WorldWideScience

Sample records for unirradiated crystalline nanoparticles

  1. Biocompatibility of crystalline opal nanoparticles

    Directory of Open Access Journals (Sweden)

    Hernández-Ortiz Marlen

    2012-10-01

    Full Text Available Abstract Background Silica nanoparticles are being developed as a host of biomedical and biotechnological applications. For this reason, there are more studies about biocompatibility of silica with amorphous and crystalline structure. Except hydrated silica (opal, despite is presents directly and indirectly in humans. Two sizes of crystalline opal nanoparticles were investigated in this work under criteria of toxicology. Methods In particular, cytotoxic and genotoxic effects caused by opal nanoparticles (80 and 120 nm were evaluated in cultured mouse cells via a set of bioassays, methylthiazolyldiphenyl-tetrazolium-bromide (MTT and 5-bromo-2′-deoxyuridine (BrdU. Results 3T3-NIH cells were incubated for 24 and 72 h in contact with nanocrystalline opal particles, not presented significant statistically difference in the results of cytotoxicity. Genotoxicity tests of crystalline opal nanoparticles were performed by the BrdU assay on the same cultured cells for 24 h incubation. The reduction of BrdU-incorporated cells indicates that nanocrystalline opal exposure did not caused unrepairable damage DNA. Conclusions There is no relationship between that particles size and MTT reduction, as well as BrdU incorporation, such that the opal particles did not induce cytotoxic effect and genotoxicity in cultured mouse cells.

  2. Radiation induced synthesis of In{sub 2}O{sub 3} nanoparticles - Part II: Synthesis of In{sub 2}O{sub 3} nanoparticles by thermal decomposition of un-irradiated and γ-irradiated indium acetylacetonate

    Energy Technology Data Exchange (ETDEWEB)

    Al-Resheedi, Ajayb Saud; Alhokbany, Norah Saad [Department of Chemistry, College of Science, King Saud University, KSU, (Saudi Arabia); Mahfouz, Refaat Mohammed, E-mail: rmhfouz@science.au.edu.eg [Chemistry Department, Faculty of Science, Assiut University, AUN, (Egypt)

    2015-09-15

    Pure cubic phase, In{sub 2}O{sub 3} nanoparticles with porous structure were synthesized by solid state thermal oxidation of un-irradiated and γ-irradiated indium acetyl acetonate in presence and absence of sodium dodecyl sulphate as surfactant. The as- synthesized In{sub 2}O{sub 3} nanoparticles were characterized by X-ray diffraction (XRD), fourier transformation infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transition electron microscopy (TEM) and thermogravimetry (TG). The shapes and morphologies of as- synthesized In{sub 2}O{sub 3} nanoparticles were highly affected by γ-irradiation of indium acetyl acetonate precursor and by addition of sodium dodecyl sulphate as surfactant. Calcination of un-irradiated indium acetyl acetonate precursor to 4 hours of 600 °C leads to the formation of spherical- shaped accumulative and merged In{sub 2}O{sub 3} nanoparticles with porous structure, whereas irregular porous architectures composed of pure In{sub 2}O{sub 3} nanoparticles were obtained by using γ-irradiated indium acetylacetonate precursor. The as- prepared In{sub 2}O{sub 3} nano products exhibit photoluminescence emission (PL) property and display thermal stability in a wide range of temperature (25-800 °C) which suggest possible applications in nanoscale optoelectronic devices. (author)

  3. Shaped Ni nanoparticles with an unconventional hcp crystalline structure.

    Science.gov (United States)

    Kim, Chanyeon; Kim, Cheonghee; Lee, Kangtaek; Lee, Hyunjoo

    2014-06-18

    Hourglass-shaped Ni nanoparticles were synthesized with a hexagonal close packed (hcp) structure. The unconventional crystalline structure could be stabilized by intensive utilization of hexadecylamine. The dense organic layer on the surface protected the meta-stable crystalline structure.

  4. Model Free Approach for Non-Isothermal Decomposition of Un-Irradiated and g-Irradiated Silver Acetate: New Route for Synthesis of Ag2O Nanoparticles

    Directory of Open Access Journals (Sweden)

    Naser M. Abd El-Salam

    2010-09-01

    Full Text Available Kinetic studies for the non-isothermal decomposition of unirradiated and γ‑irradiated silver acetate with 103 kGy total γ-ray doses were carried out in air. The results showed that the decomposition proceeds in one major step in the temperature range of (180–270 °C with the formation of Ag2O as solid residue. The non-isothermal data for un‑irradiated and γ-irradiated silver acetate were analyzed using Flynn-Wall-Ozawa (FWO and nonlinear Vyazovkin (VYZ iso-conversional methods. These free models on the investigated data showed a systematic dependence of Ea on a indicating a simple decomposition process. No significant changes in the thermal decomposition behavior of silver acetate were recorded as a result of γ-irradiation. Calcinations of γ-irradiated silver acetate (CH3COOAg at 200 °C for 2 hours only led to the formation of pure Ag2O mono-dispersed nanoparticles. X-ray diffraction, FTIR and SEM techniques were employed for characterization of the synthesized nanoparticles.

  5. Bicontinuous cubic liquid crystalline nanoparticles for oral delivery of Doxorubicin

    DEFF Research Database (Denmark)

    Swarnakar, Nitin K; Thanki, Kaushik; Jain, Sanyog

    2014-01-01

    PURPOSE: The present study explores the potential of bicontinous cubic liquid crystalline nanoparticles (LCNPs) for improving therapeutic potential of doxorubicin. METHODS: Phytantriol based Dox-LCNPs were prepared using hydrotrope method, optimized for various formulation components, process...... variables and lyophilized. Structural elucidation of the reconstituted formulation was performed using HR-TEM and SAXS analysis. The developed formulation was subjected to exhaustive cell culture experiments for delivery potential (Caco-2 cells) and efficacy (MCF-7 cells). Finally, in vivo pharmacokinetics...

  6. Sharp and Bright Photoluminescence Emission of Single Crystalline Diacetylene Nanoparticles

    CERN Document Server

    Kima, Seokho; Kima, Hyeong Tae; Cuic, Chunzhi; Park, Dong Hyuk

    2016-01-01

    Amorphous nanoparticles (NPs) of diacetylene (DA) molecules were prepared by using a reprecipitation method. After crystallization through solvent-vapor annealing process, the highly crystalline DA NPs show different structural and optical characteristics compared with the amorphous DA NPs. The single crystal structure of DA NPs was confirmed by high-resolution transmission electron microscopy (HR-TEM) and wide angle X-ray scattering (WAXS). The luminescence color and photoluminescence (PL) characteristics of the DA NPs were measured using color charge-coupled device (CCD) images and high-resolution laser confocal microscope (LCM). The crystalline DA NPs emit bright green light emission compared with amorphous DA NPs and the main PL peak of the crystalline DA NPs exhibits relative narrow and blue shift phenomena due to enhanced interaction between DA molecular in the nano-size crystal structure.

  7. Quantitative Analysis of Matrine in Liquid Crystalline Nanoparticles by HPLC

    Directory of Open Access Journals (Sweden)

    Xinsheng Peng

    2014-01-01

    Full Text Available A reversed-phase high-performance liquid chromatographic method has been developed to quantitatively determine matrine in liquid crystal nanoparticles. The chromatographic method is carried out using an isocratic system. The mobile phase was composed of methanol-PBS(pH6.8-triethylamine (50 : 50 : 0.1% with a flow rate of 1 mL/min with SPD-20A UV/vis detector and the detection wavelength was at 220 nm. The linearity of matrine is in the range of 1.6 to 200.0 μg/mL. The regression equation is y=10706x-2959 (R2=1.0. The average recovery is 101.7%; RSD=2.22%  (n=9. This method provides a simple and accurate strategy to determine matrine in liquid crystalline nanoparticle.

  8. Solubility increases associated with crystalline drug nanoparticles: methodologies and significance.

    Science.gov (United States)

    Van Eerdenbrugh, Bernard; Vermant, Jan; Martens, Johan A; Froyen, Ludo; Humbeeck, Jan Van; Van den Mooter, Guy; Augustijns, Patrick

    2010-10-01

    In this manuscript, the determination of solubility of crystalline drug nanosuspensions by a range of methods is critically investigated. As the determinations of solubility were performed in the presence of the solubilizing nanosuspension stabilizer d-α-tocopherol polyethylene glycol 1000 succinate (TPGS), the potential effects of this excipient on the measurements were studied first. Solubility data of nanosuspensions of itraconazole, loviride, phenytoin and naproxen were generated using different methodologies. Data obtained using separation-based methodologies (centrifugation, filtration and ultracentrifugation) proved to be of limited use, due to poor nanoparticle separation efficiencies and/or significant adsorption of TPGS onto the nanoparticle surfaces. Light scattering and turbidity were found to be more suitable for the determination of nanosuspension solubility. The obtained data show that, unlike earlier reports, the solubility increases due to nanosizing are small, with measured increases of only 15%. These solubility increases are in fair agreement with what would be predicted based on the Ostwald-Freundlich equation.

  9. Novel Crystalline SiO2 Nanoparticles via Annelids Bioprocessing of Agro-Industrial Wastes

    Science.gov (United States)

    Espíndola-Gonzalez, A.; Martínez-Hernández, A. L.; Angeles-Chávez, C.; Castaño, V. M.; Velasco-Santos, C.

    2010-09-01

    The synthesis of nanoparticles silica oxide from rice husk, sugar cane bagasse and coffee husk, by employing vermicompost with annelids ( Eisenia foetida) is reported. The product ( humus) is calcinated and extracted to recover the crystalline nanoparticles. X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and dynamic light scattering (DLS) show that the biotransformation allows creating specific crystalline phases, since equivalent particles synthesized without biotransformation are bigger and with different crystalline structure.

  10. Novel Crystalline SiO2 Nanoparticles via Annelids Bioprocessing of Agro-Industrial Wastes

    Directory of Open Access Journals (Sweden)

    Angeles-Chávez C

    2010-01-01

    Full Text Available Abstract The synthesis of nanoparticles silica oxide from rice husk, sugar cane bagasse and coffee husk, by employing vermicompost with annelids (Eisenia foetida is reported. The product (humus is calcinated and extracted to recover the crystalline nanoparticles. X-ray diffraction (XRD, transmission electron microscopy (TEM, high-resolution transmission electron microscopy (HRTEM and dynamic light scattering (DLS show that the biotransformation allows creating specific crystalline phases, since equivalent particles synthesized without biotransformation are bigger and with different crystalline structure.

  11. Characterization of crystalline dendrimer-stabilized gold nanoparticles

    Science.gov (United States)

    Shi, Xiangyang; Ganser, T. Rose; Sun, Kai; Balogh, Lajos P.; Baker, James R., Jr.

    2006-02-01

    Monodispersed, highly crystalline dendrimer-stabilized gold nanoparticles (Au DSNPs) were synthesized via hydrazine reduction chemistry and stabilized using primary amine-terminated poly(amidoamine) (PAMAM) dendrimers of different generations (generations 2-6) with the same molar ratios of dendrimer terminal nitrogen ligands/gold atoms. The sizes of the synthesized Au DSNPs decrease with the increase of the number of dendrimer generations. These Au DSNPs are fluorescent and display strong blue emission intensity at 458 nm. Polyacrylamide gel electrophoresis (PAGE) analysis indicates that all Au DSNPs are stable and both metal NPs and dendrimer stabilizers do not separate from each other during the electrophoresis process. The synthesized inorganic/organic hybrid Au DSNPs provide new nanoplatforms that will be further modified with various biological ligands for the application of biosensing and targeted cancer therapeutics.

  12. Size-dependent crystalline fluctuation and growth mechanism of bismuth nanoparticles under electron beam irradiation

    Science.gov (United States)

    Wu, Sujuan; Jiang, Yi; Hu, Lijun; Sun, Jianguo; Wan, Piaopiao; Sun, Lidong

    2016-06-01

    Advanced nanofabrication requires accurate tailoring of various nanostructures with the assistance of electron or ion beam irradiation. However, evolution of the nanostructures under the beam irradiation significantly affects the fabrication process. It is thus of paramount importance to study the evolution behaviors and growth mechanism of the nanostructures. In this study, bismuth nanoparticles were selected to investigate crystalline fluctuation under electron beam irradiation via transmission electron microscopy. The results disclose size-dependent crystalline fluctuation of the nanoparticles. The particles exhibit crystalline and non-crystalline features for sizes of above 15 and below 4 nm, respectively, while a mixture of the two states is observed with sizes in between. The crystalline fluctuation facilitates the growth process of the particles when a crystalline particle is in contact with another non-crystalline one. This is promising for applications in nanofabrication where high quality interfaces are desired between two joining parts.Advanced nanofabrication requires accurate tailoring of various nanostructures with the assistance of electron or ion beam irradiation. However, evolution of the nanostructures under the beam irradiation significantly affects the fabrication process. It is thus of paramount importance to study the evolution behaviors and growth mechanism of the nanostructures. In this study, bismuth nanoparticles were selected to investigate crystalline fluctuation under electron beam irradiation via transmission electron microscopy. The results disclose size-dependent crystalline fluctuation of the nanoparticles. The particles exhibit crystalline and non-crystalline features for sizes of above 15 and below 4 nm, respectively, while a mixture of the two states is observed with sizes in between. The crystalline fluctuation facilitates the growth process of the particles when a crystalline particle is in contact with another non-crystalline

  13. Cobalt-assisted in situ synthesis of crystalline bismuth nanoparticle arrays

    Science.gov (United States)

    Lee, Ho Seok; Noh, Jin-Seo; Suh, Kwang S.

    2014-12-01

    Almost monodisperse, crystalline Bi nanoparticle arrays were synthesized using a newly developed method, magnetically assisted growth of Bi nanoparticles (MAGBINs). The MAGBIN utilizes co-sputtering from Bi and Co targets at an elevated temperature. Crystalline Bi nanoparticles with hexagonal morphology were formed in situ on a Si substrate with a thin surface oxide during this process. The size and density of Bi nanoparticles could be controlled by adjusting the relative powers applied to Bi and Co targets, and they showed opposite trends against the relative powers. Several physical processes such as Co agglomeration, element-selective growth, and Ostwald ripening were proposed to be involved in this Bi nanoparticle growth. The MAGBIN is a facile method to synthesize crystalline Bi nanoparticle arrays, which does not need any chemical agents, complex process, or lithography.

  14. Preparation of electron buffer layer with crystalline ZnO nanoparticles in inverted organic photovoltaic cells

    Science.gov (United States)

    Lee, Donghwan; Kang, Taeho; Choi, Yoon-Young; Oh, Seong-Geun

    2017-06-01

    Zinc oxide (ZnO) nanoparticles synthesized through sol-gel method were used to fabricate the electron buffer layer in inverted organic photovoltaic cells (OPVs) after thermal treatment. To investigate the effect of thermal treatment on the formation of crystalline ZnO nanoparticles, the amorphous ZnO nanoparticles were treated via hydrothermal method. The crystalline phase of ZnO with well-ordered structure could be obtained when the amorphous phase of ZnO was processed under hydrothermal treatment at 170 °C. The crystalline structure of ZnO thin film in inverted organic solar cell could be obtained under relatively low annealing temperature by using thermally treated ZnO nanoparticles. The OPVs fabricated by using crystalline ZnO nanoparticles for electron buffer layer exhibited higher efficiency than the conventional ZnO nanoparticles. The best power conversion efficiency (PCE) was achieved for 7.16% through the ZnO film using the crystalline ZnO nanoparticles. The proposed method to prepared ZnO nanoparticles (NPs) could effectively reduce energy consumption during the fabrication of OPVs, which would greatly contribute to advantages such as lower manufacturing costs, higher productivity and application on flexible substrates.

  15. Structural and Optical Properties of Single Crystalline Bismuth Nanoparticles in Polymer

    Science.gov (United States)

    Kabir, Lutful; Mandal, Swapan K.

    We report here the structural and optical properties of Bi nanoparticles in polymer (polypyrrole) matrix. The nanoparticles are synthesized following a wet chemical route. The X-ray diffraction data clearly shows the growth of single crystalline Bi nanoparticles within the host polymer. The microstructure of the Bi nanoparticles obtained by transmission electron microscopy (TEM) reveals clearly the formation of spherical shaped nanoparticles of average size˜27 nm with a narrow size distribution. The optical absorption spectrum exhibits a distinct peak at 278 nm which is attributed to the surface plasmon band of Bi nanoparticles. The absorption spectrum is found to be described well following Mie theory.

  16. Effect of drying conditions on crystallinity of amylose nanoparticles prepared by nanoprecipitation.

    Science.gov (United States)

    Yan, Xiaoxia; Chang, Yanjiao; Wang, Qian; Fu, Youjia; Zhou, Jiang

    2017-04-01

    In this study, amylose nanoparticles prepared by nanoprecipitation were dried at different conditions. The crystalline structure, crystallinity, re-dispersibility and morphological characteristic of the amylose nanoparticles after drying were investigated. X-ray diffraction analysis revealed that the V-type crystalline structure of the amylose nanoparticles formed in the drying process instead of the precipitation process, and drying condition significantly affects the crystallinity. The temperature cycles drying at 4°C and 40°C considerably increased crystallinity of the amylose nanoparticles, 24h (4/40°C, 12h/12h) drying under 11% relative humidity could give rise to a crystallinity up to 50.05%. The applied drying procedures had no obvious effect on the appearance of the amylose nanoparticles. The Z average-size (d. nm) and polydispersity index (PDI) obtained from dynamic light scattering analysis suggested that the drying processes caused some aggregates, but the dried amylose nanoparticles could be well dispersed in water. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Preparation of low-crystalline apatite nanoparticles and their coating onto quartz substrates.

    Science.gov (United States)

    Kawashita, Masakazu; Taninai, Koji; Li, Zhixia; Ishikawa, Kunio; Yoshida, Yasuhiro

    2012-06-01

    We prepared low-crystalline apatite nanoparticles and coated them onto a surface of a Au/Cr-plated quartz substrate by the electrophoretic deposition (EPD) method or by using a self-assembled monolayer of 11-mercaptoundecanoic acid (SAM method). Low-crystalline apatite nanoparticles around 10 nm in size with extremely low contents of undesirable residual products were obtained by adding (NH(4))(2)HPO(4) aqueous droplets into a modified synthetic body fluid solution that contained Ca(CH(3)COO)(2). The apatite nanoparticles were successfully coated by either the EPD method or the SAM method; the nanoparticle coating achieved by the SAM method was more uniform than that achieved by the EPD method. The present SAM method is expected to be a promising technique for obtaining a quartz substrate coated with apatite nanoparticles, which can be used as a quartz crystal microbalance device.

  18. Production of TiO{sub 2} crystalline nanoparticles by laser ablation in ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Boutinguiza, M., E-mail: mohamed@uvigo.es [Dpto. Fisica Aplicada, Universidad de Vigo, ETSII Lagoas-Marcosende, 9, 36310 Vigo (Spain); Rodriguez-Gonzalez, B. [Microscopia Electronica de Alta Resolucion y Caracterizacion de Materiales, C.A.C.T.I., Universidad de Vigo, 36310 Vigo (Spain); Val, J. del; Comesana, R.; Lusquinos, F.; Pou, J. [Dpto. Fisica Aplicada, Universidad de Vigo, ETSII Lagoas-Marcosende, 9, 36310 Vigo (Spain)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Nanoparticles of TiO{sub 2} have been obtained by laser ablation of Ti submerged in ethanol using CW laser. Black-Right-Pointing-Pointer The use of CW laser contributes to control the size distribution and to complete oxidation. Black-Right-Pointing-Pointer The particles formation mechanism is the melting and rapid solidification. - Abstract: TiO{sub 2} nanoparticles have received a special attention due to their applications in many different fields, such as catalysis, biomedical engineering, and energy conversion in solar cells. In this paper we report on the production of TiO{sub 2} nanoparticles by means of a pulsed laser to ablate titanium metallic target submerged in ethanol. The results show that titanium crystalline dioxide nanoparticles can be obtained in a narrow size distribution. Crystalline phases, morphology and optical properties of the obtained colloidal nanoparticles were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and UV/vis absorption spectroscopy. The produced particles consisted mainly of titanium oxide crystalline nanoparticles showing spherical shape with most diameters ranging from 5 to 50 nm. Nanoparticles are polycrystalline exhibiting the coexistence of the three main phases with the predominance of brookite.

  19. Cubic liquid crystalline nanoparticles: optimization and evaluation for ocular delivery of tropicamide.

    Science.gov (United States)

    Verma, Purnima; Ahuja, Munish

    2016-10-01

    The purpose of this study was to investigate the potential of cubic liquid crystalline nanoparticles for ocular delivery of tropicamide. Ultrasound-assisted fragmentation of cubic liquid crystalline bulk phases resulted in cubic liquid crystalline nanoparticles employing Pluronic F127 as dispersant. The effects of process variables such as sonication time, sonication amplitude, sonication depth, and pre-mixing time on particle size and polydispersity index was investigated using central composite design. The morphology of tropicamide-loaded nanoparticles was found to be nearly cubical in shape by transmission electron microscopy observation. Further, small angle X-ray scattering experiment confirmed the presence of D and P phase cubic structures in coexistence. The optimized tropicamide-loaded cubic nanoparticles showed in vitro corneal permeation of tropicamide across isolated porcine cornea comparable to its commercial preparation, Tropicacyl®. Ocular tolerance was evaluated by Hen's egg-chorioallantoic membrane test and histological studies. The results of in vivo mydriatic response study demonstrated a remarkably higher area under mydriatic response curve (AUC0→1440 min) values of cubic nanoparticles over Tropicacyl® indicating better therapeutic value of cubic nanoparticles. Furthermore, tropicamide-loaded cubic nanoparticles exhibited prolonged mydriatic effect on rabbits as compared to commercial conventional aqueous ophthalmic solution.

  20. Low-temperature deposition of crystalline silicon nitride nanoparticles by hot-wire chemical vapor deposition

    Science.gov (United States)

    Kim, Chan-Soo; Youn, Woong-Kyu; Lee, Dong-Kwon; Seol, Kwang-Soo; Hwang, Nong-Moon

    2009-07-01

    The nanocrystalline alpha silicon nitride (α-Si 3N 4) was deposited on a silicon substrate by hot-wire chemical vapor deposition at the substrate temperature of 700 °C under 4 and 40 Torr at the wire temperatures of 1430 and 1730 °C, with a gas mixture of SiH 4 and NH 3. The size and density of crystalline nanoparticles on the substrate increased with increasing wire temperature. With increasing reactor pressure, the crystallinity of α-Si 3N 4 nanoparticles increased, but the deposition rate decreased.

  1. Controlling the Shape and Crystallinity of Gold and Silver Nanoparticles

    Science.gov (United States)

    Personick, Michelle Louise

    The strong dependence of the optical, electronic, and catalytic properties of noble metal nanoparticles on their shape has necessitated the high-yield synthesis of gold and silver nanostructures with precisely defined morphologies. This directed synthesis requires a detailed mechanistic understanding of the chemical and physical factors which control nanoparticle shape; however, these mechanistic explanations are still incomplete. To this end, the work of this dissertation seeks to enhance the understanding of nanoparticle growth on a mechanistic level, while also developing synthetic methods for producing novel nanoparticle shapes. Chapter 1 describes the state of the art in shape-controlled noble metal nanoparticle synthesis prior to the work conducted in this dissertation. In Chapter 2, a method is reported for synthesizing {110}-faceted bipyramids and rhombic dodecahedra, in which the combination of a chloride-containing surfactant and a low concentration of silver ions leads to the stabilization of the {110} facets. Chapter 3 explores in mechanistic detail the use of silver underpotential deposition to control particle growth in the synthesis of four gold nanoparticle shapes: octahedra, rhombic dodecahedra, truncated ditetragonal prisms, and concave cubes. This mechanistic understanding is expanded in Chapter 4, where the independent and synergistic roles of silver ions and halide ions in the seed-mediated synthesis of gold nanoparticles are systematically probed, culminating in a set of design considerations for controlling the shape of gold nanoparticles. Chapter 5 investigates the role of excitation wavelength in controlling the rate of silver ion reduction in the plasmon-mediated synthesis of silver nanoparticles and describes the synthesis of silver cubes with an unusual twinning structure. Finally, Chapter 6 combines the mechanistic insights gained in Chapters 2-5 to address a standing challenge in shape-controlled gold nanoparticle synthesis: the direct

  2. Structural evolution in crystalline MoO{sub 3} nanoparticles with tunable size

    Energy Technology Data Exchange (ETDEWEB)

    Barros Santos, Elias de; Aparecido Sigoli, Fernando [Functional Materials Laboratory, Institute of Chemistry, University of Campinas, UNICAMP, PO Box 6154, Zip Code 13083-970 Campinas, SP (Brazil); Odone Mazali, Italo, E-mail: mazali@iqm.unicamp.br [Functional Materials Laboratory, Institute of Chemistry, University of Campinas, UNICAMP, PO Box 6154, Zip Code 13083-970 Campinas, SP (Brazil)

    2012-06-15

    In this study MoO{sub 3} nanoparticles were prepared in porous Vycor glass by impregnation-decomposition cycles (IDC) with molybdenum(VI) 2-ethylhexanoate. X-ray diffraction data show that the nanoparticles are crystalline and are in the orthorhombic {alpha}-MoO{sub 3} phase. Raman spectroscopy data also indicate the formation of this phase. The profiles in the Raman spectra changed with the number of IDC, indicating a structural evolution of the MoO{sub 3} nanoparticles. The IDC methodology promoted a linear mass increase and allowed tuning the nanoparticle size. Analysis of HRTEM images revealed that for 3, 5 and 7 IDC, the MoO{sub 3} nanoparticle average diameters are 3.2, 3.6 and 4.2 nm. Diffuse reflectance spectroscopy indicates a consistent red shift in the band gap from 3.35 to 3.29 eV as the size increases from 3.2 to 4.2 nm. This observed red shift in the band gap of the MoO{sub 3} nanoparticles is presumably due to quantum confinement effects. - Graphical abstract: Modification of profile Raman spectra for crystalline MoO{sub 3} nanoparticles in function of the particle size. Highlights: Black-Right-Pointing-Pointer Structural evolution of the MoO{sub 3} nanoparticles as a function of the crystallite size. Black-Right-Pointing-Pointer Tunable optical properties by controlling the MoO{sub 3} nanoparticle size. Black-Right-Pointing-Pointer The impregnation-decomposition methodology allowed tuning the nanoparticle size. Black-Right-Pointing-Pointer The red shift in the band gap of the MoO{sub 3} nanoparticles is due to quantum size effect. Black-Right-Pointing-Pointer The short-distance order in MoO{sub 3} nanoparticle is function to area/volume ratio.

  3. Controlled release of folic acid through liquid-crystalline folate nanoparticles.

    Science.gov (United States)

    Misra, Rahul; Katyal, Henna; Mohanty, Sanat

    2014-11-01

    The present study explores folate nanoparticles as nano-carriers for controlled drug delivery. Cross-linked nanoparticles of liquid crystalline folates are composed of ordered stacks. This paper shows that the folate nanoparticles can be made with less than 5% loss in folate ions. In addition, this study shows that folate nanoparticles can disintegrate in a controlled fashion resulting in controlled release of the folate ions. Release can be controlled by the size of nanoparticles, the extent of cross-linking and the choice of cross-linking cation. The effect of different factors like agitation, pH, and temperature on folate release was also studied. Studies were also carried out to show the effect of release medium and role of ions in the release medium on disruption of folate assembly.

  4. Synthesis and Characterization of Bowl-Like Single-Crystalline BaTiO3 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Pei Xinmei

    2010-01-01

    Full Text Available Abstract Novel bowl-like single-crystalline BaTiO3 nanoparticles were synthesized by a simple hydrothermal method using Ba(OH2·8H2O and TiO2 as precursors. The as-prepared products were characterized by XRD, Raman spectroscopy, SEM and TEM. The results show that the bowl-like BaTiO3 nanoparticles are single-crystalline and have a size about 100–200 nm in diameter. Local piezoresponse force measurements indicate that the BaTiO3 nanoparticles have switchable polarization at room temperature. The local effective piezoelectric coefficient is approximately 28 pm/V.

  5. Controlling the Spatial Organization of Liquid Crystalline Nanoparticles by Composition of the Organic Grafting Layer.

    Science.gov (United States)

    Wójcik, Michał M; Olesińska, Magdalena; Sawczyk, Michał; Mieczkowski, Józef; Górecka, Ewa

    2015-07-01

    Understanding how the spatial ordering of liquid crystalline nanoparticles can be controlled by different factors is of great importance in the further development of their photonic applications. In this paper, we report a new key parameter to control the mesogenic behavior of gold nanoparticles modified by rodlike thiols. An efficient method to control the spatial arrangement of hybrid nanoparticles in a condensed state is developed by changing the composition of the mesogenic grafting layer on the surface of the nanoparticles. The composition can be tuned by different conditions of the ligand exchange reaction. The thermal and optical behavior of the mesogenic and promesogenic ligands were investigated by using differential scanning calorimetry (DSC) and hot-stage polarized optical microscopy. The chemical structure of the synthesized hybrid nanoparticles was characterized by (1) H NMR spectroscopy, thermogravimetric analysis (TGA), XPS, and elemental analysis, whereas the superstructures were examined by small-angle X-ray diffraction (SAXSRD) analysis. Structural studies showed that the organic sublayer made of mesogenic ligands is denser with an increasing the average ligand number, thereby separating the nanoparticles in the liquid crystalline phases, which changes the parameters of these phases.

  6. Thermoelectric Performance Enhancement by Surrounding Crystalline Semiconductors with Metallic Nanoparticles

    Science.gov (United States)

    Kim, Hyun-Jung; King, Glen C.; Park, Yeonjoon; Lee, Kunik; Choi, Sang H.

    2011-01-01

    Direct conversion of thermal energy to electricity by thermoelectric (TE) devices may play a key role in future energy production and utilization. However, relatively poor performance of current TE materials has slowed development of new energy conversion applications. Recent reports have shown that the dimensionless Figure of Merit, ZT, for TE devices can be increased beyond the state-of-the-art level by nanoscale structuring of materials to reduce their thermal conductivity. New morphologically designed TE materials have been fabricated at the NASA Langley Research Center, and their characterization is underway. These newly designed materials are based on semiconductor crystal grains whose surfaces are surrounded by metallic nanoparticles. The nanoscale particles are used to tailor the thermal and electrical conduction properties for TE applications by altering the phonon and electron transport pathways. A sample of bismuth telluride decorated with metallic nanoparticles showed less thermal conductivity and twice the electrical conductivity at room temperature as compared to pure Bi2Te3. Apparently, electrons cross easily between semiconductor crystal grains via the intervening metallic nanoparticle bridges, but phonons are scattered at the interfacing gaps. Hence, if the interfacing gap is larger than the mean free path of the phonon, thermal energy transmission from one grain to others is reduced. Here we describe the design and analysis of these new materials that offer substantial improvements in thermoelectric performance.

  7. Dry Powder Precursors of Cubic Liquid Crystalline Nanoparticles (cubosomes)

    Science.gov (United States)

    Spicer, Patrick T.; Small, William B.; Small, William B.; Lynch, Matthew L.; Burns, Janet L.

    2002-08-01

    Cubosomes are dispersed nanostructured particles of cubic phase liquid crystal that have stimulated significant research interest because of their potential for application in controlled-release and drug delivery. Despite the interest, cubosomes can be difficult to fabricate and stabilize with current methods. Most of the current work is limited to liquid phase processes involving high shear dispersion of bulk cubic liquid crystalline material into sub-micron particles, limiting application flexibility. In this work, two types of dry powder cubosome precursors are produced by spray-drying: (1) starch-encapsulated monoolein is produced by spray-drying a dispersion of cubic liquid crystalline particles in an aqueous starch solution and (2) dextran-encapsulated monoolein is produced by spray-drying an emulsion formed by the ethanol-dextran-monoolein-water system. The encapsulants are used to decrease powder cohesion during drying and to act as a soluble colloidal stabilizer upon hydration of the powders. Both powders are shown to form (on average) 0.6 μm colloidally-stable cubosomes upon addition to water. However, the starch powders have a broader particle size distribution than the dextran powders because of the relative ease of spraying emulsions versus dispersions. The developed processes enable the production of nanostructured cubosomes by end-users rather than just specialized researchers and allow tailoring of the surface state of the cubosomes for broader application.

  8. Solvothermal derived crystalline NiOx nanoparticles for high performance perovskite solar cells

    Science.gov (United States)

    Yin, Xingtian; Liu, Jie; Ma, Jiaqi; Zhang, Chongxin; Chen, Peng; Que, Meidan; Yang, Yawei; Que, Wenxiu; Niu, Chunming; Shao, Jinyou

    2016-10-01

    A solvothermal method is employed to synthesize NiOx nanoparticles with good dispersibility. The synthesized NiOx nanoparticles are very homogenous with an average size of about 3-5 nm, and the X-ray diffraction suggests a good crystallinity for the nanoparticles. NiOx films are spin coated from a colloid precursor which is prepared by dispersing the NiOx nanoparticles into ethanol using a certain amount of acetic as the stabilizer. To obtain an efficient hole extraction layer, an annealing process at 300 °C degree is necessary to remove the residual acetic in the NiOx film. Finally, hysteresis-less NiOx-based perovskite solar cells with good reproducibility are achieved, and a highest power conversion efficiency (PCE) of 16.68% and a constant steady state PCE of 16.49% are also demonstrated.

  9. Formation of nanoparticles during melt mixing a thermotropic liquid crystalline polyester and sulfonated polystyrene ionomers

    Science.gov (United States)

    Lee, Hyuksoo; Zhu, Lei; Weiss, R. A.

    2006-03-01

    The formation of nanoparticles and the mechanism of their formation in a blend of a thermotropic liquid crystalline polyester (LCP) and the zinc salt of a lightly sulfonated polystyrene ionomer (Zn-SPS) were investigated using Fourier transform infrared, thermogravimetric analysis, and gas chromatograph-mass spectroscopy. Transmission electron microscopy and wide-angle X-ray scattering were used to study the morphology of the blends and structure of nanoparticles. The origin of nanoparticle formation appeared to be related to the development of phenyl acetate chain ends on the LCP that arose due to a chemical reaction between the LCP and residual catalytic amounts of zinc-acetate and/or acetic acid that were present from the neutralization step in the preparation of the ionomer. The origin of formation and kinetics of the nano-particle formation and the mechanical and rheological properties of these nanocomposites are briefly discussed.

  10. Gold Nanoparticles for Plasmonic Biosensing: The Role of Metal Crystallinity and Nanoscale Roughness

    CERN Document Server

    Tinguely, Jean-Claude; Leiner, Claude; Grand, Johan; Hohenau, Andreas; Felidj, Nordin; Aubard, Jean; Krenn, Joachim R

    2011-01-01

    Noble metal nanoparticles show specific optical properties due to the excitation of localized surface plasmons that make them attractive candidates for highly sensitive bionanosensors. The underlying physical principle is either an analyte-induced modification of the dielectric properties of the medium surrounding the nanoparticle or an increase of the excitation and emission rates of an optically active analyte by the resonantly enhanced plasmon field. Either way, besides the nanoparticle geometry the dielectric properties of the metal and nanoscale surface roughness play an important role for the sensing performance. As the underlying principles are however not yet well understood, we aim here at an improved understanding by analyzing the optical characteristics of lithographically fabricated nanoparticles with different crystallinity and roughness parameters. We vary these parameters by thermal annealing and apply a thin gold film as a model system to retrieve modifications in the dielectric function. We i...

  11. Acoustic vibrations of amorphous and crystalline ZrO2-TiO2 nanoparticles

    Science.gov (United States)

    Ivanda, M.; Car, D.; Mikac, L.; Ristić, D.; Đerek, V.; Đerđ, I.; Štefanić, G.; Musić, S.

    2014-09-01

    Acoustic vibrational modes of ZrO2-TiO2 nanoparticles (ZT) have been observed and analyzed by means of low-frequency Raman spectroscopy (LFRS). The low-frequency Raman peak has been observed in the spectra of amorphous as well as of crystalline ZT nanoparticles. The results obtained by the LFRS have been compared to the results obtained by high-resolution transmission electron microscopy (HRTEM). After the method has been tested, the LFRS has been used to investigate the influence of the amount of dopant (Ti4+) and the annealing temperature on size distributions of the ZT nanoparticles. The observed reduction of the particles' growth-rate with Ti doping was ascribed with increase of defects in nanoparticles. Also, a discontinuity in the particles' growth-rate at the temperatures between 500 °C and 600 °C was observed. It is at these temperatures that the phase transition from amorphous to nanocrystalline phase occurs.

  12. Size controlled sonochemical synthesis of highly crystalline superparamagnetic Mn–Zn ferrite nanoparticles in aqueous medium

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Mohamed [Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 711-873 Daegu (Korea, Republic of); Ceramics Department, National Research Centre, El-Bohous Street, 12622 Cairo (Egypt); Torati, Sri Ramulu [Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 711-873 Daegu (Korea, Republic of); Rao, B. Parvatheeswara [Department of Physics, Andhra University, Visakhapatnam 530003 (India); Abdel-Hamed, M.O. [Physics Department, Faculty of Science, El-Minia University (Egypt); Kim, CheolGi, E-mail: cgkim@dgist.ac.kr [Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 711-873 Daegu (Korea, Republic of)

    2015-09-25

    Highlights: • Mn–Zn ferrite NPs were synthesized by two different methods are polyol and sonochemical. • The sonochemical method produced NPs with high crystallinity than polyol method. • The ferrite samples synthesized by sonochemical method showed high magnetization values and superparamagnetic properties. • XRD, TEM, EDS, TGA, FTIR, and VSM techniques used to characterize the samples. - Abstract: Monodisperse Mn{sub x}Zn{sub 1−x}Fe{sub 2}O{sub 4} (x = 0.2, 0.5 and 0.8) nanoparticles have been synthesized using two different routes namely sonochemical and polyol methods, and the shape and size along with physiochemical properties of the nanoparticles were compared in detail. In both the routes, the synthesis was performed in a single reaction without the use of any surfactant and deoxygenated conditions. The reaction kinetics and surface adsorption characteristics of nanoparticles were observed by thermogravimetric analysis and Fourier transform infrared spectroscopy measurements. X-ray diffraction patterns confirmed the formation of a pure ferrite phase with cubic spinel structure, and the patterns further clearly indicate that the sonochemical method produces highly crystalline particles without any post calcination reaction, comparing with the polyol process. Transmission electron microscopy results reveal that the nanoparticles synthesized by polyol method are mostly aggregated and spherical in nature whereas the nanoparticles produced by sonochemical method are monodisperse large particles with cubic like shapes. The overall studies demonstrated that the sonochemical method is facile, reliable, rapid and very attractive for the aqueous synthesis of highly crystalline and high magnetic moment (84.5 emu/g) monodisperse superparamagnetic Mn–Zn ferrite nanoparticles which considered as potential materials for various applications.

  13. The influence of 1,2-alkanediol on the crystallinity of magnetite nanoparticles

    Science.gov (United States)

    Effenberger, Fernando B.; Carbonari, A. W.; Rossi, L. M.

    2016-11-01

    Magnetic nanoparticles of magnetite have been synthesized by thermal decomposition and investigated by measuring the magnetic hyperfine field. Preformed Fe3O4 nanoparticles were used as seeds to produce a series of magnetic nanoparticles, with different sizes and shapes. Samples were characterized by X-ray diffraction, transmission electron microscopy, and magnetization measurements. The perturbed angular correlation (PAC) technique was used to study the influence of 1,2-octanediol on the seeding growth of the Fe3O4 by measuring hyperfine interactions. The nuclear probes 111In →111Cd were introduced into the samples through the synthesis of first core of Fe3O4, remained in the samples after the consecutive growth. The PAC results show the presence of two probe site fractions, one characterized by a well-defined magnetic dipole frequency with population fI and another characterized with a broad distributed electric quadrupole frequency with population fO, which were, respectively, assigned to probes at substitutional Fe sites in crystalline Fe3O4 formed at inner region of the nanoparticles and probes at non-crystalline iron oxide in the outer region of nanoparticles. A mathematical model was proposed to fit the behavior of fO with the particle size.

  14. Silanization effect on the photoluminescence characteristics of crystalline and amorphous silicon nanoparticles.

    Science.gov (United States)

    Caregnato, Paula; Dell'Arciprete, Maria Laura; Gonzalez, Mónica Cristina

    2013-09-01

    Silicon nanoparticles synthesized by two different methods were surface modified with 3-mercaptopropyltrimethoxysilane. The particles of ~2 nm size exhibit photoluminescence (PL) in the UV-Vis range of the spectrum. The most intense PL band at 430 nm with an emission lifetime of 1-2 ns is attributed to the presence of the surface defects Si-O-Si, generated after anchoring the organic molecule onto the interface. The excitation-emission matrix of this band is essentially independent of the technique of synthesis, crystalline structure, and size of the silicon nanoparticles.

  15. Studying the Kinetics of Crystalline Silicon Nanoparticle Lithiation with In Situ Transmission Electron Microscopy

    KAUST Repository

    McDowell, Matthew T.

    2012-09-04

    In situ transmission electron microscopy (TEM) is used to study the electrochemical lithiation of high-capacity crystalline Si nanoparticles for use in Li-ion battery anodes. The lithiation reaction slows down as it progresses into the particle interior, and analysis suggests that this behavior is due not to diffusion limitation but instead to the influence of mechanical stress on the driving force for reaction. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Enhanced bioavailability of nerve growth factor with phytantriol lipid-based crystalline nanoparticles in cochlea

    Directory of Open Access Journals (Sweden)

    Bu M

    2015-11-01

    Full Text Available Meng Bu,1,2 Jingling Tang,3 Yinghui Wei,4 Yanhui Sun,1 Xinyu Wang,1 Linhua Wu,2 Hongzhuo Liu1 1School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, People’s Republic of China; 2Department of Pharmacy, the Second Affiliated Hospital, 3School of Pharmacy, Harbin Medical University, Harbin, People’s Republic of China; 4College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China Purpose: Supplementation of exogenous nerve growth factor (NGF into the cochlea of deafened animals rescues spiral ganglion cells from degeneration. However, a safe and potent delivery of therapeutic proteins, such as NGF, to spiral ganglion cells remains one of the greatest challenges. This study presents the development of self-assembled cubic lipid-based crystalline nanoparticles to enhance inner ear bioavailability of bioactive NGF via a round window membrane route.Methods: A novel nanocarrier-entrapped NGF was developed based on phytantriol by a liquid precursor dilution, with Pluronic® F127 and propylene glycol as the surfactant and solubilizer, respectively. Upon dilution of the liquid lipid precursors, monodispersed submicron-sized particles with a slight negative charge formed spontaneously.Results: Biological activity of entrapped NGF was assessed using pheochromocytoma cells with NGF-loaded reservoirs to induce significant neuronal outgrowth, similar to that seen in free NGF-treated controls. Finally, a 3.28-fold increase in inner ear bioavailability was observed after administration of phytantriol lipid-based crystalline nanoparticles as compared to free drug, contributing to an enhanced drug permeability of the round window membrane. Conclusion: Data presented here demonstrate the potential of lipid-based crystalline nanoparticles to improve the outcomes of patients bearing cochlear implants. Keywords: nerve growth factor, lipid-based crystalline nanoparticles, PC12 cells, inner ear drug

  17. The Effect of PtRuIr Nanoparticle Crystallinity in Electrocatalytic Methanol Oxidation

    Directory of Open Access Journals (Sweden)

    Vladimir Linkov

    2013-04-01

    Full Text Available Two structural forms of a ternary alloy PtRuIr/C catalyst, one amorphous and one highly crystalline, were synthesized and compared to determine the effect of their respective structures on their activity and stability as anodic catalysts in methanol oxidation. Characterization techniques included TEM, XRD, and EDX. Electrochemical analysis using a glassy carbon disk electrode for cyclic voltammogram and chronoamperometry were tested in a solution of 0.5 mol L−1 CH3OH and 0.5 mol L−1 H2SO4. Amorphous PtRuIr/C catalyst was found to have a larger electrochemical surface area, while the crystalline PtRuIr/C catalyst had both a higher activity in methanol oxidation and increased CO poisoning rate. Crystallinity of the active alloy nanoparticles has a big impact on both methanol oxidation activity and in the CO poisoning rate.

  18. Novel Crystalline SiO2 Nanoparticles via Annelids Bioprocessing of Agro-Industrial Wastes

    OpenAIRE

    Angeles-Chávez C; Martínez-Hernández AL; Velasco-Santos C.; Espíndola-Gonzalez A; Castaño VM

    2010-01-01

    Abstract The synthesis of nanoparticles silica oxide from rice husk, sugar cane bagasse and coffee husk, by employing vermicompost with annelids (Eisenia foetida) is reported. The product (humus) is calcinated and extracted to recover the crystalline nanoparticles. X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and dynamic light scattering (DLS) show that the biotransformation allows creating specific crystalline phase...

  19. Preparation of crystalline starch nanoparticles using cold acid hydrolysis and ultrasonication.

    Science.gov (United States)

    Kim, Hee-Young; Park, Dong June; Kim, Jong-Yea; Lim, Seung-Taik

    2013-10-15

    Waxy maize starch in an aqueous sulfuric acid solution (3.16 M, 14.7% solids) was hydrolyzed for 2-6 days, either isothermally at 40 °C or 4 °C, or at cycled temperatures of 4 and 40 °C (1 day each). The starch hydrolyzates were recovered as precipitates after centrifuging the dispersion (10,000 rpm, 10 min). The yield of starch hydrolyzates depended on the hydrolysis temperature and time, which varied from 6.8% to 78%. The starch hydrolyzed at 40 °C or 4/40 °C exhibited increased crystallinity determined by X-ray diffraction analysis, but melted in broader temperature range (from 60 °C to 110 °C). However, the starch hydrolyzed at 4 °C displayed the crystallinity and melting endotherm similar to those of native starch. The starch hydrolyzates recovered by centrifugation were re-dispersed in water (15% solids), and the dispersion was treated by an ultrasonic treatment (60% amplitude, 3min). The ultrasonication effectively fragmented the starch hydrolyzates to nanoparticles. The hydrolyzates obtained after 6 days of hydrolysis were more resistant to the ultrasonication than those after 2 or 4 days, regardless of hydrolysis temperatures. The starch nanoparticles could be prepared with high yield (78%) and crystallinity by 4 °C hydrolysis for 6 days followed by ultrasonication. Scanning electron microscopy revealed that the starch nanoparticles had globular shapes with diameters ranging from 50 to 90 nm.

  20. Loss tangent measurements on unirradiated alumina

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J.; Goulding, R.H. [Oak Ridge National Lab., TN (United States)

    1996-04-01

    Unirradiated room temperature loss tangent for sapphire and several commercial grades of polycrystalline alumina are complied for frequencies between 10{sup 5} and 4x10{sup 11} Hz. Sapphire exhibits significantly lower values for the loss tangent at frequencies up to 10{sup 11} Hz. The loss tangents of 3 different grades of Wesgo alumina (AL300, AL995, AL998) and 2 different grades of Coors alumina (AD94, AD995) have typical values near {approx}10{sup -4} at a frequency of 10{sup 8} Hz. On the other hand, the loss tangent of Vitox alumina exhibits a large loss peak tan d{approx} 5x10{sup -3} at this frequency.

  1. Kinetic analysis for non-isothermal decomposition of unirradiated and γ-irradiated indium acetyl acetonate

    Directory of Open Access Journals (Sweden)

    Refaat Mohammed Mahfouz

    2011-03-01

    Full Text Available Kinetic studies for the non-isothermal decomposition of un-irradiated and γ-irradiated indium acetyl acetonate In(acac3 with 10² kGy total γ-ray dose were carried out in static air. The results showed that the decomposition proceeds in one major step in the temperature range of 150-250 °C with the formation of In2O3 as solid residue. The non-isothermal data for un-irradiated and γ-irradiated In(acac3 were analysed using linear Flynn-Wall-Ozawa (FWO and nonlinear Vyazovkin (VYZ iso-conversional methods. The results of application of these free models on the investigated data showed a systematic dependence of Ea on α indicating a simple decomposition process. No significant changes were observed in both decomposition behaviour and (Eα-α dependency between unirradiated and γ-irradiated In(acac3. Calcination of In(acac3 at 400 °C for 5 hours led to the formation of In2O3 monodispersed nanoparticles. X-ray diffraction, FTIR and SEM techniques were employed for characterization of the synthesised nanoparticles. This is the first attempt to prepare In2O3 nanoparticles by solid state thermal decomposition of In(acac3.

  2. Genus-wide physicochemical evidence of extracellular crystalline silver nanoparticles biosynthesis by Morganella spp.

    Directory of Open Access Journals (Sweden)

    Rasesh Y Parikh

    Full Text Available This study was performed to determine whether extracellular silver nanoparticles (AgNPs production is a genus-wide phenotype associated with all the members of genus Morganella, or only Morganella morganii RP-42 isolate is able to synthesize extracellular Ag nanoparticles. To undertake this study, all the available Morganella isolates were exposed to Ag+ ions, and the obtained nanoproducts were thoroughly analyzed using physico-chemical characterization tools such as transmission electron microscopy (TEM, UV-visible spectrophotometry (UV-vis, and X-ray diffraction (XRD analysis. It was identified that extracellular biosynthesis of crystalline silver nanoparticles is a unique biochemical character of all the members of genus Morganella, which was found independent of environmental changes. Significantly, the inability of other closely related members of the family Enterobacteriaceae towards AgNPs synthesis strongly suggests that AgNPs synthesis in the presence of Ag+ ions is a phenotypic character that is uniquely associated with genus Morganella.

  3. Highly Crystalline Nanoparticle Suspensions for Low-Temperature Processing of TiO2 Thin Films.

    Science.gov (United States)

    Watté, Jonathan; Lommens, Petra; Pollefeyt, Glenn; Meire, Mieke; De Buysser, Klaartje; Van Driessche, Isabel

    2016-05-25

    In this work, we present preparation and stabilization methods for highly crystalline TiO2 nanoparticle suspensions for the successful deposition of transparent, photocatalytically active TiO2 thin films toward the degradation of organic pollutants by a low temperature deposition method. A proof-of-concept is provided wherein stable, aqueous TiO2 suspensions are deposited on glass substrates. Even if the processing temperature is lowered to 150-200 °C, the subsequent heat treatment provides transparent and photocatalytically active titania thin layers. Because all precursor solutions are water-based, this method provides an energy-efficient, sustainable, and environmentally friendly synthesis route. The high load in crystalline titania particles obtained after microwave heating opens up the possibility to produce thin coatings by low temperature processing, as a conventional crystallization procedure is in this case superfluous. The impact of the precursor chemistry in Ti(4+)-peroxo solutions, containing imino-diacetic acid as a complexing ligand and different bases to promote complexation was studied as a function of pH, reaction time and temperature. The nanocrystal formation was followed in terms of colloidal stability, crystallinity and particle size. Combined data from Raman and infrared spectroscopy, confirmed that stable titanium precursors could be obtained at pH levels ranging from 2 to 11. A maximum amount of 50.7% crystallinity was achieved, which is one of the highest reported amounts of anatase nanoparticles that are suspendable in stable aqueous titania suspensions. Decoloring of methylene blue solutions by precipitated nanosized powders from the TiO2 suspensions proves their photocatalytic properties toward degradation of organic materials, a key requisite for further processing. This synthesis method proves that the deposition of highly crystalline anatase suspensions is a valid route for the production of photocatalytically active, transparent

  4. Diffusion of nanoparticles into the capsule and cortex of a crystalline lens

    Energy Technology Data Exchange (ETDEWEB)

    Schachar, Ronald A [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Chen Wei [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Woo, Boon K [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Pierscionek, Barbara K [School of Biomedical Sciences, University of Ulster, Coleraine BT52 1SA (United Kingdom); Zhang, Xing [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Ma, Lun [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States)

    2008-01-16

    The purpose of this study is to determine the ability of fluorescent nanoparticles to diffuse into a crystalline lens. Intact porcine lenses from five-month-old pigs, intact human lenses obtained from three donors aged 41, 42 and 45 years, and sections of human lens cortex obtained from four donors aged 11, 19, 32, and 34 years were incubated for 72 h at 7 deg. C in aqueous solutions of green (566 nm) and red (652 nm) fluorescent water soluble cadmium tellurium (CdTe) nanoparticles. As demonstrated by fluorescent and confocal microscopy, the CdTe nanoparticles diffused into the porcine and human lens capsule and into human cortical lens fibres; however, the nanoparticles did not pass through the intact lens capsule. Nanoparticles can be used as a method for studying intracellular structure and biochemical pathways within the lens capsule and cortical lens fibres to further understand cataractogenesis and may serve as a carrier for chemotherapeutic agents for the potential treatment of primary and secondary cataracts.

  5. Two-Dimensional Bipyramid Plasmonic Nanoparticle Liquid Crystalline Superstructure with Four Distinct Orientational Packing Orders.

    Science.gov (United States)

    Shi, Qianqian; Si, Kae Jye; Sikdar, Debabrata; Yap, Lim Wei; Premaratne, Malin; Cheng, Wenlong

    2016-01-26

    Anisotropic plasmonic nanoparticles have been successfully used as constituent elements for growing ordered nanoparticle arrays. However, orientational control over their spatial ordering remains challenging. Here, we report on a self-assembled two-dimensional (2D) nanoparticle liquid crystalline superstructure (NLCS) from bipyramid gold nanoparticles (BNPs), which showed four distinct orientational packing orders, corresponding to horizontal alignment (H-NLCS), circular arrangement (C-NLCS), slanted alignment (S-NLCS), and vertical alignment (V-NLCS) of constituent particle building elements. These packing orders are characteristic of the unique shape of BNPs because all four packing modes were observed for particles with various sizes. Nevertheless, only H-NLCS and V-NLCS packing orders were observed for the free-standing ordered array nanosheets formed from a drying-mediated self-assembly at the air/water interface of a sessile droplet. This is due to strong surface tension and the absence of particle-substrate interaction. In addition, we found the collective plasmonic coupling properties mainly depend on the packing type, and characteristic coupling peak locations depend on particle sizes. Interestingly, surface-enhanced Raman scattering (SERS) enhancements were heavily dependent on the orientational packing ordering. In particular, V-NLCS showed the highest Raman enhancement factor, which was about 77-fold greater than the H-NLCS and about 19-fold greater than C-NLCS. The results presented here reveal the nature and significance of orientational ordering in controlling plasmonic coupling and SERS enhancements of ordered plasmonic nanoparticle arrays.

  6. Photoconductivity studies on amorphous and crystalline TiO{sub 2} films doped with gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Valverde-Aguilar, G.; Garcia-Macedo, J.A. [Universidad Nacional Autonoma de Mexico, Departamento de Estado Solido, Instituto de Fisica, Mexico D.F. (Mexico); Renteria-Tapia, V. [Universidad de Guadalajara, Centro Universitario de los Valles, Departamento de Ciencias Naturales y Exactas, Ameca, Jalisco (Mexico); Aguilar-Franco, M. [Universidad Nacional Autonoma de Mexico, Departamento de Fisica Quimica, Instituto de Fisica, Mexico D.F. (Mexico)

    2011-06-15

    In this work, amorphous and crystalline TiO{sub 2} films were synthesized by the sol-gel process at room temperature. The TiO{sub 2} films were doped with gold nanoparticles. The films were spin-coated on glass wafers. The crystalline samples were annealed at 100 C for 30 minutes and sintered at 520 C for 2 h. All films were characterized using X-ray diffraction, transmission electronic microscopy and UV-Vis absorption spectroscopy. Two crystalline phases, anatase and rutile, were formed in the matrix TiO{sub 2} and TiO{sub 2}/Au. An absorption peak was located at 570 nm (amorphous) and 645 nm (anatase). Photoconductivity studies were performed on these films. The experimental data were fitted with straight lines at darkness and under illumination at 515 nm and 645 nm. This indicates an ohmic behavior. Crystalline TiO{sub 2}/Au films are more photoconductive than the amorphous ones. (orig.)

  7. Comparison of Oxidative Stresses Mediated by Different Crystalline Forms and Surface Modification of Titanium Dioxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Karim Samy El-Said

    2015-01-01

    Full Text Available Titanium dioxide nanoparticles (TiO2 NPs are manufactured worldwide for use in a wide range of applications. There are two common crystalline forms of TiO2 anatase and rutile with different physical and chemical characteristics. We previously demonstrated that an increased DNA damage response is mediated by anatase crystalline form compared to rutile. In the present study, we conjugated TiO2 NPs with polyethylene glycol (PEG in order to reduce the genotoxicity and we evaluated some oxidative stress parameters to obtain information on the cellular mechanisms of DNA damage that operate in response to TiO2 NPs different crystalline forms exposure in hepatocarcinoma cell lines (HepG2. Our results indicated a significant increase in oxidative stress mediated by the anatase form of TiO2 NPs compared to rutile form. On the other hand, PEG modified TiO2 NPs showed a significant decrease in oxidative stress as compared to TiO2 NPs. These data suggested that the genotoxic potential of TiO2 NPs varies with crystalline form and surface modification.

  8. Porous tablets of crystalline calcium carbonate via sintering of amorphous nanoparticles

    OpenAIRE

    Gebauer, Denis; Liu, Xing-Min; Aziz, Baroz; Hedin, Niklas; Zhao, Zhe

    2013-01-01

    Porous tablets of crystalline calcium carbonate were formed upon sintering of a precursor powder of amorphous calcium carbonate (ACC) under compressive stress (20 MPa) at relatively low temperatures (120–400 °C), induced by pulsed direct currents. Infrared spectroscopy ascertained the amorphous nature of the precursor powders. At temperatures of 120–350 °C and rates of temperature increase of 20–100 °C min−1, the nanoparticles of ACC transformed into crystallites of mainly aragonite, which is...

  9. NanoCrystalline Cellulose, an environmental friendly nanoparticle for pharmaceutical application – A quick study

    Directory of Open Access Journals (Sweden)

    Song Yee Kai

    2016-01-01

    Full Text Available Nanocrystalline cellulose (NCC is probably the most abundant nano material can be found in nature. It offers not only substantial environmental advantage due to its intrinsic biocompatibility and biodegradability, but also outstanding aspect ratio, tension modulus, bioavailability and permeability. NCC can be isolated from low value biomass through a well-developed acid hydrolysis method, and the structure can be readily manipulated during extraction to obtain desirable size distribution, surface charge and degree of crystallinity. Erratic absorption of drug has been a major issue for years until the emergence of nanoparticle adopted as smart vehicle for drug delivery. However, due to inevitably severe toxicity and the side effect from ordinary nanoparticle, the exploration of green nanoparticles are catching escalating attention is now in urge. Microcrystalline cellulose (MCC has long been an option, nevertheless, due to their relatively low surface charge compared to total volume, drug release in a control manner was hardly satisfied. It is suggested that the above limitation can be overcome by nanocrystalline cellulose. This article discusses and explores their potential in cosmetic, personal care and pharmaceutical application, and the recent development in term of preparation and characteristic.

  10. Three-dimensional crystalline and homogeneous metallic nanostructures using directed assembly of nanoparticles.

    Science.gov (United States)

    Yilmaz, Cihan; Cetin, Arif E; Goutzamanidis, Georgia; Huang, Jun; Somu, Sivasubramanian; Altug, Hatice; Wei, Dongguang; Busnaina, Ahmed

    2014-05-27

    Directed assembly of nano building blocks offers a versatile route to the creation of complex nanostructures with unique properties. Bottom-up directed assembly of nanoparticles have been considered as one of the best approaches to fabricate such functional and novel nanostructures. However, there is a dearth of studies on making crystalline, solid, and homogeneous nanostructures. This requires a fundamental understanding of the forces driving the assembly of nanoparticles and precise control of these forces to enable the formation of desired nanostructures. Here, we demonstrate that colloidal nanoparticles can be assembled and simultaneously fused into 3-D solid nanostructures in a single step using externally applied electric field. By understanding the influence of various assembly parameters, we showed the fabrication of 3-D metallic materials with complex geometries such as nanopillars, nanoboxes, and nanorings with feature sizes as small as 25 nm in less than a minute. The fabricated gold nanopillars have a polycrystalline nature, have an electrical resistivity that is lower than or equivalent to electroplated gold, and support strong plasmonic resonances. We also demonstrate that the fabrication process is versatile, as fast as electroplating, and scalable to the millimeter scale. These results indicate that the presented approach will facilitate fabrication of novel 3-D nanomaterials (homogeneous or hybrid) in an aqueous solution at room temperature and pressure, while addressing many of the manufacturing challenges in semiconductor nanoelectronics and nanophotonics.

  11. Self-arrangement of nanoparticles toward crystalline metal oxides with high surface areas and tunable 3D mesopores

    Science.gov (United States)

    Lee, Hyung Ik; Lee, Yoon Yun; Kang, Dong-Uk; Lee, Kirim; Kwon, Young-Uk; Kim, Ji Man

    2016-02-01

    We demonstrate a new design concept where the interaction between silica nanoparticles (about 1.5 nm in diameter) with titania nanoparticles (anatase, about 4 nm or 6 nm in diameter) guides a successful formation of mesoporous titania with crystalline walls and controllable porosity. At an appropriate solution pH (~1.5, depending on the deprotonation tendencies of two types of nanoparticles), the smaller silica nanoparticles, which attach to the surface of the larger titania nanoparticles and provide a portion of inactive surface and reactive surface of titania nanoparticles, dictate the direction and the degree of condensation of the titania nanoparticles, resulting in a porous 3D framework. Further crystallization by a hydrothermal treatment and subsequent removal of silica nanoparticles result in a mesoporous titania with highly crystalline walls and tunable mesopore sizes. A simple control of the Si/Ti ratio verified the versatility of the present method through the successful control of mean pore diameter in the range of 2-35 nm and specific surface area in the ranges of 180-250 m2 g-1. The present synthesis method is successfully extended to other metal oxides, their mixed oxides and analogues with different particle sizes, regarding as a general method for mesoporous metal (or mixed metal) oxides.

  12. Arrangement and SERS Applications of Nanoparticle Clusters Using Liquid Crystalline Template.

    Science.gov (United States)

    Kim, Dae Seok; Honglawan, Apiradee; Yang, Shu; Yoon, Dong Ki

    2017-02-16

    Manipulation of nanomaterials such as nanoparticles (NPs) and nanorods (NRs) to make clusters is of significant interest in material science and nanotechnology due to the unusual collective opto-electric properties in such structures that cannot be found in the individual NPs. This work demonstrates an effective way to arrange NP clusters (NPCs) to make the desired arrays based on removable and NP-guidable liquid crystalline template using sublimation and reconstruction phenomenon. The position of the NPCs is precisely controlled by the defect structure of the liquid crystal (LC), namely toric focal conic domains (TFCDs), during thermal annealing to construct the LC and corresponding NPC structures. As a proof of concept, the surface-enhanced Raman scattering (SERS) activity of a fabricated array of gold nanorod (GNR) clusters is measured and shown to have highly sensitive detection characteristics essential for potential sensing applications.

  13. Synthesis and in vitro cellular interactions of superparamagnetic iron nanoparticles with a crystalline gold shell

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, Sulalit, E-mail: sulalit.bandyopadhyay@ntnu.no [Ugelstad Laboratory, Department of Chemical Engineering (Norway); Singh, Gurvinder [Ugelstad Laboratory, Department of Chemical Engineering (Norway); Sandvig, Ioanna [MI Lab and Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim (Norway); Sandvig, Axel [MI Lab and Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim (Norway); Department of Neurosurgery, Umeå University Hospital, Umeå (Sweden); Mathieu, Roland; Anil Kumar, P. [Department of Engineering Sciences, Uppsala University, Box 534, SE-75121 Uppsala (Sweden); Glomm, Wilhelm Robert [Ugelstad Laboratory, Department of Chemical Engineering (Norway); Sector for Biotechnology and Nanomedicine, SINTEF Materials and Chemistry, N-7465 Trondheim (Norway)

    2014-10-15

    Graphical abstract: - Highlights: • A novel synthetic protocol for Fe@Au nanoparticles (NPs) has been optimized. • Surface functionalization and characterization of Fe@Au NPs. • NPs retain superparamagnetic properties after Au coating. • No toxic effects on two different cell types. • NPs suitable for theranostic applications. - Abstract: Fe@Au core–shell nanoparticles (NPs) exhibit multiple functionalities enabling their effective use in applications such as medical imaging and drug delivery. In this work, a novel synthetic method was developed and optimized for the synthesis of highly stable, monodisperse Fe@Au NPs of average diameter ∼24 nm exhibiting magneto-plasmonic characteristics. Fe@Au NPs were characterized by a wide range of experimental techniques, including scanning (transmission) electron microscopy (S(T)EM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), dynamic light scattering (DLS) and UV–vis spectroscopy. The formed particles comprise an amorphous iron core with a crystalline Au shell of tunable thickness, and retain the superparamagnetic properties at room temperature after formation of a crystalline Au shell. After surface modification, PEGylated Fe@Au NPs were used for in vitro studies on olfactory ensheathing cells (OECs) and human neural stem cells (hNSCs). No adverse effects of the Fe@Au particles were observed post-labeling, both cell types retaining normal morphology, viability, proliferation, and motility. It can be concluded that no appreciable toxic effects on both cell types, coupled with multifunctionality and chemical stability make them ideal candidates for therapeutic as well as diagnostic applications.

  14. Synthesis and microwave modification of CuO nanoparticles: crystallinity and morphological variations, catalysis, and gas sensing.

    Science.gov (United States)

    Yang, Chao; Xiao, Feng; Wang, Jide; Su, Xintai

    2014-12-01

    CuO nanoparticles with different morphologies were synthesized by chemical precipitation and subsequently modified by microwave hydrothermal processing. The nanoparticles were precipitated by the introduction of a strong base to an aqueous solution of copper cations in the presence/absence of the polyethylene glycol and urea additives. The modification of the nanoparticles was subsequently carried out by a microwave hydrothermal treatment of suspensions of the precipitates, precipitated with and without the additives. X-ray powder diffraction analysis indicated that the crystallinity and crystallite size of the CuO nanoparticles increased after the microwave hydrothermal modification. Microscopy observations revealed the morphology changes induced by microwave hydrothermal processing. The thermal decomposition of ammonium perchlorate and the detection of volatile gases were performed to evaluate the catalytic and gas sensing properties of the synthesized CuO nanoparticles.

  15. Ultrafast and continuous synthesis of crystalline ferrite nanoparticles in supercritical ethanol.

    Science.gov (United States)

    Pascu, Oana; Marre, Samuel; Aymonier, Cyril; Roig, Anna

    2013-03-07

    Magnetic nanoparticles (NPs) are of increasing interest in various industrially relevant products. For these, the development of greener and faster approaches facilitating scaling-up production is of paramount importance. Here, we report a novel, green and potentially scalable approach for the continuous and ultrafast (90 s) synthesis of superparamagnetic ferrite NPs (MnFe(2)O(4), Fe(3)O(4)) in supercritical ethanol (scEtOH) at a fairly moderate temperature (260 °C). ScEtOH exhibits numerous advantages such as its production from bio-resources, its lack of toxicity and its relatively low supercritical coordinates (p(c) = 6.39 MPa and T(c) = 243 °C), being therefore appropriate for the development of sustainable technologies. The present study is completed by the investigation of both in situ and ex situ NP surface functionalization. The as-obtained nanoparticles present good crystallinity, sizes below 8 nm, superparamagnetic behavior at room temperature and high saturation magnetization. Moreover, depending on the capping strategy, the ferrite NPs present extended (for in situ coated NPs) or short-term (for ex situ coated NPs) colloidal stability.

  16. Crystalline magnetic carbon nanoparticle assisted photothermal delivery into cells using CW near-infrared laser beam

    Science.gov (United States)

    Gu, Ling; Koymen, Ali R.; Mohanty, Samarendra K.

    2014-05-01

    Efficient and targeted delivery of impermeable exogenous material such as small molecules, proteins, and plasmids into cells in culture as well as in vivo is of great importance for drug, vaccine and gene delivery for different therapeutic strategies. Though advent of optoporation by ultrafast laser microbeam has allowed spatial targeting in cells, the requirement of high peak power to create holes on the cell membrane is not practical and also challenging in vivo. Here, we report development and use of uniquely non-reactive crystalline magnetic carbon nanoparticles (CMCNPs) for photothermal delivery (PTD) of impermeable dyes and plasmids encoding light-sensitive proteins into cells using low power continuous wave near-infrared (NIR) laser beam. Further, we utilized the magnetic nature of these CMCNPs to localize them in desired region by external magnetic field, thus minimizing the required number of nanoparticles. We discovered that irradiation of the CMCNPs near the desired cell(s) with NIR laser beam leads to temperature rise that not only stretch the cell-membrane to ease delivery, it also creates fluid flow to allow mobilization of exogenous substances to the delivery. Due to significant absorption properties of the CMCNPs in the NIR therapeutic window, PTD under in vivo condition is highly possible.

  17. Obtaining Highly Crystalline Barium Sulphate Nanoparticles via Chemical Precipitation and Quenching in Absence of Polymer Stabilizers

    Directory of Open Access Journals (Sweden)

    Ángela B. Sifontes

    2015-01-01

    Full Text Available Here we report the synthesis of barium sulphate (BaSO4 nanoparticles from Ba(OH2/BaCl2 solutions by a combined method of precipitation and quenching in absence of polymer stabilizers. Transmission electron microscopy (HRTEM, Fourier transforms infrared spectroscopy (FTIR, and X-ray diffraction (XRD were employed to characterize the particles. The Scherrer formula was applied to estimate the particle size using the width of the diffraction peaks. The obtained results indicate that the synthesized material is mainly composed of nanocrystalline barite, with nearly spherical morphology, and diameters ranging from 4 to 92 nm. The lattice images of nanoparticles were clearly observed by HRTEM, indicating a high degree of crystallinity and phase purity. In addition, agglomerates with diameters between 20 and 300 nm were observed in both lattice images and dynamic light scattering measurements. The latter allowed obtaining the particle size distribution, the evolution of the aggregate size in time of BaSO4 in aqueous solutions, and the sedimentation rate of these solutions from turbidimetry measurements. A short discussion on the possible medical applications is presented.

  18. Synthesis and characterization of poly(divinylbenzene)-coated magnetic iron oxide nanoparticles as precursor for the formation of air-stable carbon-coated iron crystalline nanoparticles.

    Science.gov (United States)

    Boguslavsky, Yonit; Margel, Shlomo

    2008-01-01

    Maghemite (gamma-Fe2O3) nanoparticles of 15 +/- 3 nm diameter were prepared by nucleation of gelatin/iron oxide followed by growth of gamma-Fe2O3 films onto these nuclei. The gamma-Fe2O3 nanoparticles were coated with polydivinylbenzene (PDVB) by emulsion polymerization of divinylbenzene (DVB) in an aqueous continuous phase containing the gamma-Fe2O3 nanoparticles. The PDVB-coated gamma-Fe2O3 nanoparticles, dispersed in water, were separated from homo-PDVB nanoparticles using the high gradient magnetic field (HGMF) technique. The influence of DVB concentration on the amount of PDVB coating, on the size and size distribution of the coated gamma-Fe2O3 nanoparticles and on their magnetic properties, has been investigated. Air-stable carbon-coated iron (alpha-Fe/C) crystalline nanoparticles of 41 +/- 12 nm diameter have been prepared by annealing the PDVB-coated gamma-Fe2O3 nanoparticles at 1050 degrees C in an inert atmosphere. These nanoparticles exhibit high saturation magnetization value (83 emu g(-1)) and excellent resistance to oxidation. Characterization of the PDVB-coated gamma-Fe2O3 and of the alpha-Fe/C nanoparticles has been accomplished by TEM, HRTEM, DLS, FTIR, XRD, thermal analysis, zeta-potential, and magnetic measurements.

  19. Time-dependent growth of crystalline Au0-nanoparticles in cyanobacteria as self-reproducing bioreactors: 2. Anabaena cylindrica

    Directory of Open Access Journals (Sweden)

    Liz M. Rösken

    2016-03-01

    Full Text Available Microbial biosynthesis of metal nanoparticles as needed in catalysis has shown its theoretical ability as an extremely environmentally friendly production method in the last few years, even though the separation of the nanoparticles is challenging. Biosynthesis, summing up biosorption and bioreduction of diluted metal ions to zero valent metals, is especially ecofriendly, when the bioreactor itself is harmless and needs no further harmful reagents. The cyanobacterium Anabaena cylindrica (SAG 1403.2 is able to form crystalline Au0-nanoparticles from Au3+ ions and does not release toxic anatoxin-a. X-ray powder diffraction (XRD, transmission electron microscopy (TEM and laser-induced breakdown spectroscopy (LIBS are applied to monitor the time-dependent development of gold nanoparticles for up to 40 hours. Some vegetative cells (VC are filled with nanoparticles within minutes, while the extracellular polymeric substances (EPS of vegetative cells and the heterocyst polysaccharide layer (HEP are the regions, where the first nanoparticles are detected on most other cells. The uptake of gold starts immediately after incubation and within four hours the average size remains constant around 10 nm. Analyzing the TEM images with an image processing program reveals a wide distribution for the diameter of the nanoparticles at all times and in all regions of the cyanobacteria. Finally, the nanoparticle concentration in vegetative cells of Anabaena cylindrica is about 50% higher than in heterocysts (HC. These nanoparticles are found to be located along the thylakoid membranes.

  20. Lipase degradation of Dynasan 114 and 116 solid lipid nanoparticles (SLN)--effect of surfactants, storage time and crystallinity.

    Science.gov (United States)

    Olbrich, Carsten; Kayser, Oliver; Müller, Rainer H

    2002-04-26

    In vivo drug release from solid lipid nanoparticles (SLN) takes place by diffusion and degradation of the lipid matrix. SLN with different degree of crystallinity were prepared to study the effect of crystallinity on the degradation velocity. These SLN were produced by using glycerides with different length of fatty acid chains and known differences in crystallisation velocity (Dynasan 114 and 116), and using stabilisers interfering differently with the crystallisation process of the lipid matrix (cholic acid sodium salt (NaCh), Poloxamer 407 (Plx 407)). NaCh disturbs the crystallisation process, Poloxamer shows little interference. The particles were characterised by photon correlation spectroscopy (PCS) and differential scanning calorimetry (DSC), degradation velocity was determined directly after production and during storage up to 4 weeks under different storage conditions using an especially developed assay based on the NEFA Test kit. After production, SLN with a lower crystallinity matrix (Dynasan 114 and 116, NaCh) degraded faster than higher crystalline particles (all SLN with Plx 407), and showed a decrease in degradation velocity with increasing crystallinity during storage. Fast crystallising particles made from Dynasan 116 stabilised with the non-interfering Plx 407 showed no change in the degradation velocity during storage. SLN produced with a higher crystalline lipid in combination with the crystallisation-disturbing NaCh (Dynasan 116, NaCh) required a 'ripening time' to reach sufficient crystallinity.

  1. Strong paramagnetic crystalline LnVO{sub 4} (Ln: Gd, Tb, Dy, Ho, Er) nanoparticles synthesized by a fabricating method

    Energy Technology Data Exchange (ETDEWEB)

    Bulbul, Berna; Beyaz, Seda, E-mail: sedacan@balikesir.edu.tr

    2016-04-15

    Strong paramagnetic lanthanide orthovanadate (LnVO{sub 4}, Ln: Gd, Tb, Dy, Ho, Er) nanoparticles were synthesized under ambient conditions by a novel precipitation method that is economical and fabricating. To the X-ray diffraction patterns, all samples are well-crystallized zircon type orthovanadate and have pure tetragonal phase. Their crystal sizes increased from 12.58 to 15.12 nm with increasing the ionic radii of lanthanide. As confirmed with the surface observation by a transmission electron microscope, it was identified that their two-dimensional projection is an ellipse with the two major axes. It was seen that the sizes of nanoparticles (14.40nm-70.69 nm) were bigger than the crystal sizes because of their polycrystalline structures. Besides, the particle sizes increased with reduction of ionic radii of lanthanide. The magnetic properties obtained from a vibrating sample magnetometer revealed that all nanoparticles are strong paramagnetic at room temperature showing an increase in molar susceptibility up to 4.79 × 10{sup −1} cm{sup 3} mol{sup −1}. Such highly crystalline, small and paramagnetic nanoparticles could be thought to be convenient for biomedical applications. - Highlights: • A general fabricating method for lanthanide orthovanadate nanoparticles is proposed. • The method generates highly small and crystalline nanoparticles. • The reduction in ionic radius of lanthanide (Ln{sup 3+}) causes to increase particle size.

  2. Properties of highly crystalline NiO and Ni nanoparticles prepared by high-temperature oxidation and reduction

    Science.gov (United States)

    Feygenson, Mikhail; Kou, Angela; Kreno, Lauren E.; Tiano, Amanda L.; Patete, Jonathan M.; Zhang, Fen; Kim, Moo Sung; Solovyov, Vyacheslav; Wong, Stanislaus S.; Aronson, Meigan C.

    2010-01-01

    We describe here the use of high-temperature oxidation and reduction to produce highly crystalline nanoparticles of Ni and NiO. Starting with an amorphous Ni powder, we demonstrate that oxidation at 900°C produces faceted NiO nanocrystals with sizes ranging from 20 to 60 nm. High-resolution transmission electron microscopy measurements indicate near-perfect atomic order, truncated by (200) surfaces. Magnetization measurements reveal that the Néel temperature of these NiO nanoparticles is 480 K, substantially reduced by finite-size effects from the bulk value of 523 K. The magnetization of these faceted NiO nanoparticles does not saturate in fields as large as 14 T while a loop offset is observed which increases from 1000 Oe at 300 K to its maximum value of 3500 Oe at 50 K. We have used high-temperature reduction to transform the faceted NiO nanoparticles into highly ordered Ni nanoparticles, with a Curie temperature of 720 K and blocking temperatures in excess of 350 K. Subsequent efforts to reoxidize these Ni nanoparticles into the core-shell morphology found that the Ni nanoparticles are much more resistant to oxidation than the original Ni powder, perhaps due to the relative crystalline perfection of the former. At 800°C , an unusual surface roughening and subsequent instability was observed, where 50-nm-diameter NiO rods grow from the Ni surfaces. We have demonstrated that high-temperature oxidation and reduction in Ni and NiO are both reversible to some extent and are highly effective for creating the highly crystalline nanomaterials required for applications such as exchange-bias devices.

  3. Properties of Highly Crystalline NiO and Ni Nanoparticles Prepared by High-temperature Oxidation and Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Feygenson, M.; Kou, A.; Kreno, L.E.; Tiano, A.L.; Patete, J.M.; Zhang, F.; Kim, M.S.; Solovyov, V.; Wong, S.S.; Aronson, M.C.

    2010-01-26

    We describe here the use of high-temperature oxidation and reduction to produce highly crystalline nanoparticles of Ni and NiO. Starting with an amorphous Ni powder, we demonstrate that oxidation at 900 C produces faceted NiO nanocrystals with sizes ranging from 20 to 60 nm. High-resolution transmission electron microscopy measurements indicate near-perfect atomic order, truncated by (200) surfaces. Magnetization measurements reveal that the Neel temperature of these NiO nanoparticles is 480 K, substantially reduced by finite-size effects from the bulk value of 523 K. The magnetization of these faceted NiO nanoparticles does not saturate in fields as large as 14 T while a loop offset is observed which increases from 1000 Oe at 300 K to its maximum value of 3500 Oe at 50 K. We have used high-temperature reduction to transform the faceted NiO nanoparticles into highly ordered Ni nanoparticles, with a Curie temperature of 720 K and blocking temperatures in excess of 350 K. Subsequent efforts to reoxidize these Ni nanoparticles into the core-shell morphology found that the Ni nanoparticles are much more resistant to oxidation than the original Ni powder, perhaps due to the relative crystalline perfection of the former. At 800 C, an unusual surface roughening and subsequent instability was observed, where 50-nm-diameter NiO rods grow from the Ni surfaces. We have demonstrated that high-temperature oxidation and reduction in Ni and NiO are both reversible to some extent and are highly effective for creating the highly crystalline nanomaterials required for applications such as exchange-bias devices.

  4. One-pot synthesis of crystalline SnO2 nanoparticles and their low-temperature ethanol sensing characteristics

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Crystalline SnO2 nanoparticles(NPs) with a diameter less than 6 nm are synthesized using potassium stannate trihydrate as the precursor in a basic system.The synthesized NPs can detect ethanol at a ppm level even at 100℃.Furthermore,the NPs have good selectivity to ethanol.The excellent ethanol sensing performances are attributed to the small size effect according to the space-charge model.

  5. Control of crystalline phases in magnetic Fe nanoparticles inserted inside a matrix of porous carbon

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, M.P., E-mail: fernandezpaz.uo@uniovi.e [Dpto. de Fisica, Universidad de Oviedo, Calvo Sotelo, s/n, 33007 Oviedo (Spain); Schmool, D.S. [IN-IFIMUP, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Dpto. de Fisica, Universidade do Porto, Rua do Campo Alegre 687, 4440-661 Porto (Portugal); Silva, A.S. [Dpto. de Fisica, Universidade do Porto, Rua do Campo Alegre 687, 4440-661 Porto (Portugal); Sevilla, M.; Fuertes, A.B. [Instituto Nacional del Carbon (CSIC), Apartado 73, 33080 Oviedo (Spain); Gorria, P.; Blanco, J.A. [Dpto. de Fisica, Universidad de Oviedo, Calvo Sotelo, s/n, 33007 Oviedo (Spain)

    2010-05-15

    Two magnetic composites made up of Fe nanoparticles (Fe-NPs) embedded in a porous amorphous carbon matrix are presented. One of the samples, Fe-S-AC, was obtained with the aid of sucrose and the other, Fe-AC, in the absence of this substance. The XRD patterns show Bragg diffraction peaks associated with alpha-Fe and gamma-Fe crystalline phases in the Fe-AC sample, while only peaks corresponding to the alpha-Fe phase are observed for Fe-S-AC powders. The Fe-NPs exhibit broad particle-size distributions for both samples, 5-50 nm for Fe-AC, whereas two populations (2-8 and 10-70 nm) for the Fe-S-AC composite are found. This fact gives rise to poorly defined blocking temperatures, as it can be deduced from the broad maxima observed in M{sub ZFC}(T) variations. In addition, M(H) curves for both Fe-AC and Fe-S-AC samples reveal the existence of exchange-bias effect for T<60 K, probably due to a magnetic coupling within a core/shell structure of the Fe-NPs, although this effect was observed to be less significant for Fe-S-AC.

  6. Solution-Processible Crystalline NiO Nanoparticles for High-Performance Planar Perovskite Photovoltaic Cells

    Science.gov (United States)

    Kwon, Uisik; Kim, Bong-Gi; Nguyen, Duc Cuong; Park, Jong-Hyeon; Ha, Na Young; Kim, Seung-Joo; Ko, Seung Hwan; Lee, Soonil; Lee, Daeho; Park, Hui Joon

    2016-07-01

    In this work, we report on solution-based p-i-n-type planar-structured CH3NH3PbI3 perovskite photovoltaic (PV) cells, in which precrystallized NiO nanoparticles (NPs) without post-treatment are used to form a hole transport layer (HTL). X-ray diffraction and high-resolution transmission electron microscopy showed the crystallinity of the NPs, and atomic force microscopy and scanning electron microscopy confirmed the uniform surfaces of the resultant NiO thin film and the subsequent perovskite photoactive layer. Compared to the conventional poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) HTL, the NiO HTL had excellent energy-level alignment with that of CH3NH3PbI3 and improved electron-blocking capability, as analyzed by photoelectron spectroscopy and diode modeling, resulting in Voc ~0.13 V higher than conventional PEDOT:PSS-based devices. Consequently, a power conversion efficiency (PCE) of 15.4% with a high fill factor (FF, 0.74), short-circuit current density (Jsc, 20.2 mA·cm‑2), and open circuit voltage (Voc, 1.04 V) having negligible hysteresis and superior air stability has been achieved.

  7. Solution-Processible Crystalline NiO Nanoparticles for High-Performance Planar Perovskite Photovoltaic Cells

    Science.gov (United States)

    Kwon, Uisik; Kim, Bong-Gi; Nguyen, Duc Cuong; Park, Jong-Hyeon; Ha, Na Young; Kim, Seung-Joo; Ko, Seung Hwan; Lee, Soonil; Lee, Daeho; Park, Hui Joon

    2016-01-01

    In this work, we report on solution-based p-i-n-type planar-structured CH3NH3PbI3 perovskite photovoltaic (PV) cells, in which precrystallized NiO nanoparticles (NPs) without post-treatment are used to form a hole transport layer (HTL). X-ray diffraction and high-resolution transmission electron microscopy showed the crystallinity of the NPs, and atomic force microscopy and scanning electron microscopy confirmed the uniform surfaces of the resultant NiO thin film and the subsequent perovskite photoactive layer. Compared to the conventional poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) HTL, the NiO HTL had excellent energy-level alignment with that of CH3NH3PbI3 and improved electron-blocking capability, as analyzed by photoelectron spectroscopy and diode modeling, resulting in Voc ~0.13 V higher than conventional PEDOT:PSS-based devices. Consequently, a power conversion efficiency (PCE) of 15.4% with a high fill factor (FF, 0.74), short-circuit current density (Jsc, 20.2 mA·cm−2), and open circuit voltage (Voc, 1.04 V) having negligible hysteresis and superior air stability has been achieved. PMID:27465263

  8. Memory effect in MOS structures containing amorphous or crystalline silicon nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Meier, Sebastian; Brueggemann, Rudolf; Bauer, Gottfried Heinrich [Institute of Physics, Carl von Ossietzky University Oldenburg, D-26111 Oldenburg (Germany); Nedev, Nicola [Istituto de Ingenieria, Universidad Autonoma de Baja California, Benito Juarez Blvd., s/n, C.P. 21280, Mexicali, Baja California (Mexico); Manolov, Emmo; Nesheva, Diana; Levi, Zelma [Insitute of Solid State Physics, Bulgarian Academy of Science, 72 Tzarigradsko Chaussee Blvd., 1784 Sofia (Bulgaria)

    2008-07-01

    Amorphous and crystalline silicon nanoparticles (Si-NPs) embedded in a SiO{sub 2} matrix are fabricated by thermal annealing of Metal/SiO{sub 2}/SiO{sub x}/c-Si structures (x=1.15) at 700 C or 1000 C in N{sub 2} atmosphere for 30 or 60 minutes. High frequency C-V measurements show that the samples can be charged negatively or positively by applying a positive or negative bias voltage to the gate. A memory effect, due to the Si-NPs in the SiO{sub 2} matrix, is observed. The method of measurement with open circuit between two measurements leads to the retention characteristic where the structures retain about 50% of negative charge trapped in Si-NPs for 24 hours. A second method, where the flat-band voltage is applied as bias voltage, shows shorter retention characteristics. There the Si-NPs retain 50% of their charge after 10 hours.

  9. Structure, morphology, and magnetic properties of Fe nanoparticles deposited onto single-crystalline surfaces

    Directory of Open Access Journals (Sweden)

    Armin Kleibert

    2011-01-01

    Full Text Available Background: Magnetic nanostructures and nanoparticles often show novel magnetic phenomena not known from the respective bulk materials. In the past, several methods to prepare such structures have been developed – ranging from wet chemistry-based to physical-based methods such as self-organization or cluster growth. The preparation method has a significant influence on the resulting properties of the generated nanostructures. Taking chemical approaches, this influence may arise from the chemical environment, reaction kinetics and the preparation route. Taking physical approaches, the thermodynamics and the kinetics of the growth mode or – when depositing preformed clusters/nanoparticles on a surface – the landing kinetics and subsequent relaxation processes have a strong impact and thus need to be considered when attempting to control magnetic and structural properties of supported clusters or nanoparticles.Results: In this contribution we focus on mass-filtered Fe nanoparticles in a size range from 4 nm to 10 nm that are generated in a cluster source and subsequently deposited onto two single crystalline substrates: fcc Ni(111/W(110 and bcc W(110. We use a combined approach of X-ray magnetic circular dichroism (XMCD, reflection high energy electron diffraction (RHEED and scanning tunneling microscopy (STM to shed light on the complex and size-dependent relation between magnetic properties, crystallographic structure, orientation and morphology. In particular XMCD reveals that Fe particles on Ni(111/W(110 have a significantly lower (higher magnetic spin (orbital moment compared to bulk iron. The reduced spin moments are attributed to the random particle orientation being confirmed by RHEED together with a competition of magnetic exchange energy at the interface and magnetic anisotropy energy in the particles. The RHEED data also show that the Fe particles on W(110 – despite of the large lattice mismatch between iron and tungsten – are

  10. Multilayer-Coated Liquid Crystalline Nanoparticles for Effective Sorafenib Delivery to Hepatocellular Carcinoma.

    Science.gov (United States)

    Thapa, Raj Kumar; Choi, Ju Yeon; Poudel, Bijay K; Hiep, Tran Tuan; Pathak, Shiva; Gupta, Biki; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh

    2015-09-16

    Hepatocellular carcinoma is one of the most common cancers in adults and develops due to activation of oncogenes and inactivation of tumor suppressor genes. Sorafenib (SF) is a U.S. Food and Drug Administration (FDA) approved drug for the treatment of hepatocellular carcinoma. However, its clinical use is limited by its poor aqueous solubility and undesirable side effects. Monoolein-based liquid crystalline nanoparticles (LCN) are self-assembled structures that have been determined as promising drug-delivery vehicles. Therefore, the main aim of this study was to prepare layer-by-layer (LbL) polymer-assembled SF-loaded LCNs (LbL-LCN/SF) for effective delivery of SF to hepatocellular carcinoma. Results revealed that LbL-LCN/SF presented optimum particle size (∼165 nm) and polydispersity index (PDI, ∼0.14) with appropriate polymer layer assembly confirmed by transmission electron microscopy (TEM) and atomic force microscopy (AFM). Furthermore, LbL-LCN/SF effectively controlled burst release and exhibited pH-sensitive release of SF, thereby increasing drug release in the acidic microenvironment of tumor cells. Compared to free SF and bare LCN, the hemolytic activity of LbL-LCN/SF was significantly reduced (p<0.01). Interestingly, LbL-LCN/SF was more cytotoxic to HepG2 cells than the free drug was. Additionally, high cellular uptake and greater apoptotic effects of LbL-LCN/SF in HepG2 cells indicates superior antitumor effects. Therefore, LbL-LCN/SF is a potentially effective formulation for hepatocellular carcinoma.

  11. Preparation of high crystalline nanoparticles of rare-earth based complex pervoskites and comparison of their structural and magnetic properties with bulk counterparts

    DEFF Research Database (Denmark)

    Basith, M. A.; Islam, M. A.; Ahmmad, Bashir

    2017-01-01

    A simple route to prepare Gd0.7Sr0.3MnO3 nanoparticles by ultrasonication of their bulk powder materials is presented in this article. For comparison, Gd0.7Sr0.3MnO3 nanoparticles are also prepared by ball milling. The prepared samples are characterized by X-ray diffraction (XRD), field emission...... of crystalline and amorphous phases. FESEM images demonstrate the formation of nanoparticles with average particle size in the range of 50–100 nm for both ultrasonication and 4 h (h) of ball milling. The bulk materials and nanoparticles synthesized by both ultrasonication and 4 h ball milling exhibit...... of the nanoparticles due to ball milling particularly for milling time exceeding 8 h. This investigation demonstrates the potential of ultrasonication as a simple route to prepare high crystalline rare-earth based manganite nanoparticles with improved control compared to the traditional ball milling technique....

  12. Size-, surface- and crystalline structure composition-related effects of titanium dioxide nanoparticles during their aquatic life cycle.

    Science.gov (United States)

    Seitz, Frank; Rosenfeldt, Ricki R; Schneider, Sandra; Schulz, Ralf; Bundschuh, Mirco

    2014-09-15

    Nanoparticle toxicity depends amongst others on particle characteristics and nanoparticle behavior during their aquatic life cycle. Aquatic organisms may be exposed to nanoparticle agglomerates of varying size, while lager agglomerates after settling rather affect benthic organisms. In this context, the present study systematically examined the role of particle characteristics, i.e. crystalline structure composition (anatase as well as mixture of anatase-rutile), initial particle size (55-, 100-, and 140-nm) and surface area, in the toxicity of titanium dioxide nanoparticles (nTiO2) to the pelagic filter feeder Daphnia magna (n = 4) and the benthic amphipod Gammarus fossarum (n = 30). Smaller initial particle sizes (i.e. 55-nm) and anatase based particles showed an approximately 90% lower Daphnia EC50-value compared to its respective counterpart. Most importantly, particle surface normalized EC50-values significantly differed for nanoparticles equal to or below 100 nm in size from 140-nm sized particles. Hence, these data suggest that the reactive initial surface area may explain the ecotoxicological potential of different particle size classes only if their size is smaller or around 100 nm. In contrast to Daphnia, Gammarus was not affected by nTiO2 concentrations of up to 5.00 mg/L, irrespective of their characteristics. This indicates fundamental differences in the toxicity of nTiO2 during its aquatic life cycle mediated by alterations in their characteristics over time.

  13. Tailoring the internal structure of liquid crystalline nanoparticles responsive to fungal lipases: A potential platform for sustained drug release.

    Science.gov (United States)

    Poletto, F S; Lima, F S; Lundberg, D; Nylander, T; Loh, W

    2016-11-01

    Lipases are key components in the mechanisms underlying the persistence and virulence of infections by fungi, and thus also promising triggers for bioresponsive lipid-based liquid crystalline nanoparticles. We here propose a platform in which only a minor component of the formulation is susceptible to cleavage by lipase and where hydrolysis triggers a controlled phase transition within the nanoparticles that can potentially allow for an extended drug release. The responsive formulations were composed of phytantriol, which was included as a non-cleavable major component and polysorbate 80, which serves both as nanoparticle stabilizer and potential lipase target. To monitor the structural changes resulting from lipase activity with sufficient time resolution, we used synchrotron small angle x-ray scattering. Comparing the effect of the two different lipases used in this work, lipase B from Candida Antarctica, (CALB) and lipase from Rhizomucor miehei (RMML), only CALB induced phase transition from bicontinuous reverse cubic to reverse hexagonal phase within the particles. This phase transition can be attributed to an increasing amount of oleic acid formed on cleavage of the polysorbate 80. However, when also a small amount of a cationic surfactant was included in the formulation, RMML could trigger the corresponding phase transition as well. The difference in activity between the two lipases can tentatively be explained by a difference in their interaction with the nanoparticle surface. Thus, a bioresponsive system for treating fungal infections, with a tunable selectivity for different types of lipases, could be obtained by tuning the composition of the nanoparticle formulation.

  14. Toxicity of TiO(2) nanoparticles to cladocerans, algae, rotifers and plants - effects of size and crystalline structure.

    Science.gov (United States)

    Clément, Laura; Hurel, Charlotte; Marmier, Nicolas

    2013-01-01

    With the rapid development of nanotechnology, there is an increasing risk of human and environmental exposure to nanotechnology-based materials. However, the data on the potential environmental effects of nanoparticles are scarce. The aim of this study is to assess the effect of particle size and crystal structure (anatase and rutile) of titanium dioxide on their toxicity. Thus, acute and chronic toxicity tests included a modified acute test (72 h) using daphnies and algae, rotifers and plants as model organisms. Gradient of toxicity varied with the tested biological organisms. Our results revealed that TiO(2) nanoparticles in anatase crystal structure are toxic in the entire set of tests conducted. However, at highconcentration, through their antimicrobial properties, they significantly promoted growth of roots. Because of its lipophilicity, the rutile crystalline structure of TiO(2) NPs form larger aggregates in aqueous medium; then they have less effect on biological organisms, and thus a lower toxicity than the anatase crystalline form of TiO(2). We also demonstrated that exposure duration, aggregation and concentrations are contributing factors in nanoparticles-mediated toxicity.

  15. The effect of cetyl palmitate crystallinity on physical properties of gamma-oryzanol encapsulated in solid lipid nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ruktanonchai, Uracha; Sakulkhu, Usawadee [National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120 (Thailand); Limpakdee, Surachai; Meejoo, Siwaporn [Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400 (Thailand); Bunyapraphatsara, Nuntavan [Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Sri-ayudhya Road, Bangkok 10400 (Thailand); Junyaprasert, Varaporn [Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Sri-ayudhya Road, Bangkok 10400 (Thailand); Puttipipatkhachorn, Satit [Department of Manufacturing Pharmacy, Faculty of Pharmacy, Mahidol University, Sri-ayudhya Road, Bangkok 10400 (Thailand)], E-mail: uracha@nanotec.or.th

    2008-03-05

    This present study was aimed at investigating the effect of the crystallinity of cetyl palmitate based solid lipid nanoparticles (SLNs) on the physical properties of {gamma}-oryzanol-loaded SLNs. SLNs consisting of varying ratios of cetyl palmitate and {gamma}-oryzanol were prepared. Their hydrodynamic diameters were in the range 210-280 nm and the zeta potentials were in the range -27 to -35 mV. The size of SLNs increased as the amount of cetyl palmitate decreased whereas no significant change of zeta potentials was found. Atomic force microscopy pictures indicated the presence of disc-like particles. The crystallinity of SLNs, determined by differential scanning calorimetry and powder x-ray diffraction, was directly dependent on the ratio of cetyl palmitate to {gamma}-oryzanol and decreased with decreasing cetyl palmitate content in the lipid matrix. Varying this ratio in the lipid mix resulted in a shift in the melting temperature and enthalpy, although the SLN structure remained unchanged as an orthorhombic lamellar lattice. This has been attributed to a potential inhibition by {gamma}-oryzanol during lipid crystal growth as well as a less ordered structure of the SLNs. The results revealed that the crystallinity of the SLNs was mainly dependent on the solid lipid, and that the crystallinity has an important impact on the physical characteristics of active-loaded SLNs.

  16. Rich collision dynamics of soft and sticky crystalline nanoparticles: numerical experiments.

    Science.gov (United States)

    Takato, Yoichi; Benson, Michael E; Sen, Surajit

    2015-09-01

    A molecular dynamics study on the collisional dynamics of soft and sticky single face-centered cubic crystal nanoparticles is presented. The softness and stickiness of the nanoparticles are controlled by varying parameters in the Lennard-Jones potential that is used to describe the interatomic interactions. Softening of nanoparticles due to extensive plastic deformations is observed as was previously found in hard nanoparticles. Further, two primary plastic deformation modes, slip and twinning, of the nanoparticles are found to play important roles in the temperature dependence of the coefficient of restitution. Additionally, we observe the effects of surface roughness, facets, and edges in the collisional behaviors of the sticky nanoparticles in low-velocity collisions. Nevertheless, the Johnson-Kendall-Roberts theory for macroscopic adhesive bodies still remains valid in nearly spherical nanoparticles.

  17. Strain-induced macroscopic magnetic anisotropy from smectic liquid-crystalline elastomer-maghemite nanoparticle hybrid nanocomposites.

    Science.gov (United States)

    Haberl, Johannes M; Sánchez-Ferrer, Antoni; Mihut, Adriana M; Dietsch, Hervé; Hirt, Ann M; Mezzenga, Raffaele

    2013-06-21

    We combine tensile strength analysis and X-ray scattering experiments to establish a detailed understanding of the microstructural coupling between liquid-crystalline elastomer (LCE) networks and embedded magnetic core-shell ellipsoidal nanoparticles (NPs). We study the structural and magnetic re-organization at different deformations and NP loadings, and the associated shape and magnetic memory features. In the quantitative analysis of a stretching process, the effect of the incorporated NPs on the smectic LCE is found to be prominent during the reorientation of the smectic domains and the softening of the nanocomposite. Under deformation, the soft response of the nanocomposite material allows the organization of the nanoparticles to yield a permanent macroscopically anisotropic magnetic material. Independent of the particle loading, the shape-memory properties and the smectic phase of the LCEs are preserved. Detailed studies on the magnetic properties demonstrate that the collective ensemble of individual particles is responsible for the macroscopic magnetic features of the nanocomposite.

  18. The modulation of surface texture for single-crystalline Si solar cells using calibrated silver nanoparticles as a catalyst

    Science.gov (United States)

    Gu, Xin; Yu, Xuegong; Liu, Tao; Li, Dongsheng; Yang, Deren

    2011-01-01

    We have employed Ag nanoparticles with calibrated size as catalysts to modulate the surface texture of single-crystalline Si surfaces for reducing sunlight reflectivity. Both experiments and theoretical analysis have proved that a well-organized microporous structure on the pyramids can be obtained by optimizing the size of Ag nanoparticles and the texturing time, and the Si wafer with such structures can effectively reduce the reflectivity of sunlight. However, based on the conventional cell fabrication process, the performance of silicon solar cells with such microporous structures gets degraded. It is closely associated with the strong surface recombination and the high phosphorus diffusion barrier induced by the microporous textures. These results are interesting for us to understand the application of nanotechnology on the silicon solar cell.

  19. Supercritical Propanol-Water Synthesis and Comprehensive Size Characterisation of Highly Crystalline anatase TiO 2 Nanoparticles

    Science.gov (United States)

    Hald, Peter; Becker, Jacob; Bremholm, Martin; Pedersen, Jan S.; Chevallier, Jacques; Iversen, Steen B.; Iversen, Bo B.

    2006-08-01

    Highly crystalline anatase TiO 2 nanoparticles have been synthesised in less than 1 min in a supercritical propanol-water mixture using a continuous flow reactor. The synthesis parameter space ( T, P, concentration) has been explored and the average particle size can be accurately controlled within 10-18 nm with narrow size distributions (2-3 nm). At subcritical conditions amorphous products are obtained, whereas a broad range of T and P in the supercritical regime gives 11-14 nm particles. At high temperature and pressure, the particles size increase to 18 nm. The nanoparticles have been extensively characterised with powder X-ray diffraction (PXRD), transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) with excellent agreement on size and size distribution parameters. The SAXS analysis suggests disk-shaped particles with diameters that are approximately double the height. For comparison, a series of conventional autoclave sol-gel syntheses have been carried out. These also produce phase-pure anatase nanoparticles, but with much broader size distributions and at much longer synthesis times (hours). The study demonstrates that synthesis in supercritical fluids is a very promising method for manipulating the size and size distribution of nanoparticles, thus removing one of the key limitations in many applications of nanomaterials.

  20. Rescue Effects: Irradiated Cells Helped by Unirradiated Bystander Cells

    Science.gov (United States)

    Lam, R. K. K.; Fung, Y. K.; Han, W.; Yu, K. N.

    2015-01-01

    The rescue effect describes the phenomenon where irradiated cells or organisms derive benefits from the feedback signals sent from the bystander unirradiated cells or organisms. An example of the benefit is the mitigation of radiation-induced DNA damages in the irradiated cells. The rescue effect can compromise the efficacy of radioimmunotherapy (RIT) (and actually all radiotherapy). In this paper, the discovery and subsequent confirmation studies on the rescue effect were reviewed. The mechanisms and the chemical messengers responsible for the rescue effect studied to date were summarized. The rescue effect between irradiated and bystander unirradiated zebrafish embryos in vivo sharing the same medium was also described. In the discussion section, the mechanism proposed for the rescue effect involving activation of the nuclear factor κB (NF-κB) pathway was scrutinized. This mechanism could explain the promotion of cellular survival and correct repair of DNA damage, dependence on cyclic adenosine monophosphate (cAMP) and modulation of intracellular reactive oxygen species (ROS) level in irradiated cells. Exploitation of the NF-κB pathway to improve the effectiveness of RIT was proposed. Finally, the possibility of using zebrafish embryos as the model to study the efficacy of RIT in treating solid tumors was also discussed. PMID:25625514

  1. Effect of Postdeposition Heat Treatment on the Crystallinity, Size, and Photocatalytic Activity of TiO2 Nanoparticles Produced via Chemical Vapour Deposition

    Directory of Open Access Journals (Sweden)

    Siti Hajar Othman

    2010-01-01

    Full Text Available Titanium dioxide (TiO2 nanoparticles were produced using chemical vapour deposition (CVD at different deposition temperatures (300–700°C. All the samples were heat treated at their respective deposition temperatures and at a fixed temperature of 400°C. A scanning electron microscope (SEM, a transmission electron microscope (TEM, and X-ray diffraction (XRD were used to characterize the nanoparticles in terms of size and crystallinity. The photocatalytic activity was investigated via degradation of methylene blue under UV light. The effects of post deposition heat treatment are discussed in terms of crystallinity, nanoparticle size as well as photocatalytic activity. Crystallinity was found to have a much larger impact on photocatalytic activity compared to nanoparticle size. Samples having a higher degree of crystallinity were more photocatalytically active despite being relatively larger in size. Surprisingly, the photocatalytic activity of the samples reduced when heat treated at temperatures lower than the deposition temperature despite showing an improvement in crystallinity.

  2. Chrysopogon zizanioides aqueous extract mediated synthesis characterization of crystalline silver and gold nanoparticles for biomedical applications

    Directory of Open Access Journals (Sweden)

    Arunachalam KD

    2013-07-01

    Full Text Available Kantha D Arunachalam, Sathesh Kumar Annamalai Center for Environmental Nuclear Research, Directorate of Research, SRM University, Chennai, Tamil Nadu, India Abstract: The exploitation of various plant materials for the biosynthesis of nanoparticles is considered a green technology as it does not involve any harmful chemicals. The aim of this study was to develop a simple biological method for the synthesis of silver and gold nanoparticles using Chrysopogon zizanioides. To exploit various plant materials for the biosynthesis of nanoparticles was considered a green technology. An aqueous leaf extract of C. zizanioides was used to synthesize silver and gold nanoparticles by the bioreduction of silver nitrate (AgNO3 and chloroauric acid (HAuCl4 respectively. Water-soluble organics present in the plant materials were mainly responsible for reducing silver or gold ions to nanosized Ag or Au particles. The synthesized silver and gold nanoparticles were characterized by ultraviolet (UV-visible spectroscopy, scanning electron microscopy (SEM, energy dispersive X-ray analysis (EDAX, Fourier transform infrared spectroscopy (FTIR, and X-ray diffraction (XRD analysis. The kinetics decline reactions of aqueous silver/gold ion with the C. zizanioides crude extract were determined by UV-visible spectroscopy. SEM analysis showed that aqueous gold ions, when exposed to the extract were reduced and resulted in the biosynthesis of gold nanoparticles in the size range 20–50 nm. This eco-friendly approach for the synthesis of nanoparticles is simple, can be scaled up for large-scale production with powerful bioactivity as demonstrated by the synthesized silver nanoparticles. The synthesized nanoparticles can have clinical use as antibacterial, antioxidant, as well as cytotoxic agents and can be used for biomedical applications. Keywords: nanoparticles, bioreduction, SEM, silver, gold

  3. Chrysopogon zizanioides aqueous extract mediated synthesis, characterization of crystalline silver and gold nanoparticles for biomedical applications.

    Science.gov (United States)

    Arunachalam, Kantha D; Annamalai, Sathesh Kumar

    2013-01-01

    The exploitation of various plant materials for the biosynthesis of nanoparticles is considered a green technology as it does not involve any harmful chemicals. The aim of this study was to develop a simple biological method for the synthesis of silver and gold nanoparticles using Chrysopogon zizanioides. To exploit various plant materials for the biosynthesis of nanoparticles was considered a green technology. An aqueous leaf extract of C. zizanioides was used to synthesize silver and gold nanoparticles by the bioreduction of silver nitrate (AgNO3) and chloroauric acid (HAuCl4) respectively. Water-soluble organics present in the plant materials were mainly responsible for reducing silver or gold ions to nanosized Ag or Au particles. The synthesized silver and gold nanoparticles were characterized by ultraviolet (UV)-visible spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) analysis. The kinetics decline reactions of aqueous silver/gold ion with the C. zizanioides crude extract were determined by UV-visible spectroscopy. SEM analysis showed that aqueous gold ions, when exposed to the extract were reduced and resulted in the biosynthesis of gold nanoparticles in the size range 20-50 nm. This eco-friendly approach for the synthesis of nanoparticles is simple, can be scaled up for large-scale production with powerful bioactivity as demonstrated by the synthesized silver nanoparticles. The synthesized nanoparticles can have clinical use as antibacterial, antioxidant, as well as cytotoxic agents and can be used for biomedical applications.

  4. Morphological evolution in single-crystalline Bi2Te3 nanoparticles, nanosheets and nanotubes with different synthesis temperatures

    Indian Academy of Sciences (India)

    Punita Srivastava; Kedar Singh

    2013-10-01

    A general surfactant-assisted wet chemical route has been developed for the synthesis of a variety of bismuth telluride (Bi2Te3) single-crystalline nanostructures with varied morphologies at different temperatures in which hydrazine hydrate plays as an important solvent. Bi2Te3 sheet grown nanoparticles, nanosheets and nanotubes have been synthesized by a simplest wet chemical route at 50, 70 and 100 °C within 4 h. Bi2Te3 sheet grown nanoparticles are obtained in agglomerate state and they are found with many wrinkles. Various types of Bi2Te3 nanotubes are also found which are tapered with one end open and the other closed. X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED) pattern and energy dispersive X-ray (EDX) spectroscopy were employed to characterize the powder product. It is found that all nanoparticles, nanosheets and nanotubes are well-crystallized nanocrystals and morphologies of the powder products are greatly affected by different synthesis temperatures. The formation mechanisms of bismuth telluride nanostructures are also discussed.

  5. Comparison of non-crystalline silica nanoparticles in IL-1β release from macrophages

    Directory of Open Access Journals (Sweden)

    Sandberg Wiggo J

    2012-08-01

    Full Text Available Abstract Background Respirable crystalline silica (silicon dioxide; SiO2, quartz particles are known to induce chronic inflammation and lung disease upon long-term inhalation, whereas non-crystalline (amorphous SiO2 particles in the submicrometre range are regarded as less harmful. Several reports have demonstrated that crystalline, but also non-crystalline silica particles induce IL-1β release from macrophages via the NALP3-inflammasome complex (caspase-1, ASC and NALP3 in the presence of lipopolysaccharide (LPS from bacteria. Our aim was to study the potential of different non-crystalline SiO2 particles from the nano- to submicro-sized range to activate IL-1β responses in LPS-primed RAW264.7 macrophages and primary rat lung macrophages. The role of the NALP3-inflammasome and up-stream mechanisms was further explored in RAW264.7 cells. Results In the present study, we have shown that 6 h exposure to non-crystalline SiO2 particles in nano- (SiNPs, 5–20 nm, 50 nm and submicro-sizes induced strong IL-1β responses in LPS-primed mouse macrophages (RAW264.7 and primary rat lung macrophages. The primary lung macrophages were more sensitive to Si-exposure than the RAW-macrophages, and responded more strongly. In the lung macrophages, crystalline silica (MinUsil 5 induced IL-1β release more potently than the non-crystalline Si50 and Si500, when adjusted to surface area. This difference was much less pronounced versus fumed SiNPs. The caspase-1 inhibitor zYVAD and RNA silencing of the NALP3 receptor reduced the particle-induced IL-1β release in the RAW264.7 macrophages. Furthermore, inhibitors of phagocytosis, endosomal acidification, and cathepsin B activity reduced the IL-1β responses to the different particles to a similar extent. Conclusions In conclusion, non-crystalline silica particles in the nano- and submicro-size ranges seemed to induce IL-1β release from LPS-primed RAW264.7 macrophages via similar mechanisms as crystalline

  6. Impact of BaTiO(3) nanoparticles on pretransitional effects in liquid crystalline dodecylcyanobiphenyl.

    Science.gov (United States)

    Rzoska, S J; Starzonek, S; Drozd-Rzoska, A; Czupryński, K; Chmiel, K; Gaura, G; Michulec, A; Szczypek, B; Walas, W

    2016-02-01

    The pretransitional behavior of dodecylcyanobiphenyl (12CB) (isotropic-smectic-A-solid mesomorphism) with d=50nmBaTiO(3) nanoparticles (NPs) linked to the cubic phase was monitored via temperature studies of dielectric constant. Tests were carried out in the isotropic, liquid crystal mesomorphic, and solid phases. For each phase transition the same value of the critical exponent α∼0.5 was obtained, including nanocolloids. All phase transitions show the weakly discontinuous nature. The temperature metric of the discontinuity ΔT notably decreases when adding nanoparticles. The addition of nanoparticles first decreases the dielectric constant by approximately 50% in comparison with pure 12CB, but already for a concentration ∼x=0.4% NP an increase over 50% takes place. It is notable that for the latter concentration unique hallmarks of the pretransitional effect emerge also for the solid-mesophase transition. All these indicate the important impact of nanoparticles on multimolecular mesoscale fluctuations.

  7. Fatigue behavior of unirradiated V-5Cr-5Ti

    Energy Technology Data Exchange (ETDEWEB)

    Gieseke, B.G.; Stevens, C.O.; Grossbeck, M.L. [Oak Ridge National Lab., TN (United States)

    1995-04-01

    The objective of this research is to determine the low cycle fatigue behavior of V-5Cr-5Ti alloys for a range of temperatures and the extent of environmental effects at ambient temperatures. The results of in-vacuum low cycle fatigue tests are presented for unirradiated V-5Cr-5Ti tested at room temperature, 240, and 400{degree}C. A comparison of the fatigue data generated in rough and high vacuums shows that a pronounced environmental degradation of the fatiuge properties exists in this alloy at room temperature. Fatigue life was reduced by as much as 84%. Cyclic stress range data and SEM observations suggest that this reduction is due to a combination of increases in rates of crack initiation and subsequent growth. The relative contribution of each difference is dependent upon the strain range.

  8. Combined toxicity of two crystalline phases (anatase and rutile) of Titania nanoparticles towards freshwater microalgae: Chlorella sp

    Energy Technology Data Exchange (ETDEWEB)

    Iswarya, V.; Bhuvaneshwari, M.; Alex, Sruthi Ann; Iyer, Siddharth; Chaudhuri, Gouri [Centre for Nanobiotechnology, VIT University, Vellore (India); Chandrasekaran, Prathna Thanjavur [Department of Materials Engineering, Indian Institute of Science, Bangalore (India); Bhalerao, Gopalkrishna M.; Chakravarty, Sujoy [UGC-DAE CSR, Kalpakkam Node, Kokilamedu (India); Raichur, Ashok M. [Department of Materials Engineering, Indian Institute of Science, Bangalore (India); Chandrasekaran, N. [Centre for Nanobiotechnology, VIT University, Vellore (India); Mukherjee, Amitava, E-mail: amit.mookerjea@gmail.com [Centre for Nanobiotechnology, VIT University, Vellore (India)

    2015-04-15

    Highlights: • Toxicity of two crystalline phases of titania NPs on freshwater microalgae studied. • (Anatase, Rutile) mixture showed additive and antagonistic effect on microalgae. • Rutile had more colloidal stability than anatase and binary mixtures. • ROS generation varied with the crystallinity of the NPs. • Ultrastructural damages observed in TEM images. - Abstract: In view of the increasing usage of anatase and rutile crystalline phases of titania NPs in the consumer products, their entry into the aquatic environment may pose a serious risk to the ecosystem. In the present study, the possible toxic impact of anatase and rutile nanoparticles (individually and in binary mixture) was investigated using freshwater microalgae, Chlorella sp. at low exposure concentrations (0.25, 0.5 and 1 mg/L) in freshwater medium under UV irradiation. Reduction of cell viability as well as a reduction in chlorophyll content were observed due to the presence of NPs. An antagonistic effect was noted at certain concentrations of binary mixture such as (0.25, 0.25), (0.25, 0.5), and (0.5, 0.5) mg/L, and an additive effect for the other combinations, (0.25, 1), (0.5, 0.25), (0.5, 1), (1, 0.25), (1, 0.5), and (1, 1) mg/L. The hydrodynamic size analyses in the test medium revealed that rutile NPs were more stable in lake water than the anatase and binary mixtures [at 6 h, the sizes of anatase (1 mg/L), rutile NPs (1 mg/L), and binary mixture (1, 1 mg/L) were 948.83 ± 35.01 nm, 555.74 ± 19.93 nm, and 1620.24 ± 237.87 nm, respectively]. The generation of oxidative stress was found to be strongly dependent on the crystallinity of the nanoparticles. The transmission electron microscopic images revealed damages in the nucleus and cell membrane of algal cells due to the interaction of anatase NPs, whereas rutile NPs were found to cause chloroplast and internal organelle damages. Mis-shaped chloroplasts, lack of nucleus, and starch-pyrenoid complex were noted in binary

  9. Controlling size, amount, and crystalline structure of nanoparticles deposited on graphenes for highly efficient energy conversion and storage.

    Science.gov (United States)

    Choi, Bong Gill; Park, Ho Seok

    2012-04-01

    A facilitated electrochemical reaction at the surface of electrodes is crucial for highly efficient energy conversion and storage. Herein, various nanoparticles (NPs) including Au, Pt, Pd, Ru, and RuO(2), were synthesized in situ and directly deposited on the ionic liquid (IL)-functionalized reduced graphene oxides (RGOs) in a controlled manner. The size, amount, and crystalline structures of discrete NPs were readily controlled, giving rise to enhanced methanol oxidation and pseudocapacitance. The well-defined nanostructure of decorated NPs and the favorable interaction between ILs and RGOs (or NPs) facilitated the electrochemical reaction, where NPs acted as electrocatalysts for energy conversion and played the role of redox-active electrodes for energy storage.

  10. Enhancing the ultraviolet-visible-near infrared photovoltaic responses of crystalline-silicon solar cell by using aluminum nanoparticles

    Science.gov (United States)

    Hu, Fei; Zhou, Zhi-Quan; Ma, Lei; Zhang, Chi; Zhou, Wen-Jie; Lu, Ming

    2017-10-01

    We report to apply Al nanoparticles (NPs) to enhance the photovoltaic response of crystalline- or c-Si solar cell from the ultraviolet (UV) throughout the visible and near infrared (NIR) regimes. Al NPs were induced by solid thermal annealing and embedded in a SiO2 layer that was to passivate the front side of solar cell. Upon the excitation of surface plasmons (SPs) on the Al NPs under light illumination, an enhancement of broadband absorption of the solar cell was observed. The incorporation of Al NPs led to a relative 13.8% increase in photoelectric conversion efficiency of c-Si solar cell, and an external quantum efficiency enhancement from the UV throughout the visible and NIR regimes. The improvement of c-Si solar cell performance was attributed to both effects of absorption and scattering by SPs.

  11. Formation of liquid crystalline phases in aqueous suspensions of platelet-like tripalmitin nanoparticles

    Science.gov (United States)

    Schmiele, Martin; Gehrer, Simone; Westermann, Martin; Steiniger, Frank; Unruh, Tobias

    2014-06-01

    Suspensions of platelet-like shaped tripalmitin nanocrystals stabilized by the pure lecithin DLPC and the lecithin blend S100, respectively, have been studied by small-angle x-ray scattering (SAXS) and optical observation of their birefringence at different tripalmitin (PPP) concentrations φPPP. It could be demonstrated that the platelets of these potential drug delivery systems start to form a liquid crystalline phase already at pharmaceutically relevant concentrations φPPP of less than 10 wt. %. The details of this liquid crystalline phase are described here for the first time. As in a previous study [A. Illing et al., Pharm. Res. 21, 592 (2004)] some platelets are found to self-assemble into lamellar stacks above a critical tripalmitin concentration \\varphi _{PPP}^{st} of 4 wt. %. In this study another critical concentration \\varphi _{PPP}^{lc}≈ 7 wt. % for DLPC and \\varphi _{PPP}^{lc}≈ 9 wt. % for S100 stabilized dispersions, respectively, has been observed. \\varphi _{PPP}^{lc} describes the transition from a phase of randomly oriented stacked lamellae and remaining non-assembled individual platelets to a phase in which the stacks and non-assembled platelets exhibit an overall preferred orientation. A careful analysis of the experimental data indicates that for concentrations above \\varphi _{PPP}^{lc} the stacked lamellae start to coalesce to rather small liquid crystalline domains of nematically ordered stacks. These liquid crystalline domains can be individually very differently oriented but possess an overall preferred orientation over macroscopic length scales which becomes successively more expressed when further increasing φPPP. The lower critical concentration for the formation of liquid crystalline domains of the DLPC-stabilized suspension compared to \\varphi _{PPP}^{lc} of the S100-stabilized suspension can be explained by a larger aspect ratio of the corresponding tripalmitin platelets. A geometrical model based on the excluded volumes of

  12. Entrapment of curcumin into monoolein-based liquid crystalline nanoparticle dispersion for enhancement of stability and anticancer activity

    Directory of Open Access Journals (Sweden)

    Baskaran R

    2014-06-01

    Full Text Available Rengarajan Baskaran,1 Thiagarajan Madheswaran,2 Pasupathi Sundaramoorthy,1 Hwan Mook Kim,1 Bong Kyu Yoo1 1College of Pharmacy, Gachon University, Incheon, South Korea; 2College of Pharmacy Yeungnam University, Gyeongsan, South Korea Abstract: Despite the promising anticancer potential of curcumin, its therapeutic application has been limited, owing to its poor solubility, bioavailability, and chemical fragility. Therefore, various formulation approaches have been attempted to address these problems. In this study, we entrapped curcumin into monoolein (MO-based liquid crystalline nanoparticles (LCNs and evaluated the physicochemical properties and anticancer activity of the LCN dispersion. The results revealed that particles in the curcumin-loaded LCN dispersion were discrete and monodispersed, and that the entrapment efficiency was almost 100%. The stability of curcumin in the dispersion was surprisingly enhanced (about 75% of the curcumin survived after 45 days of storage at 40°C, and the in vitro release of curcumin was sustained (10% or less over 15 days. Fluorescence-activated cell sorting (FACS analysis using a human colon cancer cell line (HCT116 exhibited 99.1% fluorescence gating for 5 µM curcumin-loaded LCN dispersion compared to 1.36% for the same concentration of the drug in dimethyl sulfoxide (DMSO, indicating markedly enhanced cellular uptake. Consistent with the enhanced cellular uptake of curcumin-loaded LCNs, anticancer activity and cell cycle studies demonstrated apoptosis induction when the cells were treated with the LCN dispersion; however, there was neither noticeable cell death nor significant changes in the cell cycle for the same concentration of the drug in DMSO. In conclusion, entrapping curcumin into MO-based LCNs may provide, in the future, a strategy for overcoming the hurdles associated with both the stability and cellular uptake issues of the drug in the treatment of various cancers. Keywords: liquid

  13. Understanding the roles of nanoparticle dispersion and polymer crystallinity in controlling the mechanical properties of HA/PHBV nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Noohom, Wadcharawadee; Jack, Kevin S; Martin, Darren; Trau, Matt, E-mail: k.jack@uq.edu.a [Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Queensland 4072 (Australia)

    2009-02-15

    Nano-sized hydroxyapatite (HA) particles stabilized using poly(acrylic acid) (PAA) as a dispersing agent, and sonic energy to further increase dispersion, were blended with poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) using a precipitation/gelation method to produce HA/PHBV nanocomposites with up to 16% by weight of HA content. The level of HA nanoparticle dispersion was monitored in the precursor dispersions prior to composite production and in the nanocomposites by a range of techniques including visual observation, turbidity measurements and electron microscopy, and the roles of the dispersing agent and the sonic energy in controlling the dispersion of HA particles in both the precursor dispersions and the final composites as well as their effects on the compressive strength and Young's modulus were investigated. It was found that HA suspensions treated with both PAA and sonic energy possessed significantly better colloidal stability compared to untreated suspensions or suspensions treated with either PAA or sonic energy. This, in turn, resulted in better dispersion of HA nanoparticles in the composites and higher compressive moduli as a function of the particle loading. This enhancement in stiffness of the composites was attributed primarily to the increased surface area of the HA filler in the more highly dispersed samples, but also to an observed increase in the crystalline content achievable after annealing of the samples. It is proposed that this increase in crystallinity is due to the more highly dispersed particles acting as nucleation sites for the crystallization of the PHBV at the particle interface, which, in turn, leads to enhancement of the bonding between the matrix and filler.

  14. The difference of energies of Si atoms with single-crystalline, amorphous, free and nanoparticle configurations

    Science.gov (United States)

    Wang, Y. L.; Deng, Z. C.; Chu, L. Z.; Fu, G. S.; Peng, Y. C.

    2009-04-01

    Nanocrystalline silicon (nc-Si) films were systematically prepared via three ways: a) laser anneal or b) thermal anneal of the amorphous silicon (α-Si) films deposited by pulsed-laser ablation (PLA) in base vacuum, c) direct PLA in high-purity Ar gas with pressure of 10 Pa. The anneal-laser fluence, thermal-anneal temperature and ablation-laser fluence thresholds corresponding to the beginning of nanoparticles formation were respectively determined by using scanning electron microscopy (SEM), Raman and X-ray diffraction (XRD) techniques. Incorporated with crystallization mechanism, energies compensated for the formation of one Si nanoparticle in the three ways were calculated approximately. The result shows that for different crystallization ways, the potential barriers during the formation of one ~16 nm nanoparticle are on the order of 10-9 mJ.

  15. Monodisperse gold nanoparticles formed on bacterial crystalline surface layers (S-layers) by electroless deposition

    Energy Technology Data Exchange (ETDEWEB)

    Dieluweit, S. [Center for Nanobiotechnology, University of Natural Resources and Applied Life Sciences (BOKU), Gregor Mendel-Strasse 33, A-1180 Vienna (Austria); Pum, D. [Center for Nanobiotechnology, University of Natural Resources and Applied Life Sciences (BOKU), Gregor Mendel-Strasse 33, A-1180 Vienna (Austria); Sleytr, U.B. [Center for Nanobiotechnology, University of Natural Resources and Applied Life Sciences (BOKU), Gregor Mendel-Strasse 33, A-1180 Vienna (Austria); Kautek, W. [Department for Physical Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna (Austria)]. E-mail: wolfgang.kautek@univie.ac.at

    2005-12-15

    The fabrication of patterned arrays of nanoparticles whose electronic, optical and magnetic properties will find technological applications, such as ultra-high-density memories, is currently one of the most important objectives of inorganic material research. In this study, the in situ electroless nucleation of ordered two-dimensional arrays of gold nanoparticles (5 nm in size) by using bacterial S-layers as molecular templates and their characterization by small spot X-ray photoelectron emission spectroscopy (XPS) is presented. This yielded the elemental composition of the nanoclusters, which consisted of almost entirely elemental gold, and possible side reactions on the cluster and protein surface. The preferential deposition of the gold nanoparticles on the S-layer suggests that topography and functional groups are important for superlattice formation.

  16. High resolution X-ray diffraction studies on unirradiated and irradiated strontium hexaferrite crystals

    Indian Academy of Sciences (India)

    Balwinder Kaur; Monita Bhat; F Licci; Ravi Kumar; K K Bamzai; P N Kotru

    2012-04-01

    High-resolution X-ray diffraction technique, employing a three-crystal monochromator–collimator combination is used to study the irradiation induced defects in flux grown Sr-hexaferrite crystals irradiated with 50 MeV Li3+ ion beams at room temperature with a fluence value of 1 × 1014 ions/cm2. The diffraction curves of the irradiated crystals suggest the possibility of creation of low angle grain boundaries and other point/clusters of defects causing amorphization in the irradiated crystals. The perfection of the irradiated and unirradiated (0001) cleaved surfaces of the crystals is studied using the bulk method of X-ray topography. The topographs supplement the findings suggestive of modifications in the crystalline quality of SrFe12O19 on irradiation with SHI of Li3+. Etching of the (0001) cleaved surfaces in H3PO4 at 120°C suggests that the dissolution characteristics of the surfaces get affected on irradiation with SHI of Li3+, besides supporting the findings of HRXRD and X-ray topography regarding modifications in the perfection of SrFe12O19 on irradiation.

  17. Composition and crystallinity of silicon nanoparticles synthesised by hot wire thermal catalytic pyrolysis at different pressures

    CSIR Research Space (South Africa)

    Scriba, MR

    2009-04-01

    Full Text Available The effect of pressure on the structure and composition of silicon nanoparticles synthesized by hot wire thermal catalytic pyrolysis (HW-TCP) of pure silane has been investigated. Light brown powders were produced at silane pressures of 10 and 50...

  18. Nanoscale confinement and interfacial effects on the dynamics and glass transition/crystallinity of thin adsorbed films on silica nanoparticles

    Science.gov (United States)

    Madathingal, Rajesh Raman

    hydrogen bonded to the silanols, and was independent of particle morphology. For methylated silica, (CH3) 3-SiO2, the adsorption isotherms were identical for colloidal and fumed silica, but Tg was depressed for the former, and comparable to the bulk value for the latter. The increased Tg of PMMA adsorbed onto fumed (CH3)3-SiO2 was attributed to the larger loops formed by the bridging PMMA chains between the silica aggregates. For nanocomposites the interphase region becomes more important as the surface/volume ratio of the nanoparticles increases. Polymers have chain dimensions (characterized by the radius of gyration, Rg) similar to the nanoparticles (Rnanoparticle) themselves, so that chain conformation, mobility and crystallinity can be affected by Rg/Rnanoparticle. Here, both the glass transition temperature (Tg) and degree of crystallinity (Xc) of polyethylene oxide (PEO) on individual SiO 2 nanoparticles of nominal 15, 50 and 100 nm diameter (2 RSiO2 ) , in which Rg (PEO) was greater, equal to or less than RSiO2 was investigated. Plateau adsorption of PEO on SiO2 nanoparticles (PEO-SiO2) increased in the order PEO-SiO 2 (100 nm) > PEO-SiO2 (50 nm) > PEO-SiO2 (15 nm). At plateau adsorption after melting and solidification, the samples were completely amorphous. The Tg of the adsorbed PEO increased in the order PEO-SiO 2 (100 nm) > PEO-SiO2 (50 nm) > PEO-SiO2 (15 nm); since the Tgs were above 25°C in all cases, the PEO behaved more like a brittle solid than an elastomer. For comparable amounts of PEO that were adsorbed from solution but not melted, the melt endotherm increased in the order PEO-SiO2 (15 nm) > PEO-SiO2 (50 nm) > PEO-SiO 2 (100 nm). These trends were interpreted as due to an increase in loop/tail lengths and thus flexibility, with a concomitant ability to crystallize, as Rg (PEO)/RSiO2 decreased and which was the result of less hydrogen bond formation between the oxygens of PEO and the silanols (SiOH) of the SiO 2 as the nanoparticle size decreased. This

  19. Strong infrared photoluminescence in highly porous layers of large faceted Si crystalline nanoparticles

    Science.gov (United States)

    de Jong, E. M. L. D; Mannino, G.; Alberti, A.; Ruggeri, R.; Italia, M.; Zontone, F.; Chushkin, Y.; Pennisi, A. R.; Gregorkiewicz, T.; Faraci, G.

    2016-01-01

    Almost all physical processes in solids are influenced by phonons, but their effect is frequently overlooked. In this paper, we investigate the photoluminescence of large silicon nanoparticles (approximately 100 nm size, synthesized by chemical vapor deposition) in the visible to the infrared detection range. We find that upon increasing laser irradiance, an enormous photoluminescence emission band appears in the infrared. Its intensity exhibits a superlinear power dependence, increasing over four orders of magnitude in the investigated pump power range. Particles of different sizes as well as different shapes in porous layers are investigated. The results are discussed taking into account the efficient generation of phonons under high-power pumping, and the reduced capability, porosity dependent, of the silicon nanoparticles to exchange energy with each other and with the substrate. Our findings are relevant for heat management strategies in silicon. PMID:27216452

  20. Optimization of Hydride Rim Formation in Unirradiated Zr 4 Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Shimskey, Rick W.; Hanson, Brady D.; MacFarlan, Paul J.

    2013-09-30

    The purpose of this work is to build on the results reported in the M2 milestone M2FT 13PN0805051, document number FCRD-USED-2013-000151 (Hanson, 2013). In that work, it was demonstrated that unirradiated samples of zircaloy-4 cladding could be pre-hydrided at temperatures below 400°C in pure hydrogen gas and that the growth of hydrides on the surface could be controlled by changing the surface condition of the samples and form a desired hydride rim on the outside diameter of the cladding. The work performed at Pacific Northwest National Laboratory since the issuing of the M2 milestone has focused its efforts to optimize the formation of a hydride rim on available zircaloy-4 cladding samples by controlling temperature variation and gas flow control during pre-hydriding treatments. Surface conditioning of the outside surface was also examined as a variable. The results of test indicate that much of the variability in the hydride thickness is due to temperature variation occurring in the furnaces as well as how hydrogen gas flows across the sample surface. Efforts to examine other alloys, gas concentrations, and different surface conditioning plan to be pursed in the next FY as more cladding samples become available

  1. Interaction of fibrinogen and albumin with titanium dioxide nanoparticles of different crystalline phases

    Science.gov (United States)

    Marucco, Arianna; Fenoglio, Ivana; Turci, Francesco; Fubini, Bice

    2013-04-01

    TiO2 nanoparticles (NPs) are contained in different kinds of industrial products including paints, self-cleaning glasses, sunscreens. TiO2 is also employed in photocatalysis and it has been proposed for waste water treatment. Micrometric TiO2 is generally considered a safe material, while there is concern on the possible health effects of nanometric titania. Due to their small size NPs may migrate within the human body possibly entering in the blood stream. Therefore studies on the interaction of NPs with plasma proteins are needed. In fact, the interaction with proteins is believed to ultimately influences the NPs biological fate. Fibrinogen and albumin are two of the most abundant plasma proteins. They are involved in several important physiological functions. Furthermore, fibrinogen is known to trigger platelet adhesion and inflammation. For these reasons the study of the interaction between these protein and nanoparticles is an important step toward the understanding of the behavior of NPs in the body. In this study we investigated the interaction of albumin and fibrinogen with TiO2 nanoparticles of different crystal phases (rutile and anatase) using an integrated set of techniques. The amount of adsorbed fibrinogen and albumin for each TiO2 surface was investigated by using the bicinchoninic acid assay (BCA). The variation of the surface charge of the NP-protein conjugates respect to the naked NPs was used to indirectly estimate both surface coverage and reversibility of the adsorption upon dilution. Surface charge was monitored by measuring the ζ potential with a conventional electrophoretic light scattering (ELS) system. The extent of protein deformation was evaluated by Raman Spectroscopy. We found that both proteins adsorb irreversibly against electrostatic repulsion, likely undergoing conformational changes or selective orientation upon adsorption. The size of primary particles and the particles aggregation rather than the crystal phase modulate the

  2. STUDY OF SUBCELLULAR DISTRIBUTION OF CRYSTALLINE MESO-TETRA(3-PYRIDYLBACTERIOCHLORIN NANOPARTICLES

    Directory of Open Access Journals (Sweden)

    Yu. S. Maklygina

    2016-01-01

    Full Text Available The results of the study of subcellular distribution of molecular meso-tetra(3-pyridylbacteriochlorin nanocrystals proposed as therapeutic agents for photodynamic therapy are represented in the article. Investigations and measurement of spectroscopic properties of molecular crystals of near-infrared photosensitizer were conducted using special device complex based on fiber-optic spectrometer. Investigation and analysis of the pattern of subcellular accumulation of meso-tetra(3-pyridylbacteriochlorin in molecular (dimethyl sulfoxide (DMSO as solvent and nanocrystalline forms on different cell lines: human monocytes (THP-1, human cervical cancer cells (HeLa and mouse malignant brain tumor cells (glioma C6. The dynamics of subcellylar accumulation of the agent at concentration of 5 and 10 mg/l was assessed with laser microscope-spectrum analyzer and by confocal microscopy. The study showed that in the course of interaction with cell lines molecular nanocrystals of the agent developed ability to fluorescence. Hence, in the cellular environment meso-tetra(3-pyridyl bacteriochlorin nanoparticles became phototoxic giving opportunities for their use for fluorescence diagnosis and photodynamic therapy. Specific role of meso-tetra(3-pyridylbacteriochlorin in the range of photosensitizers is determined by its spectral characteristics, i.e. absorption and fluorescence in near-infrared band, which allows measuring and affecting on deeper layers of biotissue. Thus, the use of meso-tetra(3-pyridylbacteriochlorin nanoparticles as nanophotosensitizers may improve the efficacy of diagnosis and treatment of deep-seated tumors.

  3. Combined toxicity of two crystalline phases (anatase and rutile) of Titania nanoparticles towards freshwater microalgae: Chlorella sp.

    Science.gov (United States)

    Iswarya, V; Bhuvaneshwari, M; Alex, Sruthi Ann; Iyer, Siddharth; Chaudhuri, Gouri; Chandrasekaran, Prathna Thanjavur; Bhalerao, Gopalkrishna M; Chakravarty, Sujoy; Raichur, Ashok M; Chandrasekaran, N; Mukherjee, Amitava

    2015-04-01

    In view of the increasing usage of anatase and rutile crystalline phases of titania NPs in the consumer products, their entry into the aquatic environment may pose a serious risk to the ecosystem. In the present study, the possible toxic impact of anatase and rutile nanoparticles (individually and in binary mixture) was investigated using freshwater microalgae, Chlorella sp. at low exposure concentrations (0.25, 0.5 and 1mg/L) in freshwater medium under UV irradiation. Reduction of cell viability as well as a reduction in chlorophyll content were observed due to the presence of NPs. An antagonistic effect was noted at certain concentrations of binary mixture such as (0.25, 0.25), (0.25, 0.5), and (0.5, 0.5) mg/L, and an additive effect for the other combinations, (0.25, 1), (0.5, 0.25), (0.5, 1), (1, 0.25), (1, 0.5), and (1, 1) mg/L. The hydrodynamic size analyses in the test medium revealed that rutile NPs were more stable in lake water than the anatase and binary mixtures [at 6h, the sizes of anatase (1mg/L), rutile NPs (1mg/L), and binary mixture (1, 1mg/L) were 948.83±35.01nm, 555.74±19.93nm, and 1620.24±237.87nm, respectively]. The generation of oxidative stress was found to be strongly dependent on the crystallinity of the nanoparticles. The transmission electron microscopic images revealed damages in the nucleus and cell membrane of algal cells due to the interaction of anatase NPs, whereas rutile NPs were found to cause chloroplast and internal organelle damages. Mis-shaped chloroplasts, lack of nucleus, and starch-pyrenoid complex were noted in binary-treated cells. The findings from the current study may facilitate the environmental risk assessment of titania NPs in an aquatic ecosystem.

  4. Preparation of high crystalline nanoparticles of rare-earth based complex pervoskites and comparison of their structural and magnetic properties with bulk counterparts

    Science.gov (United States)

    Basith, M. A.; Islam, M. A.; Ahmmad, Bashir; Sarowar Hossain, M. D.; Mølhave, K.

    2017-07-01

    A simple route to prepare Gd0.7Sr0.3MnO3 nanoparticles by ultrasonication of their bulk powder materials is presented in this article. For comparison, Gd0.7Sr0.3MnO3 nanoparticles are also prepared by ball milling. The prepared samples are characterized by x-ray diffraction (XRD), field emission scanning electron microscope (FESEM), energy dispersive x-ray (EDX), x-ray photoelectron spectroscope (XPS), and superconducting quantum interference device (SQUID) magnetometer. XRD Rietveld analysis is carried out extensively for the determination of crystallographic parameters and the amount of crystalline and amorphous phases. FESEM images demonstrate the formation of nanoparticles with average particle size in the range of 50-100 nm for both ultrasonication and 4 h (h) of ball milling. The bulk materials and nanoparticles synthesized by both ultrasonication and 4 h ball milling exhibit a paramagnetic to spin-glass transition. However, nanoparticles synthesized by 8 h and 12 h ball milling do not reveal any phase transition, rather show an upturn of magnetization at low temperature. The degradation of the magnetic properties in ball milled nanoparticles may be associated with amorphization of the nanoparticles due to ball milling particularly for milling time exceeding 8 h. This investigation demonstrates the potential of ultrasonication as a simple route to prepare high crystalline rare-earth based manganite nanoparticles with improved control compared to the traditional ball milling technique.

  5. Synthesis and characterization of new crystalline mesoporous beta-tricalcium phosphate nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Silva, F.R.O.; Yoshito, W.K.; Cosentino, I.C.; Bressiani, A.H.A.; Lima, N.B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2016-07-01

    Full text: Calcium phosphates, including hydroxyapatite [HA, Ca10 (PO4)6(OH)2] and beta-tricalcium phosphate [B-TCP, Ca3(PO4)2], are the main mineral component of bone tissue and teeth. The synthetic calcium phosphates are of special interest in medicine because of their biocompatibility, bioactivity and non-toxicity. B-TCP is advantageous to HA for drug delivery system due to their high solubility and controllable bioresorption rate. To obtain B-TCP, the literature reports the transformation of calcium deficient hydroxyapatite (CDHA) to ?-TCP since it couldnot be synthesized directly in aqueous solution, until now. For the first time, B-TCP have been successfully synthesized by wet precipitation method at room temperature with a Ca/P molar ratio equal to 1.5 and pH at 6. The present work is concerned with the preparation of B-TCP and it characterization through XRD, BET and TEM analysis. The results showed well-characterized peaks of crystalline pure B-TCP (JCPDS 09-0169) for the dried powder, with a high BET surface area of 574 ± 7 (m2/g). The TEM micrographs exhibits mesoporous structure, which is suitable as a drug carrier. (author)

  6. Potential of ITO nanoparticles formed by hydrogen treatment in PECVD for improved performance of back grid contact crystalline silicon solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Sourav; Mitra, Suchismita; Dhar, Sukanta; Ghosh, Hemanta; Banerjee, Chandan, E-mail: chandanbanerjee74@gmail.com; Datta, Swapan K.; Saha, Hiranmoy

    2015-09-15

    Highlights: • Indium tin oxide (ITO) nanoparticles as back scatterers in c-Si solar cells. • ITO NP have comparatively low dissipative losses and tunable optical properties. • ITO NP formed by hydrogen plasma treatment on sputtered ITO film. • Enhanced absorption and carrier collection at longer wavelengths due to enhanced light trapping. - Abstract: This paper discusses the prospect of using indium tin oxide (ITO) nanoparticles as back scatterers in crystalline silicon solar cells instead of commonly used metal nanoparticles as ITO nanoparticles have comparatively low dissipative losses and tunable optical properties. ITO nanoparticles of ∼5–10 nm size is developed on the rear side of the solar cell by deposition of ∼5–10 nm thick ITO layer by DC magnetron sputtering followed by hydrogen treatment in PECVD. The silicon solar cell is fabricated in the laboratory using conventional method with grid metal contact at the back surface. Various characterizations like FESEM, TEM, AFM, XRD, EQE and IV characteristics are performed to analyze the morphology, chemical composition, optical characteristics and electrical performance of the device. ITO nanoparticles at the back surface of the solar cell significantly enhances the short circuit current, open circuit voltage and efficiency of the solar cell. These enhancements may be attributed to the increased absorption and carrier collection at longer wavelengths of solar spectrum due to enhanced light trapping by the ITO nanoparticles and surface passivation by the hydrogen treatment of the back surface.

  7. Magnetic field detector consisting of magnetic and semiconducting nanoparticles co-assembled in a liquid crystalline matrix

    Science.gov (United States)

    Amaral, Jose; Rodarte, Andrea; Wan, Jacky; Ferri, Christopher; Quint, Makiko; Pandolfi, Ron; Scheibner, Michael; Hirst, Linda; Ghosh, Sayantani

    2015-03-01

    An exciting area of research is using nano-constituents to create artificial materials that are multifunctional and allow for modification post-fabrication and in situ. We are investigating the ensemble behavior of iron-oxide magnetic nanoparticles (MNPs) and CdSe/ZnS quantum dots (QDs) when dispersed in an electro-optically active liquid crystalline (LC) matrix. The directed assembly of NPs in the matrix is driven by the temperature-induced transition of the LC from the isotropic to the nematic phase as the NPs are mostly expelled into the isotropic regions, finally ending up clustered around LC defect points when the transition is complete. Our results show a two-fold intensity increase of QD photoluminescence intensity with low magnetic fields (less than 100 mT). We speculate this increase is due to MNP rearrangement which produces a compaction of the clusters, resulting in the detection of increased QD emission. The individual components work together to act as a magnetic field detector and since they are direct assembled in a LC medium, they could potentially be used in a wide range of fluid-based applications. This work was funded by NSF grants DMR-1056860 and ECC-1227034. This work was funded by NSF Grants DMR-1056860 and ECC-1227034.

  8. Formation of crystalline nanoparticles by iron binding to pentapeptide (Asp-His-Thr-Lys-Glu) from egg white hydrolysates.

    Science.gov (United States)

    Sun, Na; Cui, Pengbo; Li, Dongmei; Jin, Ziqi; Zhang, Shuyu; Lin, Songyi

    2017-09-20

    A novel peptide from egg white, Asp-His-Thr-Lys-Glu (DHTKE), contains specific amino acids associated with iron binding. The present study aims to better understand the molecular basis of interactions between the DHTKE peptide and iron ions. The ultraviolet-visible and fluorescence spectra indicate an interaction between the DHTKE peptide and iron ions, which leads to the formation of a DHTKE-iron complex. Notably, Asp, Glu, His, and Lys in the DHTKE peptide play crucial roles in the formation of the DHTKE-iron complex, and the iron-binding site of the DHTKE peptide corresponds primarily to the amide and carboxyl groups. The DHTKE peptide can bind iron ions in a 1 : 2 ratio with a binding constant of 1.312 × 10(5) M(-1). Moreover, the DHTKE-iron complex belongs to thermodynamically stable nanoparticles that are present in the crystalline structure, which might be attributed to peptide folding induced by iron binding. Meanwhile, the DHTKE-iron complex exhibits a relatively high iron-releasing percentage and exerts excellent solubility in the human gastrointestinal tract in vitro. This suggests a potential application of peptides containing Asp, Glu, His, or Lys residues as potential iron supplements.

  9. In-Situ Synchrotron Radiation Study of Formation and Growth of Crystalline CexZr1-xO2 Nanoparticles Synthesized in Supercritical Water

    DEFF Research Database (Denmark)

    Tyrsted, Christoffer; Becker-Christensen, Jacob; Hald, Peter

    2010-01-01

    -zirconia system, the growth of ceria and zirconia nanoparticles is fundamentally different under supercritical water conditions. For comparison, ex situ synthesis has also been performed using an in-house supercritical flow reactor. The resulting samples were analyzed using PXRD, small-angle X-ray scattering...... (SAXS), and transmission electron microscopy (TEM). The nanoparticles with x= 0, 0.2, and 0.5 have very low polydispersities. The sizes range from 4 nm to 7 nm, and the particles exhibit a reversibly pH-dependent agglomeration. Udgivelsesdato: 2010......In situ synchrotron powder X-ray diffraction (PXRD) measurements have been conducted to follow the nucleation and growth of crystalline CexZr1-xO2 nanoparticles synthesized in supercritical water with a full substitution variation (x = 0, 0.2, 0.5, 0.8, and 1.0). Direction-dependent growth curves...

  10. Liquid Crystalline Nanoparticles as an Ophthalmic Delivery System for Tetrandrine: Development, Characterization, and In Vitro and In Vivo Evaluation

    Science.gov (United States)

    Liu, Rui; Wang, Shuangshuang; Fang, Shiming; Wang, Jialu; Chen, Jingjing; Huang, Xingguo; He, Xin; Liu, Changxiao

    2016-05-01

    The purpose of this study was to develop novel liquid crystalline nanoparticles (LCNPs) that display improved pre-ocular residence time and ocular bioavailability and that can be used as an ophthalmic delivery system for tetrandrine (TET). The delivery system consisted of three primary components, including glyceryl monoolein, poloxamer 407, and water, and two secondary components, including Gelucire 44/14 and amphipathic octadecyl-quaternized carboxymethyl chitosan. The amount of TET, the amount of glyceryl monoolein, and the ratio of poloxamer 407 to glyceryl monoolein were selected as the factors that were used to optimize the dependent variables, which included encapsulation efficiency and drug loading. A three-factor, five-level central composite design was constructed to optimize the formulation. TET-loaded LCNPs (TET-LCNPs) were characterized to determine their particle size, zeta potential, entrapment efficiency, drug loading capacity, particle morphology, inner crystalline structure, and in vitro drug release profile. Corneal permeation in excised rabbit corneas was evaluated. Pre-ocular retention was determined using a noninvasive fluorescence imaging system. Finally, pharmacokinetic study in the aqueous humor was performed by microdialysis technique. The optimal formulation had a mean particle size of 170.0 ± 13.34 nm, a homogeneous distribution with polydispersity index of 0.166 ± 0.02, a positive surface charge with a zeta potential of 29.3 ± 1.25 mV, a high entrapment efficiency of 95.46 ± 4.13 %, and a drug loading rate of 1.63 ± 0.07 %. Transmission electron microscopy showed spherical particles that had smooth surfaces. Small-angle X-ray scattering profiles revealed an inverted hexagonal phase. The in vitro release assays showed a sustained drug release profile. A corneal permeation study showed that the apparent permeability coefficient of the optimal formulation was 2.03-fold higher than that of the TET solution. Pre-ocular retention

  11. Influence of Reaction Solvent on Crystallinity and Magnetic Properties of MnFe2O4 Nanoparticles Synthesized by Thermal Decomposition

    Directory of Open Access Journals (Sweden)

    Lina Song

    2016-01-01

    Full Text Available This study reports the synthesis of three kinds of manganese-doped magnetic ferrite nanoparticles (MnFe2O4 in benzyl ether, octyl ether, and 1-octadecene by a simple and low cost thermal decomposition method. It was found that benzyl ether results in a dramatic improvement in nanoparticle crystallinity owing to its stronger reducibility compared to octyl ether and 1-octadecene, as demonstrated by X-ray diffraction and TEM measurements. Raman spectroscopy detection also indicated that the reducing solvent of benzyl ether was in favor of forming magnetite-like structure ferrite, while maghemite-like structured ferrite was obtained in octyl ether and 1-octadecene. The saturation magnetization (MS of MnFe2O4 synthesized in benzyl ether was 85 emu/g [Fe], which was 3 and 5 times larger than MnFe2O4 synthesized in octyl ether and 1-octadecene, respectively. The specific absorption rate (SAR of MnFe2O4 nanoparticles synthesized in benzyl ether was 574 W/g, while MnFe2O4 nanoparticles synthesized in octyl ether and 1-octadecene have had much smaller SAR of 76 and 33 W/g, respectively. MnFe2O4 nanoparticles synthesized in benzyl ether also exhibit higher relaxivity (r2=207 mM−1 s−1 than those synthesized in octyl ether and 1-octadecene (r2=65 and 22 mM−1 s−1. It was obvious that MnFe2O4 nanoparticles synthesized in reducing benzyl ether have higher crystallinity and thus higher MS, SAR, and r2 values, which can serve as a better candidate for hyperthermia and magnetic resonance imaging.

  12. nanoparticles

    Science.gov (United States)

    Zhao, Yu; Li, Hui; Liu, Xu-Jun; Guan, Lei-Lei; Li, Yan-Li; Sun, Jian; Ying, Zhi-Feng; Wu, Jia-Da; Xu, Ning

    2014-06-01

    Evenly separated crystalline CuIn0.8Ga0.2Se2 (CIGS) nanoparticles are deposited on ITO-glass substrate by pulsed laser deposition. Such CIGS layers are introduced between conjugated polymer layers and ITO-glass substrates for enhancing light absorbance of polymer solar cells. The P3HT:PCBM absorbance between 300 and 650 nm is enhanced obviously due to the introduction of CIGS nanoparticles. The current density-voltage curves of a P3HT:PCBM/CIGS solar cell demonstrate that the short-circuit current density is improved from 0.77 to 1.20 mA/cm2. The photoluminescence spectra show that the excitons in the polymer are obviously quenched, suggesting that the charge transfer between the P3HT:PCBM and CIGS occurred. The results reveal that the CIGS nanoparticles may exhibit the localized surface plasmon resonance effect just as metallic nanostructures.

  13. Water flattens graphene wrinkles: laser shock wrapping of graphene onto substrate-supported crystalline plasmonic nanoparticle arrays.

    Science.gov (United States)

    Hu, Yaowu; Lee, Seunghyun; Kumar, Prashant; Nian, Qiong; Wang, Wenqi; Irudayaraj, Joseph; Cheng, Gary J

    2015-12-21

    Hot electron injection into an exceptionally high mobility material can be realized in graphene-plasmonic nanoantenna hybrid nanosystems, which can be exploited for several front-edge applications including photovoltaics, plasmonic waveguiding and molecular sensing at trace levels. Wrinkling instabilities of graphene on these plasmonic nanostructures, however, would cause reactive oxygen or sulfur species to diffuse and react with the materials, decrease charge transfer rates and block intense hot-spots. No ex situ graphene wrapping technique has been explored so far to control these wrinkles. Here, we present a method to generate seamless integration by using water as a flyer to transfer the laser shock pressure to wrap graphene onto plasmonic nanocrystals. This technique decreases the interfacial gap between graphene and the covered substrate-supported plasmonic nanoparticle arrays by exploiting a shock pressure generated by the laser ablation of graphite and the water impermeable nature of graphene. Graphene wrapping of chemically synthesized crystalline gold nanospheres, nanorods and bipyramids with different field confinement capabilities is investigated. A combined experimental and computational method, including SEM and AFM morphological investigation, molecular dynamics simulation, and Raman spectroscopy characterization, is used to demonstrate the effectiveness of this technique. Graphene covered gold bipyramid exhibits the best result among the hybrid nanosystems studied. We have shown that the hybrid system fabricated by laser shock can be used for enhanced molecular sensing. The technique developed has the characteristics of tight integration, and chemical/thermal stability, is instantaneous in nature, possesses a large scale and room temperature processing capability, and can be further extended to integrate other 2D materials with various 0-3D nanomaterials.

  14. Highly crystalline LiCuXFe1-XPO4 nanoparticles synthesized by high temperature thermal decomposition: a morphological and electrical transport study

    Science.gov (United States)

    Martinez, P.; Ruiz, F.; Curiale, J.; Vasquez Mansilla, M.; Zysler, R. D.; Dada, L.; Moreno, M. S.; Rodríguez, L.; Fregenal, D.; Bernardi, G.; Lima, E., Jr.

    2016-08-01

    In this work, we report the morphological and electrical characterization of highly crystalline \\text{LiC}{{\\text{u}}\\text{X}}\\text{F}{{\\text{e}}1-\\text{X}}\\text{P}{{\\text{O}}4} nanoparticles synthesized via the high-temperature (380 °C) thermal decomposition of organometallic precursors. The mean diameter of the studied nanoparticles was 30-40 nm. The Cu/Fe relations of 0, 0.001 and 0.042 for the three studied samples were obtained via particle-induced x-ray emission spectroscopy. Crystallographic and morphological studies were performed using x-ray diffraction, transmission electron microscopy and high-resolution transmission electron microscopy techniques. We investigated the effects of incorporating copper on the electric transport properties of this highly crystalline nanometric system using impedance spectroscopy and DC transport techniques. The experimental evidence allowed us to conclude that in the frequency range f  <  1 kHz the transport is dominated by the diffusion of Li and the presence of Cu atoms in the systems hinders this transport mechanism, despite the high crystallinity of the system.

  15. One-pot synthesis of CoNiO{sub 2} single-crystalline nanoparticles as high-performance electrode materials of asymmetric supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Du, Weimin, E-mail: dwmchem@163.com; Gao, Yanping; Tian, Qingqing; Li, Dan; Zhang, Zhenhu; Guo, Jiaojiao [Anyang Normal University, College of Chemistry and Chemical Engineering (China); Qian, Xuefeng [Shanghai Jiao Tong University, School of Chemistry and Chemical Technology (China)

    2015-09-15

    A facile one-pot solvothermal method has been developed to synthesize CoNiO{sub 2} single-crystalline nanoparticles. Crystal phase, morphology, crystal lattice, and composition of the obtained products were characterized by X-ray diffraction, scanning electron microscope, high-resolution transmission electron microscopy, and energy-dispersive X-ray analysis, respectively. Results revealed that the as-synthesized CoNiO{sub 2} nanoparticles belong to cubic structure with narrow size-distribution (8–10 nm). Subsequently, new asymmetric supercapacitors were successfully assembled with CoNiO{sub 2} nanoparticles as positive electrode and activated carbon as negative electrode. The electrochemical results show that asymmetric supercapacitors based on CoNiO{sub 2} nanoparticles possess excellent supercapacitor properties, i.e., a stable electrochemical window of 0–1.7 V, higher energy density of 24.0 Wh/kg at a power density of 415.4 W/kg, and excellent cycling stability (96.8 % capacitance retention after 5000 charge–discharge cycles). Meanwhile, both a light-emitting diode and a mini fan can be powered by two series connection asymmetric supercapacitors. These results imply that the present asymmetric supercapacitors based on CoNiO{sub 2} nanoparticles possess the promising potential application in the field of high-performance energy storage.

  16. Hydrothermal synthesis of highly crystalline RuS{sub 2} nanoparticles as cathodic catalysts in the methanol fuel cell and hydrochloric acid electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yanjuan [Key Laboratory of Marine Chemistry Theory and Technology, Minisry of Education Ocean University of China, Qingdao, 266100 (China); College of Material Science and Engineering, Key Laboratory of Automobile Materials of Ministry of Education, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Li, Nan, E-mail: lin@jlu.edu.cn [College of Material Science and Engineering, Key Laboratory of Automobile Materials of Ministry of Education, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Yanagisawa, Kazumichi [Research Laboratory of Hydrothermal Chemistry, Kochi University, Kochi 780-8520 (Japan); Li, Xiaotian [College of Material Science and Engineering, Key Laboratory of Automobile Materials of Ministry of Education, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Yan, Xiao [Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012 (China)

    2015-05-15

    Highlights: • Highly crystalline RuS{sub 2} nanoparticles have been first synthesized by a “one-step” hydrothermal method. • The product presents a pure cubic phase of stoichiometric ratio RuS{sub 2} with average particle size of 14.8 nm. • RuS{sub 2} nanoparticles were used as cathodic catalysts in methanol fuel cell and hydrochloric acid electrolysis. • The catalyst outperforms commercial Pt/C in methanol tolerance and stability towards Cl{sup −}. - Abstract: Highly crystalline ruthenium sulfide (RuS{sub 2}) nanoparticles have been first synthesized by a “one-step” hydrothermal method at 400 °C, using ruthenium chloride and thiourea as reactants. The products were characterized by powder X-ray diffraction (XRD), scanning electron microscopy/energy disperse spectroscopy (SEM/EDS), thermo gravimetric-differential thermal analyze (TG-DTA), transmission electron microscopy equipped with selected area electron diffraction (TEM/SAED). Fourier transform infrared spectra (IR), and X-ray photoelectron spectroscopy (XPS). XRD result illustrates that the highly crystalline product presents a pure cubic phase of stoichiometric ratio RuS{sub 2} and the average particle size is 14.8 nm. SEM and TEM images display the products have irregular shape of 6–25 nm. XPS analyst indicates that the sulfur exists in the form of S{sub 2}{sup 2−}. Cyclic voltammetry (CV), rotating disk electrode (RDE), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) measurements are conducted to evaluate the electrocatalytic activity and stability of the highly crystalline RuS{sub 2} nanoparticles in oxygen reduction reaction (ORR) for methanol fuel cell and hydrochloric acid electrolysis. The results illustrate that RuS{sub 2} is active towards oxygen reduction reaction. Although the activity of RuS{sub 2} is lower than that of Pt/C, the RuS{sub 2} catalyst outperforms commercial Pt/C in methanol tolerance and stability towards Cl{sup −}.

  17. Silica Supported Ceria Nanoparticles: A Hybrid Nanostructure To Increase Stability And Surface Reactivity Of Nano-crystalline Ceria

    Energy Technology Data Exchange (ETDEWEB)

    Munusamy, Prabhakaran; Sanghavi, Shail P.; Varga, Tamas; Thevuthasan, Suntharampillai

    2014-01-21

    The mixed oxidation state (3+/4+) of ceria nanoparticles of smaller sizes make them attractive materials for their catalytic antioxidant biological properties. However the unmodified smaller ceria nanoparticles are limited in their use due to particles agglomeration and reduced surface chemical reactivity in the solutions used to disperse the nanoparticles. This work describes an effort to stabilize small ceria nanoparticles, retaining their desired activity, on a larger stable silica support. The ceria nanoparticles attached to silica was synthesized by a solution synthesis technique in which the surface functional groups of silica nanoparticles were found to be essential for the formation of smaller ceria nanoparticles. The surface chemical and vibrational spectroscopy analysis revealed cerium–silicate (Ce-O-Si) covalent bond linkage between silica and cerium oxide nanoparticles. The colloidal properties (agglomerate particle size and suspension stability) of ceria attached to silica was significantly improved due to inherent physico-chemical characteristics of silica against random collision and gravitation settling as opposed to unmodified ceria nanoparticles in solution. The bio-catalytic activity of ceria nanoparticles in the 3+ oxidation state was not found to be limited by attachment to the silica support as measured by free radical scavenging activity in different biological media conditions.

  18. a Study of Stress Relaxation Rate in Un-Irradiated and Neutron-Irradiated Stainless Steel

    Science.gov (United States)

    Ghauri, I. M.; Afzal, Naveed; Zyrek, N. A.

    Stress relaxation rate in un-irradiated and neutron-irradiated 303 stainless steel was investigated at room temperature. The specimens were exposed to 100 mC, Ra-Be neutron source of continuous energy 2-12 MeV for a period ranging from 4 to 16 days. The tensile deformation of the specimens was carried out using a Universal Testing Machine at 300 K. During the deformation, straining was frequently interrupted by arresting the cross head to observe stress relaxation at fixed load. Stress relaxation rate, s, was found to be stress dependent i.e. it increased with increasing stress levels σ0 both in un-irradiated and irradiated specimens, however the rate was lower in irradiated specimens than those of un-irradiated ones. A further decrease in s was observed with increase in exposure time. The experiential decrease in the relaxation rate in irradiated specimens is ascribed to strong interaction of glide dislocations with radiation induced defects. The activation energy for the movement of dislocations was found to be higher in irradiated specimens as compared with the un-irradiated ones.

  19. Role of the crystalline form of titanium dioxide nanoparticles: Rutile, and not anatase, induces toxic effects in Balb/3T3 mouse fibroblasts.

    Science.gov (United States)

    Uboldi, Chiara; Urbán, Patricia; Gilliland, Douglas; Bajak, Edyta; Valsami-Jones, Eugenia; Ponti, Jessica; Rossi, François

    2016-03-01

    The wide use of titanium dioxide nanoparticles (TiO2 NPs) in industrial applications requires the investigation of their effects on human health. In this context, we investigated the effects of nanosized and bulk titania in two different crystalline forms (anatase and rutile) in vitro. By colony forming efficiency assay, a dose-dependent reduction of the clonogenic activity of Balb/3T3 mouse fibroblasts was detected in the presence of rutile, but not in the case of anatase NPs. Similarly, the cell transformation assay and the micronucleus test showed that rutile TiO2 NPs were able to induce type-III foci formation in Balb/3T3 cells and appeared to be slightly genotoxic, whereas anatase TiO2 NPs did not induce any significant neoplastic or genotoxic effect. Additionally, we investigated the interaction of TiO2 NPs with Balb/3T3 cells and quantified the in vitro uptake of titania using mass spectrometry. Results showed that the internalization was independent of the crystalline form of TiO2 NPs but size-dependent, as nano-titania were taken up more than their respective bulk materials. In conclusion, we demonstrated that the cytotoxic, neoplastic and genotoxic effects triggered in Balb/3T3 cells by TiO2 NPs depend on the crystalline form of the nanomaterial, whereas the internalization is regulated by the particle size.

  20. Strong enhancement in thermal conductivity of ethylene glycol-based nanofluids by amorphous and crystalline Al{sub 2}O{sub 3} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gangwar, J. [CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India); Department of Physics, Panjab University, Chandigarh 160014 (India); Srivastava, A. K., E-mail: aks@nplindia.org, E-mail: avanish.aks555@gmail.com [CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India); Tripathi, S. K. [Department of Physics, Panjab University, Chandigarh 160014 (India); Wan, M.; Yadav, R. R. [Department of Physics, University of Allahabad, Allahabad 211002 (India)

    2014-08-11

    In the present work, the temperature and concentration dependence of thermal conductivity (TC) enhancement in ethylene glycol (EG)-based amorphous and crystalline Al{sub 2}O{sub 3} nanofluids have been investigated at temperatures ranging from 0 to 100 °C. In our prior study, nanometer-sized particles of amorphous-, γ-, and α-Al{sub 2}O{sub 3} were prepared via a simple sol-gel process with annealing at different temperatures and characterized by various techniques. Building upon the earlier study, we probe here the crystallinity, microstructure, and morphology of the obtained α-Al{sub 2}O{sub 3} nanoparticles (NPs) by using X-ray powder diffraction with Rietveld full-profile refinement, scanning electron microscopy, and high-resolution transmission electron microscopy, respectively. In this study, we achieved a 74% enhancement in TC at higher temperature (100 °C) of base fluid EG by incorporating 1.0 vol. % of amorphous-Al{sub 2}O{sub 3}, whereas 52% and 37% enhancement is accomplished by adding γ- and α-Al{sub 2}O{sub 3} NPs, respectively. The amorphous phase of NPs appears to have good TC enhancement in nanofluids as compared to crystalline Al{sub 2}O{sub 3}. In a nutshell, these results are demonstrating the potential consequences of Al{sub 2}O{sub 3} NPs for applications of next-generation efficient energy transfer in nanofluids.

  1. Lipid-based liquid crystalline nanoparticles as oral drug delivery vehicles for poorly water-soluble drugs: cellular interaction and in vivo absorption

    Directory of Open Access Journals (Sweden)

    Zeng N

    2012-07-01

    Full Text Available Ni Zeng,1,3,* Xiaoling Gao,2,* Quanyin Hu,1 Qingxiang Song,2 Huimin Xia,1 Zhongyang Liu,1 Guangzhi Gu,1 Mengyin Jiang,1,4 Zhiqing Pang,1 Hongzhuan Chen,2 Jun Chen,1 Liang Fang3 1Key Laboratory of Smart Drug Delivery, Ministry of Education and PLA, School of Pharmacy, Fudan University, Shanghai, 2Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, Shanghai, 3Department of Pharmaceutical Science, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 4School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong People's Republic of China, *These authors contributed equally to this workBackground: Lipid-based liquid crystalline nanoparticles (LCNPs have attracted growing interest as novel drug-delivery systems for improving the bioavailability of both hydrophilic and hydrophobic drugs. However, their cellular interaction and in vivo behavior have not been fully developed and characterized.Methods: In this study, self-assembled LCNPs prepared from soy phosphatidylcholine and glycerol dioleate were developed as a platform for oral delivery of paclitaxel. The particle size of empty LCNPs and paclitaxel-loaded LCNPs was around 80 nm. The phase behavior of the liquid crystalline matrix was characterized using crossed polarized light microscopy and small-angle X-ray scattering, and showed both reversed cubic and hexagonal phase in the liquid crystalline matrix. Transmission electron microscopy and cryofield emission scanning electron microscopy analysis revealed an inner winding water channel in LCNPs and a "ball-like"/"hexagonal" morphology.Results: Cellular uptake of LCNPs in Caco-2 cells was found to be concentration-dependent and time-dependent, with involvement of both clathrin and caveolae/lipid raft-mediated endocytosis. Under confocal laser scanning microscopy, soy phosphatidylcholine was observed to segregate from the internalized LCNPs and

  2. Atomic-scale microstructural characterization and dielectric properties of crystalline cubic pyrochlore Bi1.5MgNb1.5O7 nanoparticles synthesized by sol-gel method

    KAUST Repository

    Zhang, Yuan

    2013-12-24

    Here, we report the atomic-scale microstructural characterization and dielectric properties of crystalline cubic pyrochlore Bi1.5MgNb 1.5O7 (BMN) nanoparticles with mean size of 70 nm, which were synthesized by sol-gel method. The crystallinity, phase formation, morphology, and surface microstructure of the BMN nanoparticles were characterized by X-ray diffraction (XRD), Raman spectra, transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM), respectively. The phase evolution of the BMN nanoparticles investigated by XRD patterns showed that uniform cubic pyrochlore BMN nanoparticles were obtained after calcination at temperature of 800 C, and their structural information was revealed by Raman spectrum. TEM images demonstrated that the BMN nanoparticles had a spherical morphology with an average particle size of 70 nm, and their crystalline nature was revealed by HRTEM images. In addition, HRTEM images also demonstrate a terrace-ledge-kink (TLK) surface structure at the edges of rough BMN nanoparticles, where the terrace was on the (100) plane, and the ledge on the (001) plane. The formation of such a TLK surface structure can be well explained by a theory of periodic bond chains. Due to the surface structural reconstruction in the BMN nanoparticles, the formation of a tetragonal structure in a rough BMN nanoparticle was also revealed by HRTEM image. The BMN nanoparticles exhibited dielectric constants of 50 at 100 kHz and 30 at 1 MHz, and the dielectric loss of 0.19 at 1 MHz. © 2013 Springer Science+Business Media Dordrecht.

  3. 姜黄素液晶纳米粒大鼠口服吸收的研究%Study on the oral absorption of curcumin-loaded liquid crystalline nanoparticles in rats

    Institute of Scientific and Technical Information of China (English)

    刘秀菊; 苏旬; 郭京艳; 贺秀丽; 翟光喜

    2012-01-01

    目的:研究姜黄素液晶纳米粒大鼠的口服吸收.方法:采用热处理-高压匀质法制备姜黄素液晶纳米粒,利用HPLC测定血浆中姜黄素浓度,DAS 2.0软件处理数据,求算药动学参数.结果:姜黄素液晶纳米粒口服吸收符合单室模型;与原料药组相比,姜黄素液晶纳米粒口服相对生物利用度为395.56%.结论:液晶纳米粒显著提高了姜黄素的口服吸收.%OBJECnVE To study the oral absorption of curcumin-loaded liquid crystalline nanoparticles in rats. METHODS Curcumin loaded liquid crystalline nanoparticles were prepared with the method of hot treatment and high-pressure homogeni-zation,curcumin in plasma was determined by HPLC and the results were analyzed with Program DAS 2. 0 to obtain the phar-macokinetics parameters. RESULTS The oral absorption of curcumin Loaded liquid crystalline nanoparticles in rat fitted one-compartment model,and the relative bioavailability was 395. 56% compared to crude CUR CONCLUSION Liquid crystalline nanoparticles could markedly improve the oral absorption of CUR in rat.

  4. Dissolution of unirradiated UO{sub 2} fuel in synthetic groundwater. Final report (1996-1998)

    Energy Technology Data Exchange (ETDEWEB)

    Ollila, K. [VTT Chemical Technology, Espoo (Finland)

    1999-05-01

    This study was a part of the EU R and D programme 1994-1998: Nuclear Fission Safety, entitled `Source term for performance assessment of spent fuel as a waste form`. The research carried out at VTT Chemical Technology was focused on the effects of granitic groundwater composition and redox conditions on UO{sub 2} solubility and dissolution mechanisms. The synthetic groundwater compositions simulated deep granitic fresh and saline groundwaters, and the effects of the near-field material, bentonite, on very saline groundwater. Additionally, the Spanish granite/bentonite water was used. The redox conditions (Eh), which are obviously the most important factors that influence on UO{sub 2} solubility under the disposal conditions of spent fuel, varied from strongly oxidising (air-saturated), anaerobic (N{sub 2}, O{sub 2} < l ppm) to reducing (N{sub 2}, low Eh). The objective of the air-saturated dissolution experiments was to yield the maximum solution concentrations of U, and information on the formation of secondary phases that control the concentrations, with different groundwater compositions. The static batch solubility experiments of long duration (up to 1-2 years) were performed using unirradiated UO{sub 2} pellets and powder. Under anaerobic and reducing conditions, the solubilities were also approached from oversaturation. The results of the oxic, air-saturated dissolution experiments with UO{sub 2} powder showed that the increase in the salinity (< 1.7 M) had a minor effect on the measured steady-state concentrations of U. The concentrations, (1.2 ...2.5) x 10{sup -5} M, were at the level of the theoretical solubility of schoepite or another uranyl oxide hydrate, e.g. becquerelite (possibly Na-polyuranate). The higher alkalinity of the fresh (Allard) composition increased the aqueous U concentration. Only some kind of oxidised U-phase (U{sub 3}O{sub 8}-UO{sub 3}) was identified with XRD when studying possible secondary phases after the contact time of one year

  5. High Temperature Tensile Properties of Unirradiated and Neutron Irradiated 20 Cr-35 Ni Austenitic Steel

    Energy Technology Data Exchange (ETDEWEB)

    Roy, R.B.; Solly, B.

    1966-12-15

    The tensile properties of an unirradiated and neutron irradiated (at 40 deg C) 20 % Cr, 35 % Ni austenitic steel have been studied at 650 deg C, 750 deg C and 820 deg C. The tensile elongation and mode of fracture (transgranular) of unirradiated specimens tested at room temperature and 650 deg C are almost identical. At 750 deg C and 820 deg C the elongation decreases considerably and a large part of the total elongation is non-uniform. Furthermore, the mode of fracture at these temperatures is intergranular and microscopic evidence suggests that fracture is caused by formation and linkup of grain boundary cavities. YS and UTS decrease monotonically with temperature. Irradiated specimens show a further decrease in ductility and an increase in the tendency to grain boundary cracking. Irradiation has no significant effect on the YS, but the UTS are reduced. The embrittlement of the irradiated specimens is attributed to the presence of He and Li atoms produced during irradiation and the possible mechanisms are discussed. Prolonged annealing of irradiated and unirradiated specimens at 650 deg C appears to have no significant effect on tensile properties.

  6. Single-Crystalline Gold Nanowires Synthesized from Light-Driven Oriented Attachment and Plasmon-Mediated Self-Assembly of Gold Nanorods or Nanoparticles

    Science.gov (United States)

    Yu, Shang-Yang; Gunawan, Hariyanto; Tsai, Shiao-Wen; Chen, Yun-Ju; Yen, Tzu-Chen; Liaw, Jiunn-Woei

    2017-01-01

    Through the light-driven geometrically oriented attachment (OA) and self-assembly of Au nanorods (NRs) or nanoparticles (NPs), single-crystalline Au nanowires (NWs) were synthesized by the irradiation of a linearly-polarized (LP) laser. The process was conducted in a droplet of Au colloid on a glass irradiated by LP near-infrared (e.g. 1064 nm and 785 nm) laser beam of low power at room temperature and atmospheric pressure, without any additive. The FE-SEM images show that the cross sections of NWs are various: tetragonal, pentagonal or hexagonal. The EDS spectrum verifies the composition is Au, and the pattern of X-ray diffraction identifies the crystallinity of NWs with the facets of {111}, {200}, {220} and {311}. We proposed a hypothesis for the mechanism that the primary building units are aligned and coalesced by the plasmon-mediated optical torque and force to form the secondary building units. Subsequently, the secondary building units undergo the next self-assembly, and so forth the tertiary ones. The LP light guides the translational and rotational motions of these building units to perform geometrically OA in the side-by-side, end-to-end and T-shaped manners. Consequently, micron-sized ordered mesocrystals are produced. Additionally, the concomitant plasmonic heating causes the annealing for recrystallizing the mesocrystals in water. PMID:28300218

  7. Single-Crystalline Gold Nanowires Synthesized from Light-Driven Oriented Attachment and Plasmon-Mediated Self-Assembly of Gold Nanorods or Nanoparticles

    Science.gov (United States)

    Yu, Shang-Yang; Gunawan, Hariyanto; Tsai, Shiao-Wen; Chen, Yun-Ju; Yen, Tzu-Chen; Liaw, Jiunn-Woei

    2017-03-01

    Through the light-driven geometrically oriented attachment (OA) and self-assembly of Au nanorods (NRs) or nanoparticles (NPs), single-crystalline Au nanowires (NWs) were synthesized by the irradiation of a linearly-polarized (LP) laser. The process was conducted in a droplet of Au colloid on a glass irradiated by LP near-infrared (e.g. 1064 nm and 785 nm) laser beam of low power at room temperature and atmospheric pressure, without any additive. The FE-SEM images show that the cross sections of NWs are various: tetragonal, pentagonal or hexagonal. The EDS spectrum verifies the composition is Au, and the pattern of X-ray diffraction identifies the crystallinity of NWs with the facets of {111}, {200}, {220} and {311}. We proposed a hypothesis for the mechanism that the primary building units are aligned and coalesced by the plasmon-mediated optical torque and force to form the secondary building units. Subsequently, the secondary building units undergo the next self-assembly, and so forth the tertiary ones. The LP light guides the translational and rotational motions of these building units to perform geometrically OA in the side-by-side, end-to-end and T-shaped manners. Consequently, micron-sized ordered mesocrystals are produced. Additionally, the concomitant plasmonic heating causes the annealing for recrystallizing the mesocrystals in water.

  8. Influences of guide-tube and bluff-body on advanced atmospheric pressure plasma source for single-crystalline polymer nanoparticle synthesis at low temperature

    Science.gov (United States)

    Kim, Dong Ha; Park, Choon-Sang; Kim, Won Hyun; Shin, Bhum Jae; Hong, Jung Goo; Park, Tae Seon; Seo, Jeong Hyun; Tae, Heung-Sik

    2017-02-01

    The use of a guide-tube and bluff-body with an advanced atmospheric pressure plasma source is investigated for the low-temperature synthesis of single-crystalline high-density plasma polymerized pyrrole (pPPy) nano-materials on glass and flexible substrates. Three process parameters, including the position of the bluff-body, Ar gas flow rate, and remoteness of the substrate from the intense and broadened plasma, are varied and examined in detail. Plus, for an in-depth understanding of the flow structure development with the guide-tube and bluff-body, various numerical simulations are also conducted using the same geometric conditions as the experiments. As a result, depending on both the position of the bluff-body and the Ar gas flow rate, an intense and broadened plasma as a glow-like discharge was produced in a large area. The production of the glow-like discharge played a significant role in increasing the plasma energy required for full cracking of the monomers in the nucleation region. Furthermore, a remote growth condition was another critical process parameter for minimizing the etching and thermal damage during the plasma polymerization, resulting in single- and poly-crystalline pPPy nanoparticles at a low temperature with the proposed atmospheric pressure plasma jet device.

  9. Nanostructures having crystalline and amorphous phases

    Science.gov (United States)

    Mao, Samuel S; Chen, Xiaobo

    2015-04-28

    The present invention includes a nanostructure, a method of making thereof, and a method of photocatalysis. In one embodiment, the nanostructure includes a crystalline phase and an amorphous phase in contact with the crystalline phase. Each of the crystalline and amorphous phases has at least one dimension on a nanometer scale. In another embodiment, the nanostructure includes a nanoparticle comprising a crystalline phase and an amorphous phase. The amorphous phase is in a selected amount. In another embodiment, the nanostructure includes crystalline titanium dioxide and amorphous titanium dioxide in contact with the crystalline titanium dioxide. Each of the crystalline and amorphous titanium dioxide has at least one dimension on a nanometer scale.

  10. Stealth, biocompatible monoolein-based lyotropic liquid crystalline nanoparticles for enhanced aloe-emodin delivery to breast cancer cells: in vitro and in vivo studies.

    Science.gov (United States)

    Freag, May S; Elnaggar, Yosra Sr; Abdelmonsif, Doaa A; Abdallah, Ossama Y

    Recently, research has progressively highlighted on clues from conventional use of herbal medicines to introduce new anticancer drugs. Aloe-emodin (AE) is a herbal drug with promising anticancer activity. Nevertheless, its clinical utility is handicapped by its low solubility. For the first time, this study aims to the fabrication of surface-functionalized polyethylene glycol liquid crystalline nanoparticles (PEG-LCNPs) of AE to enhance its water solubility and enable its anticancer use. Developed AE-PEG-LCNPs were optimized via particle size and zeta potential measurements. Phase behavior, solid state characteristics, hemocompatibility, and serum stability of LCNPs were assessed. Sterile formulations were developed using various sterilization technologies. Furthermore, the potential of the formulations was investigated using cell culture, pharmacokinetics, biodistribution, and toxicity studies. AE-PEG-LCNPs showed particle size of 190 nm and zeta potential of -49.9, and PEGylation approach reduced the monoolein hemolytic tendency to 3% and increased the serum stability of the nanoparticles. Sterilization of liquid and lyophilized AE-PEG-LCNPs via autoclaving and γ-radiations, respectively, insignificantly affected the physicochemical properties of the nanoparticles. Half maximal inhibitory concentration of AE-PEG-LCNPs was 3.6-fold lower than free AE after 48 hours and their cellular uptake was threefold higher than free AE after 24-hour incubation. AE-PEG-LCNPs presented 5.4-fold increase in t1/2 compared with free AE. Biodistribution and toxicity studies showed reduced AE-PEG-LCNP uptake by reticuloendothelial system organs and good safety profile. PEGylated LCNPs could serve as a promising nanocarrier for efficient delivery of AE to cancerous cells.

  11. Self-Assembly of Crystalline Structures of Magnetic Core-Shell Nanoparticles for Fabrication of Nanostructured Materials.

    Science.gov (United States)

    Xue, Xiaozheng; Wang, Jianchao; Furlani, Edward P

    2015-10-14

    A theoretical study is presented of the template-assisted formation of crystalline superstructures of magnetic-dielectric core-shell particles. The templates produce highly localized gradient fields and a corresponding magnetic force that guides the assembly with nanoscale precision in particle placement. The process is studied using two distinct and complementary computational models that predict the dynamics and energy of the particles, respectively. Both mono- and polydisperse colloids are studied, and the analysis demonstrates for the first time that although the particles self-assemble into ordered crystalline superstructures, the particle formation is not unique. There is a Brownian motion-induced degeneracy in the process wherein various distinct, energetically comparable crystalline structures can form for a given template geometry. The models predict the formation of hexagonal close packed (HCP) and face centered cubic (FCC) structures as well as mixed phase structures due to in-plane stacking disorders, which is consistent with experimental observations. The polydisperse particle structures are less uniform than the monodisperse particle structures because of the irregular packing of different-sized particles. A comparison of self-assembly using soft- and hard-magnetic templates is also presented, the former being magnetized in a uniform field. This analysis shows that soft-magnetic templates enable an order-of-magnitude more rapid assembly and much higher spatial resolution in particle placement than their hard-magnetic counterparts. The self-assembly method discussed is versatile and broadly applies to arbitrary template geometries and multilayered and multifunctional mono- and polydisperse core-shell particles that have at least one magnetic component. As such, the method holds potential for the bottom-up fabrication of functional nanostructured materials for a broad range of applications. This work provides unprecedented insight into the assembly

  12. Investigations on crystalline structure and optical band gap of nearly stoichiometric LiNbO3 nanoparticles

    Science.gov (United States)

    Debnath, C.; Kar, S.; Verma, S.; Bartwal, K. S.

    2014-11-01

    The structural and optical characteristics of nearly stoichiometric lithium niobate, LiNbO3 nanoparticles have been studied. The results are very different compared to the bulk LiNbO3 single crystals. The nanoparticles were synthesized by citrate gel method and the phase was confirmed by powder X-ray diffraction. The size and size distribution of the nanoparticles were obtained by XRD, SEM, TEM and DLS experiments. The particles were in the range of 50-200 nm and most of the particles are about 100 nm of size. The lattice parameters obtained from selected area electron diffraction are aH = 5.213 Å and cH = 14.026 Å for hexagonal system which are slightly larger than the other reported values (JCPDS). The optical properties were obtained from optical absorption spectroscopy in UV-vis.-NIR and IR (FTIR) range, the electronic band gap structure were determined from the fundamental absorption edge in the UV region. The indirect band gap was of 4.78 eV where as the direct gap was of 6.0 eV which are much larger than the other experimental values. The absorption features in the UV range indicate the discrete nature of conduction band and the allowed energy levels in the forbidden gap appeared due to surface defects.

  13. Synthesis of crystalline perovskite-structured SrTiO3 nanoparticles using an alkali hydrothermal process

    Institute of Scientific and Technical Information of China (English)

    U.K.N. Din; T.H.T. Aziz; M.M. Salleh; A.A. Umar

    2016-01-01

    We report an experimental route for synthesizing perovskite-structured strontium titanate (SrTiO3) nanocubes using an alkali hydrothermal process at low temperatures without further heating. Furthermore, we studied the influence of heating time (at 180°C) on the crystallinity, morphology, and perovskite phase formation of SrTiO3. The SrTiO3 powder, which is formed via nanocube agglomeration, transforms into cubic particles with a particle size of 120–150 nm after 6 h of hydrothermal sintering. The crystallinity and percentage of the perovskite phase in the product increased with heating time. The cubic particles contained 31.24at% anatase TiO2 that originated from the precursor. By varying the weight ratio of anatase TiO2 used to react with the strontium salt precursor, we reduced the anatase-TiO2 content to 18.8at%. However, the average particle size increased when the anatase-TiO2 content decreased.

  14. Safety Analysis Report for Packaging: The unirradiated fuel shipping container USA/9853/AF

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-18

    The HFBR Unirradiated Fuel Shipping Container was designed and fabricated at the Oak Ridge National Laboratory in 1978 for the transport of fuel for the High Flux Beam Reactor (HFBR) for Brookhaven National Laboratory. The package has been evaluated analytically, as well as the comparison to tests on similar packages, to demonstrate compliance with the applicable regulations governing packages in which radioactive and fissile materials are transported. The contents of this Safety Analysis Report for Packaging (SARP) are based on Regulatory Guide 7.9 (proposed Revision 2 - May 1986), 10 CFR Part 71, DOE Order 1540.2, DOE Order 5480.3, and 49 CFR Part 173.

  15. Safety Analysis Report for Packaging: The unirradiated fuel shipping container USA/9853/AF

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-18

    The HFBR Unirradiated Fuel Shipping Container was designed and fabricated at the Oak Ridge National Laboratory in 1978 for the transport of fuel for the High Flux Beam Reactor (HFBR) for Brookhaven National Laboratory. The package has been evaluated analytically, as well as the comparison to tests on similar packages, to demonstrate compliance with the applicable regulations governing packages in which radioactive and fissile materials are transported. The contents of this Safety Analysis Report for Packaging (SARP) are based on Regulatory Guide 7.9 (proposed Revision 2 - May 1986), 10 CFR Part 71, DOE Order 1540.2, DOE Order 5480.3, and 49 CFR Part 173.

  16. Poly(methyl methacrylate) coating of soft magnetic amorphous and crystalline Fe,Co-B nanoparticles by chemical reduction.

    Science.gov (United States)

    Fernández Barquín, L; Yedra Martínez, A; Rodríguez Fernández, L; Rojas, D P; Murphy, F J; Alba Venero, D; Ruiz González, L; González-Calbet, J; Fdez-Gubieda, M L; Pankhurst, Q A

    2012-03-01

    The structural and magnetic properties of a collection of nanoparticles coated by Poly(methyl methacrylate) through a wet chemical synthesis have been investigated. The particles display either an amorphous (M = Fe, Co) M-B arrangement or a mixed structure bcc-Fe and fcc-Co + amorphous M-B. Both show the presence of a metal oxi-hydroxide formed in aqueous reduction. The organic coating facilitates technological handling. The cost-effective synthesis involves a reduction in a Poly(methyl methacrylate) aqueous solution of iron(II) or cobalt(II) sulphates (ferrous alloys, this Fe-oxide is alpha-goethite, favoured by the aqueous solution. The Poly(methyl methacrylate) coating is confirmed by Fourier transform infrared spectroscopy. In pure amorphous core alloys there is a drastic change of the coercivity from bulk to around 30 Oe in the nanoparticles. The mixed structured alloys also lie in the soft magnetic regime. Magnetisation values at room temperature range around 100 emu/g. The coercivity stems from multidomain particles and their agglomeration, triggering the dipolar interactions.

  17. Gold nano-particle formation from crystalline AuCN: Comparison of thermal, plasma- and ion-beam activated decomposition

    Science.gov (United States)

    Beck, Mihály T.; Bertóti, Imre; Mohai, Miklós; Németh, Péter; Jakab, Emma; Szabó, László; Szépvölgyi, János

    2017-02-01

    In this work, in addition to the conventional thermal process, two non-conventional ways, the plasma and ion beam activations are described for preparing gold nanoparticles from microcrystalline AuCN precursor. The phase formation at plasma and ion beam treatments was compared with that at thermal treatments and the products and transformations were characterized by thermogravimetry-mass-spectrometry (TG-MS), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). TG-MS measurements in Ar atmosphere revealed that AuCN decomposition starts at 400 °C and completes at ≈700 °C with evolution of gaseous (CN)2. XPS and TEM show that in heat treatment at 450 °C for 1 h in Ar, loss of nitrogen and carbon occurs and small, 5-30 nm gold particles forms. Heating at 450 °C for 10 h in sealed ampoule, much larger, 60-200 nm size and well faceted Au particles develop together with a fibrous (CN)n polymer phase, and the Au crystallites are covered by a 3-5 nm thick polymer shell. Low pressure Ar plasma treatment at 300 eV energy results in 4-20 nm size Au particles and removes most of the nitrogen and part of carbon. During Ar+ ion bombardment with 2500 eV energy, 5-30 nm size Au crystallites form already in 10 min, with preferential loss of nitrogen and with increased amount of carbon residue. The results suggest that plasma and ion beam activation, acting similarly to thermal treatment, may be used to prepare Au nanoparticles from AuCN on selected surface areas either by depositing AuCN precursors on selected regions or by focusing the applied ionized radiation. Thus they may offer alternative ways for preparing tailor-made catalysts, electronic devices and sensors for different applications.

  18. Rescue effects in radiobiology: Unirradiated bystander cells assist irradiated cells through intercellular signal feedback

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Key Laboratory of Ion Beam Bioengineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Zhao, Y. [Key Laboratory of Ion Beam Bioengineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Han, W. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Chiu, S.K. [Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Zhu, L. [Office of Admission and Careers Advisory Service, Shenzhen University, Shenzhen 518060 (China); Wu, L. [Key Laboratory of Ion Beam Bioengineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Yu, K.N., E-mail: peter.yu@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong)

    2011-01-10

    Mammalian cells respond to ionization radiation by sending out extracellular signals to affect non-irradiated neighboring cells, which is referred to as radiation induced bystander effect. In the present paper, we described a phenomenon entitled the 'rescue effects', where the bystander cells rescued the irradiated cells through intercellular signal feedback. The effect was observed in both human primary fibroblast (NHLF) and cancer cells (HeLa) using two-cell co-culture systems. After co-culturing irradiated cells with unirradiated bystander cells for 24 h, the numbers of 53BP1 foci, corresponding to the number of DNA double-strand breaks in the irradiated cells were less than those in the irradiated cells that were not co-cultured with the bystander cells (0.78 {+-} 0.04 foci/cell vs. 0.90 {+-} 0.04 foci/cell) at a statistically significant level. Similarly, both micronucleus formation and extent of apoptosis in the irradiated cells were different at statistically significant levels if they were co-cultured with the bystander cells. Furthermore, it was found that unirradiated normal cells would also reduce the micronucleus formation in irradiated cancer cells. These results suggested that the rescue effects could participate in repairing the radiation-induced DNA damages through a media-mediated signaling feedback, thereby mitigating the cytotoxicity and genotoxicity of ionizing radiation.

  19. Synthesis of barium titanate crystalline nanoparticles using hydrothermal microwave method; Obtencao de nanoparticulas cristalinas de titanato de bario usando metodo hidrotermal assistido por microondas

    Energy Technology Data Exchange (ETDEWEB)

    Souza, A.E.; Silva, R.A.; Teixeira, S.R. [Universidade Estadual Paulista (DFQB/FCT/UNESP), Presidente Prudente, SP (Brazil). Dept. de Fisica, Quimica e Biologia. Lab. de Compositos e Ceramicas Funcionais; Moreira, M.L. [Universidade Federal de Sao Carlos (LiEC/UFSCAR), SP (Brazil). Lab. Interdisciplinar de Eletroquimica e Ceramica; Volanti, D.P.; Longo, E. [Universidade Estadual Paulista (LiEC/UNESP), Araraquara, SP (Brazil). Lab. Interdisciplinar de Eletroquimica e Ceramica

    2009-07-01

    The hydrothermal microwave method (HTMW) was used in the synthesis of barium titanate (BaTiO{sub 3}) nanoparticles. The solution was prepared in deionized water by using titanium (IV) isopropoxide (C{sub 12}H{sub 28}O{sub 4}Ti), barium chloride (BaCl{sub 2}.2H{sub 2}O) and potassium hydroxide (KOH). Afterwards it was heated in an adapted conventional microwave oven. The system is composed of a temperature controller with thermocouple, a hermetic camera of reaction made of teflon, a manometer and a safety valve. The solution was heated to 140 deg C, at a 140 deg C/min heating rate, and maintained at this temperature for 40 minutes. The obtained ceramic powder was characterized by using X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). The XRD data confirms the formation of a high crystalline ceramic material with perovskite structure. The FE-SEM images reveal morphologies with dimensions varying from 27 to 54 nm. (author)

  20. Recording-media-related morphology and magnetic properties of crystalline CoPt{sub 3} and CoPt{sub 3}-Au core-shell nanoparticles synthesized via reverse microemulsion

    Energy Technology Data Exchange (ETDEWEB)

    Bahmanrokh, Ghazaleh, E-mail: ghazalehbahmanrokh@yahoo.com; Hashim, Mansor; Matori, Khamirul Amin; Kanagesan, Samikannu; Sabbaghizadeh, Rahim; Ezzad Shafie, Mohd Shamsul [Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Navasery, Manizheh; Soltani, Nayereh [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor (Malaysia); Vaziri, Parisa [Department of Medical Physics and Biomedical Engineering, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2014-09-07

    A comparative experimental study of the magnetic properties of CoPt{sub 3} and CoPt{sub 3}/Au nanoparticles as well as a detailed study of the structural properties of the samples by X-ray diffraction, Transmission electron microscopy, and vibrating sample magnetometer is presented in this work. In addition, the effect of particle size on the structure and magnetic properties of nanoparticles prepared by microemulsion is studied. The correlation between particle size, crystallinity, and magnetization was studied as well. CoPt nanoparticles have been studied intensively over the last decade because of their increased magnetic anisotropy in the ordered phase that can be interesting for high density magnetic recording. A significant high coercivity for as-prepared CoPt{sub 3} and CoPt{sub 3}-Au nanoparticles was obtained at room temperature and enhanced after annealing. The focused aim of our study is to obtain high coercivity at room temperature that follows the Curie-Weiss law. This indicates an interacting system in which the nanoparticles behave like single domain ferromagnetic materials in the particle size range of 8 to 35 nm. In addition, the interaction increases by cooling the samples to low temperature around 15 K. Temperature dependence 1/M graph was obtained to investigate the behavior of nanoparticles at low temperature and shows the best fit with Curie-Weis mode.

  1. Lamellar crystalline self-assembly behaviour and solid lipid nanoparticles of a palmityl prodrug analogue of Capecitabine—A chemotherapy agent

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Xiaojuan; Moghaddam, Minoo J.; Sagnella, Sharon M.; Conn, Charlotte E.; Danon, Stephen J.; Waddington, Lynne J.; Drummond, Calum J. [CSIRO/MSE

    2014-09-24

    An amphiphile prodrug, 5'-deoxy-5-fluoro-N4-(palmityloxycarbonyl) cytidine or 5'-deoxy-5-fluoro-N4-(hexadecanaloxycarbonyl) cytidine (5-FCPal), consisting of the same head group as the commercially available chemotherapeutic agent Capecitabine, linked to a palmityl hydrocarbon chain via a carbamate bond is reported. Thermal analysis of this prodrug indicates that it melts at ~115 °C followed quickly by degradation beginning at ~120 °C. The neat solid 5-FCPal amphiphile acquires a lamellar crystalline arrangement with a d-spacing of 28.6 ± 0.3 Å, indicating interdigitation of the hydrocarbon chains. Under aqueous conditions, solid 5-FCPal is non-swelling and no lyotropic liquid crystalline phase formation is observed. In order to assess the in vitro toxicity and in vivo efficacy in colloidal form, solid lipid nanoparticles (SLNs) with an average size of ~700 nm were produced via high pressure homogenization. The in vitro toxicity of the 5-FCPal SLNs against several different cancer and normal cell types was assessed over a 48 h period, and IC50 values were comparable to those observed for Capecitabine. The in vivo efficacy of the 5-FCPal SLNs was then assessed against the highly aggressive mouse 4T1 breast cancer model. To do so, the prodrug SLNs were administered orally at 3 different dosages (0.1, 0.25, 0.5 mmol/mouse/day) and compared to Capecitabine delivered at the same dosages. After 21 days of receiving the treatments, the 0.5 mmol dose of 5-FCPal exhibited the smallest average tumour volume. Since 5-FCPal is activated in a similar manner to Capecitabine via a 3 step enzymatic pathway with the final step occurring preferentially at the tumour site, formulation of the prodrug into SLNs combines the advantage of selective, localized activation with the sustained release properties of nanostructured amphiphile self-assembly and multiple payload materials thereby potentially creating a more effective anticancer agent.

  2. Overview and Critical Assessment of the Tensile Properties of unirradiated and irradiated EUROFER97

    Energy Technology Data Exchange (ETDEWEB)

    Lucon, E.; Vandermeulen, W.

    2007-10-15

    Material research represents a crucial issue for the assessment of fusion as a future viable source of energy. Structural materials, in particular, need to show a superior mechanical and chemical behaviour to guarantee the safe operation of the reactor during its whole lifetime, while retaining low activation characteristics to minimise the environmental impact of the produced waste. In this context, specific efforts have been focused for the last twenty years in Europe, Japan and the US, on developing suitable Reduced Activation Ferritic Martensitic (RAFM) steels as candidate structural materials. EUROFER97 has recently emerged in Europe as the reference material for the DEMO design. In the framework of the Long-Term Programme of EFDA (European Fusion Development Agreement), a coordinated effort has been launched aimed at providing a critical assessment of the mechanical and microstructural properties of EUROFER97 in the unirradiated and irradiated conditions, based on the results accumulated since the late 90ies within numerous EFDA tasks.

  3. Reactor Materials Program electrochemical potential measurements by ORNL with unirradiated and irradiated stainless steel specimens

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, E.W.; Caskey, G.R. Jr.

    1993-07-01

    Effect of irradiation of stainless steel on electrochemical potential (ECP) was investigated by measurements in dilute HNO{sub 3} and H{sub 2}O{sub 2} solutions, conditions simulating reactor moderator. The electrodes were made from unirradiated/irradiated, unsensitized/sensitized specimens from R-reactor piping. Results were inconclusive because of budgetary restrictions. The dose rate may have been too small to produce a significant radiolytic effect. Neither the earlier CERT corrosion susceptibility tests nor the present ECP measurements showed a pronounced effect of irradiation on susceptibility of the stainless steel to IGSCC; this is confirmed by the absence in the stainless steel of the SRS reactor tanks (except for the C Reactor tank knuckle area).

  4. Sperm quantity and size variation in un-irradiated and irradiated males of the malaria mosquito Anopheles arabiensis Patton

    NARCIS (Netherlands)

    Helinski, M.; Knols, B.G.J.

    2009-01-01

    Anopheles mosquitoes are important candidates for genetic control strategies. However, little is known about sperm quality and quantity as determinants of male reproductive success. In this study, sperm quantity and length variation were assessed in testes of un-irradiated and irradiated Anopheles

  5. Sperm quantity and size variation in un-irradiated and irradiated males of the malaria mosquito Anopheles arabiensis Patton

    NARCIS (Netherlands)

    Helinski, M.; Knols, B.G.J.

    2009-01-01

    Anopheles mosquitoes are important candidates for genetic control strategies. However, little is known about sperm quality and quantity as determinants of male reproductive success. In this study, sperm quantity and length variation were assessed in testes of un-irradiated and irradiated Anopheles a

  6. Luminescence enhancement of ZnO-poly(methylmethacrylate) nanocomposite films by incorporation of crystalline BaTiO{sub 3} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kanamori, Tsuyoshi; Han, Yu; Nagao, Daisuke, E-mail: dnagao@tohoku.ac.jp; Kamezawa, Nao; Ishii, Haruyuki; Konno, Mikio

    2016-09-15

    Highlights: • Dielectric barium titanate (BT) nanoparticles incorporated into luminescence films. • Luminescence intensities increased by the BT nanoparticle incorporation. • Incorporation of highly dielectric nanoparticles effective for luminescence enhancement. - Abstract: Incorporation of highly dielectric nanoparticles into luminescent ZnO-polymethylmethacrylate (PMMA) nanocomposite films was undertaken to examine the effect of nanoparticle incorporation on luminescence intensity of the nanocomposite films. ZnO nanoparticles were prepared as inorganic phosphors by a precipitation method. The ZnO nanoparticles were then surface-modified with 3-methacryloxypropyltrimethoxysilane (MPTMS) to be used for fabrication of the ZnO-PMMA nanocomposite film. Barium titanate (BT) nanoparticles were synthesized with a sol-gel method as the highly dielectric nanoparticles, which were also surface-modified with the MPTMS for the incorporation into the nanocomposite films. Luminescence intensity of the nanocomposite films was successfully increased by the nanoparticle incorporation up to a BT content around 15 vol%. The luminescence intensity higher than that measured for the nanocomposite films incorporating SiO{sub 2} nanoparticles indicated that the incorporation of highly dielectric nanoparticles was an effective approach to enhance the luminescence of ZnO nanoparticles in the polymer thin films.

  7. Obtention of fracture properties of unirradiated fuel cladding from ring compression tests

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Rengel, M.A. [Departamento de Ciencia de Materiales, UPM, E.T.S.I. Caminos, Canales y Puertos Profesor Aranguren s/n, E-28040 Madrid (Spain); Consejo de Seguridad Nuclear (CSN), Justo Dorado 11, E-28040 Madrid (Spain); Gomez, F.J.; Ruiz-Hervias, J.; Caballero, L.; Valiente, A. [Departamento de Ciencia de Materiales, UPM, E.T.S.I. Caminos, Canales y Puertos Profesor Aranguren s/n, E-28040 Madrid (Spain)

    2009-06-15

    Zirconium alloy cladding is used as the first structural barrier to contain the nuclear fuel and the fission products. In addition to its neutron transparency, this material has a good corrosion resistance and remarkable mechanical properties at operational temperatures. Consequently, it is or paramount importance to precisely characterize the mechanical behaviour and fracture properties of irradiated cladding to ensure a safe operation. It is known that the mechanical behaviour of unirradiated zirconium alloy cladding is anisotropic. The elastoplastic response depends on the direction, namely radial, hoop or longitudinal. For this reason, different fracture properties should be expected in each direction. From the various tests employed to characterize the mechanical behaviour along the hoop direction in nuclear fuel cladding, the ring compression test is particularly useful to study material fracture. With this test it is possible to determine the moment when a real crack is formed, due to a sudden decrease in the applied load at a given displacement value. The aim of this research is to determine as precisely as possible the value of the fracture energy from the ring compression test load vs. displacement curves. To this end, a finite element calculation incorporating the cohesive zone model was performed. In this case, the cohesive zone theory is applied in its simplest form. It is considered that the cohesive crack transfers a constant stress until the displacement of this cohesive crack reaches a critical value. At this precise moment a real crack is generated. The properties of the softening curve of the cohesive zone model can be obtained by directly comparing the experimental load vs. displacement records with the finite element calculations. The area under the softening curve is the fracture energy, which is directly related with the material fracture toughness. The experimental data used in this work have been obtained on unirradiated Zirlo cladding

  8. Cytotoxicity of TiO2 nanoparticles to mussel hemocytes and gill cells in vitro: Influence of synthesis method, crystalline structure, size and additive.

    Science.gov (United States)

    Katsumiti, Alberto; Berhanu, Deborah; Howard, Kieren T; Arostegui, Inmaculada; Oron, Miriam; Reip, Paul; Valsami-Jones, Eugenia; Cajaraville, Miren P

    2015-01-01

    Increasing the production and applications of TiO2 nanoparticles (NPs) has led to grow concerns about the consequences for the environment. In this study, we investigated the effects of a set of TiO2 NPs on the viability of mussel hemocytes and gill cells using neutral red and thiazolyl tetrazolium bromide assays. For this, we compared the cytotoxicity of TiO2 NPs (0.1-100 mg Ti/L) produced by different techniques: rutile NPs (60 nm) produced by milling and containing disodium laureth sulfosuccinate (DSLS), rutile NPs (10, 40 and 60 nm) produced by wet chemistry and anatase/rutile NPs (∼100 nm) produced by plasma synthesis. The commercially available P25 anatase/rutile NPs (10-20 nm) were also tested. Exposures were performed in parallel with their respective bulk forms and the cytotoxicity of the additive DSLS was also tested. Z potential values in distilled water indicated different stabilities depending on the NP type and all NPs tested formed agglomerates/aggregates in cell culture media. In general, TiO2 NPs showed a relatively low and dose-dependent toxicity for both cell models with the two assays tested. NPs produced by milling showed the highest effects, probably due to the toxicity of DSLS. Size-dependent toxicity was found for NPs produced by wet chemistry (10 nm > 40 nm and 60 nm). All TiO2 NPs tested were more toxic than bulk forms excepting for plasma produced ones, which were the least toxic TiO2 tested. The mixture bulk anatase/rutile TiO2 was more toxic than bulk rutile TiO2. In conclusion, the toxicity of TiO2 NPs varied with the mode of synthesis, crystalline structure and size of NPs and can also be influenced by the presence of additives in the suspensions.

  9. Properties of unirradiated and irradiated Ti-6Al-4V alloy for ITER flexible connectors

    Energy Technology Data Exchange (ETDEWEB)

    Rodchenkov, B.S., E-mail: rodchen@nikiet.ru [Research and Development Institute of Power Engineering (RDIPE), P.O. Box 788, Moscow 101000 (Russian Federation); Evseev, M.V. [Institute of Reactor Materials, Zarechnyi, Sverdlovsk Region 624051 (Russian Federation); Strebkov, Yu.S. [Research and Development Institute of Power Engineering (RDIPE), P.O. Box 788, Moscow 101000 (Russian Federation); Sinelnikov, L.P.; Shushlebin, V.V. [Institute of Reactor Materials, Zarechnyi, Sverdlovsk Region 624051 (Russian Federation)

    2011-10-01

    The high strength ({alpha} + {beta}) Ti-6Al-4V alloy was selected as the material for flexible attachments of the shield blanket modules in the ITER reactor. The different technologies used for manufacturing this alloy are: forging, stamping or pressing. The microstructures resulting from these processing methods can vary significantly and as a consequence the properties, including irradiation behavior, also vary. There are limited data available on the irradiation behavior of these materials. Specimens cut in the longitudinal and transversal directions of forged and stamped material were studied, with some of the specimens hydrogen charged to {approx}400 ppm H{sub 2}. In the unirradiated condition the forged alloy had slightly more ductility than the stamped alloy. The strength properties of both were practically the same. Neutron irradiation of these materials in the IVV-2M reactor reached doses of {approx}0.2 and 0.3 dpa at temperatures 240-260 deg. C. Irradiation resulted in substantial hardening and significant decrease of the fracture toughness of specimens from both materials.

  10. Bietti's Crystalline Dystrophy

    Science.gov (United States)

    ... Dystrophy > Facts About Bietti's Crystalline Dystrophy Facts About Bietti's Crystalline Dystrophy This information was developed by the ... is the best person to answer specific questions. Bietti’s Crystalline Dystrophy Defined What is Bietti’s Crystalline Dystrophy? ...

  11. Subtask 12D6: Fatigue behavior of unirradiated V-5Cr-5Ti

    Energy Technology Data Exchange (ETDEWEB)

    Gieseke, B.G.; Stevens, C.O.; Grossbeck, M.L. [Oak Ridge National Lab., TN (United States)

    1995-03-01

    The objective of this research is to determine the low cycle fatigue behavior of V-5Cr-5Ti alloys for a range of temperatures and the extent of environmental effects at ambient temperatures. The results of in-vacuum low cycle fatigue tests are presented for unirradiated V-5Cr-5Ti tested at room temperature (25, 250, and 400{degrees}C). A comparison of the fatigue data generated in rough and high vacuums shows that a pronounced environmental degradation of the fatigue properties exists in the alloy at room temperature. Fatigue life was reduced by as much as 84%. Cyclic stress range data and SEM observations suggest that this reduction is due to a combination of increases in rates of crack initiation and subsequent growth. The relative contribution of each difference is dependent upon the strain range. In high vacuum, the fatigue results also show a trend of increasing cyclic life with increasing temperature between 25 and 400{degrees}C. From the limited data available, life at 25{degrees}C averages 1.7 times that at 25{degrees}C, and at 400{degrees}C, life averages 3.2 times that at room temperature. Like the environmental effects at 25{degrees}C, the effect of temperature seems to be a function of strain range at each temperature. The total strain range and cycles to failure were correlated using a power law relationship and compared to 20% cold-worked 316 stainless steel and several vanadium-base alloys. The results suggest that V-SCr-5Ti has better resistance to fatigue than 316-SS in the temperature range of 25 to 400{degrees}C. At 400{degrees}C, the data also show that V-5Cr-5Ti out performs Vanstar alloys 7 and 8 over the entire range of strains investigated. Furthermore, the fatigue properties of the V-5Cr-5Ti alloy compare favorably to V-15Cr-57i (at 25{degrees}C) and Vanstar 9 (at 400{degrees}C) at strains greater than 1%. At lower strains, the lower fatigue resistance of V-5Cr-5Ti is attributed to the higher strengths of the V-15Cr-5Ti and Vanstar 9 alloys.

  12. Comparison of ring compression testing to three point bend testing for unirradiated ZIRLO cladding

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-04-01

    Safe shipment and storage of nuclear reactor discharged fuel requires an understanding of how the fuel may perform under the various conditions that can be encountered. One specific focus of concern is performance during a shipment drop accident. Tests at Savannah River National Laboratory (SRNL) are being performed to characterize the properties of fuel clad relative to a mechanical accident condition such as a container drop. Unirradiated ZIRLO tubing samples have been charged with a range of hydride levels to simulate actual fuel rod levels. Samples of the hydrogen charged tubes were exposed to a radial hydride growth treatment (RHGT) consisting of heating to 400°C, applying initial hoop stresses of 90 to 170 MPa with controlled cooling and producing hydride precipitates. Initial samples have been tested using both a) ring compression test (RCT) which is shown to be sensitive to radial hydride and b) three-point bend tests which are less sensitive to radial hydride effects. Hydrides are generated in Zirconium based fuel cladding as a result of coolant (water) oxidation of the clad, hydrogen release, and a portion of the released (nascent) hydrogen absorbed into the clad and eventually exceeding the hydrogen solubility limit. The orientation of the hydrides relative to the subsequent normal and accident strains has a significant impact on the failure susceptability. In this study the impacts of stress, temperature and hydrogen levels are evaluated in reference to the propensity for hydride reorientation from the circumferential to the radial orientation. In addition the effects of radial hydrides on the Quasi Ductile Brittle Transition Temperature (DBTT) were measured. The results suggest that a) the severity of the radial hydride impact is related to the hydrogen level-peak temperature combination (for example at a peak drying temperature of 400°C; 800 PPM hydrogen has less of an impact/ less radial hydride fraction than 200 PPM hydrogen for the same thermal

  13. 姜黄素脂质立方液晶纳米粒的制备及理化性质研究%Preparation and Physiochemical Properties of Curcumin-loaded Lipid Cubic Liquid Crystalline Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    苏旬; 贺秀丽; 刘秀菊; 郭京艳; 翟光喜

    2012-01-01

    目的:制备姜黄素脂质立方液晶纳米粒,并对其主要理化性质进行评价.方法:采用热处理高压匀质法进行制备,以载药量和包封率为指标,采用均匀设计法对处方和工艺进行优化,并考察其理化性质.结果:制得的液晶纳米粒在电镜下呈类球形,平均粒径176.1 nm,zeta电位-25.19 mV,平均载药量(1.5±0.2)%,包封率(95±1.8)%,36 h体外释放60.0%,释放方程为In(1-Q)=-0.0251t-0.0075.结论:姜黄素脂质立方液晶纳米粒具有较高的包封率和良好的缓释作用.%Objective: To prepare curcumin-loaded lipid cubic liquid crystalline nanoparticles and evaluate its physiochemical properties. Methods:The nanoparticles were prepared using hot and high-pressure homogenization. The prescription and preparation process were optimized by uniform design with drug loading and entrapment efficiency as indexes. Results: The nanoparticles were spherical under transmission electron microscope (TEM) with average particle size of 176. 1 nm, zeta potential of -25.19 mV, average drug loading of (1. 5 ±0. 2) % and entrapment efficiency of (95 ±1.8)%. The release equation; In( 1 - Q) = -0.0251t-0.0075. The cumulative release percentage was 60% at 36 h in vitro. Conclusion:The obtained curcumin-loaded lipid cubic liquid crystalline nanoparticles shows high entrapment efficiency and good sustain release property.

  14. Mechanical properties of type 316L stainless steel welded joint for ITER vacuum vessel (1). Experiment of unirradiated welded joint

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Shigeru; Fukaya, Kiyoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Ishiyama, Shintaro [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Takahashi, Hiroyuki; Koizumi, Kouichi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2001-01-01

    In design activity of ITER, the vacuum vessel (VV) is ranked as one of the most important components in core reactor from the view point of first barrier to tritium release from the reactor. The VV of ITER is designed as double walled structure so that some parts of them are not qualified in the conventional design standards. So it is necessary to prepare the new design standards to be applied them. JAERI has executed the preparation activity of the new design standards and the technical data to support them. In this study, the results of metallographic observation and mechanical properties of unirradiated type 316L stainless steel welded joint were reported. (author)

  15. Properties of unirradiated fuel element graphites H-451 and SO818. [Bulk density, tensile properties, thermal expansion, thermal conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Engle, G.B.; Johnson, W.R.

    1976-10-08

    Nuclear graphites H-451, lot 440 (Great Lakes Carbon Corporation (GLCC)), and SO818 (Airco Speer Division, Air Reduction Corporation (AS)) are described, and physical, mechanical, and chemical property data are presented for the graphites in the unirradiated state. A summary of the mean values of the property data and of data on TS-1240 and H-451, lot 426, is tabulated. A direct comparison of H-451, lot 426, chosen for Fort St. Vrain (FSV) fuel reload production, TS-1240, and SO818 may be made from the table. (auth)

  16. New method to calculate the mechanical properties of unirradiated fuel cladding from ring tensile tests

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Rengel, M.A. [Departamento de Ciencia de Materiales, UPM, E.T.S.I. Caminos, Canales y Puertos, Profesor Aranguren s/n, E-28040 Madrid (Spain); Consejo de Seguridad Nuclear (CSN), Justo Dorado 11, E-28040 Madrid (Spain); Gomez, F.J.; Ruiz-Hervias, J.; Caballero, L.; Valiente, A. [Departamento de Ciencia de Materiales, UPM, E.T.S.I. Caminos, Canales y Puertos, Profesor Aranguren s/n, E-28040 Madrid (Spain)

    2009-06-15

    displacement of the loading piece and another one between the equivalent stress in the same point and the nominal applied stress. In the first iteration a calculation is performed with an approximate plastic stress-strain law, and the two above-mentioned relationships are used to determine a new law from the experimental results. In the second iteration the calculation takes into account the new plastic stress-strain law and determines two new relationships. After a few iterations an excellent fit is obtained. This method is an improvement of the original method by Arsene and Bai [3] and allows obtaining the plastic stress-strain curve in the hoop direction in a consistent way. The experimental data used in this work to check the validity of the procedure have been obtained on unirradiated Zirlo cladding, with the standard alloy composition and geometry (outer diameter of the cladding 9.5 mm and a wall thickness of 0.56 mm). References: [1]. Arsene, S.; Bai, J.B. A new approach to measuring transverse properties of structural tubing by a ring test, Journal of Testing and Evaluation, 24: 386-391 (1996) [2]. Arsene, S.; Bai, J. 'A new approach to measuring transverse properties of structural tubing by a ring test-experimental investigation', Journal of Testing and Evaluation, 26: 26-30 (1998) [3]. Arsene, S.; Bai, J.B.; 'Hydride embrittlement and irradiation effects on the hoop mechanical properties of pressurized water reactor (PWR) and boiling-water reactor (BWR) zircaloy cladding tubes: Part I. Hydride embrittlement in stress-relieved, annealed, and recrystallized zircaloys at 20 deg. C and 300 deg. C', Metallurgical and materials and transactions A, 34A: 553-566 (2003) [4]. Chang-Sun Seok, Bong-Kook, K.Linga, 'The properties of the ring and burst creep of zirlo claddings', Engineering Failure Analysis, 13: 389-397 (2006). (authors)

  17. Crystalline Confinement

    CERN Document Server

    Banerjee, D; Jiang, F -J; Wiese, U -J

    2013-01-01

    We show that exotic phases arise in generalized lattice gauge theories known as quantum link models in which classical gauge fields are replaced by quantum operators. While these quantum models with discrete variables have a finite-dimensional Hilbert space per link, the continuous gauge symmetry is still exact. An efficient cluster algorithm is used to study these exotic phases. The $(2+1)$-d system is confining at zero temperature with a spontaneously broken translation symmetry. A crystalline phase exhibits confinement via multi-stranded strings between charge-anti-charge pairs. A phase transition between two distinct confined phases is weakly first order and has an emergent spontaneously broken approximate $SO(2)$ global symmetry. The low-energy physics is described by a $(2+1)$-d $\\mathbb{R}P(1)$ effective field theory, perturbed by a dangerously irrelevant $SO(2)$ breaking operator, which prevents the interpretation of the emergent pseudo-Goldstone boson as a dual photon. This model is an ideal candidat...

  18. Enhanced oral absorption of 20(S-protopanaxadiol by self-assembled liquid crystalline nanoparticles containing piperine: in vitro and in vivo studies

    Directory of Open Access Journals (Sweden)

    Jin X

    2013-02-01

    Full Text Available Xin Jin,1,2 Zhen-hai Zhang,1 E Sun,1 Xiao-bin Tan,1 Song-lin Li,3 Xu-dong Cheng,4 Ming You,4 Xiao-bin Jia11Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, People's Republic of China; 2College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China; 3Department of Pharmaceutical Analysis and Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, People's Republic of China; 4ALG Bioscience Co, Ltd, Suzhou, People's Republic of ChinaBackground: 20(S-protopanaxadiol (PPD, similar to several other anticancer agents, has low oral absorption and is extensively metabolized. These factors limit the use of PPD for treatment of human diseases.Methods: In this study, we used cubic nanoparticles containing piperine to improve the oral bioavailability of PPD and to enhance its absorption and inhibit its metabolism. Cubic nanoparticles loaded with PPD and piperine were prepared by fragmentation of glyceryl monoolein (GMO/poloxamer 407 bulk cubic gel and verified using transmission electron microscopy and differential scanning calorimetry. We evaluated the in vitro release of PPD from these nanoparticles and its absorption across the Caco-2 cell monolayer model, and subsequently, we examined the bioavailability and metabolism of PPD and its nanoparticles in vivo.Results: The in vitro release of PPD from these nanoparticles was less than 5% at 12 hours. PPD-cubosome and PPD-cubosome loaded with piperine (molar ratio PPD/piperine, 1:3 increased the apical to basolateral permeability values of PPD across the Caco-2 cell monolayer from 53% to 64%, respectively. In addition, the results of a pharmacokinetic study in rats showed that the relative bioavailabilities of PPD-cubosome [area under concentration–time curve (AUC0–∞ ] and PPD-cubosome containing piperine (AUC0–∞ compared to that of raw PPD (AUC0–∞ were 166

  19. Revealing crystalline domains in a mollusc shell single-crystalline prism

    Science.gov (United States)

    Mastropietro, F.; Godard, P.; Burghammer, M.; Chevallard, C.; Daillant, J.; Duboisset, J.; Allain, M.; Guenoun, P.; Nouet, J.; Chamard, V.

    2017-09-01

    Biomineralization integrates complex processes leading to an extraordinary diversity of calcareous biomineral crystalline architectures, in intriguing contrast with the consistent presence of a sub-micrometric granular structure. Hence, gaining access to the crystalline architecture at the mesoscale, that is, over a few granules, is key to building realistic biomineralization scenarios. Here we provide the nanoscale spatial arrangement of the crystalline structure within the `single-crystalline' prisms of the prismatic layer of a Pinctada margaritifera shell, exploiting three-dimensional X-ray Bragg ptychography microscopy. We reveal the details of the mesocrystalline organization, evidencing a crystalline coherence extending over a few granules. We additionally prove the existence of larger iso-oriented crystalline domains, slightly misoriented with respect to each other, around one unique rotation axis, and whose shapes are correlated with iso-strain domains. The highlighted mesocrystalline properties support recent biomineralization models involving partial fusion of oriented nanoparticle assembly and/or liquid droplet precursors.

  20. Special Analysis for the Disposal of the INL Waste Associated with the Unirradiated Light Water Breeder Reactor (LWBR) Waste Stream at the Area 5 Radioactive Waste Management Site

    Energy Technology Data Exchange (ETDEWEB)

    Shott, Gregory [National Security Technologies, LLC, Las Vegas, NV (United States)

    2017-03-21

    This special analysis (SA) evaluates whether the Idaho National Laboratory (INL) Waste Associated with the Unirradiated Light Water Breeder Reactor (LWBR) waste stream (INEL167203QR1, Revision 0) is suitable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). Disposal of the INL Waste Associated with the Unirradiated LWBR waste meets all U.S. Department of Energy (DOE) Manual DOE M 435.1-1, “Radioactive Waste Management Manual,” Chapter IV, Section P performance objectives (DOE 1999). The INL Waste Associated with the Unirradiated LWBR waste stream is recommended for acceptance with the condition that the total uranium-233 (233U) inventory be limited to 2.7E13 Bq (7.2E2 Ci).

  1. nanoparticles

    Science.gov (United States)

    Andreu-Cabedo, Patricia; Mondragon, Rosa; Hernandez, Leonor; Martinez-Cuenca, Raul; Cabedo, Luis; Julia, J. Enrique

    2014-10-01

    Thermal energy storage (TES) is extremely important in concentrated solar power (CSP) plants since it represents the main difference and advantage of CSP plants with respect to other renewable energy sources such as wind, photovoltaic, etc. CSP represents a low-carbon emission renewable source of energy, and TES allows CSP plants to have energy availability and dispatchability using available industrial technologies. Molten salts are used in CSP plants as a TES material because of their high operational temperature and stability of up to 500°C. Their main drawbacks are their relative poor thermal properties and energy storage density. A simple cost-effective way to improve thermal properties of fluids is to dope them with nanoparticles, thus obtaining the so-called salt-based nanofluids. In this work, solar salt used in CSP plants (60% NaNO3 + 40% KNO3) was doped with silica nanoparticles at different solid mass concentrations (from 0.5% to 2%). Specific heat was measured by means of differential scanning calorimetry (DSC). A maximum increase of 25.03% was found at an optimal concentration of 1 wt.% of nanoparticles. The size distribution of nanoparticle clusters present in the salt at each concentration was evaluated by means of scanning electron microscopy (SEM) and image processing, as well as by means of dynamic light scattering (DLS). The cluster size and the specific surface available depended on the solid content, and a relationship between the specific heat increment and the available particle surface area was obtained. It was proved that the mechanism involved in the specific heat increment is based on a surface phenomenon. Stability of samples was tested for several thermal cycles and thermogravimetric analysis at high temperature was carried out, the samples being stable.

  2. Lift-based up-ender and methods using same to manipulate a shipping container containing unirradiated nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Nilles, Michael J.

    2017-08-01

    A shipping container containing an unirradiated nuclear fuel assembly is lifted off the ground by operating a crane to raise a lifting tool comprising a winch. The lifting tool is connected with the shipping container by a rigging line connecting with the shipping container at a lifting point located on the shipping container between the top and bottom of the shipping container, and by winch cabling connecting with the shipping container at the top of the shipping container. The shipping container is reoriented by operating the winch to adjust the length of the winch cabling so as to rotate the shipping container about the lifting point. Shortening the winch cabling rotates the shipping container about the lifting point from a horizontal orientation to a vertical orientation, while lengthening the winch cabling rotates the shipping container about the lifting point from the vertical orientation to the horizontal orientation.

  3. A study of structural, optical and dielectric properties of crystalline Sr2Nb2O7 nanoparticles synthesized by a modified combustion technique

    Science.gov (United States)

    Mathai, K. C.; Vidya, S.; Solomon, Sam; Thomas, J. K.

    2014-01-01

    Nanocrystalline Strontium Pyroniobate is synthesized by a novel auto-igniting combustion technique. The X-Ray diffraction studies reveal that Strontium Niobate possesses orthorhombic structure. Phase purity and structure of the nanopowder is further examined using Fourier-Transform Infrared and Raman spectroscopy. The average particle size of the as prepared nanoparticles from the Transmission Electron Microscopy is 30 nm. Sr2Nb2O7 is a photoluminescent material and the optical band gap determined from the UV-DRS spectrum is 2.7eV. The sample is sintered at an optimized temperature of 1350°C for 2 hours and obtained maximum density. The dielectric constant and loss factor values obtained at 5MHz for a well-sintered Strontium Niobate pellet is found to be 40 and 3.9×10-3 respectively, at room temperature.

  4. Radiation quality-dependence of bystander effect in unirradiated fibroblasts is associated with TGF-β1-Smad2 pathway and miR-21 in irradiated keratinocytes

    Science.gov (United States)

    Yin, Xiaoming; Tian, Wenqian; Wang, Longxiao; Wang, Jingdong; Zhang, Shuyu; Cao, Jianping; Yang, Hongying

    2015-01-01

    Traditional radiation biology states that radiation causes damage only in cells traversed by ionizing radiation. But radiation-induced bystander effect (RIBE), which refers to the biological responses in unirradiated cells when the neighboring cells are exposed to radiation, challenged this old dogma and has become a new paradigm of this field. By nature, RIBEs are the consequences of intercellular communication between irradiated and unirradiated cells. However, there are still some important questions remain unanswered such as whether RIBE is dependent on radiation quality, what are the determining factors if so, etc. Using a transwell co-culture system, we found that HaCaT keratinocytes irradiated with α-particles but not X-rays could induce bystander micronucleus formation in unirradiated WS1 fibroblasts after co-culture. More importantly, the activation of TGF-β1-Smad2 pathway and the consistent decrease of miR-21 level in α-irradiated HaCaT cells were essential to the micronucleus induction in bystander WS1 cells. On the other hand, X-irradiation did not induce bystander effect in unirradiated WS1 cells, accompanied by lack of Smad2 activation and consistent decrease of miR-21 in X-irradiated HaCaT cells. Taken together, these results suggest that the radiation quality-dependence of bystander effect may be associated with the TGF-β1-Smad2 pathway and miR-21 in irradiated cells. PMID:26080011

  5. Radiation quality-dependence of bystander effect in unirradiated fibroblasts is associated with TGF-β1-Smad2 pathway and miR-21 in irradiated keratinocytes.

    Science.gov (United States)

    Yin, Xiaoming; Tian, Wenqian; Wang, Longxiao; Wang, Jingdong; Zhang, Shuyu; Cao, Jianping; Yang, Hongying

    2015-06-16

    Traditional radiation biology states that radiation causes damage only in cells traversed by ionizing radiation. But radiation-induced bystander effect (RIBE), which refers to the biological responses in unirradiated cells when the neighboring cells are exposed to radiation, challenged this old dogma and has become a new paradigm of this field. By nature, RIBEs are the consequences of intercellular communication between irradiated and unirradiated cells. However, there are still some important questions remain unanswered such as whether RIBE is dependent on radiation quality, what are the determining factors if so, etc. Using a transwell co-culture system, we found that HaCaT keratinocytes irradiated with α-particles but not X-rays could induce bystander micronucleus formation in unirradiated WS1 fibroblasts after co-culture. More importantly, the activation of TGF-β1-Smad2 pathway and the consistent decrease of miR-21 level in α-irradiated HaCaT cells were essential to the micronucleus induction in bystander WS1 cells. On the other hand, X-irradiation did not induce bystander effect in unirradiated WS1 cells, accompanied by lack of Smad2 activation and consistent decrease of miR-21 in X-irradiated HaCaT cells. Taken together, these results suggest that the radiation quality-dependence of bystander effect may be associated with the TGF-β1-Smad2 pathway and miR-21 in irradiated cells.

  6. Crystalline and Crystalline International Disposal Activities

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, Hari S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chu, Shaoping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reimus, Paul William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Makedonska, Nataliia [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hyman, Jeffrey De' Haven [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Karra, Satish [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dittrich, Timothy M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-12-21

    This report presents the results of work conducted between September 2014 and July 2015 at Los Alamos National Laboratory in the crystalline disposal and crystalline international disposal work packages of the Used Fuel Disposition Campaign (UFDC) for DOE-NE’s Fuel Cycle Research and Development program.

  7. Preparation of highly crystalline blue emitting MVO{sub 4}:Tm{sup 3+} (M=Gd, Y) spherical nanoparticles: Effects of activator concentration and annealing temperature on luminescence, lifetime and quantum yield

    Energy Technology Data Exchange (ETDEWEB)

    Shanta Singh, N. [Department of Physics, Manipur University, Canchipur, Imphal 795003, Manipur (India); Ningthoujam, R.S., E-mail: rsn@barc.gov.i [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Dorendrajit Singh, S., E-mail: dorendrajit@yahoo.co.i [Department of Physics, Manipur University, Canchipur, Imphal 795003, Manipur (India); Viswanadh, B. [Material Science Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Manoj, N. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Vatsa, R.K., E-mail: rkvatsa@barc.gov.i [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2010-12-15

    Highly crystalline spherical nanoparticles of MVO{sub 4}:Tm{sup 3+} (M=Gd, Y) having a size of 20-45 nm were prepared using ethylene glycol as both capping agent and reaction medium. X-ray diffraction study shows linear decrease in the unit cell volume with an increase in Tm{sup 3+} concentrations in MVO{sub 4} (M=Gd, Y; Tm{sup 3+}=0, 2, 5, 7, 10, 15, 20, 40, 60, 80 and 100 at%), indicative of quantitative substitution of Gd{sup 3+}/Y{sup 3+} lattice sites by Tm{sup 3+} ions in MVO{sub 4}. Blue light emission at 475 nm is observed after excitation at 310 nm due to energy transfer from VO{sub 4}{sup 3-} absorption band to Tm{sup 3+}. Emission intensity and average decay lifetime increase with an increase in heat treatment from 500 to 900 {sup o}C. This has been attributed to an extent of reduction in non-radiative process arising from surface. The emission intensity of Tm{sup 3+} in GdVO{sub 4} host is higher than that in YVO{sub 4} and thus the former host is better. Quantum yield increases with increase in heat-treatment temperature. This material will be the alternative blue light emitter.

  8. TiO{sub 2} nanoparticles obtained by laser ablation in water: Influence of pulse energy and duration on the crystalline phase

    Energy Technology Data Exchange (ETDEWEB)

    Giorgetti, E., E-mail: emilia.giorgetti@fi.isc.cnr.it [Istituto dei Sistemi Complessi (ISC) CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Muniz Miranda, M.; Caporali, S. [Dipartimento di Chimica “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino (Italy); Canton, P. [Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari, Via Torino, 30170 Venezia-Mestre (Italy); Marsili, P. [Istituto dei Sistemi Complessi (ISC) CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Dipartimento di Fisica, Università di Pisa, Largo Bruno Pontecorvo 3, 56127 Pisa (Italy); Vergari, C.; Giammanco, F. [Dipartimento di Fisica, Università di Pisa, Largo Bruno Pontecorvo 3, 56127 Pisa (Italy)

    2015-09-15

    Highlights: • Laser ablation of Ti in water at 1064 nm and comparison of ns and ps temporal regimes. • Structural and spectroscopic characterization of the colloids: TiO{sub 2} is the predominant phase. • Determination of an energy window where ps ablation produces more anatase than rutile. • Modelling of the experimental dependence of anatase/rutile yield on pulse length and energy. - Abstract: We fabricated Ti oxide nanoparticles by laser ablation of a Ti target in doubly deionized water with ps or ns pulses at a laser wavelength of 1064 nm. Electron microscopy, Raman, X-ray diffraction and X-ray photoelectron spectroscopy showed that, while with ns pulses the dominant oxide phase is rutile, with ps pulses anatase is the most abundant form in an intermediate energy window centered around 25 mJ per pulse. This experimental behavior can be described by a theoretical model which calculates the pressure and temperature evolution of the ablated material and, from this, the rutile and anatase yield.

  9. The use of surfactants to enhance the solubility and stability of the water-insoluble anticancer drug SN38 into liquid crystalline phase nanoparticles.

    Science.gov (United States)

    Ranneh, Abdul-Hackam; Iwao, Yasunori; Noguchi, Shuji; Oka, Toshihiko; Itai, Shigeru

    2016-12-30

    Cubosomes were used to increase the aqueous solubility of the water insoluble anticancer drug SN38. The results showed that the use of a common cubosome formulation consisting of phytantriol (PHYT) as the matrix amphiphile (PHYT-cubosome) led to a 6-fold increase in the solubility of SN38. However, mean hydrodynamic diameter (DH) and polydispersity index (PDI) of these PHYT-cubosome particles were 345±49nm and 0.37±0.05, respectively, making them unsuitable for intravenous applications. Several additives were investigated to increase the solubility of SN38 and reduce the DH and PDI values of the resulting particles. Charged additives such as didodecyldimethyl ammonium bromide (DDAB) and sodium dodecyl sulfate (SDS) led to improvements in the physiochemical properties of the cubosomes. Notably, the PHYT-DDAB and PHT-SDS cubosomes led to 15- and 14-fold increases in the aqueous solubility of SN38, respectively. Moreover, the SN38 loaded into the PHYT-DDAB and PHYT-SDS cubosomes was found to be highly stable, with very little hydrolysis to its inactive acid form. In summary, the addition of DDAB and SDS to PHYT-cubosome nanoparticle drug delivery systems not only led to considerable improvements in their physiochemical properties, but also enhanced the aqueous solubility of SN38 and increased its chemical stability. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Self-assembled liquid crystalline nanoparticles as an ophthalmic drug delivery system. Part II: optimization of formulation variables using experimental design.

    Science.gov (United States)

    Achouri, Djamila; Sergent, Michelle; Tonetto, Alain; Piccerelle, Philippe; Andrieu, Véronique; Hornebecq, Virginie

    2015-03-01

    In the field of keratoconus treatment, a lipid-based liquid crystal nanoparticles system has been developed to improve the preocular retention and ocular bioavailability of riboflavin, a water-soluble drug. The formulation of this ophthalmic drug delivery system was optimized by a simplex lattice experimental design. The delivery system is composed of three main components that are mono acyl glycerol (monoolein), poloxamer 407 and water and two secondary components that are riboflavin and glycerol (added to adjust the osmotic pressure). The amounts of these three main components were selected as the factors to systematically optimize the dependent variables that are the encapsulation efficiency and the particle size. In this way, 12 formulas describing experimental domain of interest were prepared. Results obtained using small angle X-rays scattering (SAXS) and cryo-transmission electron microscopy (cryo-TEM) evidenced the presence of nano-objects with either sponge or hexagonal inverted structure. In the zone of interest, the percentage of each component was determined to obtain both high encapsulation efficiency and small size of particles. Two optimized formulations were found: F7 and F1. They are very close in the ternary phase diagram as they contain 6.83% of poloxamer 407; 44.18% and 42.03% of monoolein; 46.29% and 48.44% of water for F7 and F11, respectively. These formulations displayed a good compromise between inputs and outputs investigated.

  11. Tensile and electrical properties of unirradiated and irradiated Hycon 3HP{trademark} CuNiBe

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J.; Eatherly, W.S. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    The unirradiated tensile properties of two different heats of Hycon 3HP{trademark} CuNiBe (HT Temper) have been measured over the temperature range of 20-500{degrees}C for longitudinal and long transverse orientations. The room temperature electrical conductivity has also been measured for both heats. Both heats exhibited a very good combination of strength and conductivity at room temperature. The strength remained relatively high at all test temperatures, with a yield strength of 420-520 MPa at 500{degrees}C. However, low levels of ductility (<5% uniform elongation) were observed at test temperatures above 200-250{degrees}C, due to flow localization adjacent to grain boundaries. Fission neutron irradiation to a dose of {approximately}0.7 dpa at temperatures between 100 and 240{degrees}C produced a slight increase in strength and a significant decrease in ductility. The measured tensile elongation increased with increasing irradiation temperature, with a uniform elongation of {approximately}3.3% observed at 240{degrees}C. The electrical conductivity decreased slightly following irradiation, due to the presence of defect clusters and Ni, Zn, Co transmutation products. The data indicate that CuNiBe alloys have irradiated tensile and electrical properties comparable or superior to CuCrZr and oxide dispersion strengthened copper at temperatures <250{degrees}C, and may be suitable for certain fusion energy structural applications.

  12. The Analysis of the General Performance and Mechanical Behavior of Unirradiated FeCrAl Alloys Before and After Welding

    Energy Technology Data Exchange (ETDEWEB)

    Gussev, Maxim N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-06-03

    The present report summarizes and discusses the preliminary results for the in-depth characterization of the modern, nuclear-grade FeCrAl alloys currently under development. The alloys were designed for enhanced radiation tolerance and weldability, and the research is currently being pursued by the Department of Energy (DOE) Nuclear Energy Enabling Technologies (NEET) program. Last year, seven candidate FeCrAl alloys with well-controlled chemistry and microstructures were designed and produced; welding was performed under well-controlled conditions. The structure and general performance of unirradiated alloys were assessed using standardized and advanced microstructural characterization techniques and mechanical testing. The primary objective is to identify the best candidate alloy, or at a minimum to identify the contributing factors that increase the weldability and radiation tolerance of FeCrAl alloys, therefore enabling future generations of FeCrAl alloys to deliver better performance parameters. This report is structured so as to describe these critical assessments of the weldability; radiation tolerance will be reported on in later reports from this program.

  13. Disposition of Unirradiated Sodium Bonded EBR-II Driver Fuel Elements and HEU Scrap: Work Performed for FY 2007

    Energy Technology Data Exchange (ETDEWEB)

    Karen A Moore

    2007-04-01

    Specific surplus high enriched uranium (HEU) materials at the Idaho National Laboratory (INL) Materials and Fuels Complex (MFC) will be transferred to a designated off-site receiving facility. The DOE High Enriched Uranium Disposition Program Office (HDPO) will determine which materials, if any, will be prepared and transferred to an off-site facility for processing and eventual fabrication of fuel for nuclear reactors. These surplus HEU materials include approximately 7200 kg unirradiated sodium-bonded EBR-II driver fuel elements, and nearly 800 kg of HEU casting scrap from the process which formed various sodium-bonded fuels (including the EBR-II driver elements). Before the driver fuel can be packaged for shipment, the fuel elements will require removal of the sodium bond. The HEU scrap will also require repackaging in preparation for off-site transport. Preliminary work on this task was authorized by BWXT Y-12 on Nov 6, 2006 and performed in three areas: • Facility Modifications • Safety Documentation • Project Management

  14. Perylene Nanoparticles Prepared by Reprecipitation Method

    Institute of Scientific and Technical Information of China (English)

    JI,Xue-Hai(纪学海); FU,Hong-Bing(付红兵); XIE,Rui-Min(谢锐敏); XIAO,De-Bao(肖德宝); YAO,Jian-Nian(姚建年)

    2002-01-01

    Perylene nanoparticles with different sizes were prepared by reprecipitation method. It is found that the nanoparticles show size-dependent optical property. Electron diffraction patterns indicate that all the nanoparticles of different sizes are in crystalline state. The rapid growth of the nanoparticles during the agingg process could be slowed down effectively by the addition of cationic or anionic surfactants.

  15. Crystalline and Crystalline International Disposal Activities

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, Hari S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chu, Shaoping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dittrich, Timothy M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hyman, Jeffrey De' Haven [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Karra, Satish [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Makedonska, Nataliia [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reimus, Paul William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-06

    This report presents the results of work conducted between September 2015 and July 2016 at Los Alamos National Laboratory in the crystalline disposal and crystalline international disposal work packages of the Used Fuel Disposition Campaign (UFDC) for DOE-NE’s Fuel Cycle Research and Development program. Los Alamos focused on two main activities during this period: Discrete fracture network (DFN) modeling to describe flow and radionuclide transport in complex fracture networks that are typical of crystalline rock environments, and a comprehensive interpretation of three different colloid-facilitated radionuclide transport experiments conducted in a fractured granodiorite at the Grimsel Test Site in Switzerland between 2002 and 2013. Chapter 1 presents the results of the DFN work and is divided into three main sections: (1) we show results of our recent study on the correlation between fracture size and fracture transmissivity (2) we present an analysis and visualization prototype using the concept of a flow topology graph for characterization of discrete fracture networks, and (3) we describe the Crystalline International work in support of the Swedish Task Force. Chapter 2 presents interpretation of the colloidfacilitated radionuclide transport experiments in the crystalline rock at the Grimsel Test Site.

  16. The influence of late-stage pupal irradiation and increased irradiated: un-irradiated male ratio on mating competitiveness of the malaria mosquito Anopheles arabiensis Patton.

    Science.gov (United States)

    Helinski, M E H; Knols, B G J

    2009-06-01

    Competitiveness of released males in genetic control programmes is of critical importance. In this paper, we explored two scenarios to compensate for the loss of mating competitiveness after pupal stage irradiation in males of the malaria mosquito Anopheles arabiensis. First, competition experiments with a higher ratio of irradiated versus un-irradiated males were performed. Second, pupae were irradiated just prior to emergence and male mating competitiveness was determined. Males were irradiated in the pupal stage with a partially or fully-sterilizing dose of 70 or 120 Gy, respectively. Pupae were irradiated aged 20-26 h (young) as routinely performed, or the pupal stage was artificially prolonged by cooling and pupae were irradiated aged 42-48 h (old). Irradiated males competed at a ratio of 3:1:1 to un-irradiated males for mates in a large cage design. At the 3:1 ratio, the number of females inseminated by males irradiated with 70 Gy as young pupae was similar to the number inseminated by un-irradiated males for the majority of the replicates. At 120 Gy, significantly fewer females were inseminated by irradiated than by un-irradiated males. The irradiation of older pupae did not result in a significantly improved male mating competitiveness compared to the irradiation of young pupae. Our findings indicate that the loss of competitiveness after pupal stage irradiation can be compensated for by a threefold increase of irradiated males, but only for the partially-sterilizing dose. In addition, cooling might be a useful tool to facilitate handling processes of large numbers of mosquitoes in genetic control programmes.

  17. Cell cycle tracking for irradiated and unirradiated bystander cells in a single colony with exposure to a soft X-ray microbeam.

    Science.gov (United States)

    Kaminaga, Kiichi; Noguchi, Miho; Narita, Ayumi; Hattori, Yuya; Usami, Noriko; Yokoya, Akinari

    2016-11-01

    To establish a new experimental technique to explore the photoelectric and subsequent Auger effects on the cell cycles of soft X-ray microbeam-irradiated cells and unirradiated bystander cells in a single colony. Several cells located in the center of a microcolony of HeLa-Fucci cells consisting of 20-80 cells were irradiated with soft X-ray (5.35 keV) microbeam using synchrotron radiation as a light source. All cells in the colony were tracked for 72 h by time-lapse microscopy imaging. Cell cycle progression, division, and death of each cell in the movies obtained were analyzed by pedigree assay. The number of cell divisions in the microcolony was also determined. The fates of these cells were clarified by tracking both irradiated and unirradiated bystander cells. Irradiated cells showed significant cell cycle retardation, explosive cell death, or cell fusion after a few divisions. These serious effects were also observed in 15 and 26% of the bystander cells for 10 and 20 Gy irradiation, respectively, and frequently appeared in at least two daughter or granddaughter cells from a single-parent cell. We successfully tracked the fates of microbeam-irradiated cells and unirradiated bystander cells with live cell recordings, which have revealed the dynamics of soft X-ray irradiated and unirradiated bystander cells for the first time. Notably, cell deaths or cell cycle arrests frequently arose in closely related cells. These details would not have been revealed by a conventional immunostaining imaging method. Our approach promises to reveal the dynamic cellular effects of soft X-ray microbeam irradiation and subsequent Auger processes from various endpoints in future studies.

  18. Revised ANL-reported tensile data for unirradiated and irradiated (FFTF, HFIR) V-Ti and V-Cr-Ti alloys

    Energy Technology Data Exchange (ETDEWEB)

    Billone, M.C. [Argonne National Lab., IL (United States)

    1998-03-01

    The tensile data for all unirradiated and irradiated vanadium alloys samples tested at Argonne National Laboratory (ANL) have been critically reviewed and, when necessary, revised. The review and revision are based on reanalyzing the original load-displacement strip chart recordings by a methodology consistent with current ASTM standards. For unirradiated alloys (162 samples), the revised values differ from the previous values as follows: {minus}11{+-}19 MPa ({minus}4{+-}6%) for yield strength (YS), {minus}3{+-}15 MPa ({minus}1{+-}3%) for ultimate tensile strength (UTS), {minus}5{+-}2% strain for uniform elongation (UE), and {minus}4{+-}2% strain for total elongation (TE). Of these changes, the decrease in {minus}1{+-}6 MPa (0{+-}1%) for UTS, {minus}5{+-}2% for UE, and {minus}4{+-}2% for TE. Of these changes, the decrease in UE values for alloys irradiated and tested at 400--435 C is the most significant. This decrease results from the proper subtraction of nongauge-length deformation from measured crosshead deformation. In previous analysis of the tensile curves, the nongauge-length deformation was not correctly determined and subtracted from the crosshead displacement. The previously reported and revised tensile values for unirradiated alloys (20--700 C) are tabulated in Appendix A. The revised tensile values for the FFTF-irradiated (400--600 C) and HFIR-irradiated (400 C) alloys are tabulated in Appendix B, along with the neutron damage and helium levels. Appendix C compares the revised values to the previously reported values for irradiated alloys. Appendix D contains previous and revised values for the tensile properties of unirradiated V-5Cr-5Ti (BL-63) alloy exposed to oxygen.

  19. Oxidative dissolution of unirradiated Mimas MOX fuel (U/Pu oxides) in carbonated water under oxic and anoxic conditions

    Science.gov (United States)

    Odorowski, Mélina; Jégou, Christophe; De Windt, Laurent; Broudic, Véronique; Peuget, Sylvain; Magnin, Magali; Tribet, Magaly; Martin, Christelle

    2016-01-01

    Few studies exist concerning the alteration of Mimas Mixed-OXide (MOX) fuel, a mixed plutonium and uranium oxide, and data is needed to better understand its behavior under leaching, especially for radioactive waste disposal. In this study, two leaching experiments were conducted on unirradiated MOX fuel with a strong alpha activity (1.3 × 109 Bq.gMOX-1 reproducing the alpha activity of spent MOX fuel with a burnup of 47 GWd·tHM-1 after 60 years of decay), one under air (oxic conditions) for 5 months and the other under argon (anoxic conditions with [O2] MOX pellets under both oxic and anoxic conditions were similar, demonstrating the predominant effect of alpha radiolysis on the oxidative dissolution of the pellets. The uranium released was found to be mostly in solution as carbonate species according to modeling, whereas the Am and Pu released were significantly sorbed or precipitated onto the TiO2 reactor. An intermediate fraction of Am (12%) was also present as colloids. SEM and EPMA results indicated a preferential dissolution of the UO2 matrix compared to the Pu-enriched agglomerates, and Raman spectroscopy showed the Pu-enriched agglomerates were slightly oxidized during leaching. Unlike Pu-enriched zones, the UO2 grains were much more sensitive to oxidative dissolution, but the presence of carbonates did not enable observation of an oxidized layer by Raman spectroscopy with the exception of a few areas revealing the presence of U4O9. This data shows the heterogeneous nature of the alteration and the need to combine information from different techniques to determine the origin of releases.

  20. Crystalline Silica Primer

    Science.gov (United States)

    ,

    1992-01-01

    Crystalline silica is the scientific name for a group of minerals composed of silicon and oxygen. The term crystalline refers to the fact that the oxygen and silicon atoms are arranged in a threedimensional repeating pattern. This group of minerals has shaped human history since the beginning of civilization. From the sand used for making glass to the piezoelectric quartz crystals used in advanced communication systems, crystalline silica has been a part of our technological development. Crystalline silica's pervasiveness in our technology is matched only by its abundance in nature. It's found in samples from every geologic era and from every location around the globe. Scientists have known for decades that prolonged and excessive exposure to crystalline silica dust in mining environments can cause silicosis, a noncancerous lung disease. During the 1980's, studies were conducted that suggested that crystalline silica also was a carcinogen. As a result of these findings, crystalline silica has been regulated under the Occupational Safety and Health Administration's (OSHA) Hazard Communication Standard (HCS). Under HCS, OSHAregulated businesses that use materials containing 0.1% or more crystalline silica must follow Federal guidelines concerning hazard communication and worker training. Although the HCS does not require that samples be analyzed for crystalline silica, mineral suppliers or OSHAregulated

  1. Crystalline boron nitride aerogels

    Science.gov (United States)

    Zettl, Alexander K.; Rousseas, Michael; Goldstein, Anna P.; Mickelson, William; Worsley, Marcus A.; Woo, Leta

    2017-04-04

    This disclosure provides methods and materials related to boron nitride aerogels. In one aspect, a material comprises an aerogel comprising boron nitride. The boron nitride has an ordered crystalline structure. The ordered crystalline structure may include atomic layers of hexagonal boron nitride lying on top of one another, with atoms contained in a first layer being superimposed on atoms contained in a second layer.

  2. Crystalline boron nitride aerogels

    Energy Technology Data Exchange (ETDEWEB)

    Zettl, Alexander K.; Rousseas, Michael; Goldstein, Anna P.; Mickelson, William; Worsley, Marcus A.; Woo, Leta

    2017-04-04

    This disclosure provides methods and materials related to boron nitride aerogels. In one aspect, a material comprises an aerogel comprising boron nitride. The boron nitride has an ordered crystalline structure. The ordered crystalline structure may include atomic layers of hexagonal boron nitride lying on top of one another, with atoms contained in a first layer being superimposed on atoms contained in a second layer.

  3. Special Analysis for the Disposal of the Idaho National Laboratory Unirradiated Light Water Breeder Reactor Rods and Pellets Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Shott, Gregory [NSTec

    2014-08-31

    The purpose of this special analysis (SA) is to determine if the Idaho National Laboratory (INL) Unirradiated Light Water Breeder Reactor (LWBR) Rods and Pellets waste stream (INEL103597TR2, Revision 2) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS). The INL Unirradiated LWBR Rods and Pellets waste stream consists of 24 containers with unirradiated fabricated rods and pellets composed of uranium oxide (UO2) and thorium oxide (ThO2) fuel in zirconium cladding. The INL Unirradiated LWBR Rods and Pellets waste stream requires an SA because the 229Th, 230Th, 232U, 233U, and 234U activity concentrations exceed the Nevada National Security Site (NNSS) Waste Acceptance Criteria (WAC) Action Levels.

  4. About the mechanisms governing the hydrogen effect on visco plasticity of unirradiated fully annealed zircaloy-4 sheet

    Energy Technology Data Exchange (ETDEWEB)

    Rupa, N [Electricite de France (EDF), Nuclear Power Div., Lab. Group, 93 - Saint-Denis (France); Clavel, M. [Universite de Technologie de Compiegne, Centre de Recherches de Royalliu, 60 (France); Bouffioux, P.; Domain, C. [Electricite de France, Research engineer, RD Div., Material Study Branch, 77 - Moret sur Loing (France); Legris, A. [Lille-1 Univ., UMR 8517, 59 - Villeneuve-d' Ascq (France)

    2002-07-01

    It has been observed that hydrogen either in solid solution or precipitated under the form of hydrides has an impact on the visco-plasticity of CWSR Zircaloy-4 cladding tubes, increasing significantly the creep resistance. The use of TEM on the structurally complex CWSR material being unlikely to identify the deformation mechanisms, it has been decided to complete this R and D program on recrystallized material. A study has been carried out on fully annealed unirradiated Zircaloy-4 sheet used for the manufacturing of the fuel subassembly grids. Mechanical tests were performed for large ranges of temperatures (300 to 400 deg C), stresses (120 to 250 MPa), and strain rates (2 x 10{sup -7} to 2 x 10{sup -3} s{sup -1}) on as-received and hydrided specimen. The results emphasize: - Hydrogen in solid solution induces a softening of the material. The TEM observations have revealed identical structure of dislocations for both as-received and hydrided specimens. The softening has been particularly observed when dynamic strain aging is activated. It is assumed that atomic hydrogen decreases the dislocation pinning caused by interstitial and/or enhances the intrinsic mobility of the dislocations. With respect to ab initio calculation, atomic hydrogen might be trapped easily by the core of the dislocation, this phenomenon contributing to decrease the lattice friction and to enhance planar glide. - Precipitated hydrides induce a hardening of the material as observed for CWSR Zircaloy 4. The magnitude of the phenomenon depends upon temperature and stress. An analysis of the unload sequences for tension tests and of the secondary strain rates for creep tests leads to the conclusion that hydrides change the kinematics hardening by increasing the internal stress with respect to the as-received material. TEM observation combined with this visco-plasticity approach has revealed that: first, as long as the internal stress is increasing versus plastic strain, hydride are obstacles to

  5. Carbon Nanotubes as Reinforcement of Cellulose Liquid Crystalline Responsive Networks.

    Science.gov (United States)

    Echeverria, Coro; Aguirre, Luis E; Merino, Esther G; Almeida, Pedro L; Godinho, Maria H

    2015-09-30

    The incorporation of small amount of highly anisotropic nanoparticles into liquid crystalline hydroxypropylcellulose (LC-HPC) matrix improves its response when is exposed to humidity gradients due to an anisotropic increment of order in the structure. Dispersed nanoparticles give rise to faster order/disorder transitions when exposed to moisture as it is qualitatively observed and quantified by stress-time measurements. The presence of carbon nanotubes derives in a improvement of the mechanical properties of LC-HPC thin films.

  6. The human crystallin gene families

    Directory of Open Access Journals (Sweden)

    Wistow Graeme

    2012-12-01

    Full Text Available Abstract Crystallins are the abundant, long-lived proteins of the eye lens. The major human crystallins belong to two different superfamilies: the small heat-shock proteins (α-crystallins and the βγ-crystallins. During evolution, other proteins have sometimes been recruited as crystallins to modify the properties of the lens. In the developing human lens, the enzyme betaine-homocysteine methyltransferase serves such a role. Evolutionary modification has also resulted in loss of expression of some human crystallin genes or of specific splice forms. Crystallin organization is essential for lens transparency and mutations; even minor changes to surface residues can cause cataract and loss of vision.

  7. Irradiation programme MANITU: Results of pre-examinations and Charpy tests with unirradiated materials; Bestrahlungsprogramm MANITU. Ergebnisse der Voruntersuchungen und der Kerbschlagbiegeversuche mit den unbestrahlten Werkstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Rieth, M.; Dafferner, B.; Ries, H.; Romer, O.

    1995-04-01

    The irradiation project MANITU was planned in the frame of the European Long-term Fusion Materials Development Programme. The results of MANITU will have a lasting influence on the future actions within the materials development programme. The problem of the irradiation induced embrittlement of possible martensitic alloy candidates is still unsolved. But after the evaluation of sub-size Charpy tests with the unirradiated refrence specimens of MANITU a first tendency is recognizable. The Charpy properties of the newly developed low activation 7-10% Cr-WVTa alloys are clearly better compared with the modified commerical 10-11% Cr-NiMoVNb steels. In the present report the pre-examinations are documented and the Charpy test results with unirradiated reference specimens are analysed and assessed. (orig.) [Deutsch] Das Bestrahlungsprojekt MANITU wurde im Rahmen des europaeischen Langzeitprogramms fuer Materialentwicklung fuer die Kernfusion geplant. Die daraus gewonnenen Ergebnisse werden das weitere Vorgehen bei der Materialentwicklung entscheidend beeinflussen. Das Problem der bestrahlungsinduzierten Versproedung bei den in Frage kommenden martensitischen Werkstoffen ist nach wie vor ungeloest. Eine erste Tendenz zeichnet sich nach der Auswertung der Kerbschlagbiegeversuche an den unbestrahlten miniaturisierten Referenzproben des MANITU-Programms ab. Die neu entwickelten niedrig aktivierbaren 7-10% Cr-WVTa-Legierungen weisen gegenueber den modifizierten kommerziellen 10-11% Cr-NiMoVNb-Staehlen deutlich bessere Kerbschlageigenschaften auf. Im vorliegenden Bericht werden die Voruntersuchungen dokumentiert und die Ergebnisse aus den Kerbschlagbiegeversuchen der unbestrahlten Referenzproben analysiert und bewertet. (orig.)

  8. Thermodynamics of Crystalline States

    CERN Document Server

    Fujimoto, Minoru

    2010-01-01

    Thermodynamics is a well-established discipline of physics for properties of matter in thermal equilibrium surroundings. Applying to crystals, however, the laws encounter undefined properties of crystal lattices, which therefore need to be determined for a clear and well-defined description of crystalline states. Thermodynamics of Crystalline States explores the roles played by order variables and dynamic lattices in crystals in a wholly new way. This book is divided into three parts. The book begins by clarifying basic concepts for stable crystals. Next, binary phase transitions are discussed to study collective motion of order variables, as described mostly as classical phenomena. In the third part, the multi-electron system is discussed theoretically, as a quantum-mechanical example, for the superconducting state in metallic crystals. Throughout the book, the role played by the lattice is emphasized and examined in-depth. Thermodynamics of Crystalline States is an introductory treatise and textbook on meso...

  9. DNA-guided nanoparticle assemblies

    Science.gov (United States)

    Gang, Oleg; Nykypanchuk, Dmytro; Maye, Mathew; van der Lelie, Daniel

    2013-07-16

    In some embodiments, DNA-capped nanoparticles are used to define a degree of crystalline order in assemblies thereof. In some embodiments, thermodynamically reversible and stable body-centered cubic (bcc) structures, with particles occupying nanoparticles linked by nucleic acid sequences and forming an open crystal structure with catalytically active agents attached to the crystal on its surface or in interstices.

  10. Liquid crystalline dihydroazulene photoswitches

    DEFF Research Database (Denmark)

    Petersen, Anne Ugleholdt; Jevric, Martyn; Mandle, Richard J.

    2015-01-01

    A large selection of photochromic dihydroazulene (DHA) molecules incorporating various substituents at position 2 of the DHA core was prepared and investigated for their ability to form liquid crystalline phases. Incorporation of an octyloxy-substituted biphenyl substituent resulted in nematic...

  11. Behavior of metallic nanoparticles in Al matrix under high electronic energy deposition

    Energy Technology Data Exchange (ETDEWEB)

    Rizza, G. [Laboratoire des Solides Irradies, Ecole Polytechnique/CEA-DRECAM/CNRS, 91128 Palaiseau Cedex (France)]. E-mail: giancarlo.rizza@polytechnique.edu; Dunlop, A. [Laboratoire des Solides Irradies, Ecole Polytechnique/CEA-DRECAM/CNRS, 91128 Palaiseau Cedex (France); Dezellus, A. [LEPES/CNRS, 38042 Grenoble Cedex 9 (France)

    2007-03-15

    Metallic nanoparticles (Pb and Bi) embedded in a crystalline Al matrix were irradiated with 30 MeV C{sub 60} cluster ions at 300 K. Experimental evidence of partial amorphization of bismuth nanoparticles is observed. On the other hand, Pb inclusions remain crystalline. The condition under which embedded nanoparticles can be amorphized is discussed.

  12. Behavior of metallic nanoparticles in Al matrix under high electronic energy deposition

    Science.gov (United States)

    Rizza, G.; Dunlop, A.; Dezellus, A.

    2007-03-01

    Metallic nanoparticles (Pb and Bi) embedded in a crystalline Al matrix were irradiated with 30 MeV C60 cluster ions at 300 K. Experimental evidence of partial amorphization of bismuth nanoparticles is observed. On the other hand, Pb inclusions remain crystalline. The condition under which embedded nanoparticles can be amorphized is discussed.

  13. Crystalline systems. [Book chapter

    Energy Technology Data Exchange (ETDEWEB)

    Kispert, L.D.

    The use of two double resonance methods, electron-nuclear double resonance (ENDOR) and electron-electron double resonance (ELDOR) in the study of free radicals in solids is reviewed. Included are descriptions of how crystalline-phase ENDOR is used to determine small hyperfine splittings, quadrupoly couplings, and reaction mechanisms or radical formation and how crystalline phase ELDOR is used to determine large hyperfine splittings, to identify radicals with large quadrupole moments and to study spin exchange processes. The complementary role played by the ENDOR and ELDOR spectroscopy in the separation of overlapping EPR spectra, in the study of proton-deuterium exchange, in the study of methyl groups undergoing tunneling rotation, and in the determination of the rates of intermolecular motion are dealt with. 13 figures, 1 table. (DP)

  14. Thermodynamics of Crystalline States

    CERN Document Server

    Fujimoto, Minoru

    2013-01-01

    Thermodynamics is a well-established discipline of physics for properties of matter in thermal equilibrium with the surroundings. Applying to crystals, however, the laws encounter undefined properties of crystal lattice, which therefore need to be determined for a clear and well-defined description of crystalline states. Thermodynamics of Crystalline States explores the roles played by order variables and dynamic lattices in crystals in a wholly new way. The book begins by clarifying basic concepts for stable crystals. Next, binary phase transitions are discussed to study collective motion of order variables, as described mostly as classical phenomena. New to this edition is the examination of magnetic crystals, where magnetic symmetry is essential for magnetic phase transitions. The multi-electron system is also discussed  theoretically, as a quantum-mechanical example, for superconductivity in metallic crystals. Throughout the book, the role played by the lattice is emphasized and studied in-depth. Thermod...

  15. Supercooled smectic nanoparticles

    DEFF Research Database (Denmark)

    Kuntsche, Judith; Westesen, K; Drechsler, M

    2004-01-01

    The possibility of preparing nanoparticles in the supercooled thermotropic liquid crystalline state from cholesterol esters with saturated acyl chains as well as the incorporation of model drugs into the dispersions was investigated using cholesteryl myristate (CM) as a model cholesterol ester....

  16. Supercooled smectic nanoparticles

    DEFF Research Database (Denmark)

    Kuntsche, Judith; Westesen, K; Drechsler, M

    2004-01-01

    The possibility of preparing nanoparticles in the supercooled thermotropic liquid crystalline state from cholesterol esters with saturated acyl chains as well as the incorporation of model drugs into the dispersions was investigated using cholesteryl myristate (CM) as a model cholesterol ester....

  17. Crystalline mesoporous metal oxide

    Institute of Scientific and Technical Information of China (English)

    Wenbo Yue; Wuzong Zhou

    2008-01-01

    Since the discovery of many types of mesoporous silicas, such as SBA-15, KIT-6, FDU-12 and SBA-16, porous crystalline transition metal oxides, such as Cr2O3, Co3O4, In2O3, NiO, CeO2, WO3, Fe2O3 and MnO2, have been synthesized using the mesoporous silicas as hard templates. Several synthetic methods have been developed. These new porous materials have high potential applications in catalysis, Li-ion rechargeable batteries and gas sensors. This article gives a brief review of the research of porous crystals of metal oxides in the last four years.

  18. Laser fabrication of crystalline silicon nanoresonators from an amorphous film for low-loss all-dielectric nanophotonics

    Science.gov (United States)

    Dmitriev, P. A.; Makarov, S. V.; Milichko, V. A.; Mukhin, I. S.; Gudovskikh, A. S.; Sitnikova, A. A.; Samusev, A. K.; Krasnok, A. E.; Belov, P. A.

    2016-02-01

    The concept of high refractive index subwavelength dielectric nanoresonators, supporting electric and magnetic optical resonance, is a promising platform for waveguiding, sensing, and nonlinear nanophotonic devices. However, high concentration of defects in the nanoresonators diminishes their resonant properties, which are crucially dependent on their internal losses. Therefore, it seems to be inevitable to use initially crystalline materials for fabrication of the nanoresonators. Here, we show that the fabrication of crystalline (low-loss) resonant silicon nanoparticles by femtosecond laser ablation of amorphous (high-loss) silicon thin films is possible. We apply two conceptually different approaches: recently proposed laser-induced transfer and a novel laser writing technique for large-scale fabrication of the crystalline nanoparticles. The crystallinity of the fabricated nanoparticles is proven by Raman spectroscopy and electron transmission microscopy, whereas optical resonant properties of the nanoparticles are studied using dark-field optical spectroscopy and full-wave electromagnetic simulations.

  19. Growth Induced Magnetic Anisotropy in Crystalline and Amorphous Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, Frances

    1998-10-03

    OAK B204 Growth Induced Magnetic Anisotropy in Crystalline and Amorphous Thin Films. The work in the past 6 months has involved three areas of magnetic thin films: (1) amorphous rare earth-transition metal alloys, (2) epitaxial Co-Pt and hTi-Pt alloy thin films, and (3) collaborative work on heat capacity measurements of magnetic thin films, including nanoparticles and CMR materials.

  20. Liquid crystalline order in polymers

    CERN Document Server

    Blumstein, Alexandre

    1978-01-01

    Liquid Crystalline Order in Polymers examines the topic of liquid crystalline order in systems containing rigid synthetic macromolecular chains. Each chapter of the book provides a review of one important area of the field. Chapter 1 discusses scattering in polymer systems with liquid crystalline order. It also introduces the field of liquid crystals. Chapter 2 treats the origin of liquid crystalline order in macromolecules by describing the in-depth study of conformation of such macromolecules in their unassociated state. The chapters that follow describe successively the liquid crystalli

  1. Preparation of poly (Vinyl Alcohol) nanofibers containing silver nanoparticles by gamma-ray irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yun Hye [AMOTECH Co., Ltd., Kimpo (Korea, Republic of); Shin, Jun Wha; An, Sung Jun; Youn, Min Ho; Lim, Youn Mook; Gwon, Hui Jeong; Nho, Young Chang [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2008-08-15

    PVA nanofibers containing silver nanoparticles were prepared by two methods. The first method was electrospinning of irradiated solution. The prepared PVA/AgNO{sub 3} solution was irradiated by gamma-rays. And then the irradiated solution was electrospun. The second method was irradiation of electrospun nanofibers. Nanofibers prepared by electrospinning of unirradiated PVA/AgNO{sub 3} solution. The morphology of the nanofibers was observed with a SEM, TEM. When the irradiated PVA/AgNO{sub 3} solution were electrospun, the average size of the Ag nanoparticles was increased, but their number was decreased.

  2. Chemical design of biocompatible iron oxide nanoparticles for medical applications.

    Science.gov (United States)

    Ling, Daishun; Hyeon, Taeghwan

    2013-05-27

    Iron oxide nanoparticles are one of the most versatile and safe nanomaterials used in medicine. Recent progress in nanochemistry enables fine control of the size, crystallinity, uniformity, and surface properties of iron oxide nanoparticles. In this review, the synthesis of chemically designed biocompatible iron oxide nanoparticles with improved quality and reduced toxicity is discussed for use in diverse biomedical applications.

  3. COLD DRAWING IN CRYSTALLINE POLYMERS

    Science.gov (United States)

    alcohols, phenol) in Nylon 6 produced changes in the crystalline structure as well as plasticizer action; these two effects must therefore be carefully...distinguished. Changes in the crystalline structure were followed by changes in the infrared spectrum. Dynamic mechanical and thermogravimetric analysis

  4. Crystalline Bioceramic Materials

    Directory of Open Access Journals (Sweden)

    de Aza, P. N.

    2005-06-01

    Full Text Available A strong interest in the use of ceramics for biomedical engineering applications developed in the late 1960´s. Used initially as alternatives to metallic materials in order to increase the biocompatibility of implants, bioceramics have become a diverse class of biomaterials, presently including three basic types: relatively bioinert ceramics; bioactive or surface reactive bioceramics and bioresorbable ceramics. This review will only refer to bioceramics “sensus stricto”, it is to say, those ceramic materials constituted for nonmetallic inorganic compounds, crystallines and consolidated by thermal treatments of powders to high temperatures. Leaving bioglasses, glass-ceramics and biocements apart, since, although all of them are obtained by thermal treatments to high temperatures, the first are amorphous, the second are obtained by desvitrification of a glass and in them vitreous phase normally prevails on the crystalline phases and the third are consolidated by means of a hydraulic or chemical reaction to room temperature. A review of the composition, physiochemical properties and biological behaviour of the principal types of crystalline bioceramics is given, based on the literature data and on the own experience of the authors.

    A finales de los años sesenta se despertó un gran interés por el uso de los materiales cerámicos para aplicaciones biomédicas. Inicialmente utilizados como una alternativa a los materiales metálicos, con el propósito de incrementar la biocompatibilidad de los implantes, las biocerámicas se han convertido en una clase diversa de biomateriales, incluyendo actualmente tres tipos: cerámicas cuasi inertes; cerámicas bioactivas o reactivas superficialmente y cerámicas reabsorbibles o biodegradables. En la presente revisión se hace referencia a las biocerámicas en sentido estricto, es decir, a aquellos materiales constitutitos por compuestos inorgánicos no metálicos, cristalinos y consolidados

  5. Manipulating the dimensional assembly pattern and crystalline structures of iron oxide nanostructures with a functional polyolefin.

    Science.gov (United States)

    He, Qingliang; Yuan, Tingting; Wang, Yiran; Guleria, Abhishant; Wei, Suying; Zhang, Guoqi; Sun, Luyi; Liu, Jingjing; Yu, Jingfang; Young, David P; Lin, Hongfei; Khasanov, Airat; Guo, Zhanhu

    2016-01-28

    Controlled crystalline structures (α- and γ-phase) and assembly patterns (1-D, 2-D and 3-D) were achieved in the synthesized iron oxide (Fe2O3) nanoparticles (NPs) using polymeric surfactant-polypropylene grafted maleic anhydride (PP-g-MA) with different concentrations. In addition, the change of the crystalline structure from the α- and γ-phase also led to the significantly increased saturation magnetization and coercivity.

  6. Thermal treatment of magnetite nanoparticles

    Directory of Open Access Journals (Sweden)

    Beata Kalska-Szostko

    2015-06-01

    Full Text Available This paper presents the results of a thermal treatment process for magnetite nanoparticles in the temperature range of 50–500 °C. The tested magnetite nanoparticles were synthesized using three different methods that resulted in nanoparticles with different surface characteristics and crystallinity, which in turn, was reflected in their thermal durability. The particles were obtained by coprecipitation from Fe chlorides and decomposition of an Fe(acac3 complex with and without a core–shell structure. Three types of ferrite nanoparticles were produced and their thermal stability properties were compared. In this study, two sets of unmodified magnetite nanoparticles were used where crystallinity was as determinant of the series. For the third type of particles, a Ag shell was added. By comparing the coated and uncoated particles, the influence of the metallic layer on the thermal stability of the nanoparticles was tested. Before and after heat treatment, the nanoparticles were examined using transmission electron microscopy, IR spectroscopy, differential scanning calorimetry, X-ray diffraction and Mössbauer spectroscopy. Based on the obtained results, it was observed that the fabrication methods determine, to some extent, the sensitivity of the nanoparticles to external factors.

  7. Laser fabrication of crystalline silicon nanoresonators from an amorphous film for low-loss all-dielectric nanophotonics

    CERN Document Server

    Dmitriev, P A; Milichko, V A; Mukhin, I S; Gudovskikh, A S; Sitnikova, A A; Samusev, A K; Krasnok, A E; Belov, P A

    2015-01-01

    The concept of high refractive index subwavelength dielectric nanoresonators, supporting electric and magnetic optical resonances, is a promising platform for waveguiding, sensing, and nonlinear nanophotonic devices. However, high concentration of defects in the nanoresonators diminishes their resonant properties, which are crucially dependent on their internal losses. Therefore, it seems to be inevitable to use initially crystalline materials for fabrication of the nanoresonators. Here, we show that the fabrication of crystalline (low-loss) resonant silicon nanoparticles by femtosecond laser ablation of amorphous (high-loss) silicon thin films is possible. We apply two conceptually different approaches: recently proposed laser-induced transfer and a novel laser writing technique for large-scale fabrication of the crystalline nanoparticles. The crystallinity of the fabricated nanoparticles is proven by Raman spectroscopy and electron transmission microscopy, whereas optical resonant properties of the nanopart...

  8. Genetics Home Reference: Bietti crystalline dystrophy

    Science.gov (United States)

    ... Understand Genetics Home Health Conditions Bietti crystalline dystrophy Bietti crystalline dystrophy Enable Javascript to view the expand/ ... boxes. Download PDF Open All Close All Description Bietti crystalline dystrophy is a disorder in which numerous ...

  9. Terahertz Spectroscopy of Crystalline and Non-Crystalline Solids

    DEFF Research Database (Denmark)

    Parrott, Edward P. J.; Fischer, Bernd M.; Gladden, Lynn F.

    2013-01-01

    Terahertz spectroscopy of crystalline and non-crystalline solids is probably one of the most active research fields within the terahertz community. Many potential applications, amongst which spectral recognition is probably one of the most prominent, have significantly stimulated the development...... selected examples, the potential the technique holds for various different applications. A particular focus will be given to data analysis and, in particular, how we may account for effects resulting from non-ideal sample preparation....

  10. Synthesis of Crystalline Nanosized Titanium Dioxide via a Reverse Micelle Method at Room Temperature

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Crystalline TiO2 nanoparticles were synthesized by hydrolysis of titanium tetrabutoxidein the presence of hydrochloric aeid in NP-5 (lgepal CO-520)/ cyclohcxane reverse micellesolution at room temperature. Pure rutilc nanoparticles were obtained at an appropriate acidconcentration. The influcnces of various reaction conditions such as the concentration of acids,water content value (w=[H2O]/[NP-5]) on the formation, crystal phase, morphology, and size of theTiO2 particles were investigated.

  11. Amorphization of Crystalline Water Ice

    CERN Document Server

    Zheng, Weijun; Kaiser, Ralf I

    2008-01-01

    We conducted a systematic experimental study to investigate the amorphization of crystalline ice by irradiation in the 10-50 K temperature range with 5 keV electrons at a dose of ~140 eV per molecule. We found that crystalline water ice can be converted partially to amorphous ice by electron irradiation. Our experiments showed that some of the 1.65-micrometer band survived the irradiation, to a degree that depends on the temperature, demonstrating that there is a balance between thermal recrystallization and irradiation-induced amorphization, with thermal recrystallizaton dominant at higher temperatures. At 50 K, recrystallization due to thermal effects is strong, and most of the crystalline ice survived. Temperatures of most known objects in the solar system, including Jovian satellites, Saturnian satellites, and Kuiper belt objects, are equal to or above 50 K, this might explain why water ice detected on those objects is mostly crystalline.

  12. Liquid-crystalline lanthanide complexes

    OpenAIRE

    Binnemans, Koen

    1999-01-01

    The paper describes the recent developments in the field of liquid-crystalline lanthanide complexes. The role of trivalent lanthanide ions as the central metal ion in metallomesogens is considered. An outlook for the future is given.

  13. Diffusion in porous crystalline materials

    NARCIS (Netherlands)

    Krishna, R.

    2012-01-01

    The design and development of many separation and catalytic process technologies require a proper quantitative description of diffusion of mixtures of guest molecules within porous crystalline materials. This tutorial review presents a unified, phenomenological description of diffusion inside meso-

  14. Polymer Morphology and Crystallinity close to Inorganic Surfaces

    Science.gov (United States)

    Chrissopoulou, Kiriaki; Papananou, Hellen; Anastasiadis, Spiros H.; Andrikopoulos, Konstantinos S.; Voyiatzis, George A.

    2015-03-01

    Polymer behavior close to surfaces or when restricted in space can be very different from that in the bulk. In this work, we investigate the morphology, crystallization and chain conformation of a hydrophilic, semi-crystalline polymer, poly(ethylene oxide), PEO, when mixed with silica, SiO2, nanoparticles in a broad range of compositions. The good dispersion of the nanoparticles was verified by Transmission Electron Microscopy (TEM), whereas the morphology and crystallization behaviour of the hybrids were investigated with, X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC). A gradual decrease of polymer crystallinity with increasing nanoparticles content is observed; nevertheless, polymer crystallization exists for all silica loadings. Moreover, DSC showed two melting and crystallization transitions in hybrids with polymer content lower than 50wt%, indicating that the polymer crystallizes differently than the bulk when it is in a thin interfacial layer near the silica surface. The existence of the two transitions are also evident in the IR and Raman spectra. Partially sponsored by EU (COST Action MP0902) and by the Greek GSRT (Research Funding Program: ARISTEIA II (SMART-SURF, project No. 3393, 2013SE01380048).

  15. Workshop on hydrology of crystalline basement rocks

    Energy Technology Data Exchange (ETDEWEB)

    Davis, S.N. (comp.)

    1981-08-01

    This workshop covered the following subjects: measurements in relatively shallow boreholes; measurement and interpretation of data from deep boreholes; hydrologic properties of crystalline rocks as interpreted by geophysics and field geology; rock mechanics related to hydrology of crystalline rocks; the possible contributions of modeling to the understanding of the hydrology of crystalline rocks; and geochemical interpretations of the hydrology of crystalline rocks. (MHR)

  16. Effect of hydroxyapatite particle size, morphology and crystallinity on proliferation of colon cancer HCT116 cells

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Sangeeta; Das, Mitun, E-mail: mitun@cgcri.res.in; Balla, Vamsi Krishna

    2014-06-01

    The aim of the present work is to chemically and physically characterize the synthesized Hydroxyapatite (HAp) micro and nanoparticles and to explore the inhibitory effect of nano-HAps on the in vitro growth of human colon cancerous cells HCT116. HAp powder was synthesized using three different routes to achieve micro and nanosized powders, with different morphologies and crystallinity. The synthesized powders were characterized using X-ray diffraction, FTIR spectroscopy and scanning electron microscope. The results showed that the average crystallite size of HAp powder varies from 11 nm to 177 nm and respective crystallinity of powder found to be in the range of 0.12 and 0.92. The effect of these physico-chemical properties of HAp powders on human colon cancer HCT116 cells inhibition was determined in vitro. It was found that decreasing the HAp powder crystallite size between 11 nm and 22 nm significantly increases the HCT116 cell inhibition. Our results demonstrate that apart from HAp powder size their crystallinity and morphology also play an important role in cellular inhibition of human colon cancer cells. - Highlights: • Chemically synthesized hydroxyapatite micro and nano-particles with different morphologies and crystallinity. • In vitro cell–material interaction showed that hydroxyapatite nano-particles inhibit colon cancer cells. • Human colon cancer cell inhibition also depends on crystallinity and morphology of HAp powder.

  17. Crystalline 'Genes' in Metallic Liquids

    CERN Document Server

    Sun, Yang; Ye, Zhuo; Fang, Xiaowei; Ding, Zejun; Wang, Cai-Zhuang; Mendelev, Mikhail I; Ott, Ryan T; Kramer, M J; Ho, Kai-Ming

    2014-01-01

    The underlying structural order that transcends the liquid, glass and crystalline states is identified using an efficient genetic algorithm (GA). GA identifies the most common energetically favorable packing motif in crystalline structures close to the alloy's Al-10 at.% Sm composition. These motifs are in turn compared to the observed packing motifs in the actual liquid structures using a cluster-alignment method which reveals the average topology. Conventional descriptions of the short-range order, such as Voronoi tessellation, are too rigid in their analysis of the configurational poly-types when describing the chemical and topological ordering during transition from undercooled metallic liquids to crystalline phases or glass. Our approach here brings new insight into describing mesoscopic order-disorder transitions in condensed matter physics.

  18. Positronium diffusion in crystalline polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Serna, J. (Dept. de Fisica de Materiales, Univ. Complutense, Madrid (Spain))

    1990-12-16

    The analysis in four components of the positron lifetime spectra of nine different and structurally well characterised lamellar polyethylene samples has allowed to associate the two longest-lived components to positronium annihilation in the crystalline and amorphous phases. Further assumption on positronium tunneling through the interface between both phases, and a simple geometrical model, led to a value for the positronium diffusion coefficient in the crystalline phase of the order of 10{sup -4} cm{sup 2}/s. Interfaces have thicknesses around 1.5 nm and are shallow traps for positronium. (orig.).

  19. Single crystalline mesoporous silicon nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Hochbaum, A.I.; Gargas, Daniel; Jeong Hwang, Yun; Yang, Peidong

    2009-08-04

    Herein we demonstrate a novel electroless etching synthesis of monolithic, single-crystalline, mesoporous silicon nanowire arrays with a high surface area and luminescent properties consistent with conventional porous silicon materials. These porous nanowires also retain the crystallographic orientation of the wafer from which they are etched. Electron microscopy and diffraction confirm their single-crystallinity and reveal the silicon surrounding the pores is as thin as several nanometers. Confocal fluorescence microscopy showed that the photoluminescence (PL) of these arrays emanate from the nanowires themselves, and their PL spectrum suggests that these arrays may be useful as photocatalytic substrates or active components of nanoscale optoelectronic devices.

  20. Single crystalline mesoporous silicon nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Hochbaum, Allon; Dargas, Daniel; Hwang, Yun Jeong; Yang, Peidong

    2009-08-18

    Herein we demonstrate a novel electroless etching synthesis of monolithic, single-crystalline, mesoporous silicon nanowire arrays with a high surface area and luminescent properties consistent with conventional porous silicon materials. The photoluminescence of these nanowires suggest they are composed of crystalline silicon with small enough dimensions such that these arrays may be useful as photocatalytic substrates or active components of nanoscale optoelectronic devices. A better understanding of this electroless route to mesoporous silicon could lead to facile and general syntheses of different narrow bandgap semiconductor nanostructures for various applications.

  1. Biphenyl liquid crystalline epoxy resin as a low-shrinkage resin-based dental restorative nanocomposite.

    Science.gov (United States)

    Hsu, Sheng-Hao; Chen, Rung-Shu; Chang, Yuan-Ling; Chen, Min-Huey; Cheng, Kuo-Chung; Su, Wei-Fang

    2012-11-01

    Low-shrinkage resin-based photocurable liquid crystalline epoxy nanocomposite has been investigated with regard to its application as a dental restoration material. The nanocomposite consists of an organic matrix and an inorganic reinforcing filler. The organic matrix is made of liquid crystalline biphenyl epoxy resin (BP), an epoxy resin consisting of cyclohexylmethyl-3,4-epoxycyclohexanecarboxylate (ECH), the photoinitiator 4-octylphenyl phenyliodonium hexafluoroantimonate and the photosensitizer champhorquinone. The inorganic filler is silica nanoparticles (∼70-100 nm). The nanoparticles were modified by an epoxy silane of γ-glycidoxypropyltrimethoxysilane to be compatible with the organic matrix and to chemically bond with the organic matrix after photo curing. By incorporating the BP liquid crystalline (LC) epoxy resin into conventional ECH epoxy resin, the nanocomposite has improved hardness, flexural modulus, water absorption and coefficient of thermal expansion. Although the incorporation of silica filler may dilute the reinforcing effect of crystalline BP, a high silica filler content (∼42 vol.%) was found to increase the physical and chemical properties of the nanocomposite due to the formation of unique microstructures. The microstructure of nanoparticle embedded layers was observed in the nanocomposite using scanning and transmission electron microscopy. This unique microstructure indicates that the crystalline BP and nanoparticles support each other and result in outstanding mechanical properties. The crystalline BP in the LC epoxy resin-based nanocomposite was partially melted during exothermic photopolymerization, and the resin expanded via an order-to-disorder transition. Thus, the post-gelation shrinkage of the LC epoxy resin-based nanocomposite is greatly reduced, ∼50.6% less than in commercialized methacrylate resin-based composites. This LC epoxy nanocomposite demonstrates good physical and chemical properties and good biocompatibility

  2. Generic Crystalline Disposal Reference Case

    Energy Technology Data Exchange (ETDEWEB)

    Painter, Scott Leroy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chu, Shaoping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Harp, Dylan Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Perry, Frank Vinton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wang, Yifeng [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-02-20

    A generic reference case for disposal of spent nuclear fuel and high-level radioactive waste in crystalline rock is outlined. The generic cases are intended to support development of disposal system modeling capability by establishing relevant baseline conditions and parameters. Establishment of a generic reference case requires that the emplacement concept, waste inventory, waste form, waste package, backfill/buffer properties, EBS failure scenarios, host rock properties, and biosphere be specified. The focus in this report is on those elements that are unique to crystalline disposal, especially the geosphere representation. Three emplacement concepts are suggested for further analyses: a waste packages containing 4 PWR assemblies emplaced in boreholes in the floors of tunnels (KBS-3 concept), a 12-assembly waste package emplaced in tunnels, and a 32-assembly dual purpose canister emplaced in tunnels. In addition, three failure scenarios were suggested for future use: a nominal scenario involving corrosion of the waste package in the tunnel emplacement concepts, a manufacturing defect scenario applicable to the KBS-3 concept, and a disruptive glaciation scenario applicable to both emplacement concepts. The computational approaches required to analyze EBS failure and transport processes in a crystalline rock repository are similar to those of argillite/shale, with the most significant difference being that the EBS in a crystalline rock repository will likely experience highly heterogeneous flow rates, which should be represented in the model. The computational approaches required to analyze radionuclide transport in the natural system are very different because of the highly channelized nature of fracture flow. Computational workflows tailored to crystalline rock based on discrete transport pathways extracted from discrete fracture network models are recommended.

  3. Phase diagrams of binary crystalline-crystalline polymer blends.

    Science.gov (United States)

    Matkar, Rushikesh A; Kyu, Thein

    2006-08-17

    A thermodynamically self-consistent theory has been developed to establish binary phase diagrams for two-crystalline polymer blends by taking into consideration all interactions including amorphous-amorphous, crystal-amorphous, amorphous-crystal, and crystal-crystal interactions. The present theory basically involves combination of the Flory-Huggins free energy for amorphous-amorphous isotropic mixing and the Landau free energy of polymer solidification (e.g., crystallization) of the crystalline constituents. The self-consistent solution via minimization of the free energy of the mixture affords determination of eutectic, peritectic, and azeotrope phase diagrams involving various coexistence regions such as liquid-liquid, liquid-solid, and solid-solid coexistence regions bound by liquidus and solidus lines. To validate the present theory, the predicted eutectic phase diagrams have been compared with the reported experimental binary phase diagrams of blends such as polyethylene fractions as well as polycaprolactone/trioxane mixtures.

  4. Design of Macroscopically Ordered Liquid Crystalline Hydrogel Columns Knitted with Nanosilver for Topical Applications.

    Science.gov (United States)

    Lali Raveendran, Reshma; Kumar Sasidharan, Nishanth; Devaki, Sudha J

    2017-04-19

    The design of liquid crystalline hydrogels knitted with silver nanoparticles in macroscopic ordering is becoming a subject of research interest due to their promising multifunctional applications in biomedical and optoelectronic applications. The present work describes the development of liquid crystalline Schiff-based hydrogel decorated with silver nanoparticles and the demonstration of its antifungal applications. Schiff base was prepared from polyglucanaldehyde and chitosan, and the former was prepared by the oxidation of amylose (polyglucopyranose) isolated from abundantly available unutilized jackfruit seed starch. Self-assembled silver columns decorated with macroscopically ordered networks were prepared in a single step of in situ condensation and a reduction/complexation process. The various noncovalent interactions among the -OH, -C═O, and -NH impart rigidity and ordering for the formation of macroscopically ordered liquid crystalline hydrogel and the Ag(I) complexation evidenced from the studies made by FT-IR spectroscopy in combination with rheology and microscopic techniques such as SEM, TEM, AFM, XRD, and PLM. The antifungal studies were screened using species of Candida by disc diffusion method. The MIC and MFC values, in vitro antifungal studies, reactive oxygen species (ROS) production, and propidium iodide (PI) uptake results suggest that the present macroscopically ordered liquid crystalline hydrogel system can be considered an excellent candidate for topical applications. All these results suggest that this design strategy can be exploited for the incorporation of biologically relevant metal nanoparticles for developing unique robust hydrogels for multifunctional applications.

  5. Photocontrollable liquid-crystalline actuators

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Haifeng [Top Runner Incubation Center for Academia-Industry Fusion and Department of Materials and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka 940-2188 (Japan); Ikeda, Tomiki [Chemical Resources Laboratory, Tokyo Institute of Technology, R1-11, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan)

    2011-05-17

    Coupling photochromic molecules with liquid crystalline (LC) materials enables one to reversibly photocontrol unique LC features such as phase transition, photoalignment, and molecular cooperative motion. LC elastomers show photomechanical and photomobile properties, directly converting light energy into mechanical energy. In well-defined LC block copolymers, regular patternings of nanostructures in macroscopic scales are fabricated by photo-manipulation of LC actuators. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Liquid Crystalline Esters of Dibenzophenazines

    Directory of Open Access Journals (Sweden)

    Kevin John Anthony Bozek

    2015-01-01

    Full Text Available A series of esters of 2,3,6,7-tetrakis(hexyloxydibenzo[a,c]phenazine-11-carboxylic acid was prepared in order to probe the effects of the ester groups on the liquid crystalline behavior. These compounds exhibit columnar hexagonal phases over broad temperature ranges. Variations in chain length, branching, terminal groups, and the presence of cyclic groups were found to modify transition temperatures without substantially destabilizing the mesophase range.

  7. EXAFS studies of crystalline materials

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, G.S.; Georgopoulos, P.

    1982-01-01

    The application of extended x-ray absorption fine structure (EXAFS) technique to the study of crystalline materials is discussed, and previously published work on the subject is reviewed with 46 references being cited. The theory of EXAFS, methods of data analysis, and the experimental techniques, including those based on synchrotron and laboratory facilities are all discussed. Absorption and fluorescence methods of detecting EXAFS also receive attention. (BLM)

  8. Inelastic deformation in crystalline rocks

    Science.gov (United States)

    Rahmani, H.; Borja, R. I.

    2011-12-01

    The elasto-plastic behavior of crystalline rocks, such as evaporites, igneous rocks, or metamorphic rocks, is highly dependent on the behavior of their individual crystals. Previous studies indicate that crystal plasticity can be one of the dominant micro mechanisms in the plastic deformation of crystal aggregates. Deformation bands and pore collapse are examples of plastic deformation in crystalline rocks. In these cases twinning within the grains illustrate plastic deformation of crystal lattice. Crystal plasticity is governed by the plastic deformation along potential slip systems of crystals. Linear dependency of the crystal slip systems causes singularity in the system of equations solving for the plastic slip of each slip system. As a result, taking the micro-structure properties into account, while studying the overall behavior of crystalline materials, is quite challenging. To model the plastic deformation of single crystals we use the so called `ultimate algorithm' by Borja and Wren (1993) implemented in a 3D finite element framework to solve boundary value problems. The major advantage of this model is that it avoids the singularity problem by solving for the plastic slip explicitly in sub steps over which the stress strain relationship is linear. Comparing the results of the examples to available models such as Von Mises we show the significance of considering the micro-structure of crystals in modeling the overall elasto-plastic deformation of crystal aggregates.

  9. ADVANCES IN LIQUID CRYSTALLINE POLYESTERS

    Institute of Scientific and Technical Information of China (English)

    W. J. Jackson

    1992-01-01

    Advances have been made in understanding the interactions of composition, molecular weight,liquid crystallinity, orientation, and three-dimensional crystallinity on the properties of injection-molded and melt-spun liquid crystalline polyesters (LCP's). Two classes of potentially low-cost LCP's were compared : (1) semiflexible LCP's prepared from 1,6-hexanediol and the dimethyl ester of either trans-4, 4'-stilbenedicarboxylic acid or 4.4 ′-biphenyldicarboxylic acid and (2) all-aromatic LCP's prepared from terephthalic acid, 2, 6-naphthalenedicarboxylic acid, the diacetate of hydroquinone,and the acetate of p-hydroxybenzoic acid. The effects of composition on the plastic properties of the 4-component all-aromatic LCP's were determined with the aid of a 3 × 3 factorial statistically designed experiment, the generation of equations with a computer program, and the plotting of three-dimensional figures and contour diagrams. The effects of absolute molecular weight (Mw) on the tensile strengths of the semiflexible LCP's and one of the all-aromatic LCP's having an excellent balance of plastic properties were also compared, and it was observed that the semiflexible LCP's required Mw's about 4 times higher than the all-aromatic LCP to attain a given strength. Persistence lengths and molecular modeling were used to explain these differences.

  10. Green synthesis of silver nanoparticles using tannins

    Science.gov (United States)

    Raja, Pandian Bothi; Rahim, Afidah Abdul; Qureshi, Ahmad Kaleem; Awang, Khalijah

    2014-09-01

    Colloidal silver nanoparticles were prepared by rapid green synthesis using different tannin sources as reducing agent viz. chestnut (CN), mangrove (MG) and quebracho (QB). The aqueous silver ions when exposed to CN, MG and QB tannins were reduced which resulted in formation of silver nanoparticles. The resultant silver nanoparticles were characterized using UV-Visible, X-ray diffraction (XRD), scanning electron microscopy (SEM/EDX), and transmission electron microscopy (TEM) techniques. Furthermore, the possible mechanism of nanoparticles synthesis was also derived using FT-IR analysis. Spectroscopy analysis revealed that the synthesized nanoparticles were within 30 to 75 nm in size, while XRD results showed that nanoparticles formed were crystalline with face centered cubic geometry.

  11. Biosynthesis of Silver Nanoparticles Using Marine Sponge

    Directory of Open Access Journals (Sweden)

    Mahta Rezazaeh Hamed

    2015-12-01

    Full Text Available Biosynthesis of silver nanoparticles using marine sponge extract Haliclona was carried out. Marine sponges' extracts are responsible for the reduction of silver nitrate solution. Silver nanoparticles synthesized using fresh and dry marine sponge. Experimental factors including, time duration, pH, temperature were optimized. Silver nanoparticles were characterized by UV-Visible spectrophotometry. The sizes of synthesis silver nanoparticles were 27-46 nm and confirmed by scanning electron microscopy (SEM. X-ray diffraction (XRD crystallography indicated the silver nanoparticles crystalline nature. Fourier transform infrared spectroscopy (FT-IR was revealed the functional groups of extract of Haliclona, which are capable of reduction of silver nanoparticles. This method is a cost-effective, eco-friendly and nontoxic procedure..

  12. Evaluating the effects of crystallinity in new biocompatible polyester nanocarriers on drug release behavior.

    Science.gov (United States)

    Karavelidis, Vassilios; Karavas, Evangelos; Giliopoulos, Dimitrios; Papadimitriou, Sofia; Bikiaris, Dimitrios

    2011-01-01

    Four new polyesters based on 1,3-propanediol and different aliphatic dicarboxylic acids were used to prepare ropinirole HCl-loaded nanoparticles. The novelty of this study lies in the use of polyesters with similar melting points but different degrees of crystallinity, varying from 29.8% to 67.5%, as drug nanocarriers. Based on their toxicity to human umbilical vein endothelial cells, these aliphatic polyesters were found to have cytotoxicity similar to that of polylactic acid and so may be considered as prominent drug nanocarriers. Drug encapsulation in polyesters was performed via an emulsification/solvent evaporation method. The mean particle size of drug-loaded nanoparticles was 164-228 nm, and the drug loading content was 16%-23%. Wide angle X-ray diffraction patterns showed that ropinirole HCl existed in an amorphous state within the nanoparticle polymer matrices. Drug release diagrams revealed a burst effect for ropinirole HCl in the first 6 hours, probably due to release of drug located on the nanoparticle surface, followed by slower release. The degree of crystallinity of the host polymer matrix seemed to be an important parameter, because higher drug release rates were observed in polyesters with a low degree of crystallinity.

  13. Lyotropic liquid crystalline nanoparticles of CoQ10

    DEFF Research Database (Denmark)

    Swarnakar, Nitin K; Thanki, Kaushik; Jain, Sanyog

    2014-01-01

    ) and phytantriol (PLCQ). Exhaustive optimization of the process variables was carried out, and optimized lyophilized formulations were found to have particle sizes of 140.45 ± 5.47 nm and 238.42 ± 8.35 nm and a polydispersity index (PDI) of 0.15 ± 0.01 and 0.22 ± 0.03 for GLCQ and PLCQ, respectively...

  14. Surface modifications caused by a swift heavy ion irradiation on crystalline p-type gallium antimonide

    Energy Technology Data Exchange (ETDEWEB)

    Jadhav, Vidya, E-mail: vj1510@yahoo.com

    2015-09-01

    Surface modifications caused by a swift heavy ion irradiation on crystalline p-type gallium antimonide crystal have been reported. Single crystal, 1 0 0〉 orientations and ∼500 μm thick p-type GaSb samples with carrier concentration of 3.30 × 10{sup 17} cm{sup −3} were irradiated at 100 MeV Fe{sup 7+} ions. We have used 15UD Pelletron facilities at IUAC with varying fluences of 5 × 10{sup 10}–1 × 10{sup 14} ions cm{sup −2}. The effects of irradiation on these samples have been investigated using, spectroscopic ellipsometry, atomic force microscopy and ultraviolet–visible–NIR spectroscopy techniques. Ellipsometry parameters, psi (Ψ) and delta (Δ) for the unirradiated sample and samples irradiated with different fluences were recorded. The data were fit to a three phase model to determine the refractive index and extinction coefficient. The refractive index and extinction coefficient for various fluences in ultraviolet, visible, and infrared, regimes were evaluated. Atomic force microscopy has been used to study these surface modifications. In order to have more statistical information about the surface, we have plotted the height structure histogram for all the samples. For unirradiated sample, we observed the Gaussian fitting. This result indicates the more ordered height structure symmetry. Whereas for the sample irradiated with the fluence of 1 × 10{sup 13}, 5 × 10{sup 13} and 1 × 10{sup 14} ions cm{sup −2}, we observed the scattered data. The width of the histogram for samples irradiated up to the fluence of 1 × 10{sup 13} ion cm{sup −2} was found to be almost same however it decreased at higher fluence. UV reflectance spectra of the sample irradiated with increasing fluences exhibit three peaks at 292, 500 and 617 nm represent the high energy GaSb; E{sub 1}, E{sub 1} + Δ and E{sub 2} band gaps in all irradiated samples.

  15. Permanent hair dye-incorporated hyaluronic acid nanoparticles.

    Science.gov (United States)

    Lee, Hye-Young; Jeong, Young-Il; Kim, Da-Hye; Choi, Ki-Choon

    2013-01-01

    We prepared p-phenylenediamine (PDA)-incorporated nanoparticles using hyaluronic acid (HA). PDA-incorporated HA nanoparticles have spherical shapes and sizes were less than 300 nm. The results of FT-IR spectra indicated that PDA-incorporated HA nanoparticles were formed by ion-complex formation between amine group of PDA and carboxyl group of HA. Furthermore, powder-X-ray diffractogram (XRD) measurement showed that intrinsic crystalline peak of PDA disappeared by formation of nanoparticle with HA at XRD measurement. These results indicated that PDA-incorporated HA nanoparticles were formed by ion-complex formation. At drug release study, the higher PDA contents induced faster release rate from nanoparticles. PDA-incorporated nanoparticles showed reduced intrinsic toxicity against HaCaT human keratinocyte cells at MTT assay and apoptosis assay. We suggest that PDA-incorporated HA nanoparticles are promising candidates for novel permanent hair dye.

  16. Bulk nano-crystalline alloys

    OpenAIRE

    T.-S. Chin; Lin, C. Y.; Lee, M.C.; R.T. Huang; S. M. Huang

    2009-01-01

    Bulk metallic glasses (BMGs) Fe–B–Y–Nb–Cu, 2 mm in diameter, were successfully annealed to become bulk nano-crystalline alloys (BNCAs) with α-Fe crystallite 11–13 nm in size. A ‘crystallization-and-stop’ model was proposed to explain this behavior. Following this model, alloy-design criteria were elucidated and confirmed successful on another Fe-based BMG Fe–B–Si–Nb–Cu, 1 mm in diameter, with crystallite sizes 10–40 nm. It was concluded that BNCAs can be designed in general by the proposed cr...

  17. Applications of Bacterial Magnetic Nanoparticles in Nanobiotechnology.

    Science.gov (United States)

    Chen, Chuanfang; Wang, Pingping; Li, Linlin

    2016-03-01

    The bacterial magnetic nanoparticle (BMP) has been well researched in nanobiotechnology as a new magnetic crystal. The BMPs are extracted from magnetotactic bacteria and under precise biological control. Compared with engineered magnetic nanoparticles synthesized by chemical approaches, BMPs have the properties of large production, monodispersity, high crystallinity, and close-to-bulk magnetization, which enable BMPs to be the highly promising magnetic nanoparticles for nanobiotechnology. In this paper, we review the biomedical applications of BMPs in magnetic hyperthermia, drug treatment with tumour and bioseparation. In addition, the biodistribution and toxicity are also reviewed.

  18. Genetics of Bietti Crystalline Dystrophy.

    Science.gov (United States)

    Ng, Danny S C; Lai, Timothy Y Y; Ng, Tsz Kin; Pang, Chi Pui

    2016-01-01

    Bietti crystalline dystrophy (BCD) is an inherited retinal degenerative disease characterized by crystalline deposits in the retina, followed by progressive atrophy of the retinal pigment epithelium (RPE), choriocapillaris, and photoreceptors. CYP4V2 has been identified as the causative gene for BCD. The CYP4V2 gene belongs to the cytochrome P450 superfamily and encodes for fatty acid ω-hydroxylase of both saturated and unsaturated fatty acids. The CYP4V2 protein is localized most abundantly within the endoplasmic reticulum in the RPE and is postulated to play a role in the physiological lipid recycling system between the RPE and photoreceptors to maintain visual function. Electroretinographic assessments have revealed progressive dysfunction of rod and cone photoreceptors in patients with BCD. Several genotypes have been associated with more severe phenotypes based on clinical and electrophysiological findings. With the advent of multimodal imaging with spectral domain optical coherence tomography, fundus autofluorescence, and adaptive optics scanning laser ophthalmoscopy, more precise delineation of BCD severity and progression is now possible, allowing for the potential future development of targets for gene therapy.

  19. Preparation of Highly Crystalline TiO2 Nanostructures by Acid-assisted Hydrothermal Treatment of Hexagonal-structured Nanocrystalline Titania/Cetyltrimethyammonium Bromide Nanoskeleton

    Directory of Open Access Journals (Sweden)

    Sakai Hideki

    2010-01-01

    Full Text Available Abstract Highly crystalline TiO2 nanostructures were prepared through a facile inorganic acid-assisted hydrothermal treatment of hexagonal-structured assemblies of nanocrystalline titiania templated by cetyltrimethylammonium bromide (Hex-ncTiO2/CTAB Nanoskeleton as starting materials. All samples were characterized by X-ray diffraction (XRD and transmission electron microscopy (TEM. The influence of hydrochloric acid concentration on the morphology, crystalline and the formation of the nanostructures were investigated. We found that the morphology and crystalline phase strongly depended on the hydrochloric acid concentrations. More importantly, crystalline phase was closely related to the morphology of TiO2 nanostructure. Nanoparticles were polycrystalline anatase phase, and aligned nanorods were single crystalline rutile phase. Possible formation mechanisms of TiO2 nanostructures with various crystalline phases and morphologies were proposed.

  20. Conductive Polymer Synthesis with Single-Crystallinity via a Novel Plasma Polymerization Technique for Gas Sensor Applications

    Directory of Open Access Journals (Sweden)

    Choon-Sang Park

    2016-09-01

    Full Text Available This study proposes a new nanostructured conductive polymer synthesis method that can grow the single-crystalline high-density plasma-polymerized nanoparticle structures by enhancing the sufficient nucleation and fragmentation of the pyrrole monomer using a novel atmospheric pressure plasma jet (APPJ technique. Transmission electron microscopy (TEM, Fourier transform infrared spectroscopy (FT-IR, X-ray photoelectron spectroscopy (XPS, and field emission scanning electron microscopy (FE-SEM results show that the plasma-polymerized pyrrole (pPPy nanoparticles have a fast deposition rate of 0.93 µm·min−1 under a room-temperature process and have single-crystalline characteristics with porous properties. In addition, the single-crystalline high-density pPPy nanoparticle structures were successfully synthesized on the glass, plastic, and interdigitated gas sensor electrode substrates using a novel plasma polymerization technique at room temperature. To check the suitability of the active layer for the fabrication of electrochemical toxic gas sensors, the resistance variations of the pPPy nanoparticles grown on the interdigitated gas sensor electrodes were examined by doping with iodine. As a result, the proposed APPJ device could obtain the high-density and ultra-fast single-crystalline pPPy thin films for various gas sensor applications. This work will contribute to the design of highly sensitive gas sensors adopting the novel plasma-polymerized conductive polymer as new active layer.

  1. Microbes make average 2 nanometer diameter crystalline UO2 particles.

    Science.gov (United States)

    Suzuki, Y.; Kelly, S. D.; Kemner, K. M.; Banfield, J. F.

    2001-12-01

    It is well known that phylogenetically diverse groups of microorganisms are capable of catalyzing the reduction of highly soluble U(VI) to highly insoluble U(IV), which rapidly precipitates as uraninite (UO2). Because biological uraninite is highly insoluble, microbial uranyl reduction is being intensively studied as the basis for a cost-effective in-situ bioremediation strategy. Previous studies have described UO2 biomineralization products as amorphous or poorly crystalline. The objective of this study is to characterize the nanocrystalline uraninite in detail in order to determine the particle size, crystallinity, and size-related structural characteristics, and to examine the implications of these for reoxidation and transport. In this study, we obtained U-contaminated sediment and water from an inactive U mine and incubated them anaerobically with nutrients to stimulate reductive precipitation of UO2 by indigenous anaerobic bacteria, mainly Gram-positive spore-forming Desulfosporosinus and Clostridium spp. as revealed by RNA-based phylogenetic analysis. Desulfosporosinus sp. was isolated from the sediment and UO2 was precipitated by this isolate from a simple solution that contains only U and electron donors. We characterized UO2 formed in both of the experiments by high resolution-TEM (HRTEM) and X-ray absorption fine structure analysis (XAFS). The results from HRTEM showed that both the pure and the mixed cultures of microorganisms precipitated around 1.5 - 3 nm crystalline UO2 particles. Some particles as small as around 1 nm could be imaged. Rare particles around 10 nm in diameter were also present. Particles adhere to cells and form colloidal aggregates with low fractal dimension. In some cases, coarsening by oriented attachment on \\{111\\} is evident. Our preliminary results from XAFS for the incubated U-contaminated sample also indicated an average diameter of UO2 of 2 nm. In nanoparticles, the U-U distance obtained by XAFS was 0.373 nm, 0.012 nm

  2. Optical phonon spectra of GaP nanoparticles prepared by nanochemistry

    Science.gov (United States)

    Manciu, F. S.; Sahoo, Y.; MacRae, D. J.; Furis, M.; McCombe, B. D.; Prasad, P. N.

    2003-06-01

    Gallium phosphide (GaP) nanoparticles have been synthesized by colloidal nanochemistry with two different surfactants: trioctylphosphine oxide and dodecylamine. Transverse optical (bulk) and surface optical phonons associated with the GaP nanoparticles were observed and studied experimentally by infrared transmission spectroscopy of a solid dispersion of these nanoparticles in cesium iodide pellets. These vibrational properties of the nanoparticles were used to obtain information about the crystallinity and surface interactions. The crystallinity and the stoichiometry of the samples were also examined and characterized by transmission electron microscopy, electron diffraction, and energy dispersive x-ray spectroscopy.

  3. Aerosol-Assisted Synthesis of Monodisperse Single-Crystalline α-Cristobalite Nanospheres

    OpenAIRE

    Jiang, Xingmao; Bao, Lihong; Cheng, Yung-Sung; Dunphy, Darren R.; Li, Xiaodong; Brinker, C. Jeffrey

    2011-01-01

    Monodisperse single-crystalline α-cristobalite nanospheres have been synthesized by hydrocarbon-pyrolysis-induced carbon deposition on amorphous silica aerosol nanoparticles, devitrification of the coated silica at high temperature, and subsequent carbon removal by oxidation. The nanosphere size can be well controlled by tuning the size of the colloidal silica precursor. Uniform, high-purity nanocrystalline α-cristobalite is important for catalysis, nanocomposites, advanced polishing, and und...

  4. Synthesis of long T silicon nanoparticles for hyperpolarized Si magnetic resonance imaging

    DEFF Research Database (Denmark)

    Atkins, T.M.; Ganguly, S.; Kauzlarich, S.M.

    2013-01-01

    We describe the synthesis, materials characterization, and dynamic nuclear polarization (DNP) of amorphous and crystalline silicon nanoparticles for use as hyperpolarized magnetic resonance imaging (MRI) agents. The particles were synthesized by means of a metathesis reaction between sodium silic...

  5. Birefringence Measurements on Crystalline Silicon

    CERN Document Server

    Krüger, Christoph; Khalaidovski, Alexander; Steinlechner, Jessica; Nawrodt, Ronny; Schnabel, Roman; Lück, Harald

    2015-01-01

    Crystalline silicon has been proposed as a new test mass material in third generation gravitational wave detectors such as the Einstein Telescope (ET). Birefringence can reduce the interferometric contrast and can produce dynamical disturbances in interferometers. In this work we use the method of polarisation-dependent resonance frequency analysis of Fabry-Perot-cavities containing silicon as a birefringent medium. Our measurements show a birefringence of silicon along the (111) axis of the order of $\\Delta\\, n \\approx 10^{-7}$ at a laser wavelength of 1550nm and room temperature. A model is presented that explains the results of different settings of our measurements as a superposition of elastic strains caused by external stresses in the sample and plastic strains possibly generated during the production process. An application of our theory on the proposed ET test mass geometry suggests no critical effect on birefringence due to elastic strains.

  6. Surface plasmon resonance optical sensor and antibacterial activities of biosynthesized silver nanoparticles

    Science.gov (United States)

    Bindhu, M. R.; Umadevi, M.

    2014-03-01

    Silver nanoparticles were prepared using aqueous fruit extract of Ananas comosus as reducing agent. These silver nanoparticles showed surface plasmon peak at 439 nm. They were monodispersed and spherical in shape with an average particle size of 10 nm. The crystallinity of these nanoparticles was evident from clear lattice fringes in the HRTEM images and bright circular spots in the SAED pattern. The antibacterial activities of prepared nanoparticles were found to be size-dependent, the smaller nanoparticles showing more bactericidal effect. Aqueous Zn2+ and Cu4+ selectivity and sensitivity study of this green synthesized nanoparticle was performed by optical sensor based surface plasmon resonance (SPR) at room temperature.

  7. Controlled crystalline structure and surface stability of cobalt nanocrystals.

    Science.gov (United States)

    Bao, Yuping; Beerman, Michael; Pakhomov, Alexandre B; Krishnan, Kannan M

    2005-04-21

    The synthesis of monodispersed 10 nm cobalt nanocrystals with controlled crystal morphology and investigation of the surface stability of these nanocrystals are described. Depending on the surfactants used, single crystalline or multiple grain nanocrystals can be reproducibly produced. The relative surface stability of these nanocrystals is analyzed using the temperature dependences of the dc magnetic susceptibility. The novel method, which allows sensitive monitoring of the surface stability, is based on the observation that, with particle oxidation, an anomalous peak appears at 8 K in zero-field-cooled magnetization measurements. It is found that the surfactant protective layer is more important for long-term stability at room temperature, while the high-temperature oxidation rate is controlled by the crystal morphology of the nanoparticles.

  8. Inexpensive transparent nanoelectrode for crystalline silicon solar cells.

    Science.gov (United States)

    Peng, Qiang; Pei, Ke; Han, Bing; Li, Ruopeng; Zhou, Guofu; Liu, Jun-Ming; Kempa, Krzysztof; Gao, Jinwei

    2016-12-01

    We report an easily manufacturable and inexpensive transparent conductive electrode for crystalline silicon (c-Si) solar cells. It is based on a silver nanoparticle network self-forming in the valleys between the pyramids of a textured solar cell surface, transformed into a nanowire network by sintering, and subsequently "buried" under the silicon surface by a metal-assisted chemical etching. We have successfully incorporated these steps into the conventional c-Si solar cell manufacturing process, from which we have eliminated the expensive screen printing and firing steps, typically used to make the macro-electrode of conducting silver fingers. The resulting, preliminary solar cell achieved power conversion efficiency only 14 % less than the conventionally processed c-Si control cell. We expect that a cell with an optimized processing will achieve at least efficiency of the conventional commercial cell, but at significantly reduced manufacturing cost.

  9. Inexpensive transparent nanoelectrode for crystalline silicon solar cells

    Science.gov (United States)

    Peng, Qiang; Pei, Ke; Han, Bing; Li, Ruopeng; Zhou, Guofu; Liu, Jun-Ming; Kempa, Krzysztof; Gao, Jinwei

    2016-06-01

    We report an easily manufacturable and inexpensive transparent conductive electrode for crystalline silicon (c-Si) solar cells. It is based on a silver nanoparticle network self-forming in the valleys between the pyramids of a textured solar cell surface, transformed into a nanowire network by sintering, and subsequently "buried" under the silicon surface by a metal-assisted chemical etching. We have successfully incorporated these steps into the conventional c-Si solar cell manufacturing process, from which we have eliminated the expensive screen printing and firing steps, typically used to make the macro-electrode of conducting silver fingers. The resulting, preliminary solar cell achieved power conversion efficiency only 14 % less than the conventionally processed c-Si control cell. We expect that a cell with an optimized processing will achieve at least efficiency of the conventional commercial cell, but at significantly reduced manufacturing cost.

  10. Effect of retrogradation time on preparation and characterization of proso millet starch nanoparticles.

    Science.gov (United States)

    Sun, Qingjie; Gong, Min; Li, Ying; Xiong, Liu

    2014-10-13

    Starch nanoparticles were prepared from proso millet starch using a green and facile method combined with enzymolysis and recrystallization. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimeter (DSC) and thermal gravimetric analysis (TGA) were used to characterize the morphology and crystal structure of the starch nanoparticles prepared with different retrogradation time (0.5, 4, 12, and 24h). The results showed that the sizes of the starch nanoparticles were between 20 nm and 100 nm. The crystal pattern changed from A-type (native starch) to B-type (nanoparticles), and the relative crystallinity of the nanoparticles increased obviously, as compared with the native starch. The nanoparticles prepared with the 12h retrogradation time had the highest degree of crystallinity (47.04%). Compared to conventional acid hydrolysis to make starch nanoparticles, the present approach has the advantage of being quite rapid and presenting a higher yield (about 55%).

  11. Preparation and Characterization of Nateglinide Loaded Hydrophobic Biocompatible Polymer Nanoparticles

    Science.gov (United States)

    Naik, Jitendra; Lokhande, Amolkumar; Mishra, Satyendra; Kulkarni, Ravindra

    2016-09-01

    The aim of the present study was to develop sustained release Nateglinide loaded Ethylcellulose nanoparticles and characterize the properties of recovered nanoparticles. The sustained release nanoparticles were prepared by oil in water single emulsion solvent evaporation method. The developed nanoparticles were characterised for their particle size, morphology, encapsulation efficiency, drug polymer compatibility and in vitro drug release. The drug polymer compatibility was investigated by XRPD. Imaging of particles was performed by field emission scanning electron microscopy. The highest particle size and encapsulation efficiency of recovered nanoparticles were 248.37 nm and 91.16 % respectively. The recovered nanoparticles are spherical in nature and uniform in size. Developed nanoparticles have low crystallinity than the pure Nateglinide. The highest drug-polymer ratio formulation showed drug release 61.1 ± 1.76 % up to 24 h.

  12. Bietti crystalline dystrophy and choroidal neovascularisation.

    Science.gov (United States)

    Gupta, B; Parvizi, S; Mohamed, M D

    2011-02-01

    Bietti crystalline dystrophy is a rare autosomal recessive condition characterised by the presence of crystals in the retina and is followed by retinal and choroidal degeneration. We present a novel finding of juxtafoveal choroidal neovascularisation in Bietti crystalline dystrophy and demonstrate a spectral domain optical coherence tomography image of this disorder.

  13. Resonant Raman Scattering from Silicon Nanoparticles Enhanced by Magnetic Response

    CERN Document Server

    Dmitriev, Pavel A; Milichko, Valentin A; Makarov, Sergey V; Mukhin, Ivan S; Samusev, Anton K; Krasnok, Alexander E; Belov, Pavel A; Kivshar, Yuri S

    2016-01-01

    Enhancement of optical response with high-index dielectric nanoparticles is attributed to the excitation of their Mie-type magnetic and electric resonances. Here we study Raman scattering from crystalline silicon nanoparticles and reveal that magnetic dipole modes have much stronger effect on the scattering than electric modes of the same order. We demonstrate experimentally a 140-fold enhancement of Raman signal from individual silicon spherical nanoparticles at the magnetic dipole resonance. Our results confirm the importance of the optically-induced magnetic response of subwavelength dielectric nanoparticles for enhancing light-matter interactions.

  14. Heavy ion irradiation of crystalline water ice

    CERN Document Server

    Dartois, E; Boduch, P; Brunetto, R; Chabot, M; Domaracka, A; Ding, J J; Kamalou, O; Lv, X Y; Rothard, H; da Silveira, E F; Thomas, J C

    2015-01-01

    Under cosmic irradiation, the interstellar water ice mantles evolve towards a compact amorphous state. Crystalline ice amorphisation was previously monitored mainly in the keV to hundreds of keV ion energies. We experimentally investigate heavy ion irradiation amorphisation of crystalline ice, at high energies closer to true cosmic rays, and explore the water-ice sputtering yield. We irradiated thin crystalline ice films with MeV to GeV swift ion beams, produced at the GANIL accelerator. The ice infrared spectral evolution as a function of fluence is monitored with in-situ infrared spectroscopy (induced amorphisation of the initial crystalline state into a compact amorphous phase). The crystalline ice amorphisation cross-section is measured in the high electronic stopping-power range for different temperatures. At large fluence, the ice sputtering is measured on the infrared spectra, and the fitted sputtering-yield dependence, combined with previous measurements, is quadratic over three decades of electronic ...

  15. Non-lamellar lipid liquid crystalline structures at interfaces.

    Science.gov (United States)

    Chang, Debby P; Barauskas, Justas; Dabkowska, Aleksandra P; Wadsäter, Maria; Tiberg, Fredrik; Nylander, Tommy

    2015-08-01

    The self-assembly of lipids leads to the formation of a rich variety of nano-structures, not only restricted to lipid bilayers, but also encompassing non-lamellar liquid crystalline structures, such as cubic, hexagonal, and sponge phases. These non-lamellar phases have been increasingly recognized as important for living systems, both in terms of providing compartmentalization and as regulators of biological activity. Consequently, they are of great interest for their potential as delivery systems in pharmaceutical, food and cosmetic applications. The compartmentalizing nature of these phases features mono- or bicontinuous networks of both hydrophilic and hydrophobic domains. To utilize these non-lamellar liquid crystalline structures in biomedical devices for analyses and drug delivery, it is crucial to understand how they interact with and respond to different types of interfaces. Such non-lamellar interfacial layers can be used to entrap functional biomolecules that respond to lipid curvature as well as the confinement. It is also important to understand the structural changes of deposited lipid in relation to the corresponding bulk dispersions. They can be controlled by changing the lipid composition or by introducing components that can alter the curvature or by deposition on nano-structured surface, e.g. vertical nano-wire arrays. Progress in the area of liquid crystalline lipid based nanoparticles opens up new possibilities for the preparation of well-defined surface films with well-defined nano-structures. This review will focus on recent progress in the formation of non-lamellar dispersions and their interfacial properties at the solid/liquid and biologically relevant interfaces.

  16. Diffusion in porous crystalline materials.

    Science.gov (United States)

    Krishna, Rajamani

    2012-04-21

    The design and development of many separation and catalytic process technologies require a proper quantitative description of diffusion of mixtures of guest molecules within porous crystalline materials. This tutorial review presents a unified, phenomenological description of diffusion inside meso- and micro-porous structures. In meso-porous materials, with pore sizes 2 nm < d(p) < 50 nm, there is a central core region where the influence of interactions of the molecules with the pore wall is either small or negligible; meso-pore diffusion is governed by a combination of molecule-molecule and molecule-pore wall interactions. Within micro-pores, with d(p) < 2 nm, the guest molecules are always under the influence of the force field exerted with the wall and we have to reckon with the motion of adsorbed molecules, and there is no "bulk" fluid region. The characteristics and physical significance of the self-, Maxwell-Stefan, and Fick diffusivities are explained with the aid of data obtained either from experiments or molecular dynamics simulations, for a wide variety of structures with different pore sizes and topology. The influence of adsorption thermodynamics, molecular clustering, and segregation on both magnitudes and concentration dependences of the diffusivities is highlighted. In mixture diffusion, correlations in molecular hops have the effect of slowing-down the more mobile species. The need for proper modeling of correlation effects using the Maxwell-Stefan formulation is stressed with the aid of examples of membrane separations and catalytic reactors.

  17. Occurrence, Structure and Mineral Phases of Nanoparticles in an Anthrosol

    Institute of Scientific and Technical Information of China (English)

    LU Sheng-Gao; SUN Fang-Fang; ZONG Yu-Tong

    2013-01-01

    Soils contain various kinds of crystalline to amorphous solid particles with at least one dimension in the nanoscale (< 100 nm).These nanoparticles contribute greatly to dynamic soil processes such as soil genesis,trace element cycling,contaminant transport,and chemical reaction.The nano-sized fraction of an Anthrosol was obtained to determine the occurrence,chemical composition,structure,and mineral phases of nanoparticles using high-resolution transmission electron microscopy (HRTEM) equipped with an energy-dispersive X-ray spectroscopy.Selected area electron diffraction or the fast Fourier transform of high-resolution images was used in structural characterization of the nanoparticles with HRTEM.Two nanoscale mineral types,i.e.,mineral nanoparticles and nanominerals,were observed in the Anthrosol.Mineral nanoparticles in soil included well crystalline aluminumsilicate nanosheets,nanorods,and nanoparticles.Nanosheets with a length of 120-150 nm and a width of about 10-20 nm were identified as chlorite/vermiculite series.The presence of clear lattice fringe spacing in HRTEM image of nanoparticles indicated that mineral nanoparticles had a relatively good crystallinity.The nanomineral ferrihydrite also existed in the Anthrosol.The HRTEM images and the particle size distribution histogram suggested that these ferrihydrite nanoparticles were quite homogeneous,and had a narrow size distribution range (1-7 nm) with a mean diameter of 3.6 ± 1.6 nm.Our HRTEM observation indicated that mineral nanoparticles and nanominerals were common and widely distributed in Anthrosols.HRTEM and selected area diffraction or lattice fringe spacing characterization provided further proofs to the structure of nanoparticles formed in soil.

  18. Improving the sonocatalytic performance of good crystallinity ZrO2 nanocomposite through graphene addition

    Science.gov (United States)

    Kristianto, Y.; Taufik, A.; Saleh, R.

    2017-04-01

    In this study, the catalytic performance of the ZrO2 nanoparticles is enhanced by combining ultrasonic radiation with graphene material addition. The structural, morphological and surface properties of sol-gel synthesized ZrO2 nanoparticles with three different annealing temperatures (350°C, 550°C, and 750°C) were investigated using various characterization methods, including X-Ray Diffraction, Transmission Electron Microscope measurements and Brunauer-Emmett-Teller measurements. The result show that if the annealing process does not take place, ZrO2 nanoparticles have an amorphous structure. The formation of the crystalline structures of the tetragonal phase of the nanoparticle begins at an annealing temperature of 550°C. The highest sonocatalytic performance of nanoparticles is achieved at an annealing temperature of 550°C. The ZrO2/graphene nanocomposites were produced via co-precipitation methods at all annealing temperatures. The sonocatalytic activities in the presence of ZrO2/graphene nanocomposite indicate an enhancement, compared with ZrO2 nanoparticles. ZrO2 with and without graphene composites shows a level of stability that would allow reuse. A reasonable catalysis mechanism of ZrO2 with and without graphene composites is proposed.

  19. From Polymeric Nanoparticles to Dye-containing Photonic Crystals:Synthesis,Self-assembling,Optical Features, Possible Applications

    Institute of Scientific and Technical Information of China (English)

    A.V.Yakimansky; A.Yu.Menshikova; N.N.Shevchenko; A.G.Bazhenova; S.K.Sazonov; A.I.Vedernikov; S.P.Gromov; V.A.Sazhnikov; M.V.Alfimov

    2007-01-01

    1 Results Self-assembling of monodisperse polymeric nanoparticles is a perspective method of obtaining photonic crystalline materials for optoelectronics,telecommunication industry and optosensorics.For tuning optical characteristics of photonic crystals it is advisable to functionalize nanoparticles by dyes absorbing or emitting light in the vicinity of the photonic band gap,which position depends on the nanoparticle diameter.To prepare monodisperse nanoparticles with the dye-functionalyzed surface emu...

  20. History of crystalline organic conductor

    Science.gov (United States)

    Murata, Keizo

    2017-05-01

    A brief view of crystalline organic conductor is presented. Since the discovery of TTF-TCNQ (tetrathiafulvalene-tetracyanoquinodimethane) in the mid 1970’s, pressure has been an indispensable tool to develop the physics of this field. From the aspect of charge transfer salt, TTF-TCNQ and its family was specified with partial charge transfer, two chain one-dimensional (1D) system, charge density wave (CDW) and commensurability. On the other hand, in (TMTSF)2X family (TMTSF: tetramethyltetraselenafulvalene, X: electron acceptor such as PF6, ClO4), complete charge transfer, one chain system, spin density wave (SDW), field-induced SDW, quantum Hall effect, superconductivity were discussed. Further, together with pressure itself, cooling rate was noticed to be important for low temperature properties. Recently, coming back to TTF-TCNQ family, i.e., HMTSF-TCNQ, whether or not field-induced CDW, instead of field-induced SDW, and quantum Hall effect is present was discussed (HMTSF: hexamethylene-tetraselenafulvalene). Whether or not the Fermiology in (TMTTF)2X under pressure is similar to that of (TMTSF)2X is discussed as well. In (BEDT-TTF)2X, new aspect of macroscopic polarization of α-(BEDT-TTF)2I3 related to charge order is described. At the end, in contrast to the charge transfer salts, non-charge transfer salt, that is, single component conductor is presented as a new possible example of Dirac cone, which was deeply studied by many researchers in α-(BEDT-TTF)2I3, together with the theoretical calculation of its magnetic susceptibility (BEDT-TTF: bisethylenedithia-tetrathiafulvalene).

  1. Pulsed laser deposition of single-crystalline Cu7In3/CuIn0.8Ga0.2Se2 core/shell nanowires

    OpenAIRE

    Zhao, Yu; LI, Hui; Zhu, Yan-Yan; Guan, Lei-Lei; Li, Yan-Li; Sun, Jian; Ying, Zhi-Feng; Wu, Jia-Da; Xu,Ning

    2014-01-01

    Single-crystalline Cu7In3/CuIn0.8Ga0.2Se2 (CI/CIGS) core/shell nanowires are fabricated by pulsed laser deposition with Ni nanoparticles as catalyst. The CI/CIGS core/shell nanowires are made up of single-crystalline CI cores surrounded by single-crystalline CIGS shells. The CI/CIGS nanowires are grown at a considerably low temperature (350°C ~ 450°C) by vapor-liquid-solid mode combined with vapor-solid mode. The distribution density of the nanowires increases with the increasing of the depos...

  2. Effect of substrate bias on deposition behaviour of charged silicon nanoparticles in ICP-CVD process

    Science.gov (United States)

    Yoo, Seung-Wan; You, Shin-Jae; Kim, Jung-Hyung; Seong, Dae-Jin; Seo, Byong-Hoon; Hwang, Nong-Moon

    2017-01-01

    The effect of a substrate bias on the deposition behaviour of crystalline silicon films during inductively coupled plasma chemical vapour deposition (ICP-CVD) was analysed by consideration of non-classical crystallization, in which the building block is a nanoparticle rather than an individual atom or molecule. The coexistence of positively and negatively charged nanoparticles in the plasma and their role in Si film deposition are confirmed by applying bias voltages to the substrate, which is sufficiently small as not to affect the plasma potential. The sizes of positively and negatively charged nanoparticles captured on a carbon membrane and imaged using TEM are, respectively, 2.7-5.5 nm and 6-13 nm. The film deposited by positively charged nanoparticles has a typical columnar structure. In contrast, the film deposited by negatively charged nanoparticles has a structure like a powdery compact with the deposition rate about three times higher than that for positively charged nanoparticles. All the films exhibit crystallinity even though the substrate is at room temperature, which is attributed to the deposition of crystalline nanoparticles formed in the plasma. The film deposited by negatively charged nanoparticles has the highest crystalline fraction of 0.84.

  3. Controlled growth of bismuth nanoparticles by electron beam irradiation in TEM

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seon Ho [College of Environment and Applied Chemistry, Kyung Hee University, Yongin 449-701 (Korea, Republic of); Choi, Young-Suk [Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973 (United States); Kang, Kyongha [Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973 (United States)]. E-mail: kkang@bnl.gov; Yang, Sung Ik [College of Environment and Applied Chemistry, Kyung Hee University, Yongin 449-701 (Korea, Republic of)]. E-mail: siyang@khu.ac.kr

    2007-01-16

    In situ nanometer-sized bismuth particles were synthesized by irradiation of the electron beam in the TEM. The size of the crystalline Bi nanoparticles could be controlled by adjusting the irradiation time of the electron beam. Characterization of TEM reveals that the Bi nanoparticles exist in rhombic structure, same as to bulk Bi.

  4. Optical waveguides in hard crystalline materials

    NARCIS (Netherlands)

    Pollnau, M.

    2005-01-01

    The recent results of our research group and collaborators in the field of fabrication, characterization, and applications of optical waveguides in hard crystalline materials, specifically in sapphire and Ti:sapphire, are reviewed.

  5. The effects of bacteria-nanoparticles interface on the antibacterial activity of green synthesized silver nanoparticles.

    Science.gov (United States)

    Ahmad, Aftab; Wei, Yun; Syed, Fatima; Tahir, Kamran; Rehman, Aziz Ur; Khan, Arifullah; Ullah, Sadeeq; Yuan, Qipeng

    2017-01-01

    Neutralization of bacterial cell surface potential using nanoscale materials is an effective strategy to alter membrane permeability, cytoplasmic leakage, and ultimate cell death. In the present study, an attempt was made to prepare biogenic silver nanoparticles using biomolecules from the aqueous rhizome extract of Coptis Chinensis. The biosynthesized silver nanoparticles were surface modified with chitosan biopolymer. The prepared silver nanoparticles and chitosan modified silver nanoparticles were cubic crystalline structures (XRD) with an average particle size of 15 and 20 nm respectively (TEM, DLS). The biosynthesized silver nanoparticles were surface stabilized by polyphenolic compounds (FTIR). Coptis Chinensis mediated silver nanoparticles displayed significant activity against E. coli and Bacillus subtilus with a zone of inhibition 12 ± 1.2 (MIC = 25 μg/mL) and 18 ± 1.6 mm (MIC = 12.50 μg/mL) respectively. The bactericidal efficacy of these nanoparticles was considerably increased upon surface modification with chitosan biopolymer. The chitosan modified biogenic silver nanoparticles exhibited promising activity against E. coli (MIC = 6.25 μg/mL) and Bacillus subtilus (MIC = 12.50 μg/mL). Our results indicated that the chitosan modified silver nanoparticles were promising agents in damaging bacterial membrane potential and induction of high level of intracellular reactive oxygen species (ROS). In addition, these nanoparticles were observed to induce the release of the high level of cytoplasmic materials especially protein and nucleic acids into the media. All these findings suggest that the chitosan functionalized silver nanoparticles are efficient agents in disrupting bacterial membrane and induction of ROS leading to cytoplasmic leakage and cell death. These findings further conclude that the bacterial-nanoparticles surface potential modulation is an effective strategy in enhancing the antibacterial potency of silver nanoparticles

  6. BX CY NZ nanotubes and nanoparticles

    Science.gov (United States)

    Cohen, Marvin Lou; Zettl, Alexander Karlwalter

    2001-01-01

    The invention provides crystalline nanoscale particles and tubes made from a variety of stoichiometries of B.sub.x C.sub.y N.sub.z where x, y, and z indicate a relative amount of each element compared to the others and where no more than one of x, y, or z are zero for a single stoichiometry. The nanotubes and nanoparticles are useful as miniature electronic components, such as wires, coils, schotky barriers, diodes, etc. The nanotubes and nanoparticles are also useful as coating that will protect an item from detection by electromagnetic monitoring techniques like radar. The nanotubes and nanoparticles are additionally useful for their mechanical properties, being comparable in strength and stiffness to the best graphite fibers or carbon nanotubes. The inventive nanoparticles are useful in lubricants and composites.

  7. Liquid crystals from mesogens containing gold nanoparticles

    Science.gov (United States)

    Lewandowski, Wiktor; Gorecka, Ewa

    Long-range ordered structures made of nanoparticles are perspective materials for future optical, electronic and sensing technologies. Conspicuous physicochemical features of nanoparticle aggregates originate from distant-dependent collective interactions, therefore lately a lot of attention was put to the development of assembly strategies allowing control over nanoparticle spatial distribution. In this chapter we will focus on the assembly process based on using thermotropic liquid-crystalline molecules as surface nanoparticle ligands. First, we discuss architectural parameters that inuence structure and thermal properties of the aggregates. Then, we show that this approach enables formation of assemblies with metamaterial characteristic, gives access to dynamic materials with light-, magneto- and thermo-responsive behavior and allows formation of aggregates with unique structures, which all make this strategy an attractive object of research.

  8. In vivo human crystalline lens topography

    OpenAIRE

    Ortiz, Sergio; Pérez Merino, Pablo; Gambra, Enrique; Castro, Alberto; Marcos, Susana

    2012-01-01

    Custom high-resolution high-speed anterior segment spectral domain optical coherence tomography (OCT) was used to characterize three-dimensionally (3-D) the human crystalline lens in vivo. The system was provided with custom algorithms for denoising and segmentation of the images, as well as for fan (scanning) and optical (refraction) distortion correction, to provide fully quantitative images of the anterior and posterior crystalline lens surfaces. The method was tested on an artificial eye ...

  9. Crystalline Silicon Dielectrics for Superconducting Qubit Circuits

    Science.gov (United States)

    Hover, David; Peng, Weina; Sendelbach, Steven; Eriksson, Mark; McDermott, Robert

    2009-03-01

    Superconducting qubit energy relaxation times are limited by microwave loss induced by a continuum of two-level state (TLS) defects in the dielectric materials of the circuit. State-of-the-art phase qubit circuits employ a micron-scale Josephson junction shunted by an external capacitor. In this case, the qubit T1 time is directly proportional to the quality factor (Q) of the capacitor dielectric. The amorphous capacitor dielectrics that have been used to date display intrinsic Q of order 10^3 to 10^4. Shunt capacitors with a Q of 10^6 are required to extend qubit T1 times well into the microsecond range. Crystalline dielectric materials are an attractive candidate for qubit capacitor dielectrics, due to the extremely low density of TLS defects. However, the robust integration of crystalline dielectrics with superconducting qubit circuits remains a challenge. Here we describe a novel approach to the realization of high-Q crystalline capacitor dielectrics for superconducting qubit circuits. The capacitor dielectric is a crystalline silicon nanomembrane. We discuss characterization of crystalline silicon capacitors with low-power microwave transport measurements at millikelvin temperatures. In addition, we report progress on integrating the crystalline capacitor process with Josephson qubit fabrication.

  10. Synthesis, characterization and catalytic activity of silver nanoparticles using Tribulus terrestris leaf extract.

    Science.gov (United States)

    Ashokkumar, S; Ravi, S; Kathiravan, V; Velmurugan, S

    2014-01-01

    Biomediated silver nanoparticles were synthesized with the aid of an eco-friendly biomaterial, namely, aqueous Tribulus terrestris extract. Silver nanoparticles were synthesized using a rapid, single step, and completely green biosynthetic method employing aqueous T. terrestris leaf extracts as both the reducing and capping agent. Silver ions were rapidly reduced by aqueous T. terrestris leaf extracts, leading to the formation of highly crystalline silver nanoparticles. An attempt has been made and formation of the silver nanoparticles was verified by surface plasmon spectra using an UV-vis (Ultra violet), spectrophotometer. Morphology and crystalline structure of the prepared silver nanoparticles were characterized by TEM (Transmission Electron Microscope) and XRD (X-ray Diffraction), techniques, respectively. FT-IR (Fourier Transform Infrared), analysis suggests that the obtained silver nanoparticles might be stabilized through the interactions of carboxylic groups, carbonyl groups and the flavonoids present in the T. terrestris extract.

  11. Opuntia ficus indica peel derived pectin mediated hydroxyapatite nanoparticles: Synthesis, spectral characterization, biological and antimicrobial activities

    Science.gov (United States)

    Gopi, D.; Kanimozhi, K.; Kavitha, L.

    2015-04-01

    In the present study, we have adapted a facile and efficient green route for the synthesis of HAP nanoparticles using pectin as a template which was extracted from the peel of prickly pear (Opuntia ficus indica) fruits. The concentration of pectin plays a major role in the behavior of crystallinity, purity, morphology as well as biological property of the as-synthesized HAP nanoparticles. The extracted pectin and the as-synthesized nanoparticles were characterized by various analytical techniques. The in vitro apatite formation on the surface of the as-synthesized nanoparticles in simulated body fluid (SBF) for various days showed an enhanced bioactivity. Also, the antimicrobial activity was investigated using various microorganisms. All the results revealed the formation of pure, low crystalline and discrete granular like HAP nanoparticles of size around 25 nm with enhanced biological and antimicrobial activities. Hence the as-synthesized nanoparticles can act as a better bone regenerating material in the field of biomedicine.

  12. Doped barium titanate nanoparticles

    Indian Academy of Sciences (India)

    T K Kundu; A Jana; P Barik

    2008-06-01

    We have synthesized nickel (Ni) and iron (Fe) ion doped BaTiO3 nanoparticles through a chemical route using polyvinyl alcohol (PVA). The concentration of dopant varies from 0 to 2 mole% in the specimens. The results from X-ray diffractograms and transmission electron micrographs show that the particle diameters in the specimen lie in the range 24–40 nm. It is seen that the dielectric permittivity in doped specimens is enhanced by an order of magnitude compared to undoped barium titanate ceramics. The dielectric permittivity shows maxima at 0.3 mole% doping of Fe ion and 0.6 mole% of Ni ion. The unusual dielectric behaviour of the specimens is explained in terms of the change in crystalline structure of the specimens.

  13. Malva parviflora extract assisted green synthesis of silver nanoparticles

    Science.gov (United States)

    Zayed, Mervat F.; Eisa, Wael H.; Shabaka, A. A.

    2012-12-01

    Five plant leaf extracts (Malva parviflora, Beta vulgaris subsp. Vulgaris, Anethum graveolens, Allium kurrat and Capsicum frutescens) were screened for their bioreduction behavior for synthesis of silver nanoparticles. M. parviflora (Malvaceae) was found to exhibit the best reducing and protecting action in terms of synthesis rate and monodispersity of the prepared silver nanoparticles. Our measurements indicate that biosynthesis of Ag nanoparticles by M. parviflora produces Ag nanoparticles with the diameters in the range of 19-25 nm. XRD studies reveal a high degree of crystallinity and monophasic Ag nanoparticles of face-centered cubic structure. FTIR analysis proved that particles are reduced and stabilized in solution by the capping agent that is likely to be proteins secreted by the biomass. The present process is an excellent candidate for the synthesis of silver nanoparticles that is simple, easy to perform, pollutant free and inexpensive.

  14. Preparation and Characterization of Monodisperse Nickel Nanoparticles by Polyol Process

    Institute of Scientific and Technical Information of China (English)

    LI Peng; GUAN Jianguo; ZHANG Qingjie; ZHAO Wenyu

    2005-01-01

    Polymer-protected monodisperse nickel nanoparticles were synthesized by a modified polyol reduction method in the presence of poly ( N-vinyl- 2-pyrrolidone ). These nanoparticles were characterized by transmission electron microscopy (TEM), X- ray diffraction ( XRD ), selected area electron diffraction ( SAED ), as well as vibrating sample magnetometer (VSM). The experimental results show that the addition of PVP and the concentration of NaOH have strong influences on the size, agglomeration and uniformity of nanoparticles. In the presence of PVP and NaOH with low concentrations, monodisperse nickel nanoparticles with average diameters about 42 nm were obtained and characterized to be pure nickel crystalline with fcc structure. Secondary structures such as clusters, loops, and strings resulted from magnetic interactions between particles were observed. The chemical interaction between the PVP and nickel nanoparticles was found by FTIR. The saturation magnetization ( Ms ), remanent magnetization (Mr) and coercivity ( Hc ) of these nickel nanoparticles are lower than those of bulk nickel.

  15. Antibacterial Characterization of Silver Nanoparticles against E. Coli ATCC-15224

    Institute of Scientific and Technical Information of China (English)

    M.Raffi; F.Hussain; T.M.Bhatti; J.I.Akhter; A.Hameed; M.M.Hasan

    2008-01-01

    Silver nanoparticles of mean size 16 nm were synthesized by inert gas condensation (IGC) method. Crystalline structure, morphology and nanoparticles size estimation were conducted by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Antibacterial activity of these silver nanoparticles as a function of particles concentration against gram-negative bacterium Escherichia coli (E. coli) was carried out in liquid as well as solid growth media. Scanning electron microscopy (SEM) and TEM studies showed that silver nanoparticles after interaction with E.coli have adhered to and penetrated into the bacterial cells. Antibacterial properties of silver nanoparticles are attributed to their total surface area, as a larger surface to volume ratio of nanoparticles provides more efficient means for enhanced antibacterial activity.

  16. Preparation and UV-light Absorption Property of Oleic Acid Surface Modified ZnO Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    KANG Jong-hun; GUO Yu-peng; CHEN Yue; WANG Zi-chen

    2011-01-01

    Syntheses of zince oxide(ZnO) nanoparticles by direct precipitation and surface modification with oleic acid were reported. ZnO nanoparticles were characterized via X-ray diffractometry(XRD), transmission electron microscopy(TEM), infrared spectroscopy(IR) and UV-Vis spectroscopy. The prepared ZnO nanoparticles were nearly spherical and highly crystalline with an average size of 29 nm. In addition, high UV-light absorption properties of oleic acid surface modified ZnO nanoparticles were successfully obtained for a dispersion of ZnO nanoparticles in ethanol.

  17. Synthesis, characterization and optical properties of nanoparticles

    Science.gov (United States)

    Li, Shoutian

    ZnO, Si, silica, Ge, Ga oxide, W oxide and Mo oxide nanoparticles have been synthesized and characterized, and their optical properties have been investigated. These particles were synthesized by a Laser Vaporization and Controlled Condensation (LVCC) technique in a modified diffusion cloud chamber. The particles deposited on smooth substrates reveal highly organized web-like structures with uniform micrometer size pores. The effect of solvents on the web-like structures was also investigated. ZnO nanoparticles were also prepared by wet chemical methods such as the reversed micelle and sol solutions technique. The photoluminescence quantum yield is enhanced 10 times once the surfaces of the ZnO nanoparticles are coated with a layer of stearate molecules. Many techniques have been used to characterize the nanoparticles. SEM gives information about particle size and morphology; X-ray diffraction and Raman spectroscopy determine the crystallinity and crystal structure; XPS and FTIR reveal the surface chemical composition; UV-vis spectroscopy and photoluminescence measurements characterize the optical properties of nanoparticles. Silica nanoparticles, prepared in an amorphous phase, show bright blue photoluminescence upon irradiation with UV light, but the luminescence has a very short lifetime (less than 20 ns). Si nanoparticles, with a diamond-like crystal phase, acquire oxidized-surfaces on exposure to air. The surface-oxidized Si nanocrystals show a short- lived blue emission characteristic of the SiO2 coating and a longer-lived red emission at room temperature. The lifetime of the red emission depends on the emission wavelength. Some substituted benzene molecules and tungsten oxide nanoparticles can quench the red photoluminescence of the Si nanocrystals. Tungsten oxide and molybdenum oxide nanoparticles show photochromic properties: they change color to blue when irradiated. The photons drive a transition from one chemical state to another. The color change of

  18. Core-shell biopolymer nanoparticle delivery systems: synthesis and characterization of curcumin fortified zein-pectin nanoparticles.

    Science.gov (United States)

    Hu, Kun; Huang, Xiaoxia; Gao, Yongqing; Huang, Xulin; Xiao, Hang; McClements, David Julian

    2015-09-01

    Biopolymer core-shell nanoparticles were fabricated using a hydrophobic protein (zein) as the core and a hydrophilic polysaccharide (pectin) as the shell. Particles were prepared by coating cationic zein nanoparticles with anionic pectin molecules using electrostatic deposition (pH 4). The core-shell nanoparticles were fortified with curcumin (a hydrophobic bioactive molecule) at a high loading efficiency (>86%). The resulting nanoparticles were spherical, relatively small (diameter ≈ 250 nm), and had a narrow size distribution (polydispersity index ≈ 0.24). The encapsulated curcumin was in an amorphous (rather than crystalline form) as detected by differential scanning calorimetry (DSC). Fourier transform infrared (FTIR) and Raman spectra indicated that the encapsulated curcumin interacted with zein mainly through hydrophobic interactions. The nanoparticles were converted into a powdered form that had good water-dispersibility. These core-shell biopolymer nanoparticles could be useful for incorporating curcumin into functional foods and beverages, as well as dietary supplements and pharmaceutical products.

  19. Stability and cytotoxicity of crystallin amyloid nanofibrils

    Science.gov (United States)

    Kaur, Manmeet; Healy, Jackie; Vasudevamurthy, Madhusudan; Lassé, Moritz; Puskar, Ljiljana; Tobin, Mark J.; Valery, Celine; Gerrard, Juliet A.; Sasso, Luigi

    2014-10-01

    Previous work has identified crystallin proteins extracted from fish eye lenses as a cheap and readily available source for the self-assembly of amyloid nanofibrils. However, before exploring potential applications, the biophysical aspects and safety of this bionanomaterial need to be assessed so as to ensure that it can be effectively and safely used. In this study, crude crystallin amyloid fibrils are shown to be stable across a wide pH range, in a number of industrially relevant solvents, at both low and high temperatures, and in the presence of proteases. Crystallin nanofibrils were compared to well characterised insulin and whey protein fibrils using Thioflavin T assays and TEM imaging. Cell cytotoxicity assays suggest no adverse impact of both mature and fragmented crystallin fibrils on cell viability of Hec-1a endometrial cells. An IR microspectroscopy study supports long-term structural integrity of crystallin nanofibrils.Previous work has identified crystallin proteins extracted from fish eye lenses as a cheap and readily available source for the self-assembly of amyloid nanofibrils. However, before exploring potential applications, the biophysical aspects and safety of this bionanomaterial need to be assessed so as to ensure that it can be effectively and safely used. In this study, crude crystallin amyloid fibrils are shown to be stable across a wide pH range, in a number of industrially relevant solvents, at both low and high temperatures, and in the presence of proteases. Crystallin nanofibrils were compared to well characterised insulin and whey protein fibrils using Thioflavin T assays and TEM imaging. Cell cytotoxicity assays suggest no adverse impact of both mature and fragmented crystallin fibrils on cell viability of Hec-1a endometrial cells. An IR microspectroscopy study supports long-term structural integrity of crystallin nanofibrils. Electronic supplementary information (ESI) available: ThT fluorescence graphs of buffers and solvents used for

  20. Nanoparticles and nanoimaging for organic solar cells

    DEFF Research Database (Denmark)

    Pedersen, Emil Bøje Lind

    to a water based ink would provide a production environment without toxic fumes from organic solvents and the nanoparticle structure would provide additional morphological control. The first part of the dissertation maps photodegradation in active layers cast from organic solvents. Reduction in degradation...... in photoactive Landfester nanoparticles. The dispersed particles are characterized by size, internal structure and crystallinity. Crystal orientation and spatial distribution of materials are quantified for cast layers of Landfester particles. A layer of particles is also investigated in a tandem solar cell...

  1. Microbial synthesis of Flower-shaped gold nanoparticles.

    Science.gov (United States)

    Singh, Priyanka; Kim, Yeon Ju; Wang, Chao; Mathiyalagan, Ramya; Yang, Deok Chun

    2016-09-01

    The shape of nanoparticles has been recognized as an important attribute that determines their applicability in various fields. The flower shape (F-shape) has been considered and is being focused on, because of its enhanced properties when compared to the properties of the spherical shape. The present study proposed the microbial synthesis of F-shaped gold nanoparticles within 48 h using the Bhargavaea indica DC1 strain. The F-shaped gold nanoparticles were synthesized extracellularly by the reduction of auric acid in the culture supernatant of B. indica DC1. The shape, size, purity, and crystalline nature of F-shaped gold nanoparticles were revealed by various instrumental techniques including UV-Vis, FE-TEM, EDX, elemental mapping, XRD, and DLS. The UV-Vis absorbance showed a maximum peak at 536 nm. FE-TEM revealed the F-shaped structure of nanoparticles. The EDX peak obtained at 2.3 keV indicated the purity. The peaks obtained on XRD analysis corresponded to the crystalline nature of the gold nanoparticles. In addition, the results of elemental mapping indicated the maximum distribution of gold elements in the nanoproduct obtained. Particle size analysis revealed that the average diameter of the F-shaped gold nanoparticles was 106 nm, with a polydispersity index (PDI) of 0.178. Thus, the methodology developed for the synthesis of F-shaped gold nanoparticles is completely green and economical.

  2. Structural and photoluminescence studies of TiO{sub 2} nanoparticles synthesized by solution combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Balamurugan, M., E-mail: chem.muruga@gmail.com; Silambarasan, M. [Centre for Photonics and Nanotechnology, Department of Science, Sona College of Technology, Salem – 636 005, Tamilnadu (India); Saravanan, S. [Centre for Photonics and Nanotechnology, Department of Science, Sona College of Technology, Salem – 636 005, Tamilnadu (India); Department of Frontier Materials, Nagoya Institute of Technology, Nagoya - 466-8555 (Japan); Soga, Tetsuo [Department of Frontier Materials, Nagoya Institute of Technology, Nagoya - 466-8555 (Japan)

    2015-06-24

    In this study titanium dioxide nanoparticle is prepared by simple solution combustion method. The powder X-ray diffraction pattern indicates the prepared titanium dioxide nanoparticles crystalline nature with tetragonal structure. Also it shows the nanoparticle is anatase and rutile mixed phase. The Field Emission Scanning Electron Microscopy image shows the nanostructure of particles in the size range about 50 nm. Room temperature photoluminescence shows intrinsic defects of oxygen vacancies.

  3. Generating High Modulus Fibers by Nanoparticle Incorporation with Potential to Introduce Multifunctionality

    Science.gov (United States)

    2008-12-07

    nanoparticle size within experimental error. The density was determined via the Archimedes principle in liquid water at room temperature (~ 22°C). A...than the nanoparticle radius. This was rationalized via a simple Flory theory and is the result of enthalpy gain when the nanoparticle obtains more...Poly. Eng. Sci. 16, 344 (1976). 6 Halpin, J. C. and Kardos, J. L., Moduli of Crystalline Polymers Employing Composite Theory . J. Appl. Phys. 43 (5

  4. Plasmonic and silicon spherical nanoparticle antireflective coatings

    OpenAIRE

    K. V. Baryshnikova; M. I. Petrov; Babicheva, V. E.; Belov, P. A.

    2016-01-01

    Over the last decade, plasmonic antireflecting nanostructures have been extensively studied to be utilized in various optical and optoelectronic systems such as lenses, solar cells, photodetectors, and others. The growing interest to all-dielectric photonics as an alternative optical technology along with plasmonics motivates us to compare antireflective properties of plasmonic and all-dielectric nanoparticle coatings based on silver and crystalline silicon respectively. Our simulation result...

  5. Improved Josephson Qubits incorporating Crystalline Silicon Dielectrics

    Science.gov (United States)

    Gao, Yuanfeng; Maurer, Leon; Hover, David; Patel, Umeshkumar; McDermott, Robert

    2010-03-01

    Josephson junction phase quibts are a leading candidate for scalable quantum computing in the solid state. Their energy relaxation times are currently limited by microwave loss induced by a high density of two-level state (TLS) defects in the amorphous dielectric films of the circuit. It is expected that the integration of crystalline, defect-free dielectrics into the circuits will yield substantial improvements in qubit energy relaxation times. However, the epitaxial growth of a crystalline dielectric on a metal underlayer is a daunting challenge. Here we describe a novel approach in which the crystalline silicon nanomembrane of a Silicon-on-Insulator (SOI) wafer is used to form the junction shunt capacitor. The SOI wafer is thermocompression bonded to the device wafer. The handle and buried oxide layers of the SOI are then etched away, leaving the crystalline silicon layer for subsequent processing. We discuss device fabrication issues and present microwave transport data on lumped-element superconducting resonators incorporating the crystalline silicon.

  6. Intermetallic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules L.

    2017-01-03

    A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.

  7. Intermetallic nanoparticles

    Science.gov (United States)

    Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules

    2015-07-14

    A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.

  8. Fabrication of single-crystalline plasmonic nanostructures on transparent and flexible amorphous substrates

    Science.gov (United States)

    Mori, Tomohiro; Mori, Takeshi; Tanaka, Yasuhiro; Suzaki, Yoshifumi; Yamaguchi, Kenzo

    2017-01-01

    A new experimental technique is developed for producing a high-performance single-crystalline Ag nanostructure on transparent and flexible amorphous substrates for use in plasmonic sensors and circuit components. This technique is based on the epitaxial growth of Ag on a (001)-oriented single-crystalline NaCl substrate, which is subsequently dissolved in ultrapure water to allow the Ag film to be transferred onto a wide range of different substrates. Focused ion beam milling is then used to create an Ag nanoarray structure consisting of 200 cuboid nanoparticles with a side length of 160 nm and sharp, precise edges. This array exhibits a strong signal and a sharp peak in plasmonic properties and Raman intensity when compared with a polycrystalline Ag nanoarray. PMID:28216626

  9. Decorating multiwalled carbon nanotubes with zinc oxide nano-crystallines through hydrothermal growth process

    Institute of Scientific and Technical Information of China (English)

    LI ChenSha; QIAO YingJie; LI YuMing

    2012-01-01

    Multiwalled-carbon nanotubes coated with nano-crystalline zinc oxide (ZnO) was prepared by in situ growth of nano zinc oxide on the surfaces of carbon nanotubes through hydrothermal method.X-ray diffraction,transmission electron microscopy and scanning electron microscopy analysis techniques were used to characterize the samples.It was observed that a layer of nano-crystalline ZnO with the wurtzite hexagonal crystal structure was uniformly coated on the nanotube surfaces with good adhesion,which resulted in the formation of a novel ZnO-nanotube nano composite.In this work,the carbon nanotubes decorated by metal oxide nanoparticles were synthesized by a simple chemical-solution route which is suitable for the large-scale production with low cost.

  10. Green synthesis of well-dispersed gold nanoparticles using Macrotyloma uniflorum.

    Science.gov (United States)

    Aromal, S Aswathy; Vidhu, V K; Philip, Daizy

    2012-01-01

    The synthesis of metal nanoparticles of different sizes, shapes, chemical composition and controlled monodispersity is an important area of research in nanotechnology because of their interesting physical properties and technological applications. Present work describes an eco-friendly method for the synthesis of spherical gold nanoparticles using aqueous extract of Macrotyloma uniflorum. The effects of quantity of extract, temperature and pH on the formation of nanoparticles are studied. The nanoparticles are characterized by UV-visible spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD) and FTIR analysis. The high crystallinity of nanoparticles with fcc phase is evident from HRTEM images, SAED and XRD patterns. Synthesized nanoparticles have size in the range 14-17nm. FTIR spectrum indicates the presence of different functional groups present in the bio-molecule capping the nanoparticles. The possible mechanism leading to the formation of gold nanoparticles is suggested.

  11. Characterization and catalytic activity of gold nanoparticles synthesized using ayurvedic arishtams.

    Science.gov (United States)

    Aromal, S Aswathy; Babu, K V Dinesh; Philip, Daizy

    2012-10-01

    The development of new synthesis methods for monodispersed nanocrystals using cheap and nontoxic chemicals, environmentally benign solvents and renewable materials remains a challenge to the scientific community. The present work reports a new green method for the synthesis of gold nanoparticles. Four different ayurvedic arishtams are used for the reduction of Au(3+) to Au nanoparticles. This method is simple, efficient, economic and nontoxic. Gold nanoparticles having different sizes in the range from 15 to 23 nm could be obtained. The nanoparticles have been characterized by UV-Visible spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD) and FTIR analysis. The high crystallinity of nanoparticles is evident from bright circular spots in the SAED pattern and peaks in the XRD pattern. The synthesized gold nanoparticles show good catalytic activity for the reduction of 4-nitrophenol to 4-aminophenol by excess NaBH(4). The synthesized nanoparticles are found to exhibit size dependent catalytic property, the smaller nanoparticles showing faster activity.

  12. Structural changes in bunched crystalline ion beams

    CERN Document Server

    Bussmann, M; Schätz, T; Habs, D

    2003-01-01

    Measurements of the spatial distribution of bunched crystalline ion beams in the radio frequency quadrupole storage ring PALLAS are presented for different ratios of the longitudinal and the transverse confinement strengths. The length of highly elongated crystalline ion bunches and its dependence on the bunching voltage is compared to predictions for a one-dimensional ion string and three-dimensional space-charge-dominated beams. The length is found to be considerably shorter than that predicted by the models. Furthermore, the scaling of the length with the bunching voltage is shown to differ from the expected inverse cube root scaling. These differences can partially be attributed to the formation of a mixed crystalline structure. Additionally, a concise mapping of the structural transition from a string to a zig-zag configuration as a function of the ratio of the confinement strengths is presented, which in a similar way deviates from the predictions.

  13. Cooling and heating of crystalline ion beams

    CERN Document Server

    Schramm, U; Bussmann, M; Habs, D

    2003-01-01

    The crystallization of ion beams has recently been established in the rf quadrupole storage ring PALLAS (PAul Laser CooLing Acceleration System) for laser-cooled sup 2 sup 4 Mg sup + ion beams at an energy of about 1 eV. Yet, unexpectedly sharp constraints had to be met concerning the confinement strength and the longitudinal laser cooling rate. In this paper, related and up to now unseen heating mechanisms are pinpointed for crystalline beams. The weak but inevitable diffusive transverse heating associated with the laser cooling process itself is investigated, possibly allowing the future measurement of the latent heat of the ion crystal. As a function of the beam velocity, the influence of bending shear on the attainability of larger crystalline structures is presented. Finally, rf heating of crystalline beams of different structure is studied for discontinuous cooling.

  14. Bio-based liquid crystalline polyesters

    Science.gov (United States)

    Wilsens, Carolus; Rastogi, Sanjay; Dutch Collaboration

    2013-03-01

    The reported thin-film polymerization has been used as a screening method in order to find bio-based liquid crystalline polyesters with convenient melting temperatures for melt-processing purposes. An in depth study of the structural, morphological and chemical changes occurring during the ongoing polycondensation reactions of these polymers have been performed. Structural and conformational changes during polymerization for different compositions have been followed by time resolved X-ray and Infrared spectroscopy. In this study, bio-based monomers such as vanillic acid and 2,5-furandicarboxylic acid are successfully incorporated in liquid crystalline polyesters and it is shown that bio-based liquid crystalline polymers with high aromatic content and convenient processing temperatures can be synthesized. Special thanks to the Dutch Polymer Institute for financial support

  15. Liquid Crystalline Materials for Biological Applications.

    Science.gov (United States)

    Lowe, Aaron M; Abbott, Nicholas L

    2012-03-13

    Liquid crystals have a long history of use as materials that respond to external stimuli (e.g., electrical and optical fields). More recently, a series of investigations have reported the design of liquid crystalline materials that undergo ordering transitions in response to a range of biological interactions, including interactions involving proteins, nucleic acids, viruses, bacteria and mammalian cells. A central challenge underlying the design of liquid crystalline materials for such applications is the tailoring of the interface of the materials so as to couple targeted biological interactions to ordering transitions. This review describes recent progress toward design of interfaces of liquid crystalline materials that are suitable for biological applications. Approaches addressed in this review include the use of lipid assemblies, polymeric membranes containing oligopeptides, cationic surfactant-DNA complexes, peptide-amphiphiles, interfacial protein assemblies and multi-layer polymeric films.

  16. Distribution of platinum and cobalt atoms in a bimetallic nanoparticle

    Science.gov (United States)

    Chui, Yu Hang; Chan, Kwong-Yu

    2005-06-01

    Molecular dynamics simulations are performed to investigate the atomic distribution and the structure of platinum-cobalt nanoparticles. Heating and cooling techniques are applied before getting equilibrated structures at 298 K. Both crystalline (fcc) and amorphous structures are partly observed depending on cooling rates. The atomic distributions in different regions of a bimetallic nanoparticle are analyzed. Although platinum tends to occupy surface and near-surface sites of the bimetallic nanoparticle, a complete segregation to form a core-shell structure is not observed.

  17. USE OF BACTERIA AND MICROALGAE IN SYNTHESIS OF NANOPARTICLES

    Directory of Open Access Journals (Sweden)

    Inga Zinicovscaia

    2012-12-01

    Full Text Available A critical need in the field of nanotechnology is the development of a reliable and eco-friendly process for synthesis of metallic nanoparticles. A number of different organisms, including bacteria, microalgae, yeast and fungi, have shown their ability to produce metal nanoparticles. But they have some drawbacks in providing better control over size distribution, shape and crystallinity. This review article presents an overview of microorganisms (bacteria and microalga capable of producing silver and gold nanoparticles. This article is an extended abstract of a communication presented at the Conference Ecological Chemistry 2012

  18. Highly monodisperse bismuth nanoparticles and their three-dimensional superlattices.

    Science.gov (United States)

    Yarema, Maksym; Kovalenko, Maksym V; Hesser, Günter; Talapin, Dmitri V; Heiss, Wolfgang

    2010-11-01

    A simple and reproducible synthesis of highly monodisperse and ligand-protected bismuth nanoparticles (Bi NPs) is reported. The size of the single-crystalline and spherically shaped NPs is controlled between 11 and 22 nm mainly by the reaction temperature. The high uniformity of the NPs allows their self-assembly into long-range-ordered two- and three-dimensional superstructures.

  19. ARSENIC REMOVAL USING SOL-GEL SYNTHESIZED TITANIUM DIOXIDE NANOPARTICLES

    Science.gov (United States)

    In this study, the effectiveness of TiO2 nanoparticles in arsenic adsorption was examined. TiO2 particles (LS) were synthesized via sol-gel techniques and characterized for their crystallinity, surface area and pore volume. Batch adsorption studies were perf...

  20. MOS structures containing silicon nanoparticles for memory device applications

    Energy Technology Data Exchange (ETDEWEB)

    Nedev, N; Zlatev, R [Instituto de IngenierIa, Universidad Autonoma de Baja California, Benito Juarez Blvd., s/n, C.P. 21280, Mexicali, Baja California (Mexico); Nesheva, D; Manolov, E; Levi, Z [Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee, 1784 Sofia (Bulgaria); Brueggemann, R; Meier, S [Institute of Physics, Carl von Ossietzky University, Oldenburg, D-26111 Oldenburg (Germany)], E-mail: nicola@iing.mxl.uabc.mx

    2008-05-01

    Metal-oxide-silicon structures containing layers with amorphous or crystalline silicon nanoparticles in a silicon oxide matrix are fabricated by sequential physical vapour deposition of SiO{sub x} (x = 1.15) and RF sputtering of SiO{sub 2} on n-type crystalline silicon, followed by high temperature annealing in an inert gas ambient. Depending on the annealing temperature, 700 deg. C or 1000 deg. C, amorphous or crystalline silicon nanoparticles are formed in the silicon oxide matrix. The annealing process is used not only for growing nanoparticles but also to form a dielectric layer with tunnelling thickness at the silicon/insulator interface. High frequency C-V measurements demonstrate that both types of structures can be charged negatively or positively by applying a positive or negative voltage on the gate. The structures with amorphous silicon nanoparticles show several important advantages compared to the nanocrystal ones, such as lower defect density at the interface between the crystalline silicon wafer and the tunnel silicon oxide, better retention characteristics and better reliability.

  1. Electronic processes in non-crystalline materials

    CERN Document Server

    Mott, Nevill Francis

    2012-01-01

    Since the first edition of this highly successful book the field saw many great developments both in experimental and theoretical studies of electrical properties of non-crystalline solids. It became necessary to rewrite nearly the whole book, while the aims of the second edition remained the same: to set out the theoretical concepts, to test them by comparison with experiment for a wide variety of phenomena, and to apply them to non-crystalline materials. Sir Nevill Mott shared the1977 Nobel Prize for Physics, awarded for his research work in this field. The reissue of this book as part of th

  2. Photochromism of 36-Armed Liquid Crystalline Dendrimer

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The photochromism of a 36-armed liquid crystalline dendrimer D6 was briefly described in this paper. The molar absorption coefficient, photoisomerization and photo back-isomerization of D6 in solution were investigated by UV/Vis absorption spectra. The results indicate that the photochromism and photo back-isomerization of D6 in chloroform (CHCl3) and tetrahydrofuran (THF) solutions are in accordance with the first order kinetics. The photochromism rate constants of D6 are 10-1 s-1, it is 107 times larger than that of side-chain liquid crystalline polymers containing the same azobenzene moieties.

  3. Used fuel disposition in crystalline rocks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hadgu, Teklu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kalinina, Elena Arkadievna [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jerden, James L. [Argonne National Lab. (ANL), Argonne, IL (United States); Copple, Jacqueline M. [Argonne National Lab. (ANL), Argonne, IL (United States); Cruse, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Ebert, W. [Argonne National Lab. (ANL), Argonne, IL (United States); Buck, E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Eittman, R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tinnacher, R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tournassat, Christophe. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Davis, J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Viswanathan, H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chu, S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dittrich, T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hyman, F. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Karra, S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Makedonska, N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reimus, P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zavarin, Mavrik [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Joseph, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-09-01

    The U.S. Department of Energy Office of Nuclear Energy, Office of Fuel Cycle Technology established the Used Fuel Disposition Campaign (UFDC) in fiscal year 2010 (FY10) to conduct the research and development (R&D) activities related to storage, transportation and disposal of used nuclear fuel and high level nuclear waste. The objective of the Crystalline Disposal R&D Work Package is to advance our understanding of long-term disposal of used fuel in crystalline rocks and to develop necessary experimental and computational capabilities to evaluate various disposal concepts in such media.

  4. Liquid crystalline thermosetting polyimides. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hoyt, A.E.; Huang, S.J. [Connecticut Univ., Storrs, CT (United States). Inst. of Materials Science

    1993-07-01

    Phase separation of rodlike reinforcing polymers and flexible coil matrix polymers is a common problem in formulating molecular composites. One way to reduce phase separation might be to employ liquid crystalline thermosets as the matrix material. In this work, functionally terminated polyimide oligomers which exhibit lyotropic liquid crystalline behavior were successfully prepared. Materials based on 2,2{prime}-bis(trifluoromethyl)-4,4{prime}-diaminobiphenyl and 3,3{prime},4,4{prime}-biphenylenetetra-carboxylic dianhydride have been synthesized and characterized.

  5. Exact Topological Twistons in Crystalline Polyethylene

    CERN Document Server

    Ventura, E; Bazeia, D

    2000-01-01

    We investigate the presence of topological twistons in crystalline polyethylene. We describe crystalline polyethylene with a model that couples the torsional and longitudinal degrees of freedom of the polymeric chain by means of a system of two real scalar fields. This model supports topological twistons, which are described by exact and stable topological solutions that appear when the interaction between torsional and longitudinal fields is polynomial, containing up to the sixth power in the fields. We calculate the energy of the topological twiston, and the result is in very good agreement with the value obtained via molecular simulation.

  6. Observation of atomic collisions in crystalline solids

    CERN Document Server

    Nelson, R S; Gevers, R

    2013-01-01

    The Observation of Atomic Collisions in Crystalline Solids presents a critical account of the more important experiments which have provided the basis for a better understanding of atomic collision phenomena in crystalline solids. Collisions have been divided into two artificial regimes; primary collisions which deal with the interaction of the incident particles with the solid, and secondary collisions which deal with those events which occur as a result of lattice atoms recoiling from primary encounters. Although the book is intended principally for the experimentalist some simple theoretica

  7. Monolithic aerogels with nanoporous crystalline phases

    Science.gov (United States)

    Daniel, Christophe; Guerra, Gaetano

    2015-05-01

    High porosity monolithic aerogels with nanoporous crystalline phases can be obtained from syndiotactic polystyrene and poly(2,6-dimethyl-1,4-phenylene)oxide thermoreversible gels by removing the solvent with supercritical CO2. The presence of crystalline nanopores in the aerogels based on these polymers allows a high uptake associated with a high selectivity of volatile organic compounds from vapor phase or aqueous solutions even at very low activities. The sorption and the fast kinetics make these materials particularly suitable as sorption medium to remove traces of pollutants from water and moist air.

  8. Ultrasonic alloying of preformed gold and silver nanoparticles.

    Science.gov (United States)

    Radziuk, Darya V; Zhang, Wei; Shchukin, Dmitry; Möhwald, Helmuth

    2010-02-22

    Alloyed gold/silver nanoparticles with a core/shell structure are produced from preformed gold and silver nanoparticles during ultrasonic treatment at different intensities in water and in the presence of surface-active species. Preformed gold nanoparticles with an average diameter of 15 + or - 5 nm are prepared by the citrate reduction of chloroauric acid in water, and silver nanoparticles (38 + or - 7 nm) are formed after reduction of silver nitrate by sodium borohydride. Bare binary gold/silver nanoparticles with a core/shell structure are formed in aqueous solution after 1 h of sonication at high ultrasonic intensity. Cationic-surfactant-coated preformed gold and silver nanoparticles become gold/silver-alloy nanoparticles after 3 h of sonication in water at 55 W cm(-2), whereas only fusion of isolated gold and silver nanoparticles is observed after ultrasonic treatment in the presence of an anionic surfactant. As the X-ray diffraction profile of alloyed gold/silver nanoparticles reveals split, shifted, and disappeared peaks, the face-centered-cubic crystalline structure of the binary nanoparticles is defect-enriched by temperatures that can be as high as several thousand Kelvin inside the cavitation bubbles during ultrasonic treatment.

  9. Antifungal activity of gold nanoparticles prepared by solvothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Tokeer, E-mail: tahmad3@jmi.ac.in [Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025 (India); Wani, Irshad A.; Lone, Irfan H.; Ganguly, Aparna [Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025 (India); Manzoor, Nikhat; Ahmad, Aijaz [Department of Biosciences, Jamia Millia Islamia, New Delhi 110025 (India); Ahmed, Jahangeer [Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States); Al-Shihri, Ayed S. [Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, P.O. Box 9004 (Saudi Arabia)

    2013-01-15

    Graphical abstract: Gold nanoparticles (7 and 15 nm) of very high surface area (329 and 269 m{sup 2}/g) have been successfully synthesized through solvothermal method by using tin chloride and sodium borohydride as reducing agents. As-prepared gold nanoparticles shows very excellent antifungal activity against Candida isolates and activity increases with decrease in the particle size. Display Omitted Highlights: ► Effect of reducing agents on the morphology of gold nanoparticles. ► Highly uniform and monodisperse gold nanoparticles (7 nm). ► Highest surface area of gold nanoparticles (329 m{sup 2/}g). ► Excellent antifungal activity of gold nanoparticles against Candida strains. -- Abstract: Gold nanoparticles have been successfully synthesized by solvothermal method using SnCl{sub 2} and NaBH{sub 4} as reducing agents. X-ray diffraction studies show highly crystalline and monophasic nature of the gold nanoparticles with face centred cubic structure. The transmission electron microscopic studies show the formation of nearly spherical gold nanoparticles of average size of 15 nm using SnCl{sub 2}, however, NaBH{sub 4} produced highly uniform, monodispersed and spherical gold nanoparticles of average grain size of 7 nm. A high surface area of 329 m{sup 2}/g for 7 nm and 269 m{sup 2}/g for 15 nm gold nanoparticles was observed. UV–vis studies assert the excitations over the visible region due to transverse and longitudinal surface plasmon modes. The gold nanoparticles exhibit excellent size dependant antifungal activity and greater biocidal action against Candida isolates for 7 nm sized gold nanoparticles restricting the transmembrane H{sup +} efflux of the Candida species than 15 nm sized gold nanoparticles.

  10. Donor-hydrogen complexes in crystalline silicon

    NARCIS (Netherlands)

    Liang, Z.N.; Niesen, L; Haas, C; Denteneer, P.J.H.

    1996-01-01

    Experimental results are presented on the study of Sb-H complexes in crystalline silicon, employing Sb-119 --> Sn-119 source Mossbauer spectroscopy and a low-energy H implantation technique. In addition to a visible component, we observe a large decrease of the Mossbauer intensity associated with

  11. Smeared gap equations in crystalline color superconductivity

    CERN Document Server

    Ruggieri, M

    2006-01-01

    In the framework of HDET, we discuss an averaging procedure of the NJL quark-quark interaction lagrangian, treated in the mean field approximation, for the two flavor LOFF phase of QCD. This procedure gives results which are valid in domains where Ginzburg-Landau results may be questionable. We compute and compare the free energy for different LOFF crystalline structures.

  12. Crystalline amino acids and nitrogen emission

    NARCIS (Netherlands)

    Verstegen, M.W.A.; Jongbloed, A.W.

    2003-01-01

    Reductions in dietary protein level and supplementation with certain crystalline amino acids is a well-established method of formulating diets to achieve a more ideal amino acid pattern and to reduce nitrogen excretion. Up to 35% reduction in nitrogen excretion may be achieved by supplementing pig

  13. Quasi-crystalline geometry for architectural structures

    DEFF Research Database (Denmark)

    Wester, Ture; Weinzieri, Barbara

    The quasi-crystal (QC) type of material was discovered in 1983 by Dan Schechtman from Technion, Haifa. This new crystalline structure of material broke totally with the traditional conception of crystals and geometry introducing non-periodic close packing of cells with fivefold symmetry in 3D space...

  14. Crystalline damage development during martensitic transformations

    NARCIS (Netherlands)

    Suiker, A.S.J.; Turteltaub, S.R.

    2006-01-01

    A recently developed thermo-mechanical model [1] is presented that can be used to simulate the interactions between martensitic phase transformations and crystalline damage growth at the austenitic grain level. Subgrain information is included in the model via the crystallographic theory of martensi

  15. Donor-hydrogen complexes in crystalline silicon

    NARCIS (Netherlands)

    Liang, Z.N.; Niesen, L; Haas, C; Denteneer, P.J.H.

    1996-01-01

    Experimental results are presented on the study of Sb-H complexes in crystalline silicon, employing Sb-119 --> Sn-119 source Mossbauer spectroscopy and a low-energy H implantation technique. In addition to a visible component, we observe a large decrease of the Mossbauer intensity associated with th

  16. Topological crystalline insulator SnTe nanoribbons

    Science.gov (United States)

    Dahal, Bishnu R.; Dulal, Rajendra P.; Pegg, Ian L.; Philip, John

    2017-03-01

    Topological crystalline insulators are systems in which a band inversion that is protected by crystalline mirror symmetry gives rise to nontrivial topological surface states. SnTe is a topological crystalline insulator. It exhibits p-type conductivity due to Sn vacancies and Te antisites, which leads to high carrier density in the bulk. Thus growth of high quality SnTe is a prerequisite for understanding the topological crystalline insulating behavior. We have grown SnTe nanoribbons using a solution method. The width of the SnTe ribbons varies from 500 nm to 2 μm. They exhibit rock salt crystal structure with a lattice parameter of 6.32 Å. The solution method that we have adapted uses low temperature, so the Sn vacancies can be controlled. The solution grown SnTe nanoribbons exhibit strong semiconducting behavior with an activation energy of 240 meV. This activation energy matches with the calculated band gap for SnTe with a lattice parameter of 6.32 Å, which is higher than that reported for bulk SnTe. The higher activation energy makes the thermal excitation of bulk charges very difficult on the surface. As a result, the topological surfaces will be free from the disturbance caused by the thermal excitations

  17. Crystalline amino acids and nitrogen emission

    NARCIS (Netherlands)

    Verstegen, M.W.A.; Jongbloed, A.W.

    2003-01-01

    Reductions in dietary protein level and supplementation with certain crystalline amino acids is a well-established method of formulating diets to achieve a more ideal amino acid pattern and to reduce nitrogen excretion. Up to 35% reduction in nitrogen excretion may be achieved by supplementing pig d

  18. Evidence for variable crystallinity in bivalve shells

    Science.gov (United States)

    Jacob, D. E.; Wehrmeister, U.

    2012-04-01

    Bivalve shells are used as important palaeoclimate proxy archives and monitor regional climate variations. The shells mostly exist of two crystalline polymorphic phases of calcium carbonate calcite (rombohedric) and aragonite (orthorhombic). Calcite is the most stable polymorph at standard conditions, whereas vaterite (hexagonal) is the least stable and only rarely found in these structures. Shells are characterized by organized structures and several micro architectures of mollusc shell structures have been identified: Nacre shows different types: columnar and bricked forms and consists of composite inorganic- organic at the nano-scale. They are well known to display a "brick and mortar" structure. By AFM and FIB/TEM methods it could be shown, that its nanostructure consists of the structures in the range of 50 - 100 nm [1, 2]. These structures are vesicles, consisting of CaCO3 and are individually coated by a membrane. Most probably, the mantle epithelian cells of the bivalve extrude CaCO3 vesicles. By Raman spectroscopic investigations the crystalline CaCO3 polymorphs calcite, aragonite and vaterite, as well as ACC were determined. For some species (Diplodon chilensis patagonicus, Hyriopsis cumingii) pure ACC (i.e. not intermingled with a crystalline phase) could be identified. The presence of an amorphous phase is generally deduced from the lack of definite lattice modes, whereas a broad Raman band in this region is to observe. In most of the cultured pearls (Pinctada maxima and genus Hyriopsis) the ν1-Raman band of ACC clearly displays an asymmetric shape and splits into two different bands according to a nanocrystalline and an amorphous fraction. The FWHMs of most of the crystalline fractions are too high for well crystallized materials and support the assumption of nanocrystalline calcium carbonate polymorph clusters in ACC. They are primarily composed of amorphous calcium carbonate (ACC) which is later transformed into a crystalline modification [3

  19. Sonochemical Synthesis of Silver Nanoparticles Using Starch: A Comparison

    Directory of Open Access Journals (Sweden)

    Brajesh Kumar

    2014-01-01

    Full Text Available A novel approach was applied to synthesize silver nanoparticles using starch under sonication. Colloidal silver nanoparticles solution exhibited an increase of absorption from 420 to 440 nm with increase starch quantity. Transmission electron microscopy followed by selected area electron diffraction pattern analysis indicated the formation of spherical, polydispersed, amorphous, silver nanoparticles of diameter ranging from 23 to 97 nm with mean particle size of 45.6 nm. Selected area electron diffraction (SAED confirmed partial crystalline and amorphous nature of silver nanoparticles. Silver nanoparticles synthesized in this manner can be used for synthesis of 2-aryl substituted benzimidazoles which have numerous biomedical applications. The optimized reaction conditions include 10 ml of 1 mM AgNO3, 25 mg starch, 11 pH range, and sonication for 20 min at room temperature.

  20. Biosynthesis of Yttrium oxide nanoparticles using Acalypha indica leaf extract

    Indian Academy of Sciences (India)

    S K Kannan; M Sundrarajan

    2015-08-01

    In this study, the synthesis of Yttrium oxide (Y2O3) nanoparticles was carried out from Acalypha indica leaf extract. The synthesized nanoparticles were characterized by using X-ray diffraction, scanning electron microscope, energy-dispersive X-ray spectrometer and transmission electron microscope for structural confirmation. The studies clearly indicate that the synthesized Y2O3 nanoparticle is a crystalline material with a particle size from 23 to 66 nm. Further analysis was carried out by Fourier transform infrared spectroscopy, to provide the evidence for the presence of Y–O–Y and O–Y–O stretchings in the synthesized Y2O3 nanoparticles. Thermogravimetric and differential scanning calorimetry analyses gave the thermal stability of Y2O3 nanoparticles. The results of the antibacterial studies conducted by using the synthesized Y2O3 revealed an increasing rate of antibacterial behaviour with pathogens.

  1. Comparative study of thermal conductivity in crystalline and amorphous nanocomposite

    Science.gov (United States)

    Juangsa, Firman Bagja; Muroya, Yoshiki; Ryu, Meguya; Morikawa, Junko; Nozaki, Tomohiro

    2017-06-01

    Silicon nanocrystals (SiNCs)/polystyrene (PS) nanocomposite has been observed to have a significant decrease in thermal conductivity in terms of the SiNC fraction with unspecified factors remained unclear. In this paper, amorphous silicon nanoparticles (a-SiNPs) with a mean diameter of 6 nm and PS nanocomposites were synthesized, and their thermal conductivity, including the density and specific heat, was compared with our previous work which investigated well-crystalized SiNPs (6 nm) and PS nanocomposite. The difference between amorphous and crystalline structure is insignificant, but phonon scattering at SiNPs and PS boundary is the key influencing factor of thermal conductivity reduction. The effective thermal conductivity models for nanocomposite revealed that the thermal boundary resistance, explained by Kapitza principle, is estimated to be 4 × 10-7 m2K/W, showing the significant effect of nanostructured heterogenic surface resistance on overall heat transfer behavior. Preservation of unique properties nanoscale materials and low-cost fabrication by silicon inks process at room temperature give the promising potential of SiNPs based heat transfer management.

  2. Characterization and use of crystalline bacterial cell surface layers

    Science.gov (United States)

    Sleytr, Uwe B.; Sára, Margit; Pum, Dietmar; Schuster, Bernhard

    2001-10-01

    Crystalline bacterial cell surface layers (S-layers) are one of the most common outermost cell envelope components of prokaryotic organisms (archaea and bacteria). S-layers are monomolecular arrays composed of a single protein or glycoprotein species and represent the simplest biological membranes developed during evolution. S-layers as the most abundant of prokaryotic cellular proteins are appealing model systems for studying the structure, synthesis, genetics, assembly and function of proteinaceous supramolecular structures. The wealth of information existing on the general principle of S-layers have revealed a broad application potential. The most relevant features exploited in applied S-layer research are: (i) pores passing through S-layers show identical size and morphology and are in the range of ultrafiltration membranes; (ii) functional groups on the surface and in the pores are aligned in well-defined positions and orientations and accessible for chemical modifications and binding functional molecules in very precise fashion; (iii) isolated S-layer subunits from a variety of organisms are capable of recrystallizing as closed monolayers onto solid supports (e.g., metals, polymers, silicon wafers) at the air-water interface, on lipid films or onto the surface of liposomes; (iv) functional domains can be incorporated in S-layer proteins by genetic engineering. Thus, S-layer technologies particularly provide new approaches for biotechnology, biomimetics, molecular nanotechnology, nanopatterning of surfaces and formation of ordered arrays of metal clusters or nanoparticles as required for nanoelectronics.

  3. Ambient Pressure Synthesis of Nanostructured Tungsten Oxide Crystalline Films

    Directory of Open Access Journals (Sweden)

    H. X. Zhang

    2008-01-01

    Full Text Available We report the results of the ambient pressure synthesis of tungsten oxide nanowires and nanoparticles on AlN substrates using the hot filament CVD techniques. The morphologic surface, crystallographic structures, chemical compositions, and bond structures of the obtained samples have been investigated using scanning electron microscopy (SEM, X-ray diffraction (XRD, energy dispersive X-ray spectroscopy (EDX, and Raman scattering, respectively. Different morphologies were observed for different substrate temperatures, but otherwise identical growth conditions. The experimental measurements reveal the evolutions of the crystalline states and bond structures following the substrate temperatures. Besides, different substrate materials also affected the tungsten oxide nanostructures. Bundles of wire-type tungsten oxide nanowires with a length of up to 5 mm were obtained on Al2O3 substrate. Furthermore, the sensitive properties of the super long nanowires to the gas and different temperature were investigated. The dependence of the sensitivity of tungsten oxide nanowires to the methane as a function of the time was obtained. The sensitive properties of the tungsten oxide nanowires have almost linear relationship with the temperature.

  4. Preparation and characterization of polymeric nanoparticles from Gadong starch

    Science.gov (United States)

    Sisika, Regina; Ahmad, Wan Yaacob Wan; Fazry, Shazrul; Lazim, Azwan Mat

    2015-09-01

    Dioscorea hispida (Gadong tuber) was seldom used and forgotten as a food source due to their toxicity. In contrast to that, the Gadong tuber can be a source of polysaccharides which can be manipulated as an alternative source for industrial applications. This research reported on how to synthesize starch nanoparticles from Gadong tuber by using a simple acid hydrolysis process. The yield of starch nanoparticles obtained from seven days of acid hydrolysis was reduced to 13%. The X-ray diffraction measurements showed that the native Gadong starch particle is of the C-crystalline type, and that the synthesized nanoparticles showed an increase in crystallinity compared to the native particles. Transmission electron microscopy results demonstrated that the starch particle morphologies were either round or irregular shape, with diameters ranging from 96-110 nm.

  5. Preparation and characterization of polymeric nanoparticles from Gadong starch

    Energy Technology Data Exchange (ETDEWEB)

    Sisika, Regina; Ahmad, Wan Yaacob Wan; Lazim, Azwan Mat [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia 43600 Bangi, Selangor (Malaysia); Fazry, Shazrul [School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia 43600 Bangi, Selangor (Malaysia)

    2015-09-25

    Dioscorea hispida (Gadong tuber) was seldom used and forgotten as a food source due to their toxicity. In contrast to that, the Gadong tuber can be a source of polysaccharides which can be manipulated as an alternative source for industrial applications. This research reported on how to synthesize starch nanoparticles from Gadong tuber by using a simple acid hydrolysis process. The yield of starch nanoparticles obtained from seven days of acid hydrolysis was reduced to 13%. The X-ray diffraction measurements showed that the native Gadong starch particle is of the C-crystalline type, and that the synthesized nanoparticles showed an increase in crystallinity compared to the native particles. Transmission electron microscopy results demonstrated that the starch particle morphologies were either round or irregular shape, with diameters ranging from 96-110 nm.

  6. Hollow nanoparticle cathode materials for sodium electrochemical cells and batteries

    Energy Technology Data Exchange (ETDEWEB)

    Shevchenko, Elena; Rajh, Tijana; Johnson, Christopher S.; Koo, Bonil

    2016-07-12

    A cathode comprises, in its discharged state, a layer of hollow .gamma.-Fe.sub.2O.sub.3 nanoparticles disposed between two layers of carbon nanotubes, and preferably including a metallic current collector in contact with one of the layers of carbon nanotubes. Individual particles of the hollow .gamma.-Fe.sub.2O.sub.3 nanoparticles comprise a crystalline shell of .gamma.-Fe.sub.2O.sub.3 including cation vacancies within the crystal structure of the shell (i.e., iron vacancies of anywhere between 3% to 90%, and preferably 44 to 77% of available octahedral iron sites). Sodium ions are intercalated within at least some of the cation vacancies within the crystalline shell of the hollow .gamma.-Fe.sub.2O.sub.3 nanoparticles.

  7. Titanium Dioxide Nanoparticle-Based Interdigitated Electrodes: A Novel Current to Voltage DNA Biosensor Recognizes E. coli O157:H7: e0139766

    National Research Council Canada - National Science Library

    Sh Nadzirah; N Azizah; Uda Hashim; Subash C B Gopinath; Mohd Kashif

    2015-01-01

    .... In the present study, we have generated and examined the potential of titanium dioxide (TiO2) crystalline nanoparticles with aluminium interdigitated electrode biosensor to specifically detect single-stranded E.coli O157:H7 DNA...

  8. Robust Nanoparticles

    Science.gov (United States)

    2015-01-21

    SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS 10. SPONSOR/MONITOR’S ACRONYM(S) (ES) ARO U.S. Anny Research Office 11 . SPONSOR/MONITOR’S REPORT...Lawrence, Gregory M. Grason, Todd Emrick, Alfred J. Crosby. Stretching of assembled nanoparticle helical springs, Physical Chemistry Chemical...par with thermally sintered conductive adhesives. C. Examination of stretching of nanoparticle-based springs. This part of the project

  9. Magnetic properties of nanoscale crystalline maghemite obtained by a new synthetic route

    Energy Technology Data Exchange (ETDEWEB)

    Mercante, L.A. [Instituto de Quimica, Universidade Federal Fluminense, Niteroi, RJ (Brazil); Melo, W.W.M. [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Granada, M.; Troiani, H.E. [Centro Atomico Bariloche and Instituto Balseiro, Comision Nacional de Energia Atomica, 8400 S.C. de Bariloche, RN (Argentina); Macedo, W.A.A.; Ardison, J.D. [Laboratorio de Fisica Aplicada, CDTN/CNEN, Belo Horizonte, MG (Brazil); Vaz, M.G.F. [Instituto de Quimica, Universidade Federal Fluminense, Niteroi, RJ (Brazil); Novak, M.A., E-mail: mnovak@if.ufrj.br [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil)

    2012-09-15

    In this work we describe the synthesis and characterization of maghemite nanoparticles obtained by a new synthetic route. The material was synthesized using triethylamine as a coprecipitation agent in the presence of the organic ligand N,N Prime -bis(3,5-di-tert-butyl-catechol)-2,4-diaminotoluene (LCH{sub 3}). Moessbauer spectrum at 4 K shows typical hyperfine parameters of maghemite and Transmission Electron Microscopy images reveal that the nanoparticles have a mean diameter of 3.9 nm and a narrow size distribution. AC magnetic susceptibility in zero field presents an Arrhenius behavior with unreasonable relaxation parameters due to the strong influence of dipolar interaction. In contrast when the measurements are performed in a 1 kOe field, the effect of dipolar interactions becomes negligible and the obtained parameters are in good agreement with the static magnetic properties. The dynamic energy barrier obtained from the AC susceptibility results is larger than the expected from the average size observed by HRTEM results, evidencing the strong influence of the surface contribution to the anisotropy. - Highlights: Black-Right-Pointing-Pointer Maghemite nanoparticles obtained by a new synthetic route. Black-Right-Pointing-Pointer TEM images shown crystalline nanoparticles with average 3.9 nm diameter. Black-Right-Pointing-Pointer Normal Arrhenius behavior restored with applied DC fields.

  10. Enzymatically Controlled Vacancies in Nanoparticle Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Barnaby, Stacey N.; Ross, Michael B.; Thaner, Ryan V.; Lee, Byeongdu; Schatz, George C.; Mirkin, Chad A.

    2016-08-01

    In atomic systems, the mixing of metals results in distinct phase behavior that depends on the identity and bonding characteristics of the atoms. In nanoscale systems, the use of oligonucleotides as programmable “bonds” that link nanoparticle “atoms” into superlattices allows for the decoupling of atom identity and bonding. While much research in atomic systems is dedicated to understanding different phase behavior of mixed metals, it is not well understood on the nanoscale how changes in the nanoscale “bond” affect the phase behavior of nanoparticle crystals. In this work, the identity of the atom is kept the same but the chemical nature of the bond is altered, which is not possible in atomic systems, through the use of DNA and RNA bonding elements. These building blocks assemble into single crystal nanoparticle superlattices with mixed DNA and RNA bonding elements throughout. The nanoparticle crystals can be dynamically changed through the selective and enzymatic hydrolysis of the RNA bonding elements, resulting in superlattices that retain their crystalline structure and habit, while incorporating up to 35% random vacancies generated from the nanoparticles removed. Therefore, the bonding elements of nanoparticle crystals can be enzymatically and selectively addressed without affecting the nature of the atom.

  11. Damping of acoustic vibrations in gold nanoparticles

    Science.gov (United States)

    Pelton, Matthew; Sader, John E.; Burgin, Julien; Liu, Mingzhao; Guyot-Sionnest, Philippe; Gosztola, David

    2009-08-01

    Studies of acoustic vibrations in nanometre-scale particles can provide fundamental insights into the mechanical properties of materials because it is possible to precisely characterize and control the crystallinity and geometry of such nanostructures. Metal nanoparticles are of particular interest because they allow the use of ultrafast laser pulses to generate and probe high-frequency acoustic vibrations, which have the potential to be used in a variety of sensing applications. So far, the decay of these vibrations has been dominated by dephasing due to variations in nanoparticle size. Such inhomogeneities can be eliminated by performing measurements on single nanoparticles deposited on a substrate, but unknown interactions between the nanoparticles and the substrate make it difficult to interpret the results of such experiments. Here, we show that the effects of inhomogeneous damping can be reduced by using bipyramidal gold nanoparticles with highly uniform sizes. The inferred homogeneous damping is due to the combination of damping intrinsic to the nanoparticles and the surrounding solvent; the latter is quantitatively described by a parameter-free model.

  12. Synthesis of Nano Crystalline MgAl2O4Spinel Powder by Microwave Assisted Combustion%Synthesis of Nano Crystalline MgAl2O4 Spinel Powder by Microwave Assisted Combustion

    Institute of Scientific and Technical Information of China (English)

    Leila Torkian; Mostafa M Amini; Zohreh Bahrami

    2011-01-01

    Stoichiometric MgAl2O4 spinel nanoparticles were synthesized by microwave assisted combustion reaction from aluminium nitrate nanohydrate (Al(NO3)3.9H2O) and Sol-Gel prepared magnesium hydroxide (Mg(OH)2) in the presence of urea ((NH2)2CO) as a fuel, in about 20 min of irradiation. X-ray diffraction (XRD) studies reveal that microwave assisted combustion synthesis route yields single-phase spinel nanoparticles with larger crystalline size (around 75 nm) than other conventional heating methods. Scanning electronic microscope (SEM) images show nanoparticles with spherical shape and homogenous morphology. The surface area measurements (SBET) show crystals with 2.11 m2/g and 0.0033 mL/g pore volume.

  13. Butea monosperma bark extract mediated green synthesis of silver nanoparticles: Characterization and biomedical applications

    Directory of Open Access Journals (Sweden)

    Sutanuka Pattanayak

    2017-09-01

    Full Text Available The work deals with an environmentally benign process for the synthesis of silver nanoparticle using Butea monosperma bark extract which is used both as a reducing as well as capping agent at room temperature. The reaction mixture turned brownish yellow after about 24 h and an intense surface plasmon resonance (SPR band at around 424 nm clearly indicates the formation of silver nanoparticles. Fourier transform-Infrared (FT-IR spectroscopy showed that the nanoparticles were capped with compounds present in the plant extract. Formation of crystalline fcc silver nanoparticles is analysed by XRD data and the SAED pattern obtained also confirms the crystalline behaviour of the Ag nanoparticles. The size and morphology of these nanoparticles were studied using High Resolution Transmission Electron Microscopy (HRTEM which showed that the nanoparticles had an average dimension of ∼35 nm. A larger DLS data of ∼98 nm shows the presence of the stabilizer on the nanoparticles surface. The bio-synthesized silver nanoparticles revealed potent antibacterial activity against human bacteria of both Gram types. In addition these biologically synthesized nanoparticles also proved to exhibit excellent cytotoxic effect on human myeloid leukemia cell line, KG-1A with IC50 value of 11.47 μg/mL.

  14. Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity.

    Science.gov (United States)

    Sathishkumar, M; Sneha, K; Won, S W; Cho, C-W; Kim, S; Yun, Y-S

    2009-10-15

    The exploitation of various plant materials for the biosynthesis of nanoparticles is considered a green technology as it does not involve any harmful chemicals. The present study reports the synthesis of silver (Ag) nanoparticles from silver precursor using the bark extract and powder of novel Cinnamon zeylanicum. Water-soluble organics present in the plant materials were mainly responsible for the reduction of silver ions to nano-sized Ag particles. TEM and XRD results confirmed the presence of nano-crystalline Ag particles. The pH played a major role in size control of the particles. Bark extract produced more Ag nanoparticles than the powder did, which was attributed to the large availability of the reducing agents in the extract. Zeta potential studies showed that the surface charge of the formed nanoparticles was highly negative. The EC(50) value of the synthesized nanoparticles against Escherichia coli BL-21 strain was 11+/-1.72 mg/L. Thus C. zeylanicum bark extract and powder are a good bio-resource/biomaterial for the synthesis of Ag nanoparticles with antimicrobial activity.

  15. Synthesis of functionalized magnetite nanoparticles to use as liver targeting MRI contrast agent

    Science.gov (United States)

    Yazdani, Farshad; Fattahi, Bahare; Azizi, Najmodin

    2016-05-01

    The aim of this research was the preparation of functionalized magnetite nanoparticles to use as a liver targeting contrast agent in magnetic resonance imaging (MRI). For this purpose, Fe3O4 nanoparticles were synthesized via the co-precipitation method. The synthesized nanoparticles were coated with silica via the Stober method and finally the coated nanoparticles were functionalized with mebrofenin. Formation of crystalline magnetite particles was confirmed by X-ray diffraction (XRD) analysis. The Fourier transform infrared spectroscopy (FTIR) and energy dispersive X-ray analyzer (EDX) of the final product showed that silica had been effectively bonded onto the surface of the magnetite nanoparticles and the coated nanoparticles functionalized with mebrofenin. The magnetic resonance imaging of the functional nanoparticles showed that the Fe3O4-SiO2-mebrofenin composite is an effective MRI contrast agent for liver targeting.

  16. Biosynthesis of gold nanoparticles by Pseudomonas veronii AS41G inhabiting Annona squamosa L.

    Science.gov (United States)

    Baker, Syed; Satish, Sreedharamurthy

    2015-11-05

    Biogenic principles to nanotechnology have generated tremendous attention in recent past owing eco friendly benign process for synthesis of nanoparticles. Present investigation reports extracellular synthesis of gold nanoparticles using cell free supernatant of Pseudomonas veronii AS 41G, a novel endophyte isolated from Annona squamosa L. Gold nanoparticles formation was confirmed with UV-Visible spectrophotometer. FTIR analysis predicted various functional groups responsible for reduction of metal salts and stabilization of gold nanoparticles. Nanoparticles were crystalline in nature as shown in XRD pattern. TEM analysis revealed morphological characteristics of nanoparticles with different size. Thus the present study attributes for facile process for synthesis of gold nanoparticles as an alternative for conventional methods. The study also highlights the new role of novel bacterium Pseudomonas veronii AS41G which will be very valuable as a record for the researchers working on it.

  17. Preparation of polymeric nanoparticles containing corticosteroid by a novel aerosol flow reactor method.

    Science.gov (United States)

    Eerikäinen, Hannele; Kauppinen, Esko I

    2003-09-16

    Polymeric drug-containing nanoparticles were prepared using a novel aerosol flow reactor method. The polymeric drug-containing nanoparticles prepared consist of a poorly water soluble corticosteroid, beclomethasone dipropionate, and polymeric materials Eudragit E 100 or Eudragit L 100. The novel method used in this study allows synthesis of nanoparticles directly as dry powders. The nanoparticles can contain various ratios of drug and polymer, and the use of any additional stabilisation materials is avoided. In this study, nanoparticles with different drug-to-polymer ratios were prepared. Particle size and morphology, crystallinity, and thermal behaviour were determined as a function of particle composition. It was found that all the nanoparticles produced, regardless of particle composition, had geometric number mean diameters of approximately 90 nm, and were spherical showing smooth surfaces. The drug was molecularly dispersed in the amorphous polymeric matrix of the nanoparticles, and drug crystallisation was not observed when the ambient temperature was below the glass transition temperature of the polymer.

  18. Pseudomonas deceptionensis DC5-mediated synthesis of extracellular silver nanoparticles.

    Science.gov (United States)

    Jo, Jae H; Singh, Priyanka; Kim, Yeon J; Wang, Chao; Mathiyalagan, Ramya; Jin, Chi-Gyu; Yang, Deok C

    2016-09-01

    The biological synthesis of metal nanoparticles is of great interest in the field of nanotechnology. The present work highlights the extracellular biological synthesis of silver nanoparticles using Pseudomonas deceptionensis DC5. The particles were synthesized in the culture supernatant within 48 h of incubation. Extracellular synthesis of silver nanoparticles in the culture supernatant was confirmed by ultraviolet-visible spectroscopy, which showed the absorption peak at 428 nm, and also under field emission transmission electron microscopy which displayed the spherical shape. In addition, the particles were characterized by X-ray diffraction spectroscopy, which corresponds to the crystalline nature of nanoparticles, and energy-dispersive X-ray analysis which exhibited the intense peak at 3 keV, resembling the silver nanoparticles. Further, the synthesized nanoparticles were examined by elemental mapping which displayed the dominance of the silver element in the synthesized product, and dynamic light scattering which showed the distribution of silver nanoparticles with respect to intensity, volume, and number of particles. Moreover, the silver nanoparticles have been found to be quite active in antimicrobial activity and biofilm inhibition activity against pathogenic microorganisms. Thus, the present work emphasized the prospect of using the P. deceptionensis DC5 to achieve the extracellular synthesis of silver nanoparticles in a facile and environmental manner.

  19. Silver and gold nanoparticles for sensor and antibacterial applications.

    Science.gov (United States)

    Bindhu, M R; Umadevi, M

    2014-07-15

    Green biogenic method for the synthesis of gold and silver nanoparticles using Solanum lycopersicums extract as reducing agent was studied. The biomolecules present in the extract was responsible for reduction of Au(3+) and Ag(+) ions from HAuCl4 and AgNO3 respectively. The prepared nanoparticles were characterized by UV-visible spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) technique to identify the size, shape of nanoparticles and biomolecules act as reducing agents. UV-visible spectra show the surface plasmon resonance peak at 546 nm and 445 nm corresponding to gold and silver nanoparticles respectively. Crystalline nature of the nanoparticles was evident from TEM images and XRD analysis. TEM images showed average size of 14 nm and 12 nm for prepared gold and silver nanoparticles respectively. FTIR analysis provides the presence of biomolecules responsible for the reduction and stability of the prepared silver and gold nanoparticles. XRD analysis of the silver and gold nanoparticles confirmed the formation of metallic silver and gold. The prepared gold and silver nanoparticles show good sensing and antimicrobial activity.

  20. Preparation and Structural Analysis of CdS Nanoparticle Embedded Polyurethane Nanocomposites

    Science.gov (United States)

    Indolia, Ajay Pal; Kumar, Purushottam; Gaur, M. S.

    2011-07-01

    Polymer nanocomposite samples of different weight ratio of CdS were developed by solution embedding of nanoparticles in polyurethane. XRD and Scanning Electron Microscopy (SEM) were used to understand the structural properties of polymer nanocomposite samples. SEM micrograph demonstrates the dispersion of CdS nanoparticles in polymer matrix. It has been observed that crystallinity of PU decreases with increase in concentration of CdS nanoparticles. The XRD data show the characteristic peaks of nanoparticles (i.e.CdS) in nanocomposite samples, which confirm the nanostructure formation in polymer matrix.

  1. Direct synthesis of ultrafine tetragonal BaTiO3 nanoparticles at room temperature

    Directory of Open Access Journals (Sweden)

    Hu Yong

    2011-01-01

    Full Text Available Abstract A large quantity of ultrafine tetragonal barium titanate (BaTiO3 nanoparticles is directly synthesized at room temperature. The crystalline form and grain size are checked by both X-ray diffraction and transmission electron microscopy. The results revealed that the perovskite nanoparticles as fine as 7 nm have been synthesized. The phase transition of the as-prepared nanoparticles is investigated by the temperature-dependent Raman spectrum and shows the similar tendency to that of bulk BaTiO3 materials. It is confirmed that the nanoparticles have tetragonal phase at room temperature.

  2. The effect of complexing agent on the crystallization of ZnO nanoparticles

    Indian Academy of Sciences (India)

    S A Ketabi; A S Kazemi; M M Bagheri-Mohagheghi

    2011-10-01

    In this work, some structural and optical properties of the zinc oxide (ZnO) nanoparticles were studied. The highly crystalline ZnO nanoparticles were produced by the hydrothermal and sol–gel methods. The analyses of the XRD patterns, STEM images and UV spectroscopy showed that the size of the nanoparticles prepared by oxalic acid was smaller than the ones by urea. The properties of oxalic acid and urea were also investigated to determine the most effective crystallization process of ZnO nanoparticles. It has been shown that pH, decomposition temperature and activity coefficient of the complexing agent have certain effects on crystallization process.

  3. Al纳米颗粒增强微晶硅薄膜太阳电池光吸收的模拟研究∗%Numerical simulation of light absorption enhancement in micro crystalline silicon solar cells with Al nanoparticle arrays

    Institute of Scientific and Technical Information of China (English)

    丁东; 杨仕娥; 陈永生; 郜小勇; 谷锦华; 卢景霄

    2015-01-01

    利用价格低廉、性能优良的金属纳米颗粒增强太阳电池的光吸收具有广阔的应用前景。通过建立三维数值模型,模拟了微晶硅薄膜电池前表面周期性分布的Al纳米颗粒阵列对电池光吸收的影响,并对其结构参数进行了优化。模拟结果表明:对于球状Al纳米颗粒阵列,影响电池光吸收的关键参数是周期P与半径R的比值,或者说是颗粒的表面覆盖度;当P/R=4—5时,总的光吸收较参考电池提高可达20%。与球状颗粒相比,优化后的半球状Al纳米颗粒阵列可获得更好的陷光效果,但后者对颗粒半径R的变化较敏感。另外,结合电场分布,对电池光吸收增强的物理机理进行了分析。%Metal nanoparticles with low cost and high performance have good potential applications in light-trapping of solar cells. In this paper, a three-dimensional model is proposed to simulate the light absorption of microcrystalline silicon (µc-Si:H) thin film solar cells. The effects of spherical and hemispherical Al nanoparticle arrays located on the front surfaces of solar cells are investigated, and the particle radius and array period are optimized by the finite element method. The results show that the optimal Al nanoparticle arrays can enhance broadband absorption in thin film solar cells. For spherical particle arrays, the key parameter that influences light absorption in solar cells is period/radius ratio (P/R) or particle surface coverage. When P/R = 4–5, the optimum integrated absorption enhancement (Eabs) is over 20%under AM1.5 illumination compared with the solar cell without nanoparticles. The value of Eabs is small and decreases with the increase of P/R when P/R>5, and Eabs is less than zero when P/R<3 because of the parasitic absorption and backward scattering from the mental nanoparticles. When P =500 nm and R=120 nm, the spectral absorption rate as a function of wavelength shows broadband absorption including

  4. Poorly crystalline hydroxyapatite: A novel adsorbent for enhanced fulvic acid removal from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Wei [Department of Environmental Science and Engineering, Nanjing Normal University, Nanjing 210023 (China); Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023 (China); Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023 (China); Yang, Lei; Zhong, Wenhui; Cui, Jing [Department of Environmental Science and Engineering, Nanjing Normal University, Nanjing 210023 (China); Wei, Zhenggui, E-mail: weizhenggui@gmail.com [Department of Environmental Science and Engineering, Nanjing Normal University, Nanjing 210023 (China); Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023 (China); Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023 (China)

    2015-03-30

    term. Findings of the present work highlight the potential for using poorly crystalline HAP nanoparticles as an effective and recyclable adsorbent for FA removal from aqueous solution.

  5. Porous single-crystalline palladium nanoflowers with enriched {100} facets for highly enhanced ethanol oxidation

    Science.gov (United States)

    Qi, Kun; Wang, Qiyu; Zheng, Weitao; Zhang, Wei; Cui, Xiaoqiang

    2014-11-01

    Palladium porous single-crystalline nanoflowers (PSNFs) with enriched high catalytic activity {100} facets were synthesized using a mild and controllable seed mediated growth method. The growth mechanism of the Pd PSNFs was investigated using time dependent morphology evolution through TEM imaging. Due to the specific structure, Pd PSNFs show highly enhanced ethanol oxidation reaction (EOR) activity, high EOR anti-poisoning and stability, much better than Pd nanocubes, {111} facets dominated dendritic urchin-like Pd nanoparticles and Pd black.Palladium porous single-crystalline nanoflowers (PSNFs) with enriched high catalytic activity {100} facets were synthesized using a mild and controllable seed mediated growth method. The growth mechanism of the Pd PSNFs was investigated using time dependent morphology evolution through TEM imaging. Due to the specific structure, Pd PSNFs show highly enhanced ethanol oxidation reaction (EOR) activity, high EOR anti-poisoning and stability, much better than Pd nanocubes, {111} facets dominated dendritic urchin-like Pd nanoparticles and Pd black. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr05761a

  6. Electromagnetic Processes in strong Crystalline Fields

    CERN Multimedia

    Uggerhoj, U I; Mikkelsen, F K

    2007-01-01

    We propose a number of new investigations on aspects of radiation from high energy electron and positron beams (10-300 GeV) in single crystals and amorphous targets. The common heading is radiation emission by electrons and positrons in strong electromagnetic fields, but as the setup is quite versatile, other related phenomena in radiation emission can be studied as well. The intent is to clarify the role of a number of important aspects of radiation in strong fields as e.g. observed in crystals. We propose to measure trident 'Klein-like' production in strong crystalline fields, 'crystalline undulator' radiation, 'sandwich' target phenomena, LPM suppression of pair production as well as axial and planar effects in contributions of spin to the radiation.

  7. Liquid Crystalline Semiconductors Materials, properties and applications

    CERN Document Server

    Kelly, Stephen; O'Neill, Mary

    2013-01-01

    This is an exciting stage in the development of organic electronics. It is no longer an area of purely academic interest as increasingly real applications are being developed, some of which are beginning to come on-stream. Areas that have already been commercially developed or which are under intensive development include organic light emitting diodes (for flat panel displays and solid state lighting), organic photovoltaic cells, organic thin film transistors (for smart tags and flat panel displays) and sensors. Within the family of organic electronic materials, liquid crystals are relative newcomers. The first electronically conducting liquid crystals were reported in 1988 but already a substantial literature has developed. The advantage of liquid crystalline semiconductors is that they have the easy processability of amorphous and polymeric semiconductors but they usually have higher charge carrier mobilities. Their mobilities do not reach the levels seen in crystalline organics but they circumvent all of t...

  8. Radiation collimation in a thick crystalline undulator

    Science.gov (United States)

    Wistisen, Tobias Nyholm; Uggerhøj, Ulrik Ingerslev; Hansen, John Lundsgaard; Lauth, Werner; Klag, Pascal

    2017-05-01

    With the recent experimental confirmation of the existence of energetic radiation from a Small Amplitude, Small Period (SASP) crystalline undulator [T.N. Wistisen, K.K. Andersen, S. Yilmaz, R. Mikkelsen, J. Lundsgaard Hansen, U.I. Uggerhøj, W. Lauth, H. Backe, Phys. Rev. Lett. 112, 254801 (2014)], the field of specially manufactured crystals, from which specific radiation characteristics can be obtained, has evolved substantially. In this paper we confirm the existence of the crystalline undulator radiation, using electrons of energies of 855 GeV from the MAinzer MIcrotron (MAMI) in a crystal that is approximately 10 times thicker than the previous one. Furthermore, we have measured a significant increase in enhancement, in good agreement with calculations, of the undulator peak by collimation to angles smaller than the natural opening angle of the radiation emission process, 1 /γ. Contribution to the Topical Issue: "Dynamics of Systems at the Nanoscale", edited by Andrey Solov'yov and Andrei Korol.

  9. Basic research challenges in crystalline silicon photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Werner, J.H. [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany)

    1995-08-01

    Silicon is abundant, non-toxic and has an ideal band gap for photovoltaic energy conversion. Experimental world record cells of 24 % conversion efficiency with around 300 {mu}m thickness are only 4 % (absolute) efficiency points below the theoretical Auger recombination-limit of around 28 %. Compared with other photovoltaic materials, crystalline silicon has only very few disadvantages. The handicap of weak light absorbance may be mastered by clever optical designs. Single crystalline cells of only 48 {mu}m thickness showed 17.3 % efficiency even without backside reflectors. A technology of solar cells from polycrystalline Si films on foreign substrates arises at the horizon. However, the disadvantageous, strong activity of grain boundaries in Si could be an insurmountable hurdle for a cost-effective, terrestrial photovoltaics based on polycrystalline Si on foreign substrates. This talk discusses some basic research challenges related to a Si based photovoltaics.

  10. University Crystalline Silicon Photovoltaics Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Ajeet Rohatgi; Vijay Yelundur; Abasifreke Ebong; Dong Seop Kim

    2008-08-18

    The overall goal of the program is to advance the current state of crystalline silicon solar cell technology to make photovoltaics more competitive with conventional energy sources. This program emphasizes fundamental and applied research that results in low-cost, high-efficiency cells on commercial silicon substrates with strong involvement of the PV industry, and support a very strong photovoltaics education program in the US based on classroom education and hands-on training in the laboratory.

  11. Cystoid Macular Edema in Bietti's Crystalline Retinopathy

    Directory of Open Access Journals (Sweden)

    Ali Osman Saatci

    2014-01-01

    Full Text Available A 27-year-old man with progressive bilateral visual decline was diagnosed to have Bietti's crystalline dystrophy (BCD. Fluorescein angiography revealed bilateral petaloid type late hyperfluorescence implicating concurrent cystoid macular edema (CME. Optical coherence tomography exhibited cystoid foveal lacunas OU. During the follow-up of six years, intraretinal crystals reduced in amount but CME persisted angiographically and tomographically. CME is among the rare macular features of BCD including subfoveal sensorial detachment, subretinal neovascular membrane, and macular hole.

  12. Concentration Transitions on the Crystalline Lattices

    Directory of Open Access Journals (Sweden)

    N.A. Gorenko

    2014-07-01

    Full Text Available Results of numerical modeling of dilute 2D and 3D crystalline lattices are presented. The percolation thresholds for face-centered cubic (fcc, body-centered cubic (bcc and the simple cubic (sc lattices for the first, second and third coordination spheres are obtained by means of Monte Carlo (MC method. It is shown, that the mean value of the percolation cluster density has a minimum value at the percolation threshold.

  13. Cystoid Macular Edema in Bietti's Crystalline Retinopathy

    OpenAIRE

    Ali Osman Saatci; Hasan Can Doruk; Aylin Yaman

    2014-01-01

    A 27-year-old man with progressive bilateral visual decline was diagnosed to have Bietti's crystalline dystrophy (BCD). Fluorescein angiography revealed bilateral petaloid type late hyperfluorescence implicating concurrent cystoid macular edema (CME). Optical coherence tomography exhibited cystoid foveal lacunas OU. During the follow-up of six years, intraretinal crystals reduced in amount but CME persisted angiographically and tomographically. CME is among the rare macular features of BCD in...

  14. Bietti’ Crystalline Retinal Dystrophy: A Case Report

    Directory of Open Access Journals (Sweden)

    Muhammed Şahin

    2016-03-01

    Full Text Available Bietti’ crystalline retinal dystrophy (BCD is a rare, auto­somal, recessively inherited disorder, characterized by the deposition of yellow crystals in the corneal limbus and retina. In this paper we aimed to present a pediatric case with BCD, with clinical, electrophysiological and spectral domain optical coherence tomography (SD-OCT findings and discuss BCD with the light of the literature. J Clin Exp Invest 2016; 7 (1: 94-97

  15. Controlled synthesis of single-crystalline graphene

    Directory of Open Access Journals (Sweden)

    Wang Xueshen

    2014-02-01

    Full Text Available This paper reports the controlled synthesis of single-crystalline graphene on the back side of copper foil using CH4 as the precursor. The influence of growth time and the pressure ratio of CH4/H2 on the structure of graphene are examined. An optimized polymer-assisted method is used to transfer the synthesized graphene onto a SiO2/Si substrate. Scanning electron microscopy and Raman spectroscopy are used to characterize the graphene.

  16. The elastic properties of crystalline syndiotactic polypropylene

    Directory of Open Access Journals (Sweden)

    Paul Unwin

    1998-01-01

    Full Text Available The ability to predict the ultimate mechanical stiffness of a polymer is of considerable value because this provides a good indication of the effort which might justifiably be expended either in polymer synthesis or in polymer engineering to produce optimum polymer structures. Generally, the best mechanical properties are identified with those of the crystalline structure, so the problem is essentially one of measuring or predicting the crystal properties.

  17. Effect of polylactic acid crystallinity on its electret properties

    Science.gov (United States)

    Guzhova, A. A.; Galikhanov, M. F.; Kuznetsova, N. V.; Petrov, V. A.; Khairullin, R. Z.

    2016-09-01

    Electret properties of the polylactic acid films with different degree of crystallinity due to different cooling and annealing conditions were studied. Samples with the higher degree of crystallinity showed more stable electret characteristics resulting from amorphous-crystalline interface boundary growth and capturing bigger amount of injected charge carriers by volume energy traps.

  18. Crystallinity in starch plastics: consequences for material properties

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Soest, J.J.G. van

    1997-01-01

    The processing of starches with biodegradable additives has made biodegradable plastics suitable for a number of applications. Starch plastics are partially crystalline as a result of residual crystallinity and the recrystallization of amylose and amylopectin. Such crystallinity is a key determinant

  19. Fracture of polypropylene: 2. the effect of the crystallinity

    NARCIS (Netherlands)

    van der Wal, A.; Wal, A.; Mulder, J.J.; Gaymans, R.J.

    1998-01-01

    The effect of crystallinity on the fracture behaviour of polypropylene was studied under impact conditions. The crystallinity was varied by taking low- and high-isotactic polypropylenes and mixtures thereof. The crystallinity ranged from 31 to 53 wt%. The fracture behaviour was studied as a function

  20. PREPARATION AND CHARACTERIZATION OF POLY-CRYSTALLINE SILICON THIN FILM

    Institute of Scientific and Technical Information of China (English)

    Y.F. Hu; H. Shen; Z.Y. Liu; L.S. Wen

    2003-01-01

    Poly-crystalline silicon thin film has big potential of reducing the cost of solar cells.In this paper the preparation of thin film is introduced, and then the morphology of poly-crystalline thin film is discussed. On the film we developed poly-crystalline silicon thin film solar cells with efficiency up to 6. 05% without anti-reflection coating.

  1. Stamp forming optimization for formability and crystallinity

    Science.gov (United States)

    Donderwinkel, T. G.; Rietman, B.; Haanappel, S. P.; Akkerman, R.

    2016-10-01

    The stamp forming process is well suited for high volume production of thermoplastic composite parts. The process can be characterized as highly non-isothermal as it involves local quench-cooling of a molten thermoplastic composite blank where it makes contact with colder tooling. The formability of the thermoplastic composite depends on the viscoelastic material behavior of the matrix material, which is sensitive to temperature and degree of crystallinity. An experimental study was performed to determine the effect of temperature and crystallinity on the storage modulus during cooling for a woven glass fiber polyamide-6 composite material. An increase of two decades in modulus was observed during crystallization. As this will significantly impede the blank formability, the onset of crystallization effectively governs the time available for forming. Besides the experimental work, a numerical model is developed to study the temperature and crystallinity throughout the stamp forming process. A process window can be determined by feeding the model with the experimentally obtained data on crystallization.

  2. Liquid Crystalline Compositions as Gas Sensors

    Science.gov (United States)

    Shibaev, Petr; Murray, John; Tantillo, Anthony; Wenzlick, Madison; Howard-Jennings, Jordan

    2015-03-01

    Droplets and films of nematic and cholesteric liquid crystalline mixtures were studied as promising detectors of volatile organic compounds (VOCs) in the air. Under increasing concentration of VOC in the air the detection may rely on each of the following effects sequentially observed one after the other due to the diffusion of VOC inside liquid crystalline matrix: i. slight changes in orientation and order parameter of liquid crystal, ii. formation of bubbles on the top of the liquid crystalline droplet due to the mass transfer between the areas with different order parameter, iii. complete isotropisation of the liquid crystal. All three stages can be easily monitored by optical microscopy and photo camera. Detection limits corresponding to the first stage are typically lower by a factor of 3-6 than detection limits corresponding to the beginning of mass transfer and isotropisation. The prototype of a compact sensor sensitive to the presence of organic solvents in the air is described in detail. The detection limits of the sensor is significantly lower than VOC exposure standards. The qualitative model is presented to account for the observed changes related to the diffusion, changes of order parameter and isotropisation.

  3. Nanoparticle Ordering in Semicrystalline Polymers

    Science.gov (United States)

    Gimenez-Pinto, Vianney; Zhao, Dan; Kumar, Sanat

    One way to engineer the macroscopic properties of a crystalline polymer matrix is to place nanoparticles into them, but in an organized manner. We have recently found that NP organization can be controlled by varying the crystal growth rate. We develop a coarse-grained model to study this situation - in particular, we focus on the out-of-equilibrium dynamics of nanoparticles being pushed/engulfed by a solidification front depending on crystallization velocity vs. Particle engulfment occurs when vs is higher than a critical velocity vc. When vs is smaller than vc, particles are pushed by the crystallization front and organize in a 2-D plane. Even though most models for particle engulfment consider dynamic force equilibrium at vc, we show the system is not in equilibrium in this regime. Thus, we consider conditions for engulfment based on particle velocity with respect to crystal growth rate. Our results agree with experimental observations on anisotropic organization of nanoparticles in semicrystalline polymers driven by crystallization speed.

  4. Environmental Transformations of Engineered Nanoparticles: Implications for Nanoparticle Transport

    Science.gov (United States)

    Lowry, G. V.; Levard, C.; Reinsch, B.; Ma, R.; Kirschling, T.; Brown, G. E.; Tilton, R.

    2011-12-01

    Geochemical transformations that engineered nanomaterials (ENMs) may undergo in different environments very poorly characterized. Sulfidation of metallic nanoparticles (NPs), particularly class B soft metals such as Ag NPs, is expected in the environment. Transformation will alter the surface properties and fate of Ag NPs. ENMs are often coated with a polymeric coating to prevent aggregation or to provide specific functionality. These coatings dramatically impact their transport properties. The potential for biological processes to remove covalently bound polymeric coatings from nanoparticles, and the effect of coating loss on the particle's transport properties is not known. The objectives of this work were to 1) better understand the environmental conditions that would promote sufidation of class B soft metal nanoparticles (Ag NPs and ZnO NPs), and to determine the effect that this has on their surface properties and aggregation potential, and 2) to determine if microbes can access covalently bound polymeric coatings from an engineered NP, and the effect on their surface properties and aggregation potential. Ag and ZnO NPs were synthesized and characterized for size, shape, coating mass, charge, crystal structure, and chemical composition using a range of analytical methods (TEM, DLS, TGA, EPM, XAS). These particles were sulfidized in the laboratory, biosolids, and wetland soils and the transformed materials were characterized. Sulfidation was rapid in all cases and resulted in a mixed crystalline/amorphous Ag2S/Ag2O particle depending on the ratio of Ag to HS- in the system. Sulfidation decreased surface charge and displayed significant aggregation compared to the unsulfidized materials. Sulfidation also occurred in biosolids and in wetland soils. Polymer coatings covalently bound to ENMs are bioavailable. Model poly(ethylene oxide) (PEO) brush-coated nanoparticles (30 nm hydrodynamic radius) were synthesized to obtain a nanomaterial in which biodegradation was

  5. Core functionalization of semi-crystalline polymeric cylindrical nanoparticles using photo-initiated thiol–ene radical reactions† †Electronic supplementary information (ESI) available: Further methods, polymer and nanostructure characterization. See DOI: 10.1039/c5py01970b Click here for additional data file.

    Science.gov (United States)

    Sun, Liang; Pitto-Barry, Anaïs; Thomas, Anthony W.; Inam, Maria; Doncom, Kay

    2016-01-01

    Sequential ring-opening and reversible addition–fragmentation chain transfer (RAFT) polymerization was used to form a triblock copolymer of tetrahydropyran acrylate (THPA), 5-methyl-5-allyloxycarbonyl-1,3-dioxan-2-one (MAC) and l-lactide. Concurrent deprotection of the THPA block and crystallization-driven self-assembly (CDSA) was undertaken and allowed for the formation of cylindrical micelles bearing allyl handles in a short outer core segment. These handles were further functionalized by different thiols using photo-initiated thiol–ene radical reactions to demonstrate that the incorporation of an amorphous PMAC block within the core does not disrupt CDSA and can be used to load the cylindrical nanoparticles with cargo. PMID:27478513

  6. Electrical transport in crystalline phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Woda, Michael

    2012-01-06

    In this thesis, the electrical transport properties of crystalline phase change materials are discussed. Phase change materials (PCM) are a special class of semiconducting and metallic thin film alloys, typically with a high amount of the group five element antimony or the group six element tellurium, such as Ge{sub 2}Sb{sub 2}Te{sub 5}. The unique property portfolio of this material class makes it suitable for memory applications. PCMs reveal fast switching between two stable room-temperature phases (amorphous and crystalline) realized by optical laser or electrical current pulses in memory devices. Additionally, a pronounced property contrast in form of optical reflectivity and electrical conductivity between the amorphous and crystalline phase is the characteristic fingerprint of PCMs. The emerging electrical solid state memory PCRAM is a very promising candidate to replace Flash memory in the near future or to even become a universal memory, which is non-volatile and shows the speed and cyclability of DRAM. One of the main technological challenges is the switching process into the amorphous state, which is the most power demanding step. In order to reduce the switching power, the crystalline resistivity needs to be increased at a given voltage. Thus understanding and tayloring of this property is mandatory. In this work, first the technological relevance, i.e. optical and electrical memory concepts based on PCMs are introduced. Subsequently a description of the physical properties of PCMs in four categories is given. Namely, structure, kinetics, optical properties and electrical properties are discussed. Then important recent developments such as the identification of resonant bonding in crystalline PCMs and a property predicting coordination scheme are briefly reviewed. The following chapter deals with the theoretical background of electrical transport, while the next chapter introduces the experimental techniques: Sputtering, XRR, XRD, DSC, thermal annealing

  7. Epoxy + liquid crystalline epoxy coreacted network

    Science.gov (United States)

    Punchaipetch, Prakaipetch

    2000-10-01

    Molecular reinforcement through in-situ polymerization of liquid crystalline epoxies (LCEs) and a non-liquid crystalline epoxy has been investigated. Three LCEs: diglycidyl ether of 4,4'-dihydroxybiphenol (DGE-DHBP) and digylcidyl ether of 4-hydroxyphenyl-4″-hydroxybiphenyl-4 '-carboxylate (DGE-HHC), were synthesized and blended with diglycidyl ether of bisphenol F (DGEBP-F) and subsequently cured with anhydride and amine curing agents. Curing kinetics were determined using differential scanning calorimetry (DSC). Parameters for autocatalytic curing kinetics of both pure monomers and blended systems were determined. The extent of cure for both monomers was monitored by using Fourier transform infrared spectroscopy (FT-IR). The glass transitions were evaluated as a function of composition using DSC and dynamic mechanical analysis (DMA). The results show that the LC constituent affects the curing kinetics of the epoxy resin and that the systems are highly miscible. The effects of molecular reinforcement of DGEBP-F by DGE-DHBP and DGE-HHC were investigated. The concentration of the liquid crystalline moiety affects mechanical properties. Tensile, impact and fracture toughness tests results are evaluated. Scanning electron microscopy of the fracture surfaces shows changes in failure mechanisms compared to the pure components. Results indicate that mechanical properties of the blended samples are improved already at low concentration by weight of the LCE added into epoxy resin. The improvement in mechanical properties was found to occur irrespective of the absence of liquid crystallinity in the blended networks. The mechanism of crack study indicates that crack deflection and crack bridging are the mechanisms in case of LC epoxy. In case of LC modified epoxy, the crack deflection is the main mechanism. Moreover, the effect of coreacting an epoxy with a reactive monomer liquid crystalline epoxy as a matrix for glass fiber composites was investigated. Mechanical

  8. Biopolymeric nanoparticles

    Directory of Open Access Journals (Sweden)

    Sushmitha Sundar, Joydip Kundu and Subhas C Kundu

    2010-01-01

    Full Text Available This review on nanoparticles highlights the various biopolymers (proteins and polysaccharides which have recently revolutionized the world of biocompatible and degradable natural biological materials. The methods of their fabrication, including emulsification, desolvation, coacervation and electrospray drying are described. The characterization of different parameters for a given nanoparticle, such as particle size, surface charge, morphology, stability, structure, cellular uptake, cytotoxicity, drug loading and drug release, is outlined together with the relevant measurement techniques. Applications in the fields of medicine and biotechnology are discussed along with a promising future scope.

  9. Nanoparticle standards

    Energy Technology Data Exchange (ETDEWEB)

    Havrilla, George Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-12-08

    We will purchase a COTS materials printer and adapt it for solution printing of known elemental concentration solutions. A methodology will be developed to create deposits of known mass in known locations on selected substrates. The deposits will be characterized for deposited mass, physical morphology, thickness and uniformity. Once an acceptable methodology has been developed and validated, we will create round robin samples to be characterized by LGSIMS instruments at LANL, PNNL and NIST. We will demonstrate the feasibility of depositing nanoparticles in known masses with the goal of creating separated nanoparticles in known locations.

  10. Plasmonic and silicon spherical nanoparticle antireflective coatings

    Science.gov (United States)

    Baryshnikova, K. V.; Petrov, M. I.; Babicheva, V. E.; Belov, P. A.

    2016-03-01

    Over the last decade, plasmonic antireflecting nanostructures have been extensively studied to be utilized in various optical and optoelectronic systems such as lenses, solar cells, photodetectors, and others. The growing interest to all-dielectric photonics as an alternative optical technology along with plasmonics motivates us to compare antireflective properties of plasmonic and all-dielectric nanoparticle coatings based on silver and crystalline silicon respectively. Our simulation results for spherical nanoparticles array on top of amorphous silicon show that both silicon and silver coatings demonstrate strong antireflective properties in the visible spectral range. For the first time, we show that zero reflectance from the structure with silicon coatings originates from the destructive interference of electric- and magnetic-dipole responses of nanoparticle array with the wave reflected from the substrate, and we refer to this reflection suppression as substrate-mediated Kerker effect. We theoretically compare the silicon and silver coating effectiveness for the thin-film photovoltaic applications. Silver nanoparticles can be more efficient, enabling up to 30% increase of the overall absorbance in semiconductor layer. Nevertheless, silicon coatings allow up to 64% absorbance increase in the narrow band spectral range because of the substrate-mediated Kerker effect, and band position can be effectively tuned by varying the nanoparticles sizes.

  11. Hydroxyapatite Nanoparticles as a Novel Gene Carrier

    Science.gov (United States)

    Zhu, S. H.; Huang, B. Y.; Zhou, K. C.; Huang, S. P.; Liu, F.; Li, Y. M.; Xue, Z. G.; Long, Z. G.

    2004-06-01

    Hydroxyapatite crystalline nanoparticles were created by a precipitation hydrothermal technique and the majority of crystal particles were in the size range of 40-60nm and exhibited a colloidal feature when suspended in water. The gastric cancer SGC-7901 cell line cells were cultivated in the presence of10-100 μg ml-1 hydroxyapatite nanoparticle suspension and verified by MTT evaluation for their biocompatibility in vitro. The agarose gel electrophoresis analysis demonstrated that the HA nanoparticles potentially adsorb the green fluorescence protein EGFP-N1 plasmid DNA at pH 2 and 7, but not at pH 12. The DNA-nanoparticle complexes transfected EGFP-N1 pDNA into SGC-7901 cells in vitro with the efficiency about 80% as referenced with Lipofectmine TM 2000. In vivo animal experiment revealed no acute toxic adverse effect 2weeks after tail vein injection into mice, and TEM examination demonstrated their biodistribution and expression within the cytoplasm and also a little in the nuclei of the liver, kidney and brain tissue cells. These results suggest that the HA nanoparticle is a promising material that can be used as gene carrier, vectors.

  12. Degradation of methylene blue using biologically synthesized silver nanoparticles.

    Science.gov (United States)

    Vanaja, M; Paulkumar, K; Baburaja, M; Rajeshkumar, S; Gnanajobitha, G; Malarkodi, C; Sivakavinesan, M; Annadurai, G

    2014-01-01

    Nowadays plant mediated synthesis of nanoparticles has great interest and achievement due to its eco-benign and low time consuming properties. In this study silver nanoparticles were successfully synthesized by using Morinda tinctoria leaf extract under different pH. The aqueous leaf extract was added to silver nitrate solution; the color of the reaction medium was changed from pale yellow to brown and that indicates reduction of silver ions to silver nanoparticles. Thus synthesized silver nanoparticles were characterized by UV-Vis spectrophotometer. Dispersity and morphology was characterized by scanning electron microscope (SEM); crystalline nature and purity of synthesized silver nanoparticles were revealed by X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX). FTIR spectrum was examined to identify the effective functional molecules responsible for the reduction and stabilization of silver nanoparticles synthesized by leaf extract. The photocatalytic activity of the synthesized silver nanoparticles was examined by degradation of methylene blue under sunlight irradiation. Green synthesized silver nanoparticles were effectively degrading the dye nearly 95% at 72 h of exposure time.

  13. Biomimetic processing of oriented crystalline ceramic layers

    Energy Technology Data Exchange (ETDEWEB)

    Cesarano, J.; Shelnutt, J.A.

    1997-10-01

    The aim of this project was to develop the capabilities for Sandia to fabricate self assembled Langmuir-Blodgett (LB) films of various materials and to exploit their two-dimensional crystalline structure to promote the growth of oriented thin films of inorganic materials at room temperature. This includes the design and synthesis of Langmuir-active (amphiphilic) organic molecules with end groups offering high nucleation potential for various ceramics. A longer range goal is that of understanding the underlying principles, making it feasible to use the techniques presented in this report to fabricate unique oriented films of various materials for electronic, sensor, and membrane applications. Therefore, whenever possible, work completed in this report was completed with the intention of addressing the fundamental phenomena underlying the growth of crystalline, inorganic films on template layers of highly organized organic molecules. This problem was inspired by biological processes, which often produce exquisitely engineered structures via templated growth on polymeric layers. Seashells, for example, exhibit great toughness owing to their fine brick-and-mortar structure that results from templated growth of calcium carbonate on top of layers of ordered organic proteins. A key goal in this work, therefore, is to demonstrate a positive correlation between the order and orientation of the template layer and that of the crystalline ceramic material grown upon it. The work completed was comprised of several parallel efforts that encompassed the entire spectrum of biomimetic growth from solution. Studies were completed on seashells and the mechanisms of growth for calcium carbonate. Studies were completed on the characterization of LB films and the capability developed for the in-house fabrication of these films. Standard films of fatty acids were studied as well as novel polypeptides and porphyrins that were synthesized.

  14. Spectral luminescent properties of bacteriochlorin and aluminum phthalocyanine nanoparticles as hydroxyapatite implant surface coating

    Directory of Open Access Journals (Sweden)

    Yu. S. Maklygina

    2016-01-01

    Full Text Available The development and the spectral research of unique coating as crystalline nanoparticles of IR photosensitizers were performed for the creation of hydroxyapatite implants with photobactericidal properties. It has been proved that by the interaction of nanoparticles covering implant with the polar solvent, which simulates the interaction of the implant with the biocomponents in vivo (fast proliferating and with immunocompetent cells, photosensitizers nanoparticles change the spectroscopic properties, becoming fluorescent and phototoxic. Thus, the developed coating based on crystalline photosensitizer nanoparticles with studied specific properties should have antibacterial, anti-inflammatory effect by the photodynamic treatment in the near implant area. This research opens the prospect of the local prevention of inflammatory and autoimmune reactions in the area of implantation. The results of the study suggest a promising this technology in order to create implants with photobactericidal properties.

  15. Green synthesis and characterization of gold nanoparticles using extract of anti-tumor potent Crocus sativus

    Science.gov (United States)

    Vijayakumar, R.; Devi, V.; Adavallan, K.; Saranya, D.

    2011-12-01

    In the present study, we have explored anti-tumor potent Crocus sativus (saffron) as a reducing agent for one pot size controlled green synthesis of gold nanoparticles (AuNps) at ambient conditions. The nanoparticles were characterized using UV-vis, scanning electron microscope (SEM), high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD) and FTIR analysis. The prepared AuNPs showed surface Plasmon resonance centered at 549 nm with average particle size of 15±5 nm. Stable, spherical and triangular crystalline AuNPs with well-defined dimensions were synthesized using anti-tumor potent Crocus sativus (saffron). Crystalline nature of the nanoparticles is confirmed from the HR-TEM, SAED and SEM images, and XRD patterns. From the FTIR spectra it is found that the biomolecules are responsible for capping in gold nanoparticles.

  16. Laser-assisted production of spherical TiO{sub 2} nanoparticles in water

    Energy Technology Data Exchange (ETDEWEB)

    Boutinguiza, M; Del Val, J; Comesana, R; Lusquinos, F; Pou, J [Departamento Fisica Aplicada, Universidad de Vigo, ETSII Lagoas-Marcosende, 9, 36310 Vigo (Spain); RodrIguez-Gonzalez, B [MicroscopIa Electronica de Alta Resolucion y Caracterizacion de Materiales, CACTI, Universidad de Vigo, 36310 Vigo (Spain)

    2011-05-13

    TiO{sub 2} nanoparticles with controllable average diameter have been obtained by laser ablation in water. A monomode ytterbium doped fiber laser (YDFL) was used to ablate a metallic titanium target placed in deionized water. The resulting colloidal solutions were subjected to laser radiation to study the resizing effect. The crystalline phases, morphology and optical properties of the obtained nanoparticles were characterized by means of transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), x-ray energy dispersive spectroscopy (EDS) and UV-vis absorption spectroscopy. The colloidal suspensions produced consisting of titanium dioxide crystalline nanoparticles show almost perfect spherical shape with diameters ranging from 3 to 40 nm. The nanoparticles are polycrystalline and exhibit anatase as well as rutile phases.

  17. Buckling Instability in Liquid Crystalline Physical Gels

    OpenAIRE

    Verduzco, Rafael; Meng, Guangnan; Kornfield, Julia A; Meyer, Robert B.

    2006-01-01

    In a nematic gel we observe a low-energy buckling deformation arising from soft and semisoft elastic modes. We prepare the self-assembled gel by dissolving a coil–side-group liquid-crystalline polymer–coil copolymer in a nematic liquid crystal. The gel has long network strands and a precisely tailored structure, making it ideal for studying nematic rubber elasticity. Under polarized optical microscopy we observe a striped texture that forms when gels uniformly aligned at 35 °C are cooled to r...

  18. Crystalline silicotitanates for cesium/strontium removal

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N.; Miller, J.; Sherman, J.

    1996-10-01

    A new class of inorganic ion exchangers called crystalline silicotitanates (CST) has been developed that exhibits very high selectivity for cesium and strontium in the highly alkaline radioactive wastes at the Hanford Site and other DOE sites. Tests have also shown that CSTs have high selectivity for cesium in acidic and neutral solutions. The ESP is supporting an effort at Sandia National Laboratories and Texas A & M University to further develop and characterize the important chemical and physical properties that will determine the applicability of CST to radioactive waste treatment at Hanford and other DOE facilities.

  19. The Poisson ratio of crystalline surfaces

    OpenAIRE

    Falcioni, Marco; Bowick, Mark; Guitter, Emmanuel; Thorleifsson, Gudmar

    1996-01-01

    A remarkable theoretical prediction for a crystalline (polymerized) surface is that its Poisson ratio (\\sigma) is negative. Using a large scale Monte Carlo simulation of a simple model of such surfaces we show that this is indeed true. The precise numerical value we find is (\\sigma \\simeq -0.32) on a (128^2) lattice at bending rigidity (kappa = 1.1). This is in excellent agreement with the prediction (\\sigma = -1/3) following from the self-consistent screening approximation of Le Doussal and ...

  20. Vibrational dynamics of crystalline L-alanine

    Energy Technology Data Exchange (ETDEWEB)

    Bordallo, H.N.; Eckert, J. [Los Alamos National Lab., NM (United States); Barthes, M. [Univ. Montpellier II (France)

    1997-11-01

    The authors report a new, complete vibrational analysis of L-alanine and L-alanine-d{sub 4} which utilizes IINS intensities in addition to frequency information. The use of both isotopomers resulted in a self-consistent force field for and assignment of the molecular vibrations in L-alanine. Some details of the calculation as well as a comparison of calculated and observed IINS spectra are presented. The study clarifies a number of important issues on the vibrational dynamics of this molecule and presents a self-consistent force field for the molecular vibrations in crystalline L-alanine.

  1. LAMELLAR STRUCTURE OF THERMOTROPIC LIQUID CRYSTALLINE POLYMERS

    Institute of Scientific and Technical Information of China (English)

    CHEN Shouxi; JIN Yongze

    1994-01-01

    The lamellar structure of a thermotropic aromatic polyester with flexible spacer has been studied by using transmission electron microscopy. It was found that the lamellar structure could be observed in the crystalline samples ofthis semirigid polymer crystallized from different states. The thickness of lamellae is around 10 nm, which is similar to that of the conventional polymers of flexible chain molecules. The molecular chains in the lamellae are oriented in the thickness direction as determined by electron diffraction. The possibility of molecular chains folding in the lamellae has been discussed.

  2. Quasi-crystalline geometry for architectural structures

    DEFF Research Database (Denmark)

    Weizierl, Barbara; Wester, Ture

    2001-01-01

    Artikel på CD-Rom 8 sider. The quasi-crystal (QC) type of material was discovered in 1983 by Dan Schechtman from Technion, Haifa. This new crystalline structure of material broke totally with the traditional conception of crystals and geometry introducing non-periodic close packing of cells....... The purpose of the paper is to investigate some possibilities for the application of Quasi-Crystal geometry for structures in architecture. The basis for the investigations is A: to use the Golden Cubes (the two different hexahedra consisting of rhombic facets where the length of the diagonals has the Golden...

  3. Superacid Passivation of Crystalline Silicon Surfaces.

    Science.gov (United States)

    Bullock, James; Kiriya, Daisuke; Grant, Nicholas; Azcatl, Angelica; Hettick, Mark; Kho, Teng; Phang, Pheng; Sio, Hang C; Yan, Di; Macdonald, Daniel; Quevedo-Lopez, Manuel A; Wallace, Robert M; Cuevas, Andres; Javey, Ali

    2016-09-14

    The reduction of parasitic recombination processes commonly occurring within the silicon crystal and at its surfaces is of primary importance in crystalline silicon devices, particularly in photovoltaics. Here we explore a simple, room temperature treatment, involving a nonaqueous solution of the superacid bis(trifluoromethane)sulfonimide, to temporarily deactivate recombination centers at the surface. We show that this treatment leads to a significant enhancement in optoelectronic properties of the silicon wafer, attaining a level of surface passivation in line with state-of-the-art dielectric passivation films. Finally, we demonstrate its advantage as a bulk lifetime and process cleanliness monitor, establishing its compatibility with large area photoluminescence imaging in the process.

  4. Raman Spectroscopy Of Glass-Crystalline Transformations

    Science.gov (United States)

    Haro, E.; Balkanski, M.

    1988-01-01

    Glass-crystalline transition is induced by laser irradiation on a GeSe bulk glass sample. The structural changes are detected by Raman spectroscopy. The speed of the crystallization process depends on the laser irradiation intensity. We have studied this crystallization process for three different powers of irradiation. It is found that the speed of crystallization increases with power. Stokes and anti-Stokes spectra were recorded during the transformation. From this data temperature was inferred at different stages of crystallization. The significance of this temperature is discussed.

  5. Plasmonic and silicon spherical nanoparticle anti-reflective coatings

    CERN Document Server

    Baryshnikova, K V; Babicheva, V E; Belov, P A

    2015-01-01

    Over the last decade, plasmonic antireflecting nanostructures have been extensively studied to be utilized in various optical and optoelectronic systems such as lenses, solar cells, photodetectors, and others. The growing interest to all-dielectric photonics as an alternative optical technology along with plasmonics motivates us to compare antireflection properties of all-dielectric and plasmonic nanoparticle coatings based on silver and crystalline silicon. Our results of numerical simulations for periodic arrays of spherical nanoparticles on top of amorphous silicon show that both silicon and silver nanoparticle coatings demonstrate strong anti-reflective properties in the visible spectral range. In this work, we show for the first time that blooming effect, that is zero reflection from the structure, with silicon coatings originates from the interference of electric- and magnetic-dipole responses of nanoparticles with the wave reflected from the substrate, and we refer to it as substrate-mediated Kerker ef...

  6. Synthesis and thermal characterization of Al2O3 nanoparticles

    Science.gov (United States)

    Ismardi, A.; Rosadi, O. M.; Kirom, M. R.; Syarif, D. G.

    2016-11-01

    Al2O3 nanoparticle has been successfully synthesized using sol gel method from AlCl3. The obtained nanoparticles was then characterized for grain size measurement, the size of nanoparticles was 6 nm by using surface area meter (SAM) and Transmission Electron Microscopy (TEM). The crystallinity property of the product was then checked with XRD spectroscopy, the result shows that the diffraction peaks were match with the 10-0425 JCPDS database. Thermal property of the Al2O3 nanoparticles was then studied by mixing it with engine base fluid as nanofluid. The usage of nanofluid was expected to be heat absorber and woulo increase cooling process in cooling machine. The results showed that cooling time increases when the concentration of nanofluid was increased. Finally, it is concluded that thermal property of Al2O3 was studied and applicable to be mixed with engine coolant of cooler machine to reduce cooling time process.

  7. Microwave-assisted synthesis and characterization of nickel ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, Gopal; Sen, Ravindra; Gupta, Nitish, E-mail: nitish.nidhi75@gmail.com [Department of Applied Chemistry, Shri G. S. Institute of Technology and Science, Indore Madhyapradesh (India); Malviya, Nitin [Department of Applied Physics, Shri G. S. Institute of Technology and Science, Indore Madhyapradesh (India)

    2015-08-28

    Nickel ferrite nanoparticles (NiFe{sub 2}O{sub 4}) were successfully prepared by microwave-assisted combustion method (MWAC) using citric Electron acid as a chelating agent. NiFe{sub 2}O{sub 4} nanoparticles were characterized by X-ray diffraction (XRD) pattern, Scanning Microscopy (SEM), Fourier transform infrared (FTIR) and UV-Visible techniques. XRD analysis revealed that NiFe{sub 2}O{sub 4} nanoparticles have spinel cubic structure with the average crystalline size of 26.38 nm. SEM analysis revealed random and porous structural morphology of particles and FTIR showed absorption bands related to octahedral and tetrahedral sites, in the range 400–600cm{sup −1} which strongly favor the formation of NiFe{sub 2}O{sub 4} nanoparticles. The optical band gap is determined by UV Visible method and found to be 5.4 eV.

  8. Effects of nanoparticle size on cellular uptake and liver MRI with polyvinylpyrrolidone-coated iron oxide nanoparticles.

    Science.gov (United States)

    Huang, Jing; Bu, Lihong; Xie, Jin; Chen, Kai; Cheng, Zhen; Li, Xingguo; Chen, Xiaoyuan

    2010-12-28

    The effect of nanoparticle size (30-120 nm) on magnetic resonance imaging (MRI) of hepatic lesions in vivo has been systematically examined using polyvinylpyrrolidone (PVP)-coated iron oxide nanoparticles (PVP-IOs). Such biocompatible PVP-IOs with different sizes were synthesized by a simple one-pot pyrolysis method. These PVP-IOs exhibited good crystallinity and high T(2) relaxivities, and the relaxivity increased with the size of the magnetic nanoparticles. It was found that cellular uptake changed with both size and surface physiochemical properties, and that PVP-IO-37 with a core size of 37 nm and hydrodynamic particle size of 100 nm exhibited higher cellular uptake rate and greater distribution than other PVP-IOs and Feridex. We systematically investigated the effect of nanoparticle size on MRI of normal liver and hepatic lesions in vivo. The physical and chemical properties of the nanoparticles influenced their pharmacokinetic behavior, which ultimately determined their ability to accumulate in the liver. The contrast enhancement of PVP-IOs within the liver was highly dependent on the overall size of the nanoparticles, and the 100 nm PVP-IO-37 nanoparticles exhibited the greatest enhancement. These results will have implications in designing engineered nanoparticles that are optimized as MR contrast agents or for use in therapeutics.

  9. Biomimetic and plasmonic hybrid light trapping for highly efficient ultrathin crystalline silicon solar cells.

    Science.gov (United States)

    Zhang, Y; Jia, B; Gu, M

    2016-03-21

    Designing effective light-trapping structures for the insufficiently absorbed long-wavelength light in ultrathin silicon solar cells represents a key challenge to achieve low cost and highly efficient solar cells. We propose a hybrid structure based on the biomimetic silicon moth-eye structure combined with Ag nanoparticles to achieve advanced light trapping in 2 μm thick crystalline silicon solar cells approaching the Yablonovitch limit. By synergistically using the Mie resonances of the silicon moth-eye structure and the plasmonic resonances of the Ag nanoparticles, the integrated absorption enhancement achieved across the usable solar spectrum is 69% compared with the cells with the conventional light trapping design. This is significantly larger than both the silicon moth-eye structure (58%) and Ag nanoparticle (41%) individual light trapping. The generated photocurrent in the 2 μm thick silicon layer is as large as 33.4 mA/cm2, which is equivalent to that generated by a 30 μm single-pass absorption in the silicon. The research paves the way for designing highly efficient light trapping structures in ultrathin silicon solar cells.

  10. Determination of Crystallinity and Crystal Structure of Hylamer™ Polyethylene after in vivo Wear

    OpenAIRE

    Visentin, M; Stea, S.; De Clerico, M.; Reggiani, M.; Fagnano, C.; Squarzoni, S.; De Toni, A

    2006-01-01

    Abstract Hylamer? polyethylene is a crystalline form of polyethylene of 70% crystallinity whereas conventional polyethylene (PE) has 50% crystallinity. Crystallinity is the percentage by weight of the crystalline phase present in the whole polymer, which comprises both amorphous and crystalline phases. Clinical experience has shown that Hylamer? components used in joint prostheses, if sterilized ...

  11. Determination of Crystallinity and Crystal Structure of Hylamer™ Polyethylene after in vivo Wear

    OpenAIRE

    Visentin, M; Stea, S.; Clerico, M; Reggiani, M.; Fagnano, C.; Squarzoni, S.; Toni, A.

    2006-01-01

    Abstract Hylamer? polyethylene is a crystalline form of polyethylene of 70% crystallinity whereas conventional polyethylene (PE) has 50% crystallinity. Crystallinity is the percentage by weight of the crystalline phase present in the whole polymer, which comprises both amorphous and crystalline phases. Clinical experience has shown that Hylamer? components used in joint prostheses, if sterilized ...

  12. Nanoscale crystallinity modulates cell proliferation on plasma sprayed surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Alan M. [School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH (United Kingdom); Paxton, Jennifer Z.; Hung, Yi-Pei; Hadley, Martin J.; Bowen, James; Williams, Richard L. [School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT (United Kingdom); Grover, Liam M., E-mail: l.m.grover@bham.ac.uk [School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT (United Kingdom)

    2015-03-01

    Calcium phosphate coatings have been applied to the surface of metallic prostheses to mediate hard and soft tissue attachment for more than 40 years. Most coatings are formed of high purity hydroxyapatite, and coating methods are often designed to produce highly crystalline surfaces. It is likely however, that coatings of lower crystallinity can facilitate more rapid tissue attachment since the surface will exhibit a higher specific surface area and will be considerably more reactive than a comparable highly crystalline surface. Here we test this hypothesis by growing a population of MC3T3 osteoblast-like cells on the surface of two types of hip prosthesis with similar composition, but with differing crystallinity. The surfaces with lower crystallinity facilitated more rapid cell attachment and increased proliferation rate, despite having a less heterogeneous surface topography. This work highlights that the influence of the crystallinity of HA at the nano-scale is dominant over macro-scale topography for cell adhesion and growth. Furthermore, crystallinity could be easily adjusted by without compromising coating purity. These findings could facilitate designing novel coated calcium phosphate surfaces that more rapidly bond tissue following implantation. - Highlights: • Crystallinity of HA at the nano-scale was dominant over macro-scale topography. • Lower crystallinity caused rapid cell attachment and proliferation rate. • Crystallinity could be easily adjusted by without compromising coating purity.

  13. Dispersions of Semiconductor Nanoparticles in Thermotropic Liquid Crystal: From Optical Modification to Assisted Self-Assembly

    OpenAIRE

    Rodarte, Andrea L.

    2014-01-01

    The interaction of semiconducting quantum dot nanoparticles (QDs) within thermotropic liquid crystalline (LC) materials are studied in this thesis. LC materials are ideal for bottom-up organization of nanoparticles as an active matrix that can be externally manipulated via electric or magnetic fields. In addition, the optical properties of QDs can be modified by the surrounding LC resulting in novel devices such as a quantum dot/liquid crystal laser. The first system studies the dispersion of...

  14. Recent advances in cryo-TEM imaging of soft lipid nanoparticles

    DEFF Research Database (Denmark)

    Helvig, Shen Yu; Mat Azmi, Intan Diana Binti; Moghimi, Seyed Moien;

    2015-01-01

    Cryo-transmission electron microscopy (Cryo-TEM), and its technological variations thereof, have become a powerful tool for detailed morphological characterization and 3D tomography of soft lipid and polymeric nanoparticles as well as biological materials such as viruses and DNA without chemical...... fixation. Here, we review and discuss recent advances in Cryo-TEM analysis of lipid-based drug nanocarriers with particular emphasis on morphological and internal nanostructure characterization of lyotropic liquid crystalline nanoparticles such as cubosomes and hexosomes....

  15. Insights into the Synthesis of Layered Double Hydroxide (LDH) Nanoparticles: Part 2. Formation Mechanisms of LDH

    OpenAIRE

    Sun, Xiaodi; Dey, Sandwip K.

    2015-01-01

    This study demonstrates the effect of (co)intercalated anion compositions on nanostructure evolution to understand the formation mechanisms of layered double hydroxide (LDH) nanoparticles following coprecipitation and hydrothermal treatments (HT). Initially, the room temperature coprecipitation resulted in amorphous primary nanoparticles that agglomerated at the edges due to low surface charge densities. The reversibility of such agglomeration was determined by the crystalline quality upon HT...

  16. Topology of nonsymmorphic crystalline insulators and superconductors

    Science.gov (United States)

    Shiozaki, Ken; Sato, Masatoshi; Gomi, Kiyonori

    2016-05-01

    Topological classification in our previous paper [K. Shiozaki and M. Sato, Phys. Rev. B 90, 165114 (2014), 10.1103/PhysRevB.90.165114] is extended to nonsymmorphic crystalline insulators and superconductors. Using the twisted equivariant K theory, we complete the classification of topological crystalline insulators and superconductors in the presence of additional order-two nonsymmorphic space-group symmetries. The order-two nonsymmorphic space groups include half-lattice translation with Z2 flip, glide, twofold screw, and their magnetic space groups. We find that the topological periodic table shows modulo-2 periodicity in the number of flipped coordinates under the order-two nonsymmorphic space group. It is pointed out that the nonsymmorphic space groups allow Z2 topological phases even in the absence of time-reversal and/or particle-hole symmetries. Furthermore, the coexistence of the nonsymmorphic space group with time-reversal and/or particle-hole symmetries provides novel Z4 topological phases, which have not been realized in ordinary topological insulators and superconductors. We present model Hamiltonians of these new topological phases and analytic expressions of the Z2 and Z4 topological invariants. The half-lattice translation with Z2 spin flip and glide symmetry are compatible with the existence of boundaries, leading to topological surface gapless modes protected by the order-two nonsymmorphic symmetries. We also discuss unique features of these gapless surface modes.

  17. In vivo human crystalline lens topography.

    Science.gov (United States)

    Ortiz, Sergio; Pérez-Merino, Pablo; Gambra, Enrique; de Castro, Alberto; Marcos, Susana

    2012-10-01

    Custom high-resolution high-speed anterior segment spectral domain optical coherence tomography (OCT) was used to characterize three-dimensionally (3-D) the human crystalline lens in vivo. The system was provided with custom algorithms for denoising and segmentation of the images, as well as for fan (scanning) and optical (refraction) distortion correction, to provide fully quantitative images of the anterior and posterior crystalline lens surfaces. The method was tested on an artificial eye with known surfaces geometry and on a human lens in vitro, and demonstrated on three human lenses in vivo. Not correcting for distortion overestimated the anterior lens radius by 25% and the posterior lens radius by more than 65%. In vivo lens surfaces were fitted by biconicoids and Zernike polynomials after distortion correction. The anterior lens radii of curvature ranged from 10.27 to 14.14 mm, and the posterior lens radii of curvature ranged from 6.12 to 7.54 mm. Surface asphericities ranged from -0.04 to -1.96. The lens surfaces were well fitted by quadrics (with variation smaller than 2%, for 5-mm pupils), with low amounts of high order terms. Surface lens astigmatism was significant, with the anterior lens typically showing horizontal astigmatism ([Formula: see text] ranging from -11 to -1 µm) and the posterior lens showing vertical astigmatism ([Formula: see text] ranging from 6 to 10 µm).

  18. Crystalline-silicon photovoltaics: Necessary and sufficient

    Science.gov (United States)

    Basore, P. A.; Gee, J. M.

    Photovoltaic (PV) energy systems have always been dominated by crystalline-silicon (c-Si) technology, and recent developments persuasively suggest that c-Si will continue to be the dominant technology well into the next century. The authors explain why c-Si technology is fairing much better than previously expected, and discuss the impact of improvements currently under development. They use a ground-up, engineering-based approach to predict the expected evolution of this type of PV system, and argue that c-Si PV will be in a position to compete for the US residential power market starting in about the year 2010. This market alone will provide the opportunity for PV to supply several percent of the electrical energy used in the United States. Crystalline-silicon technology is therefore not just necessary for building a near-term PV industry; it also offers a low-risk approach to meeting long-term goals for PV energy systems.

  19. Anisotropy and Crystalline Structure in Polyaniline Films

    Science.gov (United States)

    Minto, C. D. G.; Vaughan, A. S.

    1996-03-01

    Films of polyaniline -- camphor sulphonic acid cast from m-cresol exhibit transport properties characteristic of a material stradelling the metal/insulator transition. This improvement in properties over traditional methods of polyaniline production has been suggested as being caused by the macromolecule adopting an expanded coil configuration in this solvent. Such films have been shown to be semi--crystalline and are presumed to be completely isotropic. We present here new results which demonstrate that such films are in fact appreciably aligned. X-ray scattering is utilised to expose the presence of molecular anisotropy within such films, the polymers forming a stacked structure with the molecules preferentially oriented parallel to the plane of the film. Similar measurements confirm that the molecules are randomly oriented within this plane. Such alignment considerably improves the transport properties. Anisotropy and the crystalline structure within these films, those cast from chloroform and those using the isolated enantiomeric counter ion are quantified and discussed. The results demonstrate that improved transport properties have arisen as a result of both polymer--solvent interactions and as a result of improved chain alignment.

  20. Superparamagnetic Nanoparticles for Atherosclerosis Imaging

    Science.gov (United States)

    Herranz, Fernando; Salinas, Beatriz; Groult, Hugo; Pellico, Juan; Lechuga-Vieco, Ana V.; Bhavesh, Riju; Ruiz-Cabello, J.

    2014-01-01

    The production of magnetic nanoparticles of utmost quality for biomedical imaging requires several steps, from the synthesis of highly crystalline magnetic cores to the attachment of the different molecules on the surface. This last step probably plays the key role in the production of clinically useful nanomaterials. The attachment of the different biomolecules should be performed in a defined and controlled fashion, avoiding the random adsorption of the components that could lead to undesirable byproducts and ill-characterized surface composition. In this work, we review the process of creating new magnetic nanomaterials for imaging, particularly for the detection of atherosclerotic plaque, in vivo. Our focus will be in the different biofunctionalization techniques that we and several other groups have recently developed. Magnetic nanomaterial functionalization should be performed by chemoselective techniques. This approach will facilitate the application of these nanomaterials in the clinic, not as an exception, but as any other pharmacological compound.

  1. Preparation, Characterization and Antibacterial Property of Cerium Substituted Hydroxyapatite Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    Lin Yingguang; Yang Zhuoru; Cheng Jiang

    2007-01-01

    Nanoparticles of hydroxyapatite (HAP) and cerium substituted hydroxyapatite (CeHAP) with the atomic ratio of Ce/[Ca+Ce] (xCe) from 0 to 0.2 were prepared by sol-gel-supercritical fluid drying (SCFD) method. The nanoparticles were characterized by TEM, XRD, and FT-IR, and the effects of cerium on crystal structure, crystallinity, and particle shape were discussed. With the tests of bacterial inhibition zone and antibacterial ratio, the antibacterial property of HAP and CeHAP nanoparticles on Escherichia coli, Staphylococcus aureus, Lactobacillus were researched. Results showed that the nanoparticles of HAP and CeHAP could be made by sol-gel-SCFD, cerium could partially substitute for calcium and enter the structure of HAP. After substitution, the crystallinity, the IR wavenumbers of bonds in CeHAP decreased gradually with increase of cerium substitution, and the morphology of the nanoparticles changed from the short rod-shaped HAP to the needle-shaped CeHAP. The nanoparticles of HAP and CeHAP with xCe below 0.08 had antibacterial property only forcibly contacting with the test bacteria at the test concentration of 0.1 g·ml-1, however, the CeHAP nanoparticles had antibacterial ability at that concentration no matter statically or dynamically contacting with the test bacteria when xCe was above 0.08, and the antibacterial ability gets better with the increase of xCe, indicating that the antibacterial property was improved after calcium was partially substituted by cerium. The improved antibacterial effects of CeHAP nanoparticle on Lactobacillus showed its potential ability to anticaries.

  2. Plant Extract (Bupleurum falcatum) as a Green Factory for Biofabrication of Gold Nanoparticles.

    Science.gov (United States)

    Lee, You Jeong; Cha, Song-Hyun; Lee, Kyoung Jin; Kim, Yeong Shik; Cho, Seonho; Park, Youmie

    2015-09-01

    This work describes a biofabrication process for gold nanoparticles in which the plant extract (Bupleurum falcatum) is used as a reducing agent to convert gold ions to gold nanoparticles. Biofabricated gold nanoparticles with spherical shapes were observed with an average diameter of 10.5 ± 2.3 nm. The color of the gold nanoparticles was purple, with a surface plasmon resonance peak at 542 nm. The face-centered cubic structure of crystalline gold was confirmed by high-resolution X-ray diffraction patterns. The biofabricated gold nanoparticles demonstrated excellent catalytic activity towards the 4-nitrophenol reduction reaction. The current report suggests that plant extracts are valuable natural sources for the biofabrication of gold nanoparticles with excellent catalytic activities.

  3. Synthesis and characterization of Pb-Bi bimetal nanoparticles by solution dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Yanbao [Laboratory of Special Functional Materials, Henan University, Kaifeng 475002 (China); Liu Jin [Laboratory of Special Functional Materials, Henan University, Kaifeng 475002 (China); Cao Liuqin [Laboratory of Special Functional Materials, Henan University, Kaifeng 475002 (China); Wu Zhishen [Laboratory of Special Functional Materials, Henan University, Kaifeng 475002 (China); Zhang Zhijun [Laboratory of Special Functional Materials, Henan University, Kaifeng 475002 (China)]. E-mail: zhaoyb902@henu.edu.cn; Dang Hongxin [Laboratory of Special Functional Materials, Henan University, Kaifeng 475002 (China)

    2006-09-10

    In this paper, we report a new solution synthetic route to prepare Pb-Bi bimetal nanoparticles from bulk ingot that is different from conventional solution methods. The Pb-Bi nanoparticles were prepared by dispersing directly melt Pb-Bi ingot in a suitable solvent and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and other techniques. Transmission electron microscopy shows that the Pb-Bi nanoparticles appear a spherical shape with an average diameter of 50 nm. X-ray diffraction studies show that the Pb-Bi nanoparticles contain crystalline Pb{sub 7}Bi{sub 3}, Bi and a little amount of PbO. Tribological results show that Pb-Bi nanoparticles as a lubricating additive show good antiwear properties. In addition, the formation mechanism of the Pb-Bi nanoparticles was also discussed.

  4. ZrO2 nanoparticles' effects on split tensile strength of self compacting concrete

    Directory of Open Access Journals (Sweden)

    Ali Nazari

    2010-12-01

    Full Text Available In the present study, split tensile strength of self compacting concrete with different amount of ZrO2 nanoparticles has been investigated. ZrO2 nanoparticles with the average particle size of 15 nm were added partially to cement paste (Portland cement together with polycarboxylate superplasticizer and split tensile strength of the specimens has been measured. The results indicate that ZrO2 nanoparticles are able to improve split tensile strength of concrete and recover the negative effects of polycarboxylate superplasticizer. ZrO2 nanoparticle as a partial replacement of cement up to 4 wt. (% could accelerate C-S-H gel formation as a result of increased crystalline Ca(OH2 amount at the early age of hydration. The increased the ZrO2 nanoparticles' content more than 4 wt. (%, causes the reduced the split tensile strength because of unsuitable dispersion of nanoparticles in the concrete matrix.

  5. Microwave-Assisted Synthesis of Alumina Nanoparticles Using Some Plants Extracts

    Directory of Open Access Journals (Sweden)

    Meisam Hasanpoor

    2017-01-01

    Full Text Available In present study we used five green plants for microwave assisted synthesis of Alumina nanoparticles from Aluminum nitrate. Structural characterization was studied using x-ray diffraction that showed semi- crystalline and possibly, amorphous structure. Fourier infrared spectroscopy was used to determine Al-O bond and functional groups responsible for synthesis of nanoparticles. FTIR confirmed existence of Al-O band and bio-functional groups, originated from plant extract. Morphology and size of nanoparticles were investigated using scanning electron microscopy, transmission electron microscopy and atomic force microscopy techniques. It was observed that nanoparticles have near-spherical shape. Average size of clusters of nanoparticles varied with different routes from of 60 nm to 300 nm. AFM images showed that Individual nanoparticles were less than 10 nm.

  6. Biosynthesis of hematite nanoparticles and its cytotoxic effect on HepG2 cancer cells.

    Science.gov (United States)

    Rajendran, Kumar; Karunagaran, Vithiya; Mahanty, Biswanath; Sen, Shampa

    2015-03-01

    Iron oxide nanoparticles were gaining significant importance in a variety of applications due to its paramagnetic properties and biocompatibility. Various chemical methods were employed for hematite nanoparticle synthesis which require special equipment or a complex production process. In this study, protein capped crystalline hexagonal hematite (α-Fe2O3) nanoparticles were synthesized by green approach using culture supernatant of a newly isolated bacterium, Bacillus cereus SVK1 at ambient conditions. The synthesized nanoparticles were characterized by electron microscopy, X-ray diffraction, UV-visible spectroscopy and Fourier transform infrared spectroscopic analysis. Nanoparticles were evaluated for its possible anticancer activity against HepG2 liver cancer cells by MTT assay. Hematite nanoparticles with an average diameter of 30.2 nm, exhibited a significant cytotoxicity toward HepG2 cells in a concentration-dependent manner (CTC50=704 ng/ml). Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Hydrothermal synthesis, characterization and luminescent properties of lanthanide-doped NaLaF$_4$ nanoparticles

    Indian Academy of Sciences (India)

    JIGMET LADOL; HEENA KHAJURIA; SONIKA KHAJURIA; HAQ NAWAZ SHEIKH

    2016-08-01

    Nanoparticles of sodium lanthanum (III) fluoride-doped and co-doped with Eu$^{3+}/Tb$^{3+}$ were prepared by the hydrothermal method using citric acid as structure-directing agent. Structural aspects and optical properties of synthesized nanoparticles were studied by powder X-ray diffraction (XRPD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), energy-dispersive X-ray spectra (EDS), particle size by dynamic light scattering (DLS), Fourier transform infrared (FTIR) spectrum and photoluminescence (PL) techniques. Nanoparticles consist of well-crystallized hexagonal phase and the average crystallite size for undoped and doped-NaLaF$_4$ nanoparticles are in the range of 20–22 nm. TEM images show that nanoparticles have cylindrical shape and crystalline nature of nanoparticles was confirmed by SAED patterns. Downconversion(DC) luminescent properties of doped NaLaF4 were also investigated and impact of co-doping has been explored.

  8. Structure of Oxide Nanoparticles in Fe-16Cr MA/ODS Ferritic Steel

    Energy Technology Data Exchange (ETDEWEB)

    Hsiung, L; Fluss, M; Kimura, A

    2010-04-06

    Oxide nanoparticles in Fe-16Cr ODS ferritic steel fabricated by mechanical alloying (MA) method have been examined using high-resolution transmission electron microscopy (HRTEM) techniques. A partial crystallization of oxide nanoparticles was frequently observed in as-fabricated ODS steel. The crystal structure of crystalline oxide particles is identified to be mainly Y{sub 4}Al{sub 2}O{sub 9} (YAM) with a monoclinic structure. Large nanoparticles with a diameter larger than 20 nm tend to be incoherent and have a nearly spherical shape, whereas small nanoparticles with a diameter smaller than 10 nm tend to be coherent or semi-coherent and have faceted boundaries. The oxide nanoparticles become fully crystallized after prolonged annealing at 900 C. These results lead us to propose a three-stage formation mechanism of oxide nanoparticles in MA/ODS steels.

  9. Eugenol-loaded chitosan nanoparticles: II. Application in bio-based plastics for active packaging.

    Science.gov (United States)

    Woranuch, Sarekha; Yoksan, Rangrong

    2013-07-25

    The aim of the present research was to study the possibility of using eugenol-loaded chitosan nanoparticles as antioxidants for active bio-based packaging material. Eugenol-loaded chitosan nanoparticles were incorporated into thermoplastic flour (TPF) - a model bio-based plastic - through an extrusion process at temperatures above 150°C. The influences of eugenol-loaded chitosan nanoparticles on crystallinity, morphology, thermal properties, radical scavenging activity, reducing power, tensile properties and barrier properties of TPF were investigated. Although the incorporation of 3% (w/w) of eugenol-loaded chitosan nanoparticles significantly reduced the extensibility and the oxygen barrier property of TPF, it provided antioxidant activity and improved the water vapor barrier property. In addition, TPF containing eugenol-loaded chitosan nanoparticles exhibited superior radical scavenging activity and stronger reducing power compared with TPF containing naked eugenol. The results suggest the applicability of TPF containing eugenol-loaded chitosan nanoparticles as an antioxidant active packaging material.

  10. Biosynthesis, characterization and cytotoxic effect of plant mediated silver nanoparticles using Morinda citrifolia root extract.

    Science.gov (United States)

    Suman, T Y; Radhika Rajasree, S R; Kanchana, A; Elizabeth, S Beena

    2013-06-01

    Silver has been used since time to control bodily infection, prevent food spoilage and heal wounds by preventing infection. The present study aims at an environmental friendly method of synthesizing silver nanoparticles, from the root of Morinda citrifolia; without involving chemical agents associated with environmental toxicity. The obtained nanoparticles were characterized by UV-vis absorption spectroscopy with an intense surface plasmon resonance band at 413 nm clearly reveals the formation of silver nanoparticles. Fourier transmission infra red spectroscopy (FTIR) showed nanopartilces were capped with plant compounds. Field emission-scanning electron microscopy (FE-SEM) and Transmission electron microscopy (TEM) showed that the spherical nature of the silver nanoparticles with a size of 30-55 nm. The X-ray diffraction spectrum XRD pattern clearly indicates that the silver nanoparticles formed in the present synthesis were crystalline in nature. In addition these biologically synthesized nanoparticles were also proved to exhibit excellent cytotoxic effect on HeLa cell.

  11. Efficient synthesis of silver nanoparticles from Prosopis juliflora leaf extract and its antimicrobial activity using sewage

    Science.gov (United States)

    Raja, K.; Saravanakumar, A.; Vijayakumar, R.

    2012-11-01

    In this paper, aqueous extract of fresh leaves of Prosopis juliflora was used for the synthesis of silver (Ag) nanoparticles. UV-Vis spectroscopy studies were carried out to asses silver nanoparticles formation within 5 min, scanning electron microscopic was used to characterize shape of the Ag nanoparticles, X-ray diffraction analysis confirms the nanoparticles as crystalline silver and facecentered cubic type and Fourier transform infra-red assed that shows biomolecule compounds which are responsible for reduction and capping material of silver nanoparticles. The anti microbial activity of silver nanoparticle was performed using sewage. The approach of plant-mediated synthesis appears to be cost efficient, eco-friendly and easy methods.

  12. Anticancer activity of Ficus religiosa engineered copper oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sankar, Renu; Maheswari, Ramasamy; Karthik, Selvaraju [Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu (India); Shivashangari, Kanchi Subramanian, E-mail: shivashangari@gmail.com [Regional Forensic Science Laboratory, Tiruchirapalli, Tamilnadu (India); Ravikumar, Vilwanathan, E-mail: ravikumarbdu@gmail.com [Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu (India)

    2014-11-01

    The design, synthesis, characterization and application of biologically synthesized nanomaterials have become a vital branch of nanotechnology. There is a budding need to develop a method for environmentally benign metal nanoparticle synthesis, that do not use toxic chemicals in the synthesis protocols to avoid adverse effects in medical applications. Here, it is a report on an eco-friendly process for rapid synthesis of copper oxide nanoparticles using Ficus religiosa leaf extract as reducing and protecting agent. The synthesized copper oxide nanoparticles were confirmed by UV–vis spectrophotometer, absorbance peaks at 285 nm. The copper oxide nanoparticles were analyzed with field emission-scanning electron microscope (FE-SEM), Fourier transform infrared (FT-IR) spectroscopy, dynamic light scattering (DLS) and X-ray diffraction (XRD) spectrum. The FE-SEM and DLS analyses exposed that copper oxide nanoparticles are spherical in shape with an average particle size of 577 nm. FT-IR spectral analysis elucidates the occurrence of biomolecules required for the reduction of copper oxide ions. Zeta potential studies showed that the surface charge of the formed nanoparticles was highly negative. The XRD pattern revealed that synthesized nanoparticles are crystalline in nature. Further, biological activities of the synthesized nanoparticles were confirmed based on its stable anti-cancer effects. The apoptotic effect of copper oxide nanoparticles is mediated by the generation of reactive oxygen species (ROS) involving the disruption of mitochondrial membrane potential (Δψm) in A549 cells. The observed characteristics and results obtained in our in vitro assays suggest that the copper nanoparticles might be a potential anticancer agent. - Highlights: • Biogenic synthesis of copper oxide nanoparticles by leaf extract of Ficus religiosa • Characterized via UV–vis, FT-IR, DLS, FE-SEM with EDAX and XRD • Protein may act as an encapsulating, reducing and stabilizing

  13. The effects of fuel type in synthesis of NiFe2O4 nanoparticles by microwave assisted combustion method

    Science.gov (United States)

    Karcıoğlu Karakaş, Zeynep; Boncukçuoğlu, Recep; Karakaş, İbrahim H.

    2016-04-01

    In this study, it was investigated the effects of the used fuels on structural, morphological and magnetic properties of nanoparticles in nanoparticle synthesis with microwave assisted combustion method with an important method in quick, simple and low cost at synthesis of the nanoparticles. In this aim, glycine, urea and citric acid were used as fuel, respectively. The synthesised nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer-Emmet-Teller surface area (BET), and vibrating sample magnetometry (VSM) techniques. We observed that fuel type is quite effective on magnetic properties and surface properties of the nanoparticles. X-ray difractograms of the obtained nanoparticles were compared with standard powder diffraction cards of NiFe2O4 (JCPDS Card Number 54-0964). The results demonstrated that difractograms are fully compatible with standard reflection peaks. According to the results of the XRD analysis, the highest crystallinity was observed at nanoparticles synthesized with glycine. The results demonstrated that the nanoparticles prepared with urea has the highest surface area. The micrographs of SEM showed that all of the nanoparticles have nano-crystalline behaviour and particles indication cubic shape. VSM analysis demonstrated that the type of fuel used for synthesis is highly effective a parameter on magnetic properties of nanoparticles.

  14. Reline-assisted green and facile synthesis of fluorapatite nanoparticles.

    Science.gov (United States)

    Karimi, Mohammad; Ramsheh, Majid Rastegar; Ahmadi, Seyed Mohammad; Madani, Mohammad Reza; Shamsi, Mehdi; Reshadi, Reyhaneh; Lotfi, Farahnaz

    2017-08-01

    A fast, simple and sustainable method based on choline chloride-urea deep eutectic solvent (known as Reline) was employed to synthesize nanosized fluorapatite (FA) particles. Using XRD, FESEM, TEM, EDS, and FTIR, the formation of FA nanoparticles with average crystal size of ~34nm, percent crystallinity of 93%, particle size of ~45nm, and high crystal, elemental, and structural purity was confirmed. The MTT cytotoxicity assay endorsed the non-toxicity of as-synthesized FA nanoparticles. The good biocompatibility, osteogenity and mineralization ability of as-synthesized FA nanoparticles were confirmed by Alizarin red staining, Acridine orange staining and ALP activity tests. After synthesis of the nanoparticles, the Reline solvent was recovered successfully using freeze-drying method with 71% yield of recovery revealing the green, sustainable and economical nature of the developed synthesis method. According to the results, owing to its alkalinity, high ionic strength and 3D bulky configuration, the Reline solvent provides the optimum conditions required for formation of FA with maximum crystallinity and the particle size controlled in the nanometer range. Providing a simple, cost-effective, and green method for synthesis of FA nanoparticles with potential biological applications is the most innovative aspect of this study. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Nanoparticles migration in fractured rocks and affects on contaminant migration

    Science.gov (United States)

    Missana, Tiziana; Garcia-Gutierrez, Miguel; Alonso, Ursula

    2014-05-01

    In previous studies, the transport behavior of artificial (gold and latex) and natural (smectite clay) colloids, within a planar fracture in crystalline rock, was analyzed. In order to better understand the effects of colloid size, shape and surface charge on nanoparticle migration and especially on filtration processes on natural rock surfaces, different clay colloids and oxide nanoparticles were selected and their transport studied as a function of the residence time. In all the cases, (a fraction of) the nanoparticles travelled in the fracture as fast as or faster than water (with a retardation factor, Rf ≤ 1) and the observed Rf, was related to the Taylor dispersion coefficient, accounting for colloid size, water velocity and fracture width. However, under most of the cases, in contrast to the behavior of a conservative tracer, colloids recovery was much lower than 100 %. Differences in recovery between different nanoparticles, under similar residence times, were analyzed. In order to evaluate the possible consequences, on contaminant migration, of the presence of nanoparticles in the system, transport tests were carried out with both colloids and sorbing radionuclides. The overall capacity for colloids of enhancing radionuclide migration in crystalline rock fractures is discussed. Acknowledgments: The research leading to these results received funding from EU FP7/2007-2011 grant agreement Nº 295487 (BELBAR, Bentonite Erosion: effects on the Long term performance of the engineered Barrier and Radionuclide Transport) and by the Spanish Government under the project NANOBAG (CTM2011-2797).

  16. The crystalline fraction of interstellar silicates in starburst galaxies

    CERN Document Server

    Kemper, F; Woods, Paul M

    2010-01-01

    We present a model using the evolution of the stellar population in a starburst galaxy to predict the crystallinity of the silicates in the interstellar medium of this galaxy. We take into account dust production in stellar ejecta, and amorphisation and destruction in the interstellar medium and find that a detectable amount of crystalline silicates may be formed, particularly at high star formation rates, and in case supernovae are efficient dust producers. We discuss the effect of dust destruction and amorphisation by supernovae, and the effect of a low dust-production efficiency by supernovae, and find that when taking this into account, crystallinity in the interstellar medium becomes hard to detect. Levels of 6.5-13% crystallinity in the interstellar medium of starburst galaxies have been observed and thus we conclude that not all these crystalline silicates can be of stellar origin, and an additional source of crystalline silicates associated with the Active Galactic Nucleus must be present.

  17. Fabrication and characterization of NiO nanoparticles by precipitation from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Moghaddam, Javad; Hashemi, Elham [Sahand University of Technology, Tabriz (Iran, Islamic Republic of)

    2014-03-15

    Present work involves synthesis of NiO nanoparticles using chemical homogeneous precipitation (CHP) method as a facile procedure. Ammonia as a complex agent was used in this method. Effects of different types of complexation-precipitation methods on the crystallinity and morphology of nanoparticles were investigated. NiO particles were prepared by direct precipitation method from NiSO4 solution to compare crystallinity and morphology of NiO particles with particles obtained via complexation-precipitation methods. Our major intent was to investigate the effect of complex agent on the crystallization and growth of NiO nanoparticles. Results showed that the best condition for synthesizing spherical NiO shape was using NaOH as decomposing agent, of which the consequence was more uniformity and spherical nanoparticles with a diameter in the range of 40-60 nm. The size of the nickel oxide and nickel hydroxide nanoparticles was estimated by X-ray powder diffraction (XRD) pattern. The chemical structure information of the particles was studied by Fourier transform infrared (FT-IR) spectroscopy. Spherical, elliptical, sheet or flowerlike shapes were detected by field emission scanning electron microscopy (FESEM) analysis. Results showed that by the use of ammonia as complex agent, crystalline state and particles size distribution of NiO nanoparticles improved.

  18. Biosynthesis of silver and zinc oxide nanoparticles using Pichia fermentans JA2 and their antimicrobial property

    Science.gov (United States)

    Chauhan, Ritika; Reddy, Arpita; Abraham, Jayanthi

    2015-01-01

    The development of eco-friendly alternative to chemical synthesis of metal nanoparticles is of great challenge among researchers. The present study aimed to investigate the biological synthesis, characterization, antimicrobial study and synergistic effect of silver and zinc oxide nanoparticles against clinical pathogens using Pichia fermentans JA2. The extracellular biosynthesis of silver and zinc oxide nanoparticles was investigated using Pichia fermentans JA2 isolated from spoiled fruit pulp bought in Vellore local market. The crystalline and stable metallic nanoparticles were characterized evolving several analytical techniques including UV-visible spectrophotometer, X-ray diffraction pattern analysis and FE-scanning electron microscope with EDX-analysis. The biosynthesized metallic nanoparticles were tested for their antimicrobial property against medically important Gram positive, Gram negative and fungal pathogenic microorganisms. Furthermore, the biosynthesized nanoparticles were also evaluated for their increased antimicrobial activities with various commercially available antibiotics against clinical pathogens. The biosynthesized silver nanoparticles inhibited most of the Gram negative clinical pathogens, whereas zinc oxide nanoparticles were able to inhibit only Pseudomonas aeruginosa. The combined effect of standard antibiotic disc and biosynthesized metallic nanoparticles enhanced the inhibitory effect against clinical pathogens. The biological synthesis of silver and zinc oxide nanoparticles is a novel and cost-effective approach over harmful chemical synthesis techniques. The metallic nanoparticles synthesized using Pichia fermentans JA2 possess potent inhibitory effect that offers valuable contribution to pharmaceutical associations.

  19. Anticancer activity of eco-friendly gold nanoparticles against lung and liver cancer cells

    Directory of Open Access Journals (Sweden)

    S. Rajeshkumar

    2016-06-01

    Full Text Available Gold nanoparticles have many applications in biomedical field. Improving delivery of anticancer agents to tumors using nanoparticles is one of the most promising research arenas in the field of nanotechnology. Eco-friendly gold nanoparticles synthesis was studied using marine bacteria Enterococcus sp. The nanoparticle synthesis started at 2 h of incubation time was identified by the formation of ruby red in the reaction mixture and SPR band centered at 545 nm. XRD shows that the strong four intense peaks indicate crystalline nature of nanoparticles. Morphology of nanoparticles analyzed by TEM shows that they are mostly spherical in shape with size ranging from 6 to 13 nm. EDX supports the presence of gold in the synthesized nanoparticles. FTIR reveals the active functional groups in the culture supernatant interaction with gold nanoparticles. As a result synthesized stable gold nanoparticles show more significant anticancer activity against HepG2 and A549 cells at 100 μg concentration of nanoparticles. This synthesis approach is simple, large scaled up a new door for development of targeted anticancer activity using gold nanoparticles and is novel in biomedical applications.

  20. Electric field dependence of crystallinity in poly(vinylidene fluoride)

    Energy Technology Data Exchange (ETDEWEB)

    Kepler, R.G.; Anderson, R.A.; Lagasse, R.R.

    1982-05-03

    It is shown that the crystallinity of poled films of poly(vinylidene fluoride) can be changed by the application of an electric field. This is the first time that electric-field-induced changes of crystallinity in a polymer have been reported, and this observation confirms the hypothesis that reversible changes in crystallinity with temperature contribute significantly to the pyroelectric effect in poly(vinylidene fluoride).

  1. Electric Field Dependence of Crystallinity in Poly(Vinylidene Fluoride)

    Science.gov (United States)

    Kepler, R. G.; Anderson, R. A.; Lagasse, R. R.

    1982-05-01

    It is shown that the crystallinity of poled films of poly(vinylidene fluoride) can be changed by the application of an electric field. This is the first time that electric-field-induced changes of crystallinity in a polymer have been reported, and this observation confirms the hypothesis that reversible changes in crystallinity with temperature contribute significantly to the pyroelectric effect in poly(vinylidene fluoride).

  2. Crystalline Undulator with a Small Amplitude and a Short Period

    OpenAIRE

    Kostyuk, Andriy

    2012-01-01

    The crystalline undulator is a single crystal with periodically bent crystallographic planes. If ultrarelativistic charged particles channel through such a crystal, they emit hard radiation of undulator type. A crystalline undulator with a bending amplitude smaller than the distance between the bent planes and a bending period shorter than the period of channeling oscillations is proposed. Heretofore, it was believed that such a range of bending parameters was unsuitable for a crystalline und...

  3. Characterization of crystalline structures in Opuntia ficus-indica

    OpenAIRE

    Contreras-Padilla, Margarita; Rivera-Muñoz, Eric M.; Gutiérrez-Cortez, Elsa; del López, Alicia Real; Rodríguez-García, Mario Enrique

    2014-01-01

    This research studies the crystalline compounds present in nopal (Opuntia ficus-indica) cladodes. The identification of the crystalline structures was performed using X-ray diffraction, scanning electron microscopy, mass spectrometry, and Fourier transform infrared spectroscopy. The crystalline structures identified were calcium carbonate (calcite) [CaCO3], calcium-magnesium bicarbonate [CaMg(CO3)2], magnesium oxide [MgO], calcium oxalate monohydrate [Ca(C2O4)•(H2O)], potassium peroxydiphosph...

  4. Synthesis and Characterization Of ZnO Nanoparticles

    Directory of Open Access Journals (Sweden)

    N. Singh

    2011-01-01

    Full Text Available In this paper, we report the comparison between ZnO nanoparticles prepared via two different routes; i via sol-gel route and ii by solid state reaction method. It was found that when prepared under the same ambient conditions viz temperature, pressure etc. and keeping all the parameters same viz precursors, molarity, solvent etc; the nanoparticles prepared via Sol-gel route were highly crystalline and had smaller crystallite size (~ 24 nm as compared to the one prepared by Solid state reaction method (~ 37 nm. The crystallinity and the crystallite size were examined by XRD and TEM. Variation in the bandgap as a function of size of the particles was determined using the absorption spectra obtained by UV-Vis-NIR spectrophotometer. Photoluminescence (PL was also recorded in the visible region for the two types of particles and results have been analysed.

  5. Lattice matched semiconductor growth on crystalline metallic substrates

    Science.gov (United States)

    Norman, Andrew G; Ptak, Aaron J; McMahon, William E

    2013-11-05

    Methods of fabricating a semiconductor layer or device and said devices are disclosed. The methods include but are not limited to providing a metal or metal alloy substrate having a crystalline surface with a known lattice parameter (a). The methods further include growing a crystalline semiconductor alloy layer on the crystalline substrate surface by coincident site lattice matched epitaxy. The semiconductor layer may be grown without any buffer layer between the alloy and the crystalline surface of the substrate. The semiconductor alloy may be prepared to have a lattice parameter (a') that is related to the lattice parameter (a). The semiconductor alloy may further be prepared to have a selected band gap.

  6. Interband optical transitions in ellipsoidal shaped nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kereselidze, Tamaz, E-mail: tamaz.kereselidze@tsu.ge [Faculty of Exact and Natural Sciences, Tbilisi State University, 0179 Tbilisi, Georgia (United States); Tchelidze, Tamar [Faculty of Exact and Natural Sciences, Tbilisi State University, 0179 Tbilisi, Georgia (United States); Devdariani, Alexander [St. - Petersburg State University, St. Petersburg 198904 (Russian Federation)

    2017-04-15

    The optical properties of crystalline semiconductor nanoparticles with ellipsoidal shape are investigated and discussed as a function of the shape-anisotropy parameter. The optical transition-matrix elements are calculated in the dipole approximation using perturbation theory and with a direct diagonalization of the appropriate Hamiltonian. The matrix elements involving the ground and first excited states are monotonic functions of the shape-anisotropy parameter, whereas matrix elements involving the highly excited states have zeros and extrema that are reflected in the behaviour of the corresponding transition probabilities. Moreover, some matrix elements involving the excited states have discontinuity. We demonstrate that, nanoparticles with ellipsoidal shape can be grown with the infrared as well as ultraviolet features.

  7. Buckling Instability in Liquid Crystalline Physical Gels

    Science.gov (United States)

    Verduzco, Rafael; Meng, Guangnan; Kornfield, Julia A.; Meyer, Robert B.

    2006-04-01

    In a nematic gel we observe a low-energy buckling deformation arising from soft and semisoft elastic modes. We prepare the self-assembled gel by dissolving a coil side-group liquid-crystalline polymer coil copolymer in a nematic liquid crystal. The gel has long network strands and a precisely tailored structure, making it ideal for studying nematic rubber elasticity. Under polarized optical microscopy we observe a striped texture that forms when gels uniformly aligned at 35 °C are cooled to room temperature. We model the instability using the molecular theory of nematic rubber elasticity, and the theory correctly captures the change in pitch length with sample thickness and polymer concentration. This buckling instability is a clear example of a low-energy deformation that arises in materials where polymer network strains are coupled to the director orientation.

  8. Structural Analysis of Aromatic Liquid Crystalline Polyesters

    Directory of Open Access Journals (Sweden)

    Arpad Somogyi

    2011-01-01

    Full Text Available Laboratory preparations of liquid crystalline prepolymers, distillates accompanying prepolymers, final polymers, and sublimates accompanying final polymers were examined. NaOD/D2O depolymerization of prepolymers and polymers back to monomers with integration of the 1H NMR spectra showed up to 6% excess of carboxyls over phenol groups, caused partly by loss of the low-boiling comonomer hydroquinone through distillation during prepolymerization and leaving anhydride units in the polymer chain. ESI− MS and MS/MS of hexafluoroisopropanol extracts of the prepolymer detected small molecules including some containing anhydride groups; ESI+ MS showed the presence of small cyclic oligomers. 1H NMR (including TOCSY spectra provided more quantitative analyses of these oligomers. The final polymerization increases the length of the polymer chains and sublimes out the small oligomers. Anhydride linkages remaining in the polymer must make LCP’s more susceptible to degradation by nucleophilic reagents such as water, alkalis, and amines.

  9. Crystalline Motion of Interfaces Between Patterns

    Science.gov (United States)

    Braides, Andrea; Cicalese, Marco; Yip, Nung Kwan

    2016-09-01

    We consider the dynamical problem of an antiferromagnetic spin system on a two-dimensional square lattice ɛ {Z}^2 with nearest-neighbour and next-to-nearest neighbour interactions. The key features of the model include the interaction between spatial scale ɛ and time scale τ , and the incorporation of interfacial boundaries separating regions with microstructures. By employing a discrete-time variational scheme, a limit continuous-time evolution is obtained for a crystal in {R}^2 which evolves according to some motion by crystalline curvatures. In the case of anti-phase boundaries between striped patterns, a striking phenomenon is the appearance of some "non-local" curvature dependence velocity law reflecting the creation of some defect structure on the interface at the discrete level.

  10. Crystalline Scaling Geometries from Vortex Lattices

    CERN Document Server

    Bao, Ning

    2013-01-01

    We study magnetic geometries with Lifshitz and/or hyperscaling violation exponents (both with a hard wall cutoff in the IR and a smooth black brane horizon) which have a complex scalar field which couples to the magnetic field. The complex scalar is unstable to the production of a vortex lattice in the IR. The lattice is a normalizable mode which is relevant (i.e. grows into the IR.) When one considers linearized backreaction of the lattice on the metric and gauge field, the metric forms a crystalline structure. We analyze the scaling of the free energy, thermodynamic entropy, and entanglement in the lattice phase and find that in the smeared limit, the leading order correction to thermodynamic properties due to the lattice has the scaling behavior of a theory with a hyperscaling violation exponent between 0 and 1, indicating a flow to an effectively lower-dimensional theory in the deep IR.

  11. Reactive Liftoff of Crystalline Cellulose Particles

    Science.gov (United States)

    Teixeira, Andrew R.; Krumm, Christoph; Vinter, Katherine P.; Paulsen, Alex D.; Zhu, Cheng; Maduskar, Saurabh; Joseph, Kristeen E.; Greco, Katharine; Stelatto, Michael; Davis, Eric; Vincent, Brendon; Hermann, Richard; Suszynski, Wieslaw; Schmidt, Lanny D.; Fan, Wei; Rothstein, Jonathan P.; Dauenhauer, Paul J.

    2015-06-01

    The condition of heat transfer to lignocellulosic biomass particles during thermal processing at high temperature (>400 °C) dramatically alters the yield and quality of renewable energy and fuels. In this work, crystalline cellulose particles were discovered to lift off heated surfaces by high speed photography similar to the Leidenfrost effect in hot, volatile liquids. Order of magnitude variation in heat transfer rates and cellulose particle lifetimes was observed as intermediate liquid cellulose droplets transitioned from low temperature wetting (500-600 °C) to fully de-wetted, skittering droplets on polished surfaces (>700 °C). Introduction of macroporosity to the heated surface was shown to completely inhibit the cellulose Leidenfrost effect, providing a tunable design parameter to control particle heat transfer rates in industrial biomass reactors.

  12. Amorphous silicon crystalline silicon heterojunction solar cells

    CERN Document Server

    Fahrner, Wolfgang Rainer

    2013-01-01

    Amorphous Silicon/Crystalline Silicon Solar Cells deals with some typical properties of heterojunction solar cells, such as their history, the properties and the challenges of the cells, some important measurement tools, some simulation programs and a brief survey of the state of the art, aiming to provide an initial framework in this field and serve as a ready reference for all those interested in the subject. This book helps to "fill in the blanks" on heterojunction solar cells. Readers will receive a comprehensive overview of the principles, structures, processing techniques and the current developmental states of the devices. Prof. Dr. Wolfgang R. Fahrner is a professor at the University of Hagen, Germany and Nanchang University, China.

  13. Synthesis of New Liquid Crystalline Diglycidyl Ethers

    Directory of Open Access Journals (Sweden)

    Issam Ahmed Mohammed

    2012-01-01

    Full Text Available The phenolic Schiff bases I–VI were synthesized by condensation reactions between various diamines, namely o-dianisidine, o-tolidine and ethylenediamine with vanillin or p-hydroxybenzaldehyde and subsequent reactions between these phenolic Schiff bases and epichlorohydrin to produce new diglycidyl ethers Ia–VIa. The structures of these compounds were confirmed by CHN, FT-IR, 1H-NMR, and 13C-NMR spectroscopy. Their thermotropic liquid crystalline behavior was studied using differential scanning calorimetry (DSC and polarizing optical microscopy (POM. All the diglycidyl ethers prepared exhibit nematic mesophases, except for Va and VIa, which did not show any transition mesophases, but simply flow to liquids.

  14. Achieving micelle control through core crystallinity.

    Science.gov (United States)

    Glavas, Lidija; Olsén, Peter; Odelius, Karin; Albertsson, Ann-Christine

    2013-11-11

    We have designed a pathway for controlling the critical micelle concentration and micelle size of polyester-based systems. This was achieved by creating an array of different copolymers with semicrystalline or amorphous hydrophobic blocks. The hydrophobic block was constructed through ring-opening polymerization of ε-caprolactone, L-lactide, and ε-decalactone, either as homopolymers or random copolymers, using PEG as both the initiator and the hydrophilic block. Micelles formed with amorphous cores exhibited considerably higher critical micelle concentrations than those with semicrystalline cores. Micelles with amorphous cores also became larger in size with an increased molecular weight of the hydrophobic bock, in contrast to micelles with semicrystalline cores, which displayed the opposite behavior. Hence, core crystallinity was found to be a potent tool for tailoring micelle properties and thereby facilitating the optimization of drug delivery systems. The introduction of PEG-PεDL also proved to be a valuable asset in the tuning of micelle properties.

  15. Modeling of Crystalline Silicotitanate Ion Exchange Columns

    Energy Technology Data Exchange (ETDEWEB)

    Walker, D.D.

    1999-03-09

    Non-elutable ion exchange is being considered as a potential replacement for the In-Tank Precipitation process for removing cesium from Savannah River Site (SRS) radioactive waste. Crystalline silicotitanate (CST) particles are the reference ion exchange medium for the process. A major factor in the construction cost of this process is the size of the ion exchange column required to meet product specifications for decontaminated waste. To validate SRS column sizing calculations, SRS subcontracted two reknowned experts in this field to perform similar calculations: Professor R. G. Anthony, Department of Chemical Engineering, Texas A&038;M University, and Professor S. W. Wang, Department of Chemical Engineering, Purdue University. The appendices of this document contain reports from the two subcontractors. Definition of the design problem came through several meetings and conference calls between the participants and SRS personnel over the past few months. This document summarizes the problem definition and results from the two reports.

  16. Energy transport in crystalline DNA composites

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zaoli; Xu, Shen; Tang, Xiaoduan; Wang, Xinwei, E-mail: xwang3@iastate.edu [Department of Mechanical Engineering, 2010 Black Engineering Building Iowa State University, Ames, IA 50011 (United States)

    2014-01-15

    This work reports on the synthesis of crystalline DNA-composited films and microfibers, and details the study of thermal energy transport in them. The transient electro-thermal technique is used to characterize the thermal transport in DNA composite microfibers, and the photothermal technique is used to explore the thermal transport in the thickness direction of DNA films. Compared with microfibers, the DNA films are found to have a higher thermal transport capacity, largely due to the carefully controlled crystallization process in film synthesis. In high NaCl concentration solutions, the bond of the Na{sup +} ion and phosphate group aligns the DNA molecules with the NaCl crystal structure during crystallization. This results in significant enhancement of thermal transport in the DNA films with aligned structure.

  17. Mechanical Properties of Crystalline Silicon Carbide Nanowires.

    Science.gov (United States)

    Zhang, Huan; Ding, Weiqiang; Aidun, Daryush K

    2015-02-01

    In this paper, the mechanical properties of crystalline silicon carbide nanowires, synthesized with a catalyst-free chemical vapor deposition method, were characterized with nanoscale tensile testing and mechanical resonance testing methods inside a scanning electron microscope. Tensile testing of individual silicon carbide nanowire was performed to determine the tensile properties of the material including the tensile strength, failure strain and Young's modulus. The silicon carbide nanowires were also excited to mechanical resonance in the scanning electron microscope vacuum chamber using mechanical excitation and electrical excitation methods, and the corresponding resonance frequencies were used to determine the Young's modulus of the material according to the simple beam theory. The Young's modulus values from tensile tests were in good agreement with the ones obtained from the mechanical resonance tests.

  18. Reactive Liftoff of Crystalline Cellulose Particles.

    Science.gov (United States)

    Teixeira, Andrew R; Krumm, Christoph; Vinter, Katherine P; Paulsen, Alex D; Zhu, Cheng; Maduskar, Saurabh; Joseph, Kristeen E; Greco, Katharine; Stelatto, Michael; Davis, Eric; Vincent, Brendon; Hermann, Richard; Suszynski, Wieslaw; Schmidt, Lanny D; Fan, Wei; Rothstein, Jonathan P; Dauenhauer, Paul J

    2015-06-09

    The condition of heat transfer to lignocellulosic biomass particles during thermal processing at high temperature (>400 °C) dramatically alters the yield and quality of renewable energy and fuels. In this work, crystalline cellulose particles were discovered to lift off heated surfaces by high speed photography similar to the Leidenfrost effect in hot, volatile liquids. Order of magnitude variation in heat transfer rates and cellulose particle lifetimes was observed as intermediate liquid cellulose droplets transitioned from low temperature wetting (500-600 °C) to fully de-wetted, skittering droplets on polished surfaces (>700 °C). Introduction of macroporosity to the heated surface was shown to completely inhibit the cellulose Leidenfrost effect, providing a tunable design parameter to control particle heat transfer rates in industrial biomass reactors.

  19. (Preoxidation cleaning optimization for crystalline silicon)

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    A series of controlled experiments has been performed in Sandia's Photovoltaic Device Fabrication Laboratory to evaluate the effect of various chemical surface treatments on the recombination lifetime of crystalline silicon wafers subjected to a high-temperature dry oxidation. From this series of experiments we have deduced a relatively simple yet effective cleaning sequence. We have also evaluated the effect of different chemical damage-removal etches for improving the recombination lifetime and surface smoothness of mechanically lapped wafers. This paper presents the methodology used, the experimental results obtained, and our experience with using this process on a continuing basis over a period of many months. 7 refs., 4 figs., 1 tab.

  20. Synthesis and properties of liquid crystalline polyurethanes

    Institute of Scientific and Technical Information of China (English)

    Xin Haobo; Zhang Yunfeng; Xing Zheng

    2006-01-01

    1,4-Bis(p-hydroxybenzoate)phenylene was prepared using 1,4-bis(trimethylsiloxy)benzene and p-hydroxybenzoyl chloride as starting materials.A series of novel 1,4-bis(p-hydroxyalkoxybenzoate)phenylene were synthesized by reaction of 1,4-bis(p-hydroxybenzoate)phenylene with 3-bromopropanol and 4-bromobutanol,respectively,The liquid crystal polyurethanes were prepared by 1,4-bis(p-hydroxyalkoxybenzoate)phenylene with MDI (p-methylene diphenylenediisocyanate) and 2,4-TDI(2,4-toluenediisocyanate),respectively.The thermotropic properties,the melting point (Tm) and the isotropization temperature (Ti) of the synthesized polyurethanes were characterized by DSC,IR and POM.It showed that all of the polyurethane polymers exhibited thermotropic liquid crystalline properties between 144℃ and 260℃.The transition temperature (Tm and Ti) decreased with an increase in the length of the methylene spacer.

  1. Epidermal growth factor receptor-targeted lipid nanoparticles retain self-assembled nanostructures and provide high specificity

    Science.gov (United States)

    Zhai, Jiali; Scoble, Judith A.; Li, Nan; Lovrecz, George; Waddington, Lynne J.; Tran, Nhiem; Muir, Benjamin W.; Coia, Gregory; Kirby, Nigel; Drummond, Calum J.; Mulet, Xavier

    2015-02-01

    Next generation drug delivery utilising nanoparticles incorporates active targeting to specific sites. In this work, we combined targeting with the inherent advantages of self-assembled lipid nanoparticles containing internal nano-structures. Epidermal growth factor receptor (EGFR)-targeting, PEGylated lipid nanoparticles using phytantriol and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-PEG-maleimide amphiphiles were created. The self-assembled lipid nanoparticles presented here have internal lyotropic liquid crystalline nano-structures, verified by synchrotron small angle X-ray scattering and cryo-transmission electron microscopy, that offer the potential of high drug loading and enhanced cell penetration. Anti-EGFR Fab' fragments were conjugated to the surface of nanoparticles via a maleimide-thiol reaction at a high conjugation efficiency and retained specificity following conjugation to the nanoparticles. The conjugated nanoparticles were demonstrated to have high affinity for an EGFR target in a ligand binding assay.Next generation drug delivery utilising nanoparticles incorporates active targeting to specific sites. In this work, we combined targeting with the inherent advantages of self-assembled lipid nanoparticles containing internal nano-structures. Epidermal growth factor receptor (EGFR)-targeting, PEGylated lipid nanoparticles using phytantriol and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-PEG-maleimide amphiphiles were created. The self-assembled lipid nanoparticles presented here have internal lyotropic liquid crystalline nano-structures, verified by synchrotron small angle X-ray scattering and cryo-transmission electron microscopy, that offer the potential of high drug loading and enhanced cell penetration. Anti-EGFR Fab' fragments were conjugated to the surface of nanoparticles via a maleimide-thiol reaction at a high conjugation efficiency and retained specificity following conjugation to the nanoparticles. The conjugated nanoparticles

  2. Antimicrobial activity of metal oxide nanoparticles supported onto natural clinoptilolite.

    Science.gov (United States)

    Hrenovic, Jasna; Milenkovic, Jelena; Daneu, Nina; Kepcija, Renata Matonickin; Rajic, Nevenka

    2012-08-01

    The antimicrobial activity of Cu(2)O, ZnO and NiO nanoparticles supported onto natural clinoptilolite was investigated in the secondary effluent under dark conditions. After 24h of contact the Cu(2)O and ZnO nanoparticles reduced the numbers of viable bacterial cells of Escherichia coli and Staphylococcus aureus in pure culture for four to six orders of magnitude and showed consistent 100% of antibacterial activity against native E. coli after 1h of contact during 48 exposures. The antibacterial activity of NiO nanoparticles was less efficient. The Cu(2)O and NiO nanoparticles showed 100% of antiprotozoan activity against Paramecium caudatum and Euplotes affinis after 1h of contact, while ZnO nanoparticles were less efficient. The morphology and crystallinity of the nanoparticles were not affected by microorganisms. The metal oxide nanoparticles could find a novel application in the disinfection of secondary effluent and removal of pathogenic microorganisms in the tertiary stage of wastewater treatment.

  3. Synthesis of gold and silver nanoparticles using purified URAK.

    Science.gov (United States)

    Deepak, Venkataraman; Umamaheshwaran, Paneer Selvam; Guhan, Kandasamy; Nanthini, Raja Amrisa; Krithiga, Bhaskar; Jaithoon, Nagoor Meeran Hasika; Gurunathan, Sangiliyandi

    2011-09-01

    This study aims at developing a new eco-friendly process for the synthesis of silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) using purified URAK. URAK is a fibrinolytic enzyme produced by Bacillus cereus NK1. The enzyme was purified and used for the synthesis of AuNPs and AgNPs. The enzyme produced AgNPs when incubated with 1 mM AgNO3 for 24 h and AuNPs when incubated with 1 mM HAuCl4 for 60 h. But when NaOH was added, the synthesis was rapid and occurred within 5 min for AgNPs and 12 h for AuNPs. The synthesized nanoparticles were characterized by a peak at 440 nm and 550 nm in the UV-visible spectrum. TEM analysis showed that AgNPs of the size 60 nm and AuNPs of size 20 nm were synthesized. XRD confirmed the crystalline nature of the nanoparticles and AFM showed the morphology of the nanoparticle to be spherical. FT-IR showed that protein was responsible for the synthesis of the nanoparticles. This process is highly simple, versatile and produces AgNPs and AuNPs in environmental friendly manner. Moreover, the synthesized nanoparticles were found to contain immobilized enzyme. Also, URAK was tested on RAW 264.7 macrophage cell line and was found to be non-cytotoxic until 100 μg/ml.

  4. Food protein-based phytosterol nanoparticles: fabrication and characterization.

    Science.gov (United States)

    Cao, Wen-Jun; Ou, Shi-Yi; Lin, Wei-Feng; Tang, Chuan-He

    2016-09-14

    The development of food-grade (nano)particles as a delivery system for poorly water soluble bioactives has recently attracted increasing attention. This work is an attempt to fabricate food protein-based nanoparticles as delivery systems for improving the water dispersion and bioaccessibility of phytosterols (PS) by an emulsification-evaporation method. The fabricated PS nanoparticles were characterized in terms of particle size, encapsulation efficiency (EE%) and loading amount (LA), and ξ-potential. Among all the test proteins, including soy protein isolate (SPI), whey protein concentrate (WPC) and sodium caseinate (SC), SC was confirmed to be the most suitable protein for the PS nano-formulation. Besides the type of protein, the particle size, EE% and LA of PS in the nanoparticles varied with the applied protein concentration in the aqueous phase and organic volume fraction. The freeze-dried PS nanoparticles with SC exhibited good water re-dispersion behavior and low crystallinity of PS. The LA of PS in the nanoparticles decreased upon storage, especially at high temperatures (e.g., >25 °C). The PS in the fabricated nanoparticles exhibited much better bioaccessibility than free PS. The findings would be of relevance for the fabrication of food-grade colloidal phytosterols, with great potential to be applied in functional food formulations.

  5. Plasmonic and silicon spherical nanoparticle anti-reflective coatings

    OpenAIRE

    K. V. Baryshnikova; M. I. Petrov; Babicheva, V. E.; Belov, P. A.

    2015-01-01

    Over the last decade, plasmonic antireflecting nanostructures have been extensively studied to be utilized in various optical and optoelectronic systems such as lenses, solar cells, photodetectors, and others. The growing interest to all-dielectric photonics as an alternative optical technology along with plasmonics motivates us to compare antireflection properties of all-dielectric and plasmonic nanoparticle coatings based on silver and crystalline silicon. Our results of numerical simulatio...

  6. EXAFS investigation of nanoparticles produced in a thermal plasma process

    Energy Technology Data Exchange (ETDEWEB)

    Luetzenkirchen-Hecht, D.; Frahm, R. [Heinrich-Heine-Univ. Duesseldorf, Inst. fuer Angewandte Physik (Germany); Buchner, P. [Heinrich-Heine-Univ. Duesseldorf, Inst. fuer Laser- und Plasmaphysik (Germany); Strehblow, H.H. [Heinrich-Heine-Univ., Inst. fuer Physikalische Chemie (Germany)

    1999-11-01

    Nanosized ceramic powders (Cu/SiC, Y{sub 2}O{sub 3}-stabilized cubic ZrO{sub 2}) were produced by evaporation of coarsely grained powders of the respective materials in an inductively coupled thermal plasma process and rapid quenching of the vapor. The atomic short range order of these nanoparticles with an average diameter of about 10 nm was investigated ex situ with EXAFS. The results are compared to crystalline reference materials. (au) 10 refs.

  7. Rational synthesis and self-assembly of anisotropic plasmonic nanoparticles

    OpenAIRE

    Scarabelli, Leonardo

    2016-01-01

    This thesis work has been carried out in the framework of the ERC Advanced Grant Plasmaquo (nº 267867), which focused on the development of novel nanostructured plasmonic materials based on crystalline assemblies of anisotropic nanoparticles, to be used as optical enhancers for the surface enhanced Raman scattering detection of bacterial Quorum Sensing signaling molecules. More specifically, the thesis was oriented toward the design of such nanostructures, and on the characterization of their...

  8. Highly stable, protein capped gold nanoparticles as effective drug delivery vehicles for amino-glycosidic antibiotics

    Energy Technology Data Exchange (ETDEWEB)

    Rastogi, Lori; Kora, Aruna Jyothi; Arunachalam, J., E-mail: aruncccm@gmail.com

    2012-08-01

    A method for the production of highly stable gold nanoparticles (Au NP) was optimized using sodium borohydride as reducing agent and bovine serum albumin as capping agent. The synthesized nanoparticles were characterized using UV-visible spectroscopy, transmission electron microscopy, X-ray diffraction (XRD) and dynamic light scattering techniques. The formation of gold nanoparticles was confirmed from the appearance of pink colour and an absorption maximum at 532 nm. These protein capped nanoparticles exhibited excellent stability towards pH modification and electrolyte addition. The produced nanoparticles were found to be spherical in shape, nearly monodispersed and with an average particle size of 7.8 {+-} 1.7 nm. Crystalline nature of the nanoparticles in face centered cubic structure is confirmed from the selected-area electron diffraction and XRD patterns. The nanoparticles were functionalized with various amino-glycosidic antibiotics for utilizing them as drug delivery vehicles. Using Fourier transform infrared spectroscopy, the possible functional groups of antibiotics bound to the nanoparticle surface have been examined. These drug loaded nanoparticle solutions were tested for their antibacterial activity against Gram-negative and Gram-positive bacterial strains, by well diffusion assay. The antibiotic conjugated Au NP exhibited enhanced antibacterial activity, compared to pure antibiotic at the same concentration. Being protein capped and highly stable, these gold nanoparticles can act as effective carriers for drugs and might have considerable applications in the field of infection prevention and therapeutics. - Highlights: Black-Right-Pointing-Pointer Method for NaBH{sub 4} reduced and BSA capped gold nanoparticle was standardized. Black-Right-Pointing-Pointer Nanoparticles were spherical and nearly monodispersed with a size of 7.8 nm. Black-Right-Pointing-Pointer Nanoparticles are extremely stable towards pH modification and electrolyte addition. Black

  9. Homology models of human gamma-crystallins: structural study of the extensive charge network in gamma-crystallins.

    Science.gov (United States)

    Salim, Asmat; Zaidi, Zafar H

    2003-01-17

    The lens is composed of highly stable and long-lived proteins, the crystallins which are divided into alpha-, beta-, and gamma-crystallins. Human gamma-crystallins belong to the betagamma superfamily. A large number of gamma-crystallins have been sequenced and have been found to share remarkable sequence homology with each other. Some of the gamma-crystallins from various sources have also been elucidated structurally by X-ray crystallographic or NMR spectroscopic experiments. Their three-dimensional structures are also similar having consisted of two domains each possessing two Greek key motifs. In this study we have constructed the comparative or homology models of the four major human gamma-crystallins, gammaA-,gammaB-, gammaC-, and gammaD-crystallins and studied the charge network in these crystallins. Despite an overall structural similarity between these crystallins, differences in the ion pair formation do exist which is partly due to the differences in their primary sequence and partly due to the structural orientation of the neighboring amino acids. In this study, we present an elaborate analysis of these charged interactions and their formation or loss with respect to the structural changes.

  10. Anticancer activity of Ficus religiosa engineered copper oxide nanoparticles.

    Science.gov (United States)

    Sankar, Renu; Maheswari, Ramasamy; Karthik, Selvaraju; Shivashangari, Kanchi Subramanian; Ravikumar, Vilwanathan

    2014-11-01

    The design, synthesis, characterization and application of biologically synthesized nanomaterials have become a vital branch of nanotechnology. There is a budding need to develop a method for environmentally benign metal nanoparticle synthesis, that do not use toxic chemicals in the synthesis protocols to avoid adverse effects in medical applications. Here, it is a report on an eco-friendly process for rapid synthesis of copper oxide nanoparticles using Ficus religiosa leaf extract as reducing and protecting agent. The synthesized copper oxide nanoparticles were confirmed by UV-vis spectrophotometer, absorbance peaks at 285 nm. The copper oxide nanoparticles were analyzed with field emission-scanning electron microscope (FE-SEM), Fourier transform infrared (FT-IR) spectroscopy, dynamic light scattering (DLS) and X-ray diffraction (XRD) spectrum. The FE-SEM and DLS analyses exposed that copper oxide nanoparticles are spherical in shape with an average particle size of 577 nm. FT-IR spectral analysis elucidates the occurrence of biomolecules required for the reduction of copper oxide ions. Zeta potential studies showed that the surface charge of the formed nanoparticles was highly negative. The XRD pattern revealed that synthesized nanoparticles are crystalline in nature. Further, biological activities of the synthesized nanoparticles were confirmed based on its stable anti-cancer effects. The apoptotic effect of copper oxide nanoparticles is mediated by the generation of reactive oxygen species (ROS) involving the disruption of mitochondrial membrane potential (Δψm) in A549 cells. The observed characteristics and results obtained in our in vitro assays suggest that the copper nanoparticles might be a potential anticancer agent.

  11. Crystalline Structure, Defect Chemistry and Room Temperature Colossal Permittivity of Nd-doped Barium Titanate.

    Science.gov (United States)

    Sun, Qiaomei; Gu, Qilin; Zhu, Kongjun; Jin, Rongying; Liu, Jinsong; Wang, Jing; Qiu, Jinhao

    2017-02-13

    Dielectric materials with high permittivity are strongly demanded for various technological applications. While polarization inherently exists in ferroelectric barium titanate (BaTiO3), its high permittivity can only be achieved by chemical and/or structural modification. Here, we report the room-temperature colossal permittivity (~760,000) obtained in xNd: BaTiO3 (x = 0.5 mol%) ceramics derived from the counterpart nanoparticles followed by conventional pressureless sintering process. Through the systematic analysis of chemical composition, crystalline structure and defect chemistry, the substitution mechanism involving the occupation of Nd(3+) in Ba(2+) -site associated with the generation of Ba vacancies and oxygen vacancies for charge compensation has been firstly demonstrated. The present study serves as a precedent and fundamental step toward further improvement of the permittivity of BaTiO3-based ceramics.

  12. Observation of gold sub-nanocluster nucleation within a crystalline protein cage

    Science.gov (United States)

    Maity, Basudev; Abe, Satoshi; Ueno, Takafumi

    2017-03-01

    Protein scaffolds provide unique metal coordination environments that promote biomineralization processes. It is expected that protein scaffolds can be developed to prepare inorganic nanomaterials with important biomedical and material applications. Despite many promising applications, it remains challenging to elucidate the detailed mechanisms of formation of metal nanoparticles in protein environments. In the present work, we describe a crystalline protein cage constructed by crosslinking treatment of a single crystal of apo-ferritin for structural characterization of the formation of sub-nanocluster with reduction reaction. The crystal structure analysis shows the gradual movement of the Au ions towards the centre of the three-fold symmetric channels of the protein cage to form a sub-nanocluster with accompanying significant conformational changes of the amino-acid residues bound to Au ions during the process. These results contribute to our understanding of metal core formation as well as interactions of the metal core with the protein environment.

  13. Observation of gold sub-nanocluster nucleation within a crystalline protein cage

    Science.gov (United States)

    Maity, Basudev; Abe, Satoshi; Ueno, Takafumi

    2017-01-01

    Protein scaffolds provide unique metal coordination environments that promote biomineralization processes. It is expected that protein scaffolds can be developed to prepare inorganic nanomaterials with important biomedical and material applications. Despite many promising applications, it remains challenging to elucidate the detailed mechanisms of formation of metal nanoparticles in protein environments. In the present work, we describe a crystalline protein cage constructed by crosslinking treatment of a single crystal of apo-ferritin for structural characterization of the formation of sub-nanocluster with reduction reaction. The crystal structure analysis shows the gradual movement of the Au ions towards the centre of the three-fold symmetric channels of the protein cage to form a sub-nanocluster with accompanying significant conformational changes of the amino-acid residues bound to Au ions during the process. These results contribute to our understanding of metal core formation as well as interactions of the metal core with the protein environment. PMID:28300064

  14. Single-crystalline gold nanoplates from a commercial gold plating solution.

    Science.gov (United States)

    Li, Zhonghao; Lapeyre, Véronique; Ravaine, Valérie; Ravaine, Serge; Kuhn, Alexander

    2009-03-01

    A novel route was proposed to synthesize gold nanoplates using a commercial gold plating solution as the reactant. Single-crystalline gold nanoplates can be successfully synthesized by reacting gold plating solution with HCl. The as-prepared nanoplates are from several micrometers to tens of micrometers in size. The effects of reactant concentration and temperature on the morphology of the gold products were investigated. The size of the gold nanoplate increases with the decrease of the amount of gold plating solution, while irregular gold nanoparticles are formed as the HCl concentration becomes low. When the reaction temperature is as low as room temperature, nanoplates with a concavity form. Specifically, it is found that the Cl- plays an important role for the formation of these gold nanoplates. The formation mechanism of the gold nanoplates is studied in detail.

  15. Gel–sol synthesis and aging effect on highly crystalline anatase nanopowder

    Indian Academy of Sciences (India)

    Sharif Shahini; Masoud Askari; S K Sadrnezhaad

    2011-10-01

    Highly crystalline TiO2 anatase nanoparticles were synthesized via gel–sol method by using titanium isopropoxide and triethanolamine. The products were characterized by X-ray diffraction, transmission electron microscopy, thermogravimetric/differential thermal analysis and nitrogen gas absorption methods. The particle size ranged from 7 to 24 nm having specific surface area of 64 to 220 m2/g. Selective Ti(OH)4 gel specifications and hydrothermal test conditions resulted in thermodynamically-stable phase-formation. Aging at 130°C for 4 h resulted in particle size of 7 nm; while at 130 and 160°C for 12 h resulted in 12 and 21 nm, respectively.

  16. Ethylene glycol-assisted coating of titania on nanoparticles.

    Science.gov (United States)

    Dahl, Michael; Castaneda, Fernando; Joo, Ji Bong; Reyes, Victor; Goebl, James; Yin, Yadong

    2016-06-14

    Coating titania shells onto sub-micron sized particles has been widely studied recently, with success mainly limited to objects with sizes above 50 nm. Direct coating on particles below this size has been difficult to attain especially with good control over properties such as thickness and crystallinity. Here we demonstrate that titanium-glycolate formed by reacting titanium alkoxide and ethylene glycol is an excellent precursor for coating titania on aqueous nanoparticles. The new coating method is particularly useful for its ability to coat materials lacking strong polymers or ligands which are frequently needed to facilitate typical titania coatings. We demonstrate the effectiveness of the process of coating titania on metal nanoparticles ranging from citrate-stabilized gold and silver spheres to gold nanorods and silver nanoplates, and larger particles such as SiO2 microspheres and polymer spheres. Further the thickness of these coatings can be tuned from a few nanometers to ∼40 nm through sequential coatings. These coatings can subsequently be crystallized into TiO2 through refluxing in water or by calcination to obtain crystalline shells. This procedure can be very useful for the production of TiO2 coatings with tunable thickness and crystallinity as well as for further study on the effect of TiO2 coatings on nanoparticles.

  17. Arrays of magnetic nanoparticles capped with alkylamines

    Indian Academy of Sciences (India)

    P John Thomas; P Saravanan; G U Kulkarni; C N R Rao

    2002-02-01

    Magnetic metal and metal oxide nanoparticles capped with alkylamines have been synthesized and characterized by transmission electron microscopy, X-ray diffraction, energy dispersive X-ray analysis and magnetization measurements. Core-shell Pd–Ni particles with composition, Pd561Ni3000, (diameter ∼ 3.3 nm) are superparamagnetic at 5 K and organize themselves into two-dimensional crystalline arrays. Similar arrays are obtained with Pd561Ni3000Pd1500 nanoparticles containing an additional Pd shell. Magnetic spinel particles of -Fe2O3, Fe3O4 and CoFe2O4 of average diameters in the 4–6 nm range coated with octylamine are all supermagnetic at room temperature and yield close-packed disordered arrays. Relatively regular arrays are formed by dodecylamine-capped Fe3O4 nanoparticles (∼ 8.6 nm diameter) while well-ordered hexagonal arrays were obtained with octylamine-covered Co3O4 nanoparticles (∼ 4.2 nm diameter).

  18. Toxicity of laser irradiated photoactive fluoride PrF3 nanoparticles toward bacteria

    Science.gov (United States)

    Pudovkin, M. S.; Korableva, S. L.; Krasheninnicova, A. O.; Nizamutdinov, A. S.; Semashko, V. V.; Zelenihin, P. V.; Alakshin, E. M.; Nevzorova, T. A.

    2014-11-01

    The article is devoted to exploration of biological effects of crystalline PrF3 nanoparticles toward Salmonella typhimurium TA 98 bacteria under the laser irradiation. Obtained results show bactericidal activity of PrF3 nanoparticles and optimal parameters of laser irradiation (power of laser irradiation, wavelength, diameter of the laser spoil, and exposure time) have been found under which the effects of bactericidal activity become the most significant. Survival of bacterial cells under laser irradiation with wavelength 532 nm in colloidal solution of PrF3 nanoparticles was 39%, 34%, 20% for exposure times 5 minutes, 15 minutes and 30 minutes, correspondingly.

  19. Magnetic properties of NiO (nickel oxide) nanoparticles : Blocking temperature and Neel temperature

    NARCIS (Netherlands)

    Tadic, Marin; Nikolic, Dobrica; Panjan, Matjaz; Blake, Graeme R.

    2015-01-01

    Crystalline nickel oxide (NiO) nanoparticles dispersed in an amorphous silica matrix have been prepared by a sol-gel combustion synthesis method. The sample was characterized using X-ray powder diffraction, energy-dispersive X-ray spectroscopy, scanning electron microscopy, transmission electron mic

  20. Method of Creating Micro-scale Silver Telluride Grains Covered with Bismuth Nanoparticles

    Science.gov (United States)

    Kim, Hyun-Jung (Inventor); Choi, Sang Hyouk (Inventor); King, Glen C. (Inventor); Park, Yeonjoon (Inventor); Lee, Kunik (Inventor)

    2014-01-01

    Provided is a method of enhancing thermoelectric performance by surrounding crystalline semiconductors with nanoparticles by contacting a bismuth telluride material with a silver salt under a substantially inert atmosphere and a temperature approximately near the silver salt decomposition temperature; and recovering a metallic bismuth decorated material comprising silver telluride crystal grains.

  1. Effects of some synthesis parameters on the structure of titania nanoparticles obtained by laser pyrolysis

    Science.gov (United States)

    Scarisoreanu, M.; Morjan; Alexandrescu, R.; Birjega, R.; Voicu, I.; Fleaca, C.; Popovici, E.; Soare, I.; Gavrila-Florescu, L.; Cretu, O.; Prodan, G.; Ciupina, V.; Figgemeier, E.

    2007-07-01

    The preparation of TiO 2 nanoparticles by CO 2 laser pyrolysis of TiCl 4 (vapor)-based gas mixtures was investigated as a function of laser power and influence of the oxidizer. Increased crystallinity and crystallite dimensions as well as increase of the rutile fraction are observed at moderate flow increase in the flow rate of the oxidizing agent.

  2. Synthesis and performance of bismuth trioxide nanoparticles for high energy gas generator use.

    Science.gov (United States)

    Martirosyan, K S; Wang, L; Vicent, A; Luss, D

    2009-10-01

    Our experiments showed that the combustion of an Al-Bi2O3 nanoparticle mixture generated the highest pressure pulse among common nanothermite reactions and can potentially be used as a nanoenergetic gas generator. The combustion front propagation velocity and rate of energy release increased by up to three orders of magnitude when the particle size was reduced to a nanosize range for both the aluminum and the oxidizer. We developed a novel one-step (metal nitrate-glycine) combustion synthesis of nanostructured amorphous-like and highly crystalline bismuth trioxide nanoparticles. The combustion synthesis was conducted using a solution of molten bismuth nitrate as an oxidizer and glycine as a fuel. The glycine was completely combusted during the thermal decomposition of the bismuth nitrate pentahydrate and generated a temperature front that propagated through the sample. Increasing the fuel concentration increased the maximum combustion temperature from 280 to 1200 degrees C and the Bi2O3 particle size from 20 to 100 nm. The oxidizer/fuel ratio had a strong impact on the bismuth trioxide particle crystallinity. At low temperature (280 degrees C), amorphous-like bismuth trioxide nanoparticles formed, while at T > or =370 degrees C the structures were crystalline. A peak pressure of approximately 12 MPa and a thermal front propagating velocity of approximately 2500 m s(-1) were achieved during the combustion of an Al-Bi2O3 mixture containing 80 wt% of the synthesized Bi2O3 crystalline nanoparticles (size: 40-50 nm).

  3. Generation of NiO nanoparticles via pulsed laser ablation in deionised water and their antibacterial activity

    Science.gov (United States)

    Khashan, Khawla S.; Sulaiman, Ghassan M.; Hamad, Abubaker H.; Abdulameer, Farah A.; Hadi, Assel

    2017-03-01

    Nickel oxide (NiO) nanoparticles were synthesised by nanosecond laser ablation in deionised water. Spherical NiO nanoparticles with sizes ranging from 2 to 21 nm were produced. The optical absorption spectra of the nanoparticles were measured using UV-VIS spectroscopy, and their size distribution was characterised using transmission electron microscopy (TEM). The crystalline material structures were investigated using X-ray diffraction (XRD). Fourier transform infrared spectroscopy (FTIR) was used to obtain infrared spectra of the samples. The results show that crystalline NiO nanoparticles were produced. The antibacterial activity of the nanoparticles against Escherichia coli, Pseudomonas aeruginosa, Proteus vulgaris, and Staphylococcus aureus bacteria was then examined. It was found that the NiO nanoparticles have a synergistic effect on inhibiting E. coli and S. aureus growth; this effect was also tested using the well-diffusion method. In this method, NiO nanoparticles at a concentration of 1000 µg ml-1 along with amoxicillin yielded an inhibition zone against E. coli of 14.3 ± 1.15 mm; this zone was 12.6 ± 0.57 mm against S. aureus. Therefore, from the present findings, it can be concluded that the efficiency of inhibiting bacterial growth could be improved by the addition of metal-oxide nanoparticles to amoxicillin in comparison with either pure amoxicillin or pure metal-oxide nanoparticles.

  4. Determination of cellulose I crystallinity by FT-Raman spectroscopy

    Science.gov (United States)

    Umesh P. Agarwal; Richard S. Reiner; Sally A. Ralph

    2009-01-01

    Two new methods based on FT-Raman spectroscopy, one simple, based on band intensity ratio, and the other, using a partial least-squares (PLS) regression model, are proposed to determine cellulose I crystallinity. In the simple method, crystallinity in semicrystalline cellulose I samples was determined based on univariate regression that was first developed using the...

  5. Control of crystallinity and composition in calcium phosphate coatings

    Energy Technology Data Exchange (ETDEWEB)

    Cifuentes, M.; Cabanas, M.V.; Vallet-Regi, M. [Universidad Complutense de Madrid (Spain). Dept. de Quimica Inorganica y Bioinorganica

    2001-07-01

    Calcium phosphate coatings were prepared by the so-called pyrosol method. Both crystallinity and composition of obtained films can be controlled by modifying the composition of the precursor solution, surrounding atmosphere and substrate temperature. In this way, tricalcium phosphate, hydroxyapatite or biphasic hydroxyapatite/tricalcium phosphate with different crystallinity and microstructure have been prepared. (orig.)

  6. Quantitative aspects of crystalline lactose in milk products

    NARCIS (Netherlands)

    Roetman, K.

    1982-01-01

    The occurrence of crystalline lactose in milk products and its influence on their physical properties are briefly reviewed. The importance of the quantitive determination of crystalline lactose for scientific and industrial purposes is indicated, and a summary is given of our earlier work. This refe

  7. Crystalline silicon cell performance at low light intensities

    NARCIS (Netherlands)

    Reich, N.H.|info:eu-repo/dai/nl/30483453X; van Sark, W.G.J.H.M.|info:eu-repo/dai/nl/074628526; Alsema, E.A.|info:eu-repo/dai/nl/073416258; Lof, R.W.; Schropp, R.E.I.|info:eu-repo/dai/nl/072502584; Sinke, W.C.|info:eu-repo/dai/nl/071641009; Turkenburg, W.C.|info:eu-repo/dai/nl/073416355

    2009-01-01

    Measured and modelled JV characteristics of crystalline silicon cells below one sun intensity have been investigated. First, the JV characteristics were measured between 3 and 1000 W/m2 at 6 light levels for 41 industrially produced mono- and multi-crystalline cells from 8 manufacturers, and at 29 i

  8. THE DEGREE OF CRYSTALLINITY OF NYLON-1010 BY WAXD

    Institute of Scientific and Technical Information of China (English)

    MO Zhishen; HUANG Xueying; ZHANG Hongfang; YANG Baoquan; ZHU Chengshen; MU Zhongcheng

    1994-01-01

    Based on the X-ray scattering intensity theory and using the atomic scattering factor approximate expression,the correction factors for three main crystalline peaks and an amorphous peak of Nylon-1010 were calculated and the formula of degree of crystallinity of Nylon-1010 was derived by graphic multipeak resolution method.The results calculated are compatible with the density measurement and calorimetry.

  9. Quantitative aspects of crystalline lactose in milk products

    NARCIS (Netherlands)

    Roetman, K.

    1982-01-01

    The occurrence of crystalline lactose in milk products and its influence on their physical properties are briefly reviewed. The importance of the quantitive determination of crystalline lactose for scientific and industrial purposes is indicated, and a summary is given of our earlier work. This

  10. Molybdenum enhanced low-temperature deposition of crystalline silicon nitride

    Science.gov (United States)

    Lowden, Richard A.

    1994-01-01

    A process for chemical vapor deposition of crystalline silicon nitride which comprises the steps of: introducing a mixture of a silicon source, a molybdenum source, a nitrogen source, and a hydrogen source into a vessel containing a suitable substrate; and thermally decomposing the mixture to deposit onto the substrate a coating comprising crystalline silicon nitride containing a dispersion of molybdenum silicide.

  11. Single Molecule Study of Cellulase Hydrolysis of Crystalline Cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y.-S.; Luo, Y.; Baker, J. O.; Zeng, Y.; Himmel, M. E.; Smith, S.; Ding, S.-Y.

    2009-12-01

    This report seeks to elucidate the role of cellobiohydrolase-I (CBH I) in the hydrolysis of crystalline cellulose. A single-molecule approach uses various imaging techniques to investigate the surface structure of crystalline cellulose and changes made in the structure by CBH I.

  12. Аnodic formation of nanoporous crystalline niobium oxide

    Directory of Open Access Journals (Sweden)

    LEONID SKATKOV

    2014-05-01

    Full Text Available The research results of anodic deposition of crystalline niobium oxide are presented in this work. The factors that have an impact on crystalline phase nucleation and its primary growth are revealed. Dependence of morphology and properties of nanoporous niobium oxide on modes of its formation is shown.

  13. Direct optical imaging of structural inhomogeneities in crystalline materials.

    Science.gov (United States)

    Grigorev, A M

    2016-05-10

    A method for optical imaging of structural inhomogeneities in crystalline materials is proposed, based on the differences in the optical properties of the structural inhomogeneity and the homogeneous material near the fundamental absorption edge of the crystalline material. The method can be used to detect defects in both semiconductors and insulators.

  14. Alpha-Crystallin: The Quest For A Homogeneous Quaternary Structure

    Science.gov (United States)

    Horwitz, Joseph

    2009-01-01

    Alpha A and alpha B crystallins are key members of the small heat-shock protein family. In addition to being a major structural protein of the lens, they are constitutively found in many other cells, where their function to is not completely understood. Alpha B crystallin is also known to be over-expressed in many neurological diseases. To date, all efforts to crystallize alpha A or alpha B have failed. Thus, high-resolution data on the tertiary and quaternary structure of alpha crystallin is not available. The main reason for this failure seems to be the polydisperse nature of alpha crystallin. This review deals mainly with the polydisperse properties of alpha crystallin and the influence of post-translational modification, chemical modifications, truncations and mutation on its quaternary structure. PMID:18703051

  15. The Cosmic Crystallinity Conundrum: Clues from IRAS 17495-2534

    CERN Document Server

    Speck, Angela K; Tartar, Josh B

    2008-01-01

    Since their discovery, cosmic crystalline silicates have presented several challenges to understanding dust formation and evolution. The mid-infrared spectrum of IRAS 17495$-$2534, a highly obscured oxygen-rich asymptotic giant branch (AGB) star, is the only source observed to date which exhibits a clear crystalline silicate absorption feature. This provides an unprecedented opportunity to test competing hypotheses for dust formation. Observed spectral features suggest that both amorphous and crystalline dust is dominated by forsterite (Mg\\_2 SiO\\_4) rather than enstatite (MgSiO\\_3) or other silicate compositions. We confirm that high mass-loss rates should produce more crystalline material, and show why this should be dominated by forsterite. The presence of Mg\\_2 SiO\\_4 glass suggests that another factor (possibly C/O) is critical in determining astromineralogy. Correlation between crystallinity, mass-loss rate and initial stellar mass suggests that only the most massive AGB stars contribute significant qua...

  16. Bifunctional single-crystalline rutile nanorod decorated heterostructural photoanodes for efficient dye-sensitized solar cells.

    Science.gov (United States)

    Hao, Feng; Lin, Hong; Zhou, Chen; Liu, Yizhu; Li, Jianbao

    2011-09-21

    A novel heterostructural TiO(2) nanocomposite, which consists of single-crystalline rutile TiO(2) nanorod decorated Degussa P25 nanoparticles, has been fabricated through a facile acidic hydrothermal method and successfully applied as the photoanodes for efficient dye-sensitized solar cells. The morphology, crystal structure, specific surface area and pore size distribution of the obtained nanocomposite were systematically investigated by X-ray diffraction (XRD), field-emission scanning electron microscope (FESEM), high resolution transmission electron microscope (HRTEM), selected-area electron diffraction patterns (SAED) and nitrogen adsorption-desorption measurements. Under standard illumination conditions (AM 1.5, 100 mW cm(-2)), devices with these hybrid anodes exhibited considerably enhanced photocurrent density and overall conversion efficiency in comparison with that of the commercial Degussa P25 electrodes, which can be partially attributed to the light scattering effect in the long-wavelength region as evidenced from the incident photon-to-current conversion efficiency (IPCE) response and the diffuse reflectance spectroscopy. More importantly, devices employing these hybrid anodes have demonstrated extended electron lifetimes and larger electron diffusion coefficient as validated by the intensity-modulated photocurrent/photovoltage spectroscopy measurements, which can be mainly ascribed to the fast electron transport and collection superiority of the single-crystalline nanorods.

  17. Synthesis of self-assembly plasmonic silver nanoparticles with tunable luminescence color

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ghamdi, Haifa S.; Mahmoud, Waleed E., E-mail: w_e_mahmoud@yahoo.com

    2014-01-15

    Assembly is an elegant and effective bottom-up approach to prepare arrays of nanoparticles from nobel metals. Noble metal nanoparticles are perfect building blocks because they can be prepared with an adequate functionalization to allow their assembly and with controlled sizes. Herein, we report a novel recipe for the synthesis of self-assembled silver nanoparticles with tunable optical properties and sizes. The synthetic route followed here based on the covalent binding among silver nanoparticles by means of poly vinyl alcohol for the first time. The size of silver nanoparticle is governed by varying the amount of sodium borohydride. The as-synthesized nanoparticles were characterized by transmission electron microscopy, x-ray diffraction, energy dispersive x-ray spectroscopy, selected area electron diffraction and UV–vis spectroscopy. Results depicted that self-assembly of mono-dispersed silver nanoparticles with different sizes have been achieved. The silver nanostructure has a single crystalline faced centered cubic structure with growth orientation along (1 1 1) facet. These nanoparticles exhibited localized surface plasmon resonance at 403 nm. The luminescence peaks were red-sifted from violet to green due to the increase of the particle sizes. -- Highlights: • Self-assembled silver nanoparticles based PVA were synthesized. • NaBH{sub 4} amount was found particle size dependent. • Silver nanoparticles strongly affected the surface plasmon resonance. • Highly symmetric luminescence emission band narrow width is obtained. • Dark field image showed a tunable color change from violet to green.

  18. Synthesis of exfoliated PA66 nanocomposites via interfacial polycondensation: effect of layered silicate and silica nanoparticles

    Indian Academy of Sciences (India)

    HOSSIEN GHARABAGHI; MEHDI RAFIZADEH; FARAMARZ AFSHAR TAROMI

    2016-08-01

    Nanocomposites of polyamide 66 (PA66) with layered silicate and silica (SiO2) nanoparticles were prepared via in situ interfacial polycondensation method. Hexamethylenediamine (HDMA) and adipoyl chloride(AdCl) were reacted in a two-phase media. Montmorillonite (NaMMT) and silica nanoparticles were added to reacting media. Preparation of PA66 and its nanocomposites were studied using Fourier transform infrared spectroscopy.Dispersion of nanoparticles was studied using X-ray diffraction and transmission electron microscopy. The results show that two structures were achieved using two kinds of nanoparticles. Silica nanoparticles were partially exfoliated, while NaMMT nanoparticles were hybrid intercalated–exfoliated in nanocomposite samples. Thermal properties of samples were investigated by differential scanning calorimetry. The results suggest that crystallinity is heterogeneous in the presence of nanoparticles. Kinetic of crystallization was studied by means of Avrami equation, based on the kinetic parameters, spherulites are produced. Results were reported for nanocomposites containing 2 and 4% of nanoparticles. Avrami equation parameter, n, shows that spherulite crystallization occured in the samples. Addition of nanoparticles decreases n first, then n increases with nanoparticle content.

  19. Novel lanthanide-labeled metal oxide nanoparticles improve the measurement of in vivo clearance and translocation

    Directory of Open Access Journals (Sweden)

    Abid Aamir D

    2013-01-01

    Full Text Available Abstract The deposition, clearance and translocation of europium-doped gadolinium oxide nanoparticles in a mouse lung were investigated experimentally. Nanoparticles were synthesized by spray flame pyrolysis. The particle size, crystallinity and surface properties were characterized. Following instillation, the concentrations of particles in organs were determined with inductively coupled plasma mass spectrometry. The protein corona coating the nanoparticles was found to be similar to the coating on more environmentally relevant nanoparticles such as iron oxide. Measurements of the solubility of the nanoparticles in surrogates of biological fluids indicated very little propensity for dissolution, and the elemental ratio of particle constituents did not change, adding further support to the contention that intact nanoparticles were measured. The particles were intratracheally instilled into the mouse lung. After 24 hours, the target organs were harvested, acid digested and the nanoparticle mass in each organ was measured by inductively coupled plasma mass spectrometry (ICP-MS. The nanoparticles were detected in all the studied organs at low ppb levels; 59% of the particles remained in the lung. A significant amount of particles was also detected in the feces, suggesting fast clearance mechanisms. The nanoparticle system used in this work is highly suitable for quantitatively determining deposition, transport and clearance of nanoparticles from the lung, providing a quantified measure of delivered dose.

  20. Novel lanthanide-labeled metal oxide nanoparticles improve the measurement of in vivo clearance and translocation.

    Science.gov (United States)

    Abid, Aamir D; Anderson, Donald S; Das, Gautom K; Van Winkle, Laura S; Kennedy, Ian M

    2013-01-10

    The deposition, clearance and translocation of europium-doped gadolinium oxide nanoparticles in a mouse lung were investigated experimentally. Nanoparticles were synthesized by spray flame pyrolysis. The particle size, crystallinity and surface properties were characterized. Following instillation, the concentrations of particles in organs were determined with inductively coupled plasma mass spectrometry. The protein corona coating the nanoparticles was found to be similar to the coating on more environmentally relevant nanoparticles such as iron oxide. Measurements of the solubility of the nanoparticles in surrogates of biological fluids indicated very little propensity for dissolution, and the elemental ratio of particle constituents did not change, adding further support to the contention that intact nanoparticles were measured. The particles were intratracheally instilled into the mouse lung. After 24 hours, the target organs were harvested, acid digested and the nanoparticle mass in each organ was measured by inductively coupled plasma mass spectrometry (ICP-MS). The nanoparticles were detected in all the studied organs at low ppb levels; 59% of the particles remained in the lung. A significant amount of particles was also detected in the feces, suggesting fast clearance mechanisms. The nanoparticle system used in this work is highly suitable for quantitatively determining deposition, transport and clearance of nanoparticles from the lung, providing a quantified measure of delivered dose.

  1. Synthesis of gold and silver nanoparticles using leaf extract of Perilla frutescens--a biogenic approach.

    Science.gov (United States)

    Basavegowda, Nagaraj; Lee, Yong Rok

    2014-06-01

    The present investigation demonstrates a rapid biogenic approach for the synthesis of gold and silver nanoparticles using biologically active and medicinal important Perilla frutescens leaf extract as a reducing and stabilizing agent under ambient conditions. Gold and silver nanoparticles were first synthesized from Perilla frutescens leaf extract which was used as a vegetable and in traditional medicines for a long time in Korea, Japan, and China. The nanoparticles obtained were characterized by UV-vis spectroscopy, transmission electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. Surface plasmon resonance spectra of gold and silver nanoparticles were obtained at 540 and 430 nm and triangular and spherical shape respectively. TEM studies showed that the particle sizes of gold and silver nanoparticles ranges -50 nm and -40 nm respectively. X-ray diffraction studies confirm that the biosynthesized nanoparticles were crystalline gold and silver. Fourier transform infra-red spectroscopy revealed that biomolecules were involved in the synthesis and capping of the nanoparticles produced. XRD and EDX confirmed the formation of gold and silver nanoparticles. This is a simple, efficient and rapid method to synthesize gold and silver nanoparticles at room temperature without use of toxic chemicals. Obtained gold and silver nanoparticles can be used in various biomedical and biotechnological applications.

  2. Alpha amylase assisted synthesis of TiO₂ nanoparticles: structural characterization and application as antibacterial agents.

    Science.gov (United States)

    Ahmad, Razi; Mohsin, Mohd; Ahmad, Tokeer; Sardar, Meryam

    2015-01-01

    The enzyme alpha amylase was used as the sole reducing and capping agent for the synthesis of TiO2 nanoparticles. The biosynthesized nanoparticles were characterized by X-ray diffraction (XRD) and transmission electron microscopic (TEM) methods. The XRD data confirms the monophasic crystalline nature of the nanoparticles formed. TEM data shows that the morphology of nanoparticles depends upon the enzyme concentration used at the time of synthesis. The presence of alpha amylase on TiO2 nanoparticles was confirmed by FTIR. The nanoparticles were investigated for their antibacterial effect on Staphylococcus aureus and Escherichia coli. The minimum inhibitory concentration value of the TiO2 nanoparticles was found to be 62.50 μg/ml for both the bacterial strains. The inhibition was further confirmed using disc diffusion assay. It is evident from the zone of inhibition that TiO2 nanoparticles possess potent bactericidal activity. Further, growth curve study shows effect of inhibitory concentration of TiO2 nanoparticles against S. aureus and E. coli. Confocal microscopy and TEM investigation confirm that nanoparticles were disrupting the bacterial cell wall.

  3. Synergistic bactericidal activity of Ag-TiO₂ nanoparticles in both light and dark conditions.

    Science.gov (United States)

    Li, Minghua; Noriega-Trevino, Maria Eugenia; Nino-Martinez, Nereyda; Marambio-Jones, Catalina; Wang, Jinwen; Damoiseaux, Robert; Ruiz, Facundo; Hoek, Eric M V

    2011-10-15

    High-throughput screening was employed to evaluate bactericidal activities of hybrid Ag-TiO₂ nanoparticles comprising variations in TiO₂ crystalline phase, Ag content, and synthesis method. Hybrid Ag-TiO₂ nanoparticles were prepared by either wet-impregnation or UV photo deposition onto both Degussa P25 and DuPont R902 TiO₂ nanoparticles. The presence of Ag was confirmed by ICP, TEM, and XRD analysis. The size of Ag nanoparticles formed on anatase/rutile P25 TiO₂ nanoparticles was smaller than those formed on pure rutile R902. When activated by UV light, all hybrid Ag-TiO₂ nanoparticles exhibited stronger bactericidal activity than UV alone, Ag/UV, or UV/TiO₂. For experiments conducted in the dark, bactericidal activity of Ag-TiO₂ nanoparticles was greater than either bare TiO₂ (inert) or pure Ag nanoparticles, suggesting that the hybrid materials produced a synergistic antibacterial effect unrelated to photoactivity. Moreover, less Ag(+) dissolved from Ag-TiO₂ nanoparticles than from Ag nanoparticles, indicating the antibacterial activities of Ag-TiO₂ was not only caused by releasing of toxic metal ions. It is clear that nanotechnology can produce more effective bactericides; however, the challenge remains to identify practical ways to take advantage of these exciting new material properties.

  4. A novel biological approach on extracellular synthesis and characterization of semiconductor zinc sulfide nanoparticles

    Science.gov (United States)

    Malarkodi, Chelladurai; Annadurai, Gurusamy

    2013-10-01

    The expansion of reliable and eco-friendly process for synthesis of semiconductor nanoparticle is an important step in the emerging field of biomedical nanotechnology. In this communication, the zinc sulfide nanoparticles were biologically synthesized by using Serratia nematodiphila which was isolated from chemical company effluent. The surface plasmon resonance centered at 390 nm on the UV spectrum indicates the presence of zinc sulfide nanoparticles in the reaction mixture ( S. nematodiphila and zinc sulfate); EDAX analysis also confirmed the presence of zinc sulfide nanoparticles. Scanning electron microscope image showed that the synthesized zinc sulfide nanoparticles were spherical in nature and nanoparticles of about 80 nm in size were obtained from transmission electron microscope images. The peaks in the XRD spectrum corresponding to (111), (220) and (311) show that the zinc sulfide nanoparticles are crystalline in nature. Fourier transforms infrared spectroscopy shows the functional groups of the nanoparticle in the range of 4,000-400 cm-1. Further, the antibacterial activity of zinc sulfide nanoparticles was examined against Bacillus subtilis and Klebsiella planticola. The maximum zone of inhibition occurred at 200 μl of silver nanoparticles. Due to potent antimicrobial and intrinsic properties of zinc sulfide, it is actively used for biomedical and food packaging applications.

  5. Ultra-small platinum and gold nanoparticles by arc plasma deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Hoon, E-mail: kim_sh@kist.re.kr [Center for Materials Architecturing, Korea Institute of Science and Technology (KIST), Seoul 136-791 (Korea, Republic of); Jeong, Young Eun; Ha, Heonphil; Byun, Ji Young [Center for Materials Architecturing, Korea Institute of Science and Technology (KIST), Seoul 136-791 (Korea, Republic of); Kim, Young Dok [Department of Chemistry, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2014-04-01

    Highlights: • Ultra-small (<2 nm) and bigger platinum and gold nanoparticles were produced by arc plasma deposition (APD). • Size and coverage of deposited nanoparticles were easily controlled with APD parameters. • Crystalline structures of deposited nanoparticles emerged only when the particle size was bigger than ∼2 nm. - Abstract: Ultra-small (<2 nm) nanoparticles of platinum and gold were produced by arc plasma deposition (APD) in a systematic way and the deposition behavior was studied. Nanoparticles were deposited on two dimensional amorphous carbon and amorphous titania thin films and characterized by transmission electron microscopy (TEM). Deposition behavior of nanoparticles by APD was studied with discharge voltage (V), discharge condenser capacitance (C), and the number of plasma pulse shots (n) as controllable parameters. The average size of intrinsic nanoparticles generated by APD process was as small as 0.9 nm and deposited nanoparticles began to have crystal structures from the particle size of about 2 nm. V was the most sensitive parameter to control the size and coverage of generated nanoparticles compared to C and n. Size of APD deposited nanoparticles was also influenced by the nature of evaporating materials and substrates.

  6. The exchange bias effect in Ni/NiO and NiO nanoparticles

    Science.gov (United States)

    Kou, Angela; Feygenson, Mikhail; Kreno, Lauren; Patete, Jonathan; Tiano, Amanda; Zhang, Fen; Wong, Stanislaus; Aronson, Meigan

    2009-03-01

    We used magnetic measurements, X-ray diffraction, and HRTEM to study the exchange bias field in Ni/NiO and NiO nanoparticles made by a modified wet chemistry method. We oxidized re-dispersed powders of bare Ni nanoparticles in air at 400^oC and 900^oC. HRTEM showed that annealing at 900^oC of bare Ni nanoparticles led to the formation of exceptionally high quality NiO nanoparticles, resembling perfect bulk-like crystalline order. To our knowledge, there are no reports of NiO particles of such quality in the literature. The loop shift was 1000 Oe at 300K for the NiO nanoparticles, while it was only 120 Oe at 10K for the Ni/NiO nanoparticles. The difference is explained by the different origins of the loop shift in Ni/NiO and NiO nanoparticles. In Ni/NiO nanoparticles, the loop shift is associated with exchange interactions between ferromagnetic Ni and antiferromagnetic NiO. In NiO nanoparticles, however, the origin of the shift is an uneven number of ferromagnetic sublattices present in NiO nanoparticles, which interact differently with an applied magnetic field (Kodama, 1999).

  7. Direct laser planting of hybrid Au-Ag/C nanostructures - nanoparticles, flakes and flowers

    CERN Document Server

    Manshina, Alina; Bashouti, Muhammad; Povolotskiy, Alexey; Petrov, Yuriy; Koshevoy, Igor; Christiansen, Silke; Tunik, Sergey; Leuchs, Gerd

    2015-01-01

    We demonstrate a new approach for forming hybrid metal/carbonaceous nanostructures in a controlled direct laser planting process. Au-Ag nanoclusters in amorphous or crystalline carbonaceous matrices are formed with different morphology: nanoparticles, nanoflakes, and nanoflowers. In contrast to other generation techniques our approach is simple, involving only a single laser-induced process transforming supramolecular complexes dissolved in solvent such as acetone, acetophenone, or dichloroethane into hybrid nanostructures in the laser-affected area of the substrate. The morphology of the hybrid nanostructures can be steered by controlling the deposition parameters, the composition of the liquid phase and the type of substrate, amorphous or crystalline. The carbonaceous phase of the hybrid nanostructures consists of hydrogenated amorphous carbon in the case of nanoparticles and of crystalline orthorhombic graphite of nanoscale thickness in the case of flakes and flowers. To the best of our knowledge this is t...

  8. Characterization of the oleic acid/iron oxide nanoparticle interface by magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Masur, S., E-mail: sabrina.masur@uni-due.de; Zingsem, B.; Marzi, T.; Meckenstock, R.; Farle, M.

    2016-10-01

    The synthesis of colloidal nanoparticles involves surfactant molecules, which bind to the particle surface and stabilize nanoparticles against aggregation. In many cases these protecting shells also can be used for further functionalization. In this study, we investigated monodisperse single crystalline iron oxide core/shell nanoparticles (Fe{sub x}O{sub y}-NPs) in situ covered with an oleic acid layer which showed two electron spin resonance (ESR) signals. The nanoparticles with the ligands attached were characterized by transmission electron microscopy (TEM) and ferro- and paramagnetic resonance (FMR, EPR). Infrared spectroscopy confirmed the presence of the functional groups and revealed that the oleic acid (OA) is chemisorbed as a carboxylate on the iron oxide and is coordinated symmetrically to the oxide atoms. We show that the EPR signal of the OA ligand molecule can be used as a local probe to determine the temperature changes at the surface of the nanoparticle. - Highlights: • Monodisperse single crystalline iron oxide core/shell nanoparticles (Fe{sub x}O{sub y}-NPs) in situ covered with an oleic acid layer two electron spin resonance (ESR) signals. • We show that the EPR signal of the OA ligand molecule can be used as a local probe to determine the temperature changes at the surface of the nanoparticle.

  9. Laser ceramics with disordered crystalline structure

    Science.gov (United States)

    Bagayev, S. N.; Osipov, V. V.; Pestryakov, E. V.; Solomonov, V. I.; Shitov, V. A.; Maksimov, R. N.; Orlov, A. N.; Petrov, V. V.

    2015-01-01

    New ceramic materials based on yttrium oxide Y2O3 with isovalent (Yb2O3, Nd2 O3, and Lu2O3) and heterovalent (ZrO2 and HfO2) components are synthesized, and their spectroscopic properties are investigated. Possible channels of losses in the gain of stimulated radiation in the radiative transitions of Nd3+ and Yb3+ ions in ceramics with heterovalent additives are studied. The results of measurements of Y2O3 ceramics doped with zirconium and hafnium ions, the emission bandwidth and the lifetimes of the 4F3/2 and 2F5/2 levels of Nd3+ and Yb3+ ions, respectively, are presented. It is shown that the nonradiative population of the 4F3/2 levels of neodymium ions is due to their dipole-dipole interaction with Zr3+ and Hf3+ ions. Laser generation in [(Yb0.01Lu0.24Y0.75)2O3]0.88(ZrO2)0.12 ceramics with disordered crystalline structure was achieved at a wavelength of 1034 nm with a differential efficiency of 29%.

  10. Crystalline nanocellulose/lauric arginate complexes.

    Science.gov (United States)

    Chi, Kai; Catchmark, Jeffrey M

    2017-11-01

    As a novel sustainable nanomaterial, crystalline nanocellulose (CNC) possesses many unique characteristics for emerging applications in coatings, emulsions, paints, pharmaceutical formulations, and other aqueous composite systems where interactions with oppositely charged surfactants are commonly employed. Herein, the binding interactions between sulfated CNC and a novel biologically-derived cationic surfactant lauric arginate (LAE) were comprehensively examined. Ionic strength and solution pH are two crucial factors in determining the adsorption of LAE to the CNC surface. Three different driving forces were identified for CNC-LAE binding interactions. Additionally, it was found that the adsorption of LAE to the CNC surface could notably impact the surface potential, aggregation state, hydrophobicity and thermal stability of the CNC. This work provides insights on the binding interactions between oppositely charged CNC and surfactants, and highlights the significance of optimizing the concentration of surfactant required to ionically decorate CNC for its enhanced dispersion and compatibilization in non-polar polymer matrices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. A new crystalline phase in magnetar crusts

    CERN Document Server

    Bedaque, Paulo F; Ng, Nathan; Sen, Srimoyee

    2013-01-01

    We show that ions at the low densities and high magnetic fields relevant to the outer crust of magnetars form a novel crystalline phase where ions are strongly coupled along the magnetic field and loosely coupled in the transverse direction. The underlying cause is the anisotropic screening of the Coulomb force by electrons in the presence of a strongly quantizing magnetic field which leads to Friedel oscillations in the ion-ion potential. In particular, the Friedel oscillations are much longer-ranged in the direction of the magnetic field than is the case in the absence of magnetic fields, a factor that has been neglected in previous studies. These "Friedel crystals" have very anisotropic elastic moduli, with potentially interesting implications for the Quasi-periodic Oscillations seen in the X-ray flux of magnetars during their giant flares. We find the minimum energy configuration of ions taking into account these anisotropic effects and find that, depending on the density, temperature and magnetic field s...

  12. Irreversible thermodynamics of creep in crystalline solids

    Science.gov (United States)

    Mishin, Y.; Warren, J. A.; Sekerka, R. F.; Boettinger, W. J.

    2013-11-01

    We develop an irreversible thermodynamics framework for the description of creep deformation in crystalline solids by mechanisms that involve vacancy diffusion and lattice site generation and annihilation. The material undergoing the creep deformation is treated as a nonhydrostatically stressed multicomponent solid medium with nonconserved lattice sites and inhomogeneities handled by employing gradient thermodynamics. Phase fields describe microstructure evolution, which gives rise to redistribution of vacancy sinks and sources in the material during the creep process. We derive a general expression for the entropy production rate and use it to identify of the relevant fluxes and driving forces and to formulate phenomenological relations among them taking into account symmetry properties of the material. As a simple application, we analyze a one-dimensional model of a bicrystal in which the grain boundary acts as a sink and source of vacancies. The kinetic equations of the model describe a creep deformation process accompanied by grain boundary migration and relative rigid translations of the grains. They also demonstrate the effect of grain boundary migration induced by a vacancy concentration gradient across the boundary.

  13. Gravitational Effects of a Crystalline Quantum Foam

    Science.gov (United States)

    Crouse, David

    2017-01-01

    In this work, concepts in quantum mechanics and general relativity are used to derive the quantums of space and time. After showing that space and time, at the Planck scale, must be discrete and not continuous, various anomalous gravitational effects are described. It is discussed how discrete space necessarily imposes order upon Wheeler's quantum foam, changing the foam into a crystal. The forces in this crystal are gravitational forces due to the ordered array of electrically neutral Planck masses, and with a lattice constant on the order of the Planck length. Thus the crystal is a gravity crystal rather than the more common crystals (e.g., silicon) that rely on electromagnetic forces. It is shown that similar solid-state physics techniques can be applied to this universe-wide gravity crystal to calculate particles' dispersion curves. It is shown that the crystal produces typical crystalline effects, namely bandgaps, Brillouin zones, and effective inertial masses that may differ from the gravitational masses with possible values even being near zero or negative. It is shown that the gravity crystal can affect the motion of black holes in dramatic ways, imbuing them with a negative inertial mass such that they are pushed by the pull of gravity.

  14. Synthesis of hydroxyapatite nanoparticles by a novel ultrasonic assisted with mixed hollow sphere template method.

    Science.gov (United States)

    Gopi, D; Indira, J; Kavitha, L; Sekar, M; Mudali, U Kamachi

    2012-07-01

    Hydroxyapatite (HAP) is the main inorganic component of bone material and is widely used in various biomedical applications due to its excellent bioactivity and biocompatibility. In this paper, we have reported the synthesis of hydroxyapatite nanoparticles by a novel ultrasonic assisted mixed template directed method. In this method glycine-acrylic acid (GLY-AA) hollow spheres were used as an organic template which could be prepared by mixing of glycine with acrylic acid. The as-synthesized HAP nanoparticles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM) and tunnelling electron microscope (TEM) to investigate the nature of bonding, crystallinity, size and shape. The thermal stability of as-synthesized nanoparticles was also investigated by the thermo gravimetric analysis (TGA). The effect of ultrasonic irradiation time on the crystallinity and size of the HAP nanoparticles in presence of glycine-acrylic acid hollow spheres template were investigated. From the inspection of the above results it is confirmed that the crystallinity and size of the HAP nanoparticles decrease with increasing ultrasonic irradiation time. Hence the proposed synthesis strategy provides a facile pathway to obtain nano sized HAP with high quality, suitable size and morphology. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Photodynamic therapy using upconversion nanoparticles prepared by laser ablation in liquid

    Energy Technology Data Exchange (ETDEWEB)

    Ikehata, Tomohiro; Onodera, Yuji; Nunokawa, Takashi [Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Hirano, Tomohisa; Ogura, Shun-ichiro; Kamachi, Toshiaki [Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Odawara, Osamu [Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Wada, Hiroyuki, E-mail: wada.h.ac@m.titech.ac.jp [Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan)

    2015-09-01

    Highlights: • Highly crystalline upconversion nanoparticles were prepared by laser ablation in liquid. • Highly transparent near-IR irradiation generated singlet oxygen. • Viability of cancer cells was significantly decreased by near-IR irradiation. - Abstract: Upconversion nanoparticles were prepared by laser ablation in liquid, and the potential use of the nanoparticles for cancer treatment was investigated. A Nd:YAG/SHG laser (532 nm, 13 ns, 10 Hz) was used for ablation, and the cancer treatment studied was photodynamic therapy (PDT). Morphology and crystallinity of prepared nanoparticles were examined by transmission electron microscopy and X-ray diffraction. Red and green emissions resulting from near-infrared excitation were observed by a fluorescence spectrophotometer. Generation of singlet oxygen was confirmed by a photochemical method using 1,3-diphenylisobenzofuran (DPBF). In vitro experiments using cultivated cancer cells were conducted to investigate PDT effects. Uptake of the photosensitizer by cancer cells and cytotoxicities of cancer cells were also examined. We conclude that the combination of PDT and highly crystalline nanoparticles, which were prepared by laser ablation in liquid, is an effective cancer treatment.

  16. Amorphous to crystal conversion as a mechanism governing the structure of luminescent YVO4:Eu nanoparticles.

    Science.gov (United States)

    Fleury, Blaise; Neouze, Marie-Alexandra; Guigner, Jean-Michel; Menguy, Nicolas; Spalla, Olivier; Gacoin, Thierry; Carriere, David

    2014-03-25

    The development of functional materials by taking advantage of the physical properties of nanoparticles needs an optimal control over their size and crystal quality. In this context, the synthesis of crystalline oxide nanoparticles in water at room temperature is a versatile and industrially appealing process but lacks control especially for "large" nanoparticles (>30 nm), which commonly consist of agglomerates of smaller crystalline primary grains. Improvement of these syntheses is hampered by the lack of knowledge on possible intermediate, noncrystalline stages, although their critical importance has already been outlined in crystallization processes. Here, we show that during the synthesis of luminescent Eu-doped YVO4 nanoparticles a transient amorphous network forms with a two-level structuration. These two prestructuration scales constrain topologically the nucleation of the nanometer-sized crystalline primary grains and their aggregation in nanoparticles, respectively. This template effect not only clarifies why the crystal size is found independent of the nucleation rate, in contradiction with the classical nucleation models, but also supports the possibility to control the final nanostructure with the amorphous phase.

  17. Solution-processable carboxylate-capped CuO nanoparticles obtained by a simple solventless method

    Science.gov (United States)

    Estruga, Marc; Roig, Anna; Domingo, Concepción; Ayllón, José A.

    2012-08-01

    Carboxylate-capped CuO nanoparticles were obtained via a simple solventless route, based on the thermal decomposition at 120 °C of solid precursors. The reaction mixture consisted of copper acetate monohydrate, acting as the CuO precursor, and different organic carboxylic acids (lauric, phenylvaleric or 3,6,9-trioxadecanoic acid) used as the capping agent. The proposed method, in good agreement with environmentally friendly practices, produced dry nanoparticles, thereby totally eliminating the need of washing, filtration, or other downstream steps. Transmission electron micrographs show crystalline roughly spherical CuO nanoparticles with average diameters between 3.1 and 5.5 nm depending on the capping ligand. The laurate-capped CuO nanoparticles showed a paramagnetic behaviour at room temperature, while a weak ferromagnetic component was detected at low temperature (acid tail enabled the straightforward dispersibility of nanoparticles in common solvents and assisted in the deposition of the material as thin films.

  18. Anthelmintic efficacy of gold nanoparticles derived from a phytopathogenic fungus, Nigrospora oryzae.

    Directory of Open Access Journals (Sweden)

    Pradip Kumar Kar

    Full Text Available Exploring a green chemistry approach, this study brings to the fore, the anthelmintic efficacy of gold nanoparticles, highlighting the plausible usage of myconanotechnology. Gold nanoparticles of ∼6 to ∼18 nm diameter were synthesized by treating the mycelia-free culture filtrate of the phytopathogenic fungus with gold chloride. Their size and morphology were confirmed by UV-Vis spectroscopy, DLS data, AFM and TEM images. The XRD studies reveal a crystalline nature of the nanoparticles, which are in cubic phase. The FTIR spectroscopic studies before and after the formation of nanoparticles show the presence of possible functional groups responsible for the bio-reduction and capping of the synthesized gold nanoparticles. The latter were tested as vermifugal agents against a model cestode Raillietina sp., an intestinal parasite of domestic fowl. Further, ultrastructural and biochemical parameters were used to corroborate the efficacy study.

  19. Biosynthesis, Characterization, and Antidermatophytic Activity of Silver Nanoparticles Using Raamphal Plant (Annona reticulata Aqueous Leaves Extract

    Directory of Open Access Journals (Sweden)

    P. Shivakumar Singh

    2014-01-01

    Full Text Available The present work investigated the biosynthesis of silver nanoparticles using Annona reticulata leaf aqueous extract. The biosynthesised silver nanoparticles were confirmed by visual observation and UV-Vis spectroscopy. Appearance of dark brown colour indicated the synthesis of silver in the reaction mixture. The silver nanoparticles were found to be spherical, rod, and triangular in shape with variable size ranging from 23.84 to 50.54 nm, as evident by X-ray diffraction studies, TEM. The X-ray diffraction studies, energy dispersive X-ray analysis, and TEM analysis indicate that the particles are crystalline in nature. The nanoparticles appeared to be associated with some chemical compounds which possess hydroxyl and carbonyl groups, confirmed by FTIR. This is the first and novel report of silver nanoparticles synthesised from Annona reticulata leaves extract and their antidermatophytic activity.

  20. Plant-mediated biosynthesis of silver nanoparticles using Prosopis farcta extract and its antibacterial properties

    Science.gov (United States)

    Miri, Abdolhossein; Sarani, Mina; Rezazade Bazaz, Mahere; Darroudi, Majid

    2015-04-01

    "Green" synthesis of metal nanoparticles has become a promising synthetic strategy in nanoscience and nanotechnology in recent years. In this work, silver nanoparticles (Ag-NPs) were synthesized from extract of Prosopis farcta at room temperature. Formation of Ag-NPs at 1 mM concentration of AgNO3 gave spherical shape nanoparticles with mean diameter about 10.8 nm. The formation of nanoparticle was confirmed by the surface Plasmon resonance (SPR) band illustrated in UV-vis spectrophotometer. The morphology and size of the Ag-NPs were determined using high magnification transmission electron microscopy (TEM). The crystalline structure of obtained nanoparticles was investigated using the powder X-ray diffraction (PXRD) pattern. In addition, these green synthesized Ag-NPs were found to show higher antibacterial activity against multi drug resistant clinical isolates.