WorldWideScience

Sample records for unit mass protein

  1. Effect of repeat unit structure and molecular mass of lactic acid bacteria hetero-exopolysaccharides on binding to milk proteins

    DEFF Research Database (Denmark)

    Birch, Johnny; HarÐarson, HörÐur Kári; Khan, Sanaullah

    2017-01-01

    -exopolysaccharides (HePSs) of 0.14–4.9 MDa from lactic acid bacteria to different milk proteins (β-casein, κ-casein, native and heat-treated β-lactoglobulin) at pH 4.0–5.0. Maximum binding capacity (RUmax) and apparent affinity (KA,app) were HePS- and protein-dependent and varied for example 10- and 600-fold......Interactions of exopolysaccharides and proteins are of great importance in food science, but complicated to analyze and quantify at the molecular level. A surface plasmon resonance procedure was established to characterize binding of seven structure-determined, branched hetero...

  2. Protein Analysis by Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Cindic, M.

    2008-04-01

    Full Text Available Soft ionization techniques, electrospray (ESI and matrix-assisted laser desorption/ionization (MALDI make the analysis of biomolecules by mass spectrometry (MS possible. MS is used for determination of the molecular weight of peptides and protein, sequence analysis, characterization of protein-ligand interactions etc. The detection limit, resolution and mass accuracy depend on instrument used (Table 1. Impurities (buffers, salts, detergents can reduce the ion intensities or even totally suppress them, so a separation method (chromatography, 2D-gel electrophoresis must be used for purification of the sample.Molecular mass of intact protein can be determined by ESI or MALDI MS. Multiply charged ions are produced by ESI MS, while singly charged ions are predominant in MALDI spectra (Fig. 2.Sequence analysis of proteins by MS can be performed using peptide mass fingerprint. In this method, proteins are separated by 2-D gel electrophoresis and digested with specific protease (Table 2 or digested and then separated by two-dimensional chromatography (Fig. 1. The obtained peptide mixtures are analyzed by MS or MALDI-TOF technique. The masses determined by MS are compared with calculated masses from database entries. Different algorithms have been developed for protein identification. Example of posttranslational modifications (N- and O-glycosylation and protein sequence complex analysis after dual digestion (endoproteinase digestion followed by endoglycosidase digestion is shown in Fig. 3.It is known that detection of peptides by MS is influenced by intrinsic properties like amino acid composition, the basicity of the C-terminal amino acid, hydrophobicity, etc. Arginine-containing peptides dominate in MS spectra of tryptic digest, so the chemical derivatization of lysine terminal residue by O-methilisourea or 2-methoxy-4,5-1H-imidazole was suggested (Fig. 4.The peptide mass fingerprint method can be improved further by peptide fragmentation using tandem

  3. INTERNET CONNECTIVITY FOR MASS PRODUCED UNITS WITHOUT USER INTERFACE

    DEFF Research Database (Denmark)

    2000-01-01

    To the manufacturer of mass produced units without a user interface, typically field level units, connection of these units to a communications network for enabling servicing, control and trackability is of interest. To provide this connection, a solution is described in which an interface...... comprising an ASIC is built into a mass produced unit, whereby the ASIC is incorporating selected portions of selected layers of the Internet Protocol. The mass produced unit is then allocated a unit address....

  4. Mass spectrometric analysis of protein interactions

    DEFF Research Database (Denmark)

    Borch, Jonas; Jørgensen, Thomas J. D.; Roepstorff, Peter

    2005-01-01

    Mass spectrometry is a powerful tool for identification of interaction partners and structural characterization of protein interactions because of its high sensitivity, mass accuracy and tolerance towards sample heterogeneity. Several tools that allow studies of protein interaction are now...... available and recent developments that increase the confidence of studies of protein interaction by mass spectrometry include quantification of affinity-purified proteins by stable isotope labeling and reagents for surface topology studies that can be identified by mass-contributing reporters (e.g. isotope...... labels, cleavable cross-linkers or fragment ions. The use of mass spectrometers to study protein interactions using deuterium exchange and for analysis of intact protein complexes recently has progressed considerably....

  5. Protein identification by peptide mass fingerprinting

    DEFF Research Database (Denmark)

    Hjernø, Karin

    2007-01-01

      Peptide mass fingerprinting is an effective way of identifying, e.g., gel-separated proteins, by matching experimentally obtained peptide mass data against large databases. However, several factors are known to influence the quality of the resulting matches, such as proteins contaminating...

  6. Protein identification by peptide mass fingerprinting

    DEFF Research Database (Denmark)

    Hjernø, Karin

    2007-01-01

      Peptide mass fingerprinting is an effective way of identifying, e.g., gel-separated proteins, by matching experimentally obtained peptide mass data against large databases. However, several factors are known to influence the quality of the resulting matches, such as proteins contaminating the s...

  7. Peptide Mass Fingerprinting of Egg White Proteins

    Science.gov (United States)

    Alty, Lisa T.; LaRiviere, Frederick J.

    2016-01-01

    Use of advanced mass spectrometry techniques in the undergraduate setting has burgeoned in the past decade. However, relatively few undergraduate experiments examine the proteomics tools of protein digestion, peptide accurate mass determination, and database searching, also known as peptide mass fingerprinting. In this experiment, biochemistry…

  8. Novel negative mass density resonant metamaterial unit cell

    Energy Technology Data Exchange (ETDEWEB)

    Cselyuszka, Norbert, E-mail: cselyu@yahoo.com; Sečujski, Milan, E-mail: secujski@uns.ac.rs; Crnojević-Bengin, Vesna, E-mail: bengin@uns.ac.rs

    2015-01-02

    In this paper a novel resonant unit cell of one-dimensional acoustic metamaterials is presented, which exhibits negative effective mass density. We theoretically analyze the unit cell and develop a closed analytical formula for its effective mass density. Then we proceed to demonstrate left-handed propagation of acoustic waves using the proposed unit cell. Finally, we present its dual-band version, capable of operating at two independent frequencies. - Highlights: • A novel acoustic metamaterial unit cell provides Lorentz-type resonant effective mass density. • Analytical formula for effective mass density is derived. • Acoustic bandstop medium and left-handed metamaterial based on the novel unit cell are presented. • Modified version of the unit cell, operating at two independent frequencies, is proposed.

  9. Charging of Proteins in Native Mass Spectrometry

    Science.gov (United States)

    Susa, Anna C.; Xia, Zijie; Tang, Henry Y. H.; Tainer, John A.; Williams, Evan R.

    2017-02-01

    Factors that influence the charging of protein ions formed by electrospray ionization from aqueous solutions in which proteins have native structures and function were investigated. Protein ions ranging in molecular weight from 12.3 to 79.7 kDa and pI values from 5.4 to 9.6 were formed from different solutions and reacted with volatile bases of gas-phase basicities higher than that of ammonia in the cell of a Fourier-transform ion cyclotron resonance mass spectrometer. The charge-state distribution of cytochrome c ions formed from aqueous ammonium or potassium acetate is the same. Moreover, ions formed from these two solutions do not undergo proton transfer to 2-fluoropyridine, which is 8 kcal/mol more basic than ammonia. These results provide compelling evidence that proton transfer between ammonia and protein ions does not limit protein ion charge in native electrospray ionization. Both circular dichroism and ion mobility measurements indicate that there are differences in conformations of proteins in pure water and aqueous ammonium acetate, and these differences can account for the difference in the extent of charging and proton-transfer reactivities of protein ions formed from these solutions. The extent of proton transfer of the protein ions with higher gas-phase basicity bases trends with how closely the protein ions are charged to the value predicted by the Rayleigh limit for spherical water droplets approximately the same size as the proteins. These results indicate that droplet charge limits protein ion charge in native mass spectrometry and are consistent with these ions being formed by the charged residue mechanism.

  10. Analysis of Protein O-GlcNAcylation by Mass Spectrometry.

    Science.gov (United States)

    Ma, Junfeng; Hart, Gerald W

    2017-02-02

    O-linked β-D-N-acetyl glucosamine (O-GlcNAc) addition (O-GlcNAcylation), a post-translational modification of serine/threonine residues of proteins, is involved in diverse cellular metabolic and signaling pathways. Aberrant O-GlcNAcylation underlies the initiation and progression of multiple chronic diseases including diabetes, cancer, and neurodegenerative diseases. Numerous methods have been developed for the analysis of protein O-GlcNAcylation, but instead of discussing the classical biochemical techniques, this unit covers O-GlcNAc characterization by combining several enrichment methods and mass spectrometry detection techniques [including collision-induced dissociation (CID), higher energy collision dissociation (HCD), and electron transfer dissociation (ETD) mass spectrometry]. © 2017 by John Wiley & Sons, Inc.

  11. EP3 Fundamentals of Protein Sequence Characterization by Mass Spectrometry

    OpenAIRE

    Annan, R. S.; Johnson, R. S.; Papayannopoulos, I. A.

    2007-01-01

    The first section of the tutorial will describe the instrumentation typically used in biological mass spectrometry applications related to protein identification. We focus on the relevant ionization techniques, common mass analyzers, and sample introduction systems. Attention will be given to properties, such as mass accuracy and mass resolution, which are important to protein characterization and database search strategies for protein identification. Practical considerations regarding the se...

  12. Proton Dynamics in Protein Mass Spectrometry.

    Science.gov (United States)

    Li, Jinyu; Lyu, Wenping; Rossetti, Giulia; Konijnenberg, Albert; Natalello, Antonino; Ippoliti, Emiliano; Orozco, Modesto; Sobott, Frank; Grandori, Rita; Carloni, Paolo

    2017-02-22

    Native electrospray ionization/ion mobility-mass spectrometry (ESI/IM-MS) allows an accurate determination of low-resolution structural features of proteins. Yet, the presence of proton dynamics, observed already by us for DNA in the gas phase, and its impact on protein structural determinants, have not been investigated so far. Here, we address this issue by a multistep simulation strategy on a pharmacologically relevant peptide, the N-terminal residues of amyloid-β peptide (Aβ(1-16)). Our calculations reproduce the experimental maximum charge state from ESI-MS and are also in fair agreement with collision cross section (CCS) data measured here by ESI/IM-MS. Although the main structural features are preserved, subtle conformational changes do take place in the first ∼0.1 ms of dynamics. In addition, intramolecular proton dynamics processes occur on the picosecond-time scale in the gas phase as emerging from quantum mechanics/molecular mechanics (QM/MM) simulations at the B3LYP level of theory. We conclude that proton transfer phenomena do occur frequently during fly time in ESI-MS experiments (typically on the millisecond time scale). However, the structural changes associated with the process do not significantly affect the structural determinants.

  13. Structural determination of intact proteins using mass spectrometry

    Science.gov (United States)

    Kruppa, Gary; Schoeniger, Joseph S.; Young, Malin M.

    2008-05-06

    The present invention relates to novel methods of determining the sequence and structure of proteins. Specifically, the present invention allows for the analysis of intact proteins within a mass spectrometer. Therefore, preparatory separations need not be performed prior to introducing a protein sample into the mass spectrometer. Also disclosed herein are new instrumental developments for enhancing the signal from the desired modified proteins, methods for producing controlled protein fragments in the mass spectrometer, eliminating complex microseparations, and protein preparatory chemical steps necessary for cross-linking based protein structure determination.Additionally, the preferred method of the present invention involves the determination of protein structures utilizing a top-down analysis of protein structures to search for covalent modifications. In the preferred method, intact proteins are ionized and fragmented within the mass spectrometer.

  14. Crux: rapid open source protein tandem mass spectrometry analysis.

    Science.gov (United States)

    McIlwain, Sean; Tamura, Kaipo; Kertesz-Farkas, Attila; Grant, Charles E; Diament, Benjamin; Frewen, Barbara; Howbert, J Jeffry; Hoopmann, Michael R; Käll, Lukas; Eng, Jimmy K; MacCoss, Michael J; Noble, William Stafford

    2014-10-03

    Efficiently and accurately analyzing big protein tandem mass spectrometry data sets requires robust software that incorporates state-of-the-art computational, machine learning, and statistical methods. The Crux mass spectrometry analysis software toolkit ( http://cruxtoolkit.sourceforge.net ) is an open source project that aims to provide users with a cross-platform suite of analysis tools for interpreting protein mass spectrometry data.

  15. From structure to function : Protein assemblies dissected by mass spectrometry

    NARCIS (Netherlands)

    Lorenzen, K.

    2008-01-01

    This thesis demonstrates some of the possibilities mass spectrometry can provide to gain new insight into structure and function of protein complexes. While technologies in native mass spectrometry are still under development, it already allows research on complete proteins and protein complexes up

  16. Proteolysis in microfluidic droplets: an approach to interface protein separation and peptide mass spectrometry

    OpenAIRE

    Ji, Ji; Nie, Lei; Qiao, Liang; Li, Yixin; Guo, Liping; Liu, Baohong; Yang, Pengyuan; Girault, Hubert H.

    2012-01-01

    A versatile microreactor protocol based on microfluidic droplets has been developed for on-line protein digestion. Proteins separated by liquid chromatography are fractionated in water-in-oil droplets and digested in sequence. The microfluidic reactor acts also as an electrospray ionization emitter for mass spectrometry analysis of the peptides produced in the individual droplets. Each droplet is an enzymatic micro-reaction unit with efficient proteolysis due to rapid mixing, enhanced mass tr...

  17. Seed Storage Proteins as a System for Teaching Protein Identification by Mass Spectrometry in Biochemistry Laboratory

    Science.gov (United States)

    Wilson, Karl A.; Tan-Wilson, Anna

    2013-01-01

    Mass spectrometry (MS) has become an important tool in studying biological systems. One application is the identification of proteins and peptides by the matching of peptide and peptide fragment masses to the sequences of proteins in protein sequence databases. Often prior protein separation of complex protein mixtures by 2D-PAGE is needed,…

  18. Seed Storage Proteins as a System for Teaching Protein Identification by Mass Spectrometry in Biochemistry Laboratory

    Science.gov (United States)

    Wilson, Karl A.; Tan-Wilson, Anna

    2013-01-01

    Mass spectrometry (MS) has become an important tool in studying biological systems. One application is the identification of proteins and peptides by the matching of peptide and peptide fragment masses to the sequences of proteins in protein sequence databases. Often prior protein separation of complex protein mixtures by 2D-PAGE is needed,…

  19. Disseminating the unit of mass from multiple primary realisations

    Science.gov (United States)

    Nielsen, Lars

    2016-12-01

    When a new definition of the kilogram has been adopted in 2018 as expected, the unit of mass will be realised by the watt balance method, the x-ray crystal density method or perhaps other primary methods still to be developed. So far, the standard uncertainties associated with the available primary methods are at least one order of magnitude larger than the standard uncertainty associated with mass comparisons using mass comparators, so differences in primary realisations of the kilogram are easily detected, whereas many National Metrology Institutes would have to increase their calibration and measurement capabilities (CMCs) if they were traceable to a single primary realisation. This paper presents a scheme for obtaining traceability to multiple primary realisations of the kilogram using a small group of stainless steel 1 kg weights, which are allowed to change their masses over time in a way known to be realistic, and which are calibrated and stored in air. An analysis of the scheme shows that if the relative standard uncertainties of future primary realisations are equal to the relative standard uncertainties of the present methods used to measure the Planck constant, the unit of mass can be disseminated with a standard uncertainty less than 0.015 mg, which matches the smallest CMCs currently claimed for the calibration of 1 kg weights.

  20. Mass spectrometry allows direct identification of proteins in large genomes

    DEFF Research Database (Denmark)

    Küster, B; Mortensen, Peter V.; Andersen, Jens S.

    2001-01-01

    Proteome projects seek to provide systematic functional analysis of the genes uncovered by genome sequencing initiatives. Mass spectrometric protein identification is a key requirement in these studies but to date, database searching tools rely on the availability of protein sequences derived fro...... genome and allows identification, mapping, cloning and assistance in gene prediction of any protein for which minimal mass spectrometric information can be obtained. Several novel proteins from Arabidopsis thaliana and human have been discovered in this way....

  1. Advantageous Uses of Mass Spectrometry for the Quantification of Proteins

    Directory of Open Access Journals (Sweden)

    John E. Hale

    2013-01-01

    Full Text Available Quantitative protein measurements by mass spectrometry have gained wide acceptance in research settings. However, clinical uptake of mass spectrometric protein assays has not followed suit. In part, this is due to the long-standing acceptance by regulatory agencies of immunological assays such as ELISA assays. In most cases, ELISAs provide highly accurate, sensitive, relatively inexpensive, and simple assays for many analytes. The barrier to acceptance of mass spectrometry in these situations will remain high. However, mass spectrometry provides solutions to certain protein measurements that are difficult, if not impossible, to accomplish by immunological methods. Cases where mass spectrometry can provide solutions to difficult assay development include distinguishing between very closely related protein species and monitoring biological and analytical variability due to sample handling and very high multiplexing capacity. This paper will highlight several examples where mass spectrometry has made certain protein measurements possible where immunological techniques have had a great difficulty.

  2. Evaluation of mass spectrometric techniques for characterization of engineered proteins

    DEFF Research Database (Denmark)

    Roepstorff, P; Schram, K H; Andersen, Jens S.;

    1995-01-01

    Mass spectrometric characterization of engineered proteins has been examined using bovine recombinant Acyl-CoA-Binding Protein (rACBP), [15N]-labeled rACBP, and a number of sequence variants of ACBP produced by site-directed mutagenesis. The mass spectrometric techniques include ESIMS and MALDIMS...... was obtained by LC-ESIMS and by direct mixture analysis by MALDIMS. The latter technique was favorable in terms of sensitivity and speed. A general strategy for mass spectrometric characterization of engineered proteins is suggested....

  3. Retinoblastoma protein: a central processing unit

    Indian Academy of Sciences (India)

    M Poznic

    2009-06-01

    The retinoblastoma protein (pRb) is one of the key cell-cycle regulating proteins and its inactivation leads to neoplastic transformation and carcinogenesis. This protein regulates critical G1-to-S phase transition through interaction with the E2F family of cell-cycle transcription factors repressing transcription of genes required for this cell-cycle check-point transition. Its activity is regulated through network sensing intracellular and extracellular signals which block or permit phosphorylation (inactivation) of the Rb protein. Mechanisms of Rb-dependent cell-cycle control have been widely studied over the past couple of decades. However, recently it was found that pRb also regulates apoptosis through the same interaction with E2F transcription factors and that Rb–E2F complexes play a role in regulating the transcription of genes involved in differentiation and development.

  4. Retinoblastoma protein: a central processing unit.

    Science.gov (United States)

    Poznic, M

    2009-06-01

    The retinoblastoma protein (pRb) is one of the key cell-cycle regulating proteins and its inactivation leads to neoplastic transformation and carcinogenesis. This protein regulates critical G1 -to-S phase transition through interaction with the E2F family of cell-cycle transcription factors repressing transcription of genes required for this cell-cycle check-point transition. Its activity is regulated through network sensing intracellular and extracellular signals which block or permit phosphorylation (inactivation) of the Rb protein. Mechanisms of Rb-dependent cell-cycle control have been widely studied over the past couple of decades. However, recently it was found that pRb also regulates apoptosis through the same interaction with E2F transcription factors and that Rb-E2F complexes play a role in regulating the transcription of genes involved in differentiation and development.

  5. Targeted quantitative mass spectrometric immunoassay for human protein variants

    Directory of Open Access Journals (Sweden)

    Nedelkov Dobrin

    2011-04-01

    Full Text Available Abstract Background Post-translational modifications and genetic variations give rise to protein variants that significantly increase the complexity of the human proteome. Modified proteins also play an important role in biological processes. While sandwich immunoassays are routinely used to determine protein concentrations, they are oblivious to protein variants that may serve as biomarkers with better sensitivity and specificity than their wild-type proteins. Mass spectrometry, coupled to immunoaffinity separations, can provide an efficient mean for simultaneous detection and quantification of protein variants. Results Presented here is a mass spectrometric immunoassay method for targeted quantitative proteomics analysis of protein modifications. Cystatin C, a cysteine proteinase inhibitor and a potential marker for several pathological processes, was used as a target analyte. An internal reference standard was incorporated into the assay, serving as a normalization point for cystatin C quantification. The precision, linearity, and recovery characteristics of the assay were established. The new assay was also benchmarked against existing cystatin C ELISA. In application, the assay was utilized to determine the individual concentration of several cystatin C variants across a cohort of samples, demonstrating the ability to fully quantify individual forms of post-translationally modified proteins. Conclusions The mass spectrometric immunoassays can find use in quantifying specific protein modifications, either as a part of a specific protein biomarker discovery/rediscovery effort to delineate the role of these variants in the onset of the disease, progression, and response to therapy, or in a more systematic study to delineate and understand human protein diversity.

  6. Methods and Approaches to Mass Spectroscopy Based Protein Identification

    Science.gov (United States)

    This book chapter is a review of current mass spectrometers and the role in the field of proteomics. Various instruments are discussed and their strengths and weaknesses are highlighted. In addition, the methods of protein identification using a mass spectrometer are explained as well as data vali...

  7. Mass Metrology and the International System of Units (SI)

    Science.gov (United States)

    Davis, Richard S.

    The International System of Units (SI) is widely used in science, industry, and commerce because it caters simultaneously to the needs of all. In the early twenty-first century, this means defining the units of time, length, mass, and electricity in terms of the fundamental constants of physics, and then "realizing" these definitions to sufficient accuracy on the human scale of the second, meter, kilogram, and ampere. This program has already been successful except for the kilogram, which is still defined in terms of an artifact constructed in the late nineteenth century. Although quantum-based electrical standards are widely used, the SI voltages or resistances produced by these standards depend on the values of constants that are at present based on experimental values derived from the artifact kilogram. This chapter presents the current state of affairs, which is unsatisfactory, and proceeds to describe work that will lead to a redefinition of the kilogram, probably in terms of a fixed value for the Planck constant.

  8. Traveling-wave ion mobility mass spectrometry of protein complexes

    DEFF Research Database (Denmark)

    Salbo, Rune; Bush, Matthew F; Naver, Helle

    2012-01-01

    The collision cross-section (Ω) of a protein or protein complex ion can be measured using traveling-wave (T-wave) ion mobility (IM) mass spectrometry (MS) via calibration with compounds of known Ω. The T-wave Ω-values depend strongly on instrument parameters and calibrant selection. Optimization...

  9. Rapid identification of DNA-binding proteins by mass spectrometry

    DEFF Research Database (Denmark)

    Nordhoff, E; Krogsdam, A M; Jorgensen, H F

    1999-01-01

    We report a protocol for the rapid identification of DNA-binding proteins. Immobilized DNA probes harboring a specific sequence motif are incubated with cell or nuclear extract. Proteins are analyzed directly off the solid support by matrix-assisted laser desorption/ionization time-of-flight mass...... was validated by the identification of known prokaryotic and eukaryotic DNA-binding proteins, and its use provided evidence that poly(ADP-ribose) polymerase exhibits DNA sequence-specific binding to DNA....

  10. Analysis of protein composition using multidimensional chromatography and mass spectrometry.

    Science.gov (United States)

    Link, Andrew J; Washburn, Michael P

    2014-11-03

    Multidimensional liquid chromatography of peptides produced by protease digestion of complex protein mixtures followed by tandem mass spectrometry can be coupled with automated database searching to identify large numbers of proteins in complex samples. These methods avoid the limitations of gel electrophoresis and in-gel digestions by directly identifying protein mixtures in solution. One method used extensively is named Multidimensional Protein Identification Technology (MudPIT), where reversed-phase chromatography and strong cation-exchange chromatography are coupled directly in a microcapillary column. This column is then placed in line between an HPLC and a mass spectrometer for complex mixture analysis. MudPIT remains a powerful approach for analyzing complex mixtures like whole proteomes and protein complexes. MudPIT is used for quantitative proteomic analysis of complex mixtures to generate novel biological insights.

  11. Proteolysis in microfluidic droplets: an approach to interface protein separation and peptide mass spectrometry.

    Science.gov (United States)

    Ji, Ji; Nie, Lei; Qiao, Liang; Li, Yixin; Guo, Liping; Liu, Baohong; Yang, Pengyuan; Girault, Hubert H

    2012-08-07

    A versatile microreactor protocol based on microfluidic droplets has been developed for on-line protein digestion. Proteins separated by liquid chromatography are fractionated in water-in-oil droplets and digested in sequence. The microfluidic reactor acts also as an electrospray ionization emitter for mass spectrometry analysis of the peptides produced in the individual droplets. Each droplet is an enzymatic micro-reaction unit with efficient proteolysis due to rapid mixing, enhanced mass transfer and automated handling. This droplet approach eliminates sample loss, cross-contamination, non-specific absorption and memory effect. A protein mixture was successfully identified using the droplet-based micro-reactor as interface between reverse phase liquid chromatography and mass spectrometry.

  12. Global discovery of protein kinases and other nucleotide-binding proteins by mass spectrometry.

    Science.gov (United States)

    Xiao, Yongsheng; Wang, Yinsheng

    2016-09-01

    Nucleotide-binding proteins, such as protein kinases, ATPases and GTP-binding proteins, are among the most important families of proteins that are involved in a number of pivotal cellular processes. However, global study of the structure, function, and expression level of nucleotide-binding proteins as well as protein-nucleotide interactions can hardly be achieved with the use of conventional approaches owing to enormous diversity of the nucleotide-binding protein family. Recent advances in mass spectrometry (MS) instrumentation, coupled with a variety of nucleotide-binding protein enrichment methods, rendered MS-based proteomics a powerful tool for the comprehensive characterizations of the nucleotide-binding proteome, especially the kinome. Here, we review the recent developments in the use of mass spectrometry, together with general and widely used affinity enrichment approaches, for the proteome-wide capture, identification and quantification of nucleotide-binding proteins, including protein kinases, ATPases, GTPases, and other nucleotide-binding proteins. The working principles, advantages, and limitations of each enrichment platform in identifying nucleotide-binding proteins as well as profiling protein-nucleotide interactions are summarized. The perspectives in developing novel MS-based nucleotide-binding protein detection platform are also discussed. © 2014 Wiley Periodicals, Inc. Mass Spec Rev 35:601-619, 2016.

  13. Direct Detection of Biotinylated Proteins by Mass Spectrometry

    Science.gov (United States)

    2015-01-01

    Mass spectrometric strategies to identify protein subpopulations involved in specific biological functions rely on covalently tagging biotin to proteins using various chemical modification methods. The biotin tag is primarily used for enrichment of the targeted subpopulation for subsequent mass spectrometry (MS) analysis. A limitation of these strategies is that MS analysis does not easily discriminate unlabeled contaminants from the labeled protein subpopulation under study. To solve this problem, we developed a flexible method that only relies on direct MS detection of biotin-tagged proteins called “Direct Detection of Biotin-containing Tags” (DiDBiT). Compared with conventional targeted proteomic strategies, DiDBiT improves direct detection of biotinylated proteins ∼200 fold. We show that DiDBiT is applicable to several protein labeling protocols in cell culture and in vivo using cell permeable NHS-biotin and incorporation of the noncanonical amino acid, azidohomoalanine (AHA), into newly synthesized proteins, followed by click chemistry tagging with biotin. We demonstrate that DiDBiT improves the direct detection of biotin-tagged newly synthesized peptides more than 20-fold compared to conventional methods. With the increased sensitivity afforded by DiDBiT, we demonstrate the MS detection of newly synthesized proteins labeled in vivo in the rodent nervous system with unprecedented temporal resolution as short as 3 h. PMID:25117199

  14. Feed intake, live mass-gain, body composition and protein ...

    African Journals Online (AJOL)

    Feed intake, live mass-gain, body composition and protein deposition in pigs fed ... of 82 genetically lean and 90 obese Landrace pigs was allotted to three dietary ... Diets were fed ad libitum from 8 weeks of age up to slaughter for whole body ...

  15. Analysis of proteins using DIGE and MALDI mass spectrometry

    Science.gov (United States)

    In this work the sensitivity of the quantitative proteomics approach 2D-DIGE/MS (twoDimensional Difference Gel Electrophoresis / Mass Spectrometry) was tested by detecting decreasing amounts of a specific protein at the low picomole and sub-picomole range. Sensitivity of the 2D-D...

  16. Protein Charge and Mass Contribute to the Spatio-temporal Dynamics of Protein-Protein Interactions in a Minimal Proteome

    Science.gov (United States)

    Xu, Yu; Wang, Hong; Nussinov, Ruth; Ma, Buyong

    2013-01-01

    We constructed and simulated a ‘minimal proteome’ model using Langevin dynamics. It contains 206 essential protein types which were compiled from the literature. For comparison, we generated six proteomes with randomized concentrations. We found that the net charges and molecular weights of the proteins in the minimal genome are not random. The net charge of a protein decreases linearly with molecular weight, with small proteins being mostly positively charged and large proteins negatively charged. The protein copy numbers in the minimal genome have the tendency to maximize the number of protein-protein interactions in the network. Negatively charged proteins which tend to have larger sizes can provide large collision cross-section allowing them to interact with other proteins; on the other hand, the smaller positively charged proteins could have higher diffusion speed and are more likely to collide with other proteins. Proteomes with random charge/mass populations form less stable clusters than those with experimental protein copy numbers. Our study suggests that ‘proper’ populations of negatively and positively charged proteins are important for maintaining a protein-protein interaction network in a proteome. It is interesting to note that the minimal genome model based on the charge and mass of E. Coli may have a larger protein-protein interaction network than that based on the lower organism M. pneumoniae. PMID:23420643

  17. Evaluating Peptide Mass Fingerprinting-based Protein Identification

    Institute of Scientific and Technical Information of China (English)

    Senthilkumar; Damodaran; Troy; D.; Wood; Priyadharsini; Nagarajan; Richard; A.; Rabin

    2007-01-01

    Identification of proteins by mass spectrometry (MS) is an essential step in pro- teomic studies and is typically accomplished by either peptide mass fingerprinting (PMF) or amino acid sequencing of the peptide. Although sequence information from MS/MS analysis can be used to validate PMF-based protein identification, it may not be practical when analyzing a large number of proteins and when high- throughput MS/MS instrumentation is not readily available. At present, a vast majority of proteomic studies employ PMF. However, there are huge disparities in criteria used to identify proteins using PMF. Therefore, to reduce incorrect protein identification using PMF, and also to increase confidence in PMF-based protein identification without accompanying MS/MS analysis, definitive guiding principles are essential. To this end, we propose a value-based scoring system that provides guidance on evaluating when PMF-based protein identification can be deemed sufficient without accompanying amino acid sequence data from MS/MS analysis.

  18. Protein identification using nano liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Negroni, Luc

    2007-01-01

    Tandem mass spectrometry is an efficient technique for the identification of peptides on the basis of their fragmentation pattern (MS/MS scan). It can generate individual spectra for each peptide, thereby creating a powerful tool for protein identification on the basis of peptide characterization. This important advance in automatic data acquisition has allowed an efficient association between liquid chromatography and tandem mass spectrometry, and the use of nanocolumns and nanoelectrospray ionization has dramatically increased the efficiency of this method. Now large sets of peptides can be identified at a femtomole level. At the end of the process, batch processing of the MS/MS spectra produces peptide lists that identify purified proteins or protein mixtures with high confidence.

  19. Identification of Ultramodified Proteins Using Top-Down Mass Spectra

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaowen; Hengel, Shawna M.; Wu, Si; Tolic, Nikola; Pasa-Tolic, Ljiljana; Pevzner, Pavel A.

    2013-11-05

    Post-translational modifications (PTMs) play an important role in various biological processes through changing protein structure and function. Some ultramodified proteins (like histones) have multiple PTMs forming PTM patterns that define the functionality of a protein. While bottom-up mass spectrometry (MS) has been successful in identifying individual PTMs within short peptides, it is unable to identify PTM patterns spread along entire proteins in a coordinated fashion. In contrast, top-down MS analyzes intact proteins and reveals PTM patterns along the entire proteins. However, while recent advances in instrumentation have made top-down MS accessible to many laboratories, most computational tools for top-down MS focus on proteins with few PTMs and are unable to identify complex PTM patterns. We propose a new algorithm, MS-Align-E, that identifies both expected and unexpected PTMs in ultramodified proteins. We demonstrate that MS-Align-E identifies many protein forms of histone H4 and benchmark it against the currently accepted software tools.

  20. Eukaryotic protein domains as functional units of cellular evolution

    DEFF Research Database (Denmark)

    Jin, Jing; Xie, Xueying; Chen, Chen

    2009-01-01

    Modular protein domains are functional units that can be modified through the acquisition of new intrinsic activities or by the formation of novel domain combinations, thereby contributing to the evolution of proteins with new biological properties. Here, we assign proteins to groups with related...... biological processes. Evolutionary jumps are associated with a domain that coordinately acquires a new intrinsic function and enters new domain clubs, thereby providing the modified domain with access to a new cellular microenvironment. We also coordinately analyzed the covalent and noncovalent interactions...... that domains, and the proteins in which they reside, are selected during evolution through reciprocal interactions with protein domains in their local microenvironment. Based on this scheme, we propose a mechanism by which Tudor domains may have evolved to support different modes of epigenetic regulation...

  1. Attomole quantitation of protein separations with accelerator mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, J S; Grant, P G; Buccholz, B A; Dingley, K; Turteltaub, K W

    2000-12-15

    Quantification of specific proteins depends on separation by chromatography or electrophoresis followed by chemical detection schemes such as staining and fluorophore adhesion. Chemical exchange of short-lived isotopes, particularly sulfur, is also prevalent despite the inconveniences of counting radioactivity. Physical methods based on isotopic and elemental analyses offer highly sensitive protein quantitation that has linear response over wide dynamic ranges and is independent of protein conformation. Accelerator mass spectrometry quantifies long-lived isotopes such as 14C to sub-attomole sensitivity. We quantified protein interactions with small molecules such as toxins, vitamins, and natural biochemicals at precisions of 1-5% . Micro-proton-induced-xray-emission quantifies elemental abundances in separated metalloprotein samples to nanogram amounts and is capable of quantifying phosphorylated loci in gels. Accelerator-based quantitation is a possible tool for quantifying the genome translation into proteome.

  2. Indirect ultrasonication for protein quantification and peptide mass mapping through mass spectrometry-based techniques.

    Science.gov (United States)

    Carreira, R J; Lodeiro, C; Reboiro-Jato, M; Glez-Peña, D; Fdez-Riverola, F; Capelo, J L

    2010-07-15

    We report in this work a fast protocol for protein quantification and for peptide mass mapping that rely on (18)O isotopic labeling through the decoupling procedure. It is demonstrated that the purity and source of trypsin do not compromise the labeling degree and efficiency of the decoupled labeling reaction, and that the pH of the labeling reaction is a critical factor to obtain a significant (18)O double labeling. We also show that the same calibration curve can be used for MALDI protein quantification during several days maintaining a reasonable accuracy, thus simplifying the handling of the quantification process. In addition we demonstrate that (18)O isotopic labeling through the decoupling procedure can be successfully used to elaborate peptide mass maps. BSA was successfully quantified using the same calibration curve in different days and plasma from a freshwater fish, Cyprinus carpio, was used to elaborate the peptide mass maps. Copyright 2010 Elsevier B.V. All rights reserved.

  3. 16 CFR 500.8 - Units of weight or mass and measure.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Units of weight or mass and measure. 500.8... SECTION 4 OF THE FAIR PACKAGING AND LABELING ACT § 500.8 Units of weight or mass and measure. (a... (15 oz)” or “Net Mass 680 g (11/2 lbs)” or “100 g e (3.5 oz).”) (b) Statements of fluid measure shall...

  4. Intracellular protein mass spectroscopy using mid-infrared laser ionization

    Science.gov (United States)

    Awazu, K.; Suzuki, S.

    2007-07-01

    Large-scale analysis of proteins, which can be regarded as functional biomolecule, assumes an important role in the life science. A MALDI using an ultraviolet laser (UV-MALDI) is one of ionization methods without fragmentation and has achieved conformation analysis of proteins. Recently, protein analysis has shifted from conformation analysis to functional and direct one that reserves posttranslational modifications such as the sugar chain addition and phosphorylation. We have proposed a MALDI using a mid-infrared tunable laser (IR-MALDI) as a new ionization method. IR-MALDI is promising because most biomolecules have a specific absorption in mid-infrared range, and IR-MALDI is expected to offer; (1) use of various matrices, (2) use of biomolecules such as water and lipid as the matrix, and (3) super-soft ionization. First, we evaluated the wavelength dependence of ionization of different matrices using a difference frequency generation (DFG) laser, which can tune the wavelength within a range from 5.5 to 10.0 μm. As results, ionization was specifically occurred at 5.8 μm which the C=O vibration stretching bond in matrix material and mass spectrum was observed. Next, protein mass spectrum was observed in the culture cells, MIN6, which secrete insulin, without the conventional cell-preparation processes. We demonstrate that the IR-MALDI has an advantage over the conventional method (UV-MALDI) in direct analysis of intracellular proteins.

  5. Characterization of Membrane Protein-Lipid Interactions by Mass Spectrometry Ion Mobility Mass Spectrometry

    Science.gov (United States)

    Liu, Yang; Cong, Xiao; Liu, Wen; Laganowsky, Arthur

    2016-12-01

    Lipids in the biological membrane can modulate the structure and function of integral and peripheral membrane proteins. Distinguishing individual lipids that bind selectively to membrane protein complexes from an ensemble of lipid-bound species remains a daunting task. Recently, ion mobility mass spectrometry (IM-MS) has proven to be invaluable for interrogating the interactions between protein and individual lipids, where the complex undergoes collision induced unfolding followed by quantification of the unfolding pathway to assess the effect of these interactions. However, gas-phase unfolding experiments for membrane proteins are typically performed on the entire ensemble (apo and lipid bound species), raising uncertainty to the contribution of individual lipids and the species that are ejected in the unfolding process. Here, we describe the application of mass spectrometry ion mobility mass spectrometry (MS-IM-MS) for isolating ions corresponding to lipid-bound states of a model integral membrane protein, ammonia channel (AmtB) from Escherichia coli. Free of ensemble effects, MS-IM-MS reveals that bound lipids are ejected as neutral species; however, no correlation was found between the lipid-induced stabilization of complex and their equilibrium binding constants. In comparison to data obtained by IM-MS, there are surprisingly limited differences in stability measurements from IM-MS and MS-IM-MS. The approach described here to isolate ions of membrane protein complexes will be useful for other MS methods, such as surface induced dissociation or collision induced dissociation to determine the stoichiometry of hetero-oligomeric membrane protein complexes.

  6. Electrochemistry-mass spectrometry in drug metabolism and protein research.

    Science.gov (United States)

    Permentier, Hjalmar P; Bruins, Andries P; Bischoff, Rainer

    2008-01-01

    The combination of electrochemistry coupled on-line to mass spectrometry (EC-MS) forms a powerful analytical technique with unique applications in the fields of drug metabolism and proteomics. In this review the latest developments are surveyed from both instrumental and application perspectives. The limitations and solutions for coupling an electrochemical system to a mass spectrometer are discussed. The electrochemical mimicking of drug metabolism, specifically by Cytochrome P450, is high-lighted as an application with high biomedical relevance. The EC-MS analysis of proteins also has promising new applications for both proteomics research and biomarker discovery. EC-MS has furthermore advantages for improved analyte detection with mass spectrometry, both for small molecules and large biomolecules. Finally, potential future directions of development of the technique are briefly discussed.

  7. Ultrananocrystalline Diamond Membranes for Detection of High-Mass Proteins

    Science.gov (United States)

    Kim, H.; Park, J.; Aksamija, Z.; Arbulu, M.; Blick, R. H.

    2016-12-01

    Mechanical resonators realized on the nanoscale by now offer applications in mass sensing of biomolecules with extraordinary sensitivity. The general idea is that perfect mechanical mass sensors should be of extremely small size to achieve zepto- or yoctogram sensitivity in weighing single molecules similar to a classical scale. However, the small effective size and long response time for weighing biomolecules with a cantilever restricts their usefulness as a high-throughput method. Commercial mass spectrometry (MS), on the other hand, such as electrospray ionization and matrix-assisted laser desorption and ionization (MALDI) time of flight (TOF) and their charge-amplifying detectors are the gold standards to which nanomechanical resonators have to live up to. These two methods rely on the ionization and acceleration of biomolecules and the following ion detection after a mass selection step, such as TOF. The principle we describe here for ion detection is based on the conversion of kinetic energy of the biomolecules into thermal excitation of chemical vapor deposition diamond nanomembranes via phonons followed by phonon-mediated detection via field emission of thermally emitted electrons. We fabricate ultrathin diamond membranes with large lateral dimensions for MALDI TOF MS of high-mass proteins. These diamond membranes are realized by straightforward etching methods based on semiconductor processing. With a minimal thickness of 100 nm and cross sections of up to 400 ×400 μ m2 , the membranes offer extreme aspect ratios. Ion detection is demonstrated in MALDI TOF analysis over a broad range from insulin to albumin. The resulting data in detection show much enhanced resolution as compared to existing detectors, which can offer better sensitivity and overall performance in resolving protein masses.

  8. ProMEX: a mass spectral reference database for proteins and protein phosphorylation sites

    Directory of Open Access Journals (Sweden)

    Selbig Joachim

    2007-06-01

    Full Text Available Abstract Background In the last decade, techniques were established for the large scale genome-wide analysis of proteins, RNA, and metabolites, and database solutions have been developed to manage the generated data sets. The Golm Metabolome Database for metabolite data (GMD represents one such effort to make these data broadly available and to interconnect the different molecular levels of a biological system 1. As data interpretation in the light of already existing data becomes increasingly important, these initiatives are an essential part of current and future systems biology. Results A mass spectral library consisting of experimentally derived tryptic peptide product ion spectra was generated based on liquid chromatography coupled to ion trap mass spectrometry (LC-IT-MS. Protein samples derived from Arabidopsis thaliana, Chlamydomonas reinhardii, Medicago truncatula, and Sinorhizobium meliloti were analysed. With currently 4,557 manually validated spectra associated with 4,226 unique peptides from 1,367 proteins, the database serves as a continuously growing reference data set and can be used for protein identification and quantification in uncharacterized biological samples. For peptide identification, several algorithms were implemented based on a recently published study for peptide mass fingerprinting 2 and tested for false positive and negative rates. An algorithm which considers intensity distribution for match correlation scores was found to yield best results. For proof of concept, an LC-IT-MS analysis of a tryptic leaf protein digest was converted to mzData format and searched against the mass spectral library. The utility of the mass spectral library was also tested for the identification of phosphorylated tryptic peptides. We included in vivo phosphorylation sites of Arabidopsis thaliana proteins and the identification performance was found to be improved compared to genome-based search algorithms. Protein identification by Pro

  9. Vibratory Reaction Unit for the Rapid Analysis of Proteins and Glycochains

    Directory of Open Access Journals (Sweden)

    Yukie Sasakura

    2007-01-01

    Full Text Available A protein digestion system using immobilized enzymes for protein identification and glycochain analyses has been developed, and a vibration reaction unit for micro-scale sample convection on an enzyme-immobilized solid surface was constructed. BSA as a model substrate was digested by this unit, and was successfully identified by mass spectrometry (MS analyses. Compared to the conventional liquid-phase digestion, the reaction unit increased the number of matched peptides from 9 to 26, protein score from 455 to 1247, and sequence coverage from 21% to 48%. Glycopeptidase F (NGF, an enzyme that cleaves N-glycans from glycoproteins, was also immobilized and used to remove the glycochains from human immunoglobulin G (IgG. Trypsin and NGF were immobilized on the same solid surface and used to remove glycochains from IgG in single-step. Glycochains were labeled with fluorescent reagent and analyzed by HPLC. Several peaks corresponding to the glycochains of IgG were detected. These results suggested that the single-step digestion system, by immobilized multiple enzymes (trypsin and NGF would be effective for the rapid structural analysis of glycoproteins.Abbreviations: BSA: bovine serum albumin; MS: mass spectrometry; NGF: glycopeptidase F; IgG: immunoglobulin G; PTM: post-translational modification; HPLC: high-performance liquid chromatography; PBS: phosphate-buffered saline; EDTA: ethylenediaminetetraacetic acid; DTT: dithiothreitol; RT: retention time; ABOE: p-aminobenzoic acid octyl ester; PDMS: polydimethylsiloxane; ArgC: endoprotease Arginine C.

  10. Mass spectrometry of pertrimethylsilyl oligosaccharides containing fructose units

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Kamerling, J.P.; Vink, Jan; Ridder, J.J. de

    1972-01-01

    Mass spectra of 6 TMS-disaccharides of type aldohexosyl-(1-> x)-fructose, in which x varies from 1 to 6, were compared and could be divided into two main groups i.e. (1 ar 1), (1 ar 2) disaccharides and (1 ar 3), (1 ar 4), (1 ar 5), (1 ar 6) disaccharides. Within both groups a further differentiatio

  11. Sulfur-based absolute quantification of proteins using isotope dilution inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Lee, Hyun-Seok; Heun Kim, Sook; Jeong, Ji-Seon; Lee, Yong-Moon; Yim, Yong-Hyeon

    2015-10-01

    An element-based reductive approach provides an effective means of realizing International System of Units (SI) traceability for high-purity biological standards. Here, we develop an absolute protein quantification method using double isotope dilution (ID) inductively coupled plasma mass spectrometry (ICP-MS) combined with microwave-assisted acid digestion for the first time. We validated the method and applied it to certify the candidate protein certified reference material (CRM) of human growth hormone (hGH). The concentration of hGH was determined by analysing the total amount of sulfur in hGH. Next, the size-exclusion chromatography method was used with ICP-MS to characterize and quantify sulfur-containing impurities. By subtracting the contribution of sulfur-containing impurities from the total sulfur content in the hGH CRM, we obtained a SI-traceable certification value. The quantification result obtained with the present method based on sulfur analysis was in excellent agreement with the result determined via a well-established protein quantification method based on amino acid analysis using conventional acid hydrolysis combined with an ID liquid chromatography-tandem mass spectrometry. The element-based protein quantification method developed here can be generally used for SI-traceable absolute quantification of proteins, especially pure-protein standards.

  12. Dataset of integrin-linked kinase protein: Protein interactions in cardiomyocytes identified by mass spectrometry

    Directory of Open Access Journals (Sweden)

    Alexandra Traister

    2016-06-01

    Full Text Available Using hearts from mice overexpressing integrin linked kinase (ILK behind the cardiac specific promoter αMHC, we have performed immunoprecipitation and mass spectrometry to identify novel ILK protein:protein interactions that regulate cardiomyocyte activity and calcium flux. Integrin linked kinase complexes were captured from mouse heart lysates using a commercial antibody, with subsequent liquid chromatography tandem mass spectral analysis. Interacting partners were identified using the MASCOT server, and important interactions verified using reverse immunoprecipitation and mass spectrometry. All ILK interacting proteins were identified in a non-biased manner, and are stored in the ProteomeXchange Consortium via the PRIDE partner repository (reference ID PRIDE: http://www.ebi.ac.uk/pride/archive/projects/PXD001053. The functional role of identified ILK interactions in cardiomyocyte function and arrhythmia were subsequently confirmed in human iPSC-cardiomyocytes.

  13. United States Air Force Role in Mass Atrocity Response Operations

    Science.gov (United States)

    2012-05-17

    through the lens of their own perspective. They cannot view the world objectively because of their own preconceptions : history, prejudices, ideology...initial stages of the genocide. Similarly, the RC-135’s ability to detect and locate those stations would provide the perfect target for strikes having...all levels. Air Force unit exercises would integrate air power, focusing on those specific tasks required in a MARO. These training exercises , in

  14. A mass spectrometric-derived cell surface protein atlas.

    Science.gov (United States)

    Bausch-Fluck, Damaris; Hofmann, Andreas; Bock, Thomas; Frei, Andreas P; Cerciello, Ferdinando; Jacobs, Andrea; Moest, Hansjoerg; Omasits, Ulrich; Gundry, Rebekah L; Yoon, Charles; Schiess, Ralph; Schmidt, Alexander; Mirkowska, Paulina; Härtlová, Anetta; Van Eyk, Jennifer E; Bourquin, Jean-Pierre; Aebersold, Ruedi; Boheler, Kenneth R; Zandstra, Peter; Wollscheid, Bernd

    2015-01-01

    Cell surface proteins are major targets of biomedical research due to their utility as cellular markers and their extracellular accessibility for pharmacological intervention. However, information about the cell surface protein repertoire (the surfaceome) of individual cells is only sparsely available. Here, we applied the Cell Surface Capture (CSC) technology to 41 human and 31 mouse cell types to generate a mass-spectrometry derived Cell Surface Protein Atlas (CSPA) providing cellular surfaceome snapshots at high resolution. The CSPA is presented in form of an easy-to-navigate interactive database, a downloadable data matrix and with tools for targeted surfaceome rediscovery (http://wlab.ethz.ch/cspa). The cellular surfaceome snapshots of different cell types, including cancer cells, resulted in a combined dataset of 1492 human and 1296 mouse cell surface glycoproteins, providing experimental evidence for their cell surface expression on different cell types, including 136 G-protein coupled receptors and 75 membrane receptor tyrosine-protein kinases. Integrated analysis of the CSPA reveals that the concerted biological function of individual cell types is mainly guided by quantitative rather than qualitative surfaceome differences. The CSPA will be useful for the evaluation of drug targets, for the improved classification of cell types and for a better understanding of the surfaceome and its concerted biological functions in complex signaling microenvironments.

  15. A mass spectrometric-derived cell surface protein atlas.

    Directory of Open Access Journals (Sweden)

    Damaris Bausch-Fluck

    Full Text Available Cell surface proteins are major targets of biomedical research due to their utility as cellular markers and their extracellular accessibility for pharmacological intervention. However, information about the cell surface protein repertoire (the surfaceome of individual cells is only sparsely available. Here, we applied the Cell Surface Capture (CSC technology to 41 human and 31 mouse cell types to generate a mass-spectrometry derived Cell Surface Protein Atlas (CSPA providing cellular surfaceome snapshots at high resolution. The CSPA is presented in form of an easy-to-navigate interactive database, a downloadable data matrix and with tools for targeted surfaceome rediscovery (http://wlab.ethz.ch/cspa. The cellular surfaceome snapshots of different cell types, including cancer cells, resulted in a combined dataset of 1492 human and 1296 mouse cell surface glycoproteins, providing experimental evidence for their cell surface expression on different cell types, including 136 G-protein coupled receptors and 75 membrane receptor tyrosine-protein kinases. Integrated analysis of the CSPA reveals that the concerted biological function of individual cell types is mainly guided by quantitative rather than qualitative surfaceome differences. The CSPA will be useful for the evaluation of drug targets, for the improved classification of cell types and for a better understanding of the surfaceome and its concerted biological functions in complex signaling microenvironments.

  16. Formation of truncated proteins and high-molecular-mass aggregates upon soft illumination of photosynthetic proteins

    DEFF Research Database (Denmark)

    Rinalducci, Sara; Campostrini, Natascia; Antonioli, Paolo

    2005-01-01

    Different spot profiles were observed in 2D gel electrophoresis of thylakoid membranes performed either under complete darkness or by leaving the sample for a short time to low visible light. In the latter case, a large number of new spots with lower molecular masses, ranging between 15,000 and 25......,000 Da, were observed, and high-molecular-mass aggregates, seen as a smearing in the upper part of the gel, appeared in the region around 250 kDa. Identification of protein(s) contained in these new spots by MS/MS revealed that most of them are simply truncated proteins deriving from native ones......, fragments, or aggregates. This resulted from the formation of extremely reactive oxygen species (ROS) that can derive by the exposure of chlorophyll binding proteins of photosynthetic apparatus to low-intensity light during laboratory manipulation of sample for electrophoresis runs....

  17. Structural Characterization of Native Proteins and Protein Complexes by Electron Ionization Dissociation-Mass Spectrometry.

    Science.gov (United States)

    Li, Huilin; Sheng, Yuewei; McGee, William; Cammarata, Michael; Holden, Dustin; Loo, Joseph A

    2017-03-07

    Mass spectrometry (MS) has played an increasingly important role in the identification and structural and functional characterization of proteins. In particular, the use of tandem mass spectrometry has afforded one of the most versatile methods to acquire structural information for proteins and protein complexes. The unique nature of electron capture dissociation (ECD) for cleaving protein backbone bonds while preserving noncovalent interactions has made it especially suitable for the study of native protein structures. However, the intra- and intermolecular interactions stabilized by hydrogen bonds and salt bridges can hinder the separation of fragments even with preactivation, which has become particularly problematic for the study of large macromolecular proteins and protein complexes. Here, we describe the capabilities of another activation method, 30 eV electron ionization dissociation (EID), for the top-down MS characterization of native protein-ligand and protein-protein complexes. Rich structural information that cannot be delivered by ECD can be generated by EID. EID allowed for the comparison of the gas-phase and the solution-phase structural stability and unfolding process of human carbonic anhydrase I (HCA-I). In addition, the EID fragmentation patterns reflect the structural similarities and differences among apo-, Zn-, and Cu,Zn-superoxide dismutase (SOD1) dimers. In particular, the structural changes due to Cu-binding and a point mutation (G41D) were revealed by EID-MS. The performance of EID was also compared to that of 193 nm ultraviolet photodissociation (UVPD), which allowed us to explore their qualitative similarities and differences as potential valuable tools for the MS study of native proteins and protein complexes.

  18. The role of mass transport in protein crystallization.

    Science.gov (United States)

    García-Ruiz, Juan Manuel; Otálora, Fermín; García-Caballero, Alfonso

    2016-02-01

    Mass transport takes place within the mesoscopic to macroscopic scale range and plays a key role in crystal growth that may affect the result of the crystallization experiment. The influence of mass transport is different depending on the crystallization technique employed, essentially because each technique reaches supersaturation in its own unique way. In the case of batch experiments, there are some complex phenomena that take place at the interface between solutions upon mixing. These transport instabilities may drastically affect the reproducibility of crystallization experiments, and different outcomes may be obtained depending on whether or not the drop is homogenized. In diffusion experiments with aqueous solutions, evaporation leads to fascinating transport phenomena. When a drop starts to evaporate, there is an increase in concentration near the interface between the drop and the air until a nucleation event eventually takes place. Upon growth, the weight of the floating crystal overcomes the surface tension and the crystal falls to the bottom of the drop. The very growth of the crystal then triggers convective flow and inhomogeneities in supersaturation values in the drop owing to buoyancy of the lighter concentration-depleted solution surrounding the crystal. Finally, the counter-diffusion technique works if, and only if, diffusive mass transport is assured. The technique relies on the propagation of a supersaturation wave that moves across the elongated protein chamber and is the result of the coupling of reaction (crystallization) and diffusion. The goal of this review is to convince protein crystal growers that in spite of the small volume of the typical protein crystallization setup, transport plays a key role in the crystal quality, size and phase in both screening and optimization experiments.

  19. Analysis of Protein Glycosylation and Phosphorylation Using Liquid Phase Separation, Protein Microarray Technology, and Mass Spectrometry

    Science.gov (United States)

    Zhao, Jia; Patwa, Tasneem H.; Pal, Manoj; Qiu, Weilian; Lubman, David M.

    2010-01-01

    Summary Protein glycosylation and phosphorylation are very common posttranslational modifications. The alteration of these modifications in cancer cells is closely related to the onset and progression of cancer and other disease states. In this protocol, strategies for monitoring the changes in protein glycosylation and phosphorylation in serum or tissue cells on a global scale and specifically characterizing these alterations are included. The technique is based on lectin affinity enrichment for glycoproteins, all liquid-phase two-dimensional fractionation, protein microarray, and mass spectrometry technology. Proteins are separated based on pI in the first dimension using chromatofocusing (CF) or liquid isoelectric focusing (IEF) followed by the second-dimension separation using nonporous silica RP-HPLC. Five lectins with different binding specificities to glycan structures are used for screening glycosylation patterns in human serum through a biotin–streptavidin system. Fluorescent phosphodyes and phosphospecific antibodies are employed to detect specific phosphorylated proteins in cell lines or human tissues. The purified proteins of interest are identified by peptide sequencing. Their modifications including glycosylation and phosphorylation could be further characterized by mass-spectrometry-based approaches. These strategies can be used in biological samples for large-scale glycoproteome/phosphoproteome screening as well as for individual protein modification analysis. PMID:19241043

  20. MALDI FTICR IMS of Intact Proteins: Using Mass Accuracy to Link Protein Images with Proteomics Data

    Science.gov (United States)

    Spraggins, Jeffrey M.; Rizzo, David G.; Moore, Jessica L.; Rose, Kristie L.; Hammer, Neal D.; Skaar, Eric P.; Caprioli, Richard M.

    2015-06-01

    MALDI imaging mass spectrometry is a highly sensitive and selective tool used to visualize biomolecules in tissue. However, identification of detected proteins remains a difficult task. Indirect identification strategies have been limited by insufficient mass accuracy to confidently link ion images to proteomics data. Here, we demonstrate the capabilities of MALDI FTICR MS for imaging intact proteins. MALDI FTICR IMS provides an unprecedented combination of mass resolving power (~75,000 at m/z 5000) and accuracy (calprotectin, in kidney tissue from mice infected with Staphylococcus aureus. S100A8 - M37O/C42O3 ( m/z 10228.00, -2.6ppm) was found to co-localize with bacterial microcolonies at the center of infectious foci. The ability of MALDI FTICR IMS to distinguish S100A8 modifications is critical to understanding calprotectin's roll in nutritional immunity.

  1. Analysis of Proteins, Protein Complexes, and Organellar Proteomes Using Sheathless Capillary Zone Electrophoresis - Native Mass Spectrometry

    Science.gov (United States)

    Belov, Arseniy M.; Viner, Rosa; Santos, Marcia R.; Horn, David M.; Bern, Marshall; Karger, Barry L.; Ivanov, Alexander R.

    2017-09-01

    Native mass spectrometry (MS) is a rapidly advancing field in the analysis of proteins, protein complexes, and macromolecular species of various types. The majority of native MS experiments reported to-date has been conducted using direct infusion of purified analytes into a mass spectrometer. In this study, capillary zone electrophoresis (CZE) was coupled online to Orbitrap mass spectrometers using a commercial sheathless interface to enable high-performance separation, identification, and structural characterization of limited amounts of purified proteins and protein complexes, the latter with preserved non-covalent associations under native conditions. The performance of both bare-fused silica and polyacrylamide-coated capillaries was assessed using mixtures of protein standards known to form non-covalent protein-protein and protein-ligand complexes. High-efficiency separation of native complexes is demonstrated using both capillary types, while the polyacrylamide neutral-coated capillary showed better reproducibility and higher efficiency for more complex samples. The platform was then evaluated for the determination of monoclonal antibody aggregation and for analysis of proteomes of limited complexity using a ribosomal isolate from E. coli. Native CZE-MS, using accurate single stage and tandem-MS measurements, enabled identification of proteoforms and non-covalent complexes at femtomole levels. This study demonstrates that native CZE-MS can serve as an orthogonal and complementary technique to conventional native MS methodologies with the advantages of low sample consumption, minimal sample processing and losses, and high throughput and sensitivity. This study presents a novel platform for analysis of ribosomes and other macromolecular complexes and organelles, with the potential for discovery of novel structural features defining cellular phenotypes (e.g., specialized ribosomes). [Figure not available: see fulltext.

  2. A brief history of the unit of mass: continuity of successive definitions of the kilogram

    Science.gov (United States)

    Davis, Richard S.; Barat, Pauline; Stock, Michael

    2016-10-01

    The very first definition of the kilogram was in terms of a constant of nature, although this idea could not be fully realized at the end of the 18th century. Instead the kilogram was defined by an artefact whose mass was made to approximate as closely as possible a physical constant with unit kg m-3—the maximum density of distilled water at atmospheric pressure. For the next two centuries, mass comparators improved greatly as did the materials from which artefacts could be constructed. These improvements put tighter constraints on the realization of a non-artefact definition of the kilogram. However, it is now expected that the goal of redefining the kilogram in terms of fundamental constants will be achieved in 2018. We present a history of the kilogram with emphasis on continuity of this unit of mass each time it has been redefined and the stability of a unit defined by the mass of an artefact.

  3. Protein Turnover and Metabolism in the Elderly Intensive Care Unit Patient.

    Science.gov (United States)

    Phillips, Stuart M; Dickerson, Roland N; Moore, Frederick A; Paddon-Jones, Douglas; Weijs, Peter J M

    2017-04-01

    Many intensive care unit (ICU) patients do not achieve target protein intakes particularly in the early days following admittance. This period of iatrogenic protein undernutrition contributes to a rapid loss of lean, in particular muscle, mass in the ICU. The loss of muscle in older (aged >60 years) patients in the ICU may be particularly rapid due to a perfect storm of increased catabolic factors, including systemic inflammation, disuse, protein malnutrition, and reduced anabolic stimuli. This loss of muscle mass has marked consequences. It is likely that the older patient is already experiencing muscle loss due to sarcopenia; however, the period of stay in the ICU represents a greatly accelerated period of muscle loss. Thus, on discharge, the older ICU patient is now on a steeper downward trajectory of muscle loss, more likely to have ICU-acquired muscle weakness, and at risk of becoming sarcopenic and/or frail. One practice that has been shown to have benefit during ICU stays is early ambulation and physical therapy (PT), and it is likely that both are potent stimuli to induce a sensitivity of protein anabolism. Thus, recommendations for the older ICU patient would be provision of at least 1.2-1.5 g protein/kg usual body weight/d, regular and early utilization of ambulation (if possible) and/or PT, and follow-up rehabilitation for the older discharged ICU patient that includes rehabilitation, physical activity, and higher habitual dietary protein to change the trajectory of ICU-mediated muscle mass loss and weakness.

  4. Identification of membrane proteins by tandem mass spectrometry of protein ions.

    Science.gov (United States)

    Carroll, Joe; Altman, Matthew C; Fearnley, Ian M; Walker, John E

    2007-09-04

    The most common way of identifying proteins in proteomic analyses is to use short segments of sequence ("tags") determined by mass spectrometric analysis of proteolytic fragments. The approach is effective with globular proteins and with membrane proteins with significant polar segments between membrane-spanning alpha-helices, but it is ineffective with other hydrophobic proteins where protease cleavage sites are either infrequent or absent. By developing methods to purify hydrophobic proteins in organic solvents and by fragmenting ions of these proteins by collision induced dissociation with argon, we have shown that partial sequences of many membrane proteins can be deduced easily by manual inspection. The spectra from small proteolipids (1-4 transmembrane alpha-helices) are dominated usually by fragment ions arising from internal amide cleavages, from which internal sequences can be obtained, whereas the spectra from larger membrane proteins (5-18 transmembrane alpha-helices) often contain fragment ions from N- and/or C-terminal parts yielding sequences in those regions. With these techniques, we have, for example, identified an abundant protein of unknown function from inner membranes of mitochondria that to our knowledge has escaped detection in proteomic studies, and we have produced sequences from 10 of 13 proteins encoded in mitochondrial DNA. They include the ND6 subunit of complex I, the last of its 45 subunits to be analyzed. The procedures have the potential to be developed further, for example by using newly introduced methods for protein ion dissociation to induce fragmentation of internal regions of large membrane proteins, which may remain partially folded in the gas phase.

  5. Quantitative mass spectrometry measurements reveal stoichiometry of principal postsynaptic density proteins.

    Science.gov (United States)

    Lowenthal, Mark S; Markey, Sanford P; Dosemeci, Ayse

    2015-06-05

    Quantitative studies are presented of postsynaptic density (PSD) fractions from rat cerebral cortex with the ultimate goal of defining the average copy numbers of proteins in the PSD complex. Highly specific and selective isotope dilution mass spectrometry assays were developed using isotopically labeled polypeptide concatemer internal standards. Interpretation of PSD protein stoichiometry was achieved as a molar ratio with respect to PSD-95 (SAP-90, DLG4), and subsequently, copy numbers were estimated using a consensus literature value for PSD-95. Average copy numbers for several proteins at the PSD were estimated for the first time, including those for AIDA-1, BRAGs, and densin. Major findings include evidence for the high copy number of AIDA-1 in the PSD (144 ± 30)-equivalent to that of the total GKAP family of proteins (150 ± 27)-suggesting that AIDA-1 is an element of the PSD scaffold. The average copy numbers for NMDA receptor sub-units were estimated to be 66 ± 18, 27 ± 9, and 45 ± 15, respectively, for GluN1, GluN2A, and GluN2B, yielding a total of 34 ± 10 NMDA channels. Estimated average copy numbers for AMPA channels and their auxiliary sub-units TARPs were 68 ± 36 and 144 ± 38, respectively, with a stoichiometry of ∼1:2, supporting the assertion that most AMPA receptors anchor to the PSD via TARP sub-units. This robust, quantitative analysis of PSD proteins improves upon and extends the list of major PSD components with assigned average copy numbers in the ongoing effort to unravel the complex molecular architecture of the PSD.

  6. Use of Multicriteria Valuation of Spatial Units in a System of Mass Real Estate Valuation

    Directory of Open Access Journals (Sweden)

    Miroslav Kuburić

    2012-05-01

    Full Text Available A model of mass valuation at the national level must be functional, practically applicable, consistent and adaptable to actual conditions and real estate market trends. A consideration of the influence of location on real estate value in a spatial unit, and a description of spatial units with a sufficient number of attributes to determine a connection between the value of these attributes and the average price of real estate in a spatial unit, are important tasks in modelling a system of mass real estate valuation. This paper, based on a test implementation of mass real estate valuation for an area covering a number of municipalities in the Republic of Serbia, offers conclusions on the suitability of the use of a mass valuation method grounded in the principles of logical aggregation and case based reasoning. The values of location characteristics, or factors of spatial unit valuation, were determined in spatial analyses employing GIS, according to an established system of multicriteria valuation. This approach ensures that a model-defined value is not stored as offline data, but that each time such data is needed, it can be determined following the proposed methodology, based on actual, updated data from the databases of official spatial data registries. Prior to this, it is necessary to meet all the required prerequisites, which include the distributed databases of official real estate data registries and other factors needed in the mass valuation procedure. Keywords: real estate valuation; spatial units; multicriteria analysis

  7. Supplemental protein in support of muscle mass and health: advantage whey.

    Science.gov (United States)

    Devries, Michaela C; Phillips, Stuart M

    2015-03-01

    Skeletal muscle is an integral body tissue playing key roles in strength, performance, physical function, and metabolic regulation. It is essential for athletes to ensure that they have optimal amounts of muscle mass to ensure peak performance in their given sport. However, the role of maintaining muscle mass during weight loss and as we age is an emerging concept, having implications in chronic disease prevention, functional capacity, and quality of life. Higher-protein diets have been shown to: (1) promote gains in muscle mass, especially when paired with resistance training; (2) spare muscle mass loss during caloric restriction; and (3) attenuate the natural loss of muscle mass that accompanies aging. Protein quality is important to the gain and maintenance of muscle mass. Protein quality is a function of protein digestibility, amino acid content, and the resulting amino acid availability to support metabolic function. Whey protein is one of the highest-quality proteins given its amino acid content (high essential, branched-chain, and leucine amino acid content) and rapid digestibility. Consumption of whey protein has a robust ability to stimulate muscle protein synthesis. In fact, whey protein has been found to stimulate muscle protein synthesis to a greater degree than other proteins such as casein and soy. This review examines the existing data supporting the role for protein consumption, with an emphasis on whey protein, in the regulation of muscle mass and body composition in response to resistance training, caloric restriction, and aging.

  8. Analysis of posttranslational modifications of proteins by tandem mass spectrometry

    DEFF Research Database (Denmark)

    Larsen, Martin Røssel; Trelle, Morten B; Thingholm, Tine E;

    2006-01-01

    Protein activity and turnover is tightly and dynamically regulated in living cells. Whereas the three-dimensional protein structure is predominantly determined by the amino acid sequence, posttranslational modification (PTM) of proteins modulates their molecular function and the spatial...

  9. Galaxy S-Stars Exhibit Orbital Angular Momentum Quantization per Unit Mass

    Directory of Open Access Journals (Sweden)

    Potter F.

    2012-10-01

    Full Text Available The innermost stars of our Galaxy, called S-stars, are in Keplerian orbits. Quantum celestial mechanics (QCM predicts orbital angular momentum quantization per unit mass for each of them. I determine the quantization integers for the 27 well-measured S-stars and the total angular momentum of this nearly isolated QCM system within the Galactic bulge.

  10. The role of mass media in disease outbreak reporting in the United ...

    African Journals Online (AJOL)

    The role of mass media in disease outbreak reporting in the United Republic of ... with accurate epidemiological reports if correct information is to reach the public. The role of media in outbreak reporting is herein discussed in relation to the ...

  11. The Atomic Mass Unit, the Avogadro Constant, and the Mole: A Way to Understanding

    Science.gov (United States)

    Baranski, Andrzej

    2012-01-01

    Numerous articles have been published that address problems encountered in teaching basic concepts of chemistry such as the atomic mass unit, Avogadro's number, and the mole. The origin of these problems is found in the concept definitions. If these definitions are adjusted for teaching purposes, understanding could be improved. In the present…

  12. Mass spectrometric identification of proteins that interact through specific domains of the poly(A) binding protein

    DEFF Research Database (Denmark)

    Richardson, Roy; Denis, Clyde L; Zhang, Chongxu

    2012-01-01

    Poly(A) binding protein (PAB1) is involved in a number of RNA metabolic functions in eukaryotic cells and correspondingly is suggested to associate with a number of proteins. We have used mass spectrometric analysis to identify 55 non-ribosomal proteins that specifically interact with PAB1 from...

  13. Energy and Protein Delivery in Overweight and Obese Children in the Pediatric Intensive Care Unit.

    Science.gov (United States)

    Martinez, Enid E; Ariagno, Katelyn A; Stenquist, Nicole; Anderson, Daniela; Muñoz, Eliana; Mehta, Nilesh M

    2017-06-01

    Early and optimal energy and protein delivery have been associated with improved clinical outcomes in the pediatric intensive care unit (PICU). Overweight and obese children in the PICU may be at risk for suboptimal macronutrient delivery; we aimed to describe macronutrient delivery in this cohort. We performed a retrospective study of PICU patients ages 2-21 years, with body mass index (BMI) ≥85th percentile and >48 hours stay. Nutrition variables were extracted regarding nutrition screening and assessment, energy and protein prescription, and delivery. Data from 83 patient encounters for 52 eligible patients (52% male; median age 9.6 [5-15] years) were included. The study cohort had a longer median PICU length of stay (8 vs 5 days, P Energy expenditure was estimated primarily by predictive equations. Stress factor >1.0 was applied in 44% (22/50). Median energy delivered as a percentage of estimated requirements by the Schofield equation was 34.6% on day 3. Median protein delivered as a percentage of recommended intake was 22.1% on day 3. The study cohort had suboptimal nutrition assessments and macronutrient delivery during their PICU course. Mortality and duration of PICU stay were greater when compared with the general PICU population. Nutrition assessment, indirect calorimetry-guided energy prescriptions, and optimizing the delivery of energy and protein must be emphasized in this cohort. The impact of these practices on clinical outcomes must be investigated.

  14. Solar Mass Loss, the Astronomical Unit, and the Scale of the Solar System

    CERN Document Server

    Noerdlinger, Peter D

    2008-01-01

    The radiative and particulate loss of mass by the Sun, -9.13*10^-14 Solar masses per year or more causes the orbits of the planets to expand at the same rate, and their periods to lengthen at twice this rate. Unfortunately, under the present definition of the Astronomical Unit (AU) based on the fixed Gaussian gravity constant kGS = 0.01720209895 (AU)^1.5/day, the value AUmet of the AU in meters must decrease at 1/3 this rate, all these rates being expressed logarithmically. The progress of the planets along their orbits slows quadratically with time. For example, in one century Mercury would lag behind the position predicted using constant solar mass by almost 1.4 km, in two centuries 5.5 km. The value of AUmet can be made constant by redefining it, based on a reference solar mass unit, such as the solar mass at J2000; else, the solar Gaussian gravity constant kGS used in defining the AU could be redefined proportional to the square root of the solar mass. Improved accuracy of the ephemerides would impose use...

  15. Differential isotope dansylation labeling combined with liquid chromatography mass spectrometry for quantification of intact and N-terminal truncated proteins.

    Science.gov (United States)

    Tang, Yanan; Li, Liang

    2013-08-20

    The N-terminal amino acids of proteins are important structure units for maintaining the biological function, localization, and interaction networks of proteins. Under different biological conditions, one or several N-terminal amino acids could be cleaved from an intact protein due to processes, such as proteolysis, resulting in the change of protein properties. Thus, the ability to quantify the N-terminal truncated forms of proteins is of great importance, particularly in the area of development and production of protein-based drugs where the relative quantity of the intact protein and its truncated form needs to be monitored. In this work, we describe a rapid method for absolute quantification of protein mixtures containing intact and N-terminal truncated proteins. This method is based on dansylation labeling of the N-terminal amino acids of proteins, followed by microwave-assisted acid hydrolysis of the proteins into amino acids. It is shown that dansyl labeled amino acids are stable in acidic conditions and can be quantified by liquid chromatography mass spectrometry (LC-MS) with the use of isotope analog standards.

  16. Experimental study on mass transfer of contaminants through an enthalpy recovery unit with polymer membrane foils

    DEFF Research Database (Denmark)

    Nie, Jinzhe; Fang, Lei

    2014-01-01

    recovery unit with polymer membrane foils was used as refeering unit in this study. The experiments were conducted with different outdoor thermal climates e.g. warm-humid and cold-dry climates; isothermal and non isothermal as well as equal humidity and non equal humidity with indoor climate. Three......Laboratory experimental studies were conducted to investigate the mass transfer of contaminants through a total heat recovery unit with polymer membranes foils. The studies were conducted in twin climate chambers which simulated outdoor and indoor thermal climates. One manufacturd total heat...... chemical gases were used to simulate air contaminants. The concentrations of dosed contaminants in the supply and exhaust air upstream and downstream of the total heat recovery unit were measured with Multi-Gas Monitor Innova 1316 in real time. Experiment results showed that 5% to 9% of dosed contaminants...

  17. Amino Acid Molecular Units: Building Primary and Secondary Protein Structures

    Directory of Open Access Journals (Sweden)

    Aparecido R. Silva

    2008-05-01

    Full Text Available In order to guarantee the learning quality and suitable knowledge  use  about structural biology, it is fundamental to  exist, since the beginning of  students’ formation, the possibility of clear visualization of biomolecule structures. Nevertheless, the didactic books can only bring  schematic  drawings; even more elaborated figures and graphic computation  do not permit the necessary interaction.  The representation of three-dimensional molecular structures with ludic models, built with representative units, have supplied to the students and teachers a successfully experience to  visualize such structures and correlate them to the real molecules.  The design and applicability of the representative units were discussed with researchers and teachers before mould implementation.  In this stage  it  will be presented the  developed  kit  containing the  representative  plastic parts of the main amino acids.  The kit can demonstrate the interaction among the amino acids  functional groups  (represented by colors, shapes,  sizes and  the peptidic bonds between them  facilitating the assembly and visuali zation of the primary and secondary protein structure.  The models were designed for  Ca,  amino,  carboxyl groups  and  hydrogen. The  lateral chains have  well defined models that represent their geometrical shape.  The completed kit set  will be presented in this meeting (patent requested.  In the last phase of the project will be realized  an effective evaluation  of the kit  as a facilitative didactic tool of the teaching/learning process in the Structural Molecular Biology area.

  18. Introduction to Mass Unit kg%浅谈质量单位千克

    Institute of Scientific and Technical Information of China (English)

    黄爱军; 赵明泽

    2014-01-01

    Kilogram in the international unit system is the basic unit of mass, its symbol is kg, and it is equal to the mass of the international kilogram original device. The use of kilogram is increasingly frequent. Deeply and correctly understanding and using kilogram are benefit for people to have a more comprehensive understanding of the mass of the object, and play a more and more important role in ensuring unite, accurate and consistent of the mass value. This paper studies and reviews the origin and the development history of mass unit kg, laying a solid foundation for the future development of related research.%在国际单位制中千克是表示质量的基本单位,它的符号是kg,它等于国际千克原器的质量。千克的使用日渐频繁,深入地了解千克、正确地理解和使用千克对于人们对物体的质量有较全面的认识大有裨益,对于保证质量量值的统一、准确、一致的作用越来越大。本文研究和回顾了质量单位千克的由来和发展历史,为今后相关研究的开展打下了坚实基础。

  19. Native mass spectrometry of photosynthetic pigment–protein complexes

    National Research Council Canada - National Science Library

    Zhang, Hao; Cui, Weidong; Gross, Michael L; Blankenship, Robert E

    2013-01-01

    .... This approach is now a powerful tool to investigate protein complexes. This article reviews the background of native MS of protein complexes and describes its strengths, taking photosynthetic pigment...

  20. Two-Dimensional Simulation of Mass Transfer in Unitized Regenerative Fuel Cells under Operation Mode Switching

    Directory of Open Access Journals (Sweden)

    Lulu Wang

    2016-01-01

    Full Text Available A two-dimensional, single-phase, isothermal, multicomponent, transient model is built to investigate the transport phenomena in unitized regenerative fuel cells (URFCs under the condition of switching from the fuel cell (FC mode to the water electrolysis (WE mode. The model is coupled with an electrochemical reaction. The proton exchange membrane (PEM is selected as the solid electrolyte of the URFC. The work is motivated by the need to elucidate the complex mass transfer and electrochemical process under operation mode switching in order to improve the performance of PEM URFC. A set of governing equations, including conservation of mass, momentum, species, and charge, are considered. These equations are solved by the finite element method. The simulation results indicate the distributions of hydrogen, oxygen, water mass fraction, and electrolyte potential response to the transient phenomena via saltation under operation mode switching. The hydrogen mass fraction gradients are smaller than the oxygen mass fraction gradients. The average mass fractions of the reactants (oxygen and hydrogen and product (water exhibit evident differences between each layer in the steady state of the FC mode. By contrast, the average mass fractions of the reactant (water and products (oxygen and hydrogen exhibit only slight differences between each layer in the steady state of the WE mode. Under either the FC mode or the WE mode, the duration of the transient state is only approximately 0.2 s.

  1. Analysis of endogenous protein complexes by mass spectrometry

    NARCIS (Netherlands)

    Synowsky, S.A.

    2008-01-01

    Proteins are organized in large protein complexes that form an extensive network in the cell. They are the most versatile macromolecule in the cell and the interactions between each other are highly directed and essential for most cellular functions. The activity of protein complexes is in turn freq

  2. Exploiting the multiplexing capabilities of tandem mass tags for high-throughput estimation of cellular protein abundances by mass spectrometry.

    Science.gov (United States)

    Ahrné, Erik; Martinez-Segura, Amalia; Syed, Afzal Pasha; Vina-Vilaseca, Arnau; Gruber, Andreas J; Marguerat, Samuel; Schmidt, Alexander

    2015-09-01

    The generation of dynamic models of biological processes critically depends on the determination of precise cellular concentrations of biomolecules. Measurements of system-wide absolute protein levels are particularly valuable information in systems biology. Recently, mass spectrometry based proteomics approaches have been developed to estimate protein concentrations on a proteome-wide scale. However, for very complex proteomes, fractionation steps are required, increasing samples number and instrument analysis time. As a result, the number of full proteomes that can be routinely analyzed is limited. Here we combined absolute quantification strategies with the multiplexing capabilities of isobaric tandem mass tags to determine cellular protein abundances in a high throughput and proteome-wide scale even for highly complex biological systems, such as a whole human cell line. We generated two independent data sets to demonstrate the power of the approach regarding sample throughput, dynamic range, quantitative precision and accuracy as well as proteome coverage in comparison to existing mass spectrometry based strategies.

  3. Imaging of Proteins in Tissue Sections Using Mass Spectrometry as a Discovery Tool

    Institute of Scientific and Technical Information of China (English)

    Richard M. Caprioli

    2004-01-01

    @@ The Mass Spectrometry Group of Richard M. Caprioli at Vanderbilt University is evaluating MacromizerTM for their MALDI-imaging application. The expectation is to see more high mass proteins due to the increased high mass sensitivity of MacromizerTM.

  4. Imaging of Proteins in Tissue Sections Using Mass Spectrometry as a Discovery Tool

    Institute of Scientific and Technical Information of China (English)

    RichardM.Caprioli

    2004-01-01

    The Mass Spectrometry Group of Richard M. Caprioli at Vanderbilt University is evaluating MacromizerTM for their MALDI-imaging application. The expectation is to see more high mass proteins due to the increased high mass sensitivity of MacromizerTM.

  5. Protein sectors: evolutionary units of three-dimensional structure

    Science.gov (United States)

    Halabi, Najeeb; Rivoire, Olivier; Leibler, Stanislas; Ranganathan, Rama

    2011-01-01

    Proteins display a hierarchy of structural features at primary, secondary, tertiary, and higher-order levels, an organization that guides our current understanding of their biological properties and evolutionary origins. Here, we reveal a structural organization distinct from this traditional hierarchy by statistical analysis of correlated evolution between amino acids. Applied to the S1A serine proteases, the analysis indicates a decomposition of the protein into three quasi-independent groups of correlated amino acids that we term “protein sectors”. Each sector is physically connected in the tertiary structure, has a distinct functional role, and constitutes an independent mode of sequence divergence in the protein family. Functionally relevant sectors are evident in other protein families as well, suggesting that they may be general features of proteins. We propose that sectors represent a structural organization of proteins that reflects their evolutionary histories. PMID:19703402

  6. Getting to the core of protein pharmaceuticals – comprehensive structure analysis by mass spectrometry

    DEFF Research Database (Denmark)

    Leurs, Ulrike; Mistarz, Ulrik Hvid; Rand, Kasper Dyrberg

    2015-01-01

    Protein pharmaceuticals are the fastest growing class of novel therapeutic agents, and have been a major research and development focus in the (bio)pharmaceutical industry. Due to their large size and structural diversity, biopharmaceuticals represent a formidable challenge regarding analysis....... Mass spectrometry has evolved as a powerful tool for the characterization of both primary and higher order structures of protein pharmaceuticals. Furthermore, the chemical and physical stability of protein drugs, as well as their pharmacokinetics are nowadays routinely determined by mass spectrometry...

  7. Mass spectrometric identification of proteins and characterization of their post-translational modifications in proteome analysis

    DEFF Research Database (Denmark)

    Roepstorff, P; Larsen, Martin Røssel

    2001-01-01

    dominant strategies for identification of proteins from gels based on peptide mass spectrometric fingerprinting and partial sequencing by mass spectrometry are described. After identification of the proteins the next challenge in proteome analysis is characterization of their post-translational...... modifications. The general problems associated with characterization of these directly from gel separated proteins are described and the current state of art for the determination of phosphorylation, glycosylation and proteolytic processing is illustrated....

  8. Decreases in elemental carbon and fine particle mass in the United States

    Directory of Open Access Journals (Sweden)

    D. M. Murphy

    2011-01-01

    Full Text Available Observations at national parks and other remote sites show that average elemental carbon and fine particle mass concentrations in the United States both decreased by over 25% between 1990 and 2004. Percentage decreases in elemental carbon were much larger in winter than in summer. These data suggest that emissions controls have been effective in reducing particulate concentrations not only in polluted areas but also across the United States. Despite the reduction in elemental carbon, the simultaneous decrease in non-absorbing particles implies that the overall radiative forcing from these changes was toward warming. The use of a 2005 instead of 1990 as a baseline for climate-relevant emissions from the United States would imply a significantly lower baseline for aerosol emissions. The use of older data will overestimate the possibility for future reductions in warming due to black carbon controls.

  9. Decreases in elemental carbon and fine particle mass in the United States

    Directory of Open Access Journals (Sweden)

    D. M. Murphy

    2011-05-01

    Full Text Available Observations at national parks and other remote sites show that average elemental carbon and fine particle mass concentrations in the United States both decreased by over 25 % between 1990 and 2004. Percentage decreases in elemental carbon were much larger in winter than in summer. These data suggest that emissions controls have been effective in reducing particulate concentrations not only in polluted areas but also across the United States. Despite the reduction in elemental carbon, the simultaneous decrease in non-absorbing particles implies that the overall radiative forcing from these changes was toward warming. The use of a 2005 instead of 1990 as a baseline for climate-relevant emissions from the United States would imply a significantly lower baseline for aerosol emissions. The use of older data will overestimate the possibility for future reductions in warming due to black carbon controls.

  10. Protein expression of sensory and motor nerves: Two-dimensional gel electrophoresis and mass spectrometry.

    Science.gov (United States)

    Ren, Zhiwu; Wang, Yu; Peng, Jiang; Zhang, Li; Xu, Wenjing; Liang, Xiangdang; Zhao, Qing; Lu, Shibi

    2012-02-15

    The present study utilized samples from bilateral motor branches of the femoral nerve, as well as saphenous nerves, ventral roots, and dorsal roots of the spinal cord, to detect differential protein expression using two-dimensional gel electrophoresis and nano ultra-high performance liquid chromatography electrospray ionization mass spectrometry tandem mass spectrometry techniques. A mass spectrum was identified using the Mascot search. Results revealed differential expression of 11 proteins, including transgelin, Ig kappa chain precursor, plasma glutathione peroxidase precursor, an unnamed protein product (gi|55628), glyceraldehyde-3-phosphate dehydrogenase-like protein, lactoylglutathione lyase, adenylate kinase isozyme 1, two unnamed proteins products (gi|55628 and gi|1334163), and poly(rC)-binding protein 1 in motor and sensory nerves. Results suggested that these proteins played roles in specific nerve regeneration following peripheral nerve injury and served as specific markers for motor and sensory nerves.

  11. Protein expression of sensory and motor nerves Two-dimensional gel electrophoresis and mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    Zhiwu Ren; Yu Wang; Jiang Peng; Li Zhang; Wenjing Xu; Xiangdang Liang; Qing Zhao; Shibi Lu

    2012-01-01

    The present study utilized samples from bilateral motor branches of the femoral nerve, as well as saphenous nerves, ventral roots, and dorsal roots of the spinal cord, to detect differential protein expression using two-dimensional gel electrophoresis and nano ultra-high performance liquid chromatography electrospray ionization mass spectrometry tandem mass spectrometry techniques. A mass spectrum was identified using the Mascot search. Results revealed differential expression of 11 proteins, including transgelin, Ig kappa chain precursor, plasma glutathione peroxidase precursor, an unnamed protein product (gi|55628), glyceraldehyde-3-phosphate dehydrogenase-like protein, lactoylglutathione lyase, adenylate kinase isozyme 1, two unnamed proteins products (gi|55628 and gi|1334163), and poly(rC)-binding protein 1 in motor and sensory nerves. Results suggested that these proteins played roles in specific nerve regeneration following peripheral nerve injury and served as specific markers for motor and sensory nerves.

  12. Analysis of soybean embryonic axis proteins by two-dimensional gel electrophoresis and mass spectrometry

    Science.gov (United States)

    A proteomic approach based on two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) for protein separation and subsequent mass spectrometry (MS) for protein identification was applied to establish a proteomic reference map for the soybean embryonic axis. Proteins were extracted from dissecte...

  13. Near edge X-ray absorption mass spectrometry of gas phase proteins: the influence of protein size

    NARCIS (Netherlands)

    Egorov, Dmitrii; Schwob, Lucas; Lalande, Mathieu; Hoekstra, Ronnie; Schlathölter, Thomas

    2016-01-01

    Multiply protonated peptides and proteins in the gas phase can respond to near edge X-ray absorption in three different ways: (i) non dissociative ionization and ionization accompanied by loss of small neutrals, both known to dominate for proteins with masses in the 10 kDa range. (ii) Formation of i

  14. Direct Maximization of Protein Identifications from Tandem Mass Spectra*

    Science.gov (United States)

    Spivak, Marina; Weston, Jason; Tomazela, Daniela; MacCoss, Michael J.; Noble, William Stafford

    2012-01-01

    The goal of many shotgun proteomics experiments is to determine the protein complement of a complex biological mixture. For many mixtures, most methodological approaches fall significantly short of this goal. Existing solutions to this problem typically subdivide the task into two stages: first identifying a collection of peptides with a low false discovery rate and then inferring from the peptides a corresponding set of proteins. In contrast, we formulate the protein identification problem as a single optimization problem, which we solve using machine learning methods. This approach is motivated by the observation that the peptide and protein level tasks are cooperative, and the solution to each can be improved by using information about the solution to the other. The resulting algorithm directly controls the relevant error rate, can incorporate a wide variety of evidence and, for complex samples, provides 18–34% more protein identifications than the current state of the art approaches. PMID:22052992

  15. Proteins isolated with TRIzol are compatible with two-dimensional electrophoresis and mass spectrometry analyses.

    Science.gov (United States)

    Young, Clifford; Truman, Penelope

    2012-02-01

    TRIzol is used for RNA isolation but also permits protein recovery. We investigated whether proteins prepared with TRIzol were suitable for two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionization mass spectrometry. Proteins from TRIzol-treated SH-SY5Y cells produced 2-DE spot patterns similar to those from an equivalent untreated sample. Subsequent identification of TRIzol-treated proteins using peptide mass fingerprinting was successful. TRIzol exposure altered neither the mass of myoglobin extracted from sodium dodecyl sulfate (SDS) gels nor the masses of myoglobin peptides produced by in-gel trypsin digestion. These findings suggest that proteins isolated with TRIzol remain amenable to proteomic analyses.

  16. Mass spectrometry–based metabolomics, analysis of metabolite-protein interactions, and imaging

    Science.gov (United States)

    Lee, Do Yup; Bowen, Benjamin P.; Northen, Trent R.

    2010-01-01

    Our understanding of biology has been greatly improved through recent developments in mass spectrometry, which is providing detailed information on protein and metabolite composition as well as protein-metabolite interactions. The high sensitivity and resolution of mass spectrometry achieved with liquid or gas chromatography allows for detection and quantification of hundreds to thousands of molecules in a single measurement. Where homogenization-based sample preparation and extraction methods result in a loss of spatial information, mass spectrometry imaging technologies provide the in situ distribution profiles of metabolites and proteins within tissues. Mass spectrometry–based analysis of metabolite abundance, protein-metabolite interactions, and spatial distribution of compounds facilitates the high-throughput screening of biochemical reactions, the reconstruction of metabolic networks, biomarker discovery, determination of tissue compositions, and functional annotation of both proteins and metabolites. PMID:20701590

  17. Dietary protein and urinary nitrogen in relation to 6-year changes in fat mass and fat-free mass

    DEFF Research Database (Denmark)

    Ankarfeldt, Mikkel Zøllner; Gottliebsen, K; Ängquist, L

    2015-01-01

    protein intake and subsequent changes in fat mass (FM) and FFM in longitudinal, observational data.Design:A health examination, including measures of FM and FFM by bioelectrical impedance at baseline and follow-up six years later, was conducted. Diet history interviews (DHI) were performed, and 24-hour...

  18. The APOBEC Protein Family: United by Structure, Divergent in Function.

    Science.gov (United States)

    Salter, Jason D; Bennett, Ryan P; Smith, Harold C

    2016-07-01

    The APOBEC (apolipoprotein B mRNA editing catalytic polypeptide-like) family of proteins have diverse and important functions in human health and disease. These proteins have an intrinsic ability to bind to both RNA and single-stranded (ss) DNA. Both function and tissue-specific expression varies widely for each APOBEC protein. We are beginning to understand that the activity of APOBEC proteins is regulated through genetic alterations, changes in their transcription and mRNA processing, and through their interactions with other macromolecules in the cell. Loss of cellular control of APOBEC activities leads to DNA hypermutation and promiscuous RNA editing associated with the development of cancer or viral drug resistance, underscoring the importance of understanding how APOBEC proteins are regulated.

  19. Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome

    DEFF Research Database (Denmark)

    Mann, Matthias; Ong, Shao En; Grønborg, Mads

    2002-01-01

    In signal transduction in eukaryotes, protein phosphorylation is a key event. To understand signaling processes, we must first acquire an inventory of phosphoproteins and their phosphorylation sites under different conditions. Because phosphorylation is a dynamic process, elucidation of signaling...

  20. Role of protein and amino acids in promoting lean mass accretion with resistance exercise and attenuating lean mass loss during energy deficit in humans.

    Science.gov (United States)

    Churchward-Venne, Tyler A; Murphy, Caoileann H; Longland, Thomas M; Phillips, Stuart M

    2013-08-01

    Amino acids are major nutrient regulators of muscle protein turnover. After protein ingestion, hyperaminoacidemia stimulates increased rates of skeletal muscle protein synthesis, suppresses muscle protein breakdown, and promotes net muscle protein accretion for several hours. These acute observations form the basis for strategized protein intake to promote lean mass accretion, or prevent lean mass loss over the long term. However, factors such as protein dose, protein source, and timing of intake are important in mediating the anabolic effects of amino acids on skeletal muscle and must be considered within the context of evaluating the reported efficacy of long-term studies investigating protein supplementation as part of a dietary strategy to promote lean mass accretion and/or prevent lean mass loss. Current research suggests that dietary protein supplementation can augment resistance exercise-mediated gains in skeletal muscle mass and strength and can preserve skeletal muscle mass during periods of diet-induced energy restriction. Perhaps less appreciated, protein supplementation can augment resistance training-mediated gains in skeletal muscle mass even in individuals habitually consuming 'adequate' (i.e., >0.8 g kg⁻¹ day⁻¹) protein. Additionally, overfeeding energy with moderate to high-protein intake (15-25 % protein or 1.8-3.0 g kg⁻¹ day⁻¹) is associated with lean, but not fat mass accretion, when compared to overfeeding energy with low protein intake (5 % protein or ~0.68 g kg⁻¹ day⁻¹). Amino acids represent primary nutrient regulators of skeletal muscle anabolism, capable of enhancing lean mass accretion with resistance exercise and attenuating the loss of lean mass during periods of energy deficit, although factors such as protein dose, protein source, and timing of intake are likely important in mediating these effects.

  1. Characterization of protein crosslinks via mass spectrometry and an open-modification search strategy

    OpenAIRE

    Singh, Pragya; Shaffer, Scott A; Scherl, Alexander; Holman, Carol; Pfuetzner, Richard A.; Larson Freeman, Theodore J.; Miller, Samuel I.; Hernandez, Patricia; Appel, Ron D; Goodlett, David R.

    2008-01-01

    Protein-protein interactions are key to function and regulation of many biological pathways. To facilitate characterization of protein-protein interactions using mass spectrometry, a new data acquisition/analysis pipeline was designed. The goal for this pipeline was to provide a generic strategy for identifying crosslinked peptides from single LC/MS/MS datasets, without using specialized crosslinkers or custom-written software. To achieve this, each peptide in the pair of crosslinked peptides...

  2. Electrochemistry-mass spectrometry in drug metabolism and protein research

    NARCIS (Netherlands)

    Permentier, Hjalmar P.; Bruins, Andries P.; Bischoff, Rainer

    2008-01-01

    The combination of electrochemistry coupled on-line to mass spectrometry (EC-MS) forms a powerful analytical technique with unique applications in the fields of drug metabolism and proteomics. In this review the latest developments are surveyed from both instrumental and application perspectives. Th

  3. On the conversion of tritium units to mass fractions for hydrologic applications.

    Science.gov (United States)

    Stonestrom, David A; Andraski, Brian J; Cooper, Clay A; Mayers, C Justin; Michel, Robert L

    2013-06-01

    We develop a general equation for converting laboratory-reported tritium levels, expressed either as concentrations (tritium isotope number fractions) or mass-based specific activities, to mass fractions in aqueous systems. Assuming that all tritium is in the form of monotritiated water simplifies the derivation and is shown to be reasonable for most environmental settings encountered in practice. The general equation is nonlinear. For tritium concentrations c less than 4.5 × 10(12) tritium units (TU) - i.e. specific tritium activitiestritium isotopes in the absence of sample-specific data. Variation in the relative abundances of non-tritium isotopes in the terrestrial hydrosphere produces a minimum range for the mantissa of the conversion factor of [2.22287; 2.22300].

  4. Social media as an instrument for organizing mass riots in the United Kingdom in August 2011

    Directory of Open Access Journals (Sweden)

    A N Katkina

    2015-12-01

    Full Text Available Social networks such as Facebook and Twitter have recently become very popular and turned to be an effective instrument for achieving political goals. However, the social networks’ impact is rather ambivalent: on the one hand, social media form specific political actors and support self-organization and civil movements; on the other hand, social media reinforce destructive and aggressive manifestations with the pronounced criminal purposes, e.g. social media ability to disseminate information among large groups is used to organize mass riots. The article analyzes one of the recent and significant events largely provoked by the social networks - mass riots in the United Kingdom in August 2011 that were originally a reaction to the murder of M. Diggan by a police officer who tried to arrest him as a suspect in drug trafficking and possession of weapons. The way events developed into mass riots was the result of discussions in social media and use of social networks to coordinate joint actions of mass riots participants. The article provides a detailed description of the events and authorities’ actions to overcome the crisis and prevent such riots in the future, thus making some conclusions about the nature of social media impact on the politics.

  5. Mass spectrometry based protein identification with accurate statistical significance assignment

    OpenAIRE

    Alves, Gelio; Yu, Yi-Kuo

    2014-01-01

    Motivation: Assigning statistical significance accurately has become increasingly important as meta data of many types, often assembled in hierarchies, are constructed and combined for further biological analyses. Statistical inaccuracy of meta data at any level may propagate to downstream analyses, undermining the validity of scientific conclusions thus drawn. From the perspective of mass spectrometry based proteomics, even though accurate statistics for peptide identification can now be ach...

  6. Top-Down Mass Spectrometry Imaging of Intact Proteins by LAESI FT-ICR MS

    CERN Document Server

    Kiss, András; Reschke, Brent R; Powell, Matthew J; Heeren, Ron M A

    2013-01-01

    Laser Ablation Electrospray Ionization is a recent development in mass spectrometry imaging. It has been shown that lipids and small metabolites can be imaged in various samples such as plant material, tissue sections or bacterial colonies without anysample pre-treatment. Further, laser ablation electrospray ionization has been shown to produce multiply charged protein ions from liquids or solid surfaces. This presents a means to address one of the biggest challenges in mass spectrometry imaging; the identification of proteins directly from biological tissue surfaces. Such identification is hindered by the lack of multiply charged proteins in common MALDI ion sources and the difficulty of performing tandem MS on such large, singly charged ions. We present here top-down identification of intact proteins from tissue with a LAESI ion source combined with a hybrid ion-trap FT-ICR mass spectrometer. The performance of the system was first tested with a standard protein with ECD and IRMPD fragmentation to prove the...

  7. Reproducibility in protein profiling by MALDI-TOF mass spectrometry

    DEFF Research Database (Denmark)

    Albrethsen, Jakob

    2007-01-01

    , immunocapture, prestructured target surfaces, standardized matrix (co)crystallization, improved MALDI-TOF MS instrument components, internal standard peptides, quality-control samples, replicate measurements, and algorithms for normalization and peak detection. CONCLUSIONS: Further evaluation and optimization......, with the reported mean CV of the peak intensity varying among studies from 4% to 26%. There is additional interexperiment variation in peak intensity. Current approaches to improve the analytical performance of MALDI protein profiling include automated sample processing, extensive prefractionation strategies...

  8. Studies on the proteins of mass-cultivated, blue-green alga (Spirulina platensis)

    Energy Technology Data Exchange (ETDEWEB)

    Annusuyadevi, M.; Subbulakshmi, G.; Madhair' devi, K.; Venkalaramein, L.V.

    1981-05-01

    The characteristics of the protein of fresh-water, mass-cultured Spirulina platensis have been studied. The solubility of this algal protein in water and various aqueous solvents has been estimated. The total protein content of the blue-green algae was approximately 50-55% of which nearly 9.9% was nonprotein nitrogen. About 80% of the total protein nitrogen can be extracted by three successive extractions with water. Ths isoelectric point of this algal protein is found to be 3.0. The total proteins were characterized physicochemically by standard techniques. In the ultracentrifuge total proteins resolve into two major components with S20w values of 2.6 and 4.7 S. The polyacrylamide gel electrophoretic pattern of the total protein showed seven bands including three prominent ones. The in vitro digestibility of the total protein of fresh algae was found to be 85% when assayed with a pepsin-pancreatin system.

  9. Evaluation of peak-picking algorithms for protein mass spectrometry.

    Science.gov (United States)

    Bauer, Chris; Cramer, Rainer; Schuchhardt, Johannes

    2011-01-01

    Peak picking is an early key step in MS data analysis. We compare three commonly used approaches to peak picking and discuss their merits by means of statistical analysis. Methods investigated encompass signal-to-noise ratio, continuous wavelet transform, and a correlation-based approach using a Gaussian template. Functionality of the three methods is illustrated and discussed in a practical context using a mass spectral data set created with MALDI-TOF technology. Sensitivity and specificity are investigated using a manually defined reference set of peaks. As an additional criterion, the robustness of the three methods is assessed by a perturbation analysis and illustrated using ROC curves.

  10. [Variations in the diagnostic confirmation process between breast cancer mass screening units].

    Science.gov (United States)

    Natal, Carmen; Fernández-Somoano, Ana; Torá-Rocamora, Isabel; Tardón, Adonina; Castells, Xavier

    2016-01-01

    To analyse variations in the diagnostic confirmation process between screening units, variations in the outcome of each episode and the relationship between the use of the different diagnostic confirmation tests and the lesion detection rate. Observational study of variability of the standardised use of diagnostic and lesion detection tests in 34 breast cancer mass screening units participating in early-detection programmes in three Spanish regions from 2002-2011. The diagnostic test variation ratio in percentiles 25-75 ranged from 1.68 (further appointments) to 3.39 (fine-needle aspiration). The variation ratio in detection rates of benign lesions, ductal carcinoma in situ and invasive cancer were 2.79, 1.99 and 1.36, respectively. A positive relationship between rates of testing and detection rates was found with fine-needle aspiration-benign lesions (R(2): 0.53), fine-needle aspiration-invasive carcinoma (R(2): 0 28), core biopsy-benign lesions (R(2): 0.64), core biopsy-ductal carcinoma in situ (R(2): 0.61) and core biopsy-invasive carcinoma (R(2): 0.48). Variation in the use of invasive tests between the breast cancer screening units participating in early-detection programmes was found to be significantly higher than variations in lesion detection. Units which conducted more fine-needle aspiration tests had higher benign lesion detection rates, while units that conducted more core biopsies detected more benign lesions and cancer. Copyright © 2016 SESPAS. Published by Elsevier Espana. All rights reserved.

  11. Relationship between C-Reactive Protein and Body Mass Index in ...

    African Journals Online (AJOL)

    Baseline levels of C-reactive protein in apparently healthy men and women ... level CRP was found to be associated with a 10-year risk of coronary heart disease ... Key words: C-Reactive Protein, Body Mass Index, Type II diabetes Mellitus.

  12. Absolute quantitation of proteins by Acid hydrolysis combined with amino Acid detection by mass spectrometry

    DEFF Research Database (Denmark)

    Mirgorodskaya, Olga A; Körner, Roman; Kozmin, Yuri P;

    2012-01-01

    Amino acid analysis is among the most accurate methods for absolute quantification of proteins and peptides. Here, we combine acid hydrolysis with the addition of isotopically labeled standard amino acids and analysis by mass spectrometry for accurate and sensitive protein quantitation...

  13. Mass spectrometric detection of proteins in non-aqueous media : the case of prion proteins in biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Douma, M.D.; Kerr, G.M.; Brown, R.S.; Keller, B.O.; Oleschuk, R.D. [Queen' s Univ., Kingston, ON (Canada). Dept. of Chemistry

    2008-08-15

    This paper presented a filtration method for detecting protein traces in non-aqueous media. The extraction technique used a mixture of acetonitrile, non-ionic detergent and water along with filter disks with embedded C{sub 8}-modified silica particles to capture the proteins from non-aqueous samples. The extraction process was then followed by an elution of the protein from the filter disk and direct mass spectrometric detection and tryptic digestion with peptide mapping and MS/MS fragmentation of protein-specific peptides. The method was used to detect prion proteins in spiked biodiesel samples. A tryptic peptide with the sequence YGQGSPGGNR was used for unambiguous identification. Results of the study showed that the method is suitable for the large-scale testing of protein impurities in tallow-based biodiesel production processes. 33 refs., 6 figs.

  14. Choosing an Optimal Database for Protein Identification from Tandem Mass Spectrometry Data.

    Science.gov (United States)

    Kumar, Dhirendra; Yadav, Amit Kumar; Dash, Debasis

    2017-01-01

    Database searching is the preferred method for protein identification from digital spectra of mass to charge ratios (m/z) detected for protein samples through mass spectrometers. The search database is one of the major influencing factors in discovering proteins present in the sample and thus in deriving biological conclusions. In most cases the choice of search database is arbitrary. Here we describe common search databases used in proteomic studies and their impact on final list of identified proteins. We also elaborate upon factors like composition and size of the search database that can influence the protein identification process. In conclusion, we suggest that choice of the database depends on the type of inferences to be derived from proteomics data. However, making additional efforts to build a compact and concise database for a targeted question should generally be rewarding in achieving confident protein identifications.

  15. Gradient chromatofocusing-mass spectrometry: a new technique in protein analysis.

    Science.gov (United States)

    Shan, Lian; Hribar, James A; Zhou, Xiang; Anderson, David J

    2008-08-01

    A new analytical technique, gradient chromatofocusing-mass spectrometry (gCF-MS), was developed employing ion-exchange high-performance liquid chromatography (HPLC) interfaced to an electrospray-quadrupole mass spectrometer in the determination of proteins. There have been few reports, if any, of a HPLC-MS technique for proteins in which the ion-exchange column is directly interfaced to the mass spectrometer. The employment of a linear pH gradient elution scheme directly interfaced to mass spectrometry is also unique in the present work. The technique was demonstrated by the separation of six proteins (carbonic anhydrase II, enolase, beta-lactoglobulin A, lactoglobulin B, soybean trypsin inhibitor, and amyloglucosidase) employing a descending linear pH gradient from pH 9 to 2.6 on a 50 mm x 2.1 mm DEAE HPLC column using volatile buffer components. A signal enhancement solution consisting of 8% formic acid in acetonitrile was pumped post-column and was mixed 1:1 with column effluent and then directed on-line into the mass spectrometer. Molecular masses of the proteins were determined within +/-0.010% to 0.033% (+/-100 to 330 ppm) with peak height total ion current detection limits of 4 to 78 pmol of injected amounts (S/N = 3). This technique is applicable to the analysis of proteins and other charged molecules.

  16. On the conversion of tritium units to mass fractions for hydrologic applications

    Science.gov (United States)

    Stonestrom, David A.; Andraski, Brain J.; Cooper, Clay A.; Mayers, Charles J.; Michel, Robert L.

    2013-01-01

    We develop a general equation for converting laboratory-reported tritium levels, expressed either as concentrations (tritium isotope number fractions) or mass-based specific activities, to mass fractions in aqueous systems. Assuming that all tritium is in the form of monotritiated water simplifies the derivation and is shown to be reasonable for most environmental settings encountered in practice. The general equation is nonlinear. For tritium concentrations c less than 4.5×1012 tritium units (TU) - i.e. specific tritium activities11 Bq kg-1 - the mass fraction w of tritiated water is approximated to within 1 part per million by w ≈ c×2.22293×10-18, i.e. the conversion is linear for all practical purposes. Terrestrial abundances serve as a proxy for non-tritium isotopes in the absence of sample-specific data. Variation in the relative abundances of non-tritium isotopes in the terrestrial hydrosphere produces a minimum range for the mantissa of the conversion factor of [2.22287; 2.22300].

  17. Mass flow-rate control unit to calibrate hot-wire sensors

    Energy Technology Data Exchange (ETDEWEB)

    Durst, F.; Uensal, B. [FMP Technology GmbH, Erlangen (Germany); Haddad, K. [FMP Technology GmbH, Erlangen (Germany); Friedrich-Alexander-Universitaet Erlangen-Nuernberg, LSTM-Erlangen, Institute of Fluid Mechanics, Erlangen (Germany); Al-Salaymeh, A.; Eid, Shadi [University of Jordan, Mechanical Engineering Department, Faculty of Engineering and Technology, Amman (Jordan)

    2008-02-15

    Hot-wire anemometry is a measuring technique that is widely employed in fluid mechanics research to study the velocity fields of gas flows. It is general practice to calibrate hot-wire sensors against velocity. Calibrations are usually carried out under atmospheric pressure conditions and these suggest that the wire is sensitive to the instantaneous local volume flow rate. It is pointed out, however, that hot wires are sensitive to the instantaneous local mass flow rate and, of course, also to the gas heat conductivity. To calibrate hot wires with respect to mass flow rates per unit area, i.e., with respect to ({rho}U), requires special calibration test rigs. Such a device is described and its application is summarized within the ({rho}U) range 0.1-25 kg/m{sup 2} s. Calibrations are shown to yield the same hot-wire response curves for density variations in the range 1-7 kg/m{sup 3}. The application of the calibrated wires to measure pulsating mass flows is demonstrated, and suggestions are made for carrying out extensive calibrations to yield the ({rho}U) wire response as a basis for advanced fluid mechanics research on ({rho}U) data in density-varying flows. (orig.)

  18. Increasing Protein Distribution Has No Effect on Changes in Lean Mass During a Rugby Preseason.

    Science.gov (United States)

    MacKenzie-Shalders, Kristen L; King, Neil A; Byrne, Nuala M; Slater, Gary J

    2016-02-01

    Increasing the frequency of protein consumption is recommended to stimulate muscle hypertrophy with resistance exercise. This study manipulated dietary protein distribution to assess the effect on gains in lean mass during a rugby preseason. Twenty-four developing elite rugby athletes (age 20.1 ± 1.4 years, mass 101.6 ± 12.0 kg; M ± SD) were instructed to consume high biological value (HBV) protein at their main meals and immediately after resistance exercise while limiting protein intake between meals. To manipulate protein intake frequency, the athletes consumed 3 HBV liquid protein supplements (22 g protein) either with main meals (bolus condition) or between meals (frequent condition) for 6 weeks in a 2 × 2 crossover design. Dietary intake and change in lean mass values were compared between conditions by analysis of covariance and correlational analysis. The dietary manipulation successfully altered the protein distribution score (average number of eating occasions containing > 20 g of protein) to 4.0 ± 0.8 and 5.9 ± 0.7 (p rugby preseason. However, other dietary factors may have augmented adaptation.

  19. Identification of proteins in the postsynaptic density fraction by mass spectrometry

    DEFF Research Database (Denmark)

    Walikonis, R S; Jensen, Ole Nørregaard; Mann, M

    2000-01-01

    Our understanding of the organization of postsynaptic signaling systems at excitatory synapses has been aided by the identification of proteins in the postsynaptic density (PSD) fraction, a subcellular fraction enriched in structures with the morphology of PSDs. In this study, we have completed...... the identification of most major proteins in the PSD fraction with the use of an analytical method based on mass spectrometry coupled with searching of the protein sequence databases. At least one protein in each of 26 prominent protein bands from the PSD fraction has now been identified. We found 7 proteins...... not previously known to be constituents of the PSD fraction and 24 that had previously been associated with the PSD by other methods. The newly identified proteins include the heavy chain of myosin-Va (dilute myosin), a motor protein thought to be involved in vesicle trafficking, and the mammalian homolog...

  20. Investigation of Pokemon-regulated proteins in hepatocellular carcinoma using mass spectrometry-based multiplex quantitative proteomics.

    Science.gov (United States)

    Bi, Xin; Jin, Yibao; Gao, Xiang; Liu, Feng; Gao, Dan; Jiang, Yuyang; Liu, Hongxia

    2013-01-01

    Pokemon is a transcription regulator involved in embryonic development, cellular differentiation and oncogenesis. It is aberrantly overexpressed in multiple human cancers including Hepatocellular carcinoma (HCC) and is considered as a promising biomarker for HCC. In this work, the isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomics strategy was used to investigate the proteomic profile associated with Pokemon in human HCC cell line QGY7703 and human hepatocyte line HL7702. Samples were labeled with four-plex iTRAQ reagents followed by two-dimensional liquid chromatography coupled with tandem mass spectrometry analysis. A total of 24 differentially expressed proteins were selected as significant. Nine proteins were potentially up-regulated by Pokemon while 15 proteins were potentially down-regulated and many proteins were previously identified as potential biomarkers for HCC. Gene ontology (GO) term enrichment revealed that the listed proteins were mainly involved in DNA metabolism and biosynthesis process. The changes of glucose-6-phosphate 1-dehydrogenase (G6PD, up-regulated) and ribonucleoside-diphosphate reductase large sub-unit (RIM1, down-regulated) were validated by Western blotting analysis and denoted as Pokemon's function of oncogenesis. We also found that Pokemon potentially repressed the expression of highly clustered proteins (MCM3, MCM5, MCM6, MCM7) which played key roles in promoting DNA replication. Altogether, our results may help better understand the role of Pokemon in HCC and promote the clinical applications.

  1. Protein needs in athletes and dietary-nutrition guidelines to gain muscle mass

    Directory of Open Access Journals (Sweden)

    Aritz Urdampilleta

    2014-05-01

    Full Text Available One of the most important effects of strength training is muscular hypertrophy. Athletes should optimize their nutritional management in order to compensate their own genetic limitations. The aim of this review is to analyze the scientific evidence concerning protein intake as a tool to achieve muscle hypertrophy. Depending on the expenditure and energy intake of athlete, a daily protein ranging between 10-15% of total dietary intake is needed. However in sports diets, it is preferable to estimate the amount of protein needed per kilogram of body weight in each individual. In this regard athletes should ingest an amount between 1.2 g and 1.8 g of proteins/kg of body mass/day to maintain their lean mass. In order to increase muscle mass (0.5 kg/week, athletes should take between 1.6 g and 1.8 g of protein/kg/day with an increase of 400-500 kcal in their daily diet. These needs will depend on the sport, muscular catabolic status, the athlete’s lean mass and glycogen stores. Protein needs will increase if muscle and liver glycogen stores are empty. Excess of protein intake (more than 2 g/kg/day, with full glycogen stores, does not benefit the athlete and could cause an increase in circulating ketones and urea, thereby producing an early dehydration.

  2. Mass sensitivity calculation of the protein layer using love wave SAW biosensor.

    Science.gov (United States)

    Lee, Sangdae; Kim, Ki Bok; Il Kim, Yong

    2012-07-01

    Love waves, a variety of surface acoustic waves (SAWs), can be used to detect very small biological surface interactions and so have a wide range of potential applications. To demonstrate the practicality of a Love wave SAW biosensor, we fabricated a 155-MHz Love wave SAW biosensor and compared it with a commercial surface Plasmon resonance (SPR) using glycerol-water solution with known densities and viscosities to calibrate the response signals of the biosensors. And the mass per unit area of anti-mouse IgG bound with protein G onto the sensitive layer of the biosensor was calculated on the basis of the calibration result. The sensitivity of the Love wave SAW biosensor was the same as or greater than that of the SPR biosensor. Furthermore, the Love wave SAW biosensor was capable of measuring a much wider range of viscosities than the SPR biosensor. Although the operating principle of the Love wave SAW biosensor is completely different from that of the SPR biosensor, the subtle changes in the viscoelastic properties of the biological layer that accompany biological binding reactions on the sensitive layer can be monitored and measured in the same ways as with the SPR biosensor.

  3. Microwave-assisted acid and base hydrolysis of intact proteins containing disulfide bonds for protein sequence analysis by mass spectrometry.

    Science.gov (United States)

    Reiz, Bela; Li, Liang

    2010-09-01

    Controlled hydrolysis of proteins to generate peptide ladders combined with mass spectrometric analysis of the resultant peptides can be used for protein sequencing. In this paper, two methods of improving the microwave-assisted protein hydrolysis process are described to enable rapid sequencing of proteins containing disulfide bonds and increase sequence coverage, respectively. It was demonstrated that proteins containing disulfide bonds could be sequenced by MS analysis by first performing hydrolysis for less than 2 min, followed by 1 h of reduction to release the peptides originally linked by disulfide bonds. It was shown that a strong base could be used as a catalyst for microwave-assisted protein hydrolysis, producing complementary sequence information to that generated by microwave-assisted acid hydrolysis. However, using either acid or base hydrolysis, amide bond breakages in small regions of the polypeptide chains of the model proteins (e.g., cytochrome c and lysozyme) were not detected. Dynamic light scattering measurement of the proteins solubilized in an acid or base indicated that protein-protein interaction or aggregation was not the cause of the failure to hydrolyze certain amide bonds. It was speculated that there were some unknown local structures that might play a role in preventing an acid or base from reacting with the peptide bonds therein.

  4. Interrogating the architecture of protein assemblies and protein interaction networks by cross-linking mass spectrometry

    NARCIS (Netherlands)

    Liu, Fan; Heck, Albert J R

    2015-01-01

    Proteins are involved in almost all processes of the living cell. They are organized through extensive networks of interaction, by tightly bound macromolecular assemblies or more transiently via signaling nodes. Therefore, revealing the architecture of protein complexes and protein interaction netwo

  5. CORRELATION BETWEEN THE DAMPING FACTOR PER UNIT MASS AND THE FREE LENGTH FOR COMPOSITE SANDWICH BARS. EXPERIMENTAL INVESTIGATIONS

    Directory of Open Access Journals (Sweden)

    Cristian-Oliviu BURADA

    2015-05-01

    Full Text Available In this paper we have build some composite sandwich bars in this way: the core is made with polypropylene honeycomb (its thickness is 10, 15 and 20 mm reinforced with 1 layer of carbon fiber (on the sample upper and lower sides. For these samples we have determined, by experimental means, the damping factor per unit mass and per unit length. Then, by using the regression analysis, we have established correlations between the damping factor per unit mass and the bars free length. In order to obtain these correlations, we have considered the next free lengths of the bars: 200, 230, 260, 290, 320, 350.

  6. Ion Mobility-Mass Spectrometry Differentiates Protein Quaternary Structures Formed in Solution and in Electrospray Droplets.

    Science.gov (United States)

    Han, Linjie; Ruotolo, Brandon T

    2015-07-01

    Electrospray ionization coupled to mass spectrometry is a key technology for determining the stoichiometries of multiprotein complexes. Despite highly accurate results for many assemblies, challenging samples can generate signals for artifact protein-protein binding born of the crowding forces present within drying electrospray droplets. Here, for the first time, we study the formation of preferred protein quaternary structures within such rapidly evaporating nanodroplets. We use ion mobility and tandem mass spectrometry to investigate glutamate dehydrogenase dodecamers and serum amyloid P decamers as a function of protein concentration, along with control experiments using carefully chosen protein analogues, to both establish the formation of operative mechanisms and assign the bimodal conformer populations observed. Further, we identify an unprecedented symmetric collision-induced dissociation pathway that we link directly to the quaternary structures of the precursor ions selected.

  7. Probing native protein structures by chemical cross-linking, mass spectrometry, and bioinformatics.

    Science.gov (United States)

    Leitner, Alexander; Walzthoeni, Thomas; Kahraman, Abdullah; Herzog, Franz; Rinner, Oliver; Beck, Martin; Aebersold, Ruedi

    2010-08-01

    Chemical cross-linking of reactive groups in native proteins and protein complexes in combination with the identification of cross-linked sites by mass spectrometry has been in use for more than a decade. Recent advances in instrumentation, cross-linking protocols, and analysis software have led to a renewed interest in this technique, which promises to provide important information about native protein structure and the topology of protein complexes. In this article, we discuss the critical steps of chemical cross-linking and its implications for (structural) biology: reagent design and cross-linking protocols, separation and mass spectrometric analysis of cross-linked samples, dedicated software for data analysis, and the use of cross-linking data for computational modeling. Finally, the impact of protein cross-linking on various biological disciplines is highlighted.

  8. Glucagon-like peptide-1 receptor agonists increase pancreatic mass by induction of protein synthesis.

    Science.gov (United States)

    Koehler, Jacqueline A; Baggio, Laurie L; Cao, Xiemin; Abdulla, Tahmid; Campbell, Jonathan E; Secher, Thomas; Jelsing, Jacob; Larsen, Brett; Drucker, Daniel J

    2015-03-01

    Glucagon-like peptide-1 (GLP-1) controls glucose homeostasis by regulating secretion of insulin and glucagon through a single GLP-1 receptor (GLP-1R). GLP-1R agonists also increase pancreatic weight in some preclinical studies through poorly understood mechanisms. Here we demonstrate that the increase in pancreatic weight following activation of GLP-1R signaling in mice reflects an increase in acinar cell mass, without changes in ductal compartments or β-cell mass. GLP-1R agonists did not increase pancreatic DNA content or the number of Ki67(+) cells in the exocrine compartment; however, pancreatic protein content was increased in mice treated with exendin-4 or liraglutide. The increased pancreatic mass and protein content was independent of cholecystokinin receptors, associated with a rapid increase in S6 phosphorylation, and mediated through the GLP-1R. Rapamycin abrogated the GLP-1R-dependent increase in pancreatic mass but had no effect on the robust induction of Reg3α and Reg3β gene expression. Mass spectrometry analysis identified GLP-1R-dependent upregulation of Reg family members, as well as proteins important for translation and export, including Fam129a, eIF4a1, Wars, and Dmbt1. Hence, pharmacological GLP-1R activation induces protein synthesis, leading to increased pancreatic mass, independent of changes in DNA content or cell proliferation in mice.

  9. Investigation of Ion Transmission Effects on Intact Protein Quantification in a Triple Quadrupole Mass Spectrometer

    Science.gov (United States)

    Wang, Evelyn H.; Appulage, Dananjaya Kalu; McAllister, Erin A.; Schug, Kevin A.

    2017-09-01

    Recently, direct intact protein quantitation using triple quadrupole mass spectrometry (QqQ-MS) and multiple reaction monitoring (MRM) was demonstrated (J. Am. Soc. Mass Spectrom. 27, 886-896 (2016)). Even though QqQ-MS is known to provide extraordinary detection sensitivity for quantitative analysis, we found that intact proteins exhibited a less than 5% ion transmission from the first quadrupole to the third quadrupole mass analyzer in the presence of zero collision energy (ZCE). With the goal to enhance intact protein quantitation sensitivity, ion scattering effects, proton transfer effects, and mass filter resolution widths were examined for their contributions to the lost signal. Protein standards myoglobin and ubiquitin along with small molecules reserpine and vancomycin were analyzed together with various collision induced dissociation (CID) gases (N2, He, and Ar) at different gas pressures. Mass resolution settings played a significant role in reducing ion transmission signal. By narrowing the mass resolution window by 0.35 m/z on each side, roughly 75%-90% of the ion signal was lost. The multiply charged proteins experienced additional proton transfer effects, corresponding to 10-fold signal reduction. A study of increased sensitivity of the method was also conducted with various MRM summation techniques. Although the degree of enhancement was analyte-dependent, an up to 17-fold increase in sensitivity was observed for ubiquitin using a summation of multiple MRM transitions. Biological matrix, human urine, and equine plasma were spiked with proteins to demonstrate the specificity of the method. This study provides additional insight into optimizing the use and sensitivity of QqQ-MS for intact protein quantification. [Figure not available: see fulltext.

  10. Screening of the binding of small molecules to proteins by desorption electrospray ionization mass spectrometry combined with protein microarray.

    Science.gov (United States)

    Yao, Chenxi; Wang, Tao; Zhang, Buqing; He, Dacheng; Na, Na; Ouyang, Jin

    2015-11-01

    The interaction between bioactive small molecule ligands and proteins is one of the important research areas in proteomics. Herein, a simple and rapid method is established to screen small ligands that bind to proteins. We designed an agarose slide to immobilize different proteins. The protein microarrays were allowed to interact with different small ligands, and after washing, the microarrays were screened by desorption electrospray ionization mass spectrometry (DESI MS). This method can be applied to screen specific protein binding ligands and was shown for seven proteins and 34 known ligands for these proteins. In addition, a high-throughput screening was achieved, with the analysis requiring approximately 4 s for one sample spot. We then applied this method to determine the binding between the important protein matrix metalloproteinase-9 (MMP-9) and 88 small compounds. The molecular docking results confirmed the MS results, demonstrating that this method is suitable for the rapid and accurate screening of ligands binding to proteins. Graphical Abstract ᅟ.

  11. Analysis of protein-nucleic acid interactions by photochemical cross-linking and mass spectrometry

    DEFF Research Database (Denmark)

    Steen, Hanno; Jensen, Ole Nørregaard

    2002-01-01

    Photochemical cross-linking is a commonly used method for studying the molecular details of protein-nucleic acid interactions. Photochemical cross-linking aids in defining nucleic acid binding sites of proteins via subsequent identification of cross-linked protein domains and amino acid residues....... Mass spectrometry (MS) has emerged as a sensitive and efficient analytical technique for determination of such cross-linking sites in proteins. The present review of the field describes a number of MS-based approaches for the characterization of cross-linked protein-nucleic acid complexes...... and for sequencing of peptide-nucleic acid heteroconjugates. The combination of photochemical cross-linking and MS provides a fast screening method to gain insights into the overall structure and formation of protein-oligonucleotide complexes. Because the analytical methods are continuously refined and protein...

  12. Application of mass spectrometry-based proteomics techniques for the detection of protein doping in sports.

    Science.gov (United States)

    Kay, Richard G; Creaser, Colin S

    2010-04-01

    Mass spectrometry-based proteomic approaches have been used to develop methodologies capable of detecting the abuse of protein therapeutics such as recombinant human erythropoietin and recombinant human growth hormone. Existing detection methods use antibody-based approaches that, although effective, suffer from long assay development times and specificity issues. The application of liquid chromatography with tandem mass spectrometry and selected reaction-monitoring-based analysis has demonstrated the ability to detect and quantify existing protein therapeutics in plasma. Furthermore, the multiplexing capability of selected reaction-monitoring analysis has also aided in the detection of multiple downstream biomarkers in a single analysis, requiring less sample than existing immunological techniques. The flexibility of mass spectrometric instrumentation has shown that the technique is capable of detecting the abuse of novel and existing protein therapeutics, and has a vital role in the fight to keep sports drug-free.

  13. Characterization of Plasma Membrane Proteins from Ovarian Cancer Cells Using Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    David L. Springer

    2004-01-01

    Full Text Available To determine how the repertoire of plasma membrane proteins change with disease state, specifically related to cancer, several methods for preparation of plasma membrane proteins were evaluated. Cultured cells derived from stage IV ovarian tumors were grown to 90% confluence and harvested in buffer containing CHAPS detergent. This preparation was centrifuged at low speed to remove insoluble cellular debris resulting in a crude homogenate. Glycosylated proteins in the crude homogenate were selectively enriched using lectin affinity chromatography. The crude homogenate and the lectin purified sample were prepared for mass spectrometric evaluation. The general procedure for protein identification began with trypsin digestion of protein fractions followed by separation by reversed phase liquid chromatography that was coupled directly to a conventional tandem mass spectrometer (i.e. LCQ ion trap. Mass and fragmentation data for the peptides were searched against a human proteome data base using the informatics program SEQUEST. Using this procedure 398 proteins were identified with high confidence, including receptors, membrane-associated ligands, proteases, phosphatases, as well as structural and adhesion proteins. Results indicate that lectin chromatography provides a select subset of proteins and that the number and quality of the identifications improve as does the confidence of the protein identifications for this subset. These results represent the first step in development of methods to separate and successfully identify plasma membrane proteins from advanced ovarian cancer cells. Further characterization of plasma membrane proteins will contribute to our understanding of the mechanisms underlying progression of this deadly disease and may lead to new targeted interventions as well as new biomarkers for diagnosis.

  14. An improved quantitative mass spectrometry analysis of tumor specific mutant proteins at high sensitivity.

    Science.gov (United States)

    Ruppen-Cañás, Isabel; López-Casas, Pedro P; García, Fernando; Ximénez-Embún, Pilar; Muñoz, Manuel; Morelli, M Pia; Real, Francisco X; Serna, Antonio; Hidalgo, Manuel; Ashman, Keith

    2012-05-01

    New disease specific biomarkers, especially for cancer, are urgently needed to improve individual diagnosis, prognosis, and treatment selection, that is, for personalized medicine. Genetic mutations that affect protein function drive cancer. Therefore, the detection of such mutations represents a source of cancer specific biomarkers. Here we confirm the implementation of the mutant protein specific immuno-SRM (where SRM is selective reaction monitoring) mass spectrometry method of RAS proteins reported by Wang et al. [Proc. Natl. Acad. Sci. USA 2011, 108, 2444-2449], which exploits an antibody to simultaneously capture the different forms of the target protein and the resolving power and sensitivity of LC-MS/MS and improve the technique by using a more sensitive mass spectrometer. The mutant form G12D was quantified by SRM on a QTRAP 5500 mass spectrometer and the MIDAS workflow was used to confirm the sequence of the targeted peptides. This assay has been applied to quantify wild type and mutant RAS proteins in patient tumors, xenografted human tissue, and benign human epidermal tumors at high sensitivity. The limit of detection for the target proteins was as low as 12 amol (0.25 pg). It requires low starting amounts of tissue (ca.15 mg) that could be obtained from a needle aspiration biopsy. The described strategy could find application in the clinical arena and be applied to the study of expression of protein variants in disease.

  15. Profiling of integral membrane proteins and their post translational modifications using high-resolution mass spectrometry

    Science.gov (United States)

    Souda, Puneet; Ryan, Christopher M.; Cramer, William A.; Whitelegge, Julian

    2011-01-01

    Integral membrane proteins pose challenges to traditional proteomics approaches due to unique physicochemical properties including hydrophobic transmembrane domains that limit solubility in aqueous solvents. A well resolved intact protein molecular mass profile defines a protein’s native covalent state including post-translational modifications, and is thus a vital measurement toward full structure determination. Both soluble loop regions and transmembrane regions potentially contain post-translational modifications that must be characterized if the covalent primary structure of a membrane protein is to be defined. This goal has been achieved using electrospray-ionization mass spectrometry (ESI-MS) with low-resolution mass analyzers for intact protein profiling, and high-resolution instruments for top-down experiments, toward complete covalent primary structure information. In top-down, the intact protein profile is supplemented by gas-phase fragmentation of the intact protein, including its transmembrane regions, using collisionally activated and/or electroncapture dissociation (CAD/ECD) to yield sequence-dependent high-resolution MS information. Dedicated liquid chromatography systems with aqueous/organic solvent mixtures were developed allowing us to demonstrate that polytopic integral membrane proteins are amenable to ESI-MS analysis, including top-down measurements. Covalent post-translational modifications are localized regardless of their position in transmembrane domains. Top-down measurements provide a more detail oriented high-resolution description of post-transcriptional and post-translational diversity for enhanced understanding beyond genomic translation. PMID:21982782

  16. Mass spectrometric analysis of 40 S ribosomal proteins from Rat-1 fibroblasts.

    Science.gov (United States)

    Louie, D F; Resing, K A; Lewis, T S; Ahn, N G

    1996-11-01

    Although sequences of most mammalian ribosomal proteins are available, little is known about the post-translational processing of ribosomal proteins. To examine their post-translational modifications, 40 S subunit proteins purified from Rat-1 fibroblasts and their peptides were analyzed by liquid chromatography coupled with electrospray mass spectrometry. Of 41 proteins observed, 36 corresponded to the 32 rat 40 S ribosomal proteins with known sequences (S3, S5, S7, and S24 presented in two forms). The observed masses of S4, S6-S8, S13, S15a, S16, S17, S19, S27a, S29, and S30 matched those predicted. Sa, S3a, S5, S11, S15, S18, S20, S21, S24, S26-S28, and an S7 variant showed changes in mass that were consistent with N-terminal demethionylation and/or acetylation (S5 and S27 also appeared to be internally formylated and acetylated, respectively). S23 appeared to be internally hydroxylated or methylated. S2, S3, S9, S10, S12, S14, and S25 showed changes in mass inconsistent with known covalent modifications (+220, -75, +86, +56, -100, -117, and -103 Da, respectively), possibly representing novel post-translational modifications or allelic sequence variation. Five unidentified proteins (12,084, 13,706, 13,741, 13,884, and 34, 987 Da) were observed; for one, a sequence tag (PPGPPP), absent in any known ribosomal proteins, was determined, suggesting that it is a previously undescribed ribosome-associated protein. This study establishes a powerful method to rapidly analyze protein components of large biological complexes and their covalent modifications.

  17. Developments in mass spectrometry for the analysis of complex protein mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Khalsa-Moyers, Gurusahai K [ORNL; McDonald, W Hayes [ORNL

    2006-01-01

    State-of-the-art proteomics workflows involve multiple interdependent steps: sample preparation, protein peptide separation, mass spectrometry and data analysis.While improvements in any of these steps can increase the depth and breadth of analysis, advances in mass spectrometry have catalysed many of the most important developments. We discuss common classes of mass analysers and how these analysers are put together to produce some of the most popular mass spectrometry platforms.The capabilities of these platforms determine how they can be used in a variety of common proteomic strategies and, in turn, what types of biological questions can be addressed. Moving forward, powerful new hybridmass spectrometers and application of emerging types of tandemmass spectrometry promise that our ability to analyse complex mixtures of proteins will continue to advance.

  18. Unusual Fragmentation of Peptide and Protein in Matrix-assisted Laser Desorption/Ionization Mass Spectrometry

    Institute of Scientific and Technical Information of China (English)

    Mitsuo Takayama

    2001-01-01

    Unusual amine - bond fragmentation on the peptide/protein backbone has been reported using matrix - assisted laser desorption/ionization time - of- flight mass spectrometry (MALDI - TOFMS)The amine - bond cleavage occurred without metastable decay, while the peptide - bond cleavage occurred with metastable decay of peptide ions in a drift region of TOF mass analyzer. It was presumed that the amine - bond cleavage occurred as a non - ergodic process independent of the ionization under MALDI conditions.

  19. On-tissue protein identification and imaging by MALDI-ion mobility mass spectrometry.

    Science.gov (United States)

    Stauber, Jonathan; MacAleese, Luke; Franck, Julien; Claude, Emmanuelle; Snel, Marten; Kaletas, Basak Kükrer; Wiel, Ingrid M V D; Wisztorski, Maxence; Fournier, Isabelle; Heeren, Ron M A

    2010-03-01

    MALDI imaging mass spectrometry (MALDI-IMS) has become a powerful tool for the detection and localization of drugs, proteins, and lipids on-tissue. Nevertheless, this approach can only perform identification of low mass molecules as lipids, pharmaceuticals, and peptides. In this article, a combination of approaches for the detection and imaging of proteins and their identification directly on-tissue is described after tryptic digestion. Enzymatic digestion protocols for different kinds of tissues--formalin fixed paraffin embedded (FFPE) and frozen tissues--are combined with MALDI-ion mobility mass spectrometry (IM-MS). This combination enables localization and identification of proteins via their related digested peptides. In a number of cases, ion mobility separates isobaric ions that cannot be identified by conventional MALDI time-of-flight (TOF) mass spectrometry. The amount of detected peaks per measurement increases (versus conventional MALDI-TOF), which enables mass and time selected ion images and the identification of separated ions. These experiments demonstrate the feasibility of direct proteins identification by ion-mobility-TOF IMS from tissue. The tissue digestion combined with MALDI-IM-TOF-IMS approach allows a proteomics "bottom-up" strategy with different kinds of tissue samples, especially FFPE tissues conserved for a long time in hospital sample banks. The combination of IM with IMS marks the development of IMS approaches as real proteomic tools, which brings new perspectives to biological studies.

  20. Protein sequences from mastodon and Tyrannosaurus rex revealed by mass spectrometry.

    Science.gov (United States)

    Asara, John M; Schweitzer, Mary H; Freimark, Lisa M; Phillips, Matthew; Cantley, Lewis C

    2007-04-13

    Fossilized bones from extinct taxa harbor the potential for obtaining protein or DNA sequences that could reveal evolutionary links to extant species. We used mass spectrometry to obtain protein sequences from bones of a 160,000- to 600,000-year-old extinct mastodon (Mammut americanum) and a 68-million-year-old dinosaur (Tyrannosaurus rex). The presence of T. rex sequences indicates that their peptide bonds were remarkably stable. Mass spectrometry can thus be used to determine unique sequences from ancient organisms from peptide fragmentation patterns, a valuable tool to study the evolution and adaptation of ancient taxa from which genomic sequences are unlikely to be obtained.

  1. Methods for protein characterization by mass spectrometry, thermal shift (ThermoFluor) assay, and multiangle or static light scattering

    NARCIS (Netherlands)

    Nettleship, Joanne E; Brown, James; Groves, Matthew R; Geerlof, Arie

    2008-01-01

    Mass spectrometry (MS) is widely used within structural and functional proteomics for a variety of tasks including protein quality assessment, identification, and characterization. MS is used routinely for the determination of the total mass of proteins, including N-glycosylated proteins, analysis o

  2. Mechanism of simultaneously refolding and purification of proteins by hydrophobic interaction chromatographic unit and applications

    Institute of Scientific and Technical Information of China (English)

    GENG; Xindu(耿信笃); BAI; Quan(白泉)

    2002-01-01

    The hydrophobic amino acid residues of a denatured protein molecule tend to react with the particles of the stationary phase of hydrophobic interaction chromatography (STHIC). These hydrophobic interactions prevent the denatured protein molecules from aggregating with each other. The STHIC can provide high enough energy to a denatured protein molecule to make it dehydration and to refold it into its native or various intermediate states. The outcome not only depends on the specific interactions between amino acids, the structure of STHIC, but also depends on the association between the STHIC and mobile phase. The mechanism of protein refolding and the principle of its quality control by HPHIC were also presented. By appropriate selection of the chromatographic condition, several denatured proteins can be refolded and separated simultaneously in a single chromatographic run. A specially designed unit, with diameter much larger than its length, was designed and employed for both laboratory and preparative scales. That unit for the simultaneous renaturation and purification of proteins (USRPP) had the following four functions: to completely remove denaturant, to renature proteins, to separate renatured proteins from impurities, and to easily recycle waste denaturant. The efficiencies of refolding and purification of proteins by the USRPP are almost comparable to a usual long chromatographic column in laboratory. In preparative scale, USRPP can be easily, rapidly, and economically applied requiring a low pressure gradient. As an example, recombinant human interferon-? is employed to elucidate the application of the preparative USRPP.

  3. Reproducibility of mass spectrometry based protein profiles for diagnosis of breast cancer across clinical studies

    DEFF Research Database (Denmark)

    Callesen, Anne Kjærgaard; Vach, Werner; Jørgensen, Per E;

    2008-01-01

    Serum protein profiling by mass spectrometry has achieved attention as a promising technology in oncoproteomics. We performed a systematic review of published reports on protein profiling as a diagnostic tool for breast cancer. The MEDLINE, EMBASE, and COCHRANE databases were searched for original...... studies reporting discriminatory protein peaks for breast cancer as either protein identity or as m/ z values in the period from January 1995 to October 2006. To address the important aspect of reproducibility of mass spectrometry data across different clinical studies, we compared the published lists....... Although the studies revealed a considerable heterogeneity in relation to experimental design, biological variation, preanalytical conditions, methods of computational data analysis, and analytical reproducibility of profiles, we found that 45% of peaks previously reported to correlate with breast cancer...

  4. Protein hydrogen exchange measured at single-residue resolution by electron transfer dissociation mass spectrometry

    DEFF Research Database (Denmark)

    Rand, Kasper D; Zehl, Martin; Jensen, Ole Nørregaard

    2009-01-01

    Because of unparalleled sensitivity and tolerance to protein size, mass spectrometry (MS) has become a popular method for measuring the solution hydrogen (1H/2H) exchange (HX) of biologically relevant protein states. While incorporated deuterium can be localized to different regions by pepsin...... the HX of individual amide linkages in the amyloidogenic protein beta2-microglobulin. A comparison of the deuterium levels of 60 individual backbone amides of beta2-microglobulin measured by HX-ETD-MS analysis to the corresponding values measured by NMR spectroscopy shows an excellent correlation......-phase hydrogen (1H/2H) migration (i.e., hydrogen scrambling). This article demonstrates that ETD can be implemented in a mass spectrometric method to monitor the conformational dynamics of proteins in solution at single-residue resolution....

  5. Mass spectrometric identification of proteins that interact through specific domains of the poly(A) binding protein.

    Science.gov (United States)

    Richardson, Roy; Denis, Clyde L; Zhang, Chongxu; Nielsen, Maria E O; Chiang, Yueh-Chin; Kierkegaard, Morten; Wang, Xin; Lee, Darren J; Andersen, Jens S; Yao, Gang

    2012-09-01

    Poly(A) binding protein (PAB1) is involved in a number of RNA metabolic functions in eukaryotic cells and correspondingly is suggested to associate with a number of proteins. We have used mass spectrometric analysis to identify 55 non-ribosomal proteins that specifically interact with PAB1 from Saccharomyces cerevisiae. Because many of these factors may associate only indirectly with PAB1 by being components of the PAB1-mRNP structure, we additionally conducted mass spectrometric analyses on seven metabolically defined PAB1 deletion derivatives to delimit the interactions between these proteins and PAB1. These latter analyses identified 13 proteins whose associations with PAB1 were reduced by deleting one or another of PAB1's defined domains. Included in this list of 13 proteins were the translation initiation factors eIF4G1 and eIF4G2, translation termination factor eRF3, and PBP2, all of whose previously known direct interactions with specific PAB1 domains were either confirmed, delimited, or extended. The remaining nine proteins that interacted through a specific PAB1 domain were CBF5, SLF1, UPF1, CBC1, SSD1, NOP77, yGR250c, NAB6, and GBP2. In further study, UPF1, involved in nonsense-mediated decay, was confirmed to interact with PAB1 through the RRM1 domain. We additionally established that while the RRM1 domain of PAB1 was required for UPF1-induced acceleration of deadenylation during nonsense-mediated decay, it was not required for the more critical step of acceleration of mRNA decapping. These results begin to identify the proteins most likely to interact with PAB1 and the domains of PAB1 through which these contacts are made.

  6. Identification of Methanococcus Jannaschii Proteins in 2-D Gel Electrophoresis Patterns by Mass Spectrometry

    Science.gov (United States)

    Liang, X.

    1998-06-10

    The genome of Methanococcus jannaschii has been sequenced completely and has been found to contain approximately 1,770 predicted protein-coding regions. When these coding regions are expressed and how their expression is regulated, however, remain open questions. In this work, mass spectrometry was combined with two-dimensional gel electrophoresis to identify which proteins the genes produce under different growth conditions, and thus investigate the regulation of genes responsible for functions characteristic of this thermophilic representative of the methanogenic Archaea.

  7. Multiple Reaction Monitoring for Direct Quantitation of Intact Proteins Using a Triple Quadrupole Mass Spectrometer.

    Science.gov (United States)

    Wang, Evelyn H; Combe, Peter C; Schug, Kevin A

    2016-05-01

    Methods that can efficiently and effectively quantify proteins are needed to support increasing demand in many bioanalytical fields. Triple quadrupole mass spectrometry (QQQ-MS) is sensitive and specific, and it is routinely used to quantify small molecules. However, low resolution fragmentation-dependent MS detection can pose inherent difficulties for intact proteins. In this research, we investigated variables that affect protein and fragment ion signals to enable protein quantitation using QQQ-MS. Collision induced dissociation gas pressure and collision energy were found to be the most crucial variables for optimization. Multiple reaction monitoring (MRM) transitions for seven standard proteins, including lysozyme, ubiquitin, cytochrome c from both equine and bovine, lactalbumin, myoglobin, and prostate-specific antigen (PSA) were determined. Assuming the eventual goal of applying such methodology is to analyze protein in biological fluids, a liquid chromatography method was developed. Calibration curves of six standard proteins (excluding PSA) were obtained to show the feasibility of intact protein quantification using QQQ-MS. Linearity (2-3 orders), limits of detection (0.5-50 μg/mL), accuracy (protein. Sensitivities for different proteins varied considerably. Biological fluids, including human urine, equine plasma, and bovine plasma were used to demonstrate the specificity of the approach. The purpose of this model study was to identify, study, and demonstrate the advantages and challenges for QQQ-MS-based intact protein quantitation, a largely underutilized approach to date.

  8. Multiple Reaction Monitoring for Direct Quantitation of Intact Proteins Using a Triple Quadrupole Mass Spectrometer

    Science.gov (United States)

    Wang, Evelyn H.; Combe, Peter C.; Schug, Kevin A.

    2016-05-01

    Methods that can efficiently and effectively quantify proteins are needed to support increasing demand in many bioanalytical fields. Triple quadrupole mass spectrometry (QQQ-MS) is sensitive and specific, and it is routinely used to quantify small molecules. However, low resolution fragmentation-dependent MS detection can pose inherent difficulties for intact proteins. In this research, we investigated variables that affect protein and fragment ion signals to enable protein quantitation using QQQ-MS. Collision induced dissociation gas pressure and collision energy were found to be the most crucial variables for optimization. Multiple reaction monitoring (MRM) transitions for seven standard proteins, including lysozyme, ubiquitin, cytochrome c from both equine and bovine, lactalbumin, myoglobin, and prostate-specific antigen (PSA) were determined. Assuming the eventual goal of applying such methodology is to analyze protein in biological fluids, a liquid chromatography method was developed. Calibration curves of six standard proteins (excluding PSA) were obtained to show the feasibility of intact protein quantification using QQQ-MS. Linearity (2-3 orders), limits of detection (0.5-50 μg/mL), accuracy (protein. Sensitivities for different proteins varied considerably. Biological fluids, including human urine, equine plasma, and bovine plasma were used to demonstrate the specificity of the approach. The purpose of this model study was to identify, study, and demonstrate the advantages and challenges for QQQ-MS-based intact protein quantitation, a largely underutilized approach to date.

  9. On-plate deposition of oxidized proteins to facilitate protein footprinting studies by radical probe mass spectrometry.

    Science.gov (United States)

    Maleknia, Simin D; Downard, Kevin M

    2012-10-15

    The on-plate deposition of oxidized proteins is described to advance footprinting applications by radical probe mass spectrometry (RP-MS). An electrospray ionization (ESI) needle assembly mounted vertically over a 384-target matrix-assisted laser desorption/ionization (MALDI) plate enabled the limited oxidation of proteins as they were released in the charged droplets ahead of their deposition on the plate. This method combined with on-plate proteolytic digestion protocols expedites the analysis of proteins oxidized by RP-MS, and avoids the need to collect and reconstitute samples prior to analysis by MALDI mass spectrometry. Oxidation of peptides from solutions in water as well as an ammonium bicarbonate solution was investigated to test the optimal conditions required for on-plate oxidation of proteins. These comprised of peptides with a wide range of reactive amino acids including Phe, Tyr, Pro, His, Leu, Met and Lys that were previously shown to oxidize in both electrospray discharge and synchrotron radiolysis based footprinting experiments. The on-plate deposition of lysozyme oxidized at electrospray needle voltages of 6 and 9 kV were carried out to demonstrate conditions suitable for footprinting experiments as well as those that induce the onset of protein damage.

  10. Mapping Protein-Ligand Interactions with Proteolytic Fragmentation, Hydrogen/Deuterium Exchange-Mass Spectrometry.

    Science.gov (United States)

    Gallagher, Elyssia S; Hudgens, Jeffrey W

    2016-01-01

    Biological processes are the result of noncovalent, protein-ligand interactions, where the ligands range from small organic and inorganic molecules to lipids, nucleic acids, peptides, and proteins. Amide groups within proteins constantly exchange protons with water. When immersed in heavy water (D2O), mass spectrometry (MS) can measure the change of mass associated with the hydrogen to deuterium exchange (HDX). Protein-ligand interactions modify the hydrogen exchange rates of amide protons, and the measurement of the amide exchange rates can provide rich information regarding the dynamical structure of the protein-ligand complex. This chapter describes a protocol for conducting bottom-up, continuous uptake, proteolytic fragmentation HDX-MS experiments that can help identify and map the interacting peptides of a protein-ligand interface. This tutorial outlines the fundamental theory governing hydrogen exchange; provides practical information regarding the preparation of protein samples and solutions; and describes the exchange reaction, reaction quenching, enzymatic digestion, chromatographic separation, and peptide analysis by MS. Tables list representative combinations of fluidic components used by HDX-MS researchers and summarize the available HDX-MS analysis software packages. Additionally, two HDX-MS case studies are used to illustrate protein-ligand interactions involving: (1) a continuous sequence of interacting residues and (2) a set of discontinuously numbered residues, residing spatially near each other.

  11. Mass Spectrometry-Based Methods for Identifying Oxidized Proteins in Disease: Advances and Challenges

    Directory of Open Access Journals (Sweden)

    Ivan Verrastro

    2015-04-01

    Full Text Available Many inflammatory diseases have an oxidative aetiology, which leads to oxidative damage to biomolecules, including proteins. It is now increasingly recognized that oxidative post-translational modifications (oxPTMs of proteins affect cell signalling and behaviour, and can contribute to pathology. Moreover, oxidized proteins have potential as biomarkers for inflammatory diseases. Although many assays for generic protein oxidation and breakdown products of protein oxidation are available, only advanced tandem mass spectrometry approaches have the power to localize specific oxPTMs in identified proteins. While much work has been carried out using untargeted or discovery mass spectrometry approaches, identification of oxPTMs in disease has benefitted from the development of sophisticated targeted or semi-targeted scanning routines, combined with chemical labeling and enrichment approaches. Nevertheless, many potential pitfalls exist which can result in incorrect identifications. This review explains the limitations, advantages and challenges of all of these approaches to detecting oxidatively modified proteins, and provides an update on recent literature in which they have been used to detect and quantify protein oxidation in disease.

  12. Imaging of Proteins in Tissue Samples Using Nanospray Desorption Electrospray Ionization Mass Spectrometry.

    Science.gov (United States)

    Hsu, Cheng-Chih; Chou, Pi-Tai; Zare, Richard N

    2015-11-17

    Chemical maps of tissue samples provide important information on biological processes therein. Recently, advances in tissue imaging have been achieved using ambient ionization techniques, such as desorption electrospray ionization mass spectrometry (DESI-MS), but such techniques have been almost exclusively confined to the mapping of lipids and metabolites. We report here the use of nanospray desorption electrospray ionization (nanoDESI) that allows us to image proteins in tissue samples in a label-free manner at atmospheric pressure with only minimum sample preparation. Multiply charged proteins with masses up to 15 kDa were successfully detected by nanoDESI using an LTQ Orbitrap mass spectrometer. In an adult mice brain section, expression of proteins including ubiquitin, β-thymosin, myelin basic protein, and hemoglobin were spatially mapped and characterized. We also determined the location of methylation on myelin basic protein. This imaging modality was further implemented to MYC-induced lymphomas. We observed an array of truncated proteins in the region where normal thymus cells were infiltrated by tumor cells, in contrast to healthy tissue.

  13. Protein turnover measurement using selected reaction monitoring-mass spectrometry (SRM-MS).

    Science.gov (United States)

    Holman, Stephen W; Hammond, Dean E; Simpson, Deborah M; Waters, John; Hurst, Jane L; Beynon, Robert J

    2016-10-28

    Protein turnover represents an important mechanism in the functioning of cells, with deregulated synthesis and degradation of proteins implicated in many diseased states. Therefore, proteomics strategies to measure turnover rates with high confidence are of vital importance to understanding many biological processes. In this study, the more widely used approach of non-targeted precursor ion signal intensity (MS1) quantification is compared with selected reaction monitoring (SRM), a data acquisition strategy that records data for specific peptides, to determine if improved quantitative data would be obtained using a targeted quantification approach. Using mouse liver as a model system, turnover measurement of four tricarboxylic acid cycle proteins was performed using both MS1 and SRM quantification strategies. SRM outperformed MS1 in terms of sensitivity and selectivity of measurement, allowing more confident determination of protein turnover rates. SRM data are acquired using cheaper and more widely available tandem quadrupole mass spectrometers, making the approach accessible to a larger number of researchers than MS1 quantification, which is best performed on high mass resolution instruments. SRM acquisition is ideally suited to focused studies where the turnover of tens of proteins is measured, making it applicable in determining the dynamics of proteins complexes and complete metabolic pathways.This article is part of the themed issue 'Quantitative mass spectrometry'.

  14. Determination of protein-ligand interactions using accelerator mass spectrometry: modified crosslinking assay.

    Science.gov (United States)

    Hah, Sang Soo

    2009-05-01

    A highly sensitive detection method for the determination of protein-ligand interactions has been developed. Radiocarbon-labeled 17beta-estradiol was incubated with estrogen receptor-alpha; as a selective binding partner, and covalently attached using crosslinking agents, to form covalently linked protein-ligand complexes. After separation using a denaturing gel, the (14)C content in the sliced gels was identified by accelerator mass spectrometry. The obtained data demonstrated specific binding of the small molecule to its binding partner. In theory, this method can be applied to most protein-ligand interaction studies.

  15. Protein Quantification by Elemental Mass Spectrometry: An Experiment for Graduate Students

    Science.gov (United States)

    Schwarz, Gunnar; Ickert, Stefanie; Wegner, Nina; Nehring, Andreas; Beck, Sebastian; Tiemann, Ruediger; Linscheid, Michael W.

    2014-01-01

    A multiday laboratory experiment was designed to integrate inductively coupled plasma-mass spectrometry (ICP-MS) in the context of protein quantification into an advanced practical course in analytical and environmental chemistry. Graduate students were familiar with the analytical methods employed, whereas the combination of bioanalytical assays…

  16. ACYLTRANSFERASE ACTIVITIES OF THE HIGH-MOLECULAR-MASS ESSENTIAL PENICILLIN-BINDING PROTEINS

    NARCIS (Netherlands)

    ADAM, M; DAMBLON, C; JAMIN, M; ZORZI, W; DUSART, [No Value; GALLENI, M; ELKHARROUBI, A; PIRAS, G; SPRATT, BG; KECK, W; COYETTE, J; GHUYSEN, JM; NGUYENDISTECHE, M; FRERE, JM

    1991-01-01

    The high-molecular-mass penicillin-binding proteins (HMM-PBPs), present in the cytoplasmic membranes of all eubacteria, are involved in important physiological events such as cell elongation, septation or shape determination. Up to now it has, however, been very difficult or impossible to study the

  17. Health issues of whey proteins: 1. Protection of lean body mass

    NARCIS (Netherlands)

    Schaafsma, G.

    2006-01-01

    Loss of muscle mass as a consequence of changes in protein metabolism during periods of catabolic stress is a serious complication in a variety of conditions. These conditions are weight loss programs, sarcopenia in the elderly and several clinical states. It appears from many studies that improved

  18. Feasibility of nonvolatile buffers in capillary electrophoresis-electrospray ionization-mass spectrometry of proteins

    NARCIS (Netherlands)

    Eriksson, Jonas H.C.; Mol, Roelof; Somsen, Govert W.; Hinrichs, Wouter L.J.; Frijlink, Henderik W.; de Jong, Gerhardus J.

    2004-01-01

    The combination of capillary electrophoresis (CE) and electrospray ionization-mass spectrometry (ESI-MS) via a triaxial interface was studied as a potential means for the characterization of intact proteins. To evaluate the possibility to use a nonvolatile electrolyte for CE, the effect of sodium ph

  19. Electrochemical reduction of disulfide-containing proteins for hydrogen/deuterium exchange monitored by mass spectrometry

    DEFF Research Database (Denmark)

    Mysling, Simon; Salbo, Rune; Ploug, Michael

    2014-01-01

    Characterization of disulfide bond-containing proteins by hydrogen/deuterium exchange monitored by mass spectrometry (HDX-MS) requires reduction of the disulfide bonds under acidic and cold conditions, where the amide hydrogen exchange reaction is quenched (pH 2.5, 0 °C). The reduction typically ...

  20. Feasibility of nonvolatile buffers in capillary electrophoresis-electrospray ionization-mass spectrometry of proteins

    NARCIS (Netherlands)

    Eriksson, Jonas H.C.; Mol, Roelof; Somsen, Govert W.; Hinrichs, Wouter L.J.; Frijlink, Henderik W.; de Jong, Gerhardus J.

    2004-01-01

    The combination of capillary electrophoresis (CE) and electrospray ionization-mass spectrometry (ESI-MS) via a triaxial interface was studied as a potential means for the characterization of intact proteins. To evaluate the possibility to use a nonvolatile electrolyte for CE, the effect of sodium ph

  1. Examination and Manipulation of Protein Surface Charge in Solution with Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Gross, Deborah S.; Van Ryswyk, Hal

    2014-01-01

    Electrospray ionization mass spectrometry (ESI-MS) is a powerful tool for examining the charge of proteins in solution. The charge can be manipulated through choice of solvent and pH. Furthermore, solution-accessible, protonated lysine side chains can be specifically tagged with 18-crown-6 ether to form noncovalent adducts. Chemical derivatization…

  2. Protein Quantification by Elemental Mass Spectrometry: An Experiment for Graduate Students

    Science.gov (United States)

    Schwarz, Gunnar; Ickert, Stefanie; Wegner, Nina; Nehring, Andreas; Beck, Sebastian; Tiemann, Ruediger; Linscheid, Michael W.

    2014-01-01

    A multiday laboratory experiment was designed to integrate inductively coupled plasma-mass spectrometry (ICP-MS) in the context of protein quantification into an advanced practical course in analytical and environmental chemistry. Graduate students were familiar with the analytical methods employed, whereas the combination of bioanalytical assays…

  3. Health issues of whey proteins: 1. Protection of lean body mass

    NARCIS (Netherlands)

    Schaafsma, G.

    2006-01-01

    Loss of muscle mass as a consequence of changes in protein metabolism during periods of catabolic stress is a serious complication in a variety of conditions. These conditions are weight loss programs, sarcopenia in the elderly and several clinical states. It appears from many studies that improved

  4. Examination and Manipulation of Protein Surface Charge in Solution with Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Gross, Deborah S.; Van Ryswyk, Hal

    2014-01-01

    Electrospray ionization mass spectrometry (ESI-MS) is a powerful tool for examining the charge of proteins in solution. The charge can be manipulated through choice of solvent and pH. Furthermore, solution-accessible, protonated lysine side chains can be specifically tagged with 18-crown-6 ether to form noncovalent adducts. Chemical derivatization…

  5. MAS C-Terminal Tail Interacting Proteins Identified by Mass Spectrometry- Based Proteomic Approach.

    Science.gov (United States)

    Tirupula, Kalyan C; Zhang, Dongmei; Osbourne, Appledene; Chatterjee, Arunachal; Desnoyer, Russ; Willard, Belinda; Karnik, Sadashiva S

    2015-01-01

    Propagation of signals from G protein-coupled receptors (GPCRs) in cells is primarily mediated by protein-protein interactions. MAS is a GPCR that was initially discovered as an oncogene and is now known to play an important role in cardiovascular physiology. Current literature suggests that MAS interacts with common heterotrimeric G-proteins, but MAS interaction with proteins which might mediate G protein-independent or atypical signaling is unknown. In this study we hypothesized that MAS C-terminal tail (Ct) is a major determinant of receptor-scaffold protein interactions mediating MAS signaling. Mass-spectrometry based proteomic analysis was used to comprehensively identify the proteins that interact with MAS Ct comprising the PDZ-binding motif (PDZ-BM). We identified both PDZ and non-PDZ proteins from human embryonic kidney cell line, mouse atrial cardiomyocyte cell line and human heart tissue to interact specifically with MAS Ct. For the first time our study provides a panel of PDZ and other proteins that potentially interact with MAS with high significance. A 'cardiac-specific finger print' of MAS interacting PDZ proteins was identified which includes DLG1, MAGI1 and SNTA. Cell based experiments with wild-type and mutant MAS lacking the PDZ-BM validated MAS interaction with PDZ proteins DLG1 and TJP2. Bioinformatics analysis suggested well-known multi-protein scaffold complexes involved in nitric oxide signaling (NOS), cell-cell signaling of neuromuscular junctions, synapses and epithelial cells. Majority of these protein hits were predicted to be part of disease categories comprising cancers and malignant tumors. We propose a 'MAS-signalosome' model to stimulate further research in understanding the molecular mechanism of MAS function. Identifying hierarchy of interactions of 'signalosome' components with MAS will be a necessary step in future to fully understand the physiological and pathological functions of this enigmatic receptor.

  6. Hydrophobic Fractionation Enhances Novel Protein Detection by Mass Spectrometry in Triple Negative Breast Cancer

    Science.gov (United States)

    Lu, Ming; Whitelegge, Julian P.; Whelan, Stephen A.; He, Jianbo; Saxton, Romaine E.; Faull, Kym F.; Chang, Helena R.

    2010-01-01

    It is widely believed that discovery of specific, sensitive and reliable tumor biomarkers can improve the treatment of cancer. The goal of this study was to develop a novel fractionation protocol targeting hydrophobic proteins as possible cancer cell membrane biomarkers. Hydrophobic proteins of breast cancer tissues and cell lines were enriched by polymeric reverse phase columns. The retained proteins were eluted and digested for peptide identification by nano-liquid chromatography with tandem mass spectrometry using a hybrid linear ion-trap Orbitrap. Hundreds of proteins were identified from each of these three specimens: tumors, normal breast tissue, and breast cancer cell lines. Many of the identified proteins defined key cellular functions. Protein profiles of cancer and normal tissues from the same patient were systematically examined and compared. Stem cell markers were overexpressed in triple negative breast cancer (TNBC) compared with non-TNBC samples. Because breast cancer stem cells are known to be resistant to radiation and chemotherapy, and can be the source of metastasis frequently seen in patients with TNBC, our study may provide evidence of molecules promoting the aggressiveness of TNBC. The initial results obtained using a combination of hydrophobic fractionation and nano-LC mass spectrometry analysis of these proteins appear promising in the discovery of potential cancer biomarkers. When sufficiently refined, this approach may prove useful for early detection and better treatment of breast cancer. PMID:20596302

  7. Thermoregulation in boys and men exercising at the same heat production per unit body mass.

    Science.gov (United States)

    Leites, Gabriela T; Cunha, Giovani S; Obeid, Joyce; Wilk, Boguslaw; Meyer, Flavia; Timmons, Brian W

    2016-07-01

    Child-adult thermoregulatory comparisons may be biased by differences in metabolic heat production ([Formula: see text]). We compared thermoregulatory responses of boys and men exercising at two intensities prescribed to elicit either a fixed [Formula: see text] per unit body mass (BM) or a fixed absolute [Formula: see text]. Ten boys (10-12 years) and 10 men (19-25 years) performed 4 × 20-min cycling at a fixed [Formula: see text] per BM (W kg(-1)) at 35 °C and 35 % relative humidity (MENREL). Men also cycled (MENABS) at the same absolute [Formula: see text] (in W) as the boys. [Formula: see text] was lower in boys compared with MENREL, but similar to MENABS (mean ± SD, 233.6 ± 38.4, 396.5 ± 72.3, 233.6 ± 34.1 W, respectively, P < 0.001). Conversely, [Formula: see text] per unit BM was similar between boys and MENREL, and lower in MENABS (5.7 ± 1.0, 5.6 ± 0.8 and 3.3 ± 0.3 W kg(-1), respectively; P < 0.001). The change in rectal temperature was similar between boys and MENREL (0.6 ± 0.2 vs. 0.7 ± 0.2 °C, P = 0.92) but was lower in MENABS (0.3 ± 0.2 °C, P = 0.004). Sweat volume was lower in boys compared to MENABS (500 ± 173 vs. 710 ± 150 mL; P = 0.041), despite the same evaporative heat balance requirement (E req) (199.1 ± 34.2 vs. 201.0 ± 32.7 W, P = 0.87). Boys and men demonstrated similar thermoregulatory responses to 80 min of exercise in the heat performed at a fixed [Formula: see text] per unit BM. Sweat volume was lower in boys compared to men, despite similarities in absolute [Formula: see text] and E req.

  8. Targeted mass spectrometry analysis of neutrophil-derived proteins released during sepsis progression.

    Science.gov (United States)

    Malmström, E; Davidova, A; Mörgelin, M; Linder, A; Larsen, M; Qvortrup, K; Nordenfelt, P; Shannon, O; Dzupova, O; Holub, M; Malmström, J; Herwald, H

    2014-12-01

    Early diagnosis of severe infectious diseases is essential for timely implementation of lifesaving therapies. In a search for novel biomarkers in sepsis diagnosis we focused on polymorphonuclear neutrophils (PMNs). Notably, PMNs have their protein cargo readily stored in granules and following systemic stimulation, an immediate increase of neutrophil-borne proteins can be observed into the circulation of sepsis patients. We applied a combination of mass spectrometry (MS) based approaches, LC-MS/MS and selected reaction monitoring (SRM), to characterise and quantify the neutrophil proteome in healthy or disease conditions. With this approach we identified a neutrophil-derived protein abundance pattern in blood plasma consisting of 20 proteins that can be used as a protein signature for severe infectious diseases. Our results also show that SRM is highly sensitive, specific, and reproducible and, thus, a promising technology to study a complex, dynamic and multifactorial disease such as sepsis.

  9. The Association between Total Protein and Vegetable Protein Intake and Low Muscle Mass among the Community-Dwelling Elderly Population in Northern Taiwan.

    Science.gov (United States)

    Huang, Ru-Yi; Yang, Kuen-Cheh; Chang, Hao-Hsiang; Lee, Long-Teng; Lu, Chia-Wen; Huang, Kuo-Chin

    2016-06-17

    Sarcopenia, highly linked with fall, frailty, and disease burden, is an emerging problem in aging society. Higher protein intake has been suggested to maintain nitrogen balance. Our objective was to investigate whether pre-sarcopenia status was associated with lower protein intake. A total of 327 community-dwelling elderly people were recruited for a cross-sectional study. We adopted the multivariate nutrient density model to identify associations between low muscle mass and dietary protein intake. The general linear regression models were applied to estimate skeletal muscle mass index across the quartiles of total protein and vegetable protein density. Participants with diets in the lowest quartile of total protein density (protein density (protein density (p = 0.023) and vegetable protein density (p = 0.025). Increasing daily intakes of total protein and vegetable protein densities appears to confer protection against pre-sarcopenia status.

  10. T-wave ion mobility-mass spectrometry: basic experimental procedures for protein complex analysis.

    Science.gov (United States)

    Michaelevski, Izhak; Kirshenbaum, Noam; Sharon, Michal

    2010-07-31

    Ion mobility (IM) is a method that measures the time taken for an ion to travel through a pressurized cell under the influence of a weak electric field. The speed by which the ions traverse the drift region depends on their size: large ions will experience a greater number of collisions with the background inert gas (usually N(2;)) and thus travel more slowly through the IM device than those ions that comprise a smaller cross-section. In general, the time it takes for the ions to migrate though the dense gas phase separates them, according to their collision cross-section (Omega). Recently, IM spectrometry was coupled with mass spectrometry and a traveling-wave (T-wave) Synapt ion mobility mass spectrometer (IM-MS) was released. Integrating mass spectrometry with ion mobility enables an extra dimension of sample separation and definition, yielding a three-dimensional spectrum (mass to charge, intensity, and drift time). This separation technique allows the spectral overlap to decrease, and enables resolution of heterogeneous complexes with very similar mass, or mass-to-charge ratios, but different drift times. Moreover, the drift time measurements provide an important layer of structural information, as Omega is related to the overall shape and topology of the ion. The correlation between the measured drift time values and Omega is calculated using a calibration curve generated from calibrant proteins with defined cross-sections(1). The power of the IM-MS approach lies in its ability to define the subunit packing and overall shape of protein assemblies at micromolar concentrations, and near-physiological conditions(1). Several recent IM studies of both individual proteins(2,3) and non-covalent protein complexes(4-9), successfully demonstrated that protein quaternary structure is maintained in the gas phase, and highlighted the potential of this approach in the study of protein assemblies of unknown geometry. Here, we provide a detailed description of IMS

  11. Identifying technical aliases in SELDI mass spectra of complex mixtures of proteins

    Science.gov (United States)

    2013-01-01

    Background Biomarker discovery datasets created using mass spectrum protein profiling of complex mixtures of proteins contain many peaks that represent the same protein with different charge states. Correlated variables such as these can confound the statistical analyses of proteomic data. Previously we developed an algorithm that clustered mass spectrum peaks that were biologically or technically correlated. Here we demonstrate an algorithm that clusters correlated technical aliases only. Results In this paper, we propose a preprocessing algorithm that can be used for grouping technical aliases in mass spectrometry protein profiling data. The stringency of the variance allowed for clustering is customizable, thereby affecting the number of peaks that are clustered. Subsequent analysis of the clusters, instead of individual peaks, helps reduce difficulties associated with technically-correlated data, and can aid more efficient biomarker identification. Conclusions This software can be used to pre-process and thereby decrease the complexity of protein profiling proteomics data, thus simplifying the subsequent analysis of biomarkers by decreasing the number of tests. The software is also a practical tool for identifying which features to investigate further by purification, identification and confirmation. PMID:24010718

  12. Validity of Ski Skating Center-of-Mass Displacement Measured by a Single Inertial Measurement Unit.

    Science.gov (United States)

    Myklebust, Håvard; Gløersen, Øyvind; Hallén, Jostein

    2015-12-01

    In regard to simplifying motion analysis and estimating center of mass (COM) in ski skating, this study addressed 3 main questions concerning the use of inertial measurement units (IMU): (1) How accurately can a single IMU estimate displacement of os sacrum (S1) on a person during ski skating? (2) Does incorporating gyroscope and accelerometer data increase accuracy and precision? (3) Moreover, how accurately does S1 determine COM displacement? Six world-class skiers roller-ski skated on a treadmill using 2 different subtechniques. An IMU including accelerometers alone (IMU-A) or in combination with gyroscopes (IMU-G) were mounted on the S1. A reflective marker at S1, and COM calculated from 3D full-body optical analysis, were used to provide reference values. IMU-A provided an accurate and precise estimate of vertical S1 displacement, but IMU-G was required to attain accuracy and precision of < 8 mm (root-mean-squared error and range of displacement deviation) in all directions and with both subtechniques. Further, arm and torso movements affected COM, but not the S1. Hence, S1 displacement was valid for estimating sideways COM displacement, but the systematic amplitude and timing difference between S1 and COM displacement in the anteroposterior and vertical directions inhibits exact calculation of energy fluctuations.

  13. Identification of Asp isomerization in proteins by ¹⁸O labeling and tandem mass spectrometry.

    Science.gov (United States)

    Zhang, Jennifer; Katta, Viswanatham

    2012-01-01

    Isomerization of aspartic acid (Asp) to isoaspartic acid (isoAsp) via succinimide intermediate is a common route of degradation for proteins that can affect their structural integrity. As Asp/isoAsp is isobaric in mass, it is difficult to identify the site of modification by LC-MS/MS peptide mapping. Here, we describe an approach to label the Asp residue involved in isomerization at the protein level by hydrolyzing the succinimide intermediate in H₂¹⁸O. Tryptic digestion of this labeled protein will result in peptides containing the site of isomerization being 2 Da heavier than the ¹⁶O-containing counterparts, due to ¹⁸O incorporation during the hydrolysis process. Comparison of tandem mass spectra of isomerized peptides with and without ¹⁸O incorporation allows easy identification of the Asp residue involved. This method proved to be especially useful in identifying the sites when isomerization occurs in Asp-Asp motifs.

  14. Identification of Hypoxia-Regulated Proteins Using MALDI-Mass Spectrometry Imaging Combined with Quantitative Proteomics

    DEFF Research Database (Denmark)

    Djidja, Marie-Claude; Chang, Joan; Hadjiprocopis, Andreas;

    2014-01-01

    quantitative proteomics combined with MALDI-mass spectrometry imaging (MALDI-MSI). Here we present a comprehensive hypoxic proteome study and are the first to investigate changes in situ using tumor samples. In vitro quantitative mass spectrometry analysis of the hypoxic proteome was performed on breast cancer...... cells using stable isotope labeling with amino acids in cell culture (SILAC). MS analyses were performed on laser-capture microdissected samples isolated from normoxic and hypoxic regions from tumors derived from the same cells used in vitro. MALDI-MSI was used in combination to investigate hypoxia......-regulated protein localization within tumor sections. Here we identified more than 100 proteins, both novel and previously reported, that were associated with hypoxia. Several proteins were localized in hypoxic regions, as identified by MALDI-MSI. Visualization and data extrapolation methods for the in vitro SILAC...

  15. Identification and monitoring of host cell proteins by mass spectrometry combined with high performance immunochemistry testing.

    Directory of Open Access Journals (Sweden)

    Katrin Bomans

    Full Text Available Biotherapeutics are often produced in non-human host cells like Escherichia coli, yeast, and various mammalian cell lines. A major focus of any therapeutic protein purification process is to reduce host cell proteins to an acceptable low level. In this study, various E. coli host cell proteins were identified at different purifications steps by HPLC fractionation, SDS-PAGE analysis, and tryptic peptide mapping combined with online liquid chromatography mass spectrometry (LC-MS. However, no host cell proteins could be verified by direct LC-MS analysis of final drug substance material. In contrast, the application of affinity enrichment chromatography prior to comprehensive LC-MS was adequate to identify several low abundant host cell proteins at the final drug substance level. Bacterial alkaline phosphatase (BAP was identified as being the most abundant host cell protein at several purification steps. Thus, we firstly established two different assays for enzymatic and immunological BAP monitoring using the cobas® technology. By using this strategy we were able to demonstrate an almost complete removal of BAP enzymatic activity by the established therapeutic protein purification process. In summary, the impact of fermentation, purification, and formulation conditions on host cell protein removal and biological activity can be conducted by monitoring process-specific host cell proteins in a GMP-compatible and high-throughput (> 1000 samples/day manner.

  16. Neuron-specific protein interactions of Drosophila CASK-b are revealed by mass spectrometry

    Directory of Open Access Journals (Sweden)

    Konark eMukherjee

    2014-06-01

    Full Text Available Modular scaffolding proteins are designed to have multiple interactors. CASK, a member of the membrane-associated guanylate kinase (MAGUK superfamily, has been shown to have roles in many tissues, including neurons and epithelia. It is likely that the set of proteins it interacts with is different in each of these diverse tissues. In this study we asked if within the Drosophila central nervous system, there were neuron-specific sets of CASK-interacting proteins. A YFP-tagged CASK transgene was expressed in genetically defined subsets of neurons in the Drosophila brain known to be important for CASK function, and proteins present in an anti-GFP immunoprecipitation were identified by mass spectrometry. Each subset of neurons had a distinct set of interacting proteins, suggesting that CASK participates in multiple protein networks and that these networks may be different in different neuronal circuits. One common set of proteins was associated with mitochondria, and we show here that endogenous CASK co-purifies with mitochondria. We also determined CASK posttranslational modifications for one cell type, supporting the idea that this technique can be used to assess cell- and circuit-specific protein modifications as well as protein interaction networks.

  17. Exploring proteins in Anopheles gambiae male and female antennae through MALDI mass spectrometry profiling.

    Directory of Open Access Journals (Sweden)

    Francesca R Dani

    Full Text Available MALDI profiling and imaging mass spectrometry (IMS are novel techniques for direct analysis of peptides and small proteins in biological tissues. In this work we applied them to the study of Anopheles gambiae antennae, with the aim of analysing expression of soluble proteins involved in olfaction perireceptor events. MALDI spectra obtained by direct profiling on single antennae and by the analysis of extracts, showed similar profiles, although spectra obtained through profiling had a richer ion population and higher signal to noise ratio. Male and female antennae showed distinct protein profiles. MALDI imaging experiments were also performed and differences were observed in the localization of some proteins. Two proteins were identified through high resolution measurement and top-down MS/MS experiments. A 8 kDa protein only present in the male antennae matched with an unannotated sequence of the An. gambiae genome, while the presence of odorant binding protein 9 (OBP-9 was confirmed through experiments of 2-DE, followed by MS and MS/MS analysis of digested spots. This work shows that MALDI MS profiling is a technique suitable for the analysis of proteins of small and medium MW in insect appendices, and allows obtaining data for several specimens which can be investigated for differences between groups. Proteins of interest can be identified through other complementary MS approaches.

  18. Protein profile of exhaled breath condensate determined by high resolution mass spectrometry.

    Science.gov (United States)

    Muccilli, Vera; Saletti, Rosaria; Cunsolo, Vincenzo; Ho, Jenny; Gili, Elisa; Conte, Enrico; Sichili, Stefania; Vancheri, Carlo; Foti, Salvatore

    2015-02-01

    A method based on liquid chromatography/high resolution tandem mass spectrometry coupled with electrophoretic separation, for determination and relative quantification of the protein composition of exhaled breath condensate (EBC), was developed. Application of the procedure to a sample of EBC, pooled from nine healthy subjects, resulted in the identification of 167 unique gene products, 113 of which not previously reported in EBC samples. The abundance of the protein identified was estimated by means of the exponentially modified protein abundance index protocol (emPAI). Cytokeratins were by far the most abundant proteins in EBC samples. Many of the identified proteins were associated with multiple cellular location with cytoplasm constituting the largest group. Cytosol, nucleus, membrane, cytoskeleton and extracellular were other abundantly represented locations. No amylase was detected, suggesting the absence of saliva protein contamination. The profile obtained represents the most comprehensive protein characterization of EBC so far reported and demonstrates that this approach provides a powerful tool for investigating the protein profile of EBC samples. Compared with analogous investigations, this study also shows that the protein profile of EBC is strongly affected by the sampling method adopted.

  19. Identification of Proteins and Peptide Biomarkers for Detecting Banned Processed Animal Proteins (PAPs) in Meat and Bone Meal by Mass Spectrometry.

    Science.gov (United States)

    Marbaix, Hélène; Budinger, Dimitri; Dieu, Marc; Fumière, Olivier; Gillard, Nathalie; Delahaut, Philippe; Mauro, Sergio; Raes, Martine

    2016-03-23

    The outbreak of bovine spongiform encephalopathy (BSE) in the United Kingdom in 1986, with processed animal proteins (PAPs) as the main vector of the disease, has led to their prohibition in feed. The progressive release of the feed ban required the development of new analytical methods to determine the exact origin of PAPs from meat and bone meal. We set up a promising MS-based method to determine the species and the source (legal or not) present in PAPs: a TCA-acetone protein extraction followed by a cleanup step, an in-solution tryptic digestion of 5 h (with a 1:20 protein/trypsin ratio), and mass spectrometry analyses, first without any a priori, with a Q-TOF, followed by a targeted triple-quadrupole analysis. Using this procedure, we were able to overcome some of the major limitations of the official methods to analyze PAPs, detecting and identifying prohibited animal products in feedstuffs by the monitoring of peptides specific for cows, pigs, and sheep in PAPs.

  20. Teaching Mass Transfer and Filtration Using Crossflow Reverse Osmosis and Nanofiltration: An Experiment for the Undergraduate Unit Operations Lab

    Science.gov (United States)

    Anastasio, Daniel; McCutcheon, Jeffrey

    2012-01-01

    A crossflow reverse osmosis (RO) system was built for a senior-level chemical engineering unit operations laboratory course. Intended to teach students mass transfer fundamentals related to membrane separations, students tested several commercial desalination membranes, measuring water flux and salt rejections at various pressures, flow rates, and…

  1. Teaching Mass Transfer and Filtration Using Crossflow Reverse Osmosis and Nanofiltration: An Experiment for the Undergraduate Unit Operations Lab

    Science.gov (United States)

    Anastasio, Daniel; McCutcheon, Jeffrey

    2012-01-01

    A crossflow reverse osmosis (RO) system was built for a senior-level chemical engineering unit operations laboratory course. Intended to teach students mass transfer fundamentals related to membrane separations, students tested several commercial desalination membranes, measuring water flux and salt rejections at various pressures, flow rates, and…

  2. Mass Spectrometric Detection of Bacterial Protein Toxins and Their Enzymatic Activity.

    Science.gov (United States)

    Kalb, Suzanne R; Boyer, Anne E; Barr, John R

    2015-08-31

    Mass spectrometry has recently become a powerful technique for bacterial identification. Mass spectrometry approaches generally rely upon introduction of the bacteria into a matrix-assisted laser-desorption time-of-flight (MALDI-TOF) mass spectrometer with mass spectrometric recognition of proteins specific to that organism that form a reliable fingerprint. With some bacteria, such as Bacillus anthracis and Clostridium botulinum, the health threat posed by these organisms is not the organism itself, but rather the protein toxins produced by the organisms. One such example is botulinum neurotoxin (BoNT), a potent neurotoxin produced by C. botulinum. There are seven known serotypes of BoNT, A-G, and many of the serotypes can be further differentiated into toxin variants, which are up to 99.9% identical in some cases. Mass spectrometric proteomic techniques have been established to differentiate the serotype or toxin variant of BoNT produced by varied strains of C. botulinum. Detection of potent biological toxins requires high analytical sensitivity and mass spectrometry based methods have been developed to determine the enzymatic activity of BoNT and the anthrax lethal toxins produced by B. anthracis. This enzymatic activity, unique for each toxin, is assessed with detection of the toxin-induced cleavage of strategically designed peptide substrates by MALDI-TOF mass spectrometry offering unparalleled specificity. Furthermore, activity assays allow for the assessment of the biological activity of a toxin and its potential health risk. Such methods have become important diagnostics for botulism and anthrax. Here, we review mass spectrometry based methods for the enzymatic activity of BoNT and the anthrax lethal factor toxin.

  3. Chemical crosslinking and mass spectrometry studies of the structure and dynamics of membrane proteins and receptors.

    Energy Technology Data Exchange (ETDEWEB)

    Haskins, William E.; Leavell, Michael D.; Lane, Pamela; Jacobsen, Richard B.; Hong, Joohee; Ayson, Marites J.; Wood, Nichole L.; Schoeniger, Joseph S.; Kruppa, Gary Hermann; Sale, Kenneth L.; Young, Malin M.; Novak, Petr

    2005-03-01

    Membrane proteins make up a diverse and important subset of proteins for which structural information is limited. In this study, chemical cross-linking and mass spectrometry were used to explore the structure of the G-protein-coupled photoreceptor bovine rhodopsin in the dark-state conformation. All experiments were performed in rod outer segment membranes using amino acid 'handles' in the native protein sequence and thus minimizing perturbations to the native protein structure. Cysteine and lysine residues were covalently cross-linked using commercially available reagents with a range of linker arm lengths. Following chemical digestion of cross-linked protein, cross-linked peptides were identified by accurate mass measurement using liquid chromatography-fourier transform mass spectrometry and an automated data analysis pipeline. Assignments were confirmed and, if necessary, resolved, by tandem MS. The relative reactivity of lysine residues participating in cross-links was evaluated by labeling with NHS-esters. A distinct pattern of cross-link formation within the C-terminal domain, and between loop I and the C-terminal domain, emerged. Theoretical distances based on cross-linking were compared to inter-atomic distances determined from the energy-minimized X-ray crystal structure and Monte Carlo conformational search procedures. In general, the observed cross-links can be explained by re-positioning participating side-chains without significantly altering backbone structure. One exception, between C3 16 and K325, requires backbone motion to bring the reactive atoms into sufficient proximity for cross-linking. Evidence from other studies suggests that residues around K325 for a region of high backbone mobility. These findings show that cross-linking studies can provide insight into the structural dynamics of membrane proteins in their native environment.

  4. Conformational analysis of g protein-coupled receptor signaling by hydrogen/deuterium exchange mass spectrometry.

    Science.gov (United States)

    Li, Sheng; Lee, Su Youn; Chung, Ka Young

    2015-01-01

    Conformational change and protein-protein interactions are two major mechanisms of membrane protein signal transduction, including G protein-coupled receptors (GPCRs). Upon agonist binding, GPCRs change conformation, resulting in interaction with downstream signaling molecules such as G proteins. To understand the precise signaling mechanism, studies have investigated the structural mechanism of GPCR signaling using X-ray crystallography, nuclear magnetic resonance (NMR), or electron paramagnetic resonance. In addition to these techniques, hydrogen/deuterium exchange mass spectrometry (HDX-MS) has recently been used in GPCR studies. HDX-MS measures the rate at which peptide amide hydrogens exchange with deuterium in the solvent. Exposed or flexible regions have higher exchange rates and excluded or ordered regions have lower exchange rates. Therefore, HDX-MS is a useful tool for studying protein-protein interfaces and conformational changes after protein activation or protein-protein interactions. Although HDX-MS does not give high-resolution structures, it analyzes protein conformations that are difficult to study with X-ray crystallography or NMR. Furthermore, conformational information from HDX-MS can help in the crystallization of X-ray crystallography by suggesting highly flexible regions. Interactions between GPCRs and downstream signaling molecules are not easily analyzed by X-ray crystallography or NMR because of the large size of the GPCR-signaling molecule complexes, hydrophobicity, and flexibility of GPCRs. HDX-MS could be useful for analyzing the conformational mechanism of GPCR signaling. In this chapter, we discuss details of HDX-MS for analyzing GPCRs using the β2AR-G protein complex as a model system.

  5. Ion mobility mass spectrometry of peptide, protein, and protein complex ions using a radio-frequency confining drift cell.

    Science.gov (United States)

    Allen, Samuel J; Giles, Kevin; Gilbert, Tony; Bush, Matthew F

    2016-02-01

    Ion mobility mass spectrometry experiments enable the characterization of mass, assembly, and shape of biological molecules and assemblies. Here, a new radio-frequency confining drift cell is characterized and used to measure the mobilities of peptide, protein, and protein complex ions. The new drift cell replaced the traveling-wave ion mobility cell in a Waters Synapt G2 HDMS. Methods for operating the drift cell and determining collision cross section values using this experimental set up are presented within the context of the original instrument control software. Collision cross sections for 349 cations and anions are reported, 155 of which are for ions that have not been characterized previously using ion mobility. The values for the remaining ions are similar to those determined using a previous radio-frequency confining drift cell and drift tubes without radial confinement. Using this device under 2 Torr of helium gas and an optimized drift voltage, denatured and native-like ions exhibited average apparent resolving powers of 14.2 and 16.5, respectively. For ions with high mobility, which are also low in mass, the apparent resolving power is limited by contributions from ion gating. In contrast, the arrival-time distributions of low-mobility, native-like ions are not well explained using only contributions from ion gating and diffusion. For those species, the widths of arrival-time distributions are most consistent with the presence of multiple structures in the gas phase.

  6. Quantification of protein posttranslational modifications using stable isotope and mass spectrometry. II. Performance.

    Science.gov (United States)

    Luo, Quanzhou; Wypych, Jette; Jiang, Xinzhao Grace; Zhang, Xin; Luo, Shun; Jerums, Matthew; Lewis, Jeffrey; Iii, Ronald Keener; Huang, Gang; Apostol, Izydor

    2012-02-15

    In this report, we examine the performance of a mass spectrometry (MS)-based method for quantification of protein posttranslational modifications (PTMs) using stable isotope labeled internal standards. Uniform labeling of proteins and highly similar behavior of the labeled vs nonlabeled analyte pairs during chromatographic separation and electrospray ionization (ESI) provide the means to directly quantify a wide range of PTMs. In the companion report (Jiang et al., Anal. Biochem., 421 (2012) 506-516.), we provided principles and example applications of the method. Here we show satisfactory accuracy and precision for quantifying protein modifications by using the SILIS method when the analyses were performed on different types of mass spectrometers, such as ion-trap, time-of-flight (TOF), and quadrupole instruments. Additionally, the stable isotope labeled internal standard (SILIS) method demonstrated an extended linear range of quantification expressed in accurate quantification up to at least a 4 log concentration range on three different types of mass spectrometers. We also demonstrate that lengthy chromatographic separation is no longer required to obtain quality results, offering an opportunity to significantly shorten the method run time. The results indicate the potential of this methodology for rapid and large-scale assessment of multiple quality attributes of a therapeutic protein in a single analysis.

  7. Determining Membrane Protein-Lipid Binding Thermodynamics Using Native Mass Spectrometry.

    Science.gov (United States)

    Cong, Xiao; Liu, Yang; Liu, Wen; Liang, Xiaowen; Russell, David H; Laganowsky, Arthur

    2016-04-06

    Membrane proteins are embedded in the biological membrane where the chemically diverse lipid environment can modulate their structure and function. However, the thermodynamics governing the molecular recognition and interaction of lipids with membrane proteins is poorly understood. Here, we report a method using native mass spectrometry (MS), to determine thermodynamics of individual ligand binding events to proteins. Unlike conventional methods, native MS can resolve individual ligand binding events and, coupled with an apparatus to control the temperature, determine binding thermodynamic parameters, such as for protein-lipid interactions. We validated our approach using three soluble protein-ligand systems (maltose binding protein, lysozyme, and nitrogen regulatory protein) and obtained similar results to those using isothermal titration calorimetry and surface plasmon resonance. We also determined for the first time the thermodynamics of individual lipid binding to the ammonia channel (AmtB), an integral membrane protein from Escherichia coli. Remarkably, we observed distinct thermodynamic signatures for the binding of different lipids and entropy-enthalpy compensation for binding lipids of variable chain length. Additionally, using a mutant form of AmtB that abolishes a specific phosphatidylglycerol (PG) binding site, we observed distinct changes in the thermodynamic signatures for binding PG, implying these signatures can identify key residues involved in specific lipid binding and potentially differentiate between specific lipid binding sites.

  8. Protein Considerations for Optimising Skeletal Muscle Mass in Healthy Young and Older Adults

    Directory of Open Access Journals (Sweden)

    Oliver C. Witard

    2016-03-01

    Full Text Available Skeletal muscle is critical for human health. Protein feeding, alongside resistance exercise, is a potent stimulus for muscle protein synthesis (MPS and is a key factor that regulates skeletal muscle mass (SMM. The main purpose of this narrative review was to evaluate the latest evidence for optimising the amino acid or protein source, dose, timing, pattern and macronutrient coingestion for increasing or preserving SMM in healthy young and healthy older adults. We used a systematic search strategy of PubMed and Web of Science to retrieve all articles related to this review objective. In summary, our findings support the notion that protein guidelines for increasing or preserving SMM are more complex than simply recommending a total daily amount of protein. Instead, multifactorial interactions between protein source, dose, timing, pattern and macronutrient coingestion, alongside exercise, influence the stimulation of MPS, and thus should be considered in the context of protein recommendations for regulating SMM. To conclude, on the basis of currently available scientific literature, protein recommendations for optimising SMM should be tailored to the population or context of interest, with consideration given to age and resting/post resistance exercise conditions.

  9. The Association between Total Protein and Vegetable Protein Intake and Low Muscle Mass among the Community-Dwelling Elderly Population in Northern Taiwan

    Directory of Open Access Journals (Sweden)

    Ru-Yi Huang

    2016-06-01

    Full Text Available Sarcopenia, highly linked with fall, frailty, and disease burden, is an emerging problem in aging society. Higher protein intake has been suggested to maintain nitrogen balance. Our objective was to investigate whether pre-sarcopenia status was associated with lower protein intake. A total of 327 community-dwelling elderly people were recruited for a cross-sectional study. We adopted the multivariate nutrient density model to identify associations between low muscle mass and dietary protein intake. The general linear regression models were applied to estimate skeletal muscle mass index across the quartiles of total protein and vegetable protein density. Participants with diets in the lowest quartile of total protein density (<13.2% were at a higher risk for low muscle mass (odds ratio (OR 3.03, 95% confidence interval (CI 1.37–6.72 than those with diets in the highest quartile (≥17.2%. Similarly, participants with diets in the lowest quartile of vegetable protein density (<5.8% were at a higher risk for low muscle mass (OR 2.34, 95% CI 1.14–4.83 than those with diets in the highest quartile (≥9.4%. Furthermore, the estimated skeletal muscle mass index increased significantly across the quartiles of total protein density (p = 0.023 and vegetable protein density (p = 0.025. Increasing daily intakes of total protein and vegetable protein densities appears to confer protection against pre-sarcopenia status.

  10. Protein nitration in biological aging: proteomic and tandem mass spectrometric characterization of nitrated sites.

    Science.gov (United States)

    Kanski, Jaroslaw; Schöneich, Christian

    2005-01-01

    Proteomic techniques for the identification of 3-nitrotyrosine-containing proteins in various biological systems are described with emphasis on the direct mass spectrometric detection and sequencing of 3-nitrotyrosine-containing peptides. Strengths and weaknesses of various separation and mass spectrometric techniques are discussed. Some examples for the MS/MS analysis of nitrated peptides obtained from aging rat heart and skeletal muscle are provided, such as nitration of Tyr105 of the mitochondrial electron-transfer flavoprotein and Tyr14 of creatine kinase.

  11. Lipid Models for United-Atom Molecular Dynamics Simulations of Proteins.

    Science.gov (United States)

    Kukol, Andreas

    2009-03-10

    United-atom force fields for molecular dynamics (MD) simulations provide a higher computational efficiency, especially in lipid membrane simulations, with little sacrifice in accuracy, when compared to all-atom force fields. Excellent united-atom lipid models are available, but in combination with depreciated protein force fields. In this work, a united-atom model of the lipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine has been built with standard parameters of the force field GROMOS96 53a6 that reproduces the experimental area per lipid of a lipid bilayer within 3% accuracy to a value of 0.623 ± 0.011 nm(2) without the assumption of a constant surface area or the inclusion of surface pressure. In addition, the lateral self-diffusion constant and deuterium order parameters of the acyl chains are in agreement with experimental data. Furthermore, models for 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) result in areas per lipid of 0.625 nm(2) (DMPC), 0.693 nm(2) (POPC), and 0.700 nm(2) (POPG) from 40 ns MD simulations. Experimental lateral self-diffusion coefficients are reproduced satisfactorily by the simulation. The lipid models can form the basis for molecular dynamics simulations of membrane proteins with current and future versions of united-atom protein force fields.

  12. In-Depth Characterization of Protein Disulfide Bonds by Online Liquid Chromatography-Electrochemistry-Mass Spectrometry

    Science.gov (United States)

    Switzar, Linda; Nicolardi, Simone; Rutten, Julie W.; Oberstein, Saskia A. J. Lesnik; Aartsma-Rus, Annemieke; van der Burgt, Yuri E. M.

    2016-01-01

    Disulfide bonds are an important class of protein post-translational modifications, yet this structurally crucial modification type is commonly overlooked in mass spectrometry (MS)-based proteomics approaches. Recently, the benefits of online electrochemistry-assisted reduction of protein S-S bonds prior to MS analysis were exemplified by successful characterization of disulfide bonds in peptides and small proteins. In the current study, we have combined liquid chromatography (LC) with electrochemistry (EC) and mass analysis by Fourier transform ion cyclotron resonance (FTICR) MS in an online LC-EC-MS platform to characterize protein disulfide bonds in a bottom-up proteomics workflow. A key advantage of a LC-based strategy is the use of the retention time in identifying both intra- and interpeptide disulfide bonds. This is demonstrated by performing two sequential analyses of a certain protein digest, once without and once with electrochemical reduction. In this way, the "parent" disulfide-linked peptide detected in the first run has a retention time-based correlation with the EC-reduced peptides detected in the second run, thus simplifying disulfide bond mapping. Using this platform, both inter- and intra-disulfide-linked peptides were characterized in two different proteins, ß-lactoglobulin and ribonuclease B. In order to prevent disulfide reshuffling during the digestion process, proteins were digested at a relatively low pH, using (a combination of) the high specificity proteases trypsin and Glu-C. With this approach, disulfide bonds in ß-lactoglobulin and ribonuclease B were comprehensively identified and localized, showing that online LC-EC-MS is a useful tool for the characterization of protein disulfide bonds.

  13. Single Nanometric Memory Unit Based On a Protein-Nanoparticle Hybrid

    Science.gov (United States)

    Medalsy, Izhar; Heyman, Arnon; Shoseyov, Oded; Porath, Danny

    2009-03-01

    Proteins as an isolating template and nanoparticle (NP) as an electric storage component can form a single addressable unit cell isolated from the conductive surface and adjacent NPs. This setup gives rise to a wide range of nanoelectronic applications. Here we demonstrate, by Conductive AFM, a single nanometric memory unit using individual protein-NP hybrids. SP1 is a boiling-stable ring-shaped protein, 11 nm in diameter. Mutants of SP1 were synthesized allowing its selective attachment to gold surface and the formation of 2D arrays using methods such as phospholipids trough and Langmuir Blodgett. The SP1 inner pore was connected to Si NP forming a chargeable entity embedded in an isolating unit over a conductive surface. Each NP holds three charging states: natural, positive and negative. The charging life times are 10 min in ambient and days in vacuum. Using this setup, and the relative long charging time, we were able to apply a read and write operations on individual 5nm Si NP embedded in a stable protein.

  14. [Characterization of the extracellular proteasomes and its interacting proteins by iTRAQ mass spectrometry].

    Science.gov (United States)

    Zaĭkova, Iu Ia; Kulichkova, V A; Ermolaeva, Iu B; Bottrill, A; Barlev, N A; Tsimokha, A S

    2013-01-01

    The analysis of the extracellular proteasomes by isobaric tagging for relative and absolute quantifications (iTRAQ) mass spectrometry has been carried out. Here we show a standard set of 26S proteasomal subunits in the composition of the extracellular proteasomes. Moreover, extracellular proteasomes have a number of PA200 activators, which, as previously thought, are localized in the cell nucleus. Posttranslational modifications (PTMs) of subunits of the extracellular proteasomes were revealed by iTRAQ mass spectrometry. For the first time we have identified several ubiquitination and acetylation sites on subunits alpha2 (K196), alpha4 (K189 and K234), alpha6 (K217), and Rpn6 (A2). We have revealed a large number of proteasome-interacting proteins that are involved in various cell processes, such as transcription, DNA repair, translation, cytoskeletal proteins and the proteins of the ubiquitin-proteasome system (UPS). Immunoblot analysis has confirmed the interactions between purified extracellular proteasomes and nine proteins which were randomly selected from the set of interacting proteins.

  15. A Robust Workflow for Native Mass Spectrometric Analysis of Affinity-Isolated Endogenous Protein Assemblies.

    Science.gov (United States)

    Olinares, Paul Dominic B; Dunn, Amelia D; Padovan, Júlio C; Fernandez-Martinez, Javier; Rout, Michael P; Chait, Brian T

    2016-03-01

    The central players in most cellular events are assemblies of macromolecules. Structural and functional characterization of these assemblies requires knowledge of their subunit stoichiometry and intersubunit connectivity. One of the most direct means for acquiring such information is so-called "native mass spectrometry (MS)", wherein the masses of the intact assemblies and parts thereof are accurately determined. It is of particular interest to apply native MS to the study of endogenous protein assemblies-i.e., those wherein the component proteins are expressed at endogenous levels in their natural functional states, rather than the overexpressed (sometimes partial) constructs commonly employed in classical structural studies, whose assembly can introduce stoichiometry artifacts and other unwanted effects. To date, the application of native MS to the elucidation of endogenous protein complexes has been limited by the difficulty in obtaining pristine cell-derived assemblies at sufficiently high concentrations for effective analysis. Here, to address this challenge, we present a robust workflow that couples rapid and efficient affinity isolation of endogenous protein complexes with a sensitive native MS readout. The resulting workflow has the potential to provide a wealth of data on the stoichiometry and intersubunit connectivity of endogenous protein assemblies-information that is key to successful integrative structural elucidation of biological systems.

  16. Identification of hypoxia-regulated proteins using MALDI-mass spectrometry imaging combined with quantitative proteomics.

    Science.gov (United States)

    Djidja, Marie-Claude; Chang, Joan; Hadjiprocopis, Andreas; Schmich, Fabian; Sinclair, John; Mršnik, Martina; Schoof, Erwin M; Barker, Holly E; Linding, Rune; Jørgensen, Claus; Erler, Janine T

    2014-05-02

    Hypoxia is present in most solid tumors and is clinically correlated with increased metastasis and poor patient survival. While studies have demonstrated the role of hypoxia and hypoxia-regulated proteins in cancer progression, no attempts have been made to identify hypoxia-regulated proteins using quantitative proteomics combined with MALDI-mass spectrometry imaging (MALDI-MSI). Here we present a comprehensive hypoxic proteome study and are the first to investigate changes in situ using tumor samples. In vitro quantitative mass spectrometry analysis of the hypoxic proteome was performed on breast cancer cells using stable isotope labeling with amino acids in cell culture (SILAC). MS analyses were performed on laser-capture microdissected samples isolated from normoxic and hypoxic regions from tumors derived from the same cells used in vitro. MALDI-MSI was used in combination to investigate hypoxia-regulated protein localization within tumor sections. Here we identified more than 100 proteins, both novel and previously reported, that were associated with hypoxia. Several proteins were localized in hypoxic regions, as identified by MALDI-MSI. Visualization and data extrapolation methods for the in vitro SILAC data were also developed, and computational mapping of MALDI-MSI data to IHC results was applied for data validation. The results and limitations of the methodologies described are discussed.

  17. Two-dimensional liquid separations-mass mapping of proteins from human cancer cell lysates.

    Science.gov (United States)

    Lubman, David M; Kachman, Maureen T; Wang, Haixing; Gong, Siyuan; Yan, Fang; Hamler, Rick L; O'Neil, Kimberly A; Zhu, Kan; Buchanan, Nathan S; Barder, Timothy J

    2002-12-25

    A review of two-dimensional (2D) liquid separation methods used in our laboratory to map the protein content of human cancer cells is presented herein. The methods discussed include various means of fractionating proteins according to isoelectric point (pI) in the first dimension. The proteins in each pI fraction are subsequently separated using nonporous (NPS) reversed-phase high-performance liquid chromatography (RP-HPLC). The liquid eluent of the RP-HPLC separation is directed on-line into an electrospray ionization time-of-flight (ESI-TOF) mass spectrometer where an accurate value of the protein intact M(r) can be obtained. The result is a 2D map of pI versus M(r) analogous to 2D gel electrophoresis; however the highly accurate and reproducible M(r) serves as the basis for interlysate comparisons. In addition, the use of liquid separations allows for the collection of hundreds of purified proteins in the liquid phase for further analysis via peptide mass mapping using matrix assisted laser desorption ionization TOF MS. A description of the methodology used and its applications to analysis of several types of human cancer cell lines is described. The potential of the method for differential proteomic analysis for the identification of biomarkers of disease is discussed.

  18. Mass Spectrometric Imaging of Red Fluorescent Protein in Breast Tumor Xenografts

    Science.gov (United States)

    Chughtai, Kamila; Jiang, Lu; Post, Harm; Winnard, Paul T.; Greenwood, Tiffany R.; Raman, Venu; Bhujwalla, Zaver M.; Heeren, Ron M. A.; Glunde, Kristine

    2013-05-01

    Mass spectrometric imaging (MSI) in combination with electrospray mass spectrometry (ESI-MS) is a powerful technique for visualization and identification of a variety of different biomolecules directly from thin tissue sections. As commonly used tools for molecular reporting, fluorescent proteins are molecular reporter tools that have enabled the elucidation of a multitude of biological pathways and processes. To combine these two approaches, we have performed targeted MS analysis and MALDI-MSI visualization of a tandem dimer (td)Tomato red fluorescent protein, which was expressed exclusively in the hypoxic regions of a breast tumor xenograft model. For the first time, a fluorescent protein has been visualized by both optical microscopy and MALDI-MSI. Visualization of tdTomato by MALDI-MSI directly from breast tumor tissue sections will allow us to simultaneously detect and subsequently identify novel molecules present in hypoxic regions of the tumor. MS and MALDI-MSI of fluorescent proteins, as exemplified in our study, is useful for studies in which the advantages of MS and MSI will benefit from the combination with molecular approaches that use fluorescent proteins as reporters.

  19. Identification of sites of ubiquitination in proteins: a fourier transform ion cyclotron resonance mass spectrometry approach.

    Science.gov (United States)

    Cooper, Helen J; Heath, John K; Jaffray, Ellis; Hay, Ronald T; Lam, Tukiet T; Marshall, Alan G

    2004-12-01

    Structural elucidation of posttranslationally modified peptides and proteins is of key importance in the understanding of an array of biological processes. Ubiquitination is a reversible modification that regulates many cellular functions. Consequences of ubiquitination depend on whether a single ubiquitin or polyubiquitin chain is added to the tagged protein. The lysine residue through which the polyubiquitin chain is formed is also critical for biological activity. Robust methods are therefore required to identify sites of ubiquitination modification, both in the target protein and in ubiquitin. Here, we demonstrate the suitability of Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry, in conjunction with activated ion electron capture dissociation (AI ECD) or infrared multiphoton dissociation (IRMPD), for the analysis of ubiquitinated proteins. Polyubiquitinated substrate protein GST-Ubc5 was generated in vitro. Tryptic digests of polyubiquitinated species contain modified peptides in which the ubiquitin C-terminal Gly-Gly residues are retained on the modified lysine residues. Direct infusion microelectrospray FT-ICR of the digest and comparison with an in silico digest enables identification of modified peptides and therefore sites of ubiquitination. Fifteen sites of ubiquitination were identified in GST-Ubc5 and four sites in ubiquitin. Assignments were confirmed by AI ECD or IRMPD. The Gly-Gly modification is stable and both tandem mass spectrometric techniques are suitable, providing extensive sequence coverage and retention of the modification on backbone fragments.

  20. Hemolysin coregulated protein 1 as a molecular gluing unit for the assembly of nanoparticle hybrid structures

    Directory of Open Access Journals (Sweden)

    Tuan Anh Pham

    2016-03-01

    Full Text Available Hybrid nanoparticle (NP structures containing organic building units such as polymers, peptides, DNA and proteins have great potential in biosensor and electronic applications. The nearly free modification of the polymer chain, the variation of the protein and DNA sequence and the implementation of functional moieties provide a great platform to create inorganic structures of different morphology, resulting in different optical and magnetic properties. Nevertheless, the design and modification of a protein structure with functional groups or sequences for the assembly of biohybrid materials is not trivial. This is mainly due to the sensitivity of its secondary, tertiary and quaternary structure to the changes in the interaction (e.g., hydrophobic, hydrophilic, electrostatic, chemical groups between the protein subunits and the inorganic material. Here, we use hemolysin coregulated protein 1 (Hcp1 from Pseudomonas aeruginosa as a building and gluing unit for the formation of biohybrid structures by implementing cysteine anchoring points at defined positions on the protein rim (Hcp1_cys3. We successfully apply the Hcp1_cys3 gluing unit for the assembly of often linear, hybrid structures of plasmonic gold (Au NP, magnetite (Fe3O4 NP, and cobalt ferrite nanoparticles (CoFe2O4 NP. Furthermore, the assembly of Au NPs into linear structures using Hcp1_cys3 is investigated by UV–vis spectroscopy, TEM and cryo-TEM. One key parameter for the formation of Au NP assembly is the specific ionic strength in the mixture. The resulting network-like structure of Au NPs is characterized by Raman spectroscopy, showing surface-enhanced Raman scattering (SERS by a factor of 8·104 and a stable secondary structure of the Hcp1_cys3 unit. In order to prove the catalytic performance of the gold hybrid structures, they are used as a catalyst in the reduction reaction of 4-nitrophenol showing similar catalytic activity as the pure Au NPs. To further extend the

  1. Effect of transcutaneous electrical muscle stimulation on postoperative muscle mass and protein synthesis

    DEFF Research Database (Denmark)

    Vinge, O; Edvardsen, L; Jensen, F

    1996-01-01

    In an experimental study, 13 patients undergoing major elective abdominal surgery were given postoperative transcutaneous electrical muscle stimulation (TEMS) to the quadriceps femoris muscle on one leg; the opposite leg served as control. Changes in cross-sectional area (CSA) and muscle protein...... muscle protein synthesis and muscle mass after abdominal surgery and should be evaluated in other catabolic states with muscle wasting....... synthesis were assessed by computed tomography and ribosome analysis of percutaneous muscle biopsies before surgery and on the sixth postoperative day. The percentage of polyribosomes in the ribosome suspension decreased significantly (P

  2. Dietary protein intake is associated with lean body mass in community-dwelling older adults.

    Science.gov (United States)

    Geirsdottir, Olof G; Arnarson, Atli; Ramel, Alfons; Jonsson, Palmi V; Thorsdottir, Inga

    2013-08-01

    Lean body mass (LBM) is important to maintain physical function during aging. We hypothesized that dietary protein intake and leisure-time physical activity are associated with LBM in community-dwelling older adults. To test the hypothesis, participants (n = 237; age, 65-92 years) did 3-day weighed food records and reported physical activity. Body composition was assessed using dual-energy x-ray absorptiometry. Protein intake was 0.98 ± 0.28 and 0.95 ± 0.29 g/kg body weight in male and female participants, respectively. Protein intake (in grams per kilogram of body weight) was associated with LBM (in kilograms); that is, the differences in LBM were 2.3 kg (P protein intake, respectively. Only a minor part of this association was explained by increased energy intake, which follows an increased protein intake. Our study shows that dietary protein intake was positively associated with LBM in older adults with a mean protein intake higher than the current recommended daily allowance of 0.8 g/kg per day. Leisure-time physical activity, predominantly consisting of endurance type exercises, was not related to LBM in this group.

  3. Protein extraction from formalin-fixed, paraffin-embedded tissue sections: quality evaluation by mass spectrometry.

    Science.gov (United States)

    Shi, Shan-Rong; Liu, Cheng; Balgley, Brian M; Lee, Cheng; Taylor, Clive R

    2006-06-01

    A satisfactory protocol of protein extraction has been established based on the heat-induced antigen retrieval (AR) technique widely applied in immunohistochemistry for archival formalin-fixed, paraffin-embedded (FFPE) tissue sections. Based on AR, an initial serial experiment to identify an optimal protocol of heat-induced protein extraction was carried out using FFPE mouse tissues. The optimal protocol for extraction of proteins was then performed on an archival FFPE tissue of human renal carcinoma. FFPE sections were boiled in a retrieval solution of Tris-HCl containing 2% SDS, followed by incubation. Fresh tissue taken from the same case of renal carcinoma was processed for extraction of proteins by a conventional method using radioimmunoprecipitation assay solution, to compare the efficiency of protein extraction from FFPE tissue sections with extraction from fresh tissue. As a control, further sections of the same FFPE sample were processed by the same procedure without heating treatment. Evaluation of the quality of protein extracted from FFPE tissue was done using gel electrophoresis and mass spectrometry, showing most identified proteins extracted from FFPE tissue sections were overlapped with those extracted from fresh tissue.

  4. Observations on different resin strategies for affinity purification mass spectrometry of a tagged protein.

    Science.gov (United States)

    Mali, Sujina; Moree, Wilna J; Mitchell, Morgan; Widger, William; Bark, Steven J

    2016-12-15

    Co-affinity purification mass spectrometry (CoAP-MS) is a highly effective method for identifying protein complexes from a biological sample and inferring important interactions, but the impact of the solid support is usually not considered in design of such experiments. Affinity purification (AP) experiments typically utilize a bait protein expressing a peptide tag such as FLAG, c-Myc, HA or V5 and high affinity antibodies to these peptide sequences to facilitate isolation of a bait protein to co-purify interacting proteins. We observed significant variability for isolation of tagged bait proteins between Protein A/G Agarose, Protein G Dynabeads, and AminoLink resins. While previous research identified the importance of tag sequence and their location, crosslinking procedures, reagents, dilution, and detergent concentrations, the effect of the resin itself has not been considered. Our data suggest the type of solid support is important and, under the conditions of our experiments, AminoLink resin provided a more robust solid-support platform for AP-MS.

  5. A hybrid approach to protein differential expression in mass spectrometry-based proteomics

    KAUST Repository

    Wang, X.

    2012-04-19

    MOTIVATION: Quantitative mass spectrometry-based proteomics involves statistical inference on protein abundance, based on the intensities of each protein\\'s associated spectral peaks. However, typical MS-based proteomics datasets have substantial proportions of missing observations, due at least in part to censoring of low intensities. This complicates intensity-based differential expression analysis. RESULTS: We outline a statistical method for protein differential expression, based on a simple Binomial likelihood. By modeling peak intensities as binary, in terms of \\'presence/absence,\\' we enable the selection of proteins not typically amenable to quantitative analysis; e.g. \\'one-state\\' proteins that are present in one condition but absent in another. In addition, we present an analysis protocol that combines quantitative and presence/absence analysis of a given dataset in a principled way, resulting in a single list of selected proteins with a single-associated false discovery rate. AVAILABILITY: All R code available here: http://www.stat.tamu.edu/~adabney/share/xuan_code.zip.

  6. Mass spectrometric approaches to study protein structure and interactions in lyophilized powders.

    Science.gov (United States)

    Moorthy, Balakrishnan S; Iyer, Lavanya K; Topp, Elizabeth M

    2015-04-14

    Amide hydrogen/deuterium exchange (ssHDX-MS) and side-chain photolytic labeling (ssPL-MS) followed by mass spectrometric analysis can be valuable for characterizing lyophilized formulations of protein therapeutics. Labeling followed by suitable proteolytic digestion allows the protein structure and interactions to be mapped with peptide-level resolution. Since the protein structural elements are stabilized by a network of chemical bonds from the main-chains and side-chains of amino acids, specific labeling of atoms in the amino acid residues provides insight into the structure and conformation of the protein. In contrast to routine methods used to study proteins in lyophilized solids (e.g., FTIR), ssHDX-MS and ssPL-MS provide quantitative and site-specific information. The extent of deuterium incorporation and kinetic parameters can be related to rapidly and slowly exchanging amide pools (N fast, N slow) and directly reflects the degree of protein folding and structure in lyophilized formulations. Stable photolytic labeling does not undergo back-exchange, an advantage over ssHDX-MS. Here, we provide detailed protocols for both ssHDX-MS and ssPL-MS, using myoglobin (Mb) as a model protein in lyophilized formulations containing either trehalose or sorbitol.

  7. High whey protein intake delayed the loss of lean body mass in healthy old rats, whereas protein type and polyphenol/antioxidant supplementation had no effects.

    Science.gov (United States)

    Mosoni, Laurent; Gatineau, Eva; Gatellier, Philippe; Migné, Carole; Savary-Auzeloux, Isabelle; Rémond, Didier; Rocher, Emilie; Dardevet, Dominique

    2014-01-01

    Our aim was to compare and combine 3 nutritional strategies to slow down the age-related loss of muscle mass in healthy old rats: 1) increase protein intake, which is likely to stimulate muscle protein anabolism; 2) use leucine rich, rapidly digested whey proteins as protein source (whey proteins are recognized as the most effective proteins to stimulate muscle protein anabolism). 3) Supplement animals with a mixture of chamomile extract, vitamin E, vitamin D (reducing inflammation and oxidative stress is also effective to improve muscle anabolism). Such comparisons and combinations were never tested before. Nutritional groups were: casein 12% protein, whey 12% protein, whey 18% protein and each of these groups were supplemented or not with polyphenols/antioxidants. During 6 months, we followed changes of weight, food intake, inflammation (plasma fibrinogen and alpha-2-macroglobulin) and body composition (DXA). After 6 months, we measured muscle mass, in vivo and ex-vivo fed and post-absorptive muscle protein synthesis, ex-vivo muscle proteolysis, and oxidative stress parameters (liver and muscle glutathione, SOD and total antioxidant activities, muscle carbonyls and TBARS). We showed that although micronutrient supplementation reduced inflammation and oxidative stress, the only factor that significantly reduced the loss of lean body mass was the increase in whey protein intake, with no detectable effect on muscle protein synthesis, and a tendency to reduce muscle proteolysis. We conclude that in healthy rats, increasing protein intake is an effective way to delay sarcopenia.

  8. Accurate Quantitation of Dystrophin Protein in Human Skeletal Muscle Using Mass Spectrometry

    OpenAIRE

    Brown, Kristy J; Marathi, Ramya; Fiorillo, Alyson A; Ciccimaro, Eugene F.; Sharma, Seema; Rowlands, David S.; Rayavarapu, Sree; Nagaraju, Kanneboyina; Eric P. Hoffman; Hathout, Yetrib

    2012-01-01

    Quantitation of human dystrophin protein in muscle biopsies is a clinically relevant endpoint for both diagnosis and response to dystrophin-replacement therapies for dystrophinopathies. A robust and accurate assay would enable the use of dystrophin as a surrogate biomarker, particularly in exploratory Phase 2 trials. Currently available methods to quantitate dystrophin rely on immunoblot or immunohistochemistry methods that are not considered robust. Here we present a mass spectrometry based ...

  9. Expression, purification and mass spectrometric analysis of LIM mineralization protein-1 in human lung epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Sreedhara Sangadala; Louisa Titus; Scott D. Boden

    2008-01-01

    LIM mineralization protein-1 (LMP-1) is a novel osteoin ductive protein that has been cloned and shown to induce bone formation both in vitro and in vivo. Detection and evaluation of the possible presence of carbohydrate structures in LMP-1 is an important regulatory consideration for the therapeutic use of recombinantly expressed protein. The sequence of LMP-1 contains a highly conserved N-terminal PDZ domain and three C-terminal LIM domains. The sequence analysis of LMP-I predicts two potential N-glycosylation sites and several O-glycosylation sites. Here, we report the cloning and overexpression of LMP.1 in human lung carcinoma(A549) cells. Even though our group already reported the sequence of LMP-1 cDNA, we undertook this work to clarify whether or not the overexpressed protein undergoes any glycosylation in vivo. The expressed full-length recombinant protein was purified and subjected to chemical analysis and internal sequencing. The absence of any hexosamines (Nacetyl glucosamine or N-acetyl galactosamine) in chemical composition analysis of LMP.I protein revealed that there is little or no post-translational glycosylation of the LMP-1 polypeptide in lung carcinoma cells (A549). We performed in-gel trypsin digestion on purified LMP-I, and the resulting peptide digests were analyzed further using matrix.assisted laser desorption and ionization mass spectrometry for peptide mass finger printing, which produced several exact matches with the corresponding LMP-1 peptides. Separation by high performance liquid chromatography and purification of the desired peptides followed by N-terminal sequencing resulted in many exact LMP-1 matches for several purified peptides, thus establishing the identity of the purified protein as LMP-1.

  10. Specific leaf mass, fresh: dry weight ratio, sugar and protein contents in species of Lamiaceae from different light environments.

    Science.gov (United States)

    Castrillo, M; Vizcaino, D; Moreno, E; Latorraca, Z

    2005-01-01

    Samples from eleven species of Lamiaceae were collected from different light environments in Venezuela for laboratory analysis. The studied species were: Plectranthus scutellarioides (Ps), Scutellaria purpurascens (Sp), Hyptis pectinata (Hp)), H. sinuata (Hs). Leonorus japonicus (Lj), Plecthranthus amboinicus (Pa) Ocimum hasilicum (Ocb), O. campechianum (Occ) Origanum majorana (Orm), Rosmarinus officinali, (Ro) and Salvia officinalis (So). Protein and soluble sugar contents per unit of area were measured, Specific Leaf Mass (SLM) and fresh:dry weight (FW/DW) ratios were calculated. The higher values for soluble sugars contents were present in sun species: Lj, Pa, Ocb, Occ, Orm, Ro and So; the lower values were obtained in low light species: Ps, Sp, Hp, Hs. The values of protein content do not show any clear trend or difference between sun and shade environments. The lowest values for the fresh weight: dry weight ratio are observed in sun species with the exception of Lj and Pa, while the highest value is observed in Pa, a succulent plant. The higher values of specific leaf mass (SLM) (Kg DMm(-2)) are observed in sun plants. The two way ANOVA revealed that there were significant differences among species and between sun and low light environments for sugar content and FW:DW ratio. while SLM was significant for environments but no significant for species, and not significant for protein for both species and environments. The soluble sugar content, FW:DW ratio and SLM values obtained in this work, show a clear separation between sun and shade plants. The sugar content and FW:DW ratio are distinctive within the species, and the light environment affected sugar content. FW:DW ratio and SLM. These species may he shade-tolerant and able to survive in sunny environments. Perhaps these species originated in shaded environments and have been adapting to sunny habitats.

  11. Fabrication of a polystyrene microfluidic chip coupled to electrospray ionization mass spectrometry for protein analysis.

    Science.gov (United States)

    Hu, Xianqiao; Dong, Yuanyuan; He, Qiaohong; Chen, Hengwu; Zhu, Zhiwei

    2015-05-15

    A highly integrated polystyrene (PS) microfluidic chip coupled to electrospray ionization mass spectrometry for on-chip protein digestion and online analysis was developed. The immobilized enzymatic microreactor for on-chip protein digestion was integrated onto microchip via the novel method of region-selective UV-modification combined with glutaraldehyde-based immobilization. The micro film electric contact for applying high voltage was prepared on chips by using UV-directed electroless plating technique. A micro-tip was machined at the end of main channel, serving as the interface between microchip and mass spectrometric detector. On-chip digestion and online detection of protein was carried out by coupling the microchip with mass spectrometry (MS). The influences of methanol flow rate in side channel on the stability of spray and intensity of signals were investigated systematically. Also the influence of sample flow rate on the performance of immobilized enzymatic reactor were investigated. Stable spray was obtained at the spray voltage of 2.8-3.0kV and the methanol flow rate of 500-700nLmin(-1) with the relative standard deviation (RSD) of total ion current (TIC) less than 10%. The influence of sample flow rate on the performance of immobilized enzymatic reactor was also studied. The sequence coverage of protein identification decreased with the increase of flow rate of the sample solution. A sequence coverage of 96% was obtained with immobilized enzymatic reactor at the sample flow rate of 100nLmin(-1) with the reaction time of 8.4min. It could detect cytochrome c as low as 10μgmL(-1) with the developed system. No obvious decrease in protein digestion efficiency was observed after the chip continuously performed for 4h and stored for 15d.

  12. Exploring structure and interactions of the bacterial adaptor protein YjbH by crosslinking mass spectrometry.

    Science.gov (United States)

    Al-Eryani, Yusra; Ib Rasmussen, Morten; Kjellström, Sven; Højrup, Peter; Emanuelsson, Cecilia; von Wachenfeldt, Claes

    2016-09-01

    Adaptor proteins assist proteases in degrading specific proteins under appropriate conditions. The adaptor protein YjbH promotes the degradation of an important global transcriptional regulator Spx, which controls the expression of hundreds of genes and operons in response to thiol-specific oxidative stress in Bacillus subtilis. Under normal growth conditions, the transcription factor is bound to the adaptor protein and therefore degraded by the AAA+ protease ClpXP. If this binding is alleviated during stress, the transcription factor accumulates and turns on genes encoding stress-alleviating proteins. The adaptor protein YjbH is thus a key player involved in these interactions but its structure is unknown. To gain insight into its structure and interactions we have used chemical crosslinking mass spectrometry. Distance constraints obtained from the crosslinked monomer were used to select and validate a structure model of YjbH and then to probe its interactions with other proteins. The core structure of YjbH is reminiscent of DsbA family proteins. One lysine residue in YjbH (K177), located in one of the α-helices outside the thioredoxin fold, crosslinked to both Spx K99 and Spx K117, thereby suggesting one side of the YjbH for the interaction with Spx. Another lysine residue that crosslinked to Spx was YjbH K5, located in the long and presumably very flexible N-terminal arm of YjbH. Our crosslinking data lend support to a model proposed based on site-directed mutagenesis where the YjbH interaction with Spx can stabilize and present the C-terminal region of Spx for protease recognition and proteolysis. Proteins 2016; 84:1234-1245. © 2016 Wiley Periodicals, Inc.

  13. Identification of two-dimensional electrophoresis-separated proteins in human hepatoma cell by electrospray ion trap mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    As one of the most important analytical methods in proteome research, mass spectrometry was utilized to identify proteins separated by two-dimensional electrophoresis in the human hepatoma cell line BEL-7404. The protein spots were excised from the gel, followed by in-gel digestion, and the peptide mappings were analyzed by liquid chromatography electrospray ion trap mass spectrometer. Nine proteins were identified via database searching, according to the molecular weights and amino acid sequences of peptides, among which two proteins have not been identified in the other liver-cell database. The sequence coverage was 21%-72%. Furthermore, the relationship between the expressed proteins and the liver carcinoma was discussed.

  14. Tissue subcellular fractionation and protein extraction for use in mass-spectrometry-based proteomics.

    Science.gov (United States)

    Cox, Brian; Emili, Andrew

    2006-01-01

    We have shown that sample fractionation is an effective method for increasing the detection coverage of the proteome of complex samples, such as organs, by mass-spectrometric techniques. Further fractionating a sample based on subcellular compartments can generate molecular information on the state of a tissue and the distribution of its protein components. Although many methods exist for fractionating proteins, the method described here can capture the majority of subcellular fractions simultaneously at reasonable purity. The scalability of this method makes it amenable to small samples, such as embryonic tissues, in addition to larger tissues. The protocol described is for the general fractionation and extraction of proteins from organs or tissues for subsequent analysis by mass spectrometry. It uses differential centrifugation in density gradients to isolate nuclear, cytosolic, mitochondrial and mixed microsomal (Golgi, endoplasmic reticulum, other vesicles and plasma membrane) fractions. Once the fractions are isolated, they are extracted for protein and the samples can then be frozen for processing and analysis at a later date. The procedure can typically be completed in 5 h.

  15. Determination of Protein Folding Intermediate Structures Consistent with Data from Oxidative Footprinting Mass Spectrometry.

    Science.gov (United States)

    Heinkel, Florian; Gsponer, Jörg

    2016-01-29

    The mapping of folding landscapes remains an important challenge in protein chemistry. Pulsed oxidative labeling of exposed residues and their detection via mass spectrometry provide new means of taking time-resolved "snapshots" of the structural changes that occur during protein folding. However, such experiments have been so far only interpreted qualitatively. Here, we report the detailed structural interpretation of mass spectrometry data from fast photochemical oxidation of proteins (FPOP) experiments at atomic resolution in a biased molecular dynamics approach. We are able to calculate structures of the early folding intermediate of the model system barstar that are fully consistent with FPOP data and Φ values. Furthermore, structures calculated with both FPOP data and Φ values are significantly less compact and have fewer helical residues than intermediate structures calculated with Φ values only. This improves the agreement with the experimental β-Tanford value and CD measurements. The restraints that we introduce facilitate the structural interpretation of FPOP data and provide new means for refined structure calculations of transiently sampled states on protein folding landscapes.

  16. Mass-spectrometric identification of binding proteins of Mr 25,000 protein, a part of vitellogenin B1, detected in particulate fraction of Xenopus laevis oocytes.

    Science.gov (United States)

    Sugimoto, Isamu; Li, Zhijun; Yoshitome, Satoshi; Ito, Susumu; Hashimoto, Eikichi

    2004-10-01

    A phosphorylated protein with molecular mass of 25,000 (pp25) is a component of Xenopus laevis vitellogenin B1. Our previous report showed the existence of several binding proteins of pp25 in the particulate fraction of Xenopus oocytes. In an attempt to elucidate the function of pp25, two of these binding proteins were purified, analyzed by mass-spectrometry, and identified as ribosomal proteins S13 and S14. Other binding proteins in the particulate fraction mostly corresponded to those derived from purified 40S and 60S ribosomal subunits, as shown by the overlay assay method. However, pp25 did not show any effect on protein synthesis in the rabbit reticulocyte lysate system. A model in which pp25 connects a type of serpin (serine protease inhibitor), the only pp25-binding protein detected in the cytoplasm, to the endoplasmic reticulum through two serine clusters is proposed to explain a possible function of this protein.

  17. Monitoring Conformational Landscape of Ovine Prion Protein Monomer Using Ion Mobility Coupled to Mass Spectrometry

    Science.gov (United States)

    Van der Rest, Guillaume; Rezaei, Human; Halgand, Frédéric

    2017-02-01

    Prion protein is involved in deadly neurodegenerative diseases. Its pathogenicity is linked to its structural conversion (α-helix to β-strand transition). However, recent studies suggest that prion protein can follow a plurality of conversion pathways, which hints towards different conformers that might coexist in solution. To gain insights on the plasticity of the ovine prion protein (PrP) monomer, wild type (A136, R154, Q171), mutants and deletions of ARQ were studied by traveling wave ion mobility experiments coupled to mass spectrometry. In order to perform the analysis of a large body of data sets, we designed and evaluated the performance of a processing pipeline based on Driftscope peak detection and a homemade script for automated peak assignment, annotation, and quantification on specific multiply charged protein data. Using this approach, we showed that in the gas phase, PrPs are represented by at least three conformer families differing in both charge state distribution and collisional cross-section, in agreement with the work of Hilton et al. (2010). We also showed that this plasticity is borne both by the N- and C-terminal domains. Effect of protein concentration, pH and temperature were also assessed, showing that (1) pH does not affect conformer distributions, (2) protein concentration modifies the conformational landscape of one mutant (I208M) only, and (3) heating leads to other unfolded species and to a modification of the conformer intensity ratios.

  18. On the utility of predictive chromatography to complement mass spectrometry based intact protein identification.

    Science.gov (United States)

    Pridatchenko, Marina L; Perlova, Tatyana Yu; Ben Hamidane, Hisham; Goloborodko, Anton A; Tarasova, Irina A; Gorshkov, Alexander V; Evreinov, Victor V; Tsybin, Yury O; Gorshkov, Mikhail V

    2012-03-01

    The amino acid sequence determines the individual protein three-dimensional structure and its functioning in an organism. Therefore, "reading" a protein sequence and determining its changes due to mutations or post-translational modifications is one of the objectives of proteomic experiments. The commonly utilized approach is gradient high-performance liquid chromatography (HPLC) in combination with tandem mass spectrometry. While serving as a way to simplify the protein mixture, the liquid chromatography may be an additional analytical tool providing complementary information about the protein structure. Previous attempts to develop "predictive" HPLC for large biomacromolecules were limited by empirically derived equations based purely on the adsorption mechanisms of the retention and applicable to relatively small polypeptide molecules. A mechanism of the large biomacromolecule retention in reversed-phase gradient HPLC was described recently in thermodynamics terms by the analytical model of liquid chromatography at critical conditions (BioLCCC). In this work, we applied the BioLCCC model to predict retention of the intact proteins as well as their large proteolytic peptides separated under different HPLC conditions. The specific aim of these proof-of-principle studies was to demonstrate the feasibility of using "predictive" HPLC as a complementary tool to support the analysis of identified intact proteins in top-down, middle-down, and/or targeted selected reaction monitoring (SRM)-based proteomic experiments.

  19. Enrichment of Extracellular Matrix Proteins from Tissues and Digestion into Peptides for Mass Spectrometry Analysis.

    Science.gov (United States)

    Naba, Alexandra; Clauser, Karl R; Hynes, Richard O

    2015-07-23

    The extracellular matrix (ECM) is a complex meshwork of cross-linked proteins that provides biophysical and biochemical cues that are major regulators of cell proliferation, survival, migration, etc. The ECM plays important roles in development and in diverse pathologies including cardio-vascular and musculo-skeletal diseases, fibrosis, and cancer. Thus, characterizing the composition of ECMs of normal and diseased tissues could lead to the identification of novel prognostic and diagnostic biomarkers and potential novel therapeutic targets. However, the very nature of ECM proteins (large in size, cross-linked and covalently bound, heavily glycosylated) has rendered biochemical analyses of ECMs challenging. To overcome this challenge, we developed a method to enrich ECMs from fresh or frozen tissues and tumors that takes advantage of the insolubility of ECM proteins. We describe here in detail the decellularization procedure that consists of sequential incubations in buffers of different pH and salt and detergent concentrations and that results in 1) the extraction of intracellular (cytosolic, nuclear, membrane and cytoskeletal) proteins and 2) the enrichment of ECM proteins. We then describe how to deglycosylate and digest ECM-enriched protein preparations into peptides for subsequent analysis by mass spectrometry.

  20. Electrospray ionization-mass spectrometry conformational analysis of isolated domains of an intrinsically disordered protein.

    Science.gov (United States)

    Testa, Lorenzo; Brocca, Stefania; Samalikova, Maria; Santambrogio, Carlo; Alberghina, Lilia; Grandori, Rita

    2011-01-01

    The highly dynamic and heterogeneous molecular ensembles characterizing intrinsically disordered proteins (IDP) in solution pose major challenges to the conventional methods for structural analysis. Electrospray ionization-mass spectrometry (ESI-MS) allows direct detection of distinct conformational components, effectively capturing also partially folded and short-lived states. We report the description of two complementary fragments (1-186 and 187-284) of the IDP Sic1, a cyclin-dependent protein kinase inhibitor of yeast Saccharomyces cerevisiae. Structural heterogeneity is noted in both cases, but the two fragments reveal slightly different conformational properties. The results are consistent with previously reported differences between the two protein moieties and corroborate the feasibility of IDP conformational analysis by ESI-MS.

  1. Detection of bacterial protein toxins by solid phase magnetic immunocapture and mass spectrometry.

    Science.gov (United States)

    Pocsfalvi, Gabriella; Schlosser, Gitta

    2011-01-01

    Bacterial protein toxins are involved in a number of infectious and foodborne diseases and are considered as potential biological warfare agents as well. Their sensitive multiplex detection in complex environmental, food, and biological samples are an important although challenging task. Solid-phase immunoaffinity capture provides an efficient way to enrich and purify a wide range of proteins from complex mixtures. We have shown that staphylococcal enterotoxins, for example, can be efficiently enriched by means of magnetic immunocapture using antibody functionalized paramagnetic beads. The method was successfully interfaced by the on-beads and off-beads detection using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry at the protein level and by the off-beads nano-electrospray ionization-MS/MS detection at the enzyme digests level, enabling thus the unambiguous identification of the toxin. The method is applicable to any bacterial toxin to which an antibody is available.

  2. Increased Body Mass Index, Elevated C-reactive Protein, and Short Telomere Length

    DEFF Research Database (Denmark)

    Rode, Line; Nordestgaard, Børge G; Weischer, Maren;

    2014-01-01

    CONTEXT: Obesity is associated with short telomere length. The cause of this association is unknown. OBJECTIVE: We hypothesized that genetically increased body mass index (BMI) is associated with telomere length shortening and that low-grade inflammation might contribute through elevated C......-reactive protein. SETTING AND DESIGN: We studied 45,069 individuals from the Copenhagen General Population Study with measurements of leukocyte telomere length, BMI, and C-reactive protein in a Mendelian randomization study. Using the three obesity-associated polymorphisms FTO rs9939609, MC4R rs17782313, and TMEM......18 rs6548238, and the CRP promoter polymorphism rs3091244 in instrumental variable analyses, we estimated the associations between genetically increased BMI and telomere length and between genetically increased C-reactive protein and telomere length. RESULTS: In multivariable-adjusted observational...

  3. Analytical validation considerations of multiplex mass-spectrometry-based proteomic platforms for measuring protein biomarkers.

    Science.gov (United States)

    Boja, Emily S; Fehniger, Thomas E; Baker, Mark S; Marko-Varga, György; Rodriguez, Henry

    2014-12-01

    Protein biomarker discovery and validation in current omics era are vital for healthcare professionals to improve diagnosis, detect cancers at an early stage, identify the likelihood of cancer recurrence, stratify stages with differential survival outcomes, and monitor therapeutic responses. The success of such biomarkers would have a huge impact on how we improve the diagnosis and treatment of patients and alleviate the financial burden of healthcare systems. In the past, the genomics community (mostly through large-scale, deep genomic sequencing technologies) has been steadily improving our understanding of the molecular basis of disease, with a number of biomarker panels already authorized by the U.S. Food and Drug Administration (FDA) for clinical use (e.g., MammaPrint, two recently cleared devices using next-generation sequencing platforms to detect DNA changes in the cystic fibrosis transmembrane conductance regulator (CFTR) gene). Clinical proteomics, on the other hand, albeit its ability to delineate the functional units of a cell, more likely driving the phenotypic differences of a disease (i.e., proteins and protein-protein interaction networks and signaling pathways underlying the disease), "staggers" to make a significant impact with only an average ∼ 1.5 protein biomarkers per year approved by the FDA over the past 15-20 years. This statistic itself raises the concern that major roadblocks have been impeding an efficient transition of protein marker candidates in biomarker development despite major technological advances in proteomics in recent years.

  4. Defining Gas-Phase Fragmentation Propensities of Intact Proteins During Native Top-Down Mass Spectrometry.

    Science.gov (United States)

    Haverland, Nicole A; Skinner, Owen S; Fellers, Ryan T; Tariq, Areeba A; Early, Bryan P; LeDuc, Richard D; Fornelli, Luca; Compton, Philip D; Kelleher, Neil L

    2017-06-01

    Fragmentation of intact proteins in the gas phase is influenced by amino acid composition, the mass and charge of precursor ions, higher order structure, and the dissociation technique used. The likelihood of fragmentation occurring between a pair of residues is referred to as the fragmentation propensity and is calculated by dividing the total number of assigned fragmentation events by the total number of possible fragmentation events for each residue pair. Here, we describe general fragmentation propensities when performing top-down mass spectrometry (TDMS) using denaturing or native electrospray ionization. A total of 5311 matched fragmentation sites were collected for 131 proteoforms that were analyzed over 165 experiments using native top-down mass spectrometry (nTDMS). These data were used to determine the fragmentation propensities for 399 residue pairs. In comparison to denatured top-down mass spectrometry (dTDMS), the fragmentation pathways occurring either N-terminal to proline or C-terminal to aspartic acid were even more enhanced in nTDMS compared with other residues. More generally, 257/399 (64%) of the fragmentation propensities were significantly altered (P ≤ 0.05) when using nTDMS compared with dTDMS, and of these, 123 were altered by 2-fold or greater. The most notable enhancements of fragmentation propensities for TDMS in native versus denatured mode occurred (1) C-terminal to aspartic acid, (2) between phenylalanine and tryptophan (F|W), and (3) between tryptophan and alanine (W|A). The fragmentation propensities presented here will be of high value in the development of tailored scoring systems used in nTDMS of both intact proteins and protein complexes. Graphical Abstract ᅟ.

  5. The four-transmembrane protein IP39 of Euglena forms strands by a trimeric unit repeat.

    Science.gov (United States)

    Suzuki, Hiroshi; Ito, Yasuyuki; Yamazaki, Yuji; Mineta, Katsuhiko; Uji, Masami; Abe, Kazuhiro; Tani, Kazutoshi; Fujiyoshi, Yoshinori; Tsukita, Sachiko

    2013-01-01

    Euglenoid flagellates have striped surface structures comprising pellicles, which allow the cell shape to vary from rigid to flexible during the characteristic movement of the flagellates. In Euglena gracilis, the pellicular strip membranes are covered with paracrystalline arrays of a major integral membrane protein, IP39, a putative four-membrane-spanning protein with the conserved sequence motif of the PMP-22/EMP/MP20/Claudin superfamily. Here we report the three-dimensional structure of Euglena IP39 determined by electron crystallography. Two-dimensional crystals of IP39 appear to form a striated pattern of antiparallel double-rows in which trimeric IP39 units are longitudinally polymerised, resulting in continuously extending zigzag-shaped lines. Structural analysis revealed an asymmetric molecular arrangement in the trimer, and suggested that at least four different interactions between neighbouring protomers are involved. A combination of such multiple interactions would be important for linear strand formation of membrane proteins in a lipid bilayer.

  6. Murine protein H is comprised of 20 repeating units, 61 amino acids in length

    DEFF Research Database (Denmark)

    Kristensen, Torsten; Tack, B F

    1986-01-01

    A cDNA library constructed from size-selected (greater than 28 S) poly(A)+ RNA isolated from the livers of C57B10. WR mice was screened by using a 249-base-pair (bp) cDNA fragment encoding 83 amino acid residues of human protein H as a probe. Of 120,000 transformants screened, 30 hybridized......, 448 bp of 3'-untranslated sequence, and a polyadenylylated tail of undetermined length. Murine pre-protein H was deduced to consist of an 18-amino acid signal peptide and 1216 residues of H-protein sequence. Murine H was composed of 20 repetitive units, each about 61 amino acid residues in length...

  7. Mass Transport Complexes in bacini confinati a controllo strutturale: l'Unità Epiligure di Specchio (Appennino Settentrionale)

    OpenAIRE

    Ogata, Kei

    2010-01-01

    Il recente incremento dell’esplorazione geofisica dei margini continentali e il concomitante sviluppo di tecnologie d’indagine, sismiche ed acustiche, sempre più accurate, hanno rivelato la comune presenza di vasti accumuli di sedimenti rimobilizzati a causa di franamenti sottomarini, e comunemente identificati con il termine di Mass Transport Deposit o Complex (MTD e MTC, rispettivamente). Attualmente, queste unità sono intensamente studiate non solo per ragioni strettamente scientifiche,...

  8. Energy and mass balances in multiple-effect upward solar distillers with air flow through the last-effect unit

    Energy Technology Data Exchange (ETDEWEB)

    Homing Yeh; Chiidong Ho [Tamkang Univ. Tamsui, Dept. of Chemical Engineering, Taipei Hsien (Taiwan)

    2000-04-01

    Considerable improvement in productivity may be obtained if water vapor in the last-effect unit is carried away directly by flowing air. The theory of a closed-type upward multiple-effect solar distiller has been modified to that of an open-type device, and the energy and mass balances have been derived. The production rate of distilled water for each effect under various climate, design, and operational conditions may be predicted by simultaneously solving the appropriate equations. (Author)

  9. Kepler-47 Circumbinary Planets obey Quantization of Angular Momentum per Unit Mass predicted by Quantum Celestial Mechanics (QCM

    Directory of Open Access Journals (Sweden)

    Potter F.

    2014-01-01

    Full Text Available The Kepler-47 circumbinary system has three known planets orbiting its binary star barycenter and therefore can provide a precision test of the Quantum Celestial Mechan- ics (QCM prediction of the quantization of angular momentum per unit mass in all gravitationally bound systems. Two of the planets are in the Habitable Zone (HZ, so system stability can be a primary concern. QCM may be a major contributor to the stability of this system.

  10. Characterization of Thioether-Linked Protein Adducts of DNA Using a Raney-Ni Mediated Desulfurization Method and Liquid Chromatography-Electrospray-Tandem Mass Spectrometry

    Science.gov (United States)

    Chowdhury, Goutam; Guengerich, F. Peter

    2015-01-01

    This unit contains a complete procedure for the detection and structural characterization of DNA protein crosslinks (DPCs). The procedure also describes an approach for the quantitation of the various structurally distinct DPCs. Although various methods have been described in the literature for labile DPCs, characterization of non-labile adducts remain a challenge. Here we present a novel approach for characterization of both labile and non-labile adducts by the use of a combination of chemical, enzymatic, and mass spectrometric approaches. A Raney Ni-catalyzed reductive desulfurization method was used for removal of the bulky peptide adducts, enzymatic digestion was used to digest the protein to smaller peptides and DNA to nucleosides, and finally LC-ESI-tandem mass spectrometry (MS) was utilized for detection and characterization of nucleoside adducts. PMID:25754888

  11. Combined experimental and statistical strategy for mass spectrometry based serum protein profiling for diagnosis of breast cancer

    DEFF Research Database (Denmark)

    Callesen, Anne Kjærgaard; Vach, Werner; Jørgensen, Per E

    2008-01-01

    Serum protein profiling by mass spectrometry is a promising method for early detection of cancer. We have implemented a combined strategy based on matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) and statistical data analysis for serum protein profiling and applied...... of nine mass spectrometric protein profiles were obtained for each serum sample. A total of 533 common peaks were defined and represented a 'reference protein profile'. Among these 533 common peaks, we identified 72 peaks exhibiting statistically significant intensity differences ( p ... and specificity. We conclude that optimized serum sample handling and mass spectrometry data acquisition strategies in combination with statistical analysis provide a viable platform for serum protein profiling in cancer diagnosis....

  12. Protein and Peptide Composition of Male Accessory Glands of Apis mellifera Drones Investigated by Mass Spectrometry.

    Directory of Open Access Journals (Sweden)

    Vladimir Gorshkov

    Full Text Available In honeybees, reproductive females usually mate early in their life with more than 10 males in free flight, often within 10 minutes, and then store male gametes for up to five years. Because of the extreme polyandry and mating in free flight special adaptations in males are most likely. We present here the results of an investigation of the protein content of four types of male reproductive glands from the Western honeybee (Apis mellifera drone, namely seminal vesicles (secretion in ejaculate, as well as bulbus, cornua and mucus glands (secretions for the mating plug. Using high resolution and accuracy mass spectrometry and a combination of database searching and de novo sequencing techniques it was possible to identify 50 different proteins in total, inside all mentioned glands, except in the mucus gland. Most of the proteins are unique for a specific gland type, only one of them (H9KEY1/ATP synthase subunit O was found in three glands, and 7 proteins were found in two types of glands. The identified proteins represent a wide variety of biological functions and can be assigned to several physiological classes, such as protection, energy generation, maintaining optimal conditions, associated mainly with vesicula seminalis; signaling, cuticle proteins, icarpin and apolipoproteins located mainly in the bulbus and cornua glands; and some other classes. Most of the discovered proteins were not found earlier during investigation of semen, seminal fluid and tissue of reproductive glands of the bee drone. Moreover, we provide here the origin of each protein. Thus, the presented data might shed light on the role of each reproductive gland.

  13. Protein and Peptide Composition of Male Accessory Glands of Apis mellifera Drones Investigated by Mass Spectrometry.

    Science.gov (United States)

    Gorshkov, Vladimir; Blenau, Wolfgang; Koeniger, Gudrun; Römpp, Andreas; Vilcinskas, Andreas; Spengler, Bernhard

    2015-01-01

    In honeybees, reproductive females usually mate early in their life with more than 10 males in free flight, often within 10 minutes, and then store male gametes for up to five years. Because of the extreme polyandry and mating in free flight special adaptations in males are most likely. We present here the results of an investigation of the protein content of four types of male reproductive glands from the Western honeybee (Apis mellifera) drone, namely seminal vesicles (secretion in ejaculate), as well as bulbus, cornua and mucus glands (secretions for the mating plug). Using high resolution and accuracy mass spectrometry and a combination of database searching and de novo sequencing techniques it was possible to identify 50 different proteins in total, inside all mentioned glands, except in the mucus gland. Most of the proteins are unique for a specific gland type, only one of them (H9KEY1/ATP synthase subunit O) was found in three glands, and 7 proteins were found in two types of glands. The identified proteins represent a wide variety of biological functions and can be assigned to several physiological classes, such as protection, energy generation, maintaining optimal conditions, associated mainly with vesicula seminalis; signaling, cuticle proteins, icarpin and apolipoproteins located mainly in the bulbus and cornua glands; and some other classes. Most of the discovered proteins were not found earlier during investigation of semen, seminal fluid and tissue of reproductive glands of the bee drone. Moreover, we provide here the origin of each protein. Thus, the presented data might shed light on the role of each reproductive gland.

  14. Surface-Induced Dissociation of Protein Complexes in a Hybrid Fourier Transform Ion Cyclotron Resonance Mass Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Jing; Zhou, Mowei; Gilbert, Joshua D.; Wolff, Jeremy J.; Somogyi, Árpád; Pedder, Randall E.; Quintyn, Royston S.; Morrison, Lindsay J.; Easterling, Michael L.; Paša-Tolić, Ljiljana; Wysocki, Vicki H.

    2017-01-03

    Mass spectrometry continues to develop as a valuable tool in the analysis of proteins and protein complexes. In protein complex mass spectrometry studies, surface-induced dissociation (SID) has been successfully applied in quadrupole time-of-flight (Q-TOF) instruments. SID provides structural information on non-covalent protein complexes that is complementary to other techniques. However, the mass resolution of Q-TOF instruments can limit the information that can be obtained for protein complexes by SID. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) provides ultrahigh resolution and ultrahigh mass accuracy measurements. In this study, an SID device was designed and successfully installed in a hybrid FT-ICR instrument in place of the standard gas collision cell. The SID-FT-ICR platform has been tested with several protein complex systems (homooligomers, a heterooligomer, and a protein-ligand complex, ranging from 53 kDa to 85 kDa), and the results are consistent with data previously acquired on Q-TOF platforms, matching predictions from known protein interface information. SID fragments with the same m/z but different charge states are well-resolved based on distinct spacing between adjacent isotope peaks, and the addition of metal cations and ligands can also be isotopically resolved with the ultrahigh mass resolution available in FT-ICR.

  15. Mass and number size distributions of emitted particulates at five important operation units in a hazardous industrial waste incineration plant.

    Science.gov (United States)

    Lin, Chi-Chi; Huang, Hsiao-Lin; Hsiao, Wen-Yuan

    2016-01-01

    Past studies indicated particulates generated by waste incineration contain various hazardous compounds. The aerosol characteristics are very important for particulate hazard control and workers' protection. This study explores the detailed characteristics of emitted particulates from each important operation unit in a rotary kiln-based hazardous industrial waste incineration plant. A dust size analyzer (Grimm 1.109) and a scanning mobility particle sizer (SMPS) were used to measure the aerosol mass concentration, mass size distribution, and number size distribution at five operation units (S1-S5) during periods of normal operation, furnace shutdown, and annual maintenance. The place with the highest measured PM10 concentration was located at the area of fly ash discharge from air pollution control equipment (S5) during the period of normal operation. Fine particles (PM2.5) constituted the majority of the emitted particles from the incineration plant. The mass size distributions (elucidated) made it clear that the size of aerosols caused by the increased particulate mass, resulting from work activities, were mostly greater than 1.5 μm. Whereas the number size distributions showed that the major diameters of particulates that caused the increase of particulate number concentrations, from work activities, were distributed in the sub micrometer range. The process of discharging fly ash from air pollution control equipment can significantly increase the emission of nanoparticles. The mass concentrations and size distributions of emitted particulates were different at each operation unit. This information is valuable for managers to take appropriate strategy to reduce the particulate emission and associated worker exposure.

  16. How changing the particle structure can speed up protein mass transfer kinetics in liquid chromatography.

    Science.gov (United States)

    Gritti, Fabrice; Horvath, Krisztian; Guiochon, Georges

    2012-11-01

    The mass transfer kinetics of a few compounds (uracil, 112 Da), insulin (5.5 kDa), lysozyme (13.4 kDa), and bovine serum albumin (BSA, 67 kDa) in columns packed with several types of spherical particles was investigated under non-retained conditions, in order to eliminate the poorly known contribution of surface diffusion to overall sample diffusivity across the porous particles in RPLC. Diffusivity across particles is then minimum. Based on the porosity of the particles accessible to analytes, it was accurately estimated from the elution times, the internal obstruction factor (using Pismen correlation), and the hindrance diffusion factor (using Renkin correlation). The columns used were packed with fully porous particles 2.5 μm Luna-C(18) 100 Å, core-shell particles 2.6 μm Kinetex-C(18) 100 Å, 3.6 μm Aeris Widepore-C(18) 200 Å, and prototype 2.7 μm core-shell particles (made of two concentric porous shells with 100 and 300 Å average pore size, respectively), and with 3.3 μm non-porous silica particles. The results demonstrate that the porous particle structure and the solid-liquid mass transfer resistance have practically no effect on the column efficiency for small molecules. For them, the column performance depends principally on eddy dispersion (packing homogeneity), to a lesser degree on longitudinal diffusion (effective sample diffusivity along the packed bed), and only slightly on the solid-liquid mass transfer resistance (sample diffusivity across the particle). In contrast, for proteins, this third HETP contribution, hence the porous particle structure, together with eddy dispersion govern the kinetic performance of columns. Mass transfer kinetics of proteins was observed to be fastest for columns packed with core-shell particles having either a large core-to-particle ratio or having a second, external, shell made of a thin porous layer with large mesopores (200-300 Å) and a high porosity (~/=0.5-0.7). The structure of this external shell seems

  17. Pigments and proteins in green bacterial chlorosomes studied by matrix-assisted laser desorption ionization mass spectrometry

    DEFF Research Database (Denmark)

    Persson, S; Sönksen, C P; Frigaard, N-U

    2000-01-01

    homologs in a small amount of green bacterial cells. In addition to information on pigments, the MALDI spectra also contained peaks from chlorosome proteins. Thus we have been able with high precision to confirm the molecular masses of the chlorosome proteins CsmA and CsmE which have been previously......We have used matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) for mass determination of pigments and proteins in chlorosomes, the light-harvesting organelles from the photosynthetic green sulfur bacterium Chlorobium tepidum. By applying a small volume (1...

  18. Pigments and proteins in green bacterial chlorosomes studied by matrix-assisted laser desorption ionization mass spectrometry

    DEFF Research Database (Denmark)

    Persson, S; Sönksen, C P; Frigaard, N U

    2000-01-01

    We have used matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) for mass determination of pigments and proteins in chlorosomes, the light-harvesting organelles from the photosynthetic green sulfur bacterium Chlorobium tepidum. By applying a small volume (1...... homologs in a small amount of green bacterial cells. In addition to information on pigments, the MALDI spectra also contained peaks from chlorosome proteins. Thus we have been able with high precision to confirm the molecular masses of the chlorosome proteins CsmA and CsmE which have been previously...

  19. Assessment of current mass spectrometric workflows for the quantification of low abundant proteins and phosphorylation sites

    Directory of Open Access Journals (Sweden)

    Manuel Bauer

    2015-12-01

    Full Text Available The data described here provide a systematic performance evaluation of popular data-dependent (DDA and independent (DIA mass spectrometric (MS workflows currently used in quantitative proteomics. We assessed the limits of identification, quantification and detection for each method by analyzing a dilution series of 20 unmodified and 10 phosphorylated synthetic heavy labeled reference peptides, respectively, covering six orders of magnitude in peptide concentration with and without a complex human cell digest background. We found that all methods performed very similarly in the absence of background proteins, however, when analyzing whole cell lysates, targeted methods were at least 5–10 times more sensitive than directed or DDA methods. In particular, higher stage fragmentation (MS3 of the neutral loss peak using a linear ion trap increased dynamic quantification range of some phosphopeptides up to 100-fold. We illustrate the power of this targeted MS3 approach for phosphopeptide monitoring by successfully quantifying 9 phosphorylation sites of the kinetochore and spindle assembly checkpoint component Mad1 over different cell cycle states from non-enriched pull-down samples. The data are associated to the research article ‘Evaluation of data-dependent and data-independent mass spectrometric workflows for sensitive quantification of proteins and phosphorylation sites׳ (Bauer et al., 2014 [1]. The mass spectrometry and the analysis dataset have been deposited to the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org via the PRIDE partner repository with the dataset identifier PXD000964.

  20. The evolution of the tape measure protein: units, duplications and losses

    Directory of Open Access Journals (Sweden)

    Poisson Guylaine

    2011-10-01

    Full Text Available Abstract Background A large family of viruses that infect bacteria, called phages, is characterized by long tails used to inject DNA into their victims' cells. The tape measure protein got its name because the length of the corresponding gene is proportional to the length of the phage's tail: a fact shown by actually copying or splicing out parts of DNA in exemplar species. A natural question is whether there exist units for these tape measures, and if different tape measures have different units and lengths. Such units would allow us to retrace the evolution of tape measure proteins using their duplication/loss history. The vast number of sequenced phages genomes allows us to attack this problem with a comparative genomics approach. Results Here we describe a subset of phages whose tape measure proteins contain variable numbers of an 11 amino acids sequence repeat, aligned with sequence similarity, structural properties, and simple arithmetics. This subset provides a unique opportunity for the combinatorial study of phage evolution, without the added uncertainties of multiple alignments, which are trivial in this case, or of protein functions, that are well established. We give a heuristic that reconstructs the duplication history of these sequences, using divergent strains to discriminate between mutations that occurred before and after speciation, or lineage divergence. The heuristic is based on an efficient algorithm that gives an exhaustive enumeration of all possible parsimonious reconstructions of the duplication/speciation history of a single nucleotide. Finally, we present a method that allows, when possible, to discriminate between duplication and loss events. Conclusions Establishing the evolutionary history of viruses is difficult, in part due to extensive recombinations and gene transfers, and high mutation rates that often erase detectable similarity between homologous genes. In this paper, we introduce new tools to address this

  1. The evolution of the tape measure protein: units, duplications and losses.

    Science.gov (United States)

    Belcaid, Mahdi; Bergeron, Anne; Poisson, Guylaine

    2011-10-05

    A large family of viruses that infect bacteria, called phages, is characterized by long tails used to inject DNA into their victims' cells. The tape measure protein got its name because the length of the corresponding gene is proportional to the length of the phage's tail: a fact shown by actually copying or splicing out parts of DNA in exemplar species. A natural question is whether there exist units for these tape measures, and if different tape measures have different units and lengths. Such units would allow us to retrace the evolution of tape measure proteins using their duplication/loss history. The vast number of sequenced phages genomes allows us to attack this problem with a comparative genomics approach. Here we describe a subset of phages whose tape measure proteins contain variable numbers of an 11 amino acids sequence repeat, aligned with sequence similarity, structural properties, and simple arithmetics. This subset provides a unique opportunity for the combinatorial study of phage evolution, without the added uncertainties of multiple alignments, which are trivial in this case, or of protein functions, that are well established. We give a heuristic that reconstructs the duplication history of these sequences, using divergent strains to discriminate between mutations that occurred before and after speciation, or lineage divergence. The heuristic is based on an efficient algorithm that gives an exhaustive enumeration of all possible parsimonious reconstructions of the duplication/speciation history of a single nucleotide. Finally, we present a method that allows, when possible, to discriminate between duplication and loss events. Establishing the evolutionary history of viruses is difficult, in part due to extensive recombinations and gene transfers, and high mutation rates that often erase detectable similarity between homologous genes. In this paper, we introduce new tools to address this problem.

  2. Quantification of protein posttranslational modifications using stable isotope and mass spectrometry I: principles and applications.

    Science.gov (United States)

    Jiang, Xinzhao Grace; Apostol, Izydor; Luo, Quanzhou; Lewis, Jeffrey; Keener, Ronald; Luo, Shun; Jerums, Matthew; Zhang, Xin; Wypych, Jette; Huang, Gang

    2012-02-15

    With the increased attention to quality by design (QbD) for biopharmaceutical products, there is a demand for accurate and precise quantification methods to monitor critical quality attributes (CQAs). To address this need we have developed a mass spectrometry (MS) based method to quantify a wide range of posttranslational modifications (PTMs) in recombinant proteins using stable isotope-labeled internal standard (SILIS). The SILIS was produced through metabolic labeling where ¹⁵N was uniformly introduced at every nitrogen atom in the studied proteins. To enhance the accuracy of the method, the levels of PTMs in SILIS were quantified using orthogonal analytical techniques. Digestion of an unknown sample mixed with SILIS generates a labeled and a nonlabeled version of each peptide. The nonlabeled and labeled counterparts coelute during RP-HPLC separation but exhibit a sufficient mass difference to be distinguished by MS detection. With the application of SILIS, numerous PTMs can be quantified in a single analysis based on the measured MS signal ratios of ¹⁵N-labeled versus the nonlabeled pairs. Several examples using microbial and mammalian-expressed recombinant proteins demonstrated the principle and utility of this method. The results indicate that SILIS is a valuable methodology in addressing CQAs for the QbD paradigm.

  3. Mass Spectrometric Immunoassay for Parathyroid Hormone Related Protein (PTHrP)

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, K.; Rivera, J.D.; Vogel, J.S.; Buchholz, B.A.; Burton, D.W.; Deftos, L.J.; Herold, D.A.; Fitzgerald, R.L.

    2000-06-16

    Many cancers, including prostate, breast and lung express parathyroid hormone related protein (PTHrP). Despite the common tumor overexpression of PTHrP, serum levels of PTHrP are not commonly elevated in affected patients. They postulate that the reasons for the discrepancy between tissue and serum measurements of PTHrP are the inadequate sensitivity and specificity of current PTHrP serum assays. To improve the clinical value of PTHrP serum assays for the cancer patient, they are developing a new generation of novel and ultrasensitive PTHrP serum immunoassays based on immunoaffinity purification, nanospray liquid chromatography tandem mass spectrometry (LC/MS/MS) and accelerator mass spectrometry (AMS).

  4. Effects of high-protein diets on fat-free mass and muscle protein synthesis following weight loss: a randomized controlled trial.

    Science.gov (United States)

    Pasiakos, Stefan M; Cao, Jay J; Margolis, Lee M; Sauter, Edward R; Whigham, Leah D; McClung, James P; Rood, Jennifer C; Carbone, John W; Combs, Gerald F; Young, Andrew J

    2013-09-01

    The purpose of this work was to determine the effects of varying levels of dietary protein on body composition and muscle protein synthesis during energy deficit (ED). A randomized controlled trial of 39 adults assigned the subjects diets providing protein at 0.8 (recommended dietary allowance; RDA), 1.6 (2×-RDA), and 2.4 (3×-RDA) g kg(-1) d(-1) for 31 d. A 10-d weight-maintenance (WM) period was followed by a 21 d, 40% ED. Body composition and postabsorptive and postprandial muscle protein synthesis were assessed during WM (d 9-10) and ED (d 30-31). Volunteers lost (Pweight during ED regardless of dietary protein. The proportion of weight loss due to reductions in fat-free mass was lower (Ploss of fat mass was higher (Presponse to a protein-rich meal during ED was not different (P>0.05) from WM for 2×-RDA and 3×-RDA, but was lower during ED than WM for those consuming RDA levels of protein (energy × protein interaction, Pmetabolic responses to varied protein intakes during ED, RDA served as the study control. In summary, we determined that consuming dietary protein at levels exceeding the RDA may protect fat-free mass during short-term weight loss.

  5. The Application of an Emerging Technique for Protein–Protein Interaction Interface Mapping: The Combination of Photo-Initiated Cross-Linking Protein Nanoprobes with Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Ptáčková Renata

    2014-05-01

    Full Text Available Protein–protein interaction was investigated using a protein nanoprobe capable of photo-initiated cross-linking in combination with high-resolution and tandem mass spectrometry. This emerging experimental approach introduces photo-analogs of amino acids within a protein sequence during its recombinant expression, preserves native protein structure and is suitable for mapping the contact between two proteins. The contact surface regions involved in the well-characterized interaction between two molecules of human 14-3-3ζ regulatory protein were used as a model. The employed photo-initiated cross-linking techniques extend the number of residues shown to be within interaction distance in the contact surface of the 14-3-3ζ dimer (Gln8–Met78. The results of this study are in agreement with our previously published data from molecular dynamic calculations based on high-resolution chemical cross-linking data and Hydrogen/Deuterium exchange mass spectrometry. The observed contact is also in accord with the 14-3-3ζ X-ray crystal structure (PDB 3dhr. The results of the present work are relevant to the structural biology of transient interaction in the 14-3-3ζ protein, and demonstrate the ability of the chosen methodology (the combination of photo-initiated cross-linking protein nanoprobes and mass spectrometry analysis to map the protein-protein interface or regions with a flexible structure.

  6. Influence of Alkylammonium Acetate Buffers on Protein-Ligand Noncovalent Interactions Using Native Mass Spectrometry

    Science.gov (United States)

    Zhuang, Xiaoyu; Gavriilidou, Agni F. M.; Zenobi, Renato

    2017-02-01

    We investigate the influence of three volatile alkylammonium acetate buffers on binding affinities for protein-ligand interactions determined by native electrospray ionization-mass spectrometry (ESI-MS). Four different types of proteins were chosen for this study. A charge-reduction effect was observed for all the cases studied, in comparison to the ions formed in ammonium acetate solution. When increasing the collision energy, the complexes of trypsin and the ligand were found to be more stable when sprayed from alkylammonium acetate buffers than from ammonium acetate. The determined dissociation constant (Kd) also exhibited a drop (up to 40%) when ammonium acetate was replaced by alkylammonium acetate buffers for the case of lysozyme and the ligand. The prospective uses of these ammonium acetate analogs in native ESI-MS are discussed in this paper as well.

  7. The small molecular mass antifungal protein of Penicillium chrysogenum--a mechanism of action oriented review.

    Science.gov (United States)

    Hegedus, Nikoletta; Leiter, Eva; Kovács, Barbara; Tomori, Valéria; Kwon, Nak-Jung; Emri, Tamás; Marx, Florentine; Batta, Gyula; Csernoch, László; Haas, Hubertus; Yu, Jae-Hyuk; Pócsi, István

    2011-12-01

    The β-lactam producing filamentous fungus Penicillium chrysogenum secretes a 6.25 kDa small molecular mass antifungal protein, PAF, which has a highly stable, compact 3D structure and is effective against a wide spectrum of plant and zoo pathogenic fungi. Its precise physiological functions and mode of action need to be elucidated before considering possible biomedical, agricultural or food technological applications. According to some more recent experimental data, PAF plays an important role in the fine-tuning of conidiogenesis in Penicillium chrysogenum. PAF triggers apoptotic cell death in sensitive fungi, and cell death signaling may be transmitted through two-component systems, heterotrimeric G protein coupled signal transduction and regulatory networks as well as via alteration of the Ca(2+) -homeostasis of the cells. Possible biotechnological applications of PAF are also outlined in the review.

  8. Characterization of intact protein conjugates and biopharmaceuticals using ion-exchange chromatography with online detection by native electrospray ionization mass spectrometry and top-down tandem mass spectrometry.

    Science.gov (United States)

    Muneeruddin, Khaja; Nazzaro, Mark; Kaltashov, Igor A

    2015-10-06

    Characterization of biopharmaceutical products is a challenging task, which needs to be carried out at several different levels (including both primary structure and conformation). An additional difficulty frequently arises due to the structural heterogeneity inherent to many protein-based therapeutics (e.g., extensive glycosylation or "designer" modifications such as chemical conjugation) or introduced postproduction as a result of stress (e.g., oxidation and deamidation). A combination of ion-exchange chromatography (IXC) with online detection by native electrospray ionization mass spectrometry (ESI MS) allows characterization of complex and heterogeneous therapeutic proteins and protein conjugates to be accomplished at a variety of levels without compromising their conformational integrity. The IXC/ESI MS measurements allow protein conjugates to be profiled by analyzing conjugation stoichiometry and the presence of multiple positional isomers, as well as to establish the effect of chemical modifications on the conformational integrity of each species. While mass profiling alone is not sufficient for identification of nonenzymatic post-translational modifications (PTMs) that result in a very small mass change of the eluting species (e.g., deamidation), this task can be completed using online top-down structural analysis, as demonstrated using stressed interferon-β as an example. The wealth of information that can be provided by IXC/native ESI MS and tandem mass spectrometry (MS/MS) on protein-based therapeutics will undoubtedly make it a very valuable addition to the experimental toolbox of biopharmaceutical analysis.

  9. Bone protein “extractomics”: comparing the efficiency of bone protein extractions of Gallus gallus in tandem mass spectrometry, with an eye towards paleoproteomics

    Directory of Open Access Journals (Sweden)

    Elena R. Schroeter

    2016-10-01

    Full Text Available Proteomic studies of bone require specialized extraction protocols to demineralize and solubilize proteins from within the bone matrix. Although various protocols exist for bone protein recovery, little is known about how discrete steps in each protocol affect the subset of the bone proteome recovered by mass spectrometry (MS analyses. Characterizing these different “extractomes” will provide critical data for development of novel and more efficient protein extraction methodologies for fossils. Here, we analyze 22 unique sub-extractions of chicken bone and directly compare individual extraction components for their total protein yield and diversity and coverage of bone proteins identified by MS. We extracted proteins using different combinations and ratios of demineralizing reagents, protein-solubilizing reagents, and post-extraction buffer removal methods, then evaluated tryptic digests from 20 µg aliquots of each fraction by tandem MS/MS on a 12T FT-ICR mass spectrometer. We compared total numbers of peptide spectral matches, peptides, and proteins identified from each fraction, the redundancy of protein identifications between discrete steps of extraction methods, and the sequence coverage obtained for select, abundant proteins. Although both alpha chains of collagen I (the most abundant protein in bone were found in all fractions, other collagenous and non-collagenous proteins (e.g., apolipoprotein, osteonectin, hemoglobin were differentially identified. We found that when a standardized amount of extracted proteins was analyzed, extraction steps that yielded the most protein (by weight from bone were often not the ones that produced the greatest diversity of bone proteins, or the highest degree of protein coverage. Generally, the highest degrees of diversity and coverage were obtained from demineralization fractions, and the proteins found in the subsequent solubilization fractions were highly redundant with those in the previous

  10. Influence of one- and two-dimensional gel electrophoresis procedure on metal-protein bindings examined by electrospray ionization mass spectrometry, inductively coupled plasma mass spectrometry, and ultrafiltration.

    Science.gov (United States)

    Schmidt, Anne-Christine; Störr, Bianca; Kummer, Nicolai-Alexeji

    2011-08-15

    Three independent methods, (i) electrospray ionization mass spectrometry (ESI-MS), (ii) carrying out the complete protein preparation procedure required for protein gel electrophoresis (GE) including extraction, precipitation, washing, and desalting with subsequent microwave digestion of the produced protein fractions for metal content quantification, and (iii) ultrafiltration for separating protein-bound and unbound metal fractions, were employed to elucidate the influences of protein sample preparation and GE running conditions on metal-protein bindings. A treatment of the protein solution with acetone instead of trichloroacetic acid or ammonium sulfate for precipitate formation led to a strongly enhanced metal binding capacity. The desalting step of the resolubilized protein sample caused a metal loss between 10 and 35%. The omission of some extraction buffer additives led to a diminished metal binding capacity of protein fractions obtained from the sample preparation procedure for GE, whereas a tenside addition to the protein solution inhibited metal-protein bindings. The binding stoichiometry of Cu and Zn-protein complexes determined by ESI-MS was influenced by the type of the metal salt which was applied to the protein solution. A higher pH value of the sample solution promoted the metal ion complexation by the proteins. Ultrafiltration experiments revealed a higher Cu- and Zn-binding capacity of the model protein lysozyme in both resolubilization buffers for 1D- and 2D-GE compared to the protein extraction buffer. Strongly diminished metal binding capacities of lysozyme were recorded in the running buffer of 1D-GE and in the gel staining solutions.

  11. Electrochemical oxidation and cleavage of proteins with on-line mass spectrometric detection : Development of an instrumental alternative to enzymatic protein digestion

    NARCIS (Netherlands)

    Permentier, HP; Bruins, AP

    2004-01-01

    An electrochemical flow cell coupled on-line to a mass spectrometer is used to oxidize a range of proteins. Oxidation of tyrosine and tryptophan can give rise to peptide bond cleavage at their C-terminal side. This suggests the possible use of electrochemistry as an alternative protein digestion

  12. Advancements in mass spectrometry for biological samples: Protein chemical cross-linking and metabolite analysis of plant tissues

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Adam [Iowa State Univ., Ames, IA (United States)

    2015-01-01

    This thesis presents work on advancements and applications of methodology for the analysis of biological samples using mass spectrometry. Included in this work are improvements to chemical cross-linking mass spectrometry (CXMS) for the study of protein structures and mass spectrometry imaging and quantitative analysis to study plant metabolites. Applications include using matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) to further explore metabolic heterogeneity in plant tissues and chemical interactions at the interface between plants and pests. Additional work was focused on developing liquid chromatography-mass spectrometry (LC-MS) methods to investigate metabolites associated with plant-pest interactions.

  13. On-Chip Peptide Mass Spectrometry Imaging for Protein Kinase Inhibitor Screening.

    Science.gov (United States)

    Cho, Young-Lai; Kim, Young-Pil; Son, Jin Gyeong; Son, Miyoung; Lee, Tae Geol

    2017-01-03

    Protein kinases are enzymes that are important targets for drug discovery because of their involvement in regulating the essential cellular processes. For this reason, the changes in protein kinase activity induced by each drug candidate (the inhibitor in this case) need to be accurately determined. Here, an on-chip secondary ion mass spectrometry (SIMS) imaging technique of the peptides was developed for determining protein kinase activity and inhibitor screening without a matrix. In our method, cysteine-tethered peptides adsorbed onto a gold surface produced changes in the relative peak intensities of the phosphorylated and unphosphorylated substrate peptides, which were quantitatively dependent on protein kinase activity. Using mass spectrometry imaging of multiple compartments on the gold surface in the presence of a peptide substrate, we screened 13,727 inhibitors, of which seven were initially found to have inhibitor efficiencies that surpassed 50%. Of these, we were able to identify a new breakpoint cluster region-abelson (BCR-ABL)(T315I) kinase inhibitor, henceforth referred to as KR135861. KR135861 showed no cytotoxicity and was subsequently confirmed to be superior to imatinib, a commercial drug marketed as Gleevec. Moreover, KR135861 exhibited a greater inhibitory effect on the BCR-ABL(T315I) tyrosine kinase, with an IC50 value as low as 1.3 μM. In in vitro experiments, KR135861 reduced the viability of both Ba/F3 cells expressing wild-type BCR-ABL and BCR-ABL(T315I), in contrast to imatinib's inhibitory effects only on Ba/F3 cells expressing wild-type BCR-ABL. Due to the surface sensitivity and selectivity of SIMS imaging, it is anticipated that our approach will make it easier to validate the small modifications of a substrate in relation to enzyme activity as well as for drug discovery. This mass spectrometry imaging analysis enables efficient screening for protein kinase inhibitors, thus permitting high-throughput drug screening with high accuracy

  14. Performance metrics for evaluating system suitability in liquid chromatography—Mass spectrometry peptide mass mapping of protein therapeutics and monoclonal antibodies

    OpenAIRE

    Zhou, Mowei; Gucinski, Ashley C.; Boyne, Michael T

    2015-01-01

    The use of liquid chromatography – mass spectrometry (LC-MS) for the characterization of proteins can provide a plethora of information related to their structure, including amino acid sequence determination and analysis of posttranslational modifications. The variety of LC-MS based applications has led to the use of LC-MS characterization of therapeutic proteins and monoclonal antibodies as an integral part of the regulatory approval process. However, the improper use of an LC-MS system, rel...

  15. Localizing Carbohydrate Binding Sites in Proteins Using Hydrogen/Deuterium Exchange Mass Spectrometry

    Science.gov (United States)

    Zhang, Jingjing; Kitova, Elena N.; Li, Jun; Eugenio, Luiz; Ng, Kenneth; Klassen, John S.

    2016-01-01

    The application of hydrogen/deuterium exchange mass spectrometry (HDX-MS) to localize ligand binding sites in carbohydrate-binding proteins is described. Proteins from three bacterial toxins, the B subunit homopentamers of Cholera toxin and Shiga toxin type 1 and a fragment of Clostridium difficile toxin A, and their interactions with native carbohydrate receptors, GM1 pentasaccharides (β-Gal-(1→3)-β-GalNAc-(1→4)[α-Neu5Ac-(2→3)]-β-Gal-(1→4)-Glc), Pk trisaccharide (α-Gal-(1→4)-β-Gal-(1→4)-Glc) and CD-grease (α-Gal-(1→3)-β-Gal-(1→4)-β-GlcNAcO(CH2)8CO2CH3), respectively, served as model systems for this study. Comparison of the differences in deuterium uptake for peptic peptides produced in the absence and presence of ligand revealed regions of the proteins that are protected against deuterium exchange upon ligand binding. Notably, protected regions generally coincide with the carbohydrate binding sites identified by X-ray crystallography. However, ligand binding can also result in increased deuterium exchange in other parts of the protein, presumably through allosteric effects. Overall, the results of this study suggest that HDX-MS can serve as a useful tool for localizing the ligand binding sites in carbohydrate-binding proteins. However, a detailed interpretation of the changes in deuterium exchange upon ligand binding can be challenging because of the presence of ligand-induced changes in protein structure and dynamics.

  16. Localizing Carbohydrate Binding Sites in Proteins Using Hydrogen/Deuterium Exchange Mass Spectrometry.

    Science.gov (United States)

    Zhang, Jingjing; Kitova, Elena N; Li, Jun; Eugenio, Luiz; Ng, Kenneth; Klassen, John S

    2016-01-01

    The application of hydrogen/deuterium exchange mass spectrometry (HDX-MS) to localize ligand binding sites in carbohydrate-binding proteins is described. Proteins from three bacterial toxins, the B subunit homopentamers of Cholera toxin and Shiga toxin type 1 and a fragment of Clostridium difficile toxin A, and their interactions with native carbohydrate receptors, GM1 pentasaccharides (β-Gal-(1→3)-β-GalNAc-(1→4)[α-Neu5Ac-(2→3)]-β-Gal-(1→4)-Glc), Pk trisaccharide (α-Gal-(1→4)-β-Gal-(1→4)-Glc) and CD-grease (α-Gal-(1→3)-β-Gal-(1→4)-β-GlcNAcO(CH2)8CO2CH3), respectively, served as model systems for this study. Comparison of the differences in deuterium uptake for peptic peptides produced in the absence and presence of ligand revealed regions of the proteins that are protected against deuterium exchange upon ligand binding. Notably, protected regions generally coincide with the carbohydrate binding sites identified by X-ray crystallography. However, ligand binding can also result in increased deuterium exchange in other parts of the protein, presumably through allosteric effects. Overall, the results of this study suggest that HDX-MS can serve as a useful tool for localizing the ligand binding sites in carbohydrate-binding proteins. However, a detailed interpretation of the changes in deuterium exchange upon ligand binding can be challenging because of the presence of ligand-induced changes in protein structure and dynamics.

  17. Glycan structure of Gc Protein-derived Macrophage Activating Factor as revealed by mass spectrometry.

    Science.gov (United States)

    Borges, Chad R; Rehder, Douglas S

    2016-09-15

    Disagreement exists regarding the O-glycan structure attached to human vitamin D binding protein (DBP). Previously reported evidence indicated that the O-glycan of the Gc1S allele product is the linear core 1 NeuNAc-Gal-GalNAc-Thr trisaccharide. Here, glycan structural evidence is provided from glycan linkage analysis and over 30 serial glycosidase-digestion experiments which were followed by analysis of the intact protein by electrospray ionization mass spectrometry (ESI-MS). Results demonstrate that the O-glycan from the Gc1F protein is the same linear trisaccharide found on the Gc1S protein and that the hexose residue is galactose. In addition, the putative anti-cancer derivative of DBP known as Gc Protein-derived Macrophage Activating Factor (GcMAF, which is formed by the combined action of β-galactosidase and neuraminidase upon DBP) was analyzed intact by ESI-MS, revealing that the activating E. coli β-galactosidase cleaves nothing from the protein-leaving the glycan structure of active GcMAF as a Gal-GalNAc-Thr disaccharide, regardless of the order in which β-galactosidase and neuraminidase are applied. Moreover, glycosidase digestion results show that α-N-Acetylgalactosamindase (nagalase) lacks endoglycosidic function and only cleaves the DBP O-glycan once it has been trimmed down to a GalNAc-Thr monosaccharide-precluding the possibility of this enzyme removing the O-glycan trisaccharide from cancer-patient DBP in vivo.

  18. Mass spectrometry footprinting reveals the structural rearrangements of cyanobacterial orange carotenoid protein upon light activation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Haijun [Washington University; Zhang, Hao [Washington University; King, Jeremy D. [Washington University; Wolf, Nathan R. [Washington University; Prado, Mindy [Washington University; Gross, Michael L. [Washington University; Blankenship, Robert E. [Washington University

    2014-12-01

    The orange carotenoid protein (OCP), a member of the family of blue light photoactive proteins, is required for efficient photoprotection in many cyanobacteria. Photoexcitation of the carotenoid in the OCP results in structural changes within the chromophore and the protein to give an active red form of OCP that is required for phycobilisome binding and consequent fluorescence quenching. We characterized the light-dependent structural changes by mass spectrometry-based carboxyl footprinting and found that an α helix in the N-terminal extension of OCP plays a key role in this photoactivation process. Although this helix is located on and associates with the outside of the β-sheet core in the C-terminal domain of OCP in the dark, photoinduced changes in the domain structure disrupt this interaction. We propose that this mechanism couples light-dependent carotenoid conformational changes to global protein conformational dynamics in favor of functional phycobilisome binding, and is an essential part of the OCP photocycle.

  19. Accelerator mass spectrometry offers new opportunities for microdosing of peptide and protein pharmaceuticals.

    Science.gov (United States)

    Salehpour, Mehran; Ekblom, Jonas; Sabetsky, Vladimir; Håkansson, Karl; Possnert, Göran

    2010-05-30

    Accelerator Mass Spectrometry (AMS) is an ultra-sensitive analytical method which has been instrumental in developing microdosing as a strategic tool in early drug development. Considerable data is available for AMS microdosing using typical pharmaceutical drugs with a molecular weight of a few hundred Daltons. The so-called biopharmaceuticals such as proteins offer interesting possibilities as drug candidates; however, experimental data for protein microdosing and AMS is scarce. The analysis of proteins in conjunction with early drug development and microdosing is overviewed and three case studies are presented on the topic. In the first case study AMS experimental data is presented, for the measured concentration of orally administered recombinant insulin in the blood stream of laboratory rabbits. Case study 2 concerns minimum sample size requirements. AMS samples normally require about 1 mg of carbon (10 microL of blood) which makes AMS analysis unsuitable in some applications due to the limited availability of samples such as human biopsies or DNA from specific cells. Experimental results are presented where the sample size requirements have been reduced by about two orders of magnitude. The third case study concerns low concentration studies. It is generally accepted that protein pharmaceuticals may be potentially more hazardous than smaller molecules because of immunological reactions. Therefore, future first-in-man microdosing studies might require even lower exposure concentrations than is feasible today, in order to increase the safety margin. This issue is discussed based on the current available analytical capabilities.

  20. Identification of Drosophila centromere associated proteins by quantitative affinity purification-mass spectrometry

    Science.gov (United States)

    Barth, Teresa K.; Schade, Georg O.M.; Schmidt, Andreas; Vetter, Irene; Wirth, Marc; Heun, Patrick; Imhof, Axel; Thomae, Andreas W.

    2015-01-01

    Centromeres of higher eukaryotes are epigenetically defined by the centromere specific histone H3 variant CENP-ACID. CENP-ACID builds the foundation for the assembly of a large network of proteins. In contrast to mammalian systems, the protein composition of Drosophila centromeres has not been comprehensively investigated. Here we describe the proteome of Drosophila melanogaster centromeres as analyzed by quantitative affinity purification-mass spectrometry (AP-MS). The AP-MS input chromatin material was prepared from D. melanogaster cell lines expressing CENP-ACID or H3.3 fused to EGFP as baits. Centromere chromatin enriched proteins were identified based on their relative abundance in CENP-ACID–GFP compared to H3.3-GFP or mock affinity-purifications. The analysis yielded 86 proteins specifically enriched in centromere chromatin preparations. The data accompanying the manuscript on this approach (Barth et al., 2015, Proteomics 14:2167-78, DOI: 10.1002/pmic.201400052) has been deposited to the ProteomeXchange Consortium (http://www.proteomexchange.org) via the PRIDE partner repository with the dataset identifier PXD000758. PMID:26306323

  1. Characterisation of Structural Proteins from Chronic Bee Paralysis Virus (CBPV Using Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Aurore Chevin

    2015-06-01

    Full Text Available Chronic bee paralysis virus (CBPV is the etiological agent of chronic paralysis, an infectious and contagious disease in adult honeybees. CBPV is a positive single-stranded RNA virus which contains two major viral RNA fragments. RNA 1 (3674 nt and RNA 2 (2305 nt encode three and four putative open reading frames (ORFs, respectively. RNA 1 is thought to encode the viral RNA-dependent RNA polymerase (RdRp since the amino acid sequence derived from ORF 3 shares similarities with the RdRP of families Nodaviridae and Tombusviridae. The genomic organization of CBPV and in silico analyses have suggested that RNA 1 encodes non-structural proteins, while RNA 2 encodes structural proteins, which are probably encoded by ORFs 2 and 3. In this study, purified CBPV particles were used to characterize virion proteins by mass spectrometry. Several polypeptides corresponding to proteins encoded by ORF 2 and 3 on RNA 2 were detected. Their role in the formation of the viral capsid is discussed.

  2. Use of electrospray ionization mass spectrometry to study binding interactions between a replication terminator protein and DNA

    OpenAIRE

    Kapur, Amit; Beck, Jennifer L.; Brown, Susan E.; Dixon, Nicholas E.; Sheil, Margaret M.

    2002-01-01

    Tus protein binds tightly to specific DNA sequences (Ter) on the Escherichia coli chromosome halting replication. We report here conditions for detecting the 1 : 1 Tus–Ter complex by electrospray ionization mass spectrometry (ESI-MS). ESI mass spectra of a mixture of Tus and nonspecific DNA showed ions predominantly from uncomplexed Tus protein, indicating that the Tus–Ter complex observed in the gas phase was the result of a specific interaction rather than nonspecific associations in the io...

  3. Electrospray ionization and matrix assisted laser desorption/ionization mass spectrometry: powerful analytical tools in recombinant protein chemistry

    DEFF Research Database (Denmark)

    Andersen, Jens S.; Svensson, B; Roepstorff, P

    1996-01-01

    Electrospray ionization and matrix assisted laser desorption/ionization are effective ionization methods for mass spectrometry of biomolecules. Here we describe the capabilities of these methods for peptide and protein characterization in biotechnology. An integrated analytical strategy is presen......Electrospray ionization and matrix assisted laser desorption/ionization are effective ionization methods for mass spectrometry of biomolecules. Here we describe the capabilities of these methods for peptide and protein characterization in biotechnology. An integrated analytical strategy...

  4. Identification of Proteins at Active, Stalled, and Collapsed Replication Forks Using Isolation of Proteins on Nascent DNA (iPOND) Coupled with Mass Spectrometry*

    Science.gov (United States)

    Sirbu, Bianca M.; McDonald, W. Hayes; Dungrawala, Huzefa; Badu-Nkansah, Akosua; Kavanaugh, Gina M.; Chen, Yaoyi; Tabb, David L.; Cortez, David

    2013-01-01

    Both DNA and chromatin need to be duplicated during each cell division cycle. Replication happens in the context of defects in the DNA template and other forms of replication stress that present challenges to both genetic and epigenetic inheritance. The replication machinery is highly regulated by replication stress responses to accomplish this goal. To identify important replication and stress response proteins, we combined isolation of proteins on nascent DNA (iPOND) with quantitative mass spectrometry. We identified 290 proteins enriched on newly replicated DNA at active, stalled, and collapsed replication forks. Approximately 16% of these proteins are known replication or DNA damage response proteins. Genetic analysis indicates that several of the newly identified proteins are needed to facilitate DNA replication, especially under stressed conditions. Our data provide a useful resource for investigators studying DNA replication and the replication stress response and validate the use of iPOND combined with mass spectrometry as a discovery tool. PMID:24047897

  5. Dimers of G-Protein Coupled Receptors as Versatile Storage and Response Units

    Directory of Open Access Journals (Sweden)

    Michael S. Parker

    2014-03-01

    Full Text Available The status and use of transmembrane, extracellular and intracellular domains in oligomerization of heptahelical G-protein coupled receptors (GPCRs are reviewed and for transmembrane assemblies also supplemented by new experimental evidence. The transmembrane-linked GPCR oligomers typically have as the minimal unit an asymmetric ~180 kDa pentamer consisting of receptor homodimer or heterodimer and a G-protein αβγ subunit heterotrimer. With neuropeptide Y (NPY receptors, this assembly is converted to ~90 kDa receptor monomer-Gα complex by receptor and Gα agonists, and dimers/heteropentamers are depleted by neutralization of Gαi subunits by pertussis toxin. Employing gradient centrifugation, quantification and other characterization of GPCR dimers at the level of physically isolated and identified heteropentamers is feasible with labeled agonists that do not dissociate upon solubilization. This is demonstrated with three neuropeptide Y (NPY receptors and could apply to many receptors that use large peptidic agonists.

  6. Identifying Gel-Separated Proteins Using In-Gel Digestion, Mass Spectrometry, and Database Searching: Consider the Chemistry

    Science.gov (United States)

    Albright, Jessica C.; Dassenko, David J.; Mohamed, Essa A.; Beussman, Douglas J.

    2009-01-01

    Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry is an important bioanalytical technique in drug discovery, proteomics, and research at the biology-chemistry interface. This is an especially powerful tool when combined with gel separation of proteins and database mining using the mass spectral data. Currently, few hands-on…

  7. Identifying Gel-Separated Proteins Using In-Gel Digestion, Mass Spectrometry, and Database Searching: Consider the Chemistry

    Science.gov (United States)

    Albright, Jessica C.; Dassenko, David J.; Mohamed, Essa A.; Beussman, Douglas J.

    2009-01-01

    Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry is an important bioanalytical technique in drug discovery, proteomics, and research at the biology-chemistry interface. This is an especially powerful tool when combined with gel separation of proteins and database mining using the mass spectral data. Currently, few hands-on…

  8. Identifying Ca2+-Binding Sites in Proteins by Liquid Chromatography-Mass Spectrometry Using Ca2+-Directed Dissociations

    NARCIS (Netherlands)

    Jamalian, Azadeh; Sneekes, Evert-Jan; Wienk, Hans; Dekker, Lennard J. M.; Ruttink, Paul J. A.; Ursem, Mario; Luider, Theo M.; Burgers, Peter C.

    2014-01-01

    Here we describe a new method to identify calcium-binding sites in proteins using high-resolution liquid chromatography-mass spectrometry in concert with calcium-directed collision-induced dissociations. Our method does not require any modifications to the liquid chromatography-mass spectrometry app

  9. Mapping a Noncovalent Protein-Peptide Interface by Top-Down FTICR Mass Spectrometry Using Electron Capture Dissociation

    Science.gov (United States)

    Clarke, David J.; Murray, Euan; Hupp, Ted; Mackay, C. Logan; Langridge-Smith, Pat R. R.

    2011-08-01

    Noncovalent protein-ligand and protein-protein complexes are readily detected using electrospray ionization mass spectrometry (ESI MS). Furthermore, recent reports have demonstrated that careful use of electron capture dissociation (ECD) fragmentation allows covalent backbone bonds of protein complexes to be dissociated without disruption of noncovalent protein-ligand interactions. In this way the site of protein-ligand interfaces can be identified. To date, protein-ligand complexes, which have proven tractable to this technique, have been mediated by ionic electrostatic interactions, i.e., ion pair interactions or salt bridging. Here we extend this methodology by applying ECD to study a protein-peptide complex that contains no electrostatics interactions. We analyzed the complex between the 21 kDa p53-inhibitor protein anterior gradient-2 and its hexapeptide binding ligand (PTTIYY). ECD fragmentation of the 1:1 complex occurs with retention of protein-peptide binding and analysis of the resulting fragments allows the binding interface to be localized to a C-terminal region between residues 109 and 175. These finding are supported by a solution-phase competition assay, which implicates the region between residues 108 and 122 within AGR2 as the PTTIYY binding interface. Our study expands previous findings by demonstrating that top-down ECD mass spectrometry can be used to determine directly the sites of peptide-protein interfaces. This highlights the growing potential of using ECD and related top-down fragmentation techniques for interrogation of protein-protein interfaces.

  10. Murine protein H is comprised of 20 repeating units, 61 amino acids in length

    DEFF Research Database (Denmark)

    Kristensen, Torsten; Tack, B F

    1986-01-01

    A cDNA library constructed from size-selected (greater than 28 S) poly(A)+ RNA isolated from the livers of C57B10. WR mice was screened by using a 249-base-pair (bp) cDNA fragment encoding 83 amino acid residues of human protein H as a probe. Of 120,000 transformants screened, 30 hybridized...... with this cDNA probe. Ten positives were colony-purified, and the largest plasmid cDNA insert, MH8 (4.4 kb), was sequenced by the dideoxy chain termination method. MH8 contained the complete coding sequence for the precursor of murine complement protein factor H (3702 bp), 100 bp of 5'-untranslated sequence......, 448 bp of 3'-untranslated sequence, and a polyadenylylated tail of undetermined length. Murine pre-protein H was deduced to consist of an 18-amino acid signal peptide and 1216 residues of H-protein sequence. Murine H was composed of 20 repetitive units, each about 61 amino acid residues in length...

  11. Accelerating large-scale protein structure alignments with graphics processing units

    Directory of Open Access Journals (Sweden)

    Pang Bin

    2012-02-01

    Full Text Available Abstract Background Large-scale protein structure alignment, an indispensable tool to structural bioinformatics, poses a tremendous challenge on computational resources. To ensure structure alignment accuracy and efficiency, efforts have been made to parallelize traditional alignment algorithms in grid environments. However, these solutions are costly and of limited accessibility. Others trade alignment quality for speedup by using high-level characteristics of structure fragments for structure comparisons. Findings We present ppsAlign, a parallel protein structure Alignment framework designed and optimized to exploit the parallelism of Graphics Processing Units (GPUs. As a general-purpose GPU platform, ppsAlign could take many concurrent methods, such as TM-align and Fr-TM-align, into the parallelized algorithm design. We evaluated ppsAlign on an NVIDIA Tesla C2050 GPU card, and compared it with existing software solutions running on an AMD dual-core CPU. We observed a 36-fold speedup over TM-align, a 65-fold speedup over Fr-TM-align, and a 40-fold speedup over MAMMOTH. Conclusions ppsAlign is a high-performance protein structure alignment tool designed to tackle the computational complexity issues from protein structural data. The solution presented in this paper allows large-scale structure comparisons to be performed using massive parallel computing power of GPU.

  12. Representation of People of Asian Descent in Mainstream Mass Media within the United States

    Science.gov (United States)

    Kim, Younghan

    2013-01-01

    The public school classroom in the United States has been getting more diverse, linguistically and ethnically. Immigrant and second/third generation students learn American culture and norms from messages conveyed through mainstream media like internet, advertisements, films, newspapers, TV, and magazines. Their self-perceptions, perspectives…

  13. Modeling protein tandem mass spectrometry data with an extended linear regression strategy.

    Science.gov (United States)

    Liu, Han; Bonner, Anthony J; Emili, Andrew

    2004-01-01

    Tandem mass spectrometry (MS/MS) has emerged as a cornerstone of proteomics owing in part to robust spectral interpretation algorithm. The intensity patterns presented in mass spectra are useful information for identification of peptides and proteins. However, widely used algorithms can not predicate the peak intensity patterns exactly. We have developed a systematic analytical approach based on a family of extended regression models, which permits routine, large scale protein expression profile modeling. By proving an important technical result that the regression coefficient vector is just the eigenvector corresponding to the least eigenvalue of a space transformed version of the original data, this extended regression problem can be reduced to a SVD decomposition problem, thus gain the robustness and efficiency. To evaluate the performance of our model, from 60,960 spectra, we chose 2,859 with high confidence, non redundant matches as training data, based on this specific problem, we derived some measurements of goodness of fit to show that our modeling method is reasonable. The issues of overfitting and underfitting are also discussed. This extended regression strategy therefore offers an effective and efficient framework for in-depth investigation of complex mammalian proteomes.

  14. Automating proteome analysis: improvements in throughput, quality and accuracy of protein identification by peptide mass fingerprinting.

    Science.gov (United States)

    Canelle, Ludovic; Pionneau, Cédric; Marie, Arul; Bousquet, Jordane; Bigeard, Jean; Lutomski, Didier; Kadri, Tewfik; Caron, Michel; Joubert-Caron, Raymonde

    2004-01-01

    The use of robots has major effects on maximizing the proteomic workflow required in an increasing number of high-throughput projects and on increasing the quality of the data. In peptide mass finger printing (PMF), automation of steps downstream of two-dimensional gel electrophoresis is essential. To achieve this goal, the workflow must be fluid. We have developed tools using macros written in Microsoft Excel and Word to complete the automation of our platform. Additionally, because sample preparation is crucial for identification of proteins by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry, we optimized a sandwich method usable by any robot for spotting digests on a MALDI target. This procedure enables further efficient automated washing steps directly on the MALDI target. The success rate of PMF identification was evaluated for the automated sandwich method, and for the dried-droplet method implemented on the robot as recommended by the manufacturer. Of the two methods, the sandwich method achieved the highest identification success rate and sequence coverage of proteins. 2004 John Wiley & Sons, Ltd.

  15. [The nuclear matrix proteins (mol. mass 38 and 50 kDa) are transported by chromosomes in mitosis].

    Science.gov (United States)

    Murasheva, M I; Chentsov, Iu S

    2010-01-01

    It was shown by immunofluorescence method that serum M68 and serum K43 from patients with autoimmune disease stain interphase nuclei and periphery of mitotic chromosomes of pig kidney cells. Western blotting reveals the polypeptide with mol. mass of 50 kDa in serum M68, and the polypeptide with mol. mass of 38 kDa in serum K43. In the nuclear protein matrix, the antibodies to protein with mol. mass of 38 kDa stained only nucleolar periphery, while the antibodies to the protein with mol. mass of 50 kDa stained both the nucleolar periphery and all the interphase nucleus. It shows that among all components of nuclear protein matrix (lamina, internuclear network, residual nucleoli) only nucleolar periphery contains the 38 kDa protein, while the 50 kDa protein is a part of residual nucleolar periphery and takes part in nuclear protein network formation. In the interphase cells, both proteins were in situ localized in the nuclei, but one of them with mol. mass of 50 kDa was in the form of small clearly outlined granules, while the other (38 kDa) was in the form of small bright granules against the background of diffusely stained nuclei. Both proteins were also revealed as continuous ring around nucleolar periphery. During all mitotic stages, the 50 kDa protein was seen on the chromosomal periphery as a cover, and the 38 kDa protein formed separate fragments and granules around them. After nuclear and chromosome decondensation induced by hypotonic treatment, both antibodies stain interphase nuclei in diffuse manner, but in mitotic cells they stained the surface of the swollen chromosomes. The polypeptide with mol. mass of 50 kDa maintained strong connection with chromosome periphery both in norm and under condition of decondensation induced by hypotonic treatment and at subsequent recondensation in isotonic medium. In contrast, the protein with mol. mass of 38 kDa partially lost the contact with a chromosome during recondensation appearing also in the form of granules in

  16. Dietary protein content alters energy expenditure and composition of the mass gain in grizzly bears (Ursus arctos horribilis).

    Science.gov (United States)

    Felicetti, Laura A; Robbins, Charles T; Shipley, Lisa A

    2003-01-01

    Many fruits contain high levels of available energy but very low levels of protein and other nutrients. The discrepancy between available energy and protein creates a physiological paradox for many animals consuming high-fruit diets, as they will be protein deficient if they eat to meet their minimum energy requirement. We fed young grizzly bears both high-energy pelleted and fruit diets containing from 1.6% to 15.4% protein to examine the role of diet-induced thermogenesis and fat synthesis in dealing with high-energy-low-protein diets. Digestible energy intake at mass maintenance increased 2.1 times, and composition of the gain changed from primarily lean mass to entirely fat when the protein content of the diet decreased from 15.4% to 1.6%. Daily fat gain was up to three times higher in bears fed low-protein diets ad lib., compared with bears consuming the higher-protein diet and gaining mass at the same rate. Thus, bears eating fruit can either consume other foods to increase dietary protein content and reduce energy expenditure, intake, and potentially foraging time or overeat high-fruit diets and use diet-induced thermogenesis and fat synthesis to deal with their skewed energy-to-protein ratio. These are not discrete options but a continuum that creates numerous solutions for balancing energy expenditure, intake, foraging time, fat accumulation, and ultimately fitness, depending on food availability, foraging efficiency, bear size, and body condition.

  17. Super-atmospheric pressure ionization mass spectrometry and its application to ultrafast online protein digestion analysis.

    Science.gov (United States)

    Chen, L C; Ninomiya, S; Hiraoka, K

    2016-06-01

    Pressure is a key parameter for an ionization source. In this Special Feature article, Lee Chuin Chen and colleagues review super-atmospheric pressure ionization MS with electrospray, corona-discharge-based chemical ionization, and field desorption. They routinely run their mass spectrometer with ion source pressures ranging from several to several tens of atmospheres. A number of strategies have been used to preserve the high vacuum of the instrument while working with a high-pressure (HP) ion source. A recent prototype uses a booster pump with variable pumping speed added to the first pumping stage of the mass spectrometer to regulate a constant vacuum pressure. Further, a new HP-ESI source allowing rapid (a few seconds) online protein digestion MS is also reported. Dr. Lee Chuin Chen is Associate Professor in the Department of Interdisciplinary Research at the University of Yamanashi (Yamanashi, Japan). His main research interest is the development of novel mass spectrometric methods for in-situ medical diagnosis.

  18. Protein structural dynamics at the gas/water interface examined by hydrogen exchange mass spectrometry.

    Science.gov (United States)

    Xiao, Yiming; Konermann, Lars

    2015-08-01

    Gas/water interfaces (such as air bubbles or foam) are detrimental to the stability of proteins, often causing aggregation. This represents a potential problem for industrial processes, for example, the production and handling of protein drugs. Proteins possess surfactant-like properties, resulting in a high affinity for gas/water interfaces. The tendency of previously buried nonpolar residues to maximize contact with the gas phase can cause significant structural distortion. Most earlier studies in this area employed spectroscopic tools that could only provide limited information. Here we use hydrogen/deuterium exchange (HDX) mass spectrometry (MS) for probing the conformational dynamics of the model protein myoglobin (Mb) in the presence of N(2) bubbles. HDX/MS relies on the principle that unfolded and/or highly dynamic regions undergo faster deuteration than tightly folded segments. In bubble-free solution Mb displays EX2 behavior, reflecting the occurrence of short-lived excursions to partially unfolded conformers. A dramatically different behavior is seen in the presence of N(2) bubbles; EX2 dynamics still take place, but in addition the protein shows EX1 behavior. The latter results from interconversion of the native state with conformers that are globally unfolded and long-lived. These unfolded species likely correspond to Mb that is adsorbed to the surface of gas bubbles. N(2) sparging also induces aggregation. To explain the observed behavior we propose a simple model, that is, "semi-unfolded" ↔ "native" ↔ "globally unfolded" → "aggregated". This model quantitatively reproduces the experimentally observed kinetics. To the best of our knowledge, the current study marks the first exploration of surface denaturation phenomena by HDX/MS.

  19. Structural Elucidation of DNA-Protein Crosslinks Using Reductive Desulfurization and Liquid Chromatography-Tandem Mass Spectrometry

    OpenAIRE

    Wickramaratne, Susith; Tretyakova, Natalia Y.

    2014-01-01

    Structural characterization of DNA-protein crosslinks involving cysteine using reductive desulfurization in combination with liquid chromatography-tandem mass spectrometry is highlighted. The novel approach was used to identify hydrolytically stable DNA-protein lesions involving alkylguanine DNA alkyltransferase (AGT).

  20. Identification and evaluation of potential forensic marker proteins in vaginal fluid by liquid chromatography/mass spectrometry.

    Science.gov (United States)

    Igoh, Akihisa; Doi, Yusuke; Sakurada, Koichi

    2015-09-01

    Vaginal fluid is one of the most common body fluids found at crime scenes. Discriminating vaginal fluid from other body fluids is important in forensic science; however, few potential protein markers have been reported to date. Proteomic methods for identifying protein markers have gained attention, although few reports have applied this technology to forensic protein markers. Therefore, to identify characteristic vaginal proteins, we examined various body fluids (nasal secretions, saliva, urine, semen, vaginal fluids, and sweat) using liquid chromatography/electrospray ionization time-of-flight mass spectrometry and peptide mass fingerprinting. We identified three components (average molecular mass values 17,237 ± 2, 18,063 ± 2, and 15,075 ± 1) detectable only in vaginal samples: two human small proline-rich protein 3 (SPRR3) isoforms and a human fatty acid-binding protein 5 (FABP5) with an acetylated (+42) N-terminal region lacking the initiator methionine residue (-131). Using ELISA, these yielded markedly high average values in vaginal fluids. The mass spectra of these proteins were not detected in infant saliva but were detected in the vaginal fluid throughout the menstrual cycle. The results of forensic analysis (detection limit, mixed body fluid samples, casework samples, and blind samples) suggest that these proteins are potential forensic markers. In conclusion, high SPRR3 and FABP5 expression levels, which may be used as potential markers for vaginal fluid identification in forensic science, were detected in vaginal fluids from healthy adults.

  1. An Examination of Carbon Monoxide and Organic Aerosol Mass Sources in the Southeastern United States during the SENEX Project

    Science.gov (United States)

    Middlebrook, A. M.; Angevine, W. M.; Brioude, J. F.; Brock, C. A.; De Gouw, J. A.; Gilman, J.; Graus, M.; Hanisco, T. F.; Holloway, J. S.; Horowitz, L. W.; Kaiser, J.; Keutsch, F. N.; Lerner, B. M.; Liao, J.; Mao, J.; Trainer, M.; Warneke, C.; Welti, A.; Wolfe, G. M., Jr.

    2014-12-01

    The NOAA Southeast Nexus (SENEX) project occurred during the summer of 2013 over the southeastern United States and involved studying the interactions between natural and anthropogenic emissions at the nexus of climate change and air quality. As part of the project, a suite of instruments for aerosol and gas-phase species was deployed on the NOAA WP-3D aircraft and models were used to calculate trace gas and aerosol species in the region and along the aircraft flight tracks. Throughout the study, the measured non-refractory submicron aerosol mass was dominated by organic material (58% +/- 9%) with smaller contributions from sulfate (27% +/- 8%), ammonium (10% +/- 3%), nitrate (3% +/- 1%), and chloride (0.1% +/- 0.1%). Here we examine the influence of urban emissions on the organic aerosol (OA) mass in regions characterized by higher and lower biogenic emissions. For the air around and downwind of urban areas, OA mass is highly correlated with carbon monoxide (CO), a tracer of anthropogenic emissions as well as an oxidation product of isoprene, a biogenic species. The slope of this correlation is roughly 0.15 micrograms per standard cubic meter per ppbv, which is significantly higher than observed in prior studies downwind of urban areas. The enhancement in OA mass relative to the enhancement in CO is independent of the concentration of biogenic species. In contrast, formaldehyde enhancements are clearly higher in the presence of biogenic species in agreement with the NOAA GFDL AM3 model. Downwind from the urban areas, CO and OA mass were not strongly enhanced relatively to a region-wide enhancement in these species that can only be explained from the accumulation of emissions in the eastern U.S. for several days. Back-trajectories of air parcels with emissions from biogenic and anthropogenic sources will be examined to elucidate the impact of both sources on CO and OA mass.

  2. Achieving high mass-throughput of therapeutic proteins through parvovirus retentive filters.

    Science.gov (United States)

    Bolton, Glen R; Basha, Jonida; Lacasse, Daniel P

    2010-01-01

    Parvovirus retentive filters that assure removal of viruses and virus-like particles during the production of therapeutic proteins significantly contribute to total manufacturing costs. Operational approaches that can increase throughput and reduce filtration area would result in a significant cost savings. A combination of methods was used to achieve high throughputs of an antibody or therapeutic protein solution through three parvovirus retentive filters. These methods included evaluation of diatomaceous earth or size-based prefilters, the addition of additives, and the optimization of protein concentration, temperature, buffer composition, and solution pH. An optimum temperature of 35°C was found for maximizing throughput through the Virosart CPV and Viresolve Pro filters. Mass-throughput values of 7.3, 26.4, and 76.2 kg/m(2) were achieved through the Asahi Planova 20N, Virosart CPV, and Viresolve Pro filters, respectively, in 4 h of processing. Mass-throughput values of 73, 137, and 192 kg/m(2) were achieved through a Millipore Viresolve Pro filter in 4.0, 8.8, and 22.1 h of processing, respectively, during a single experiment. However, large-scale parvovirus filtration operations are typically controlled to limit volumetric throughput to below the level achieved during small-scale virus spiking experiments. The virus spike may cause significant filter plugging, limiting throughput. Therefore newer parvovirus filter spiking strategies should be adopted that may lead to more representative viral clearance data and higher utilization of large-scale filter capacity. Copyright © 2010 American Institute of Chemical Engineers (AIChE).

  3. The Effect of Fuel Mass Fraction on the Combustion and Fluid Flow in a Sulfur Recovery Unit Thermal Reactor

    Directory of Open Access Journals (Sweden)

    Chun-Lang Yeh

    2016-11-01

    Full Text Available Sulfur recovery unit (SRU thermal reactors are negatively affected by high temperature operation. In this paper, the effect of the fuel mass fraction on the combustion and fluid flow in a SRU thermal reactor is investigated numerically. Practical operating conditions for a petrochemical corporation in Taiwan are used as the design conditions for the discussion. The simulation results show that the present design condition is a fuel-rich (or air-lean condition and gives acceptable sulfur recovery, hydrogen sulfide (H2S destruction, sulfur dioxide (SO2 emissions and thermal reactor temperature for an oxygen-normal operation. However, for an oxygen-rich operation, the local maximum temperature exceeds the suggested maximum service temperature, although the average temperature is acceptable. The high temperature region must be inspected very carefully during the annual maintenance period if there are oxygen-rich operations. If the fuel mass fraction to the zone ahead of the choke ring (zone 1 is 0.0625 or 0.125, the average temperature in the zone behind the choke ring (zone 2 is higher than the zone 1 average temperature, which can damage the downstream heat exchanger tubes. If the zone 1 fuel mass fraction is reduced to ensure a lower zone 1 temperature, the temperature in zone 2 and the heat exchanger section must be monitored closely and the zone 2 wall and heat exchanger tubes must be inspected very carefully during the annual maintenance period. To determine a suitable fuel mass fraction for operation, a detailed numerical simulation should be performed first to find the stoichiometric fuel mass fraction which produces the most complete combustion and the highest temperature. This stoichiometric fuel mass fraction should be avoided because the high temperature could damage the zone 1 corner or the choke ring. A higher fuel mass fraction (i.e., fuel-rich or air-lean condition is more suitable because it can avoid deteriorations of both zone 1

  4. Mass-sensing BioCD Protein Array towards Clinical Application: Prostate Specific Antigen Detection in Patient Sera

    CERN Document Server

    Wang, Xuefeng; Nolte, David D; Ratliff, Timothy L

    2009-01-01

    Mass-sensing biosensor arrays for protein detection require no fluorophores or enzyme labels. However, few mass biosensor protein arrays have demonstrated successful application in high background samples, such as serum. In this paper, we test the BioCD as a mass biosensor based on optical interferometry of antibodies covalently attached through Schiff-base reduction. We use the BioCD to detect prostate specific antigen (PSA, a biomarker of prostate cancer) in patient sera in a 96-well anti-PSA microarray. We have attained a 4 ng/ml detection limit in full serum and have measured PSA concentrations in three patient sera.

  5. Unit operations for gas-liquid mass transfer in reduced gravity environments

    Science.gov (United States)

    Pettit, Donald R.; Allen, David T.

    1992-01-01

    Basic scaling rules are derived for converting Earth-based designs of mass transfer equipment into designs for a reduced gravity environment. Three types of gas-liquid mass transfer operations are considered: bubble columns, spray towers, and packed columns. Application of the scaling rules reveals that the height of a bubble column in lunar- and Mars-based operations would be lower than terrestrial designs by factors of 0.64 and 0.79 respectively. The reduced gravity columns would have greater cross-sectional areas, however, by factors of 2.4 and 1.6 for lunar and Martian settings. Similar results were obtained for spray towers. In contract, packed column height was found to be nearly independent of gravity.

  6. Active damping control unit using a small scale proof mass electrodynamic actuator.

    Science.gov (United States)

    González Díaz, Cristóbal; Paulitsch, Christoph; Gardonio, Paolo

    2008-08-01

    This paper presents a study on the design and use of a small scale proof mass electrodynamic actuator, with a low mounting resonance frequency, for velocity feedback control on a thin rectangular panel. A stability-performance formula is derived, which can be effectively used to assess the down scaling effects on the stability and control performance of the feedback loop. The design and tests of a velocity feedback loop with a prototype small scale proof mass actuator are also presented. When a feedback control having a gain margin of about 6 dB is implemented, so that there is little control spillover effect around the fundamental resonance of the actuator, reductions of vibration between 5 dB and 10 dB in the frequency band between 80 Hz and 250 Hz have been measured at the control position.

  7. Identification of metastasis-associated proteins in a human tumor metastasis model using the mass-mapping technique

    Science.gov (United States)

    Kreunin, Paweena; Urquidi, Virginia; Lubman, David M; Goodison, Steve

    2005-01-01

    For most cancer cell types, the acquisition of metastatic ability leads to clinically incurable disease. The identification of molecules whose expression is specifically correlated with the metastatic spread of cancer would facilitate the design of therapeutic interventions to inhibit this lethal process. In order to facilitate metastasis gene discovery we have previously characterized a pair of monoclonal cell lines from the human breast carcinoma cell line MDA-MB-435 that have different metastatic phenotypes in immune-compromised mice. In this study, serum-free conditioned media was collected from the cultured monoclonal cell lines and a mass mapping technique was applied in order to profile a component of each cell line proteome. We utilized chromatofocusing in the first dimension to obtain a high resolution separation based on protein pI, and nonporous silica reverse-phase high performance liquid chromatography was used for the second dimension. Selected proteins were identified on the basis of electrospray ionization time of flight mass spectrometry (ESI-TOF MS) intact protein mapping and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) peptide mass fingerprinting. Using this approach we were able to map over 400 proteins and plot them as a 2-D map of pI versus accurate Mr. This was performed over a pI range of 4.0–6.2, and a mass range of 6–80 kDa. ESI-TOF MS data and further analysis using MALDI-TOF MS confirmed and identified 27 differentially expressed proteins. Proteins associated with the metastatic phenotype included osteopontin and extracellular matrix protein 1, whereas the matrix metalloproteinase-1 and annexin 1 proteins were associated with the non-metastatic phenotype. These findings demonstrate that the mass mapping technique is a powerful tool for the detection and identification of proteins in complex biological samples and which are specifically associated with a cellular phenotype. PMID:15352249

  8. Mass Casualty Decontamination in the United States: An Online Survey of Current Practice.

    Science.gov (United States)

    Power, Sarah; Symons, Charles; Carter, Holly; Jones, Emma; Amlôt, Richard; Larner, Joanne; Matar, Hazem; Chilcott, Robert P

    2016-01-01

    Mass casualty decontamination is a public health intervention that would be employed by emergency responders following a chemical, biological, or radiological incident. The decontamination of large numbers of casualties is currently most often performed with water to remove contaminants from the skin surface. An online survey was conducted to explore US fire departments' decontamination practices and their preparedness for responding to incidents involving mass casualty decontamination. Survey respondents were asked to provide details of various aspects of their decontamination procedures, including expected response times to reach casualties, disrobing procedures, approaches to decontamination, characteristics of the decontamination showering process, provision for special populations, and any actions taken following decontamination. The aim of the survey was to identify any differences in the way in which decontamination guidance is implemented across US states. Results revealed that, in line with current guidance, many US fire departments routinely use the "ladder-pipe system" for conducting rapid, gross decontamination of casualties. The survey revealed significant variability in ladder-pipe construction, such as the position and number of fire hoses used. There was also variability in decontamination characteristics, such as water temperature and water pressure, detergent use, and shower duration. The results presented here provide important insights into the ways in which implementation of decontamination guidance can vary between US states. These inconsistencies are thought to reflect established perceived best practices and local adaptation of response plans to address practical and logistical constraints. These outcomes highlight the need for evidence-based national guidelines for conducting mass casualty decontamination.

  9. Body mass index and overweight in adolescents in 13 European countries, Israel, and the United States

    DEFF Research Database (Denmark)

    Lissau, Inge; Overpeck, Mary D; Ruan, W June

    2004-01-01

    in 1997-1998 by means of identical data collection methods. SETTING: Austria, Czech Republic, Denmark, Flemish Belgium, Finland, France, Germany, Greece, Lithuania, Ireland, Israel, Portugal, Slovakia, Sweden, and the United States. PARTICIPANTS: A total of 29 242 boys and girls, aged 13 and 15 years....... MAIN OUTCOME MEASURES: The BMI, BMI at or above the 85th centile, and BMI at or above the 95th centile (overweight) from self-reported height and weight. RESULTS: The highest prevalence of overweight was found in the United States and the lowest in Lithuania. On the basis of the study reference...... standard, the prevalence of overweight (percentage) in the United States was 12.6% in 13-year-old boys, 10.8% in 13-year-old girls, 13.9% in 15-year-old boys, and 15.1% in 15-year-old girls, all significantly increased. Prevalence of overweight in Lithuania was significantly below the expected 5%, with 1...

  10. Quantitation of the Noncovalent Cellular Retinol-Binding Protein, Type 1 Complex Through Native Mass Spectrometry

    Science.gov (United States)

    Li, Wenjing; Yu, Jianshi; Kane, Maureen A.

    2017-01-01

    Native mass spectrometry (MS) has become a valuable tool in probing noncovalent protein-ligand interactions in a sample-efficient way, yet the quantitative application potential of native MS has not been fully explored. Cellular retinol binding protein, type I (CrbpI) chaperones retinol and retinal in the cell, protecting them from nonspecific oxidation and delivering them to biosynthesis enzymes where the bound (holo-) and unbound (apo-) forms of CrbpI exert distinct biological functions. Using nanoelectrospray, we developed a native MS assay for probing apo- and holo-CrbpI abundance to facilitate exploring their biological functions in retinoid metabolism and signaling. The methods were developed on two platforms, an Orbitrap-based Thermo Exactive and a Q-IMS-TOF-based Waters Synapt G2S, where similar ion behaviors under optimized conditions were observed. Overall, our results suggested that within the working range ( 1-10 μM), gas-phase ions in the native state linearly correspond to solution concentration and relative ion intensities of the apo- and holo-protein ions can linearly respond to the solution ratios, suggesting native MS is a viable tool for relative quantitation in this system.

  11. Microchip capillary electrophoresis-electrospray ionization-mass spectrometry of intact proteins using uncoated Ormocomp microchips.

    Science.gov (United States)

    Sikanen, Tiina; Aura, Susanna; Franssila, Sami; Kotiaho, Tapio; Kostiainen, Risto

    2012-01-20

    We present rapid (microchips. The microchips are fabricated fully of commercial inorganic-organic hybrid material, Ormocomp, by UV-embossing and adhesive Ormocomp-Ormocomp bonding (CE microchannels). A sheath-flow ESI interface is monolithically integrated with the UV-embossed separation channels by cutting a rectangular emitter tip in the end with a dicing saw. As a result, electrospray was produced from the corner of chip with good reproducibility between parallel tips (stability within 3.8-9.2% RSD). Thanks to its inherent biocompatibility and stable (negative) surface charge, Ormocomp microchips enable efficient intact protein analysis with up to ∼10(4) theoretical separation plates per meter without any chemical or physical surface modification before analysis. The same microchip setup is also feasible for rapid peptide sequencing and mass fingerprinting and shows excellent migration time repeatability from run to run for both peptides (5.6-5.9% RSD, n=4) and intact proteins (1.3-7.5% RSD, n=3). Thus, the Ormocomp microchips provide a versatile new tool for MS-based proteomics. Particularly, the feasibility of the Ormocomp chips for rapid analysis of intact proteins with such a simple setup is a valuable increment to the current technology.

  12. A novel immuno-competitive capture mass spectrometry strategy for protein-protein interaction profiling reveals that LATS kinases regulate HCV replication through NS5A phosphorylation.

    Science.gov (United States)

    Meistermann, Hélène; Gao, Junjun; Golling, Sabrina; Lamerz, Jens; Le Pogam, Sophie; Tzouros, Manuel; Sankabathula, Sailaja; Gruenbaum, Lore; Nájera, Isabel; Langen, Hanno; Klumpp, Klaus; Augustin, Angélique

    2014-11-01

    Mapping protein-protein interactions is essential to fully characterize the biological function of a protein and improve our understanding of diseases. Affinity purification coupled to mass spectrometry (AP-MS) using selective antibodies against a target protein has been commonly applied to study protein complexes. However, one major limitation is a lack of specificity as a substantial part of the proposed binders is due to nonspecific interactions. Here, we describe an innovative immuno-competitive capture mass spectrometry (ICC-MS) method to allow systematic investigation of protein-protein interactions. ICC-MS markedly increases the specificity of classical immunoprecipitation (IP) by introducing a competition step between free and capturing antibody prior to IP. Instead of comparing only one experimental sample with a control, the methodology generates a 12-concentration antibody competition profile. Label-free quantitation followed by a robust statistical analysis of the data is then used to extract the cellular interactome of a protein of interest and to filter out background proteins. We applied this new approach to specifically map the interactome of hepatitis C virus (HCV) nonstructural protein 5A (NS5A) in a cellular HCV replication system and uncovered eight new NS5A-interacting protein candidates along with two previously validated binding partners. Follow-up biological validation experiments revealed that large tumor suppressor homolog 1 and 2 (LATS1 and LATS2, respectively), two closely related human protein kinases, are novel host kinases responsible for NS5A phosphorylation at a highly conserved position required for optimal HCV genome replication. These results are the first illustration of the value of ICC-MS for the analysis of endogenous protein complexes to identify biologically relevant protein-protein interactions with high specificity.

  13. Ultracentrifugation and inductively coupled plasma mass spectrometry for metal-protein equilibrium studies

    Science.gov (United States)

    Arnquist, Isaac J.; Holcombe, James A.

    2012-10-01

    The coupling of separation by preparative ultracentrifugation and metal detection by inductively coupled plasma mass spectrometry (ICP-MS) has been explored for metal-protein equilibrium determinations. This study characterizes the stoichiometry as well as apparent (Kapp) and intrinsic (Kint) binding affinities of the metal-protein association for a model protein. In particular, the affinity of Cu2 + for the high affinity binding site in bovine serum albumin (BSA) is determined. Once equilibrium is established between Cu2 + and BSA, preparative ultracentrifugation moves the metalloprotein away from the meniscus, leaving unbound equilibrium copper in the protein free solution. Since the initial (total) concentrations of purified BSA and Cu2 + can be determined, the free copper concentration at equilibrium can also be determined by taking a small aliquot above the sedimenting boundary for analysis using ICP-MS. This analysis allows for the determination of free Cu2 + ion, which is identical to the equilibrium concentration prior to ultracentrifugation. From these data Kapp and Kint were determined at two different conditions, 100 mM Tris(hydroxymethyl)aminomethane (Tris) at pH 9.53 and pH 7.93. log Kapp values of 17.6 and 14.6 were determined at pH 9.53 and pH 7.93, respectively. Furthermore, pH-independent log Kint values of - 1.43 and - 1.04 were determined at pH 9.53 and 7.93, respectively. While the log Kint at pH 9.53 was in good agreement with literature values obtained from alternative methods, Kint at pH 7.93 was about 2.5 × larger than previously reported. BSA undergoes a structural rearrangement between pH 7-9, and the generally accepted pH-dependency of protein tertiary structure may be responsible for the variations in the "intrinsic" binding constant. The Cu-BSA binding affinity was also monitored in 100 mM Tris 0.1% sodium dodecyl sulfate (SDS) solution at pH 7.93 in order to determine the effect of a denaturant on metal binding. Results for both log

  14. Characterizing changes in snow crab (Chionoecetes opilio) cryptocyanin protein during molting using matrix-assisted laser desorption/ionization mass spectrometry and tandem mass spectrometry.

    Science.gov (United States)

    Demian, Wael L L; Jahouh, Farid M; Stansbury, Don; Randell, Edward; Brown, Robert J; Banoub, Joseph H

    2014-02-28

    We report the matrix-assisted laser desorption/ionization mass spectrometric (MALDI-MS) characterization of the cryptocyanin proteins of the juvenile Chionoecetes opilio crabs during their molting and non-molting phases. In order to assess the structural cryptocyanin protein differences between the molting and non-molting phases, the obtained peptides were sequenced by MALDI low-energy collision-induced dissociation tandem mass spectrometry (CID-MS/MS). The cryptocyanin protein was isolated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and analyzed by MALDI-TOF/TOF-MS. The purified cryptocyanin protein was sequenced, using the 'bottom-up' approach. After tryptic digestion, the peptide mixture was analyzed by MALDI-QqTOF-MS/MS and the data obtained were used for the peptide mass fingerprinting (PMF) identification by means of the Mascot database. It was demonstrated using MALDI-TOF/TOF-MS that the actual molecular weights of the non-molting and molting cryptocyanin proteins were different; these were, respectively, 67.6 kDa and 68.1 kDa. Using low-energy CID-MS/MS we have sequenced the trytic peptides to monitor the differences and similarities between the cryptocyanin molecular structures during the molting and non-molting stages. We have demonstrated for the first time that the actual molecular masses of the cryptocyanin protein during the molting and non-molting phases were different. The MALDI-CID-MS/MS analyses allowed the sequencing of the cryptocyanins after tryptic digestion, during the molting and non-molting stages, and showed some similarities and staggering differences between the identified cryptocyanin peptides. Copyright © 2013 John Wiley & Sons, Ltd.

  15. New supercharging reagents produce highly charged protein ions in native mass spectrometry.

    Science.gov (United States)

    Going, Catherine C; Xia, Zijie; Williams, Evan R

    2015-11-07

    The effectiveness of two new supercharging reagents for producing highly charged ions by electrospray ionization (ESI) from aqueous solutions in which proteins have native structures and reactivities were investigated. In aqueous solution, 2-thiophenone and 4-hydroxymethyl-1,3-dioxolan-2-one (HD) at a concentration of 2% by volume can increase the average charge of cytochrome c and myoglobin by up to 163%, resulting in even higher charge states than those that are produced from water/methanol/acid solutions in which these proteins are denatured. The greatest extent of supercharging occurs in pure water, but these supercharging reagents are also highly effective in aqueous solutions containing 200 mM ammonium acetate buffer commonly used in native mass spectrometry (MS). These reagents are less effective supercharging reagents than m-nitrobenzyl alcohol (m-NBA) and propylene carbonate (PC) when ions are formed from water/methanol/acid. The extent to which loss of the heme group from myoglobin occurs is related to the extent of supercharging. Results from guanidine melts of cytochrome c monitored with tryptophan fluorescence show that the supercharging reagents PC, sulfolane and HD are effective chemical denaturants in solution. These results provide additional evidence for the role of protein structural changes in the electrospray droplet as the primary mechanism for supercharging with these reagents in native MS. These results also demonstrate that for at least some proteins, the formation of highly charged ions from native MS is no longer a significant barrier for obtaining structural information using conventional tandem MS methods.

  16. Multi-isotope imaging mass spectrometry reveals slow protein turnover in hair-cell stereocilia.

    Science.gov (United States)

    Zhang, Duan-Sun; Piazza, Valeria; Perrin, Benjamin J; Rzadzinska, Agnieszka K; Poczatek, J Collin; Wang, Mei; Prosser, Haydn M; Ervasti, James M; Corey, David P; Lechene, Claude P

    2012-01-15

    Hair cells of the inner ear are not normally replaced during an animal's life, and must continually renew components of their various organelles. Among these are the stereocilia, each with a core of several hundred actin filaments that arise from their apical surfaces and that bear the mechanotransduction apparatus at their tips. Actin turnover in stereocilia has previously been studied by transfecting neonatal rat hair cells in culture with a β-actin-GFP fusion, and evidence was found that actin is replaced, from the top down, in 2-3 days. Overexpression of the actin-binding protein espin causes elongation of stereocilia within 12-24 hours, also suggesting rapid regulation of stereocilia lengths. Similarly, the mechanosensory 'tip links' are replaced in 5-10 hours after cleavage in chicken and mammalian hair cells. In contrast, turnover in chick stereocilia in vivo is much slower. It might be that only certain components of stereocilia turn over quickly, that rapid turnover occurs only in neonatal animals, only in culture, or only in response to a challenge like breakage or actin overexpression. Here we quantify protein turnover by feeding animals with a (15)N-labelled precursor amino acid and using multi-isotope imaging mass spectrometry to measure appearance of new protein. Surprisingly, in adult frogs and mice and in neonatal mice, in vivo and in vitro, the stereocilia were remarkably stable, incorporating newly synthesized protein at hair cells expressing β-actin-GFP we bleached fiducial lines across hair bundles, but they did not move in 6 days. When we stopped expression of β- or γ-actin with tamoxifen-inducible recombination, neither actin isoform left the stereocilia, except at the tips. Thus, rapid turnover in stereocilia occurs only at the tips and not by a treadmilling process.

  17. Comprehensive Characterization of AMP-Activated Protein Kinase Catalytic Domain by Top-Down Mass Spectrometry

    Science.gov (United States)

    Yu, Deyang; Peng, Ying; Ayaz-Guner, Serife; Gregorich, Zachery R.; Ge, Ying

    2016-02-01

    AMP-activated protein kinase (AMPK) is a serine/threonine protein kinase that is essential in regulating energy metabolism in all eukaryotic cells. It is a heterotrimeric protein complex composed of a catalytic subunit (α) and two regulatory subunits (β and γ). C-terminal truncation of AMPKα at residue 312 yielded a protein that is active upon phosphorylation of Thr172 in the absence of β and γ subunits, which is refered to as the AMPK catalytic domain and commonly used to substitute for the AMPK heterotrimeric complex in in vitro kinase assays. However, a comprehensive characterization of the AMPK catalytic domain is lacking. Herein, we expressed a His-tagged human AMPK catalytic domin (denoted as AMPKΔ) in E. coli, comprehensively characterized AMPKΔ in its basal state and after in vitro phosphorylation using top-down mass spectrometry (MS), and assessed how phosphorylation of AMPKΔ affects its activity. Unexpectedly, we found that bacterially-expressed AMPKΔ was basally phosphorylated and localized the phosphorylation site to the His-tag. We found that AMPKΔ had noticeable basal activity and was capable of phosphorylating itself and its substrates without activating phosphorylation at Thr172. Moreover, our data suggested that Thr172 is the only site phosphorylated by its upstream kinase, liver kinase B1, and that this phosphorylation dramatically increases the kinase activity of AMPKΔ. Importantly, we demonstrated that top-down MS in conjunction with in vitro phosphorylation assay is a powerful approach for monitoring phosphorylation reaction and determining sequential order of phosphorylation events in kinase-substrate systems.

  18. Characterization of surface proteins of Cronobacter muytjensii using monoclonal antibodies and MALDI-TOF Mass spectrometry

    Directory of Open Access Journals (Sweden)

    Ababneh Qotaiba O

    2011-06-01

    Full Text Available Abstract Background Cronobacter spp. is a newly emerging pathogen that causes meningitis in infants and other diseases in elderly and immunocompromised individuals. This study was undertaken to investigate surface antigenic determinants in Cronobacter spp. using monoclonal antibodies (MAbs and MALDI-TOF Mass spectrometry. Results Spleenocytes from mice that were immunized with heat-killed (20 min, 80°C Cronobacter cells were fused with SP2 myeloma cells. Five desirable MAbs (A1, B5, 2C2, C5 and A4 were selected. MAbs A1, B5, 2C2 and C5 were of IgG2a isotype while A4 was an IgM. Specificity of the MAbs was determined by using immunoblotting with outer membrane protein preparations (OMPs extracted from 12 Cronobacter and 6 non-Cronobacter bacteria. All MAbs recognized proteins with molecular weight ranging between 36 and 49 kDa except for one isolate (44 in which no OMPs were detected. In addition, MAbs recognized two bands (38-41 kDa in four of the non-Cronobacter bacteria. Most of the proteins recognized by the MAbs were identified by MALDI-TOF peptide sequencing and appeared to be heterogeneous with the identities of some of them are still unknown. All MAbs recognized the same epitope as determined by an additive Index ELISA with their epitopes appeared to be conformational rather than sequential. Further, none of the MAbs recognized purified LPS from Cronobacter spp. Specificity of the MAbs toward OMPs was further confirmed by transmission electron microscopy. Conclusions Results obtained in this study highlight the immunological cross-reactivity among Cronobacter OMPs and their Enterobacteriaceae counterparts. Nevertheless, the identity of the identified proteins appeared to be different as inferred from the MALDI-TOF sequencing and identification.

  19. Pathogenic lineage of Perkinsea associated with mass mortality of frogs across the United States

    Science.gov (United States)

    Isidoro Ayza, Marcos; Lorch, Jeffrey M.; Grear, Daniel; Winzeler, Megan; Calhoun, Daniel L.; Barichivich, William J.

    2017-01-01

    Emerging infectious diseases such as chytridiomycosis and ranavirus infections are important contributors to the worldwide decline of amphibian populations. We reviewed data on 247 anuran mortality events in 43 States of the United States from 1999–2015. Our findings suggest that a severe infectious disease of tadpoles caused by a protist belonging to the phylum Perkinsea might represent the third most common infectious disease of anurans after ranavirus infections and chytridiomycosis. Severe Perkinsea infections (SPI) were systemic and led to multiorganic failure and death. The SPI mortality events affected numerous anuran species and occurred over a broad geographic area, from boreal to subtropical habitats. Livers from all PCR-tested SPI-tadpoles (n = 19) were positive for the Novel Alveolate Group 01 (NAG01) of Perkinsea, while only 2.5% histologically normal tadpole livers tested positive (2/81), suggesting that subclinical infections are uncommon. Phylogenetic analysis demonstrated that SPI is associated with a phylogenetically distinct clade of NAG01 Perkinsea. These data suggest that this virulent Perkinsea clade is an important pathogen of frogs in the United States. Given its association with mortality events and tendency to be overlooked, the potential role of this emerging pathogen in amphibian declines on a broad geographic scale warrants further investigation.

  20. gamma-Ray-mediated oxidative labeling for detecting protein conformational changes by electrospray mass spectrometry.

    Science.gov (United States)

    Tong, Xin; Wren, J Clara; Konermann, Lars

    2008-03-15

    Exposure of proteins to hydroxyl radicals induces the incorporation of oxygen atoms into solvent-exposed side chains. Earlier studies have employed this approach for mapping protein-protein interactions in mass spectrometry-based footprinting experiments. This work explores whether the overall level of gamma-ray mediated oxidative labeling can be used for monitoring large-scale conformational changes. According to a recently developed kinetic model (Tong, X.; Wren, J. C.; Konermann, L. Anal. Chem. 2007, 79, 6376-6382), the apparent first-order rate constant for oxidative labeling can be approximated as k(app) = k(RAD)/([P](tot) + C/k(u)), where k(RAD) is the primary rate of *OH formation, [P](tot) is the protein concentration, C reflects the presence of competing radical deactivation channels, and ku is the rate constant at which hydroxyl radicals react with the protein. The current study introduces conformational effects into this model by proposing that k(u) = [see text for formula] , where N is the number of amino acids, alphai is a measure for the solvent exposure of residue i, and k(ch)(i) is the oxidation rate constant that would apply for a completely solvent-exposed side chain. Using myoglobin and cytochrome c as model systems, it is demonstrated that unfolding by addition of H(3)PO(4) increases k(app) by up to 30% and 70%, respectively. Unfolding by other commonly used denaturants such as organic acids or urea results in dramatically lower oxidation levels than for the native state, a behavior that is due to the radical scavenging activity of these substances (corresponding to an increased value of C). Control experiments on model peptides are suitable for identifying such "secondary" effects, i.e., factors that modify oxidation levels without being related to conformational changes. In conclusion, the overall *OH labeling level represents a viable probe of large-scale protein conformational changes only under conditions where secondary effects are known

  1. New protein sources in adults diet for mass-rearing of Anastrepha fraterculus (Diptera:Tephritidae

    Directory of Open Access Journals (Sweden)

    Renata Morelli

    2012-12-01

    Full Text Available The aim of this study was to find alternatives to reduce the cost of mass production of the South American fruit fly (A. fraterculus by looking for locally available products as protein source in the diet of adults to replace the imported product without changing the quality parameters. Two yeast from a Brazilian company were evaluated. The quality parameters showed that the imported hydrolyzed yeast used in the adult diet could be perfectly replaced by the local products tested, with a reduction of over 80% of the cost of the diet. The quality of the produced insects remained the same and there were improvements in some quality parameters such as the volume of eggs produced, number of adults flying and longevity under the stress.

  2. Supplementing an energy adequate, higher protein diet with protein does not enhance fat-free mass restoration after short-term severe negative energy balance.

    Science.gov (United States)

    Berryman, C E; Sepowitz, J J; McClung, H L; Lieberman, H R; Farina, E K; McClung, J P; Ferrando, A A; Pasiakos, S M

    2017-06-01

    Negative energy balance during military operations can be severe and result in significant reductions in fat-free mass (FFM). Consuming supplemental high-quality protein following such military operations may accelerate restoration of FFM. Body composition (dual-energy X-ray absorptiometry) and whole body protein turnover (single-pool [(15)N]alanine method) were determined before (PRE) and after 7 days (POST) of severe negative energy balance during military training in 63 male US Marines (means ± SD, 25 ± 3 yr, 84 ± 9 kg). After POST measures were collected, volunteers were randomized to receive higher protein (HIGH: 1,103 kcal/day, 133 g protein/day), moderate protein (MOD: 974 kcal/day, 84 g protein/day), or carbohydrate-based low protein control (CON: 1,042 kcal/day, 7 g protein/day) supplements, in addition to a self-selected, ad libitum diet, for the 27-day intervention (REFED). Measurements were repeated POST-REFED. POST total body mass (TBM; -5.8 ± 1.0 kg, -7.0%), FFM (-3.1 ± 1.6 kg, -4.7%), and net protein balance (-1.7 ± 1.1 g protein·kg(-1)·day(-1)) were lower and proteolysis (1.1 ± 1.9 g protein·kg(-1)·day(-1)) was higher compared with PRE (P balance (0.4 ± 1.0 g protein·kg(-1)·day(-1)) and gained TBM (5.9 ± 1.7 kg, 7.8%) and FFM (3.6 ± 1.8 kg, 5.7%) POST-REFED compared with POST (P balance.NEW & NOTEWORTHY This article demonstrates 1) the majority of physiological decrements incurred during military training (e.g., total and fat-free mass loss), with the exception of net protein balance, resolve and return to pretraining values after 27 days and 2) protein supplementation, in addition to an ad libitum, higher protein (~2.0 g·kg(-1)·day(-1)), energy adequate diet, is not necessary to restore fat-free mass following short-term severe negative energy balance.

  3. Separation and identification of Musa acuminate Colla (banana) leaf proteins by two-dimensional gel electrophoresis and mass spectrometry.

    Science.gov (United States)

    Lu, Y; Qi, Y X; Zhang, H; Zhang, H Q; Pu, J J; Xie, Y X

    2013-12-19

    To establish a proteomic reference map of Musa acuminate Colla (banana) leaf, we separated and identified leaf proteins using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and mass spectrometry (MS). Tryptic digests of 44 spots were subjected to peptide mass fingerprinting (PMF) by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS. Three spots that were not identified by MALDI-TOF MS analysis were identified by searching against the NCBInr, SwissProt, and expressed sequence tag (EST) databases. We identified 41 unique proteins. The majority of the identified leaf proteins were found to be involved in energy metabolism. The results indicate that 2D-PAGE is a sensitive and powerful technique for the separation and identification of Musa leaf proteins. A summary of the identified proteins and their putative functions is discussed.

  4. Soy versus whey protein bars: Effects on exercise training impact on lean body mass and antioxidant status

    Directory of Open Access Journals (Sweden)

    Babaknia Ari

    2004-12-01

    Full Text Available Abstract Background Although soy protein may have many health benefits derived from its associated antioxidants, many male exercisers avoid soy protein. This is due partly to a popular, but untested notion that in males, soy is inferior to whey in promoting muscle weight gain. This study provided a direct comparison between a soy product and a whey product. Methods Lean body mass gain was examined in males from a university weight training class given daily servings of micronutrient-fortified protein bars containing soy or whey protein (33 g protein/day, 9 weeks, n = 9 for each protein treatment group. Training used workouts with fairly low repetition numbers per set. A control group from the class (N = 9 did the training, but did not consume either type protein bar. Results Both the soy and whey treatment groups showed a gain in lean body mass, but the training-only group did not. The whey and training only groups, but not the soy group, showed a potentially deleterious post-training effect on two antioxidant-related related parameters. Conclusions Soy and whey protein bar products both promoted exercise training-induced lean body mass gain, but the soy had the added benefit of preserving two aspects of antioxidant function.

  5. Tear film proteins deposited on high water content contact lenses identified with two-dimensional gel electrophoresis and mass spectrometry.

    Science.gov (United States)

    Nielsen, Kim; Vorum, Henrik; Ehlers, Niels; Aagaard, Nicolaj; Hjortdal, Jesper; Honoré, Bent

    2015-11-01

    Tear film proteins adhere to the surface of contact lenses (CLs). While the proteins in the tears have been extensively studied with various proteomic techniques, adhered proteins to CLs are less studied. In this pilot study, we have separated proteins with 2D gel electrophoresis prior to the conventional mass spectrometry (MS) in order to analyse the deposited proteins on hydrogel CLs from myopic patients. pHEMA and PVA hydrogel CLs worn by 3 patients for different time lengths were analysed. After wear, the CLs were frozen at -20°C. Proteins were extracted in lysis buffer, separated on 12% polyacrylamide gels and silver-stained. Protein spots were excised and identified with liquid chromatography - tandem MS. Deposited proteins were extracted with a yield of 26-66 μg and separated by 2D gel electrophoresis. The silver-stained gels showed similar protein patterns independent of the patient, hydrogel type and wear time. Seventy-two spots were analysed with MS, representing at least 12 different tear film proteins or protein fragments. Deposited tear film proteins from a single set of CLs worn for 1 day can successfully be analysed first with 2D gel electrophoresis and subsequently with MS, thus making examination of individual patients possible. The protein composition appeared homogeneous between the test persons which is a necessity for additional comparison analysis. The molecular masses of the identified proteins indicate that protein degradation occurs only as a minor event. Myopic patients were investigated in this pilot study, but the combined techniques can easily be applied to other eye diseases. © 2015 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  6. Mass Balance Assessment for Six Neonicotinoid Insecticides During Conventional Wastewater and Wetland Treatment: Nationwide Reconnaissance in United States Wastewater

    Science.gov (United States)

    2016-01-01

    Occurrence and removal of six high-production high-volume neonicotinoids was investigated in 13 conventional wastewater treatment plants (WWTPs) and one engineered wetland. Flow-weighted daily composites were analyzed by isotope dilution liquid chromatography tandem mass spectrometry, revealing the occurrence of imidacloprid, acetamiprid, and clothianidin at ng/L concentrations in WWTP influent (60.5 ± 40.0; 2.9 ± 1.9; 149.7 ± 289.5, respectively) and effluent (58.5 ± 29.1; 2.3 ± 1.4; 70.2 ± 121.8, respectively). A mass balance showed insignificant removal of imidacloprid (p = 0.09, CI = 95%) and limited removal of the sum of acetamiprid and its degradate, acetamiprid-N-desmethyl (18 ± 4%, p = 0.01, CI = 95%). Clothianidin was found only intermittently, whereas thiamethoxam, thiacloprid, and dinotefuran were never detected. In the wetland, no removal of imidacloprid or acetamiprid was observed. Extrapolation of data from 13 WWTPs to the nation as a whole suggests annual discharges on the order of 1000–3400 kg/y of imidacloprid contained in treated effluent to surface waters nationwide. This first mass balance and first United States nationwide wastewater reconnaissance identified imidacloprid, acetamiprid, and clothianidin as recalcitrant sewage constituents that persist through wastewater treatment to enter water bodies at significant loadings, potentially harmful to sensitive aquatic invertebrates. PMID:27196423

  7. Comparison of five methods for direct extraction of surface proteins from Listeria monocytogenes for proteomic analysis by orbitrap mass spectrometry.

    Science.gov (United States)

    Tiong, Hung King; Hartson, Steven; Muriana, Peter M

    2015-03-01

    Extracts of surface proteins, with minimal artifacts from contaminating cytosolic components, are highly desirable for investigating surface factors involved in the attachment and formation of biofilms by bacteria that are problematic in commercial food processing facilities. In this study, we compared the protein profiles of the food pathogen, Listeria monocytogenes, recovered after applying different surface protein extraction methods compiled from the literature: trypsin-enzymatic shaving with BICAM/sucrose or Tris/sucrose buffers (Tryp B+S, Tryp T+S), Tris-buffered urea (UB), lithium chloride (LiCl) and Tris-buffered urea applied with hypotonic-stressed cells (UB-Ghost), and subjected them to liquid chromatography tandem mass spectrometry and protein identification. The data indicate that the UB-Ghost extraction method provides a cleaner extract of surface proteins including the predicted (this study and the literature) or validated members (literature) from L. monocytogenes. This was determined by an accumulative lower unique peptide number exhibited by mass spectrometry for total cytoplasmic proteins among different surface extracts, with a majority of proteins demonstrating hydrophilic properties. The extracted proteins were from different functional categories and have associations with the cell surface, intermediary metabolism, information pathways, or functionally unknown proteins as suggested by in silico analyses performed by other groups (Leger and ListiList). The utilization of an optimized method for surface protein extraction should greatly facilitate identification by LC-MS/MS that could be useful to anyone working on molecular proteomics of bacterial surfaces.

  8. Denaturation Kinetics of Whey Protein Isolate Solutions and Fouling Mass Distribution in a Plate Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Marwa Khaldi

    2015-01-01

    Full Text Available Few investigations have attempted to connect the mechanism of dairy fouling to the chemical reaction of denaturation (unfolding and aggregation occurring in the bulk. The objective of this study is to contribute to this aspect in order to propose innovative controls to limit fouling deposit formation. Experimental investigations have been carried out to observe the relationship between the deposit mass distribution generated in plate heat exchangers (PHE by a whey protein isolate (WPI mainly composed of β-lactoglobulin (β-Lg and the ratio between the unfolding and aggregation rate constants. Experiments using a PHE were carried out at a pilot scale to identify the deposit distribution of a model fouling solution with different calcium contents. In parallel, laboratory experiments were performed to determine the unfolding/aggregation rate constants. Data analysis showed that (i β-Lg denaturation is highly dependent on the calcium content, (ii for each fouling solution, irrespective of the imposed temperature profile, the deposit mass in each channel and the ratio between the unfolding and aggregation rate constants seem to be well correlated. This study demonstrates that both the knowledge of the thermal profile and the β-Lg denaturation rate constants are required in order to predict accurately the deposit distribution along the PHE.

  9. Mass Spectrometry Analysis of Lysine Posttranslational Modifications of Tau Protein from Alzheimer's Disease Brain.

    Science.gov (United States)

    Thomas, Stefani N; Yang, Austin J

    2017-01-01

    Recent advances in mass spectrometry (MS)-based proteomics have greatly facilitated the robust identification and quantification of posttranslational modifications (PTMs), including those that are present at substoichiometric site occupancies. The abnormal posttranslational modification and accumulation of the microtubule-associated protein tau has been implicated in the pathogenesis of Alzheimer's disease (AD), and it is thought that the primary mode of regulation of tau occurs through PTMs. Several studies have been published regarding tau phosphorylation; however, other tau PTMs such as ubiquitylation, acetylation, methylation, oxidation, sumoylation, nitration, and glycosylation have not been analyzed as extensively. The comprehensive detection and delineation of these PTMs is critical for drug target discovery and validation. Lysine-directed PTMs including ubiquitylation, acetylation, and methylation play key regulatory roles with respect to the rates of tau turnover and aggregation. MS-based analytical approaches have been used to gain insight into the tau lysine-directed PTM signature that is most closely associated with neurofibrillary lesion formation. This chapter provides details pertaining to the liquid chromatography tandem mass spectrometry (LC-MS/MS)-based analysis of the lysine-directed posttranslational modification of tau.

  10. Super-atmospheric pressure ionization mass spectrometry and its application to ultrafast online protein digestion analysis.

    Science.gov (United States)

    Chen, Lee Chuin; Ninomiya, Satoshi; Hiraoka, Kenzo

    2016-06-01

    Ion source pressure plays a significant role in the process of ionization and the subsequent ion transmission inside a mass spectrometer. Pressurizing the ion source to a gas pressure greater than atmospheric pressure is a relatively new approach that aims to further improve the performance of atmospheric pressure ionization sources. For example, under a super-atmospheric pressure environment, a stable electrospray can be sustained for liquid with high surface tension such as pure water, because of the suppression of electric discharge. Even for nano-electrospray ionization (nano-ESI), which is known to work with aqueous solution, its stability and sensitivity can also be enhanced, particularly in the negative mode when the ion source is pressurized. A brief review on the development of super-atmospheric pressure ion sources, including high-pressure electrospray, field desorption and superheated ESI, and the strategies to interface these ion sources to a mass spectrometer will be given. Using a recent ESI prototype with an operating temperature at 220 °C under 27 atm, we also demonstrate that it is possible to achieve an online Asp-specific protein digestion analysis in which the whole processes of digestion, ionization and MS acquisition could be completed on the order of a few seconds. This method is fast, and the reaction can even be monitored on a near-real-time basis. Copyright © 2016 John Wiley & Sons, Ltd.

  11. The recent prevalence of Osteoporosis and low bone mass in the United States based on bone mineral density at the Femoral Neck or Lumbar Spine

    Science.gov (United States)

    The goal of our study was to estimate the prevalence of osteoporosis and low bone mass based on bone mineral density (BMD) at the femoral neck and the lumbar spine in adults 50 years and older in the United States (US). We applied prevalence estimates of osteoporosis or low bone mass at the femoral ...

  12. The Scales of Time, Length, Mass, Energy, and Other Fundamental Physical Quantities in the Atomic World and the Use of Atomic Units in Quantum Mechanical Calculations

    Science.gov (United States)

    Teo, Boon K.; Li, Wai-Kee

    2011-01-01

    This article is divided into two parts. In the first part, the atomic unit (au) system is introduced and the scales of time, space (length), and speed, as well as those of mass and energy, in the atomic world are discussed. In the second part, the utility of atomic units in quantum mechanical and spectroscopic calculations is illustrated with…

  13. Data Self-Recalibration and Mixture Mass Fingerprint Searching (DASER-MMF) to enhance protein identification within complex mixtures.

    Science.gov (United States)

    Danell, Ryan M; Ouvry-Patat, Severine A; Scarlett, Cameron O; Speir, J Paul; Borchers, Christoph H

    2008-12-01

    A novel algorithm based on Data Self-Recalibration and a subsequent Mixture Mass Fingerprint search (DASER-MMF) has been developed to improve the performance of protein identification from online 1D and 2D-LC-MS/MS experiments conducted on high-resolution mass spectrometers. Recalibration of 40% to 75% of the MS spectra in a human serum dataset is demonstrated with average errors of 0.3 +/- 0.3 ppm, regardless of the original calibration quality. With simple protein mixtures, the MMF search identifies new proteins not found in the MS/MS based search and increases the sequence coverage for identified proteins by six times. The high mass accuracy allows proteins to be identified with as little as three peptide mass hits. When applied to very complex samples, the MMF search shows less dramatic performance improvements. However, refinements such as additional discriminating factors utilized within the search space provide significant gains in protein identification ability and indicate that further enhancements are possible in this realm.

  14. Optimizing sequence coverage for a moderate mass protein in nano-electrospray ionization quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Matsuda, Ryan; Kolli, Venkata; Woods, Megan; Dodds, Eric D; Hage, David S

    2016-09-15

    Sample pretreatment was optimized to obtain high sequence coverage for human serum albumin (HSA, 66.5 kDa) when using nano-electrospray ionization quadrupole time-of-flight mass spectrometry (nESI-Q-TOF-MS). Use of the final method with trypsin, Lys-C, and Glu-C digests gave a combined coverage of 98.8%. The addition of peptide fractionation resulted in 99.7% coverage. These results were comparable to those obtained previously with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The sample pretreatment/nESI-Q-TOF-MS method was also used with collision-induced dissociation to analyze HSA digests and to identify peptides that could be employed as internal mass calibrants in future studies of modifications to HSA.

  15. Mass Spectrometry Based Mechanistic Insights into Formation of Tris Conjugates: Implications on Protein Biopharmaceutics

    Science.gov (United States)

    Kabadi, Pradeep G.; Sankaran, Praveen Kallamvalliillam; Palanivelu, Dinesh V.; Adhikary, Laxmi; Khedkar, Anand; Chatterjee, Amarnath

    2016-10-01

    We present here extensive mass spectrometric studies on the formation of a Tris conjugate with a therapeutic monoclonal antibody. The results not only demonstrate the reactive nature of the Tris molecule but also the sequence and reaction conditions that trigger this reactivity. The results corroborate the fact that proteins are, in general, prone to conjugation and/or adduct formation reactions and any modification due to this essentially leads to formation of impurities in a protein sample. Further, the results demonstrate that the conjugation reaction happens via a succinimide intermediate and has sequence specificity. Additionally, the data presented in this study also shows that the Tris formation is produced in-solution and is not an in-source phenomenon. We believe that the facts given here will open further avenues on exploration of Tris as a conjugating agent as well as ensure that the use of Tris or any ionic buffer in the process of producing a biopharmaceutical drug is monitored closely for the presence of such conjugate formation.

  16. Coming to Grips with Ambiguity: Ion Mobility-Mass Spectrometry for Protein Quaternary Structure Assignment

    Science.gov (United States)

    Eschweiler, Joseph D.; Frank, Aaron T.; Ruotolo, Brandon T.

    2017-10-01

    Multiprotein complexes are central to our understanding of cellular biology, as they play critical roles in nearly every biological process. Despite many impressive advances associated with structural characterization techniques, large and highly-dynamic protein complexes are too often refractory to analysis by conventional, high-resolution approaches. To fill this gap, ion mobility-mass spectrometry (IM-MS) methods have emerged as a promising approach for characterizing the structures of challenging assemblies due in large part to the ability of these methods to characterize the composition, connectivity, and topology of large, labile complexes. In this Critical Insight, we present a series of bioinformatics studies aimed at assessing the information content of IM-MS datasets for building models of multiprotein structure. Our computational data highlights the limits of current coarse-graining approaches, and compelled us to develop an improved workflow for multiprotein topology modeling, which we benchmark against a subset of the multiprotein complexes within the PDB. This improved workflow has allowed us to ascertain both the minimal experimental restraint sets required for generation of high-confidence multiprotein topologies, and quantify the ambiguity in models where insufficient IM-MS information is available. We conclude by projecting the future of IM-MS in the context of protein quaternary structure assignment, where we predict that a more complete knowledge of the ultimate information content and ambiguity within such models will undoubtedly lead to applications for a broader array of challenging biomolecular assemblies. [Figure not available: see fulltext.

  17. Ion Mobility Spectrometry-Hydrogen Deuterium Exchange Mass Spectrometry of Anions: Part 1. Peptides to Proteins

    Science.gov (United States)

    Donohoe, Gregory C.; Khakinejad, Mahdiar; Valentine, Stephen J.

    2015-04-01

    Ion mobility spectrometry (IMS) coupled with hydrogen deuterium exchange (HDX)-mass spectrometry (MS) has been used to study the conformations of negatively-charged peptide and protein ions. Results are presented for ion conformers of angiotensin 1, a synthetic peptide (SP), bovine insulin, ubiquitin, and equine cytochrome c. In general, the SP ion conformers demonstrate a greater level of HDX efficiency as a greater proportion of the sites undergo HDX. Additionally, these ions exhibit the fastest rates of exchange. Comparatively, the angiotensin 1 ions exhibit a lower rate of exchange and HDX level presumably because of decreased accessibility of exchange sites by charge sites. The latter are likely confined to the peptide termini. Insulin ions show dramatically reduced HDX levels and exchange rates, which can be attributed to decreased conformational flexibility resulting from the disulfide bonds. For the larger ubiquitin and protein ions, increased HDX is observed for larger ions of higher charge state. For ubiquitin, a conformational transition from compact to more elongated species (from lower to higher charge states) is reflected by an increase in HDX levels. These results can be explained by a combination of interior site protection by compact conformers as well as decreased access by charge sites. The elongated cytochrome c ions provide the largest HDX levels where higher values correlate with charge state. These results are consistent with increased exchange site accessibility by additional charge sites. The data from these enhanced IMS-HDX experiments are described in terms of charge site location, conformer rigidity, and interior site protection.

  18. High Spatial Resolution Imaging Mass Spectrometry of Human Optic Nerve Lipids and Proteins

    Science.gov (United States)

    Anderson, David M. G.; Spraggins, Jeffrey M.; Rose, Kristie L.; Schey, Kevin L.

    2015-06-01

    The human optic nerve carries signals from the retina to the visual cortex of the brain. Each optic nerve is comprised of approximately one million nerve fibers that are organized into bundles of 800-1200 fibers surrounded by connective tissue and supportive glial cells. Damage to the optic nerve contributes to a number of blinding diseases including: glaucoma, neuromyelitis optica, optic neuritis, and neurofibromatosis; however, the molecular mechanisms of optic nerve damage and death are incompletely understood. Herein we present high spatial resolution MALDI imaging mass spectrometry (IMS) analysis of lipids and proteins to define the molecular anatomy of the human optic nerve. The localization of a number of lipids was observed in discrete anatomical regions corresponding to myelinated and unmyelinated nerve regions as well as to supporting connective tissue, glial cells, and blood vessels. A protein fragment from vimentin, a known intermediate filament marker for astrocytes, was observed surrounding nerved fiber bundles in the lamina cribrosa region. S100B was also found in supporting glial cell regions in the prelaminar region, and the hemoglobin alpha subunit was observed in blood vessel areas. The molecular anatomy of the optic nerve defined by MALDI IMS provides a firm foundation to study biochemical changes in blinding human diseases.

  19. Characterization of Aggregation Propensity of a Human Fc-Fusion Protein Therapeutic by Hydrogen/Deuterium Exchange Mass Spectrometry

    Science.gov (United States)

    Huang, Richard Y.-C.; Iacob, Roxana E.; Krystek, Stanley R.; Jin, Mi; Wei, Hui; Tao, Li; Das, Tapan K.; Tymiak, Adrienne A.; Engen, John R.; Chen, Guodong

    2017-05-01

    Aggregation of protein therapeutics has long been a concern across different stages of manufacturing processes in the biopharmaceutical industry. It is often indicative of aberrant protein therapeutic higher-order structure. In this study, the aggregation propensity of a human Fc-fusion protein therapeutic was characterized. Hydrogen/deuterium exchange mass spectrometry (HDX-MS) was applied to examine the conformational dynamics of dimers collected from a bioreactor. HDX-MS data combined with spatial aggregation propensity calculations revealed a potential aggregation interface in the Fc domain. This study provides a general strategy for the characterization of the aggregation propensity of Fc-fusion proteins at the molecular level.

  20. Enrichment of Functional Redox Reactive Proteins and Identification by Mass Spectrometry Results in Several Terminal Fe(III)-reducing Candidate Proteins in Shewanella oneidensis MR-1.

    Energy Technology Data Exchange (ETDEWEB)

    Elias, Dwayne A.; Yang, Feng; Mottaz, Heather M.; Beliaev, Alex S.; Lipton, Mary S.

    2007-02-01

    Identification of the proteins directly involved in microbial metal-reduction is important to understanding the biochemistry involved in heavy metal reduction/immobilization and the ultimate cleanup of DOE contaminated sites. Although previous strategies for the identification of these proteins have traditionally required laborious protein purification/characterization of metal-reducing capability, activity is often lost before the final purification step, thus creating a significant knowledge gap. In the current study, subcellular fractions of S. oneidensis MR-1 were enriched for Fe(III)-NTA reducing proteins in a single step using several orthogonal column matrices. The protein content of eluted fractions that demonstrated activity were determined by ultra high pressure liquid chromatography coupled with tandem mass spectrometry (LCMS/ MS). A comparison of the proteins identified from active fractions in all separations produced 30 proteins that may act as the terminal electron-accepting protein for Fe(III)-reduction. These include MtrA, MtrB, MtrC and OmcA as well as a number of other proteins not previously associated with Fe(III)-reduction. This is the first report of such an approach where the laborious procedures for protein purification are not required for identification of metal-reducing proteins. Such work provides the basis for a similar approach with other cultured organisms as well as analysis of sediment and groundwater samples from biostimulation efforts at contaminated sites.

  1. A sampling framework for incorporating quantitative mass spectrometry data in protein interaction analysis.

    Science.gov (United States)

    Tucker, George; Loh, Po-Ru; Berger, Bonnie

    2013-10-04

    Comprehensive protein-protein interaction (PPI) maps are a powerful resource for uncovering the molecular basis of genetic interactions and providing mechanistic insights. Over the past decade, high-throughput experimental techniques have been developed to generate PPI maps at proteome scale, first using yeast two-hybrid approaches and more recently via affinity purification combined with mass spectrometry (AP-MS). Unfortunately, data from both protocols are prone to both high false positive and false negative rates. To address these issues, many methods have been developed to post-process raw PPI data. However, with few exceptions, these methods only analyze binary experimental data (in which each potential interaction tested is deemed either observed or unobserved), neglecting quantitative information available from AP-MS such as spectral counts. We propose a novel method for incorporating quantitative information from AP-MS data into existing PPI inference methods that analyze binary interaction data. Our approach introduces a probabilistic framework that models the statistical noise inherent in observations of co-purifications. Using a sampling-based approach, we model the uncertainty of interactions with low spectral counts by generating an ensemble of possible alternative experimental outcomes. We then apply the existing method of choice to each alternative outcome and aggregate results over the ensemble. We validate our approach on three recent AP-MS data sets and demonstrate performance comparable to or better than state-of-the-art methods. Additionally, we provide an in-depth discussion comparing the theoretical bases of existing approaches and identify common aspects that may be key to their performance. Our sampling framework extends the existing body of work on PPI analysis using binary interaction data to apply to the richer quantitative data now commonly available through AP-MS assays. This framework is quite general, and many enhancements are likely

  2. Linear ion-trap mass spectrometric characterization of human pituitary nitrotyrosine-containing proteins

    Science.gov (United States)

    Zhan, Xianquan; Desiderio, Dominic M.

    2007-01-01

    The nitric oxide-mediated Tyr-nitration of endogenous proteins is associated with several pathological and physiological processes. In order to investigate the presence - and potential roles - of Tyr-nitration in the human pituitary, a large-format two-dimensional gel separation plus a Western blot against a specific anti-3-nitrotyrosine antibody were used to separate and detect nitroproteins from a human pituitary proteome. The nitroproteins were subjected to in-gel trypsin digestion, and high-sensitivity vacuum matrix-assisted laser desorption/ionization (vMALDI) linear ion-trap tandem mass spectrometry was used to analyze the tryptic peptides. Those MS/MS data were used to determine the amino acid sequence and the specific nitration site of each tryptic nitropeptide, and were matched to corresponding proteins with Bioworks TuboSEQUEST software. Compared to our previous study, 16 new nitrotyrosine-immunoreactive positive Western blot spots were found within the area pI 3.0-10 and Mr 10-100 kDa. Four new nitroproteins were discovered: the stanniocalcin 1 precursor--involved in calcium and phosphate metabolism; mitochondrial co-chaperone protein HscB, which might act as a co-chaperone in iron-sulfur cluster assembly in mitochrondria; progestin and adipoQ receptor family member III--a seven-transmembrane receptor; proteasome subunit alpha type 2--involved in an ATP/ubiquitin-dependent non-lysosomal proteolytic pathway. Those data demonstrate that nitric oxide-mediated Tyr-nitration might participate in various biochemical, metabolic, and pathological processes in the human pituitary.

  3. Ultracentrifugation and inductively coupled plasma mass spectrometry for metal-protein equilibrium studies

    Energy Technology Data Exchange (ETDEWEB)

    Arnquist, Isaac J.; Holcombe, James A., E-mail: holcombe@mail.utexas.edu

    2012-10-15

    The coupling of separation by preparative ultracentrifugation and metal detection by inductively coupled plasma mass spectrometry (ICP-MS) has been explored for metal-protein equilibrium determinations. This study characterizes the stoichiometry as well as apparent (K{sub app}) and intrinsic (K{sub int}) binding affinities of the metal-protein association for a model protein. In particular, the affinity of Cu{sup 2+} for the high affinity binding site in bovine serum albumin (BSA) is determined. Once equilibrium is established between Cu{sup 2+} and BSA, preparative ultracentrifugation moves the metalloprotein away from the meniscus, leaving unbound equilibrium copper in the protein free solution. Since the initial (total) concentrations of purified BSA and Cu{sup 2+} can be determined, the free copper concentration at equilibrium can also be determined by taking a small aliquot above the sedimenting boundary for analysis using ICP-MS. This analysis allows for the determination of free Cu{sup 2+} ion, which is identical to the equilibrium concentration prior to ultracentrifugation. From these data K{sub app} and K{sub int} were determined at two different conditions, 100 mM Tris(hydroxymethyl)aminomethane (Tris) at pH 9.53 and pH 7.93. log K{sub app} values of 17.6 and 14.6 were determined at pH 9.53 and pH 7.93, respectively. Furthermore, pH-independent log K{sub int} values of - 1.43 and - 1.04 were determined at pH 9.53 and 7.93, respectively. While the log K{sub int} at pH 9.53 was in good agreement with literature values obtained from alternative methods, K{sub int} at pH 7.93 was about 2.5 Multiplication-Sign larger than previously reported. BSA undergoes a structural rearrangement between pH 7-9, and the generally accepted pH-dependency of protein tertiary structure may be responsible for the variations in the 'intrinsic' binding constant. The Cu-BSA binding affinity was also monitored in 100 mM Tris 0.1% sodium dodecyl sulfate (SDS) solution at p

  4. Allergy vaccines: a need for standardisation in mass units of major allergen.

    Science.gov (United States)

    van Ree, R; Dorpema, J W; Vieths, S

    2005-09-01

    Treatment of respiratory allergies can be performed with allergen-specific immunotherapy using allergen extracts. These products are biologicals with an extremely complex and variable composition. Only a few components are of major importance for the disease, the so-called major allergens. At present, standardisation of allergen extracts is dominated by techniques that aim at establishing their overall IgE-binding potencies using pooled sera of allergic patients. Each company in the market uses its own type of units to express potencies, thus hampering comparability. Another disadvantage is that the major allergen composition is not determined. Most companies have introduced assays for the measurement of major allergens in their quality control systems, but these data are not yet used for labelling purposes. The need to include major allergen content in standardisation protocols is now widely accepted. To support future labelling on the basis of major allergen content the European Union has funded the multidisciplinary multicentre project CREATE. This project aims at developing international certified references for the most important major respiratory allergens and at evaluating the performance of available ELISA for their measurement. The project will facilitate expression of potencies by active ingredient (major allergen) content and will allow direct comparison of competitor products.

  5. Pigments and proteins in green bacterial chlorosomes studied by matrix-assisted laser desorption ionization mass spectrometry

    DEFF Research Database (Denmark)

    Persson, S; Sönksen, C P; Frigaard, N U;

    2000-01-01

    We have used matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) for mass determination of pigments and proteins in chlorosomes, the light-harvesting organelles from the photosynthetic green sulfur bacterium Chlorobium tepidum. By applying a small volume (1...... proportional to peak areas obtained from HPLC analysis of the same sample. The same result was also obtained when whole cells of Chl. tepidum were applied to the target, indicating that MALDI-MS can provide a rapid method for obtaining a semiquantitative determination or finger-print of the bacteriochlorophyll...... homologs in a small amount of green bacterial cells. In addition to information on pigments, the MALDI spectra also contained peaks from chlorosome proteins. Thus we have been able with high precision to confirm the molecular masses of the chlorosome proteins CsmA and CsmE which have been previously...

  6. Platform for identification of Salmonella serovar differentiating bacterial proteins by top-down mass spectrometry: S. Typhimurium vs S. Heidelberg.

    Science.gov (United States)

    McFarland, Melinda A; Andrzejewski, Denis; Musser, Steven M; Callahan, John H

    2014-07-15

    Intact protein expression profiling has proven to be a powerful tool for bacterial subspecies differentiation. To facilitate typing, epidemiology, and trace-back of Salmonella contamination in the food supply, a minimum of serovar level differentiation is required. Subsequent identification and validation of marker proteins is integral to rapid screening development and to determining which proteins are subject to environmental pressure. Bacterial sequencing efforts have expanded the number of sequenced genomes available for single-nucleotide polymorphism (SNP) analyses, but annotation is often missing, start site errors are not uncommon, and the likelihood of expression is not known. In this work we show that the combination of intact protein expression profiles and top-down liquid chromatography-mass spectrometry (LC-MS/MS) facilitates the identification of proteins that result from expressed serovar specific nonsynonymous SNPs. Combinations of these marker proteins can be used in assays for rapid differentiation of bacteria. LC-MS generated intact protein expression profiles establish which bacterial protein masses differ across samples and can be determined without prior knowledge of the sample. Subsequent top-down LC-MS/MS is used to identify expressed proteins and their post-translational modifications (PTM), identify serovar specific markers, and validate genomic predicted orthologues as expressed biomarkers.

  7. The amino acid sequences of eleven tryptic peptides of papaya mosaic virus protein by electron ionization mass spectrometry.

    Science.gov (United States)

    Parente, A; Short, M N; Self, R; Parsley, K R

    1982-04-01

    Eleven of the fourteen tryptic peptides of papaya mosaic virus protein have been sequenced by electron ionization mass spectrometry using chemical and enzymic hydrolyses and mixture analysis as required. Mid-chain cleavages of N-C bonds produced secondary ion series which allowed up to 16 residues to be sequenced without further hydrolysis. Mixture analysis on hydrolysis products enabled a 24 residue tryptic peptide to be sequenced from the data recorded in a single mass spectrum.

  8. Mass spectrometric identification of formaldehyde-induced peptide modifications under in vivo protein cross-linking conditions.

    Science.gov (United States)

    Toews, Judy; Rogalski, Jason C; Clark, Thomas J; Kast, Juergen

    2008-06-23

    Formaldehyde cross-linking of proteins is emerging as a novel approach to study protein-protein interactions in living cells. It has been shown to be compatible with standard techniques used in functional proteomics such as affinity-based protein enrichment, enzymatic digestion, and mass spectrometric protein identification. So far, the lack of knowledge on formaldehyde-induced protein modifications and suitable mass spectrometric methods for their targeted detection has impeded the identification of the different types of cross-linked peptides in these samples. In particular, it has remained unclear whether in vitro studies that identified a multitude of amino acid residues reacting with formaldehyde over the course of several days are suitable substitutes for the much shorter reaction times of 10-20 min used in cross-linking experiments in living cells. The current study on model peptides identifies amino-termini as well as lysine, tryptophan, and cysteine side chains, i.e. a small subset of those modified after several days, as the major reactive sites under such conditions, and suggests relative position in the peptide sequence as well as sequence microenvironment to be important factors that govern reactivity. Using MALDI-MS, mass increases of 12 Da on amino groups and 30 Da on cysteines were detected as the major reaction products, while peptide fragment ion analysis by tandem mass spectrometry was used to localize the actual modification sites on a peptide. Non-specific cross-linking was absent, and could only be detected with low yield at elevated peptide concentrations. The detailed knowledge on the constraints and products of the formaldehyde reaction with peptides after short incubation times presented in this study is expected to facilitate the targeted mass spectrometric analysis of proteins after in vivo formaldehyde cross-linking.

  9. Measuring Distributional Inequality: Relative Body Mass Index Distributions by Gender, Race/Ethnicity, and Education, United States (1999–2006

    Directory of Open Access Journals (Sweden)

    Brian C. Houle

    2010-01-01

    Full Text Available Few studies consider obesity inequalities as a distributional property. This study uses relative distribution methods to explore inequalities in body mass index (BMI; kg/m2. Data from 1999–2006 from the National Health and Nutrition Examination Survey were used to compare BMI distributions by gender, Black/White race, and education subgroups in the United States. For men, comparisons between Whites and Blacks show a polarized relative distribution, with more Black men at increased risk of over or underweight. Comparisons by education (overall and within race/ethnic groups effects also show a polarized relative distribution, with more cases of the least educated men at the upper and lower tails of the BMI distribution. For women, Blacks have a greater probability of high BMI values largely due to a right-shifted BMI distribution relative to White women. Women with less education also have a BMI distribution shifted to the right compared to the most educated women.

  10. False-Positive Rate Determination of Protein Target Discovery using a Covalent Modification- and Mass Spectrometry-Based Proteomics Platform

    Science.gov (United States)

    Strickland, Erin C.; Geer, M. Ariel; Hong, Jiyong; Fitzgerald, Michael C.

    2014-01-01

    Detection and quantitation of protein-ligand binding interactions is important in many areas of biological research. Stability of proteins from rates of oxidation (SPROX) is an energetics-based technique for identifying the proteins targets of ligands in complex biological mixtures. Knowing the false-positive rate of protein target discovery in proteome-wide SPROX experiments is important for the correct interpretation of results. Reported here are the results of a control SPROX experiment in which chemical denaturation data is obtained on the proteins in two samples that originated from the same yeast lysate, as would be done in a typical SPROX experiment except that one sample would be spiked with the test ligand. False-positive rates of 1.2-2.2 % and manassantin A. The impact of ion purity in the tandem mass spectral analyses and of background oxidation on the false-positive rate of protein target discovery using SPROX is also discussed.

  11. False Positive Rate Determination of Protein Target Discovery using a Covalent Modification- and Mass Spectrometry-Based Proteomics Platform

    Science.gov (United States)

    Strickland, Erin C.; Geer, M. Ariel; Hong, Jiyong; Fitzgerald, Michael C.

    2013-01-01

    Detection and quantitation of protein-ligand binding interactions is important in many areas of biological research. The Stability of Proteins from Rates of Oxidation (SPROX) technique is an energetics-based technique for identifying the proteins targets of ligands in complex biological mixtures. Knowing the false positive rate of protein target discovery in proteome-wide SPROX experiments is important for the correct interpretation of results. Reported here are the results of a control SPROX experiment in which chemical denaturation data is obtained on the proteins in two samples that originated from the same yeast lysate, as would be done in a typical SPROX experiment except that one sample would be spiked with the test ligand. False positive rates of 1.2–2.2% and manassantin A. The impact of ion purity in the tandem mass spectral analyses and of background oxidation on the false positive rate of protein target discovery using SPROX is also discussed. PMID:24114261

  12. A SELDI mass spectrometry study of experimental autoimmune encephalomyelitis: sample preparation, reproducibility, and differential protein expression patterns.

    Science.gov (United States)

    Azzam, Sausan; Broadwater, Laurie; Li, Shuo; Freeman, Ernest J; McDonough, Jennifer; Gregory, Roger B

    2013-05-01

    Experimental autoimmune encephalomyelitis (EAE) is an autoimmune, inflammatory disease of the central nervous system that is widely used as a model of multiple sclerosis (MS). Mitochondrial dysfunction appears to play a role in the development of neuropathology in MS and may also play a role in disease pathology in EAE. Here, surface enhanced laser desorption ionization mass spectrometry (SELDI-MS) has been employed to obtain protein expression profiles from mitochondrially enriched fractions derived from EAE and control mouse brain. To gain insight into experimental variation, the reproducibility of sub-cellular fractionation, anion exchange fractionation as well as spot-to-spot and chip-to-chip variation using pooled samples from brain tissue was examined. Variability of SELDI mass spectral peak intensities indicates a coefficient of variation (CV) of 15.6% and 17.6% between spots on a given chip and between different chips, respectively. Thinly slicing tissue prior to homogenization with a rotor homogenizer showed better reproducibility (CV = 17.0%) than homogenization of blocks of brain tissue with a Teflon® pestle (CV = 27.0%). Fractionation of proteins with anion exchange beads prior to SELDI-MS analysis gave overall CV values from 16.1% to 18.6%. SELDI mass spectra of mitochondrial fractions obtained from brain tissue from EAE mice and controls displayed 39 differentially expressed proteins (p≤ 0.05) out of a total of 241 protein peaks observed in anion exchange fractions. Hierarchical clustering analysis showed that protein fractions from EAE animals with severe disability clearly segregated from controls. Several components of electron transport chain complexes (cytochrome c oxidase subunit 6b1, subunit 6C, and subunit 4; NADH dehydrogenase flavoprotein 3, alpha subcomplex subunit 2, Fe-S protein 4, and Fe-S protein 6; and ATP synthase subunit e) were identified as possible differentially expressed proteins. Myelin Basic Protein isoform 8 (MBP8) (14.2 k

  13. Stoichiometry of chromatin-associated protein complexes revealed by label-free quantitative mass spectrometry-based proteomics.

    Science.gov (United States)

    Smits, Arne H; Jansen, Pascal W T C; Poser, Ina; Hyman, Anthony A; Vermeulen, Michiel

    2013-01-07

    Many cellular proteins assemble into macromolecular protein complexes. The identification of protein-protein interactions and quantification of their stoichiometry is therefore crucial to understand the molecular function of protein complexes. Determining the stoichiometry of protein complexes is usually achieved by mass spectrometry-based methods that rely on introducing stable isotope-labeled reference peptides into the sample of interest. However, these approaches are laborious and not suitable for high-throughput screenings. Here, we describe a robust and easy to implement label-free relative quantification approach that combines the detection of high-confidence protein-protein interactions with an accurate determination of the stoichiometry of the identified protein-protein interactions in a single experiment. We applied this method to two chromatin-associated protein complexes for which the stoichiometry thus far remained elusive: the MBD3/NuRD and PRC2 complex. For each of these complexes, we accurately determined the stoichiometry of the core subunits while at the same time identifying novel interactors and their stoichiometry.

  14. Identification of nitrated tyrosine residues of protein kinase G-Iα by mass spectrometry.

    Science.gov (United States)

    Lu, Jingshan; Yao, Ikuko; Shimojo, Masahito; Katano, Tayo; Uchida, Hitoshi; Setou, Mitsutoshi; Ito, Seiji

    2014-02-01

    The nitration of tyrosine to 3-nitrotyrosine is an oxidative modification of tyrosine by nitric oxide and is associated with many diseases, and targeting of protein kinase G (PKG)-I represents a potential therapeutic strategy for pulmonary hypertension and chronic pain. The direct assignment of tyrosine residues of PKG-I has remained to be made due to the low sensitivity of the current proteomic approach. In order to assign modified tyrosine residues of PKG-I, we nitrated purified PKG-Iα expressed in insect Sf9 cells by use of peroxynitrite in vitro and analyzed the trypsin-digested fragments by matrix-assisted laser desorption/ionization-time of flight mass spectrometry and liquid chromatography-tandem mass spectrometry. Among the 21 tyrosine residues of PKG-Iα, 16 tyrosine residues were assigned in 13 fragments; and six tyrosine residues were nitrated, those at Y71, Y141, Y212, Y336, Y345, and Y567, in the peroxynitrite-treated sample. Single mutation of tyrosine residues at Y71, Y212, and Y336 to phenylalanine significantly reduced the nitration of PKG-Iα; and four mutations at Y71, Y141, Y212, and Y336 (Y4F mutant) reduced it additively. PKG-Iα activity was inhibited by peroxynitrite in a concentration-dependent manner from 30 μM to 1 mM, and this inhibition was attenuated in the Y4F mutant. These results demonstrated that PKG-Iα was nitrated at multiple tyrosine residues and that its activity was reduced by nitration of these residues.

  15. Plant Cell Wall Proteomics: Mass Spectrometry Data, a Trove for Research on Protein Structure/Function Relationships

    Institute of Scientific and Technical Information of China (English)

    Cécile Albenne; Hervé Canut; Georges Boudart; Yu Zhang; Héléne San Clemente; Rafael Pont-Lezica; Elisabeth Jamet

    2009-01-01

    Proteomics allows the large-scale study of protein expression either in whole organisms or in purified organ-elles. In particular, mass spectrometry (MS) analysis of gel-separated proteins produces data not only for protein identi-fication, but for protein structure, location, and processing as well. An in-depth analysis was performed on MS data from etiolated hypocotyl cell wall proteomics of Arabidopsis thaliana. These analyses show that highly homologous members of multigene families can be differentiated. Two lectins presenting 93% amino acid identity were identified using peptide mass fingerprinting. Although the identification of structural proteins such as extensins or hydroxyproline/proline-rich proteins (H/PRPs) is arduous, different types of MS spectra were exploited to identify and characterize an H/PRR Matu-ration events in a couple of cell wall proteins (CWPs) were analyzed using site mapping. N-glycosylation of CWPs as well as the hydroxylation or oxidation of amino acids were also explored, adding information to improve our understanding of CWP structure/function relationships. A bioinformatic tool was developed to locate by means of MS the N-terminus of mature secreted proteins and N-glycosylation.

  16. Plant cell wall proteomics: mass spectrometry data, a trove for research on protein structure/function relationships.

    Science.gov (United States)

    Albenne, Cécile; Canut, Hervé; Boudart, Georges; Zhang, Yu; San Clemente, Hélène; Pont-Lezica, Rafael; Jamet, Elisabeth

    2009-09-01

    Proteomics allows the large-scale study of protein expression either in whole organisms or in purified organelles. In particular, mass spectrometry (MS) analysis of gel-separated proteins produces data not only for protein identification, but for protein structure, location, and processing as well. An in-depth analysis was performed on MS data from etiolated hypocotyl cell wall proteomics of Arabidopsis thaliana. These analyses show that highly homologous members of multigene families can be differentiated. Two lectins presenting 93% amino acid identity were identified using peptide mass fingerprinting. Although the identification of structural proteins such as extensins or hydroxyproline/proline-rich proteins (H/PRPs) is arduous, different types of MS spectra were exploited to identify and characterize an H/PRP. Maturation events in a couple of cell wall proteins (CWPs) were analyzed using site mapping. N-glycosylation of CWPs as well as the hydroxylation or oxidation of amino acids were also explored, adding information to improve our understanding of CWP structure/function relationships. A bioinformatic tool was developed to locate by means of MS the N-terminus of mature secreted proteins and N-glycosylation.

  17. Targeted mass spectrometry analysis of the proteins IGF1, IGF2, IBP2, IBP3 and A2GL by blood protein precipitation

    DEFF Research Database (Denmark)

    Such-Sanmartín, Gerard; Bache, Nicolai; Callesen, Anne K

    2015-01-01

    UNLABELLED: Biomarker analysis of blood samples by liquid chromatography (LC) mass spectrometry (MS) is extremely challenging due to the high protein concentration range, characterised by abundant proteins that suppress and mask other proteins of lower abundance. This situation is further...... aggravated when using fast high-throughput methods, which are necessary for analysis of hundreds and thousands of samples in clinical laboratories. The blood proteins IGF1, IGF2, IBP2, IBP3 and A2GL have been proposed as indirect biomarkers for detection of GH administration and as putative biomarkers...... for breast cancer diagnosis. We describe a sensitive and scalable method to quantify these 5 proteins of medium and low abundance by selected reaction monitoring (SRM) LC-MS/MS analysis in blood samples. Our method requires 7μL of plasma and reaches a throughput of up to ca. 80 analyses per day. It includes...

  18. Comparison of methods for accurate quantification of DNA mass concentration with traceability to the international system of units.

    Science.gov (United States)

    Bhat, Somanath; Curach, Natalie; Mostyn, Thomas; Bains, Gursharan Singh; Griffiths, Kate R; Emslie, Kerry R

    2010-09-01

    Accurate estimation of total DNA concentration (mass concentration, e.g., ng/muL) that is traceable to the International System of Units (SI) is a crucial starting point for improving reproducible measurements in many applications involving nucleic acid testing and requires a DNA reference material which has been certified for its total DNA concentration. In this study, the concentrations of six different lambda DNA preparations were determined using different measurement platforms: UV Absorbance at 260 nm (A(260)) with and without prior sodium hydroxide (NaOH) treatment of the DNA, PicoGreen assay, and digital polymerase chain reaction (dPCR). DNA concentration estimates by A(260) with and without prior NaOH treatment were significantly different for five of the six samples tested. There were no significant differences in concentration estimates based on A(260) with prior NaOH treatment, PicoGreen analysis, and dPCR for two of the three samples tested using dPCR. Since the measurand in dPCR is amount (copy number) concentration (copies/muL), the results suggest that accurate estimation of DNA mass concentration based on copy number concentration is achievable provided the DNA is fully characterized and in the double-stranded form or amplification is designed to be initiated from only one of the two complementary strands.

  19. Identifying acetylated lignin units in non-wood fibers using pyrolysis-gas chromatography/mass spectrometry.

    Science.gov (United States)

    del Río, José C; Gutiérrez, Ana; Martínez, Angel T

    2004-01-01

    A series of non-wood plant fibers, namely kenaf, jute, sisal and abaca, have been analyzed upon pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) of the whole material. The pyrolysis products mainly arise from the carbohydrate and lignin moieties of the fibers. The lignin-derived phenols belonged to the p-hydroxyphenylpropanoid (H), guaiacylpropanoid (G) and syringylpropanoid (S) structures, and showed a high S/G ratio of between 2.0 and 5.4, the highest corresponding to kenaf. Among the lignin-derived phenols released, small amounts of sinapyl and coniferyl acetates (in both cis- and trans-forms) were identified for the first time upon Py-GC/MS of lignocellulosic materials. Acetylation of the sinapyl and coniferyl alcohols was at the gamma-position of the side chain. The release of these alcohols derived from intact acetylated lignin units upon pyrolysis seems to indicate that the native lignin in the fibers selected for this study is at least partially acetylated. Sinapyl (and coniferyl) acetates have recently been suggested to be authentic lignin precursors involved in the polymerization of lignin along with the normal sinapyl and coniferyl alcohols. Py-GC/MS will offer a convenient and rapid tool for analyzing naturally acetylated lignins, as well as to screen plant materials for the presence of acetylated units in lignin.

  20. Quantitative mass spectrometry evaluation of human retinol binding protein 4 and related variants.

    Directory of Open Access Journals (Sweden)

    Urban A Kiernan

    Full Text Available BACKGROUND: Retinol Binding Protein 4 (RBP4 is an exciting new biomarker for the determination of insulin resistance and type 2 diabetes. It is known that circulating RBP4 resides in multiple variants which may provide enhanced clinical utility, but conventional immunoassay methods are blind to such differences. A Mass Spectrometric immunoassay (MSIA technology that can quantitate total RBP4 as well as individual isoforms may provide an enhanced analysis for this biomarker. METHODS: RBP4 was isolated and detected from 0.5 uL of human plasma using MSIA technology, for the simultaneous quantification and differentiation of endogenous human RBP4 and its variants. RESULTS: The linear range of the assay was 7.81-500 ug/mL, and the limit of detection and limit of quantification were 3.36 ug/mL and 6.52 ug/mL, respectively. The intra-assay CVs were determined to be 5.1% and the inter-assay CVs were 9.6%. The percent recovery of the RBP4-MSIA ranged from 95 - 105%. Method comparison of the RBP4 MSIA vs the Immun Diagnostik ELISA yielded a Passing & Bablok fit of MSIA  = 1.05× ELISA - 3.09, while the Cusum linearity p-value was >0.1 and the mean bias determined by the Altman Bland test was 1.2%. CONCLUSION: The novel RBP4 MSIA provided a fast, accurate and precise quantitative protein measurement as compared to the standard commercially available ELISA. Moreover, this method also allowed for the detection of RBP4 variants that are present in each sample, which may in the future provide a new dimension in the clinical utility of this biomarker.

  1. Validation of membrane protein topology models by oxidative labeling and mass spectrometry.

    Science.gov (United States)

    Pan, Yan; Ruan, Xiang; Valvano, Miguel A; Konermann, Lars

    2012-05-01

    Computer-assisted topology predictions are widely used to build low-resolution structural models of integral membrane proteins (IMPs). Experimental validation of these models by traditional methods is labor intensive and requires modifications that might alter the IMP native conformation. This work employs oxidative labeling coupled with mass spectrometry (MS) as a validation tool for computer-generated topology models. ·OH exposure introduces oxidative modifications in solvent-accessible regions, whereas buried segments (e.g., transmembrane helices) are non-oxidizable. The Escherichia coli protein WaaL (O-antigen ligase) is predicted to have 12 transmembrane helices and a large extramembrane domain (Pérez et al., Mol. Microbiol. 2008, 70, 1424). Tryptic digestion and LC-MS/MS were used to map the oxidative labeling behavior of WaaL. Met and Cys exhibit high intrinsic reactivities with ·OH, making them sensitive probes for solvent accessibility assays. Overall, the oxidation pattern of these residues is consistent with the originally proposed WaaL topology. One residue (M151), however, undergoes partial oxidation despite being predicted to reside within a transmembrane helix. Using an improved computer algorithm, a slightly modified topology model was generated that places M151 closer to the membrane interface. On the basis of the labeling data, it is concluded that the refined model more accurately reflects the actual topology of WaaL. We propose that the combination of oxidative labeling and MS represents a useful strategy for assessing the accuracy of IMP topology predictions, supplementing data obtained in traditional biochemical assays. In the future, it might be possible to incorporate oxidative labeling data directly as constraints in topology prediction algorithms.

  2. Protein-sequence polymorphisms and post-translational modifications in proteins from human saliva using top-down Fourier-transform ion cyclotron resonance mass spectrometry

    Science.gov (United States)

    Whitelegge, Julian P.; Zabrouskov, Vlad; Halgand, Frederic; Souda, Puneet; Bassilian, Sara; Yan, Weihong; Wolinsky, Larry; Loo, Joseph A.; Wong, David T. W.; Faull, Kym F.

    2007-12-01

    Single nucleotide polymorphisms (SNPs) can result in protein-sequence polymorphisms (PSPs) when codon translations are altered. Both top-down and bottom-up proteomics strategies can identify PSPs, but only if databases and software are used with this in mind. A 14,319 Da protein from human saliva was characterized using the top-down approach on a hybrid linear ion-trap Fourier-transform ion cyclotron resonance mass spectrometer equipped for both collisionally activated (CAD) and electron-capture (ECD) dissociation. Sequence tags identified the protein as Cystatin SN, and defined the N-terminal signal peptide cleavage site, as well as two disulfide bonds, in agreement with previous studies. The mass of the intact protein (published gene sequence by 16.031 Da, and, based on CAD and ECD fragment ion assignments, it was concluded that the isoform of the protein analyzed carried a PSP at residue 11 such that the Pro translated from the genome was in fact Leu/Ile. An independently determined SNP (rs2070856) subsequently confirmed the genetic basis of the mass spectral interpretation and defined the residue as Leu. In another example, the PRP3 protein with mass ~10,999 Da was found to be an isomeric/isobaric mixture of the reported sequence with PSPs D4N or D50N (rs1049112). Both CAD and ECD datasets support two phosphorylation sites at residues Ser8 and Ser22, rather than Ser17. In the context of discovery proteomics, previously undefined PSPs and PTMs will only be detected if the logic of data processing strategies considers their presence in an unbiased fashion.

  3. GANDivAWeb: A web server for detecting early folding units ("foldons" from protein 3D structures

    Directory of Open Access Journals (Sweden)

    Krishnan Arun

    2008-03-01

    Full Text Available Abstract Background It has long been known that small regions of proteins tend to fold independently and are then stabilized by interactions between these distinct subunits or modules. Such units, also known as autonomous folding units (AFUs or"foldons" play a key role in protein folding. A knowledge of such early folding units has diverse applications in protein engineering as well as in developing an understanding of the protein folding process. Such AFUs can also be used as model systems in order to study the structural organization of proteins. Results In an earlier work, we had utilized a global network partitioning algorithm to identify modules in proteins. We had shown that these modules correlate well with AFUs. In this work, we have developed a webserver, GANDivAWeb, to identify early folding units or "foldons" in networks using the algorithm described earlier. The website has three functionalities: (a It is able to display information on the modularity of a database of 1420 proteins used in the original work, (b It can take as input an uploaded PDB file, identify the modules using the GANDivA algorithm and email the results back to the user and (c It can take as input an uploaded PDB file and a results file (obtained from functionality (b and display the results using the embedded viewer. The results include the module decomposition of the protein, plots of cartoon representations of the protein colored by module identity and connectivity as well as contour plots of the hydrophobicity and relative accessible surface area (RASA distributions. Conclusion We believe that the GANDivAWeb server, will be a useful tool for scientists interested in the phenomena of protein folding as well as in protein engineering. Our tool not only provides a knowledge of the AFUs through a natural graph partitioning approach but is also able to identify residues that are critical during folding. It is our intention to use this tool to study the topological

  4. Measuring the hydrogen/deuterium exchange of proteins at high spatial resolution by mass spectrometry

    DEFF Research Database (Denmark)

    Rand, Kasper Dyrberg; Zehl, Martin; Jørgensen, Thomas J D

    2014-01-01

    Conspectus Proteins are dynamic molecules that exhibit conformational flexibility to function properly. Well-known examples of this are allosteric regulation of protein activity and ligand-induced conformational changes in protein receptors. Detailed knowledge of the conformational properties...

  5. Serum protein profiling by miniaturized solid-phase extraction and matrix-assisted laser desorption/ionization mass spectrometry

    DEFF Research Database (Denmark)

    Callesen, Anne K; Mohammed, Shabaz; Bunkenborg, Jakob;

    2005-01-01

    for translation of MALDI-MS based diagnostic methods to clinical applications. We have investigated a number of MALDI matrices and several miniaturized solid-phase extraction (SPE) methods for serum protein concentration and desalting with the aim of generating reproducible, high-quality protein profiles by MALDI...... mass spectra (m/z 1000-12,000) to be obtained from serum. In a proof-of-principle application, SPE with chelating material and MALDI-MS identified protein peaks in serum that had been previously reported for distinguishing a person diagnosed with breast cancer from a control. These preliminary results...

  6. The use of liquid chromatography tandem mass spectrometry to detect proteins in saliva from horses with and without systemic inflammation

    DEFF Research Database (Denmark)

    Jacobsen, Stine; Top Adler, Ditte Marie; Bundgaard, Louise

    2014-01-01

    The objective of the study was to assess global expression of proteins in equine saliva using liquid chromatography tandem mass spectrometry (LC-MS/MS). Saliva was obtained from seven horses with and six horses without evidence of systemic inflammatory disease. Tryptic peptides from saliva were......, and alpha1-acid glycoprotein. The study is the first to describe detection of inflammatory proteins in horse saliva. The proteins detected were similar to those described in saliva from cattle, small ruminants and pigs. Detection of APPs in horses with systemic inflammation suggests that saliva may be used...

  7. Improved mass spectrometric analysis of membrane proteins based on rapid and versatile sample preparation on nanodiamond particles.

    Science.gov (United States)

    Pham, Minh D; Yu, Steve S-F; Han, Chau-Chung; Chan, Sunney I

    2013-07-16

    We have developed a novel streamlined sample preparation procedure for mass spectrometric (MS) analysis of membrane proteins using surface-oxidized nanodiamond particles. The platform consists of solid-phase extraction and elution of the membrane proteins on nanodiamonds, concentrating the membrane proteins on the nanodiamonds and separating out detergents, chaotropic agents, and salts, and other impurities that are often present at high concentrations in solubilized membrane preparations. In this manner, membrane-protein extracts are transformed into MS-ready samples in minutes. The protocol is not only fast, but also widely adaptable and highly effective for preparing generic membrane protein samples for both MALDI-MS studies of membrane-protein complexes and shotgun membrane proteomics studies. As proof of concept, we have demonstrated substantial improvements in the MALDI-MS analysis of the particulate methane monooxygenase (pMMO) complex, a three-subunit transmembrane protein solubilized in various detergent buffers. Enzymatic digestions of membrane proteins are also greatly facilitated since the proteins extracted on to the nanodiamonds are exposed on the surface of the nanoparticles rather than in SDS gels or in detergent solutions. We illustrate the effectiveness of nanodiamonds for SDS removal in the preparation of membrane proteins for MS analysis on the proteome level by examining the quality of the tryptic peptides prepared by on-surface nanodiamond digestion of an E. coli membrane fraction for shotgun proteomics.

  8. Novel protein phosphorylation site identification in spinach stroma membranes by titanium dioxide microcolumns and tandem mass spectrometry

    DEFF Research Database (Denmark)

    Rinalducci, Sara; Larsen, Martin Røssel; Mohammed, Shabaz

    2006-01-01

    In this work, spinach stroma membrane, instead of thylakoid, has been investigated for the presence of phosphorylated proteins. We identified seven previously unknown phosphorylation sites by taking advantage of TiO(2) phosphopeptides enrichment coupled to mass spectrometric analysis. Upon illumi...

  9. The Aspergillus niger Prolyl endoprotease (An-PEP) for hydrogen-deuterium exchange mass spectrometry and protein structural studies

    NARCIS (Netherlands)

    Tsiatsiani, Liana; Akeroyd, Michiel; Olsthoorn, Maurien; Heck, Albert J R

    2017-01-01

    To monitor the structural integrity of therapeutic proteins, hydrogen-deuterium exchange mass spectrometry (HDX-MS) is increasingly utilized in the pharmaceutical industry. The successful outcome of HDX-MS analyses depends on the sample preparation conditions, which involve the rapid digestion of pr

  10. Determination of olanzapine in whole blood using simple protein precipitation and liquid chromatography-tandem mass spectrometry

    DEFF Research Database (Denmark)

    Nielsen, Marie Katrine Klose; Johansen, Sys Stybe

    2009-01-01

    A simple, sensitive, and reproducible liquid chromatography-tandem mass spectrometry method has been developed and validated for the quantification of the antipsychotic drug olanzapine in whole blood using dibenzepine as internal standard (IS). After acidic methanol-induced protein precipitation...

  11. Principles of hydrogen radical mediated peptide/protein fragmentation during matrix-assisted laser desorption/ionization mass spectrometry.

    Science.gov (United States)

    Asakawa, Daiki

    2016-07-01

    Matrix-assisted laser desorption/ionization in-source decay (MALDI-ISD) is a very easy way to obtain large sequence tags and, thereby, reliable identification of peptides and proteins. Recently discovered new matrices have enhanced the MALDI-ISD yield and opened new research avenues. The use of reducing and oxidizing matrices for MALDI-ISD of peptides and proteins favors the production of fragmentation pathways involving "hydrogen-abundant" and "hydrogen-deficient" radical precursors, respectively. Since an oxidizing matrix provides information on peptide/protein sequences complementary to that obtained with a reducing matrix, MALDI-ISD employing both reducing and oxidizing matrices is a potentially useful strategy for de novo peptide sequencing. Moreover, a pseudo-MS(3) method provides sequence information about N- and C-terminus extremities in proteins and allows N- and C-terminal side fragments to be discriminated within the complex MALDI-ISD mass spectrum. The combination of high mass resolution of a Fourier transform-ion cyclotron resonance (FTICR) analyzer and the software suitable for MALDI-ISD facilitates the interpretation of MALDI-ISD mass spectra. A deeper understanding of the MALDI-ISD process is necessary to fully exploit this method. Thus, this review focuses first on the mechanisms underlying MALDI-ISD processes, followed by a discussion of MALDI-ISD applications in the field of proteomics. © 2014 Wiley Periodicals, Inc., Mass Spec Rev 35:535-556, 2016.

  12. Role of tentacles and protein loading on pore accessibility and mass transfer in cation exchange materials for proteins.

    Science.gov (United States)

    Thomas, Helen; Coquebert de Neuville, Bertrand; Storti, Giuseppe; Morbidelli, Massimo; Joehnck, Matthias; Schulte, Michael

    2013-04-12

    In protein chromatography, the size of the protein determines which fraction of pores it can access within a resin and at which rate of diffusion. Moreover, in the presence of grafted polymers like in advanced materials, adsorbed proteins and electrolytes complicate the interaction pore-protein. In this study, we evaluated in a comparative way the behavior of Fractogel EMD SO3 (M) and (S), "tentacle"-type, strong cation exchangers, as well as a reference material without tentacles, all of which are commonly used for protein purification. ISEC experiments were carried out with a set of Dextran tracers of largely different molecular size covering the typical range of protein sizes. Experimental values of porosity (internal and external to the particles) as well as of pore diffusion coefficients have been measured at different NaCl concentrations and under protein loading. These results provide useful insights into the complex interplay among mentioned factors: first, the presence of tentacles induces size exclusion selectivity in the materials; second, the salt induces conformational changes of the tentacles, leading to porosities larger than expected in tentacle materials; third, protein adsorption mainly leads to a reduction of porosity due to pore space occupied by the protein and to a decrease of pore diffusion coefficient.

  13. Intentional formation of a protein corona on nanoparticles: Serum concentration affects protein corona mass, surface charge, and nanoparticle-cell interaction.

    Science.gov (United States)

    Gräfe, Christine; Weidner, Andreas; Lühe, Moritz V D; Bergemann, Christian; Schacher, Felix H; Clement, Joachim H; Dutz, Silvio

    2016-06-01

    The protein corona, which immediately is formed after contact of nanoparticles and biological systems, plays a crucial role for the biological fate of nanoparticles. In the here presented study we describe a strategy to control the amount of corona proteins which bind on particle surface and the impact of such a protein corona on particle-cell interactions. For corona formation, polyethyleneimine (PEI) coated magnetic nanoparticles (MNP) were incubated in a medium consisting of fetal calf serum (FCS) and cell culture medium. To modulate the amount of proteins bind to particles, the composition of the incubation medium was varied with regard to the FCS content. The protein corona mass was estimated and the size distribution of the participating proteins was determined by means of sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Additionally, the zeta potential of incubated particles was measured. Human blood-brain barrier-representing cell line HBMEC was used for in vitro incubation experiments. To investigate the consequences of the FCS dependent protein corona formation on the interaction of MNP and cells flow cytometry and laser scanning microscopy were used. Zeta potential as well as SDS-PAGE clearly reveal an increase in the amount of corona proteins on MNP with increasing amount of FCS in incubation medium. For MNP incubated with lower FCS concentrations especially medium-sized proteins of molecular weights between 30kDa and 100kDa could be found within the protein corona, whereas for MNP incubated within higher FCS concentrations the fraction of corona proteins of 30kDa and less increased. The presence of the protein corona reduces the interaction of PEI-coated MNP with HBMEC cells within a 30min-incubation.

  14. In-gel microwave-assisted acid hydrolysis of proteins combined with liquid chromatography tandem mass spectrometry for mapping protein sequences.

    Science.gov (United States)

    Sun, Difei; Wang, Nan; Li, Liang

    2014-01-07

    We report an enabling method for mapping the protein sequence with high sequence coverage. This method combines the high separation power of gel electrophoresis for protein separation with the high sequence coverage capability of microwave-assisted acid hydrolysis (MAAH) mass spectrometry (MS). In-gel MAAH using 25% trifluoroacetic acid was developed and optimized for degrading the gel-separated protein into small peptides suitable for tandem MS sequencing. For bovine serum albumin (BSA) (∼67 kDa), with 4 μg of protein loading onto a gel for separation, followed by excising the protein gel band for in-gel MAAH and then injecting ∼2 μg of the resultant peptides into a liquid chromatography quadrupole time-of-flight mass spectrometer for analysis, 689 ± 54 (n = 3) unique peptides were identified with a protein sequence coverage of 99 ± 1%. Both the number of peptides detected and sequence coverage decreased as the sample amount decreased, mainly due to background interference: 316 ± 59 peptides and 94 ± 3% coverage for 2 μg loading, 136 ± 19 and 76 ± 5% for 1 μg loading, and 30 ± 2 and 32 ± 2% for 0.5 μg loading. To demonstrate the general applicability of the method, 10 gel bands from gel electrophoresis of an albumin-depleted human plasma sample were excised for in-gel MAAH LC-MS analysis. In total, 19 relatively high abundance proteins with molecular weights ranging from ∼8 to ∼160 kD could be mapped with coverage of 100% for six proteins (MW 8759 to 68 425 Da), 96-98% for five proteins (MW 11 458 to 36 431 Da), 92% for three proteins (MW 15 971 to 36 431 Da), 80-87% for four proteins (MW 42 287 to 162 134 Da), and 56% for one protein (MW 51 358 Da). Finally, to demonstrate the applicability of the method for more detailed analysis of complex protein mixtures, two-dimensional (2D) gel electrophoresis was combined with in-gel MAAH, affinity purification, and LC-MS/MS to characterize six bovine alpha-S1-casein phosphoprotein

  15. Conformational Analysis of Proteins in Highly Concentrated Solutions by Dialysis-Coupled Hydrogen/Deuterium Exchange Mass Spectrometry

    DEFF Research Database (Denmark)

    Houde, Damian; Esmail Nazari, Zeinab; Bou-Assaf, George M

    2016-01-01

    for these phenomena can be due to short range electrostatic and/or hydrophobic protein-protein interactions. Hydrogen/deuterium exchange mass spectrometry (HDX-MS) is a useful tool for investigating protein conformation, dynamics, and interactions. However, "traditional" continuous dilution labeling HDX......-MS experiments have limited utility for the direct analysis of solutions with high concentrations of protein. Here, we present a dialysis-based HDX-MS (di-HDX-MS) method as an alternative HDX-MS labeling format, which takes advantage of passive dialysis rather than the classic dilution workflow. We applied...... this approach to a highly concentrated antibody solution without dilution or significant sample manipulation, prior to analysis. Such a method could pave the way for a deeper understanding of the unusual behavior of proteins at high concentrations, which is highly relevant for development of biopharmaceuticals...

  16. Use of multiple picosecond high-mass molecular dynamics simulations to predict crystallographic B-factors of folded globular proteins.

    Science.gov (United States)

    Pang, Yuan-Ping

    2016-09-01

    Predicting crystallographic B-factors of a protein from a conventional molecular dynamics simulation is challenging, in part because the B-factors calculated through sampling the atomic positional fluctuations in a picosecond molecular dynamics simulation are unreliable, and the sampling of a longer simulation yields overly large root mean square deviations between calculated and experimental B-factors. This article reports improved B-factor prediction achieved by sampling the atomic positional fluctuations in multiple picosecond molecular dynamics simulations that use uniformly increased atomic masses by 100-fold to increase time resolution. Using the third immunoglobulin-binding domain of protein G, bovine pancreatic trypsin inhibitor, ubiquitin, and lysozyme as model systems, the B-factor root mean square deviations (mean ± standard error) of these proteins were 3.1 ± 0.2-9 ± 1 Å(2) for Cα and 7.3 ± 0.9-9.6 ± 0.2 Å(2) for Cγ, when the sampling was done for each of these proteins over 20 distinct, independent, and 50-picosecond high-mass molecular dynamics simulations with AMBER forcefield FF12MC or FF14SB. These results suggest that sampling the atomic positional fluctuations in multiple picosecond high-mass molecular dynamics simulations may be conducive to a priori prediction of crystallographic B-factors of a folded globular protein.

  17. Label-free quantitative mass spectrometry for analysis of protein antigens in a meningococcal group B outer membrane vesicle vaccine.

    Science.gov (United States)

    Dick, Lawrence W; Mehl, John T; Loughney, John W; Mach, Anna; Rustandi, Richard R; Ha, Sha; Zhang, Lan; Przysiecki, Craig T; Dieter, Lance; Hoang, Van M

    2015-01-01

    The development of a multivalent outer membrane vesicle (OMV) vaccine where each strain contributes multiple key protein antigens presents numerous analytical challenges. One major difficulty is the ability to accurately and specifically quantitate each antigen, especially during early development and process optimization when immunoreagents are limited or unavailable. To overcome this problem, quantitative mass spectrometry methods can be used. In place of traditional mass assays such as enzyme-linked immunosorbent assays (ELISAs), quantitative LC-MS/MS using multiple reaction monitoring (MRM) can be used during early-phase process development to measure key protein components in complex vaccines in the absence of specific immunoreagents. Multiplexed, label-free quantitative mass spectrometry methods using protein extraction by either detergent or 2-phase solvent were developed to quantitate levels of several meningococcal serogroup B protein antigens in an OMV vaccine candidate. Precision was demonstrated to be less than 15% RSD for the 2-phase extraction and less than 10% RSD for the detergent extraction method. Accuracy was 70 to 130% for the method using a 2-phase extraction and 90-110% for detergent extraction. The viability of MS-based protein quantification as a vaccine characterization method was demonstrated and advantages over traditional quantitative methods were evaluated. Implementation of these MS-based quantification methods can help to decrease the development time for complex vaccines and can provide orthogonal confirmation of results from existing antigen quantification techniques.

  18. FEEDING EFFECT OF INULIN DERIVED FROM DAHLIA TUBER COMBINED WITH Lactobacillus sp. ON MEAT PROTEIN MASS OF CROSSBRED KAMPONG CHICKEN

    Directory of Open Access Journals (Sweden)

    Z. H. Abdurrahman

    2016-03-01

    Full Text Available The objective of the study was to determine the effects of feeding Lactobacillus species (Lactobacillus sp. and inulin derived from dahlia tuber powder on antioxidant activity, calcium mass, and protein mass of crossbred kampong chicken meat. A total of  168 birds of 21 days old crossbred kampong chickens were randomly allocated into 6 treatments with four replications per treatment. The present experiment was assigned in  a completely randomized design with 2 x 3 factorial scheme. The first factor was levels of dahlia tuber powder, namely 0.8% (A1 and 1.2% (A2, and the second factor was levels of Lactobacillus sp., namely none (B0, 1.2 mL (108 cfu/mL/B1 and 2.4 mL (108 cfu/mL/B2. The parameters measured were antioxidant activity, meat calcium and protein mass. Data were subjected to analysis of variance and followed by Duncan multiple range test (P<0.05 when the treatment indicated significant effect. The supplementation of dahlia tuber powder and Lactobacillus sp. significantly (P<0.05 increased antioxidant activity and protein mass of meat. However, calcium mass of meat was not significantly affected by treatments. In conclusion, feeding dahlia tuber powder at the level of 1.2% combined with Lactobacillus sp. at 1.2 mL (108 cfu/mL, can be categorized as the best combination based on the increase in antioxidant activity and meat protein mass.  

  19. Identification of phosphorylation sites of proteins by high performance liquid chromatography-electrospray ionization-quadrupole ion trap mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The phosphorylation sites of two phosphorylated proteins, bovine b-casein and myelin basic protein (MBP), were identified by high performance liquid chromatography-electrospray ionization-quadrupole ion trap mass spectrometry (HPLC-ESI-QITMS). The tryptic digest of each protein was separated by HPLC, the molecular weight of each peptide was determined by ESI-QITMS on line, and MS/MS spectrum of each peptide was simultaneously obtained by the combination of collision-induced desorption (CID) technique and tandem mass spectrometry (MS/MS) of QITMS. The phosphorylated peptide was identified by looking into whether the difference between the observed and predicted molecular weights of a peptide is 80 u or its integral multiple. Then the phosphorylation site was identified through manual interpretation of the MS/MS spectrum of the phosphorylated peptide or automatic SEQUEST data base-searching.

  20. Identification of phosphorylation sites of proteins by high performance liquid chromatography-electrospray ionization-quadrupole ion trap mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    车发云; 邵晓霞; 夏其昌

    2000-01-01

    The phosphorylation sites of two phosphorylated proteins, bovine β-casein and myelin basic protein (MBP), were identified by high performance liquid chromatography-electrospray ionization-quadrupole ion trap mass spectrometry (HPLC-ESI-QITMS). The tryptic digest of each protein was separated by HPLC, the molecular weight of each peptide was determined by ESI-QITMS on line, and MS/MS spectrum of each peptide was simultaneously obtained by the combination of collision-induced desorption (CID) technique and tandem mass spectrometry (MS/MS) of QITMS. The phosphorylated peptide was identified by looking into whether the difference between the observed and predicted molecular weights of a peptide is 80 u or its integral multiple. Then the phosphorylation site was identified through manual interpretation of the MS/MS spectrum of the phosphorylated peptide or automatic SEQUEST data base-searching.

  1. Mass spectrometry data from a quantitative analysis of protein expression in gills of immuno-challenged blue mussels (Mytilus edulis).

    Science.gov (United States)

    Hörnaeus, K; Guillemant, J; Mi, J; Hernroth, B; Bergquist, J; Lind, S Bergström

    2016-09-01

    Here, we provide the dataset associated with our research article on the potential effects of ocean acidification on antimicrobial peptide (AMP) activity in the gills of Mytilus edulis, "Impact of ocean acidification on antimicrobial activity in gills of the blue mussel (Mytilus edulis)" [1]. Blue mussels were stimulated with lipopolysaccharides and samples were collected at different time points post injection. Protein extracts were prepared from the gills, digested using trypsin and a full in-depth proteome investigation was performed using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Protein identification and quantification was performed using the MaxQuant 1.5.1.2 software, "MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification" [2].

  2. Changes in DNA, dry mass and protein content of leaf epidermis nuclei during aging of perennial monocotyledonous plants

    Directory of Open Access Journals (Sweden)

    Hanna Kuran

    2014-01-01

    Full Text Available DNA, NYS and DNFB protein contents were measured cytophotometrically using the Feulgen method in the nuclei of the epidermis from. the basal zone of young leaves and from the basal and apical zones of old leaves in two perennial monocotyledonous species, Clivia miniata and Rhoeo discolor. Dry mass was determined interferometrically. It was shown that nuclei with a 2C DNA content dominated in both zones of old leaves, and that a significant percentage of cells with a DNA content below 2C were present. The ratio between euchromatin DNA and heterochromatin DNA indicates a greater decrease in euchromatin during aging. Changes in DNA due to real DNA loss are accompanied by decreases in NYS and DNFB stained proteins and a decrease in dry mass content correlated mainly with the decrease in the amount of NYS proteins.

  3. Detection of seminal fluid proteins in the bed bug, Cimex lectularius, using two-dimensional gel electrophoresis and mass spectrometry.

    Science.gov (United States)

    Reinhardt, K; Wong, C H; Georgiou, A S

    2009-03-01

    The global increase of the human parasite, the common bed bug Cimex lectularius, calls for specific pest control target sites. The bed bug is also a model species for sexual conflict theory which suggests that seminal fluids may be highly diverse. The species has a highly unusual sperm biology and seminal proteins may have unique functions. One-dimensional PAGE gels showed 40-50% band sharing between C. lectularius and another cimicid species, Afrocimex constrictus. However, adult, sexually rested C. lectularius males were found to store 5-7 microg of seminal protein and with only 60 microg of protein we obtained informative 2-D PAGE gels. These showed 79% shared protein spots between 2 laboratory populations, and more than half of the shared protein spots were detected in the mated female. Further analysis using liquid chromatography electrospray ionization tandem mass spectrometry revealed that 26.5% of the proteins had matches among arthropods in databases and 14.5% matched Drosophila proteins. These included ubiquitous proteins but also those more closely associated with reproduction such as moj 29, ubiquitin, the stress-related elongation factor EF-1 alpha, a protein disulfide isomerase and an antioxidant, Peroxiredoxin 6.

  4. Current trends in mass spectrometry of peptides and proteins: Application to veterinary and sports-doping control.

    Science.gov (United States)

    van den Broek, Irene; Blokland, Marco; Nessen, Merel A; Sterk, Saskia

    2015-01-01

    Detection of misuse of peptides and proteins as growth promoters is a major issue for sport and food regulatory agencies. The limitations of current analytical detection strategies for this class of compounds, in combination with their efficacy in growth-promoting effects, make peptide and protein drugs highly susceptible to abuse by either athletes or farmers who seek for products to illicitly enhance muscle growth. Mass spectrometry (MS) for qualitative analysis of peptides and proteins is well-established, particularly due to tremendous efforts in the proteomics community. Similarly, due to advancements in targeted proteomic strategies and the rapid growth of protein-based biopharmaceuticals, MS for quantitative analysis of peptides and proteins is becoming more widely accepted. These continuous advances in MS instrumentation and MS-based methodologies offer enormous opportunities for detection and confirmation of peptides and proteins. Therefore, MS seems to be the method of choice to improve the qualitative and quantitative analysis of peptide and proteins with growth-promoting properties. This review aims to address the opportunities of MS for peptide and protein analysis in veterinary control and sports-doping control with a particular focus on detection of illicit growth promotion. An overview of potential peptide and protein targets, including their amino acid sequence characteristics and current MS-based detection strategies is, therefore, provided. Furthermore, improvements of current and new detection strategies with state-of-the-art MS instrumentation are discussed for qualitative and quantitative approaches.

  5. A controlled trial of protein enrichment of meal replacements for weight reduction with retention of lean body mass

    Directory of Open Access Journals (Sweden)

    Bowerman Susan

    2008-08-01

    Full Text Available Abstract Background While high protein diets have been shown to improve satiety and retention of lean body mass (LBM, this study was designed to determine effects of a protein-enriched meal replacement (MR on weight loss and LBM retention by comparison to an isocaloric carbohydrate-enriched MR within customized diet plans utilizing MR to achieve high protein or standard protein intakes. Methods Single blind, placebo-controlled, randomized outpatient weight loss trial in 100 obese men and women comparing two isocaloric meal plans utilizing a standard MR to which was added supplementary protein or carbohydrate powder. MR was used twice daily (one meal, one snack. One additional meal was included in the meal plan designed to achieve individualized protein intakes of either 1 2.2 g protein/kg of LBM per day [high protein diet (HP] or 2 1.1 g protein/kg LBM/day standard protein diet (SP. LBM was determined using bioelectrical impedance analysis (BIA. Body weight, body composition, and lipid profiles were measured at baseline and 12 weeks. Results Eighty-five subjects completed the study. Both HP and SP MR were well tolerated, with no adverse effects. There were no differences in weight loss at 12 weeks (-4.19 ± 0.5 kg for HP group and -3.72 ± 0.7 kg for SP group, p > 0.1. Subjects in the HP group lost significantly more fat weight than the SP group (HP = -1.65 ± 0.63 kg; SP = -0.64 ± 0.79 kg, P = 0.05 as estimated by BIA. There were no significant differences in lipids nor fasting blood glucose between groups, but within the HP group a significant decrease in cholesterol and LDL cholesterol was noted at 12 weeks. This was not seen in the SP group. Conclusion Higher protein MR within a higher protein diet resulted in similar overall weight loss as the standard protein MR plan over 12 weeks. However, there was significantly more fat loss in the HP group but no significant difference in lean body mass. In this trial, subject compliance with both the

  6. Identification of lncRNA MEG3 Binding Protein Using MS2-Tagged RNA Affinity Purification and Mass Spectrometry.

    Science.gov (United States)

    Liu, Shanshan; Zhu, Juanjuan; Jiang, Taifeng; Zhong, Yiran; Tie, Yi; Wu, Yongge; Zheng, Xiaofei; Jin, Yinghua; Fu, Hanjiang

    2015-08-01

    Long noncoding RNAs (lncRNAs) are nonprotein coding transcripts longer than 200 nucleotides. Recently in mammals, thousands of long noncoding RNAs have been identified and studied as key molecular players in different biological processes with protein complexes. As a long noncoding RNA, maternally expressed gene 3 (MEG3) plays an important role in many cellular processes. However, the mechanism underlying MEG3 regulatory effects remains enigmatic. By using the specific interaction between MS2 coat protein and MS2 RNA hairpin, we developed a method (MS2-tagged RNA affinity purification and mass spectrometry (MTRAP-MS)) to identify proteins that interact with MEG3. Mass spectrometry and gene ontology (GO) analysis showed that MEG3 binding proteins possess nucleotide binding properties and take part in transport, translation, and other biological processes. In addition, interleukin enhancer binding factor 3 (ILF3) and poly(A) binding protein, cytoplasmic 3 (PABPC3) were validated for their interaction with MEG3. These findings indicate that the newly developed method can effectively enrich lncRNA binding proteins and provides a strong basis for studying MEG3 functions.

  7. Low molecular mass GTP-binding proteins are secreted from mammary epithelial cells in association with lipid globules.

    Science.gov (United States)

    Ghosal, D; Ankrapp, D; Keenan, T W

    1993-07-01

    Secretion of milk lipid globules is achieved through encapsulation of triacylglycerol-rich lipid droplets in a specialized region of apical plasma membrane of mammary epithelial cells. A class of low molecular mass GTP-binding proteins were associated tightly with the lipid globule membrane, and these proteins appeared to change from peripheral to integral membrane proteins during intracellular growth and transit of lipid globule precursors. Inclusion of GTP or GTP gamma S in incubation medium stimulated secretion of lipids from primary cultures of permeabilized rat mammary epithelial cells. Six polypeptides with molecular masses between 28 and 21 kDa were detected by ability to bind GTP gamma S following separation of lipid-globule-associated proteins by SDS-PAGE and transblotting onto nitrocellulose. That all of these polypeptides were distinct immunologically from the archetype ras was evident from lack of immunoreactivity with p21 ras G-protein monoclonal antibody in Western blots. This monoclonal antibody bound to a 23 kDa polypeptide of lipid droplets that was not detected with the GTP gamma S binding assay. A 25 kDa component of milk lipid globules was a potent substrate for ADP-ribosylation by botulinum toxin C3, but cholera toxin was much less effective, suggesting that this component may belong to the rac class of G-proteins. The 21 kDa component was related immunologically to ADP ribosylation factor.

  8. Analysis of protein-RNA interactions in CRISPR proteins and effector complexes by UV-induced cross-linking and mass spectrometry.

    Science.gov (United States)

    Sharma, Kundan; Hrle, Ajla; Kramer, Katharina; Sachsenberg, Timo; Staals, Raymond H J; Randau, Lennart; Marchfelder, Anita; van der Oost, John; Kohlbacher, Oliver; Conti, Elena; Urlaub, Henning

    2015-11-01

    Ribonucleoprotein (RNP) complexes play important roles in the cell by mediating basic cellular processes, including gene expression and its regulation. Understanding the molecular details of these processes requires the identification and characterization of protein-RNA interactions. Over the years various approaches have been used to investigate these interactions, including computational analyses to look for RNA binding domains, gel-shift mobility assays on recombinant and mutant proteins as well as co-crystallization and NMR studies for structure elucidation. Here we report a more specialized and direct approach using UV-induced cross-linking coupled with mass spectrometry. This approach permits the identification of cross-linked peptides and RNA moieties and can also pin-point exact RNA contact sites within the protein. The power of this method is illustrated by the application to different single- and multi-subunit RNP complexes belonging to the prokaryotic adaptive immune system, CRISPR-Cas (CRISPR: clustered regularly interspaced short palindromic repeats; Cas: CRISPR associated). In particular, we identified the RNA-binding sites within three Cas7 protein homologs and mapped the cross-linking results to reveal structurally conserved Cas7 - RNA binding interfaces. These results demonstrate the strong potential of UV-induced cross-linking coupled with mass spectrometry analysis to identify RNA interaction sites on the RNA binding proteins.

  9. An algorithmic approach to automated high-throughput identification of disulfide connectivity in proteins using tandem mass spectrometry.

    Science.gov (United States)

    Lee, Timothy; Singh, Rahul; Yen, Ten-Yang; Macher, Bruce

    2007-01-01

    Knowledge of the pattern of disulfide linkages in a protein leads to a better understanding of its tertiary structure and biological function. At the state-of-the-art, liquid chromatography/electrospray ionization-tandem mass spectrometry (LC/ESI-MS/MS) can produce spectra of the peptides in a protein that are putatively joined by a disulfide bond. In this setting, efficient algorithms are required for matching the theoretical mass spaces of all possible bonded peptide fragments to the experimentally derived spectra to determine the number and location of the disulfide bonds. The algorithmic solution must also account for issues associated with interpreting experimental data from mass spectrometry, such as noise, isotopic variation, neutral loss, and charge state uncertainty. In this paper, we propose a algorithmic approach to high-throughput disulfide bond identification using data from mass spectrometry, that addresses all the aforementioned issues in a unified framework. The complexity of the proposed solution is of the order of the input spectra. The efficacy and efficiency of the method was validated using experimental data derived from proteins with with diverse disulfide linkage patterns.

  10. International system of units traceable results of Hg mass concentration at saturation in air from a newly developed measurement procedure.

    Science.gov (United States)

    Quétel, Christophe R; Zampella, Mariavittoria; Brown, Richard J C; Ent, Hugo; Horvat, Milena; Paredes, Eduardo; Tunc, Murat

    2014-08-05

    Data most commonly used at present to calibrate measurements of mercury vapor concentrations in air come from a relationship known as the "Dumarey equation". It uses a fitting relationship to experimental results obtained nearly 30 years ago. The way these results relate to the international system of units (SI) is not known. This has caused difficulties for the specification and enforcement of limit values for mercury concentrations in air and in emissions to air as part of national or international legislation. Furthermore, there is a significant discrepancy (around 7% at room temperature) between the Dumarey data and data calculated from results of mercury vapor pressure measurements in the presence of only liquid mercury. As an attempt to solve some of these problems, a new measurement procedure is described for SI traceable results of gaseous Hg concentrations at saturation in milliliter samples of air. The aim was to propose a scheme as immune as possible to analytical biases. It was based on isotope dilution (ID) in the liquid phase with the (202)Hg enriched certified reference material ERM-AE640 and measurements of the mercury isotope ratios in ID blends, subsequent to a cold vapor generation step, by inductively coupled plasma mass spectrometry. The process developed involved a combination of interconnected valves and syringes operated by computer controlled pumps and ensured continuity under closed circuit conditions from the air sampling stage onward. Quantitative trapping of the gaseous mercury in the liquid phase was achieved with 11.5 μM KMnO4 in 2% HNO3. Mass concentrations at saturation found from five measurements under room temperature conditions were significantly higher (5.8% on average) than data calculated from the Dumarey equation, but in agreement (-1.2% lower on average) with data based on mercury vapor pressure measurement results. Relative expanded combined uncertainties were estimated following a model based approach. They ranged from 2

  11. Influence of amino acids, dietary protein, and physical activity on muscle mass development in humans

    DEFF Research Database (Denmark)

    Dideriksen, Kasper; Reitelseder, Søren; Holm, Lars

    2013-01-01

    intake. Ingestion of excess protein exerts an unwanted load to the body and therefore, it is important to find the least amount of protein that provides the maximal hypertrophic stimulus. Hence, research has focused on revealing the relationship between protein intake (dose) and its resulting stimulation...... response dependent on the characteristics of the protein ingested. The effect of protein intake on muscle protein accretion can further be stimulated by prior exercise training. In the ageing population, physical training may counteract the development of "anabolic resistance" and restore the beneficial...

  12. Structure and dynamics of a protein-surfactant assembly studied by ion-mobility mass spectrometry and molecular dynamics simulations.

    Science.gov (United States)

    Borysik, Antoni J

    2015-09-01

    The structure and dynamics of a protein-surfactant assembly studied by ion-mobility mass spectrometry (IMS) and vacuum molecular dynamics (MD) simulations is reported. Direct evidence is provided for the ability of the surfactant dodecyl-β-D-maltoside (DDM) to prevent charge-induced unfolding of the membrane protein (PagP) in the gas-phase. Restraints obtained by IMS are used to map the surfactant positions onto the protein surface. Surfactants occupying more exposed positions at the apexes of the β-barrel structure are most in-line with the experimental observations. MD simulations provide additional evidence for this assembly organization through surfactant inversion and migration on the protein structure in the absence of solvent. Surfactant migration entails a net shift from apolar membrane spanning regions to more polar regions of the protein structure with the DDM molecule remaining attached to the protein via headgroup interactions. These data provide evidence for the role of protein-DDM headgroup interactions in stabilizing membrane protein structure from gas-phase unfolding.

  13. Mass-spectrometric analysis of myelin proteolipids reveals new features of this family of palmitoylated membrane proteins.

    Science.gov (United States)

    Bizzozero, Oscar A; Malkoski, Steve P; Mobarak, Charlotte; Bixler, Heather A; Evans, James E

    2002-05-01

    In this study, we have investigated the structure of the native myelin proteolipid protein (PLP), DM-20 protein and several low molecular mass proteolipids by mass spectrometry. The various proteolipid species were isolated from bovine spinal cord by size-exclusion and ion-exchange chromatography in organic solvents. Matrix-assisted laser desorption ionization-time of flight-mass spectrometry (MALDI-TOF-MS) of PLP and DM-20 revealed molecular masses of 31.6 and 27.2 kDa, respectively, which is consistent with the presence of six and four molecules of thioester-bound fatty acids. Electrospray ionization-MS analysis of the deacylated proteins in organic solvents produced the predicted molecular masses of the apoproteins (29.9 and 26.1 kDa), demonstrating that palmitoylation is the major post-translational modification of PLP, and that the majority of PLP and DM-20 molecules in the CNS are fully acylated. A series of myelin-associated, palmitoylated proteolipids with molecular masses raging between 12 kDa and 18 kDa were also isolated and subjected to amino acid analysis, fatty acid analysis, N- and C-terminal sequencing, tryptic digestion and peptide mapping by MALDI-TOF-MS. The results clearly showed that these polypeptides correspond to the N-terminal region (residues 1-105/112) and C-terminal region (residues 113/131-276) of the major PLP, and they appear to be produced by natural proteolytic cleavage within the 60 amino acid-long cytoplasmic domain. These proteolipids are not postmortem artifacts of PLP and DM-20, and are differentially distributed across the CNS.

  14. Structural basis for the enhanced stability of protein model compounds and peptide backbone unit in ammonium ionic liquids.

    Science.gov (United States)

    Vasantha, T; Attri, Pankaj; Venkatesu, Pannuru; Devi, R S Rama

    2012-10-04

    Protein folding/unfolding is a fascinating study in the presence of cosolvents, which protect/disrupt the native structure of protein, respectively. The structure and stability of proteins and their functional groups may be modulated by the addition of cosolvents. Ionic liquids (ILs) are finding a vast array of applications as novel cosolvents for a wide variety of biochemical processes that include protein folding. Here, the systematic and quantitative apparent transfer free energies (ΔG'(tr)) of protein model compounds from water to ILs through solubility measurements as a function of IL concentration at 25 °C have been exploited to quantify and interpret biomolecular interactions between model compounds of glycine peptides (GPs) with ammonium based ILs. The investigated aqueous systems consist of zwitterionic glycine peptides: glycine (Gly), diglycine (Gly(2)), triglycine (Gly(3)), tetraglycine (Gly(4)), and cyclic glycylglycine (c(GG)) in the presence of six ILs such as diethylammonium acetate (DEAA), diethylammonium hydrogen sulfate (DEAS), triethylammonium acetate (TEAA), triethylammonium hydrogen sulfate (TEAS), triethylammonium dihydrogen phosphate (TEAP), and trimethylammonium acetate (TMAA). We have observed positive values of ΔG'(tr) for GPs from water to ILs, indicating that interactions between ILs and GPs are unfavorable, which leads to stabilization of the structure of model protein compounds. Moreover, our experimental data ΔG'(tr) is used to obtain transfer free energies (Δg'(tr)) of the peptide backbone unit (or glycyl unit) (-CH(2)C═ONH-), which is the most numerous group in globular proteins, from water to IL solutions. To obtain the mechanism events of the ILs' role in enhancing the stability of the model compounds, we have further obtained m-values for GPs from solubility limits. These results explicitly elucidate that all alkyl ammonium ILs act as stabilizers for model compounds through the exclusion of ILs from model compounds of

  15. Serum protein profiling by solid phase extraction and mass spectrometry: A future diagnostics tool?

    DEFF Research Database (Denmark)

    Callesen, Anne K; Madsen, Jonna S; Vach, Werner;

    2009-01-01

    Serum protein profiling by MS is a promising method for early detection of disease. Important characteristics for serum protein profiling are preanalytical factors, analytical reproducibility and high throughput. Problems related to preanalytical factors can be overcome by using standardized...

  16. Study of protein and RNA in dendritic spines using multi-isotope imaging mass spectrometry (MIMS).

    Science.gov (United States)

    Brismar, H; Aperia, A; Westin, L; Moy, J; Wang, M; Guillermier, C; Poczatek, C; Lechene, C

    2014-11-01

    The classical view of neuronal protein synthesis is that proteins are made in the cell body and then transported to their functional sites in the dendrites and the dendritic spines. Indirect evidence, however, suggests that protein synthesis can directly occur in the distal dendrites, far from the cell body. We are developing protocols for dual labeling of RNA and proteins using (15)N-uridine and (18)O- or (13)C-leucine pulse chase in cultured neurons to identify and localize both protein synthesis and fate of newly synthesized proteins. Pilot experiments show discrete localization of both RNA and newly synthesized proteins in dendrites, close to dendritic spines. We have for the first time directly imaged and measured the production of proteins at the subcellular level in the neuronal dendrites, close to the functional sites, the dendritic spines. This will open a powerful way to study neural growth and synapse plasticity in health and disease.

  17. Amino acid δ13C analysis of hair proteins and bone collagen using liquid chromatography/isotope ratio mass spectrometry

    DEFF Research Database (Denmark)

    Raghavan, Maanasa; McCullagh, James S. O.; Lynnerup, Niels

    2010-01-01

    We report a novel method for the chromatographic separation and measurement of stable carbon isotope ratios (delta(13)C) of individual amino acids in hair proteins and bone collagen using the LC-IsoLink system, which interfaces liquid chromatography (LC) with isotope ratio mass spectrometry (IRMS......). This paper provides baseline separation of 15 and 13 of the 18 amino acids in bone collagen and hair proteins, respectively. We also describe an approach to analysing small hair samples for compound-specific analysis of segmental hair sections. The LC/IRMS method is applied in a historical context...... by the delta(13)C analysis of hair proteins and bone collagen recovered from six individuals from Uummannaq in Greenland. The analysis of hair and bone amino acids from the same individual, compared for the first time in this study, is of importance in palaeodietary reconstruction. If hair proteins can be used...

  18. Studies on the Renaturation with Simultaneous Purification of Recombinant Human Proinsulin with Unit of Simultaneous Renaturation and Purification of Protein in Semi-preparative Scale

    Institute of Scientific and Technical Information of China (English)

    Quan BAI; Yu KONG; Xin Du GENG

    2003-01-01

    The renaturation and purification of recombinant human proinsulin (rh-proinsulin) expressed in E. Coli with the unit of simultaneous renaturation and purification of protein (USRPP) in semi-preparative scale was studied. The result shows that rh-proinsulin extracted with 8.0 mol/L urea can be renatured and purified simultaneously in 45 minutes with the USRPP (10×50 mm ID). The purity of rh-proinsulin was found to be more than 90% and the mass recovery to be more than 80%. The renaturation effect of rh-proinsulin with the USRPP was tested by enzyme cleavage for obtaining insulin. In addition, the result was further confirmed with RPLC, SDS-PAGE electrophoresis, and MALDI-TOF, respectively.

  19. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry

    DEFF Research Database (Denmark)

    Ho, Yuen; Gruhler, Albrecht; Heilbut, Adrian

    2002-01-01

    The recent abundance of genome sequence data has brought an urgent need for systematic proteomics to decipher the encoded protein networks that dictate cellular function. To date, generation of large-scale protein-protein interaction maps has relied on the yeast two-hybrid system, which detects b...

  20. In-Spray Supercharging of Peptides and Proteins in Electrospray Ionization Mass Spectrometry

    OpenAIRE

    Miladinović, Saša M.; Fornelli, Luca; Lu, Yu; Piech, Krzysztof M.; Girault, Hubert H.; Tsybin, Yury O.

    2012-01-01

    Enhanced charging, or supercharging, of analytes in electrospray ionization mass spectrometry (ESI MS) facilitates high resolution MS by reducing an ion mass-to-charge (m/z) ratio, increasing tandem mass spectrometry (MS/MS) efficiency. ESI MS supercharging is usually achieved by adding a supercharging reagent to the electrospray solution. Addition of these supercharging reagents to the mobile phase in liquid chromatography (LC)-MS/MS increases the average charge of enzymatically derived pept...

  1. Dried Blood Spot Proteomics: Surface Extraction of Endogenous Proteins Coupled with Automated Sample Preparation and Mass Spectrometry Analysis

    Science.gov (United States)

    Martin, Nicholas J.; Bunch, Josephine; Cooper, Helen J.

    2013-08-01

    Dried blood spots offer many advantages as a sample format including ease and safety of transport and handling. To date, the majority of mass spectrometry analyses of dried blood spots have focused on small molecules or hemoglobin. However, dried blood spots are a potentially rich source of protein biomarkers, an area that has been overlooked. To address this issue, we have applied an untargeted bottom-up proteomics approach to the analysis of dried blood spots. We present an automated and integrated method for extraction of endogenous proteins from the surface of dried blood spots and sample preparation via trypsin digestion by use of the Advion Biosciences Triversa Nanomate robotic platform. Liquid chromatography tandem mass spectrometry of the resulting digests enabled identification of 120 proteins from a single dried blood spot. The proteins identified cross a concentration range of four orders of magnitude. The method is evaluated and the results discussed in terms of the proteins identified and their potential use as biomarkers in screening programs.

  2. Exploration of cone cyclic nucleotide-gated channel-interacting proteins using affinity purification and mass spectrometry.

    Science.gov (United States)

    Ding, Xi-Qin; Matveev, Alexander; Singh, Anil; Komori, Naoka; Matsumoto, Hiroyuki

    2014-01-01

    Photopic (cone) vision essential for color sensation, central vision, and visual acuity is mediated by the activation of photoreceptor cyclic nucleotide-gated (CNG) channels. Naturally occurring mutations in the cone channel subunits CNGA3 and CNGB3 are associated with achromatopsia and cone dystrophies. This work investigated the functional modulation of cone CNG channel by exploring the channel-interacting proteins. Retinal protein extracts prepared from cone-dominant Nrl (- / -) mice were used in CNGA3 antibody affinity purification, followed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) separation and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry analysis. The peptide mass fingerprinting of the tryptic digests and database search identified a number of proteins including spectrin alpha-2, ATPase (Na(+)/K(+) transporting) alpha-3, alpha and beta subunits of ATP synthase (H(+) transporting, mitochondrial F1 complex), and alpha-2 subunit of the guanine nucleotide-binding protein. In addition, the affinity-binding assays demonstrated an interaction between cone CNG channel and calmodulin but not cone Na(+)/Ca(2+)-K(+) exchanger in the mouse retina. Results of this study provide insight into our understanding of cone CNG channel-interacting proteins and the functional modulations.

  3. Optimizing cell-free protein expression in CHO: Assessing small molecule mass transfer effects in various reactor configurations.

    Science.gov (United States)

    Peñalber-Johnstone, Chariz; Ge, Xudong; Tran, Kevin; Selock, Nicholas; Sardesai, Neha; Gurramkonda, Chandrasekhar; Pilli, Manohar; Tolosa, Michael; Tolosa, Leah; Kostov, Yordan; Frey, Douglas D; Rao, Govind

    2017-03-07

    Cell-free protein synthesis (CFPS) is an ideal platform for rapid and convenient protein production. However, bioreactor design remains a critical consideration in optimizing protein expression. Using turbo green fluorescent protein (tGFP) as a model, we tracked small molecule components in a Chinese Hamster Ovary (CHO) CFPS system to optimize protein production. Here, three bioreactors in continuous-exchange cell-free (CECF) format were characterized. A GFP optical sensor was built to monitor the product in real-time. Mass transfer of important substrate and by-product components such as nucleoside triphosphates (NTPs), creatine, and inorganic phosphate (Pi) across a 10-kDa MWCO cellulose membrane was calculated. Highest efficiency measured by tGFP yields were found in a microdialysis device configuration; while a negative effect on yield was observed due to limited mass transfer of NTPs in a dialysis cup configuration. In 24-well plate high-throughput CECF format, addition of up to 40 mM creatine phosphate in the system increased yields by up to ∼60% relative to controls. Direct ATP addition, as opposed to creatine phosphate addition, negatively affected the expression. Pi addition of up to 30 mM to the expression significantly reduced yields by over ∼40% relative to controls. Overall, data presented in this report serves as a valuable reference to optimize the CHO CFPS system for next-generation bioprocessing. This article is protected by copyright. All rights reserved.

  4. Identification of multiply charged proteins and amino acid clusters by liquid nitrogen assisted spray ionization mass spectrometry.

    Science.gov (United States)

    Kumar Kailasa, Suresh; Hasan, Nazim; Wu, Hui-Fen

    2012-08-15

    The development of liquid nitrogen assisted spray ionization mass spectrometry (LNASI MS) for the analysis of multiply charged proteins (insulin, ubiquitin, cytochrome c, α-lactalbumin, myoglobin and BSA), peptides (glutathione, HW6, angiotensin-II and valinomycin) and amino acid (arginine) clusters is described. The charged droplets are formed by liquid nitrogen assisted sample spray through a stainless steel nebulizer and transported into mass analyzer for the identification of multiply charged protein ions. The effects of acids and modifier volumes for the efficient ionization of the above analytes in LNASI MS were carefully investigated. Multiply charged proteins and amino acid clusters were effectively identified by LNASI MS. The present approach can effectively detect the multiply charged states of cytochrome c at 400 nM. A comparison between LNASI and ESI, CSI, SSI and V-EASI methods on instrumental conditions, applied temperature and observed charge states for the multiply charged proteins, shows that the LNASI method produces the good quality spectra of amino acid clusters at ambient conditions without applied any electric field and heat. To date, we believe that the LNASI method is the most simple, low cost and provided an alternative paradigm for production of multiply charged ions by LNASI MS, just as ESI-like ions yet no need for applying any electrical field and it could be operated at low temperature for generation of highly charged protein/peptide ions.

  5. Quantitation of protein S-glutathionylation by liquid chromatography-tandem mass spectrometry: correction for contaminating glutathione and glutathione disulfide.

    Science.gov (United States)

    Bukowski, Michael R; Bucklin, Christopher; Picklo, Matthew J

    2015-01-15

    Protein S-glutathionylation is a posttranslational modification that links oxidative stimuli to reversible changes in cellular function. Protein-glutathione mixed disulfide (PSSG) is commonly quantified by reduction of the disulfide and detection of the resultant glutathione species. This methodology is susceptible to contamination by free unreacted cellular glutathione (GSH) species, which are present in 1000-fold greater concentration. A liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based method was developed for quantification of glutathione and glutathione disulfide (GSSG), which was used for the determination of PSSG in biological samples. Analysis of rat liver samples demonstrated that GSH and GSSG coprecipitated with proteins similar to the range for PSSG in the sample. The use of [(13)C2,(5)N]GSH and [(13)C4,(5)N2]GSSG validated these results and demonstrated that the release of GSH from PSSG did not occur during sample preparation and analysis. These data demonstrate that GSH and GSSG contamination must be accounted for when determining PSSG content in cellular/tissue preparations. A protocol for rinsing samples to remove the adventitious glutathione species is demonstrated. The fragmentation patterns for glutathione were determined by high-resolution mass spectrometry, and candidate ions for detection of PSSG on protein and protein fragments were identified. Published by Elsevier Inc.

  6. Protein Stable Isotope Fingerprinting (P-SIF): Multidimensional Protein Chromatography Coupled to Stable Isotope-Ratio Mass Spectrometry

    Science.gov (United States)

    Pearson, A.; Bovee, R. J.; Mohr, W.; Tang, T.

    2012-12-01

    As metagenomics increases our insight into microbial community diversity and metabolic potential, new approaches are required to determine the biogeochemical expression of this potential within ecosystems. Because stable isotopic analysis of the major bioactive elements (C, N) has been used historically to map flows of substrates and energy among macroscopic food webs, similar principles may apply to microbes. To address this challenge, we have developed a new analytical approach called Protein Stable Isotope Fingerprinting (P-SIF). P-SIF generates natural stable isotopic fingerprints of microbial individual or community proteomes. The main advantage of P-SIF is the potential to bridge the gap between diversity and function, thereby providing a window into the "black box" of environmental microbiology and helping to decipher the roles of uncultivated species. Our method implements a three-way, orthogonal scheme to separate mixtures of whole proteins into subfractions dominated by single or closely-related proteins. Protein extracts first are isoelectrically focused in a gel-free technique that yields 12 fractions separated over a gradient of pH 3-10. Each fraction then is separated by size-exclusion chromatography into 20 pools, ranging from >100kD to ~10kD. Finally, each of these pools is subjected to HPLC and collected in 40 time-slices based on protein hydrophobicity. Theoretical calculation reveals that the true chromatographic resolution of the total scheme is 5000, somewhat less than the 9600 resulting fractions. High-yielding fractions are subjected to δ13C analysis by spooling-wire microcombustion irMS (SWiM-irMS) optimized for samples containing 1-5 nmol carbon. Here we will present the method, results for a variety of pure cultures, and preliminary data for a sample of mixed environmental proteins. The data show the promise of this method for unraveling the metabolic complexity hidden within microbial communities.

  7. Colostrum protein uptake in neonatal lambs examined by descriptive and quantitative liquid chromatography-tandem mass spectrometry

    DEFF Research Database (Denmark)

    Hernandez-Castellano, Lorenzo E; Argueello, Anastasio; Almeida, Andre M

    2015-01-01

    Colostrum intake is a key factor for newborn ruminant survival because the placenta does not allow the transfer of immune components. Therefore, newborn ruminants depend entirely on passive immunity transfer from the mother to the neonate, through the suckling of colostrum. Understanding...... dodecyl sulfate-PAGE for protein separation and in-gel digestion, followed by liquid chromatography-tandem mass spectrometry of resulting tryptic peptides for protein identification. An isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomics approach was subsequently used to provide...

  8. Study of differential proteins in lung adenocarcinoma using laser capture microdissection combined with liquid chip-mass spectrometry technology

    Institute of Scientific and Technical Information of China (English)

    BU Li-na; LIN Xiu-li; LIU Yan-feng; LIN Yu-rong; RONG Biao-xue; YANG Shuan-ying; LI Feng-tao; SHANG Wen-li; ZHANG Wei; HUO Shu-fen; NAN Yan-dong; TIAN Ying-xuan; DU Jie

    2010-01-01

    Background In recent years the proportion of lung adenocarcinoma (adCA) which occurs in lung cancer patients has increased. Using laser capture microdissection (LCM) combined with liquid chip-mass spectrometry technology, we aimed to screen lung cancer biomarkers by studying the proteins in the tissues of adCA.Methods We used LCM and magnetic bead based weak cation exchange (MB-WCX) to separate and purify the homogeneous adCA cells and normal calls from six cases of fresh adCA and matched normal lung tissues. The proteins were analyzed and identified by matrix assisted laser desorption/ionization time-of-fight mass spectrometry (MALDI-OF-MS). We screened for the best pattern using a radial basic function neural network algorithm.Results About 2.895x106 and 1.584x106 cells were satisfactorily obtained by LCM from six cases of fresh lung adCA and matched normal lung tissues, respectively. The homogeneities of cell population were estimated to be over 95% as determined by microscopic visualization. Comparing the differentially expressed proteins between the lung adCA and the matched normal lung group, 221 and 239 protein peaks, respectively, were found in the mass-to-charge ration (M/Z)between 800 Da and 10 000 Da. According to t test, the expression of two protein peaks at 7521.5 M/Z and 5079.3 M/Z had the largest difference between tissues. They were more weakly expressed in the lung adCA compared to the matched normal group. The two protein peaks could accurately separate the lung adCA from the matched normal lung group by the sample distribution chart. A discriminatory pattern which can separate the lung adCA from the matched normal lung tissue consisting of three proteins at 3358.1 M/Z, 5079.3 M/Z and 7521.5 M/Z was established by a radial basic function neural network algorithm with a sensitivity of 100% and a specificity of 100%.Conclusions Differential proteins in lung adCA were screened using LCM combined with liquid chip-mass spectrometry technology, and a

  9. Development and Validation of a Multiplexed Protein Quantitation Assay for the Determination of Three Recombinant Proteins in Soybean Tissues by Liquid Chromatography with Tandem Mass Spectrometry.

    Science.gov (United States)

    Hill, Ryan C; Oman, Trent J; Shan, Guomin; Schafer, Barry; Eble, Julie; Chen, Cynthia

    2015-08-26

    Currently, traditional immunochemistry technologies such as enzyme-linked immunosorbent assays (ELISA) are the predominant analytical tool used to measure levels of recombinant proteins expressed in genetically engineered (GE) plants. Recent advances in agricultural biotechnology have created a need to develop methods capable of selectively detecting and quantifying multiple proteins in complex matrices because of increasing numbers of transgenic proteins being coexpressed or "stacked" to achieve tolerance to multiple herbicides or to provide multiple modes of action for insect control. A multiplexing analytical method utilizing liquid chromatography with tandem mass spectrometry (LC-MS/MS) has been developed and validated to quantify three herbicide-tolerant proteins in soybean tissues: aryloxyalkanoate dioxygenase (AAD-12), 5-enol-pyruvylshikimate-3-phosphate synthase (2mEPSPS), and phosphinothricin acetyltransferase (PAT). Results from the validation showed high recovery and precision over multiple analysts and laboratories. Results from this method were comparable to those obtained with ELISA with respect to protein quantitation, and the described method was demonstrated to be suitable for multiplex quantitation of transgenic proteins in GE crops.

  10. Production, Purification, and Characterization of 15N-Labeled DNA Repair Proteins as Internal Standards for Mass Spectrometric Measurements

    Science.gov (United States)

    Jaruga, Pawel; Nelson, Bryant C.; Lowenthal, Mark S.; Jemth, Ann-Sofie; Loseva, Olga; Coskun, Erdem; Helleday, Thomas

    2016-01-01

    Oxidatively induced DNA damage is caused in living organisms by a variety of damaging agents, resulting in the formation of a multiplicity of lesions, which are mutagenic and cytotoxic. Unless repaired by DNA repair mechanisms before DNA replication, DNA lesions can lead to genomic instability, which is one of the hallmarks of cancer. Oxidatively induced DNA damage is mainly repaired by base excision repair pathway with the involvement of a plethora of proteins. Cancer tissues develop greater DNA repair capacity than normal tissues by overexpressing DNA repair proteins. Increased DNA repair in tumors that removes DNA lesions generated by therapeutic agents before they became toxic is a major mechanism in the development of therapy resistance. Evidence suggests that DNA repair capacity may be a predictive biomarker of patient response. Thus, knowledge of DNA–protein expressions in disease-free and cancerous tissues may help predict and guide development of treatments and yield the best therapeutic response. Our laboratory has developed methodologies that use mass spectrometry with isotope dilution for the measurement of expression of DNA repair proteins in human tissues and cultured cells. For this purpose, full-length 15N-labeled analogs of a number of human DNA repair proteins have been produced and purified to be used as internal standards for positive identification and accurate quantification. This chapter describes in detail the protocols of this work. The use of 15N-labeled proteins as internal standards for the measurement of several DNA repair proteins in vivo is also presented. PMID:26791985

  11. Colostrum protein uptake in neonatal lambs examined by descriptive and quantitative liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Hernández-Castellano, Lorenzo E; Argüello, Anastasio; Almeida, André M; Castro, Noemí; Bendixen, Emøke

    2015-01-01

    Colostrum intake is a key factor for newborn ruminant survival because the placenta does not allow the transfer of immune components. Therefore, newborn ruminants depend entirely on passive immunity transfer from the mother to the neonate, through the suckling of colostrum. Understanding the importance of specific colostrum proteins has gained significant attention in recent years. However, proteomics studies of sheep colostrum and their uptake in neonate lambs has not yet been presented. The aim of this study was to describe the proteomes of sheep colostrum and lamb blood plasma, using sodium dodecyl sulfate-PAGE for protein separation and in-gel digestion, followed by liquid chromatography-tandem mass spectrometry of resulting tryptic peptides for protein identification. An isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomics approach was subsequently used to provide relative quantification of how neonatal plasma protein concentrations change as an effect of colostrum intake. The results of this study describe the presence of 70 proteins in the ovine colostrum proteome. Furthermore, colostrum intake resulted in an increase of 8 proteins with important immune functions in the blood plasma of lambs. Further proteomic studies will be necessary, particularly using the selected reaction monitoring approach, to describe in detail the role of specific colostrum proteins for immune transfer to the neonate.

  12. Mass-tag labeling reveals site-specific and endogenous levels of protein S-fatty acylation.

    Science.gov (United States)

    Percher, Avital; Ramakrishnan, Srinivasan; Thinon, Emmanuelle; Yuan, Xiaoqiu; Yount, Jacob S; Hang, Howard C

    2016-04-19

    Fatty acylation of cysteine residues provides spatial and temporal control of protein function in cells and regulates important biological pathways in eukaryotes. Although recent methods have improved the detection and proteomic analysis of cysteine fatty (S-fatty) acylated proteins, understanding how specific sites and quantitative levels of this posttranslational modification modulate cellular pathways are still challenging. To analyze the endogenous levels of protein S-fatty acylation in cells, we developed a mass-tag labeling method based on hydroxylamine-sensitivity of thioesters and selective maleimide-modification of cysteines, termed acyl-PEG exchange (APE). We demonstrate that APE enables sensitive detection of protein S-acylation levels and is broadly applicable to different classes of S-palmitoylated membrane proteins. Using APE, we show that endogenous interferon-induced transmembrane protein 3 is S-fatty acylated on three cysteine residues and site-specific modification of highly conserved cysteines are crucial for the antiviral activity of this IFN-stimulated immune effector. APE therefore provides a general and sensitive method for analyzing the endogenous levels of protein S-fatty acylation and should facilitate quantitative studies of this regulated and dynamic lipid modification in biological systems.

  13. Quantifying Protein-Fatty Acid Interactions Using Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Liu, Lan; Kitova, Elena N.; Klassen, John S.

    2011-02-01

    The application of the direct electrospray ionization mass spectrometry (ESI-MS) assay to quantify interactions between bovine β-lactoglobulin (Lg) and a series of fatty acids (FA), CH3(CH2)xCOOH, where x = 6 (caprylic acid, CpA), 8 (capric acid, CA), 10 (lauric acid, LA), 12 (myristic acid, MA), 14 (palmitic acid, PA) and 16 (stearic acid, SA), is described. Control ESI-MS binding measurements performed on the Lg-PA interaction revealed that both the protonated and deprotonated gas phase ions of the (Lg + PA) complex are prone to dissociate in the ion source, which leads to artificially small association constants ( K a ). The addition of imidazole, a stabilizing solution additive, at high concentration (10 mM) increased the relative abundance of (Lg + PA) complex measured by ESI-MS in both positive and negative ion modes. The K a value measured in negative ion mode and using sampling conditions that minimize in-source dissociation is in good agreement with a value determined using a competitive fluorescence assay. The K a values measured by ESI-MS for the Lg interactions with MA and SA are also consistent with values expected based on the fluorescence measurements. However, the K a values measured using optimal sampling conditions in positive ion mode are significantly lower than those measured in negative ion mode for all of the FAs investigated. It is concluded that the protonated gaseous ions of the (Lg + FA) complexes are kinetically less stable than the deprotonated ions. In-source dissociation was significant for the complexes of Lg with the shorter FAs (CpA, CA, and LA) in both modes and, in the case of CpA, no binding could be detected by ESI-MS. The affinities of Lg for CpA, CA, and LA determined using the reference ligand ESI-MS assay, a method for quantifying labile protein-ligand complexes that are prone to in-source dissociation, were found to be in good agreement with reported values.

  14. An ion mobility-mass spectrometry investigation of monocyte chemoattractant protein-1

    Science.gov (United States)

    Schenauer, Matthew R.; Leary, Julie A.

    2009-10-01

    In the present article we describe the gas-phase dissociation behavior of the dimeric form of monocyte chemoattractant protein-1 (MCP-1) using quadrupole-traveling wave ion mobility spectrometry-time of flight mass spectrometry (q-TWIMS-TOF MS) (Waters Synapt(TM)). Through investigation of the 9+ charge state of the dimer, we were able to monitor dissociation product ion (monomer) formation as a function of activation energy. Using ion mobility, we were able to observe precursor ion structural changes occurring throughout the activation process. Arrival time distributions (ATDs) for the 5+ monomeric MCP-1 product ions, derived from the gas-phase dissociation of the 9+ dimer, were then compared with ATDs obtained for the 5+ MCP-1 monomer isolated directly from solution. The results show that the dissociated monomer is as compact as the monomer arising from solution, regardless of the trap collision energy (CE) used in the dissociation. The solution-derived monomer, when collisionally activated, also resists significant unfolding within measure. Finally, we compared the collisional activation data for the MCP-1 dimer with an MCP-1 dimer non-covalently bound to a single molecule of the semi-synthetic glycosaminoglycan (GAG) analog Arixtra(TM); the latter a therapeutic anti-thrombin III-activating pentasaccharide. We observed that while dimeric MCP-1 dissociated at relatively low trap CEs, the Arixtra-bound dimer required much higher energies, which also induced covalent bond cleavage in the bound Arixtra molecule. Both the free and Arixtra-bound dimers became less compact and exhibited longer arrival times with increasing trap CEs, albeit the Arixtra-bound complex at slightly higher energies. That both dimers shifted to longer arrival times with increasing activation energy, while the dissociated MCP-1 monomers remained compact, suggests that the longer arrival times of the Arixtra-free and Arixtra-bound dimers may represent a partial breach of non

  15. Performance metrics for evaluating system suitability in liquid chromatography--Mass spectrometry peptide mass mapping of protein therapeutics and monoclonal antibodies.

    Science.gov (United States)

    Zhou, Mowei; Gucinski, Ashley C; Boyne, Michael T

    2015-01-01

    The use of liquid chromatography--mass spectrometry (LC-MS) for the characterization of proteins can provide a plethora of information related to their structure, including amino acid sequence determination and analysis of posttranslational modifications. The variety of LC-MS based applications has led to the use of LC-MS characterization of therapeutic proteins and monoclonal antibodies as an integral part of the regulatory approval process. However, the improper use of an LC-MS system, related to intrinsic instrument limitations, improper tuning parameters, or poorly optimized methods may result in the production of low quality data. Improper system performance may arise from subtle changes in operating conditions that limit the ability to detect low abundance species. To address this issue, we systematically evaluated LC-MS/MS operating parameters to identify a set of metrics that can be used in a workflow to determine if a system is suitable for its intended purpose. Development of this workflow utilized a bovine serum albumin (BSA) digest standard spiked with synthetic peptides present at 0.1% to 100% of the BSA digest peptide concentration to simulate the detection of low abundance species using a traditional bottom-up workflow and data-dependent MS(2) acquisition. BSA sequence coverage, a commonly used indicator for instrument performance did not effectively identify settings that led to limited dynamic range or poorer absolute mass accuracy on 2 separate LC-MS systems. Additional metrics focusing on the detection limit and sensitivity for peptide identification were determined to be necessary to establish system suitability for protein therapeutic characterization by LC-MS.

  16. The signaling protein MucG negatively affects the production and the molecular mass of alginate in Azotobacter vinelandii.

    Science.gov (United States)

    Ahumada-Manuel, Carlos Leonel; Guzmán, Josefina; Peña, Carlos; Quiroz-Rocha, Elva; Espín, Guadalupe; Núñez, Cinthia

    2017-02-01

    Azotobacter vinelandii is a soil bacterium that produces the polysaccharide alginate. In this work, we identified a miniTn5 mutant, named GG9, which showed increased alginate production of higher molecular mass, and increased expression of the alginate biosynthetic genes algD and alg8 when compared to its parental strain. The miniTn5 was inserted within ORF Avin07920 encoding a hypothetical protein. Avin07910, located immediately downstream and predicted to form an operon with Avin07920, encodes an inner membrane multi-domain signaling protein here named mucG. Insertional inactivation of mucG resulted in a phenotype of increased alginate production of higher molecular mass similar to that of mutant GG9. The MucG protein contains a periplasmic and putative HAMP and PAS domains, which are linked to GGDEF and EAL domains. The last two domains are potentially involved in the synthesis and degradation, respectively, of bis-(3'-5')-cyclic dimeric GMP (c-di-GMP), a secondary messenger that has been reported to be essential for alginate production. Therefore, we hypothesized that the negative effect of MucG on the production of this polymer could be explained by the putative phosphodiesterase activity of the EAL domain. Indeed, we found that alanine replacement mutagenesis of the MucG EAL motif or deletion of the entire EAL domain resulted in increased alginate production of higher molecular mass similar to the GG9 and mucG mutants. To our knowledge, this is the first reported protein that simultaneous affects the production of alginate and its molecular mass.

  17. Probing Protein 3D Structures and Conformational Changes Using Electrochemistry-Assisted Isotope Labeling Cross-Linking Mass Spectrometry

    Science.gov (United States)

    Zheng, Qiuling; Zhang, Hao; Wu, Shiyong; Chen, Hao

    2016-05-01

    This study presents a new chemical cross-linking mass spectrometry (MS) method in combination with electrochemistry and isotope labeling strategy for probing both protein three-dimensional (3D) structures and conformational changes. For the former purpose, the target protein/protein complex is cross-linked with equal mole of premixed light and heavy isotope labeled cross-linkers carrying electrochemically reducible disulfide bonds (i.e., DSP-d0 and DSP-d8 in this study, DSP = dithiobis[succinimidyl propionate]), digested and then electrochemically reduced followed with online MS analysis. Cross-links can be quickly identified because of their reduced intensities upon electrolysis and the presence of doublet isotopic peak characteristics. In addition, electroreduction converts cross-links into linear peptides, facilitating MS/MS analysis to gain increased information about their sequences and modification sites. For the latter purpose of probing protein conformational changes, an altered procedure is adopted, in which the protein in two different conformations is cross-linked using DSP-d0 and DSP-d8 separately, and then the two protein samples are mixed in 1:1 molar ratio. The merged sample is subjected to digestion and electrochemical mass spectrometric analysis. In such a comparative cross-linking experiment, cross-links could still be rapidly recognized based on their responses to electrolysis. More importantly, the ion intensity ratios of light and heavy isotope labeled cross-links reveal the conformational changes of the protein, as exemplified by examining the effect of Ca2+ on calmodulin conformation alternation. This new cross-linking MS method is fast and would have high value in structural biology.

  18. Protein Structure-Function Correlation in Living Human Red Blood Cells Probed by Isotope Exchange-based Mass Spectrometry.

    Science.gov (United States)

    Narayanan, Sreekala; Mitra, Gopa; Muralidharan, Monita; Mathew, Boby; Mandal, Amit K

    2015-12-01

    To gain insight into the underlying mechanisms of various biological events, it is important to study the structure-function correlation of proteins within cells. Structural probes used in spectroscopic tools to investigate protein conformation are similar across all proteins. Therefore, structural studies are restricted to purified proteins in vitro and these findings are extrapolated in cells to correlate their functions in vivo. However, due to cellular complexity, in vivo and in vitro environments are radically different. Here, we show a novel way to monitor the structural transition of human hemoglobin upon oxygen binding in living red blood cells (RBCs), using hydrogen/deuterium exchange-based mass spectrometry (H/DX-MS). Exploiting permeability of D2O across cell membrane, the isotope exchange of polypeptide backbone amide hydrogens of hemoglobin was carried out inside RBCs and monitored using matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS). To explore the conformational transition associated with oxygenation of hemoglobin in vivo, the isotope exchange kinetics was simplified using the method of initial rates. RBC might be considered as an in vivo system of pure hemoglobin. Thus, as a proof-of-concept, the observed results were correlated with structural transition of hemoglobin associated with its function established in vitro. This is the first report on structural changes of a protein upon ligand binding in its endogenous environment. The proposed method might be applicable to proteins in their native state, irrespective of location, concentration, and size. The present in-cell approach opens a new avenue to unravel a plethora of biological processes like ligand binding, folding, and post-translational modification of proteins in living cells.

  19. Specific association of growth-associated protein 43 with calcium release units in skeletal muscles of lower vertebrates

    Directory of Open Access Journals (Sweden)

    G.A. Caprara

    2014-10-01

    Full Text Available Growth-associated protein 43 (GAP43, is a strictly conserved protein among vertebrates implicated in neuronal development and neurite branching. Since GAP43 structure contains a calmodulin-binding domain, this protein is able to bind calmodulin and gather it nearby membrane network, thus regulating cytosolic calcium and consequently calcium-dependent intracellular events. Even if for many years GAP43 has been considered a neuronal-specific protein, evidence from different laboratories described its presence in myoblasts, myotubes and adult skeletal muscle fibers. Data from our laboratory showed that GAP43 is localized between calcium release units (CRUs and mitochondria in mammalian skeletal muscle suggesting that, also in skeletal muscle, this protein can be a key player in calcium/calmodulin homeostasis. However, the previous studies could not clearly distinguish between a mitochondrion- or a triad-related positioning of GAP43. To solve this question, the expression and localization of GAP43 was studied in skeletal muscle of Xenopus and Zebrafish known to have triads located at the level of the Z-lines and mitochondria not closely associated with them. Western blotting and immunostaining experiments revealed the expression of GAP43 also in skeletal muscle of lower vertebrates (like amphibians and fishes, and that the protein is localized closely to the triad junction. Once more, these results and GAP43 structural features, support an involvement of the protein in the dynamic intracellular Ca2+ homeostasis, a common conserved role among the different species.

  20. Osteoporosis or Low Bone Mass at the Femur Neck or Lumbar Spine in Older Adults: United States, 2005-2008

    Science.gov (United States)

    ... Order from the National Technical Information Service NCHS Osteoporosis or Low Bone Mass at the Femur Neck ... Survey, 2005–2008. What is the prevalence of osteoporosis or low bone mass at the femur neck ...

  1. Plasma surfactant protein D levels and the relation to body mass index in a chinese population

    DEFF Research Database (Denmark)

    Zhao, X M; Wu, Y P; Wei, R

    2007-01-01

    Surfactant protein D (SP-D) is a member of the collectin family and is an important component of the pulmonary innate host defence. The protein has a widespread distribution in the human body and is present in multiple epithelia, in endothelium and in blood. Various studies have looked at the rel......Surfactant protein D (SP-D) is a member of the collectin family and is an important component of the pulmonary innate host defence. The protein has a widespread distribution in the human body and is present in multiple epithelia, in endothelium and in blood. Various studies have looked...

  2. Exploring structure and interactions of the bacterial adaptor protein YjbH by crosslinking mass spectrometry

    DEFF Research Database (Denmark)

    Al-Eryani, Yusra; Ib Rasmussen, Morten; Kjellström, Sven;

    2016-01-01

    Adaptor proteins assist proteases in degrading specific proteins under appropriate conditions. The adaptor protein YjbH promotes the degradation of an important global transcriptional regulator Spx, which controls the expression of hundreds of genes and operons in response to thiol-specific oxida......Adaptor proteins assist proteases in degrading specific proteins under appropriate conditions. The adaptor protein YjbH promotes the degradation of an important global transcriptional regulator Spx, which controls the expression of hundreds of genes and operons in response to thiol......-specific oxidative stress in Bacillus subtilis. Under normal growth conditions, the transcription factor is bound to the adaptor protein and therefore degraded by the AAA+ protease ClpXP. If this binding is alleviated during stress, the transcription factor accumulates and turns on genes encoding stress...... and validate a structure model of YjbH and then to probe its interactions with other proteins. The core structure of YjbH is reminiscent of DsbA family proteins. One lysine residue in YjbH (K177), located in one of the α-helices outside the thioredoxin fold, crosslinked to both Spx K99 and Spx K117, thereby...

  3. Efficient method of protein extraction from Theobroma cacao L. roots for two-dimensional gel electrophoresis and mass spectrometry analyses.

    Science.gov (United States)

    Bertolde, F Z; Almeida, A-A F; Silva, F A C; Oliveira, T M; Pirovani, C P

    2014-07-04

    Theobroma cacao is a woody and recalcitrant plant with a very high level of interfering compounds. Standard protocols for protein extraction were proposed for various types of samples, but the presence of interfering compounds in many samples prevented the isolation of proteins suitable for two-dimensional gel electrophoresis (2-DE). An efficient method to extract root proteins for 2-DE was established to overcome these problems. The main features of this protocol are: i) precipitation with trichloroacetic acid/acetone overnight to prepare the acetone dry powder (ADP), ii) several additional steps of sonication in the ADP preparation and extractions with dense sodium dodecyl sulfate and phenol, and iii) adding two stages of phenol extractions. Proteins were extracted from roots using this new protocol (Method B) and a protocol described in the literature for T. cacao leaves and meristems (Method A). Using these methods, we obtained a protein yield of about 0.7 and 2.5 mg per 1.0 g lyophilized root, and a total of 60 and 400 spots could be separated, respectively. Through Method B, it was possible to isolate high-quality protein and a high yield of roots from T. cacao for high-quality 2-DE gels. To demonstrate the quality of the extracted proteins from roots of T. cacao using Method B, several protein spots were cut from the 2-DE gels, analyzed by tandem mass spectrometry, and identified. Method B was further tested on Citrus roots, with a protein yield of about 2.7 mg per 1.0 g lyophilized root and 800 detected spots.

  4. Identification of GPCR-interacting cytosolic proteins using HDL particles and mass spectrometry-based proteomic approach.

    Directory of Open Access Journals (Sweden)

    Ka Young Chung

    Full Text Available G protein-coupled receptors (GPCRs have critical roles in various physiological and pathophysiological processes, and more than 40% of marketed drugs target GPCRs. Although the canonical downstream target of an agonist-activated GPCR is a G protein heterotrimer; there is a growing body of evidence suggesting that other signaling molecules interact, directly or indirectly, with GPCRs. However, due to the low abundance in the intact cell system and poor solubility of GPCRs, identification of these GPCR-interacting molecules remains challenging. Here, we establish a strategy to overcome these difficulties by using high-density lipoprotein (HDL particles. We used the β(2-adrenergic receptor (β(2AR, a GPCR involved in regulating cardiovascular physiology, as a model system. We reconstituted purified β(2AR in HDL particles, to mimic the plasma membrane environment, and used the reconstituted receptor as bait to pull-down binding partners from rat heart cytosol. A total of 293 proteins were identified in the full agonist-activated β(2AR pull-down, 242 proteins in the inverse agonist-activated β(2AR pull-down, and 210 proteins were commonly identified in both pull-downs. A small subset of the β(2AR-interacting proteins isolated was confirmed by Western blot; three known β(2AR-interacting proteins (Gsα, NHERF-2, and Grb2 and 3 newly identified known β(2AR-interacting proteins (AMPKα, acetyl-CoA carboxylase, and UBC-13. Profiling of the identified proteins showed a clear bias toward intracellular signal transduction pathways, which is consistent with the role of β(2AR as a cell signaling molecule. This study suggests that HDL particle-reconstituted GPCRs can provide an effective platform method for the identification of GPCR binding partners coupled with a mass spectrometry-based proteomic analysis.

  5. Identification of staphylococcal species based on variations in protein sequences (mass spectrometry) and DNA sequence (sodA microarray).

    Science.gov (United States)

    Kooken, Jennifer; Fox, Karen; Fox, Alvin; Altomare, Diego; Creek, Kim; Wunschel, David; Pajares-Merino, Sara; Martínez-Ballesteros, Ilargi; Garaizar, Javier; Oyarzabal, Omar; Samadpour, Mansour

    2014-02-01

    This report is among the first using sequence variation in newly discovered protein markers for staphylococcal (or indeed any other bacterial) speciation. Variation, at the DNA sequence level, in the sodA gene (commonly used for staphylococcal speciation) provided excellent correlation. Relatedness among strains was also assessed using protein profiling using microcapillary electrophoresis and pulsed field electrophoresis. A total of 64 strains were analyzed including reference strains representing the 11 staphylococcal species most commonly isolated from man (Staphylococcus aureus and 10 coagulase negative species [CoNS]). Matrix assisted time of flight ionization/ionization mass spectrometry (MALDI TOF MS) and liquid chromatography-electrospray ionization tandem mass spectrometry (LC ESI MS/MS) were used for peptide analysis of proteins isolated from gel bands. Comparison of experimental spectra of unknowns versus spectra of peptides derived from reference strains allowed bacterial identification after MALDI TOF MS analysis. After LC-MS/MS analysis of gel bands bacterial speciation was performed by comparing experimental spectra versus virtual spectra using the software X!Tandem. Finally LC-MS/MS was performed on whole proteomes and data analysis also employing X!tandem. Aconitate hydratase and oxoglutarate dehydrogenase served as marker proteins on focused analysis after gel separation. Alternatively on full proteomics analysis elongation factor Tu generally provided the highest confidence in staphylococcal speciation.

  6. Identification of protein components of egg masses indicates parental investment in immunoprotection of offspring by Biomphalaria glabrata (gastropoda, mollusca).

    Science.gov (United States)

    Hathaway, Jennifer J M; Adema, Coen M; Stout, Barbara A; Mobarak, Charlotte D; Loker, Eric S

    2010-04-01

    The macromolecules contributed by the freshwater gastropod Biomphalaria glabrata, intermediate host of Schistosoma mansoni, to developing offspring inside egg masses are poorly known. SDS-PAGE fractionated egg mass fluids (EMF) of M line and BB02 B. glabrata were analyzed by MALDI-TOF (MS and tandem MS). A MASCOT database was assembled with EST data from B. glabrata and other molluscs to aid in sequence characterization. Of approximately 20 major EMF polypeptides, 16 were identified as defense-related, including protease inhibitors, a hemocyanin-like factor and tyrosinase (each with possible phenoloxidase activity), extracellular Cu-Zn SOD, two categories of C-type lectins, Gram-negative bacteria-binding protein (GNBP), aplysianin/achacin-like protein, as well as versions of lipopolysaccharide binding protein/bacterial permeability-increasing proteins (LBP/BPI) that differed from those previously described from hemocytes. Along with two sequences that were encoded by "unknown" ESTs, EMF also yielded a compound containing a vWF domain that is likely involved in defense and a polypeptide with homology to the Aplysia pheromone temptin. Further study of B. glabrata pheromones is warranted as these could be useful in efforts to control these schistosome-transmitting snails. Several of the EMF polypeptides were contained in the albumen gland, the organ that produces most EMF. Thus, parental investment of B. glabrata in immunoprotection of its offspring is indicated to be considerable.

  7. Ion-exchange-membrane-based enzyme micro-reactor coupled online with liquid chromatography-mass spectrometry for protein analysis.

    Science.gov (United States)

    Zhou, Zhigui; Yang, Youyou; Zhang, Jialing; Zhang, Zhengxiang; Bai, Yu; Liao, Yiping; Liu, Huwei

    2012-04-01

    In this article, we developed a membrane-based enzyme micro-reactor by directly using commercial polystyrene-divinylbenzene cation-exchange membrane as the support for trypsin immobilization via electrostatic and hydrophobic interactions and successfully applied it for protein digestion. The construction of the reactor can be simply achieved by continuously pumping trypsin solution through the reactor for only 2 min, which was much faster than the other enzyme immobilization methods. In addition, the membrane reactor could be rapidly regenerated within 35 min, resulting in a "new" reactor for the digestion of every protein sample, completely eliminating the cross-interference of different protein samples. The amount and the activity of immobilized trypsin were measured, and the repeatability of the reactor was tested, with an RSD of 3.2% for the sequence coverage of cytochrome c in ten digestion replicates. An integrated platform for protein analysis, including online protein digestion and peptide separation and detection, was established by coupling the membrane enzyme reactor with liquid chromatography-quadrupole time-of-flight mass spectrometry. The performance of the platform was evaluated using cytochrome c, myoglobin, and bovine serum albumin, showing that even in the short digestion time of several seconds the obtained sequence coverages was comparable to or higher than that with in-solution digestion. The system was also successfully used for the analysis of proteins from yeast cell lysate.

  8. Conformational Analysis of Proteins in Highly Concentrated Solutions by Dialysis-Coupled Hydrogen/Deuterium Exchange Mass Spectrometry

    Science.gov (United States)

    Houde, Damian; Nazari, Zeinab E.; Bou-Assaf, George M.; Weiskopf, Andrew S.; Rand, Kasper D.

    2016-04-01

    When highly concentrated, an antibody solution can exhibit unusual behaviors, which can lead to unwanted properties, such as increased levels of protein aggregation and unusually high viscosity. Molecular modeling, along with many indirect biophysical measurements, has suggested that the cause for these phenomena can be due to short range electrostatic and/or hydrophobic protein-protein interactions. Hydrogen/deuterium exchange mass spectrometry (HDX-MS) is a useful tool for investigating protein conformation, dynamics, and interactions. However, "traditional" continuous dilution labeling HDX-MS experiments have limited utility for the direct analysis of solutions with high concentrations of protein. Here, we present a dialysis-based HDX-MS (di-HDX-MS) method as an alternative HDX-MS labeling format, which takes advantage of passive dialysis rather than the classic dilution workflow. We applied this approach to a highly concentrated antibody solution without dilution or significant sample manipulation, prior to analysis. Such a method could pave the way for a deeper understanding of the unusual behavior of proteins at high concentrations, which is highly relevant for development of biopharmaceuticals in industry.

  9. Mapping of magnesium and of different protein fragments in sea urchin teeth via secondary ion mass spectroscopy.

    Science.gov (United States)

    Robach, J S; Stock, S R; Veis, A

    2006-07-01

    Mature portions of sea urchin are comprised of a complex array of reinforcing elements yet are single crystals of high and very high Mg calcite. How a relatively poor structural material (calcite) can produce mechanically competent structures is of great interest. In teeth of the sea urchin Lytechinus variegatus, we recorded high-resolution secondary ion mass spectrometry (SIMS) maps of Mg, Ca ,and specific amino acid fragments of mineral-related proteins including aspartic acid (Asp). SIMS revealed strong colocalization of Asp residues with very high Mg. Demineralized specimens showed serine localization on membranes between crystal elements and reduced Mg and aspartic acid signals, further emphasizing colocalization of very high Mg with ready soluble Asp-rich protein(s). The association of Asp with nonequilibrium, very high magnesium calcite provides insight to the makeup of the macromolecules involved in the growth of two different composition calcites and the fundamental process of biomineralization.

  10. A comparison of immunohistochemistry and mass spectrometry for determining the amyloid fibril protein from formalin-fixed biopsy tissue.

    Science.gov (United States)

    Gilbertson, Janet A; Theis, Jason D; Vrana, Julie A; Lachmann, Helen; Wechalekar, Ashutosh; Whelan, Carol; Hawkins, Philip N; Dogan, Ahmet; Gillmore, Julian D

    2015-04-01

    Amyloidosis is caused by deposition in tissues of abnormal protein in a characteristic fibrillar form. There are many types of amyloidosis, classified according to the soluble protein precursor from which the amyloid fibrils are derived. Accurate identification of amyloid type is critical in every case since therapy for systemic amyloidosis is type specific. In ∼20-25% cases, however, immunohistochemistry (IHC) fails to prove the amyloid type and further tests are required. Laser microdissection and mass spectrometry (LDMS) is a powerful tool for identifying proteins from formalin-fixed paraffin-embedded tissues. We undertook a blinded comparison of IHC, performed at the UK National Amyloidosis Centre, and LDMS, performed at the Mayo Clinic, in 142 consecutive biopsy specimens from 38 different tissue types. There was 100% concordance between positive IHC and LDMS, and the latter increased diagnostic accuracy from 76% to 94%. LDMS in expert hands is a valuable tool for amyloid diagnosis.

  11. Quantitative analysis of modified proteins and their positional isomers by tandem mass spectrometry: human histone H4.

    Science.gov (United States)

    Pesavento, James J; Mizzen, Craig A; Kelleher, Neil L

    2006-07-01

    Here we show that fragment ion abundances from dissociation of ions created from mixtures of multiply modified histone H4 (11 kDa) or of N-terminal synthetic peptides (2 kDa) correspond to their respective intact ion abundances measured by Fourier transform mass spectrometry. Isomeric mixtures of modified forms of the same protein are resolved and quantitated with a precision of easing many of the systematic biases that more strongly affect small peptides (e.g., differences in ionization efficiency and ion m/z values). The ion fragmentation methods validated here are directly extensible to intact human proteins to derive quantitative information on the highly related and often isomeric protein forms created by combinatorial arrays of posttranslational modifications.

  12. Stable isotope labelled mass spectrometry for quantification of the relative abundances for expressed proteins induced by PeaT1

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The protein elicitor from the mycelium of Alternaria tenuissima has been isolated.The elicitor triggered resistance to the tobacco mosaic virus in tobacco by inducing relative oxygen species,but without causing hypersensitive necrosis.The elicitor is reported to impart resistance against Verticillium dahliae and to increase yield in cotton,but its mechanism is not yet clear.In this study,the stable isotope labelled mass spectrometry method was used to quantify the relative abundances of protein expression induced by PeaT1 in Arabidopsis.A significant difference in the relative abundances for the expression of different proteins related to metabolism,modification,regulatory,defense,stress and antioxidation was found in Arabidopsis.

  13. Probing the structure of human protein disulfide isomerase by chemical cross-linking combined with mass spectrometry

    DEFF Research Database (Denmark)

    Peng, Li; Rasmussen, Morten Ib; Chailyan, Anna

    2014-01-01

    Protein disulfide-isomerase (PDI) is a four-domain flexible protein that catalyzes the formation of disulfide bonds in the endoplasmic reticulum. Here we have analyzed native PDI purified from human placenta by chemical cross-linking followed by mass spectrometry (CXMS). In addition to PDI...... the sample contained soluble calnexin and ERp72. Extensive cross-linking was observed within the PDI molecule, both intra- and inter-domain, as well as between the different components in the mixture. The high sensitivity of the analysis in the current experiments, combined with a likely promiscuous...... interaction pattern of the involved proteins, revealed relatively densely populated cross-link heat maps. The established X-ray structure of the monomeric PDI could be confirmed; however, the dimer as presented in the existing models does not seem to be prevalent in solution as modeling on the observed cross...

  14. On plate graphite supported sample processing for simultaneous lipid and protein identification by matrix assisted laser desorption ionization mass spectrometry.

    Science.gov (United States)

    Calvano, Cosima Damiana; van der Werf, Inez Dorothé; Sabbatini, Luigia; Palmisano, Francesco

    2015-05-01

    The simultaneous identification of lipids and proteins by matrix assisted laser desorption ionization-mass spectrometry (MALDI-MS) after direct on-plate processing of micro-samples supported on colloidal graphite is demonstrated. Taking advantages of large surface area and thermal conductivity, graphite provided an ideal substrate for on-plate proteolysis and lipid extraction. Indeed proteins could be efficiently digested on-plate within 15 min, providing sequence coverages comparable to those obtained by conventional in-solution overnight digestion. Interestingly, detection of hydrophilic phosphorylated peptides could be easily achieved without any further enrichment step. Furthermore, lipids could be simultaneously extracted/identified without any additional treatment/processing step as demonstrated for model complex samples such as milk and egg. The present approach is simple, efficient, of large applicability and offers great promise for protein and lipid identification in very small samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Rapid Conformational Analysis of Protein Drugs in Formulation by Hydrogen/Deuterium Exchange Mass Spectrometry (HDX-MS)

    DEFF Research Database (Denmark)

    Esmail Nazari, Zeinab; van de Weert, Marco; Bou-Assaf, George

    2016-01-01

    Hydrogen Deuterium Exchange coupled to Mass Spectrometry (HDX-MS) has become an established method for analysis of protein higher-order structure. Here, we use HDX-MS methodology based on manual Solid-Phase Extraction (SPE) to allow fast and simplified conformational analysis of proteins under...... provide a reliable approach for fast conformation analysis of proteins in their intended formulations and could facilitate an increased use of HDX-MS in pharmaceutical development research....... pharmaceutically relevant formulation conditions. Of significant practical utility, the methodology allows global HDX-MS analyses to be performed without refrigeration or external cooling of the setup. In Mode 1, we used DMSO-containing solvents for SPE, allowing the HDX-MS analysis to be performed at acceptable...

  16. Identification of phosphorylation sites in protein kinase A substrates using artificial neural networks and mass spectrometry

    DEFF Research Database (Denmark)

    Hjerrild, Majbrit; Stensballe, Allan; Rasmussen, Thomas E

    2011-01-01

    Protein phosphorylation plays a key role in cell regulation and identification of phosphorylation sites is important for understanding their functional significance. Here, we present an artificial neural network algorithm: NetPhosK (http://www.cbs.dtu.dk/services/NetPhosK/) that predicts protein...

  17. Identification of cardiac myofilament protein isoforms using multiple mass spectrometry based approaches

    NARCIS (Netherlands)

    Kooij, V.; Venkatraman, V.; Kirk, J.A.; Ubaida-Mohien, C.; Graham, D.R.; Faber, M.J.; Eyk, J.E. Van

    2014-01-01

    PURPOSE: The identification of protein isoforms in complex biological samples is challenging. We, therefore, used an MS approach to unambiguously identify cardiac myofilament protein isoforms based on the observation of a tryptic peptide consisting of a sequence unique to a particular isoform. EXPER

  18. A feedback framework for protein inference with peptides identified from tandem mass spectra

    Directory of Open Access Journals (Sweden)

    Shi Jinhong

    2012-11-01

    Full Text Available Abstract Background Protein inference is an important computational step in proteomics. There exists a natural nest relationship between protein inference and peptide identification, but these two steps are usually performed separately in existing methods. We believe that both peptide identification and protein inference can be improved by exploring such nest relationship. Results In this study, a feedback framework is proposed to process peptide identification reports from search engines, and an iterative method is implemented to exemplify the processing of Sequest peptide identification reports according to the framework. The iterative method is verified on two datasets with known validity of proteins and peptides, and compared with ProteinProphet and PeptideProphet. The results have shown that not only can the iterative method infer more true positive and less false positive proteins than ProteinProphet, but also identify more true positive and less false positive peptides than PeptideProphet. Conclusions The proposed iterative method implemented according to the feedback framework can unify and improve the results of peptide identification and protein inference.

  19. Identification of phosphorylation sites in protein kinase A substrates using artificial neural networks and mass spectrometry

    DEFF Research Database (Denmark)

    Hjerrild, M.; Stensballe, A.; Rasmussen, T.E.;

    2004-01-01

    Protein phosphorylation plays a key role in cell regulation and identification of phosphorylation sites is important for understanding their functional significance. Here, we present an artificial neural network algorithm: NetPhosK (http://www.cbs.dtu.dk/services/NetPhosK/) that predicts protein...

  20. Identification of phosphorylation sites in protein kinase A substrates using artificial neural networks and mass spectrometry

    DEFF Research Database (Denmark)

    Hjerrild, Majbrit; Stensballe, Allan; Rasmussen, Thomas E

    2011-01-01

    Protein phosphorylation plays a key role in cell regulation and identification of phosphorylation sites is important for understanding their functional significance. Here, we present an artificial neural network algorithm: NetPhosK (http://www.cbs.dtu.dk/services/NetPhosK/) that predicts protein...

  1. Introduction to Biological Mass Spectroscopy: Determining Identity and Species of Origin of Two Proteins

    Science.gov (United States)

    Reimann, Curt T.; Mie, Axel; Nilsson, Carina; Cohen, Arieh

    2005-01-01

    An examination of the two proteins, namely, cytochrome c from horse and cow is conducted and it is indicated that cytochrome c is a mitochondrial protein. Mitochondria multiply by cell division and do not undergo sexual reproduction and mitochondria DNA is passed on via the mitochondria that are inherited from the female parent organism.

  2. Mass spectrometry based approach for identification and characterisation of fluorescent proteins from marine organisms

    DEFF Research Database (Denmark)

    Wojdyla, Katarzyna Iwona; Rogowska-Wrzesinska, Adelina; Wrzesinski, Krzysztof

    2011-01-01

    of the proteins in the fluorescent spots excised directly from unstained 2DE gels provides sequence information that might be sufficient to design degenerate primers for gene cloning. Identified fluorescent proteins are in agreement with the coral species determined by visual examination of the samples...

  3. Introduction to Biological Mass Spectroscopy: Determining Identity and Species of Origin of Two Proteins

    Science.gov (United States)

    Reimann, Curt T.; Mie, Axel; Nilsson, Carina; Cohen, Arieh

    2005-01-01

    An examination of the two proteins, namely, cytochrome c from horse and cow is conducted and it is indicated that cytochrome c is a mitochondrial protein. Mitochondria multiply by cell division and do not undergo sexual reproduction and mitochondria DNA is passed on via the mitochondria that are inherited from the female parent organism.

  4. Ion Mobility Measurements of Nondenatured 12-150 kDa Proteins and Protein Multimers by Tandem Differential Mobility Analysis-Mass Spectrometry (DMA-MS)

    Science.gov (United States)

    Hogan, Christopher J.; de la Mora, Juan Fernández

    2011-01-01

    The mobilities of electrosprayed proteins and protein multimers with molecular weights ranging from 12.4 kDa (cytochrome C monomers) to 154 kDa (nonspecific concanavalin A hexamers) were measured in dry air by a planar differential mobility analyzer (DMA) coupled to a time-of-flight mass spectrometer (TOF-MS). The DMA determines true mobility at atmospheric pressure, without perturbing ion structure from that delivered by the electrospray. A nondenaturing aqueous 20 mM triethylammonium formate buffer yields compact ions with low charge states, moderating polarization effects on ion mobility. Conversion of mobilities into cross-sections involves a reduction factor ξ for the actual mobility relative to that associated with elastic specular collisions with smooth surfaces. ξ is known to be 1.36 in air from Millikan's oil drop experiments. A similar enhancement effect ascribed to atomic-scale surface roughness has been found in numerical simulations. Adopting Millikan's value ξ = 1.36 and assuming a spherical geometry yields a gas-phase protein density ρ p = 0.949 ± 0.053 g cm-3 for all our protein data. This is substantially higher than the 0.67 g cm-3 found in recent low-resolution DMA measurements of singly charged proteins. DMA-MS can distinguish nonspecific protein aggregates formed during the electrospray process from those formed preferentially in solution. The observed charge versus diameter relation is compatible with a protein charge reduction mechanism based on the evaporation of triethylammonium ions from electrosprayed drops.

  5. Clinical effectiveness of protein and amino acid supplementation on building muscle mass in elderly people: a meta-analysis.

    Directory of Open Access Journals (Sweden)

    Zhe-rong Xu

    Full Text Available A major reason for the loss of mobility in elderly people is the gradual loss of lean body mass known as sarcopenia. Sarcopenia is associated with a lower quality of life and higher healthcare costs. The benefit of strategies that include nutritional intervention, timing of intervention, and physical exercise to improve muscle loss unclear as finding from studies investigating this issue have been inconsistent. We have performed a systematic review and meta-analysis to assess the ability of protein or amino acid supplementation to augment lean body mass or strength of leg muscles in elderly patients.Nine studies met the inclusion criteria of being a prospective comparative study or randomized controlled trial (RCT that compared the efficacy of an amino acid or protein supplement intervention with that of a placebo in elderly people (≥ 65 years for the improvement of lean body mass (LBM, leg muscle strength or reduction associated with sarcopenia.The overall difference in mean change from baseline to the end of study in LBM between the treatment and placebo groups was 0.34 kg which was not significant (P = 0.386. The overall differences in mean change from baseline in double leg press and leg extension were 2.14 kg (P = 0.748 and 2.28 kg (P = 0.265, respectively, between the treatment group and the placebo group.These results indicate that amino acid/protein supplements did not increase lean body mass gain and muscle strength significantly more than placebo in a diverse elderly population.

  6. Complete characterization of posttranslational modification sites in the bovine milk protein PP3 by tandem mass spectrometry with electron capture dissociation as the last stage

    DEFF Research Database (Denmark)

    Kjeldsen, Frank; Haselmann, Kim F; Budnik, Bogdan A

    2003-01-01

    the PTM site. Chromatographic peak analysis continues until full sequence coverage is obtained, after which the molecular mass is reconstructed and compared with the measured value. An agreement indicates that the PTM characterization was complete. This procedure applied to the bovine milk PP3 protein......A comprehensive approach to protein identification and determination of sites of posttranslational modifications (PTMs) in heavily modified proteins was tested. In this approach, termed "reconstructed molecular mass analysis" (REMMA), the molecular mass distribution of the intact protein...... is measured first, which reveals the extent and heterogeneity of modifications. Then the protein is digested with one or several enzymes, with peptides separated by reversed-phase HPLC, and analyzed by Fourier transform mass spectrometry (FTMS). Vibrational excitation (collisional or infrared) or electron...

  7. Use of mass spectrometry techniques for the characterization of metal bound to proteins (metallomics) in biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Ariza, J.L.; Garcia-Barrera, T.; Lorenzo, F.; Bernal, V.; Villegas, M.J.; Oliveira, V

    2004-10-25

    The need to determine the individual chemical species (speciation), especially when they are known to have a differential action and behavior in relation to toxicity, mobility, or bioavailability, is discussed. The analytical approaches for small mass metal species characterization, as well as sample treatment and storage, is now well established on the basis of chromatographic-atomic detector combinations. The description of a new scenario centered on endogenous and exogenous metallic species in biological systems, bioactive macromolecules, such as proteins, DNA restriction fragments, phytochelatins, metallothioneins and others is fulfilled. Many of these systems are not well known at present and require a new generation of analytical tools that substitute the traditional atomic detectors based in the use of photons (atomic absorption spectrometry (AAS), flame photoionization detector (FPD), inductively coupled plasma-atomic emission spectroscopy (ICP-AES), atomic fluorescence spectroscopy (AFS)) by mass detectors (mass spectrometry (MS) and inductively coupled plasma-mass spectrometry (ICP-MS)) that characterize ions. The photonic analytical tool is now being substituted by the ionic paradigm. Many cases related to biological molecules involving proteins and multiprotein systems, in which metals frequently participate (metallomics) are described, and a generic metallomics analytical approach is proposed for the identification and quantification of metalloproteins, and other metallomacromolecules present in life systems, on the basis of three experimental focuses: (i) a separation technique - selectivity component; (ii) an element-high sensitivity detector--sensitivity component; and (iii) a molecule-specific detector, generally based on mass spectrometry-structural component. This multiplexed analytical approach brings together both elemental and molecular detectors for easy metalloproteins identification. Finally, the possibilities of the metallomics approach in

  8. Nutritional Status of Maintenance Dialysis Patients: Low Lean Body Mass Index and Obesity Are Common, Protein-Energy Wasting Is Uncommon.

    Science.gov (United States)

    Koefoed, Mette; Kromann, Charles Boy; Juliussen, Sophie Ryberg; Hvidtfeldt, Danni; Ekelund, Bo; Frandsen, Niels Erik; Marckmann, Peter

    2016-01-01

    Maintenance dialysis patients are at increased risk of abnormal nutritional status due to numerous causative factors, both nutritional and non-nutritional. The present study assessed the current prevalence of protein-energy wasting, low lean body mass index and obesity in maintenance dialysis patients, and compared different methods of nutritional assessment. In a cross-sectional study conducted in 2014 at Roskilde Hospital, Denmark, we performed anthropometry (body weight, skinfolds, mid-arm, waist, and hip circumferences), and determined plasma albumin and normalized protein catabolic rate in order to assess the prevalence of protein-energy wasting, low lean body mass index and obesity in these patients. Seventy-nine eligible maintenance dialysis patients participated. The prevalence of protein-energy wasted patients was 4% (95% CI: 2-12) as assessed by the coexistence of low lean body mass index and low fat mass index. Low lean body mass index was seen in 32% (95% CI: 22-44). Obesity prevalence as assessed from fat mass index was 43% (95% CI: 32-55). Coexistence of low lean body mass index and obesity was seen in 10% (95% CI: 5-19). The prevalence of protein-energy wasting and obesity varied considerably, depending on nutritional assessment methodology. Our data indicate that protein-energy wasting is uncommon, whereas low lean body mass index and obesity are frequent conditions among patients in maintenance dialysis. A focus on how to increase and preserve lean body mass in dialysis patients is suggested in the future. In order to clearly distinguish between shortage, sufficiency and abundance of protein and/or fat deposits in maintenance dialysis patients, we suggest the simple measurements of lean body mass index and fat mass index.

  9. Nutritional Status of Maintenance Dialysis Patients: Low Lean Body Mass Index and Obesity Are Common, Protein-Energy Wasting Is Uncommon.

    Directory of Open Access Journals (Sweden)

    Mette Koefoed

    Full Text Available Maintenance dialysis patients are at increased risk of abnormal nutritional status due to numerous causative factors, both nutritional and non-nutritional. The present study assessed the current prevalence of protein-energy wasting, low lean body mass index and obesity in maintenance dialysis patients, and compared different methods of nutritional assessment.In a cross-sectional study conducted in 2014 at Roskilde Hospital, Denmark, we performed anthropometry (body weight, skinfolds, mid-arm, waist, and hip circumferences, and determined plasma albumin and normalized protein catabolic rate in order to assess the prevalence of protein-energy wasting, low lean body mass index and obesity in these patients.Seventy-nine eligible maintenance dialysis patients participated. The prevalence of protein-energy wasted patients was 4% (95% CI: 2-12 as assessed by the coexistence of low lean body mass index and low fat mass index. Low lean body mass index was seen in 32% (95% CI: 22-44. Obesity prevalence as assessed from fat mass index was 43% (95% CI: 32-55. Coexistence of low lean body mass index and obesity was seen in 10% (95% CI: 5-19. The prevalence of protein-energy wasting and obesity varied considerably, depending on nutritional assessment methodology.Our data indicate that protein-energy wasting is uncommon, whereas low lean body mass index and obesity are frequent conditions among patients in maintenance dialysis. A focus on how to increase and preserve lean body mass in dialysis patients is suggested in the future. In order to clearly distinguish between shortage, sufficiency and abundance of protein and/or fat deposits in maintenance dialysis patients, we suggest the simple measurements of lean body mass index and fat mass index.

  10. Neurobeachin, a Regulator of Synaptic Protein Targeting, Is Associated with Body Fat Mass and Feeding Behavior in Mice and Body-Mass Index in Humans

    Science.gov (United States)

    Olszewski, Pawel K.; Rozman, Jan; Jacobsson, Josefin A.; Rathkolb, Birgit; Strömberg, Siv; Hans, Wolfgang; Klockars, Anica; Alsiö, Johan; Risérus, Ulf; Becker, Lore; Hölter, Sabine M.; Elvert, Ralf; Ehrhardt, Nicole; Gailus-Durner, Valérie; Fuchs, Helmut; Fredriksson, Robert; Wolf, Eckhard; Klopstock, Thomas; Wurst, Wolfgang; Levine, Allen S.; Marcus, Claude; Hrabě de Angelis, Martin; Klingenspor, Martin; Schiöth, Helgi B.; Kilimann, Manfred W.

    2012-01-01

    Neurobeachin (Nbea) regulates neuronal membrane protein trafficking and is required for the development and functioning of central and neuromuscular synapses. In homozygous knockout (KO) mice, Nbea deficiency causes perinatal death. Here, we report that heterozygous KO mice haploinsufficient for Nbea have higher body weight due to increased adipose tissue mass. In several feeding paradigms, heterozygous KO mice consumed more food than wild-type (WT) controls, and this consumption was primarily driven by calories rather than palatability. Expression analysis of feeding-related genes in the hypothalamus and brainstem with real-time PCR showed differential expression of a subset of neuropeptide or neuropeptide receptor mRNAs between WT and Nbea+/− mice in the sated state and in response to food deprivation, but not to feeding reward. In humans, we identified two intronic NBEA single-nucleotide polymorphisms (SNPs) that are significantly associated with body-mass index (BMI) in adult and juvenile cohorts. Overall, data obtained in mice and humans suggest that variation of Nbea abundance or activity critically affects body weight, presumably by influencing the activity of feeding-related neural circuits. Our study emphasizes the importance of neural mechanisms in body weight control and points out NBEA as a potential risk gene in human obesity. PMID:22438821

  11. Binomial probability distribution model-based protein identification algorithm for tandem mass spectrometry utilizing peak intensity information.

    Science.gov (United States)

    Xiao, Chuan-Le; Chen, Xiao-Zhou; Du, Yang-Li; Sun, Xuesong; Zhang, Gong; He, Qing-Yu

    2013-01-04

    Mass spectrometry has become one of the most important technologies in proteomic analysis. Tandem mass spectrometry (LC-MS/MS) is a major tool for the analysis of peptide mixtures from protein samples. The key step of MS data processing is the identification of peptides from experimental spectra by searching public sequence databases. Although a number of algorithms to identify peptides from MS/MS data have been already proposed, e.g. Sequest, OMSSA, X!Tandem, Mascot, etc., they are mainly based on statistical models considering only peak-matches between experimental and theoretical spectra, but not peak intensity information. Moreover, different algorithms gave different results from the same MS data, implying their probable incompleteness and questionable reproducibility. We developed a novel peptide identification algorithm, ProVerB, based on a binomial probability distribution model of protein tandem mass spectrometry combined with a new scoring function, making full use of peak intensity information and, thus, enhancing the ability of identification. Compared with Mascot, Sequest, and SQID, ProVerB identified significantly more peptides from LC-MS/MS data sets than the current algorithms at 1% False Discovery Rate (FDR) and provided more confident peptide identifications. ProVerB is also compatible with various platforms and experimental data sets, showing its robustness and versatility. The open-source program ProVerB is available at http://bioinformatics.jnu.edu.cn/software/proverb/ .

  12. Bioinformatic and mass spectrometry identification of Anaplasma phagocytophilum proteins translocated into host cell nuclei

    Directory of Open Access Journals (Sweden)

    Sara H. G. Sinclair

    2015-02-01

    Full Text Available Obligate intracellular bacteria have an arsenal of proteins that alter host cells to establish and maintain a hospitable environment for replication. Anaplasma phagocytophilum secrets Ankyrin A (AnkA, via a type IV secretion system, which translocates to the nucleus of its host cell, human neutrophils. A. phagocytophilum-infected neutrophils have dramatically altered phenotypes in part explained by AnkA-induced transcriptional alterations. However, it is unlikely that AnkA is the sole effector to account for infection-induced transcriptional changes. We developed a simple method combining bioinformatics and iTRAQ protein profiling to identify potential bacterial-derived nuclear-translocated proteins that could impact transcriptional programming in host cells. This approach identified 50 A. phagocytophilum candidate genes or proteins. The encoding genes were cloned to create GFP fusion protein-expressing clones that were transfected into HEK-293T cells. We confirmed nuclear translocation of six proteins: APH_0062, RplE, Hup, APH_0382, APH_0385, and APH_0455. Of the six, APH_0455 was identified as a type IV secretion substrate and is now under investigation as a potential nucleomodulin. Additionally, application of this approach to other obligate intracellular bacteria such as Mycobacterium tuberculosis, Chlamydia trachomatis and other intracellular bacteria identified multiple candidate genes to be investigated.

  13. Top-Down LESA Mass Spectrometry Protein Analysis of Gram-Positive and Gram-Negative Bacteria

    Science.gov (United States)

    Kocurek, Klaudia I.; Stones, Leanne; Bunch, Josephine; May, Robin C.; Cooper, Helen J.

    2017-10-01

    We have previously shown that liquid extraction surface analysis (LESA) mass spectrometry (MS) is a technique suitable for the top-down analysis of proteins directly from intact colonies of the Gram-negative bacterium Escherichia coli K-12. Here we extend the application of LESA MS to Gram-negative Pseudomonas aeruginosa PS1054 and Gram-positive Staphylococcus aureus MSSA476, as well as two strains of E. coli (K-12 and BL21 mCherry) and an unknown species of Staphylococcus. Moreover, we demonstrate the discrimination between three species of Gram-positive Streptococcus ( Streptococcus pneumoniae D39, and the viridans group Streptococcus oralis ATCC 35037 and Streptococcus gordonii ATCC35105), a recognized challenge for matrix-assisted laser desorption ionization time-of-flight MS. A range of the proteins detected were selected for top-down LESA MS/MS. Thirty-nine proteins were identified by top-down LESA MS/MS, including 16 proteins that have not previously been observed by any other technique. The potential of LESA MS for classification and characterization of novel species is illustrated by the de novo sequencing of a new protein from the unknown species of Staphylococcus. [Figure not available: see fulltext.

  14. Top-Down LESA Mass Spectrometry Protein Analysis of Gram-Positive and Gram-Negative Bacteria

    Science.gov (United States)

    Kocurek, Klaudia I.; Stones, Leanne; Bunch, Josephine; May, Robin C.; Cooper, Helen J.

    2017-07-01

    We have previously shown that liquid extraction surface analysis (LESA) mass spectrometry (MS) is a technique suitable for the top-down analysis of proteins directly from intact colonies of the Gram-negative bacterium Escherichia coli K-12. Here we extend the application of LESA MS to Gram-negative Pseudomonas aeruginosa PS1054 and Gram-positive Staphylococcus aureus MSSA476, as well as two strains of E. coli (K-12 and BL21 mCherry) and an unknown species of Staphylococcus. Moreover, we demonstrate the discrimination between three species of Gram-positive Streptococcus (Streptococcus pneumoniae D39, and the viridans group Streptococcus oralis ATCC 35037 and Streptococcus gordonii ATCC35105), a recognized challenge for matrix-assisted laser desorption ionization time-of-flight MS. A range of the proteins detected were selected for top-down LESA MS/MS. Thirty-nine proteins were identified by top-down LESA MS/MS, including 16 proteins that have not previously been observed by any other technique. The potential of LESA MS for classification and characterization of novel species is illustrated by the de novo sequencing of a new protein from the unknown species of Staphylococcus.

  15. iTRAQ-based profiling of grape berry exocarp proteins during ripening using a parallel mass spectrometric method.

    Science.gov (United States)

    Martínez-Esteso, Maria José; Casado-Vela, Juan; Sellés-Marchart, Susana; Elortza, Felix; Pedreño, Maria Angeles; Bru-Martínez, Roque

    2011-03-01

    The 4-plex iTRAQ platform was utilized to analyze the protein profiles in four stages of grapevine berry skin ripening, from pre-veraison to fully ripening. Mass spectrometric data were acquired from three replicated analyses using a parallel acquisition method in an Orbitrap instrument by combining collision-induced dissociation (CID) and higher energy collision-induced dissociation (HCD) peptide ion fragmentations. As a result, the number of spectra suitable for peptide identification (either from CID or HCD) increased 5-fold in relation to those suitable for quantification (from HCD). Spectra were searched against an NCBInr protein database subset containing all the Vitis sequences, including those derived from whole genome sequencing. In general, 695 unique proteins were identified with more than one single peptide, and 513 of them were quantified. The sequence annotation and GO term enrichment analysis assisted by the automatic annotation tool Blast2GO permitted a pathway analysis which resulted in finding that biological processes and metabolic pathways de-regulated throughout ripening. A detailed analysis of the function-related proteins profiles helped discover a set of proteins of known Vitis gene origin as the potential candidates to play key roles in grapevine berry quality, growth regulation and disease resistance.

  16. Mass fatality preparedness among medical examiners/coroners in the United States: a cross-sectional study.

    Science.gov (United States)

    Gershon, Robyn R M; Orr, Mark G; Zhi, Qi; Merrill, Jacqueline A; Chen, Daniel Y; Riley, Halley E M; Sherman, Martin F

    2014-12-15

    In the United States (US), Medical Examiners and Coroners (ME/Cs) have the legal authority for the management of mass fatality incidents (MFI). Yet, preparedness and operational capabilities in this sector remain largely unknown. The purpose of this study was twofold; first, to identify appropriate measures of preparedness, and second, to assess preparedness levels and factors significantly associated with preparedness. Three separate checklists were developed to measure different aspects of preparedness: MFI Plan Elements, Operational Capabilities, and Pre-existing Resource Networks. Using a cross-sectional study design, data on these and other variables of interest were collected in 2014 from a national convenience sample of ME/C using an internet-based, anonymous survey. Preparedness levels were determined and compared across Federal Regions and in relation to the number of Presidential Disaster Declarations, also by Federal Region. Bivariate logistic and multivariable models estimated the associations between organizational characteristics and relative preparedness. A large proportion (42%) of respondents reported that less than 25 additional fatalities over a 48-hour period would exceed their response capacities. The preparedness constructs measured three related, yet distinct, aspects of preparedness, with scores highly variable and generally suboptimal. Median scores for the three preparedness measures also varied across Federal Regions and as compared to the number of Presidential Declared Disasters, also by Federal Region. Capacity was especially limited for activating missing persons call centers, launching public communications, especially via social media, and identifying temporary interment sites. The provision of staff training was the only factor studied that was significantly (positively) associated (p < .05) with all three preparedness measures. Although ME/Cs ranked local partners, such as Offices of Emergency Management, first responders, and

  17. When is Mass Spectrometry Combined with Affinity Approaches Essential? A Case Study of Tyrosine Nitration in Proteins

    Science.gov (United States)

    Petre, Brînduşa-Alina; Ulrich, Martina; Stumbaum, Mihaela; Bernevic, Bogdan; Moise, Adrian; Döring, Gerd; Przybylski, Michael

    2012-11-01

    Tyrosine nitration in proteins occurs under physiologic conditions and is increased at disease conditions associated with oxidative stress, such as inflammation and Alzheimer's disease. Identification and quantification of tyrosine-nitrations are crucial for understanding nitration mechanism(s) and their functional consequences. Mass spectrometry (MS) is best suited to identify nitration sites, but is hampered by low stabilities and modification levels and possible structural changes induced by nitration. In this insight, we discuss methods for identifying and quantifying nitration sites by proteolytic affinity extraction using nitrotyrosine (NT)-specific antibodies, in combination with electrospray-MS. The efficiency of this approach is illustrated by identification of specific nitration sites in two proteins in eosinophil granules from several biological samples, eosinophil-cationic protein (ECP) and eosinophil-derived neurotoxin (EDN). Affinity extraction combined with Edman sequencing enabled the quantification of nitration levels, which were found to be 8 % and 15 % for ECP and EDN, respectively. Structure modeling utilizing available crystal structures and affinity studies using synthetic NT-peptides suggest a tyrosine nitration sequence motif comprising positively charged residues in the vicinity of the NT- residue, located at specific surface- accessible sites of the protein structure. Affinities of Tyr-nitrated peptides from ECP and EDN to NT-antibodies, determined by online bioaffinity- MS, provided nanomolar KD values. In contrast, false-positive identifications of nitrations were obtained in proteins from cystic fibrosis patients upon using NT-specific antibodies, and were shown to be hydroxy-tyrosine modifications. These results demonstrate affinity- mass spectrometry approaches to be essential for unequivocal identification of biological tyrosine nitrations.

  18. When is mass spectrometry combined with affinity approaches essential? A case study of tyrosine nitration in proteins.

    Science.gov (United States)

    Petre, Brînduşa-Alina; Ulrich, Martina; Stumbaum, Mihaela; Bernevic, Bogdan; Moise, Adrian; Döring, Gerd; Przybylski, Michael

    2012-11-01

    Tyrosine nitration in proteins occurs under physiologic conditions and is increased at disease conditions associated with oxidative stress, such as inflammation and Alzheimer's disease. Identification and quantification of tyrosine-nitrations are crucial for understanding nitration mechanism(s) and their functional consequences. Mass spectrometry (MS) is best suited to identify nitration sites, but is hampered by low stabilities and modification levels and possible structural changes induced by nitration. In this insight, we discuss methods for identifying and quantifying nitration sites by proteolytic affinity extraction using nitrotyrosine (NT)-specific antibodies, in combination with electrospray-MS. The efficiency of this approach is illustrated by identification of specific nitration sites in two proteins in eosinophil granules from several biological samples, eosinophil-cationic protein (ECP) and eosinophil-derived neurotoxin (EDN). Affinity extraction combined with Edman sequencing enabled the quantification of nitration levels, which were found to be 8 % and 15 % for ECP and EDN, respectively. Structure modeling utilizing available crystal structures and affinity studies using synthetic NT-peptides suggest a tyrosine nitration sequence motif comprising positively charged residues in the vicinity of the NT- residue, located at specific surface- accessible sites of the protein structure. Affinities of Tyr-nitrated peptides from ECP and EDN to NT-antibodies, determined by online bioaffinity- MS, provided nanomolar K(D) values. In contrast, false-positive identifications of nitrations were obtained in proteins from cystic fibrosis patients upon using NT-specific antibodies, and were shown to be hydroxy-tyrosine modifications. These results demonstrate affinity- mass spectrometry approaches to be essential for unequivocal identification of biological tyrosine nitrations.

  19. Multiplex detection of protein toxins using MALDI-TOF-TOF tandem mass spectrometry: application in unambiguous toxin detection from bioaerosol.

    Science.gov (United States)

    Alam, Syed Imteyaz; Kumar, Bhoj; Kamboj, Dev Vrat

    2012-12-04

    Protein toxins, such as botulinum neurotoxins (BoNTs), Clostridium perfringens epsilon toxin (ETX), staphylococcal enterotoxin B (SEB), shiga toxin (STX), and plant toxin ricin, are involved in a number of diseases and are considered as potential agents for bioterrorism and warfare. From a bioterrorism and warfare perspective, these agents are likely to cause maximum damage to a civilian or military population through an inhalational route of exposure and aerosol is considered the envisaged mode of delivery. Unambiguous detection of toxin from aerosol is of paramount importance, both for bringing mitigation protocols into operation and for implementation of effective medical countermeasures, in case a "biological cloud" is seen over a population. A multiplex, unambiguous, and qualitative detection of protein toxins is reported here using tandem mass spectrometry with MALDI-TOF-TOF. The methodology involving simple sample processing steps was demonstrated to identify toxins (ETX, Clostridium perfringes phospholipase C, and SEB) from blind spiked samples. The novel directed search approach using a list of unique peptides was used to identify toxins from a complex protein mixture. The bioinformatic analysis of seven protein toxins for elucidation of unique peptides with conservation status across all known sequences provides a high confidence for detecting toxins originating from any geographical location and source organism. Use of tandem MS data with peptide sequence information increases the specificity of the method. A prototype for generation of aerosol using a nebulizer and collection using a cyclone collector was used to provide a proof of concept for unambiguous detection of toxin from aerosol using precursor directed tandem mass spectrometry combined with protein database searching. ETX prototoxin could be detected from aerosol at 0.2 ppb concentration in aerosol.

  20. Specific leaf mass, fresh: dry weight ratio, sugar and protein contents in species of Lamiaceae from different light environments

    Directory of Open Access Journals (Sweden)

    M Castrillo

    2005-06-01

    Full Text Available Samples from eleven species of Lamiaceae were collected from different light environments in Venezuela for laboratory analysis.The studied species were: Plectranthus scutellarioides (Ps, Scutellaria purpurascens (Sp, Hyptis pectinata (Hp, H. sinuata (Hs, Leonorus japonicus (Lj, Plecthranthus amboinicus (Pa Ocimum basilicum (Ocb, O.campechianum (Occ Origanum majorana (Orm, Rosmarinus officinali ,(Ro and Salvia officinalis (So. Protein and soluble sugar contents per unit of area were measured, Specific Leaf Mass (SLMand fresh: dry weight (FW/DW ratios were calculated. The higher values for soluble sugars contents were present in sun species: Lj, Pa, Ocb, Occ, Or. m, Ro and So; the lower values were obtained in low light species: Ps, Sp, Hp, Hs. The values of protein content do not show any clear trend or difference between sun and shade environments. The lowest values for the fresh weight: dry weight ratio are observed in sun species with the exception of Lj and Pa, while the highest value is observed in Pa, a succulent plant. The higher values of specific leaf mass (SLM(Kg DMm-2 are observed in sun plants. The two way ANOVA revealed that there were significant differences among species and between sun and low light environments for sugar content and FW: DW ratio, while SLM was significant for environments but no significant for species, and not significant for protein for both species and environments. The soluble sugar content, FW: DW ratio and SLM values obtained in this work, show a clear separation between sun and shade plants. The sugar content and FW:DW ratio are distinctive within the species,and the light environment affected sugar content, FW:DW ratio and SLM. These species may be shade-tolerant and able to survive in sunny environments. Perhaps these species originated in shaded environments and have been adapting to sunny habitats.Rev.Biol.Trop.53(1-2:23-28.Epub 2005 Jun 24En once especies de la familia Lamiaceae: Plecthranthus

  1. Biotechnology Conference: Protein Engineering Held in Oxford, United Kingdom on 5-8 April 1987.

    Science.gov (United States)

    1987-07-27

    of the iso-accepting and protein- pigment complexes. transfer RNA’s (tRNA). According to Swaf- Huber and his group have found that field the set of...regions. perform the catalytic condensation reac- tion respectively, according to Huber. In the multienzyme complex riboflavin syn- 3 PROTEIN STRUCTURE...Germany). Huber the pigments active in light absorption and his group have carried out extensive and light conduction. Motion would 3 deactivate the

  2. Heat and Mass Transfer during Hydrogen Generation in an Array of Fuel Bars of a BWR Using a Periodic Unit Cell

    Directory of Open Access Journals (Sweden)

    H. Romero-Paredes

    2012-01-01

    Full Text Available This paper presents, the numerical analysis of heat and mass transfer during hydrogen generation in an array of fuel cylinder bars, each coated with a cladding and a steam current flowing outside the cylinders. The analysis considers the fuel element without mitigation effects. The system consists of a representative periodic unit cell where the initial and boundary-value problems for heat and mass transfer were solved. In this unit cell, we considered that a fuel element is coated by a cladding with steam surrounding it as a coolant. The numerical simulations allow describing the evolution of the temperature and concentration profiles inside the nuclear reactor and could be used as a basis for hybrid upscaling simulations.

  3. Nanodisc-based Co-immunoprecipitation for Mass Spectrometric Identification of Membrane-interacting Proteins

    DEFF Research Database (Denmark)

    Borch-Jensen, Jonas; Roepstorff, Peter; Møller-Jensen, Jakob

    2011-01-01

    enterotoxigenic Escherischia coli, GM1-nanodiscs were employed for co-immunoprecipitation. The B subunit of heat labile enterotoxin was identified as a specific interaction partner by mass spectrometry, thus demonstrating that nanodisc technology is useful for highly specific detection and identification...

  4. Ultrasensitive probing of the protein resistance of PEG surfaces by secondary ion mass spectrometry

    DEFF Research Database (Denmark)

    Kingshott, P.; McArthur, S.; Thissen, H.

    2002-01-01

    The highly sensitive surface analytical techniques X-ray photoelectron spectroscopy (XPS) and time-of-flight static secondary ion mass spectrometry (ToF-SIMS) were used to test the resistance of poly(ethylene glycol) (PEG) coatings towards adsorption of lysozyme (LYS) and fibronectin (FN). PEG co...

  5. Detection and quantification of proteins in clinical samples using high resolution mass spectrometry.

    Science.gov (United States)

    Gallien, Sebastien; Domon, Bruno

    2015-06-15

    Quantitative proteomics has benefited from the recent development of mass spectrometers capable of high-resolution and accurate-mass (HR/AM) measurements. While targeted experiments are routinely performed on triple quadrupole instruments in selected reaction monitoring (SRM; often referred as multiple reaction monitoring, MRM) mode, the quadrupole-orbitrap mass spectrometers allow quantification in MS/MS mode, also known as parallel reaction monitoring (PRM). This technique is characterized by higher selectivity and better confidence in the assignment of the precursor and fragment ions, and thus translates into an improved analytical performance. More fundamentally, PRM introduces a change of the overall paradigm of targeted experiments, by the decoupling of the acquisition and data processing. They rely on two distinct steps, with a simplified acquisition method in conjunction with a flexible, iterative, post-acquisition data processing. This account describes in detail the different steps of a PRM experiment, which include the design of the acquisition method, the confirmation of the identity of the analytes founded upon a full MS/MS fragmentation pattern, and the quantification based on the extraction of specific fragment ions (selected post-acquisition) using tight mass tolerance. The different types of PRM experiments, defined as large-scale screening or precise targeted quantification using calibrated internal standards, together with the considerations on the selection of experimental parameters are discussed.

  6. New Ionization and Detection Technologies for Mass Spectrometry Imaging. From Small Molecules to Intact Proteins

    NARCIS (Netherlands)

    Kiss, A.

    2014-01-01

    There is a constantly growing interest in biomedical research to visualize changes in the location of various biomolecules in tissue sections as a result of complex diseases. Mass spectrometry imaging is one of the techniques that enable the mapping of molecules on a 2D surface. However, the techniq

  7. MASS CHANGES IN MIGRATING BIRDS - THE EVIDENCE FOR FAT AND PROTEIN STORAGE REEXAMINED

    NARCIS (Netherlands)

    PIERSMA, T

    1993-01-01

    The fact that one cannot kill a bird twice makes it very difficult to determine the relative contributions of fat and non-fat components to increases in body mass before migratory flights in individual birds. Knowing the relative contributions of these components is of obvious energetic interest sin

  8. Thermodynamic Charge-to-Mass Sensor for Colloids, Proteins, and Polyelectrolytes

    NARCIS (Netherlands)

    van Rijssel, Jos; Costo, Rocio; Vrij, Agienus; Philipse, Albert P.; Erne, Ben H.

    2016-01-01

    A sensor is introduced that gauges the ratio of charge z to mass m of macro-ions in liquid media. The conductivity is measured in a small volume of salt solution, separated from the macro-ions by a semipermeable membrane. The mobile counterions released by the macro-ions increase the measured salt c

  9. MASS CHANGES IN MIGRATING BIRDS - THE EVIDENCE FOR FAT AND PROTEIN STORAGE REEXAMINED

    NARCIS (Netherlands)

    PIERSMA, T

    The fact that one cannot kill a bird twice makes it very difficult to determine the relative contributions of fat and non-fat components to increases in body mass before migratory flights in individual birds. Knowing the relative contributions of these components is of obvious energetic interest

  10. Improving protein identification sensitivity by combining MS and MS/MS information for shotgun proteomics using LTQ-Orbitrap high mass accuracy data.

    Science.gov (United States)

    Lu, Bingwen; Motoyama, Akira; Ruse, Cristian; Venable, John; Yates, John R

    2008-03-15

    We investigated and compared three approaches for shotgun protein identification by combining MS and MS/MS information using LTQ-Orbitrap high mass accuracy data. In the first approach, we employed a unique mass identifier method where MS peaks matched to peptides predicted from proteins identified from an MS/MS database search are first subtracted before using the MS peaks as unique mass identifiers for protein identification. In the second method, we used an accurate mass and time tag method by building a potential mass and retention time database from previous MudPIT analyses. For the third method, we used a peptide mass fingerprinting-like approach in combination with a randomized database for protein identification. We show that we can improve protein identification sensitivity for low-abundance proteins by combining MS and MS/MS information. Furthermore, "one-hit wonders" from MS/MS database searching can be further substantiated by MS information and the approach improves the identification of low-abundance proteins. The advantages and disadvantages for the three approaches are then discussed.

  11. A mobile killing- and mincing unit represents a possible alternative in mass destruction of AIV infected poultry

    DEFF Research Database (Denmark)

    Jørgensen, Poul Henrik; Nielsen, Anne Ahlmann; Handberg, Kurt

    In Denmark the veterinary authorities have approved a mobile mechanical unit for humane culling and processing of end-of lay hens. The elimination of transportation of live table egg layers is from a welfare point of view valuable, and in this respect, this multifunctional unit performs the initial...

  12. Exposing the subunit diversity and modularity of protein complexes by structural mass spectrometry approaches.

    Science.gov (United States)

    Chorev, Dror S; Ben-Nissan, Gili; Sharon, Michal

    2015-08-01

    Although the number of protein-encoding genes in the human genome is only about 20 000 not far from the amount found in the nematode worm genome, the number of proteins that are translated from these sequences is larger by several orders of magnitude. A number of mechanisms have evolved to enable this diversity. For example, genes can be alternatively spliced to create multiple transcripts; they may also be translated from different alternative initiation sites. After translation, hundreds of chemical modifications can be introduced in proteins, altering their chemical properties, folding, stability, and activity. The complexity is then further enhanced by the various combinations that are generated from the assembly of different subunit variants into protein complexes. This, in turn, confers structural and functional flexibility, and endows the cell with the ability to adapt to various environmental conditions. Therefore, exposing the variability of protein complexes is an important step toward understanding their biological functions. Revealing this enormous diversity, however, is not a simple task. In this review, we will focus on the array of MS-based strategies that are capable of performing this mission. We will also discuss the challenges that lie ahead, and the future directions toward which the field might be heading.

  13. New lysine-acetylated proteins screened by immunoaffinity and liquid chromatography-mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The lack of selective extraction specific for lysine-acetylated proteins has been a major problem in the field of acetylation biology,though acetylation plays a key role in many biological processes.In this paper,we report for the first time the proteomic screening of lysine-acetylated proteins from a mouse liver tissue,by a new approach of immunoaffinity purification of lysine-acetylated peptides combined with nano-HPLC/MS/MS analysis.We have found 20 lysine-acetylated proteins with 21 lysine-acetylated sites,among which 12 lysine-acetylated proteins and 16 lysine-acetylated sites have never been reported before.Notably,three acetyltransferases harboring in mitochondrion are newly discovered acetyltransferases responsible for the acetylation of nonhistone proteins.We have explored the significant patterns of residue preference by the hierarchical clustering analysis of amino acid residues surrounding acetylation sites,which could be helpful to the prediction of new sites of lysine acetylation.Our findings provide more candidates for studying the important roles played by acetylation in diverse cellular pathways and related human diseases.

  14. Separating the Wheat from the Chaff: Unbiased Filtering of Background Tandem Mass Spectra Improves Protein Identification

    Science.gov (United States)

    Junqueira, Magno; Spirin, Victor; Balbuena, Tiago Santana; Waridel, Patrice; Surendranath, Vineeth; Kryukov, Grigoriy; Adzhubei, Ivan; Thomas, Henrik; Sunyaev, Shamil; Shevchenko, Andrej

    2009-01-01

    Only a small fraction of spectra acquired in LC-MS/MS runs matches peptides from target proteins upon database searches. The remaining, operationally termed background, spectra originate from a variety of poorly controlled sources and affect the throughput and confidence of database searches. Here, we report an algorithm and its software implementation that rapidly removes background spectra, regardless of their precise origin. The method estimates the dissimilarity distance between screened MS/MS spectra and unannotated spectra from a partially redundant background library compiled from several control and blank runs. Filtering MS/MS queries enhanced the protein identification capacity when searches lacked spectrum to sequence matching specificity. In sequence-similarity searches it reduced by, on average, 30-fold the number of orphan hits, which were not explicitly related to background protein contaminants and required manual validation. Removing high quality background MS/MS spectra, while preserving in the data set the genuine spectra from target proteins, decreased the false positive rate of stringent database searches and improved the identification of low-abundance proteins. PMID:18558732

  15. Proteomics of Soil and Sediment: Protein Identification by De Novo Sequencing of Mass Spectra Complements Traditional Database Searching

    Science.gov (United States)

    Miller, S.; Rizzo, A. I.; Waldbauer, J.

    2015-12-01

    Proteomics has the potential to elucidate the metabolic pathways and taxa responsible for in situ biogeochemical transformations. However, low rates of protein identification from high resolution mass spectra have been a barrier to the development of proteomics in complex environmental samples. Much of the difficulty lies in the computational challenge of linking mass spectra to their corresponding proteins. Traditional database search methods for matching peptide sequences to mass spectra are often inadequate due to the complexity of environmental proteomes and the large database search space, as we demonstrate with soil and sediment proteomes generated via a range of extraction methods. One alternative to traditional database searching is de novo sequencing, which identifies peptide sequences without the need for a database. BLAST can then be used to match de novo sequences to similar genetic sequences. Assigning confidence to putative identifications has been one hurdle for the implementation of de novo sequencing. We found that accurate de novo sequences can be screened by quality score and length. Screening criteria are verified by comparing the results of de novo sequencing and traditional database searching for well-characterized proteomes from simple biological systems. The BLAST hits of screened sequences are interrogated for taxonomic and functional information. We applied de novo sequencing to organic topsoil and marine sediment proteomes. Peak-rich proteomes, which can result from various extraction techniques, yield thousands of high-confidence protein identifications, an improvement over previous proteomic studies of soil and sediment. User-friendly software tools for de novo metaproteomics analysis have been developed. This "De Novo Analysis" Pipeline is also a faster method of data analysis than constructing a tailored sequence database for traditional database searching.

  16. Fish protein hydrolysate elevates plasma bile acids and reduces visceral adipose tissue mass in rats

    DEFF Research Database (Denmark)

    Liaset, Bjørn; Madsen, Lise; Hao, Qin

    2009-01-01

    Conjugation of bile acids (BAs) to the amino acids taurine or glycine increases their solubility and promotes liver BA secretion. Supplementing diets with taurine or glycine modulates BA metabolism and enhances fecal BA excretion in rats. However, it is still unclear whether dietary proteins...... varying in taurine and glycine contents alter BA metabolism, and thereby modulate the recently discovered systemic effects of BAs. Here we show that rats fed a diet containing saithe fish protein hydrolysate (saithe FPH), rich in taurine and glycine, for 26 days had markedly elevated fasting plasma BA...

  17. Mass spectrometric evidence for the existence of distinct modifications of different proteins by 2(E),4(E)-decadienal.

    Science.gov (United States)

    Zhu, Xiaochun; Tang, Xiaoxia; Zhang, Jianye; Tochtrop, Gregory P; Anderson, Vernon E; Sayre, Lawrence M

    2010-03-15

    2(E),4(E)-Decadienal (DDE), a lipid peroxidation product, was found to covalently modify Lys residues of different proteins by different reactions using mass spectrometry (MALDI-TOF-MS and LC-ESI-MS). DDE mainly formed Lys Schiff base adducts with cytochrome c and ribonuclease A at 10 min, but these reversibly formed adducts almost disappeared after 24 h. In contrast, beta-lactoglobulin (beta-LG) was highly modified by DDE after 24 h. In addition to the Lys Schiff base adducts, DDE formed novel Lys pyridinium adducts as well as Cys Michael adducts with beta-LG.

  18. Mass Spectrometric Evidence for the Existence of Distinct Modifications of Different Proteins by 2(E), 4(E)-Decadienal

    OpenAIRE

    Zhu, Xiaochun; Tang, Xiaoxia; Zhang, Jianye; Tochtrop, Gregory P.; Anderson, Vernon E.; Sayre, Lawrence M.

    2010-01-01

    2(E), 4(E)-Decadienal (DDE), a lipid peroxidation product, was found to covalently modify Lys residues of different proteins by different reactions using mass spectrometry (MALDI-TOF-MS and LC-ESI-MS). DDE mainly formed Lys Schiff base adducts with cytochrome c and ribonuclease A at 10 min, but these reversibly-formed adducts almost disappeared after 24 h. In contrast, β-lactoglobulin (β-LG) was highly modified by DDE after 24 h. In addition to the Lys Schiff base adducts, DDE formed novel Ly...

  19. Study of Drug-Protein Covalent Interactions by Mass Spectrometry. A case study: Epidermal Growth Factor Receptor

    OpenAIRE

    Moretti, Elisa

    2011-01-01

    Study of Drug-Protein Covalent Interactions by Mass Spectrometry A case study: Epidermal Growth Factor Receptor Abstract The epidermal growth factor receptor (EGFR) is a transmembrane glycoprotein belonging to the human EGFR family, which is in turn composed of four members: EGFR (ErbB1), ErbB2, ErbB3 and ErbB4. It is characterized by the presence of an extracellular ligand-binding domain, a transmembrane region, and a cytoplasmatic domain that is endowed with a tyrosine kinase (TK)...

  20. Changes in DNA, dry mass and protein content of leaf epidermis nuclei during aging of perennial monocotyledonous plants

    OpenAIRE

    Hanna Kuran

    2014-01-01

    DNA, NYS and DNFB protein contents were measured cytophotometrically using the Feulgen method in the nuclei of the epidermis from. the basal zone of young leaves and from the basal and apical zones of old leaves in two perennial monocotyledonous species, Clivia miniata and Rhoeo discolor. Dry mass was determined interferometrically. It was shown that nuclei with a 2C DNA content dominated in both zones of old leaves, and that a significant percentage of cells with a DNA content below 2C were ...

  1. A novel mass spectrometric strategy "BEMAP" reveals Extensive O-linked protein glycosylation in Enterotoxigenic Escherichia coli

    DEFF Research Database (Denmark)

    Boysen, Anders; Palmisano, Giuseppe; Krogh, Thøger Jensen;

    2016-01-01

    The attachment of sugars to proteins via side-chain oxygen atoms (O-linked glycosylation) is seen in all three domains of life. However, a lack of widely-applicable analytical tools has restricted the study of this process, particularly in bacteria. In E. coli, only four O-linked glycoproteins have...... previously been characterized. Here we present a glycoproteomics technique, termed BEMAP, which is based on the beta-elimination of O-linked glycans followed by Michael-addition of a phosphonic acid derivative, and subsequent titanium dioxide enrichment. This strategy allows site-specific mass...

  2. Automatic selection of preprocessing methods for improving predictions on mass spectrometry protein profiles.

    Science.gov (United States)

    Pelikan, Richard C; Hauskrecht, Milos

    2010-11-13

    Mass spectrometry proteomic profiling has potential to be a useful clinical screening tool. One obstacle is providing a standardized method for preprocessing the noisy raw data. We have developed a system for automatically determining a set of preprocessing methods among several candidates. Our system's automated nature relieves the analyst of the need to be knowledgeable about which methods to use on any given dataset. Each stage of preprocessing is approached with many competing methods. We introduce metrics which are used to balance each method's attempts to correct noise versus preserving valuable discriminative information. We demonstrate the benefit of our preprocessing system on several SELDI and MALDI mass spectrometry datasets. Downstream classification is improved when using our system to preprocess the data.

  3. CHARACTERIZATION OF MOLECULAR MASS OF SIX WATER-SOLUBLE POLYSACCHARIDE-PROTEIN COMPLEXES FROM GANODERMA TSUGAE MYCELIUM

    Institute of Scientific and Technical Information of China (English)

    Yan-fei Peng; Li-na Zhang; Xiao-juan Xu; Li-guo Cheng

    2003-01-01

    Six water-soluble polysaccharide-protein complexes coded as GM1, GM2, GM3, GM4, GM5 and GM6 were isolated from the mycelium of Ganoderma tsugae by extracting with 0.2 mol/L phosphate buffer solution at 25, 40 and 80℃, water at 120℃, 0.5 mol/L aqueous NaOH solution at 25 and 65℃, consecutively. Their chemical components were analyzed by using IR, GC, HPLC and 13C-NMR, and some new results were obtained. The four samples GM1, GM2, GM3 and GM4 are heteropolysaccharide-protein complexes, in which, α-(1→3) linked D-glucose is the major monosaccharide while galactose, mannose and ribose are the secondary ones. GM5 and GM6 are β-(1→3)-D-glucan-protein complexes. The protein content increased from 32% to 69% with the progress of isolation. Weight-average molecular mass Mw and the intrinsic viscosity [rη] of the GM samples in 0.5 mol/L aqueous NaCl solution at 25℃ were measured systematically by laser light scattering (LLS), size exclusion chromatography (SEC) combined with LLS, and viscometry. The Mw of GM1 to GM6 are 35.5, 46.8, 58.9, 41.6, 3.3 and 22.0 x 104, respectively. The conformation and molecular mass of the two fractions of sample GM5 were characterized satisfactorily by SEC-LLS without further fractionation.

  4. Targeted mass spectrometry analysis of neutrophil-derived proteins released during sepsis progression

    DEFF Research Database (Denmark)

    Malmström, E; Davidova, A; Mörgelin, M

    2014-01-01

    Early diagnosis of severe infectious diseases is essential for timely implementation of lifesaving therapies. In a search for novel biomarkers in sepsis diagnosis we focused on polymorphonuclear neutrophils (PMNs). Notably, PMNs have their protein cargo readily stored in granules and following sy...

  5. Single particle electron microscopy in combination with mass spectrometry to investigate novel complexes of membrane proteins

    NARCIS (Netherlands)

    Arteni, Ana A.; Nowaczyk, Marc; Lax, Julia; Kouřil, Roman; Rögner, Matthias; Boekema, Egbert J.; Kouril, R.; Rogner, M.

    2005-01-01

    Large data sets of molecular projections of the membrane proteins Photosystem I and Photosystem II from cyanobacteria were analyzed by single particle electron microscopy (EM). Analysis resulted in the averaging of 2D projections from the purified complexes but also in the simultaneous detection and

  6. Mass Spectrometry-Based Detection and Assignment of Protein Posttranslational Modifications

    OpenAIRE

    Doll, S.; Burlingame, AL

    2014-01-01

    © 2014 American Chemical Society. Recent advances in mass spectrometry (MS)-based proteomics allow the identification and quantitation of thousands of posttranslational modification (PTM) sites in a single experiment. This follows from the development of more effective class enrichment strategies, new high performance instrumentation and bioinformatic algorithms with rigorous scoring strategies. More widespread use of these combined capabilities have led to a vast expansion in our knowledge o...

  7. The epitopes in wheat proteins for defining toxic units relevant to human health.

    Science.gov (United States)

    Juhász, Angéla; Gell, Gyöngyvér; Békés, Frank; Balázs, Ervin

    2012-11-01

    Wheat-related disorders are well-studied health problems. Knowledge of the composition and amounts of epitopes present in a single wheat sample represents a significant gap, and the detailed wheat proteome datasets now available can provide the necessary information to carry out an estimation of allergen prediction for a single cultivar. The combined use of genome sequence and allergen databases, prediction methodology, and cereal chemistry results in better understanding of the level of toxicity present in the end-products produced from wheat flour. The workflow presented in this review provides information about the number and distribution of epitopes at single protein, or protein fraction, levels. In addition, epitopes present in the highest frequency and harmful proteins expressed in the highest amount can be identified. The "epitope toxicity" value obtained in this way is a significant research output from the analysis of large datasets that can be applied to the food industry.

  8. Identification of oxidized methionine sites in erythrocyte membrane protein by liquid chromatography/electrospray ionization mass spectrometry peptide mapping.

    Science.gov (United States)

    Li, Chunyan; Takazaki, Shinya; Jin, Xiuri; Kang, Dongchon; Abe, Yoshito; Hamasaki, Naotaka

    2006-10-03

    In this study, we used peptide mapping combined with liquid chromatography/electrospray ionization mass spectrometry (LC/ESI MS) to examine the methionine oxidation of band 3 of erythrocyte membrane protein. Initially, we identified the methionine sites oxidized by chloramine T (N-chloro-p-toluenesulfoamide), a hydrophilic reagent. There were three oxidized methionines (Met 559, Met 741, and Met 909) in band 3, and these methionines were located in a hydrophilic region determined by previous topological studies of band 3. In addition, we found that C12E8, a polyoxyethylene detergent, leads to the oxidation of methionines in a transmembrane segment in band 3, and this oxidation occurs in a C12E8 preincubation time-dependent manner. In a previous study, it was found that peroxides accumulate in a polyoxyethylene detergent. Thus, our method enabled the direct and quantitative detection of protein damage due to detergent peroxides. Furthermore, we examined methionine oxidation in the presence of 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS) or diethyl pyrocarbonate (DEPC), which induced either an outward or an inward conformation in band 3, respectively. Our results indicated that the location of Met 741 was associated with the band 3 conformation induced by band 3-mediated anion transport. In conclusion, we found that methionine oxidation can be applied to examine membrane protein structures as follows: (1) for topological studies of membrane proteins, (2) for assessing the quality of proteins in detergent solubilization studies, and (3) for the detection of conformational changes in membrane proteins.

  9. Hydrogen Exchange Mass Spectrometry of Related Proteins with Divergent Sequences: A Comparative Study of HIV-1 Nef Allelic Variants

    Science.gov (United States)

    Wales, Thomas E.; Poe, Jerrod A.; Emert-Sedlak, Lori; Morgan, Christopher R.; Smithgall, Thomas E.; Engen, John R.

    2016-06-01

    Hydrogen exchange mass spectrometry can be used to compare the conformation and dynamics of proteins that are similar in tertiary structure. If relative deuterium levels are measured, differences in sequence, deuterium forward- and back-exchange, peptide retention time, and protease digestion patterns all complicate the data analysis. We illustrate what can be learned from such data sets by analyzing five variants (Consensus G2E, SF2, NL4-3, ELI, and LTNP4) of the HIV-1 Nef protein, both alone and when bound to the human Hck SH3 domain. Regions with similar sequence could be compared between variants. Although much of the hydrogen exchange features were preserved across the five proteins, the kinetics of Nef binding to Hck SH3 were not the same. These observations may be related to biological function, particularly for ELI Nef where we also observed an impaired ability to downregulate CD4 surface presentation. The data illustrate some of the caveats that must be considered for comparison experiments and provide a framework for investigations of other protein relatives, families, and superfamilies with HX MS.

  10. Mass Spectrometry Analysis Coupled with de novo Sequencing Reveals Amino Acid Substitutions in Nucleocapsid Protein from Influenza A Virus

    Directory of Open Access Journals (Sweden)

    Zijian Li

    2014-02-01

    Full Text Available Amino acid substitutions in influenza A virus are the main reasons for both antigenic shift and virulence change, which result from non-synonymous mutations in the viral genome. Nucleocapsid protein (NP, one of the major structural proteins of influenza virus, is responsible for regulation of viral RNA synthesis and replication. In this report we used LC-MS/MS to analyze tryptic digestion of nucleocapsid protein of influenza virus (A/Puerto Rico/8/1934 H1N1, which was isolated and purified by SDS poly-acrylamide gel electrophoresis. Thus, LC-MS/MS analyses, coupled with manual de novo sequencing, allowed the determination of three substituted amino acid residues R452K, T423A and N430T in two tryptic peptides. The obtained results provided experimental evidence that amino acid substitutions resulted from non-synonymous gene mutations could be directly characterized by mass spectrometry in proteins of RNA viruses such as influenza A virus.

  11. Use of colloidal silica-beads for the isolation of cell-surface proteins for mass spectrometry-based proteomics.

    Science.gov (United States)

    Kim, Yunee; Elschenbroich, Sarah; Sharma, Parveen; Sepiashvili, Lusia; Gramolini, Anthony O; Kislinger, Thomas

    2011-01-01

    Chaney and Jacobson first introduced the colloidal silica-bead protocol for the coating of cellular plasma membranes in the early 1980s. Since then, this method has been successfully incorporated into a wide range of in vitro and in vivo applications for the isolation of cell-surface proteins. The principle is simple - cationic colloidal silica microbeads are introduced to a suspension or monolayer of cells in culture. Electrostatic interactions between the beads and the negatively charged plasma membrane, followed by cross-linking to the membrane with an anionic polymer, ensure attachment and maintain the native protein conformation. Cells are subsequently ruptured, and segregation of the resulting plasma membrane sheets from the remaining- cell constituents is achieved by ultracentrifugation through density gradients. The resulting membrane-bead pellet is treated with various detergents or chaotropic agents (i.e., urea) to elute bound proteins. If proteomic profiling by mass spectrometry is desired, proteins are denatured, carbamidomethylated, and digested into peptides prior to chromatography.

  12. Seroprevalence in Chickens against Campylobacter jejuni Flagellar Capping Protein (FliD) in Selected Areas of the United States.

    Science.gov (United States)

    Yeh, H-Y; Hiett, K L; Line, J E; Jagne, J F; Lauer, D C

    2016-06-01

    Campylobacter jejuni is a causative pathogen of human acute bacterial gastroenteritis. Infected poultry products are regarded as a major source for human C. jejuni infection. The flagellar capping protein (FliD) is highly conserved among C. jejuni strains/isolates and is antigenic as analysed by immunoblot. In this study, we used the FliD protein as a probe to survey the prevalence of C. jejuni antibodies in chickens from two areas in the United States. A total of 394 samples were tested. Sera from layer breeders of 44-52 weeks of age tested 100% positive, while 4- to 6-week broilers from 22 premises showed 7-100% positivity. These results demonstrate that anti-FliD antibodies were prevalent in the poultry population in the areas of serum samples collected. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  13. Analysis of metal-binding proteins separated by non-denaturating gel electrophoresis using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS).

    Science.gov (United States)

    Becker, J Susanne; Mounicou, Sandra; Zoriy, Miroslav V; Becker, J Sabine; Lobinski, Ryszard

    2008-09-15

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) have become established as very efficient and sensitive biopolymer and elemental mass spectrometric techniques for studying metal-binding proteins (metalloproteins) in life sciences. Protein complexes present in rat tissues (liver and kidney) were separated in their native state in the first dimension by blue native gel electrophoresis (BN-PAGE). Essential and toxic metals, such as zinc, copper, iron, nickel, chromium, cadmium and lead, were detected by scanning the gel bands using quadrupole LA-ICP-MS with and without collision cell as a microanalytical technique. Several proteins were identified by using MALDI-TOF-MS together with a database search. For example, on one protein band cut from the BN-PAGE gel and digested with the enzyme trypsin, two different proteins - protein FAM44B and cathepsin B precursor - were identified. By combining biomolecular and elemental mass spectrometry, it was possible to characterize and identify selected metal-binding rat liver and kidney tissue proteins.

  14. Reproducibility of mass spectrometry based protein profiles for diagnosis of ovarian cancer across clinical studies

    DEFF Research Database (Denmark)

    Øgendahl Callesen, Anne Kjærgaard; Mogensen, Ole; Jensen, Andreas K;

    2012-01-01

    The focus of this systematic review is to give an overview of the current status of clinical protein profiling studies using MALDI and SELDI MS platforms in the search for ovarian cancer biomarkers. A total of 34 profiling studies were qualified for inclusion in the review. Comparative analysis......, and data analysis. About 47% of the peaks reported to be associated to ovarian cancer were also represented in our experimental study, and 34% of these redetected peaks also showed a significant difference between cases and controls in our study. Thus, despite known problems related to reproducibility...... an overlap in peaks between clinical studies was demonstrated, which indicate convergence toward a set of common discriminating, reproducible peaks for ovarian cancer. The potential of the discriminating protein peaks for clinical use as ovarian cancer biomarkers will be discussed and evaluated. This article...

  15. Isolation of cell surface proteins for mass spectrometry-based proteomics.

    Science.gov (United States)

    Elschenbroich, Sarah; Kim, Yunee; Medin, Jeffrey A; Kislinger, Thomas

    2010-02-01

    Defining the cell surface proteome has profound importance for understanding cell differentiation and cell-cell interactions, as well as numerous pathogenic abnormalities. Owing to their hydrophobic nature, plasma membrane proteins that reside on the cell surface pose analytical challenges and, despite efforts to overcome difficulties, remain under-represented in proteomic studies. Limitations in the classically employed ultracentrifugation-based approaches have led to the invention of more elaborate techniques for the purification of cell surface proteins. Three of these methods--cell surface coating with cationic colloidal silica beads, biotinylation and chemical capture of surface glycoproteins--allow for marked enrichment of this subcellular proteome, with each approach offering unique advantages and characteristics for different experiments. In this article, we introduce the principles of each purification method and discuss applications from the recent literature.

  16. Identification and Characterization of Prostate Cancer Associated Protein Biomarkers Using High-Throughput Mass Spectrometry

    Science.gov (United States)

    2006-09-01

    development of tissue microarray ( TMA ) technology [Kononen et al., 1998] has initiated large-scale studies using tumor tissues. The technique has also...2005]. TMA technology has considerable value in translating the information gained from initial discovery into clinical applications. Protein arrays...Cell Proteomics 1:157–168. Lilley KS, Friedman DB. 2004. All about DIGE: Quantifica- tion technology for differential-display 2D-gel proteo- mics

  17. Preprocessing significantly improves the peptide/protein identification sensitivity of high-resolution isobarically labeled tandem mass spectrometry data.

    Science.gov (United States)

    Sheng, Quanhu; Li, Rongxia; Dai, Jie; Li, Qingrun; Su, Zhiduan; Guo, Yan; Li, Chen; Shyr, Yu; Zeng, Rong

    2015-02-01

    Isobaric labeling techniques coupled with high-resolution mass spectrometry have been widely employed in proteomic workflows requiring relative quantification. For each high-resolution tandem mass spectrum (MS/MS), isobaric labeling techniques can be used not only to quantify the peptide from different samples by reporter ions, but also to identify the peptide it is derived from. Because the ions related to isobaric labeling may act as noise in database searching, the MS/MS spectrum should be preprocessed before peptide or protein identification. In this article, we demonstrate that there are a lot of high-frequency, high-abundance isobaric related ions in the MS/MS spectrum, and removing isobaric related ions combined with deisotoping and deconvolution in MS/MS preprocessing procedures significantly improves the peptide/protein identification sensitivity. The user-friendly software package TurboRaw2MGF (v2.0) has been implemented for converting raw TIC data files to mascot generic format files and can be downloaded for free from https://github.com/shengqh/RCPA.Tools/releases as part of the software suite ProteomicsTools. The data have been deposited to the ProteomeXchange with identifier PXD000994.

  18. Enantioselective determination of protein amino acids in fertilizers by liquid chromatography-tandem mass spectrometry on chiral teicoplanin stationary phase.

    Science.gov (United States)

    Taujenis, Lukas; Olšauskaitė, Vilma; Padarauskas, Audrius

    2014-11-19

    High-performance liquid chromatography on a glycopeptide antibiotic teicoplanin-based chiral stationary phase coupled with tandem mass spectrometry was developed for fast and reliable enantioseparation and determination of protein amino acids in hydrolyzed fertilizer samples. The effect of the mobile phase parameters (type and content of organic modifier and pH) and the column temperature on the enantioselectivity was investigated. Under optimized conditions, the majority (15 of 19) of d/l-amino acid pairs were resolved with a resolution factor (Rs) higher than 1.5 with a run time of 15 min. A triple quadrupole tandem mass spectrometer operating in multiple reaction monitoring mode with an electrospray ionization (ESI) ion source was employed for detection. The method was validated in terms of linearity, limits of detection, limits of quantitation, precision, and accuracy. Linear responses were obtained with determination coefficients higher than 0.998 for all analytes, and limits of detection were from 0.04 to 0.24 μg/mL. Sample spike/recovery experiments gave recovery values ranging from 73% for d-threonine to 116% for L-tryptophan. Relative standard deviations for inter- and intraday precision experiments were lower than 21.7%. The developed method was successfully applied for determination of the free amino acid enantiomers in five commercially available hydrolyzed protein fertilizer samples.

  19. Combining recombinant ribonuclease U2 and protein phosphatase for RNA modification mapping by liquid chromatography-mass spectrometry.

    Science.gov (United States)

    Houser, Whitney M; Butterer, Annika; Addepalli, Balasubrahmanym; Limbach, Patrick A

    2015-06-01

    Ribonuclease (RNase) mapping of modified nucleosides onto RNA sequences is limited by RNase availability. A codon-optimized gene for RNase U2, a purine selective RNase with preference for adenosine, has been designed for overexpression using Escherichia coli as the host. Optimal expression conditions were identified enabling generation of milligram-scale quantities of active RNase U2. RNase U2 digestion products were found to terminate in both 2',3'-cyclic phosphates and 3'-linear phosphates. To generate a homogeneous 3'-linear phosphate set of products, an enzymatic approach was investigated. Bacteriophage lambda protein phosphatase was identified as the optimal enzyme for hydrolyzing cyclic phosphates from RNase U2 products. The compatibility of this enzymatic approach with liquid chromatography-tandem mass spectrometry (LC-MS/MS) RNA modification mapping was then demonstrated. RNase U2 digestion followed by subsequent phosphatase treatment generated nearly 100% 3'-phosphate-containing products that could be characterized by LC-MS/MS. In addition, bacteriophage lambda protein phosphatase can be used to introduce (18)O labels within the 3'-phosphate of digestion products when incubated in the presence of H2(18)O, allowing prior isotope labeling methods for mass spectrometry to include digestion products from RNase U2. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Estimation of adsorption isotherm and mass transfer parameters in protein chromatography using artificial neural networks.

    Science.gov (United States)

    Wang, Gang; Briskot, Till; Hahn, Tobias; Baumann, Pascal; Hubbuch, Jürgen

    2017-03-03

    Mechanistic modeling has been repeatedly successfully applied in process development and control of protein chromatography. For each combination of adsorbate and adsorbent, the mechanistic models have to be calibrated. Some of the model parameters, such as system characteristics, can be determined reliably by applying well-established experimental methods, whereas others cannot be measured directly. In common practice of protein chromatography modeling, these parameters are identified by applying time-consuming methods such as frontal analysis combined with gradient experiments, curve-fitting, or combined Yamamoto approach. For new components in the chromatographic system, these traditional calibration approaches require to be conducted repeatedly. In the presented work, a novel method for the calibration of mechanistic models based on artificial neural network (ANN) modeling was applied. An in silico screening of possible model parameter combinations was performed to generate learning material for the ANN model. Once the ANN model was trained to recognize chromatograms and to respond with the corresponding model parameter set, it was used to calibrate the mechanistic model from measured chromatograms. The ANN model's capability of parameter estimation was tested by predicting gradient elution chromatograms. The time-consuming model parameter estimation process itself could be reduced down to milliseconds. The functionality of the method was successfully demonstrated in a study with the calibration of the transport-dispersive model (TDM) and the stoichiometric displacement model (SDM) for a protein mixture.

  1. Instrumental parameters in the MALDI-TOF mass spectrometric analysis of quaternary protein structures.

    Science.gov (United States)

    Zehl, Martin; Allmaier, Günter

    2005-01-01

    Several former studies have shown that MALDI-TOF-MS can be applied successfully to investigate the quaternary structure of proteins. Whereas most of these reports were focused on MALDI sample preparation, there is little information about the influence of instrumental parameters on the desorption/ionization and gas-phase behavior of protein subunit assemblies. Therefore, in addition of giving short examples of the quaternary structure analysis of a microheterogeneous glycoprotein, a metalloenzyme, and a heme-binding enzyme by MALDI-TOF-MS, we report a systematic study of the effect of some instrumental parameters on the analysis of chicken egg white avidin. From these tested parameters, only the laser pulse energy was found to influence the relative abundance of the intact assembly as well as the formation of nonspecific cluster ions significantly. This finding suggests that the disruption of the noncovalent interactions during the desorption/ionization process takes place at a very short time interval after the laser ablation, whereas those assemblies that survive this step are rather stable afterward in the gas phase. In addition, we present clear evidence that protein cluster ions are not preformed during sample preparation but originate from nonspecific assemblage during desorption/ionization.

  2. Accurate proteome-wide protein quantification from high-resolution 15N mass spectra.

    Science.gov (United States)

    Khan, Zia; Amini, Sasan; Bloom, Joshua S; Ruse, Cristian; Caudy, Amy A; Kruglyak, Leonid; Singh, Mona; Perlman, David H; Tavazoie, Saeed

    2011-12-19

    In quantitative mass spectrometry-based proteomics, the metabolic incorporation of a single source of 15N-labeled nitrogen has many advantages over using stable isotope-labeled amino acids. However, the lack of a robust computational framework for analyzing the resulting spectra has impeded wide use of this approach. We have addressed this challenge by introducing a new computational methodology for analyzing 15N spectra in which quantification is integrated with identification. Application of this method to an Escherichia coli growth transition reveals significant improvement in quantification accuracy over previous methods.

  3. Exercise Preserves Lean Mass and Performance during Severe Energy Deficit: The Role of Exercise Volume and Dietary Protein Content

    Directory of Open Access Journals (Sweden)

    Jose A. L. Calbet

    2017-07-01

    Full Text Available The loss of fat-free mass (FFM caused by very-low-calorie diets (VLCD can be attenuated by exercise. The aim of this study was to determine the role played by exercise and dietary protein content in preserving the lean mass and performance of exercised and non-exercised muscles, during a short period of extreme energy deficit (~23 MJ deficit/day. Fifteen overweight men underwent three consecutive experimental phases: baseline assessment (PRE, followed by 4 days of caloric restriction and exercise (CRE and then 3 days on a control diet combined with reduced exercise (CD. During CRE, the participants ingested a VLCD and performed 45 min of one-arm cranking followed by 8 h walking each day. The VLCD consisted of 0.8 g/kg body weight/day of either whey protein (PRO, n = 8 or sucrose (SU, n = 7. FFM was reduced after CRE (P < 0.001, with the legs and the exercised arm losing proportionally less FFM than the control arm [57% (P < 0.05 and 29% (P = 0.05, respectively]. Performance during leg pedaling, as reflected by the peak oxygen uptake and power output (Wpeak, was reduced after CRE by 15 and 12%, respectively (P < 0.05, and recovered only partially after CD. The deterioration of cycling performance was more pronounced in the whey protein than sucrose group (P < 0.05. Wpeak during arm cranking was unchanged in the control arm, but improved in the contralateral arm by arm cranking. There was a linear relationship between the reduction in whole-body FFM between PRE and CRE and the changes in the cortisol/free testosterone ratio (C/FT, serum isoleucine, leucine, tryptophan, valine, BCAA, and EAA (r = −0.54 to −0.71, respectively, P < 0.05. C/FT tended to be higher in the PRO than the SU group following CRE (P = 0.06. In conclusion, concomitant low-intensity exercise such as walking or arm cranking even during an extreme energy deficit results in remarkable preservation of lean mass. The intake of proteins alone may be associated with greater

  4. Mass spectrometry-based quantitative proteomic analysis of Salmonella enterica serovar Enteritidis protein expression upon exposure to hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Su Jing

    2010-06-01

    Full Text Available Abstract Background Salmonella enterica, a common food-borne bacterial pathogen, is believed to change its protein expression profile in the presence of different environmental stress such as that caused by the exposure to hydrogen peroxide (H2O2, which can be generated by phagocytes during infection and represents an important antibacterial mechanism of host cells. Among Salmonella proteins, the effectors of Salmonella pathogenicity island 1 and 2 (SPI-1 and SPI-2 are of particular interest since they are expressed during host infection in vivo and are important for invasion of epithelial cells and for replication in organs during systemic infection, respectively. However, the expression profiles of these proteins upon exposure to H2O2 or to host cells in vivo during the established phase of systemic infection have not been extensively studied. Results Using stable isotope labeling coupled with mass spectrometry, we performed quantitative proteomic analysis of Salmonella enterica serovar Enteritidis and identified 76 proteins whose expression is modulated upon exposure to H2O2. SPI-1 effector SipC was expressed about 3-fold higher and SopB was expressed approximately 2-fold lower in the presence of H2O2, while no significant change in the expression of another SPI-1 protein SipA was observed. The relative abundance of SipA, SipC, and SopB was confirmed by Western analyses, validating the accuracy and reproducibility of our approach for quantitative analysis of protein expression. Furthermore, immuno-detection showed substantial expression of SipA and SipC but not SopB in the late phase of infection in macrophages and in the spleen of infected mice. Conclusions We have identified Salmonella proteins whose expression is modulated in the presence of H2O2. Our results also provide the first direct evidence that SipC is highly expressed in the spleen at late stage of salmonellosis in vivo. These results suggest a possible role of SipC and other

  5. Improving low-level plasma protein mass spectrometry-based detection for candidate biomarker discovery and validation

    Energy Technology Data Exchange (ETDEWEB)

    Page, Jason S.; Kelly, Ryan T.; Camp, David G.; Smith, Richard D.

    2008-09-01

    Methods. To improve the detection of low abundance protein candidate biomarker discovery and validation, particularly in complex biological fluids such as blood plasma, increased sensitivity is desired using mass spectrometry (MS)-based instrumentation. A key current limitation on the sensitivity of electrospray ionization (ESI) MS is due to the fact that many sample molecules in solution are never ionized, and the vast majority of the ions that are created are lost during transmission from atmospheric pressure to the low pressure region of the mass analyzer. Two key technologies, multi-nanoelectrospray emitters and the electrodynamic ion funnel have recently been developed and refined at Pacific Northwest National Laboratory (PNNL) to greatly improve the ionization and transmission efficiency of ESI MS based analyses. Multi-emitter based ESI enables the flow from a single source (typically a liquid chromatography [LC] column) to be divided among an array of emitters (Figure 1). The flow rate delivered to each emitter is thus reduced, allowing the well-documented benefits of nanoelectrospray 1 for both sensitivity and quantitation to be realized for higher flow rate separations. To complement the increased ionization efficiency afforded by multi-ESI, tandem electrodynamic ion funnels have also been developed at PNNL, and shown to greatly improve ion transmission efficiency in the ion source interface.2, 3 These technologies have been integrated into a triple quadrupole mass spectrometer for multiple reaction monitoring (MRM) of probable biomarker candidates in blood plasma and show promise for the identification of new species even at low level concentrations.

  6. Full validation of therapeutic antibody sequences by middle-up mass measurements and middle-down protein sequencing.

    Science.gov (United States)

    Resemann, Anja; Jabs, Wolfgang; Wiechmann, Anja; Wagner, Elsa; Colas, Olivier; Evers, Waltraud; Belau, Eckhard; Vorwerg, Lars; Evans, Catherine; Beck, Alain; Suckau, Detlev

    2016-01-01

    The regulatory bodies request full sequence data assessment both for innovator and biosimilar monoclonal antibodies (mAbs). Full sequence coverage is typically used to verify the integrity of the analytical data obtained following the combination of multiple LC-MS/MS datasets from orthogonal protease digests (so called "bottom-up" approaches). Top-down or middle-down mass spectrometric approaches have the potential to minimize artifacts, reduce overall analysis time and provide orthogonality to this traditional approach. In this work we report a new combined approach involving middle-up LC-QTOF and middle-down LC-MALDI in-source decay (ISD) mass spectrometry. This was applied to cetuximab, panitumumab and natalizumab, selected as representative US Food and Drug Administration- and European Medicines Agency-approved mAbs. The goal was to unambiguously confirm their reference sequences and examine the general applicability of this approach. Furthermore, a new measure for assessing the integrity and validity of results from middle-down approaches is introduced - the "Sequence Validation Percentage." Full sequence data assessment of the 3 antibodies was achieved enabling all 3 sequences to be fully validated by a combination of middle-up molecular weight determination and middle-down protein sequencing. Three errors in the reference amino acid sequence of natalizumab, causing a cumulative mass shift of only -2 Da in the natalizumab Fd domain, were corrected as a result of this work.

  7. Directly coupled high-performance liquid chromatography-accelerator mass spectrometry measurement of chemically modified protein and peptides.

    Science.gov (United States)

    Thomas, Avi T; Stewart, Benjamin J; Ognibene, Ted J; Turteltaub, Kenneth W; Bench, Graham

    2013-04-02

    Quantitation of low-abundance protein modifications involves significant analytical challenges, especially in biologically important applications, such as studying the role of post-translational modifications in biology and measurement of the effects of reactive drug metabolites. (14)C labeling combined with accelerator mass spectrometry (AMS) provides exquisite sensitivity for such experiments. Here, we demonstrate real-time (14)C quantitation of high-performance liquid chromatography (HPLC) separations by liquid sample accelerator mass spectrometry (LS-AMS). By enabling direct HPLC-AMS coupling, LS-AMS overcomes several major limitations of conventional HPLC-AMS, where individual HPLC fractions must be collected and converted to graphite before measurement. To demonstrate LS-AMS and compare the new technology to traditional solid sample AMS (SS-AMS), reduced and native bovine serum albumin (BSA) was modified by (14)C-iodoacetamide, with and without glutathione present, producing adducts on the order of 1 modification in every 10(6) to 10(8) proteins. (14)C incorporated into modified BSA was measured by solid carbon AMS and LS-AMS. BSA peptides were generated by tryptic digestion. Analysis of HPLC-separated peptides was performed in parallel by LS-AMS, fraction collection combined with SS-AMS, and (for peptide identification) electrospray ionization and tandem mass spectrometry (ESI-MS/MS). LS-AMS enabled (14)C quantitation from ng sample sizes and was 100 times more sensitive to (14)C incorporated in HPLC-separated peptides than SS-AMS, resulting in a lower limit of quantitation of 50 zmol (14)C/peak. Additionally, LS-AMS turnaround times were minutes instead of days, and HPLC trace analyses required 1/6th the AMS instrument time required for analysis of graphite fractions by SS-AMS.

  8. The Demethylase Activity of FTO (Fat Mass and Obesity Associated Protein Is Required for Preadipocyte Differentiation.

    Directory of Open Access Journals (Sweden)

    Meizi Zhang

    Full Text Available FTO (fat mass and obesity associated gene was genetically identified to be associated with body mass index (BMI, presumably through functional regulation of energy homeostasis. However, the cellular and molecular mechanisms by which FTO functions remain largely unknown. Using 3T3-L1 preadipocyte as a model to study the role of FTO in adipogenesis, we demonstrated that FTO is functionally required for 3T3-L1 differentiation. FTO knock-down with siRNA inhibited preadipocyte differentiation, whereas ectopic over-expression of FTO enhanced the process. The demethylase activity of FTO is required for differentiation. Level of N6-methyladenosine (m6A is decreased in cells over-expressing FTO. In contrast, overexpression of R96Q, a FTO missense mutant lack of demethylase activity, had no effect on cellular m6A level and impeded differentiation. Treatment with Rosiglitazone, a PPARγ agonist, could overcome the differentiation inhibition imposed by R96Q mutant, suggesting the effect of FTO is mediated through PPARγ.

  9. Effective Application of Bicelles for Conformational Analysis of G Protein-Coupled Receptors by Hydrogen/Deuterium Exchange Mass Spectrometry

    Science.gov (United States)

    Duc, Nguyen Minh; Du, Yang; Thorsen, Thor S.; Lee, Su Youn; Zhang, Cheng; Kato, Hideaki; Kobilka, Brian K.; Chung, Ka Young

    2015-05-01

    G protein-coupled receptors (GPCRs) have important roles in physiology and pathology, and 40% of drugs currently on the market target GPCRs for the treatment of various diseases. Because of their therapeutic importance, the structural mechanism of GPCR signaling is of great interest in the field of drug discovery. Hydrogen/deuterium exchange mass spectrometry (HDX-MS) is a useful tool for analyzing ligand binding sites, the protein-protein interaction interface, and conformational changes of proteins. However, its application to GPCRs has been limited for various reasons, including the hydrophobic nature of GPCRs and the use of detergents in their preparation. In the present study, we tested the application of bicelles as a means of solubilizing GPCRs for HDX-MS studies. GPCRs (e.g., β2-adrenergic receptor [β2AR], μ-opioid receptor, and protease-activated receptor 1) solubilized in bicelles produced better sequence coverage (greater than 90%) than GPCRs solubilized in n-dodecyl-β-D-maltopyranoside (DDM), suggesting that bicelles are a more effective method of solubilization for HDX-MS studies. The HDX-MS profile of β2AR in bicelles showed that transmembrane domains (TMs) undergo lower deuterium uptake than intracellular or extracellular regions, which is consistent with the fact that the TMs are highly ordered and embedded in bicelles. The overall HDX-MS profiles of β2AR solubilized in bicelles and in DDM were similar except for intracellular loop 3. Interestingly, we detected EX1 kinetics, an important phenomenon in protein dynamics, at the C-terminus of TM6 in β2AR. In conclusion, we suggest the application of bicelles as a useful method for solubilizing GPCRs for conformational analysis by HDX-MS.

  10. Strategies in protein sequencing and characterization: Multi-enzyme digestion coupled with alternate CID/ETD tandem mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Nardiello, Donatella; Palermo, Carmen, E-mail: carmen.palermo@unifg.it; Natale, Anna; Quinto, Maurizio; Centonze, Diego

    2015-01-07

    Highlights: • Multi-enzyme digestion for protein sequencing and characterization by CID/ETD. • Simultaneous use of trypsin/chymotrypsin for the maximization of sequence. • Identification of PTMs, sequence variants and species-specific residues. • Increase of accuracy in sequence assignments by orthogonal fragmentation techniques. - Abstract: A strategy based on a simultaneous multi-enzyme digestion coupled with electron transfer dissociation (ETD) and collision-induced dissociation (CID) was developed for protein sequencing and characterization, as a valid alternative platform in ion-trap based proteomics. The effect of different proteolytic procedures using chymotrypsin, trypsin, a combination of both, and Lys-C, was carefully evaluated in terms of number of identified peptides, protein coverage, and score distribution. A systematic comparison between CID and ETD is shown for the analysis of peptides originating from the in-solution digestion of standard caseins. The best results were achieved with a trypsin/chymotrypsin mix combined with CID and ETD operating in alternating mode. A post-database search validation of MS/MS dataset was performed, then, the matched peptides were cross checked by the evaluation of ion scores, rank, number of experimental product ions, and their relative abundances in the MS/MS spectrum. By integrated CID/ETD experiments, high quality-spectra have been obtained, thus allowing a confirmation of spectral information and an increase of accuracy in peptide sequence assignments. Overlapping peptides, produced throughout the proteins, reduce the ambiguity in mapping modifications between natural variants and animal species, and allow the characterization of post translational modifications. The advantages of using the enzymatic mix trypsin/chymotrypsin were confirmed by the nanoLC and CID/ETD tandem mass spectrometry of goat milk proteins, previously separated by two-dimensional gel electrophoresis.

  11. Preserved Proteins from Extinct Bison latifrons Identified by Tandem Mass Spectrometry; Hydroxylysine Glycosides are a Common Feature of Ancient Collagen.

    Science.gov (United States)

    Hill, Ryan C; Wither, Matthew J; Nemkov, Travis; Barrett, Alexander; D'Alessandro, Angelo; Dzieciatkowska, Monika; Hansen, Kirk C

    2015-07-01

    Bone samples from several vertebrates were collected from the Ziegler Reservoir fossil site, in Snowmass Village, Colorado, and processed for proteomics analysis. The specimens come from Pleistocene megafauna Bison latifrons, dating back ∼ 120,000 years. Proteomics analysis using a simplified sample preparation procedure and tandem mass spectrometry (MS/MS) was applied to obtain protein identifications. Several bioinformatics resources were used to obtain peptide identifications based on sequence homology to extant species with annotated genomes. With the exception of soil sample controls, all samples resulted in confident peptide identifications that mapped to type I collagen. In addition, we analyzed a specimen from the extinct B. latifrons that yielded peptide identifications mapping to over 33 bovine proteins. Our analysis resulted in extensive fibrillar collagen sequence coverage, including the identification of posttranslational modifications. Hydroxylysine glucosylgalactosylation, a modification thought to be involved in collagen fiber formation and bone mineralization, was identified for the first time in an ancient protein dataset. Meta-analysis of data from other studies indicates that this modification may be common in well-preserved prehistoric samples. Additional peptide sequences from extracellular matrix (ECM) and non-ECM proteins have also been identified for the first time in ancient tissue samples. These data provide a framework for analyzing ancient protein signatures in well-preserved fossil specimens, while also contributing novel insights into the molecular basis of organic matter preservation. As such, this analysis has unearthed common posttranslational modifications of collagen that may assist in its preservation over time. The data are available via ProteomeXchange with identifier PXD001827.

  12. The use of label-free mass spectrometry for relative quantification of sarcoplasmic proteins during the processing of dry-cured ham.

    Science.gov (United States)

    Gallego, Marta; Mora, Leticia; Concepción Aristoy, M; Toldrá, Fidel

    2016-04-01

    The aim of this work was to quantify changes in the abundance of the major sarcoplasmic proteins throughout the ham dry-curing process by using a label-free mass spectrometry methodology based on the measurement of mass spectral peak intensities obtained from the extracted ion chromatogram. For this purpose, extraction of sarcoplasmic proteins was followed by trypsin digestion and analysis by nanoliquid chromatography coupled to tandem mass spectrometry (Q/TOF) for the identification and relative quantification of sarcoplasmic proteins through individual quantification of trypsinised peptides. In total, 20 proteins, including 12 glycolytic enzymes, were identified and quantified. The accuracy of the protocol was based on MS/MS replicates, and beta-lactoglobulin protein was used to normalise data and correct possible variations during sample preparation or LC-MS/MS analysis. Mass spectrometry-based proteomics provides precise identification and quantification of proteins in comparison with traditional methodologies based on gel electrophoresis, especially in the case of overlapping proteins. Moreover, the label-free approach used in this study proved to be a simple, fast, reliable method for evaluating proteolytic degradation of sarcoplasmic proteins during the processing of dry-cured ham.

  13. Efficacy of whey protein supplementation on resistance exercise-induced changes in muscle strength, lean mass, and function in mobility-limited older adults

    Science.gov (United States)

    Whey protein supplementation may augment resistance exercise-induced increases in muscle strength and mass. Further studies are required to determine whether this effect extends to functionally compromised older adults. The objectives of the study were to compare the effects of whey protein concent...

  14. Rapid Identification of Protein Biomarkers of E. coli O157:H7 by MALDI-TOF-TOF Mass Spectrometry and Top-Down Proteomics

    Science.gov (United States)

    We have identified six protein biomarkers from two strains of E. coli O157:H7 and one non-pathogenic E. coli strain by matrix-assisted laser desorption/ionization (MALDI) time-of-flight/time-of-flight tandem mass spectrometry (TOF/TOF-MS/MS) and top-down proteomics. Mature, intact proteins were ext...

  15. Are Visceral Proteins Valid Markers for Nutritional Status in the Burn Intensive Care Unit?

    Science.gov (United States)

    2015-05-01

    B. A., Pidcoke H. F., Chung K. K., Wade C. E., Martini W. Z., Renz E. M., Wolf S. E., 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7...unable to perform indirect calorimetry . Indirect calo- rimetry was performed to measure the REE when clinically available. An activity factor of 1.2...and 1.4 was used clinically with the Carlson or Milner equa- tions and with indirect calorimetry because these lev- els have been found to increase

  16. Tandem Affinity Purification Approach Coupled to Mass Spectrometry to Identify Post-translational Modifications of Histones Associated with Chromatin-Binding Proteins.

    Science.gov (United States)

    Beyer, Sophie; Robin, Philippe; Ait-Si-Ali, Slimane

    2017-01-01

    Protein purification by tandem affinity purification (TAP)-tag coupled to mass spectrometry analysis is usually used to reveal protein complex composition. Here we describe a TAP-tag purification of chromatin-bound proteins along with associated nucleosomes, which allow exhaustive identification of protein partners. Moreover, this method allows exhaustive identification of the post-translational modifications (PTMs) of the associated histones. Thus, in addition to partner characterization, this approach reveals the associated epigenetic landscape that can shed light on the function and properties of the studied chromatin-bound protein.

  17. Titanium Dioxide Photocatalytic Polymerization of Acrylamide for Gel Electrophoresis (TIPPAGE) of Proteins and Structural Identification by Mass Spectrometry.

    Science.gov (United States)

    Zhang, Wenyang; Yuan, Zhiwei; Huang, Lulu; Kang, Jie; Jiang, Ruowei; Zhong, Hongying

    2016-02-11

    Polyacrylamide gel electrophoresis (PAGE) coupled with mass spectrometry has been well established for separating, identifying and quantifying protein mixtures from cell lines, tissues or other biological samples. The copolymerization process of acrylamide and bis-acrylamide is the key to mastering this powerful technique. In general, this is a vinyl addition reaction initiated by free radical-generating reagents such as ammonium persulfate (APS) and tetramethylethyl