal gust. All models are compared with field measurements in order to study their accuracy. The comparison exhibits the importance of including all the dynamic effects in the calculations

  4. Maximum Output Power Control System of Variable-Speed Small Wind Generators

    Science.gov (United States)

    Amano, Yoko; Kajiwara, Hiroyuki

    This paper proposes a maximum output power control system of variable-speed small wind generators. Paying attention to an optimum rotational speed of a single phase AC wind generator which can obtain maximum output power according to natural wind speed, the proposed method adjusts the rotational speed of the single phase AC generator to the optimum rotational speed. Since this adjustment is realized on line so that it can be adapted for variable-speed wind, a generated power brake links directly with the single phase AC generator, and the rotational speed of the single phase AC generator is adjusted by controlling the current that flows the FET (Field-Effect Transistor) device as the generated power brake. In order to reduce heat loss of the FET device, the PWM (Pulse Width Modulation) controller is introduced. Moreover, the experimental system of the proposed method is constituted and the experiment is performed. Finally, the validity and the practicality of the proposed method are confirmed by experimental results.

  5. Impact of CDMA wireless phone power output and puncture rate on hearing aid interference levels.

    Science.gov (United States)

    Fry, T L; Schlegel, R E; Grant, H

    2000-01-01

    Interference between digital wireless phones and hearing aids occurs when the radiofrequency bursts from the phone transmission are demodulated by the hearing aid amplifier. The amplified interference signal is heard as a "buzz" or "static" by the hearing aid wearer. Most research and standards development activity has focused on worst-case scenarios with the phone operating at its maximum power. Since this power level is often not typical in urban and suburban settings, it is of value to determine the impact of lower power levels on the overall level of audible interference. Using a frequency analyzer, and several hearings aids and code division multiple access (CDMA) phones, the audio frequency spectrum of interference was recorded for each phone-aid combination and for a range of power levels producing from no interference to maximum interference. As phone power is increased, the interference signal becomes distinguishable from the ambient noise level and a linear response region is observed in which a specified increase in power output results in a proportional increase in the overall input referenced interference level (OIRIL). As power is increased beyond the linear region, the hearing aid enters a saturation region where an additional power increase results in a reduction or no increase in the OIRIL. The numeric differences in interference documented in this study were used in conjunction with the results of a previous study by the authors to determine the impact of reduced power on speech intelligibility and annoyance. The amount of improvement for a given power reduction depends on the radiofrequency immunity of the hearing aid and is substantial for hearing aids with poor immunity. For high-immunity aids, the level of audible interference remains low even at high phone power levels.

  6. Lack of maintenance of shortwave diathermy equipment has a negative impact on power output.

    Science.gov (United States)

    Guirro, Rinaldo Roberto de Jesus; Guirro, Elaine Caldeira de Oliveira; Alves de Sousa, Natanael Teixeira

    2014-04-01

    Although shortwave diathermy has been widely used by physiotherapists, there are a few studies assessing the performance of the equipment in use. The aim of the present study was to evaluate the procedures adopted by physiotherapists as users of shortwave diathermy continuous (CSWD), as well as to measure the power output and frequency of CSWD equipment. [Subjects and Methods] Twenty-three physical therapists were interviewed and 23 CSWD equipment were evaluated. Admeasurement was carried out by using a standard phantom to simulate the electrode-skin distance, which ranged from 0.5 to 3.0 cm. Data analysis was performed by using descriptive statistics, ANOVA, and a post-hoc Tukey's test or Pearson's correlation coefficient. [Results] The questionnaires showed that 48% of the interviewees use the correct electrode-skin distance, 70% use a single electrical outlet, and 35% use a grounded electrical outlet, and that 48% of the physiotherapy tables and 61% of the plinths were made of wood. However, only 13% of the interviewees perform yearly preventive maintenance. The highest power (95.56 W) was achieved at electrode-skin distances ranging from 1.0 to 1.5 cm, with distances of 2.5 cm and 3.0 cm being null in four and eight equipment, respectively. There was a negative correlation between power output and electrode-skin distance as well as between power output and purchase date. [Conclusion] The physiotherapists involved in this study had inadequate knowledge about the correct use of CSWD equipment, which may adversely affect its performance and patient safety.

  7. Adaptive robust maximum power point tracking control for perturbed photovoltaic systems with output voltage estimation.

    Science.gov (United States)

    Koofigar, Hamid Reza

    2016-01-01

    The problem of maximum power point tracking (MPPT) in photovoltaic (PV) systems, despite the model uncertainties and the variations in environmental circumstances, is addressed. Introducing a mathematical description, an adaptive sliding mode control (ASMC) algorithm is first developed. Unlike many previous investigations, the output voltage is not required to be sensed and the upper bound of system uncertainties and the variations of irradiance and temperature are not required to be known. Estimating the output voltage by an update law, an adaptive-based H∞ tracking algorithm is then developed for the case the perturbations are energy-bounded. The stability analysis is presented for the proposed tracking control schemes, based on the Lyapunov stability theorem. From a comparison viewpoint, some numerical and experimental studies are also presented and discussed.

  8. Relationships between torque, velocity and power output during plantarflexion in healthy subjects.

    Science.gov (United States)

    Nadeau, S; Gravel, D; Arsenault, A B

    1997-03-01

    This study investigated the relationships existing between torque, velocity and power output during plantarflexion. Using a Biodex dynamometric system, 15 healthy subjects performed three maximal dynamic tests, ranging from -12 degrees (-0.209 rad) of dorsiflexion to +47 degrees (+0.818 rad) of plantarflexion and one static test (test 4) at an angle of +10 degrees (+0.174 rad). The dynamic assessment included a 30 degrees s-1 (0.52 rad s-1) concentric isokinetic test (test 1) preceded by a 2-sec maximal pre-loading contraction. The other two dynamic tests were performed using the isotonic mode of testing with a selected torque of 27 N m; one of these tests was executed with pre-loading (test 2) while the other was performed without pre-loading (test 3). The results indicated that the dynamic peak torque, the peak power and the peak velocity were obtained in test 1, test 2 and test 3, respectively. These peak values, as well as the values of torque (test 1 and test 4), power (test 2) and velocity (test 3) obtained at a constant angle +10 degrees (+0.174 rad), were selected for the correlation analyses. The results showed that the torque, velocity and power output during plantarflexion were linearly related to one another with significant correlations (0.71 < r < 0.92; p < 0.01). This finding suggests that a common factor of muscular performance is assessed. Furthermore, these results indicated that the maximal torque produced by a subject can be predictive of his or her maximal velocity and power. Consequently, a stronger subject can generate higher velocity and power than a weaker subject when tested with the same load during maximal effort.

  9. In situ measurements of wind and current speed and relationship between output power and turbulence

    Science.gov (United States)

    Duran Medina, Olmo; Schmitt, François G.; Sentchev, Alexei; Calif, Rudy

    2015-04-01

    In a context of energy transition, wind and tidal energy are sources of clean energy with the potential of partially satisfying the growing demand. The main problem of this type of energy, and other types of renewable energy remains the discontinuity of the electric power produced in different scales, inducing large fluctuations also called intermittency. This intermittency of wind and tidal energy is inherent to the turbulent nature of wind and marine currents. We consider this intermittent power production in strong relation with the turbulent intermittency of the resource. The turbulence theory is multifractal energy cascades models, a classic in physics of turbulence. From earlier studies in atmospheric sciences, we learn that wind speed and the aggregate power output are intermittent and multifractal over a wide range of scales [Calif and Schmitt 2014]. We want to extend this study to a marine current turbine and compare the scaling properties for those renewable energy sources. We consider here coupling between simultaneous velocity time series and output power from a wind turbine and a marine current turbine. Wind turbine data were obtained from Denmark and marine current data from Western Scheldt, Belgium where a prototype of a vertical and horizontal marine current turbines are tested. After an estimation of their Fourier density power spectra, we study their scaling properties in Kolmogorov's theory and the framework of fully developed turbulence. Hence, we employ a Hilbert-based methodology, namely arbitrary-order Hilbert spectral analysis [Calif et al. 2013a, 2013b] to characterize the intermittent property of the wind and marine current velocity in order to characterize the intermittent nature of the fluid. This method is used in order to obtain the spectrum and the corresponding power law for non-linear and non-stationary time series. The goal is to study the non-linear transfer characteristics in a multi-scale and multi-intensity framework.

  10. Control Strategies for Smoothing of Output Power of Wind Energy Conversion Systems

    Science.gov (United States)

    Pratap, Alok; Urasaki, Naomitsu; Senju, Tomonobu

    2013-10-01

    This article presents a control method for output power smoothing of a wind energy conversion system (WECS) with a permanent magnet synchronous generator (PMSG) using the inertia of wind turbine and the pitch control. The WECS used in this article adopts an AC-DC-AC converter system. The generator-side converter controls the torque of the PMSG, while the grid-side inverter controls the DC-link and grid voltages. For the generator-side converter, the torque command is determined by using the fuzzy logic. The inputs of the fuzzy logic are the operating point of the rotational speed of the PMSG and the difference between the wind turbine torque and the generator torque. By means of the proposed method, the generator torque is smoothed, and the kinetic energy stored by the inertia of the wind turbine can be utilized to smooth the output power fluctuations of the PMSG. In addition, the wind turbines shaft stress is mitigated compared to a conventional maximum power point tracking control. Effectiveness of the proposed method is verified by the numerical simulations.

  11. Effect of Ultrasonic Output Power on Refining the Crystal Structures of Ingots and Its Experimental Simulation

    Institute of Scientific and Technical Information of China (English)

    Junwen LI; Tadashi MOMONO

    2005-01-01

    In this study, a series of tests were conducted by using aluminum-based alloy to determine the formation of grain refining structure based on the ultrasonic vibration (UV). Furthermore, the simulation test and effect of ultrasonic output power were studied using ammonium chloride. Finally, the mechanism of grain refinement was investigated.The results show that: (1) By applying the UV to aluminum-base alloy, the grain refining rate of ingots tended to increase with the increase of the output value of UV. (2) It was confirmed that time from after the pour to the beginning of crystallization as well as cloudiness tended to decrease with increasing the ultrasonic power value of UV. Moreover, it can be seen from each cooling curve that a uniform temperature gradient existed in the melt as the power of UV increased, that made the melt strongly stirred. (3) It was also considered that the grain refining effect of ingots, which was observed from the simulation tests, resulted from nucleation action and stirring division action by applying the UV.

  12. Techniques for increasing output power from mode-locked semiconductor lasers

    Energy Technology Data Exchange (ETDEWEB)

    Mar, A.; Vawter, G.A.

    1996-02-01

    Mode-locked semiconductor lasers have drawn considerable attention as compact, reliable, and relatively inexpensive sources of short optical pulses. Advances in the design of such lasers have resulted in vast improvements in pulsewidth and noise performance, at a very wide range of repetition rates. An attractive application for these lasers would be to serve as alternatives for large benchtop laser systems such as dye lasers and solid-state lasers. However, mode-locked semiconductor lasers have not yet approached the performance of such systems in terms of output power. Different techniques for overcoming the problem of low output power from mode-locked semiconductor lasers will be discussed. Flared and arrayed lasers have been used successfully to increase the pulse saturation energy limit by increasing the gain cross section. Further improvements have been achieved by use of the MOPA configuration, which utilizes a flared semiconductor amplifier s amplify pulses to energies of 120 pJ and peak powers of nearly 30W.

  13. Performance characteristics and output power stability of a multichannel fibre laser

    Science.gov (United States)

    Kuzmenkov, A. I.; Lukinykh, S. N.; Nanii, O. E.; Odintsov, A. I.; Smirnov, A. P.; Fedoseev, A. I.; Treshchikov, V. N.

    2016-09-01

    The effect of the density and number of spectral channels on the output power stability in a multichannel cw laser has been studied theoretically and experimentally. In our calculations, we used a model in which the interaction between channels due to gain medium saturation was determined by channel frequency spacingdependent cross-saturation coefficients. The key features of lasing have been analysed and illustrated by the examples of three-, fiveand nine-channel lasers. It has been shown that, at a given excess of the pump power over threshold, the channel powers can be equalised by introducing additional losses into the highest power channels. At a sufficiently high channel density, raising the pump power then leads to termination of lasing in the even channels. As the number of channels increases, the laser system retains its stability, but the time needed for the transition to a steady state increases sharply. In our experiments, we used an erbium-doped fibre laser whose design ensured independent control over the powers of up to 40 spectral channels anchored on the telecommunication frequency grid. Our experimental data are in qualitative agreement with the calculation results. In particular, a long-term relative instability less than 3 dB was only observed at a number of channels less than seven and channel frequency spacings above 400 GHz. Instability was shown to increase with an increase in the number and density of channels.

  14. A Simple MPPT Algorithm for Novel PV Power Generation System by High Output Voltage DC-DC Boost Converter

    DEFF Research Database (Denmark)

    Sanjeevikumar, Padmanaban; Grandi, Gabriele; Wheeler, Patrick

    2015-01-01

    This paper presents the novel topology of Photo Voltaic (PV) power generation system with simple Maximum Power Point Tracking (MPPT) algorithm in voltage operating mode. Power circuit consists of high output voltage DC-DC boost converter which maximizes the output of PV panel. Usually traditional...... of DC-DC converters for PV integration. Hence, to overcome these difficulties this paper investigates a DC-DC boost converter together with the additional parasitic component within the circuit to provide high output voltages for maximizing the PV power generation. The proposed power system circuit...... substantially improves the high output-voltage by a simple MPPT closed loop proportional-integral (P-I) controller, and requires only two sensor for feedback needs. The complete numerical model of the converter circuit along with PV MPPT algorithm is developed in numerical simulation (Matlab/Simulink) software...

  15. Functional Capacity, Muscle Fat Infiltration, Power Output, and Cognitive Impairment in Institutionalized Frail Oldest Old

    OpenAIRE

    Casas-Herrero, Alvaro; Eduardo L. Cadore; Zambom-Ferraresi, Fabricio; Idoate, Fernando; Millor, Nora; Martínez-Ramirez, Alicia; Gómez, Marisol; Rodriguez-Mañas, Leocadio; Marcellán, Teresa; de Gordoa, Ana Ruiz; Mário C. Marques; Izquierdo, Mikel

    2013-01-01

    This study examined the neuromuscular and functional performance differences between frail oldest old with and without mild cognitive impairment (MCI). In addition, the associations between functional capacities, muscle mass, strength, and power output of the leg muscles were also examined. Forty-three elderly men and women (91.9±4.1 years) were classified into three groups—the frail group, the frail with MCI group (frail+MCI), and the non-frail group. Strength tests were performed for upper ...

  16. Ferroelectric dipole electrets for output power enhancement in electrostatic vibration energy harvesters

    Science.gov (United States)

    Asanuma, Haruhiko; Oguchi, Hiroyuki; Hara, Motoaki; Yoshida, Ryo; Kuwano, Hiroki

    2013-10-01

    We propose a ferroelectric dipole electret composed of polarized lead zirconate titanate. Deep insight into the physics behind the parallel plate capacitor theoretically predicts that we can extract large electric field near the surface of the ferroelectric dipole electret by increasing its surface charge density and thickness. Experiment for ferroelectric dipole electret shows good agreement with the theory. The maximum output power density of electrostatic vibration energy harvesters using the ferroelectric dipole electret was 78 μW/cm3, a three-fold increase over a conventional polymer electret. Our results will pave the way for use of ferroelectrics as electrets.

  17. Zinc oxide integrated area efficient high output low power wavy channel thin film transistor

    KAUST Repository

    Hanna, A. N.

    2013-11-26

    We report an atomic layer deposition based zinc oxide channel material integrated thin film transistor using wavy channel architecture allowing expansion of the transistor width in the vertical direction using the fin type features. The experimental devices show area efficiency, higher normalized output current, and relatively lower power consumption compared to the planar architecture. This performance gain is attributed to the increased device width and an enhanced applied electric field due to the architecture when compared to a back gated planar device with the same process conditions.

  18. Efficiency at maximum power output of an irreversible Carnot-like cycle with internally dissipative friction.

    Science.gov (United States)

    Wang, Jianhui; He, Jizhou

    2012-11-01

    We investigate the efficiency at the maximum power output (EMP) of an irreversible Carnot engine performing finite-time cycles between two reservoirs at constant temperatures T(h) and T(c) (Carnot efficiency, whether the internally dissipative friction is considered or not. When dissipations of two "isothermal" and two "adiabatic" processes are symmetric, respectively, and the time allocation between the adiabats and the contact time with the reservoir satisfy a certain relation, the Curzon-Ahlborn (CA) efficiency η(CA) = 1-sqrt[T(c)/T(h)] is derived.

  19. Soft switching arc welding power source using output inductor as resonant inductor

    Institute of Scientific and Technical Information of China (English)

    陈树君; 王军; 卢振洋; 殷树言

    2002-01-01

    Full-bridge Zero-Voltage-Switch PWM converter combines advantages of the PWM control technique and resonant technique. However, Full ZVS is achieved only under large load current because resonant tank of this circuit is made up of the parasitic capacitance of the power semiconductors and the leakage inductor of the transformer primary. In this paper two saturable inductors as magnetic switches are added to secondary, so output inductor is always reflected to primary and assists resonant transition. Full ZVS is achieved under lower load current. The above-mentioned investigated results are validated by the computerized simulation and hardware circuit experiment.

  20. The Influence of Serial Carbohydrate Mouth Rinsing on Power Output during a Cycle Sprint.

    Science.gov (United States)

    Phillips, Shaun M; Findlay, Scott; Kavaliauskas, Mykolas; Grant, Marie Clare

    2014-05-01

    The objective of the study was to investigate the influence of serial administration of a carbohydrate (CHO) mouth rinse on performance, metabolic and perceptual responses during a cycle sprint. Twelve physically active males (mean (± SD) age: 23.1 (3.0) years, height: 1.83 (0.07) m, body mass (BM): 86.3 (13.5) kg) completed the following mouth rinse trials in a randomized, counterbalanced, double-blind fashion; 1. 8 x 5 second rinses with a 25 ml CHO (6% w/v maltodextrin) solution, 2. 8 x 5 second rinses with a 25 ml placebo (PLA) solution. Following mouth rinse administration, participants completed a 30 second sprint on a cycle ergometer against a 0.075 g·kg(-1) BM resistance. Eight participants achieved a greater peak power output (PPO) in the CHO trial, resulting in a significantly greater PPO compared with PLA (13.51 ± 2.19 vs. 13.20 ± 2.14 W·kg(-1), p sprint and lower for the remainder of the sprint compared with the PLA trial (p > 0.05). No significant between-trials difference was reported for fatigue index, perceived exertion, arousal and nausea levels, or blood lactate and glucose concentrations. Serial administration of a CHO mouth rinse may significantly improve PPO during a cycle sprint. This improvement appears confined to the first 5 seconds of the sprint, and may come at a greater relative cost for the remainder of the sprint. Key pointsThe paper demonstrates that repeated administration of a carbohydrate mouth rinse can significantly improve peak power output during a single 30 second cycle sprint.The ergogenic effect of the carbohydrate mouth rinse may relate to the duration of exposure of the oral cavity to the mouth rinse, and associated greater stimulation of oral carbohydrate receptors.The significant increase in peak power output with the carbohydrate mouth rinse may come at a relative cost for the remainder of the sprint, evidenced by non-significantly lower mean power output and a greater fatigue index in the carbohydrate vs. placebo

  1. Enhanced Power Output of a Triboelectric Nanogenerator Composed of Electrospun Nanofiber Mats Doped with Graphene Oxide

    Science.gov (United States)

    Huang, Tao; Lu, Mingxia; Yu, Hao; Zhang, Qinghong; Wang, Hongzhi; Zhu, Meifang

    2015-09-01

    We developed a book-shaped triboelectric nanogenerator (TENG) that consists of electrospun polyvinylidene fluoride (PVDF) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanofibers to effectively harvest mechanical energy. The dispersed graphene oxide in the PVDF nanofibers acts as charge trapping sites, which increased the interface for charge storage as well as the output performance of the TENG. The book-shaped TENG was used as a direct power source to drive small electronics such as LED bulbs. This study proved that it is possible to improve the performance of TENGs using composite materials.

  2. Maximal power output estimates the MLSS before and after aerobic training

    OpenAIRE

    Carolina Franco Wilke; Guilherme Passos Ramos; André Maia Lima; Christian Emmanuel Torres Cabido; Cristiano Lino Monteiro de Barros; Thiago Teixeira Mendes; Emerson Silami Garcia

    2014-01-01

    The purpose of this study is to present an equation to predict the maximal lactate steady state (MLSS) through a VO2peak incremental protocol. Twenty-six physically active men were divided in two groups (G1 and G2). They performed one maximal incremental test to determine their VO2peak and maximal power output (Wpeak), and also several constant intensity tests to determine MLSS intensity (MLSSw) on a cycle ergometer. Group G2 underwent six weeks of aerobic training at MLSSw. A regression equa...

  3. A non-endoreversible Otto cycle model: improving power output and efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Angulo-Brown, F. [Instituto Politecnico Nacional, Mexico City (Mexico). Escuela Superior de Fisica y Matematicas; Rocha-Martinez, J.A.; Navarrete-Gonzalez, T.D. [Universidad Autonoma Metropolitana-Azcapotzalco, Mexico City (Mexico). Dept. de Ciencias Basicas

    1996-01-14

    We propose a finite-time thermodynamics model for an Otto thermal cycle. Our model considers global losses in a simplified way lumped into a friction-like term, and takes into account the departure from an endoreversible regime through a parameter (R) arising from the Clausius inequality. Our numerical results suggest that the cycle`s power output and efficiency are very sensitive to that parameter. We find that R is the ratio of the constant-volume heat capacities of the reactants and products in the combustion reaction occurring inside the working fluid. Our results have implications in the search for new fuels for internal combustion engines. (author)

  4. Scaling of mechanical power output during burst escape flight in the Corvidae.

    Science.gov (United States)

    Jackson, Brandon E; Dial, Kenneth P

    2011-02-01

    Avian locomotor burst performance (e.g. acceleration, maneuverability) decreases with increasing body size and has significant implications for the survivorship, ecology and evolution of birds. However, the underlying mechanism of this scaling relationship has been elusive. The most cited mechanistic hypothesis posits that wingbeat frequency alone limits maximal muscular mass-specific power output. Because wingbeat frequency decreases with body size, it may explain the often-observed negative scaling of flight performance. To test this hypothesis we recorded in vivo muscular mechanical power from work-loop mechanics using surgically implanted sonomicrometry (measuring muscle length change) and strain gauges (measuring muscle force) in four species of Corvidae performing burst take-off and vertical escape flight. The scale relationships derived for the four species suggest that maximum muscle-mass-specific power scales slightly negatively with pectoralis muscle mass (M(-0.18)(m), 95% CI: -0.42 to 0.05), but less than the scaling of wingbeat frequency (M(-0.29)(m), 95% CI: -0.37 to -0.23). Mean muscle stress was independent of muscle mass (M(-0.02)(m), 95% CI: -0.20 to 0.19), but total muscle strain (percent length change) scaled positively (M(0.12)(m), 95% CI: 0.05 to 0.18), which is consistent with previous results from ground birds (Order Galliformes). These empirical results lend minimal support to the power-limiting hypothesis, but also suggest that muscle function changes with size to partially compensate for detrimental effects of size on power output, even within closely related species. Nevertheless, additional data for other taxa are needed to substantiate these scaling patterns.

  5. A simple approach to calculate active power of electrosurgical units

    Directory of Open Access Journals (Sweden)

    André Luiz Regis Monteiro

    Full Text Available Abstract Introduction: Despite of more than a hundred years of electrosurgery, only a few electrosurgical equipment manufacturers have developed methods to regulate the active power delivered to the patient, usually around an arbitrary setpoint. In fact, no manufacturer has a method to measure the active power actually delivered to the load. Measuring the delivered power and computing it fast enough so as to avoid injury to the organic tissue is challenging. If voltage and current signals can be sampled in time and discretized in the frequency domain, a simple and very fast multiplication process can be used to determine the active power. Methods This paper presents an approach for measuring active power at the output power stage of electrosurgical units with mathematical shortcuts based on a simple multiplication procedure of discretized variables – frequency domain vectors – obtained through Discrete Fourier Transform (DFT applied on time-sampled voltage and current vectors. Results Comparative results between simulations and a practical experiment are presented – all being in accordance with the requirements of the applicable industry standards. Conclusion An analysis is presented comparing the active power analytically obtained through well-known voltage and current signals against a computational methodology based on vector manipulation using DFT only for time-to-frequency domain transformation. The greatest advantage of this method is to determine the active power of noisy and phased out signals with neither complex DFT or ordinary transform methodologies nor sophisticated computing techniques such as convolution. All results presented errors substantially lower than the thresholds defined by the applicable standards.

  6. Effect of Temperature on Power Output from Different Commercially available Photovoltaic Modules

    Directory of Open Access Journals (Sweden)

    P K Dash

    2015-01-01

    Full Text Available Photovoltaic (PV modules are rated at standard test condition (STC i.e. at irradiance of 1000 W/m2 , temperature at 25 0C and solar spectrum of Air Mass 1.5G. The actual output from the PV module in the field varies from its rated output due to change in ambient environmental conditions from the STC. The reduction in output due to temperature is determined by temperature coefficient which varies with the different types of solar module technologies. In this study, temperature coefficient of different types of commercially available solar modules is evaluated. The testing has been carried out at PV test facility of Solar Energy Centre, New Delhi. The modules are selected randomly from various manufactures. It is found that the average temperature coefficient of power for mono-crystalline, multi-crystalline and CdTe based modules are -0.446 %/°C, -0.387 %/°C and -0.172 %/°C respectively. In case of amorphous silicon module, only one sample is measured and the temperature coefficient is -0.234 %/°C. This study shows that the temperature coefficient for mono crystalline silicon module is higher than the other types of solar modules. This study provides an understanding on the variation in energy generation due to temperature correction between different cell technologies.

  7. Ultra-Fast Tracking Power Supply with 4th order Output Filter and Fixed-Frequency Hysteretic Control

    DEFF Research Database (Denmark)

    Høyerby, Mikkel Christian Wendelboe; Andersen, Michael Andreas E.

    2008-01-01

    A practical solution is presented for the design of a non-isolated DC/DC power converter with very low output ripple voltage and very fast output voltage step response. The converter is intended for use as an envelope tracking power supply for an RFPA (Radio Frequency Power Amplifier) in a Tetra2...... base station. A simple and effective fixed-frequency hysteretic control scheme for the converter (buck with 4th order output filter) is developed and analyzed. The proposed approach is verified experimentally by a 500W output prototype, capable of delivering any voltage in the range of 10-30V within 10......μs with 10mVpp of output ripple and efficiencies in the 88- 95% range....

  8. Semi-fuel cell studies for powering underwater devices: integrated design for maximized net power output

    Science.gov (United States)

    Cardenas-Valencia, Andres M.; Short, R. Timothy; Adornato, Lori; Langebrake, Larry

    2010-04-01

    Use of sensor systems in water bodies has applications that range from environmental and oceanographic research to port and homeland security. Power sources are often the limiting component for further reduction of sensor system size and weight. We present recent investigations of metal-anode water-activated galvanic cells, specifically water-activated Alcells using inorganic alkali peroxides and solid organic oxidizers (heterocyclic halamines), in a semi-fuel cell configuration (i.e., with cathode species generated in situ and flow-through cells). The oxidizers utilized are inexpensive solid materials that are generally (1) safer to handle than liquid solutions or gases, (2) have inherently higher current and energy capacity (as they are not dissolved), and, (3) if appropriately packaged, will not degrade over time. The specific energy (S.E.) of Al-alkali peroxide was found to be 230 Wh/kg (460 Wh/kg, considering only active materials) in a seven-gram cell. Interestingly, when the cell size was increased (making more area of the catalytic cathode electrode available), the results from a single addition of water in an Al-organic oxidizer cell (weighing ~18 grams) showed an S.E. of about 200 Wh/kg. This scalability characteristic suggests that values in excess of 400 Wh/kg could be obtained in a semi-fuel-cell-like system. In this paper, we also present design considerations that take into account the energy requirements of the pumping devices and show that the proposed oxidizers, and the possible control of the chemical equilibrium of these cathodes in solution, may help reduce this power requirement and hence enhance the overall energetic balance.

  9. Determining the Frequency for Load-Independent Output Current in Three-Coil Wireless Power Transfer System

    Directory of Open Access Journals (Sweden)

    Longzhao Sun

    2015-09-01

    Full Text Available Conditions for load-independent output voltage or current in two-coil wireless power transfer (WPT systems have been studied. However, analysis of load-independent output current in three-coil WPT system is still lacking in previous studies. This paper investigates the output current characteristics of a three-coil WPT system against load variations, and determines the operating frequency to achieve a constant output current. First, a three-coil WPT system is modeled by circuit theory, and the analytical expression of the root-mean-square of the output current is derived. By substituting the coupling coefficients, the quality factor, and the resonant frequency of each coil, we propose a method of calculating the frequency for load-independent output current in a three-coil WPT system, which indicates that there are two frequencies that can achieve load-independent output current. Experiments are conducted to validate these analytical results.

  10. A High-Voltage class-D power amplifier with switching frequency regulation for improved high-efficiency output power range

    NARCIS (Netherlands)

    Ma, Haifeng; Zee, van der Ronan; Nauta, Bram

    2015-01-01

    This paper describes the power dissipation analysis and the design of an efficiency-improved high-voltage class-D power amplifier. The amplifier adaptively regulates its switching frequency for optimal power efficiency across the full output power range. This is based on detecting the switching outp

  11. Dynamic Output Feedback Power-Level Control for the MHTGR Based On Iterative Damping Assignment

    Directory of Open Access Journals (Sweden)

    Zhe Dong

    2012-06-01

    Full Text Available Because of its strong inherent safety features and high outlet temperature, the modular high temperature gas-cooled nuclear reactor (MHTGR is already seen as the central part of the next generation of nuclear plants. Such power plants are being considered for industrial applications with a wide range of power levels, and thus power-level control is an important technique for their efficient and stable operation. Stimulated by the high regulation performance provided by nonlinear controllers, a novel dynamic output-feedback nonlinear power-level regulator is developed in this paper based on the technique of iterative damping assignment (IDA. This control strategy can provide the L2 disturbance attenuation performance under modeling uncertainty or exterior disturbance, and can also guarantee the globally asymptotic closed-loop stability without uncertainty and disturbance. This newly built control strategy is then applied to the power-level regulation of the HTR-PM plant, and numerical simulation results show both the feasibility and high performance of this newly-built control strategy. Furthermore, the relationship between the values of the parameters and the performance of this controller is not only illustrated numerically but also analyzed theoretically.

  12. Efficiency at maximum power output of quantum heat engines under finite-time operation

    Science.gov (United States)

    Wang, Jianhui; He, Jizhou; Wu, Zhaoqi

    2012-03-01

    We study the efficiency at maximum power, ηm, of irreversible quantum Carnot engines (QCEs) that perform finite-time cycles between a hot and a cold reservoir at temperatures Th and Tc, respectively. For QCEs in the reversible limit (long cycle period, zero dissipation), ηm becomes identical to the Carnot efficiency ηC=1-Tc/Th. For QCE cycles in which nonadiabatic dissipation and the time spent on two adiabats are included, the efficiency ηm at maximum power output is bounded from above by ηC/(2-ηC) and from below by ηC/2. In the case of symmetric dissipation, the Curzon-Ahlborn efficiency ηCA=1-Tc/Th is recovered under the condition that the time allocation between the adiabats and the contact time with the reservoir satisfy a certain relation.

  13. Efficiency at maximum power output of quantum heat engines under finite-time operation.

    Science.gov (United States)

    Wang, Jianhui; He, Jizhou; Wu, Zhaoqi

    2012-03-01

    We study the efficiency at maximum power, η(m), of irreversible quantum Carnot engines (QCEs) that perform finite-time cycles between a hot and a cold reservoir at temperatures T(h) and T(c), respectively. For QCEs in the reversible limit (long cycle period, zero dissipation), η(m) becomes identical to the Carnot efficiency η(C)=1-T(c)/T(h). For QCE cycles in which nonadiabatic dissipation and the time spent on two adiabats are included, the efficiency η(m) at maximum power output is bounded from above by η(C)/(2-η(C)) and from below by η(C)/2. In the case of symmetric dissipation, the Curzon-Ahlborn efficiency η(CA)=1-√(T(c)/T(h)) is recovered under the condition that the time allocation between the adiabats and the contact time with the reservoir satisfy a certain relation.

  14. Quantum Coherent Three-Terminal Thermoelectrics: Maximum Efficiency at Given Power Output

    Directory of Open Access Journals (Sweden)

    Robert S. Whitney

    2016-05-01

    Full Text Available This work considers the nonlinear scattering theory for three-terminal thermoelectric devices used for power generation or refrigeration. Such systems are quantum phase-coherent versions of a thermocouple, and the theory applies to systems in which interactions can be treated at a mean-field level. It considers an arbitrary three-terminal system in any external magnetic field, including systems with broken time-reversal symmetry, such as chiral thermoelectrics, as well as systems in which the magnetic field plays no role. It is shown that the upper bound on efficiency at given power output is of quantum origin and is stricter than Carnot’s bound. The bound is exactly the same as previously found for two-terminal devices and can be achieved by three-terminal systems with or without broken time-reversal symmetry, i.e., chiral and non-chiral thermoelectrics.

  15. Effect of isokinetic cycling versus weight training on maximal power output and endurance performance in cycling.

    Science.gov (United States)

    Koninckx, Erwin; Van Leemputte, Marc; Hespel, Peter

    2010-07-01

    The aim of this study was to compare the effects of a weight training program for the leg extensors with isokinetic cycling training (80 rpm) on maximal power output and endurance performance. Both strength training interventions were incorporated twice a week in a similar endurance training program of 12 weeks. Eighteen trained male cyclists (VO(2peak) 60 +/- 1 ml kg(-1) min(-1)) were grouped into the weight training (WT n = 9) or the isokinetic training group (IT n = 9) matched for training background and sprint power (P (max)), assessed from five maximal sprints (5 s) on an isokinetic bicycle ergometer at cadences between 40 and 120 rpm. Crank torque was measured (1 kHz) to determine the torque distribution during pedaling. Endurance performance was evaluated by measuring power, heart rate and lactate during a graded exercise test to exhaustion and a 30-min performance test. All tests were performed on subjects' individual race bicycle. Knee extension torque was evaluated isometrically at 115 degrees knee angle and dynamically at 200 degrees s(-1) using an isokinetic dynamometer. P (max) at 40 rpm increased in both the groups (~15%; P < 0.05). At 120 rpm, no improvement of P (max) was found in the IT training group, which was possibly related to an observed change in crank torque at high cadences (P < 0.05). Both groups improved their power output in the 30-min performance test (P < 0.05). Isometric knee extension torque increased only in WT (P < 0.05). In conclusion, at low cadences, P (max) improved in both training groups. However, in the IT training group, a disturbed pedaling technique compromises an improvement of P (max) at high cadences.

  16. Logarithmic and power law input-output relations in sensory systems with fold-change detection.

    Science.gov (United States)

    Adler, Miri; Mayo, Avi; Alon, Uri

    2014-08-01

    Two central biophysical laws describe sensory responses to input signals. One is a logarithmic relationship between input and output, and the other is a power law relationship. These laws are sometimes called the Weber-Fechner law and the Stevens power law, respectively. The two laws are found in a wide variety of human sensory systems including hearing, vision, taste, and weight perception; they also occur in the responses of cells to stimuli. However the mechanistic origin of these laws is not fully understood. To address this, we consider a class of biological circuits exhibiting a property called fold-change detection (FCD). In these circuits the response dynamics depend only on the relative change in input signal and not its absolute level, a property which applies to many physiological and cellular sensory systems. We show analytically that by changing a single parameter in the FCD circuits, both logarithmic and power-law relationships emerge; these laws are modified versions of the Weber-Fechner and Stevens laws. The parameter that determines which law is found is the steepness (effective Hill coefficient) of the effect of the internal variable on the output. This finding applies to major circuit architectures found in biological systems, including the incoherent feed-forward loop and nonlinear integral feedback loops. Therefore, if one measures the response to different fold changes in input signal and observes a logarithmic or power law, the present theory can be used to rule out certain FCD mechanisms, and to predict their cooperativity parameter. We demonstrate this approach using data from eukaryotic chemotaxis signaling.

  17. Optimization of the output power of a pulsed gas laser by using magnetic pulse compression

    Science.gov (United States)

    Louhibi, D.; Ghobrini, Mourad; Bourai, K.

    1999-12-01

    In pulsed gas lasers, the excitation of the active medium is produced through the discharge of a storage capacitor. Performances of these lasers were essentially linked to the type of switch used and also to its mode of operation. Thyratrons are the most common switches. Nevertheless, their technological limitations do not allow a high repetition rate, necessary for optimization of the output power of this type of laser. These limitations can be surpassed by combining the thyratron to a one stage of a magnetic pulse compression circuit. The mpc driver can improve the laser excitation pulse rise time and increase the repetition rate, increasing the laser output power of pulsed gas laser such as; nitrogen, excimer and copper vapor lasers. We have proposed in this paper a new configuration of magnetic pulse compression, the magnetic switch is place in our case in the charge circuit, and while in the typical utilization of magnetic pulse compression, it is placed in the discharge circuit. In this paper, we are more particularly interested in the design and the modeling of a saturate inductance that represents the magnetic switch in the proposed configuration of a thyratron - mpc circuit combination.

  18. Amalgam Surface Treatment by Different Output Powers of Er:YAG Laser:SEM Evaluation.

    Science.gov (United States)

    Hosseini, Mohammad Hashem; Hassanpour, Mehdi; Etemadi, Ardavan; Ranjbar Omrani, Ladan; Darvishpour, Hojat; Chiniforush, Nasim

    2015-01-01

    The purpose of this study was to evaluate amalgam surfaces treated by different output powers of erbium-doped yttrium aluminum garnet (Er:YAG) laser by scanning electron microscope (SEM). Twenty-one amalgam blocks (8 mm × 8 mm, 3 mm thickness) were prepared by condensing silver amalgam (into putty impression material. After keeping them for 24 hours in distilled water, they were divided into 7 groups as follow: G1: Er:YAG laser (1 W, 50 mJ), G2: Er:YAG laser (2 W, 100 mJ), G3: Er:YAG laser (3 W, 150 mJ), G4: Sandblast, G5: Sandblast + Er:YAG laser (1 W, 50 mJ), G6: Sandblast +Er:YAG laser (2 W, 100 mJ) and G7: Sandblast +Er:YAG laser (3 W, 150 mJ). Then after preparation of all samples, they were examined by SEM. The SEM results of amalgam surfaces treated by different output powers of Er:YAG laser showed some pitting areas with non-homogenous irregularities Conclusion: It seems that the application of sandblasting accompanied by Er:YAG laser irradiation can provide proper surface for bonding of orthodontic brackets.

  19. The role of sense of effort on self-selected cycling power output

    Directory of Open Access Journals (Sweden)

    Ryan James Christian

    2014-03-01

    Full Text Available Purpose: We explored the effects of the sense of effort and accompanying perceptions of peripheral discomfort on self-selected cycle power output under two different inspired O2 fractions.Methods: On separate days, eight trained males cycled for 5 minutes at a constant subjective effort (sense of effort of ‘3’ on a modified Borg CR10 scale, immediately followed by five 4-s progressive submaximal (sense of effort of 4, 5, 6, 7 and 8; 40 s between bouts and two 4-s maximal (sense of effort of 10; 3 min between bouts bouts under normoxia (NM: fraction of inspired O2 [FiO2] 0.21 and hypoxia (HY: [FiO2] 0.13. Physiological (Heart Rate, arterial oxygen saturation (SpO2 and quadriceps Root Mean Square (RMS electromyographical activity and perceptual responses (overall peripheral discomfort, difficulty breathing and limb discomfort were recorded.Results: Power output and normalized quadriceps RMS activity were not different between conditions during any exercise bout (p > 0.05 and remained unchanged across time during the constant-effort cycling. SpO2 was lower, while heart rate and ratings of perceived difficulty breathing were higher under HY, compared to NM, at all time points (p

  20. Enhancement of output power in spin torque nano-oscillator using heterogeneous layer

    Energy Technology Data Exchange (ETDEWEB)

    Bhoomeeswaran, H.; Sabareesan, P., E-mail: sendtosabari@gmail.com [Centre for Nonlinear Science and Engineering, School of Electrical and Electronics Engineering, SASTRA University, Thanjavur - 613 401 (India)

    2016-05-23

    The article mainly focuses on the enrichment of the output power obtained from Spin torque nano-oscillator by introducing the heterogeneous structure in multilayer nanopillar device. Here we devised two homogeneous and two heterogeneous devices having NiFe and Co materials. The dynamics of the devices are governed by a famous Landu- Lifshitz -Gilbert-Solencskwei (LLGS) equation which can be solved numerically using embedded RK-4 procedure. The current density and the external magnetic field for four devices are taken as 5×l0{sup 11}A/m{sup 2} and 6×l0{sup −3} A/m respectively. The applied dc current is converted into spin polarized dc current while it passes through pinned layer. The generated spin polarized dc currents produces spin transfer torque with the free layer magnetization via spacer. Thus the magnetization of the free layer gets a sustained oscillation. The results obtained from the heterogeneous STNOs are really fascinating. The frequency of the NiFe/ Cu/NiFe and Co/Cu/NiFe devices have the same frequency but there is a tremendous change in the output power which is exactly twice that the NiFe/Cu/NiFe device. The similar behaviour is also obtained from Co/Cu/Co and NiFe/Cu/Co devices. The line width and the Q-factor of the output microwave signal are also computed. Among the four devices, the NiFe/Cu/Co heterogeneous device has low linewidth (408 MHz) and high Q-factor (4.77).

  1. The effects of cold-water immersion on power output and heart rate in elite cyclists.

    Science.gov (United States)

    Schniepp, Jason; Campbell, Teri S; Powell, Kasey L; Pincivero, Danny M

    2002-11-01

    The purpose of this study was to examine the effects of cold-water immersion on power output, heart rate, and time to peak power in 10 well-trained cyclists. The Compu-trainer Professional Model 8001 computerized stationary trainer was used to evaluate maximum power, average power, and time to peak power during a simulated cycling sprint. The heart rate was measured using a Polar heart rate monitor. Subjects performed 2 maximum-effort sprints (for approximately 30 seconds) separated by either an experimental condition (15 minutes of cold-water immersion at 12 degrees C up to the level of the iliac crest) or a control condition (15 minutes of quiet sitting). All subjects participated under both control and experimental conditions in a counterbalanced design in which 5 subjects performed the experimental condition first and the other 5 subjects performed the control condition first. Each condition was separated by at least 2 days. The time to peak power was not different between the 2 conditions. Maximum and average powers declined by 13.7 and 9.5% for the experimental condition but only by 4.7 and 2.3% for the control condition, respectively. The results also demonstrated a significantly greater decline in maximum heart rate after cold-water immersion (8.1%) than under the control condition (2.4%). Average heart rate showed a decrease of 4.2% under the experimental condition, as compared with an increase of 1.5% under the control condition. The major findings of this study suggest that a relatively brief period of cold-water immersion can manifest significant physiological effects that can impair cycling performance.

  2. Monitoring dental-unit-water-line output water by current in-office test kits.

    Science.gov (United States)

    Lal, Sham; Singhrao, Sim K; Bricknell, Matt; Pearce, Mark; Morton, L H Glyn; Ahmed, Waqar; Crean, St John

    2014-08-01

    The importance of monitoring contamination levels in the output water of dental-unit-water-lines (DUWLs) is essential as they are prone to developing biofilms that may contaminate water that is used to treat patients, with opportunistic pathogens such as species of Legionella, Pseudomonas and others. Dentists and practice staff are also at risk of being infected by means of cross-infection due to aerosols generated from DUWL water. The unit of measurement for the microbial contamination of water by aerobic mesophilic heterotrophic bacteria is the colony-forming unit per millilitre (cfu/ml) of water. The UK has its own guidelines set by the Department of Health for water discharged from DUWL to be between 100 and 200 cfu/ml of water. The benchmark or accepted standard laboratory test is by microbiological culture on R2A agar plates. However, this is costly and not convenient for routine testing in dental practices. A number of commercial indicator tests are used in dental surgeries, but they were not developed for the dental market and serve only to indicate gross levels of contamination when used outside of the manufacturer's recommended incubation period. The aim of this article is to briefly review the universal problem of DUWL contamination with microbial biofilms and to update dental professionals on the availability of currently available commercial in-office monitoring systems for aerobic mesophilic heterotrophic bacteria and to discuss their limitations for testing water samples in assuring compliance with recommended guidelines.

  3. Probabilistic Physics-Based Risk Tools Used to Analyze the International Space Station Electrical Power System Output

    Science.gov (United States)

    Patel, Bhogila M.; Hoge, Peter A.; Nagpal, Vinod K.; Hojnicki, Jeffrey S.; Rusick, Jeffrey J.

    2004-01-01

    This paper describes the methods employed to apply probabilistic modeling techniques to the International Space Station (ISS) power system. These techniques were used to quantify the probabilistic variation in the power output, also called the response variable, due to variations (uncertainties) associated with knowledge of the influencing factors called the random variables. These uncertainties can be due to unknown environmental conditions, variation in the performance of electrical power system components or sensor tolerances. Uncertainties in these variables, cause corresponding variations in the power output, but the magnitude of that effect varies with the ISS operating conditions, e.g. whether or not the solar panels are actively tracking the sun. Therefore, it is important to quantify the influence of these uncertainties on the power output for optimizing the power available for experiments.

  4. Expanded all-optical programmable logic array based on multi-input/output canonical logic units.

    Science.gov (United States)

    Lei, Lei; Dong, Jianji; Zou, Bingrong; Wu, Zhao; Dong, Wenchan; Zhang, Xinliang

    2014-04-21

    We present an expanded all-optical programmable logic array (O-PLA) using multi-input and multi-output canonical logic units (CLUs) generation. Based on four-wave mixing (FWM) in highly nonlinear fiber (HNLF), two-input and three-input CLUs are simultaneously achieved in five different channels with an operation speed of 40 Gb/s. Clear temporal waveforms and wide open eye diagrams are successfully observed. The effectiveness of the scheme is validated by extinction ratio and optical signal-to-noise ratio measurements. The computing capacity, defined as the total amount of logic functions achieved by the O-PLA, is discussed in detail. For a three-input O-PLA, the computing capacity of the expanded CLUs-PLA is more than two times as large as that of the standard CLUs-PLA, and this multiple will increase to more than three and a half as the idlers are individually independent.

  5. Enhancement of the output power of terahertz folded waveguide oscillator by two parallel electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ke, E-mail: like.3714@163.com; Cao, Miaomiao, E-mail: mona486@yeah.net [Key Laboratory of High Power Microwave Sources and Technologies, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100190 (China); Liu, Wenxin, E-mail: lwenxin@mail.ie.ac.cn; Wang, Yong, E-mail: wangyong3845@sina.com [Key Laboratory of High Power Microwave Sources and Technologies, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190 (China); Liao, Suying, E-mail: suying-liao@163.com [Air Force Airborne Academy, Guilin, Guangxi 541003 (China)

    2015-11-15

    A novel two-beam folded waveguide (FW) oscillator is presented for the purpose of gaining higher power with a small-size circuit compared with the normal FW oscillator. The high-frequency characteristics of the two-beam FW, including dispersion and interaction impedance, were investigated by the numerical simulation and compared with the one-beam FW. The radio-frequency loss of the two-beam FW was also analyzed. A 3-D particle-in-cell code CHIPIC was applied to analyze and optimize the performance of a G-band two-beam FW oscillator. The influences of the distance between the two beam tunnels, beam voltage, the number of periods, magnetic field, radius of beam tunnel, and the packing ratio on the circuit performance are investigated in detail. Compared with a one-beam circuit, a larger output power of the two-beam circuit with the same beam power was observed by the simulation. Moreover, the start-oscillation current of two-beam circuit is much lower than the one-beam circuit with better performance. It will favor the miniaturized design of the high-power terahertz oscillator.

  6. Maximal power output during incremental cycling test is dependent on the curvature constant of the power-time relationship.

    Science.gov (United States)

    Souza, Kristopher Mendes; de Lucas, Ricardo Dantas; do Nascimento Salvador, Paulo Cesar; Guglielmo, Luiz Guilherme Antonacci; Caritá, Renato Aparecido Corrêa; Greco, Camila Coelho; Denadai, Benedito Sérgio

    2015-09-01

    The aim of this study was to investigate whether the maximal power output (Pmax) during an incremental test was dependent on the curvature constant (W') of the power-time relationship. Thirty healthy male subjects (maximal oxygen uptake = 3.58 ± 0.40 L·min(-1)) performed a ramp incremental cycling test to determine the maximal oxygen uptake and Pmax, and 4 constant work rate tests to exhaustion to estimate 2 parameters from the modeling of the power-time relationship (i.e., critical power (CP) and W'). Afterwards, the participants were ranked according to their magnitude of W'. The median third was excluded to form a high W' group (HIGH, n = 10), and a low W' group (LOW, n = 10). Maximal oxygen uptake (3.84 ± 0.50 vs. 3.49 ± 0.37 L·min(-1)) and CP (213 ± 22 vs. 200 ± 29 W) were not significantly different between HIGH and LOW, respectively. However, Pmax was significantly greater for the HIGH (337 ± 23 W) than for the LOW (299 ± 40 W). Thus, in physically active individuals with similar aerobic parameters, W' influences the Pmax during incremental testing.

  7. 14 CFR 23.1142 - Auxiliary power unit controls.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Auxiliary power unit controls. 23.1142... Powerplant Controls and Accessories § 23.1142 Auxiliary power unit controls. Means must be provided on the... power unit....

  8. 21 CFR 890.5950 - Powered heating unit.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Powered heating unit. 890.5950 Section 890.5950...) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5950 Powered heating unit. (a) Identification. A powered heating unit is a device intended for medical purposes...

  9. Modelling of the kinetics and parametric behaviour of a copper vapour laser: Output power limitation issues

    Energy Technology Data Exchange (ETDEWEB)

    Carman, R.J. [Centre for Lasers and Applications, Macquarie University, North Ryde, Sydney, New South Wales 2109 (Australia)

    1997-07-01

    A self-consistent computer model was used to simulate the plasma kinetics (radially resolved) and parametric behaviour of an 18 mm bore (6 W) copper vapour laser for a wide range of optimum and non-optimum operating conditions. Good quantitative agreement was obtained between modelled results and experimental data including the temporal evolution of the 4p{sup 2}P{sub 3/2}, 4s{sup 2} {sup 2}D{sub 5/2} and 4s{sup 2}{sup 2}D{sub 3/2} Cu laser level populations derived from hook method measurements. The modelled results show that the two most important parameters that affect laser behaviour are the ground state copper density and the peak electron temperature T{sub e}. For a given pulse repetition frequency (prf), maximum laser power is achieved by matching the copper atom density to the input pulse energy thereby maintaining the peak T{sub e} at around 3 eV. However, there is a threshold wall temperature (and copper density) above which the plasma tube becomes thermally unstable. At low prf ({lt}8 kHz), this thermal instability limits the attainable copper density (and consequently the laser output power) to values below the optimum for matching to the input pulse energy. For higher prf values ({gt}8 kHz), the copper density can be matched to the input pulse energy to give maximum laser power because the corresponding wall temperature then falls below the threshold temperature for thermal instability. For prf {gt}14 kHz, the laser output becomes highly annular across the tube diameter due to a severe depletion of the copper atom density on axis caused by radial ion pumping. {copyright} {ital 1997 American Institute of Physics.}

  10. Determination of the peak power output during maximal brief pedalling bouts.

    Science.gov (United States)

    Nakamura, Y; Mutoh, Y; Miyashita, M

    1985-01-01

    The purpose of this study was to propose an optimization procedure for determining power output during very brief maximal pedalling exercise. Twenty-six healthy male students (21-28 years) performed anaerobic tests on a Monark bicycle ergometer with maximal effort for less than 10 s at eight different loads ranging from 28.1 to 84.2 Nm in pedalling moment. The maximal pedalling rate was determined from the minimal time required for one rotation of the cycle wheel. Pedalling rate decreased linearly with the load. The relationship between load and pedalling rate was represented by two linear regression equations for each subject; one regression equation was determined from eight pairs of pedalling rates and loads (r less than -0.976) and the other from three pairs (at 28.1, 46.8, 65.5 Nm; r less than -0.969). The two regression coefficients of the respective regression equations were almost identical. Mean +/- S.D. of maximal power output (Pmax) which was determined for each subject based on the two linear regression equations for eight pairs and three pairs of pedalling rates and loads was 930 +/- 187 W (13.4 +/- 1.6 W kgBW-1) and 927 +/- 187 W (13.4 +/- 1.6 W kgBW-1), respectively. There was no statistically significant difference between the values of Pmax which were obtained from each equation. It was concluded that maximal anaerobic power could be simply determined by performing maximal cycling exercise at three different loads.

  11. Flexible, transparent and exceptionally high power output nanogenerators based on ultrathin ZnO nanoflakes

    Science.gov (United States)

    van Ngoc, Huynh; Kang, Dae Joon

    2016-02-01

    Novel nanogenerator structures composed of ZnO nanoflakes of less than 10 nm thickness were fabricated using a novel method involving a facile synthetic route and a rational design. The fabricated nanogenerators exhibited a short-circuit current density of 67 μA cm-2, a peak-to-peak open-circuit voltage of 110 V, and an overall output power density exceeding 1.2 mW cm-2, and to the best of our knowledge, these are the best values that have been reported so far in the literature on ZnO-based nanogenerators. We demonstrated that our nanogenerator design could instantaneously power 20 commercial green light-emitting diodes without any additional energy storage processes. Both the facile synthetic route for the ZnO nanoflakes and the straightforward device fabrication process present great scaling potential in order to power mobile and personal electronics that can be used in smart wearable systems, transparent and flexible devices, implantable telemetric energy receivers, electronic emergency equipment, and other self-powered nano/micro devices.Novel nanogenerator structures composed of ZnO nanoflakes of less than 10 nm thickness were fabricated using a novel method involving a facile synthetic route and a rational design. The fabricated nanogenerators exhibited a short-circuit current density of 67 μA cm-2, a peak-to-peak open-circuit voltage of 110 V, and an overall output power density exceeding 1.2 mW cm-2, and to the best of our knowledge, these are the best values that have been reported so far in the literature on ZnO-based nanogenerators. We demonstrated that our nanogenerator design could instantaneously power 20 commercial green light-emitting diodes without any additional energy storage processes. Both the facile synthetic route for the ZnO nanoflakes and the straightforward device fabrication process present great scaling potential in order to power mobile and personal electronics that can be used in smart wearable systems, transparent and flexible

  12. A clinical survey of the output intensity of 200 light curing units in dental offices across Maharashtra

    Directory of Open Access Journals (Sweden)

    Hegde Vivek

    2009-01-01

    Full Text Available Aim: The purpose of this study is to examine the intensity of light curing units and factors affecting it in dental offices. Materials and Methods: The output intensity of 200 light curing units in dental offices across Maharashtra were examined. The collection of related information (thenumber of months of use of curing unit, the approximate number of times used in a day, and presence or absence of composite build-ups and measurement of the intensity was performed by two operators. L.E.D Radiometer (Kerr was used for measuring the output intensity. The average output intensity was divided into three categories (< 200 mW/cm 2 , 200-400 mW/ cm 2 and> 400 mW/cm 2 . Results: Among the 200 curing units examined, 81 were LED units and 119 were QTH units. Only 10% LED machines and 2% QTH curing units had good intensities (>400 mW/cm 2 . Conclusion: Most of the examined curing lights had low output intensity ranging from 200 to 400 mW/cm 2 , and most of the curing units had composite build-ups on them.

  13. Comparison of nine theoretical models for estimating the mechanical power output in cycling

    Science.gov (United States)

    González‐Haro, Carlos; Ballarini, P A Galilea; Soria, M; Drobnic, F; Escanero, J F

    2007-01-01

    Objective To assess which of the equations used to estimate mechanical power output for a wide aerobic range of exercise intensities gives the closest value to that measured with the SRM training system. Methods Thirty four triathletes and endurance cyclists of both sexes (mean (SD) age 24 (5) years, height 176.3 (6.6) cm, weight 69.4 (7.6) kg and Vo2max 61.5 (5.9) ml/kg/min) performed three incremental tests, one in the laboratory and two in the velodrome. The mean mechanical power output measured with the SRM training system in the velodrome tests corresponding to each stage of the tests was compared with the values theoretically estimated using the nine most referenced equations in literature (Whitt (Ergonomics 1971;14:419–24); Di Prampero et al (J Appl Physiol 1979;47:201–6); Whitt and Wilson (Bicycling science. Cambridge: MIT Press, 1982); Kyle (Racing with the sun. Philadelphia: Society of Automotive Engineers, 1991:43–50); Menard (First International Congress on Science and Cycling Skills, Malaga, 1992); Olds et al (J Appl Physiol 1995;78:1596–611; J Appl Physiol 1993;75:730–7); Broker (USOC Sport Science and Technology Report 1–24, 1994); Candau et al (Med Sci Sports Exerc 1999;31:1441–7)). This comparison was made using the mean squared error of prediction, the systematic error and the random error. Results The equations of Candau et al, Di Prampero et al, Olds et al (J Appl Physiol 1993;75:730–7) and Whitt gave a moderate mean squared error of prediction (12.7%, 21.6%, 13.2% and 16.5%, respectively) and a low random error (0.5%, 0.6%, 0.7% and 0.8%, respectively). Conclusions The equations of Candau et al and Di Prampero et al give the best estimate of mechanical power output when compared with measurements obtained with the SRM training system. PMID:17341588

  14. A high power, Coated Particle Fuel Compact Radioisotope Heat Unit

    Science.gov (United States)

    King, Jeffrey C.; El-Genk, Mohamed S.

    2001-02-01

    A Coated Particle Fuel Compact, Radioisotope Heater Unit (CPFC-RHU) is proposed, which is capable of generating thermal power in excess of 27 W. This power output is more than four times that of a Hexa-RHU, which generates only six watts of thermal power. The design of the CPFC-RHU is identical to that of the Hexa-RHU, except that the six Pt-30Rh clad fuel pellets and the POCO graphite support in the latter are replaced with single-sized, ZrC coated, 238PuO2 fuel particles ~500 μm in diameter. In addition to fully retaining the helium gas generated by the radioactive decay of the fuel, the CPFC offers promise for enhanced safety. Thermal analyses of the CPFC-RHU show that while the Hexa-RHU is suitable for use in a radioisotope power system (RPS) operating at a converter hot-side temperature of 473 K, the CPFC-RHU could also be used at higher temperatures of 773 K and 973 K with a thermal efficiency >60%. Even at a 473 K converter hot-side temperature, the CPFC-RHU offers higher thermal efficiency (>90%) than the Hexa-RHU (~75%). The CPFC-RHU final design provides constant temperature, with almost uniform radial heat flux to the converter, for enhanced performance, better integration, and higher overall efficiency of the RPS. The present CPFC-RHU fills a gap in the power needs for future space missions requiring electric power of 1-15 W, from a single RPS. .

  15. Suction power output and the inertial cost of rotating the neurocranium to generate suction in fish.

    Science.gov (United States)

    Van Wassenbergh, Sam; Day, Steven W; Hernández, L Patricia; Higham, Timothy E; Skorczewski, Tyler

    2015-05-07

    To expand the buccal cavity, many suction-feeding fishes rely on a considerable contribution from dorsal rotation of the dorsal part of the head including the brains, eyes, and several bones forming the braincase and skull roof (jointly referred to as the neurocranium). As the neurocranium takes up a large part of the total mass of the head, this rotation may incur a considerable inertial cost. If so, this would suggest a significant selective pressure on the kinematics and mass distribution of the neurocranium of suction feeders. Here, an inverse dynamic model is formulated to calculate the instantaneous power required to rotate the neurocranium, approximated by a quarter ellipsoid volume of homogeneous density, as well as to calculate the instantaneous suction power based on intra-oral pressure and head volume quantifications. We applied this model to largemouth bass (Micropterus salmoides) and found that the power required to rotate the neurocranium accounts for only about 4% of the power required to suck water into the mouth. Furthermore, recovery of kinetic energy from the rotating neurocranium converted into suction work may be possible during the phase of neurocranial deceleration. Thus, we suggest that only a negligible proportion of the power output of the feeding muscles is lost as inertial costs in the largemouth bass. Consequently, the feeding performance of piscivorous suction feeders with generalised morphology, comparable to our model species, is not limited by neurocranial motion during head expansion. This suggests that it is thus not likely to be a factor of importance in the evolution of cranial shape and size. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Functional Capacity, Muscle Fat Infiltration, Power Output, and Cognitive Impairment in Institutionalized Frail Oldest Old

    Science.gov (United States)

    Casas-Herrero, Alvaro; Cadore, Eduardo L.; Zambom-Ferraresi, Fabricio; Idoate, Fernando; Millor, Nora; Martínez-Ramirez, Alicia; Gómez, Marisol; Rodriguez-Mañas, Leocadio; Marcellán, Teresa; de Gordoa, Ana Ruiz; Marques, Mário C.

    2013-01-01

    Abstract This study examined the neuromuscular and functional performance differences between frail oldest old with and without mild cognitive impairment (MCI). In addition, the associations between functional capacities, muscle mass, strength, and power output of the leg muscles were also examined. Forty-three elderly men and women (91.9±4.1 years) were classified into three groups—the frail group, the frail with MCI group (frail+MCI), and the non-frail group. Strength tests were performed for upper and lower limbs. Functional tests included 5-meter habitual gait, timed up-and-go (TUG), dual task performance, balance, and rise from a chair ability. Incidence of falls was assessed using questionnaires. The thigh muscle mass and attenuation were assessed using computed tomography. There were no differences between the frail and frail+MCI groups for all the functional variables analyzed, except in the cognitive score of the TUG with verbal task, which frail showed greater performance than the frail+MCI group. Significant associations were observed between the functional performance, incidence of falls, muscle mass, strength, and power in the frail and frail+MCI groups (r=−0.73 to r=0.83, p<0.01 to p<0.05). These results suggest that the frail oldest old with and without MCI have similar functional and neuromuscular outcomes. Furthermore, the functional outcomes and incidences of falls are associated with muscle mass, strength, and power in the frail elderly population. PMID:23822577

  17. The Measurement of Maximal (Anaerobic Power Output on a Cycle Ergometer: A Critical Review

    Directory of Open Access Journals (Sweden)

    Tarak Driss

    2013-01-01

    Full Text Available The interests and limits of the different methods and protocols of maximal (anaerobic power ( assessment are reviewed: single all-out tests versus force-velocity tests, isokinetic ergometers versus friction-loaded ergometers, measure of during the acceleration phase or at peak velocity. The effects of training, athletic practice, diet and pharmacological substances upon the production of maximal mechanical power are not discussed in this review mainly focused on the technical (ergometer, crank length, toe clips, methodological (protocols and biological factors (muscle volume, muscle fiber type, age, gender, growth, temperature, chronobiology and fatigue limiting in cycling. Although the validity of the Wingate test is questionable, a large part of the review is dedicated to this test which is currently the all-out cycling test the most often used. The biomechanical characteristics specific of maximal and high speed cycling, the bioenergetics of the all-out cycling exercises and the influence of biochemical factors (acidosis and alkalosis, phosphate ions… are recalled at the beginning of the paper. The basic knowledge concerning the consequences of the force-velocity relationship upon power output, the biomechanics of sub-maximal cycling exercises and the study on the force-velocity relationship in cycling by Dickinson in 1928 are presented in Appendices.

  18. Study on electrical power output of floating photovoltaic and conventional photovoltaic

    Science.gov (United States)

    Azmi, Mohd Syahriman Mohd; Othman, Mohd Yusof Hj.; Ruslan, Mohd Hafidz Hj.; Sopian, Kamaruzzaman; Majid, Zafri Azran Abdul

    2013-11-01

    In this paper, several attempt were made to investigate the best electrical performance of a floating photovoltaic (FPV). In photovoltaic (PV) system, the electrical efficiency of the system decreases rapidly as the PV module temperature increases. Therefore, in order to achieve higher electrical efficiency, the PV module have to be cooled by removing the heat in some way. This paper presents study on a conventional photovoltaic (PV) module and floating photovoltaic (FPV) system. The objective of the study is to compare the performance of conventional PV module and FPV. At FPV, an absorber comprises of aluminum flat-box housing was attached to the back of the PV module to absorb heat. Water is used to cool the PV module by passing it under the bottom surface of the module. The system was tested under simulated solar intensity of 417 W/m2, 667 W/m2 and 834 W/m2. Current (I) - voltage (V) curves and power (P) - voltage (V) curves of the results were analyzed. The study found that the FPV has higher efficiency and total power gain than the conventional PV module. The average PV temperature in a FPV might be lower than that for a conventional PV module, thereby increasing its electrical power output. The simplicity of the system structure and aluminum as the chosen material enabled it to reduce the installation costs for a larger scale. Applicable as heat sink, this FPV system is convenient to place on lakes, ponds or rivers.

  19. A Power-Efficient Soft-Output Detector for Spatial-Multiplexing MIMO Communications

    Directory of Open Access Journals (Sweden)

    Hsiao-Chi Wang

    2012-01-01

    Full Text Available VLSI implementation of a configurable power-efficient MIMO detector is proposed to support 4×4 spatial multiplexing and modulation from QPSK to 64-QAM. A novel tree search algorithm is proposed to enable the detector to provide soft outputs and to be implemented in parallel and pipelined hardware architecture. The frame error rate (FER of the detector approaches the quasi-optimal sphere decoder, with 0.5-dB degradation. Moreover, the proposed detector can operate at the optimal voltage under different configurations and detect/recover timing error at run time by a novel adaptive voltage scaling technique with double sampling circuitry. The proposed detector, using TSMC 0.18 μm single-poly six-metal CMOS process with a core area of 1.17×1.17 mm2, provides fixed throughput of 45 Mbps in 64-QAM configuration, 120 Mbps in 16-QAM configuration, and 60 Mbps in QPSK configuration. The normalized power efficiency of the design for 64-QAM and 16-QAM configurations is 1.56 Mbps/mW and 2.53 Mbps/mW, respectively. Compared with the conservative margin-based design, the proposed design achieves a 48.8% power saving.

  20. Nanogenerator power output: influence of particle size and crystallinity of BaTiO3

    Science.gov (United States)

    Nutal Schädli, Gian; Büchel, Robert; Pratsinis, Sotiris E.

    2017-07-01

    Lead-free piezoelectric nanogenerators made with BaTiO3 offer an attractive energy harvesting solution towards portable, battery-free medical devices such as self-powered pacemakers. Here, we assembled nanogenerators made of thin, flexible poly(vinylidene fluoride-co-hexafluoropropylene) films containing either polycrystalline BaTiO3 nanoparticles of various sizes or commercial monocrystalline particles of 64 or 278 nm in average diameter. The nanoparticles were prepared by hydrogen-driven flame aerosol technology and had an average diameter of 24-50 nm with an average crystal size of about 10 nm. The rapid cooling during nanoparticle formation facilitated the synthesis of polycrystalline, multi-domain, piezoelectrically active tetragonal BaTiO3 with a high c/a lattice ratio. Using these particles, 2 μm thin polymer nanocomposites were formed, assembled into nanogenerators that exhibited a 1.4 V time-averaged output, almost twice that of the best commercial BaTiO3 particles. That output was maintained stable for over 45 000 cycles with each cycle corresponding to a heartbeat of 60 bpm. The exceptional piezoelectric performance of these nanogenerators is traced to their constituent polycrystalline nanoparticles, having high degree of domain orientation upon poling and exhibiting the flexoelectric effect, polarization induced by a strain gradient.

  1. Design of spherical electron gun for ultra high frequency, CW power inductive output tube

    Energy Technology Data Exchange (ETDEWEB)

    Kaushik, Meenu, E-mail: mkceeri@gmail.com; Joshi, L. M., E-mail: lmj1953@gmail.com [Microwave Tubes Division, CSIR-Central Electronics Engineering Research Institute (CEERI), Pilani, Rajasthan (India); Academy of Scientific and Innovative Research (AcSIR), New Delhi (India)

    2016-03-09

    Inductive Output Tube (IOT) is an amplifier that usually operates in UHF range. It is an electron tube whose basic structure is similar to conventional vacuum devices. This device is widely used in broadcast applications but is now being explored for scientific applications also specifically, particle accelerators and fusion plasma heating purposes. The paper describes the design approach of a spherical gridded electron gun of a 500 MHz, 100 kW CW power IOT. The electron gun structure has been simulated and optimized for operating voltage and current of 40kV and 3.5 A respectively. The electromagnetic analysis of this spherical electron gun has been carried out in CST and TRAK codes.

  2. Beam quality of InGaAs ridge lasers at high output power.

    Science.gov (United States)

    Hunziker, G; Harder, C

    1995-09-20

    The nonlinear behavior of the light-current characteristic of single quantum well, graded-index-separateheterostructure ridge laser diodes emitting at 980 nm is investigated. We have measured the beam-quality factor |M|(2) as a function of the output power, under continuous-wave and transient conditions.The time constant associated with beam degradation under the transient condition suggests that the temperature profile in the cavity plays a significant role in the lateral guiding of the lasing modes. The two-dimensional heat equation is solved for the device, and the time-resolved thermally induced refractive-index profile is computed. There is excellent agreement between the time required to reach a steady index profile and that required to degrade the beam. The small beam astigmatism (typically 2 µm) measured under CW operating conditions in the linear regime indicates that the mode is essentially index guided, which permits simple quantitative modeling of the waveguide.

  3. Performance and stress analysis of oxide thermoelectric module architecture designed for maximum power output

    DEFF Research Database (Denmark)

    Wijesekara, Waruna; Rosendahl, Lasse; Wu, NingYu;

    Oxide thermoelectric materials are promising candidates for energy harvesting from mid to high temperature heat sources. In this work, the oxide thermoelectric materials and the final design of the high temperature thermoelectric module were developed. Also, prototypes of oxide thermoelectric...... generator were built for high temperature applications. This paper specifically discusses the thermoelectric module design and the prototype validations of the design. Here p type calcium cobalt oxide and n type aluminum doped ZnO were developed as the oxide thermoelectric materials. Hot side and cold side...... temperatures were used as 1100 K and 400 K respectively. Using analytical methods, the optimum thermoelement length and the thermoelements area ratio were explored in order to provide the maximum power output by the uni-couple and it is compared to methods reported in literature. Based on operating conditions...

  4. Design of spherical electron gun for ultra high frequency, CW power inductive output tube

    Science.gov (United States)

    Kaushik, Meenu; Joshi, L. M.

    2016-03-01

    Inductive Output Tube (IOT) is an amplifier that usually operates in UHF range. It is an electron tube whose basic structure is similar to conventional vacuum devices. This device is widely used in broadcast applications but is now being explored for scientific applications also specifically, particle accelerators and fusion plasma heating purposes. The paper describes the design approach of a spherical gridded electron gun of a 500 MHz, 100 kW CW power IOT. The electron gun structure has been simulated and optimized for operating voltage and current of 40kV and 3.5 A respectively. The electromagnetic analysis of this spherical electron gun has been carried out in CST and TRAK codes.

  5. 75 FR 77919 - Carolina Power & Light Company Shearon Harris Nuclear Power Plant, Unit 1; Environmental...

    Science.gov (United States)

    2010-12-14

    ... COMMISSION Carolina Power & Light Company Shearon Harris Nuclear Power Plant, Unit 1; Environmental... Progress Energy Carolinas, Inc., for operation of the Shearon Harris Nuclear Power Plant (HNP), Unit 1...: Regarding Shearon Harris Nuclear Power Plant, Unit 1--Final Report (NUREG-1437, Supplement 33).''...

  6. Progress in developing a thermal method for measuring the output power of medical ultrasound transducers that exploits the pyroelectric effect.

    Science.gov (United States)

    Zeqiri, Bajram; Zauhar, Gordana; Hodnett, Mark; Barrie, Jill

    2011-05-01

    Progress in developing a new measurement method for ultrasound output power is described. It is a thermal-based technique with the acoustic power generated by a transducer being absorbed within a specially developed polyurethane rubber material, whose high absorption coefficient ensures energy deposition within a few mm of the ultrasonic wave entering the material. The rate of change of temperature at the absorber surface is monitored using the pyroelectric voltage generated from electrodes disposed either side of a 60 mm diameter, 0.061 mm thick membrane of the piezoelectric polymer polyvinylidene fluoride (pvdf) bonded to the absorber. The change in the pyroelectric output voltage generated by the sensor when the transducer is switched ON and OFF is proportional to the delivered ultrasound power. The sensitivity of the device is defined as the magnitude of these switch voltages to a unit input stimulus of power (watt). Three important aspects of the performance of the pyroelectric sensor have been studied. Firstly, measurements have revealed that the temperature dependent sensitivity increases over the range from approximately 20°C to 30°C at a rate of +1.6% °C(-1). Studies point to the key role that the properties of both the absorbing backing layer and pvdf membrane play in controlling the sensor response. Secondly, the high sensitivity of the technique has been demonstrated using an NPL Pulsed Checksource, a 3.5 MHz focused transducer delivering a nominal acoustic power level of 4 mW. Finally, proof-of-concept of a new type of acoustic sensor responding to time-averaged intensity has been demonstrated, through fabrication of an absorber-backed hydrophone of nominal active element diameter 0.4 mm. A preliminary study using such a device to resolve the spatial distribution of acoustic intensity within plane-piston and focused 3.5 MHz acoustic fields has been completed. Derived beam profiles are compared to conventional techniques that depend on deriving

  7. Aerobic and anaerobic power characteristics of competitive cyclists in the United States Cycling Federation.

    Science.gov (United States)

    Tanaka, H; Bassett, D R; Swensen, T C; Sampedro, R M

    1993-08-01

    The purpose of this study was to characterize the aerobic and anaerobic capabilities of United States Cycling Federation cyclists in different categories. To determine aerobic and anaerobic power, 38 competitive road cyclists (32 males, 6 females) performed a VO2max test and a Wingate anaerobic test, respectively. Male cyclists in category II had the highest VO2max, both in absolute and relative terms. Their VO2max was 6% and 10% higher than category III and IV cyclists, respectively (4.98 +/- 0.14 vs 4.72 +/- 0.15 vs 4.54 +/- 0.12 l/min). A significant difference existed between category II and IV male cyclists (p < 0.05). VO2max for female cyclists (3.37 +/- 0.13 l/min) was significantly (p < 0.05) lower than those for males. The Wingate anaerobic test revealed that male cyclists in category II also had the highest anaerobic power output. The peak power output in category II, III and IV was 13.86 +/- 0.23, 13.55 +/- 0.25, and 12.80 +/- 0.41 W/kg, respectively. The mean power output in category II, III, and IV was 11.22 +/- 0.18, 11.06 +/- 0.15, and 10.40 +/- 0.30 W/kg, respectively. The difference in the mean power output between category II and IV was significant (p < 0.05). Female cyclists recorded significantly less peak and mean power output than their male counterparts (p < 0.05). However, when expressed relative to lean body mass, anaerobic power was similar for both sexes. No inter-correlation was found in any measurement between the aerobic and anaerobic power values. On the whole, category II male cyclists were characterized by higher aerobic and anaerobic power outputs.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Synchronous Generator with HTS-2G field coils for Windmills with output power 1 MW

    Science.gov (United States)

    Kovalev, K.; Kovalev, L.; Poltavets, V.; Samsonovich, S.; Ilyasov, R.; Levin, A.; Surin, M.

    2014-05-01

    Nowadays synchronous generators for wind-mills are developed worldwide. The cost of the generator is determined by its size and weight. In this deal the implementation of HTS-2G generators is very perspective. The application of HTS 2G field coils in the rotor allows to reduce the size of the generator is 1.75 times. In this work the design 1 MW HTS-2G generator is considered. The designed 1 MW HTS-2G generator has the following parameters: rotor diameter 800 mm, active length 400 mm, phase voltage 690V, rotor speed 600 min-1 rotor field coils with HTS-2G tapes. HTS-2G field coils located in the rotating cryostat and cooled by liquid nitrogen. The simulation and optimization of HTS-2G field coils geometry allowed to increase feed DC current up to 50A. Copper stator windings are water cooled. Magnetic and electrical losses in 1 MW HTS-2G generator do not exceed 1.6% of the nominal output power. In the construction of HTS-2G generator the wave multiplier with ratio 1:40 is used. The latter allows to reduce the total mass of HTS-2G generator down to 1.5 tons. The small-scale model of HTS-2G generator with output power 50 kW was designed, manufactured and tested. The test results showed good agreement with calculation results. The manufacturing of 1 MW HTS-2G generator is planned in 2014. This work is done under support of Rosatom within the frames of Russian Project "Superconducting Industry".

  9. Warm-up Practices in Elite Boxing Athletes: Impact on Power Output.

    Science.gov (United States)

    Cunniffe, Brian; Ellison, Mark; Loosemore, Mike; Cardinale, Marco

    2017-01-01

    Cunniffe, B, Ellison, M, Loosemore, M, and Cardinale, M. Warm-up practices in elite boxing athletes: Iimpact on power output. J Strength Cond Res 31(1): 95-105, 2017-This study evaluated the performance impact of routine warm-up strategies in elite Olympic amateur boxing athletes and physiological implications of the time gap (GAP) between warm-up and boxing activity. Six male boxers were assessed while performing standardized prefight warm-up routines. Core and skin temperature measurements (Tcore and Tskin), heart rate, and upper- and lower-body power output (PO) were assessed before and after warm-up, during a 25-minutes GAP and after 3 × 2 minutes rounds of sparring. Reflected temperature (Tc) was also determined using high-resolution thermal images at fixed time-points to explore avenues for heat loss. Despite individual differences in warm-up duration (range 7.4-18.5 minutes), increases in Tcore and Tskin occurred (p ≤ 0.05). Corresponding increases (4.8%; p ≤ 0.05) in countermovement jump (CMJ) height and upward-rightward shifts in upper-body force-velocity and power-velocity curves were observed. Athletes remained inactive during the 25-minutes GAP with a gradual and significant increase in Tc occurring by the end of GAP suggesting the likelihood of heat loss. Decreases in CMJ height and upper-body PO were observed after 15 minutes and 25 minutes GAP (p ≤ 0.05). By the end of GAP period, all performance variables had returned to pre-warm-up values. Results suggest routine warm-ups undertaken by elite boxers have acute effects on power-generating capacity. Gradual decreases in performance variables are evident with inactivity and seem related to alterations in body temperature. Considering the constraints of major competitions and time spent in air conditioned holding areas before fights, practitioners should be aware of the potential of nullifying the warm-up effects.

  10. Muscle coordination limits efficiency and power output of human limb movement under a wide range of mechanical demands.

    Science.gov (United States)

    Blake, Ollie M; Wakeling, James M

    2015-12-01

    This study investigated the influence of cycle frequency and workload on muscle coordination and the ensuing relationship with mechanical efficiency and power output of human limb movement. Eleven trained cyclists completed an array of cycle frequency (cadence)-power output conditions while excitation from 10 leg muscles and power output were recorded. Mechanical efficiency was maximized at increasing cadences for increasing power outputs and corresponded to muscle coordination and muscle fiber type recruitment that minimized both the total muscle excitation across all muscles and the ineffective pedal forces. Also, maximum efficiency was characterized by muscle coordination at the top and bottom of the pedal cycle and progressive excitation through the uniarticulate knee, hip, and ankle muscles. Inefficiencies were characterized by excessive excitation of biarticulate muscles and larger duty cycles. Power output and efficiency were limited by the duration of muscle excitation beyond a critical cadence (120-140 rpm), with larger duty cycles and disproportionate increases in muscle excitation suggesting deteriorating muscle coordination and limitations of the activation-deactivation capabilities. Most muscles displayed systematic phase shifts of the muscle excitation relative to the pedal cycle that were dependent on cadence and, to a lesser extent, power output. Phase shifts were different for each muscle, thereby altering their mechanical contribution to the pedaling action. This study shows that muscle coordination is a key determinant of mechanical efficiency and power output of limb movement across a wide range of mechanical demands and that the excitation and coordination of the muscles is limited at very high cycle frequencies. Copyright © 2015 the American Physiological Society.

  11. Power amplification in an isolated muscle–tendon unit is load dependent

    Science.gov (United States)

    Sawicki, Gregory S.; Sheppard, Peter; Roberts, Thomas J.

    2015-01-01

    ABSTRACT During rapid movements, tendons can act like springs, temporarily storing work done by muscles and then releasing it to power body movements. For some activities, such as frog jumping, energy is released from tendon much more rapidly than it is stored, thus amplifying muscle power output. The period during which energy is loaded into a tendon by muscle work may be aided by a catch mechanism that restricts motion, but theoretical studies indicate that power can be amplified in a muscle–tendon load system even in the absence of a catch. To explore the limits of power amplification with and without a catch, we studied the bullfrog plantaris muscle–tendon during in vitro contractions. A novel servomotor controller allowed us to measure muscle–tendon unit (MTU) mechanical behavior during contractions against a variety of simulated inertial-gravitational loads, ranging from zero to 1× the peak isometric force of the muscle. Power output of the MTU system was load dependent and power amplification occurred only at intermediate loads, reaching ∼1.3× the peak isotonic power output of the muscle. With a simulated anatomical catch mechanism in place, the highest power amplification occurred at the lowest loads, with a maximum amplification of more than 4× peak isotonic muscle power. At higher loads, the benefits of a catch for MTU performance diminished sharply, suggesting that power amplification >2.5× may come at the expense of net mechanical work delivered to the load. PMID:26449973

  12. Auxiliary power unit for moving a vehicle

    Science.gov (United States)

    Akasam, Sivaprasad; Johnson, Kris W.; Johnson, Matthew D.; Slone, Larry M.; Welter, James Milton

    2009-02-03

    A power system is provided having at least one traction device and a primary power source configured to power the at least one traction device. In addition, the power system includes an auxiliary power source also configured to power the at least one traction device.

  13. Orbiter Auxiliary Power Unit Flight Support Plan

    Science.gov (United States)

    Guirl, Robert; Munroe, James; Scott, Walter

    1990-01-01

    This paper discussed the development of an integrated Orbiter Auxiliary Power Unit (APU) and Improved APU (IAPU) Flight Suuport Plan. The plan identifies hardware requirements for continued support of flight activities for the Space Shuttle Orbiter fleet. Each Orbiter vehicle has three APUs that provide power to the hydraulic system for flight control surface actuation, engine gimbaling, landing gear deployment, braking, and steering. The APUs contain hardware that has been found over the course of development and flight history to have operating time and on-vehicle exposure time limits. These APUs will be replaced by IAPUs with enhanced operating lives on a vehicle-by-vehicle basis during scheduled Orbiter modification periods. This Flight Support Plan is used by program management, engineering, logistics, contracts, and procurement groups to establish optimum use of available hardware and replacement quantities and delivery requirements for APUs until vehicle modifications and incorporation of IAPUs. Changes to the flight manifest and program delays are evaluated relative to their impact on hardware availability.

  14. Design of a 300-Watt Isolated Power Supply with Minimized Circuit Input-to-Output Parasitic Capacitance

    DEFF Research Database (Denmark)

    Nguyen-Duy, Khiem; Petersen, Lars Press; Knott, Arnold;

    2014-01-01

    This paper presents the design of a 300-Watt isolated power supply for MOS gate driver circuit in medium and high voltage applications. The key feature of the developed power supply is having a very low circuit input-to-output parasitic capacitance, thus maximizing its noise immunity. This makes ...

  15. A comprehensive analysis and hardware implementation of control strategies for high output voltage DC-DC boost power converter

    DEFF Research Database (Denmark)

    Padmanaban, Sanjeevikumar; Grandi, Gabriele; Blaabjerg, Frede

    2017-01-01

    Classical DC-DC converters used in high voltage direct current (HVDC) power transmission systems, lack in terms of efficiency, reduced transfer gain and increased cost with sensor (voltage/current) numbers. Besides, the internal self-parasitic behavior of the power components reduces the output v...

  16. Output power spectrum of a single-mode laser driven by coloured pump and quantum noises with coloured correlation

    Institute of Scientific and Technical Information of China (English)

    Han Li-Bo; Cao Li; Wu Da-Jin

    2004-01-01

    By using the linear approximation method, the output power spectrum is calculated for a single-mode laser driven by coloured pump and quantum noises with coloured correlation. We have observed that the configuration of the output power spectrum is complicated: that is, it can be of single peak, two peaks or three peaks. The configurations of the power spectrum can be transformed from one into another by changing the cross-correlation time, the cross-correlation coefficient between the two noises, and pump noise intensity.

  17. A novel arc welding inverter with unit power factor based on DSP control

    Institute of Scientific and Technical Information of China (English)

    Chen Shujun; Zeng Hua; Du Li; Yin Shuyan; Chen Yonggang

    2006-01-01

    A novel inverter power source is developed characterized with constant output current and unit power factor input.Digital signal processor (DSP) is used to realize power factor correction and control of back-stage inverter bridge of the arc welding inverter. The fore-stage adopts double closed loop proportion and integration (PI) rectifier technique and the backstage adopts digital pulse width modulation (PWM) technique. Simulated waves can be obtained in Matlab/Simulink and validated by experiments. Experiments of the prototype showed that the total harmonic distortion (THD) can be controlled within 10% and the power factor is approximate to 1.

  18. Power output of skinned skeletal muscle fibres from the cheetah (Acinonyx jubatus).

    Science.gov (United States)

    West, Timothy G; Toepfer, Christopher N; Woledge, Roger C; Curtin, Nancy A; Rowlerson, Anthea; Kalakoutis, Michaeljohn; Hudson, Penny; Wilson, Alan M

    2013-08-01

    Muscle samples were taken from the gluteus, semitendinosus and longissimus muscles of a captive cheetah immediately after euthanasia. Fibres were 'skinned' to remove all membranes, leaving the contractile filament array intact and functional. Segments of skinned fibres from these cheetah muscles and from rabbit psoas muscle were activated at 20°C by a temperature-jump protocol. Step and ramp length changes were imposed after active stress had developed. The stiffness of the non-contractile ends of the fibres (series elastic component) was measured at two different stress values in each fibre; stiffness was strongly dependent on stress. Using these stiffness values, the speed of shortening of the contractile component was evaluated, and hence the power it was producing. Fibres were analysed for myosin heavy chain content using gel electrophoresis, and identified as either slow (type I) or fast (type II). The power output of cheetah type II fibre segments was 92.5±4.3 W kg(-1) (mean ± s.e., 14 fibres) during shortening at relative stress 0.15 (the stress during shortening/isometric stress). For rabbit psoas fibre segments (presumably type IIX) the corresponding value was significantly higher (Pcheetah was less than that of rabbit when maximally activated at 20°C, and does not account for the superior locomotor performance of the cheetah.

  19. Wind tunnel measurements of the power output variability and unsteady loading in a micro wind farm model

    Science.gov (United States)

    Bossuyt, Juliaan; Howland, Michael; Meneveau, Charles; Meyers, Johan

    2015-11-01

    To optimize wind farm layouts for a maximum power output and wind turbine lifetime, mean power output measurements in wind tunnel studies are not sufficient. Instead, detailed temporal information about the power output and unsteady loading from every single wind turbine in the wind farm is needed. A very small porous disc model with a realistic thrust coefficient of 0.75 - 0.85, was designed. The model is instrumented with a strain gage, allowing measurements of the thrust force, incoming velocity and power output with a frequency response up to the natural frequency of the model. This is shown by reproducing the -5/3 spectrum from the incoming flow. Thanks to its small size and compact instrumentation, the model allows wind tunnel studies of large wind turbine arrays with detailed temporal information from every wind turbine. Translating to field conditions with a length-scale ratio of 1:3,000 the frequencies studied from the data reach from 10-4 Hz up to about 6 .10-2 Hz. The model's capabilities are demonstrated with a large wind farm measurement consisting of close to 100 instrumented models. A high correlation is found between the power outputs of stream wise aligned wind turbines, which is in good agreement with results from prior LES simulations. Work supported by ERC (ActiveWindFarms, grant no. 306471) and by NSF (grants CBET-113380 and IIA-1243482, the WINDINSPIRE project).

  20. Curvilinear VO(2):power output relationship in a ramp test in professional cyclists: possible association with blood hemoglobin concentration.

    Science.gov (United States)

    Lucía, Alejandro; Hoyos, Jesús; Santalla, Alfredo; Pérez, Margarita; Chicharro, José L

    2002-02-01

    The purpose of this study was to determine (1) if there exists an additional, nonlinear increase (DeltaVO(2)) in the oxygen uptake observed (VO2 (obs)) at the maximal power output reached during a ramp cycle ergometer test and that expected (VO2 (exp)) from the linear relationship between VO(2) and power output below the lactate threshold (LT) in professional riders, and (2) the relationship between DeltaVO(2) and possible explanatory mechanisms. Each of 12 professional cyclists (25 +/- 1 years; VO(2 max): 71.3 +/- 1.2 ml x kg(-1) x min(-1)) performed a ramp test until exhaustion (power output increases of 25 W x min(-1)) during which several gas-exchange and blood variables were measured (including lactate, HCO(3)(-) and K(+)). VO(2) was linearly related to power output until the LT in all subjects. Afterward, a nonlinear deflection was observed in the VO(2):power output relationship (DeltaVO(2) = 2492 +/- 55 ml x min(-1) and p < 0.05 for VO2 (obs) vs. VO2 (exp)). A significant negative correlation was encountered between DeltaVO(2) and resting hemoglobin levels before the tests (r = 20.61; p < 0.05). In conclusion, professional cyclists exhibit an attenuation of the VO(2) rise above the LT.

  1. Towards high power output of scaled-up benthic microbial fuel cells (BMFCs) using multiple electron collectors.

    Science.gov (United States)

    Liu, Bingchuan; Williams, Isaiah; Li, Yan; Wang, Lei; Bagtzoglou, Amvrossios; McCutcheon, Jeffrey; Li, Baikun

    2016-05-15

    This study aimed at achieving high power output of benthic microbial fuel cells (BMFCs) with novel geometric anode setups (inverted tube granular activated charcoal (IT-GAC) and carbon cloth roll (CCR)) and multiple anodes/electron collectors. The lab-scale tests showed the power density of IT-GAC and CCR anodes achieved at 2.92 and 2.55 W m(-2), the highest value ever reported in BMFCs. The power density of BMFCs substantially increased with electron collector number (titanium rods) in anodes. The connection of multiple electron collectors with multiple cathodes had much higher total voltage/current output than that with single cathode. The possibility of maintaining high power density at scaled-up BMFCs was explored by arranging multiple anodes in sediment. The compact configuration of multiple CCR anodes contacting each other did not deteriorate the performance of individual anodes, showing the feasibility of maximizing anode numbers per sediment footprint and achieving high power output. Multiple IT-GAC and CCR anodes with multiple collectors effectively utilized sediment at both horizontal and vertical directions and enhanced electron collection efficiency. This study demonstrated that bacterial adhesion and electron collection should be optimized on small anodes in order to maintain high power density and achieve high power output in the scaled-up BMFCs.

  2. Lowest of AC-DC power output for electrostrictive polymers energy harvesting systems

    Science.gov (United States)

    Meddad, Mounir; Eddiai, Adil; Hajjaji, Abdelowahed; Guyomar, Daniel; Belkhiat, Saad; Boughaleb, Yahia; Chérif, Aida

    2013-11-01

    Advances in technology led to the development of electronic circuits and sensors with extremely low electricity consumption. At the same time, structural health monitoring, technology and intelligent integrated systems created a need for wireless sensors in hard to reach places in aerospace vehicles and large civil engineering structures. Powering sensors with energy harvesters eliminates the need to replace batteries on a regular basis. Scientists have been forced to search for new power source that are able to harvested energy from their surrounding environment (sunlight, temperature gradients etc.). Electrostrictive polymer belonging to the family of electro-active polymers, offer unique properties for the electromechanical transducer technology has been of particular interest over the last few years in order to replace conventional techniques such as those based on piezoelectric or electromagnetic, these materials are highly attractive for their low-density, with large strain capability that can be as high as two orders of magnitude greater than the striction-limited, rigid and fragile electroactive ceramics. Electrostrictive polymers sensors respond to vibration with an ac output signal, one of the most important objectives of the electronic interface is to realize the required AC-DC conversion. The goal of this paper is to design an active, high efficiency power doubler converter for electrostrictive polymers exclusively uses a fraction of the harvested energy to supply its active devices. The simulation results show that it is possible to obtain a maximum efficiency of the AC-DC converter equal to 80%. Premiliminary experimental measurements were performed and the results obtained are in good agreement with simulations.

  3. Systematic Observation of Time-Dependent Phenomena in the RF Output Spectrum of High Power Gyrotrons

    Directory of Open Access Journals (Sweden)

    Kern Stefan

    2012-09-01

    Full Text Available At IHM/KIT, high power gyrotrons with conventional cavity (e.g. 1 MW CW at 140 GHz for the stellarator Wendelstein 7-X and coaxial cavity (2 MW shortpulse at 170 GHz for ITER for fusion applications are being developed and verified experimentally. Especially with respect to the problem of parasitic RF oscillations in the beam tunnel of some W7-X tubes, investigations of the gyrotron RF output spectrum have proved to be a valuable source of diagnostic information. Signs of transient effects in millisecond pulses, like frequency switching or intermittent low-frequency modulation, have indicated that truly time-dependent measurements with high frequency resolution and dynamic range could give deeper insight into these phenomena. In this paper, an improved measurement system is presented, which employs a fast oscilloscope as receiver. Shorttime Fourier transform (STFT is applied to the time-domain signal, yielding time-variant spectra with frequency resolutions only limited by acquisition length and STFT segmentation choice. Typical reasonable resolutions are in the range of 100 kHz to 10 MHz with a currently memory-limited maximum acquisition length of 4 ms. A key feature of the system consists in the unambiguity of frequency measurement: The system receives through two parallel channels, each using a harmonic mixer (h = 9 – 12 to convert the signal from RF millimeter wave frequencies (full D-Band, 110 – 170 GHz to IF (0 – 3 GHz. For each IF output signal of each individual mixer, injection side and receiving harmonic are initially not known. Using accordingly determined LO frequencies, this information is retrieved from the redundancy of the channels, yielding unambiguously reconstructed RF spectra with a total span of twice the usable receiver IF bandwidth, up to ≈ 6 GHz in our case. Using the system, which is still being improved continuously, various transient effects like cavity mode switching, parasitic oscillation frequency variation

  4. Indirect combustion noise of auxiliary power units

    Science.gov (United States)

    Tam, Christopher K. W.; Parrish, Sarah A.; Xu, Jun; Schuster, Bill

    2013-08-01

    Recent advances in noise suppression technology have significantly reduced jet and fan noise from commercial jet engines. This leads many investigators in the aeroacoustics community to suggest that core noise could well be the next aircraft noise barrier. Core noise consists of turbine noise and combustion noise. There is direct combustion noise generated by the combustion processes, and there is indirect combustion noise generated by the passage of combustion hot spots, or entropy waves, through constrictions in an engine. The present work focuses on indirect combustion noise. Indirect combustion noise has now been found in laboratory experiments. The primary objective of this work is to investigate whether indirect combustion noise is also generated in jet and other engines. In a jet engine, there are numerous noise sources. This makes the identification of indirect combustion noise a formidable task. Here, our effort concentrates exclusively on auxiliary power units (APUs). This choice is motivated by the fact that APUs are relatively simple engines with only a few noise sources. It is, therefore, expected that the chance of success is higher. Accordingly, a theoretical model study of the generation of indirect combustion noise in an Auxiliary Power Unit (APU) is carried out. The cross-sectional areas of an APU from the combustor to the turbine exit are scaled off to form an equivalent nozzle. A principal function of a turbine in an APU is to extract mechanical energy from the flow stream through the exertion of a resistive force. Therefore, the turbine is modeled by adding a negative body force to the momentum equation. This model is used to predict the ranges of frequencies over which there is a high probability for indirect combustion noise generation. Experimental spectra of internal pressure fluctuations and far-field noise of an RE220 APU are examined to identify anomalous peaks. These peaks are possible indirection combustion noise. In the case of the

  5. High brightness direct diode laser with kW output power

    Science.gov (United States)

    Fritsche, Haro; Kruschke, Bastian; Koch, Ralf; Ferrario, Fabio; Kern, Holger; Pahl, Ulrich; Pflueger, Silke; Gries, Wolfgang

    2014-03-01

    High power, high brightness diode lasers are beginning to challenge solid state lasers, i.e. disk and fiber lasers. The core technologies for brightness scaling of diode lasers are optical stacking and dense spectral combining (DSC), as well as improvements of the diode material. Diode lasers will have the lowest cost of ownership, highest efficiency and most compact design among all lasers. In our modular product design tens of single emitters are combined in a compact package and launched into a 200 μm fiber with 0.08 NA. Dense spectral combining enables power scaling from 80 W to kilowatts. Volume Bragg Gratings and dichroic filters yield high optical efficiencies of more than 80% at low cost. Each module emits up to 500 W with a beam quality of 5.5 mm*mrad and less than 20 nm linewidth. High speed switching power supplies are integrated into the module and rise times as short as 6 μs have been demonstrated. Fast control algorithms based on FPGA and embedded microcontroller ensure high wall plug efficiency with a unique control loop time of only 30 μs. Individual modules are spectrally combined to result in direct diode laser systems with kilowatts of output power at identical beam quality. For low loss fiber coupling a 200 μm fiber is used and the NA is limited to 0.08 corresponding to a beam quality of 7.5 mm*mrad. The controller architecture is fully scalable without sacrificing loop time. We leverage automated manufacturing for cost effective, high yield production. A precision robotic system handles and aligns the individual fast axis lenses and tracks all quality relevant data. Similar technologies are also deployed for dense spectral combining aligning the VBG and dichroic filters. Operating at wavelengths between 900 nm and 1100 nm, these systems are mainly used in cutting and welding, but the technology can also be adapted to other wavelength ranges, such as 793 nm and 1530 nm. Around 1.5 μm the diodes are already successfully used for resonant

  6. Integration issues of a plasma contactor Power Electronics Unit

    Science.gov (United States)

    Pinero, Luis R.; York, Kenneth W.; Bowers, Glen E.

    1995-06-01

    A hollow cathode-based plasma contactor is baselined on International Space Station Alpha (ISSA) for spacecraft charge control. The plasma contactor system consists of a hollow cathode assembly (HCA), a power electronics unit (PEU), and an expellant management unit (EMU). The plasma contactor has recently been required to operate in a cyclic mode to conserve xenon expellant and extend system life. Originally, a DC cathode heater converter was baselined for a continuous operation mode because only a few ignitions of the hollow cathode were expected. However, for cyclic operation, a DC heater supply can potentially result in hollow cathode heater component failure due to the DC electrostatic field. This can prevent the heater from attaining the proper cathode tip temperature for reliable ignition of the hollow cathode. To mitigate this problem, an AC cathode heater supply was therefore designed, fabricated, and installed into a modified PEU. The PEU was tested using resistive loads and then integrated with an engineering model hollow cathode to demonstrate stable steady-state operation. Integration issues such as the effect of line and load impedance on the output of the AC cathode heater supply and the characterization of the temperature profile of the heater under AC excitation were investigated.

  7. Integration issues of a plasma contactor Power Electronics Unit

    Science.gov (United States)

    Pinero, Luis R.; York, Kenneth W.; Bowers, Glen E.

    1995-01-01

    A hollow cathode-based plasma contactor is baselined on International Space Station Alpha (ISSA) for spacecraft charge control. The plasma contactor system consists of a hollow cathode assembly (HCA), a power electronics unit (PEU), and an expellant management unit (EMU). The plasma contactor has recently been required to operate in a cyclic mode to conserve xenon expellant and extend system life. Originally, a DC cathode heater converter was baselined for a continuous operation mode because only a few ignitions of the hollow cathode were expected. However, for cyclic operation, a DC heater supply can potentially result in hollow cathode heater component failure due to the DC electrostatic field. This can prevent the heater from attaining the proper cathode tip temperature for reliable ignition of the hollow cathode. To mitigate this problem, an AC cathode heater supply was therefore designed, fabricated, and installed into a modified PEU. The PEU was tested using resistive loads and then integrated with an engineering model hollow cathode to demonstrate stable steady-state operation. Integration issues such as the effect of line and load impedance on the output of the AC cathode heater supply and the characterization of the temperature profile of the heater under AC excitation were investigated.

  8. Maximizing output power of wind turbine generator by output current control. Shutsuryoku denryu seigyo ni yoru furyoku hatsuden system no denryoku saidaika

    Energy Technology Data Exchange (ETDEWEB)

    Kawahito, T. (Takamatsu National College of Technology, Kagawa (Japan)); Suzuki, T. (Tokushima University, Tokushima (Japan))

    1994-03-20

    This paper reports a method in a wind power generation system to control output current from a generator so that it fits automatically the wind turbine characteristics where the turbine characteristics are unknown and the generator characteristics are known. The paper details the following methods: a method that rotation speed of a wind turbine is observed to make the output current from the generator proportional to a square of the turbine rotation speed, and optimize the proportion coefficient so that the generator output at an equilibrium operation point of this system (wind turbine generated torque is in equilibrium with the generator driven torque) is maximized; and a method to derive an optimal proportion coefficient in discrete time control using a digital computer. The paper then describes the following matters: a simulation that assumes a pseudo natural wind velocity has verified the effectiveness of this control method; discovering an optimal proportion coefficient has required about ten minutes; and the way this control method handles fluctuation in wind velocity has a room of further improvement. 16 refs., 10 figs., 1 tab.

  9. 16 W output power by high-efficient spectral beam combining of DBR-tapered diode lasers

    DEFF Research Database (Denmark)

    Müller, André; Vijayakumar, Deepak; Jensen, Ole Bjarlin;

    2011-01-01

    output power achieved by spectral beam combining of two single element tapered diode lasers. Since spectral beam combining does not affect beam propagation parameters, M2-values of 1.8 (fast axis) and 3.3 (slow axis) match the M2- values of the laser with lowest spatial coherence. The principle......Up to 16 W output power has been obtained using spectral beam combining of two 1063 nm DBR-tapered diode lasers. Using a reflecting volume Bragg grating, a combining efficiency as high as 93.7% is achieved, resulting in a single beam with high spatial coherence. The result represents the highest...... of spectral beam combining used in our experiments can be expanded to combine more than two tapered diode lasers and hence it is expected that the output power may be increased even further in the future....

  10. 16 W output power by high-efficient spectral beam combining of DBR-tapered diode lasers.

    Science.gov (United States)

    Müller, André; Vijayakumar, Deepak; Jensen, Ole Bjarlin; Hasler, Karl-Heinz; Sumpf, Bernd; Erbert, Götz; Andersen, Peter E; Petersen, Paul Michael

    2011-01-17

    Up to 16 W output power has been obtained using spectral beam combining of two 1063 nm DBR-tapered diode lasers. Using a reflecting volume Bragg grating, a combining efficiency as high as 93.7% is achieved, resulting in a single beam with high spatial coherence. The result represents the highest output power achieved by spectral beam combining of two single element tapered diode lasers. Since spectral beam combining does not affect beam propagation parameters, M2-values of 1.8 (fast axis) and 3.3 (slow axis) match the M2-values of the laser with lowest spatial coherence. The principle of spectral beam combining used in our experiments can be expanded to combine more than two tapered diode lasers and hence it is expected that the output power may be increased even further in the future.

  11. A Study on Estimation of Average Power Output Fluctuation of Clustered Photovoltaic Power Generation Systems in Urban District of a Few km2

    Science.gov (United States)

    Kato, Takeyoshi; Suzuoki, Yasuo

    The fluctuation of the total power output of clustered PV systems would be smaller than that of single PV system because of the time difference in the power output fluctuation among PV systems at different locations. This effect, so called smoothing-effect, must be taken into account properly when the impact of clustered PV systems on electric power system is assessed. If the average power output of clustered PV systems can be estimated from the power output of single PV system, it is very useful and helpful for the impact assessment. In this study, we propose a simple method to estimate the total power output fluctuation of clustered PV systems. In the proposed method, a smoothing effect is assumed to be caused as a result of two factors, i.e. time difference of overhead clouds passing among PV systems and the random change in the size and/or shape of clouds. The first one is formulated as a low-pass filter, assuming that output fluctuation is transmitted to the same direction as the wind direction at the constant speed. The second one is taken into account by using a Fourier transform surrogate data. The parameters in the proposed method were selected, so that the estimated fluctuation can be similar with that of ensemble average fluctuation of data observed at 5 points used as a training data set. Then, by using the selected parameters, the fluctuation property was estimated for other data set. The results show that the proposed method is useful for estimating the total power output fluctuation of clustered PV systems.

  12. Crystal Quality and Light Output Power of GaN-Based LEDs Grown on Concave Patterned Sapphire Substrate.

    Science.gov (United States)

    Wu, YewChung Sermon; Isabel, A Panimaya Selvi; Zheng, Jian-Hsuan; Lin, Bo-Wen; Li, Jhen-Hong; Lin, Chia-Chen

    2015-04-22

    The crystal quality and light output power of GaN-based light-emitting diodes (LEDs) grown on concave patterned sapphire substrate (CPSS) were investigated. It was found that the crystal quality of GaN-based LEDs grown on CPSS improved with the decrease of the pattern space (percentage of c-plane). However, when the pattern space decreased to 0.41 μm (S0.41-GaN), the GaN crystallinity dropped. On the other hand, the light output power of GaN-based LEDs was increased with the decrease of the pattern space due to the change of the light extraction efficiency.

  13. The influence of Thomson effect on the maximum power output and maximum efficiency of a thermoelectric generator

    Science.gov (United States)

    Chen, Jincan; Yan, Zijun; Wu, Liqing

    1996-06-01

    Considering a thermoelectric generator as a heat engine cycle, the general differential equations of the temperature field inside thermoelectric elements are established by means of nonequilibrium thermodynamics. These equations are used to study the influence of heat leak, Joule's heat, and Thomson heat on the performance of the thermoelectric generator. New expressions are derived for the power output and the efficiency of the thermoelectric generator. The maximum power output is calculated and the optimal matching condition of load is determined. The maximum efficiency is discussed by a representative numerical example. The aim of this research is to provide some novel conclusions and redress some errors existing in a related investigation.

  14. 75 FR 80547 - Carolina Power & Light Company, Shearon Harris Nuclear Power Plant, Unit No. 1; Exemption

    Science.gov (United States)

    2010-12-22

    ... COMMISSION Carolina Power & Light Company, Shearon Harris Nuclear Power Plant, Unit No. 1; Exemption 1.0... License No. NPF-63, which authorizes operation of the Shearon Harris Nuclear Power Plant (HNP), Unit 1... request to generically extend the rule's compliance date for all operating nuclear power plants, but...

  15. 75 FR 9958 - Carolina Power & Light Company, Shearon Harris Nuclear Power Plant, Unit 1; Exemption

    Science.gov (United States)

    2010-03-04

    ... COMMISSION Carolina Power & Light Company, Shearon Harris Nuclear Power Plant, Unit 1; Exemption 1.0... of the Shearon Harris Nuclear Power Plant, Unit 1 (HNP). The license provides, among other things... operating nuclear power plants, but noted that the Commission's regulations provide mechanisms...

  16. Evaluation of Resting Cardiac Power Output as a Prognostic Factor in Patients with Advanced Heart Failure.

    Science.gov (United States)

    Yildiz, Omer; Aslan, Gamze; Demirozu, Zumrut T; Yenigun, Cemal Deniz; Yazicioglu, Nuran

    2017-09-15

    If the heart is represented by a hydraulic pump, cardiac power represents the hydraulic function of the heart. Cardiac pump function is frequently determined through left ventricular ejection fraction using imaging. This study aims to validate resting cardiac power output (CPO) as a predictive biomarker in patients with advanced heart failure (HF). One hundred and seventy-two patients with HF severe enough to warrant cardiac transplantation were retrospectively reviewed at a single tertiary care institution between September 2010 and July 2013. Patients were initially evaluated with simultaneous right-sided and left-sided cardiac catheter-based hemodynamic measurements, followed by longitudinal follow-up (median of 52 months) for adverse events (cardiac mortality, cardiac transplantation, or ventricular assist device placement). Median resting CPO was 0.54 W (long rank chi-square = 33.6; p < 0.0001). Decreased resting CPO (<0.54 W) predicted increased risk for adverse outcomes. Fifty cardiac deaths, 10 cardiac transplants, and 12 ventricular assist device placements were documented. The prognostic relevance of resting CPO remained significant after adjustment for age, gender, left ventricular ejection fraction, mean arterial pressure, pulmonary vascular resistance, right atrial pressure, and estimated glomerular filtration rate (HR, 3.53; 95% confidence interval, 1.66 to 6.77; p = 0.0007). In conclusion, lower resting CPO supplies independent prediction of adverse outcomes. Thus, it could be effectively used for risk stratification in patients with advanced HF. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Effect of Carbohydrate Intake on Maximal Power Output and Cognitive Performances

    Directory of Open Access Journals (Sweden)

    Laura Pomportes

    2016-10-01

    Full Text Available The present study aimed to assess the beneficial effect of acute carbohydrate (7% CHO intake on muscular and cognitive performances. Seventeen high levels athletes in explosive sports (fencing and squash participated in a randomized, double-blind study consisting in series of 6 sprints (5s with a passive recovery (25s followed by 15 min submaximal cycling after either maltodextrine and fructose (CHO or placebo (Pl intake. Cognitive performances were assessed before and after sprint exercise using a simple reaction time (SRT task at rest, a visual scanning task (VS and a Go/Nogo task (GNG during a submaximal cycling exercise. Results showed a beneficial effect of exercise on VS task on both conditions (Pl: −283 ms; CHO: −423 ms and on SRT only during CHO condition (−26 ms. In the CHO condition, SRT was faster after exercise whereas no effect of exercise was observed in the Pl condition. According to a qualitative statistical method, a most likely and likely positive effect of CHO was respectively observed on peak power (+4% and tiredness (−23% when compared to Pl. Furthermore, a very likely positive effect of CHO was observed on SRT (−8% and a likely positive effect on visual scanning (−6% and Go/Nogo tasks (−4% without any change in accuracy. In conclusion acute ingestion of 250 mL of CHO, 60 min and 30 min before exercise, improve peak power output, decrease muscular tiredness and speed up information processing and visual detection without changing accuracy.

  18. The Influence of Serial Carbohydrate Mouth Rinsing on Power Output during a Cycle Sprint

    Directory of Open Access Journals (Sweden)

    Shaun M. Phillips, Scott Findlay, Mykolas Kavaliauskas, Marie Clare Grant

    2014-06-01

    Full Text Available The objective of the study was to investigate the influence of serial administration of a carbohydrate (CHO mouth rinse on performance, metabolic and perceptual responses during a cycle sprint. Twelve physically active males (mean (± SD age: 23.1 (3.0 years, height: 1.83 (0.07 m, body mass (BM: 86.3 (13.5 kg completed the following mouth rinse trials in a randomized, counterbalanced, double-blind fashion; 1. 8 x 5 second rinses with a 25 ml CHO (6% w/v maltodextrin solution, 2. 8 x 5 second rinses with a 25 ml placebo (PLA solution. Following mouth rinse administration, participants completed a 30 second sprint on a cycle ergometer against a 0.075 g·kg-1 BM resistance. Eight participants achieved a greater peak power output (PPO in the CHO trial, resulting in a significantly greater PPO compared with PLA (13.51 ± 2.19 vs. 13.20 ± 2.14 W·kg-1, p 0.05. No significant between-trials difference was reported for fatigue index, perceived exertion, arousal and nausea levels, or blood lactate and glucose concentrations. Serial administration of a CHO mouth rinse may significantly improve PPO during a cycle sprint. This improvement appears confined to the first 5 seconds of the sprint, and may come at a greater relative cost for the remainder of the sprint.

  19. Enhancement of light output power from LEDs based on monolayer colloidal crystal.

    Science.gov (United States)

    Geng, Chong; Wei, Tongbo; Wang, Xiaoqing; Shen, Dezhong; Hao, Zhibiao; Yan, Qingfeng

    2014-05-14

    One of the major challenges for the application of GaN-based light emitting diodes (LEDs) in solid-state lighting lies in the low light output power (LOP). Embedding nanostructures in LEDs has attracted considerable interest because they may improve the LOP of GaN-based LEDs efficiently. Recent advances in nanostructures derived from monolayer colloidal crystal (MCC) have made remarkable progress in enhancing the performance of GaN-based LEDs. In this review, the current state of the art in this field is highlighted with an emphasis on the fabrication of ordered nanostructures using large-area, high-quality MCCs and their demonstrated applications in enhancement of LOP from GaN-based LEDs. We describe the remarkable achievements that have improved the internal quantum efficiency, the light extraction efficiency, or both from LEDs by taking advantages of diverse functions that the nanostructures provided. Finally, a perspective on the future development of enhancement of LOP by using the nanostructures derived from MCC is presented. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Impact of heavy soiling on the power output of PV modules

    Science.gov (United States)

    Schill, Christian; Brachmann, Stefan; Heck, Markus; Weiss, Karl-Anders; Koehl, Michael

    2011-09-01

    Fraunhofer ISE is running a PV-module outdoor testing set-up on the Gran Canaria island, one of the Canary Island located west of Morroco in the Atlantic Ocean. The performance of the modules is assessed by IV-curve monitoring every 10 minutes. The electronic set-up of the monitoring system - consisting of individual electronic loads for each module which go into an MPP-tracking mode between the IV-measurements - will be described in detail. Soiling of the exposed modules happened because of building constructions nearby. We decided not to clean the modules, but the radiation sensors and recorded the decrease of the power output and the efficiency over time. The efficiency dropped to 20 % within 5 months before a heavy rain and subsequently the service personnel on site cleaned the modules. A smaller rain-fall in between washed the dust partly away and accumulated it at the lower part of the module, what could be concluded from the shape of the IV-curves, which were similar to partial shading by hot-spot-tests and by partial snow cover.

  1. Efficiency at maximum power output for an engine with a passive piston

    Science.gov (United States)

    Sano, Tomohiko G.; Hayakawa, Hisao

    2016-08-01

    Efficiency at maximum power (MP) output for an engine with a passive piston without mechanical controls between two reservoirs is studied theoretically. We enclose a hard core gas partitioned by a massive piston in a temperature-controlled container and analyze the efficiency at MP under a heating and cooling protocol without controlling the pressure acting on the piston from outside. We find the following three results: (i) The efficiency at MP for a dilute gas is close to the Chambadal-Novikov-Curzon-Ahlborn (CNCA) efficiency if we can ignore the sidewall friction and the loss of energy between a gas particle and the piston, while (ii) the efficiency for a moderately dense gas becomes smaller than the CNCA efficiency even when the temperature difference of the reservoirs is small. (iii) Introducing the Onsager matrix for an engine with a passive piston, we verify that the tight coupling condition for the matrix of the dilute gas is satisfied, while that of the moderately dense gas is not satisfied because of the inevitable heat leak. We confirm the validity of these results using the molecular dynamics simulation and introducing an effective mean-field-like model which we call the stochastic mean field model.

  2. The Effect of High Intensity Intermittent Exercise on Power Output for the Upper Body

    Directory of Open Access Journals (Sweden)

    Leonie Harvey

    2015-06-01

    Full Text Available The aim of the present study was to examine and measure high intensity, intermittent upper body performance, in addition to identifying areas of the body that affect the variance in total work done during the 5 × 6 s sprint test. Fifteen males completed an upper body 5 × 6 s sprint test on a modified electro-magnetically braked cycle ergometer, which consisted of five maximal effort sprints, each 6 s in duration, separated by 24 s of passive recovery. A fly wheel braking force corresponding to 5% of the participants’ body weight was used as the implemented resistance level. Body composition was measured using dual-energy X-ray absorptiometry (DEXA. Percent (% decrement was calculated as 100 − (Total work/ideal work × 100. Significant (P < 0.05 differences were found between sprints for both absolute and relative (W, W·kg−1, W·kg−1 Lean body mass (LBM and W·kg−1 Upper body lean body mass (UBLBM peak (PP and mean (MP power. The % decrement in total work done over the five sprints was 11.4%. Stepwise multiple linear regression analysis revealed that UBLBM accounts for 87% of the variance in total work done during the upper body 5 × 6 s sprint test. These results provide a descriptive analysis of upper body, high intensity intermittent exercise, demonstrating that PP and MP output decreased significantly during the upper body 5 × 6 s sprint test.

  3. Balancing Power Output and Structural Fatigue of Wave Energy Converters by Means of Control Strategies

    Directory of Open Access Journals (Sweden)

    Francesco Ferri

    2014-04-01

    Full Text Available In order to reduce the cost of electricity produced by wave energy converters (WECs, the benefit of selling electricity as well as the investment costs of the structure has to be considered. This paper presents a methodology for assessing the control strategy for a WEC with respect to both energy output and structural fatigue loads. Different active and passive control strategies are implemented (proportional (P controller, proportional-integral (PI controller, proportional-integral-derivative with memory compensation (PID controller, model predictive control (MPC and maximum energy controller (MEC, and load time-series resulting from numerical simulations are used to design structural parts based on fatigue analysis using rain-flow counting, Stress-Number (SN curves and Miner’s rule. The objective of the methodology is to obtain a cost-effective WEC with a more comprehensive analysis of a WEC based on a combination of well known control strategies and standardised fatigue methods. The presented method is then applied to a particular case study, the Wavestar WEC, for a specific location in the North Sea. Results, which are based on numerical simulations, show the importance of balancing the gained power against structural fatigue. Based on a simple cost model, the PI controller is shown as a viable solution.

  4. Maximal power output estimates the MLSS before and after aerobic training

    Directory of Open Access Journals (Sweden)

    Carolina Franco Wilke

    2014-06-01

    Full Text Available The purpose of this study is to present an equation to predict the maximal lactate steady state (MLSS through a VO2peak incremental protocol. Twenty-six physically active men were divided in two groups (G1 and G2. They performed one maximal incremental test to determine their VO2peak and maximal power output (Wpeak, and also several constant intensity tests to determine MLSS intensity (MLSSw on a cycle ergometer. Group G2 underwent six weeks of aerobic training at MLSSw. A regression equation was created using G1 subjects Wpeak and MLSSw to estimate the MLSS intensity (MLSSweq before and after training for G2 (MLSSweq = 0.866 x Wpeak-41.734. The mean values were not different (150±27W vs 148±27W, before training / 171±26W vs 177±24W, after training and significant correlations were found between the measured and the estimated MLSSw before (r²=0.49 and after training (r²=0.62 in G2. The proposed equation was effective to estimate the MLSS intensity before and after aerobic training.

  5. Low Voltage Power Efficient Tunable Shaper Circuit With Rail-To-Rail Output Range for the HYDE Detector at FAIR

    Science.gov (United States)

    Galán, J.; López-Ahumada, R.; Sánchez-Rodríguez, T.; Torralba, A.; Carvajal, R. G.; Martel, I.

    2014-04-01

    This paper presents a low voltage, low power readout front-end system implemented in 130 nm CMOS technology. A conventional architecture that consists of charge sensitive amplifier, pole/zero cancellation and shaper has been used. The work focuses on the design of novel circuit topologies in low voltage environment minimizing the power consumption in modern deep submicron CMOS technologies. An operational amplifier with rail-to-rail output swing that uses a gain boosting technique and class-AB output stage without extra power consumption has been used for the shaper. The circuit combines excellent performances with simplicity of design and suitability for low voltage operation. The system is intended to work with silicon detectors for nuclear physics applications and is optimized to match an input capacitance of 10 pF. The system features a peaking time of 500 ns, a power dissipation of 1.57 mW/channel and an equivalent noise charge of 201 e-.

  6. GaAs-based superluminescent diodes with window-like facet structure for low spectral modulation at high output powers

    Science.gov (United States)

    Ghazal, O. M. S.; Childs, D. T.; Stevens, B. J.; Babazadeh, N.; Hogg, R. A.; Groom, K. M.

    2016-04-01

    We demonstrate a GaAs-based superluminescent diode (SLD) based on the incorporation of a window-like back facet into a self-aligned stripe structure in order to reduce the effective facet reflectivity. This allows the realisation of SLDs with low spectral modulation depth (SMD) at high power spectral density (PSD), without the application of anti-reflection coatings to either facet. This approach is therefore compatible with ultra-broadband gain active elements. We show that 30 mW output power can be attained in a narrow bandwidth, corresponding to 2.2 mW nm-1 PSD with only 5% SMD, centred about 990 nm. We discuss the design criteria for high power and low SMD and the deviation from a linear dependence of SMD on output power, resulting from Joule heating in the self-aligned stripe.

  7. Single-transverse-mode near-IR superluminescent diodes with cw output power up to 100 mW

    Science.gov (United States)

    Andreeva, E. V.; Il'chenko, S. N.; Kostin, Yu O.; Yakubovich, S. D.

    2014-10-01

    A series of light-emitting modules based on single-mode quantum-well superluminescent diodes with centre emission wavelengths of about 790, 840, 960 and 1060 nm and a cw output power up to 100 mW in free space is developed. A sufficiently long service life of these devices is demonstrated.

  8. Optimal Velocity to Achieve Maximum Power Output – Bench Press for Trained Footballers

    Directory of Open Access Journals (Sweden)

    Richard Billich

    2015-03-01

    Full Text Available Optimal Velocity to Achieve Maximum Power Output – Bench Press for Trained Footballers In today’s world of strength training there are many myths surrounding effective exercising with the least possible negative effect on one’s health. In this experiment we focus on the finding of a relationship between maximum output, used load and the velocity with which the exercise is performed. The main objective is to find the optimal speed of the exercise motion which would allow us to reach the maximum mechanic muscle output during a bench press exercise. This information could be beneficial to sporting coaches and recreational sportsmen alike in helping them improve the effectiveness of fast strength training. Fifteen football players of the FK Třinec football club participated in the experiment. The measurements were made with the use of 3D cinematic and dynamic analysis, both experimental methods. The research subjects participated in a strength test, in which the mechanic muscle output of 0, 10, 30, 50, 70, 90% and one repetition maximum (1RM was measured. The acquired result values and other required data were modified using Qualisys Track Manager and Visual 3D software (C-motion, Rockville, MD, USA. During the bench press exercise the maximum mechanic muscle output of the set of research subjects was reached at 75% of maximum exercise motion velocity. Optimální rychlost pohybu pro dosažení maxima výstupního výkonu – bench press u trénovaných fotbalistů Dnešní svět silového tréninku přináší řadu mýtů o tom, jak cvičit efektivně a zároveň s co nejmenším negativním vlivem na zdraví člověka. V tomto experimentu se zabýváme nalezením vztahu mezi maximálním výkonem, použitou zátěží a rychlostí. Hlavním úkolem je nalezení optimální rychlosti pohybu pro dosažení maximálního mechanického svalového výkonu při cvičení bench press, což pomůže nejenom trenérům, ale i rekreačním sportovc

  9. Integrating engineering design improvements with exoelectrogen enrichment process to increase power output from microbial fuel cells

    Science.gov (United States)

    Borole, Abhijeet P.; Hamilton, Choo Y.; Vishnivetskaya, Tatiana A.; Leak, David; Andras, Calin; Morrell-Falvey, Jennifer; Keller, Martin; Davison, Brian

    Microbial fuel cells (MFC) hold promise as a green technology for bioenergy production. The challenge is to improve the engineering design while exploiting the ability of microbes to generate and transfer electrons directly to electrodes. A strategy using a combination of improved anode design and an enrichment process was formulated to improve power densities. The design was based on a flow-through anode with minimal dead volume and a high electrode surface area per unit volume. The strategy focused on promoting biofilm formation via a combination of forced flow through the anode, carbon limitation, and step-wise reduction of external resistance. The enrichment process resulted in development of exoelectrogenic biofilm communities dominated by Anaeromusa spp. This is the first report identifying organisms from the Veillonellaceae family in MFCs. The power density of the resulting MFC using a ferricyanide cathode reached 300 W m -3 net anode volume (3220 mW m -2), which is about a third of what is estimated to be necessary for commercial consideration. The operational stability of the MFC using high specific surface area electrodes was demonstrated by operating the MFC for a period of over four months.

  10. Using an elastic magnifier to increase power output and performance of heart-beat harvesters

    Science.gov (United States)

    Galbier, Antonio C.; Karami, M. Amin

    2017-09-01

    Embedded piezoelectric energy harvesting (PEH) systems in medical pacemakers have been a growing and innovative research area. The goal of these systems, at present, is to remove the pacemaker battery, which makes up 60%-80% of the unit, and replace it with a sustainable power source. This requires that energy harvesting systems provide sufficient power, 1-3 μW, for operating a pacemaker. The goal of this work is to develop, test, and simulate cantilevered energy harvesters with a linear elastic magnifier (LEM). This research hopes to provide insight into the interaction between pacemaker energy harvesters and the heart. By introducing the elastic magnifier into linear and nonlinear systems oscillations of the tip are encouraged into high energy orbits and large tip deflections. A continuous nonlinear model is presented for the bistable piezoelectric energy harvesting (BPEH) system and a one-degree-of-freedom linear mass-spring-damper model is presented for the elastic magnifier. The elastic magnifier will not consider the damping negligible, unlike most models. A physical model was created for the bistable structure and formed to an elastic magnifier. A hydrogel was designed for the experimental model for the LEM. Experimental results show that the BPEH coupled with a LEM (BPEH + LEM) produces more power at certain input frequencies and operates a larger bandwidth than a PEH, BPEH, and a standard piezoelectric energy harvester with the elastic magnifier (PEH + LEM). Numerical simulations are consistent with these results. It was observed that the system enters high-energy and high orbit oscillations and that, ultimately, BPEH systems implemented in medical pacemakers can, if designed properly, have enhanced performance if positioned over the heart.

  11. 14 CFR 29.1142 - Auxiliary power unit controls.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Auxiliary power unit controls. 29.1142... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Powerplant Controls and Accessories § 29.1142 Auxiliary power unit controls. Means must be provided on the flight deck for...

  12. 14 CFR 25.1142 - Auxiliary power unit controls.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Auxiliary power unit controls. 25.1142... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 25.1142 Auxiliary power unit controls. Means must be provided on the flight deck for...

  13. Energy efficiency of computer power supply units - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Aebischer, B. [cepe - Centre for Energy Policy and Economics, Swiss Federal Institute of Technology Zuerich, Zuerich (Switzerland); Huser, H. [Encontrol GmbH, Niederrohrdorf (Switzerland)

    2002-11-15

    This final report for the Swiss Federal Office of Energy (SFOE) takes a look at the efficiency of computer power supply units, which decreases rapidly during average computer use. The background and the purpose of the project are examined. The power supplies for personal computers are discussed and the testing arrangement used is described. Efficiency, power-factor and operating points of the units are examined. Potentials for improvement and measures to be taken are discussed. Also, action to be taken by those involved in the design and operation of such power units is proposed. Finally, recommendations for further work are made.

  14. Multi-model Predictive Control of Ultra-supercritical Coal-fired Power Unit

    Institute of Scientific and Technical Information of China (English)

    Guoliang Wang; Weiwu Yan; Shihe Chen; Xi Zhang; Huihe Shao

    2014-01-01

    The control of ultra-supercritical (USC) power unit is a difficult issue for its characteristic of the nonlinearity, large dead time and coupling of the unit. In this paper, model predictive control (MPC) based on multi-model and double layered optimization is introduced for coordinated control of USC unit. The linear programming (LP) com-bined with quadratic programming (QP) is used in steady optimization for computation of the ideal value of dynamic optimization. Three inputs (i.e. valve opening, coal flow and feedwater flow) are employed to control three outputs (i.e. load, main steam temperature and main steam pressure). The step response models for the dynamic matrix control (DMC) are constructed using the three inputs and the three outputs. Piecewise models are built at selected operation points. Double-layered multi-model predictive controller is implemented in sim-ulation with satisfactory performance.

  15. Leg joint power output during progressive resistance FES-LCE cycling in SCI subjects: developing an index of fatigue

    Directory of Open Access Journals (Sweden)

    Faghri Pouran D

    2008-04-01

    Full Text Available Abstract Background The purpose of this study was to investigate the biomechanics of the hip, knee and ankle during a progressive resistance cycling protocol in an effort to detect and measure the presence of muscle fatigue. It was hypothesized that knee power output can be used as an indicator of fatigue in order to assess the cycling performance of SCI subjects. Methods Six spinal cord injured subjects (2 incomplete, 4 complete between the ages of twenty and fifty years old and possessing either a complete or incomplete spinal cord injury at or below the fourth cervical vertebra participated in this study. Kinematic data and pedal forces were recorded during cycling at increasing levels of resistance. Ankle, knee and hip power outputs and resultant pedal force were calculated. Ergometer cadence and muscle stimulation intensity were also recorded. Results The main findings of this study were: (a ankle and knee power outputs decreased, whereas hip power output increased with increasing resistance, (b cadence, stimulation intensity and resultant pedal force in that combined order were significant predictors of knee power output and (c knowing the value of these combined predictors at 10 rpm, an index of fatigue can be developed, quantitatively expressing the power capacity of the knee joint with respect to a baseline power level defined as fatigue. Conclusion An index of fatigue was successfully developed, proportionalizing knee power capacity during cycling to a predetermined value of fatigue. The fatigue index value at 0/8th kp, measured 90 seconds into active, unassisted pedaling was 1.6. This indicates initial power capacity at the knee to be 1.6 times greater than fatigue. The fatigue index decreased to 1.1 at 2/8th kp, representing approximately a 30% decrease in the knee's power capacity within a 4 minute timespan. These findings suggest that the present cycling protocol is not sufficient for a rider to gain the benefits of FES and thus

  16. 75 FR 3942 - Carolina Power & Light Company Shearon Harris Nuclear Power Plant, Unit 1 Environmental...

    Science.gov (United States)

    2010-01-25

    ... COMMISSION Carolina Power & Light Company Shearon Harris Nuclear Power Plant, Unit 1 Environmental Assessment...), for operation of the Shearon Harris Nuclear Power Plant, Unit 1 (HNP), located in New Hill, North... Environmental Impact Statement for License Renewal of Nuclear Plants: Regarding Shearon Harris Nuclear......

  17. 77 FR 13156 - Carolina Power & Light Company; Shearon Harris Nuclear Power Plant, Unit 1; Exemption

    Science.gov (United States)

    2012-03-05

    ... COMMISSION Carolina Power & Light Company; Shearon Harris Nuclear Power Plant, Unit 1; Exemption 1.0... Harris Nuclear Power Plant (HNP), Unit 1. The license provides, among other things, that the facility is...) 50.46, ``Acceptance criteria for emergency core cooling systems for light- water nuclear...

  18. A low-cost biofuel cell with pH-dependent power output based on porous carbon as matrix.

    Science.gov (United States)

    Liu, Ying; Wang, Mingkui; Zhao, Feng; Liu, Baifeng; Dong, Shaojun

    2005-08-19

    A glucose/O2 biofuel cell (BFC) possessing a pH-dependent power output was fabricated by taking porous carbon (PC) as the matrix to load glucose oxidase or fungi laccase as the catalysts. The electrolytes in the anode and cathode compartments contain ferrocene monocarboxylic acid and 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt as the mediators, respectively. The power of the BFC was enhanced significantly by using PC as the matrix, rather than glassy carbon electrode. Additionally, the power output of the BFC decreases as the pH of the solution increases from 4.0 to 7.0, which provides a simple and efficient method to achieve the required power output. More importantly, the BFC can operate at pH 6.0, and even at pH 7.0, which overcomes the requirement for cathode solutions of pHBFC at neutral pH may provide a means to power medical devices implanted in physiological systems. The facile and low-cost fabrication of this BFC may enable its development for other applications.

  19. Evolutionary programming-based methodology for economical output power from PEM fuel cell for micro-grid application

    Science.gov (United States)

    El-Sharkh, M. Y.; Rahman, A.; Alam, M. S.

    This paper presents a methodology for finding the optimal output power from a PEM fuel cell power plant (FCPP). The FCPP is used to supply power to a small micro-grid community. The technique used is based on evolutionary programming (EP) to find a near-optimal solution of the problem. The method incorporates the Hill-Climbing technique (HCT) to maintain feasibility during the solution process. An economic model of the FCPP is used. The model considers the production cost of energy and the possibility of selling and buying electrical energy from the local grid. In addition, the model takes into account the thermal energy output from the FCPP and the thermal energy requirement for the micro-grid community. The results obtained are compared against a solution based on genetic algorithms. Results are encouraging and indicate viability of the proposed technique.

  20. Holmium-doped 2.1 μm waveguide chip laser with an output power > 1 W.

    Science.gov (United States)

    Lancaster, D G; Stevens, V J; Michaud-Belleau, V; Gross, S; Fuerbach, A; Monro, T M

    2015-12-14

    We demonstrate the increasing applicability of compact ultra-fast laser inscribed glass guided-wave lasers and report the highest-power glass waveguide laser with over 1.1 W of output power in monolithic operation in the short-infrared near 2070 nm achieved (51% incident slope efficiency). The holmium doped ZBLAN chip laser is in-band pumped by a 1945 nm thulium fiber laser. When operated in an extended-cavity configuration, over 1 W of output power is realized in a linearly polarized beam. Broad and continuous tunability of the extended-cavity laser is demonstrated from 2004 nm to 2099 nm. Considering its excellent beam quality of M² = 1.08, this laser shows potential as a flexible master oscillator for single frequency and mode-locking applications.

  1. Reliability of Power Units in Poland and the World

    Directory of Open Access Journals (Sweden)

    Józef Paska

    2015-09-01

    Full Text Available One of a power system’s subsystems is the generation subsystem consisting of power units, the reliability of which to a large extent determines the reliability of the power system and electricity supply to consumers. This paper presents definitions of the basic indices of power unit reliability used in Poland and in the world. They are compared and analysed on the basis of data published by the Energy Market Agency (Poland, NERC (North American Electric Reliability Corporation – USA, and WEC (World Energy Council. Deficiencies and the lack of a unified national system for collecting and processing electric power equipment unavailability data are also indicated.

  2. Contribution of UHV Grid to United National Power Market

    Institute of Scientific and Technical Information of China (English)

    Guo Lei; Wei Bin; Ma Li; Cheng Wen

    2010-01-01

    @@ Power market construction is an important part of the marketization reform in China's electric power industry and an essential part of the economic system reform in China. With the social and economic development, the contradiction between distribution of energy resources and development of regional economies gets increasingly noticeable, and a united national power market is consequentially required to optimize the allocation of energy resources over the whole country. Analyses indicate that the development of UHV grid will provide a strong material support for the united national power market by expanding market coverage, lowering load fluctuation and promoting diversification of power resources.

  3. Analysis of Possible Application of High-Temperature Nuclear Reactors to Contemporary Large-Output Steam Power Plants on Ships

    Directory of Open Access Journals (Sweden)

    Kowalczyk T.

    2016-04-01

    Full Text Available This paper is aimed at analysis of possible application of helium to cooling high-temperature nuclear reactor to be used for generating steam in contemporary ship steam-turbine power plants of a large output with taking into account in particular variable operational parameters. In the first part of the paper types of contemporary ship power plants are presented. Features of today applied PWR reactors and proposed HTR reactors are discussed. Next, issues of load variability of the ship nuclear power plants, features of the proposed thermal cycles and results of their thermodynamic calculations in variable operational conditions, are presented.

  4. Work output and efficiency at maximum power of linear irreversible heat engines operating with a finite-sized heat source.

    Science.gov (United States)

    Izumida, Yuki; Okuda, Koji

    2014-05-01

    We formulate the work output and efficiency for linear irreversible heat engines working between a finite-sized hot heat source and an infinite-sized cold heat reservoir until the total system reaches the final thermal equilibrium state with a uniform temperature. We prove that when the heat engines operate at the maximum power under the tight-coupling condition without heat leakage the work output is just half of the exergy, which is known as the maximum available work extracted from a heat source. As a consequence, the corresponding efficiency is also half of its quasistatic counterpart.

  5. Fast Reactive Power Sharing, Circulating Current and Resonance Suppression for Parallel Inverters Using Resistive-Capacitive Output Impedance

    DEFF Research Database (Denmark)

    Chen, Yandong; Guerrero, Josep M.; Shuai, Zhikang

    2016-01-01

    virtual impedance loop, the inverter provides fast transient response. Based on the RC-type inverter modeling, the comparative frequency-domain analysis of equivalent output impedances are discussed, and the impact of the virtual complex impedance over the circulating currents and high......In this paper, an inverter using resistivecapacitive output impedance (RC-type inverter) is proposed not only to provide fast reactive power sharing to support microgrid voltage, and but also to reduce circulating currents and damp high-frequency resonances among inverters. Introducing the RC...

  6. Acute effects of dynamic stretching exercise on power output during concentric dynamic constant external resistance leg extension.

    Science.gov (United States)

    Yamaguchi, Taichi; Ishii, Kojiro; Yamanaka, Masanori; Yasuda, Kazunori

    2007-11-01

    The purpose of the present study was to clarify the acute effect of dynamic stretching exercise on muscular performance during concentric dynamic constant external resistance (DCER, formally called isotonic) muscle actions under various loads. Concentric DCER leg extension power outputs were measured in 12 healthy male students after 2 types of pretreatment. The pretreatments were: (a) dynamic stretching treatment including 2 types of dynamic stretching exercises of leg extensors and the other 2 types of dynamic stretching exercises simulating the leg extension motion (2 sets of 15 times each with 30-second rest periods between sets; total duration: about 8 minutes), and (b) nonstretching treatment by resting for 8 minutes in a sitting position. Loads during measurement of the power output were set to 5, 30, and 60% of the maximum voluntary contractile (MVC) torque with isometric leg extension in each subject. The power output after the dynamic stretching treatment was significantly (p after the nonstretching treatment under each load (5% MVC: 468.4 +/- 102.6 W vs. 430.1 +/- 73.0 W; 30% MVC: 520.4 +/- 108.5 W vs. 491.0 +/- 93.0 W; 60% MVC: 487.1 +/- 100.6 W vs. 450.8 +/- 83.7 W). The present study demonstrated that dynamic stretching routines, such as dynamic stretching exercise of target muscle groups and dynamic stretching exercise simulating the actual motion pattern, significantly improve power output with concentric DCER muscle actions under various loads. These results suggested that dynamic stretching routines in warm-up protocols enhance power performance because common power activities are carried out by DCER muscle actions under various loads.

  7. Construction prospects of new power units at Khmelnitskij NPP site

    Energy Technology Data Exchange (ETDEWEB)

    Zenyuk, Denys [NNEGC ' Energoatom' , 01032 Vetrova, 3, Kiev (Ukraine)

    2008-07-01

    According to the Energy Strategy of Ukraine for a period up to 2030 it is planned to put into operation power units 3 and 4 of Khmelnitskij NPP by year 2016. In this work considerations are presented on the possible options while selecting reactor unit type for Khmelnitskij NPP power units 3 and 4, which is the main determinant of the cost, construction and commissioning time, and utilization of the existent civil structures. To optimize Khmelnitskij-3 and 4 construction, a survey of the data has been conducted with regard to the possibility of construction of new power units of PWR/VVER type at Khmelnitskij NPP site. The multivariable analysis has been performed based on the projects technical and cost data, construction time and conditions, as well as their compliance with the IAEA and EUR safety requirements for new power units. (author)

  8. FORECASTING OF PRODUCTION OUTPUT FOR LIGHT INDUSTRY ENTERPRISES WITH PURPOSE TO DETERMINE THEIR POWER RESOURCES REQUIREMENTS. Part 1

    Directory of Open Access Journals (Sweden)

    V. N. Romaniuk

    2015-01-01

    Full Text Available The paper presents an interest for those specialists who are involved in solution of efficiency problems in light industry of Belarus as one of the significant industries that forms an economic situation in the Republic, its export potential and social climate. It is extremely relevant for the Belarusian enterprises to reduce production costs in order to preserve and strengthen positions in the light industry market. Operating capacities for production of natural, synthetic textile and knit-wear materials and their subsequent treatment are in many respects unjustifiably energy intensive. Nowadays the only acceptable solution of the problem for reduction of production costs is to decrease its energy component. Such approach requires transition to creation of modern heat and power supply systems at heat technology enterprises.The most important sub-system of the enterprises is own combined production of energy flows of secondary electrical and heat energy, freeze. There is a complex of problems that arise during designing process of tri-generation unit. One of the most important problems presupposes determination of a base load demand and capacity of every energy flow generated by an energy source. The solution is directly related to production output, which in its turn is determined by the requirements of sales markets. Due to various reasons the markets have their own specificity for the enterprises under consideration. It is proposed to use statistical methods for searching requirements. In this connection it is necessary to take into account industry development rate (pre-determined by State Programs, Plans, Governmental solutions, including directive instructions, production volumes of competitive goods and actual goods situation on the sales market.The paper presents the first part of the executed complex investigations which are directed on the development of scientifically-substantiated proposals for higher energy efficiency of the

  9. Life cycle assessment analysis of supercritical coal power units

    Science.gov (United States)

    Ziębik, Andrzej; Hoinka, Krzysztof; Liszka, Marcin

    2010-09-01

    This paper presents the Life Cycle Assessment (LCA) analysis concerning the selected options of supercritical coal power units. The investigation covers a pulverized power unit without a CCS (Carbon Capture and Storage) installation, a pulverized unit with a "post-combustion" installation (MEA type) and a pulverized power unit working in the "oxy-combustion" mode. For each variant the net electric power amounts to 600 MW. The energy component of the LCA analysis has been determined. It describes the depletion of non-renewable natural resources. The energy component is determined by the coefficient of cumulative energy consumption in the life cycle. For the calculation of the ecological component of the LCA analysis the cumulative CO2 emission has been applied. At present it is the basic emission factor for the LCA analysis of power plants. The work also presents the sensitivity analysis of calculated energy and ecological factors.

  10. Development and operation of 1 MW wind power unit

    Energy Technology Data Exchange (ETDEWEB)

    Seleznev, I.; Lavrov, V. [Machine-building Design Bureau, (Russian Federation)

    1996-12-31

    Development of wind power units (WPUs), which operate on renewable wind power, as well as combined power sources including WPUs, have an important national economic significance in the Russian Federation, particularly in the areas of construction and operation of nuclear power plants, hydro-electric stations and other traditional power plants. Development of WPUs of high power level is a complicated task, and the solution requires investigations in the areas of experimental design, technology, and the organization of industrial production. Initially, the problem of the development of large diameter propellers, power electric equipment, reducers and drive mechanisms, automatic control devices, and control and diagnostic system need to be solved. This report covers the basic results and directions of the work of the Machine-building Design Bureau `Raduga` in the field of wind power engineering as well as the basic performance of the units. (author). 7 figs.

  11. Interleaved Flyback DC-DC Converter Design with 350 W Power Output Using LT 3757 in LT Spice

    Science.gov (United States)

    Rahayu, S.; Firmansyah, E.; Isnaeni, M.

    2017-04-01

    DC-DC converter becomes one important part in micro-inverter used in solar panel application. Its function is to convert output voltage level of solar panel 42-48 Vdc to a voltage level of 350 Vdc before being converted into an AC voltage at the inverter. The proposed converter topology is a flyback because the number of components used is not too much which can suppress the production cost. In this paper, simulation of flyback converter on the interleaved operating mode with a maximum output power of 350 W using software Ltspicewas conducted. From the simulation results, obtained that by applying a switching frequency of 100 kHz, the obtained value of the components of the primary inductor (LP) 3.3 μH, the secondary inductor (LS) 27 μH, the output capacitor (Cout) 47μF and ripple voltage (Vr) 212.65 mV.

  12. Optimizing Power Heterogeneous Functional Units for Dynamic and Static Power Reduction

    Directory of Open Access Journals (Sweden)

    Toshinori Sato

    2014-12-01

    Full Text Available Power consumption is the major constraint for modern microprocessor designs. In particular, static power consumption becomes a serious problem as the transistor size shrinks via semiconductor technology improvement. This paper proposes a technique that reduces the static power consumed by functional units. It exploits the activity rate of functional units and utilizes the power heterogeneous functional units. From detailed simulations, we investigate the conditions in which the proposed technique works effectively for simultaneous dynamic and static power reduction and find that we can reduce the total power by 11.2% if two out of four leaky functional units are replaced by leakless ones in the situation where the static power occupies half of the total power.

  13. Power amplification in an isolated muscle-tendon unit is load dependent.

    Science.gov (United States)

    Sawicki, Gregory S; Sheppard, Peter; Roberts, Thomas J

    2015-11-01

    During rapid movements, tendons can act like springs, temporarily storing work done by muscles and then releasing it to power body movements. For some activities, such as frog jumping, energy is released from tendon much more rapidly than it is stored, thus amplifying muscle power output. The period during which energy is loaded into a tendon by muscle work may be aided by a catch mechanism that restricts motion, but theoretical studies indicate that power can be amplified in a muscle-tendon load system even in the absence of a catch. To explore the limits of power amplification with and without a catch, we studied the bullfrog plantaris muscle-tendon during in vitro contractions. A novel servomotor controller allowed us to measure muscle-tendon unit (MTU) mechanical behavior during contractions against a variety of simulated inertial-gravitational loads, ranging from zero to 1× the peak isometric force of the muscle. Power output of the MTU system was load dependent and power amplification occurred only at intermediate loads, reaching ∼1.3× the peak isotonic power output of the muscle. With a simulated anatomical catch mechanism in place, the highest power amplification occurred at the lowest loads, with a maximum amplification of more than 4× peak isotonic muscle power. At higher loads, the benefits of a catch for MTU performance diminished sharply, suggesting that power amplification >2.5× may come at the expense of net mechanical work delivered to the load. © 2015. Published by The Company of Biologists Ltd.

  14. Low Power Continuous-Time Delta-Sigma ADC with Current Output DAC

    DEFF Research Database (Denmark)

    Marker-Villumsen, Niels; Jørgensen, Ivan Harald Holger; Bruun, Erik

    2015-01-01

    The paper presents a continuous-time (CT) DeltaSigma (∆Σ) analog-to-digital converter (ADC) using a current output digital-to-analog converter (DAC) for the feedback. From circuit analysis it is shown that using a current output DAC makes it possible to relax the noise requirements of the 1st...... integrator of the loopfilter, and thereby reduce the current consumption. Furthermore, the noise of the current output DAC being dependent on the ADC input signal level, enabling a dynamic range that is larger than the peak signal-to-noise ratio (SNR). The current output DAC is used in a 3rd order multibit...... CT ∆Σ ADC for audio applications, designed in a 0.18 µm CMOS process, with active-RC integrators, a 7-level Flash ADC quantizer and current output DAC for the feedback. From simulations the ADC achieves a dynamic range of 95.0 dB in the audio band, with a current consumption of 284 µA for a 1.7 V...

  15. Improved Power Quality Monitoring through Phasor Measurement Unit Data Interpretation

    DEFF Research Database (Denmark)

    Pertl, Michael; Marinelli, Mattia; Bindner, Henrik W.

    2015-01-01

    the correct actions for operating the system. In future power systems more measuring sensors including phasor measurement units will be available distributed all over the power system. They can and should be utilized to increase the observability of the power system. In this paper the impact of photovoltaic....... The voltage unbalance factor (VUF) could be a ‘new’ observable for a particular power system condition. Information about the actual injected wind power for a certain grid area could be derived without knowing/measuring the real wind power injection....

  16. The left ventricle as a mechanical engine: from Leonardo da Vinci to the echocardiographic assessment of peak power output-to-left ventricular mass.

    Science.gov (United States)

    Dini, Frank L; Guarini, Giacinta; Ballo, Piercarlo; Carluccio, Erberto; Maiello, Maria; Capozza, Paola; Innelli, Pasquale; Rosa, Gian M; Palmiero, Pasquale; Galderisi, Maurizio; Razzolini, Renato; Nodari, Savina

    2013-03-01

    The interpretation of the heart as a mechanical engine dates back to the teachings of Leonardo da Vinci, who was the first to apply the laws of mechanics to the function of the heart. Similar to any mechanical engine, whose performance is proportional to the power generated with respect to weight, the left ventricle can be viewed as a power generator whose performance can be related to left ventricular mass. Stress echocardiography may provide valuable information on the relationship between cardiac performance and recruited left ventricular mass that may be used in distinguishing between adaptive and maladaptive left ventricular remodeling. Peak power output-to-mass, obtained during exercise or pharmacological stress echocardiography, is a measure that reflects the number of watts that are developed by 100 g of left ventricular mass under maximal stimulation. Power output-to-mass may be calculated as left ventricular power output per 100 g of left ventricular mass: 100× left ventricular power output divided by left ventricular mass (W/100 g). A simplified formula to calculate power output-to-mass is as follows: 0.222 × cardiac output (l/min) × mean blood pressure (mmHg)/left ventricular mass (g). When the integrity of myocardial structure is compromised, a mismatch becomes apparent between maximal cardiac power output and left ventricular mass; when this occurs, a reduction of the peak power output-to-mass index is observed.

  17. Estimation of peak oxygen uptake from maximal power output among 9-10 year-old children in Lhasa, Tibet

    DEFF Research Database (Denmark)

    Bianba, B; Berntsen, S; Andersen, Lars Bo

    2010-01-01

    Chinese children aged 9-10 years, living in Lhasa at 3700 meters above sea level, V.O2peak was measured directly using a portable oxygen analyzer, and predicted from maximal power output (Wmax) using a maximal cycle ergometer test. RESULTS: In multiple regression analyses with V.O2peak as dependent......AIM: The aims of the present study of Tibetan and Han Chinese children were to establish prediction equations for peak oxygen uptake (V.O2peak) using conventional power output measures, and to compare with prediction models based on data from sea level. METHODS: In 25 Tibetan children and 15 Han...... with the equations from the present study. None of the three could accurately predict the direct measured V.O2peak, and predictions differed in an unsystematic manner, including over- or underestimation and no differentiation between genders. CONCLUSION: Peak oxygen uptake could be estimated from Wmax and sex...

  18. Moderate intensity, but not high intensity, treadmill exercise training alters power output properties in myocardium from aged rats.

    Science.gov (United States)

    Chung, Eunhee; Diffee, Gary M

    2012-11-01

    Aging is characterized by a progressive decline in cardiac function, but endurance exercise training has been shown to retard a number of deleterious effects of aging. However, underlying mechanisms by which exercise training improves age-related decrements in myocardial contractile function are not well understood. The purpose of this study was to determine the effects of exercise training on power output properties in permeablized (skinned) myocytes of old rats. Thirty-month-old rats were divided into sedentary control (C) and groups undergoing 11 weeks of treadmill exercise training at moderate intensity (MI) and at high intensity (HI). Peak power output normalized to maximal force was significantly increased in MI but not in HI compared to C with significant increases in atrial myosin light chain 1 in ventricle. These results suggest that MI exercise training is beneficial as a significant increase was seen in the ability of the myocardium to do work, but this effect was not seen with HI training.

  19. Measuring cutaneous thermal nociception in group-housed pigs using laser technique - effects of laser power output

    DEFF Research Database (Denmark)

    Herskin, Mette S.; Ladevig, Jan; Arendt-Nielsen, Lars

    2009-01-01

    of the metatarsus were examined using 15 gilts kept in one group and tested in individual feeding stalls after feeding. Increasing the power output led to gradually decreasing latency to respond (P ... are available, especially methodology which is applicable for pigs kept in group-housing without disturbing the daily routines of the animals. To validate a laser-based method to measure thermal nociception in group-housed pigs, we performed two experiments observing the behavioural responses toward cutaneous...... nociceptive stimulation from a computer-controlled CO2-laser beam applied to either the caudal part of the metatarsus on the hind legs or the shoulder region of gilts. In Exp. 1, effects of laser power output (0, 0.5, 1, 1.5 and 2 W) on nociceptive responses toward stimulation on the caudal aspects...

  20. Edge-facet pumped, multi-aperture, thin-disk laser geometry for very high average power output scaling

    Energy Technology Data Exchange (ETDEWEB)

    Zapata, Luis E.

    2004-12-21

    The average power output of a laser is scaled, to first order, by increasing the transverse dimension of the gain medium while increasing the thickness of an index matched light guide proportionately. Strategic facets cut at the edges of the laminated gain medium provide a method by which the pump light introduced through edges of the composite structure is trapped and passes through the gain medium repeatedly. Spontaneous emission escapes the laser volume via these facets. A multi-faceted disk geometry with grooves cut into the thickness of the gain medium is optimized to passively reject spontaneous emission generated within the laser material, which would otherwise be trapped and amplified within the high index composite disk. Such geometry allows the useful size of the laser aperture to be increased, enabling the average laser output power to be scaled.

  1. Low spectral modulation high-power output from a new AlGaAs superluminescent diode/optical amplifier structure

    Energy Technology Data Exchange (ETDEWEB)

    Alphonse, G.A.; Connolly, J.C.; Dinkel, N.A.; Palfrey, S.L.; Gilbert, D.B. (David Sarnoff Research Center, Princeton, New Jersey 08543-5300 (US))

    1989-11-27

    A double-heterojunction angled stripe AlGaAs device consisting of an index-guided ridge waveguide with gain-guided facet regions has produced cw output powers of 20 mW with less than 1% spectral modulation from a 300-{mu}m-long diode. These properties enable these devices to have important use in high-sensitivity fiber optic gyroscopes and as broadband traveling-wave optical amplifiers.

  2. Enhanced output power of GaN-based LEDs with embedded AlGaN pyramidal shells.

    Science.gov (United States)

    Tu, Shang-Ju; Sheu, Jinn-Kong; Lee, Ming-Lun; Yang, Chih-Ciao; Chang, Kuo-Hua; Yeh, Yu-Hsiang; Huang, Feng-Wen; Lai, Wei-Chih

    2011-06-20

    In this article, the characteristics of GaN-based LEDs grown on Ar-implanted GaN templates to form inverted Al0.27Ga0.83N pyramidal shells beneath an active layer were investigated. GaN-based epitaxial layers grown on the selective Ar-implanted regions had lower growth rates compared with those grown on the implantation-free regions. This resulted in selective growth, and formation of V-shaped concaves in the epitaxial layers. Accordingly, the inverted Al0.27Ga0.83N pyramidal shells were formed after the Al0.27Ga0.83N and GaN layers were subsequently grown on the V-shaped concaves. The experimental results indicate that the light-output power of LEDs with inverted AlGaN pyramidal shells was higher than those of conventional LEDs. With a 20 mA current injection, the output power was enhanced by 10% when the LEDs were embedded with inverted Al0.27Ga0.83N pyramidal shells. The enhancement in output power was primarily due to the light scattering at the Al0.27Ga0.83N/GaN interface, which leads to a higher escape probability for the photons, that is, light-extraction efficiency. Based on the ray tracing simulation, the output power of LEDs grown on Ar-implanted GaN templates can be enhanced by over 20% compared with the LEDs without the embedded AlGaN pyramidal shells, if the AlGaN layers were replaced by Al0.5Ga0.5N layers.

  3. Acute effects of dynamic stretching exercise on power output during concentric dynamic constant external resistance leg extension

    OpenAIRE

    YAMAGUCHI, TAICHI; Ishii, Kojiro; Yamanaka, Masanori; YASUDA, KAZUNORI

    2007-01-01

    AbstractThe purpose of the present study was to clarify the acute effect of dynamic stretching exercise on muscular performance during concentric dynamic constant external resistance (DCER, formally called isotonic) muscle actions under various loads. Concentric DCER leg extension power outputs were measured in 12 healthy male students after 2 types of pretreatment. The pre- treatments were: (a) dynamic stretching treatment including 2 types of dynamic stretching exercises of leg extensors an...

  4. Oscillations in the power spectra of motor unit signals caused by refractoriness variations

    Science.gov (United States)

    Hu, X. L.; Tong, K. Y.; Hung, L. K.

    2004-09-01

    The refractory period of a motor unit is an important mechanism that regulates the motor unit firing, and its variation has been found in many physiological cases. In this study, a new observation that an increase in the motor unit refractoriness results in an enhancement of oscillations, or ripple effects, in the motor unit output power density spectra (PDS) has been identified and studied. The effects of the refractoriness variation on the PDS of motor unit firing were investigated on three levels: theoretical modeling, simulation and electromyographic (EMG) experimentation on human subjects. Both theoretical modeling and simulation showed the enhanced oscillations, ripple effects, in MUAPT PDS, given the increase in the refractoriness. It was also found that the extent of the increment in output PDS oscillation could be related to the motor unit size and the mean firing rate of the stimulation. A needle EMG experiment on biceps brachii muscles of five healthy human subjects was carried out during isometric contraction at 20% maximum voluntary contraction (MVC) for 20 s with a fatigue effort proceeded by MVC. The increased oscillations in the PDS of the real MUAPTs were observed with the rising of the motor unit refractoriness due to fatigue. The study gives new information for EMG spectra interpretation, and also provides a potential method for accessing neuromuscular transmission failure (NTF) due to fatigue during voluntary contraction.

  5. 10kV SiC MOSFET split output power module

    DEFF Research Database (Denmark)

    Beczkowski, Szymon; Li, Helong; Uhrenfeldt, Christian

    2015-01-01

    The poor body diode performance of the first generation of 10kV SiC MOSFETs and the parasitic turn-on phenomenon limit the performance of SiC based converters. Both these problems can potentially be mitigated using a split output topology. In this paper we present a comparison between a classical...

  6. Output regulation of large-scale hydraulic networks with minimal steady state power consumption

    NARCIS (Netherlands)

    Jensen, Tom Nørgaard; Wisniewski, Rafał; De Persis, Claudio; Kallesøe, Carsten Skovmose

    2014-01-01

    An industrial case study involving a large-scale hydraulic network is examined. The hydraulic network underlies a district heating system, with an arbitrary number of end-users. The problem of output regulation is addressed along with a optimization criterion for the control. The fact that the syste

  7. Maximizing Power Output in Homogeneous Charge Compression Ignition (HCCI) Engines and Enabling Effective Control of Combustion Timing

    Science.gov (United States)

    Saxena, Samveg

    Homogeneous Charge Compression Ignition (HCCI) engines are one of the most promising engine technologies for the future of energy conversion from clean, efficient combustion. HCCI engines allow high efficiency and lower CO2 emission through the use of high compression ratios and the removal of intake throttle valves (like Diesel), and allow very low levels of urban pollutants like nitric oxide and soot (like Otto). These engines, however, are not without their challenges, such as low power density compared with other engine technologies, and a difficulty in controlling combustion timing. This dissertation first addresses the power output limits. The particular strategies for enabling high power output investigated in this dissertation focus on avoiding five critical limits that either damage an engine, drastically reduce efficiency, or drastically increase emissions: (1) ringing limits, (2) peak in-cylinder pressure limits, (3) misfire limits, (4) low intake temperature limits, and (5) excessive emissions limits. The research shows that the key factors that enable high power output, sufficient for passenger vehicles, while simultaneously avoiding the five limits defined above are the use of: (1) high intake air pressures allowing improved power output, (2) highly delayed combustion timing to avoid ringing limits, and (3) using the highest possible equivalence ratio before encountering ringing limits. These results are revealed by conducting extensive experiments spanning a wide range of operating conditions on a multi-cylinder HCCI engine. Second, this dissertation discusses strategies for effectively sensing combustion characteristics on a HCCI engine. For effective feedback control of HCCI combustion timing, a sensor is required to quantify when combustion occurs. Many laboratory engines use in-cylinder pressure sensors but these sensors are currently prohibitively expensive for wide-scale commercialization. Instead, ion sensors made from inexpensive sparkplugs

  8. Effect of pedal cadence on mechanical power output and physiological variables

    Directory of Open Access Journals (Sweden)

    Jefferson da Silva Novaes

    2007-09-01

    Full Text Available The objective of this study was to compare the responses of the variables maximal power output (POmax, heart rate (HR, rating of perceived exertion (RPE, systolic blood pressure (SBP, diastolic blood pressure (DBP and double product (DP in the maximum reached load and during 60 and 90 rev.min-1 tests. The study sample consisted of 14 men (26.5 ± 3.5 years, 78.5 ± 7.8 kg and 178.1 ± 7.0 cm engaged in indoor cycling classes, who undertook two tests of maximum effort using Balke’s incremental protocol. The fi rst test (test60 consisted of a pedal cadence of 60 rev.min-1 throughout the test, until voluntary exhaustion or the appearance of signs or symptom limits. The second test (test90 was at a pedal cadence of 90 rev.min-1. There were no signifi cant difference between the cadences tested in terms of HRmax (test60: 189.7±12.0 beats.min-1; test90: 190.9±10.7 beats.min-1, RPEmax (test60: 20.0±0.3; test90: 20.0±1.0 or DBPmean (test60: 76.7±4.9 mmHg; test90: 79.1 ± 5.3 mmHg. On the other hand, the values of POmax (test60: 344.6±70.1 W; test90: 285.7±61.8 W, SBPmax (test60: 186.1±14.7 mmHg; test90: 202.1±21.5 mmHg and DPmax (test60: 35402.9±4431.7; test90: 38655.0±5270.5 were different. In relation to the behavior of the variables during the tests, there were signifi cant difference in HR between the tests up to a level of 225 W. It was observed that neither RPE or DBP indicated signifi cant difference in absolute power. There were only differences in SBP and DP between the cadences at 300 W absolute power. With this, it is clear that to carry out maximum tests, even in protocols that do not prescribe the pedal cadence, it appears thet a 60 rev.min-1 pedalling speed is indicated. ABSTRACT O objetivo deste estudo foi comparar as respostas das variáveis potência máxima (Pmax, freqüência cardíaca (FC, percepção de esforço (PE, pressão arterial sistólica (PAS, pressão arterial diastólica (PAD e duplo produto (DP na carga m

  9. The relationship between passive stiffness and muscle power output: influence of muscle cross-sectional area normalization.

    Science.gov (United States)

    Palmer, Ty B; Jenkins, Nathaniel D M; Thompson, Brennan J; Smith, Douglas B; Cramer, Joel T

    2014-01-01

    We examined the relationship between passive stiffness of posterior hip and thigh muscles and muscle power output before and after normalization of passive stiffness to muscle cross-sectional area (CSA). Pearson correlation coefficients (r) were used to assess the relationships between the normalized and non-normalized slopes of the initial (phase 1) and final (phase 2) portions of the angle-torque curve and peak power output (Pmax). A significant positive relationship was observed between the non-normalized slope of phase 1 and Pmax (r = 0.723; P ≤ 0.001); however, no correlations were observed between the normalized slope of phase 1 and Pmax (r = 0.244; P = 0.299) nor between Pmax and the normalized and non-normalized slopes of phase 2 (r = -0.159-0.418; P = 0.067-0.504). The findings suggest that muscle size, rather than stiffness, accounted for a significant portion of the variance in muscle power output. Copyright © 2013 Wiley Periodicals, Inc.

  10. CFD Study on Aerodynamic Power Output Changes with Inter-Turbine Spacing Variation for a 6 MW Offshore Wind Farm

    Directory of Open Access Journals (Sweden)

    Nak Joon Choi

    2014-11-01

    Full Text Available This study examined the aerodynamic power output change of wind turbines with inter-turbine spacing variation for a 6 MW wind farm composed of three sets of 2 MW wind turbines using computational fluid dynamics (CFD. The wind farm layout design is becoming increasingly important as the use of wind energy is steadily increasing. Among the many wind farm layout design parameters, the inter-turbine spacing is a key factor in the initial investment cost, annual energy production and maintenance cost. The inter-turbine spacing should be determined to maximize the annual energy production and minimize the wake effect, turbulence effect and fatigue load during the service lifetime of wind turbines. Therefore, some compromise between the aerodynamic power output of wind turbines and the inter-turbine spacing is needed. An actuator disc model with the addition of a momentum source was not used, and instead, a full 3-dimensional model with a tower and nacelle was used for CFD analysis because of its great technical significance. The CFD analysis results, such as the aerodynamic power output, axial direction wind speed change, pressure drop across the rotor of wind turbine, and wind speed deficit due to the wake effect with inter-turbine spacing variation, were studied. The results of this study can be applied effectively to wind farm layout design and evaluation.

  11. Detecting, categorizing and forecasting large romps in wind farm power output using meteorological observations and WPPT

    DEFF Research Database (Denmark)

    Cutler, N.; Kay, M.; Jacka, K.

    2007-01-01

    are not as complicated as Woolnorth Bluff Point. Large ramps are considered critical events for a wind power forecast for energy trading as well as managing power system security. A methodology is developed to detect large ramp events in the wind farm power data. Forty-one large ramp events are detected over I year...

  12. Power Restriction in Parts of Henan Province Will Affect Lead Output

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>Since late July,temporary power cuts have been implemented in parts of Henan Province. Some smelting factories were informed by the local government that due to shortage of future power supply in this region,power outage would be implemented if necessary.

  13. 340 W average power output of diode-pumped composite ceramic YAG/Nd:YAG disk laser

    Science.gov (United States)

    Jia, Kai; Jiang, Yong; Yang, Feng; Deng, Bo; Hou, Tianjin; Guo, Jiawei; Chen, Dezhang; Wang, Hongyuan; Yang, Chuang; Peng, Chun

    2016-11-01

    We report on a diode-pumped composite ceramic disk laser in this paper. The composite ceramic YAG/Nd:YAG disk consists of 4 mm thick pure YAG and 2 mm thick Nd:YAG with 1.0 at.% doping concentration. The slope efficiency of the composite ceramic disk laser is 36.6% corresponding to the maximum optical-optical efficiency of 29.2%. Furthermore, 340 W average power output was achieved at the absorbed pump power of 1290 W.

  14. >220W output power at 355nm from a Q-switched diode-pumped solid-state laser

    Science.gov (United States)

    Hay, Nick; Slavinskis, Nerijus; Rodin, Aleksej M.; Kwon, Young Key

    2014-02-01

    We demonstrate 220 W average power at 355 nm from a diode-pumped acousto-optically Q-switched Nd:YAG laser using intracavity second harmonic generation and sum frequency mixing in a nested sub-cavity design. The laser generates linearly polarised pulses with duration 65 ns at repetition rate 10 kHz. Polarisation multiplexing is used to combine two orthogonal beams giving total output pulse energy 22 mJ with peak power cost of ownership DPSS lasers for high-throughput industrial processes in the UV.

  15. Compensation of Cable Voltage Drops and Automatic Identification of Cable Parameters in 400 Hz Ground Power Units

    DEFF Research Database (Denmark)

    Borup, Uffe; Nielsen, Bo Vork; Blaabjerg, Frede

    2004-01-01

    In this paper a new cable voltage drop compensation scheme for ground power units (GPU) is presented. The scheme is able to predict and compensate the voltage drop in an output cable by measuring the current quantities at the source. The prediction is based on an advanced cable model that includes...

  16. Plasma and cyclotron frequency effects on output power of the plasma wave-pumped free-electron lasers

    Science.gov (United States)

    Zolghadr, S. H.; Jafari, S.; Raghavi, A.

    2016-05-01

    Significant progress has been made employing plasmas in the free-electron lasers (FELs) interaction region. In this regard, we study the output power and saturation length of the plasma whistler wave-pumped FEL in a magnetized plasma channel. The small wavelength of the whistler wave (in sub-μm range) in plasma allows obtaining higher radiation frequency than conventional wiggler FELs. This configuration has a higher tunability by adjusting the plasma density relative to the conventional ones. A set of coupled nonlinear differential equations is employed which governs on the self-consistent evolution of an electromagnetic wave. The electron bunching process of the whistler-pumped FEL has been investigated numerically. The result reveals that for a long wiggler length, the bunching factor can appreciably change as the electron beam propagates through the wiggler. The effects of plasma frequency (or plasma density) and cyclotron frequency on the output power and saturation length have been studied. Simulation results indicate that with increasing the plasma frequency, the power increases and the saturation length decreases. In addition, when density of background plasma is higher than the electron beam density (i.e., for a dense plasma channel), the plasma effects are more pronounced and the FEL-power is significantly high. It is also found that with increasing the strength of the external magnetic field frequency, the power decreases and the saturation length increases, noticeably.

  17. The Influence of the Heat Source Temperature on the Multivane Expander Output Power in an Organic Rankine Cycle (ORC System

    Directory of Open Access Journals (Sweden)

    Piotr Kolasiński

    2015-04-01

    Full Text Available Organic Rankine Cycle (ORC power systems are nowadays an option for local and domestic cogeneration of heat and electric power. Very interesting are micropower systems for heat recovery from low potential (40–90 °C waste and renewable heat sources. Designing an ORC system dedicated to heat recovery from such a source is very difficult. Most important problems are connected with the selection of a suitable expander. Volumetric machines, such as scroll and screw expanders, are adopted as turbine alternative in small-power ORC systems. However, these machines are complicated and expensive. Vane expanders on the other hand are simple and cheap. This paper presents a theoretical and experimental analysis of the operation of a micro-ORC rotary vane expander under variable heat source temperature conditions. The main objective of this research was therefore a comprehensive analysis of relation between the vane expander output power and the heat source temperature. A series of experiments was performed using the micropower ORC test-stand. Results of these experiments are presented here, together with a mathematical description of multivane expanders. The analysis presented in this paper indicates that the output power of multivane expanders depend on the heat source temperature, and that multivane expanders are cheap alternatives to other expanders proposed for micropower ORC systems.

  18. Electrical output of bryophyte microbial fuel cell systems is sufficient to power a radio or an environmental sensor.

    Science.gov (United States)

    Bombelli, Paolo; Dennis, Ross J; Felder, Fabienne; Cooper, Matt B; Madras Rajaraman Iyer, Durgaprasad; Royles, Jessica; Harrison, Susan T L; Smith, Alison G; Harrison, C Jill; Howe, Christopher J

    2016-10-01

    Plant microbial fuel cells are a recently developed technology that exploits photosynthesis in vascular plants by harnessing solar energy and generating electrical power. In this study, the model moss species Physcomitrella patens, and other environmental samples of mosses, have been used to develop a non-vascular bryophyte microbial fuel cell (bryoMFC). A novel three-dimensional anodic matrix was successfully created and characterized and was further tested in a bryoMFC to determine the capacity of mosses to generate electrical power. The importance of anodophilic microorganisms in the bryoMFC was also determined. It was found that the non-sterile bryoMFCs operated with P. patens delivered over an order of magnitude higher peak power output (2.6 ± 0.6 µW m(-2)) than bryoMFCs kept in near-sterile conditions (0.2 ± 0.1 µW m(-2)). These results confirm the importance of the microbial populations for delivering electrons to the anode in a bryoMFC. When the bryoMFCs were operated with environmental samples of moss (non-sterile) the peak power output reached 6.7 ± 0.6 mW m(-2). The bryoMFCs operated with environmental samples of moss were able to power a commercial radio receiver or an environmental sensor (LCD desktop weather station).

  19. Electrical output of bryophyte microbial fuel cell systems is sufficient to power a radio or an environmental sensor

    Science.gov (United States)

    Dennis, Ross J.; Felder, Fabienne; Cooper, Matt B.; Royles, Jessica; Harrison, Susan T. L.; Smith, Alison G.; Howe, Christopher J.

    2016-01-01

    Plant microbial fuel cells are a recently developed technology that exploits photosynthesis in vascular plants by harnessing solar energy and generating electrical power. In this study, the model moss species Physcomitrella patens, and other environmental samples of mosses, have been used to develop a non-vascular bryophyte microbial fuel cell (bryoMFC). A novel three-dimensional anodic matrix was successfully created and characterized and was further tested in a bryoMFC to determine the capacity of mosses to generate electrical power. The importance of anodophilic microorganisms in the bryoMFC was also determined. It was found that the non-sterile bryoMFCs operated with P. patens delivered over an order of magnitude higher peak power output (2.6 ± 0.6 µW m−2) than bryoMFCs kept in near-sterile conditions (0.2 ± 0.1 µW m−2). These results confirm the importance of the microbial populations for delivering electrons to the anode in a bryoMFC. When the bryoMFCs were operated with environmental samples of moss (non-sterile) the peak power output reached 6.7 ± 0.6 mW m−2. The bryoMFCs operated with environmental samples of moss were able to power a commercial radio receiver or an environmental sensor (LCD desktop weather station). PMID:27853542

  20. Coordinated Power Dispatch of a PMSG based Wind Farm for Output Power Maximizing Considering the Wake Effect and Losses

    DEFF Research Database (Denmark)

    Zhang, Baohua; Hu, Weihao; Hou, Peng;

    2016-01-01

    The energy loss in a wind farm (WF) caused by wake interaction between wind turbines (WTs) is quite high, which can be reduced by proper active power dispatch. The electrical loss inside a WF by improper active power and reactive power dispatch is also considerable. In this paper, a coordinated a...

  1. Study on the Characteristics of Expander Power Output Used for Offsetting Pumping Work Consumption in Organic Rankine Cycles

    Directory of Open Access Journals (Sweden)

    Yu-Ting Wu

    2014-07-01

    Full Text Available The circulation pump in an organic Rankine cycle (ORC increases the pressure of the liquid working fluid from low condensing pressure to high evaporating pressure, and the expander utilizes the pressure difference to generate work. A portion of the expander output power is used to offset the consumed pumping work, and the rest of the expander power is exactly the net work produced by the ORC system. Because of the relatively great theoretical pumping work and very low efficiency of the circulation pump reported in previous papers, the characteristics of the expander power used for offsetting the pumping work need serious consideration. In particular, the present work examines those characteristics. It is found that the characteristics of the expander power used for offsetting the pumping work are satisfactory only under the condition that the working fluid absorbs sufficient heat in the evaporator and its specific volume at the evaporator outlet is larger than or equal to a threshold value.

  2. Multiple trends of tertiarization: A comparative input–output analysis of the service sector expansion between Brazil and United States

    Directory of Open Access Journals (Sweden)

    Kênia Barreiro de Souza

    2016-05-01

    Full Text Available The service sector expansion has shown to be a multiple trend process, producing distinct sectorial compositions. The present paper aims to make a comparison between two large economies in different stages of development with an extensive service sector (Brazil and United States, by focusing on final and intermediary demand changes and sectorial productivity as well. Input–output matrices for Brazil and United States were used and two applications were carried out: structural decomposition analysis and total factor productivity. Main results are as follows. Firstly, the growth in services was fostered by several factors, among which household consumption assumes an important role for both countries. Second, inter-industrial linkages play a major role only for United States. Thirdly, there is now evidence of cost disease for Brazil. Finally, productivity is lower in Brazil, nonetheless labor productivity increased above the average in some service sectors.

  3. Power quality improvement of unbalanced power system with distributed generation units

    DEFF Research Database (Denmark)

    Hu, Y.; Chen, Zhe; Excell, P.

    2011-01-01

    This paper presents a power electronic system for improving the power quality of the unbalanced distributed generation units in three-phase four-wire system. In the system, small renewable power generation units, such as small PV generator, small wind turbines may be configured as single phase...... generation units. The random nature of renewable power sources may result in significant unbalance in the power network and affect the power quality. An electronic converter system is proposed to correct the system unbalance and harmonics so as to deal with the power quality problems. The operation...... and control of the converter are described. Simulation results have demonstrated that the system can effectively correct the unbalance and enhance the system power quality....

  4. Dedicated auxiliary power units for Hybrid Electric Vehicles

    NARCIS (Netherlands)

    Mourad, S.; Weijer, C.J.T. van de

    1998-01-01

    The use of a dedicated auxiliary power unit is essential to utilize the potential that hybrid vehicles offer for efficient and ultra-clean transportation. An example of a hybrid project at the TNO Road-Vehicles Research Institute shows the development and the results of a dedicated auxiliary power

  5. Dedicated auxiliary power units for Hybrid Electric Vehicles

    NARCIS (Netherlands)

    Mourad, S.; Weijer, C.J.T. van de

    1998-01-01

    The use of a dedicated auxiliary power unit is essential to utilize the potential that hybrid vehicles offer for efficient and ultra-clean transportation. An example of a hybrid project at the TNO Road-Vehicles Research Institute shows the development and the results of a dedicated auxiliary power u

  6. Research on Interactive Control of Electrolytic Aluminum Load and Wind Power Output

    Directory of Open Access Journals (Sweden)

    Ge Simin

    2016-01-01

    Full Text Available With the large-scale wind power generation connected to Gansu power grid, electrolytic aluminium load has reached a certain scale at the same time, the vast majority of electrolytic aluminium load directly connects to power grid using 330kV transmission line. According to the physical characteristics and historical data, the continuous adjustment characteristic of electrolytic aluminium load is analysed. Based on this characteristic, a mathematical model for the electrolytic aluminium load is established. Aiming at reducing power network loss and wind power consumption, an optimization model based on the load regulation characteristics of electrolytic aluminium is constructed, which is optimized by particle swarm optimization algorithm. Based on the case data of Gansu power grid, the optimal method based on the load regulation characteristics of electrolytic aluminium is analysed and its feasibility is verified.

  7. Tuning beam power-splitting characteristics through modulating a photonic crystal slab’s output surface

    Science.gov (United States)

    Feng, Shuai; Xiao, Ting-Hui; Gan, Lin; Wang, Yi-Quan

    2017-01-01

    Light-beam-splitting characteristics are theoretically and experimentally studied in 2D square-lattice photonic crystals (PhCs) with delicately designed and modulated output surfaces. Compared with the traditional branch-waveguide and self-collimation-type PhC splitters, our proposed structure can not only split the input light beam into different numbers of branches but also realize the adjustment of their relative light intensities in each branch. Moreover, the influence of a light beam’s incident angle on both the output branch beams’ relative intensity and propagation direction is investigated. This proposed light beam splitter is able to work within a broad frequency range, and the propagation directions of the output split beams can be modified with the incident beam’s frequency. In addition, when the PhC device becomes thicker, a kind of light-beam-focusing phenomenon is observed. Advantageously, our light-beam-splitting device has no restriction as to the incident light beam’s location and width, so it is much more convenient and practical for achieving optical connection with other functional devices in complicated, large-scale, all-optical integrated circuits.

  8. Contribution of UHV Grid to United National Power Market

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Power market construction is an important part of the marketization reform in China's electric power industry and an essential part of the economic system reform in China. With the social and economic development, the contradiction between distribution of energy resources and development of regional economies gets increasingly noticeable, and a united national power market is consequentially required to optimize the allocation of energy resources over the whole country. Analyses indicate that the developmen...

  9. Output Filter Design for a Novel Dual-Input PV-Wind Power Converter by Energy Balance Principle

    Directory of Open Access Journals (Sweden)

    Chih-Lung Shen

    2016-09-01

    Full Text Available In this paper, a detailed and systematic derivation of the output filter in a novel dual-input photovoltaic (PV-wind converter (DIPWC is presented. The theoretical derivation is based on an energy balance principle. While the DIPWC operates in steady state, the amount of charged energy of the output filter will be equal to that of the energy pumped away within one switching cycle. From this zero net change in energy, the minimum value of the output filter can be found. With the determined value, the DIPWC is able to operate in continuous conduction for high power applications. The developed procedure of the inductance determination can be applied to other types of dual-input converters. Therefore, it makes significant contributions to the design toward a green-energy, multi-input converter. To verify the correctness of the mathematical analysis, the DIPWC—with the derived output inductance—is built and tested. Practical measurements and results have verified the inductance determination.

  10. Intra-Minute Cloud Passing Forecasting Based on a Low Cost IoT Sensor-A Solution for Smoothing the Output Power of PV Power Plants.

    Science.gov (United States)

    Sukič, Primož; Štumberger, Gorazd

    2017-05-13

    Clouds moving at a high speed in front of the Sun can cause step changes in the output power of photovoltaic (PV) power plants, which can lead to voltage fluctuations and stability problems in the connected electricity networks. These effects can be reduced effectively by proper short-term cloud passing forecasting and suitable PV power plant output power control. This paper proposes a low-cost Internet of Things (IoT)-based solution for intra-minute cloud passing forecasting. The hardware consists of a Raspberry PI Model B 3 with a WiFi connection and an OmniVision OV5647 sensor with a mounted wide-angle lens, a circular polarizing (CPL) filter and a natural density (ND) filter. The completely new algorithm for cloud passing forecasting uses the green and blue colors in the photo to determine the position of the Sun, to recognize the clouds, and to predict their movement. The image processing is performed in several stages, considering selectively only a small part of the photo relevant to the movement of the clouds in the vicinity of the Sun in the next minute. The proposed algorithm is compact, fast and suitable for implementation on low cost processors with low computation power. The speed of the cloud parts closest to the Sun is used to predict when the clouds will cover the Sun. WiFi communication is used to transmit this data to the PV power plant control system in order to decrease the output power slowly and smoothly.

  11. Intra-Minute Cloud Passing Forecasting Based on a Low Cost IoT Sensor—A Solution for Smoothing the Output Power of PV Power Plants

    Science.gov (United States)

    Sukič, Primož; Štumberger, Gorazd

    2017-01-01

    Clouds moving at a high speed in front of the Sun can cause step changes in the output power of photovoltaic (PV) power plants, which can lead to voltage fluctuations and stability problems in the connected electricity networks. These effects can be reduced effectively by proper short-term cloud passing forecasting and suitable PV power plant output power control. This paper proposes a low-cost Internet of Things (IoT)-based solution for intra-minute cloud passing forecasting. The hardware consists of a Raspberry PI Model B 3 with a WiFi connection and an OmniVision OV5647 sensor with a mounted wide-angle lens, a circular polarizing (CPL) filter and a natural density (ND) filter. The completely new algorithm for cloud passing forecasting uses the green and blue colors in the photo to determine the position of the Sun, to recognize the clouds, and to predict their movement. The image processing is performed in several stages, considering selectively only a small part of the photo relevant to the movement of the clouds in the vicinity of the Sun in the next minute. The proposed algorithm is compact, fast and suitable for implementation on low cost processors with low computation power. The speed of the cloud parts closest to the Sun is used to predict when the clouds will cover the Sun. WiFi communication is used to transmit this data to the PV power plant control system in order to decrease the output power slowly and smoothly. PMID:28505078

  12. Power Dissipation Challenges in Multicore Floating-Point Units

    DEFF Research Database (Denmark)

    Liu, Wei; Nannarelli, Alberto

    2010-01-01

    With increased densities on chips and the growing popularity of multicore processors and general-purpose graphics processing units (GPGPUs) power dissipation and energy consumption pose a serious challenge in the design of system-on-chips (SoCs) and a rise in costs for heat removal. In this work......, we analyze the impact of power dissipation in floating-point (FP) units and we consider different alternatives in the implementation of FP-division that lead to substantial energy savings. We compare the implementation of division in a Fused Multiply-Add (FMA) unit based on the Newton...

  13. Downscaling Solar Power Output to 4-Seconds for Use in Integration Studies: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Hummon, M.; Weekley, A.; Searight, K.; Clark, K.

    2013-10-01

    High penetration renewable integration studies require solar power data with high spatial and temporal accuracy to quantify the impact of high frequency solar power ramps on the operation of the system. Our previous work concentrated on downscaling solar power from one hour to one minute by simulation. This method used clearness classifications to categorize temporal and spatial variability, and iterative methods to simulate intra-hour clearness variability. We determined that solar power ramp correlations between sites decrease with distance and the duration of the ramp, starting at around 0.6 for 30-minute ramps between sites that are less than 20 km apart. The sub-hour irradiance algorithm we developed has a noise floor that causes the correlations to approach ~0.005. Below one minute, the majority of the correlations of solar power ramps between sites less than 20 km apart are zero, and thus a new method to simulate intra-minute variability is needed. These intra-minute solar power ramps can be simulated using several methods, three of which we evaluate: a cubic spline fit to the one-minute solar power data; projection of the power spectral density toward the higher frequency domain; and average high frequency power spectral density from measured data. Each of these methods either under- or over-estimates the variability of intra-minute solar power ramps. We show that an optimized weighted linear sum of methods, dependent on the classification of temporal variability of the segment of one-minute solar power data, yields time series and ramp distributions similar to measured high-resolution solar irradiance data.

  14. 785-nm dual wavelength DBR diode lasers and MOPA systems with output powers up to 750 mW

    Science.gov (United States)

    Sumpf, Bernd; Maiwald, Martin; Klehr, Andreas; Müller, André; Bugge, Frank; Fricke, Jörg; Ressel, Peter; Erbert, Götz; Tränkle, Günther

    2015-03-01

    Raman lines are often superimposed by daylight, artificial light sources or fluorescence signals from the samples under study. Shifted excitation Raman difference spectroscopy (SERDS), i.e. exciting the sample alternatingly with two slightly shifted wavelengths, allows to distinguish between the Raman lines and sources of interference. In this work, monolithic dual wavelength Y-branch DBR ridge waveguide diode lasers and their application in master oscillator power amplifier (MOPA) systems at 785 nm suitable for Raman spectroscopy and SERDS will be presented. The definition of the wavelengths is made by implementing deeply-etched 10th order 500 μm long surface gratings with different periods using i-line wafer stepper lithography. Y-branch DBR lasers with a total length of 3 mm and a stripe width of 2.2 μm were manufactured and characterized. The monolithic devices reach output powers up to 215 mW with emission widths of about 20 pm. At 200 mW the conversion efficiency is 20%, i.e. the electrical power consumption is only 1 W. The spectral distance between the two laser cavities is about 0.6 nm, i.e. 10 cm-1 as targeted. The side mode suppression ratio is better than 50 dB. Amplifying these devices using a ridge waveguide amplifier an output power of about 750 mW could be achieved maintaining the spectral properties of the master oscillator.

  15. Resistance training priming activity improves upper body power output in rugby players: Implications for game day performance.

    Science.gov (United States)

    Mason, Billy R J; Argus, Christos K; Norcott, Ben; Ball, Nick

    2016-07-05

    'Priming' or pre-activation strategies performed in the hours leading into competition have been suggested to improve game day performance. Therefore, this study assessed the effectiveness of a resistance training priming activity on eliciting changes in lower- and upper-body power output, along with perceptual measures. To assess these changes, 13 state level rugby players (aged 18.5 ± 0.5 years) completed a test retest protocol using a counterbalanced crossover design. Perceptual (readiness to perform questionnaire) and performance measures (20 kg counter-movement jump (CMJ), 20 kg bench throw) were completed prior to either a control (rest) or priming activity (four sets of three banded back squats and banded bench press). Following a one hour and 45 minute recovery period, perceptual and performance measures were repeated. Readiness to perform showed no meaningful differences pre and post intervention. Bench throw peak power (8.5 ± 5.8%, 90% confidence limit; ppriming activity when compared to the control trial. CMJ peak power (3.4 ± 4.9%; p>0.05) had a small decrease following the priming activity when compared with the control trial. Therefore, completing a priming activity one hour and 45 minutes prior to competition is recommended to improve upper body power output. However, further research into lower body priming protocols should be conducted before implementing a lower body priming activity prior to competition.

  16. Power-ratio tunable dual-wavelength laser using linearly variable Fabry-Perot filter as output coupler.

    Science.gov (United States)

    Wang, Xiaozhong; Wang, Zhongfa; Bu, Yikun; Chen, Lujian; Cai, Guoxiong; Huang, Wencai; Cai, Zhiping; Chen, Nan

    2016-02-01

    For a linearly variable Fabry-Perot filter, the peak transmission wavelengths change linearly with the transverse position shift of the substrate. Such a Fabry-Perot filter is designed and fabricated and used as an output coupler of a c-cut Nd:YVO4 laser experimentally in this paper to obtain a 1062 and 1083 nm dual-wavelength laser. The peak transmission wavelengths are gradually shifted from 1040.8 to 1070.8 nm. The peak transmission wavelength of the Fabry-Perot filter used as the output coupler for the dual-wavelength laser is 1068 nm and resides between 1062 and 1083 nm, which makes the transmissions of the desired dual wavelengths change in opposite slopes with the transverse shift of the filter. Consequently, powers of the two wavelengths change in opposite directions. A branch power, oppositely tunable 1062 and 1083 nm dual-wavelength laser is successfully demonstrated. Design principles of the linear variable Fabry-Perot filter used as an output coupler are discussed. Advantages of the method are summarized.

  17. Quantifying the Impact of Wind Turbine Wakes on Power Output at Offshore Wind Farms

    DEFF Research Database (Denmark)

    Barthelmie, Rebecca Jane; Pryor, Sara; Frandsen, Sten Tronæs;

    2010-01-01

    . Detailed data ensembles of power losses due to wakes at the large wind farms at Nysted and Horns Rev are presented and analyzed. Differences in turbine spacing (10.5 versus 7 rotor diameters) are not differentiable in wake-related power losses from the two wind farms. This is partly due to the high...... to an unacceptably high degree of uncertainty....

  18. Human Muscle Power Output during Upper- and Lower-Body Exercises.

    Science.gov (United States)

    Siegel, Judith A.; Gilders, Roger M.; Staron, Robert S.; Hagerman, Fredrick C.

    2002-01-01

    Evaluated the use of traditional resistance training equipment in measuring muscular power, measuring the velocity of movement through a measured distance during maximal effort lifts using a Smith rack. Data collected on male volunteers indicated that this method of evaluating muscle power was reliable, although it was not predictive of muscle…

  19. Strength, power output and symmetry of leg muscles: effect of age and history of falling.

    Science.gov (United States)

    Perry, Mark C; Carville, Serena F; Smith, I Christopher H; Rutherford, Olga M; Newham, Di J

    2007-07-01

    Risk factors for medically unexplained falls may include reduced muscle power, strength and asymmetry in the lower limbs. Conflicting reports exist about strength and there is little information about power and symmetry. Forty-four healthy young people (29.3 +/- 0.6 years), 44 older non-fallers (75.9 +/- 0.6 years), and 34 older fallers (76.4 +/- 0.8 years) were studied. Isometric, concentric and eccentric strength of the knee and ankle muscles and leg extension power were measured bilaterally. The younger group was stronger in all muscles and types of contraction than both older groups (P muscles and types of contraction but overall the fallers had 85% of the strength and 79% of the power of the non-fallers (P muscles and some contraction types. This was similar overall in the two older groups. Both older groups had greater asymmetry in power than the young (P muscle groups.

  20. Anodic microbial community diversity as a predictor of the power output of microbial fuel cells.

    Science.gov (United States)

    Stratford, James P; Beecroft, Nelli J; Slade, Robert C T; Grüning, André; Avignone-Rossa, Claudio

    2014-03-01

    The relationship between the diversity of mixed-species microbial consortia and their electrogenic potential in the anodes of microbial fuel cells was examined using different diversity measures as predictors. Identical microbial fuel cells were sampled at multiple time-points. Biofilm and suspension communities were analysed by denaturing gradient gel electrophoresis to calculate the number and relative abundance of species. Shannon and Simpson indices and richness were examined for association with power using bivariate and multiple linear regression, with biofilm DNA as an additional variable. In simple bivariate regressions, the correlation of Shannon diversity of the biofilm and power is stronger (r=0.65, p=0.001) than between power and richness (r=0.39, p=0.076), or between power and the Simpson index (r=0.5, p=0.018). Using Shannon diversity and biofilm DNA as predictors of power, a regression model can be constructed (r=0.73, pmicrobial communities.

  1. Unit-sizing of hydro power plant

    Science.gov (United States)

    Maruzewski, P.; Rogeaux, C.; Laurier, P.

    2012-11-01

    In developing countries with great and unexploited renewable energy potential, Governments can exploit local resources for electricity supply, substantial energy savings and sustainable socio-economic development of these own countries. The decision-making process regarding the choice of renewable energy sources for energy supply in these countries is multidimensional, made up of a number of aspects at different levels such as economic, technical, environmental, and social. Therefore, reaching clear and unambiguous solutions may be very difficult. It is from this difficulty that the need arises to develop a tool for the design of hydro energy sources for electricity. The work involved in seeking a compromise solution requires an adequate technical assessment based on multiple criteria methods. One of the criteria is the assessment of the appropriate size of the hydropower plant. This paper presents the state-of-art of preliminary sizing of hydropower plant for the given renewable energy potential. The main step consists of carefully selecting and sizing the innovative hydraulic units based upon the suitability of the flow and head range. Since the flow and head data have now been confirmed, the potential annual energy generation can be properly assessed.

  2. Myosin light chain phosphorylation is required for peak power output of mouse fast skeletal muscle in vitro.

    Science.gov (United States)

    Bowslaugh, Joshua; Gittings, William; Vandenboom, Rene

    2016-11-01

    The skeletal myosin light chain kinase (skMLCK) catalyzed phosphorylation of the myosin regulatory light chain (RLC) is associated with potentiation of force, work, and power in rodent fast twitch muscle. The purpose of this study was to compare concentric responses of EDL from wild-type (WT) and skMLCK devoid (skMLCK(-/-)) muscles at a range of shortening speeds (0.05 to 0.70 V max) around that expected to produce maximal power (in vitro, 25 °C) both before (unpotentiated) and after (potentiated) a potentiating stimulus (PS). When collapsed across all speeds tested, neither unpotentiated force, work, or power differed between genotypes (all data n = 10, P muscles. For example, when collapsed across the six fastest speeds we tested, both concentric force and power were increased 30-34 % in WT but only 15-17 % in skMLCK(-/-) muscles. In contrast, at the two slowest speeds, these parameters were increased in WT but decreased in skMLCK(-/-) muscles (8-10 and 7-9 %, respectively). Intriguingly, potentiation of concentric force and power was optimal near speeds producing maximal power in both genotypes. Because the PS elevated RLC phosphorylation above resting levels in WT but not in skMLCK(-/-) muscles, our data suggest that skMLCK-catalyzed phosphorylation of the RLC is required for maximal concentric power output of mouse EDL muscle stimulated at high frequency in vitro.

  3. Effect of light concentration by flat mirror reflectors on the electrical power output of the photovoltaic panel

    Directory of Open Access Journals (Sweden)

    Sathyanarayana P.

    2014-03-01

    Full Text Available Renewable energy area is gaining more prominence in recent times. In particular, conversion of solar energy in to electricity by using PV Panel has attracted significant researchers. In this work, the effect of light concentration by reflectors and inclination of PV panel on power output of PV panel has been investigated. Flat mirror reflectors were fixed to PV panel to increase the light intensity. The panel was kept either horizontally or at 30° inclination to horizontal. The effect on I-V curve, power curve, fill factor and efficiency are discussed. A significant improvement in short circuit current, power and a small increase in efficiency is perceived with the introduction of reflectors.

  4. The acute effect of lower-body training on average power output measured by loaded half-squat jump exercise

    Directory of Open Access Journals (Sweden)

    Matúš Krčmár

    2015-09-01

    Full Text Available Background: High muscular power output is required in many athletic endeavors in order for success to be achieved. In the scientific community postactivation potentiation and its effect on performance are often discussed. There are many studies where the effect of resistance exercise on motor performance (such as vertical jump performance and running speed has been investigated but only a few of them studied power output. Objective: The purpose of this study was to determine the acute responses to a 2 set loaded half-squat jumps and 2 set loaded back half-squat protocols designed to induce the acute maximum average power output during loaded half-squat jumps. Methods: A randomized cross-over design was used. 11 participants of this study performed 3 trials in randomized order separated by at least 48 hours where maximum average power output was measured. The specific conditioning activities were comprised of 2 sets and 4 repetitions of half-squat jumps, 2 sets and 4 repetitions of back half-squat exercises and a control protocol without an intervention by specific a conditioning activity. Participants were strength trained athletes with different sport specializations (e.g. ice-hockey, volleyball. Mean age of the athletes was 22 ± 1.8 years, body mass 80 ± 7.1 kg and body height 185 ± 6.5 cm. Analysis of variance with repeated measures was used to determine differences between pre- and post-condition in each protocol, as well as between conditioning protocols, and also effect size was used to evaluate practical significance. Results: Maximum average power was significantly enhanced after application of the half-squat jump condition protocol (1496.2 ± 194.5 to 1552 ± 196.1 W, Δ ~ 3.72%, p < .001 and after application of the back half-squat protocol (1500.7 ± 193.2 to 1556 ± 191.2 W, Δ ~ 3.68%, p < .001 after 10 min of rest. Power output after control protocol was

  5. Influence of nonlinearities on the power output of the Self-Oscillating Fluidic Heat Engine (SOFHE)

    Science.gov (United States)

    Tessier-Poirier, A.; Monin, T.; Léveillé, E.; Formosa, F.; Monfray, S.; Fréchette, L. G.

    2016-11-01

    In this paper, it is shown that two non-linearities drive the oscillations amplitude and the potential power density of the Self-Oscillating Fluidic Heat Engine (SOFHE). This new type of engine converts thermal energy into mechanical energy by producing self-sustained oscillations of a liquid column from a continuous heat source to power wireless sensors from waste heat. The underlying theoretical modeling shows that the pressure and the temperature nonlinearities limit the final oscillations amplitude, hence its achievable power density.

  6. Technical Design of Flexible Thin-Film Solar Heating Clothes with Switchable Output Power

    Directory of Open Access Journals (Sweden)

    Zhao Yu Xiao

    2016-01-01

    Full Text Available This research focuses on the research and development of thermal clothes through technical design, by adopting unique removable electronic equipment and applying carbon fiber material to thermal clothes against cold, so as to meet the requirements of active heating and passive warmth retention. Firstly, the specification of power supply system was determined in accordance with the requirements of power system, and the specification of charging system was determined according to the specification of power system. Then circuit system was designed and tested. Fianlly, the electronic device was configured on the clothes appropriately, so that it should be conforms to ergonomic principles, convenient and fast.

  7. Local and regional effects of large scale atmospheric circulation patterns on winter wind power output in Western Europe

    Science.gov (United States)

    Zubiate, Laura; McDermott, Frank; Sweeney, Conor; O'Malley, Mark

    2014-05-01

    Recent studies (Brayshaw, 2009, Garcia-Bustamante, 2010, Garcia-Bustamante, 2013) have drawn attention to the sensitivity of wind speed distributions and likely wind energy power output in Western Europe to changes in low-frequency, large scale atmospheric circulation patterns such as the North Atlantic Oscillation (NAO). Wind speed variations and directional shifts as a function of the NAO state can be larger or smaller depending on the North Atlantic region that is considered. Wind speeds in Ireland and the UK for example are approximately 20 % higher during NAO + phases, and up to 30 % lower during NAO - phases relative to the long-term (30 year) climatological means. By contrast, in southern Europe, wind speeds are 15 % lower than average during NAO + phases and 15 % higher than average during NAO - phases. Crucially however, some regions such as Brittany in N.W. France have been identified in which there is negligible variability in wind speeds as a function of the NAO phase, as observed in the ERA-Interim 0.5 degree gridded reanalysis database. However, the magnitude of these effects on wind conditions is temporally and spatially non-stationary. As described by Comas-Bru and McDermott (2013) for temperature and precipitation, such non-stationarity is caused by the influence of two other patterns, the East Atlantic pattern, (EA), and the Scandinavian pattern, (SCA), which modulate the position of the NAO dipole. This phenomenon has also implications for wind speeds and directions, which has been assessed using the ERA-Interim reanalysis dataset and the indices obtained from the PC analysis of sea level pressure over the Atlantic region. In order to study the implications for power production, the interaction of the NAO and the other teleconnection patterns with local topography was also analysed, as well as how these interactions ultimately translate into wind power output. The objective is to have a better defined relationship between wind speed and power

  8. Testing of the Engineering Model Electrical Power Control Unit for the Fluids and Combustion Facility

    Science.gov (United States)

    Kimnach, Greg L.; Lebron, Ramon C.; Fox, David A.

    1999-01-01

    The John H. Glenn Research Center at Lewis Field (GRC) in Cleveland, OH and the Sundstrand Corporation in Rockford, IL have designed and developed an Engineering Model (EM) Electrical Power Control Unit (EPCU) for the Fluids Combustion Facility, (FCF) experiments to be flown on the International Space Station (ISS). The EPCU will be used as the power interface to the ISS power distribution system for the FCF's space experiments'test and telemetry hardware. Furthermore. it is proposed to be the common power interface for all experiments. The EPCU is a three kilowatt 12OVdc-to-28Vdc converter utilizing three independent Power Converter Units (PCUs), each rated at 1kWe (36Adc @ 28Vdc) which are paralleled and synchronized. Each converter may be fed from one of two ISS power channels. The 28Vdc loads are connected to the EPCU output via 48 solid-state and current-limiting switches, rated at 4Adc each. These switches may be paralleled to supply any given load up to the 108Adc normal operational limit of the paralleled converters. The EPCU was designed in this manner to maximize allocated-power utilization. to shed loads autonomously, to provide fault tolerance. and to provide a flexible power converter and control module to meet various ISS load demands. Tests of the EPCU in the Power Systems Facility testbed at GRC reveal that the overall converted-power efficiency, is approximately 89% with a nominal-input voltage of 12OVdc and a total load in the range of 4O% to 110% rated 28Vdc load. (The PCUs alone have an efficiency of approximately 94.5%). Furthermore, the EM unit passed all flight-qualification level (and beyond) vibration tests, passed ISS EMI (conducted, radiated. and susceptibility) requirements. successfully operated for extended periods in a thermal/vacuum chamber, was integrated with a proto-flight experiment and passed all stability and functional requirements.

  9. Inhaled Beta2-agonist increases power output and glycolysis during sprinting in men

    DEFF Research Database (Denmark)

    Kalsen, Anders; Hostrup, Morten; Söderlund, Karin

    2016-01-01

    . Moreover, net rate of glycogenolysis (6.5±0.8 vs. 3.1±0.7 mmol glucosyl units kg dw s) and glycolysis (2.4±0.2 vs. 1.6±0.2 mmol glucosyl units kg dw s) were higher (P....05) in type II fibers in TER than in PLA. In PLA, breakdown of PCr was 50.2±24.8 % higher (P rates of glycogenolysis...

  10. Mitigation of Output Power Fluctuations in Utility Grid using Three Phase Distribution Generation

    Directory of Open Access Journals (Sweden)

    K.Sri Chandan,

    2010-12-01

    Full Text Available Renewable electricity generation has never seen the level of investment and incentives that have been put in place by governments around the world during the last decade. However, despite the envisaged environmental and security of supply benefits that the harvesting of indigenous, renewable sources might bring about, their integration into the power system creates significant challenges to both the network operators and developers. The power quality challenges become even greater when large volumes of renewable generation capacity are connected to distribution networks, traditionally designed to be passive circuits with unidirectional power flows. This paper presents two schemes to meet the different power quality challenges in the utility grid due to Distribution Generation. In this first scheme is DSTATCOM and second is three phase Distributed Generation. This work is aimed at demonstrating, from the planning perspective, the benefits that the adoption of the different compensators might bring the system to a ‘fit and forget’ approach.

  11. SIMULATING MODEL OF SYSTEM FOR MAXIMUM OUTPUT POWER OF SOLAR BATTERY

    Directory of Open Access Journals (Sweden)

    Abdul Majid Al-Khatib

    2005-01-01

    Full Text Available Simulating model and algorithm for control of electric power converter of a solar battery are proposed in the paper. Control device of D.C. step-down converter with pulse-width modulation is designed on microprocessor basis. Simulating model permits to investigate various operational modes of a solar battery, demonstrates a process with maximum power mode and is characterized by convenient user’s interface.

  12. Multi-Purpose Low Voltage Dual Output DC-DC Converter For 100V Power Bus Telecom Platform

    Science.gov (United States)

    Galiana, D.; Mollard, J. M.

    2011-10-01

    The decreasing supply voltages of digital electronic and high speed ADC (Analog to Digital Converter) and DAC (Digital to Analog Converter) require flexible and high current secondary power distribution system. In the frame of the Inmarsat I-XL program, a 12 kW geomobile SatCom satellite, with 100 V regulated power bus, a multi purpose dual output converter was developed for the payload processor as a building block. After a short introduction on the main performance requirements, the baseline architecture is presented. The main drivers of the architecture are reliability, adjustability, radiation tolerant and single event free, volume and mass. The combination of all these constraints highlights the need of significant breakthrough in various domains. Many research results related to packaging and power electronic topics are brought up. These results directly drive the adopted solution presented in the next step followed by a description of the integration of the defined building block in the Inmarsat I-XL payload IP (Integrated Processor). Finally, the main electrical performances such as output ripple and spikes, load step transient and stability are summarized.

  13. An Artificial Neural Network Compensated Output Feedback Power-Level Control for Modular High Temperature Gas-Cooled Reactors

    Directory of Open Access Journals (Sweden)

    Zhe Dong

    2014-02-01

    Full Text Available Small modular reactors (SMRs could be beneficial in providing electricity power safely and also be viable for applications such as seawater desalination and heat production. Due to its inherent safety features, the modular high temperature gas-cooled reactor (MHTGR has been seen as one of the best candidates for building SMR-based nuclear power plants. Since the MHTGR dynamics display high nonlinearity and parameter uncertainty, it is necessary to develop a nonlinear adaptive power-level control law which is not only beneficial to the safe, stable, efficient and autonomous operation of the MHTGR, but also easy to implement practically. In this paper, based on the concept of shifted-ectropy and the physically-based control design approach, it is proved theoretically that the simple proportional-differential (PD output-feedback power-level control can provide asymptotic closed-loop stability. Then, based on the strong approximation capability of the multi-layer perceptron (MLP artificial neural network (ANN, a compensator is established to suppress the negative influence caused by system parameter uncertainty. It is also proved that the MLP-compensated PD power-level control law constituted by an experientially-tuned PD regulator and this MLP-based compensator can guarantee bounded closed-loop stability. Numerical simulation results not only verify the theoretical results, but also illustrate the high performance of this MLP-compensated PD power-level controller in suppressing the oscillation of process variables caused by system parameter uncertainty.

  14. Structural change of the physical economy. Decomposition analysis of physical and hybrid-unit input-output tables

    Energy Technology Data Exchange (ETDEWEB)

    Hoekstra, R.

    2003-10-01

    Economic processes generate a variety of material flows, which cause resource problems through the depletion of natural resources and environmental issues due to the emission of pollutants. This thesis presents an analytical method to study the relationship between the monetary economy and the 'physical economy'. In particular, this method can assess the impact of structural change in the economy on physical throughput. The starting point for the approach is the development of an elaborate version of the physical input-output table (PIOT), which acts as an economic-environmental accounting framework for the physical economy. In the empirical application, hybrid-unit input-output (I/O) tables, which combine physical and monetary information, are constructed for iron and steel, and plastic products for the Netherlands for the years 1990 and 1997. The impact of structural change on material flows is analyzed using Structural Decomposition Analysis (SDA), whic specifies effects such as sectoral shifts, technological change, and alterations in consumer spending and international trade patterns. The study thoroughly reviews the application of SDA to environmental issues, compares the method with other decomposition methods, and develops new mathematical specifications. An SDA is performed using the hybrid-unit input-output tables for the Netherlands. The results are subsequently used in novel forecasting and backcasting scenario analyses for the period 1997-2030. The results show that dematerialization of iron and steel, and plastics, has generally not occurred in the recent past (1990-1997), and will not occur, under a wide variety of scenario assumptions, in the future (1997-2030)

  15. Muscle contractile properties as an explanation of the higher mean power output in marmosets than humans during jumping.

    Science.gov (United States)

    Plas, Rogier L C; Degens, Hans; Meijer, J Peter; de Wit, Gerard M J; Philippens, Ingrid H C H M; Bobbert, Maarten F; Jaspers, Richard T

    2015-07-01

    The muscle mass-specific mean power output (PMMS,mean) during push-off in jumping in marmosets (Callithrix jacchus) is more than twice that in humans. In the present study it was tested whether this is attributable to differences in muscle contractile properties. In biopsies of marmoset m. vastus lateralis (VL) and m. gastrocnemius medialis (GM) (N=4), fibre-type distribution was assessed using fluorescent immunohistochemistry. In single fibres from four marmoset and nine human VL biopsies, the force-velocity characteristics were determined. Marmoset VL contained almost exclusively fast muscle fibres (>99.0%), of which 63% were type IIB and 37% were hybrid fibres, fibres containing multiple myosin heavy chains. GM contained 9% type I fibres, 44% type IIB and 47% hybrid muscle fibres. The proportions of fast muscle fibres in marmoset VL and GM were substantially larger than those reported in the corresponding human muscles. The curvature of the force-velocity relationships of marmoset type IIB and hybrid fibres was substantially flatter than that of human type I, IIA, IIX and hybrid fibres, resulting in substantially higher muscle fibre mass-specific peak power (PFMS,peak). Muscle mass-specific peak power output (PMMS,peak) values of marmoset whole VL and GM, estimated from their fibre-type distributions and force-velocity characteristics, were more than twice the estimates for the corresponding human muscles. As the relative difference in estimated PMMS,peak between marmosets and humans is similar to that of PMMS,mean during push-off in jumping, it is likely that the difference in in vivo mechanical output between humans and marmosets is attributable to differences in muscle contractile properties.

  16. The use of propeller turbines in low head stand alone micro hydro electric power generation units

    Energy Technology Data Exchange (ETDEWEB)

    Demetriades, G.M.; Williams, A.A.; Smith, N.P.A. [Nottingham Trent Univ. (United Kingdom). Dept. of Electrical Engineering

    1995-07-01

    The mountainous regions of developing countries offer a great potential for small scale hydroelectric schemes, running as stand alone units. Such schemes with power output less than 100 kW are usually referred to as micro-hydro power generation units. For low - head sites (available head less than 10 m), there is a vast number of suitable sites in countries with less mountainous areas and high rainfall, or extensive irrigation canals. The present paper introduces the design features of an appropriate propeller turbine design. The turbine will be directly coupled to an induction generator. The design requirements, materials selection and manufacturing processes are analysed with respect to experiences from pilot projects within the UK and abroad. (author)

  17. Multicanonical evaluation of the tails of the probability density function of semiconductor optical amplifier output power fluctuations

    DEFF Research Database (Denmark)

    Tromborg, Bjarne; Reimer, Michael; Yevick, David

    2010-01-01

    This paper presents a multicanonical Monte Carlo method for simulating the tails of a pdf distribution of the filtered output power from a semiconductor optical amplifier down to values of the order of 10−40. The influence of memory effects on the pdf is examined in order to demonstrate the manner...... in which the calculated pdf approaches the true pdf with increasing integration time. The simulated pdf is shown to be in good agreement with a second order analytic expression for the pdf....

  18. Saturated Adaptive Output-Feedback Power-Level Control for Modular High Temperature Gas-Cooled Reactors

    Directory of Open Access Journals (Sweden)

    Zhe Dong

    2014-11-01

    Full Text Available Small modular reactors (SMRs are those nuclear fission reactors with electrical output powers of less than 300 MWe. Due to its inherent safety features, the modular high temperature gas-cooled reactor (MHTGR has been seen as one of the best candidates for building SMR-based nuclear plants with high safety-level and economical competitive power. Power-level control is crucial in providing grid-appropriation for all types of SMRs. Usually, there exists nonlinearity, parameter uncertainty and control input saturation in the SMR-based plant dynamics. Motivated by this, a novel saturated adaptive output-feedback power-level control of the MHTGR is proposed in this paper. This newly-built control law has the virtues of having relatively neat form, of being strong adaptive to parameter uncertainty and of being able to compensate control input saturation, which are given by constructing Lyapunov functions based upon the shifted-ectropies of neutron kinetics and reactor thermal-hydraulics, giving an online tuning algorithm for the controller parameters and proposing a control input saturation compensator respectively. It is proved theoretically that input-to-state stability (ISS can be guaranteed for the corresponding closed-loop system. In order to verify the theoretical results, this new control strategy is then applied to the large-range power maneuvering control for the MHTGR of the HTR-PM plant. Numerical simulation results show not only the relationship between regulating performance and control input saturation bound but also the feasibility of applying this saturated adaptive control law practically.

  19. Predictability of the Power Output of Three Wave Energy Technologies in the Danish North Sea

    DEFF Research Database (Denmark)

    Chozas, Julia Fernandez; Jensen, N. E. Helstrup; Sørensen, H. C.

    2011-01-01

    The paper addresses an important challenge ahead the integration of the electricity generated by wave energy conversion technologies into the electric grid. Particularly, it looks into the role of wave energy within the day-ahead electricity market. For that the predictability of the theoretical...... of the study is to provide an indication on the accuracy of the forecast of i) wave parameters, ii) the normalised theoretical power productions from each of the selected technologies (Pelamis, Wave Dragon and Wavestar), and iii) the normalised theoretical power production of a combination of the three devices......, during a very energetic time period. Results show that for the 12 to 36 hours time horizon forecast, the accuracy in the predictions (in terms of scatter index) of the significant wave height, zero crossing period and wave power are 22%, 11% and 68%, respectively; and the accuracy in the predictions...

  20. Effect of absorbed pump power on the quality of output beam from monolithic microchip lasers

    Indian Academy of Sciences (India)

    Pranab K Mukhopadhyay; K Ranganathan; Jogy George; S K Sharma; T P S Nathan

    2002-04-01

    The dependence of the beam propagation factor (2 parameter) with the absorbed pump power in the case of monolithic microchip laser under face-cooled configuration is extensively studied. Our investigations show that the 2 parameter is related to the absorbed pump power through two parameters ( and ) whose values depend on the laser material properties and laser configuration. We have shown that one parameter arises due to the oscillation of higher order modes in the microchip cavity and the other parameter accounts for the spherical aberration associated with the thermal lens induced by the pump beam. Such dependency of 2 parameter with the absorbed pump power is experimentally verified for a face-cooled monolithic microchip laser based on Nd3+ - doped GdVO4 crystal and the values of and parameters were estimated from the experimentally measured data points.

  1. Gait Variability Related to Muscle Quality and Muscle Power Output in Frail Nonagenarian Older Adults.

    Science.gov (United States)

    Martinikorena, Ion; Martínez-Ramírez, Alicia; Gómez, Marisol; Lecumberri, Pablo; Casas-Herrero, Alvaro; Cadore, Eduardo L; Millor, Nora; Zambom-Ferraresi, Fabricio; Idoate, Fernando; Izquierdo, Mikel

    2016-02-01

    Frailty has become the center of attention of basic, clinical, and demographic research because of its incidence level and the gravity of adverse outcomes with age. Moreover, with advanced age, motor variability increases, particularly in gait. Muscle quality and muscle power seem to be closely associated with performance on functional tests in frail populations. Insight into the relationships among muscle power, muscle quality, and functional capacity could improve the quality of life in this population. In this study, the relationship between the quality of the muscle mass and muscle strength with gait performance in a frail population was examined. Twenty-two institutionalized frail elderly individuals (93.1 ± 3.6) participated in this study. Muscle quality was measured by segmenting areas of high- and low-density fibers as observed in computed tomography images. The assessed functional outcomes were leg strength and power, velocity of gait, and kinematic gait parameters obtained from a tri-axial inertial sensor. Our results showed that a greater number of high-density fibers, specifically those of the quadriceps femoris muscle, were associated with better gait performance in terms of step time variability, regularity, and symmetry. Additionally, gait variability was associated with muscle power. In contrast, no significant relationship was observed between gait velocity and either muscle quality or muscle power. Gait pattern disorders could be explained by a deterioration of the lower limb muscles. It is known that an impaired gait is an important predictor of falls in older populations; thus, the loss of muscle quality and power could underlie the impairments in motor control and balance that lead to falls and adverse outcomes. Copyright © 2016 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.

  2. Composite Thin-Disk Laser Scaleable to 100 kW Average Power Output and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Zapata, L.; Beach, R.; Payne, S.

    2000-06-01

    By combining newly developed technologies to engineer composite laser components with state of the art diode laser pump delivery technologies, we are in a position to demonstrate high beam quality, continuous wave, laser radiation at scaleable high average powers. The crucial issues of our composite thin disk laser technology were demonstrated during a successful first light effort. The high continuous wave power levels that are now within reach make this system of high interest to future DoD initiatives in solid-state laser technology for the laser weapon arena.

  3. Model Predictive Current Control for High-Power Grid-Connected Converters with Output LCL Filter

    DEFF Research Database (Denmark)

    Delpino, Hernan Anres Miranda; Teodorescu, Remus; Rodriguez, Pedro

    2009-01-01

    A model predictive control strategy for a highpower, grid connected 3-level neutral clamped point converter is presented. Power losses constraints set a limit on commutation losses so reduced switching frequency is required, thus producing low frequency current harmonics. To reduce these harmonics...... an LCL filter is used. The proposed control strategy allows control of the active and reactive power fed into the grid, reduce the switching frequency within acceptable operational margins and keep balance of the DC-link capacitor voltages while avoiding excitation of the filter resonance frequencies....

  4. Improving Size and Power in Unit Root Testing

    DEFF Research Database (Denmark)

    Haldrup, Niels; Jansson, Michael

    of recent contributions to improve upon both size and power of unit root tests and in so doing the approach of using rigorous statistical optimality criteria in the development of such tests is stressed. In addition to presenting tests where improved size can be achieved by modifying the standard Dickey......A frequent criticism of unit root tests concerns the poor power and size properties that many of such testsexhibit. However, the past decade or so intensive research has been conducted to alleviate these problems and great advances have been made. The present paper provides a selective survey......-Fuller class of tests, the paper presents theory of optimal testing and the construction of power envelopes for unit root tests underdifferent conditions allowing for serial correlation, deterministic components, assumptions regarding the initial condition, non-Gaussian errors, and the use of covariates....

  5. Development of Electric Power Units Driven by Waste Heat

    Science.gov (United States)

    Inoue, Naoyuki; Takeuchi, Takao; Kaneko, Atsushi; Uchimura, Tomoyuki; Irie, Kiichi; Watanabe, Hiroyoshi

    For the development of a simple and compact power generator driven by waste heat, working fluids and an expander were studied, then a practical electric power unit was put to test. Many working fluids were calculated with the low temperature power cycle (evaporated at 77°C, condensed at 42°C),and TFE,R123,R245fa were selected to be suitable for the cycle. TFE(Trifluoroethanol CF3CH2OH) was adopted to the actual power generator which was tested. A radial turbine was adopted as an expander, and was newly designed and manufactured for working fluid TFE. The equipment was driven by hot water as heat source and cooling water as cooling source, and generated power was connected with electric utility. Characteristics of the power generating cycle and characteristics of the turbine were obtained experimentally.

  6. Controlling the power output of a nuclear reactor with fuzzy logic

    NARCIS (Netherlands)

    Ruan, D.; Wal, A.J. van der

    1998-01-01

    The application of fuzzy logic control (FLC) in the domain of nuclear industry presents a tremendous challenge. The main reason for this is the public awareness of the risks of nuclear reactors and the very strict safety regulations in force for nuclear power plants. The very same regulations preven

  7. Controlling the Power Output of a Nuclear Reactor with Fuzzy Logic

    NARCIS (Netherlands)

    Ruan, D.; Wal, A.J. van der

    1997-01-01

    The application of fuzzy logic control (FLC) in the domain of nuclear industry presents a tremendous challenge. The main reason for this is the public awareness of the risks of nuclear reactors and the very strict safety regulations in force for nuclear power plants. The very same regulations preven

  8. Controlling the power output of a nuclear reactor with fuzzy logic

    NARCIS (Netherlands)

    Ruan, D.; Wal, A.J. van der

    1998-01-01

    The application of fuzzy logic control (FLC) in the domain of nuclear industry presents a tremendous challenge. The main reason for this is the public awareness of the risks of nuclear reactors and the very strict safety regulations in force for nuclear power plants. The very same regulations preven

  9. Thermal power output determination of 2 MW heat source by using of thermocouples

    Science.gov (United States)

    Holubcik, Michal; Vician, Peter; Palacka, Matej

    2016-06-01

    Experiment is an operation or procedure carried out under controlled conditions in order to discover an unknown effect or law, to test or establish a hypothesis, or to illustrate a known law. The most important part of the experiment is to evaluate the measured values. Measurement accuracy depends on a number of factors. Deviations of instruments cannot eliminate or influence if it is neglect the possibility of using more precise measuring equipment. Another way for the most accurate results can be calibration. Calibration allows achieve measurement values with relatively high accuracy using less precision instruments. The paper deals about the problematic of thermal power measurement accuracy. Thermal power was measured on heat source with nominal thermal power 2 MW by using direct calorimetric method. There were used ultrasonic flow meter and type K thermocouples. Type K thermocouples are not very suitable for these applications because of their low precision. The paper presents the possibility of using calibrated thermocouples for the thermal power measurement with acceptable accuracy.

  10. Anaerobic power output and propulsion technique in spinal cord injured subjects during wheelchair ergometry

    NARCIS (Netherlands)

    Dallmeijer, A J; Kappe, Y J; Veeger, DirkJan (H. E. J.); Janssen, T W; van der Woude, L H

    1994-01-01

    In order to investigate the influence of the level of the spinal cord injury (SCI) on anaerobic or short-term power production and propulsion technique, 23 male SCI subjects performed a 30-second sprint test on a stationary wheelchair ergometer. Kinematic parameters were studied both inter- and intr

  11. Low Power Digital Clock Design Using LVCMOS Input/Output Standards on 45nm FPGA

    DEFF Research Database (Denmark)

    Pandey, Sujeet; Mehta, Rishabh; Kalia, Kartik

    2016-01-01

    How wonderful it would be if every device we use is energy efficient. This is an approach to design an efficient digital clock that consumes low amount of power. This is done by varying frequency to different levels and checking corresponding amount of energy consumed. Low Voltage Complementary...

  12. Method for reducing fuel cell output voltage to permit low power operation

    Science.gov (United States)

    Reiser, Carl A.; Landau, Michael B.

    1980-01-01

    Fuel cell performance is degraded by recycling a portion of the cathode exhaust through the cells and, if necessary, also reducing the total air flow to the cells for the purpose of permitting operation below a power level which would otherwise result in excessive voltage.

  13. Contingency-Constrained Unit Commitmentin Meshed Isolated Power Systems

    DEFF Research Database (Denmark)

    Sokoler, Leo Emil; Vinter, Peter; Bærentsen, Runi

    2015-01-01

    is kept above a predefined limit in the event of a contingency. The minimum frequency constraints are formulated using novel sufficient conditions that take into account the system inertia and the dynamics of the power generators. The proposed sufficient conditions are attractive from both a computational......This paper presents a mixed-integer linear optimization problem for unit commitment and economic dispatch of power generators in a meshed isolated power system. The optimization problem is referred to as the optimal reserve planning problem (ORPP). The ORPP guarantees that the system frequency...... and a modelling point of view. We compare the ORPP to a unit commitment problem that only considers the stationary behavior of the frequency. Simulations based on a Faroe Islands case study show that, without being overly conservative, potential blackouts and power outages can be avoided using the ORPP...

  14. Comparison of treadmill and cycle ergometer measurements of force-velocity relationships and power output.

    Science.gov (United States)

    Jaskólska, A; Goossens, P; Veenstra, B; Jaskólski, A; Skinner, J S

    1999-04-01

    Since body balance and weight-bearing factors present while running on the treadmill might cause additional muscle recruitment and thus could influence the force-velocity relationship and power, the present study was undertaken to find out whether the F-V and F-P relationships measured while running on the treadmill are different from the respective indices measured during cycling. On two separate occasions, 32 male subjects were tested using a series of 5 sec, all-out sprints against different braking forces on the Gymrol Sprint treadmill and on the Monark ergometer. The maximal peak power (PPmax) and maximal mean power (MPmax) were measured. The equation: EP = 0.5 maximal force (Fo) x0.5 maximal velocity (Vo) was used to calculate the estimated values of peak power (EPP) and mean power (EMP). The F-V relationship was linear in both cycle ergometer and treadmill measurements. PPmax, MPmax, EPP, and EMP values on the treadmill were lower than the respective values on the ergometer. EPP on the ergometer and on the treadmill, as well as EMP values on the ergometer, were slightly higher than the corresponding measured values of PPmax and MPmax. The levels of braking force at which PP, MP, PPmax, and MPmax were obtained were lower on the ergometer than on the treadmill. High correlation coefficients were found between PPmax, MPmax, EPP, and EMP measured on the ergometer and on the treadmill (r = 0.86, r = 0.84, r = 0.71, r = 0.78, respectively, P<0.01). In both tests, significant relationships between PPmax, MPmax, EPP, and EMP were observed. It is concluded that independent of the type of ergometry the force-velocity relationship is similar in the measured range of velocities which suggests that the number of muscle groups and joints engaged in movement are more important than body balance and weight-bearing factors present while running on a treadmill.

  15. Annual preventive maintenance scheduling for thermal units in an electric power system

    Directory of Open Access Journals (Sweden)

    Tonić Rodoljub

    2010-01-01

    Full Text Available The system approach to the problem of preventive maintenance scheduling for thermal units in a large scale electric power system is considered in this paper. The maintenance scheduling program determines a set of thermal units maintenance switch off for a time period of one year. This paper considers the application of dynamic programming and successive approximations method in determination of annual thermal unit maintenance schedules. The objective function is multiple component and consists of system operation costs and system reliability indices (loss-of-load-probability and expected unserved energy. The evaluation of these costs is performed through a simulation method which uses a cumulant load model. The software package, developed in FORTRAN and integrated with an ORACLE data base, produces many useful outputs.

  16. A simplified propeller turbine runner design for stand alone micro-hydro power generation units

    Energy Technology Data Exchange (ETDEWEB)

    Demetriades, G.M.; Williams, A.A.; Smith, N.P.A. [Nottingham Trent University (United Kingdom). Micro-Hydro Research Group

    1996-07-01

    In most developing countries, the vast majority of potential micro-hydro power generation sites, i.e. with power outputs up to 100 kW, are found in areas with high rainfall or extensive irrigation works with small canal drops. These sites, where the available head does not exceed 5 m, are usually referred to as low head sites. The present paper introduces a simplified design of a propeller turbine suitable for direct coupling to an induction generator. The use of such a unit is a promising technology for setting up low-head power generation schemes for village electrification in developing countries. Emphasis is given to the hydraulic design of the runner blades which are made of constant thickness sheets of metal. The use of such a shape is ideal for low cost manufacturing in developing countries as it enables local skills and materials to be used. (author)

  17. Wind Farm Active Power Dispatch for Output Power Maximizing Based on a Wind Turbine Control Strategy for Load Minimizing

    DEFF Research Database (Denmark)

    Zhang, Baohua; Hu, Weihao; Hou, Peng

    2015-01-01

    Inclusion of the wake effect in the wind farm control design (WF) can increase the total captured power by wind turbines (WTs), which is usually implemented by derating upwind WTs. However, derating the WT without a proper control strategy will increase the structural loads, caused by operation i...

  18. Numerical simulations of output pulse extraction from a high-power microwave compressor with a plasma switch

    Energy Technology Data Exchange (ETDEWEB)

    Shlapakovski, Anatoli; Beilin, Leonid; Bliokh, Yuri; Donskoy, Moshe; Krasik, Yakov E. [Physics Department, Technion, Haifa 32000 (Israel); Hadas, Yoav [Department of Applied Physics, Rafael, PO Box 2250, Haifa 31021 (Israel); Schamiloglu, Edl [Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico 87131 (United States)

    2014-05-07

    Numerical simulations of the process of electromagnetic energy release from a high-power microwave pulse compressor comprising a gas-filled cavity and interference switch were carried out. A microwave plasma discharge in a rectangular waveguide H-plane tee was modeled with the use of the fully electromagnetic particle-in-cell code MAGIC. The gas ionization, plasma evolution, and interaction with RF fields accumulated within the compressor were simulated using different approaches provided by the MAGIC code: particle-in-cell approach accounting for electron-neutral collisions, gas conductivity model based on the concept of mobility, and hybrid modeling. The dependences of the microwave output pulse peak power and waveform on parameters that can be controlled in experiments, such as an external ionization rate, RF field amplitude, and background gas pressure, were investigated.

  19. The Design of Drive Circuit with High-power Output for Two-phase Hybrid Stepping Motor Based on BY-5064

    Institute of Scientific and Technical Information of China (English)

    MA Xiao-jiao; LI Cheng-gui; CAI Zheng; ZHAO Li-guo

    2011-01-01

    A kind of drive circuit which high-power output for stepping motor, based two-phase hybrid stepping motor are designed, achieved. is low power consumption, high-performance and on BY-5064, and a kind of dedicated circuit for drive control for stepping motor with high-power is

  20. Design and Testing of a Breadboard Electrical Power Control Unit for the Fluid Combustion Facility Experiment

    Science.gov (United States)

    Kimnach, Greg L.; Lebron, Ramon C.

    1999-01-01

    The Fluid Combustion Facility (FCF) Project and the Power Technology Division at the NASA Glenn Research Center (GRC) at Lewis Field in Cleveland, OH along with the Sundstrand Corporation in Rockford, IL are jointly developing an Electrical Power Converter Unit (EPCU) for the Fluid Combustion Facility to be flown on the International Space Station (ISS). The FCF facility experiment contains three racks: A core rack, a combustion rack, and a fluids rack. The EPCU will be used as the power interface to the ISS 120V(sub dc) power distribution system by each FCF experiment rack which requires 28V(sub dc). The EPCU is a modular design which contains three 120V(sub dc)-to-28V(sub dc) full-bridge, power converters rated at 1 kW(sub e) each bus transferring input relays and solid-state, current-limiting input switches, 48 current-limiting, solid-state, output switches; and control and telemetry hardware. The EPCU has all controls required to autonomously share load demand between the power feeds and--if absolutely necessary--shed loads. The EPCU, which maximizes the usage of allocated ISS power and minimizes loss of power to loads, can be paralleled with other EPCUs. This paper overviews the electrical design and operating characteristics of the EPCU and presents test data from the breadboard design.

  1. High Power Silicon Carbide (SiC) Power Processing Unit Development

    Science.gov (United States)

    Scheidegger, Robert J.; Santiago, Walter; Bozak, Karin E.; Pinero, Luis R.; Birchenough, Arthur G.

    2015-01-01

    NASA GRC successfully designed, built and tested a technology-push power processing unit for electric propulsion applications that utilizes high voltage silicon carbide (SiC) technology. The development specifically addresses the need for high power electronics to enable electric propulsion systems in the 100s of kilowatts. This unit demonstrated how high voltage combined with superior semiconductor components resulted in exceptional converter performance.

  2. A Sampled Grating DBR Laser Monolithically Integrated by Using SOAs with 22 mW Output Power and 51 ITU 100 GHz Channels over 43 nm

    Science.gov (United States)

    Liu, Yang; Ye, Nan; Zhou, Dai-Bing; Wang, Bao-Jun; Pan, Jiao-Qing; Zhao, Ling-Juan; Wang, Wei

    2011-02-01

    A sampled grating distributed Bragg reflector (SG-DBR) laser monolithically integrated with semiconductor optical amplifiers (SOAs), which has a tuning range over 43 nm from 1514.05 nm to 1557.4 nm covering 49 continuous and totally 51 ITU 100 GHz standard channels and an output power more than 22 mW for all output wavelengths, is successfully demonstrated.

  3. The Effect of Free-Atmosphere Stratification on Boundary-Layer Flow and Power Output from Very Large Wind Farms

    Directory of Open Access Journals (Sweden)

    Fernando Porté-Agel

    2013-04-01

    Full Text Available Large-eddy simulation is used to study the influence of free-atmosphere stratification on the structure of atmospheric boundary-layer flow inside and above very large wind farms, as well as the power extracted by the wind turbines. In the simulations, tuning-free Lagrangian scale-dependent dynamic models are used to model the subgrid-scale turbulent fluxes, while the turbine-induced forces are parameterized with an actuator-disk model. It is shown that for a given surface cover (with and without turbines thermal stratification of the free atmosphere reduces the entrainment from the flow above compared with the unstratified case, leading to lower boundary-layer depth. Due to the fact that in very large wind farms vertical energy transport associated with turbulence is the only source of kinetic energy, lower entrainment leads to lower power production by the wind turbines. In particular, for the wind-turbine arrangements considered in the present work, the power output from the wind farms is reduced by about 35% when the potential temperature lapse rate in the free atmosphere increases from 1 to 10 K/km (within the range of values typically observed in the atmosphere. Moreover, it is shown that the presence of the turbines has significant effect on the growth of the boundary layer. Inspired by the obtained results, a simple one-dimensional model is developed to account for the effect of free-atmosphere stability on the mean flow and the power output from very large wind farms.

  4. Experimental assessment of the mooring influence on the power output of floating Wave Activated Body WECs

    DEFF Research Database (Denmark)

    2013-01-01

    The paper presents the preliminary results of new physical tests carried out in the directional wave basin of Aalborg University (DK). The devices under exams are two floating 7 Degrees of Freedom Wave Activated Bodies moored with a spread system composed by 4 steel chains. The devices were subject...... to ordinary North Sea wave climate conditions and deployed in 1:60 scale. The main purpose of this paper is to analyse the performance of a Wave Energy Converter considering the interdependencies among energy production, loads on real moorings and device movements. The mooring effects on power production...... and on device movements are specifically investigated by varying the chain pre-tension level. Results suggest that the power production optimization is achieved with a slack mooring system providing a quasi-static response to the ordinary wave attacks...

  5. Yaw-Misalignment and its Impact on Wind Turbine Loads and Wind Farm Power Output

    Science.gov (United States)

    van Dijk, Mike T.; van Wingerden, Jan-Willem; Ashuri, Turaj; Li, Yaoyu; Rotea, Mario A.

    2016-09-01

    To make wind energy cost competitive with traditional resources, wind turbines are commonly placed in groups. Aerodynamic interaction between the turbines causes sub-optimal energy production. A control strategy to mitigate these losses is by redirecting the wake by yaw misalignment. This paper aims to assess the influence of load variations of the rotor due to partial wake overlap and presents a combined optimization of the power and loads using wake redirection. For this purpose, we design a computational framework which computes the wind farm power production and the wind turbine rotor loads based on the yaw settings. The simulation results show that partial wake overlap can significantly increase asymmetric loading of the rotor disk and that yaw misalignment is beneficial in situations where the wake can be sufficiently directed away from the downstream turbine.

  6. High Average Power Raman Conversion in Diamond: ’Eyesafe’ Output and Fiber Laser Conversion

    Science.gov (United States)

    2015-06-19

    power. The efficiencies and brightness achieved are found to be higher than expected by current theories for thermal effects in diamond. The project...understand the importance of other cavity parameters on laser behaviour in order to assist with future optimization of designs. We thus developed a model...three areas not originally planned in the proposal. 1) Raman beam combination The technique of Raman beam combination, which has been investigated

  7. Low Power Digital Clock Design Using LVCMOS Input/Output Standards on 45nm FPGA

    DEFF Research Database (Denmark)

    Pandey, Sujeet; Mehta, Rishabh; Kalia, Kartik

    2016-01-01

    metal oxide semiconductor i.e. LVCMOS and 45nm Spartan-6 FPGA family is used for simulation and amount of total power consumed is noted down. There is 90.02%, 98.88%, 99.86% and 100% reduction in the clock when we scale down frequency from 100GHz to 10GHz, 1GHz, 0.1GHz, and 0.01GHz respectively....

  8. Nonlinear Adaptive Dynamic Output-Feedback Power-Level Control of Nuclear Heating Reactors

    Directory of Open Access Journals (Sweden)

    Zhe Dong

    2013-01-01

    Full Text Available Due to the high safety performance of small nuclear reactors, there is a promising future for small reactors. Nuclear heating reactor (NHR is a small reactor that has many advanced safety features such as the integrated arrangement, natural circulation at any power levels, self-pressurization, hydraulic control rod driving, and passive residual heating removing and can be applied to the fields of district heating, seawater desalination, and electricity production. Since the NHR dynamics has strong nonlinearity and uncertainty, it is meaningful to develop the nonlinear adaptive power-level control technique. From the idea of physically based control design method, a novel nonlinear adaptive power-level control is given for the NHR in this paper. It is theoretically proved that this newly built controller does not only provide globally asymptotic closed-loop stability but is also adaptive to the system uncertainty. Numerical simulation results show the feasibility of this controller and the relationship between the performance and controller parameters.

  9. Measurement of unsteady loading and power output variability in a micro wind farm model in a wind tunnel

    Science.gov (United States)

    Bossuyt, Juliaan; Howland, Michael F.; Meneveau, Charles; Meyers, Johan

    2017-01-01

    Unsteady loading and spatiotemporal characteristics of power output are measured in a wind tunnel experiment of a microscale wind farm model with 100 porous disk models. The model wind farm is placed in a scaled turbulent boundary layer, and six different layouts, varied from aligned to staggered, are considered. The measurements are done by making use of a specially designed small-scale porous disk model, instrumented with strain gages. The frequency response of the measurements goes up to the natural frequency of the model, which corresponds to a reduced frequency of 0.6 when normalized by the diameter and the mean hub height velocity. The equivalent range of timescales, scaled to field-scale values, is 15 s and longer. The accuracy and limitations of the acquisition technique are documented and verified with hot-wire measurements. The spatiotemporal measurement capabilities of the experimental setup are used to study the cross-correlation in the power output of various porous disk models of wind turbines. A significant correlation is confirmed between streamwise aligned models, while staggered models show an anti-correlation.

  10. Real-Time Wavelet-Based Coordinated Control of Hybrid Energy Storage Systems for Denoising and Flattening Wind Power Output

    Directory of Open Access Journals (Sweden)

    Tran Thai Trung

    2014-10-01

    Full Text Available Since the penetration level of wind energy is continuously increasing, the negative impact caused by the fluctuation of wind power output needs to be carefully managed. This paper proposes a novel real-time coordinated control algorithm based on a wavelet transform to mitigate both short-term and long-term fluctuations by using a hybrid energy storage system (HESS. The short-term fluctuation is eliminated by using an electric double-layer capacitor (EDLC, while the wind-HESS system output is kept constant during each 10-min period by a Ni-MH battery (NB. State-of-charge (SOC control strategies for both EDLC and NB are proposed to maintain the SOC level of storage within safe operating limits. A ramp rate limitation (RRL requirement is also considered in the proposed algorithm. The effectiveness of the proposed algorithm has been tested by using real time simulation. The simulation model of the wind-HESS system is developed in the real-time digital simulator (RTDS/RSCAD environment. The proposed algorithm is also implemented as a user defined model of the RSCAD. The simulation results demonstrate that the HESS with the proposed control algorithm can indeed assist in dealing with the variation of wind power generation. Moreover, the proposed method shows better performance in smoothing out the fluctuation and managing the SOC of battery and EDLC than the simple moving average (SMA based method.

  11. Inverted tetrahedron-pyramidal micropatterned polymer films for boosting light output power in flip-chip light-emitting diodes.

    Science.gov (United States)

    Leem, Jung Woo; Lee, Soo Hyun; Guan, Xiang-Yu; Yu, Jae Su

    2015-04-20

    We report the improved light output power in gallium nitride-based green flip-chip light-emitting diodes (FCLEDs) employed with inverted tetrahedron-pyramidal micropatterned polydimethylsiloxane (ITPM PDMS) films as an encapsulation and protection layer. The micropatterns are transferred into the surface of PDMS films from the sapphire substrate master molds with two-dimensional periodic hexagonal TPM arrays by a soft imprint lithography method. The ITPM PDMS film laminated on the sapphire dramatically enhances the diffuse transmittance (T(D)) in a wavelength (λ) range of 400-650 nm, exhibiting the larger T(D) value of ~53% at λ = 525 nm, (cf., T(D) ~1% for planar sapphire). By introducing the ITPM PDMS film on the outer surface of sapphire in FCLEDs, the light output power is enhanced, indicating the increment percentage of ~11.1% at 500 mA of injection current compared to the reference FCLED without the ITPM PDMS film, together with better electroluminescence intensity and far-field radiation pattern.

  12. Estimation of peak oxygen uptake from maximal power output among 9-10 year-old children in Lhasa, Tibet

    DEFF Research Database (Denmark)

    Bianba, B; Berntsen, S; Andersen, Lars Bo;

    2010-01-01

    in a progressive cycle ergometer test among children living at 3700 meters in Tibet. The estimate of V.O2peak is probably more valid using the present equations than prediction models based on data from sea level. The equations used for the prediction are: BianbaeqT: (l·min-1) = 0.5419 + (0.0096· Wmax) - (0...... Chinese children aged 9-10 years, living in Lhasa at 3700 meters above sea level, V.O2peak was measured directly using a portable oxygen analyzer, and predicted from maximal power output (Wmax) using a maximal cycle ergometer test. RESULTS: In multiple regression analyses with V.O2peak as dependent......AIM: The aims of the present study of Tibetan and Han Chinese children were to establish prediction equations for peak oxygen uptake (V.O2peak) using conventional power output measures, and to compare with prediction models based on data from sea level. METHODS: In 25 Tibetan children and 15 Han...

  13. Divergent endothelial function but similar platelet microvesicle responses following eccentric and concentric cycling at a similar aerobic power output.

    Science.gov (United States)

    Rakobowchuk, Mark; Ritter, Ophélie; Wilhelm, Eurico Nestor; Isacco, Laurie; Bouhaddi, Malika; Degano, Bruno; Tordi, Nicolas; Mourot, Laurent

    2017-04-01

    Endothelial function and microvesicle concentration changes after acute bouts of continuous eccentric exercise have not been assessed previously nor compared with concentric exercise at similar aerobic power outputs. This method of training may be useful among some clinical populations, but acute responses are not well described. As such, 12 healthy males completed 2 experimental sessions of either 45 min of eccentric or concentric cycling at a matched aerobic power output below the ventilatory threshold. Brachial artery vascular function was assessed throughout 5 min of forearm ischemia and 3 min thereafter, before and at 5 and 40 min of recovery following each exercise session [flow-mediated dilation (FMD)]. Venous blood samples were acquired before each vascular function assessment. FMD significantly decreased after eccentric cycling by 40 min of recovery (P exercise. No differences in peak hyperemic blood flow velocity occurred neither between modalities nor at any time point (P > 0.05). Platelet-derived microvesicles increased by ~20% after both exercise modalities (P 0.05). Moderate relationships with cardiac output, a surrogate for shear stress, and norepinephrine were apparent (P eccentric endurance exercise induced macrovascular endothelial dysfunction; however, endothelial activation determined by endothelial microvesicles did not occur suggesting that this modality may induce oxidative stress but no significant endothelial damage. In addition, the increase in platelet microvesicle concentrations may induce beneficial microvascular adaptations as suggested by previous research.NEW & NOTEWORTHY Continuous eccentric cycling exercise induces substantial skeletal muscle, tendon, and bone strain providing a potentially beneficial stimulus among clinical populations. This modality also induces temporary endothelial dysfunction but no apparent damage or activation of the endothelium indicated by microvesicle production, whereas proangiogenic platelet

  14. The ATLAS Fast Tracker Processing Units - input and output data preparation

    CERN Document Server

    Bolz, Arthur Eugen; The ATLAS collaboration

    2016-01-01

    The ATLAS Fast Tracker is a hardware processor built to reconstruct tracks at a rate of up to 100 kHz and provide them to the high level trigger system. The Fast Tracker will allow the trigger to utilize tracking information from the entire detector at an earlier event selection stage than ever before, allowing for more efficient event rejection. The connection of the system from to the detector read-outs and to the high level trigger computing farms are made through custom boards implementing Advanced Telecommunications Computing Technologies standard. The input is processed by the Input Mezzanines and Data Formatter boards, designed to receive and sort the data coming from the Pixel and Semi-conductor Tracker. The Fast Tracker to Level-2 Interface Card connects the system to the computing farm. The Input Mezzanines are 128 boards, performing clustering, placed on the 32 Data Formatter mother boards that sort the information into 64 logical regions required by the downstream processing units. This necessitat...

  15. Utilizing Maximum Power Point Trackers in Parallel to Maximize the Power Output of a Solar (Photovoltaic) Array

    Science.gov (United States)

    2012-12-01

    portable devices where system size and efficiency are the primary design factors. Size and efficiency also govern the use of multiple MPPTs at the sub... mechanisms responsible for the energy losses in a switch-mode converter are the same. They include the components responsible for conduction, capacitor...designed to directly power a load as done in this test. The SPV-1020 may require an appropriate battery charger such as the STEVAL SEA05 battery

  16. AMERICAN ELECTRIC POWER'S CONESVILLE POWER PLANT UNIT NO.5 CO2 CAPTURE RETROFIT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Carl R. Bozzuto; Nsakala ya Nsakala; Gregory N. Liljedahl; Mark Palkes; John L. Marion

    2001-06-30

    ALSTOM Power Inc.'s Power Plant Laboratories (ALSTOM) has teamed with American Electric Power (AEP), ABB Lummus Global Inc. (ABB), the US Department of Energy National Energy Technology Laboratory (DOE NETL), and the Ohio Coal Development Office (OCDO) to conduct a comprehensive study evaluating the technical feasibility and economics of alternate CO{sub 2} capture and sequestration technologies applied to an existing US coal-fired electric generation power plant. The motivation for this study was to provide input to potential US electric utility actions concerning GHG emissions reduction. If the US decides to reduce CO{sub 2} emissions, action would need to be taken to address existing power plants. Although fuel switching from coal to natural gas may be one scenario, it will not necessarily be a sufficient measure and some form of CO{sub 2} capture for use or disposal may also be required. The output of this CO{sub 2} capture study will enhance the public's understanding of control options and influence decisions and actions by government, regulators, and power plant owners in considering the costs of reducing greenhouse gas CO{sub 2} emissions. The total work breakdown structure is encompassed within three major reports, namely: (1) Literature Survey, (2) AEP's Conesville Unit No.5 Retrofit Study, and (3) Bench-Scale Testing and CFD Evaluation. The report on the literature survey results was issued earlier by Bozzuto, et al. (2000). Reports entitled ''AEP's Conesville Unit No.5 Retrofit Study'' and ''Bench-Scale Testing and CFD Evaluation'' are provided as companion volumes, denoted Volumes I and II, respectively, of the final report. The work performed, results obtained, and conclusions and recommendations derived therefrom are summarized.

  17. Stochastic Electric Power Generation Unit Commitment in Deregulated Power Market Environment

    Directory of Open Access Journals (Sweden)

    F. Gharehdaghi

    2012-03-01

    Full Text Available Utilities participating in deregulated markets observe increasing uncertainty in load (i.e., demand for electric power and prices for fuel and electricity on spot and contract markets. This study proposes a new formulation of the unit commitment problem of electric power generators in a restructured electricity market. Under these conditions, an electric power generation company will have the option to buy or sell from a power pool in addition to producing electricity on its own. The unit commitment problem is expressed as a stochastic optimization problem in which the objective is to maximize expected profits and the decisions are required to meet the standard operating constraints. Under the assumption of competitive market and price taking, it is depicted that the unit commitment schedule for a collection of N generation units can be solved by considering each unit separately. The volatility of the spot market price of electricity is represented by a stochastic model. This paper uses probabilistic dynamic programming to solve the stochastic optimization problem pertaining to unit commitment. It is shown that for a market of 150 units the proposed unit commitment can be accurately solved in a reasonable time by using the normal, Edgeworth, or Monte Carlo approximation methods.

  18. Integrated Gasification Combined Cycle (IGCC) demonstration project, Polk Power Station -- Unit No. 1. Annual report, October 1993--September 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    This describes the Tampa Electric Company`s Polk Power Station Unit 1 (PPS-1) Integrated Gasification Combined Cycle (IGCC) demonstration project which will use a Texaco pressurized, oxygen-blown, entrained-flow coal gasifier to convert approximately 2,300 tons per day of coal (dry basis) coupled with a combined cycle power block to produce a net 250 MW electrical power output. Coal is slurried in water, combined with 95% pure oxygen from an air separation unit, and sent to the gasifier to produce a high temperature, high pressure, medium-Btu syngas with a heat content of about 250 Btu/scf (LHV). The syngas then flows through a high temperature heat recovery unit which cools the syngas prior to its entering the cleanup systems. Molten coal ash flows from the bottom of the high temperature heat recovery unit into a water-filled quench chamber where it solidifies into a marketable slag by-product.

  19. A Shrouded Wind Turbine Generating High Output Power with Wind-lens Technology

    OpenAIRE

    2010-01-01

    We have developed a new wind turbine system that consists of a diffuser shroud with a broad-ring brim at the exit periphery and a wind turbine inside it. The shrouded wind turbine with a brimmed diffuser has demonstrated power augmentation by a factor of about 2–5 compared with a bare wind turbine, for a given turbine diameter and wind speed. This is because a low-pressure region, due to a strong vortex formation behind the broad brim, draws more mass flow to the wind turbine inside the diffu...

  20. Large output-power, low-speed permanent magnet synchronous motor designs for ship propulsion drive

    Energy Technology Data Exchange (ETDEWEB)

    Rosu, M.

    2001-07-01

    Over the last decade, serious development has taken place in electric motor technology, and its impact is being felt in the shipbuilding community. This development has brought about a new generation of compact, high efficiency electrical machines. High performance, lightweight permanent magnet motors and generators have been developed for a wide range of applications including vehicle propulsion, power generation, pump and compressor drives. These machines combine the advances in magnetic materials and electronic design to provide shipbuilders new options for weight, energy and cost reduction. Permanent magnet machines were built in many different configurations and power classes, ranging from a few hundred watts to multi-megawatts for ship propulsion. Permanent magnet motors and generators for marine use were constructed and tested, all of these machines providing the same outstanding torque and power density. The basic electromagnetic, thermal and mechanical design approaches were established and tested in small prototype machines, the development of larger machines constituting the engineering later in the design process. The goal of this research work is to find an optimum solution in terms of design and suitability of a low-speed and high-power permanent magnet motor for ship propulsion drive. In this work, the study-case analyses are limited to the electromagnetic part of the motor. Two types of radial flux permanent magnet synchronous motors are designed and optimised to meet the propulsion requirements. The first motor has the permanent magnets mounted on the surface of the rotor while the second motor has the permanent magnets mounted on the rotor surface and covered by laminated pole shoes. In their construction, high-energy NdFeB permanent magnets were chosen. These magnetic materials provide a sufficient airgap magnetic flux density with a low volume of material. Moreover, the NdFeB permanent magnets are endowed with high coercivity. As an immediate

  1. Evaluation of piezoelectric material properties for a higher power output from energy harvesters with insight into material selection using a coupled piezoelectric-circuit-finite element method.

    Science.gov (United States)

    Daniels, Alice; Zhu, Meiling; Tiwari, Ashutosh

    2013-12-01

    Piezoelectric material properties have substantial influence on electrical power output from piezoelectric energy harvesters (PEHs). Understanding their influences is the first step in designing effective PEHs to generate higher power outputs. This paper uses a coupled piezoelectric-circuit-finite element method to study the power outputs of different types of piezoelectric materials, including single crystal, polyvinylidene fluoride (PVDF), and soft and hard lead zirconate titanate (PZT) materials. The purpose of this study is to try to gain an understanding of which piezoelectric material property--the elastic compliance s11, the piezoelectric strain constant d31, the piezoelectric stress constant g31, and the relative dielectric constant ϵ(T)r33, and the associated material properties of the d31 × g31, called the figure of merit (FOM), and the coupling coefficient k31--dominates the power output. A rectangular piezoelectric plate under a low-frequency excitation is used to evaluate piezoelectric material properties for a higher power output. It was found that 1) d31 is a more dominant material property over other material properties for higher power output; 2) FOM was more linearly related to the power output than either the k31 or the d31; and 3) ϵ(T)r33 had some role; when the materials have an identical d31; a lower ϵ(T)r33 was preferred. Because of unexplained outliers, no single material parameter was able to be recommended as selection criteria, but combined FOM with d31 parameters is recommended for selection of piezoelectric material for a higher power output from PEHs.

  2. 40 CFR 1033.510 - Auxiliary power units.

    Science.gov (United States)

    2010-07-01

    ... locomotive is equipped with an auxiliary power unit (APU) that operates during an idle shutdown mode, you must account for the APU's emissions rates as specified in this section, unless the APU is part of an... emission rate (g/hr) as specified in § 1033.530. Add the APU emission rate (g/hr) that you determine...

  3. ADОPTIVE CONTROL OF THE HYBRID VEHICLE POWER UNIT

    Directory of Open Access Journals (Sweden)

    S. Serikov

    2014-10-01

    Full Text Available The problem of adaptive control of the hybrid vehicle power unit, which makes it possible to minimize the quality criterion under constraints on the state parameters and the control vector is considered. A formal statement of the optimization problem is given. The solution of this problem by the method of neural network control based on the adaptive criticism is considered.

  4. Boundary-layer flow and power output in large wind farms during transition from neutral to stable conditions

    Science.gov (United States)

    Allaerts, Dries; Meyers, Johan

    2016-11-01

    In wind farms, power deficits are directly related to ambient turbulence levels. Power deficits will therefore increase during the transition from a daytime, conventionally neutral boundary layer (CNBL) to the stable boundary layer (SBL) at night. Besides turbulent decay, a multitude of effects occurs during this transition. For instance, low-level jets may cause strong winds at high elevations, while the velocity near the surface generally decreases. Consequently, Coriolis forces induce a change in wind direction, which alters the apparent wind-farm layout in streamwise direction. In this study, we perform LES of a large onshore wind farm in the late-afternoon transition from an equilibrium CNBL to a surface-cooled SBL. The results of two different cooling rates are compared with the wind-farm performance in the CNBL. The power output decrease during the transition, with faster decrease for stronger surface cooling. However, the initial decrease is dominated by the reduction in wind speed, and the relative power deficits do not increase. Further, considerable wake deflection occurs, and a spatially heterogeneous distribution of temperature and heat flux is observed. The authors acknowledge support from the European Research Council (FP7-Ideas, Grant No. 306471).

  5. Doubling Power Output of Starch Biobattery Treated by the Most Thermostable Isoamylase from an Archaeon Sulfolobus tokodaii.

    Science.gov (United States)

    Cheng, Kun; Zhang, Fei; Sun, Fangfang; Chen, Hongge; Percival Zhang, Y-H

    2015-08-20

    Biobattery, a kind of enzymatic fuel cells, can convert organic compounds (e.g., glucose, starch) to electricity in a closed system without moving parts. Inspired by natural starch metabolism catalyzed by starch phosphorylase, isoamylase is essential to debranch alpha-1,6-glycosidic bonds of starch, yielding linear amylodextrin - the best fuel for sugar-powered biobattery. However, there is no thermostable isoamylase stable enough for simultaneous starch gelatinization and enzymatic hydrolysis, different from the case of thermostable alpha-amylase. A putative isoamylase gene was mined from megagenomic database. The open reading frame ST0928 from a hyperthermophilic archaeron Sulfolobus tokodaii was cloned and expressed in E. coli. The recombinant protein was easily purified by heat precipitation at 80 (o)C for 30 min. This enzyme was characterized and required Mg(2+) as an activator. This enzyme was the most stable isoamylase reported with a half lifetime of 200 min at 90 (o)C in the presence of 0.5 mM MgCl2, suitable for simultaneous starch gelatinization and isoamylase hydrolysis. The cuvett-based air-breathing biobattery powered by isoamylase-treated starch exhibited nearly doubled power outputs than that powered by the same concentration starch solution, suggesting more glucose 1-phosphate generated.

  6. Can we estimate the cellular phone RF peak output power with a simple experiment?

    Science.gov (United States)

    Fioreze, Maycon; dos Santos Junior, Sauli; Goncalves Hönnicke, Marcelo

    2016-07-01

    Cellular phones are becoming increasingly useful tools for students. Since cell phones operate in the microwave bandwidth, they can be used to motivate students to demonstrate and better understand the properties of electromagnetic waves. However, since these waves operate at higher frequencies (L-band, from 800 MHz to 2 GHz) it is not simple to detect them. Usually, expensive real-time high frequency oscilloscopes are required. Indirect measurements are also possible through heat-based and diode-detector-based radio-frequency (RF) power sensors. Another didactic and intuitive way is to explore a simple and inexpensive detection system, based on the interference effect caused in the electronic circuit of TV and PC soundspeakers, and to try to investigate different properties of the cell phones’ RF electromagnetic waves, such as its power and modulated frequency. This manuscript proposes a trial to quantify these measurements, based on a simple Friis equation model and the time constant of the circuit used in the detection system, in order to show it didactically to the students and even allow them also to explore such a simple detection system at home.

  7. X-ray Power and Energy output of Z-Machine Dynamic Hohlraums

    Science.gov (United States)

    Idzorek, G.; Tierney, T.; Watt, R.

    2006-10-01

    Los Alamos performs radiation flow experiments at the Z-machine in order to verify their modelling codes. Critical input to these codes is the actual radiation power profile which flows into the experiment. Our standard diagnostic suite consists of X-ray Diodes (XRD), silicon photodiodes, and nickel thin film bolometers. Custom written computer software examines the raw data to determine the data quality, folds in detector spectral response, calculates a multi-detector spectral unfold, and yields an equivalent Planckian temperature profile. Sets of diagnostics view the dynamic hohlraum from the side, top axial anode side, and bottom axial cathode side. Results to date yield some interesting conclusions: Correlation between the various diagnostic views seems tenuous at best. Identical nickel foil bolometers usually agree within 10%. At low bolometer-foil temperature increases the bolometers agree with integrated XRD power unfolds but diverge at higher temperature increases. For identically filtered X-ray diodes the integrated response of photocathodes may vary an factor of two. XRD's usually unfold to yield a Planckian-like spectrum. Top axial measurements consistently yield higher temperatures than bottom axial diagnostics. In our presentation we will compare the diagnostic techniques, analysis, and results to establish drive conditions for our experiments.

  8. Unit stream power, minimum energy dissipation rate, and river engineering

    Institute of Scientific and Technical Information of China (English)

    Chih Ted Yang

    2010-01-01

    Unit stream power is the most important and dominant parameter for the determination of transport rate of sand,gravel, and hyper-concentrated sediment with wash load.Minimum energy dissipation rate theory, or its simplified minimum unit stream power and minimum stream power theories,can provide engineers the needed theoretical basis for river morphology and river engineering studies.The Generalized Sediment Transport model for Alluvial River Simulation computer mode series have been developed based on the above theories.The computer model series have been successfully applied in many countries.Examples will be used to illustrate the applications of the computer models to solving a wide range of river morphology and river engineering problems.

  9. Phasor Measurement Units in the Eastern Danish power system

    DEFF Research Database (Denmark)

    Nielsen, Arne Hejde; Pedersen, Knud Ole Helgesen; Jørgensen, Preben;

    2006-01-01

    Technology. After power system events data can be extracted and analyzed offline. The purpose of the project is to do research within various utilizations of PMU data. On 8 January 2005 a severe storm passed Denmark, and wind speeds were so high, that wind turbines disconnected from the transmission grid......In the Eastern Danish transmission system four Phasor Measurement Units (PMU’s) are installed at 400 kV and 132 kV voltage level. The PMU’s continuously record voltage and current phasors each 20 ms. Data are stored locally on the PMU’s and are also transferred to a database at Centre for Electric...... because of their self protection. Nysted offshore wind farm was among the wind power units that disconnected from the grid, and PMU data from that event are analyzed. The case illustrates the close relation between voltages, power flows and voltage phase angles over a wide area. The voltage phase angle...

  10. Phasor Measurement Units in the Eastern Danish power system

    DEFF Research Database (Denmark)

    Nielsen, Arne Hejde; Pedersen, Knud Ole Helgesen; Jørgensen, Preben

    2006-01-01

    In the Eastern Danish transmission system four Phasor Measurement Units (PMU’s) are installed at 400 kV and 132 kV voltage level. The PMU’s continuously record voltage and current phasors each 20 ms. Data are stored locally on the PMU’s and are also transferred to a database at Centre for Electric...... because of their self protection. Nysted offshore wind farm was among the wind power units that disconnected from the grid, and PMU data from that event are analyzed. The case illustrates the close relation between voltages, power flows and voltage phase angles over a wide area. The voltage phase angle...... measurements complements the traditional voltage and power flow measurements....

  11. Influence of musculo-tendinous stiffness of the plantar ankle flexor muscles upon maximal power output on a cycle ergometre.

    Science.gov (United States)

    Driss, Tarak; Lambertz, Daniel; Rouis, Majdi; Vandewalle, Henry

    2012-11-01

    The importance of maximal voluntary torque (T (MVC)), maximal rate of torque development (MRTD) and musculo-tendinous stiffness of the triceps surae for maximal power output on a cycle ergometre (Pmax) was studied in 21 healthy subjects by studying the relationships between maximal cycling power related to body mass (Pmax BM(-1)) with T (MVC), MRTD and different indices of musculo-tendinous stiffness of the ankle flexor. Pmax BM(-1) was calculated from the data of an all-out force-velocity test on a Monark cycle ergometre. T (MVC) and MRTD were measured on a specific ankle ergometre. Musculo-tendinous stiffness was estimated by means of quick releases at 20, 40, 60 and 80% T (MVC) on the same ankle ergometre. Pmax BM(-1) was significantly and positively correlated with MRTD related to body mass but the positive correlation between Pmax BM(-1) and T (MVC) did not reach the significance level (0.05). Pmax BM(-1) was significantly and positively correlated with the estimation of stiffness at 40% T (MVC) (S(0.4)), but not with stiffness at 20, 60 and 80% T (MVC). The results of the present study suggest that maximal power output during cycling is significantly correlated with the level of musculo-tendinous stiffness which corresponds to torque range around peak torque at optimal pedal rate. However, the low coefficient of determination (r2 = 0.203) between Pmax BM(-1) and S (0.4) BM(-1) suggested that Pmax BM(-1) largely depended on other factors than the musculo-tendinous stiffness of the only plantar flexors.

  12. Graphite anode surface modification with controlled reduction of specific aryl diazonium salts for improved microbial fuel cells power output.

    Science.gov (United States)

    Picot, Matthieu; Lapinsonnière, Laure; Rothballer, Michael; Barrière, Frédéric

    2011-10-15

    Graphite electrodes were modified with reduction of aryl diazonium salts and implemented as anodes in microbial fuel cells. First, reduction of 4-aminophenyl diazonium is considered using increased coulombic charge density from 16.5 to 200 mC/cm(2). This procedure introduced aryl amine functionalities at the surface which are neutral at neutral pH. These electrodes were implemented as anodes in "H" type microbial fuel cells inoculated with waste water, acetate as the substrate and using ferricyanide reduction at the cathode and a 1000 Ω external resistance. When the microbial anode had developed, the performances of the microbial fuel cells were measured under acetate saturation conditions and compared with those of control microbial fuel cells having an unmodified graphite anode. We found that the maximum power density of microbial fuel cell first increased as a function of the extent of modification, reaching an optimum after which it decreased for higher degree of surface modification, becoming even less performing than the control microbial fuel cell. Then, the effect of the introduction of charged groups at the surface was investigated at a low degree of surface modification. It was found that negatively charged groups at the surface (carboxylate) decreased microbial fuel cell power output while the introduction of positively charged groups doubled the power output. Scanning electron microscopy revealed that the microbial anode modified with positively charged groups was covered by a dense and homogeneous biofilm. Fluorescence in situ hybridization analyses showed that this biofilm consisted to a large extent of bacteria from the known electroactive Geobacter genus. In summary, the extent of modification of the anode was found to be critical for the microbial fuel cell performance. The nature of the chemical group introduced at the electrode surface was also found to significantly affect the performance of the microbial fuel cells. The method used for

  13. Physics of Output Power Limitations in Long-Wavelength Laser Diodes

    Science.gov (United States)

    Piprek, Joachim; White, J. Kenton; SpringThorpe, Anthony J.

    2002-12-01

    We analyze the high-temperature continuous-wave performance of 1.3 micron AlGaInAs/InP laser diodes grown by digital alloy molecular beam epitaxy. Commercial laser software is utilized that self-consistently combines quantum well bandstructure and gain calculations with two-dimensional simulations of carrier transport, wave guiding, and heat flow. Excellent agreement between simulation and measurements is obtained by careful adjustment of material parameters in the model. Joule heating is shown to be the main heat source; quantum well recombination heat is almost compensated for by Thomson cooling. Auger recombination is the main carrier loss mechanism at lower injection current. Vertical electron escape into the p-doped InP cladding dominates at higher current and it causes the thermal power roll-off. Self-heating and optical gain reduction are the triggering mechanisms behind the leakage escalation.

  14. Lack of cytotoxicity by Trustwater Ecasol™ used to maintain good quality dental unit waterline output water in keratinocyte monolayer and reconstituted human oral epithelial tissue models.

    LENUS (Irish Health Repository)

    Boyle, M A

    2010-11-01

    We previously showed that residual treatment of dental chair unit (DCU) supply water using the electrochemically-activated solution Trustwater Ecasol™ (2.5 ppm) provided an effective long-term solution to the problem of dental unit waterline (DUWL) biofilm resulting in DUWL output water quality consistently superior to potable water.

  15. High power RF solid state power amplifier system

    Science.gov (United States)

    Sims, III, William Herbert (Inventor); Chavers, Donald Gregory (Inventor); Richeson, James J. (Inventor)

    2011-01-01

    A high power, high frequency, solid state power amplifier system includes a plurality of input multiple port splitters for receiving a high-frequency input and for dividing the input into a plurality of outputs and a plurality of solid state amplifier units. Each amplifier unit includes a plurality of amplifiers, and each amplifier is individually connected to one of the outputs of multiport splitters and produces a corresponding amplified output. A plurality of multiport combiners combine the amplified outputs of the amplifiers of each of the amplifier units to a combined output. Automatic level control protection circuitry protects the amplifiers and maintains a substantial constant amplifier power output.

  16. Cost based reactive power participation for voltage control in multi units based isolated hybrid power system

    Directory of Open Access Journals (Sweden)

    Nitin Kumar Saxena

    2016-12-01

    Full Text Available Multi units of wind and diesel based generators in isolated hybrid power system have technical and operational advantages over single units system. They require dynamic reactive power compensation for fast recovery of voltage under load and input changes. In developing countries like India, investors’ prime concern is to provide continuous electricity at low rate while quality degradation can be permitted within pre defined acceptable range. The use of static compensator along with dynamic compensator may give cost effective reactive power participation for system. This paper presented pricing of reactive power compensation under steady state and transient conditions of system with fixed capacitor and STATCOM. The main contributions of the paper are; (i evaluating reactive power balance equation for generalized multi units of wind and diesel based isolated hybrid power system, (ii reactive power compensation using fixed capacitor and STATCOM in presence of composite load model, (ii fast recovery of voltage response using genetic algorithm based tuning of STATCOM controller, (iii evaluation of reactive power compensation cost for steady and dynamic conditions due to probabilistic change in load and/or input demand and (iv comparison of results with existing reference compensation method.

  17. Inventory of power plants in the United States, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-01

    The Inventory of Power Plants in the United States is prepared annually by the Survey Management Division, Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), U.S. Department of Energy (DOE). The purpose of this publication is to provide year-end statistics about electric generating units operated by electric utilities in the United States (the 50 States and the District of Columbia). The publication also provides a 10-year outlook of future generating unit additions. Data summarized in this report are useful to a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. Data presented in this report were assembled and published by the EIA to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended.

  18. Fault tree modeling of AAC power source in multi-unit nuclear power plants PSA

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sang Hoon; Lim, Ho-Gon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Dependencies between units are important to estimate a risk of a multi-unit site. One of dependencies is a shared system such as an alternating AC (AAC) power source. Because one AAC can support a single unit, it is necessary to appropriately treat such behavior of the AAC in multi-unit probabilistic safety assessment (PSA). The behavior of AAC in multi-unit site would show dynamic characteristics. For example, several units require the AAC at the same time. It is hard to decide which unit the AAC is connected to. It can vary depending on timing of station blackout (SBO), with time delay when emergency diesel generators fail while running. It is not easy to handle dynamic behavior using the static fault tree methodology. Typical way of estimating risk for multi-unit regarding to AAC is to assume that only one unit has AAC and the others does not. KIM calculates the risk for each unit and uses the average value from the results. Jung derives an equation to calculate the SBO frequency by considering all the combination of loss of offsite power and failure of emergency diesel generators in multi-unit site. It is also assumed that the AAC is connected to a pre-decided unit. We are developing a PSA model for multi-unit site for internal and external events. An extreme external hazard may result in loss of all offsite power in a site, where the appropriate modeling of an AAC becomes important. The static fault tree methodology is not good for dynamic situation. But, it can turn into a simple problem if an assumption is made: - The connecting order of AAC is pre-decided. This study provides an idea how to model AAC for each unit in the form of a fault tree, assuming the connecting order of AAC is given. This study illustrates how to model a fault tree for AAC in a multi-unit site. It provides an idea how to handle a shared system in multi-unit PSA, for such a case as loss of all offsite power in a site due to an extreme external hazard.

  19. The Economic Value of Korean Nuclear Power Industry in the National Economy: An Input-Output Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M. K.; Kim, S. S.; Lee, J. H.; Kim, S. H. [Nuclear Policy Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    In 1978, Korea introduced the first nuclear power plant, Kori-1 unit, in parallel with the nation's industrialization policy. Thereafter, Korea has carried out a very ambitious nuclear power program and sustained a strong commitment to nuclear power development. Thus, nuclear is a prime energy source which presently meets about 30 percent of Korea's power demands. Also, Korea won a contract for APR-1400 NPPs to the UAE in 2009 which led to Korea as a significant exporter in the world nuclear market. Recently, the new government of Korea has been launching 'Creative Economy', from this perspective, the quantitative contributions of nuclear sector to the national economic growth are required to be estimated. This paper is to estimate quantitatively the economic values created by nuclear power industry in the framework of national economy. The total economic values created by nuclear power industry are estimated to be 63.6 trillion won for the study period.

  20. Research on unit commitment with large-scale wind power connected power system

    Science.gov (United States)

    Jiao, Ran; Zhang, Baoqun; Chi, Zhongjun; Gong, Cheng; Ma, Longfei; Yang, Bing

    2017-01-01

    Large-scale integration of wind power generators into power grid brings severe challenges to power system economic dispatch due to its stochastic volatility. Unit commitment including wind farm is analyzed from the two parts of modeling and solving methods. The structures and characteristics can be summarized after classification has been done according to different objective function and constraints. Finally, the issues to be solved and possible directions of research and development in the future are discussed, which can adapt to the requirements of the electricity market, energy-saving power generation dispatching and smart grid, even providing reference for research and practice of researchers and workers in this field.

  1. Air-Hybrid Distributed Bragg Reflector Structure for Improving the Light Output Power in AlGalnP-Based LEDs.

    Science.gov (United States)

    Oh, Hwa Sub; Ryu, Ho-Soung; Park, Sueng Ho; Jeong, Tak; Kim, Young Jin; Lee, Hyung Joo; Cho, Young Dae; Kwak, Joon-Seop; Baek, Jong Hyeob

    2015-07-01

    We investigated air gap-induced hybrid distributed Bragg reflectors (AH-DBRs) for use in high brightness and reliable AlGalnP-based light emitting diodes (LEDs). An air gap was inserted into the side of DBRs by selectively etching the Al(x),Ga1-xAs DBR structures. With the AH-DBR structures, the optical output power of LEDs was enhanced by 15% compared to LEDs having conventional DBRs, due to the effective reflection of obliquely incident light by the air gap structures. In addition, the electrical characteristics showed that the AH-DBR LED is a desirable structure for reducing the leakage current, as it suppresses unwanted surface recombinations.

  2. Influence of patterned sapphire substrates with different symmetry on the light output power of InGaN-based LEDs

    Science.gov (United States)

    2014-01-01

    This paper aims to investigate the light output power (LOP) of InGaN-based light-emitting diodes (LEDs) grown on patterned sapphire substrates (PSSs) with different symmetry. The GaN epitaxial layers grown on the hexagonal lattice arrangement PSS (HLAPSS) have a lower compressive strain than the ones grown on the square lattice arrangement PSS (SLAPSS). The quantum-confined Stark effect (QCSE) is also affected by the residual compressive strain. Based on the experimentally measured data and the ray tracing simulation results, the InGaN-based LED with the HLAPSS has a higher LOP than the one with the SLAPSS due to the weaker QCSE within multiple-quantum wells (MQWs). PMID:25392706

  3. Inventory of Power Plants in the United States, October 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-27

    The Inventory of Power Plants in the United States is prepared annually by the Survey Management Division, Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), US Department of Energy (DOE). The purpose of this publication is to provide year-end statistics about electric generating units operated by electric utilities in the United States (the 50 States and the District of Columbia). The publication also provides a 10-year outlook of future generating unit additions. Data summarized in this report are useful to a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. Data presented in this report were assembled and published by the EIA to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended. The report is organized into the following chapters: Year in Review, Operable Electric Generating Units, and Projected Electric Generating Unit Additions. Statistics presented in these chapters reflect the status of electric generating units as of December 31, 1992.

  4. Increasing the recovery of heavy metal ions using two microbial fuel cells operating in parallel with no power output.

    Science.gov (United States)

    Wang, Xiaohui; Li, Jing; Wang, Zhao; Tursun, Hairti; Liu, Rui; Gao, Yanmei; Li, Yuan

    2016-10-01

    The present study aimed to improve the performance of microbial fuel cells (MFCs) by using an intermittent connection period without power output. Connecting two MFCs in parallel improved the voltage output of both MFCs until the voltage stabilized. Electric energy was accumulated in two MFCs containing heavy metal ions copper, zinc, and cadmium as electron acceptors by connection in parallel for several hours. The system was then switched to discharge mode with single MFCs with a 1000-Ω resistor connected between anode and cathode. This method successfully achieved highly efficient removal of heavy metal ions. Even when the anolyte was run in sequencing batch mode, the insufficient voltage and power needed to recover heavy metals from the cathode of MFCs can be complemented by the developed method. The average removal ratio of heavy metal ions in sequencing batch mode was 67 % after 10 h. When the discharge time was 20 h, the removal ratios of zinc, copper, and cadmium were 91.5, 86.7, and 83.57 %, respectively; the average removal ratio of these ions after 20 h was only 52.1 % for the control group. Therefore, the average removal efficiency of heavy metal ions increased by 1.75 times using the electrons stored from the bacteria under the open-circuit conditions in parallel mode. Electrochemical impedance data showed that the anode had lower solution resistance and polarization resistance in the parallel stage than as a single MFC, and capacitance increased with the length of time in parallel.

  5. A High-Gain Three-Port Power Converter with Fuel Cell, Battery Sources and Stacked Output for Hybrid Electric Vehicles and DC-Microgrids

    Directory of Open Access Journals (Sweden)

    Ching-Ming Lai

    2016-03-01

    Full Text Available This paper proposes a novel high-gain three-port power converter with fuel cell (FC, battery sources and stacked output for a hybrid electric vehicle (HEV connected to a dc-microgrid. In the proposed power converter, the load power can be flexibly distributed between the input sources. Moreover, the charging or discharging of the battery storage device can be controlled effectively using the FC source. The proposed converter has several outputs in series to achieve a high-voltage output, which makes it suitable for interfacing with the HEV and dc-microgrid. On the basis of the charging and discharging states of the battery storage device, two power operation modes are defined. The proposed power converter comprises only one boost inductor integrated with a flyback transformer; the boost and flyback circuit output terminals are stacked to increase the output voltage gain and reduce the voltage stress on the power devices. This paper presents the circuit configuration, operating principle, and steady-state analysis of the proposed converter, and experiments conducted on a laboratory prototype are presented to verify its effectiveness.

  6. Twenty-watt average output power, picosecond thin-rod Yb:YAG regenerative chirped pulse amplifier with 200 mJ pulse energy

    OpenAIRE

    MATSUBARA, Shinichi; TANAKA, Motoharu; TAKAMA, Masaki; KAWATO, Sakae; Kobayashi, Takao

    2008-01-01

    A high-average power, laser-diode-pumped, picosecond-pulse regenerative chirpedpulse amplifier was developed by using the thin-rod Yb:YAG laser architecture. An averageoutput power of 20 W was achieved at a repetition rate of 100 kHz with an output pulse width of 2ps.

  7. 75 FR 66802 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Science.gov (United States)

    2010-10-29

    ... COMMISSION Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2... Regulatory Commission (the Commission) has granted the request of Calvert Cliffs Nuclear Power Plant, LLC... Operating License Nos. DPR-53 and DPR-69 for the Calvert Cliffs Nuclear Power Plant, Unit......

  8. 76 FR 39908 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Science.gov (United States)

    2011-07-07

    ... COMMISSION Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2.... DPR-53 and DPR-69, for the Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2 (CCNPP), respectively... (ISFSI), currently held by Calvert Cliffs Nuclear Power Plant, LLC as owner and licensed......

  9. Using Loop Heat Pipes to Minimize Survival Heater Power for NASA's Evolutionary Xenon Thruster Power Processing Units

    Science.gov (United States)

    Choi, Michael K.

    2017-01-01

    A thermal design concept of using propylene loop heat pipes to minimize survival heater power for NASA's Evolutionary Xenon Thruster power processing units is presented. It reduces the survival heater power from 183 W to 35 W per power processing unit. The reduction is 81%.

  10. Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells.

    Science.gov (United States)

    Nevin, K P; Richter, H; Covalla, S F; Johnson, J P; Woodard, T L; Orloff, A L; Jia, H; Zhang, M; Lovley, D R

    2008-10-01

    It has been previously noted that mixed communities typically produce more power in microbial fuel cells than pure cultures. If true, this has important implications for the design of microbial fuel cells and for studying the process of electron transfer on anode biofilms. To further evaluate this, Geobacter sulfurreducens was grown with acetate as fuel in a continuous flow 'ministack' system in which the carbon cloth anode and cathode were positioned in close proximity, and the cation-selective membrane surface area was maximized in order to overcome some of the electrochemical limitations that were inherent in fuel cells previously employed for the study of pure cultures. Reducing the size of the anode in order to eliminate cathode limitation resulted in maximum current and power densities per m(2) of anode surface of 4.56 A m(-2) and 1.88 W m(-2) respectively. Electron recovery as current from acetate oxidation was c. 100% when oxygen diffusion into the system was minimized. This performance is comparable to the highest levels previously reported for mixed communities in similar microbial fuel cells and slightly higher than the power output of an anaerobic sludge inoculum in the same ministack system. Minimizing the volume of the anode chamber yielded a volumetric power density of 2.15 kW m(-3), which is the highest power density per volume yet reported for a microbial fuel cell. Geobacter sulfurreducens formed relatively uniform biofilms 3-18 mum thick on the carbon cloth anodes. When graphite sticks served as the anode, the current density (3.10 A m(-2)) was somewhat less than with the carbon cloth anodes, but the biofilms were thicker (c. 50 mum) with a more complex pillar and channel structure. These results suggest that the previously observed disparity in power production in pure and mixed culture microbial fuel cell systems can be attributed more to differences in the fuel cell designs than to any inherent superior capability of mixed cultures to produce

  11. Dynamic Analysis & Characterization of Conventional Hydraulic Power Supply Units

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Liedhegener, Michael; Bech, Michael Møller

    2016-01-01

    Hydraulic power units operated as constant supply pres-sure systems remain to be widely used in the industry, to supply valve controlled hydraulic drives etc., where the hydraulic power units are constituted by variable pumps with mechanical outlet pressure control, driven by induction motors...... and drives will reduce the flow-to-pressure gain of the supply system, and hence increase the time constant of the sup-ply pressure dynamics. A consequence of this may be large vari-ations in the supply pressure, hence large variations in the pump shaft torque, and thereby the induction motor load torque......, with possible excitation of the induction motor dynamics as a result. In such cases, the coupled dynamics of the pressure controlled pump and induction motor may influence the supply pressure sig-nificantly, possibly affecting the dynamics of the supplied drives, especially in cases where pilot operated valves...

  12. AN AIRPLANE WITH UNCONVENTIONALLY PLACED PROPELLER POWER UNIT

    Directory of Open Access Journals (Sweden)

    Jan Červinka

    2017-02-01

    Full Text Available The significance of the influence of operating propellers on the aircraft aerodynamic characteristics is well-known. Wind tunnel testing of an airplane model with operating propellers is a complex task regarding the required similarity of the full-scale and the model case. Matching sufficient similarity in axial and rotational velocities in the propeller slipstream is the primordial condition for the global aerodynamic similarity of the windtunnel testing. An example of the model power units with related devices is presented. Examples of the wind tunnel testing results illustrate the extent of the propeller influence on aerodynamic characteristics of an aircraft of unconventional configuration with power units positioned at the fuselage afterbody.

  13. The Power of Unit Root Tests Against Nonlinear Local Alternatives

    DEFF Research Database (Denmark)

    Demetrescu, Matei; Kruse, Robinson

    of Econometrics 112, 359-379) in comparison to the linear Dickey-Fuller test. To this end, we consider different adjustment schemes for deterministic terms. We provide asymptotic results which imply that the error variance has a severe impact on the behavior of the tests in the nonlinear case; the reason...... by simulation. Furthermore, our own simulation results suggest that the user-specied adjustment scheme for deterministic components (e.g. OLS, GLS, or recursive adjustment) has a much higher impact on the power of unit root tests than accounting for nonlinearity, at least under local (linear or nonlinear......This article extends the analysis of local power of unit root tests in a nonlinear direction by considering local nonlinear alternatives and tests built specically against stationary nonlinear models. In particular, we focus on the popular test proposed by Kapetanios et al. (2003, Journal...

  14. QUALITY EVALUATION OF THE TPP POWER GENERATING UNITS WEAR RECONDITIONING

    Directory of Open Access Journals (Sweden)

    E. M. Farhadzadeh

    2016-01-01

    Full Text Available Reconditioning of the power generating unit worn equipment and devices is conducted during the scheduled repair period. Quality of wear reconditioning is evaluated by technical state and repair work implementation. Quality of the repair work execution characterizes logistical activities of the power station and the repair services and is rated by a five-grade scale. There are three technical conditions: adequate, subject to reservations, falling short of the technical standard documentation requirements. In practical work these constraints give place to essential ambiguity of the decision. Further to regulating techniques by way of informational support, the authors propose conducting the wear-reconditioning quality evaluation (repair quality accordingly the technical-and-economic indexes pattern of change. The paper recommends applying similarly the fivegrade system in evaluating the power generating unit technical state and distinguishes intolerable, dissatisfactory, fair, good and model estimates. The study demonstrates the assessment criteria dependence on the character of reliability and economical efficiency of performance variation after the repair with increase or decrease of the technical-and-economic indexes in reference to their mean, minimum and maximum values before the repair. The cases ascribed to intolerable quality of the wear reconditioning are those with one or more technical-and-economic indexes that not only failed to improve their values but deteriorated, and at that they became the worst amongst observable values. The model quality estimate of the wear reconditioning is allotted under condition that the power unit technical-and-economic index valuations after the repair not merely improved but also exceeded the best among those under observation. The developed method and algorithm for quality evaluation of the scheduled repair implementation contribute to practical realization of the independent monitoring. This monitoring

  15. The Power Unit Coordinated Control via Uniform Differential Evolution

    OpenAIRE

    Zain Abdalla Zahran; Rui Feng Shi; Xiang Jie Liu

    2013-01-01

    This paper modified the differential evolution (DE) algorithm adaptively to solve the power unit coordinated control (PUCC) problem. It was modified in two aspects: 1) a uniform initialization, which was controlled and regulated by a zone factor (m), 2) a regular mutation process, to develop an effective searching process and improve the convergence of the basic DE algorithm. A numerical case study was employed to verify the performance of our proposed uniform differential evolution (UDE) a...

  16. AN AIRPLANE WITH UNCONVENTIONALLY PLACED PROPELLER POWER UNIT

    OpenAIRE

    Jan Červinka; Robert Kulhánek; Zdeněk Pátek

    2017-01-01

    The significance of the influence of operating propellers on the aircraft aerodynamic characteristics is well-known. Wind tunnel testing of an airplane model with operating propellers is a complex task regarding the required similarity of the full-scale and the model case. Matching sufficient similarity in axial and rotational velocities in the propeller slipstream is the primordial condition for the global aerodynamic similarity of the windtunnel testing. An example of the model power units ...

  17. Power regulating range broadening of the WWER-type reactor power units

    Energy Technology Data Exchange (ETDEWEB)

    Dement' ev, B.A.; Petrov, V.A.; Proskuryakov, A.G.; Puchkov, V.V. (Moskovskij Ehnergeticheskij Inst. (USSR))

    1984-02-01

    Calculational studies on the use of sliding pressure (SP) regime to expand the regulating range of the WWER-440 reactor power units are presented. Two operation regimes of a power unit have been considered: according to weekly and daily load swings in electrical grids. The conclusion is made that the use of SP regime in the secondary circuit improves manoeuvable characterstics of the power unit in the second half of operating cycle. T of the reactor (0.6 power regulating range broadening of the reactor. Besides, the use of SP regime during power unit operation with decreased loadings is the more efficient the smaller is the load. The range of operating cycle 0.8 <= T <= 1 makes the greatest contribution to regulating range broadening as a result of SP regime use. Conclusions of the calculational studies can be also applied to WWER reactors of other types as well as to RBMK reactors.

  18. Inventory of power plants in the United States 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-18

    The Inventory of Power Plants in the US provides year-end statistics on generating units operated by electric utilities in the US (the 50 States and the District of Columbia). Statistics presented in this report reflect the status of generating units as of December 31, 1994. The publication also provides a 10-year outlook for generating unit additions. This report is prepared annually by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy (DOE). Data summarized in this report are useful to a wide audience including Congress, Federal, and State agencies; the electric utility industry; and the general public. This is a report of electric utility data; in cases where summary data of nonutility capacity are presented, it is specifically noted as such.

  19. Gain and output power measurements in an electrically excited oxygen-iodine laser with a scaled discharge

    Energy Technology Data Exchange (ETDEWEB)

    Bruzzese, J R; Hicks, A; Erofeev, A; Cole, A C; Nishihara, M; Adamovich, I V [Michael A Chaszeyka Nonequilibrium Thermodynamics Laboratories, Department of Mechanical Engineering, Ohio State University, Columbus, OH 43210 (United States)

    2010-01-13

    Singlet delta oxygen (SDO) yield, small signal gain, and output power have been measured in a scaled electric discharge excited oxygen-iodine laser. Two different types of discharges have been used for SDO generation in O{sub 2}-He-NO flows at pressures up to 90 Torr, crossed nanosecond pulser/dc sustainer discharge and capacitively coupled transverse RF discharge. The total flow rate through the laser cavity with a 10 cm gain path is approximately 0.5 mole s{sup -1}, with steady-state run time at a near-design Mach number of M = 2.9 of up to 5 s. The results demonstrate that SDO yields and flow temperatures obtained using the pulser-sustainer and the RF discharges are close. Gain and static temperature in the supersonic cavity remain nearly constant, {gamma} = 0.10-0.12% cm{sup -1} and T = 125-140 K, over the axial distance of approximately 10 cm. The highest gain measured is 0.122% cm{sup -1} at T = 140 K. Positive gain measured in the supersonic inviscid core extends over approximately one half to one third of the cavity height, with absorption measured in the boundary layers near top and bottom walls of the cavity. Laser power has been measured using (i) two 99.9% mirrors on both sides of the resonator, 2.5 W, and (ii) 99.9% mirror on one side and 99% mirror on the other side, 3.1 W. Gain downstream of the resonator is moderately reduced during lasing (by up to 20-30%) and remains nearly independent of the axial distance, by up to 10 cm. This suggests that only a small fraction of power available for lasing is coupled out, and that additional power may be coupled in a second resonator. Preliminary laser power measurements using two transverse resonators operating at the same time (both using 99.9-99% mirror combinations) demonstrated lasing at both axial locations, with the total power of 3.8 W.

  20. Topping the 300-MW power unit at the GRES-24 district power station with a GTE-110 gas turbine unit. Technical solutions on the thermal circuit

    Science.gov (United States)

    Berezinets, P. A.; Tereshina, G. E.; Kryuchkova, T. I.

    2010-02-01

    We describe the outcomes from the development of a gas-turbine topping for the 300-MW power unit that was initially constructed as an attachment to an MHD-generator, which, however, has not been constructed. A 110-MW GTE-110 gas-turbine unit was used as a topping for this power unit. The topped power unit allows more than 9% of fuel to be saved as compared with the original one.

  1. Power unit impedance and distance protection functions during faults in the external power grid

    Directory of Open Access Journals (Sweden)

    Marcin Lizer

    2012-12-01

    Full Text Available This paper presents the problem of the risk of an unnecessary tripping of a generation unit’s underimpedance protection functions in circumstances of generator power swings following elimination of long-lasting fault in the external power grid. The fi rst part describes typical solutions of a generator impedance protection function (21e and unit distance protection function (21s. Starting characteristics of these protection functions are shown, as well as their typical operating logics and ways of calculating their settings. Then exemplary (the most common solutions of unit under-impedance relays power swing blocking functions are described. Following this introduction, the issues of the threat of unnecessary operation of fast-tripping protection zones of 21e and 21s protection functions are described, which arises in the circumstances of generator asynchronous power swings occurring after elimination of long-lasting faults in the grid supplied by the power unit. The paper also shows that the available power swing blocking functions may not be able to correctly detect the described conditions, thus allowing the unnecessary operation of under-impedance relays. How an impedance calculation algorithm affects the impedance trajectory seen by a protection relay is also resented.

  2. A Sampled Grating DBR Laser Monolithically Integrated by Using SOAs with 22mW Output Power and 51 ITU 100 GHz Channels over 43 nm

    Institute of Scientific and Technical Information of China (English)

    LIU Yang; YE Nan; ZHOU Dai-Bing; WANG Bao-Jun; PAN Jiao-Qing; ZHAO Ling-Juan; WANG Wei

    2011-01-01

    @@ A sampled grating distributed Bragg reflector (SG-DBR) laser monolithically integrated with semiconductor optical amplifiers (SOAs), which has a tuning range over 43nm from 1514.05 nm to 1557.4 nm covering 49 continuous and totally 51 ITU 100 GHz standard channels and an output power more than 22 mW for all output wavelengths, is successfully demonstrated.%A sampled grating distributed Bragg reflector (SG-DBR) laser monolithically integrated with semiconductor optical amplifiers (SOAs), which has a tuning range over 43nm from 1514.05nm to 1557.4 nm covering 49 continuous and totally 51 ITU 100 GHz standard channels and an output power more than 22 m W for all output wavelengths,is successfully demonstrated.

  3. Development of High-Power Hall Thruster Power Processing Units at NASA GRC

    Science.gov (United States)

    Pinero, Luis R.; Bozak, Karin E.; Santiago, Walter; Scheidegger, Robert J.; Birchenough, Arthur G.

    2015-01-01

    NASA GRC successfully designed, built and tested four different power processor concepts for high power Hall thrusters. Each design satisfies unique goals including the evaluation of a novel silicon carbide semiconductor technology, validation of innovative circuits to overcome the problems with high input voltage converter design, development of a direct-drive unit to demonstrate potential benefits, or simply identification of lessonslearned from the development of a PPU using a conventional design approach. Any of these designs could be developed further to satisfy NASA's needs for high power electric propulsion in the near future.

  4. Anaerobic and aerobic peak power output and the force-velocity relationship in endurance-trained athletes: effects of aging.

    Science.gov (United States)

    Chamari, K; Ahmaidi, S; Fabre, C; Massé-Biron, J; Préfaut, C

    1995-01-01

    The aim of this investigation was to test the hypothesis that the anaerobic peak power output (Pan, peak) declines more than the peak aerobic power (Paer, peak) with increasing age. In addition, the force-velocity (F-v) relationship was studied to determine which of these two factors is primarily responsible for the expected alterations in anaerobic power. The Pan, peak, the maximal F when v is equal to zero (F0) and the maximal v when F is equal to zero (v0) were assessed by F-v test i.e. a brief intense intermittent exercise test using incremental braking forces. The Paer, peak was measured by a maximal increment exercise test. A group of 12 young athletes (YA) and 12 master athletes (MA) mean age 24.8 (SEM 1.3) and 65.1 (SEM 1.2) years, respectively, participated in this study. The YA and MA had similar body masses, heights and endurance training schedules. The results showed that Pan, peak was 42.7% lower in the older subjects, corresponding to mean values of 1089 (SEM 40) compared to 624 (SEM 33) W (t = 8.9, P Paer, peak was 35% lower with mean values of 323 (SEM 12) W for YA compared to 210 (SEM 6) W for MA (t = 8.3, P < 0.001). The mean maximal oxygen uptake was 34.7% lower with 4240 (SEM 160) ml.min-1 for YA compared to 2770 (SEM 120) ml.min-1 for MA (t = 7.2, P < 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Main Power Distribution Unit for the Jupiter Icy Moons Orbiter (JIMO)

    Science.gov (United States)

    Papa, Melissa R.

    2004-01-01

    Around the year 2011, the Jupiter Icy Moons Orbiter (JIMO) will be launched and on its way to orbit three of Jupiter s planet-sized moons. The mission goals for the JIMO project revolve heavily around gathering scientific data concerning ingredients we, as humans, consider essential: water, energy and necessary chemical elements. The JIM0 is an ambitious mission which will implore propulsion from an ION thruster powered by a nuclear fission reactor. Glenn Research Center is responsible for the development of the dynamic power conversion, power management and distribution, heat rejection and ION thrusters. The first test phase for the JIM0 program concerns the High Power AC Power Management and Distribution (PMAD) Test Bed. The goal of this testing is to support electrical performance verification of the power systems. The test bed will incorporate a 2kW Brayton Rotating Unit (BRU) to simulate the nuclear reactor as well as two ION thrusters. The first module of the PMAD Test Bed to be designed is the Main Power Distribution Unit (MPDU) which relays the power input to the various propulsion systems and scientific instruments. The MPDU involves circuitry design as well as mechanical design to determine the placement of the components. The MPDU consists of fourteen relays of four different variations used to convert the input power into the appropriate power output. The three phase system uses 400 Vo1ts(sub L-L) rms at 1000 Hertz. The power is relayed through the circuit and distributed to the scientific instruments, the ION thrusters and other controlled systems. The mechanical design requires the components to be positioned for easy electrical wiring as well as allowing adequate room for the main buss bars, individual circuit boards connected to each component and power supplies. To accomplish creating a suitable design, AutoCAD was used as a drafting tool. By showing a visual layout of the components, it is easy to see where there is extra room or where the

  6. Silicon-Carbide Power MOSFET Performance in High Efficiency Boost Power Processing Unit for Extreme Environments

    Science.gov (United States)

    Ikpe, Stanley A.; Lauenstein, Jean-Marie; Carr, Gregory A.; Hunter, Don; Ludwig, Lawrence L.; Wood, William; Del Castillo, Linda Y.; Fitzpatrick, Fred; Chen, Yuan

    2016-01-01

    Silicon-Carbide device technology has generated much interest in recent years. With superior thermal performance, power ratings and potential switching frequencies over its Silicon counterpart, Silicon-Carbide offers a greater possibility for high powered switching applications in extreme environment. In particular, Silicon-Carbide Metal-Oxide- Semiconductor Field-Effect Transistors' (MOSFETs) maturing process technology has produced a plethora of commercially available power dense, low on-state resistance devices capable of switching at high frequencies. A novel hard-switched power processing unit (PPU) is implemented utilizing Silicon-Carbide power devices. Accelerated life data is captured and assessed in conjunction with a damage accumulation model of gate oxide and drain-source junction lifetime to evaluate potential system performance at high temperature environments.

  7. Securing the United States' power infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Happenny, Sean F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-08-01

    The United States’ power infrastructure is aging, underfunded, and vulnerable to cyber attack. Emerging smart grid technologies may take some of the burden off of existing systems and make the grid as a whole more efficient, reliable, and secure. The Pacific Northwest National Laboratory (PNNL) is funding research into several aspects of smart grid technology and grid security, creating a software simulation tool that will allow researchers to test power distribution networks utilizing different smart grid technologies to determine how the grid and these technologies react under different circumstances. Demonstrating security in embedded systems is another research area PNNL is tackling. Many of the systems controlling the U.S. critical infrastructure, such as the power grid, lack integrated security and the networks protecting them are becoming easier to breach. Providing a virtual power substation network to each student team at the National Collegiate Cyber Defense Competition, thereby supporting the education of future cyber security professionals, is another way PNNL is helping to strengthen the security of the nation’s power infrastructure.

  8. Largest fluidized bed power plant unit for power and district heat supply for Berlin (Part 1)

    Energy Technology Data Exchange (ETDEWEB)

    Abroell, G.; Bade, H.; Bietz, K.H.; Jahn, P. (ABB Kraftwerke AG, Mannheim (Germany))

    1991-11-01

    The Berlin Power and Light Company (Bewag) has decided to install, on the inner city site of Moabit, for the supply of electricity and district heating, a new unit with circulating atmospheric fluidized bed combustion. The plant will be designed for a thermal capacity of 240 MW. The basis for this decision, and also the technical implementation, will be made public.

  9. Influence of the laser-diode temperature on crystal absorption and output power in an end-pumped Nd:YVO4 laser

    Indian Academy of Sciences (India)

    Ebrahim Safari

    2011-01-01

    In this work, we studied the influence of heat loaded into the laser crystal in an endpumped solid-state Nd:YVO4 high power laser. We have shown experimentally that the optimum value of the laser-diode temperature for the maximum pump power absorption by the Nd:YVO4 crystal and the maximum Nd:YVO4 laser output power are approximately similar to that of a system of the low power type, but by increasing the pump power, different values can be obtained.

  10. Development of hydraulic power unit and accumulator charging circuit for electricity generation, storage and distribution

    Institute of Scientific and Technical Information of China (English)

    C.N.Okoye; JIANG Ji-hai; LIU Hai-chang

    2008-01-01

    It is the purpose of the present paper to convert hydraulic energy to electric energy and saves both the pressure and electrical energy for re - use during the next system upstroke using two secondary units coupled to induction motor to drive cylinder loads. During upstroke operation, the variable pump/motor (P/M) driven by both electric motor and the second (P/M) works as hydraulic pump and output flow to the cylinders which drive the load. During load deceleration, the cylinders work as pump while the operation of the two secondary units are reversed, the variable (P/M) works as a motor generating a torque with the electric motor to drive the other(P/M) which transforms mechanical energy to hydraulic energy that is saved in the accumulator. When the en-ergy storage capacity of the accumulator is attained as the operation continues, energy storage to the accumulator is thermostatically stopped while the induction motor begins to work as a generator and generates electricity that is stored in the power distribution unit. Simulations were performed using a limited PT2 Block, I.e. 2nd-ordertransfer function with limitation of slope and signal output to determine suitable velocity of the cylinder which will match high performance and system stability. A mathematical model suited to the simulation of the hydrau-lic accumulator both in an open-or close-loop system is presented. The quest for improvement of lower energy capacity storage, saving and re-utilization of the conventional accumulator resulting in the short cycle time usage of hydraulic accumulators both in domestic and industrial purposes necessitates this research. The outcome of the research appears to be very efficient for generating fluctuation free electricity, power quality and reliability, energy saving/reutilization and system noise reduction.

  11. 76 FR 1469 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Science.gov (United States)

    2011-01-10

    ... COMMISSION Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2... Cliffs Nuclear Power Plant, LLC, the licensee, for operation of the Calvert Cliffs Nuclear Power Plant..., Calvert Cliffs Nuclear Power Plant (NUREG-1437, Supplement 1), dated......

  12. Enhancement of p-polarized output power in long pulse single rod Nd:YAG laser using a tilted 90° quartz rotator

    Science.gov (United States)

    Choubey, Ambar; Mondal, Shyamal; Singh, Ravindra; Upadhyaya, B. N.; Datta, P. K.; Oak, S. M.

    2014-11-01

    We report a study on the enhancement of linearly p-polarized output power in long pulse (2-20 ms) multimode operation of single rod Nd:YAG laser. Laser resonator was designed using a simple optical scheme with a tilted 90° quartz rotator and a re-entering feedback mirror placed at appropriate location. A p-polarized average output power of 215 W has been achieved with a slope efficiency of 4.5%, which is on higher side for a typical long pulse single rod Nd:YAG laser system. It has been verified experimentally that the depolarization losses can be reduced significantly from a value of ~34% to ~9%. Further, this scheme has resulted in a significant enhancement (more than 80%) of p-polarized output power as compared to placing a polarizer in the resonator. This long pulse p-polarized laser will be useful in various material processing applications and nonlinear frequency conversions.

  13. Shapeable maximum-power point-tracking algorithm to improve the stability of the output behavior of a thermoelectric-solar hybrid energy-harvesting system

    Directory of Open Access Journals (Sweden)

    A. M. Yusop

    2017-02-01

    Full Text Available This study presents the development of a novel maximum-power point-tracking (MPPT method based on an input shaping scheme controller. The proposed method that changes the initial input response into a shapeable MPPT algorithm is designed based on an exponential input function. This type of input function is selected because of its capability to stabilize the system at the end of the simulation time and remain at the same condition at the final response time. A comparison of the system with the proposed method and the system with traditional perturb and observe (PnO method is also provided. Results show that the system with the proposed method produces higher output power than the system with PnO method; the difference is approximately 15.45%. Results reveal that the exponential function input shaper allows the overall output system to exhibit satisfactory behavior and can efficiently track the maximum output power.

  14. Tuning range and output power optimization of an external-cavity GaN diode laser at 455  nm.

    Science.gov (United States)

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2016-03-20

    In this paper we discuss how different feedback gratings affect the tuning range and the output power of external feedback diode laser systems. A tunable high-power narrow-spectrum external-cavity diode laser system around 455 nm is investigated. The laser system is based on a high-power GaN diode laser in a Littrow external-cavity. Both a holographic diffraction grating and a ruled diffraction grating are used as feedback elements in the external cavity. The output power, spectral bandwidth, and tunable range of the external cavity diode laser system are measured and compared with the two gratings at different injected currents. When the holographic grating is used, the laser system can be tuned over a range of 1.4 nm with an output power around 530 mW. When the ruled grating is used, the laser system can be tuned over a range of 6.0 nm with an output power around 80 mW. The results can be used as a guide for selecting gratings for external-cavity diode lasers for different requirements.

  15. Fission Surface Power Technology Demonstration Unit Test Results

    Science.gov (United States)

    Briggs, Maxwell H.; Gibson, Marc A.; Geng, Steven M.; Sanzi, James L.

    2016-01-01

    The Fission Surface Power (FSP) Technology Demonstration Unit (TDU) is a system-level demonstration of fission power technology intended for use on manned missions to Mars. The Baseline FSP systems consists of a 190 kWt UO2 fast-spectrum reactor cooled by a primary pumped liquid metal loop. This liquid metal loop transfers heat to two intermediate liquid metal loops designed to isolate fission products in the primary loop from the balance of plant. The intermediate liquid metal loops transfer heat to four Stirling Power Conversion Units (PCU), each of which produce 12 kWe (48 kW total) and reject waste heat to two pumped water loops, which transfer the waste heat to titanium-water heat pipe radiators. The FSP TDU simulates a single leg of the baseline FSP system using an electrically heater core simulator, a single liquid metal loop, a single PCU, and a pumped water loop which rejects the waste heat to a Facility Cooling System (FCS). When operated at the nominal operating conditions (modified for low liquid metal flow) during TDU testing the PCU produced 8.9 kW of power at an efficiency of 21.7 percent resulting in a net system power of 8.1 kW and a system level efficiency of 17.2 percent. The reduction in PCU power from levels seen during electrically heated testing is the result of insufficient heat transfer from the NaK heater head to the Stirling acceptor, which could not be tested at Sunpower prior to delivery to the NASA Glenn Research Center (GRC). The maximum PCU power of 10.4 kW was achieved at the maximum liquid metal temperature of 875 K, minimum water temperature of 350 K, 1.1 kg/s liquid metal flow, 0.39 kg/s water flow, and 15.0 mm amplitude at an efficiency of 23.3 percent. This resulted in a system net power of 9.7 kW and a system efficiency of 18.7 percent.

  16. Conceptual design of free-piston Stirling conversion system for solar power units

    Science.gov (United States)

    Loktionov, Iu. V.

    A conversion system has been conceptually designed for solar power units of the dish-Stirling type. The main design objectives were to demonstrate the possibility of attaining such performance characteristics as low manufacturing and life cycle costs, high reliability, long life, high efficiency, power output stability, self-balance, automatic (or self-) start-up, and easy maintenance. The system design includes a heat transfer and utilization subsystem with a solar receiver, a free-piston engine, an electric power generation subsystem, and a control subsystem. The working fluid is helium. The structural material is stainless steel for hot elements, aluminum alloys and plastics for others. The electric generation subunit can be fabricated in three options: with an induction linear alternator, with a permanent magnet linear alternator, and with a serial rotated induction generator and a hydraulic drive subsystem. The heat transfer system is based on heat pipes or the reflux boiler principle. Several models of heat transfer units using a liquid metal (Na or Na-K) have been created and demonstrated.

  17. Green Propulsion Auxiliary Power Unit Demonstration at MSFC

    Science.gov (United States)

    Robinson, Joel W.

    2014-01-01

    In 2012, the National Aeronautics & Space Administration (NASA) Space Technology Mission Directorate (STMD) began the process of building an integrated technology roadmap, including both technology pull and technology push strategies. Technology Area 1 (TA-01)1 for Launch Propulsion Systems is one of fourteen TAs that provide recommendations for the overall technology investment strategy and prioritization of NASA's space technology activities. Identified within TA-01 was the need for a green propulsion auxiliary power unit (APU) for hydraulic power by 2015. Engineers led by the author at the Marshall Space Flight Center (MSFC) have been evaluating green propellant alternatives and have begun the development of an APU test bed to demonstrate the feasibility of use. NASA has residual APU assets remaining from the retired Space Shuttle Program. Likewise, the F-16 Falcon fighter jet also uses an Emergency Power Unit (EPU) that has similar characteristics to the NASA hardware. Both EPU and APU components have been acquired for testing at MSFC. This paper will summarize the status of the testing efforts of green propellant from the Air Force Research Laboratory (AFRL) propellant AFM315E based on hydroxyl ammonium nitrate (HAN) with these test assets.

  18. Dynamic Placement of Wind Power Distributed Generation Units in Distribution Power Systems

    DEFF Research Database (Denmark)

    Hajizadeh, Amin; Baghayipour, Mohammad Reza

    2017-01-01

    process. Thereby, an accurate dynamic model of the active and reactive powers injected by Wind DG to the system is employed in which the interactions between the Wind DG and the distribution network are well regarded. Finally, simulation results are given to show the capability of proposed approach......The placement problem of Distributed Generators (DGs) in distribution networks becomes much more complicated in the case of using the DGs with renewable energy resources, due to several causes like their intermittent output powers, the interactions between DGs and the rest of distribution network......, and other involved uncertainties. This paper develops a new approach for optimal placement of Wind DGs in which all of such influences are perfectly handled. This method simultaneously considers the time variations of dynamic nodal demands, nodal voltage magnitudes, and wind speed in the Wind DG placement...

  19. Picosecond laser with 11 W output power at 1342 nm based on composite multiple doping level Nd:YVO4 crystal

    Science.gov (United States)

    Rodin, Aleksej M.; Grishin, Mikhail; Michailovas, Andrejus

    2016-01-01

    We report results of design and optimization of high average output power picosecond and nanosecond laser operating at 1342 nm wavelength. Developed for selective micromachining, this DPSS laser is comprised of master oscillator, regenerative amplifier and output pulse control module. Passively mode-locked by means of semiconductor saturable absorber mirror and pumped with 808 nm wavelength Nd:YVO4 master oscillator emits 12.5 ps pulses at repetition rate of 55 MHz with average output power of ∼100 mW. The four-pass confocal delay line forms a longest part of the oscillator cavity in order to suppress thermo-mechanical misalignment. Picked from the train seed pulses were injected to the cavity of regenerative amplifier based on composite Nd:YVO4 crystal with diffusion-bonded segments of multiple Nd doping concentration end-pumped at 880 nm wavelength. Laser produces pulses of ∼13 ps duration at 300 kHz repetition rate with average output power of 11 W and nearly diffraction limited beam quality of M2∼1.03. Attained high peak power ∼2.8 MW facilitates conversion to the 2nd, 3rd and 6th harmonics at 671 nm, 447 nm and 224 nm wavelengths with 80%, 50% and 15% efficiency respectively. Without seeding the regenerative amplifier transforms to electro-optically cavity-dumped Q-switched laser providing 10 ns output pulses at high repetition rates with beam propagation factor of M2∼1.06.

  20. Wind power development in the United States: Effects of policies and electricity transmission congestion

    Science.gov (United States)

    Hitaj, Claudia

    In this dissertation, I analyze the drivers of wind power development in the United States as well as the relationship between renewable power plant location and transmission congestion and emissions levels. I first examine the role of government renewable energy incentives and access to the electricity grid on investment in wind power plants across counties from 1998-2007. The results indicate that the federal production tax credit, state-level sales tax credit and production incentives play an important role in promoting wind power. In addition, higher wind power penetration levels can be achieved by bringing more parts of the electricity transmission grid under independent system operator regulation. I conclude that state and federal government policies play a significant role in wind power development both by providing financial support and by improving physical and procedural access to the electricity grid. Second, I examine the effect of renewable power plant location on electricity transmission congestion levels and system-wide emissions levels in a theoretical model and a simulation study. A new renewable plant takes the effect of congestion on its own output into account, but ignores the effect of its marginal contribution to congestion on output from existing plants, which results in curtailment of renewable power. Though pricing congestion removes the externality and reduces curtailment, I find that in the absence of a price on emissions, pricing congestion may in some cases actually increase system-wide emissions. The final part of my dissertation deals with an econometric issue that emerged from the empirical analysis of the drivers of wind power. I study the effect of the degree of censoring on random-effects Tobit estimates in finite sample with a particular focus on severe censoring, when the percentage of uncensored observations reaches 1 to 5 percent. The results show that the Tobit model performs well even at 5 percent uncensored observations

  1. Output power enhancement of GaN-based flip-chip light-emitting diodes via conical structures generated by a monolayer of nanospheres

    Science.gov (United States)

    Liu, Mai-Chih; Lin, Chang-Rong; Chan, Chia-Hua

    2016-11-01

    This letter describes the output power enhancement of the GaN-based flip-chip light-emitting diodes (FC LED) featuring conical structures fabricated by etching a self-assembled monolayer SiO2 spheres as the hard mask. By roughening the surface of FC LED components, it increases structural size of the components and elevates the light extraction efficiency of FC LED. At a constant current of 400 mA, the output power of the FC LED with 1200 nm conical structures is 638.1 mW and enhanced by 6.1% compared with the FC LED without surface roughening.

  2. Design of high-pressure direct contact heater for promising power supply units: Experimental substantiation

    Science.gov (United States)

    Somova, E. V.; Shvarts, A. L.; Turkin, A. V.

    2016-11-01

    The results of experimental studies of superheated steam condensation on feed water jets in a highpressure, direct-contact heat exchanger are presented. Direct contact feed water heater (DCFWH) can be used in a dual-flow diagram of a steam-power unit with ultrasupercritical steam parameters (35 MPa, 700/720°C). The direct contact feed water heater is included in the flow diagram of the II circuit in a promising power unit; it provides feed water heating to 340°C in all maintenance and emergency operation modes of the unit. The reliability of the high-pressure direct contact heater operation in this flow diagram is of major importance in relation to the danger of lead solidification in the tube space of the steam generator. Technical requirements to the design of the high-pressure direct contact heater for increasing the heat exchange efficiency are formulated based on the results of earlier studies with steam-water mixture as the heating medium. The results of studies of superheated steam condensation on jets presented in this study testify that feed water is additionally heated to the required temperature at the output of the installation. The influence of initial feed water parameters (outflow velocity and temperature) on the jet heating length is elucidated. The numerical approximation of the experimental data for determination of the jet heating length in the nominal and partial power unit loads is obtained. The results of the calculations are used to simplify the design of the water-supplying element for the direct contact feed water heater. The proposed design of direct contact feed water heater is characterized by simplicity and low metal intensity, which provides the installation reliability at the considered pressure level due to the minimum number of structural elements.

  3. Development of a method to evaluate shared alternate AC power source effects in multi-unit nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Woo Sik; Yang, Joon Eun

    2003-07-01

    In order to evaluate accurately a Station BlackOut (SBO) event frequency of a multi-unit nuclear power plant that has a shared Alternate AC (AAC) power source, an approach has been developed which accommodates the complex inter-unit behavior of the shared AAC power source under multi-unit Loss Of Offsite Power (LOOP) conditions. The approach is illustrated for two cases, 2 units and 4 units at a single site, and generalized for a multi-unit site. Furthermore, the SBO frequency of the first unit of the 2-unit site is quantified. The SBO frequency at a target unit of Probabilistic Safety Assessment (PSA) could be underestimated if the inter-unit dependency of the shared AAC power source is not properly modeled. The effect of the inter-unit behavior of the shared AAC power source on the SBO frequency is not negligible depending on the Common Cause Failure (CCF) characteristics among AC power sources. The methodology suggested in the present report is believed to be very useful in evaluating the SBO frequency and the core damage frequency resulting from the SBO event. This approach is also applicable to the probabilistic evaluation of the other shared systems in a multi-unit nuclear power plant.

  4. DESIGNING FEATURES OF POWER OPTICAL UNITS FOR TECHNOLOGICAL EQUIPMENT

    Directory of Open Access Journals (Sweden)

    M. Y. Afanasiev

    2016-03-01

    Full Text Available This paper considers the question of an optical unit designing for transmitting power laser radiation through an optical fiber. The aim of this work is designing a simple construction unit with minimized reflection losses. The source of radiation in the optical unit described below is an ultraviolet laser with diode pumping. We present the general functioning scheme and designing features for the three main parts: laser beam deflecting system, laser beam dump and optical unit control system. The described laser beam deflection system is composed of a moving flat mirror and a spherical scattering mirror. Comparative analysis of the production technology for such mirrors was carried out, and, as a result, the decision was made to produce both mirrors of 99.99 % pure molybdenum without coating. A moving mirror deflects laser emission from a source through a fiber or deflects it on a spherical mirror and into the laser beam dump, moreover, switching from one position to another occurs almost immediately. It is shown that a scattering mirror is necessary, otherwise, the absorbing surface of the beam dump is being worn out irregularly. The laser beam dump is an open conical cavity, in which the conical element with its spire turned to the emission source is placed. Special microgeometry of the internal surface of the beam dump is suggested for the better absorption effect. An optical unit control system consists of a laser beam deflection system, laser temperature sensor, deflection system solenoid temperature sensor, and deflection mirror position sensor. The signal processing algorithm for signals coming from the sensors to the controller is described. The optical unit will be used in special technological equipment.

  5. Hybrid Solid Oxide Fuel Cell and Thermoelectric Generator for Maximum Power Output in Micro-CHP Systems

    DEFF Research Database (Denmark)

    Rosendahl, Lasse; Mortensen, Paw Vestergård; Enkeshafi, Ali A.

    2011-01-01

    and market segments which are not yet quantified. This paper quantifies a micro-CHP system based on a solid oxide fuel cell (SOFC) and a high-performance TE generator. Based on a 3 kW fuel input, the hybrid SOFC implementation boosts electrical output from 945 W to 1085 W, with 1794 W available for heating......One of the most obvious early market applications for thermoelectric generators (TEG) is decentralized micro combined heat and power (CHP) installations of 0.5 kWe to 5 kWe based on fuel cell technology. Through the use of TEG technology for waste heat recovery it is possible to increase...... the electricity production in micro-CHP systems by more than 15%, corresponding to system electrical efficiency increases of some 4 to 5 percentage points. This will make fuel cell-based micro-CHP systems very competitive and profitable and will also open opportunities in a number of other potential business...

  6. Hybrid Solid Oxide Fuel Cell and Thermoelectric Generator for Maximum Power Output in Micro-CHP Systems

    Science.gov (United States)

    Rosendahl, L. A.; Mortensen, Paw V.; Enkeshafi, Ali A.

    2011-05-01

    One of the most obvious early market applications for thermoelectric generators (TEG) is decentralized micro combined heat and power (CHP) installations of 0.5 kWe to 5 kWe based on fuel cell technology. Through the use of TEG technology for waste heat recovery it is possible to increase the electricity production in micro-CHP systems by more than 15%, corresponding to system electrical efficiency increases of some 4 to 5 percentage points. This will make fuel cell-based micro-CHP systems very competitive and profitable and will also open opportunities in a number of other potential business and market segments which are not yet quantified. This paper quantifies a micro-CHP system based on a solid oxide fuel cell (SOFC) and a high-performance TE generator. Based on a 3 kW fuel input, the hybrid SOFC implementation boosts electrical output from 945 W to 1085 W, with 1794 W available for heating purposes.

  7. Zero loss magnetic metamaterials using powered active unit cells.

    Science.gov (United States)

    Yuan, Yu; Popa, Bogdan-Ioan; Cummer, Steven A

    2009-08-31

    We report the design and experimental measurement of a powered active magnetic metamaterial with tunable permeability. The unit cell is based on the combination of an embedded radiofrequency amplifier and a tunable phase shifter, which together control the response of the medium. The measurements show that a negative permeability metamaterial with zero loss or even gain can be achieved through an array of such metamaterial cells. This kind of active metamaterial can find use in applications that are performance limited due to material losses.

  8. Performance/Power Space Exploration for Binary64 Division Units

    DEFF Research Database (Denmark)

    Nannarelli, Alberto

    2016-01-01

    The digit-recurrence division algorithm is used in several high-performance processors because it provides good tradeoffs in terms of latency, area and power dissipation. In this work we develop a minimally redundant radix-8 divider for binary64 (double-precision) aiming at obtaining better energ...... efficiency in the performance-per-watt space. The results show that the radix-8 divider, when compared to radix-4 and radix-16 units, requires less energy to complete a division for high clock rates....

  9. Coated particle fuel for radioisotope power systems and heater units: status and future research needs

    Science.gov (United States)

    El-Genk, Mohamed S.; Tournier, Jean-Michel; Sholtis, Joseph A.; Lipinski, Ronald J.

    2000-01-01

    Coated particle fuel has been proposed recently for use in Radioisotope Power Systems (RPSs) and Radioisotope Heater Units (RHUs) for a variety of space missions requiring power levels from mWs to 10's or even hundreds of Watts. It can be made into different shapes and sizes of solid compacts, heating tapes, or paints. Using a conservative design approach, this fuel form could increase by 2.3-2.4 times the thermal power output of a LWRHU, while offering promise of enhanced safety. These performance figures are based on using single-size (500 μm) compacts of ZrC coated 238PuO2 kernels and assuming 10% and 5% He release, respectively, at 1723 K, following 10 years of storage. Using binary-size (300 and 1200 μm) fuel kernels in the compact increases the thermal power output by an additional 15%. 238PuO2 fuel kernels are intentionally sized (>=300 μm in diameter) to prevent any adverse radiological effects. They are non-respirable and non-inhalable and, if ingested, would simply be excreted with no radiological effects. The 238PuO2 fuel kernels are contained within a strong ZrC coating, which is designed to fully retain the fuel and the helium gas. Helium retention in large grain (>=300 μm) granular and polycrystalline fuel kernels is possible even at high temperatures (>1700 K). The former could be fabricated using binderless agglomeration or similar processes, while the latter could be fabricated using Sol-Gel or thermal plasma processes, with potentially less radioactive waste and fabrication contamination. In addition to summarizing the results of a recent effort investigating the performance of coated fuel particle compact (CPFC) and helium gas release, this paper identifies and discusses future research and testing needs. .

  10. 基于优先顺序法的风电场限出力有功控制策略%Priority List-Based Output-Restricted Active Power Control Strategy for Wind Farms

    Institute of Scientific and Technical Information of China (English)

    林俐; 谢永俊; 朱晨宸; 汪宁渤

    2013-01-01

    With the rapid increase of grid-integrated capacity of wind farms, wind farms should possess the adjusting ability of active power that can control active power output of wind farm according to the command from control center of power grid. Combining with actual requirement for active power control system of clustered wind farms in Jiuquan wind power base in Gansu province, China, taking the utilization of wind energy farthest and the prevention of frequent start/stop of wind power generators as the objectives and based on classical priority list method, an output-restricted active power control strategy for wind farms composed of variable speed constant frequency (VSCF) wind power generators is proposed. To meet the demand on output-restricted control for wind farms, an active power control frame in the level of wind farm and corresponding output-restricted control process are designed. Overall considering the prediction information, operating conditions and control characteristics of wind power generation units within wind farms, an output-restricted active power control sequence for wind farms, in which the indices of control performances of wind power generation units are taken as the index for rank ordering, is established, and then, based on the control sequence the method to allocate output-restricted active power is given. The correctness and effectiveness of the proposed control strategy are verified by the calculation of a wind farm composed of 33 doubly fed induction generators.%  随着风电并网容量的增加,风电场应具备有功功率调节能力,能根据电网调度部门指令控制其有功功率输出。结合甘肃酒泉风电基地集群风电有功控制系统的实际需要,以实现最大风能利用、避免风电场频繁起停为目标,基于经典优先顺序法提出了一种应用于变速恒频风电场的限出力有功控制策略。针对风电场限出力控制需要,设计了风电场层有功

  11. Development Status of Power Processing Unit for 250mN-Class Hall Thruster

    Science.gov (United States)

    Osuga, H.; Suzuki, K.; Ozaki, T.; Nakagawa, T.; Suga, I.; Tamida, T.; Akuzawa, Y.; Suzuki, H.; Soga, Y.; Furuichi, T.; Maki, S.; Matui, K.

    2008-09-01

    Institute for Unmanned Space Experiment Free Flyer (USEF) and Mitsubishi Electric Corporation (MELCO) are developing the next generation ion engine system under the sponsorship of Ministry of Economy, Trade and Industry (METI) within six years. The system requirement specifications are a thrust level of over 250mN and specific impulse of over 1500 sec with a less than 5kW electric power supply, and a lifetime of over 3,000 hours. These target specifications required the development of both a Hall Thruster and a Power Processing Unit (PPU). In the 2007 fiscal year, the PPU called Second Engineering Model (EM2) consist of all power supplies was a model for the Hall Thruster system. The EM2 PPU showed the discharge efficiency was over 96.2% for 250V and 350V at output power between 1.8kW to 4.5kW. And also the Hall Thruster could start up quickly and smoothly to control the discharge voltage, the inner magnet current, the outer magnet current and the xenon flow rate. This paper reports on the design and test results of the EM2 PPU.

  12. The Optimized Operation of Gas Turbine Combined Heat and Power Units Oriented for the Grid-Connected Control

    Science.gov (United States)

    Xia, Shu; Ge, Xiaolin

    2016-04-01

    In this study, according to various grid-connected demands, the optimization scheduling models of Combined Heat and Power (CHP) units are established with three scheduling modes, which are tracking the total generation scheduling mode, tracking steady output scheduling mode and tracking peaking curve scheduling mode. In order to reduce the solution difficulty, based on the principles of modern algebraic integers, linearizing techniques are developed to handle complex nonlinear constrains of the variable conditions, and the optimized operation problem of CHP units is converted into a mixed-integer linear programming problem. Finally, with specific examples, the 96 points day ahead, heat and power supply plans of the systems are optimized. The results show that, the proposed models and methods can develop appropriate coordination heat and power optimization programs according to different grid-connected control.

  13. Tampa Electric Company, Polk Power Station Unit No. 1. Annual report, January--December 1992

    Energy Technology Data Exchange (ETDEWEB)

    None

    1993-10-01

    As part of the Tampa Electric Polk Power Unit No. 1, a Texaco pressurized, oxygen-blown entrained-flow coal gasifier will convert approximately 2300 tons per day of coal (dry basis) into a medium-BTU fuel gas with a heat content of about 250 BTU/scf (LHV). Syngas produced in the gasifier flows through a high-temperature heat recovery unit which cools the gases prior to entering two parallel clean-up areas. A portion (up to 50%) of the hot syngas is cooled to 1000{degrees}F and passed through a moving bed of zinc titanate sorbent which removed sulfur containing components of the fuel gas. The project will be the first in the world to demonstrate this advanced metal oxide hot gas desulfurization technology at a commercial scale. The remaining portion of the syngas is cooled to 400{degrees}F for conventional acid gas removal. This portion of the plant is capable of processing between 50% and 100% of the dirty syngas. The cleaned low-BTU syngas is then routed to the combined cycle power generation system where it is mixed with air and burned in the gas turbine combustor. Heat is extracted from the expanded exhaust gases by a heat recovery steam generator to produce high pressure steam. This steam, along with the steam generated in the gasification process, drives a steam turbine to generate an additional 132MW of power. Internal process power consumption is approximately 62MW, and includes power for coal grinding, air separation, and feed pumps. Net output from the IGCC demonstration plant will be 260MW.

  14. Effect of PV module output power on module temperature; Taiyo denchi no shutsuryoku henka ga module hyomen ondo ni oyobosu eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Hongo, T.; Kitamura, A. [Kansai Electric Power Co. Inc., Osaka (Japan); Igaki, K.; Mizumoto, T. [Kanden Kako Co. Inc., Osaka (Japan)

    1996-10-27

    Effect of the photovoltaic (PV) module output power variation on the module surface temperature has been investigated by field measurements. PV modules with capacity of 54 W were used for the temperature measurements. Three 2 kW-class PV systems were operated. T-type thermocouples were used for measuring temperatures. Measurement time intervals were 15 minutes, 30 minutes, 60 minutes, and 24 hours. Measurement period was between May 25, 1995 and June 25, 1996. The surface temperature increased during non-loaded PV output, and decreased during load-carrying PV output. Difference of the surface temperature between non-loaded PV output and load-carrying PV output was 3.5{degree}C at maximum through a year. The surface temperature was saturated within 30 minutes. When PV output was changed in 30 or 60 minutes interval, the variation of surface temperature was distinctly observed. When PV output was changed in 15 minutes interval, it was not observed distinctly. There was no difference of the surface temperatures during the time zones with less solar radiation, such as in the morning and evening, and at night. Except these time zones, difference of the surface temperatures was 3.5{degree}C at maximum. 4 figs.

  15. Modeling Small Scale Solar Powered ORC Unit for Standalone Application

    Directory of Open Access Journals (Sweden)

    Enrico Bocci

    2012-01-01

    Full Text Available When the electricity from the grid is not available, the generation of electricity in remote areas is an essential challenge to satisfy important needs. In many developing countries the power generation from Diesel engines is the applied technical solution. However the cost and supply of fuel make a strong dependency of the communities on the external support. Alternatives to fuel combustion can be found in photovoltaic generators, and, with suitable conditions, small wind turbines or microhydroplants. The aim of the paper is to simulate the power generation of a generating unit using the Rankine Cycle and using refrigerant R245fa as a working fluid. The generation unit has thermal solar panels as heat source and photovoltaic modules for the needs of the auxiliary items (pumps, electronics, etc.. The paper illustrates the modeling of the system using TRNSYS platform, highlighting standard and “ad hoc” developed components as well as the global system efficiency. In the future the results of the simulation will be compared with the data collected from the 3 kW prototype under construction in the Tuscia University in Italy.

  16. Development Status of the Fission Power System Technology Demonstration Unit

    Science.gov (United States)

    Briggs, Maxwell H.; Gibson, Marc A.; Geng, Steven M.; Pearson, Jon Boise; Godfoy, Thomas

    2012-01-01

    This paper summarizes the progress that has been made in the development of the Fission Power System Technology Demonstration Unit (TDU). The reactor simulator core and Annular Linear Induction Pump have been fabricated and assembled into a test loop at the NASA Marshall Space Flight Center. A 12 kWe Power Conversion Unit (PCU) is being developed consisting of two 6 kWe free-piston Stirling engines. The two 6 kWe engines have been fabricated by Sunpower Inc. and are currently being tested separately prior to integration into the PCU. The Facility Cooling System (FCS) used to reject convertor waste heat has been assembled and tested at the NASA Glenn Research Center (GRC). The structural elements, including a Buildup Assembly Platform (BAP) and Upper Truss Structure (UTS) have been fabricated, and will be used to test cold-end components in thermal vacuum prior to TDU testing. Once all components have been fully tested at the subsystem level, they will be assembled into an end-to-end system and tested in thermal vacuum at GRC.

  17. Estimating overland flow erosion capacity using unit stream power

    Institute of Scientific and Technical Information of China (English)

    Hui-Ming SHIH; Chih Ted YANG

    2009-01-01

    Soil erosion caused by water flow is a complex problem.Both empirical and physically based approaches were used for the estimation of surface erosion rates.Their applications are mainly limited to experimental areas or laboratory studies.The maximum sediment concentration overland flow can carry is not considered in most of the existing surface erosion models.The lack of erosion capacity limitation may cause over estimations of sediment concentration.A correlation analysis is used in this study to determine significant factors that impact surface erosion capacity.The result shows that the unit stream power is the most dominant factor for overland flow erosion which is consistent with experimental data.A bounded regression formula is used to reflect the limits that sediment concentration cannot be less than zero nor greater than a maximum value.The coefficients used in the model are calibrated using published laboratory data.The computed results agree with laboratory data very well.A one dimensional overland flow diffusive wave model is used in conjunction with the developed soil erosion equation to simulate field experimental results.This study concludes that the non-linear regression method using unit stream power as the dominant factor performs well for estimating overland flow erosion capacity.

  18. Analysis of the Effect of Rotor-to-Casing Diameter Ratio on the Power Output of a Vaned-Type Air Turbine-II

    Directory of Open Access Journals (Sweden)

    Bharat Raj Singh

    2011-05-01

    Full Text Available This study describes new results of the performance evaluations of an air powered vane type rotary novel air turbine/engine. The mathematical model with different parametric values such as; different rotor to casing diameter (d/D ratios at optimum vane angle of 45º and injection angle of 45º, have been considered and analyzed. The optimum power output is obtained at some typical values of rotor/casing diameter ratios without consumptions of excessive air. The study shows that the optimum power developed under such conditions would be 4.3-5.5 kW (5.84-7.47 HP at linear expansion (without excessive air consumption when d/D ratios are between 0.85 to 0.80 and casing diameter is kept 150 mm, injection pressure as 6 bar (90 psi and speed of rotation as 2500 rpm. This power output is enough to drive any motorbike or light vehicle.

  19. 200 W Output Power at S-Band in AlGaN/GaN Heterojunction Field Effect Transistors with Field Plates on Si Substrates

    Science.gov (United States)

    Nakazawa, Satoshi; Tsurumi, Naohiro; Nishijima, Masaaki; Anda, Yoshiharu; Ishida, Masahiro; Ueda, Tetsuzo; Tanaka, Tsuyoshi

    2012-08-01

    Use of Si substrates for the fabrication of microwave AlGaN/GaN heterojunction field effect transistors (HFETs) has been strongly desired for the low cost fabrication. The performance so far has never been satisfactory in view of the output power and the gain as compared with those on SiC substrates. In this paper, AlGaN/GaN HFETs on Si with high output power of 203 W and high linear gain of 16.9 dB at 2.5 GHz are demonstrated. The HFETs have field plates to reduce the feedback capacitance leading to higher gain, of which a new design of the field plates enables high power as well. The structural design is based on the equivalent circuit model using the device parameters extracted from the small signal RF performances. Here, it is found that shortening the field plate length down to 0.6 µm results in the high output power owing to the stable output impedance for various drain voltage. Note that the conditions of the epitaxial growth are optimized to achieve high current density of 850 mA/mm with both the high mobility and high sheet carrier concentration. The device processing is established so as to achieve the high power operation free from the current collapse. The device can be operated at the drain voltage as high as 50 V, which enables the 200 W output power. The presented AlGaN/GaN HFETs are very promising for various microwave applications including cellular base stations, which would lower the system cost taking advantage of cost-effective Si substrates.

  20. Surface morphology and surface energy of anode materials influence power outputs in a multi-channel mediatorless bio-photovoltaic (BPV) system.

    Science.gov (United States)

    Bombelli, Paolo; Zarrouati, Marie; Thorne, Rebecca J; Schneider, Kenneth; Rowden, Stephen J L; Ali, Akin; Yunus, Kamran; Cameron, Petra J; Fisher, Adrian C; Ian Wilson, D; Howe, Christopher J; McCormick, Alistair J

    2012-09-21

    Bio-photovoltaic cells (BPVs) are a new photo-bio-electrochemical technology for harnessing solar energy using the photosynthetic activity of autotrophic organisms. Currently power outputs from BPVs are generally low and suffer from low efficiencies. However, a better understanding of the electrochemical interactions between the microbes and conductive materials will be likely to lead to increased power yields. In the current study, the fresh-water, filamentous cyanobacterium Pseudanabaena limnetica (also known as Oscillatoria limnetica) was investigated for exoelectrogenic activity. Biofilms of P. limnetica showed a significant photo response during light-dark cycling in BPVs under mediatorless conditions. A multi-channel BPV device was developed to compare quantitatively the performance of photosynthetic biofilms of this species using a variety of different anodic conductive materials: indium tin oxide-coated polyethylene terephthalate (ITO), stainless steel (SS), glass coated with a conductive polymer (PANI), and carbon paper (CP). Although biofilm growth rates were generally comparable on all materials tested, the amplitude of the photo response and achievable maximum power outputs were significantly different. ITO and SS demonstrated the largest photo responses, whereas CP showed the lowest power outputs under both light and dark conditions. Furthermore, differences in the ratios of light : dark power outputs indicated that the electrochemical interactions between photosynthetic microbes and the anode may differ under light and dark conditions depending on the anodic material used. Comparisons between BPV performances and material characteristics revealed that surface roughness and surface energy, particularly the ratio of non-polar to polar interactions (the CQ ratio), may be more important than available surface area in determining biocompatibility and maximum power outputs in microbial electrochemical systems. Notably, CP was readily outperformed by all