WorldWideScience

Sample records for unirradiated clay samples

  1. Quality evaluation of processed clay soil samples.

    Science.gov (United States)

    Steiner-Asiedu, Matilda; Harrison, Obed Akwaa; Vuvor, Frederick; Tano-Debrah, Kwaku

    2016-01-01

    This study assessed the microbial quality of clay samples sold on two of the major Ghanaian markets. The study was a cross-sectional assessing the evaluation of processed clay and effects it has on the nutrition of the consumers in the political capital town of Ghana. The items for the examination was processed clay soil samples. Staphylococcus spp and fecal coliforms including Klebsiella, Escherichia, and Shigella and Enterobacterspp were isolated from the clay samples. Samples from the Kaneshie market in Accra recorded the highest total viable counts 6.5 Log cfu/g and Staphylococcal count 5.8 Log cfu/g. For fecal coliforms, Madina market samples had the highest count 6.5 Log cfu/g and also recorded the highest levels of yeast and mould. For Koforidua, total viable count was highest in the samples from the Zongo market 6.3 Log cfu/g. Central market samples had the highest count of fecal coliforms 4.6 Log cfu/g and yeasts and moulds 6.5 Log cfu/g. "Small" market recorded the highest staphylococcal count 6.2 Log cfu/g. The water activity of the clay samples were low, and ranged between 0.65±0.01 and 0.66±0.00 for samples collected from Koforidua and Accra respectively. The clay samples were found to contain Klebsiella spp. Escherichia, Enterobacter, Shigella spp. staphylococcus spp., yeast and mould. These have health implications when consumed.

  2. Temperature dependence of magnetoresistance in neutron-irradiated and unirradiated high resistivity p-type silicon

    International Nuclear Information System (INIS)

    Yildirim, M.; Efeoglu, H.; Abay, B.; Yogurtcu, Y.K.

    1996-01-01

    The temperature dependence of the transverse magnetoresistance in irradiated and unirradiated p-type Si is studied in the range from 120 to 290 K. The magnetoresistance coefficients for the unirradiated left angle 001 right angle and left angle 1 anti 10 right angle samples increases with decreasing sample temperature in the range from 160 to 290 K, however, this behavior is reversed below 160 K. It is proposed that this reversal is due to the double injection effect. The magnetoresistance coefficient for the irradiated left angle 001 right angle sample increases with decreasing sample temperature in the range of 120 to 290 K and is greater than that for the unirradiated left angle 001 right angle sample. This result can be explained by increased scattering due to the increased number of defects produced by irradiation. On the other hand, the magnetoresistance coefficient for the unirradiated left angle 1 anti 10 right angle sample is found to be greater than that of the unirradiated left angle 001 right angle sample. (orig.)

  3. Shear Strength of Remoulding Clay Samples Using Different Methods of Moulding

    Science.gov (United States)

    Norhaliza, W.; Ismail, B.; Azhar, A. T. S.; Nurul, N. J.

    2016-07-01

    Shear strength for clay soil was required to determine the soil stability. Clay was known as a soil with complex natural formations and very difficult to obtain undisturbed samples at the site. The aim of this paper was to determine the unconfined shear strength of remoulded clay on different methods in moulding samples which were proctor compaction, hand operated soil compacter and miniature mould methods. All the samples were remoulded with the same optimum moisture content (OMC) and density that were 18% and 1880 kg/m3 respectively. The unconfined shear strength results of remoulding clay soils for proctor compaction method was 289.56kPa with the strain 4.8%, hand operated method was 261.66kPa with the strain 4.4% and miniature mould method was 247.52kPa with the strain 3.9%. Based on the proctor compaction method, the reduction percentage of unconfined shear strength of remoulded clay soil of hand operated method was 9.66%, and for miniature mould method was 14.52%. Thus, because there was no significant difference of reduction percentage of unconfined shear strength between three different methods, so it can be concluded that remoulding clay by hand operated method and miniature mould method were accepted and suggested to perform remoulding clay samples by other future researcher. However for comparison, the hand operated method was more suitable to form remoulded clay sample in term of easiness, saving time and less energy for unconfined shear strength determination purposes.

  4. Detection of irradiated spice in blend of irradiated and un-irradiated spices using thermoluminescence method

    International Nuclear Information System (INIS)

    Goto, Michiko; Yamazaki, Masao; Sekiguchi, Masayuki; Todoriki, Setsuko; Miyahara, Makoto

    2007-01-01

    Five blended spice sample were prepared by mixing irradiated and un-irradiated black pepper and paprika at different ratios. Blended black pepper containing 2%(w/w) of 5.4 kGy-irradiated black pepper showed no maximum at glow1. Irradiated black pepper samples, mixed to 5 or 10%(w/w), were identified as 'irradiated' or 'partially irradiated' or 'un-irradiated'. All samples with un-irradiated pepper up to 20%(w/w) were identified as irradiated'. In the case 5.0 kGy-irradiated paprika were mixed with un-irradiated paprika up to 5%(w/w), all samples were identified as irradiated'. The glow1 curves of samples, including irradiated paprika at 0.2%(w/w) or higher, exhibited a maximum between 150 and 250degC. The results suggest the existence of different critical mixing ratio for the detection of irradiation among each spices. Temperature range for integration of the TL glow intensity were compared between 70-400degC and approximate 150-250degC, and revealed that the latter temperature range was determined based on the measurement of TLD100. Although TL glow ratio in 150-250degC was lower than that of 70-400degC range, identification of irradiation was not affected. Treatment of un-irradiated black pepper and paprika with ultraviolet rays had no effect on the detection of irradiation. (author)

  5. Evaluation of correlation between physical properties and ultrasonic pulse velocity of fired clay samples.

    Science.gov (United States)

    Özkan, İlker; Yayla, Zeliha

    2016-03-01

    The aim of this study is to establish a correlation between physical properties and ultrasonic pulse velocity of clay samples fired at elevated temperatures. Brick-making clay and pottery clay were studied for this purpose. The physical properties of clay samples were assessed after firing pressed clay samples separately at temperatures of 850, 900, 950, 1000, 1050 and 1100 °C. A commercial ultrasonic testing instrument (Proceq Pundit Lab) was used to evaluate the ultrasonic pulse velocity measurements for each fired clay sample as a function of temperature. It was observed that there became a relationship between physical properties and ultrasonic pulse velocities of the samples. The results showed that in consequence of increasing densification of the samples, the differences between the ultrasonic pulse velocities were higher with increasing temperature. These findings may facilitate the use of ultrasonic pulse velocity for the estimation of physical properties of fired clay samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Possible influence of clay contamination on B isotope geochemistry of carbonaceous samples

    International Nuclear Information System (INIS)

    Deyhle, Annette; Kopf, Achim

    2004-01-01

    The authors report results from an experimental study on mixtures of pure endmembers of natural clay and carbonate. The scientific rationale is an evaluation as to what extent B contents and B isotopes of carbonate samples may be obscured as a result of contamination with clay, particularly since both authigenic carbonates and biogenic carbonates (e.g. microfossil tests) often contain some clay. Three aliquots of a series of samples (each containing 0, 20, 40, 60, 80, 100% clay) were analyzed. Set 1 was washed with distilled, de-ionized water; for set 2 the HCl soluble parts were dissolved in 2 M HCl after washing; set 3 was completely digested with 30M HF prior to a series of ion exchanges. Isotope data of the endmembers are 6.6 per mille (100% marble) and -4.6%o (100% clay), with the clay being the dominant B source (ca. 50 ppm compared with 11 B adsorbed =12.9-14.1%o±0.5%o), while no B was mobilized from the carbonate. The HCl-dissolvable B in washed samples of set 2 show slightly increasing B contents with higher clay contents, suggesting that dissolution of the marble as well as B mobilization from the clay account for this trend. δ 11 B isotopes tend towards more negative values when clay content increases, indicating that some structurally-bound B is lost from the sheets of linked (Si, Al)O 4 tetrahedra of the clay mineral. This result shows that not only B adsorption, but possibly diffusion or weathering of broken edges of clay minerals releases some structurally bound B of clay minerals. Set 3, where bulk samples were completely HF-digested, shows as expected a linear increase in B concentrations and decreasing δ 11 B ratios with increasing clay content. The overall results suggest that relatively small amounts of clay (e.g. as contamination in a microfossil test) have no significant impact on the B content and δ 11 B measured for the carbonate, but that care has to be taken if clay exceeds 10wt.% (e.g. carbonate concretions, chimneys, etc.)

  7. Quality evaluation of processed clay soil samples | Steiner-Asiedu ...

    African Journals Online (AJOL)

    Introduction: This study assessed the microbial quality of clay samples sold on two of the major Ghanaian markets. Methods: The study was a cross-sectional assessing the evaluation of processed clay and effects it has on the nutrition of the consumers in the political capital town of Ghana. The items for the examination was ...

  8. Kinetics of exchange of a tracer in soil and clay samples

    Energy Technology Data Exchange (ETDEWEB)

    Zanotti, J C; Facetti, J F [Asuncion Nacional Univ. (Paraguay). Inst. de Ciencias

    1971-01-01

    The kinetics of exchange of a Na tracer in soil and clay samples, provides with a reliable and convenient method for the determination of the different soil fraction ahd their CEC values, In addition, the analysis of the exchanges curves can be used for the identification of the clay present in the soil.

  9. Kinetics of exchange of a tracer in soil and clay samples

    International Nuclear Information System (INIS)

    Zanotti, J.C.; Facetti, J.F.

    1971-01-01

    The kinetics of exchange of a Na tracer in soil and clay samples, provides with a reliable and convenient method for the determination of the different soil fraction ahd their CEC values, In addition, the analysis of the exchanges curves can be used for the identification of the clay present in the soil

  10. In vivo genetic toxicity studies in Chinese hamsters fed irradiated or unirradiated foodstuffs

    International Nuclear Information System (INIS)

    Altmann, H.

    1982-01-01

    Two in vivo genetic toxicity studies were performed in Chinese hamsters fed irradiated or unirradiated diets of chicken, fish or dates in order to detect possible mutagenic effects caused by irradiating these foodstuffs. The tests selected for study were: 1. Chromosomal analysis of bone narrow cells and 2. DNA metabolism in spleen cells. Chicken, fish and dates were irradiated with doses of 7, 2.5 and 1 kGy respectively. These investigations were subsequently extended to include the effects of irradiated dried onions, pulses and cocoa beans on DNA metabolism in Chinese hamster spleen cells only. Dried onions were irradiated with doses of 0.15, 9 and 15 kGy, pulses with 10 kGy and cocoa beans with 3.2 to 5 kGy. In addition, a fumigated cocoa bean group was included. No significant differences in chromosomal aberration rate were detected between groups fed irradiated or unirradiated diets. Dried dates, whether irradiated or not, showed some evidence of genetic toxicity in their effect on DNA metabolism in the spleen cells of Chinese hamsters. Both date diets caused more strand breaks DNA than are usual for Chinese hamster spleen cells, but DNA repair was not adversely affected. Chicken, both irradiated and unirradiated, was found to enhance replicative DNA synthesis but had no effect on the DNA repair process. Irradiated fish, however, caused enhanced DNA synthesis compared to unirradiated fish, but also had no adverse effect on DNA repair. Irradiated white beans also enhanced DNA synthesis compared to controls whereas unirradiated samples inhibited synthesis. (orig./MG)

  11. Analysis of Some Clay Samples from Yauri (Kebbi State), Goronyo ...

    African Journals Online (AJOL)

    Analysis of some clay samples presumed to be kaolin obtained from different deposits in Yauri (kebbi state), Goronyo, Munwadata, Atokonyo (Sokoto state), Nigeria was carried out. The samples were subjected to quantitative analysis to determine major and trace constituents using gravimetric, colorimetric, titrimetric and ...

  12. 40 KG Sample of Fish-Clay from Stevns Klint, Denmark

    Science.gov (United States)

    Gwozdz, R.; Hansen, H. J.; Rasmussen, K. L.

    1992-07-01

    In March 1986 a 50-m-long exposure of the cliff at Stevns Klint fell down and exposed about 40 square meters of Fish Clay. Due to this extraordinary event we were able to pick by hand about 50 kg black KT boundary layer material. After drying, the material was homogenized using a wooden pestle and an agate mortar. The powdered material was sieved through 200 mesh nylon gauze. The fraction larger than 200 mesh was collected and powdered again in an agate mortar. After four repetitions the amount of material with grain size less than 200 mesh was about 40 kg. The fraction larger than 200 mesh was reduced to about 7 kg. The 40-kg powder was mixed in a rotating polyethylene drum for three weeks. The material was analyzed by instrumental neutron activation analysis, atomic absorption and X-ray fluorescence analysis for about 40 elements. INAA was made on 20 aliquots with weight about 300 mg, 20 aliquots with weight about 80 mg, and 30 with weights between 10 and 20 mg. The preliminary results show that our KT boundary sample (1) is very homogeneous, (2) is very close in composition to other K-T boundary clays analyzed by us or described in the literature, and (3) has an Ir concentration of 32 +- 2 ng/g. We hope that our Fish Clay sample (termed by us "Mesozoic Midnight") after analysis in other laboratories and by other analytical methods may qualify as reference material in analytical work on boundary clay material.

  13. Colloid and phosphorus leaching from undisturbed soil cores sampled along a natural clay gradient

    DEFF Research Database (Denmark)

    Vendelboe, Anders Lindblad; Møldrup, Per; Heckrath, Goswin Johann

    2011-01-01

    correlated to the accumulated outflow and was described as a diffusion controlled process, using ¾(accumulated outflow). The mass of leached particles was positively correlated to the clay content as well as to water-dispersible colloids. Particulate phosphorus (P) was linearly correlated to concentration......The presence of strongly sorbing compounds in groundwater and tile drains can be a result of colloid-facilitated transport. Colloid and phosphorus leaching from macropores in undisturbed soil cores sampled across a natural clay gradient at Aarup, Denmark, were studied. The aim of the study...... was to correlate easily measurable soil properties, such as clay content and water-dispersible colloids, to colloid and phosphorus leaching. The clay contents across the gradient ranged from 0.11 to 0.23 kg kgj1. Irrigating with artificial rainwater, all samples showed a high first flush of colloids and phosphorus...

  14. Geochemical porosity values obtained in core samples from different clay-rocks

    International Nuclear Information System (INIS)

    Fernandez, A.M.

    2010-01-01

    Document available in extended abstract form only. Argillaceous formations of low permeability are considered in many countries as potential host rocks for the disposal of high level radioactive wastes (HLRW). In order to determine their suitability for waste disposal, evaluations of the hydro-geochemistry and transport mechanisms from such geologic formations to the biosphere must be undertaken. One of the key questions about radionuclide diffusion and retention is to know the chemistry and chemical reactions and sorption processes that will occur in the rock and their effects on radionuclide mobility. In this context, the knowledge of the pore water chemistry is essential for performance assessment purposes. This information allows to establish a reliable model for the main water-rock interactions, which control the physico-chemical parameters and the chemistry of the major elements of the system. An important issue in order to model the pore water chemistry in clayey media is to determine the respective volume accessible to cations and anions, i.e, the amount of water actually available for chemical reactions/solute transport. This amount is usually referred as accessible porosity or geochemical porosity. By using the anion inventories, i.e. the anion content obtained from aqueous leaching, and assuming that all Cl - , Br - and SO4 2- leached in the aqueous extracts originates from pore water, the concentration of a conservative ion can be converted into the real pore water concentration if the accessible porosity is known. In this work, the accessible porosity or geochemical porosity has been determined in core samples belonging to four different formations: Boom Clay from Hades URL (Belgium, BE), Opalinus Clay from Mont Terri (Switzerland, CH), and Callovo-Oxfordian argillite from Bure URL (France, FR). The geochemical or chloride porosity was defined as the ratio between the pore water volume containing Cl-bearing pore water and the total volume of a sample

  15. Study of Usage Areas of Clay Samples of Asphaltite Quarries in Sirnak, Turkey

    Science.gov (United States)

    Bilgin, Oyku

    2017-12-01

    The asphaltite of Sirnak, Turkey are in the form of 12 veins and their total reserves are anticipated to be approximately 200 million tons in a field of 25.000 hectares. The asphaltites at the Sirnak region are in the form of fault and crack fillings and take place together with clay minerals at their side rock. The main raw materials used in the production of cement are limestone, clay and marn known as sedimentary rocks. Limestone for CaO and clay minerals for SiO2, Al2O3, and Fe2O3, which are the main compounds of clinker production, are the main raw materials. Other materials containing these four oxides like marn are also used as cement raw material. Conformity levels of the raw materials to be used in cement production vary according to their chemical compounds. The rocks to be used as clay mineral are evaluated by taking the rate of silicate and alumina into consideration. The soils suitable for brick-tile productions are named as sandy clay. Their difference from the ceramic clays is that they are richer in terms of iron, silica and carbonate. These soils are also known under the names such as clay, arid, alluvium, silt, loam and argil. Inside these soils, minerals such as quartz, montmorillonite, kaolinite, calcite, limonite, hidromika, sericite, illite, and chlorite are available. Some parts of the soils consist of clays in amorphous structure. Limestone parts, gypsums, organic substances and bulky rock residuals spoil the quality. The soils suitable for brick production may not be suitable for tile production. In this case, their sandy soils should be mixed up with the clays with fine granule structure which is high in plasticity. During asphaltite mining in Sirnak region, clays forming side rock are gathered at dump sites. In this study; SQX analyses of the clay samples taken from Avgamasya, Seridahli and Segürük asphaltite veins run in Sirnak region are carried out and their usage areas are searched.

  16. Crystallite size distribution of clay minerals from selected Serbian clay deposits

    Directory of Open Access Journals (Sweden)

    Simić Vladimir

    2006-01-01

    Full Text Available The BWA (Bertaut-Warren-Averbach technique for the measurement of the mean crystallite thickness and thickness distributions of phyllosilicates was applied to a set of kaolin and bentonite minerals. Six samples of kaolinitic clays, one sample of halloysite, and five bentonite samples from selected Serbian deposits were analyzed. These clays are of sedimentary volcano-sedimentary (diagenetic, and hydrothermal origin. Two different types of shape of thickness distribution were found - lognormal, typical for bentonite and halloysite, and polymodal, typical for kaolinite. The mean crystallite thickness (T BWA seams to be influenced by the genetic type of the clay sample.

  17. Thermogravimetric studies of the thermo-oxidative stability of irradiated and unirradiated polyethylene

    International Nuclear Information System (INIS)

    Novakovic, L.; Gal, O.; Markovic, V.; Stannett, V.T.

    1985-01-01

    In part one of this series the effects of a phenolic, an amine and a thioester antioxidant on the thermo-oxidative stability of irradiated and unirradiated low-density polyethylene was reported. In this paper the effects of combined phenolic and thioester stabilizers are described. Isothermal thermogravimetric analysis was used to study the systems. Pronounced synergism was observed with the induction periods, the time when the initial weight loss begins and the 5% weight loss. At about 50% of each stabilizer increases greater than twofold were observed both with the unirradiated and irradiated polymers. The rate constants for oxygen uptake were decreased. However, the rates of degradation at 5% weight loss fell between the values of the two pure stabilizers with no pronounced synergism in either case. In the absence of oxygen little effect of either antioxidant or their mixtures was observed. The corresponding activation energies were somewhat higher, however, with the irradiated samples containing antioxidants. Dynamic thermogravimetry was used for this study. A kinetic analysis indicated that there were somewhat different modes of degradation at lower- and higher-temperature ranges. (author)

  18. Transport insurance of unirradiated nuclear fuels

    International Nuclear Information System (INIS)

    Matto, H.

    1985-01-01

    Special conditions must be taken into account in transport insurance for nuclear materials even if the nuclear risk involved is negligible, as in shipments of unirradiated nuclear fuels. The shipwreck of the 'Mont Louis' has raised a number of open points which must be solved pragmatically within the framework of transport insurance. Some proposals are outlined in the article. (orig.) [de

  19. Revised ANL-reported tensile data for unirradiated and irradiated (FFTF, HFIR) V-Ti and V-Cr-Ti alloys

    International Nuclear Information System (INIS)

    Billone, M.C.

    1998-01-01

    The tensile data for all unirradiated and irradiated vanadium alloys samples tested at Argonne National Laboratory (ANL) have been critically reviewed and, when necessary, revised. The review and revision are based on reanalyzing the original load-displacement strip chart recordings by a methodology consistent with current ASTM standards. For unirradiated alloys (162 samples), the revised values differ from the previous values as follows: -11±19 MPa (-4±6%) for yield strength (YS), -3±15 MPa (-1±3%) for ultimate tensile strength (UTS), -5±2% strain for uniform elongation (UE), and -4±2% strain for total elongation (TE). Of these changes, the decrease in -1±6 MPa (0±1%) for UTS, -5±2% for UE, and -4±2% for TE. Of these changes, the decrease in UE values for alloys irradiated and tested at 400--435 C is the most significant. This decrease results from the proper subtraction of nongauge-length deformation from measured crosshead deformation. In previous analysis of the tensile curves, the nongauge-length deformation was not correctly determined and subtracted from the crosshead displacement. The previously reported and revised tensile values for unirradiated alloys (20--700 C) are tabulated in Appendix A. The revised tensile values for the FFTF-irradiated (400--600 C) and HFIR-irradiated (400 C) alloys are tabulated in Appendix B, along with the neutron damage and helium levels. Appendix C compares the revised values to the previously reported values for irradiated alloys. Appendix D contains previous and revised values for the tensile properties of unirradiated V-5Cr-5Ti (BL-63) alloy exposed to oxygen

  20. Thermal volume changes in clays and clay-stones

    International Nuclear Information System (INIS)

    Delage, P.; Sulem, J.; Mohajerani, M.; Tang, A.M.; Monfared, M.

    2012-01-01

    Document available in extended abstract form only. The disposal of high activity exothermic radioactive waste at great depth in clay host rocks will induce a temperature elevation that has been investigated in various underground research laboratories in Belgium, France and Switzerland through in-situ tests. Thermal effects are better known in clays (in particular Boom clay) than in clay-stone (e.g. Opalinus clay and Callovo-Oxfordian clay-stone). In terms of volume changes, Figure 1 confirms the findings of Hueckel and Baldi (1990) that volume changes depend on the over-consolidation ratio (OCR) of the clay. In drained conditions, normally consolidated clays exhibit plastic contraction when heated, whereas over-consolidated clay exhibit elastic dilation. The nature of thermal volume changes in heated clays obviously has a significant effect on thermally induced pore pressures, when drainage is not instantaneous like what occurs in-situ. Compared to clays, the thermal volume change behaviour of clay-stones is less well known than that of clays. clay-stone are a priori suspected to behave like over-consolidated clays. In this paper, a comparison of recent results obtained in the laboratory on the drained thermal volume changes of clay-stones is presented and discussed. It is difficult to run drained mechanical tests in clay-stones like the Opalinus clay and the Callovo-Oxfordian clay-stone because of their quite low permeability (10 -12 - 10 -13 m/s). This also holds true for thermal tests. Due to the significant difference in thermal expansion coefficient between minerals and water, it is necessary to adopt very slow heating rate (0.5 - 1 C/h) to avoid any thermal pressurization. To do so, a new hollow cylinder apparatus (100 mm external diameter, 60 mm internal diameter) with lateral drainages reducing the drainage length to half the sample thickness (10 mm) has been developed (Monfared et al. 2011). The results of a drained cyclic thermal test carried out on

  1. Functional recovery in the irradiated kidney following removal of the contralateral unirradiated kidney

    International Nuclear Information System (INIS)

    Robbins, M.E.C.; Hopewell, J.W.; Golding, S.J.

    1986-01-01

    Radiation-induced damage to one kidney in the pig causes a fall in total renal function; this would be recognised and lead to a compensatory response in the unirradiated kidney. The presence of the unirradiated contralateral kidney may effectively prevent the irradiated kidney from expressing any potential for repair and/or recovery of function. If this were true then the question would obviously arise, does the irradiated kidney retain some capacity for recovery? In order to answer this question, the contralateral unirradiated kidney was removed from pigs 26 weeks after the irradiation of the other kidney. The subsequent response of the irradiated kidney to nephrectomy was assessed in terms of the changes in renal size and haemodynamics, i.e. GFR and effective renal plasma flow (ERPF). (Auth.)

  2. Sorption Analysis of 137Cs On Karawang’s Clay Samples

    Directory of Open Access Journals (Sweden)

    Budi Setiawan

    2016-12-01

    Full Text Available The objective of this work is to characterize the specific of distribution coefficient (Kd values of 137Cs onto Karawang’s clay for radioactive waste disposal facility purpose. Sorption phenomena was affected by contact time, ionic strength and loaded concentration of CsCl.  Experiments were done in a batch method, with initial concentration was 10-8 M CsCl in the experiments of contact time and ionic strength effects. In the CsCl loading experiment, the concentration was varied from 10-8 to 10-4 M CsCl and 137Cs radioactive solution was used as a tracer. The solid-liquid ratio is 10-2 g/mL.  The results shown that obtained Kd values were 21,714 and 4035 mL/g after contacted for 8 days for Sample-1 and 2, respectively. The presence of K+ and Na+ ions in solution had reduced the Kd value Cs-137 where the effect of K+ is greater than Na+ on decreased the value of Kd.  The increasing of CsCl concentrations in solution had reduced the value of Kd.  In both samples of clay were closely fit to Freundlich isotherm and pseudo-second order kinetic model.  The results are very useful as the input of the safety assessment activity of site candidate for radioactive waste disposal facility in the future.

  3. Physical and chemical parameters acquisition in situ, in deep clay. Development of sampling and testing methods

    International Nuclear Information System (INIS)

    Lajudie, A.; Coulon, H.; Geneste, P.

    1991-01-01

    Knowledge of deep formation for radioactive waste disposal requires field-tests or bench-scale experiments on samples of the site material. In the case of clay massifs the taking of cores and the sampling of these are particularly difficult. The most suitable materials and techniques were selected from a study of clay colling and conservation methods. These were used for a series of core samples taken at Mol in Belgium. Subsequently permeability measurements were carried out in laboratory on samples from vertical drilling and compared with in situ measurements. The latter were made by horizontal drillings from the shaft excavation of the underground facility HADES at Mol. There is a good overall agreement between the results of the two types of measurements. 25 figs.; 4 tabs.; 12 refs.; 16 photos

  4. Clay catalyzed RNA synthesis under Martian conditions: Application for Mars return samples.

    Science.gov (United States)

    Joshi, Prakash C; Dubey, Krishna; Aldersley, Michael F; Sausville, Meaghen

    2015-06-26

    Catalysis by montmorillonites clay minerals is regarded as a feasible mechanism for the abiotic production and polymerization of key biomolecules on early Earth. We have investigated a montmorillonite-catalyzed reaction of the 5'-phosphorimidazolide of nucleosides as a model to probe prebiotic synthesis of RNA-type oligomers. Here we show that this model is specific for the generation of RNA oligomers despite deoxy-mononucleotides adsorbing equally well onto the montmorillonite catalytic surfaces. Optimum catalytic activity was observed over a range of pH (6-9) and salinity (1 ± 0.2 M NaCl). When the weathering steps of early Earth that generated catalytic montmorillonite were modified to meet Martian soil conditions, the catalytic activity remained intact without altering the surface layer charge. Additionally, the formation of oligomers up to tetramer was detected using as little as 0.1 mg of Na⁺-montmorillonite, suggesting that the catalytic activity of a Martian clay return sample can be investigated with sub-milligram scale samples. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Clay dispersibility and soil friability – testing the soil clay-to-carbon saturation concept

    OpenAIRE

    Schjønning, P.; de Jonge, L.W.; Munkholm, L.J.; Moldrup, P.; Christensen, B.T.; Olesen, J.E.

    2011-01-01

    Soil organic carbon (OC) influences clay dispersibility, which affects soil tilth conditions and the risk of vertical migration of clay colloids. No universal lower threshold of OC has been identified for satisfactory stabilization of soil structure. We tested the concept of clay saturation with OC as a predictor of clay dispersibility and soil friability. Soil was sampled three years in a field varying in clay content (~100 to ~220 g kg-1 soil) and grown with different crop rotations. Clay ...

  6. Development of the methodology of sample preparation to X-ray diffractometry of clay minerals at Petrobras Research Center

    International Nuclear Information System (INIS)

    Alves, D.B.

    1987-01-01

    Various procedures can be used in the analysis of the clay mineral content of rocks by X-ray diffraction. This article describes the principal ones and discusses those adopted in the X-ray clay mineral laboratory of the PETROBRAS Research Center (CENPES) in Rio de Janeiro. This article presents the methodology used and provides users with information about its application and limitations. The methodology has been developed to study polymineral samples. The aim to identify clay mineral groups and to estimate their relative proportions. Of the four main steps of this analysis - separation and concentration of clay minerals, preparation of oriented specimens, X-ray irradiation under standard conditions and interpretation of X-ray diffraction patterns - only the first three are discussed here. Clay minerals occur mainly in the [pt

  7. Geotechnical Characterization of Mined Clay from Appalachian Ohio: Challenges and Implications for the Clay Mining Industry

    Science.gov (United States)

    Moran, Anthony R.; Hettiarachchi, Hiroshan

    2011-01-01

    Clayey soil found in coal mines in Appalachian Ohio is often sold to landfills for constructing Recompacted Soil Liners (RSL) in landfills. Since clayey soils possess low hydraulic conductivity, the suitability of mined clay for RSL in Ohio is first assessed by determining its clay content. When soil samples are tested in a laboratory, the same engineering properties are typically expected for the soils originated from the same source, provided that the testing techniques applied are standard, but mined clay from Appalachian Ohio has shown drastic differences in particle size distribution depending on the sampling and/or laboratory processing methods. Sometimes more than a 10 percent decrease in the clay content is observed in the samples collected at the stockpiles, compared to those collected through reverse circulation drilling. This discrepancy poses a challenge to geotechnical engineers who work on the prequalification process of RSL material as it can result in misleading estimates of the hydraulic conductivity of the samples. This paper describes a laboratory investigation conducted on mined clay from Appalachian Ohio to determine how and why the standard sampling and/or processing methods can affect the grain-size distributions. The variation in the clay content was determined to be due to heavy concentrations of shale fragments in the clayey soils. It was also concluded that, in order to obtain reliable grain size distributions from the samples collected at a stockpile of mined clay, the material needs to be processed using a soil grinder. Otherwise, the samples should be collected through drilling. PMID:21845150

  8. Geotechnical characterization of mined clay from Appalachian Ohio: challenges and implications for the clay mining industry.

    Science.gov (United States)

    Moran, Anthony R; Hettiarachchi, Hiroshan

    2011-07-01

    Clayey soil found in coal mines in Appalachian Ohio is often sold to landfills for constructing Recompacted Soil Liners (RSL) in landfills. Since clayey soils possess low hydraulic conductivity, the suitability of mined clay for RSL in Ohio is first assessed by determining its clay content. When soil samples are tested in a laboratory, the same engineering properties are typically expected for the soils originated from the same source, provided that the testing techniques applied are standard, but mined clay from Appalachian Ohio has shown drastic differences in particle size distribution depending on the sampling and/or laboratory processing methods. Sometimes more than a 10 percent decrease in the clay content is observed in the samples collected at the stockpiles, compared to those collected through reverse circulation drilling. This discrepancy poses a challenge to geotechnical engineers who work on the prequalification process of RSL material as it can result in misleading estimates of the hydraulic conductivity of the samples. This paper describes a laboratory investigation conducted on mined clay from Appalachian Ohio to determine how and why the standard sampling and/or processing methods can affect the grain-size distributions. The variation in the clay content was determined to be due to heavy concentrations of shale fragments in the clayey soils. It was also concluded that, in order to obtain reliable grain size distributions from the samples collected at a stockpile of mined clay, the material needs to be processed using a soil grinder. Otherwise, the samples should be collected through drilling.

  9. Geotechnical Characterization of Mined Clay from Appalachian Ohio: Challenges and Implications for the Clay Mining Industry

    Directory of Open Access Journals (Sweden)

    Anthony R. Moran

    2011-06-01

    Full Text Available Clayey soil found in coal mines in Appalachian Ohio is often sold to landfills for constructing Recompacted Soil Liners (RSL in landfills. Since clayey soils possess low hydraulic conductivity, the suitability of mined clay for RSL in Ohio is first assessed by determining its clay content. When soil samples are tested in a laboratory, the same engineering properties are typically expected for the soils originated from the same source, provided that the testing techniques applied are standard, but mined clay from Appalachian Ohio has shown drastic differences in particle size distribution depending on the sampling and/or laboratory processing methods. Sometimes more than a 10 percent decrease in the clay content is observed in the samples collected at the stockpiles, compared to those collected through reverse circulation drilling. This discrepancy poses a challenge to geotechnical engineers who work on the prequalification process of RSL material as it can result in misleading estimates of the hydraulic conductivity of the samples. This paper describes a laboratory investigation conducted on mined clay from Appalachian Ohio to determine how and why the standard sampling and/or processing methods can affect the grain-size distributions. The variation in the clay content was determined to be due to heavy concentrations of shale fragments in the clayey soils. It was also concluded that, in order to obtain reliable grain size distributions from the samples collected at a stockpile of mined clay, the material needs to be processed using a soil grinder. Otherwise, the samples should be collected through drilling.

  10. Characterization of some archaeological ceramics and clay samples from Zamala - Far-northern part of Cameroon (West Central Africa)

    Energy Technology Data Exchange (ETDEWEB)

    Ntah, Z.L. Epossi; Sobott, R.; Bente, K., E-mail: zoilaepossi@yahoo.fr [Institute of Mineralogy, Crystallography and Materials Science, University of Leipzig (Germany); Fabbri, B. [Institute of Science and Technology for Ceramics, National Research Council (CNR) of Italy, Faenza (Italy)

    2017-07-15

    Seventeen ceramics samples (515±95 BP, about 580 years old) and two clay raw materials from Zamala (Far-northern, Cameroon) were characterized by X-ray diffraction (XRD), thermal analysis (DTA/TG) and X-ray fluorescence spectroscopy. The aim of the work was the deduction of the production technology and provenance of these ceramics. With the exception of one sample the analysed ceramics formed a homogeneous chemical and mineralogical group. The observed mineralogical phases were quartz, mica (biotite), potassium feldspar (microcline) and plagioclase (albite and oligoclase). The XRD study of two local clays yielded the presence of quartz, kaolinite, mica, feldspar and plagioclase. The presence of the broad endothermic peak in the DTA/TG curves of the clays and its absence in the curves of the ceramics indicated that the firing temperature of the ceramics was above 550-600 °C, which is the temperature of the kaolinite-metakaolinite transformation. The firing experiments of the clay between 400-1200 °C in oxidizing atmosphere showed that mica disappeared above 900 °C. Therefore, the firing temperature of the sherds should have been between 600-900 °C. The chemical correlation between ceramics and local clay materials pointed out to a local production of these ceramics. (author)

  11. Mineralogy and geotechnical characteristics of some pottery clay

    Directory of Open Access Journals (Sweden)

    Mujib Olamide ADEAGBO

    2016-12-01

    Full Text Available The physical properties of soils, which are tremendously influenced by the active clay minerals in soil, are of great importance in geotechnical engineering. This paper investigates the clay-sized particles of the Igbara-Odo pottery clay, and compares results obtained with available data on the bulk sample, to determine their correlation and underline the dependence of the geotechnical properties of the bulk clay material on the clay-sized particles. The bulk clay sample consists of 52% sand-size particles, 21% silt and 27% clay. Analysis of the clay-sized particles and the bulk materials shows: specific gravity of 2.07 and 2.66, liquid limit of 91.0% and 33.0%, plastic limit of 27.5% and 14.3%, plasticity index of 63.5% and 18.7% and a linear shrinkage of 7.9% and 5.4%, for both clay-sized particles and bulk clay respectively. The activity value of the clay material (0.64 suggests the presence of Kaolinite and Ilite; and these were confirmed with X-Ray diffraction on the bulk sample and clay-sized particles. X-Ray diffraction patterns shows distinctive peaks which highlight the dominance of Kaolinite (with 8 peaks in the pottery clay sample for both clay-sized particles and bulk material; while traces of other clay minerals like Illite and Halloysite and rock minerals like Mica, Feldspar and Chrysotile were also found. These results suggest that the clay possesses high viability in the manufacturing of ceramics, refractory bricks, paper, fertilizer and paint. The clay material can be used as a subgrade in road construction, since it possesses low swelling characteristics.

  12. Results from In-pile experiments on LWR fuel rod behavior under LOCA conditions with unirradiated rods

    International Nuclear Information System (INIS)

    Sepold, L.; Karb, E.H.; Pruessmann, M.

    1981-06-01

    This report summarizes the results of the FR2-in-pile tests at KfK (Kernforschungszentrum Karlsruhe) with unirradiated test rods. The in-pile tests with the objective of investigating the influence of a nuclear environment on the mechanisms of fuel rod failure were being performed with irradiated and unirradiated single rods of a PWR design in the DK loop of the FR2 reactor. The main parameter of the test program was the burnup, ranging from 2.500 to 35.000 MWd/t. The program with unirradiated specimens comprised the series A and B with a total of 14 tests. (orig.) [de

  13. Thermogravimetric studies of the thermo-oxidative stability of irradiated and unirradiated polyethylene. 2. Combined antioxidants

    Energy Technology Data Exchange (ETDEWEB)

    Novakovic, L; Gal, O; Markovic, V; Stannett, V T

    1985-01-01

    In part one of this series the effects of a phenolic, an amine and a thioester antioxidant on the thermo-oxidative stability of irradiated and unirradiated low-density polyethylene was reported. In this paper the effects of combined phenolic and thioester stabilizers are described. Isothermal thermogravimetric analysis was used to study the systems. Pronounced synergism was observed with the induction periods, the time when the initial weight loss begins and the 5% weight loss. At about 50% of each stabilizer increases greater than twofold were observed both with the unirradiated and irradiated polymers. The rate constants for oxygen uptake were decreased. However, the rates of degradation at 5% weight loss fell between the values of the two pure stabilizers with no pronounced synergism in either case. In the absence of oxygen little effect of either antioxidant or their mixtures was observed. The corresponding activation energies were somewhat higher, however, with the irradiated samples containing antioxidants. Dynamic thermogravimetry was used for this study. A kinetic analysis indicated that there were somewhat different modes of degradation at lower- and higher-temperature ranges. (author).

  14. Geochemical study of evaporite and clay mineral-oxyhydroxide samples from the Waste Isolation Pilot Plant site

    International Nuclear Information System (INIS)

    Brookins, D.G.

    1993-06-01

    Samples of clay minerals, insoluble oxyhydroxides, and their host evaporites from the WIPP site have been studied for their major and minor elements abundances, x-ray diffraction characteristics, K-Ar ages, and Rb-Sr ages. This study was undertaken to determine their overall geochemical characteristics and to investigate possible interactions between evaporates and insoluble constituents. The evaporite host material is water-soluble, having Cl/Br ratios typical of marine evaporites, although the Br content is low. Insoluble material (usually a mixture of clay minerals and oxyhydroxide phases) yields very high Cl/Br ratios, possibly because of Cl from admixed halide minerals. This same material yields K/Rb and Th/U ratios in the normal range for shales; suggesting little, if any, effect of evaporite-induced remobilization of U, K, or Rb in the insoluble material. The rare-earth element (REE) data also show normal REE/chondrite (REE/CHON) distribution patterns, supporting the K/Rb and Th/U data. Clay minerals yield K-Ar dates in the range 365 to 390 Ma and a Rb-Sr isochron age of 428 ± 7 Ma. These ages are well in excess of the 220- to 230-Ma formational age of the evaporites, and confirm the detrital origin of the clays. The ages also show that any evaporite or clay mineral reactions that might have occurred at or near the time of sedimentation and diagenesis were not sufficient to reset the K-Ar and Rb-Sr systematics of the clay minerals. Further, x-ray data indicate a normal evaporitic assemblage of clay minerals and Fe-rich oxyhydroxide phases. The clay minerals and other insoluble material appear to be resistant to the destructive effects of their entrapment in the evaporites, which suggests that these insoluble materials would be good getters for any radionuclides (hypothetically) released from the storage of radioactive wastes in the area

  15. Influence of clay mineralogy on clay based ceramic products

    International Nuclear Information System (INIS)

    Radzali Othman; Tuan Besar Tuan Sarif; Zainal Arifin Ahmad; Ahmad Fauzi Mohd Noor; Abu Bakar Aramjat

    1996-01-01

    Clay-based ceramic products can either be produced directly from a suitable clay source without the need further addition or such products can be produced from a ceramic body formulated by additions of other raw materials such as feldspar and silica sand. In either case, the mineralogical make-up of the clay component plays a dominating role in the fabrication and properties of the ceramic product. This study was sparked off by a peculiar result observed in one of five local ball clay samples that were used to reformulate a ceramic body. Initial characterisation tests conducted on the clays indicated that these clays can be classified as kaolinitic. However, one of these clays produced a ceramic body that is distinctively different in terms of whiteness, smoothness and density as compared to the other four clays. Careful re-examination of other characterisation data, such as particle size distribution and chemical analysis, failed to offer any plausible explanation. Consequently, the mineralogical analysis by x-ray diffraction was repeated by paying meticulous attention to specimen preparation. Diffraction data for the clay with anomalous behaviour indicated the presence of a ∼ 10A peak that diminished when the same specimen was re-tested after heating in an oven at 12O degree C whilst the other four clays only exhibit the characteristic kaolinite (Al sub 2 O sub 3. 2SiO sub 2. 2H sub 2 0) and muscovite peaks at ∼ 7A and ∼ 10A before and after heat treatment. This suggests the presence of the mineral halloysite (A1 sub 2 0 sub 3. 2SiO sub 2.4H sub 2 0) in that particular clay. This difference in mineralogy can be attributed to account for the variations in physical properties of the final product. Consequently, this paper reviews in general the precautionary measures that must be adhered to during any mineralogical investigation of clay minerals or clay-based materials. The common pitfalls during specimen preparation, machine settings and interpretation of

  16. Clay matrix voltammetry

    International Nuclear Information System (INIS)

    Perdicakis, Michel

    2012-01-01

    Document available in extended abstract form only. In many countries, it is planned that the long life highly radioactive nuclear spent fuel will be stored in deep argillaceous rocks. The sites selected for this purpose are anoxic and satisfy several recommendations as mechanical stability, low permeability and low redox potential. Pyrite (FeS 2 ), iron(II) carbonate, iron(II) bearing clays and organic matter that are present in very small amounts (about 1% w:w) in soils play a major role in their reactivity and are considered today as responsible for the low redox potential values of these sites. In this communication, we describe an electrochemical technique derived from 'Salt matrix voltammetry' and allowing the almost in-situ voltammetric characterization of air-sensitive samples of soils after the only addition of the minimum humidity required for electrolytic conduction. Figure 1 shows the principle of the developed technique. It consists in the entrapment of the clay sample between a graphite working electrode and a silver counter/quasi-reference electrode. The sample was previously humidified by passing a water saturated inert gas through the electrochemical cell. The technique leads to well-defined voltammetric responses of the electro-active components of the clays. Figure 2 shows a typical voltammogram relative to a Callovo-Oxfordian argillite sample from Bure, the French place planned for the underground nuclear waste disposal. During the direct scan, one can clearly distinguish the anodic voltammetric signals for the oxidation of the iron (II) species associated with the clay and the oxidation of pyrite. The reverse scan displays a small cathodic signal for the reduction of iron (III) associated with the clay that demonstrates that the majority of the previously oxidized iron (II) species were transformed into iron (III) oxides reducible at lower potentials. When a second voltammetric cycle is performed, one can notice that the signal for iron (II

  17. Absorption characteristics of Kupravas deposit clays modified by phosphoric acid

    International Nuclear Information System (INIS)

    Ruplis, A.; Mezinskis, G.; Chaghuri, M.

    1998-01-01

    Literature data suggested that clays may be used as sorbents for waste water treatment. The surface and sorption properties of minerals changes due to the influence of acid rains. The process of recession of clay properties has been modeled in laboratory by treatment of clays with mineral acids at higher temperature that in natural conditions. The present paper is devoted to the study of influence of phosphoric acid on the sorption properties of Kupravas deposit clays. Natural clay samples and samples treated with phosphoric acid were characterized by means of x-ray diffraction an differential thermal analysis (DTA) methods These methods were used also to identify the sample of Lebanese clays. X-ray diffraction analysis data show that the samples of clays from the deposit of Kuprava contain illite and kaolinite while sample of Lebanese clay contains quartz, calcite, and montmorillonite. DTA results show characteristic features of Kuprava clays described in reference with DTA of Lebanese clay clearly demonstrate the presence of large quantity of calcite

  18. Investigations of salt mortar containing saliferous clay

    International Nuclear Information System (INIS)

    Walter, F.

    1992-01-01

    Saliferous clay mortar might be considered for combining individual salt bricks into a dense and tight long-term seal. A specific laboratory program was started to test mortars consisting of halite powder and grey saliferous clay of the Stassfurt from the Bleicherode salt mine. Clay fractions between 0 and 45% were used. The interest focused upon obtaining good workabilities of the mixtures as well as upon the permeability and compression strength of the dried mortar samples. Test results: 1) Without loss of quality the mortar can be mixed using fresh water. Apprx. 18 to 20 weight-% of the solids must be added as mixing water. 2) The porosity and the permeability of the mortar samples increases distinctly when equally coarse-grained salt power is used for mixing. 3) The mean grain size and the grain size distribution of the saliferous clay and the salt powder should be very similar to form a useful mortar. 4) The permeability of the mortar samples decreases with increasing clay fraction from 2 10 -12 m 2 to 2 10 -14 m 2 . The investigated samples, however, were large and dried at 100degC. 5) The uniaxial compressive strength of the clay mortar equals, at an average, only 4 MPa and decreases clearly with increasing clay fraction. Moist mortar samples did not show any measurable compressive strength. 6) Moistened saliferous clay mortar may show little temporary swelling. (orig./HP)

  19. Physical Properties of Latvian Clays

    OpenAIRE

    Jurgelāne, I; Stepanova, V; Ločs, J; Mālers, J; Bērziņa-Cimdiņa, L

    2012-01-01

    Physical and chemical properties of clays mostly depends on its mineral and chemical composition, particle size and pH value. The mutual influence of these parameters is complex. Illite is the most abundant clay mineral in Latvia and usually used in building materials and pottery. The viscosity and plasticity of Latvian clays from several deposits were investigated and correlated with mineral composition, particle size and pH value. Fractionated and crude clay samples were used. The p...

  20. Clay Dispersibility and Soil Friability-Testing the Soil Clay-to-Carbon Saturation Concept

    DEFF Research Database (Denmark)

    Schjønning, Per; de Jonge, Lis Wollesen; Munkholm, Lars Juhl

    2012-01-01

    Soil organic carbon (OC) influences clay dispersibility, which affects soil tilth conditions and the risk of vertical migration of clay colloids. No universal lower threshold of OC has been identified for satisfactory stabilization of soil structure. We tested the concept of clay saturation with OC...... as a predictor of clay dispersibility and soil friability. Soil was sampled 3 yr in a field varying in clay content (∼100 to ∼220 g kg−1 soil) and grown with different crop rotations. Clay dispersibility was measured after end-over-end shaking of field-moist soil and 1- to 2-mm sized aggregates either air......-dried or rewetted to −100 hPa matric potential. Tensile strength of 1- to 2-, 2- to 4-, 4- to 8-, and 8- to 16-mm air-dried aggregates was calculated from their compressive strength, and soil friability estimated from the strength–volume relation. Crop rotation characteristics gave only minor effects on clay...

  1. Petrographic report on clay-rich samples from Permian Unit 4 salt, G. Friemel No. 1 well, Palo Duro Basin, Deaf Smith County, Texas: unanalyzed data

    International Nuclear Information System (INIS)

    Fukui, L.M.

    1983-09-01

    This report presents the results of mineralogic and petrographic analyses performed on five samples of clay-rich rock from salt-bearing Permian strata sampled by drill core from G. Friemel No. 1 Well, Deaf Smith County, Texas. Five samples of clay-rich rock from depths of about 2457, 2458, 2521, 2548, and 2568 feet were analyzed to determine the amounts of soluble phase (halite) and the amounts and mineralogy of the insoluble phases. The amounts of halite found were 59, 79, 47, 40, and 4 weight percent, respectively, for the samples. The insoluble minerals are predominately clay (20 to 60 volume percent) and anhydrite (up to 17 volume percent), with minor (about 1.0%) and trace amounts of quartz, dolomite, muscovite, and gypsum. The clays include illite, chlorite, and interstratified chlorite-smectite. The results presented in this petrographic report are descriptive, uninterpreted data. 2 references, 7 tables

  2. Safety analysis report for packaging: the ORNL HFIR unirradiated fuel element shipping container

    International Nuclear Information System (INIS)

    Evans, J.H.; Boulet, J.A.M.; Eversole, R.E.

    1977-11-01

    The ORNL HFIR unirradiated fuel element shipping container was designed and fabricated at the Oak Ridge National Laboratory for the transport of HFIR unirradiated fuel elements. The container was evaluated analytically and experimentally to determine its compliance with the applicable regulations governing containers in which radioactive and fissile materials are transported, and the evaluation is the subject of this report. Computational and test procedures were used to determine the structural integrity and thermal behavior of the cask relative to the general standards for normal conditions of transport and the standards for the hypothetical accident conditions. The results of the evaluation demonstrate that the container is in compliance with the applicable regulations

  3. Impact of Oriented Clay Particles on X-Ray Spectroscopy Analysis

    Science.gov (United States)

    Lim, A. J. M. S.; Syazwani, R. N.; Wijeyesekera, D. C.

    2016-07-01

    Understanding the engineering properties of the mineralogy and microfabic of clayey soils is very complex and thus very difficult for soil characterization. Micromechanics of soils recognize that the micro structure and mineralogy of clay have a significant influence on its engineering behaviour. To achieve a more reliable quantitative evaluation of clay mineralogy, a proper sample preparation technique for quantitative clay mineral analysis is necessary. This paper presents the quantitative evaluation of elemental analysis and chemical characterization of oriented and random oriented clay particles using X-ray spectroscopy. Three different types of clays namely marine clay, bentonite and kaolin clay were studied. The oriented samples were prepared by placing the dispersed clay in water and left to settle on porous ceramic tiles by applying a relatively weak suction through a vacuum pump. Images form a Scanning Electron Microscope (SEM) was also used to show the comparison between the orientation patterns of both the sample preparation techniques. From the quantitative analysis of the X-ray spectroscopy, oriented sampling method showed more accuracy in identifying mineral deposits, because it produced better peak intensity on the spectrum and more mineral content can be identified compared to randomly oriented samples.

  4. A mechanistic study of the uniform corrosion of copper in compacted clay-sand soil

    International Nuclear Information System (INIS)

    Litke, C.D.; Ryan, S.R.; King, F.

    1992-08-01

    The results of a study of the mechanism of uniform corrosion of copper under simulated nuclear fuel waste disposal conditions are presented. Evidence is given that suggests that the rate-controlling process is the transport of copper corrosion products away from the corroding surface. In the experiments described here, the copper diffused through a column of compacted clay-sand buffer. The properties of the buffer material, especially its ability to sorb copper species, are significant in determining the rate of uniform corrosion of copper. The evidence that copper diffusion is rate-controlling stems from the effect of γ-radiation on the tests. In the presence of γ-radiation, copper diffused farther along the column of compacted buffer material than in the unirradiated tests, but the corrosion rate was lower. These two effects can be best explained in terms of a slow copper-diffusion process. Irradiation is thought to reduce the extent of sorption of copper by the clay component of the buffer. This results in a more mobile copper species and a smaller interfacial flux of copper (i.e., a lower corrosion rate)

  5. Air oxidation of samples from different clay formations of East Paris basin: quantitative and qualitative consequences on the dissolved organic matter

    International Nuclear Information System (INIS)

    Blanchart, Pascale; Faure, Pierre; Michels, Raymond; Parant, Stephane

    2012-01-01

    Document available in extended abstract form only. During the excavation and the building of an underground research laboratory in clay geological formations, exposure to air is one of the most important parameters affecting the composition of fossil organic matter. Indeed the net effect of air oxidation of the organic matter is enrichment in oxygen and carbon combined with a loss of hydrogen. Effluents formed are CO 2 and water as well as the liberation of hydrocarbons. This process may have an impact on water chemistry of the clay, especially on the quantity and composition of Dissolved Organic Matter (DOM). The clays studied were the following and may be distinguished on the basis of their organic matter content: - The Callovo-Oxfordian argillite, collected in the Bure Underground Research Laboratory (Meuse, France), which contains a mixture of type II and III kerogen; - The Toarcian shales of East Paris Basin collected from drilling EST 204 (Meuse, France) contains type II kerogen; - The Kimmeridgian shales of East Paris Basin collected from drilling HTM 102 (Meuse, France) also contains type II kerogen. The powdered clay samples were oxidized in a ventilated oven at 100 C under air flow during 2, 256, 512 and 1088 hours for Callovo-Oxfordian samples and during 512 and 2048 hours for Toarcian and Kimmeridgian samples. The DOM of each sample was extracted by soxhlet using pure water. Different analyses were carried out: - Quantitative evolution of DOM with the oxidation process; - Evolution of several chemical parameters of DOM with oxidation using molecular analyses (PyGC-MS) molecular weight distribution (GPC-HPLC) as well as spectroscopic measurements (3D-Fluorescence). Increasing oxidation induces an increase of DOC values for all samples. Also, Changes in the chemical composition of the DOM are observed: decrease in the molecular weight range; enrichment in acidic functional groups (alkane-dioic acids, alkanoic acids, aromatics poly acids). Moreover the

  6. Single clay sheets inside electrospun polymer nanofibers

    Science.gov (United States)

    Sun, Zhaohui

    2005-03-01

    Nanofibers were prepared from polymer solution with clay sheets by electrospinning. Plasma etching, as a well controlled process, was used to supply electrically excited gas molecules from a glow discharge. To reveal the structure and arrangement of clay layers in the polymer matrix, plasma etching was used to remove the polymer by controlled gasification to expose the clay sheets due to the difference in reactivity. The shape, flexibility, and orientation of clay sheets were studied by transmission and scanning electron microscopy. Additional quantitative information on size distribution and degree of exfoliation of clay sheets were obtained by analyzing electron micrograph of sample after plasma etching. Samples in various forms including fiber, film and bulk, were thinned by plasma etching. Morphology and dispersion of inorganic fillers were studied by electron microscopy.

  7. Homogeneity vs. Heterogeneity of Porosity in Boom Clay

    International Nuclear Information System (INIS)

    Hemes, Susanne; Desbois, Guillaume; Urai, Janos L.; De Craen, Mieke; Honty, Miroslav

    2013-01-01

    Microstructural investigations on Boom Clay at nano- to micrometer scale, using BIB-SEM methods, result in porosity characterization for different mineral phases from direct observations on high resolution SE2-images of representative elementary areas (REAs). High quality, polished surfaces of cross-sections of ∼ 1 mm 2 size were produced on three different samples from the Mol-Dessel research site (Belgium). More than 33,000 pores were detected, manually segmented and analyzed with regard to their size, shape and orientation. Two main pore classes were defined: Small pores (< 500 nm (ED)) within the clay matrices of samples and =big' pores (> 500 nm (ED)) at the interfaces between clay and non-clay mineral (NCM) grains. Samples investigated show similar porosities regarding the first pore-class, but differences occur at the interfaces between clay matrix and NCM grains. These differences were interpreted to be due to differences in quantitative mineralogy (amount of non-clay mineral grains) and grain-size distributions between samples investigated. Visible porosities were measured as 15 to 17 % for samples investigated. Pore-size distributions of pores in clay are similar for all samples, showing log-normal distributions with peaks around 60 nm (ED) and more than 95 % of the pores being smaller than 500 nm (ED). Fitting pore-size distributions using power-laws with exponents between 1.56 and 1.7, assuming self-similarity of the pore space, thus pores smaller than the pore detection resolution following the same power-laws and using these power-laws for extrapolation of pore-size distributions below the limit of pore detection resolution, results in total estimated porosities between 20 and 30 %. These results are in good agreement with data known from Mercury Porosimetry investigations (35-40 % porosity) and water content porosity measurements (∼ 36 %) performed on Boom Clay. (authors)

  8. Evaluation of staphylococcus aureus growth in unirradiated and irradiated cured meats using the Gompertz equation

    International Nuclear Information System (INIS)

    Szczawinski, J.; Szczawinska, M.

    1993-01-01

    1. Sodium nitrite, in concentration of 156 mg/kg, exerted little (from practical point of view) inhibitory effect on S. aureus in cured meat. Its addition caused lag time extension, increase of exponential growth rate, decrease of generation time and maximum population density of staphylococci in samples of cured meat stored at 20 C. 2. Growth curves of Staphylococcus aureus in unirradiated and irradiated (50 kGy) meats cured without sodium nitrite were similar. 3. Irradiation of meat cured with 156 mg/kg sodium nitrite with increasing doses of ionizing radiation (0, 10, 30, 50 kGy) progressively decreased growth rates and lag time and increased generation time and maximum population densities of Staphylococcus aureus in samples inoculated after radiation treatment and incubated at 20 C. (orig.)

  9. Rescue Effects: Irradiated Cells Helped by Unirradiated Bystander Cells

    Science.gov (United States)

    Lam, R. K. K.; Fung, Y. K.; Han, W.; Yu, K. N.

    2015-01-01

    The rescue effect describes the phenomenon where irradiated cells or organisms derive benefits from the feedback signals sent from the bystander unirradiated cells or organisms. An example of the benefit is the mitigation of radiation-induced DNA damages in the irradiated cells. The rescue effect can compromise the efficacy of radioimmunotherapy (RIT) (and actually all radiotherapy). In this paper, the discovery and subsequent confirmation studies on the rescue effect were reviewed. The mechanisms and the chemical messengers responsible for the rescue effect studied to date were summarized. The rescue effect between irradiated and bystander unirradiated zebrafish embryos in vivo sharing the same medium was also described. In the discussion section, the mechanism proposed for the rescue effect involving activation of the nuclear factor κB (NF-κB) pathway was scrutinized. This mechanism could explain the promotion of cellular survival and correct repair of DNA damage, dependence on cyclic adenosine monophosphate (cAMP) and modulation of intracellular reactive oxygen species (ROS) level in irradiated cells. Exploitation of the NF-κB pathway to improve the effectiveness of RIT was proposed. Finally, the possibility of using zebrafish embryos as the model to study the efficacy of RIT in treating solid tumors was also discussed. PMID:25625514

  10. A highway accident involving unirradiated nuclear fuel in Springfield, Massachusetts, on December 16, 1991

    International Nuclear Information System (INIS)

    Carlson, R.W.; Fischer, L.E.

    1992-06-01

    In the early morning of Dec. 16, 1991, a severe accident occurred when a passenger vehicle traveling in the wrong direction collided with a tractor trailer carrying 24 unirradiated nuclear fuel assemblies in 12 containers on Interstate I-91 in Springfield, Massachusetts. The purpose of this report is to document the mechanical circumstances of the severe accident, confirm the nature and quantity of the radioactive materials involved, and assess the physical environment to which the containers were exposed and the response of the containers and their contents. The report consists of five major sections. The first section describes the circumstances and conditions of the accident and the finding of facts. The second describes the containers, the unirradiated nuclear fuel assemblies, and the tie down arrangement used for the trailer. The third describes the damage sustained during the accident to the tractor, trailer, containers, and unirradiated nuclear fuel assemblies. The fourth evaluates the accident environment and its effects on the containers and their contents. The final section gives conclusions derived from the analysis and fact finding investigation. During this severe accident, only minor injuries occurred, and at no time was the public health and safety at risk

  11. Stress corrosion crack growth in unirradiated zircaloy

    International Nuclear Information System (INIS)

    Pettersson, K.

    1978-10-01

    Experimental techniques suitable for the determination of stress corrosion crack growth rates in irradiated Zircaloy tube have been developed. The techniques have been tested on unirradiated. Zircaloy and it was found that the results were in good agreement with the results of other investigations. Some of the results were obtained at very low stress intensities and the crack growth rates observed, gave no indication of the existance of a K sub(ISCC) for iodine induced stress corrosion cracking in Zircaloy. This is of importance both for fuel rod behavior after a power ramp and for long term storage of spent Zircaloy-clad fuel. (author)

  12. A Study of Clay-Epoxy Nanocomposites Consisting of Unmodified Clay and Organo Clay

    Directory of Open Access Journals (Sweden)

    Graham Edward

    2006-04-01

    Full Text Available Clay-epoxy nanocomposites were synthesized from DGEBA resin and montmorillonite clay with an in-situ polymerization. One type of untreated clay and two types of organo clay were used to produce the nanocompsoites. The aims of this study were to examine the nanocomposite structure using different tools and to compare the results between the unmodified clay and modified clays as nanofillers. Although diffractogram in reflection mode did not show any apparent peak of both types of materials, the transmitted XRD (X-Ray Difraction graphs, DSC (Differential Scanning Calorimeter analysis and TEM (Transmission Electron Microscope images revealed that the modified clay-epoxy and unmodified clay-epoxy provides different results. Interestingly, the micrographs showed that some of the modified clay layers possessed non-exfoliated layers in the modified clay-epoxy nanocomposites. Clay aggregates and a hackle pattern were found from E-SEM images for both types of nanocomposite materials. It is shown that different tools should be used to determine the nanocomposite structure.

  13. Feasibility of using overburden clays for sealing purposes and laboratory testing of the clays

    Energy Technology Data Exchange (ETDEWEB)

    Mann, J. (Vyzkumny Ustav pro Hnede Uhli, Most (Czechoslovakia))

    1992-03-01

    Studies properties of overburden clay from North Bohemian surface coal mines for use as sealants of industrial and household waste that will be dumped at Czechoslovak surface mine sites. Basic requirements of sealing layers are optimum compressibility and impermeability by suitable compacting. Laboratory soil mechanical tests of different clay samples were carried out using the Proctor standard tests (PCS) and the Norwegian Geonor A/S - m 45 instrument. Laboratory tests were used to select the best available clay types with optimum density and moisture content. Experimental results of laboratory tests are provided.

  14. Unirradiated cladding rip-propagation tests

    International Nuclear Information System (INIS)

    Hu, W.L.; Hunter, C.W.

    1981-04-01

    The size of cladding rips which develop when a fuel pin fails can affect the subassembly cooling and determine how rapidly fuel escapes from the pin. The object of the Cladding Rip Propagation Test (CRPT) was to quantify the failure development of cladding so that a more realistic fuel pin failure modeling may be performed. The test results for unirradiated 20% CS 316 stainless steel cladding show significantly different rip propagation behavior at different temperatures. At room temperature, the rip growth is stable as the rip extension increases monotonically with the applied deformation. At 500 0 C, the rip propagation becomes unstable after a short period of stable rip propagation. The rapid propagation rate is approximately 200 m/s, and the critical rip length is 9 mm. At test temperatures above 850 0 C, the cladding exhibits very high failure resistances, and failure occurs by multiple cracking at high cladding deformation. 13 figures

  15. Bakery products from irradiated and unirradiated eggs - detection of irradiation in a processed food

    International Nuclear Information System (INIS)

    Pfordt, J.; Grabowski, H.U. von

    1995-01-01

    The detection of radiation-specific degradation products in fat has become an established method which has successfully been applied to egg products. This study is making evident the detectability of irradiated eggs as an ingredient of specified processed foods. Tart layers were produced from both irradiated and non-irradiated liquid whole egg. When the fat components were isolated from the tart layers and investigated by GC/MS, the presence of irradiated eggs could clearly be shown. While the radiation-induced hydrocarbons and 2-alkylcyclobutanones could not be found in unirradiated samples, tart layers from irradiated eggs contained these substances. Especially for the hydrocarbons a satisfying correlation between radiation dose and concentration could be observed. The concentrations of radiation-induced compounds were generally lower in the tart layers than in the liquid egg samples they had been produced from. (orig.) [de

  16. Oxide particle size distribution from shearing irradiated and unirradiated LWR fuels in Zircaloy and stainless steel cladding: significance for risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Davis, W. Jr.; West, G.A.; Stacy, R.G.

    1979-03-22

    Sieve fractionation was performed with oxide particles dislodged during shearing of unirradiated or irradiated fuel bundles or single rods of UO/sub 2/ or 96 to 97% ThO/sub 2/--3 to 4% UO/sub 2/. Analyses of these data by nonlinear least-squares techniques demonstrated that the particle size distribution is lognormal. Variables involved in the numerical analyses include lognormal median size, lognormal standard deviation, and shear cut length. Sieve-fractionation data are presented for unirradiated bundles of stainless-steel-clad or Zircaloy-2-clad UO/sub 2/ or ThO/sub 2/--UO/sub 2/ sheared into lengths from 0.5 to 2.0 in. Data are also presented for irradiated single rods (sheared into lengths of 0.25 to 2.0 in.) of Zircaloy-2-clad UO/sub 2/ from BWRs and of Zircaloy-4-clad UO/sub 2/ from PWRs. Median particle sizes of UO/sub 2/ from shearing irradiated stainless-steel-clad fuel ranged from 103 to 182 ..mu..m; particle sizes of ThO/sub 2/--UO/sub 2/, under these same conditions, ranged from 137 to 202 ..mu..m. Similarly, median particle sizes of UO/sub 2/ from shearing unirradiated Zircaloy-2-clad fuel ranged from 230 to 957 ..mu..m. Irradiation levels of fuels from reactors ranged from 9,000 to 28,000 MWd/MTU. In general, particle sizes from shearing these irradiated fuels are larger than those from the unirradiated fuels; however, unirradiated fuel from vendors was not available for performing comparative shearing experiments. In addition, variations in particle size parameters pertaining to samples of a single vendor varied as much as those between different vendors. The fraction of fuel dislodged from the cladding is nearly proportional to the reciprocal of the shear cut length, until the cut length attains some minimum value below which all fuel is dislodged. Particles of fuel are generally elongated with a long-to-short axis ratio usually less than 3. Using parameters of the lognormal distribution estimates can be made of fractions of dislodged fuel having

  17. Hyperspectral analysis of clay minerals

    Science.gov (United States)

    Janaki Rama Suresh, G.; Sreenivas, K.; Sivasamy, R.

    2014-11-01

    A study was carried out by collecting soil samples from parts of Gwalior and Shivpuri district, Madhya Pradesh in order to assess the dominant clay mineral of these soils using hyperspectral data, as 0.4 to 2.5 μm spectral range provides abundant and unique information about many important earth-surface minerals. Understanding the spectral response along with the soil chemical properties can provide important clues for retrieval of mineralogical soil properties. The soil samples were collected based on stratified random sampling approach and dominant clay minerals were identified through XRD analysis. The absorption feature parameters like depth, width, area and asymmetry of the absorption peaks were derived from spectral profile of soil samples through DISPEC tool. The derived absorption feature parameters were used as inputs for modelling the dominant soil clay mineral present in the unknown samples using Random forest approach which resulted in kappa accuracy of 0.795. Besides, an attempt was made to classify the Hyperion data using Spectral Angle Mapper (SAM) algorithm with an overall accuracy of 68.43 %. Results showed that kaolinite was the dominant mineral present in the soils followed by montmorillonite in the study area.

  18. Adsorption of zinc and lead on clay minerals

    Directory of Open Access Journals (Sweden)

    Katarína Jablonovská

    2006-12-01

    Full Text Available Clays (especially bentonite, zeolite and quartz sand are widely used as landfill barriers to prevent contamination of subsoil and groundwater by leachates containing heavy metals. The sorption of zinc and lead on these clays was studied as a function of time and it was found that the initial 1 h our was sufficient to exchange most of the metal ions. The retention efficiency of clay samples of Zn2+ and Pb2+ follows the order of bentonite > zeolite> quartz sand. Whatever the clay sample, lead is retained more than zinc. The concentration of elements in the solution was followed by atomic adsorption spectrofotometry. Bacillus cereus and Bacillus pumilus, previously isolated from the kaoline deposit Horna Prievrana was added into the clay samples to comparise the accumulation of Zn2+ and Pb2+ from the model solution. The study of heavy metal adsorption capacity of bacteria- enriched clay adsorbent showed a high retention efficiency for lead ions as comparised with zinc ions. Biosorption is considered a potential instrument for the removal of metals from waste solutions and for the precious metals recovery as an alternative to the conventional processes.

  19. Effects of Different Types of Clays and Maleic Anhydride Modified Polystyrene on Polystyrene/Clay Nanocomposites

    Directory of Open Access Journals (Sweden)

    M. Mehrabzadeh

    2013-01-01

    Full Text Available Polymer/clay nanocomposites are considered as a new subject of research in Iran and the world. Addition of a minimum amount of clay (2-5wt% can improve the mechanical properties, enhance barrier properties and reduce flammability dramatically. Polystyrene (PS exhibits high strength, high modulus and excellent dimensional stability, but it has poor ductility, elongation, and flexural modulus. By incorporating clay into polystyrene these properties can be improved. In this study preparation of polystyrene/clay nanocomposite, effects of different types of clays (Cloisite 10A andNanomer I.30TC and maleic anhydride modified polystyrene on mechanical properties of the prepared polystyrene/clay nanocomposites were evaluated. Samples were prepared by a twin screw extruder. Transmission electron microscopy (TEM and X-ray diffraction (XRD techniques were employed to evaluate the extent of intercalation and exfoliation of silicate layers in the nanocomposites. Mechanical tests show that by addition of clay and maleic anhydride modified polystyrene the flexural modulus (~30% and elongation-at-break (~40% of prepared nanocomposites have been improved. XRD and TEM results show that nanocomposite have an intercalated structure with ability to change to further exfoliation structure.

  20. High Temperature Tensile Properties of Unirradiated and Neutron Irradiated 20 Cr-35 Ni Austenitic Steel

    Energy Technology Data Exchange (ETDEWEB)

    Roy, R B; Solly, B

    1966-12-15

    The tensile properties of an unirradiated and neutron irradiated (at 40 deg C) 20 % Cr, 35 % Ni austenitic steel have been studied at 650 deg C, 750 deg C and 820 deg C. The tensile elongation and mode of fracture (transgranular) of unirradiated specimens tested at room temperature and 650 deg C are almost identical. At 750 deg C and 820 deg C the elongation decreases considerably and a large part of the total elongation is non-uniform. Furthermore, the mode of fracture at these temperatures is intergranular and microscopic evidence suggests that fracture is caused by formation and linkup of grain boundary cavities. YS and UTS decrease monotonically with temperature. Irradiated specimens show a further decrease in ductility and an increase in the tendency to grain boundary cracking. Irradiation has no significant effect on the YS, but the UTS are reduced. The embrittlement of the irradiated specimens is attributed to the presence of He and Li atoms produced during irradiation and the possible mechanisms are discussed. Prolonged annealing of irradiated and unirradiated specimens at 650 deg C appears to have no significant effect on tensile properties.

  1. Characterization and analysis of epoxy/clay nanotubes composites

    International Nuclear Information System (INIS)

    Sene, Tarcisio S.; Kock, Thyago; Coelho, Luiz A.F.; Becker, Daniela

    2011-01-01

    An DGEBA epoxy matrix was used aiming to achieve a nanocomposite material, through the dispersion of (CNT) via mechanical stirring followed by sonication. In this work the following characterization were performed: mechanical characterization, differential scanning calorimetry (DSC), wide angle X-ray diffraction (WXRD) and scanning electron microscopy (SEM). The addition of CNT and modified clays promoted the increase of modulus of the epoxy matrix, and a synergistic effect between CNT and both clays could be presumed. SEM images of the fracture surface show the difference between the fracture surface area and the presence of clusters among the samples, allowing a correlation with the modulus of elasticity. X-ray diffractograms from 2Θ = 5 deg showed no peaks for modified clay samples, however it is possible to affirm that modified clay platelets are forming a less organized structure compared to the structure of the clay as natural in epoxy. (author)

  2. Investigation of activated Al-pillared clay efficiency in vegetable oil purification

    Directory of Open Access Journals (Sweden)

    Lomić Gizela A.

    2004-01-01

    Full Text Available This paper represents a contribution to the applicability of natural clays and their derivates as adsorbents in the process of purification of vegetable oil. Investigation of textural properties of raw and purified clay samples reveals that during acid activation and Al-pillaring, BET and micropore surface area increases significantly. However, bleaching capacity of clay and its derivates is not determined by using sample surface area, but rather sample total pore volume. Surface area, especially micropore surface area contributes to removal of smaller molecules. This was confirmed by successful elimination of moisture and volatile materials by samples with an appropriate micropore structure. Used samples of clay and its derivates do not significantly influence acid and peroxide values of raw sunflower oil during its treatment.

  3. Column treatment of brewery wastewater using clay fortified with stone-pebbles

    International Nuclear Information System (INIS)

    Oladoja, N.A.; Ademoroti, C.M.A.; Idiaghe, J.A.; Oketola, A.A.

    2006-01-01

    The study aimed at providing a low-cost treatment for brewery wastewater, which was achieved by mixing clay with stone-pebbles to improve the low permeability of water through clay beds. The combination (clay/stone-pebbles) was used in columns for the treatment of brewery wastewater. The crystal chemistry of the clay samples was studied using X-ray diffractometer. Three principal clay minerals (kaolin, illite and smectite) were detected in the samples. Atomic absorption spectrophotometer was used to study the geochemistry of the clay samples. The results of the geochemical studies showed that all the samples were hydrated aluminosilicates. Performance efficiency studies were conducted to determine the best combination ratio of clay to stone-pebbles, which showed that combination ratio 3:1 (clay/stone pebbles, w/w) performed better. The flow-rate studies showed that brewery wastewater had longer residence time in non fortified clay than in fortified clay. The flow-rate of the wastewater in the percolating media varied from one medium to another. Two modes of treatment (batch and continuous) were used. The effluent passed through the continuous treatment mode had better quality characteristics as compared with the effluent passed through the batch treatment mode. The effect of repeated use of the fortified column on the performance efficiency was also studied. The pH, total solids, and the chemical oxygen demand (COD) of the effluent was monitored over time. The results of the COD monitored over time were analysed using breakthrough curves. The different columns were found to have different bed volumes at both the break through and exhaustion points. (author)

  4. Oxide particle size distribution from shearing irradiated and unirradiated LWR fuels in Zircaloy and stainless steel cladding: significance for risk assessment

    International Nuclear Information System (INIS)

    Davis, W. Jr.; West, G.A.; Stacy, R.G.

    1979-01-01

    Sieve fractionation was performed with oxide particles dislodged during shearing of unirradiated or irradiated fuel bundles or single rods of UO 2 or 96 to 97% ThO 2 --3 to 4% UO 2 . Analyses of these data by nonlinear least-squares techniques demonstrated that the particle size distribution is lognormal. Variables involved in the numerical analyses include lognormal median size, lognormal standard deviation, and shear cut length. Sieve-fractionation data are presented for unirradiated bundles of stainless-steel-clad or Zircaloy-2-clad UO 2 or ThO 2 --UO 2 sheared into lengths from 0.5 to 2.0 in. Data are also presented for irradiated single rods (sheared into lengths of 0.25 to 2.0 in.) of Zircaloy-2-clad UO 2 from BWRs and of Zircaloy-4-clad UO 2 from PWRs. Median particle sizes of UO 2 from shearing irradiated stainless-steel-clad fuel ranged from 103 to 182 μm; particle sizes of ThO 2 --UO 2 , under these same conditions, ranged from 137 to 202 μm. Similarly, median particle sizes of UO 2 from shearing unirradiated Zircaloy-2-clad fuel ranged from 230 to 957 μm. Irradiation levels of fuels from reactors ranged from 9,000 to 28,000 MWd/MTU. In general, particle sizes from shearing these irradiated fuels are larger than those from the unirradiated fuels. In addition, variations in particle size parameters pertaining to samples of a single vendor varied as much as those between different vendors. The fraction of fuel dislodged from the cladding is nearly proportional to the reciprocal of the shear cut length, until the cut length attains some minimum value below which all fuel is dislodged. Particles of fuel are generally elongated with a long-to-short axis ratio usually less than 3. Using parameters of the lognormal distribution deduced from experimental data, realistic estimates can be made of fractions of dislodged fuel having dimensions less than specified values

  5. Possibilities for the storage of radioactive waste in deep clay formations

    International Nuclear Information System (INIS)

    Le Pochat, G.; Lienhardt, M.J.; Peaudecerf, P.; Platel, J.P.; Simon, J.M.; Berest, P.; Charpentier, J.P.; Andre-Jehan, R.

    1984-02-01

    The possible storage sites in deep clay formations have been studied in parts of large French sedimentary basins which prima facie seem to have suitable characteristics. The most suitable areas were chosen on the basis of earlier oil prospecting data consisting of information on seismic movements, diagraphic well-logging data and old samples that happened to have been preserved. At the same time, the lithology of the clay formations can be determined from mineralogical studies on samples taken from boreholes or from outcrops. Before carrying out in situ experiments concerned with the geotechnical characterization of the deep clays, measurements were made in the laboratory on samples obtained in two ways: from tertiary clay outcrops and from cores taken at 950 m in the clay layers during oil well logging. The results of studies carried out on tertiary clays in Les Landes illustrate this procedure

  6. Montmorillonite clay/polypropylene (HMSPP) nanocomposites: evaluation of thermal and mechanical properties

    International Nuclear Information System (INIS)

    Komatsu, L.G.H.; Oliani, W.L.; Lugao, A.B.; Parra, D.F.

    2014-01-01

    The evaluation of HMSPP (high melt strength polypropylene) properties in nanocomposites was done in composites of 0.1; 1; 3; 5; 10 wt% of Cloisite 20A clay. The PP-g-MA (polypropylene graft maleic anhydride) was the compatibilizer agent in the process of extrusion in twin-screw. Mechanical tests performed in the nanocomposites with higher clay content showed higher values of rupture in 5 and 10 wt% of Cloisite. The thermal properties were evaluate utilizing Calorimetry Differential Exploratory (DSC) and in the sample of 10 wt% of Cloisite were observed increase of the melting temperature and increase of crystallinity. The morphology was investigated by the Scanning Electron Microscopy (SEM) and Fourier Transformed Infrared (FTIR), in which the sample with lower clay amount, 1 wt% of Cloisite showed better dispersion of the clay. X-Ray Diffraction reported the clay intercalation in the sample with 5 wt% of clay. (author)

  7. Large scale laboratory diffusion experiments in clay rocks

    International Nuclear Information System (INIS)

    Garcia-Gutierrez, M.; Missana, T.; Mingarro, M.; Martin, P.L.; Cormenzana, J.L.

    2005-01-01

    Full text of publication follows: Clay formations are potential host rocks for high-level radioactive waste repositories. In clay materials the radionuclide diffusion is the main transport mechanism. Thus, the understanding of the diffusion processes and the determination of diffusion parameters in conditions as similar as possible to the real ones, are critical for the performance assessment of deep geological repository. Diffusion coefficients are mainly measured in the laboratory using small samples, after a preparation to fit into the diffusion cell. In addition, a few field tests are usually performed for confirming laboratory results, and analyse scale effects. In field or 'in situ' tests the experimental set-up usually includes the injection of a tracer diluted in reconstituted formation water into a packed off section of a borehole. Both experimental systems may produce artefacts in the determination of diffusion coefficients. In laboratory the preparation of the sample can generate structural change mainly if the consolidated clay have a layered fabric, and in field test the introduction of water could modify the properties of the saturated clay in the first few centimeters, just where radionuclide diffusion is expected to take place. In this work, a large scale laboratory diffusion experiment is proposed, using a large cylindrical sample of consolidated clay that can overcome the above mentioned problems. The tracers used were mixed with clay obtained by drilling a central hole, re-compacted into the hole at approximately the same density as the consolidated block and finally sealed. Neither additional treatment of the sample nor external monitoring are needed. After the experimental time needed for diffusion to take place (estimated by scoping calculations) the block was sampled to obtain a 3D distribution of the tracer concentration and the results were modelled. An additional advantage of the proposed configuration is that it could be used in 'in situ

  8. Hydrogen isotope ratios of clay minerals constituting clay veins found in granitic rocks in Hiroshima Prefecture

    International Nuclear Information System (INIS)

    Kitagawa, Ryuji; Kakitani, Satoru; Kuroda, Yoshimatsu; Matsuo, Sadao; Suzuoki, Tetsuro.

    1980-01-01

    The deuterium content of the constitutional and interlayer water extracted from the clay minerals (illite, montmorillonite, interstratified illite-montmorillonite mineral, kaolinite, halloysite) constituting the clay veins found in the granitic rocks in Hiroshima Prefecture was measured. The clay minerals were heated at 270 deg C to extract the interlayer water, then heated to 1,400 or 1,500 deg C to extract the constitutional water. The deuterium content of the local surface water collected from sampling points was measured. In the clay veins formed along perpendicular joints, the constituent clay minerals change from lower to upper part: illite → montmorillonite → kaolinite → halloysite. The deuterium content values of the constitutional water for illite and montmorillonite were estimated to be -67 to -69% and -86 to -89%, respectively. The deuterium content values of the constitutional water for halloysite range from -68 to -80% and for kaolinite from -63 to -67%. (J.P.N.)

  9. A review of WIPP [Waste Isolation Pilot Plant] repository clays and their relationship to clays of adjacent strata

    International Nuclear Information System (INIS)

    Krumhansl, J.L.; Kimball, K.M.; Stein, C.L.

    1990-12-01

    The Salado Formation is a thick evaporite sequence located in the Permian Delaware Basin of southeastern New Mexico. This study focuses on the intense diagenetic alteration that has affected the small amounts of clay, feldspar, and quartz washed into the basin during salt deposition. These changes are of more than academic interest since this formation also houses the WIPP (Waste Isolation Pilot Plant). Site characterization concerns warrant compiling a detailed data base describing the clays in and around the facility horizon. An extensive sampling effort was undertaken to address these programmatic issues as well as to provide additional insight regarding diagenetic mechanisms in the Salado. Seventy-five samples were collected from argillaceous partings in halite at the stratigraphic level of the Waste Isolation Pilot Plant (WIPP). These were compared with twenty-eight samples from cores of the Vaca Triste member of the Salado, a thin clastic unit at the top of the McNutt potash zone, and with a clay-rich sample from the lower contact of the Culebra Dolomite (in the overlying Rustler Formation). These settings were compared to assess the influence of differences in brine chemistry (i.e., halite and potash facies, normal to hypersaline marine conditions) and sediment composition (clays, sandy silt, dolomitized limestone) on diagenetic processes. 44 refs., 11 figs., 5 tabs

  10. Characterization of un-irradiated and irradiated reactor graphite; Karakterizacija neozracenog i ozracenog reaktorskog grafita

    Energy Technology Data Exchange (ETDEWEB)

    Marinkovic, S [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1965-11-15

    This report contains three parts: characterization of Yugoslav nuclear graphite development of methods and obtained results, characterization of un-irradiated and irradiated domestic nuclear graphite; calculation of electrical conductivity changes due to vacancies in the graphite crystal lattice.

  11. Plant-scale anodic dissolution of unirradiated N-Reactor fuel

    International Nuclear Information System (INIS)

    Gay, E.C.; Miller, W.E.; Laidler, J.J.

    1995-01-01

    Anodic dissolution tests were made with unirradiated N-Reactor fuel to determine the fuel segment length, diameter, and shape required for high throughput electrorefiner treatment for ultimate disposal in a geologic repository. Based on these tests, a conceptual design was produced of an electrorefiner for a full-scale plant to process N-Reactor spent fuel. In this design, the diameter of an electrode assembly is about 0.6 m (25 in.). Eight of these assemblies in an electrorefiner would accommodate a 1.333-metric-ton batch of N-Reactor fuel. Electrorefining would proceed at a rate of 40 kg uranium per hour

  12. Induced polarization of clay-sand mixtures: experiments and modeling

    International Nuclear Information System (INIS)

    Okay, G.; Leroy, P.; Tournassat, C.; Ghorbani, A.; Jougnot, D.; Cosenza, P.; Camerlynck, C.; Cabrera, J.; Florsch, N.; Revil, A.

    2012-01-01

    Document available in extended abstract form only. Frequency-domain induced polarization (IP) measurements consist of imposing an alternative sinusoidal electrical current (AC) at a given frequency and measuring the resulting electrical potential difference between two other non-polarizing electrodes. The magnitude of the conductivity and the phase lag between the current and the difference of potential can be expressed into a complex conductivity with the in-phase representing electro-migration and a quadrature conductivity representing the reversible storage of electrical charges (capacitive effect) of the porous material. Induced polarization has become an increasingly popular geophysical method for hydrogeological and environmental applications. These applications include for instance the characterization of clay materials used as permeability barriers in landfills or to contain various types of contaminants including radioactive wastes. The goal of our study is to get a better understanding of the influence of the clay content, clay mineralogy, and pore water salinity upon complex conductivity measurements of saturated clay-sand mixtures in the frequency range ∼1 mHz-12 kHz. The complex conductivity of saturated unconsolidated sand-clay mixtures was experimentally investigated using two types of clay minerals, kaolinite and smectite in the frequency range 1.4 mHz - 12 kHz. Four different types of samples were used, two containing mainly kaolinite (80% of the mass, the remaining containing 15% of smectite and 5% of illite/muscovite; 95% of kaolinite and 5% of illite/muscovite), and the two others containing mainly Na-smectite or Na-Ca-smectite (95% of the mass; bentonite). The experiments were performed with various clay contents (1, 5, 20, and 100% in volume of the sand-clay mixture) and salinities (distilled water, 0.1 g/L, 1 g/L, and 10 g/L NaCl solution). In total, 44 saturated clay or clay-sand mixtures were prepared. Induced polarization measurements

  13. Clay membrane made of natural high plasticity clay

    DEFF Research Database (Denmark)

    Foged, Niels; Baumann, Jens

    1998-01-01

    Leachate containment in Denmark has through years been regulated by the DIF Recommendation for Sanitary Landfill Liners (DS/R 466). It states natural clay deposits may be used for membrane material provided the membrane and drainage system may contain at least 95% of all leachate created throughout...... ion transport as well as diffusion.Clay prospection for clays rich in smectite has revealed large deposits of Tertiary clay of very high plasticity in the area around Rødbyhavn on the Danish island Lolland. The natural clay contains 60 to 75% smectite, dominantly as a sodium-type. The clay material...... has been evaluated using standardised methods related to mineralogy, classification, compaction and permeability, and initial studies of diffusion properties have been carried out. Furthermore, at a test site the construction methods for establishing a 0.15 to 0.3m thick clay membrane have been tested...

  14. Clay membrane made of natural high plasticity clay:

    DEFF Research Database (Denmark)

    Foged, Niels; Baumann, Jens

    1999-01-01

    Leachate containment in Denmark has throughout the years been regulated by the DIF Recommendation for Sanitary Landfill Liners (DS/R4669. It states that natural clay deposits may be used as membrane material provided the membrane and drainage system contains at least 95% of all leachate created...... into account advective ion transport as well as diffusion. Clay prospecting for clays rich in smectite has revealed large deposits of Tertiary clay of very high plasticity in the area around Rødbyhavn on the Danish island of Lolland. The natural clay contains 60-75% smectite, dominantly as a sodium......-type. The clay material has been evaluated using the standardized methods related to mineralogy, classification, compaction and permeability, and initial studies of diffusion properties have been carried out. Furthermore, at a test site the construction methods for establishing a 0.15-0.3 m thick clay membrane...

  15. Dissolution experiments of unirradiated uranium dioxide pellets

    International Nuclear Information System (INIS)

    Ollila, K.

    1985-01-01

    The purpose of this study was to measure the dissolution rate of uranium from unirradiated uranium dioxide pellets in deionized water and natural groundwater. Moreover, the solubility limit of uranium in natural groundwater was measured. Two different temperatures, 25 and 60 deg C were used. The low oxygen content of deep groundwater was simulated. The dissolution rate of uranium varied from 10 -7 to 10 -8 g cm -2 d -1 . The rate in reionized water was one order of magnitude lower than in groundwater. No great difference was observed between the natural groundwaters with different composition. Temperature seems to have effect on the dissolution rate. The solubility limit of uranium in natural groundwater in reducing conditions, at 25 deg C, varied from 20 to 600 μg/l and in oxidizing conditions, at 60 deg C, from 4 to 17 mg/l

  16. The dissolution of unirradiated UO2 fuel pellets under simulated disposal conditions

    International Nuclear Information System (INIS)

    Ollila, K.; Leino-Forsman, H.

    1993-03-01

    The dissolution behaviour of unirradiated UO 2 pellets was studied as a function of water composition under oxidizing and reducing conditions at 25 deg C. The waters included deionized water as the reference water, sodium bicarbonate solutions with varying bicarbonate content, and two different synthetic groundwaters. The release of uranium was measured during static batch dissolution experiments of long duration (3-4 years)

  17. Methods for obtention of PS/clay nanocomposites

    International Nuclear Information System (INIS)

    Lins, Pedro G.; Valera, Ticiane S.; Coelho, Caio P.D.; Demarquette, Nicole R.

    2009-01-01

    In this work, nanocomposites of Polystyrene (PS) and organoclay were obtained using a twin-screw extruder and a mixer Haake. A commercial clay named Cloisite 20A was used. The clay and the nanocomposites were characterized by X-Ray Diffraction. The rheological properties were investigated carrying out small amplitude oscillatory strain (SAOS). The results of X-ray diffraction showed that the polymer was incorporated by the organoclay. The results of SAOS indicated a better clay dispersion for the samples obtained using the mixer. (author)

  18. Elastic deformation behaviour of Palaeogene clay from Fehmarn Belt area

    DEFF Research Database (Denmark)

    Awadalkarim, Ahmed; Foged, Niels Nielsen; Fabricius, Ida Lykke

    2014-01-01

    Palaeogene clay samples were obtained by high quality boring and sampling techniques (Geobore S-system), during the extensive site investigations for building a bridge in the Fehmarn Belt area to link between Rødbyhavn in Denmark and Puttgarden in Germany. The Palaeogene clay is rich in smectite...

  19. Structural characterization of bentonite clays for utilization as nanofillers in nanocomposites

    International Nuclear Information System (INIS)

    Oliveira, Carlos Ivan Ribeiro de; Rocha, Marisa Cristina Guimares; Vogas, Arthur Considera

    2014-01-01

    Clays of different composition have been used in the development of polymer nanocomposites. However, the utilization of bentonite clays has been emphasized in Brazil, mainly due to their availability.The best known and studied deposits of bentonite clays are located in the state of Paraiba. However, these deposits are becoming exhausted after decades of exploitation. In this context, the aim of this work is to proceed the physical-mineralogical characterization of bentonite clays recently discovered in Cubati, PB. In order to achieve this objective, the samples underwent a particle size classification step and were characterized by X-ray fluorescence, X-ray diffraction, infrared spectroscopy, thermal analysis and scanning electron microscopy. Results of X-ray diffraction showed that the samples are composed of smectite, and kaolinite and quartz. The characterization of the samples by FTIR confirmed these results. Results of chemical analysis showed that the clays have predominantly different exchangeable cations. (author)

  20. Study on the Thermal Properties of Some Inorganically Modified Pre- Baked Clay Samples

    International Nuclear Information System (INIS)

    Ahmad, I.; Shakirullah, M.; Ishaq, M.

    2013-01-01

    The paper is focused on the influence of some inorganic modifiers on the thermal stability of the clay-inorganic intercalates. The inorganic modifiers used were NaOH and KOH. Solvent intercalation procedure was used. Clay was modified at 150, 500 and 750 degree C, separately with NaOH and KOH. TGDTA study was performed to evaluate the thermal stability of the resultant intercalates. Intercalation with NaOH and KOH performed at 150 degree C showed significant mass loss. Intercalation with NaOH performed at 500 and 750 degree C, separately showed less mass loss compared to the ones prepared at 150 degree C and hence exhibited thermal stability. In case of intercalation performed with KOH at 500 and 750 degree C separately, the mass loss was comparable to the original pre-baked clay. (author)

  1. Study of radionuclide migration in clay formations

    International Nuclear Information System (INIS)

    Antonioli, F.; Bocola, W.

    1985-01-01

    This paper reports the studies on the migration of Cs, Sr and I in clay formations, which are presently considered for the geological disposal of radioactive wastes. The distribution and diffusion coefficients were evaluated by means of experimental techniques and computer procedures, which are presented in this report. The natural clays tested in the laboratory experiments were sampled from the most representative italian basins and from the zone of Mol (Belgium). In addition tests were performed on monomineral clays artificially remade in edometer. The experimental results are in accordance with data found in the literature and show the existence of a good correlation between the observed migration properties and the granulometric and mineralogic characteristics of the natural clays

  2. Some Tests on Heather Field Moraine Clay

    DEFF Research Database (Denmark)

    Jørgensen, Mogens B.; Jacobsen, Moust

    This report deals with oedometer tests on three samples of moraine clay from the Heather Field in the English part of the North Sea. The tests have been carried out in the very unelastic apparatus used in Denmark and with special test procedures differing from the ones used elsewhere. In Denmark...... Moraine Clay covers a large part of the surface, and it has therefore been investigated extensively in the field and in the laboratories during the last 25 years. It is to day - from a geotechnical point of view - the best known clay in Denmark. It could therefore be of some interest to compare...... the English North Sea moraine clays with the corresponding Danish Moraine Clays. The Danish test procedures are explained in details and some comments are given in the hope that they may not be banalities all of them....

  3. Microbial analyses of clay and water from different samples from the Mont Terri Rock Laboratory (RL), Switzerland

    International Nuclear Information System (INIS)

    Sergeant, C.; Vesvres, M.H.; Barsotti, V.; Stroes-Gascoyne, S.; Hamon, C.J.; Neble, S.; Shippers, A.; Le Marrec, C.; Vinsot, A.; Schwyn, B.

    2010-01-01

    processes that may develop locally in Opalinus Clay upon disturbance by drilling and excavation (i.e., introduction of space, water, microbes and nutrients). In a second part of this work, results are presented here from detection and identification of microorganisms in water which accumulated in an open borehole drilled in the Opalinus Clay (BEZ-G5). Besides introduced (exogenous) microorganisms, such water may contain autochthonous species. The latter may be easier to detect in water samples than by direct analysis of the clay rock. Both culturing (aerobic and anaerobic media) and direct (DNA extraction and PCR-DGGE) methods were used. Pure cultures of bacteria isolated in several enrichment media and identified by DNA extraction, PCR and sequencing indicated that most isolated bacteria are heterotrophic aerobes or facultative anaerobes commonly isolated from soil and water (such as Dietzia sp., Pseudomonas sp.) and therefore probably contaminants. In parallel, direct DNA extraction from water and PCR-DGGE revealed other contaminant bacteria (such as Staphylococcus sp., Rhizobium sp.). Nevertheless, some species may be indigenous in the Opalinus Clay such as Desulfosporosinus sp. isolated on sulfate-reducing media or Speleomyces sp., identified by PCRDGGE and previously isolated from a medieval mine. Complementary characterizations of these bacteria are required to confirm these first results. The diversity of microorganisms detected shows that both culturing and molecular approaches are essential to study this type of environment. (authors)

  4. Crystal chemistry and Moessbauer spectroscopic analysis of clays around Riyadh for brick industry

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, Mutasim I., E-mail: mkhalil@ksu.edu.sa [King Saud University, Department of Chemistry, College of Science (Saudi Arabia)

    2013-04-15

    A total of 30 clay samples were collected from the area around Riyadh city, Saudi Arabia. A complete chemical analysis was carried out using different techniques. X-ray diffraction studies showed that the clay samples were mainly of the smectite group with traces of the kaolinite one. The samples studied were classified as nontronite clay minerals. One of the clay fraction has been studied by Moessbauer spectroscopy as raw clay fraction and after being fired at 950-1,000 Degree-Sign C. The Moessbauer spectra showed accessory iron compounds in the form of hematite and goethite. The structural iron contents disintegrate on firing transforming into magnetic iron oxide and a paramagnetic small particles iron oxide.

  5. Production of smectite organophylic clays from three commercial sodium bentonite

    International Nuclear Information System (INIS)

    Valenzuela Diaz, Francisco R.; Souza Santos, Persio de

    1995-01-01

    Laboratory cationic exchange procedures using Brazilian's commercial quaternary ammonium salt and three samples of commercial sodium bentonites (two Brazilian's and one from Wyoming (US) are described. Swelling values in some liquid organic media are shown for the organophilic clays and for a Brazilian's commercial organophilic clay. Organophilic clays with larger swelling values than the commercial organophilic clay in kerosene, Varsol, toluene and soya bean oil were obtained. (author)

  6. Synthesis and characterization of polymer/clay nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Cynthia M. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia de Materiais; Leal, Elvia [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Dept. de Engenharia de Processos; Cambium, Karina B.; Sobrinho, Ariosvaldo A.B.; Baracho, Marcos A.R. [Universidade Federal de Campina Grande (UFCG), PB (Brazil); Pontes, Luiz R.A. [Universidade Federal da Paraiba, (UFPB), Joao Pessoa, PB (Brazil)

    2004-07-01

    Sea atmosphere present salt rates in order of 3.5%, being sodium chloride (NaCl) found in bigger amounts. The high electrolytic character of NaCl contributes to form corrosion products more energetic. The presence of chloride ions (Cl-) promotes the appearance of ferrous chloride molecules (FeCl{sub 2}), which hydrolysis occurs quickly, leading to the metal deterioration. So, the protection of these surfaces by the use of organic coatings, applied in one or multiple layers, has been a technique strongly spread out to promote the metal mechanical properties conservation. The aim of this work is to study the use of organophilic clay as component in anti corrosive polymeric coatings used in metallic structures of petroliferous industry. It had been formulated acrylic coatings, with and without organophilic clay addition. The samples had been submitted a salt spray fog tests, according to ASTM B-117. The results had showed that the samples addicted with organophilic clay presented anti corrosive properties six times more efficient than the other ones without clay addiction. (author)

  7. Evaluation of the release of dioxins and PCBs during kiln-firing of ball clay.

    Science.gov (United States)

    Broadwater, Kendra; Meeker, John D; Luksemburg, William; Maier, Martha; Garabrant, David; Demond, Avery; Franzblau, Alfred

    2014-01-01

    Ball clay is known to be naturally contaminated with high levels of polychlorinated di-benzo-p-dioxins (PCDDs). This study evaluated the potential for PCDD, polychlorinated dibenzofuran (PCDF) and polychlorinated biphenyl (PCB) release during the kiln firing of ball clay in an art studio. Toxic equivalence (TEQ) were calculated using World Health Organization (WHO) 2005 toxic equivalence factors (TEF) and congener concentrations. Ten bags of commercial ball clay were found to have an average TEQ of 1,370 nanograms/kilogram (ng kg(-1)) dry weight (dw), almost exclusively due to PCDDs (99.98% of TEQ). After firing, none of the 29 dioxin-like analytes was measured above the limits of detection (LOD) in the clay samples. Air samples were taken during firings using both low-flow and high-flow air samplers. Few low-flow air samples contained measurable levels of dioxin congeners above the LOD. The mean TEQ in the high volume air samples ranged from 0.07 pg m(-3) to 0.21 pg m(-3) when firing ball clay, and was 0.11 pg m(-3) when no clay was fired. These concentrations are within the range measured in typical residences and well-controlled industrial settings. The congener profiles in the high-flow air samples differed from the unfired clay; the air samples had a considerable contribution to the TEQ from PCDFs and PCBs. Given that the TEQs of all air samples were very low and the profiles differed from the unfired clay, it is likely that the PCDDs in dry ball clay were destroyed during kiln firing. These results suggest that inhalation of volatilized dioxins during kiln firing of dry ball clay is an unlikely source of exposure for vocational and art ceramicists. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Plant-scale anodic dissolution of unirradiated N-Reactor fuel

    International Nuclear Information System (INIS)

    Gay, E.C.; Miller, W.E.; Laidler, J.J.

    1995-01-01

    Anodic dissolution tests were made with unirradiated N-Reactor fuel to determine the fuel segment length, diameter, and shape required for high throughput electro-refiner treatment for ultimate disposal in a geologic repository. Based on these tests, a conceptual design was produced of an electro-refiner for a full-scale plant to process N-Reactor spent fuel. In this design, the diameter of an electrode assembly is about 0.6 m (25 in.). Eight of these assemblies in an electro-refiner would accommodate a 1.333-metric-ton batch of N-Reactor fuel. Electrorefining would proceed at a rate of 40 kg uranium per hour. (author)

  9. Clay Play

    Science.gov (United States)

    Rogers, Liz; Steffan, Dana

    2009-01-01

    This article describes how to use clay as a potential material for young children to explore. As teachers, the authors find that their dialogue about the potential of clay as a learning medium raises many questions: (1) What makes clay so enticing? (2) Why are teachers noticing different play and conversation around the clay table as compared to…

  10. Geochemical Investigation of Clay Minerals in Marte, Borno State, Nigeria

    Directory of Open Access Journals (Sweden)

    F. D. Adams

    2017-10-01

    Full Text Available Clay deposit collected from various locations in Marte (Northern Borno, were studied to determine their physical and chemical characteristics in order to evaluate their suitability for industrial uses. Major and trace element analyses were carried out on clay samples using Inductively Couple Plasma-Optical Emission Spectrometry (ICP-OES and X- Ray Fluorescence (XRF. The result of the chemical analysis of the ten (10 samples collected showed significant amounts of SiO2 and Al2O3. Silica content ranges from 51.48 to 62.44 % while alumina varies from 12.49 to 19.00 %. The calcium oxide ranges from 1.17 to 3.39 %, Na2O ranges from 1.1 to 8.61 %, K2O from 1.54 to 3.66 %, MgO varies from 0.04 to0.14 %, Fe2O3 varies from 0.3 to 2.7 % and MnO ranges from 0.01 to 1.03 %. The result showed that the clays are mainly smectite with quartz and felspar as the main non-clay minerals. Generally, the geochemical results of the samples do not meet the standard for industrial utilization when compared to the Industrial specifications. However, for industrial utilization, some of the clay samples may be used after necessary beneficiations.

  11. Ball clay

    Science.gov (United States)

    Virta, R.L.

    2001-01-01

    Part of the 2000 annual review of the industrial minerals sector. A general overview of the ball clay industry is provided. In 2000, sales of ball clay reached record levels, with sanitary ware and tile applications accounting for the largest sales. Ball clay production, consumption, prices, foreign trade, and industry news are summarized. The outlook for the ball clay industry is also outlined.

  12. Clays causing adhesion with tool surfaces during mechanical tunnel driving

    Science.gov (United States)

    Spagnoli, G.; Fernández-Steeger, T.; Stanjek, H.; Feinendegen, M.; Post, C.; Azzam, R.

    2009-04-01

    During mechanical excavation with a tunnel boring machine (TBM) it is possible that clays stick to the cutting wheel and to other metal parts. The resulting delays in the progress of construction work, cause great economic damage and often disputes between the public awarding authorities and executing companies. One of the most important factors to reduce successfully the clay adhesion is the use of special polymers and foams. But why does the clay stick to the metal parts? A first step is to recognize which kind of clay mineralogy shows serious adhesion problems. The mechanical properties of clay and clay suspensions are primarily determined by surface chemistry and charge distribution at the interfaces, which in turn affect the arrangement of the clay structure. As we know, clay is a multi-phase material and its behaviour depends on numerous parameters such as: clay mineralogy, clay fraction, silt fraction, sand fraction, water content, water saturation, Atterberg limits, sticky limit, activity, cation exchange capacity, degree of consolidation and stress state. It is therefore likely that adhesion of clay on steel is also affected by these clay parameters. Samples of clay formations, which caused problems during tunnel driving, will be analyzed in laboratory. Mineralogical analyses (diffractometry, etc.) will be carried out to observe which minerals are responsible for adherence problems. To manipulate the physical properties, batch tests will be carried out in order to eliminate or reduce the adhesion on tool surfaces through variation of the zeta potential. Second step is the performance of vane shear tests on clay samples. Different pore fluid (distilled water, pure NaCl solution, ethanol and methanol) will be used to study the variation of the mechanical behaviour of clay depending on the dielectric constant of the fluids. This project is funded by the German Federal Ministry of Education and Research (BMBF) and the DFG (German Research Foundation) in the

  13. Characterization of karak clay from pakistan for pharmaceutical and cosmetic applications

    International Nuclear Information System (INIS)

    Shah, L.A.; Silva-Valenzuela, M.G.; Valenzuela-Diaz, F.R.; Sayeg, I.J.; Carvalho, F.M.S.

    2012-01-01

    Full text: Clay, the most important, plentiful, and low cost naturally occurring mineral, is widely used in variety of industrial application including Pharmaceutical and cosmetic. Clay is the fine grained aluminosilicate mineral which shows the property of plasticity at appropriate water content, and becomes hard upon drying. In Pakistan there are different types of clay but till now neither of them properly identified nor characterize for specific industrial application. The objective of this work is to characterize Karak clay for pharmaceutical and cosmetic applications collected from deposit located at Shagai region, District Karak, Pakistan. The clay was characterized through Xray diffractometry (XRD), X-ray Fluorescence (XRF), trace elemental Analysis, Microbiological analysis, Cation exchange capacity (CEC), pH and swelling assays according to European, United States of America and Brazilian Pharmacopeias. Bulk Chemical analysis shows that the Aluminum oxide and silica oxide are present in large quantity which was confirmed by XRD that this sample has montmorillonite as a major while illite and kaolinite as minor clay minerals. Quartz of small quantity was also found as a non-clay mineral. After analyzing the results for sample it was concluded that the clay is a strong candidate for cosmetic purposes. (author)

  14. Water diffusion in clays with added organic surfactants

    International Nuclear Information System (INIS)

    Pineda-Pinon, J; Mendoza-Lopez, M L; Manzano-RamIrez, A; Perez-Robles, J F; Vega-Duran, J T

    2007-01-01

    Tensoactive agents may decrease water absorption in clay products like adobes. They modify the characteristics of the surface of clay particles. Characterization of water diffusion through the pores of modified clays is important to apply appropriate surface modifiers and to improve their performance. We established a simple model for water diffusion in test samples of defined dimensions to estimate real physical parameters and their effect on water absorption. Adsorption mechanisms are examined based on experimental results. The fitting of the experimental data to the model provides a deep understanding of water adsorption in chemically modified clays. A better agreement between the model and the experimental data is achieved for complex molecules

  15. Electrokinetic flows in cylindrical and slit capillaries in clays: from pore scale to sample scale

    International Nuclear Information System (INIS)

    Obliger, Amael; Jardat, Marie; Rotenberg, Benjamin; Duvail, Magali; Bekri, Samir; Coelho, Daniel

    2012-01-01

    Document available in extended abstract form only. Full text of publication follows: Transport on the nanometer scale of clay interlayers and on the macroscopic sample scale can be well characterized experimentally, using either X-ray or neutron diffraction and diffusion on the one hand, and solute diffusion experiments on the other hand. Current imaging techniques do not allow to provide a direct picture of the pore network on the scale of several nanometers to several micrometers. The lack of knowledge of the pore network structure on intermediate scales requires to use numerical models of analog porous media. We attempt to describe the ionic transport in meso (diam. ∼ 10-50 nm) and macro-porosity (diam. > 50 nm) (due to the organization of clays particles) with a multi-scale approach provided by the Pore Network Model (PNM) that takes into consideration the topology of the media. Such an approach requires to know the transport coefficients of solvent and solutes in a throat connecting two pores, modelled as a capillary. The challenge in the case of clays, compared to the usual PNM methods, is to capture the effect of the surface charge of clay minerals on the transport of ions and water, under the effect of macroscopic pressure, salt concentration and electric potential gradients. Solvent and ionic transports are governed by the Stokes, the Nernst-Planck and the Poisson- Boltzmann equations. This set of equations can be solved analytically using the linearized form of the latter in order to get an approximation of the electro-osmotic speed and the ionic density profile. At variant with most previous works, we consider the case of a fixed surface charge instead of fixed surface potential. In addition to the Nernst-Einstein and chemical flows of solute, we calculated analytically the Poiseuille flow of solutes and the electro-osmotic flow of solvent and solutes. When the linearization is not possible, one must use numerical results for transport coefficients

  16. Clay behaviour under thermal gradients elastic and plastic strains

    International Nuclear Information System (INIS)

    Pintado, Xavier; Autio, Jorma; Punkkinen, Olli

    2010-01-01

    Document available in extended abstract form only. The nuclear waste repositories will generate strong temperature gradients at the clay barrier. The heat and water transport generate volume change in the clay. An experimental work is proposed here. The clay reference is the MX-80. The test device imposes a fixed heat flow in one side of the sample and maintains constant the temperature on the other side. Two samples are tested for symmetry. The samples are unconfined and the total mass of water remains constant. This situation creates a strong thermal gradient in the samples. The final radial strains in some places of the sample, the total vertical strain and the water content distribution will be measured just at the end of the test and some weeks later in order to distinguish the elastic strains from the plastic strains. The test period mustn't be longer than two weeks because a large quantity of water loses through the rubber membrane and the heads of the sample. The maximum temperature reached in the cooper is 90 degrees because with higher temperature, the rubber membrane is damaged. This test is already simulated by a numerical code. Thermal, thermo-hydraulic and thermo-hydro-mechanical analyses are being done. These analyses allow studying the different fluxes inside the sample and its quantification. Water content distribution is compared with the water content calculated from the reference parameters in the clay. The water distribution and the change of diameter after the test will also be studied. This experimental work will allow to know what is the percentage of the strains elastic or plastic and check the mechanical model. The experimental diameter change is compared with the diameter change calculated from the reference parameters of the clay. (authors)

  17. Methylene blue adsorption in clay mineral dealt with organic cation

    International Nuclear Information System (INIS)

    Silva, T.L.; Lemos, V.P.

    2011-01-01

    The interaction among organic cations, as the methylene blue (AM) and benzyltrimethylammonium (BTMA), and clay minerals of the group of the smectite they result in the formation of applied materials in the adsorption of organic pollutant presents in waters, soils and you cultivate. In this work they were prepared the adsorbents (organic-clays) smectite - AM and smectite-BTMA. The precursory sample of smectite was collected in Rio Branco-Acre. We were also used an smectite sample collected in Sena Madureira (SM)-Acre already characterized in previous work and a sample of standard smectite Swy-2-Na-Montmorillonite (SWy-2) of Wymong - USA. The organic agents selected for this study they were: Blue of Methylene, denominated AM and Benzyltrimethylammonium, denominated BTMA. They were appraised the capacities adsorptive of the treated samples with BTMA being used AM as adsorbate. The results of these evaluations detected that ran total adsorption of AM (concentrations varying from 1 to 10 ppm) for the treated samples with BTMA. The organic cation, BTMA, interacting with the surfaces of the natural clay was more efficient in the adsorption of AM than the clay without the previous treatment with this salt. (author)

  18. Thermal Behaviour of clay formations

    International Nuclear Information System (INIS)

    Tassoni, E.

    1985-01-01

    The programme carried out by ENEA to model the thermal-hydraulic-mechanical behaviour of the clay formations and to measure, in situ and in laboratory, the thermal properties of these rocks, is presented. An in situ heating experiment has been carried out in an open clay quarry in the area of Monterotondo, near Rome. The main goal of the experiment was to know the temperature field and the thermal effects caused by the high level radioactive waste disposed of in a clayey geological formation. The conclusions are as follows: - the thermal conduction codes are sufficiently accurate to forecast the temperature increases caused in the clay by the dissipation of the heat generated by high level radioactive waste; - the thermal conductivity deduced by means of the ''curve fitting'' method ranges from 0.015 to 0.017 W.cm -1 . 0 C -1 - the temperature variation associated with the transport of clay interstitial water caused by temperature gradient is negligible. A laboratory automated method has been designed to measure the thermal conductivity and diffusivity in clay samples. A review of experimental data concerning thermomechanical effects in rocks as well as results of thermal experiments performed at ISMES on clays are presented. Negative thermal dilation has been found both in the elastic and plastic range under constant stress. Thermoplastic deformation appears ten times greater than the thermoelastic one. A mathematical model is proposed in order to simulate the above and other effects that encompass thermal-elastic-plastic-pore water pressure response of clays at high temperature and effective pressure with undrained and transient drainage conditions. Implementation of the two versions into a finite element computer code is described

  19. Centrifuge modelling of rigid piles in soft clay

    DEFF Research Database (Denmark)

    Klinkvort, R.T.; Poder, M.; Truong, P.

    2016-01-01

    of this study is to employ centrifuge modelling in order to derive experimental p-y curves for rigid piles embedded in over-consolidated soft clay. A kaolin clay sample was prepared and pre-consolidated by applying a constant pressure at the soil surface, while different over-consolidation ratios were achieved...

  20. α-Pinene conversion by modified-kaolinitic clay

    International Nuclear Information System (INIS)

    Volzone, C.; Masini, O.; Comelli, N.A.; Grzona, L.M.; Ponzi, E.N.; Ponzi, M.I.

    2005-01-01

    The isomerization of α-pinene using natural kaolinitic clay before and after different treatments was studied in this work. The kaolinite is a clay material constituted by phyllosilicate 1:1 layer (one sheet of tetrahedral silicon and one sheet of octahedral alumina). The clay was treated at different times using 6.0 N solution of sulfuric acid previous heating to 500 or 700 K. The materials were characterized by X-ray diffraction, by chemical analyses and acidity measurements. The catalytic reactions were carried out at 373 K in a reactor batch with condenser and stirrer. Samples were taken at regular intervals, and reactants and products were quantitatively analyzed with a gas chromatograph after separation of the individual compounds. Conversions of alpha pinene between 67 and 94%, and selectivities in camphene and in limonene of 65 and 23%, respectively, were obtained with the clay treated at different conditions. The structural and textural changes of the clay by the treatments influenced on catalytic reactions

  1. {alpha}-Pinene conversion by modified-kaolinitic clay

    Energy Technology Data Exchange (ETDEWEB)

    Volzone, C. [CETMIC-Centro de Tecnologia de Recursos Minerales y Ceramica-(CONICET-CIC), C.C. 49, Cno. Centenario y 506 (1897) M.B. Gonnet, Prov., Buenos Aires (Argentina)]. E-mail: volzcris@netverk.com.ar; Masini, O. [INTEQUI (CONICET-UNSL), Facultad de Ingenieria y Ciencias Economico Sociales, 25 de Mayo 384, V. Mercedes, Prov., San Luis (Argentina); Comelli, N.A. [INTEQUI (CONICET-UNSL), Facultad de Ingenieria y Ciencias Economico Sociales, 25 de Mayo 384, V. Mercedes, Prov., San Luis (Argentina); Grzona, L.M. [INTEQUI (CONICET-UNSL), Facultad de Ingenieria y Ciencias Economico Sociales, 25 de Mayo 384, V. Mercedes, Prov., San Luis (Argentina); Ponzi, E.N. [CINDECA (CONICET-UNLP) calle 47 No. 257 (1900) La Plata, Prov., Buenos Aires (Argentina); Ponzi, M.I. [INTEQUI (CONICET-UNSL), Facultad de Ingenieria y Ciencias Economico Sociales, 25 de Mayo 384, V. Mercedes, Prov., San Luis (Argentina)

    2005-10-15

    The isomerization of {alpha}-pinene using natural kaolinitic clay before and after different treatments was studied in this work. The kaolinite is a clay material constituted by phyllosilicate 1:1 layer (one sheet of tetrahedral silicon and one sheet of octahedral alumina). The clay was treated at different times using 6.0 N solution of sulfuric acid previous heating to 500 or 700 K. The materials were characterized by X-ray diffraction, by chemical analyses and acidity measurements. The catalytic reactions were carried out at 373 K in a reactor batch with condenser and stirrer. Samples were taken at regular intervals, and reactants and products were quantitatively analyzed with a gas chromatograph after separation of the individual compounds. Conversions of alpha pinene between 67 and 94%, and selectivities in camphene and in limonene of 65 and 23%, respectively, were obtained with the clay treated at different conditions. The structural and textural changes of the clay by the treatments influenced on catalytic reactions.

  2. Tensile mechanical response of polyethylene – clay nanocomposites.

    Directory of Open Access Journals (Sweden)

    2007-03-01

    Full Text Available In this work we report on the microstructural and the mechanical characteristics of high density polyethylene (HDPE-clay nanocomposites, with particular attention to the creep behaviour. The samples were prepared through melt compounding, using two high-density polyethylenes with different melt flow rate (MFR, two different organo-modified clays, and changing the relative amount of a polyethylene grafted with maleic anhydride (PEgMA compatibilizer. The intercalation process is more effective as the matrix melt viscosity decreases (higher MFR, while the clay interlamellar spacing increases as the compatibilizer amount increases. The relative stiffness of the nanocomposites increases with the addition of clay, with a limited enhancement of the relative yield stress. The better intercalation obtained by the addition of the compatibilizer is not accompanied by a concurrent improvement of the tensile mechanical properties. The creep resistance is enhanced by the introduction of clay, with an appreciable dependence on both the polyethylene and the clay type.

  3. Comparison of toxin production by clostridium botulinum type E in irradiated and unirradiated vacuum-packed trout (Salmo gairdneri)

    International Nuclear Information System (INIS)

    Hussain, M.; Ehlermann, D.; Diehl, J.F.

    1977-01-01

    Trouts obtained from a nearby Fish farm were slaughtered, gutted, cut into 100g samples and inoculated with 10 1 , 10 3 and 10 5 spores per g of Clostridium botulinum type E. The vacuum-packed samples were stored under melting ice (0 0 C) and at temperatures of 5 0 and 10 0 C for periods of up to 8 weeks. At weekly intervals, occurrence of spoilage and toxin production were determined. Only at 10 0 C storage, the irradiated samples showed toxin production before spoilage was observed. When the fishes were stored at 5 0 C, no toxicity occured before spoilage was observed even in samples treated with doses as high as 200 krad. Samples stored under melting ice, irradiated or unirradiated, never showed toxin production. It is concluded that the radurization of fish at doses of about 100 or 200 krad and at storage temperatures of melting ice or up to 5 0 C is safe with regard to a possible botulism risk. (orig.) [de

  4. Comparison of toxin production by clostridium botulinum type E in irradiated and unirradiated vacuum-packed trout (Salmo gairdneri)

    International Nuclear Information System (INIS)

    Hussain, A.M.; Ehlermann, D.; Diehl, J.F.

    1977-01-01

    Trouts obtained from a nearby fish farm were slaughtered, gutted, cut into 100 g samples and inoculated with 10 1 , 10 3 and 10 5 spores per g of Clostridium botulinum type E. The vacuum-packed samples were stored under melting ice (0 0 C) and at temperatures of 5 0 and 10 0 C for periods of up to 8 weeks. At weekly intervals, occurrence of spoilage and toxin production were determined. Only at 10 0 C storage, the irradiated samples showed toxin production before spoilage was observed. When the fishes were stored at 5 0 C, no toxicity occurred before spoilage was observed even in samples treated with doses as high as 200 krad. Samples stored under melting ice, irradiated or unirradiated, never showed toxin production. It is concluded that the radurization of fish at doses of about 100 or 200 krad and at storage temperatures of melting ice or up to 5 0 C is safe with regard to a possible botulism risk. (orig.) [de

  5. Adsorption of hydrogen gas and redox processes in clays.

    Science.gov (United States)

    Didier, Mathilde; Leone, Laura; Greneche, Jean-Marc; Giffaut, Eric; Charlet, Laurent

    2012-03-20

    In order to assess the adsorption properties of hydrogen gas and reactivity of adsorbed hydrogen, we measured H(2)(g) adsorption on Na synthetic montmorillonite-type clays and Callovo-Oxfordian (COx) clayrock using gas chromatography. Synthetic montmorillonites with increasing structural Fe(III) substitution (0 wt %, 3.2 wt %, and 6.4 wt % Fe) were used. Fe in the synthetic montmorillonites is principally present as structural Fe(III) ions. We studied the concomitant reduction of structural Fe(III) in the clays using (57)Fe Mössbauer spectrometry. The COx, which mainly contains smectite/illite and calcite minerals, is also studied together with the pure clay fraction of this clayrock. Experiments were performed with dry clay samples which were reacted with hydrogen gas at 90 and 120 °C for 30 to 45 days at a hydrogen partial pressure close to 0.45 bar. Results indicate that up to 0.11 wt % of hydrogen is adsorbed on the clays at 90 °C under 0.45 bar of relative pressure. (57)Fe Mössbauer spectrometry shows that up to 6% of the total structural Fe(III) initially present in these synthetic clays is reduced upon adsorption of hydrogen gas. No reduction is observed with the COx sample in the present experimental conditions.

  6. Characterization of bentonite clay from Cubati, PB, Brazil

    International Nuclear Information System (INIS)

    Batista, A.P.; Marques, L.N.; Campos, L.A.; Neves, G.A.; Ferreira, H.C.; Menezes, R.R.

    2009-01-01

    The bentonite of the State of Paraiba are commercially used in numerous technological sectors, particularly in oil drilling muds. However, these bentonite deposits are becoming exhausted after decades of exploitation. Thus, the aim of this work was to characterize physically, mineralogically and technologically bentonite clays from Cubati city, PB. The samples were dried at 60 deg C and characterized through X-ray fluorescence, particle size distribution, X-ray diffraction, differential thermal and gravimetric analyzes and scanning electronic microscopy. The natural bentonite clays were transformed into sodium bentonite by Na_2CO_3 solution treatment. It was estimated the rheological properties of the suspensions: apparent and plastic viscosities and water loss. The results showed that the samples are polycationic bentonite clays, containing amounts of MgO, CaO and K_2O similar to those of bentonite from Boa Vista, PB, and are composed of smectite, kaolinite and quartz. The samples presented fractions of particles size under 2 μm of 30 and 32%. The rheological properties showed that the samples presented technological potential to be used in drilling muds. (author)

  7. Comparison of the growth of Listeria monocytogenes in unirradiated and irradiated cook-chill roast beef and gravy at refrigeration temperatures

    International Nuclear Information System (INIS)

    Grant, I.R.; Nixon, C.R.; Patterson, M.F.

    1993-01-01

    Specific growth rates of two strains of Listeria monocytogenes in unirradiated and irradiated (2 kGy) roast beef and gravy stored at 5° and 10°C were found to be similar. However, exponential growth of L. monocytogenes after irradiation was preceded by an extended lag period of 6–9 d at 5°C and 3–4 d at 10°C, compared with lag periods of 1–2 d and <0.1 d in unirradiated beef and gravy stored similarly

  8. Serbian heavy clays behavior: Application in rough ceramics

    Directory of Open Access Journals (Sweden)

    Arsenović Milica V.

    2013-01-01

    Full Text Available This study is focused on the behavior of five new deposits of heavy clays from Serbia, with the aim to evaluate their potential suitability as raw materials in rough ceramic applications. The Pfefferkorn plasticity coefficient (PC and drying susceptibility using Bigot’s curve were measured for each raw sample. Thermodilatometric analysis (TDA showed the behaviour of dry products during firing. Samples groups were fired in the range of 850°C - 1000°C. Water absorption capacity (WAC and compressive strength (CS were done in order to characterize clays after firing. Linear regression models were used to fit the results. Mathematical tools were used to determine statistical difference of major oxides content, shaping moist and compressive strength of dry laboratory products, using post-hoc Tukey`s HSD test. The chemical and mineralogical compositions of samples do not differ considerably, but their possible application does. All studied clays seem to be easily adaptable to a correct brick making process.

  9. The effect of clay incorporation on the mechanical properties of fluoroelastomer

    International Nuclear Information System (INIS)

    Zen, Heloisa Augusto; Oliveira, Jonathan Pereira de; Lugao, Ademar Benevolo

    2015-01-01

    In this work was studied the effect of clay incorporation in the mechanical properties of fluoroelastomer (FKM). The polymer matrix that was used is a compound of the commercial terpolymer of hexafluoropropylene, vinylidene fluoride and tetrafluoroethylene, with 70% of fluor content. This type of polymer is known for its resistance to high temperature and chemical products; it has low fuel permeation which allowing be used as sealant and especially as o-ring product. The incorporation of clay was carried to avoid excessive swelling and to observe the effect in the mechanical properties, for this application was used commercial clay, Cloisite® at 1 and 2% in weigh. The incorporation of clay into the FKM was carried out in a two roll cylinder. After that, the samples with and without clay loading were submitted to gamma radiation at 20 kGy in order to observe the changes in the polymer matrix. The characterization techniques used were: mechanical testes (stress - strain), rheometric properties and degree of swelling. After radiation process, was observed an increase in the swelling degree for the irradiated samples in relation to the pristine one. The incorporated samples with 1 and 2% of clay showed an increase in the elongation which can indicate a decrease in hardness of the polymer matrix. (author)

  10. Characterization of clay of Vitoria da Conquista - BA - Brazil

    International Nuclear Information System (INIS)

    Oliveira, O.M.; Zandonadi, A.R.; Martins, M.V. Surmani; Carrio, J.A.G.; Munhoz Junior, A.H.

    2011-01-01

    Kaolinitic clays are vastly used in ceramic industry. Kaolinitic clay that are not coloured after firing are very useful in the production of ceramics because of their aesthetic aspect after firing. In this work clay material from Vitoria da Conquista (South- West Bahia, Brazil) was characterized by several techniques. The differential Scanning Calorimetry (DSC) shows a kaolinite characteristic curve with an endothermic peak at 492 deg C, which corresponds to the kaolinite - metakaolinite transformation. The transformation of alpha to beta quartz characterized by a 573 deg C peak was also observed in DSC. The samples were also characterized by water absorption and x rays powder diffraction. The 1100 deg C burned samples were tested by flexural strength. (author)

  11. Obtaining and Organophilisation of Smectite Clays with Reduced Iron Oxide Content

    Directory of Open Access Journals (Sweden)

    Karasa Jūlija

    2016-05-01

    Full Text Available Raw clays from the Baltic region are characterized as smectite containing clays with significant amount of naturally occurring impurities that limiting the potential applications of crude Baltic clay resources. Purification of clay samples from Šaltiškių deposit (Venta basin was carried out by varied concentration hydrochloric acid solutions and resulted in fine removal of carbonates and iron oxide. The main idea of this work is to widen the possible applications of local clay resources providing a new type of raw material for further organoclay production.

  12. Studies on thermal reactions and sintering behaviour of red clays by irreversible dilatometry

    Science.gov (United States)

    Anil, Asha; Misra, S. N.; Misra, N. M.

    2018-05-01

    Thermal behavior of clays strongly influences that of ceramic bodies made thereof and hence, its study is must for assessing its utility in ceramic products as well as to set the body composition. Irreversible dilatometry is an effective thermal analysis tool for evaluating thermal reactions as well as sintering behavior of clays or clay based ceramic bodies. In this study, irreversible dilatometry of four red clay samples (S, M, R and G) of Gujarat region, which vary in their chemical and mineralogical compositions was carried out using a Dilatometer and compared. Chemical analysis and XRD of red clays were carried out. XRD showed that major clay minerals in S, M and R clays are kaolinite. However, clay marked R and G showed presence of both kaolinite and illite and /muscovite. Presence of non-clay minerals such as hematite, quartz, anatase were also observed in all clays. XRD results were in agreement with chemical analyses results. Rational analyses showed variation in amount of clay and non-clay minerals in red clay samples. Evaluation of dilatometric curves showed that clay marked as S, M and R exhibit patterns typical for kaolinitic clays. Variation in linear expansion (up to 550°C) and shrinkage (above 550°C) between these three clays was found to be related to difference in amount of quartz and kaolinite respectively. However, dilatometric curve of G exhibit a pattern similar to that for an illitic clay. This study confirmed that sintering of investigated kaolinitic and illitic and / muscovitic red clays initiates at above 1060°C and 860°C respectively and this behaviour strongly depends upon type and amount of minerals and their chemical compositions.

  13. Soil forensics: How far can soil clay analysis distinguish between soil vestiges?

    Science.gov (United States)

    Corrêa, R S; Melo, V F; Abreu, G G F; Sousa, M H; Chaker, J A; Gomes, J A

    2018-03-01

    Soil traces are useful as forensic evidences because they frequently adhere to individuals and objects associated with crimes and can place or discard a suspect at/from a crime scene. Soil is a mixture of organic and inorganic components and among them soil clay contains signatures that make it reliable as forensic evidence. In this study, we hypothesized that soils can be forensically distinguished through the analysis of their clay fraction alone, and that samples of the same soil type can be consistently distinguished according to the distance they were collected from each other. To test these hypotheses 16 Oxisol samples were collected at distances of between 2m and 1.000m, and 16 Inceptisol samples were collected at distances of between 2m and 300m from each other. Clay fractions were extracted from soil samples and analyzed for hyperspectral color reflectance (HSI), X-ray diffraction crystallographic (XRD), and for contents of iron oxides, kaolinite and gibbsite. The dataset was submitted to multivariate analysis and results were from 65% to 100% effective to distinguish between samples from the two soil types. Both soil types could be consistently distinguished for forensic purposes according to the distance that samples were collected from each other: 1000m for Oxisol and 10m for Inceptisol. Clay color and XRD analysis were the most effective techniques to distinguish clay samples, and Inceptisol samples were more easily distinguished than Oxisol samples. Soil forensics seems a promising field for soil scientists as soil clay can be useful as forensic evidence by using routine analytical techniques from soil science. Copyright © 2017 The Chartered Society of Forensic Sciences. Published by Elsevier B.V. All rights reserved.

  14. Deformation and Fabric in Compacted Clay Soils

    Science.gov (United States)

    Wensrich, C. M.; Pineda, J.; Luzin, V.; Suwal, L.; Kisi, E. H.; Allameh-Haery, H.

    2018-05-01

    Hydromechanical anisotropy of clay soils in response to deformation or deposition history is related to the micromechanics of platelike clay particles and their orientations. In this article, we examine the relationship between microstructure, deformation, and moisture content in kaolin clay using a technique based on neutron scattering. This technique allows for the direct characterization of microstructure within representative samples using traditional measures such as orientation density and soil fabric tensor. From this information, evidence for a simple relationship between components of the deviatoric strain tensor and the deviatoric fabric tensor emerge. This relationship may provide a physical basis for future anisotropic constitutive models based on the micromechanics of these materials.

  15. Biogeochemical processes in a clay formation in situ experiment: Part E - Equilibrium controls on chemistry of pore water from the Opalinus Clay, Mont Terri Underground Research Laboratory, Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, F.J., E-mail: fjpearson@gmail.com [Ground-Water Geochemistry, 5108 Trent Woods Dr., New Bern, NC 28562 (United States); Tournassat, Christophe; Gaucher, Eric C. [BRGM, B.P. 36009, 45060 Orleans Cedex 2 (France)

    2011-06-15

    Highlights: > Equilibrium models of water-rock reactions in clay rocks are reviewed. > Analyses of pore waters of the Opalinus Clay from boreholes in the Mont Terri URL, Switzerland, are tabulated. > Results of modelling with various mineral controls are compared with the analyses. > Best agreement results with calcite, dolomite and siderite or daphnite saturation, Na-K-Ca-Mg exchange and/or kaolinite, illite, quartz and celestite saturation. > This approach allows calculation of the chemistry of pore water in clays too impermeable to yield water samples. - Abstract: The chemistry of pore water (particularly pH and ionic strength) is an important property of clay rocks being considered as host rocks for long-term storage of radioactive waste. Pore waters in clay-rich rocks generally cannot be sampled directly. Instead, their chemistry must be found using laboratory-measured properties of core samples and geochemical modelling. Many such measurements have been made on samples from the Opalinus Clay from the Mont Terri Underground Research Laboratory (URL). Several boreholes in that URL yielded water samples against which pore water models have been calibrated. Following a first synthesis report published in 2003, this paper presents the evolution of the modelling approaches developed within Mont Terri URL scientific programs through the last decade (1997-2009). Models are compared to the composition of waters sampled during dedicated borehole experiments. Reanalysis of the models, parameters and database enabled the principal shortcomings of the previous modelling efforts to be overcome. The inability to model the K concentrations correctly with the measured cation exchange properties was found to be due to the use of an inappropriate selectivity coefficient for Na-K exchange; the inability to reproduce the measured carbonate chemistry and pH of the pore waters using mineral-water reactions alone was corrected by considering clay mineral equilibria. Re

  16. Surveying Clay Mineral Diversity in the Murray Formation, Gale Crater, Mars

    Science.gov (United States)

    Bristow, T.F.; Blake, D. F..; Vaniman, D. T.; Chipera, S. J.; Rampe, E. B.; Grotzinger, J. P.; McAdam, A. C.; Ming, D. W..; Morrison, S. M.; Yen, A. S.; hide

    2017-01-01

    The CheMin XRD instrument aboard Mars Science Laboratory (MSL) has documented clay minerals in various drill samples during its traverse of Gale Crater's floor and ascent of Mt. Sharp. The most recent samples, named Marimba, Quela and Sebina were acquired from the Murray Formation in the Murray Buttes region of lower Mt. Sharp. Marimba and Quela come from a approx. 30 m package of finely laminated lacustrine mudstones. Sebina comes from an overlying package of heterolithic mudstone-sandstones. Clay minerals make up approx.15-25 wt.% of the bulk rock with similar contributions to XRD patterns in all three samples. Broad basal reflections at approx. 10deg 2(theta) CoK(alpha) indicate the presence of 2:1 group clay minerals. The 02(lambda) clay mineral band lies at approx. 22.9deg 2(theta), a region typically occupied by Fe-bearing dioctahedral 2:1 clay minerals like nontronite or Fe-illite. The low humidity within the CheMin instrument, which is open to the martian atmosphere, promotes loss of interlayer H2O and collapse of smectite interlayers making them difficult to distinguish from illites. However, based on the low K content of the bulk samples, it appears that smectitic clay minerals are dominant. Peak dehydroxylation of the Marimba sample measured by the SAM instrument on MSL occurred at 610C and 780C. Fe-bearing smectites are not consistent with these dehydroxylation temperatures. Thus, we suggest that a mixture of dioctahedral and trioctahedral smectite phases are present giving the appearance of intermediate octahedral occupancy in XRD. Dioctahedral smectites have not previously been reported in Gale Crater by MSL. Earlier in the mission, relatively clay mineral rich samples (approx. 20 wt.%) from lacustrine mudstones in Yellowknife Bay (YKB) were found to contain ferrian saponites. It is proposed that YKB saponites formed via isochemical aqueous alteration of detrital olivine close to the time of sediment deposition, under anoxic to poorly oxidizing

  17. Influence of carbonate micro-fabrics on the failure strength of Callovo-Oxfordian clay stones and Opalinus Clay

    International Nuclear Information System (INIS)

    Klinkenberg, M.; Dohrmann, R.; Kaufhold, S.; Siegesmund, S.

    2010-01-01

    Document available in extended abstract form only. The potential use of clay stones as host rock for radioactive waste disposal is currently investigated. For this application, hydraulic conductivity, swelling properties, water uptake, rheological and mechanical properties are of great importance. The Opalinus Clay (Mont-Terri, Switzerland) and the Callovo- Oxfordian clay stone (France) are the most frequently studied clay stones. One goal is to develop a numerical model being able to predict the mechanical behaviour of clay stones under repository-like conditions. Experimental investigations reveal that Opalinus Clay and Callovo-Oxfordian clay stone behave different with respect to the dependence of mechanical strength on the carbonate content. The failure strength of Opalinus Clay decreases with increasing carbonate content, whereas it increases with increasing carbonate content when Callovo-Oxfordian clay stone is considered. To supply proper data and enable reliable model assumptions, the use of suitable experimental techniques for the description of the microstructure is indispensable. After mechanical testing, samples were taken perpendicular to the bedding and polished sections were prepared. The micro-fabrics were investigated using scanning electron microscopy (SEM) and image analysis. Backscattered electron (BSE) images were used for the image analysis because carbonates can be extracted by grey level analysis. The image analysis of the extracted particles provides the following parameters: area, longest and shortest axis of an ellipse (surrounding the particle), perimeter, the angle to horizontal (longest axis), and the aspect ratio (longest axis/shortest axis). Callovo-Oxfordian clay stone shows a homogenous distribution of fine-grained carbonates and dovetail connection of calcium carbonate with the clayey matrix. In contrast Opalinus Clay shows large elongated carbonate grains (high aspect ratios) of shell fragments. Cracks are mostly related to these

  18. Organosilane grafted acid-activated beidellite clay for the removal of non-ionic alachlor and anionic imazaquin

    International Nuclear Information System (INIS)

    Paul, Blain; Martens, Wayde N.; Frost, Ray L.

    2011-01-01

    Clay adsorbents were prepared via two-step method to remove nonionic alachlor and anionic imazaquin herbicides from water. Firstly, layered beidellite clay, a member of smectite family, was treated with acid in hydrothermal process; secondly, common silane coupling agents, 3-chloro-propyl trimethoxysilane or triethoxy silane, were grafted on the acid treated samples to prepare adsorbent materials. The organically modified clay samples were characterized by powder X-ray diffraction, N 2 gas adsorption, and FTIR spectroscopy. It was found that the selective modification of clay samples displayed higher adsorption capacity for herbicides compared with acid activated clay. And the amount of adsorption is increased with increasing the grafting amount of silane groups. Clay grafted with 3-chloro-propyl trimethoxysilane is an excellent adsorbent for both alachlor and imazaquin but triethoxy (octyl) silane grafted clay is more efficient only for alachlor removal.

  19. Water retention properties of Callovo-Oxfordian clay-stone

    International Nuclear Information System (INIS)

    Wan, Min; Delage, Pierre; Tang, Anh Minh; GATMIRI, Behrouz

    2012-01-01

    Document available in extended abstract form only. Many investigations were carried out on the Callovo-Oxfordian (COx) clay-stone that has been selected by the French radioactive waste management agency (ANDRA) as a potential host rock for high level radioactive waste disposal at great depth. Various authors demonstrated the significant water sensitivity of clay-stones. Some cracks generated by desaturation have been observed in the Tournemire URL (France) excavated in clay-stone. By carrying out some ESEM (environmental scanning electron microscope) observations on COx clay-stone samples submitted to cyclic changes in relative humidity, Montes et al. (2004) evidenced the water sensitivity of the clay fraction, with significant successive openings and closures of cracks and pores. Hysteresis effects have been observed in the water retention curve, in the ultrasonic velocity evolution and in the strain changes induced by hydration cycles on COx samples submitted to controlled relative humidities by Pham et al., (2007). Better knowledge of the mechanism of desaturation of the clay-stone is necessary to further understand the changes in hydro-mechanical properties of the excavation damaged zone (EDZ) that becomes significantly de-saturated all around the galleries because of ventilation. In this framework, a detailed study of the water retention properties of the COx clay-stone was carried out i) to complete existing observations with respect to volume changes under suction cycles and ii) to determine the main drying and wetting curves so as to better investigate hysteresis effects in the water retention curve.. Particular attention was paid to the characterization of the initial state in the laboratory (where samples are provided unsaturated due to the combined effect of coring, storage and transportation) and to the volume changes and changes in degree of saturation along the main wetting and drying paths. The determination of the water retention properties was

  20. Characterization of un-irradiated MIMAS MOX fuel by Raman spectroscopy and EPMA

    Science.gov (United States)

    Talip, Zeynep; Peuget, Sylvain; Magnin, Magali; Tribet, Magaly; Valot, Christophe; Vauchy, Romain; Jégou, Christophe

    2018-02-01

    In this study, Raman spectroscopy technique was implemented to characterize un-irradiated MIMAS (MIcronized - MASter blend) MOX fuel samples with average 7 wt.% Pu content and different damage levels, 13 years after fabrication, one year after thermal recovery and soon after annealing, respectively. The impacts of local Pu content, deviation from stoichiometry and self-radiation damage on Raman spectrum of the studied MIMAS MOX samples were assessed. MIMAS MOX fuel has three different phases Pu-rich agglomerate, coating phase and uranium matrix. In order to distinguish these phases, Raman results were associated with Pu content measurements performed by Electron Microprobe Analysis. Raman results show that T2g frequency significantly shifts from 445 to 453 cm-1 for Pu contents increasing from 0.2 to 25 wt.%. These data are satisfactorily consistent with the calculations obtained with Gruneisen parameters. It was concluded that the position of the T2g band is mainly controlled by Pu content and self-radiation damage. Deviation from stoichiometry does not have a significant influence on T2g band position. Self-radiation damage leads to a shift of T2g band towards lower frequency (∼1-2 cm-1 for the UO2 matrix of damaged sample). However, this shift is difficult to quantify for the coating phase and Pu agglomerates given the dispersion of high Pu concentrations. In addition, 525 cm-1 band, which was attributed to sub-stoichiometric structural defects, is presented for the first time for the self-radiation damaged MOX sample. Thanks to the different oxidation resistance of each phase, it was shown that laser induced oxidation could be alternatively used to identify the phases. It is demonstrated that micro-Raman spectroscopy is an efficient technique for the characterization of heterogeneous MOX samples, due to its low spatial resolution.

  1. Structural characterization of clays commercially used in red ceramics

    International Nuclear Information System (INIS)

    Brito, E.M.; Moura, J.K.L.; Souza, R.B.; Brandim, A.S.

    2014-01-01

    The use of clays hills being an alternative to clay floodplain, due to environmental protection laws. The research project aims at the morphological and chemical characterization of hills clays used industrially for the production of ceramic tiles and blocks. Therefore, two types of methods were known commercially in the region of Teresina-PI through diffraction of X-rays (X-DR), scanning electron microscopy (SEM) and energy dispersive spectrometry X-ray (EDS). It can be observed that the samples have a high percentage of quartz, hematite still having in its constitution aluminum oxide, zirconium oxide and titanium oxide. The results show that the clays are clays and montmorillonites may be used for the production of ceramic tiles and blocks, but as the proportion of using the same will be focusing the next job. (author)

  2. Determining the clay/organic carbon ratio by visible near infrared spectroscopy

    DEFF Research Database (Denmark)

    Knadel, Maria; Peng, Yi; Hermansen, Cecilie

    /OC ratio directly would be valuable. Visible near infrared spectroscopy (vis-NIRS) is a cost-effective method for soil analysis and was tested here for the prediction of clay/OC ratio. Soil samples from two agricultural fields in Denmark (N=115) were analyzed. Partial Least Squares regression (full cross......The recently presented Dexter et al. (2008) threshold (ratio of clay to organic carbon (OC) of 10 kg/kg-1) is a good indicator for soil functional properties. However, the conventional analysis of OC and clay are costly and time consuming, thus an alternative method to quantify OC, clay or clay...

  3. Indentification of radiation treatment of wheat (triticum aestivum. L) and rice (oryza sativa. L) samples using thermoluminescence of contaminating minerals

    International Nuclear Information System (INIS)

    Khan, H.M.; Bhatti, I.A.

    2007-01-01

    Food irradiation is gaining popularity worldwide and this technology is important to improve quality and reduce the post harvest losses of food. Because of the rapid commercialization of irradiated foods throughout the world, compliance of different regulations relating to use of technology in different countries and demand of consumers for clear labelling of irradiated foods, there is need for the development of analytical methods to detect radiation treatment of food. Among several methods studied so far, thermoluminescence (TL) is an important method that can be used to find out the irradiation history of food that contain even a very minute amount of dust particles. In this study, the irradiated and unirradiated wheat and rice samples were analyzed using the TL method. The samples were purchased from the local market of Peshawar and irradiated to radiation doses of 0.5 and 1.0 kGy using Co-60 gamma irradiator at the Nuclear Institute for Food and Agriculture (NIFA), Peshawar. The mineral contaminants were isolated by jet water, ultrasonic treatment, and density gradient. TL glow curves of the isolated minerals from irradiated and unirradiated samples were recorded between the temperature ranges of 50-500 degree C using a TL reader. Generally, the glow curves for irradiated samples showed much higher TL intensities (TL 1 ) than the unirradiated samples. The results were normalized by re-irradiation of mineral samples to gamma-ray dose of 1.0 kGy followed by determination of the second glow curves (TM). The ratio of the area of first glow curve to that of second glow curve (TL 1 /TL 2 ) was calculated for selected temperature intervals and compared with the recommended values for unirradiated and irradiated samples. Finally, the shapes of the glow curves for irradiated and unirradiated samples were also analyzed. On the ba- sis of these results (comparison of TL-intensities, TL 1 /TL 2 ratios and shapes of the glow curves), all the irradiated and unirradiated

  4. Rheological properties of purified illite clays in glycerol/water suspensions

    Science.gov (United States)

    Dusenkova, I.; Malers, J.; Berzina-Cimdina, L.

    2015-04-01

    There are many studies about rheological properties of clay-water suspensions, but no published investigations about clay-glycerol suspensions. In this work apparent viscosity of previously purified illite containing clay fraction clay minerals were almost totally removed by centrifugation. All obtained suspensions behaved as shear-thinning fluids with multiple times higher viscosity than pure glycerol/water solutions. Reduction of clay fraction concentration by 5% decreased the apparent viscosity of 50% glycerol/water suspensions approximately 5 times. There was basically no difference in apparent viscosity between all four 50% glycerol/water suspensions, but in 90% glycerol/water suspensions samples from Iecava deposit showed slightly higher apparent viscosity, which could be affected by the particle size distribution.

  5. Clay Houses

    Science.gov (United States)

    Pedro, Cathy

    2011-01-01

    In this article, the author describes a project designed for fourth-graders that involves making clay relief sculptures of houses. Knowing the clay houses will become a family heirloom makes this lesson even more worth the time. It takes three classes to plan and form the clay, and another two to underglaze and glaze the final products.

  6. A review of the rates of reaction of unirradiated uranium in gaseous atmospheres

    International Nuclear Information System (INIS)

    Pearce, R.J.

    1989-10-01

    The review collates available quantitative rate data for the reaction of unirradiated uranium in dry and moist air, steam and carbon dioxide based atmospheres at temperatures ranging from room temperature to above the melting point of uranium. Reactions in nitrogen and carbon monoxide are also considered. The aim of the review is to provide a compilation of base data for the hazard analysis of fault conditions relating to Magnox fuel. (author)

  7. Rare earth elements distribution in clay zones of sedimentary formation, Pondicherry, south India

    International Nuclear Information System (INIS)

    Tirumalesh, K.; Gursharan Singh

    2012-01-01

    Concentrations of five rare earth elements (REE) were measured in clay samples of a deep bore hole comprising major aquifers of Pondicherry region, south India in order to investigate the geochemical variations among various litho-units. Clay samples from Cretaceous formation show distinct gray to black color whereas Tertiary deposits have clays with color varying from pale yellow to brown to gray. All measured REEs exhibit lower concentrations than Upper Continental Crust (UCC) average values. Large variations in REEs contents were observed in different sedimentary formations (Tertiary and Cretaceous). Chondrite normalized ratio of La/Lu and Eu/Eu* indicate that the clays are derived from weathering of felsic rock and possibly under humid climate. All the samples showed positive Eu anomaly in North American Shale Composite (NASC) normalized plot which shows plagioclase feldspar as the major contributor to these clays. Positive Eu anomaly is also an indication of reduced condition of the formation. (author)

  8. Correlation between thermal behavior of clays and their chemical and mineralogical composition: a review

    Science.gov (United States)

    Dwi Yanti, Evi; Pratiwi, I.

    2018-02-01

    Clay's abundance has been widely used as industrial raw materials, especially ceramic and tile industries. Utilization of these minerals needs a thermal process for producing ceramic products. Two studies conducted by Septawander et al. and Chin C et al., showed the relationship between thermal behavior of clays and their chemical and mineralogical composition. Clays are characterized by XRD analysis and thermal analysis, ranging from 1100°C to 1200°C room temperature. Specimen of raw materials of clay which is used for the thermal treatment is taken from different geological conditions and formation. In raw material, Quartz is almost present in all samples. Halloysite, montmorillonite, and feldspar are present in Tanjung Morawa raw clay. KC and MC similar kaolinite and illite are present in the samples. The research illustrates the interrelationships of clay minerals and chemical composition with their heat behavior. As the temperature of combustion increases, the sample reduces a significant weight. The minerals which have undergone a transformation phase became mullite, cristobalite or illite and quartz. Under SEM analysis, the microstructures of the samples showed irregularity in shape; changes occurred due the increase of heat.

  9. Clay mineral distribution on the Kerala continental shelf and slope

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, V.P.; Nair, R.R.; Hashimi, N.H.

    Seventy-five sediment samples collected from the Kerala continental shelf and slope during the 17th and 71st Cruises of @iRV gaveshani@@ were analysed by X-ray diffraction for clay mineral cntent. The distribution of total clay (< 4~k fraction...

  10. Recovery of Porosity and Permeability for High Plasticity Clays

    DEFF Research Database (Denmark)

    Krogsbøll, Anette; Foged, Niels Nielsen

    to be the case for high plasticity clays that are uncemented, and with a high content of clay minerals, especially smectite. Oedometer tests on samples from the Paleogene period show that 80% or more of the compaction will recover when unloaded, and if unloaded to a stress lower than in situ stress level...

  11. The systems containing clays and clay minerals from modified drug release: a review.

    Science.gov (United States)

    Rodrigues, Luís Alberto de Sousa; Figueiras, Ana; Veiga, Francisco; de Freitas, Rivelilson Mendes; Nunes, Lívio César Cunha; da Silva Filho, Edson Cavalcanti; da Silva Leite, Cleide Maria

    2013-03-01

    Clays are materials commonly used in the pharmaceutical industry, either as ingredients or as active ingredients. It was observed that when they are administered concurrently, they may interact with drugs reducing their absorption. Therefore, such interactions can be used to achieve technological and biopharmaceutical advantages, regarding the control of release. This review summarizes bibliographic (articles) and technological (patents) information on the use of systems containing clays and clay minerals in modified drug delivery. In this area, formulations such natural clay, commercial clay, synthetic clay, composites clay-polymers, nanocomposites clay-polymers, films and hidrogels composites clay-polymers are used to slow/extend or vectorize the release of drugs and consequently they increase their bioavailability. Finally, this review summarizes the fields of technology and biopharmaceutical applications, where clays are applied. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Thermal Analysis: A Complementary Method to Study the Shurijeh Clay Minerals

    Directory of Open Access Journals (Sweden)

    Golnaz Jozanikohan

    2015-06-01

    Full Text Available Clay minerals are considered the most important components of clastic reservoir rock evaluation studies. The Shurijeh gas reservoir Formation, represented by shaly sandstones of the Late Jurassic-Early Cretaceous age, is the main reservoir rock in the Eastern Kopet-Dagh sedimentary Basin, NE Iran. In this study, X-ray diffraction (XRD, X-ray fluorescence (XRF, scanning electron microscopic (SEM studies, and thermal analysis including differential thermal analysis (DTA, and thermogravimetric analysis (TGA techniques were utilized in the characterization of the Shurijeh clay minerals in ten representative samples. The XRF studies showed that silica and aluminum oxides are present quantities. The XRD test was then used to determine the mineralogical composition of bulk components, as well as the clay fraction. The XRD patterns indicated the presence of dominant amount of quartz and plagioclase, with moderate to minor amounts of alkali feldspar, anhydrite, carbonates (calcite and dolomite, hematite and clay minerals. The most common clays in the Shurijeh Formation were illite, chlorite, and kaolinite. However, in very few samples, glauconite, smectite, and mixed layer clay minerals of both illite-smectite and chlorite-smectite types were also recognized. The XRD results were quantified, using the elemental information from the XRF test, showing that each Shurijeh exhibited low to moderate amounts of clay minerals, typically up to 21%. The amount of illite, the most dominant clay mineral, reached maximum of 13.5%, while the other clay types were significantly smaller. Based on the use of SEM and thermal data, the results of the identification of clay minerals, corresponded with the powder X-ray diffraction analysis, which can be taken into account as an evidence of the effectiveness of the thermal analysis technique in clay typing, as a complementary method besides the XRD.

  13. Naphtha interaction with bitumen and clays : a preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Afara, M.; Munoz, V.; Mikula, R. [Natural Resources Canada, Devon, AB (Canada). CANMET Western Research Centre

    2010-07-01

    This PowerPoint presentation described a preliminary study conducted to characterize naphtha interactions with bitumen and clays. Coarse tailings, fluid-fine tailings, and froth treatment tailings are produced as a result of surface mine oil sands operations. Solvents are used to produce the bitumens, but the actual fraction of the solvent that evaporates and contributes to VOCs from tailing ponds is poorly understood. This study examined the interactions between the solvent, bitumen and mineral components in froth treatment tails. The study was conducted with aim of quantifying the VOC or solvent escaping from the froth treatment tailings. Samples containing bitumen, clay, a bitumen-clay mixture, or MFT were spiked with 3000 ppm of solvent. The amount of naphtha released was monitored by gas chromatography, mass spectrometry, and flame ionization detection of the evolved gases. The results were expressed as a percentage of the total hydrocarbon peak area of the sample versus a control. Results of the study showed that the naphtha interacted more strongly with the bitumen than with kaolinite and the clay minerals from the oil sands. Although initial solvent evaporation was reduced in the presence of bitumens and clays, long-term solvent releases will need to be quantified. tabs., figs.

  14. Sorption of radioiodine in organo-clays and -soils

    International Nuclear Information System (INIS)

    Bors, J.

    1990-01-01

    In the framework of investigations on the sorption of radioiodine to natural and artificially altered soil components, a number of clay minerals and natural soils were treated with quaternary alkylammonium ions to replace the exchangeable metal cations. With help of batch experiments the resulting organo-clays were tested with respect to their sorption capability of radioiodine quantified by the distribution ratio (R D -value). Treatment of bentonite, vermiculite and cretaceous clay as well as of samples from natural horizons of chernozem soil with hexadecylpyridinium (HDPY + ) and benzethonium (BE + ) exhibited sorptions rates and amounts, which are several orders of magnitude higher than those of the respective untreated samples. Moderate increases of the R D -values were found after cation exchange with hexadecyltrimethylammonium (HDTMA + ), while the applications of trimethylphenylammonium (TMPA + ) and tetramethylammonium (TMA + ) were ineffective. Considerable sorption of radioiodine was observed with the commercially available Bentone. (orig.)

  15. Clay shale as host rock. A geomechanical contribution about Opalinus clay

    International Nuclear Information System (INIS)

    Lempp, Christof; Menezes, Flora; Sachwitz, Simon

    2016-01-01

    The Opalinuston is a prominent rock representing the type of organic clay shales or clay stones within the sequence of Triassic and Jurassic marine sediments in Southern Germany. The rock forms a homogenous unit some ten meters thick. The degree of consolidation of this type of pelitic rock depends mainly on the former load conditions, but is also dependent on the long-term weathering and even on the present exposition. The geomechanical parameters such as shear strength, tensional strength and permeability vary with the state of consolidation and become important when the use is discussed of such rocks for radioactive waste disposal. A tunneling project at the northern escarpment of the Swabian Alb (Southwest Germany) within the Opalinus clay offered the rare opportunity to obtain fresh unweathered rock samples in greater amounts compared to fresh drilling cores from which geomechanical investigations are usually undertaken. Consequently, the results of geomechanical laboratory testings are presented in order to compare here the results of multistep triaxial compression tests, of hydraulic fracturing laboratory tests and of some other tests for rock characterization with the corresponding results of Opalinus clay sites in Switzerland that were investigated by the Swiss Nagra Company for host rock characterization. After a discussion of the relevant state of fresh Opalinus clay, especially of suction pressure conditions and saturation state, the results of triaxial shear tests are presented. Increasing shear deformation at increasing pressure and unchanged water saturation do not result in a significant strength reduction of the Opalinus clay. The rock shows increasing cohesion and stiffness, if multiple loading has repeatedly reached the failure point. Thus there is no increased permeability with continued shearing. Only at the beginning of the shearing process is a temporarily increased permeability to be expected due to dilatation processes. An increased

  16. Effect of smectite clays storage in their rheological properties

    International Nuclear Information System (INIS)

    Silva, I.A. da; Sousa, F.K.A. de; Neves, G. de A.; Ferreira, H.C.; Ferreira, H.S.; Ferreira, H.S.

    2017-01-01

    This work investigates the storage influence of natural and industrial smectite clays in their rheological properties, since the salt metathesis reaction that occurs following treatment of polycationic clays with Na_2 CO_3 is reversible. The phenomena involved in this reaction are not yet fully known and previous studies show improvement in some properties. The rheological properties were determined in sodium-clays in 1995 and polycationic clays added with sodium carbonate (Na_2 CO_3 ) in 2015. Physical, chemical and mineralogical characterizations of the samples were performed using the following techniques: particle size analysis by laser diffraction, chemical composition by X-ray fluorescence, X-ray diffraction and thermal analysis (DTA and TGA). The rheology of dispersions was determined by the apparent viscosity, plastic viscosity and filtrate volume, which were later considered the oil industry standards only as a benchmark. The results showed that the storage conditions, humidity and particle size of the samples resulted in improvements in their rheological properties over the years, indicating the non-reversibility of the reaction of cation exchange, which is important in their validity after manufacturing. (author)

  17. Diffusion of HTO, {sup 36}Cl{sup -}, {sup 125}I{sup -} and {sup 22}Na{sup +} in Opalinus Clay: Effect of Confining Pressure, Sample Orientation, Sample Depth and Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Van Loon, L.R.; Soler, J.M

    2004-02-01

    Effective diffusion coefficients (D{sub e}), rock capacity factors ({alpha}) and diffusion-accessible porosities ({epsilon}) were measured using the through-diffusion technique. Transport (diffusion) was measured both perpendicular and parallel to the bedding. Special cells that allowed the application of an axial confining pressure were designed. The pressures applied ranged from 1 to 5 MPa for Mont Terri samples and between 4 and 15 MPa for Benken samples, the upper values representing the in-situ confining pressure at both locations. The test solutions used in the experiments were synthetic Opalinus Clay pore water, which has Na and Cl as main components (Mont Terri: I = 0.39 M; Benken: I = 0.20 M). Pressure only had a small effect on the value of the effective diffusion coefficients. In the case of Mont Terri samples, increasing the pressure from 1 to 5 MPa resulted in a decrease of the effective diffusion coefficient of 20% for HTO, 27% for {sup 36}Cl{sup -}, 29% for {sup 125}I{sup -} and 17 % for {sup 22}Na{sup +}. In the case of Benken samples, increasing the pressure from 4 to 15 MPa resulted in a decrease of D{sub e} of 17% for HTO, 22% for {sup 36}Cl{sup -}, 32% for {sup 125}I{sup -} and 17 % for {sup 22}Na{sup +}. Moreover, the effective diffusion coefficients for for {sup 36}Cl{sup -}are smaller than for HTO, which is consistent with an effect arising from anion exclusion. This ion exclusion effect is smaller in samples from Mont Terri than in samples from Benken, which can be explained by the higher ionic strength of the Mont Terri water used in the experiments. The diffusion of {sup 22}Na{sup +} is similar to that of HTO in the case of Mont Terri OPA. For Benken OPA, the D{sub e} value of {sup 22}Na{sup +} is a factor of 2 higher than that of HTO. This last observation cannot be explained so far but is comparable to experimental data from ANDRA (1999) on Callovo-Oxfordian claystones from the Meuse/Haute Same site. {sup 125}I{sup -} is retarded with

  18. Induction of lethal mutations in the x-chromosome of unirradiated Drosophila oocytes after fertilization by irradiated spermatozoa

    International Nuclear Information System (INIS)

    Shaposhnikov, M.V.; Zainullin, V.G.

    2003-01-01

    Full text: In primary study on Drosophila it was found that irradiated male X-chromosomes induce recessive lethals in unirradiated female homologues (Abeleva et al., 1961, Radiobiologya. 1:123-126). The same effects were obtained in Drosophila in some recent investigations. The mechanisms of these effects is unknown. However it may be responsible for low-dose radiation effects as it induce mutations in unirradiated DNA. We assume that this effect may be a result of activation of error prone repair in response to preliminary DNA lesions in irradiated chromosome. In this research we analyse the frequencies of the recessive lethal mutations in the X-chromosome of Drosophila females mated with irradiated Basc males. We used acute irradiation with a dose rate of 10 Gy. For testing our hypothesis we use the mus209 and mei-41 mutant females. Mus209 is a PCNA gene homologue and mei-41 is a homologue of ATM gene. These genes are involved in post-replication DNA repair which may be error prone repair in Drosophila. It was obtained the tendency to decreasing the mutation rate at the mei-41[D5] background and decreasing mutation rate in mus209[B1] background in comparison with wild type strains CS (p<0.05). The obtained results demonstrate the possible role of mus209[B1] and mei-41[D5] genes in the inducing of mutations in the unirradiated X-chromosome in the presence of irradiated homologue

  19. Laboratory study of the Flandres clay swelling

    International Nuclear Information System (INIS)

    Khaddaj, Said

    1992-01-01

    The first chapter contains a survey about the swelling of soils, and about the experimental methods used to characterize this phenomenon. A classification of soils in function of their swelling potential is proposed. The second chapter deals with the properties of Flandres clay. Chemical and mineralogical compositions, mechanical properties and free swell index are given. The third chapter contains a presentation of the study of the swelling potential of Flandres clay using the oedometer. Four methods are described and used (free-swell, different pressures, pre-swell and direct-swell). A numerical simulation of free-swell tests is also given. The fourth chapter includes a presentation of the study of the swelling behaviour of Flandres clay using a triaxial cell. Three methods are used: free-swell, pre-swell and different-pressures. The last chapter contains a parametric study of the swelling behaviour of Flandres clay. The influence of some parameters such as sample thickness, initial water content, vertical load and load history is presented. (author) [fr

  20. Behavior of clay exposed to heating

    International Nuclear Information System (INIS)

    Heremans, R.; Buyens, M.; Manfroy, P.

    1978-01-01

    In the frame of his R and D programme on geological burial of solidified radioactive waste, the C.E.N./S.C.K. undertook experimental and theoretical work on the behavior of the Boom clay against heat. The work is performed under contract with the Commission of European Communities. In a first phase a series of chemical and physical properties were determined on clay samples taken at various depths during the core boring performed on the C.E.N./S.C.K. site in 1975. In a second phase, a simulated high level waste heat source was developed and tested in view of representative heat transfer experiments into the geological formation. In parallel to the experimental work, computarized theoretical studies were undertaken aiming an evaluation of heat effect of a vitrified high level waste repository on an underground structure in clay

  1. Scintillation activity in an unirradiated single crystal of 3-hydroxyxanthine

    International Nuclear Information System (INIS)

    Cooke, D.W.; Jahan, M.S.; Alexander, C. Jr.

    1976-01-01

    A method of growing single crystals (approximately 4mm long) of 3-hydroxyxanthine is described. Observed scintillations occurring in an unirradiated single crystal of this potent oncogen as the temperature is lowered from 300 to 90 K are shown. It was found that these scintillations occur upon heating or cooling and do not diminish in activity as the number of heating and cooling cycles increase. It was found that a short duration u.v. exposure would terminate the scintillation activity and various attempts (such as annealing and pressure changes) to rejuvenate them were unsuccessful. With these observations in mind speculation is made concerning the mechanisms associated with the production of purine N-oxide derivatives. (U.K.)

  2. Six-phase soil heating accelerates VOC extraction from clay soil

    International Nuclear Information System (INIS)

    Gauglitz, P.A.; Roberts, J.S.; Bergsman, T.M.; Caley, S.M.; Heath, W.O.; Miller, M.C.; Moss, R.W.; Schalla, R.; Jarosch, T.R.; Eddy-Dilek, C.A.

    1994-08-01

    Six-Phase Soil Heating (SPSH) was demonstrated as a viable technology for heating low permeability soils containing volatile organic contaminants. Testing was performed as part of the Volatile Organic Compounds in Non-Arid Soils Integrated Demonstration (VOC Non-Arid ID) at the Savannah River Site. The soil at the integrated demonstration site is contaminated with perchloroethylene (PCE) and trichloroethylene (TCE); the highest soil contamination occurs in clay-rich zones that are ineffectively treated by conventional soil vapor extraction due to the very low permeability of the clay. The SPSH demonstration sought to heat the clay zone and enhance the performance of conventional soil vapor extraction. Thermocouples at thirty locations quantified the areal and vertical heating within the treated zone. Soil samples were collected before and after heating to quantify the efficacy of heat-enhanced vapor extraction of PCE and TCE from the clay soil. Samples were taken (essentially every foot) from six wells prior to heating and adjacent to these wells after heating. Results show that contaminant removal from the clay zone was 99.7% (median) within the electrode array. Outside the array where the soil was heated, but to only 50 degrees C, the removal efficiency was 93%, showing that heating accelerated the removal of VOCs from the clay soil. The accelerated remediation resulted from effective heating of the contaminated clay zone by SPSH. The temperature of the clay zone increased to 100 degrees C after 8 days of heating and was maintained near 100 degrees C for 17 days. Electrical heating removed 19,000 gal of water from the soil as steam, with peak removal rate of 1,500 gpd of condensed steam

  3. Histochemical differentiation between unirradiated and gamma-irradiated tissue in commercial use of some irradiated vegetables

    International Nuclear Information System (INIS)

    Foa, E.

    1978-01-01

    The use of gamma irradiation as a commercial method for the preservation of fruits and vegetables calls for methods of differentiation between unirradiated and irradiated products. A new approach to studying the influence of gamma irradiation on vegetable tissue at the cellular level by histochemical techniques has been developed by the authors and already applied to a number of fruits and vegetables. The possibility of evidencing radiation effects in the polysaccharide components of the cell wall suggested that these detected differences could be applied to differentiate irradiated from unirradiated tomatoes and potatoes. Some work done to determine changes in the cell wall polysaccharides of gamma-irradiated potatoes and tomatoes and to relate these changes to some other factors, such as storage time and vegetable variety, is reported here. While significant differences have been found in the optical densities of the total polysaccharides of the cell wall as a function of irradiation and of the other variables mentioned, it is not yet possible to use these values as a means of reliable differentiation. (author)

  4. Clay characterization of Boa Saude-RN, Brazil

    International Nuclear Information System (INIS)

    Ren, D.G.; Alencar, M.I.; Ferreira, O.F.; Cunha, J.M.R.; Harima, E.

    2011-01-01

    This study characterized a sample of clay from the City of Boa Saude of Rio Grande do Norte. Clay is burning clear and used in Monte Alegre in the brick kilns for producing bricks and tiles. This study also verified the possibility of using these in the field of industrial ceramics. The following techniques were used for characterization: chemical and mineralogical analysis, which determined the presence of the following minerals, muscovite, quartz and kaolinite, the plasticity index can be said that the clay has an average plasticity index, also was made organic matter content, residue content, determination of loss on ignition was found that a loss of 9.38%, checking the color of burning gave a gradient of cream to orange with increasing temperature. (author)

  5. Hydro-mechanical properties of the red salt clay (T4) - Natural analogue of a clay barrier

    International Nuclear Information System (INIS)

    Minkley, W.; Popp, T.; Salzer, K.; Gruner, M.; Boettge, V.

    2010-01-01

    transition to the stable conditions is characterized by the change of mineral composition from Montmorillonite to Illite - Chlorite. This process is accompanied with a decrease of swelling pressure to a minimum and the change of mechanical behaviour, i.e. a decrease of plasticity corresponds with increasing rock stiffness. An extensive laboratory programme has been conducted using samples from different locations and focusing on the determination of geomechanical and hydraulic properties. The measured strength and creep data clearly demonstrate the influence of burial depth and temperature on the mechanical properties. The test results delivered a comprehensive basis for the subsequent performed rock mechanical modelling. Permeability was measured in the lab on core samples with gas- and water injection tests, which demonstrated low permeabilities in the order of 10 -19 to 10 -21 m 2 and lower. Because in repositories for radioactive or toxic waste a gas pressure may develop in the long term its potential impact on the integrity of a low permeable clay barrier has to be assessed. A long term field test (duration more than two years) has been performed in ∼ 500 m depth in a salt mine of NW-Germany where the Red Salt Clay is partly exposed. A funnel-shape oriented borehole array was installed consisting of the nearly horizontal central injection borehole (Diam. = 60 mm, sealed using a hydro-mechanical packer system) and four surrounding boreholes. Two of them were used for the detection of gas transport. In addition, in the other two boreholes a micro-seismic monitoring array was installed, each equipped with two seismic sensors. The performed multi-stage pulse tests showed very limited gas pressure decay, thus confirming the low permeability of the clay formation. In addition, although a gas-break occurred as the minimal stress criterion was transgressed, spontaneous self sealing was confirmed resulting in recovery of tightness after the gas pressure decreased. The large

  6. Verification of substitution of bentonites by montmorillonitic clays summary report on Czech montmorillonitic clays

    International Nuclear Information System (INIS)

    Carlson, L.; Keto, P.

    2006-10-01

    Czech bentonites and smectite-rich clays were characterised in order to study if they could be used as buffer and backfill materials instead of non-Czech commercial bentonites. The characterisation work was orgnized by RAWRA (the Czech Radioactive Waste Repository Authority) and the main part of the work was performed in the Czech Republic at Charles University and at Czech Technical University. Parallel and complementary characterisation was conducted in Finland in Sweden. This report was compiled with the aim to summarise the results, and to compare the methods and results gained in different testing laboratories. The characterisation included mineralogical, chemical and geotechnical investigations and experiments on thermal stability and sorption. There were some variations between the results gained in different laboratories. This was mainly due to differences between the testing methods used but also due to heterogeneity of the samples. The Czech bentonite-clays from Rokle and Strance clay deposits contained relatively high amount of swelling minerals and thus can be considered as potential buffer and backfill materials. (orig.)

  7. Color measurement of methylene blue dye/clay mixtures and its application using economical methods

    Science.gov (United States)

    Milosevic, Maja; Kaludjerovic, Lazar; Logar, Mihovil

    2016-04-01

    Identifying the clay mineral components of clay materials by staining tests is rapid and simple, but their applicability is restricted because of the mutual interference of the common components of clay materials and difficulties in color determination. The change of color with concentration of the dye is related to the use of colorants as a field test for identifying clay minerals and has been improved over the years to assure the accuracy of the tests (Faust G. T., 1940). The problem of measurement and standardization of color may be solved by combination of colors observed in staining tests with prepared charts of color chips available in the Munsell Book of Color, published by Munsell Color Co. Under a particular set of illumination conditions, a human eye can achieve an approximate match between the color of the dyed clay sample and that of a standard color chip, even though they do have different spectral reflectance characteristics. Experiments were carried out with diffuse reflectance spectroscopy on selected clay samples (three montmorillonite, three kaolinite and one mix-layer clay samples) saturated with different concentration of methylene blue dye solution. Dominant wavelength and purity of the color was obtained on oriented dry samples and calculated by use of the I. C. I. (x, y) - diagram in the region of 400-700 nm (reflectance spectra) without MB and after saturation with different concentrations of MB solutions. Samples were carefully photographed in the natural light environment and processed with user friendly and easily accessible applications (Adobe color CC and ColorHexa encyclopedia) available for android phones or tablets. Obtained colors were compared with Munsell standard color chips, RGB and Hexa color standards. Changes in the color of clay samples in their interaction with different concentration of the applied dye together with application of economical methods can still be used as a rapid fieldwork test. Different types of clay

  8. Calcined clay lightweight ceramics made with wood sawdust and sodium silicate

    Energy Technology Data Exchange (ETDEWEB)

    Santis, Bruno Carlos de; Rossignolo, Joao Adriano, E-mail: desantis.bruno@gmail.com [Universidade de Sao Paulo (USP), Pirassununga, SP (Brazil); Morelli, Marcio Raymundo [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Departamento de Engenharia de Materiais

    2016-11-15

    This paper aims to study the influence of including wood sawdust and sodium silicate in the production process of calcined clay lightweight ceramics. In the production process first, a sample used by a company that produces ceramic products in Brazil was collected. The sample was analysed by techniques of liquidity (LL) and plasticity (LP) limits, particle size analysis, specific mass, X-ray diffraction (XRD) and X ray fluorescence spectrometry (XRF). From the clay, specimens of pure clay and mixtures with wood sawdust (10%, 20% and 30% by mass) and sodium silicate were produced and fired at a temperature of 900 deg C. These specimens were submitted to tests of water absorption, porosity, specific mass and compressive strength. Results of this research indicate that the incorporation of wood sawdust and sodium silicate in the ceramic paste specimens can be useful to make calcined clay lightweight ceramics with special characteristics (low values of water absorption and specific mass and high values of compressive strength), which could be used to produce calcined clay lightweight aggregates to be used in structural concrete. (author)

  9. Sorption of radioiodine in organo-clays and -soils

    Energy Technology Data Exchange (ETDEWEB)

    Bors, J. (Niedersaechsisches Inst. fuer Radiooekologie, Hannover (Germany, F.R.))

    1990-01-01

    In the framework of investigations on the sorption of radioiodine to natural and artificially altered soil components, a number of clay minerals and natural soils were treated with quaternary alkylammonium ions to replace the exchangeable metal cations. With help of batch experiments the resulting organo-clays were tested with respect to their sorption capability of radioiodine quantified by the distribution ratio (R{sub D}-value). Treatment of bentonite, vermiculite and cretaceous clay as well as of samples from natural horizons of chernozem soil with hexadecylpyridinium (HDPY{sup +}) and benzethonium (BE{sup +}) exhibited sorptions rates and amounts, which are several orders of magnitude higher than those of the respective untreated samples. Moderate increases of the R{sub D}-values were found after cation exchange with hexadecyltrimethylammonium (HDTMA{sup +}), while the applications of trimethylphenylammonium (TMPA{sup +}) and tetramethylammonium (TMA{sup +}) were ineffective. Considerable sorption of radioiodine was observed with the commercially available Bentone. (orig.).

  10. Brazilian clay organophilization aiming its use in oil / water removal

    International Nuclear Information System (INIS)

    Mota, M.F.; Lima, W.S.; Oliveira, G.C.; Silva, M.M.; Rodrigues, M.G.F.

    2012-01-01

    Clays when subjected to modification with the addition of organic surfactant are called organoclays acquire hydrophobic character, they have an affinity for organic compounds. The organoclays can be used as adsorbents are considered promising agents in environmental control. The objective is to prepare organoclays clays from commercial use in order to remove organic contaminants. The clay used was gray, as polycationic, supplied by Süd-Chemie company and the quaternary ammonium salt was cetyltrimethylammonium bromide (Cetremide). The fresh samples and organoclay were characterized by the technique of X-ray diffraction (XRD), Cation Exchange Capacity, testing expansion and affinity with organic compounds: Swelling of Foster and adsorption capacity. The results showed appropriate conditions organophilic process. Through XRD confirmed the increase in basal spacing for the modified clay in relation to the clay in nature. (author)

  11. Migration of leachate solution through clay soil

    Energy Technology Data Exchange (ETDEWEB)

    Abdel Warith, M M

    1987-01-01

    The problem of domestic solid wastes buried in landfill sites is viewed from the aspect of leachate contamination and migration in the substrate, and the efficiency of natural clay barriers as an expedient economic lining material is assessed. Various chemical constituents of the landfill leachate of an actual waste containment site at Lachenaie (35 km east of Montreal) were determined from samples collected from specially designed basins. Data for companion tests on laboratory columns are also presented. Chemical analysis on samples from the basins and leachates from the columns measured changes in the concentration of: (a) cations (Na, K, Ca, and Mg), (b) anions (Cl, HCO/sub 3/, and CO/sub 3/) (c) total organic carbon (TOC), and (d) heavy metals (Fe, Zn, Pb, and Cu). The physical parameters measured included: (a) pH, and (b) specific conductivity. Predictions, using a dispersion-convection model for concentration profile development for either adsorbed or retained contaminants, were compared with the experimentally determined profiles (both in leaching columns and landfill laboratory model). Another set of experiments was also conducted to evaluate the effect of some organic fluids on the geotechnical properties of different clay soils (natural clay and two reference clay soils: illite and kaolinite). The results from this study have demonstrated that the natural clay soil can be used to adequately contain the different contaminant species usually present in the leachate solutions. Furthermore, the data suggested that under favorable soil conditions, landfill leachates containing low levels of trace metals will not pose a substantial contamination threat to the subsurface environment, provided that a proper thickness of barrier is used.

  12. Geological and technological characteristics of the Ball Clay of the Sao Paulo state

    International Nuclear Information System (INIS)

    Tanno, L.C.; Motta, J.F.M.; Cabral Junior, M.; Saka, S.; Souza, D.D.D.

    1990-01-01

    This paper shows preliminary geological and technological results of studies about ball clay in Sao Paulo State. The works had been carried out by the Institute of Research and technology (IPT) and sponsored by Prominerio, during 88. Ball clay is a special clay utilised in the whiteware industry, mainly in the body preparation of sanitaryware products. This raw material come from two sites in Brazil: Sao Simao and Oeiras. Samples from these two deposits had been studied and classified acording to their adequately in the ceramic process. On the other hand, more than 100 samples from several geological sites of the Sao Paulo State were studied in laboratories. Acording to preliminary tests some of them revealed similar characteristics as brazilian ball clays. These clays were characterized by granulometry analysis, X-ray diffraction and chemical analysis. (author) [pt

  13. Geochemical of clay formations : study of Spanish clay REFERENCE

    International Nuclear Information System (INIS)

    Turrero, M. J.; Pena, J.

    2003-01-01

    Clay rocks are investigated in different international research programs in order to assess its feasibility for the disposal of high level radioactive wastes. This is because different sepcific aspects: they have low hydraulic conductivity (10''-11-10''-15 m/s), a high sorption capacity, self-sealing capacity of facults and discontinuities and mechanical resistance. Several research programs on clay formations are aimed to study the chemistry of the groundwater and the water-rock reactions that control it: e. g. Boom Clay (Mol, Belgium), Oxford Clay /Harwell, United Kingdom), Toarcian Clay (Tournemire, France), Palfris formation (Wellenberg, Switzerland), Opalinus Clay (Bure, France). Based on these studies, considerable progress in the development of techniques for hydrologic, geochemical and hydrogeochemical characterization of mudstones has been accomplished (e. g. Beaufais et al. 1994, De Windt el al. 1998. Thury and Bossart 1999, Sacchi and Michelot 2000) with important advances in the knowledge of geochemical process in these materials (e. g. Reeder et al. 1993, Baeyens and Brandbury 1994, Beaucaire et al. 2000, Pearson et al., 2003).Furtermore, geochemical modeling is commonly used to simulate the evolution of water chemistry and to understand quantitatively the processes controlling the groundwater chemistry (e. g. Pearson et al. 1998, Tempel and Harrison 2000, Arcos et al., 2001). The work presented here is part of a research program funded by Enresa in the context of its R and D program. It is focused on the characterization of a clay formation (reference Argillaceous Formation, RAF) located within the Duero Basin (north-centralSpain). The characterisation of th ephysical properties,, fluid composition, mineralogy, water-rock reaction processes, geochemical modelling and sorption properties of the clays from the mentioned wells is the main purpose of this work. (Author)

  14. Catsius Clay Project. Calculation and Testing of Behaviour of Unsaturated Clay as Barrier in Radioactive Waste Repositories. Stage 2: Validation Exercises at Laboratory scale

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, E E; Alcoverro, J

    1999-07-01

    Stage 2 of CATSIUS CLAY Project: Validation Exercises at Laboratory Scale includes two Benchmarks, Benchmark 2.1: Oedometer Suction Controlled Tests on Samples of compacted Boom Clay and Benchmark 2.2: Small Scale Weltting-Heating Test on Compacted Bentonite. BM 2.1 had two parts: BM 2.1A (volumetric deformation upon wetting-drying cycles) and BM 2.1 B (swelling pressure test). In BM 2.1A, participants were asked to model the results of a series of five tests on samples of compacted Boom clay. In BM 2.1B, a swelling pressure test in which suction, vertical and horizontal stresses were monitored, was proposed as a blind exercise. Participants were asked to use, without further changes, the models calibrated in BM 2.1A. This exercise provides an evaluation of the capabilities of current mechanical constitutive models for unsaturated clay behaviour. It was found that, even if a calibration exercise on the basis of known experimental data is satisfactory, blind predictions of tests involving different paths may prove difficult. The test set up for BM 2.2 consisted of a stainless stell cell filled with highly expansive compacted bentonite (S2 clay from Almeria, Spain). The clay was subjected to a simultaneous central heating and a progressive water inflow through the botton plate. Temperature at various locations within the sample and the boundary radial stress were monitored throughout the test. Water content distribution was also measured at the end of the experiment. Predictions for this benchmark required the solution of field equations for flow, temperature distribution and mechanical analysis. Model parameters were derived from the extensive set of available experiments on this clay. Comparison between model predictions and measurements revealed the significance of water transport in vapour phase, the difficulties to predict boundary stresses and the general good agreement between measured and calculated temperatures. The report provides a detailed accojnt of the

  15. Catsius Clay Project. Calculation and Testing of Behaviour of Unsaturated Clay as Barrier in Radioactive Waste Repositories. Stage 2: Validation Exercises at Laboratory scale

    International Nuclear Information System (INIS)

    Alonso, E. E.; Alcoverro, J.

    1999-01-01

    Stage 2 of CATSIUS CLAY Project: Validation Exercises at Laboratory Scale includes two Benchmarks, Benchmark 2.1: Oedometer Suction Controlled Tests on Samples of compacted Boom Clay and Benchmark 2.2: Small Scale Weltting-Heating Test on Compacted Bentonite. BM 2.1 had two parts: BM 2.1A (volumetric deformation upon wetting-drying cycles) and BM 2.1 B (swelling pressure test). In BM 2.1A, participants were asked to model the results of a series of five tests on samples of compacted Boom clay. In BM 2.1B, a swelling pressure test in which suction, vertical and horizontal stresses were monitored, was proposed as a blind exercise. Participants were asked to use, without further changes, the models calibrated in BM 2.1A. This exercise provides an evaluation of the capabilities of current mechanical constitutive models for unsaturated clay behaviour. It was found that, even if a calibration exercise on the basis of known experimental data is satisfactory, blind predictions of tests involving different paths may prove difficult. The test set up for BM 2.2 consisted of a stainless stell cell filled with highly expansive compacted bentonite (S2 clay from Almeria, Spain). The clay was subjected to a simultaneous central heating and a progressive water inflow through the botton plate. Temperature at various locations within the sample and the boundary radial stress were monitored throughout the test. Water content distribution was also measured at the end of the experiment. Predictions for this benchmark required the solution of field equations for flow, temperature distribution and mechanical analysis. Model parameters were derived from the extensive set of available experiments on this clay. Comparison between model predictions and measurements revealed the significance of water transport in vapour phase, the difficulties to predict boundary stresses and the general good agreement between measured and calculated temperatures. The report provides a detailed accojnt of the

  16. Constitutive relationships for elastic deformation of clay rock: Data Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H.H.; Rutqvist, J.; Birkholzer, J.T.

    2011-04-15

    Geological repositories have been considered a feasible option worldwide for storing high-level nuclear waste. Clay rock is one of the rock types under consideration for such purposes, because of its favorable features to prevent radionuclide transport from the repository. Coupled hydromechanical processes have an important impact on the performance of a clay repository, and establishing constitutive relationships for modeling such processes are essential. In this study, we propose several constitutive relationships for elastic deformation in indurated clay rocks based on three recently developed concepts. First, when applying Hooke's law in clay rocks, true strain (rock volume change divided by the current rock volume), rather than engineering strain (rock volume change divided by unstressed rock volume), should be used, except when the degree of deformation is very small. In the latter case, the two strains will be practically identical. Second, because of its inherent heterogeneity, clay rock can be divided into two parts, a hard part and a soft part, with the hard part subject to a relatively small degree of deformation compared with the soft part. Third, for swelling rock like clay, effective stress needs to be generalized to include an additional term resulting from the swelling process. To evaluate our theoretical development, we analyze uniaxial test data for core samples of Opalinus clay and laboratory measurements of single fractures within macro-cracked Callovo-Oxfordian argillite samples subject to both confinement and water reduced swelling. The results from this evaluation indicate that our constitutive relationships can adequately represent the data and explain the related observations.

  17. Constitutive relationships for elastic deformation of clay rock: Data Analysis

    International Nuclear Information System (INIS)

    Liu, H.H.; Rutqvist, J.; Birkholzer, J.T.

    2011-01-01

    Geological repositories have been considered a feasible option worldwide for storing high-level nuclear waste. Clay rock is one of the rock types under consideration for such purposes, because of its favorable features to prevent radionuclide transport from the repository. Coupled hydromechanical processes have an important impact on the performance of a clay repository, and establishing constitutive relationships for modeling such processes are essential. In this study, we propose several constitutive relationships for elastic deformation in indurated clay rocks based on three recently developed concepts. First, when applying Hooke's law in clay rocks, true strain (rock volume change divided by the current rock volume), rather than engineering strain (rock volume change divided by unstressed rock volume), should be used, except when the degree of deformation is very small. In the latter case, the two strains will be practically identical. Second, because of its inherent heterogeneity, clay rock can be divided into two parts, a hard part and a soft part, with the hard part subject to a relatively small degree of deformation compared with the soft part. Third, for swelling rock like clay, effective stress needs to be generalized to include an additional term resulting from the swelling process. To evaluate our theoretical development, we analyze uniaxial test data for core samples of Opalinus clay and laboratory measurements of single fractures within macro-cracked Callovo-Oxfordian argillite samples subject to both confinement and water reduced swelling. The results from this evaluation indicate that our constitutive relationships can adequately represent the data and explain the related observations.

  18. A preliminary study on titanium-clay interactions

    International Nuclear Information System (INIS)

    Wersin, P.; Grolimund, D.; Kumpulainen, S.; Brendle, J.; Snellman, M.

    2010-01-01

    Document available in extended abstract form only. Posiva and SKB are developing a horizontal disposal design alternative, termed KBS-3H. In this design alternative, modules of a Cu-waste canister surrounded by bentonite blocks is placed in a perforated steel cylinder, a so-called supercontainer (SC), before emplacement in the deposition drifts. The current design for the SC is based on carbon steel. But because corrosion will lead to high hydrogen levels and iron-clay interactions, alternative materials are also being considered. A promising alternative are Ti alloys which display high strength and are known to behave as chemically inert materials under variety of conditions. Also for the Ti alloys, both the corrosion rate and interaction behaviour with other components in the drift needs to be known. In particular, it needs to be demonstrated that corrosion-derived Ti has no significant detrimental effects on the bentonite buffer which is one main barrier within the KBS-3H concept. Unfortunately, the benign inert behaviour of Ti makes it difficult to perform meaningful experiments. Hence, it is not surprising that so far, very little research work on this topic has been carried out and experience is very limited. A preliminary batch-type investigation has been launched to shed more light on Ti-clay interaction processes and on the Ti species resulting from these interactions. A series of experiments including purified MX-80 bentonite or synthetic 'Ti-free' montmorillonite were mixed with metallic Ti nano-powder or foil in 0.1 M NaCl solutions at different pH and temperature conditions. After several months, solid and solute samples from the first set of tests were analyzed by wet chemistry and spectroscopic methods. Ti speciation was analyzed with XAS combined with XRF as elemental mapping tool. A further series of tests will be analyzed in the near future. In addition to reacted samples, a number of reference and starting materials (e.g. MX-80, Rokle

  19. Poly(ethylene oxide)/clay nanaocomposites: Thermal and mechanical properties

    International Nuclear Information System (INIS)

    Ejder-Korucu, Mehtap; Gürses, Ahmet; Karaca, Semra

    2016-01-01

    Highlights: • PEO/clay nanocomposites were prepared via solution intercalation. Complete exfoliation occurs in samples of 0.5 and 2.0 CEC. • The impaired helical structure of PEO in nanocomposite structures had been verified based on the results of FTIR studies. • The crystallization temperature of PEO/OMMT nanocomposites is low compared to raw polymer. • The increase of melting temperatures indicates the increase of the stability of PEO in case of availability of clay. • The tensile strength, yield strength, % stretching of nanocomposite samples increase compared to raw polymer at all CEC rates. - Abstract: Poly(ethylene oxide) (PEO)/clay nanocomposites were prepared by a solution intercalation method using chloroform as a solvent. The nanocomposites were characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR) and also investigation of some mechanical properties of the composites. Formation of nanocomposite was confirmed by XRD analysis. The increasing tendency of exfoliation degree with an increase in clay content may be attributed to easier diffusion of PEO chains to interlayer regions. An increase in PEO crystallinity in case of nanocomposite, was confirmed by an increase in the heat of melting as indicated by DSC. Improvement in tensile properties in all respect was observed for nanocomposites with clay content.

  20. Characterization of edible clay (multani mitti) using INAA (abstract)

    International Nuclear Information System (INIS)

    Waheed, S.; Fiaz, Y.

    2011-01-01

    Multani Mitti is basically clay commonly used in cosmetics, medicines. It is also used for cleansing of body and hair and eating specially women (pregnant and lactating) and children. 16 Essential major, minor and trace elements (Ba, Co, Cr, Cs, Fe, K, Mg, Mn, Mo, Na, Rb, Se Sr, Ti, V and Zn) have been determined in Multani Mitti (MM) clay using instrumental neutron activation analysis (INAA) technique were studied in collected clay samples from Rakhi Gaj located 40 Km from D. G. Khan, Pakistan. These samples were analyzed by Instrumental Neutron Activation Analysis (INAA) to detect the elemental hazard assessment. Radioassay schemes for three sets of elements after neutron irradiation and cooling were evolved to avoid matrix effects. The composition of MM clay shows major elements in descending order as Fe > K > Mg > Na > Mn > Zn > V > Rb > Cr >Ba followed by minor elements as Sr >Co > Cs with trace levels of Se. Data have been compared with clays available in literature globally. Intakes of essential elements were calculated for pregnant, lactating women and children. Intakes were found comparable to WHO levels except Fe and Cr. Risk assessment was measured using mathematical model. The quality assurance of data was performed using Standard Reference Materials (SRMs) of a similar matrix (IAEA Lake sediment SL-1 and IAEA Soil S-7). (author)

  1. Truck accident involving unirradiated nuclear fuel

    International Nuclear Information System (INIS)

    Carlson, R.W.; Fischer, L.E.

    1993-01-01

    In the early morning of Dec. 16, 1991, a severe accident occurred when a passenger vehicle traveling in the wrong direction collided with a tractor trailer carrying 24 unirradiated nuclear fuel assemblies in 12 containers on Interstate I-91 in Springfield, Massachusetts. This paper documents the mechanical circumstances of the accident and assesses the physical environment to which the containers were exposed and the response of the containers and their contents. The accident involved four impacts where the truck was struck by the car, impacted on the center guardrail, impacted on the outer concrete barrier and came to rest against the center guardrail. The impacts were followed by a fire that began in the engine compartment, spread to the tractor and cab, and eventually spread to the trailer and payload. The fire lasted for about three hours and the packages were involved in the fire for about two hours. As a result of the fire, the tractor-trailer was completely destroyed and the packages were exposed to flames with temperatures between 1,300 F and 1,800 F. The fuel assemblies remained intact during the accident and there was no release of any radioactive material during the accident. This was a very severe accident; however, the injuries were minor and at no time was the public health and safety at risk

  2. Radionuclide sorption studies on abyssal red clays

    International Nuclear Information System (INIS)

    Erickson, K.L.

    1979-01-01

    The radionuclide sorption properties of a widely distributed abyssal red clay are being experimentally investigated using batch equilibration techniques. This paper summarizes sorption equilibrium data obtained when 0.68 N NaCl solutions containing either Tc, U, Pu, Am or Cm were contacted with samples of the red clay and also summarizes some initial results from experiments designed to determine the relative selectivity of the clay for various nuclides. Under mildly oxidizing conditions, the sorption equilibrium distribution coefficients for technetium were essentially zero. At solution-phase nuclide concentrations on the order of 10 -6 M and less and at solution pH values of about 6.9, the distribution coefficients for plutonium were about 3 x 10 3 m1/gm and for uranium, americium, and curium were about 10 5 ml/gm or greater. However, at solution pH values of about 2.7, the distribution coefficients for each of the nuclides were greatly diminished. Initial experiments conducted in order to determine the relative selectivity of the clay for cesium, barium, and cerium, indicated that the silicate phases in the clay were selective for cesium over barium and cerium. These experiments also indicated that the hydrous oxide phases were selective for cerium over barium and for barium over cesium

  3. Processes of cation migration in clay-rocks: Final Scientific Report of the CatClay European Project

    International Nuclear Information System (INIS)

    Altmann, S.; Aertsens, M.; Appelo, T.; Bruggeman, C.; Gaboreau, S.; Glaus, M.; Jacquier, P.; Kupcik, T.; Maes, N.; Montoya, V.; Rabung, T.; Robinet, J.-C.; Savoye, S.; Schaefer, T.; Tournassat, C.; Van Laer, L.; Van Loon, L.

    2015-07-01

    illite and clay rocks, even though some assumptions made have to be verified. In parallel, actual 3D geometrical pore size distributions of compacted illite, and in less extent, clay rock samples, were successfully determined by combining TEM and FIB-nt analyses on materials maintained in a water-like saturation state by means of an extensive impregnation step. Based on this spatial distribution of pores, first numerical diffusion experiments were carried at the pore scale through virtual illite, enabling a better understanding of how transfer pathways are organized in the porous media. Finally, the EC CatClay project allowed a better understanding of the migration of strongly sorbing tracers through low permeability 'clay rock' formations, increasing confidence in our capacity to demonstrate that the models used to predict radionuclide migration through these rocks are scientifically sound. (authors)

  4. Evaluation of technological properties of samples burned from a clay tailings as a function of temperature

    International Nuclear Information System (INIS)

    Mendonca, M.; Garcia, G.C.R.; Ribeiro, S.

    2011-01-01

    The objective of this work was to start the study of technological properties of a clayey tailings from a mining of quartz sand - Mineracao Sao Joao Batista, Queluz - SP. For this study, clay samples were pressed (32 MPa) and fired at 1250 deg C, 1350 deg C and 1450 deg C for 180 minutes, with rates of heating and cooling of 5 deg C/min. We evaluated the bulk density, water absorption and apparent porosity. The results showed that increasing the firing temperature of 1250°C to 1450°C increased approximately 20% bulk density, while water absorption and apparent porosity decreased by 70% and 64% respectively. Thus, the increase in firing temperature increased the bulk density, decreasing the apparent porosity, resulting in increased mechanical strength of these samples, allowing the use of waste as raw material in the manufacture of ceramics. (author)

  5. a study of the physico-chemistry and mineralogy of agbaja clay for ...

    African Journals Online (AJOL)

    MBI

    characterized for particle size distribution, plasticity index, chemical ... m = mass of sample after ignition (g). pH determination. .... the clay must have been of a secondary origin formed from .... The Chemistry and Physics of. Clay and Allied ...

  6. Comprehensive review of geosynthetic clay liner and compacted clay liner

    Science.gov (United States)

    Shankar, M. Uma; Muthukumar, M.

    2017-11-01

    Human activity inevitably produces waste materials that must be managed. Some waste can be reused. However many wastes that cannot be used beneficially must be disposed of ensuring environmental safety. One of the common methods of disposal is landfilling. The most common problems of the landfill site are environmental degradation and groundwater contamination caused by leachate produced during the decomposition process of organic material and rainfall. Liner in a landfill is an important component which prevent leachate migration and prevent groundwater contamination. Earthen liners have been widely used to contain waste materials in landfill. Liners and covers for municipal and hazardous waste containment facilities are often constructed with the use of fine-grained, low plasticity soils. Because of low permeability geosynthetic clay liners and compacted clay liners are the main materials used in waste disposal landfills. This paper summaries the important geotechnical characteristics such as hydraulic conductivity, liquid limit and free swell index of geosynthetic clay liner and compacted clay liner based on research findings. This paper also compares geosynthetic clay liner and compacted clay liner based on certain criteria such as thickness, availability of materials, vulnerability to damage etc.

  7. Migration of uranium in the presence of clay colloids in a sandy aquifer

    International Nuclear Information System (INIS)

    Le Cointe, P.; Grambow, B.; Piscitelli, A.; Montavon, G.; Van der Lee, J.; Giffaut, E.; Schneider, V.

    2010-01-01

    Document available in extended abstract form only. In France, low and medium level radioactive waste of short period (nuclides with a half-life less than 31 years and an activity ranging from 100 to 1,000,000 Bq/g) is stored in concrete constructions on a surface site in Soulaines-Dhuys (Aube). The site was chosen for its simple geology: it entirely lays on an aquifer formation, the Upper Aptian sands, above a Lower Aptian impermeable clay formation. The site is surrounded by the Noues d'Amance stream, which serves as the single outlet of the groundwater on the site. The objective of this study is to improve knowledge of radionuclides migration in the aquifer formation to improve safety, using U(VI) as an example and focusing on colloids, capable of transporting U(VI) on long distances. The sediment is composed of two main phases: quartz and clay minerals (glauconite, with a small fraction of kaolinite and smectite), with relative amounts of 91 and 6% in weight, respectively. The aquifer water contains clay colloids, invisible to the eye though observed with SEM and TEM in a non disturbed sample. No signal was measured with usual light diffusion techniques and Asymmetric Flow Field-Flow Fractionation (AF4). Only the Laser Induced Breakdown Detection (LIBD) technique could characterize the size (between 30 and 70 nm) and the concentration (around 10 ppb) of the clay colloids. Batch experiments were carried out to define U(VI)-Quartz and U(VI)-Clay interactions, with U(VI) concentration, pH and pCO 2 being the studied variables. The data were modelled with the Chess geochemistry code developed at the Paris School of Mines and compared to literature. Davis applied model for U(VI)-Quartz interaction and Bradbury and Baeyens applied model for U(VI)-Illite interaction adequately describe the experimental data. To know if clay colloids can move freely in the groundwater, pore size was measured using X-ray microtomography. Nanoparticles tracing was done with

  8. Migration of uranium in the presence of clay colloids in a sandy aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Le Cointe, P. [Laboratoire SUBATECH, UMR 6457 Ecole des Mines/CNRS/Universite, 4 rue A. Kastler, BP 20722, 44307 Nantes Cedex 03 (France); Centre de Geosciences, Ecole des Mines de Paris, 35 rue St-Honore, 77305 Fontainebleau Cedex (France); ANDRA 1/7 rue Jean Monnet - 92298 Chatenay Malabry Cedex (France); Grambow, B.; Piscitelli, A.; Montavon, G. [Laboratoire SUBATECH, UMR 6457 Ecole des Mines/CNRS/Universite, 4 rue A. Kastler, BP 20722, 44307 Nantes Cedex 03 (France); Van der Lee, J. [EDF R ete D, Site des Renardieres, Route de Sens - Ecuelles, 77250 Moret sur Loing (France); Giffaut, E.; Schneider, V. [ANDRA 1/7 rue Jean Monnet - 92298 Chatenay Malabry Cedex (France)

    2010-07-01

    Document available in extended abstract form only. In France, low and medium level radioactive waste of short period (nuclides with a half-life less than 31 years and an activity ranging from 100 to 1,000,000 Bq/g) is stored in concrete constructions on a surface site in Soulaines-Dhuys (Aube). The site was chosen for its simple geology: it entirely lays on an aquifer formation, the Upper Aptian sands, above a Lower Aptian impermeable clay formation. The site is surrounded by the Noues d'Amance stream, which serves as the single outlet of the groundwater on the site. The objective of this study is to improve knowledge of radionuclides migration in the aquifer formation to improve safety, using U(VI) as an example and focusing on colloids, capable of transporting U(VI) on long distances. The sediment is composed of two main phases: quartz and clay minerals (glauconite, with a small fraction of kaolinite and smectite), with relative amounts of 91 and 6% in weight, respectively. The aquifer water contains clay colloids, invisible to the eye though observed with SEM and TEM in a non disturbed sample. No signal was measured with usual light diffusion techniques and Asymmetric Flow Field-Flow Fractionation (AF4). Only the Laser Induced Breakdown Detection (LIBD) technique could characterize the size (between 30 and 70 nm) and the concentration (around 10 ppb) of the clay colloids. Batch experiments were carried out to define U(VI)-Quartz and U(VI)-Clay interactions, with U(VI) concentration, pH and pCO{sub 2} being the studied variables. The data were modelled with the Chess geochemistry code developed at the Paris School of Mines and compared to literature. Davis applied model for U(VI)-Quartz interaction and Bradbury and Baeyens applied model for U(VI)-Illite interaction adequately describe the experimental data. To know if clay colloids can move freely in the groundwater, pore size was measured using X-ray microtomography. Nanoparticles tracing was done with

  9. Effects of varied porosity on the physic-mechanical properties of sintered ceramic from Ifon clay

    Directory of Open Access Journals (Sweden)

    Fatai Olufemi ARAMIDE

    2017-12-01

    Full Text Available The effects of saw dust admixture on the physic-mechanical properties of sintered clay bonded carbonized palm kernel shell ceramic was investigated. Composite mixtures of powdered carbonized palm kernel shell and clay from Ifon deposit were produced using equal amount of clay and carbonized palm kernel shell. These were then mixed with varied amount of saw dust (0%, 5% and 10% in a ball mill for 6 hours. From this standard sample specimens were produced using uniaxial compression after mixing each mixture with 10% moisture of clay contents. The compressed samples were sintered at 9500C and soaked for one hour. The sintered samples were characterized for various physic-mechanical properties using state of the art equipment’s. The fired samples were also characterized using ultra-high-resolution field emission scanning electron microscope (UHR-FEGSEM equipped with energy dispersive spectroscopy (EDX. It was observed that the apparent porosity and water absorption of the clay bonded carbonized palm kernel shell ceramic increased with increased amount of saw dust admixture, cold crushing strength, Young’ modulus of elasticity and absorbed energy of the sample reduced with increased amount of saw dust admixture. It was concluded that the sample with 0% saw dust admixture is judged to possess optimum physic-mechanical properties.

  10. Clay-mineral assemblages from some levels of K-118 drill core of Maha Sarakham evaporites, northeastern Thailand

    Science.gov (United States)

    Suwanich, Parkorn

    Clay-mineral assemblages in Middle Clastic, Middle Salt, Lower Clastic, Potash Zone, and Lower Salt, totalling 13 samples from K-118 drill core, in the Maha Sarakham Formation, Khorat Basin, northeastern Thailand were studied. The clay-size particles were separated from the water-soluble salt by water leaching. Then the samples were leached again in the EDTA solution and separated into clay-size particles by using the timing sedimentation. The EDTA-clay residues were divided and analyzed by using the XRD and XRF method. The XRD peaks show that the major-clay minerals are chlorite, illite, and mixed-layer corrensite including traces of rectorite? and paragonite? The other clay-size particles are quartz and potassium feldspar. The XRF results indicate Mg-rich values and moderate MgAl atom ratio values in those clay minerals. The variable Fe, Na, and K contents in the clay-mineral assemblages can explain the environment of deposition compared to the positions of the samples from the core. Hypothetically, mineralogy and the chemistry of the residual assemblages strongly indicate that severe alteration and Mg-enrichment of normal clay detritus occurred in the evaporite environment through brine-sediment interaction. The various Mg-enrichment varies along the various members reflecting whether sedimentation is near or far from the hypersaline brine.

  11. Comparative Analysis on Chemical Composition of Bentonite Clays ...

    African Journals Online (AJOL)

    2017-09-12

    Sep 12, 2017 ... the clay layers have negative crystal charge which is balanced by .... located at lower frequencies at 1639cm-1 for both samples are produced by the ... the samples, while in the FTIR spectra and wave bands, only slight ...

  12. Response surface method as a tool for heavy clay firing process optimization: Roofing tiles

    Directory of Open Access Journals (Sweden)

    Milica Arsenović

    2012-12-01

    Full Text Available Heavy clay samples collected in close vicinity of Toplička Mala Plana, Serbia, were surveyed to examine their possible use in heavy clay industry. The representative raw material, which contained the lowest content of clay minerals and the highest content of carbonates, was enriched with two more plastic clays. Chemical and mineralogical composition, as well as particle size distribution, were determined to distinct the samples. The samples in the form of tiles, hollow blocks and cubes were prepared following the usual practice in ceramic laboratories. The effect of process parameters, such as temperature (850–950 °C and concentration of the added clays (both in the range of 0–10 wt.%, were investigated in terms of compressive strength, water absorption, firing shrinkage, weight loss during firing and volume mass of cubes. The optimal conditions were determined by the response surface method, coupled with the fuzzy synthetic evaluation algorithm, using membership trapezoidal function, and showed that these materials can be used for roofing tiles production.

  13. Tensile and fracture toughness properties of copper alloys and their HIP joints with austenitic stainless steel in unirradiated and neutron irradiated condition

    International Nuclear Information System (INIS)

    Taehtinen, S.; Pyykkoenen, M.; Singh, B.N.; Toft, P.

    1998-03-01

    The tensile strength and ductility of unirradiated CuAl25 IG0 and CuCrZr alloys decreased continuously with increasing temperature up to 350 deg C. Fracture toughness of unirradiated CuAl25 IG0 alloy decreased continuously with increasing temperature from 20 deg C to 350 deg C whereas the fracture toughness of unirradiated CuCrZr alloy remained almost constant at temperatures up to 100 deg C, was decreased significantly at 200 deg C and slightly increased at 350 deg C. Fracture toughness of HIP joints were lower than that of corresponding copper alloy and fracture path in HIP joint specimen was always within copper alloy side of the joint. Neutron irradiation to a dose level of 0.3 dpa resulted in hardening and reduction in uniform elongation to about 2-4% at 200 deg C in both copper alloys. At higher temperatures softening was observed and uniform elongation increased to about 5% and 16% for CuAl25 IG0 and CuCrZr alloys, respectively. Fracture toughness of CuAl25 IG0 alloy reduced markedly due to neutron irradiation in the temperature range from 20 deg C to 350 deg C. The fracture toughness of the irradiated CuCrZr alloy also decreased in the range from 20 deg C to 350 deg C, although it remained almost unaffected at temperatures below 200 deg C and decreased significantly at 350 deg C when compared with that of unirradiated CuCrZr alloy. (orig.)

  14. The effect of compressive stress on the Young's modulus of unirradiated and irradiated nuclear graphites

    International Nuclear Information System (INIS)

    Oku, T.; Usui, T.; Ero, M.; Fukuda, Y.

    1977-01-01

    The Young's moduli of unirradiated and high temperature (800 to 1000 0 C) irradiated graphites for HTGR were measured by the ultrasonic method in the direction of applied compressive stress during and after stressing. The Young's moduli of all the tested graphites decreased with increasing compressive stress both during and after stressing. In order to investigate the reason for the decrease in Young's modulus by applying compressive stress, the mercury pore diameter distributions of a part of the unirradiated and irradiated specimens were measured. The change in pore distribution is believed to be associated with structural changes produced by irradiation and compressive stressing. The residual strain, after removing the compressive stress, showed a good correlation with the decrease in Young's modulus caused by the compressive stress. The decrease in Young's modulus by applying compressive stress was considered to be due to the increase in the mobile dislocation density and the growth or formation of cracks. The results suggest, however, that the mechanism giving the larger contribution depends on the brand of graphite, and in anisotropic graphite it depends on the direction of applied stress and the irradiation conditions. (author)

  15. Archeointensity study on baked clay samples taken from the reconstructed ancient kiln: implication for validity of the Tsunakawa-Shaw paleointensity method

    Science.gov (United States)

    Yamamoto, Yuhji; Torii, Masayuki; Natsuhara, Nobuyoshi

    2015-05-01

    In 1972, a reconstruction experiment of a kiln had been done to reproduce an excavated kiln of the seventh century in Japan. Baked clay samples were taken from the floor surface and -20 cm level, and they have been stored after determinations of the paleomagnetic directions by partial alternating field demagnetizations. We recently applied the Tsunakawa-Shaw method to the samples to assess how reliable archeointensity results are obtained from the samples. A suite of the rock magnetic experiments and the scanning electron microscope observations elucidate that dominant magnetic carriers of the floor surface samples are Ti-poor titanomagnetite grains in approximately 10 nm size with single-domain and/or super-paramagnetic states, whereas contributions of multi-domain grains seem to be relatively large for the -20-cm level samples. From the floor surface samples, six out of the eight successful results were obtained and they give an average of 47.3 μT with a standard deviation of 2.2 μT. This is fairly consistent with the in situ geomagnetic field of 46.4 μT at the time of the reconstruction. They are obtained with a built-in anisotropy correction using anhysteretic remanent magnetization and without any cooling rate corrections. In contrast, only one out of four was successful from the -20-cm level samples. It yields an archeointensity of 31.6 μT, which is inconsistent with the in situ geomagnetic field. Considering from the in situ temperature record during the firing of the kiln and the unblocking temperature spectra of the samples, the floor surface samples acquired full thermoremanent magnetizations (TRMs) as their natural remanent magnetizations whereas the -20-cm level samples only acquired partial TRMs, and these differences probably cause the difference in the archeointensity results between the two sample groups. For archeointensity researches, baked clay samples from a kiln floor are considered to be ideal materials.

  16. Natural gamma-ray emitters in clays used for therapeutic purposes

    International Nuclear Information System (INIS)

    Maduar, Marcelo F.; Silva, Paulo S.C. da; Ponciano, Ricardo

    2013-01-01

    The use of minerals for therapeutic purposes is an ancient practice, especially clay minerals topically employed in the therapy of skin disorders and rheumatic processes. In Brazil, an example of such application is the use of a clay-based mineral extracted from a deposit in Peruibe, a resort town in the country southeast. Such mineral has been used both in raw form, after a washing process or as an active component of cosmetics. Currently, a comprehensive characterization of samples from this deposit is underway. As a part of this work, this paper presents preliminary results of the determination of natural radionuclides in samples of this clay and its derived preparations, in order to evaluate the radiological implications of such practice. The raw samples, after preparation, were analyzed by gamma-ray spectrometry. Self-attenuation corrections for the 210 Pb gamma radiation were applied. The radionuclide concentrations in dried samples varied in the ranges: for 226 Ra, 15.3 ± 0.5 to 18.4 ± 0.7 Bq-kg -1 ; for 228 Ra, 31.2 ± 0.5 to 37.8 ± 0.9 Bq-kg -1 ; for 210 Pb, 18 ± 5 to 32 ± 6 Bq-kg -1 ; for 40 K, 373 ± 14 to 454 ± 20 Bq-kg -1 . The concentrations obtained are consistent with previously ones reported for clays. For the cosmetics, none of the target radionuclides were detected above the minimum detectable activities of the counting system, which are 2.5, 2.0, 10 and 20 Bq-kg -1 respectively for 226 Ra, 228 Ra, 210 Pb, and 40 K. An estimation of the effective dose on the skin due to the clay application by a modelling tool, with conservative parameters, led to an effective dose of 0.8 microsievert, indicating that the studied practice causes no significant radiation dose increment to the public. (author)

  17. Clay fraction mineralogy of a Cambisol in Brazil

    International Nuclear Information System (INIS)

    Anastacio, A. S.; Fabris, J. D.; Stucki, J. W.; Coelho, F. S.; Pinto, I. V.; Viana, J. H. M.

    2005-01-01

    Clay minerals having a 2:1 (tetrahedral:octahedral sheet) structure may be found in strongly weathering soils only if the local pedo-climatic environment prevents them from further weathering to other minerals such as iron oxides. The clay minerals impart important chemical properties to soils, in part by virtue of changes in the redox state of iron in their crystal structures. Knowing the chemical nature of soil clays is a first step in evaluating their potential reactivity with other soil constituents and processes, such as the chemical decomposition of organic substrates to be potentially used in environmental remediation. The purpose of this work was to characterize the iron oxides and iron-bearing clay minerals from a B horizon of a Cambisol developed on tuffite in the State of Minas Gerais, Brazil, using chemical analysis, powder X-ray diffraction, Moessbauer spectroscopy, and thermal analysis. The iron oxides of this NaOH-treated clay-fraction were found to contain mainly maghemite (γFe 2 O 3 ) and superparamagnetic goethite (αFeOOH). Kaolinite (Al 2 Si 2 O 5 (OH) 4 ), smectite, and minor portions of anatase (TiO 2 ) were identified in the CBD-treated sample.

  18. Do scaly clays control seismicity on faulted shale rocks?

    Science.gov (United States)

    Orellana, Luis Felipe; Scuderi, Marco M.; Collettini, Cristiano; Violay, Marie

    2018-04-01

    One of the major challenges regarding the disposal of radioactive waste in geological formations is to ensure isolation of radioactive contamination from the environment and the population. Shales are suitable candidates as geological barriers. However, the presence of tectonic faults within clay formations put the long-term safety of geological repositories into question. In this study, we carry out frictional experiments on intact samples of Opalinus Clay, i.e. the host rock for nuclear waste storage in Switzerland. We report experimental evidence suggesting that scaly clays form at low normal stress (≤20 MPa), at sub-seismic velocities (≤300 μm/s) and is related to pre-existing bedding planes with an ongoing process where frictional sliding is the controlling deformation mechanism. We have found that scaly clays show a velocity-weakening and -strengthening behaviour, low frictional strength, and poor re-strengthening over time, conditions required to allow the potential nucleation and propagation of earthquakes within the scaly clays portion of the formation. The strong similarities between the microstructures of natural and experimental scaly clays suggest important implications for the slip behaviour of shallow faults in shales. If natural and anthropogenic perturbations modify the stress conditions of the fault zone, earthquakes might have the potential to nucleate within zones of scaly clays controlling the seismicity of the clay-rich tectonic system, thus, potentially compromising the long-term safeness of geological repositories situated in shales.

  19. Hydraulic and mechanical behavior of landfill clay liner containing SSA in contact with leachate.

    Science.gov (United States)

    Zhang, Qian; Lu, Haijun; Liu, Junzhu; Wang, Weiwei; Zhang, Xiong

    2018-05-01

    Sewage sludge ash (SSA) produced by municipal sludge can be used as a modified additive for clay liner, and improves the working performance of landfill clay liner in contact with leachate. Under the action of landfill leachate, the permeability, shear strength, phase composition, and pore structure of the modified clay are investigated through the flexible wall permeability test, triaxial shear test, thermal gravimetric and differential thermal analysis, and low-temperature nitrogen adsorption test, respectively. The hydraulic conductivity of the modified clay containing 0-5% SSA is in the range of 3.94 × 10 -8 -1.16 × 10 -7  cm/s, and the pollutant concentration of the sample without SSA was higher than others. The shear strength of the modified clay is more than that of the traditional clay liner, the cohesion rate of modified clay increases from 32.5 to 199.91 kPa, and the internal friction angle decreases from 32.5° to 15.6°. Furthermore, the weight loss rates of the samples are 15.69%, 17.92%, 18.06%, and 20.68%, respectively, when the SSA content increases from 0% to 5%. The total pore volume and average pore diameter of the modified clay decrease with the increase in the SSA content, respectively. However, the specific area of the modified clay increases with the increase in the SSA content.

  20. Further studies on the problems of geomagnetic field intensity determination from archaeological baked clay materials

    Science.gov (United States)

    Kostadinova-Avramova, M.; Kovacheva, M.

    2015-10-01

    Archaeological baked clay remains provide valuable information about the geomagnetic field in historical past, but determination of the geomagnetic field characteristics, especially intensity, is often a difficult task. This study was undertaken to elucidate the reasons for unsuccessful intensity determination experiments obtained from two different Bulgarian archaeological sites (Nessebar - Early Byzantine period and Malenovo - Early Iron Age). With this aim, artificial clay samples were formed in the laboratory and investigated. The clay used for the artificial samples preparation differs according to its initial state. Nessebar clay was baked in the antiquity, but Malenovo clay was raw, taken from the clay deposit near the site. The obtained artificial samples were repeatedly heated eight times in known magnetic field to 700 °C. X-ray diffraction analyses and rock-magnetic experiments were performed to obtain information about the mineralogical content and magnetic properties of the initial and laboratory heated clays. Two different protocols were applied for the intensity determination-Coe version of Thellier and Thellier method and multispecimen parallel differential pTRM protocol. Various combinations of laboratory fields and mutual positions of the directions of laboratory field and carried thermoremanence were used in the performed Coe experiment. The obtained results indicate that the failure of this experiment is probably related to unfavourable grain sizes of the prevailing magnetic carriers combined with the chosen experimental conditions. The multispecimen parallel differential pTRM protocol in its original form gives excellent results for the artificial samples, but failed for the real samples (samples coming from previously studied kilns of Nessebar and Malenovo sites). Obviously the strong dependence of this method on the homogeneity of the used subsamples hinders its implementation in its original form for archaeomaterials. The latter are often

  1. Analysis of clay particles behaviour during hydration-dehydration processes

    International Nuclear Information System (INIS)

    Maison, T.; Laouafa, F.; Delalain, P.; Fleureau, J.M.

    2010-01-01

    Document available in extended abstract form only. The knowledge of the physico-chemical processes at a local (micro) level during the shrinkage or the swelling processes of clayey materials is an essential step to characterise the ability of such soils to shrink or to swell. In order to better understand these phenomena, we performed research at microscopic levels using mainly an Environmental Scanning Electron Microscope (ESEM). This apparatus allows exploring some features of the behaviour and physical properties of clays subjected to controlled hygrometry conditions. The observations were performed on an heterogeneous natural clay, the Romainville clay. This clay, showing a sensitive behavior to shrinkage and swelling, is taken in situ from affected site by the drought. This site is well monitored. This clay was characterised by classical geotechnical laboratory tests (mercury porosimetry, X-Ray diffraction, grain size analysis...). Microstructure observations are done on cubic samples of 1 cm side. Swelling-shrinkage cycles are done on clay powder with grain sizes between 63 μm and 125 μm. The microstructure shows a compact clayey matrix with small calcite and quartz grains. Calcite may be present in veins form, due to sedimentation or pressure-dissolution effect. At high humidity value around 98%, moulds are observed on the totality of sample surface. During swelling-shrinkage cycles, surface sample changes are real time followed. Hydratation-dehydration cycles are imposed with a time of 30 minutes (considered as sufficient to reach steady state). The sample deformation induced by swelling and shrinkage is calculated by analyzing 2D ESEM images and assuming isotropic behaviour for the out of plane strain. The result shows a kinetics of swelling and shrinkage which can be decomposed into two successive phases. At each change of relative humidity, the first step is characterized by a discontinuity (jump) in the deformation, followed by a quite constant strain

  2. X-ray diffraction analysis of clay stones, Muglad Sedimentary Basin, Sudan

    International Nuclear Information System (INIS)

    Ali, A. E.

    1997-01-01

    This study deals with the theoretical and experimental aspects of X-ray diffraction (XRD) technique. Moreover the XRD technique has been used to investigate the clay mineral types and their distribution for samples obtained from exploration wells in the Mugald Sedimentary Basin in Western Sudan. The studied samples range in depth from 1524 m to 4572 m. The XRD analysis of samples shows that they consist of kaolinite, smectite, illite, chlorite and the mixed-layer smectite/illite. Kaolinite has higher abundance (15 - 72 %) followed by illite (7 - 34 %), smectite (11 - 76 %) and the less abundance of chlorite and the mixed-layer smectite/illite. Non-clay minerals found include quartz and cristabolite. The clay mineral types and their vertical distribution reflect various controls such as environmental, burial diagenesis, source rocks and climatic influences in the Muglad Sedimentary Basin. (author). 19 refs., 11 figs., 3 tabs

  3. PHB/bentonite compounds: Effect of clay modification and thermal aging on properties

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Tatiara G.; Costa, Anna Raffaela M.; Canedo, Eduardo L.; Carvalho, Laura H. [Universidade Federal de Campina Grande (UFCG), PB (Brazil); Wellen, Renate M.R., E-mail: tatiaraalmeida@gmail.com [Universidade Federal da Paraíba (UFPB), João Pessoa, PB (Brazil)

    2017-11-15

    Poly(3-hydroxybutyrate) (PHB) was compounded with three different Bentonite clays: natural, purified by ultrasound/sonicated and organically modified with hexadecyltrimethylammonium bromide. PHB/Bentonite masterbatches with 30% clay were prepared in a laboratory internal mixer and letdown with pure matrix to 1% and 3% w/w clay. Test samples were injection molded and characterized by x-ray diffraction (XRD), differential scanning calorimetry (DSC), infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Increase in Bentonite hydrophobic character was evinced by FTIR for organoclays. XRD of composites showed increase in clay interlayer distance and peak broadening, suggesting formation of intercalated nanocomposites. DSC showed increase in crystallinity and crystallization rate for compounds, especially for PHB/organoclay formulations. Thermal aging was conducted by exposing specimens at 115 deg C for up to 120 hours, and mechanical properties were measured according to ASTM standards. Elastic modulus increased and impact strength decreased with time and clay content; clay purification had little effect on the tensile properties. Tensile strength of thermal aged samples showed little variation, except for the organoclay nanocomposites, for which it significantly decreased with exposure time. SEM images displayed a whitened honeycomb structure and detachment of PHB/Bentonite layers which may be connected to cold crystallization and degradation processes taking place during thermal aging. (author)

  4. PHB/bentonite compounds: Effect of clay modification and thermal aging on properties

    International Nuclear Information System (INIS)

    Almeida, Tatiara G.; Costa, Anna Raffaela M.; Canedo, Eduardo L.; Carvalho, Laura H.; Wellen, Renate M.R.

    2017-01-01

    Poly(3-hydroxybutyrate) (PHB) was compounded with three different Bentonite clays: natural, purified by ultrasound/sonicated and organically modified with hexadecyltrimethylammonium bromide. PHB/Bentonite masterbatches with 30% clay were prepared in a laboratory internal mixer and letdown with pure matrix to 1% and 3% w/w clay. Test samples were injection molded and characterized by x-ray diffraction (XRD), differential scanning calorimetry (DSC), infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Increase in Bentonite hydrophobic character was evinced by FTIR for organoclays. XRD of composites showed increase in clay interlayer distance and peak broadening, suggesting formation of intercalated nanocomposites. DSC showed increase in crystallinity and crystallization rate for compounds, especially for PHB/organoclay formulations. Thermal aging was conducted by exposing specimens at 115 deg C for up to 120 hours, and mechanical properties were measured according to ASTM standards. Elastic modulus increased and impact strength decreased with time and clay content; clay purification had little effect on the tensile properties. Tensile strength of thermal aged samples showed little variation, except for the organoclay nanocomposites, for which it significantly decreased with exposure time. SEM images displayed a whitened honeycomb structure and detachment of PHB/Bentonite layers which may be connected to cold crystallization and degradation processes taking place during thermal aging. (author)

  5. Studying the Effect of Crystal Size on Adsorption Properties of Clay

    International Nuclear Information System (INIS)

    Abdellatif, M.M.

    2012-01-01

    Sorption of radionuclides on mineral surfaces strongly affects their fate and mobility in the geosphere. Therefore using of clay minerals as a barrier In LLW repositories can delay the dispersion of radionuclides into environment. That is of fundamental importance for maintaining environmental quality and for the safety and long-term performance of waste repositories. In this study XRD analysis was applied to investigate three different types of clay minerals for quantitative analysis of each type and the Mud Master program for the measurement of the crystallite thickness distribution (CTD) according to of the BWA (Bertaut-Warren Averbach) technique. Six sample s of the three types of clay (Kaolin, Aswan clay and Ball clay) were studied. XRD and Mud Master were used to investigate the relation between CTD and Cs -137 uptake mechanism onto the clay. It was found that the best adsorption capacity related to the kaolinite content and the lowest CTD

  6. Sperm quantity and size variation in un-irradiated and irradiated males of the malaria mosquito Anopheles arabiensis Patton

    NARCIS (Netherlands)

    Helinski, M.; Knols, B.G.J.

    2009-01-01

    Anopheles mosquitoes are important candidates for genetic control strategies. However, little is known about sperm quality and quantity as determinants of male reproductive success. In this study, sperm quantity and length variation were assessed in testes of un-irradiated and irradiated Anopheles

  7. Erythrokinetics in mice bearing tumours in either preirradiated or unirradiated tissue

    International Nuclear Information System (INIS)

    Jirtle, R.L.; Clifton, K.H.

    1978-01-01

    Experiments were designed to clarify the causes of anaemia in hosts bearing tumours in either unirradiated or preirradiated tissue. Isotopic methods are described which enable the estimation of erythrocyte destruction and production rates, and the potential red cell life spans in tumour-bearing animals. In this experimental system, anaemia (a) is in large part due to accelerated random erythrocyte loss, (b) is exacerbated as tumours grow by a progressive reduction in the potential erythrocyte life span due to intrinsic erythrocyte defects. (c) is accompanied by an increase in erythrocyte production of six- to ten-fold and (d) is postponed in onset and decreased in magnitude by preirradiation of the tumour transplant site. (author)

  8. Erythrokinetics in mice bearing tumours in either preirradiated or unirradiated tissue

    Energy Technology Data Exchange (ETDEWEB)

    Jirtle, R L; Clifton, K H [Wisconsin Univ., Madison (USA). Div. of Clinical Oncology

    1978-11-01

    Experiments were designed to clarify the causes of anaemia in hosts bearing tumours in either unirradiated or preirradiated tissue. Isotopic methods are described which enable the estimation of erythrocyte destruction and production rates, and the potential red cell life spans in tumour-bearing animals. In this experimental system, anaemia (a) is in large part due to accelerated random erythrocyte loss, (b) is exacerbated as tumours grow by a progressive reduction in the potential erythrocyte life span due to intrinsic erythrocyte defects. (c) is accompanied by an increase in erythrocyte production of six- to ten-fold and (d) is postponed in onset and decreased in magnitude by preirradiation of the tumour transplant site.

  9. Clays in natural and engineered barriers for radioactive waste confinement

    International Nuclear Information System (INIS)

    2007-01-01

    The meeting covers all topics concerning natural argillaceous geological barriers and the clay material based engineered barrier systems, investigated by means of: laboratory experiments on clay samples (new analytical developments), in situ experiments in underground research laboratories, mock-up demonstrations, natural analogues, as well as numerical modelling and global integration approaches (including up-scaling processes and treatment of uncertainties). The works presented deal with: examples of broad research programs (national or international) on the role of natural and artificial clay barriers for radionuclide confinement; clay-based repository concepts: repository designs, including technological and safety issues related to the use of clay for nuclear waste confinement; geology and clay characterisation: mineralogy, sedimentology, paleo-environment, diagenesis, dating techniques, discontinuities in rock clay, fracturing, self sealing processes, role of organic matter and microbiological processes; geochemistry: pore water geochemistry, clay thermodynamics, chemical retention, geochemical modelling, advanced isotopic geochemistry; mass transfer: water status and hydraulic properties in low permeability media, pore space geometry, water, solute and gas transfer processes, colloid mediated transport, large scale movements, long-term diffusion; alteration processes: oxidation effects, hydration-dehydration processes, response to thermal stress, iron-clay interactions, alkaline perturbation; geomechanics: thermo-hydro-mechanical behaviour of clay, rheological models, EDZ characterisation and evolution, coupled behaviour and models (HM, THM, THMC). A particular interest is given to potential contributions coming from fields of activities other than radioactive waste management, which take advantage of the confinement properties of the clay barrier (oil and gas industries, gas geological storage, CO 2 geological sequestration, chemical waste isolation

  10. Clays in natural and engineered barriers for radioactive waste confinement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The meeting covers all topics concerning natural argillaceous geological barriers and the clay material based engineered barrier systems, investigated by means of: laboratory experiments on clay samples (new analytical developments), in situ experiments in underground research laboratories, mock-up demonstrations, natural analogues, as well as numerical modelling and global integration approaches (including up-scaling processes and treatment of uncertainties). The works presented deal with: examples of broad research programs (national or international) on the role of natural and artificial clay barriers for radionuclide confinement; clay-based repository concepts: repository designs, including technological and safety issues related to the use of clay for nuclear waste confinement; geology and clay characterisation: mineralogy, sedimentology, paleo-environment, diagenesis, dating techniques, discontinuities in rock clay, fracturing, self sealing processes, role of organic matter and microbiological processes; geochemistry: pore water geochemistry, clay thermodynamics, chemical retention, geochemical modelling, advanced isotopic geochemistry; mass transfer: water status and hydraulic properties in low permeability media, pore space geometry, water, solute and gas transfer processes, colloid mediated transport, large scale movements, long-term diffusion; alteration processes: oxidation effects, hydration-dehydration processes, response to thermal stress, iron-clay interactions, alkaline perturbation; geomechanics: thermo-hydro-mechanical behaviour of clay, rheological models, EDZ characterisation and evolution, coupled behaviour and models (HM, THM, THMC). A particular interest is given to potential contributions coming from fields of activities other than radioactive waste management, which take advantage of the confinement properties of the clay barrier (oil and gas industries, gas geological storage, CO{sub 2} geological sequestration, chemical waste isolation

  11. Multiscale Micromechanical Modeling of Polymer/Clay Nanocomposites and the Effective Clay Particle

    Science.gov (United States)

    Sheng, Nuo; Boyce, Mary C.; Parks, David M.; Manovitch, Oleg; Rutledge, Gregory C.; Lee, Hojun; McKinley, Gareth H.

    2003-03-01

    Polymer/clay nanocomposites have been observed to exhibit enhanced mechanical properties at low weight fractions (Wp) of clay. Continuum-based composite modeling reveals that the enhanced properties are strongly dependent on particular features of the second-phase ¡°particles¡+/-; in particular, the particle volume fraction (fp), the particle aspect ratio (L/t), and the ratio of particle mechanical properties to those of the matrix. However, these important aspects of as-processed nanoclay composites have yet to be consistently and accurately defined. A multiscale modeling strategy was developed to account for the hierarchical morphology of the nanocomposite: at a lengthscale of thousands of microns, the structure is one of high aspect ratio particles within a matrix; at the lengthscale of microns, the clay particle structure is either (a) exfoliated clay sheets of nanometer level thickness or (b) stacks of parallel clay sheets separated from one another by interlayer galleries of nanometer level height. Here, quantitative structural parameters extracted from XRD patterns and TEM micrographs are used to determine geometric features of the as-processed clay ¡°particles¡+/-, including L/t and the ratio of fp to Wp. These geometric features, together with estimates of silicate lamina stiffness obtained from molecular dynamics simulations, provide a basis for modeling effective mechanical properties of the clay particle. The structure-based predictions of the macroscopic elastic modulus of the nanocomposite as a function of clay weight fraction are in excellent agreement with experimental data. The adopted methodology offers promise for study of related properties in polymer/clay nanocomposites.

  12. Clay intercalation and influence on crystallinity of EVA-based clay nanocomposites

    International Nuclear Information System (INIS)

    Chaudhary, D.S.; Prasad, R.; Gupta, R.K.; Bhattacharya, S.N.

    2005-01-01

    Various polymer clay nanocomposites (PCNs) were prepared from ethylene vinyl acetate copolymer (EVA) with 9, 18 and 28% vinyl acetate (VA) content filled with different wt.% (2.5, 5 and 7.5) of a Montmorillonite-based organo-modified clay (Cloisite[reg] C15A and C30B). The PCNs were prepared using melt blending techniques. Morphological information regarding intercalation and exfoliation were determined by using wide-angle X-ray scattering (WAXS) and transmission electron microscopy (TEM). WAXS and TEM confirmed that increasing the VA content was necessary to achieve greater clay-polymer interaction as seen from the comparatively higher intercalation of clay platelets with 28% VA. The effect of addition of clay on the development and the modification of crystalline morphology in EVA matrix was also studied using WAXS and temperature-modulated differential scanning calorimetry (MDSC). Results are presented showing that the addition of clay platelets does not increase the matrix crystallinity but the morphology was significantly modified such that there was an increase in the 'rigid' amorphous phase. Mechanical properties were also evaluated against the respective morphological information for each specimen and there are indications that the level of clay-polymer interaction plays a significant role in such morphological modification, and in such a way that affects the final PCN mechanical properties which has wide and significant applications in the packaging industries

  13. SBR Brazilian organophilic/clay nanocomposites

    International Nuclear Information System (INIS)

    Guimaraes, Thiago R.; Valenzuela-Diaz, Francisco R.; Morales, Ana Rita; Paiva, Lucilene B.

    2009-01-01

    The aim of this work is the obtaining of SBR composites using a Brazilian raw bentonite and the same bentonite treated with an organic salt. The clays were characterized by XRD. The clay addition in the composites was 10 pcr. The composites were characterized by XRD and had measured theirs tension strength (TS). The composite with Brazilian treated clay showed TS 233% higher than a composite with no clay, 133% higher than a composite with Cloisite 30B organophilic clay and 17% lower than a composite with Cloisite 20 A organophilic clay. XRD and TS data evidence that the composite with Brazilian treated clay is an intercalated nanocomposite. (author)

  14. Atrazine biodegradation modulated by clays and clay/humic acid complexes

    International Nuclear Information System (INIS)

    Besse-Hoggan, Pascale; Alekseeva, Tatiana; Sancelme, Martine; Delort, Anne-Marie; Forano, Claude

    2009-01-01

    The fate of pesticides in the environment is strongly related to the soil sorption processes that control not only their transfer but also their bioavailability. Cationic (Ca-bentonite) and anionic (Layered Double Hydroxide) clays behave towards the ionisable pesticide atrazine (AT) sorption with opposite tendencies: a noticeable sorption capacity for the first whereas the highly hydrophilic LDH showed no interactions with AT. These clays were modified with different humic acid (HA) contents. HA sorbed on the clay surface and increased AT interactions. The sorption effect on AT biodegradation and on its metabolite formation was studied with Pseudomonas sp. ADP. The biodegradation rate was greatly modulated by the material's sorption capacity and was clearly limited by the desorption rate. More surprisingly, it increased dramatically with LDH. Adsorption of bacterial cells on clay particles facilitates the degradation of non-sorbed chemical, and should be considered for predicting pesticide fate in the environment. - The biodegradation rate of atrazine was greatly modulated by adsorption of the pesticide and also bacterial cells on clay particles.

  15. Influence of Polymer-Clay Interfacial Interactions on the Ignition Time of Polymer/Clay Nanocomposites.

    Science.gov (United States)

    Zope, Indraneel S; Dasari, Aravind; Yu, Zhong-Zhen

    2017-08-11

    Metal ions present on smectite clay (montmorillonite) platelets have preferential reactivity towards peroxy/alkoxy groups during polyamide 6 (PA6) thermal decomposition. This changes the decomposition pathway and negatively affects the ignition response of PA6. To restrict these interfacial interactions, high-temperature-resistant polymers such as polyetherimide (PEI) and polyimide (PI) were used to coat clay layers. PEI was deposited on clay by solution-precipitation, whereas PI was deposited through a solution-imidization-precipitation technique before melt blending with PA6. The absence of polymer-clay interfacial interactions has resulted in a similar time-to-ignition of PA6/PEI-clay (133 s) and PA6/PI-clay (139 s) composites as neat PA6 (140 s). On the contrary, PA6 with conventional ammonium-based surfactant modified clay has showed a huge drop in time-to-ignition (81 s), as expected. The experimental evidences provided herein reveal the role of the catalytic activity of clay during the early stages of polymer decomposition.

  16. Assessment of toxic metals and phthalates in children's toys and clays.

    Science.gov (United States)

    Korfali, Samira I; Sabra, Rayan; Jurdi, Mey; Taleb, Robin I

    2013-10-01

    Toxic metals and phthalates are introduced in the manufacturing of plastic toys and modeling clays. In Lebanon, inexpensive plastic toys and modeling clays (sold in dollar stores) are affordable and popular, and there is no legislation to monitor or regulate such toys. This study aimed to assess the quality of inexpensive plastic toys and modeling clays imported in Lebanon. Metal concentrations in toys, namely, zinc [not detectable (ND) to 3,708 μg/g], copper (ND to 140), chromium (ND to 75 μg/g), tin (ND to 39 μg/g), and cadmium (Cd) (ND to 20 μg/g), were lower than the European Union (EU) Directive limits, whereas lead (ND to 258 μg/g) in 10% of samples and antimony (Sb) (ND to 195 μg/g) in 5% of samples were greater than the EU limits. In modeling clays, most of the metals were lower than the EU Directive limits except for Cd and arsenic (As). Cd was detected in 83% of samples, with a mean level of 9.1 μg/g, which is far greater than the EU Directive limit (1.9 μg/g). The As mean level of 4.5 μg/g was greater than the EU limit (4.0 μg/g) and was detected in 9% of samples. Phthalic acid esters (PAEs) were found in 60% of children's toys and 77% of modeling clays. Phthalic acid butyl ester had the highest-level PAE encountered and was ≤59.1 % in one type of clay. However, among children's toys, di(4-octyl) ester terephthalic acid was the highest encountered phthalate at a concentration of 25.7%. The community survey indicated that 82% of households purchase their toys from inexpensive shops and that only 17% of parents were aware of the health hazard of such toys. Consequently, an intervention plan was proposed for the provision of safe toys to children.

  17. Study of the Effect of Clay Particles on Low Salinity Water Injection in Sandstone Reservoirs

    Directory of Open Access Journals (Sweden)

    Sina Rezaei Gomari

    2017-03-01

    Full Text Available The need for optimal recovery of crude oil from sandstone and carbonate reservoirs around the world has never been greater for the petroleum industry. Water-flooding has been applied to the supplement primary depletion process or as a separate secondary recovery method. Low salinity water injection is a relatively new method that involves injecting low salinity brines at high pressure similar to conventional water-flooding techniques, in order to recover crude oil. The effectiveness of low salinity water injection in sandstone reservoirs depends on a number of parameters such as reservoir temperature, pressure, type of clay particle and salinity of injected brine. Clay particles present on reservoir rock surfaces adsorb polar components of oil and modify wettability of sandstone rocks to the oil-wet state, which is accountable for the reduced recovery rates by conventional water-flooding. The extent of wettability alteration caused by three low salinity brines on oil-wet sandstone samples containing varying clay content (15% or 30% and type of clay (kaolinite/montmorillonite were analyzed in the laboratory experiment. Contact angles of mica powder and clay mixture (kaolinite/montmorillonite modified with crude oil were measured before and after injection with three low salinity sodium chloride brines. The effect of temperature was also analyzed for each sample. The results of the experiment indicate that samples with kaolinite clay tend to produce higher contact angles than samples with montmorillonite clay when modified with crude oil. The highest degree or extent of wettability alteration from oil-wet to intermediate-wet state upon injection with low salinity brines was observed for samples injected with brine having salinity concentration of 2000 ppm. The increase in temperature tends to produce contact angles values lying in the higher end of the intermediate-wet range (75°–115° for samples treated at 50 °C, while their corresponding

  18. Magnetic resonance imaging of clays: swelling, sedimentation, dissolution

    Science.gov (United States)

    Dvinskikh, Sergey; Furo, Istvan

    2010-05-01

    While most magnetic resonance imaging (MRI) applications concern medical research, there is a rapidly increasing number of MRI studies in the field of environmental science and technology. In this presentation, MRI will be introduced from the latter perspective. While many processes in these areas are similar to those addressed in medical applications of MRI, parameters and experimental implementations are often quite different and, in many respects, far more demanding. This hinders direct transfer of existing methods developed for biomedical research, especially when facing the challenging task of obtaining spatially resolved quantitative information. In MRI investigation of soils, clays, and rocks, mainly water signal is detected, similarly to MRI of biological and medical samples. However, a strong variation of water mobility and a wide spread of water spin relaxation properties in these materials make it difficult to use standard MRI approaches. Other significant limitations can be identified as following: T2 relaxation and probe dead time effects; molecular diffusion artifacts; varying dielectric losses and induced currents in conductive samples; limited dynamic range; blurring artifacts accompanying drive for increasing sensitivity and/or imaging speed. Despite these limitations, by combining MRI techniques developed for solid and liquid states and using independent information on relaxation properties of water, interacting with the material of interest, true images of distributions of both water, material and molecular properties in a wide range of concentrations can be obtained. Examples of MRI application will be given in the areas of soil and mineral research where understanding water transport and erosion processes is one of the key challenges. Efforts in developing and adapting MRI approaches to study these kinds of systems will be outlined as well. Extensive studies of clay/water interaction have been carried out in order to provide a quantitative

  19. Assessment of geomechanical properties of intact Opalinus Clay - Expert report

    International Nuclear Information System (INIS)

    Amann, F.; Vogelhuber, M.

    2015-11-01

    This comprehensive report published by the Swiss Federal Nuclear Safety Inspectorate ENSI presents an expert report published on the assessment of the geomechanical properties of intact Opalinus Clay. This review report addresses the conceptual constitutive framework for repositories in Opalinus Clay. The author addresses the geomechanical fundamentals that are necessary in order to adequately judge experiments on intact Opalinus Clay and the interpretation of the results. The report assesses in detail the various test series on intact Opalinus Clay carried out along with the interpretations made by experts and NAGRA. Further assessments are quoted including those on sample geometries tested, effective strength properties, undrained shear strength properties and elastic properties. The results of work done by other experts are also presented and discussed. The report is completed with a list of relevant literature

  20. Assessment of geomechanical properties of intact Opalinus Clay - Expert report

    Energy Technology Data Exchange (ETDEWEB)

    Amann, F. [Eidgenössische Technische Hochschule ETHZ, Zürich (Switzerland); Vogelhuber, M. [Dr. von Moos AG, Geotechnisches Büro, Zürich (Switzerland)

    2015-11-15

    This comprehensive report published by the Swiss Federal Nuclear Safety Inspectorate ENSI presents an expert report published on the assessment of the geomechanical properties of intact Opalinus Clay. This review report addresses the conceptual constitutive framework for repositories in Opalinus Clay. The author addresses the geomechanical fundamentals that are necessary in order to adequately judge experiments on intact Opalinus Clay and the interpretation of the results. The report assesses in detail the various test series on intact Opalinus Clay carried out along with the interpretations made by experts and NAGRA. Further assessments are quoted including those on sample geometries tested, effective strength properties, undrained shear strength properties and elastic properties. The results of work done by other experts are also presented and discussed. The report is completed with a list of relevant literature.

  1. Analysis and characterization of kaolinitic clay Rio Grande do Norte for use in refractory

    International Nuclear Information System (INIS)

    Medeiros, A.L.; Souza Junior, C.F.; Silva, C.L. Mendes da

    2011-01-01

    This work aims to characterize clays from the State of Rio Grande do Norte for use in the manufacture of refractory bricks. Initially, we analyzed the X-ray fluorescence and X-ray diffraction on samples of clay to obtain the components of the starting materials and their microstructures. The test samples were fabricated by uniaxial pressure of 20 MPa, and then were sintered between 1000 ° C and 1200 ° C, with a landing sintering for 1 hour. Tests including thermal shrinkage, water absorption and apparent porosity. Initial results of the analysis indicate the presence of clay minerals kaolinite, montmorillonite and muscovite, as well group minerals of quartz, dolomite, calcite and calcium silicate in the samples tested. (author)

  2. Squeezed Interstitial Water and Soil Properties in Pleistocene Blue Clays under Different Natural Environments

    Directory of Open Access Journals (Sweden)

    Maria Dolores Fidelibus

    2018-03-01

    Full Text Available Studies dating almost a century relate clay properties with the structure of the diffuse double layer (DDL, where the charged surfaces of clay crystal behave like an electric capacitor, whose dielectric is the interstitial fluid. The intensity of the inner electric field relates to the concentration and type of ions in the DDL. Other important implications of the model are less stressed: this part of the clay soil system, energetically speaking, is conservative. External contribution of energy, work of overburden or sun driven capillarity and long exposure to border low salinity waters can modify the concentration of pore-waters, thus affecting the DDL geometry, with electric field and energy storage variations. The study of clay soils coming from various natural geomorphological and hydrogeological contexts, determining a different salinity of interacting groundwater, shows how the clay interaction with freely circulating waters at the boundaries produces alterations in the native pore water salinity, and, at the nano-scale, variations of electric field and stored energy from external work. The swelling and the shrinkage of clay soil with their volumetric and geotechnical implications should be regarded as variations of the electrostatic and mechanical energy of the system. The study is based on tests on natural clay soil samples coming from a formation of stiff blue clays, widespread in southern Italy. Geotechnical identification and oedometer tests have been performed, and pore waters squeezed out from the specimens have been analyzed. Tested samples have similar grain size, clay fraction and plasticity; sorted according to the classified geomorphological/hydrogeological contexts, they highlight good correlations among dry density, mechanical work performed in selected stages of the oedometric test, swelling and non-swelling behaviour, and electrical conductivity of the squeezed pore waters. The work performed for swelling and non

  3. Laboratory hydro-mechanical characterisation of Boom Clay at Essen and Mol

    International Nuclear Information System (INIS)

    Deng, Y. F.; Tang, A. M.; Cui, Y. J.; Nguyen, X. P.; Li, X. L.; Wouters, L.

    2011-01-01

    Boom Clay has been selected as a potential host rock formation for the geological disposal of radioactive waste in Belgium. In the present work, the hydro-mechanical behaviour of Boom Clay samples from the borehole Essen-1 at a depth of 220-260 m and from HADES that is the underground rock laboratory at Mol in Belgium, at 223-m depth was investigated in the laboratory by performing low pressure odometer tests (vertical effective stress ranging from 0.05 to 3.2 MPa), high pressure odometer tests (vertical effective stress ranging from 0.125 to 32 MPa), isotropic consolidation tests (confining effective stress ranging from the in situ stress to 20 MPa) and triaxial shear tests. It has been observed that the mineralogy, geotechnical properties and hydro-mechanical behaviour of Boom Clay from Essen at 227-m, 240-m and 248-m depths are similar to that of Boom Clay from Mol. As in the case of Boom Clay at Mol, the failure envelope of Boom Clay at Essen in the p'- q plane is not linear. The slope of the portion beyond the pre-consolidation stress of Boom Clay from Essen is almost the same as that from Mol, suggesting a similar internal friction angle of about 13 deg. The compression curves (void index I v versus logarithm of vertical stress) beyond the pre-consolidation stress are the same for both samples from Mol and Essen, and situated between the intrinsic compression line (ICL) and the sedimentation compression line (SCL). The yield stress determined from odometer tests seems to be stress-path dependent and lower than the pre-consolidation stress. Thus determining the over-consolidation ratio (OCR) using the yield stress value would lead to an incorrect estimate. From a practical point view, the laboratory test results from Essen and their comparison with those from Mol provide important information regarding the transferability of knowledge on Boom Clay at different sites, taking into account the fact that most investigations have been carried out on Boom Clay at

  4. Phosphonium modified clay/polyimide nanocomposites

    International Nuclear Information System (INIS)

    Ceylan, Hatice; Çakmakçi, Emrah; Beyler-Çiǧil, Asli; Kahraman, Memet Vezir

    2014-01-01

    In this study, octyltriphenylphosphonium bromide [OTPP-Br] was prepared from the reaction of triphenylphosphine and 1 -bromooctane. The modification of clay was done by ion exchange reaction using OTPP-Br in water medium. Poly(amic acid) was prepared from the reaction of 3,3',4,4'-Benzophenonetetracarboxylic dianhydride (BTDA) and 4,4'-Oxydianiline (ODA). Polyimide(PI)/clay hybrids were prepared by blending of poly(amic acid) and organically modified clay as a type of layered clays. The morphology of the Polyimide/ phosphonium modified clay hybrids was characterized by scanning electron microscopy (SEM). Chemical structures of polyimide and Polyimide/ phosphonium modified clay hybrids were characterized by FTIR. SEM and FTIR results showed that the Polyimide/ phosphonium modified clay hybrids were successfully prepared. Thermal properties of the Polyimide/ phosphonium modified clay hybrids were characterized by thermogravimetric analysis (TGA)

  5. Molecular dynamics study on interfacial thermal conductance of unirradiated and irradiated SiC/C

    International Nuclear Information System (INIS)

    Wang, Qingyu; Wang, Chenglong; Zhang, Yue; Li, Taosheng

    2014-01-01

    SiC f /SiC composite materials have been considered as candidate structural materials for several types of advanced nuclear reactors. Both experimental and computer simulations studies have revealed the degradation of thermal conductivity for this material after irradiation. The objective of this study is to investigate the effect of SiC/graphite interface structure and irradiation on the interfacial thermal conductance by using molecular dynamics simulation. Five SiC/graphite composite models were created with different interface structures, and irradiation was introduced near the interfaces. Thermal conductance was calculated by means of reverse-NEMD method. Results show that there is a positive correlation between the interfacial energy and interfacial C–Si bond quantity, and irradiated models showed higher interfacial energy compared with their unirradiated counterparts. Except the model with graphite atom plane parallel to the interface, the interfacial thermal conductance of unirradiated and irradiated (1000 eV) models, increases as the increase of interfacial energy, respectively. For all irradiated models, lattice defects are of importance in impacting the interfacial thermal conductance depending on the interface structure. For the model with graphite layer parallel to the interface, the interfacial thermal conductance increased after irradiation, for the other models the interfacial thermal conductance decreased. The vibrational density of states of atoms in the interfacial region was calculated to analyze the phonon mismatch at the interface

  6. Use of x-ray radiographic methods in the study of clay liners

    International Nuclear Information System (INIS)

    Malone, P.G.; May, J.H.; Brown, K.W.; Thomas, J.C.

    1986-01-01

    X-ray radiography has been widely used in soil investigation to study the distribution of layers in soil cores and the effects of changing conditions (loading or impact) on soil structure. X-ray radiographic techniques also can be useful in studying clays or clay soils used in liners. Laboratory investigations were undertaken to demonstrate that X-ray radiographic techniques could be used to detect density and soil structure changes that usually accompany variations in hydraulic conductivity of clay liners. An example of a real-time test of a simulated bentonite and sand, liner attacked with acid lead nitrate and examples of radiographic examination of clay soil (non-calcareous smectite) samples that have been permeated by lead acetate or lead nitrate are presented. The changes in density and structure can be related to changes observed in hydraulic conductivity during permeation. X-ray radiography easily can be applied to field samples of soil or clay liner materials to detect density and structural changes that occur as the liner and permeating fluid interact. X-ray techniques have applications in both understanding failure mechanisms and forecasting liner performance

  7. Characterization of a clay from Vitoria da Conquista, Bahia, Brazil, by thermal analysis

    International Nuclear Information System (INIS)

    Oliveira, O.M.; Zandonadi, A.R.; Martins, M.V. Surmani; Carrio, J.A.G.; Munhoz Junior, A.H.

    2010-01-01

    Kaolinitic clays are vastly used in ceramic industry. Light coloration burned clays are very useful in the coatings production because of their aesthetic. In this work clay material from Vitoria da Conquista (south-west Bahia, Brazil) was characterized by various techniques. Differential Scanning Calorimetry (DSC) shows a kaolinite characteristic curve with an endothermic peak at 492 deg C, which corresponds to the kaolinite - metakaolinite transformation. Transformation alpha to beta quartz is characterized by a 573 deg C peak. The samples were also characterized by water absorption and x rays powder diffraction. The 1100 deg C burned samples were tested by rupture tension with acceptable results. (author)

  8. Clay fraction mineralogy of a Cambisol in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Anastacio, A. S.; Fabris, J. D., E-mail: jdfabris@ufmg.br [Federal University of Minas Gerais, Campus - Pampulha, Department of Chemistry (Brazil); Stucki, J. W. [Department of Natural Resources and Environmental Sciences (United States); Coelho, F. S.; Pinto, I. V. [Federal University of Minas Gerais, Campus - Pampulha, Department of Chemistry (Brazil); Viana, J. H. M. [Embrapa Milho e Sorgo (Brazil)

    2005-11-15

    Clay minerals having a 2:1 (tetrahedral:octahedral sheet) structure may be found in strongly weathering soils only if the local pedo-climatic environment prevents them from further weathering to other minerals such as iron oxides. The clay minerals impart important chemical properties to soils, in part by virtue of changes in the redox state of iron in their crystal structures. Knowing the chemical nature of soil clays is a first step in evaluating their potential reactivity with other soil constituents and processes, such as the chemical decomposition of organic substrates to be potentially used in environmental remediation. The purpose of this work was to characterize the iron oxides and iron-bearing clay minerals from a B horizon of a Cambisol developed on tuffite in the State of Minas Gerais, Brazil, using chemical analysis, powder X-ray diffraction, Moessbauer spectroscopy, and thermal analysis. The iron oxides of this NaOH-treated clay-fraction were found to contain mainly maghemite ({gamma}Fe{sub 2}O{sub 3}) and superparamagnetic goethite ({alpha}FeOOH). Kaolinite (Al{sub 2}Si{sub 2}O{sub 5}(OH){sub 4}), smectite, and minor portions of anatase (TiO{sub 2}) were identified in the CBD-treated sample.

  9. Comparative evaluation of clays from Abakaliki Formation with ...

    African Journals Online (AJOL)

    Okeey Aghamelu

    Department of Geology, Ebonyi State University, Abakaliki, Ebonyi State, Nigeria. ... classified as inorganic clays of high plasticity (CH) according to Unified Soil Classification System .... movement through the outcrop locations and sample.

  10. Pengaruh Proses Pelapukan Clay Shale terhadap Perubahan Parameter Rasio Disintegritas (DR

    Directory of Open Access Journals (Sweden)

    Idrus M Alatas

    2017-04-01

    Full Text Available The background of this research because of the frequent occurrence of the failure in the geotechnical design of clay shale caused by weathering. Disintegration ratio is a comparison of physical changes due to weathering at certain times of the initial conditions. Changes in physical properties due to clay shale weathering determined by the disintegration ratio (DR.Clay shale weathering will occur more quickly as a result of wetting and drying cycles when compared with the drying process. While due to the increased number of cycles of wetting at the same time, causing weathering on clay shale will be faster again. Until the 80th day of drying time, the magnitude DRof Semarang-Bawenclay shaleand Hambalang are the same, namely DR = 0.916 (completelly durable. However, due to wetting and drying cycles on day 32, samples of Semarang-Bawenclay shale is DR = 0.000 or non durable completelly, while on Hambalang clay shale in same day DR between 0.2117 to 0.3344. Generally Semarang-Bawen clay shale will be faster weathered than Hambalang clay shale. It is caused by the mineralogy content of Semarang-Bawen clay shale has dominated by Smectite, and Hambalangclay shalehas dominated mineral Kaolinite and Illlite.

  11. Water Retention Curves of Opalinus Clay

    International Nuclear Information System (INIS)

    Villar, M. V.; Romero, F. J.

    2012-01-01

    The water retention curve of Opalinus clay samples was determined under different conditions: total and matric suction, stress or no-stress conditions, wetting and drying paths. Through the fitting of these results to the van Genuchten expression the P parameter, related to the air entry value (AEV), was obtained. The AEV is the suction value above which air is able to enter the pores of the sample, and consequently, above which 2-phase flow can take place in the soil pore structure. The samples used in this research came from two different boreholes, BHT-1 and BHG-D1, but the behaviour of them did not depend on their location, what was probably due to the fact that both were drilled in the shay facies of the Opalinus clay. There was not a distinct difference between the results obtained under total or matric suctions. In the drying paths, both the water contents and the degrees of saturation tended to be higher when total suction was applied, however the reverse trend was observed for the water contents reached in wetting paths. As well, no clear difference was observed in the water retention curves obtained in odometers under matric and total suctions, what points to the osmotic component of suction in Opalinus clay not being significant. Overall, the water contents were lower and the degrees of saturation higher when suction was applied under vertical stress, what would indicate that the water retention capacity was lower under 8 MPa vertical stress than under free volume conditions. This vertical stress value is slightly higher than the maximum in situ stress. Also, the samples showed hysteresis according to the expected behaviour, i.e. the water contents for a given suction were higher during a drying path than during a wetting path. The P values obtained were between 6 and 34 MPa, and tended to be higher for the samples tested under stress, in drying paths and when total suction was used. The air entry value calculated from the mercury intrusion porosimetry

  12. Water Retention Curves of Opalinus Clay

    Energy Technology Data Exchange (ETDEWEB)

    Villar, M. V.; Romero, F. J.

    2012-11-01

    The water retention curve of Opalinus clay samples was determined under different conditions: total and matric suction, stress or no-stress conditions, wetting and drying paths. Through the fitting of these results to the van Genuchten expression the P parameter, related to the air entry value (AEV), was obtained. The AEV is the suction value above which air is able to enter the pores of the sample, and consequently, above which 2-phase flow can take place in the soil pore structure. The samples used in this research came from two different boreholes, BHT-1 and BHG-D1, but the behaviour of them did not depend on their location, what was probably due to the fact that both were drilled in the shay facies of the Opalinus clay. There was not a distinct difference between the results obtained under total or matric suctions. In the drying paths, both the water contents and the degrees of saturation tended to be higher when total suction was applied, however the reverse trend was observed for the water contents reached in wetting paths. As well, no clear difference was observed in the water retention curves obtained in odometers under matric and total suctions, what points to the osmotic component of suction in Opalinus clay not being significant. Overall, the water contents were lower and the degrees of saturation higher when suction was applied under vertical stress, what would indicate that the water retention capacity was lower under 8 MPa vertical stress than under free volume conditions. This vertical stress value is slightly higher than the maximum in situ stress. Also, the samples showed hysteresis according to the expected behaviour, i.e. the water contents for a given suction were higher during a drying path than during a wetting path. The P values obtained were between 6 and 34 MPa, and tended to be higher for the samples tested under stress, in drying paths and when total suction was used. The air entry value calculated from the mercury intrusion porosimetry

  13. In situ synthesis, characterization, and catalytic performance of tungstophosphoric acid encapsulated into the framework of mesoporous silica pillared clay.

    Science.gov (United States)

    Li, Baoshan; Liu, Zhenxing; Han, Chunying; Ma, Wei; Zhao, Songjie

    2012-07-01

    Mesoporous silica pillared clay (SPC) incorporated with tungstophosphoric acid (HPW) has been synthesized via in situ introducing P and W source in the acidic suspension of the clay interlayer template during the formation of the silica pillared clay. The samples were characterized by XRD, XRF, FT-IR, TG-DTA, N(2) adsorption-desorption, and SEM techniques. The results showed that the HPW formed by in situ method has been effectively introduced into the framework of mesoporous silica pillared clay and its Keggin structure remained perfectly after formation of the materials. In addition, samples with similar HPW loadings were also prepared by impregnation method using SPC as the support. HPW in the incorporated samples was better dispersed into the silica pillared clay than in the impregnated samples. The results of catalytic tests indicated that the encapsulated materials demonstrated better catalytic performance than the impregnated samples in oxidative desulfurization (ODS) of dibenzothiophene (DBT). Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Stabilization of Clay Soil Using Tyre Ash

    Directory of Open Access Journals (Sweden)

    Mahmood Dheyab Ahmed

    2017-06-01

    Full Text Available The planning, designing, construction of excavations and foundations in soft to very soft clay soils are always difficult. They are problematic soil that caused trouble for the structures built on them because of the low shear strength, high water content, and high compressibility. This work investigates the geotechnical behavior of soft clay by using tyre ash material burnt in air. The investigation contains the following tests: physical tests, chemical tests, consolidation test, Compaction tests, shear test, California Bearing Ratio test CBR, and model tests. These tests were done on soil samples prepared from soft clay soil; tyre ash was used in four percentages (2, 4, 6, and 8%. The results of the tests were; The soil samples which gave the value of plasticity test were 2% (25, 4% (25.18, 6% (25.3, and 8% (26.7.The soil samples which gave the value of specific gravity were 2% (2.65, 4% (2.61, 6% (2.5, and 8% (2.36.The value of maximum dry density in a compaction test observed with 2% percentage gave the value 15.8 kN/m3, the 4% gave the value 15.4 kN/m 3 34 , 6% gave 15.3 kN/m 3 and 8%with 15.2 kN/m3 .Samples that gave the values of undrained shear strength test were 2% (55 kN/m 2 , 4% (76 kN/m2 , 6% (109 kN/m 2, and 8% (122 kN/m 2. The best of them is 8%. The sample that gave the best value for swelling test was 8%.The best value for compression index Cc was in 8%.The results of CBR test, were improved in all soil samples. The soil samples which gave the value for CBR were 2% (3.507%, 4% (4.308%, 6% (5.586%, and 8% (9.569%. The best value was obtained from 8%.

  15. Lability of soil organic carbon in tropical soils with different clay minerals

    DEFF Research Database (Denmark)

    Bruun, Thilde Bech; Elberling, Bo; Christensen, Bent Tolstrup

    2010-01-01

    Soil organic carbon (SOC) storage and turnover is influenced by interactions between organic matter and the mineral soil fraction. However, the influence of clay content and type on SOC turnover rates remains unclear, particularly in tropical soils under natural vegetation. We examined the lability...... of SOC in tropical soils with contrasting clay mineralogy (kaolinite, smectite, allophane and Al-rich chlorite). Soil was sampled from A horizons at six sites in humid tropical areas of Ghana, Malaysian Borneo and the Solomon Islands and separated into fractions above and below 250 µm by wet sieving....... Basal soil respiration rates were determined from bulk soils and soil fractions. Substrate induced respiration rates were determined from soil fractions. SOC lability was significantly influenced by clay mineralogy, but not by clay content when compared across contrasting clay minerals. The lability...

  16. Study of clays by means of Moessbauer spectoscopy

    International Nuclear Information System (INIS)

    Marticorena, B.

    1982-01-01

    A Moessbauer spectroscopic method has been applied to study layers of clays originating from different places and ceramic from Pachacamac, an archeological site near Lima. We have performed a Moessbauer analysis of the samples mentioned above, submitting them to a thermal treatment in order to determine the influcence on the mineral ferrous compounds of the time and the baking atmoshere. The results obtained do not allow us to conclude that such a method is useful either in the case of clays and/or ceramics which are coming from different places or of archeological

  17. Compaction of microfossil and clay-rich chalk sediments

    DEFF Research Database (Denmark)

    Fabricius, Ida Lykke

    2001-01-01

    The aim of this study was to evaluate the role of microfossils and clay in the compaction of chalk facies sediments. To meet this aim, chalk sediments with varying micro texture were studied. The sediments have been tested uniaxially confined in a stainless-steel compaction cell. The sediments are......: 1) Pure carbonate chalk with mudstone texture from Stevns Klint (Denmark), 2) Relatively pure chalk sediments with varying content of microfossils from the Ontong Java Plateau (Western Pacific), 3) Clay-rich chalk and mixed sediments from the Caribbean. The tested samples were characterised...

  18. Technetium migration in natural clays

    International Nuclear Information System (INIS)

    Luebke, Maria

    2015-01-01

    The present work was performed within the joint research project ''Retention of repository relevant radionuclides in argillaceous rocks and saline systems'' (contract no.: 02E10981), funded by the Federal Ministry for Economic Affairs and Energy (BMWi). The aim was to obtain first insights into the interaction of the long-lived fission product technetium and natural clay with regard to a repository for high-level nuclear waste. For this purpose Opalinus Clay from Mont Terri (northern Switzerland) was used as a reference material. The nuclide technetium-99 will contribute to the radiotoxicity of spent nuclear fuel for more than thousand years due to its long half-live. In case of a leakage of the storage vessels, the geochemistry of technetium is determined by its oxidation state, at which only the oxidation states +IV and +VII are relevant. Because of the high solubility and low affinity to sorption on surfaces of minerals, Tc(VII) is considered to be very mobile and thus the most hazardous species. The focuses of this study therefore are diffusion experiments with this mobile species and investigations of the effect of ferrous iron on the mobility and speciation of technetium.rnThe interaction of technetium and Opalinus Clay was studied in sorption and diffusion experiments varying several parameters (pH value, addition of reducing agents, effect of oxygen, diffusion pathways). In the course of this study spatially resolved investigations of the speciation have been performed on Opalinus Clay thin sections and bore cores for the first time. In addition to the speciation, further information regarding elemental distributions and crystalline phases near technetium enrichments were obtained. Supplementary investigations of powder samples allowed determining the molecular structure of technetium on the clay surface.rnBoth the combination of sorption experiments with spectroscopic investigations and the diffusion experiment exhibit a reduction of Tc

  19. Common clay and shale

    Science.gov (United States)

    Virta, R.L.

    2000-01-01

    Part of the 1999 Industrial Minerals Review. The clay and shale market in 1999 is reviewed. In the U.S., sales or use of clay and shale increased from 26.4 million st in 1998 to 27.3 million st in 1999, with an estimated 1999 value of production of $143 million. These materials were used to produce structural clay products, lightweight aggregates, cement, and ceramics and refractories. Production statistics for clays and shales and for their uses in 1999 are presented.

  20. Effects of modified Clay on the morphology and thermal stability of PMMA/clay nanocomposites

    International Nuclear Information System (INIS)

    Tsai, Tsung-Yen; Lin, Mei-Ju; Chuang, Yi-Chen; Chou, Po-Chiang

    2013-01-01

    The potential to improve the mechanical, thermal, and optical properties of poly(methyl methacrylate) (PMMA)/clay nanocomposites prepared with clay containing an organic modifier was investigated. Pristine sodium montmorillonite clay was modified using cocoamphodipropionate, which absorbs UVB in the 280–320 nm range, via ion exchange to enhance the compatibility between the clay platelets and the methyl methacrylate polymer matrix. PMMA/clay nanocomposites were synthesized via in situ free-radical polymerization. Three types of clay with various cation-exchange capacities (CEC) were used as inorganic layered materials in these organic–inorganic hybrid nanocomposites: CL42, CL120, and CL88 with CEC values of 116, 168, and 200 meq/100 g of clay, respectively. We characterized the effects of the organoclay dispersion on UV resistance, effectiveness as an O 2 gas barrier, thermal stability, and mechanical properties of PMMA/clay nanocomposites. Gas permeability analysis demonstrated the excellent gas barrier properties of the nanocomposites, consistent with the intercalated or exfoliated morphologies observed. The optical properties were assessed using UV–Visible spectroscopy, which revealed that these materials have good optical clarity, UV resistance, and scratch resistance. The effect of the dispersion capability of organoclay on the thermal properties of PMMA/clay nanocomposites was investigated by thermogravimetric analysis and differential scanning calorimetry; these analyses revealed excellent thermal stability of some of the modified clay nanocomposites. - Highlights: ► We control the dispersion morphology by protonation of K2 into the clay. ► The CL120 and CL88, with the higher CEC, are more random intercalated by K2. ► We report these materials have good optical clarity, and UV resistance

  1. Acid activation of natural clays aiming their application in adsorption

    International Nuclear Information System (INIS)

    Silva, M.M. da; Sousa, A.K.F. de; Lima, W.S.; Vasconcelos, P.N.M. de; Rodrigues, M. G.F.

    2012-01-01

    Clays of smectite type have wide application in industrial, mainly due to their adsorption properties. However, it is necessary to subject them to chemical treatments to optimize their potential. This study aimed to analyze the effects of acid activation on the clay Brasgel fresh. In the acid activation was used concentrated hydrochloric acid at different concentrations (3M, 4.5 M and 6 M) at a temperature of 70 ° C for 30 minutes. The samples fresh and activated technique were characterized by X-ray Diffraction (XRD). The results show that the properties of clay after activation are improved, it could be used as adsorbents in the treatment of wastewater. (author)

  2. Sample size clay kaolin of primary in pegmatites regions Junco Serido - PB and Equador - RN

    International Nuclear Information System (INIS)

    Meyer, M.F.; Sousa, J.B.M.; Sales, L.R.; Silva, P.A.S.; Lima, A.D.D.

    2016-01-01

    Kaolin is a clay formed mainly of kaolinite resulting from feldspar weathering or hydrothermal. This study aims to investigate the way of occurrence, kaolin particle size of the pegmatites of the Borborema Province Pegmatitic in the regions of Junco do Serido-PB and Ecuador-RN. These variables were analyzed considering granulometric intervals obtained from wet sieving of samples of pegmatite mines in the region. Kaolin was received using sieves of 200, 325, 400 and 500 mesh and the sieve fractions retained by generating statistical parameters histograms. kaolin particles are extremely fine and pass in its entirety through 500 mesh sieve. The characterization of minerals in fine fractions by diffraction of X-rays showed that the relative amount of sericite in fractions retained in sieves 400 and 500 mesh impairing the whiteness and mineralogical texture kaolin production. (author)

  3. Selective Clay Placement Within a Silicate-Clay Epoxy Blend Nanocomposite

    Science.gov (United States)

    Miller, Sandi G (Inventor)

    2013-01-01

    A clay-epoxy nanocomposite may be prepared by dispersing a layered clay in an alkoxy epoxy, such as a polypropylene oxide based epoxide before combining the mixture with an aromatic epoxy to improve the nanocomposite's thermal and mechanical properties.

  4. Clay nanoparticles for regenerative medicine and biomaterial design: A review of clay bioactivity.

    Science.gov (United States)

    Mousa, Mohamed; Evans, Nicholas D; Oreffo, Richard O C; Dawson, Jonathan I

    2018-03-01

    Clay nanoparticles, composites and hydrogels are emerging as a new class of biomaterial with exciting potential for tissue engineering and regenerative medicine applications. Clay particles have been extensively explored in polymeric nanocomposites for self-assembly and enhanced mechanical properties as well as for their potential as drug delivery modifiers. In recent years, a cluster of studies have explored cellular interactions with clay nanoparticles alone or in combination with polymeric matrices. These pioneering studies have suggested new and unforeseen utility for certain clays as bioactive additives able to enhance cellular functions including adhesion, proliferation and differentiation, most notably for osteogenesis. This review examines the recent literature describing the potential effects of clay-based nanomaterials on cell function and examines the potential role of key clay physicochemical properties in influencing such interactions and their exciting possibilities for regenerative medicine. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Evidence for Smectite Clays from MSL SAM Analyses of Mudstone at Yellowknife Bay, Gale Crater, Mars

    Science.gov (United States)

    McAdam, Amy; Franz, Heather; Mahaffy, Paul R.; Eigenbrode, Jennifer L.; Stern, Jennifer C.; Brunner, Anna; Archer, Paul Douglas; Ming, Douglas W.; Morris, Richard V.; Atreya, Sushil K.

    2013-01-01

    Drilled samples of mudstone from the Sheepbed unit at Yellowknife Bay were analyzed by MSL instruments including the Sample Analysis at Mars (SAM) and Chemistry and Mineralogy (CheMin) instruments in MSL's Analytical Laboratory. CheMin analyses revealed the first in situ X-ray diffraction based evidence of clay minerals on Mars, which are likely trioctahedral smectites (e.g., saponite) and comprise approx 20% of the mudstone sample (e.g., Bristow et al., this meeting). SAM analyses, which heated the mudstone samples to 1000 C and monitored volatiles evolved to perform in situ evolved gas analysis mass spectrometry (EGA-MS), resulted in a H2O trace exhibiting a wide evolution at temperatures smectite interlayer H2O, and structural H2O/OH from bassanite and akaganeite (identified by CheMin) and H2O/OH from amorphous phases in the sample. The high temperature H2O is consistent with the evolution of H2O from the dehydroxylation of the smectite clay mineral. Comparison to EGA-MS data collected under SAM-like conditions on a variety of clay mineral reference materials indicate that a trioctahedral smectite, such as saponite, is most consistent with the high temperature H2O evolution observed. There may also be SAM EGA-MS evidence for a small high temperature H2O evolution from scoop samples from the Yellowknife Bay Rocknest sand shadow bedform. As in the mudstone samples, this evolution may indicate the detection of smectite clays, and the idea that minor clays may be present in Rocknest materials that could be expected to be at least partially derived from local sources is reasonable. But, because smectite clays were not definitively observed in CheMin analyses of Rocknest materials, they must be present at much lower abundances than the approx 20% observed in the mudstone samples. This potential detection underscores the complementary nature of the MSL CheMin and SAM instruments for investigations of martian sample mineralogy. Information on the nature of Yellowknife

  6. Thixotropic Properties of Latvian Clays

    OpenAIRE

    Lakevičs, Vitālijs; Stepanova, Valentīna; Ruplis, Augusts

    2015-01-01

    This research studies Latvia originated Devon (Tūja, Skaņkalne), quaternary (Ceplīši), Jurassic, (Strēļi) and Triassic (Vadakste) deposit clays as well as Lithuania originated Triassic (Akmene) deposit clays. Thixotropic properties of clay were researched by measuring relative viscosity of clay in water suspensions. Relative viscosity is measured with a hopper method. It was detected that, when concentration of suspension is increased, clay suspension’s viscosity also increases. It happens un...

  7. Investigations on self-sealing of indurated clay - Part of the NF-PRO project. Final report

    International Nuclear Information System (INIS)

    Zhang, Chun-Liang; Rothfuchs, T.; Dittrich, J.; Mueller, J.

    2008-03-01

    The self-sealing potential of the Callovo-Oxfordian argillite and the Opalinus clay was investigated on strongly damaged samples. Gas permeability as a function of the confining stress before and after water resaturation was measured. Not only normally-sized but also large-scale and cylindrical ring-shaped samples were tested. Each test lasted over a time period of 5 to 16 months. The experimental findings are: 1. The permeability of the pre-damaged samples decreased significantly with a concurrent increase of the confining stress due to fracture closure. The permeability measured in radial direction on a hollow sample decreased from 10 -15 m 2 at a low confining stress of 1 MPa to 10 -21 m 2 at 28 MPa. The compression of the sample led to plastic closure of pre-existing fractures, leading to a significantly lower permeability after unloading. A similar permeability reduction with increasing confining stress was also observed in axial direction, parallel to the bedding plane. But, at low confining stresses below 10 MPa, the axial permeability parallel to the bedding was about one to two orders of magnitude higher than the radial one perpendicular to the bedding. The hydraulic anisotropy vanishes off with increasing the confining stress. 2. The permeability of fractured clay rocks was dominated by the confining stress normal to the fracture plane. This was validated by gas permeability measurements on a large sample (D=260 mm/L=616 mm) with fractures oriented parallel to the sample axis. The increase of the lateral stress from 3 to 18 MPa at 19 MPa axial stress led to a decrease of axial permeability from 10 -13 to 10 -19 m 2 . 3. The permeability od damaged clay rocks decreased also with time due to the time-dependent compaction of pores and fractures. On the pre-damaged samples, a permeability reduction by a factor of 4 to 8 was observed over two months at a low confining stress of 1.5 MPa. 4. The high swelling potential of the studied clay rocks led to the

  8. The influence of late-stage pupal irradiation and increased irradiated: un-irradiated male ratio on mating competitiveness of the malaria mosquito Anopheles arabiensis Patton.

    Science.gov (United States)

    Helinski, M E H; Knols, B G J

    2009-06-01

    Competitiveness of released males in genetic control programmes is of critical importance. In this paper, we explored two scenarios to compensate for the loss of mating competitiveness after pupal stage irradiation in males of the malaria mosquito Anopheles arabiensis. First, competition experiments with a higher ratio of irradiated versus un-irradiated males were performed. Second, pupae were irradiated just prior to emergence and male mating competitiveness was determined. Males were irradiated in the pupal stage with a partially or fully-sterilizing dose of 70 or 120 Gy, respectively. Pupae were irradiated aged 20-26 h (young) as routinely performed, or the pupal stage was artificially prolonged by cooling and pupae were irradiated aged 42-48 h (old). Irradiated males competed at a ratio of 3:1:1 to un-irradiated males for mates in a large cage design. At the 3:1 ratio, the number of females inseminated by males irradiated with 70 Gy as young pupae was similar to the number inseminated by un-irradiated males for the majority of the replicates. At 120 Gy, significantly fewer females were inseminated by irradiated than by un-irradiated males. The irradiation of older pupae did not result in a significantly improved male mating competitiveness compared to the irradiation of young pupae. Our findings indicate that the loss of competitiveness after pupal stage irradiation can be compensated for by a threefold increase of irradiated males, but only for the partially-sterilizing dose. In addition, cooling might be a useful tool to facilitate handling processes of large numbers of mosquitoes in genetic control programmes.

  9. Clay minerals behaviour in thin sandy clay-rich lacustrine turbidites (Lake Hazar, Turkey)

    Science.gov (United States)

    El Ouahabi, Meriam; Hubert-Ferrari, Aurelia; Lamair, Laura; Hage, Sophie

    2017-04-01

    Turbidites have been extensively studied in many different areas using cores or outcrop, which represent only an integrated snapshot of a dynamic evolving flow. Laboratory experiments provide the missing relationships between the flow characteristics and their deposits. In particular, flume experiments emphasize that the presence of clay plays a key role in turbidity current dynamics. Clay fraction, in small amount, provides cohesive strength to sediment mixtures and can damp turbulence. However, the degree of flocculation is dependent on factors such as the amount and size of clay particles, the surface of clay particles, chemistry and pH conditions in which the clay particles are dispersed. The present study focuses on thin clayey sand turbidites found in Lake Hazar (Turkey) occurring in stacked thin beds. Depositional processes and sources have been previously studied and three types were deciphered, including laminar flows dominated by cohesion, transitional, and turbulence flow regimes (Hage et al., in revision). For the purpose of determine the clay behavior in the three flow regimes, clay mineralogical, geochemical measurements on the cores allow characterising the turbidites. SEM observations provide further information regarding the morphology of clay minerals and other clasts. The study is particularly relevant given the highly alkaline and saline water of the Hazar Lake. Clay minerals in Hazar Lake sediments include kaolinite (1:1-type), illite and chlorite (2:1-type). Hazar lake water is alkaline having pH around 9.3, in such alkaline environment, a cation-exchange reaction takes place. Furthermore, in saline water (16‰), salts can act as a shield and decrease the repulsive forces between clay particle surfaces. So, pH and salt content jointly impact the behaviour of clays differently. Since the Al-faces of clay structures have a negative charge in basic solutions. At high pH, all kaolinite surfaces become negative-charged, and then kaolinite

  10. Radiation quality-dependence of bystander effect in unirradiated fibroblasts is associated with TGF-β1-Smad2 pathway and miR-21 in irradiated keratinocytes

    Science.gov (United States)

    Yin, Xiaoming; Tian, Wenqian; Wang, Longxiao; Wang, Jingdong; Zhang, Shuyu; Cao, Jianping; Yang, Hongying

    2015-01-01

    Traditional radiation biology states that radiation causes damage only in cells traversed by ionizing radiation. But radiation-induced bystander effect (RIBE), which refers to the biological responses in unirradiated cells when the neighboring cells are exposed to radiation, challenged this old dogma and has become a new paradigm of this field. By nature, RIBEs are the consequences of intercellular communication between irradiated and unirradiated cells. However, there are still some important questions remain unanswered such as whether RIBE is dependent on radiation quality, what are the determining factors if so, etc. Using a transwell co-culture system, we found that HaCaT keratinocytes irradiated with α-particles but not X-rays could induce bystander micronucleus formation in unirradiated WS1 fibroblasts after co-culture. More importantly, the activation of TGF-β1-Smad2 pathway and the consistent decrease of miR-21 level in α-irradiated HaCaT cells were essential to the micronucleus induction in bystander WS1 cells. On the other hand, X-irradiation did not induce bystander effect in unirradiated WS1 cells, accompanied by lack of Smad2 activation and consistent decrease of miR-21 in X-irradiated HaCaT cells. Taken together, these results suggest that the radiation quality-dependence of bystander effect may be associated with the TGF-β1-Smad2 pathway and miR-21 in irradiated cells. PMID:26080011

  11. Mineralogical characterization of Greda clays and monitoring of their phase transformations on thermal treatment

    International Nuclear Information System (INIS)

    Chavez Panduro, E.; Bravo Cabrejos, J.

    2010-01-01

    The mineralogical characterization of two clay samples from the Central Andean Region of Peru, denominated White Greda and Red Greda, is reported. These clays contain the clay minerals mica and illite respectively. Both clays were treated thermally in an oxidising atmosphere under controlled conditions up to 1,100 deg. C with the purpose of obtaining information about structural changes that may be useful for pottery manufacture. X-ray fluorescence was used for the elemental characterization of the samples and X-ray diffractometry was used to determine the collapse and formation of the mineral phases present in the samples caused by thermal treatment. At temperatures above 1,000 deg. C it is observed the formation of spinel in the case of White Greda and of hematite, corundum and cristobalite in the case of Red Greda. Room temperature transmission Moessbauer spectroscopy allowed the monitoring of the variation of the hyperfine parameters with the thermal treatment temperature; In the case of the evolution of the quadruple splitting of the paramagnetic Fe 3+ sites with temperature, in both clays, the analyses reproduced results such as the 'camel back' curve shape, found by other workers (Wagner and Wagner, Hyperfine Interact 154:35-82, 2004; Wagner and Kyek, Hyperfine Interact 154:5-33, 2004).

  12. Mineralogical characterization of Greda clays and monitoring of their phase transformations on thermal treatment

    Science.gov (United States)

    Panduro, E. Chavez; Cabrejos, J. Bravo

    2010-01-01

    The mineralogical characterization of two clay samples from the Central Andean Region of Peru, denominated White Greda and Red Greda, is reported. These clays contain the clay minerals mica and illite respectively. Both clays were treated thermally in an oxidising atmosphere under controlled conditions up to 1,100°C with the purpose of obtaining information about structural changes that may be useful for pottery manufacture. X-ray fluorescence was used for the elemental characterization of the samples and X-ray diffractometry was used to determine the collapse and formation of the mineral phases present in the samples caused by thermal treatment. At temperatures above 1,000°C it is observed the formation of spinel in the case of White Greda and of hematite, corundum and cristobalite in the case of Red Greda. Room temperature transmission Mössbauer spectroscopy allowed the monitoring of the variation of the hyperfine parameters with the thermal treatment temperature; In the case of the evolution of the quadruple splitting of the paramagnetic Fe3 + sites with temperature, in both clays, the analyses reproduced results such as the “camel back” curve shape, found by other workers (Wagner and Wagner, Hyperfine Interact 154:35-82, 2004; Wagner and Kyek, Hyperfine Interact 154:5-33, 2004).

  13. Mineralogical characterization of Greda clays and monitoring of their phase transformations on thermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Chavez Panduro, E., E-mail: 04130127@unmsm.edu.pe; Bravo Cabrejos, J., E-mail: jbravoc@unmsm.edu.pe [Universidad Nacional Mayor de San Marcos, Facultad de Ciencias Fisicas (Peru)

    2010-01-15

    The mineralogical characterization of two clay samples from the Central Andean Region of Peru, denominated White Greda and Red Greda, is reported. These clays contain the clay minerals mica and illite respectively. Both clays were treated thermally in an oxidising atmosphere under controlled conditions up to 1,100 deg. C with the purpose of obtaining information about structural changes that may be useful for pottery manufacture. X-ray fluorescence was used for the elemental characterization of the samples and X-ray diffractometry was used to determine the collapse and formation of the mineral phases present in the samples caused by thermal treatment. At temperatures above 1,000 deg. C it is observed the formation of spinel in the case of White Greda and of hematite, corundum and cristobalite in the case of Red Greda. Room temperature transmission Moessbauer spectroscopy allowed the monitoring of the variation of the hyperfine parameters with the thermal treatment temperature; In the case of the evolution of the quadruple splitting of the paramagnetic Fe{sup 3+} sites with temperature, in both clays, the analyses reproduced results such as the 'camel back' curve shape, found by other workers (Wagner and Wagner, Hyperfine Interact 154:35-82, 2004; Wagner and Kyek, Hyperfine Interact 154:5-33, 2004).

  14. Special Analysis for the Disposal of the INL Waste Associated with the Unirradiated Light Water Breeder Reactor (LWBR) Waste Stream at the Area 5 Radioactive Waste Management Site

    Energy Technology Data Exchange (ETDEWEB)

    Shott, Gregory [National Security Technologies, LLC, Las Vegas, NV (United States)

    2017-03-21

    This special analysis (SA) evaluates whether the Idaho National Laboratory (INL) Waste Associated with the Unirradiated Light Water Breeder Reactor (LWBR) waste stream (INEL167203QR1, Revision 0) is suitable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). Disposal of the INL Waste Associated with the Unirradiated LWBR waste meets all U.S. Department of Energy (DOE) Manual DOE M 435.1-1, “Radioactive Waste Management Manual,” Chapter IV, Section P performance objectives (DOE 1999). The INL Waste Associated with the Unirradiated LWBR waste stream is recommended for acceptance with the condition that the total uranium-233 (233U) inventory be limited to 2.7E13 Bq (7.2E2 Ci).

  15. Fe(0)-clays interactions at 90°C under anoxic conditions: a comparative study between clay fraction of Callovo-Oxfordian and other purified clays

    International Nuclear Information System (INIS)

    Rivard, C.; Pelletier, M.; Villieras, F.; Barres, O.; Galmiche, M.; Ghanbaja, J.; Kohler, A.; Michau, N.

    2010-01-01

    Document available in extended abstract form only. In the context of the geological disposal of high-level radioactive waste it is of prime importance to understand the interactions between the saturated clay formation and steel containers. This can be achieved through an in-depth analysis of iron-clay interactions. Previous studies on the subject investigated the influence of solid/liquid ratio, iron/clay ratio, temperature and reaction time. The aim of the present study is to explain Callovo-Oxfordian-Fe(0) interactions by determining the role of each mineral phases present in the Callovo-Oxfordian (clay minerals, quartz, carbonates and pyrite) on the mechanisms of interaction between metal iron and clay particles. In that context, it is especially important to understand in detail the influence of clay nature and to obtain some insight about the relationships between interaction mechanisms at the molecular scale and crystallographic properties (particle size, TO or TOT layers, amount of edge faces...). The influence of the combination of different clays and the addition of other minerals must also be studied. In a first step, the Callovo-Oxfordian argillite from the Andra's underground research laboratory was purified to extract the clay fraction (illite, illite-smectite, kaolinite and chlorite). Batch experiments were carried out in anoxic conditions at 90 deg. C in the presence of background electrolyte (NaCl 0.02 M.L -1 , CaCl 2 0.04 M.L -1 ) for durations of one, three or nine months in the presence of metallic iron powder. Experiments without iron were used as control. The iron/clay ratio was fixed at 1/3 with a solid/liquid ratio of 1/20. The above mentioned experiments were also carried out in parallel on other purified clays: two smectites (Georgia bentonite and SWy2 from the Clay Minerals Society), one illite (illite du Puy) and one kaolinite (KGa2, from the Clay Minerals society). At the end of the experiments, solid and liquid phases were

  16. Geomechanical behaviour of boom clay under ambient and elevated temperature conditions

    International Nuclear Information System (INIS)

    Neerdael, B.; Beaufays, R.; Buyens, M.; Bruyn, D. de; Voet, M.

    1992-01-01

    This research is focused upon in-situ investigations related to the (thermo-) mechanical behaviour of clay. Three main items are covered in this research area: Stress measurements around the underground research facility for radioactive waste disposal using hydraulical stress monitoring stations; detection of micro-fractures in the clay host, mainly using geophysical seismic techniques; long term mechanical behaviour of clay (this last item, studied by ANDRA at Mol, is not described in this paper). The stress monitoring stations appear to be more reliable in getting relative pressure variations with time rather than absolute values of stress, even after studying and improving the characteristics of the surrounding grout. The seismic techniques used to appear to be sensitive and accurate enough for detecting induced fracturation in the clay host, even for the low temperature. This is also in agreement with bench-scale experiments on clay samples intended to quantify the influence of both temperature and consolidation on the velocity. 10 refs., 80 figs., 3 tabs

  17. Euroclay 95. Clays and clay materials sciences. Book of abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Elsen, A; Grobet, P; Keung, M; Leeman, H; Schoonheydt, R; Toufar, H [eds.

    1995-08-20

    The document contains the abstracts of the invited lecturers (18) and posters (247) presented at EUROCLAY `95. Clays and clay materials sciences. 13 items (4 from the invited lecturers and 12 from posters) have been considered within the INIS Subject Scope and indexed separately.

  18. Euroclay 95. Clays and clay materials sciences. Book of abstracts

    International Nuclear Information System (INIS)

    Elsen, A.; Grobet, P.; Keung, M.; Leeman, H.; Schoonheydt, R.; Toufar, H.

    1995-01-01

    The document contains the abstracts of the invited lecturers (18) and posters (247) presented at EUROCLAY '95. Clays and clay materials sciences. 13 items (4 from the invited lecturers and 12 from posters) have been considered within the INIS Subject Scope and indexed separately

  19. Clay particles as binder for earth buildings materials: a fresh look into rheology of dense clay suspensions

    Science.gov (United States)

    Landrou, Gnanli; Brumaud, Coralie; Habert, Guillaume

    2017-06-01

    In the ceramic industry and in many sectors, clay minerals are widely used. In earthen construction technique, clay plays a crucial role in the processing. The purpose of this research is to understand and modify the clay properties in earth material to propose an innovative strategy to develop a castable earth-based material. To do so, we focused on the modification of clay properties at fresh state with inorganic additives. As the rheological behaviour of clays is controlled by their surface charge, the addition of phosphate anion allows discussing deep the rheology of concentrated clay suspensions. We highlighted the thixotropic and shear thickening behaviour of a dispersed kaolinite clay suspensions. Indeed, by adding sodium hexametaphosphate the workability of clay paste increases and the behaviour is stable during time after a certain shear is applied. Moreover, we stress that the aging and the shift in critical strain in clay system are due to the re-arrangement of clay suspension and a decrease of deformation during time. The understanding of both effect: thixotropy and aging are crucial for better processing of clay-based material and for self-compacting clay concrete. Yet, studies need to pursue to better understand the mechanism.

  20. Special Analysis for the Disposal of the Idaho National Laboratory Unirradiated Light Water Breeder Reactor Rods and Pellets Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-08-31

    The purpose of this special analysis (SA) is to determine if the Idaho National Laboratory (INL) Unirradiated Light Water Breeder Reactor (LWBR) Rods and Pellets waste stream (INEL103597TR2, Revision 2) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS). The INL Unirradiated LWBR Rods and Pellets waste stream consists of 24 containers with unirradiated fabricated rods and pellets composed of uranium oxide (UO2) and thorium oxide (ThO2) fuel in zirconium cladding. The INL Unirradiated LWBR Rods and Pellets waste stream requires an SA because the 229Th, 230Th, 232U, 233U, and 234U activity concentrations exceed the Nevada National Security Site (NNSS) Waste Acceptance Criteria (WAC) Action Levels.

  1. Clay mineral association in the salt formation of the Transylvanian Basin and its paleoenvironmental significance

    Directory of Open Access Journals (Sweden)

    Nicoleta Bican-Bris̡an

    2006-04-01

    Full Text Available The investigated clay fraction was separated from salt samples recovered from three boreholes located in the Praid salt deposit area. For comparison, samples collected from Turda deposit (Franz Josef adit, the Rudolf and Ghizele chambers and from the salt massif from Sărăţel were also analyzed. The qualitative investigations evidenced a clay minerals association dominated by illite and chlorite accompanied by subordinate amounts of kaolinite, smectite, fibrous clays (sepiolite, palygorskite, and in minor amounts, by 14/14 chlorite/vermiculite and chlorite/smectite interstratifications. A quantitative evaluation (% including a standard graphical representation was performed only for the borehole samples (Praid, according to the vertical distribution. The genetical interpretation of the identified clay minerals association took into account the influence of the sedimentation mechanisms and the climate control on the mineral phases. The environment of formation for the salt in the Transylvanian Basin was defined by the presence of specific climatic factors, also suggested by the palynological investigations.

  2. Investigation of properties of polyethylene/clay nanocomposites prepared by new in situ Ziegler-Natta catalyst

    International Nuclear Information System (INIS)

    Nikkhah, S. Javan; Ramazani, S.A.; Baniasadi, H.; Tavakolzadeh, F.

    2009-01-01

    This paper is devoted to investigation of morphological and physical-mechanical properties of polyethylene (PE)/clay nanocomposites prepared via in situ polymerization method using bi-supported Ziegler-Natta catalyst. Bentonite type clay and MgCl 2 (ethoxide type) were used as the support of TiCl 4 . Catalyst support and polymerization process have been done in slurry phase using Triisobutylaluminum as the co-catalyst. The microstructure of the nanocomposites was examined by X-ray diffraction (XRD) and transmission electron microscopy (TEM). XRD and TEM indicated that almost fully exfoliated PE/clay nanocomposites were produced successfully using this method. According to permeability measurements, it was found that oxygen permeability values of the nanocomposite samples prepared with in situ polymerization method were dropped more than 200% introducing only 1 wt% clay to polymeric matrix. Differential scanning calorimetry (DSC) results indicated that the crystallization temperatures of samples are significantly higher than that of virgin PE. Moderate thermal stability enhancement of in situ polymerized nanocomposites was confirmed using thermogravimetric analysis (TGA).The storage modulus, Young's modulus and tensile strength of prepared samples were increased where the toughness was declined slightly. It seems that good dispersion and exfoliation of clay during polymerization should be responsible to get more effective reinforcing properties for clay in this method comparing to melt blending method for preparation of polyethylene nanocomposites.

  3. A new and improved methodology for qualitative and quantitative mineralogical analysis of Boom Clay

    International Nuclear Information System (INIS)

    Zeelmaekers, E.; Vandenberghe, N.; Honty, M.; De Craen, M.; Derkowski, A.; Van Geet, M.

    2010-01-01

    Document available in extended abstract form only. A good knowledge of the mineralogy of any host formation studied for geological disposal of high-level radioactive waste, is a prerequisite for understanding the geochemical environment which will determine the migration and retention behaviour of radionuclides. In this respect, the Boom Clay mineralogical composition has been extensively studied last decades as reference host formation (e.g. ARCHIMEDEARGILE project, OECD-NEA clay catalogue report) with the aim to provide reliable data for a safety assessment. However, a comparison of the available literature data clearly showed a serious discrepancy among studies, not only in the quantitative, but also in the qualitative mineralogical composition of the Boom Clay (SAFIR II). The reason for such a huge disagreement could be related, among others, to variable grain size distributions of the studied samples (sample heterogeneity) and differences in the methodological approaches. In particular, the unambiguous characterisation of clay minerals and the quantification of mixed-layer phases appeared as an everlasting problem. This study is aimed at achieving a consensus on the qualitative and quantitative mineralogical data of the Boom Clay using the most advanced techniques currently available in the clay science. A new sampling campaign was performed in such a way that samples are (20 in total) more or less regularly distributed over Boom Clay Formation, ensuring that variations in the grain size distributions due to silty clay-clayey silt layers alternations are accounted for. The novel concept based on an analysis at two levels was applied: (1) bulk rock and (2) clay fraction analysis. (1) A bulk rock analysis consists of conventional XRD analysis with the identification of the principal mineral phases. As a next step, the bulk rock was mixed with a ZnO internal standard and experimental diffraction patterns of randomly oriented powders were analyzed using &apos

  4. The influence of clay minerals on acoustic properties of sandstones

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Olav

    1997-12-31

    This thesis aims to provide better understanding of the relationship between the acoustic properties and the petrophysical/mineralogical properties in sand-prone rock. It emphasizes the influence of clay minerals. The author develops a method to deposit clay minerals/mineral aggregates in pore space of a rigid rock framework. Kaolinite aggregates were flushed into porous permeable Bentheimer sandstone to evaluate the effect of pore filling minerals on porosity, permeability and acoustic properties. The compressional velocity was hardly affected by the clay content and it was found that the effect of minor quantities of pore filling minerals may be acoustically modelled as an ideal suspension, where the pore fluid bulk modulus is modified by the bulk modulus of the clay minerals. The influence of clays on acoustic velocities in petroleum reservoir rocks was investigated through ultrasonic measurements of compressional- and shear-waves on core material from reservoir and non-reservoir units on the Norwegian Continental Shelf. The measured velocities decrease as the porosity increases, but are not strongly dependent on the clay content. The measured velocities are less dependent on the petrophysical and lithological properties than indicated by previous authors and published mathematical models, and stiffness reduction factors are introduced in two of the models to better match the data. Velocities are estimated along the wellbores based on non-sonic well logs and reflect well the actual sonic log well measurements. In some wells the compressional velocity cannot be modelled correctly by the models suggested. Very high compressional wave anisotropy was measured in the dry samples at atmospheric conditions. As the samples were saturated, the anisotropy was reduced to a maximum of about 30% and decreases further upon pressurization. Reservoir rocks retrieved from 2500 m are more stress dependent than those retrieved from less than 200 m depth. 168 refs., 117 figs., 24

  5. Bentonite clay purification for development of polymeric nan composites using a single screw extruder

    International Nuclear Information System (INIS)

    Carvalho, Ana C.M. de; Ito, Edson N.; Costa, Maria C.B.; Barbosa, Maria I.R.

    2011-01-01

    In this work, a bentonite clay rich in montmorillonite was purified and chemical treat to be used in the development of poly (methyl methacrylate) /clay nanocomposites via melting processes. After the clay treatment and purification, a masterbatch with 25% clay and 75% PMMA was produced by solution technique, using acetone as solvent. For produce samples with 2.5% clay, the masterbatch along with pure polymer were added and mixed in single screw extruder with a diameter of 16 mm and W/D 26. X-rays diffractometry (XRD) and X-rays fluorescence (XRF). Tests were performed to evaluate and characterizing the bentonite clay used in the development of this work and differential scanning calorimetry (DSC) tests were performed to evaluate changes in the thermal properties of the nanocomposites produced. (author)

  6. Heavy metal content and potential health risk of geophagic white clay from the Kumasi Metropolis in Ghana

    Directory of Open Access Journals (Sweden)

    Marian Asantewah Nkansah

    Full Text Available Geophagia is the craving for non-food substances and commonly practiced among pregnant women and children. Consumption of geophagic clay samples can have serious implications on the health of the consumers as a result of the presence of toxic metals such as Pb, As, Hg and Cd. This study sought to determine the levels of heavy metals in the studied geophagic clay samples and to determine the potential risks of heavy metals as cumulative carcinogenic and non-carcinogenic risks to the health of the consumers via oral (ingestion and dermal exposure routes. A total of thirty (30 white clay samples were analysed using Niton Thermo scientific XRF Analyser (Mobile Test S, NDTr-XL3t-86956, com 24. The clay samples were found to contain essential elements such as Ca, Fe, K and Zn as well as toxic metals such as As and Pb. There were isolated cases of the presence of Hg and all samples had Cd levels below detection. Health risk indices such as hazard quotient and cancer risk were calculated and the results indicated that consumers are likely to suffer from cancer through ingestion of geophagic clay. Bioaccessibility studies were done on zinc and it did not indicate any potential toxicity due to zincs essential nature. The levels of heavy metals in some of the geophagic clay consumed by some residents in the Kumasi were high compared to the Permitted Maximum Tolerable Daily Intake (PMTDI by (WHO/FAO and may pose potential health threat over time. Keywords: Geophagia, White clay, Heavy metals, Health risk assessment, Permitted maximum tolerable daily intake

  7. Clay mineral distribution on tropical shelf: an example from the western shelf of India

    Digital Repository Service at National Institute of Oceanography (India)

    Hashimi, N.H.; Nair, R.R.

    Seventy-five sediment samples collected from the Kerala continental shelf and slope during the 17th and 71st Cruises of RV Gaveshani were analysed by X-ray diffraction for clay mineral content. The distribution of total clay ( 4 mu fraction...

  8. Study on Fired Clay Bricks by Replacing Clay with Palm Oil Waste: Effects on Physical and Mechanical Properties

    Science.gov (United States)

    Kadir, A. A.; Sarani, N. A.; Abdullah, M. M. A. B.; Perju, M. C.; Sandu, A. V.

    2017-06-01

    Palm oil is one of the major agricultural industries in Malaysia. Due to the poor management system, the discarded palm oil waste has always been linked to the environment issues. During processing of palm oil, a considerable amount of solid waste by-products in the form of fibres, shells, empty fruit bunches and fly ashes are produce rapidly. Therefore, this study was conducted to incorporate 1%, 5% and 10% of palm oil waste into fired clay brick. Samples of brick were fired at 1050°C temperature with heating rates of 1°C/min. Manufactured bricks were tested with physical and mechanical properties including firing shrinkage, dry density, water absorption and compressive strength. The results demonstrated that the replacement of 1% up to 5% of palm oil waste had improved several properties, although, a decrease of performance in certain aspects has also been observed. As a result, palm oil waste can be utilized in an environmentally safe way into fired clay brick thus providing adequate properties of fired clay brick.

  9. Clay particles as binder for earth buildings materials: a fresh look into rheology of dense clay suspensions

    Directory of Open Access Journals (Sweden)

    Landrou Gnanli

    2017-01-01

    Full Text Available In the ceramic industry and in many sectors, clay minerals are widely used. In earthen construction technique, clay plays a crucial role in the processing. The purpose of this research is to understand and modify the clay properties in earth material to propose an innovative strategy to develop a castable earth-based material. To do so, we focused on the modification of clay properties at fresh state with inorganic additives. As the rheological behaviour of clays is controlled by their surface charge, the addition of phosphate anion allows discussing deep the rheology of concentrated clay suspensions. We highlighted the thixotropic and shear thickening behaviour of a dispersed kaolinite clay suspensions. Indeed, by adding sodium hexametaphosphate the workability of clay paste increases and the behaviour is stable during time after a certain shear is applied. Moreover, we stress that the aging and the shift in critical strain in clay system are due to the re-arrangement of clay suspension and a decrease of deformation during time. The understanding of both effect: thixotropy and aging are crucial for better processing of clay-based material and for self-compacting clay concrete. Yet, studies need to pursue to better understand the mechanism.

  10. Faults in clays their detection and properties

    International Nuclear Information System (INIS)

    Baldi, G.; Carabelli, E.; Chiantore, V.; Colombo, P.F.; Gruszka, A.; Pensieri, R.; Superbo, S.; Gera, F.

    1991-01-01

    The 'Faults in clays project', a cooperative research effort between Ismes and Enea of Italy and BGS and Exeter University of the UK, has been aimed at assessing and improving the resolution capability of some high resolution geophysical techniques for the detection of discontinuities in clay formations. All Ismes activities have been carried out in Italy: they consisted in the search of one or more sites - faulted clay formations - suitable for the execution of geophysical and geotechnical investigations, in the execution of such tests and in additional geological surveys and laboratory (geotechnical and geochemical) testing. The selected sites were two quarries in plio-pleistocenic clay formations in central Italy where faults had been observed. The greatest part of the research work has been carried out in the Orte site where also two 90 m boreholes have been drilled and cored. Geophysical work at Orte consisted of vertical electrical soundings (VESs) and horizontal electrical lines (HELs), four high resolution seismic reflection lines, and in-hole and cross-hole logs. Laboratory activities were geotechnical characterization and permeability tests, and measurements of disequilibrium in the uranium decay series. At Narni, where Exeter University sampled soil gases for geochemical analyses, the geophysical work consisted in a geo-electrical survey (five VESs and two HELs), and in two high resolution reflection seismic lines. Additional investigations included a structural geology survey. The main conclusion of the research is that current geophysical techniques do not have a resolution capacity sufficient to detect the existence and determine the characteristics of faults in deep homogeneous clay formations

  11. Estimation of bitumen and clay content in fine tailings

    International Nuclear Information System (INIS)

    Motta Cabrera, S.C.; Bryan, J.; Kantzas, A.

    2007-01-01

    Fine tailings are the components of tailings ponds and the by-product of the oil sand extraction process, consisting mostly of water with small amounts of bitumen, sand, silts and clays. Because of the large volumes of tailings, an important environmental and production process issue involves the reduction of the remaining bitumen in the tailings stream. This paper presented the results of a study that used low field nuclear magnetic resonance (NMR) in order to estimate the bitumen, clay and water content of synthetic tailings samples. NMR is a non-destructive technique that is utilized to determine compositions of oil and brine emulsions and the viscosity of heavy oil and bitumen as well as in reservoir characterization, measuring properties such as permeability, porosity, mobile and immobile fluids, and fluid saturations. The study prepared and tested numerous samples with variable water, bitumen, sand and clay concentrations in the NMR tool under ambient conditions. Two qualities of water and bitumen were used to prepare the synthetic samples. Each type of water and bitumen was analyzed as a single substance and in a mixture with the typical solids found in tailings composition. These included kaolinite, illite, sodium montmorillonite and sand. These synthetic samples were analyzed using different mixing configurations, as a function of time and in two different NMR tools. It was concluded that NMR is a potential application for on-line determination of tailings streams composition. 18 refs., 3 tabs., 17 figs

  12. Synthesis of templated carbons starting from clay and clay-derived zeolites for hydrogen storage applications

    CSIR Research Space (South Africa)

    Musyoka, Nicholas M

    2014-10-01

    Full Text Available 57 58 59 60 For Peer Review 1 Synthesis of templated carbons starting from clay and clay-derived zeolites for hydrogen storage applications N. M. Musyoka1*, J. Ren1, H. W. Langmi1, D. E. C. Rogers1, B. C. North1, M. Mathe1 and D. Bessarabov2... clear (filtered) extract of cloisite clay, SNC for zeolite from unfiltered cloisite clay extract and SBC for zeolite from unfiltered South African bentonite clay extract. Furfuryl alcohol (Sigma Aldrich, C5H6O2, 98%) and Ethylene gas were used...

  13. The challenge of multi-parameter hydrochemical, gas-physical, and isotopic analyses of in-situ clay pore water and samples from in-situ clay experiments

    International Nuclear Information System (INIS)

    Eichinger, L.; Lorenz, G.D.; Eichinger, F.; Wechner, S.; Voropaev, A.

    2012-01-01

    Document available in extended abstract form only. Within the research framework of natural clay rocks used as barriers for radioactive waste confinement comprehensive analyses are mandatory to determine the chemical and isotopic composition of natural pore water and therein dissolved gases as well as samples from distinct in-situ and lab experiments. Based on the natural conditions pore waters from low permeable argillaceous rocks can be sampled only in small amounts over long time periods. Often those samples are primarily influenced by processes of the exploration and exploitation such as the contamination by drilling fluid and disinfection fluid or cement-water interactions. Sophisticated equipment for circulation experiments allows the sampling of gas and water in the original state in steel and peek cells. The challenge though is to optimise the lab equipment and measurement techniques in a way that the physical-chemical conditions of the water can be analysed in the original state. The development of special micro measuring cells enables the analyses of physical parameters like redox potential under very slow through-flow conditions. Additional analyses can follow subsequently without wasting any drop of the precious pore water. The gas composition is measured in equilibrated gas phases above water phases after emptying a defined volume by inert gas or through manual pressure. The analytical challenge is to obtain an extensive set of parameters which is considered representative for the in-situ conditions using only a few millilitres of water. The parameter analysis includes the determination of the composition of the water, the isotopic compositions of the water and the dissolved constituents as well as their gas concentrations and isotopic signatures. So far the smallest sample volume needed for an analysis of a full set of parameters including the gas composition was 9 ml of water. Obviously, the analysis requires a highly sophisticated infrastructure and

  14. VIS/NIR Spectroscopy to determine the spatial variation of the weathering degree in Paleogene clay soil - London Clay Formation

    Science.gov (United States)

    Nasser, Mohammed; Gibson, Andy, ,, Dr; Koor, Nick, ,, Dr; Gale, Professor Andy; Huggett, Jenny, ,, Dr; Branch, Steve

    2017-04-01

    The London Clay Formation (LCF) which underlies much of South-East England is hugely important as a construction medium. However, its geotechnical performance (shear strength, compressive strength, shrink-swell behaviour, etc. ) is greatly affected by its degree of weathering. Despite this importance, little attention has been focussed on a robust method to define and measure its degree of weathering. This is perhaps a result of a well-known colour change from bluish-grey to brown that accompanies 'weathering' and considered to be the result of oxidisation (Chandler and Apted 1988). Through wide experience, this definition is normally effective, but it is perhaps subjective and reliant on the experience of the investigator and the ability to observe samples or exposures. More objective investigation, typically using SEM is not normally economically feasible or expedient for construction works. We propose a simple, robust method to characterise the degree of weathering in the LCF using reflective or Visible-Near-InfraRed-Spectroscopy (VNIRS). 24 samples were extracted from 2 boreholes drilled in the Hampstead area of London to depths of 12 m within the uppermost Claygate Member of the LCF. VNIRS spectra (350-2500 nm) were measured from all samples and compared with XRD, XRF, SEM and PSD results on the same samples. Results show increased magnitude of absorption features related to clay mineralogy around 1400, 1900 and 2200 nm to a depth of 5 m beneath ground level. Beneath this depth, the absorption features show little variation. SEM analyses show corresponding changes in the degradation of pyrite crystals and individual clay (illite/smectite). These preliminary results show that there is a good potential for VNIRS spectroscopy to determine the variation of weathering in the LCF.

  15. Gravel-Sand-Clay Mixture Model for Predictions of Permeability and Velocity of Unconsolidated Sediments

    Science.gov (United States)

    Konishi, C.

    2014-12-01

    Gravel-sand-clay mixture model is proposed particularly for unconsolidated sediments to predict permeability and velocity from volume fractions of the three components (i.e. gravel, sand, and clay). A well-known sand-clay mixture model or bimodal mixture model treats clay contents as volume fraction of the small particle and the rest of the volume is considered as that of the large particle. This simple approach has been commonly accepted and has validated by many studies before. However, a collection of laboratory measurements of permeability and grain size distribution for unconsolidated samples show an impact of presence of another large particle; i.e. only a few percent of gravel particles increases the permeability of the sample significantly. This observation cannot be explained by the bimodal mixture model and it suggests the necessity of considering the gravel-sand-clay mixture model. In the proposed model, I consider the three volume fractions of each component instead of using only the clay contents. Sand becomes either larger or smaller particles in the three component mixture model, whereas it is always the large particle in the bimodal mixture model. The total porosity of the two cases, one is the case that the sand is smaller particle and the other is the case that the sand is larger particle, can be modeled independently from sand volume fraction by the same fashion in the bimodal model. However, the two cases can co-exist in one sample; thus, the total porosity of the mixed sample is calculated by weighted average of the two cases by the volume fractions of gravel and clay. The effective porosity is distinguished from the total porosity assuming that the porosity associated with clay is zero effective porosity. In addition, effective grain size can be computed from the volume fractions and representative grain sizes for each component. Using the effective porosity and the effective grain size, the permeability is predicted by Kozeny-Carman equation

  16. Determination of membrane behaviour during transport of pollutants n clay barriers

    International Nuclear Information System (INIS)

    Musso, M.; Pejon, O.

    2010-01-01

    The study of the transport of contaminants in clay barriers had a extensive development in environmental geotechnics. The most studied transport processes are solutes by advection - dispersion and diffusion generated by hydraulic and chemical gradients respectively. Greater attention should be given to the chemical - osmotic flow and behavior membrane clay barriers, since in one case the water molecules move through the existence of a chemical gradient and on the other the means totally or partially inhibits the passage of solutes. The team developed to measure these processes was constructed based on items international literature and performance was verified using two types of materials KCl solution . One material is a bentonite geocomposite (Geosynthetic Clay Liner GCL ) similar to that used by other researchers. The other material is a soil barrier compacted clay (Compacted Clay Liner CCL) Fm. Corumbataí (Permian), belonging to the Paraná basin in the state of Sao Paulo, Brazil . The results show the proper performance of the equipment built . Osmotic pressure generation and membrane performance was verified for both samples. Further corroborated influence of the type of clay mineral in the osmotic pressure generated value and membrane behavior

  17. Fire retardancy assessment of polypropylene composite filed with nano clay prepared from Iraqi bentonite

    Science.gov (United States)

    Kareem Salih, Watheq

    2018-05-01

    Fire retardants have an extraordinary importance because of their role in saving the people, property and reducing the damages and minimizing the dangers resulting from fires and burning of polymeric composites which are used in different civil and industrial fields. The work in this paper can be divided into two main stages. In first one nano-clay was manufactured from Iraqi bentonite and it was characterized using AFM, XRD, XRF, SEM, and BET. The AFM test showed the particle size of prepared nano clay was about 99.25 nm. In the second stage, polypropylene/nano clay composites at three low loading percents (0%,2%,4%,6%) were formulated via twin screw extruder. The fire retardancy tests included burning rate according to ASTM:D-635 and maximum flame height of flame according to ASTM:D-3014. Besides, the mechanical tests and thermal behavior of prepared samples were investigated. The results showed that (4%) of nano-clay had the maximum fire retardancy and while at (2%) loading, the maximum value of tensile strength and Yong modulus were obtained. The maximum heat of fusion was recorded for 6% nano clay sample. The final results assessment confirmed on the possibility of using low loadings of prepared nano clay to improve the fire retardancy, mechanical and thermal properties successfully.

  18. Comparative study of organophilic clays to be used in the gas and petrol industry

    International Nuclear Information System (INIS)

    Rodrigues, S.C.G.; Queiroz, M.B.; Rodrigues, M.G.F.; Pereira, K.R.O.; Valenzuella- Diaz, F.R.

    2009-01-01

    The mixture oil/water occurs in the operations of production, transportation and refining, as well as during the use of its derivatives in the petroleum industry. This kind of water turns into a problem of how to be purified, and how to improve its quality. Researchers have been developed in order to find out water/oil separation processes that will be cheaper and more effective. One of the processes has been the use of organophilic clay utilized as a solver. This project studied two organophilic clays, Brasgel clay PA (sodic activated) and silt clay, which passed through a process of cation exchange with quaternary salt of ammonium cethyltrimethylammonium bromide by direct method. The samples were characterized by X-ray diffraction (XRD), Infrared Spectroscopy (IR), Scanning Electron Microscopy (SEM) and Foster's swelling in petroleum derivative. Foster's swelling was carried out with and without agitation in gasoline, diesel, toluene and lubricating oil. The results indicated the samples was organophilic materials, with improved efficiency of Brasgel clay in gasoline and diesel and when compared to silt clay in the test of capacity for adsorption and Foster's swelling, the results were similar to kerosene and lubricating oil. (author)

  19. Speciation of uranium in surface-modified, hydrothermally treated, (UO2)2+-exchanged smectite clays

    International Nuclear Information System (INIS)

    Giaquinta, D.M.; Soderholm, L.; Yuchs, S.E.; Wasserman, S.R.

    1997-01-01

    A successful solution to the problem of disposal and permanent storage of water soluble radioactive species must address two issues: exclusion of the radionuclides from the environment and the prevention of leaching from the storage media into the environment. Immobilization of radionuclides in clay minerals has been studied. In addition to the use of clays as potential waste forms, information about the interactions of radionuclides with clays and how such interactions affect their speciations is crucial for successful modeling of actinide-migration. X-ray absorption spectroscopy (XAS) is used to determine the uranium speciation in exchanged and surface-modified clays. The XAS data from uranyl-loaded bentonite clay are compared with those obtained after the particle surfaces have been coated with alkylsilanes. These silane films, which render the surface of the clay hydrophobic, are added in order to minimize the ability of external water to exchange with the water in the clay interlayer, thereby decreasing the release rate of the exchanged-uranium species. Mild hydrothermal conditions are used in an effort to mimic potential geologic conditions that may occur during long-term radioactive waste storage. The XAS spectra indicate that the uranyl monomer species remain unchanged in most samples, except in those samples that were both coated with an alkylsilane and hydrothermally treated. When the clay was coated with an organic film, formed by the acidic deposition of octadecyltrimethoxysilane, hydrothermal treatment results in the formation of aggregated uranium species in which the uranium is reduced from U VI to U IV

  20. Enhancement of insulating properties of brick clay by renewable agricultural wastes

    Directory of Open Access Journals (Sweden)

    Viktor Bánhidi

    2008-12-01

    Full Text Available The use of agricultural wastes (byproducts in various segments of brick and tile industry is increasing continuously. These additives, which are previously mixed into the raw or compound clay, start to ignite during the firing process, providing extra thermal energy inside the product and decreasing the required external energy need. Besides this effect, the combustion of additives increases the porosity of the final product resulting in enhanced thermal insulation properties. In this paper the effect of some common agricultural wastes (sawdust, rice-peel and seed-shell on the thermal properties of brick clay products was investigated. The brick samples were prepared from the mixture of the yellow and gray clay in the ratio of 4:1, water content was between 15.57-16.67 wt.% and the pore-forming additives in concentrations 0, 4 and 7 wt.%. To measure the steady state thermal conductivity of the clay mixtures, samples with dimensions of 300×300×50 mm were prepared. Drying and firing were performed using the industrial partner’s standard procedures. Precise thermal conductivity data was measured, using a RAPID‑K type static thermal conductivity instrument. The results showed that increasing the quantity of agricultural byproducts in the clay mixture significantly decreases the thermal conductivity of the final products, while only a minor reduction in the mechanical strength was observed. It was found that the most efficient byproduct additive was the sunflower seed‑shell. With the addition of only 7 wt.% seed‑shell to the basic clay the thermal conductivity decreased from 0,27 W/m·K to 0,17 W/m·K (i.e. ~36%.

  1. Coal and potash flotation enhancement using a clay binder

    Energy Technology Data Exchange (ETDEWEB)

    Tao, D.; Chen, G.L.; Zhou, X.H.; Zhao, C.; Fan, M.M.; Aron, M.; Wright, J. [University of Kentucky, Lexington, KY (United States)

    2007-07-15

    The adverse effects of clay particles on coal and mineral processing operations such as gravity separation, flotation, filtration and thickening are well known in the mining industry. In particular, the presence of ultra-fine clay particles deteriorates froth flotation performance, which has been attributed to slime coatings that inhibit bubble attachment and to adsorption of the frother and/or collector by the clay particles. The present study was conducted to evaluate the performance of a clay binding agent developed by Georgia-Pacific Resins, Inc. in enhancing coal and mineral flotation performance. Mechanical flotation tests were carried out using coal and potash samples. Process parameters investigated included slurry solids percentage, impeller rotation speed, binder dosage, etc. Flotation results show that the use of GP reagents significantly enhanced flotation efficiency under different conditions. The required binder dosage and conditioning time were about 0.45 kg/t and 0.5 to 1 minute, respectively. More significant improvements in process performance were observed at higher solids percentage and higher impeller rotation speed.

  2. Organoclays obtaining starting up of clays sodium

    International Nuclear Information System (INIS)

    Silva, M.M. da; Mota, M.F.; Oliveira, G.C. de; Rodrigues, M.G.F.

    2012-01-01

    Clays have several applications in many areas of fields of technology, however, modification of these materials using organic compounds can be performed to obtain further hydrophobic materials, for applications in the adsorption of organic pollutants. This study aimed to analyze the effects of modifying two clays using sodium quaternary ammonium surfactants through ion exchange reaction process, in obtaining organoclays. The samples with sodium and organoclays were characterized by the techniques of X-ray diffraction (XRD), Infrared Spectroscopy in the region (IV), Gravimetric and Differential Thermal Analysis (DTA / TG) and organic adsorption tests. The results show that the process of obtaining organoclay is efficient, and materials have the potential for future applications in removing organic contaminants. (author)

  3. Poly(methacrylic) Acid and g-methacryloxypropyltrimethoxy Silane/Clay Nanocomposites Prepared by In-Situ Polymerization

    OpenAIRE

    GÜLTEK, Ahmet; SEÇKİN, Turgay

    2002-01-01

    Poly(methacrylic acid) and poly(acrylic acid) nanocomposites were prepared by in-situ polymerization of g-methacryloxypropyltrimethoxysilane (A174)/clay nanocomposites in which the macromonomer was generated by grafting A-174 onto activated clay samples via hydroxyl groups or via intercalation. In- situ polymerization was carried out in the presence of an initiator. It was found that the structural affinity between the methacrylic or acrylic acid monomers and the amount of clay playe...

  4. Stabilization Of Marine Clay Using Biomass Silica-Rubber Chips Mixture

    Science.gov (United States)

    Marto, Aminaton; Ridzuan Jahidin, Mohammed; Aziz, Norazirah Abdul; Kasim, Fauziah; Zurairahetty Mohd. Yunus, Nor

    2016-11-01

    Marine clay is found widely along the coastal area and had caused expensive solutions in the construction of coastal highways. Hence, soil stabilization was suggested by some consultant to increase the strength of this soil in order to meet the highway construction requirement and also to achieve the specification for the development. Biomass Silica (BS), particularly the SH85 as a non-traditional stabilisation method, has been gaining more interest from the engineers recently. Rubber chips (RC), derived from waste rubber tyres, are considered ‘green’ element and had been used previously in some geotechnical engineering works. This paper presents the effect of using BS and RC as a mixture (BS-RC mixture), to increase the strength of marine clay for highway construction. Samples of marine clay, obtained from the West Coast Expressway project at Teluk Intan, Perak, were oven dried and grind to fine-grained sized. The marine clay was mixed with 9 % by weight proportion of BS- RC; that were 8%-l% and 7%-2%, respectively. For comparison purposes the result of BS-RC was compared to the result of stabilization by using 9% BS only. Laboratory tests were then carried out to determine the Atterberg limits and compaction characteristics of the untreated and treated marine clay. The Unconfined Compressive Strength (UCS) of the untreated and treated marine clays, compacted at the optimum moisture content was later obtained. The treated marine clay was tested at 0, 3 and 7 days curing periods. The results show that the Plasticity Index of BS-RC treated marine clay was lower than the untreated marine clay. From the UCS test results, it is shown that BS-RC mixtures had significantly improved the strength of marine clay. With the same percentage of 9% BS-RC, the increased of BS from 7% to 8% increased the UCS further to about six times more than untreated marine clay soils in 7 days curing period. The strength gained by using BS-RC at 8%-1% is slightly below the strength by

  5. Research of Deformation of Clay Soil Mixtures Mixtures

    OpenAIRE

    Romas Girkontas; Tadas Tamošiūnas; Andrius Savickas

    2014-01-01

    The aim of this article is to determine clay soils and clay soils mixtures deformations during drying. Experiments consisted from: a) clay and clay mixtures bridges (height ~ 0,30 m, span ~ 1,00 m); b) tiles of clay and clay, sand and straw (height, length, wide); c) cylinders of clay; clay and straw; clay, straw and sand (diameter; height). According to the findings recommendations for clay and clay mixtures drying technology application were presented. During the experiment clay bridge bear...

  6. Purification and characterization of smectite clay taken from Gafsa, Tunisia: Progressive elimination of carbonates

    International Nuclear Information System (INIS)

    Mhamdi, M; Gasmi, N; Elaloui, E; Kbir-Ariguib, N; Trabelsi-Ayadi, M

    2010-01-01

    This work shows the results of various analysis on a representative clay sample from southern west of Tunisia, particularly from Oued Tfal near the town of Gafsa. The raw smectite contains some carbonate, quartz, chlorite, and anorthite. During the attack of the carbonate clay with a solution of hydrochloric acid, a change of the chemical composition and physical properties was observed. This change is dependent on several factors: the initial concentration of the acid, the nature of the clay, the ratio acid / clay...). Although treatment to 0.5 M represents a total removal of carbonates, there are probably altered layers of the clay fraction. The result shows that for a treatment with acid solutions of concentrations below 0.5 M there is gradual removal of carbonate without protonation of the clay layers. The characterization of the clay fraction shows that the sodium clay purified (OTNa) consists of a sodium montmorillonite smectite. The cation exchange capacity and the specific surface of OTNa measured using the method of methylene blue are equal to 82 meq/100g and 667 m 2 / g respectively.

  7. Removal of Cr(VI) from Aqueous Environments Using Micelle-Clay Adsorption

    Science.gov (United States)

    Qurie, Mohannad; Khamis, Mustafa; Manassra, Adnan; Ayyad, Ibrahim; Nir, Shlomo; Scrano, Laura; Bufo, Sabino A.; Karaman, Rafik

    2013-01-01

    Removal of Cr(VI) from aqueous solutions under different conditions was investigated using either clay (montmorillonite) or micelle-clay complex, the last obtained by adsorbing critical micelle concentration of octadecyltrimethylammonium ions onto montmorillonite. Batch experiments showed the effects of contact time, adsorbent dosage, and pH on the removal efficiency of Cr(VI) from aqueous solutions. Langmuir adsorption isotherm fitted the experimental data giving significant results. Filtration experiments using columns filled with micelle-clay complex mixed with sand were performed to assess Cr(VI) removal efficiency under continuous flow at different pH values. The micelle-clay complex used in this study was capable of removing Cr(VI) from aqueous solutions without any prior acidification of the sample. Results demonstrated that the removal effectiveness reached nearly 100% when using optimal conditions for both batch and continuous flow techniques. PMID:24222757

  8. Comparison of short-term and long-term performances for polymer-stabilized sand and clay

    Directory of Open Access Journals (Sweden)

    Sepehr Rezaeimalek

    2017-04-01

    Full Text Available A series of tests were carried out on sulfate rich, high-plasticity clay and poorly-graded natural sand to study the effectiveness of a methylene diphenyl diisocyanate based liquid polymer soil stabilizer in improving the unconfined compressive strength (UCS of freshly stabilized soils and aged sand specimens. The aged specimens were prepared by exposing the specimens to ultraviolet radiation, freeze-thaw, and wet-dry weathering. The polymer soil stabilizer also mitigated the swelling of the expansive clay. For clay, the observations indicated that the sequence of adding water and liquid polymer had great influence on the gained UCS of stabilized specimens. However, this was shown to be of little importance for sand. Furthermore, sand samples showed incremental gains in UCS when they were submerged in water. This increase was significant for up to 4 days of soaking in water after 4 days of ambient air curing. Conversely, the clay samples lost a large fraction of their UCS when soaked in water; however, their remaining strength was still considerable. The stabilized specimens showed acceptable endurance under weathering action, although sample yellowing due to ultraviolet radiation was evident on the surface of the specimens. Except for moisture susceptibility of the clay specimens, the results of this study suggested the liquid stabilizer could be successfully utilized to provide acceptable strength, durability and mitigated swelling.

  9. Ventilation test at Mont Terri. Geoelectric monitoring of the opalinus clay desaturation. Phase 2

    International Nuclear Information System (INIS)

    Wieczorek, Klaus; Zhang, Chun-Liang; Rothfuchs, Tilmann

    2008-04-01

    Between December 2001 and May 2004, a ventilation experiment (VE) was performed in the Mont Terri Underground Research Laboratory (URL) and co-financed by the Commission of the European Communities. The objective was to investigate the desaturation of consolidated clay formations in consequence of the ventilation of underground openings of a repository in such a formation. The results of the geoelectric measurements performed in the second phase of the Mont Terri ventilation test can be summarized as follows: Geoelectric tomography has been found suitable for monitoring ventilation-induced saturation changes in the Opalinus clay. During ventilation with dry air a desaturation down to below 50% could be detected in both desaturation cycles. The desaturated zone extends less than 0.5 m into the rock around the microtunnel. During the second resaturation phase, ventilation with humid air led to quick resaturation at the tunnel surface, while resaturation of the rock mass took months. The still ongoing third resaturation phase seems to imply that resaturation of the rock mass may take years with no air circulation in the tunnel. The laboratory investigations on the Opalinus clay included the determination of water retention capacity, swelling pressure, free swelling/shrinking strains induced by moisture changes, and response of normal and large hollow clay samples to the ventilation of the central boreholes at different air humidity values. The Opalinus clay has a high water absorption capacity. The amount of water uptake in unconstraint conditions is much higher than the water content in the naturally confined state, indicating that the pore water in the natural clay rock is predominantly bound on clay minerals. The swelling pressure induced by wetting with vapour is very close to the major lithostatic stress at the sampling location. Water uptake from vapour causes a large free expansion of up to 12% over 8 months and even a breakdown along bedding planes. Release of

  10. The Influence of SAND’s Gradation and Clay Content of Direct Sheart Test on Clayey Sand

    Science.gov (United States)

    Wibisono, Gunawan; Agus Nugroho, Soewignjo; Umam, Khairul

    2018-03-01

    The shear strength of clayey-sand can be affected by several factors, e.g. gradation, density, moisture content, and the percentage of clay and sand fraction. The same percentage of clay and sand fraction in clayey-sand mixtures may have different shear strengths due to those factors. This research aims to study the effect of clay content on sand that cause the change of its shear strength. Samples consisted of different clay and sand fractions were reconstituted at a certain moisture content. Sand fractions varied from well-graded to poorly-graded sand. Shear strength was measured in terms of the direct shear test. Prior to the test, surcharge loads were applied to represent overburden pressures. Shear strength results and their components (i.e. Cohesion and internal angle of friction) were correlated with physical properties of samples (i.e. grading coefficient of curvature, coefficient of uniformity, and density). Results showed that samples classified as well-graded and dense sand had higher shear strength. In the other hand, the shear strengths decreased when the mixtures became poorly-graded and less dense. The inclusion of the clay fraction increased cohesion component and decreased internal angle of friction.

  11. Safety Analysis Report for Packaging: The unirradiated fuel shipping container USA/9853/AF

    International Nuclear Information System (INIS)

    1991-01-01

    The HFBR Unirradiated Fuel Shipping Container was designed and fabricated at the Oak Ridge National Laboratory in 1978 for the transport of fuel for the High Flux Beam Reactor (HFBR) for Brookhaven National Laboratory. The package has been evaluated analytically, as well as the comparison to tests on similar packages, to demonstrate compliance with the applicable regulations governing packages in which radioactive and fissile materials are transported. The contents of this Safety Analysis Report for Packaging (SARP) are based on Regulatory Guide 7.9 (proposed Revision 2 - May 1986), 10 CFR Part 71, DOE Order 1540.2, DOE Order 5480.3, and 49 CFR Part 173

  12. Three-dimensional FDEM numerical simulation of failure processes observed in Opalinus Clay laboratory samples

    Directory of Open Access Journals (Sweden)

    Omid Mahabadi

    2014-12-01

    Full Text Available This study presents the first step of a research project that aims at using a three-dimensional (3D hybrid finite-discrete element method (FDEM to investigate the development of an excavation damaged zone (EDZ around tunnels in a clay shale formation known as Opalinus Clay. The 3D FDEM was first calibrated against standard laboratory experiments, including Brazilian disc test and uniaxial compression test. The effect of increasing confining pressure on the mechanical response and fracture propagation of the rock was quantified under triaxial compression tests. Polyaxial (or true triaxial simulations highlighted the effect of the intermediate principal stress (σ2 on fracture directions in the model: as the intermediate principal stress increased, fractures tended to align in the direction parallel to the plane defined by the major and intermediate principal stresses. The peak strength was also shown to vary with changing σ2.

  13. Development of clay characterization methods for use in repository design with application to a natural Ca bentonite clay containing a redox front

    International Nuclear Information System (INIS)

    Karnland, O.; Pusch, R.

    1990-12-01

    Natural smectite clays in the form of 'true' bentonites formed from volcanic ash, or resulting from in-situ weathering of rock, are suitable for a number of sealing options in repositories, both as tightening component of sand/clay backfills and as highly efficient buffer for embedment of canisters, as well as for fracture sealing. The price and quality, in terms of smectite content and type of smectite, vary considerably and an optimum choice of clay for use in repositories has to be based on quantitative quality data. This requires characterization of the clay material for which a test scheme has been worked out. It comprises determination of the granulometrical, chemical, and mineralogical compositions, as well as of certain physical properties. Recent research shows the importance of the type of smectite for the longevity of buffers in repository environment, beidellite being less favourable and saponite superior to montmorillonite, which is the most common smectite species. The test scheme hence includes means of distinguishing between various smectite minerals. The influence of accessory minerals on the chemical integrity of both the smectite and the canister material requires identification also of such minerals, for which the scheme is useful as well. The report summarizes the various test procedures and gives data from application of the scheme to samples from a natural Ca bentonite containing a redox front. This study suggests that a significant part of the iron in the clay fraction is in the form of Fe 2+ in octahedral positions of the montmorillonite of unoxidized natural clay and that it is converted to Fe 3+ on oxidation. Part of the iron is probably in the form of the Fe 2+ Fe 3+ hydroxy compounds that give the unoxidized clay its bluish colour, while they can be assumed to be transformed to yellowish FeOOH forms on oxidation. (author)

  14. Characterization of natural and modified clay for development of polymers nanocomposites

    International Nuclear Information System (INIS)

    Jarek, Flavia; Reis, Dayane M.; Kloss, Juliana R.; Mauler, Raquel S.; Barbosa, Ronilson V.

    2009-01-01

    Bentonite is a technologic terminology applied to clays of very thin granulation basically composed by mineral of the esmectites group where the montmorilonite is the most common, meaning that it is a filossilicate with layers as thick as 1 nm. Because it is polar, the clay is not compatible with most of polymers that are less polars or apolars, reason why it has to be modified to improve compatibility between the inorganic (polar) and the organic phase (apolar). Aiming to show the potential for the development of nanocomposites, the purpose of this work was to verify the chemical and physical characteristics of the various bentonites by comparing the technical files and performing the water Foster swelling and change chemically the samples, evaluating them by infrared spectroscopy and X-ray diffractometry. The different analyzed samples of bentonite showed an effective intercalation of the modifying agent on the surface of the structure. This evidence will allow the use of this material in the clay-polymer nanocomposites synthesis. (author)

  15. Mineralogical and Micro-fabric investigation of the Sandy Facies of Opalinus Clay (Mont Terri)

    International Nuclear Information System (INIS)

    Kaufhold, Annette; Siegesmund, Siegfried; Dohrmann, Reiner; Graesle, Werner; Plischke, Ingo

    2013-01-01

    In the field of geological disposal of radioactive waste in many countries argillaceous formations are considered as potential host rock. For the understanding of the long-term behaviour of clay host rock, it is important to understand the interaction between mechanical behaviour, micro-fabric, and mineral composition. Previous publications showed that particularly the carbonate content and the arrangement of the carbonate grains (as cement in the matrix or as shells) determines the mechanical strength of Opalinus Clay and Callovo-Oxfordian Clay specimens, respectively. Klinkenberg et al. (2009) studied the shaly facies of Opalinus Clay, however, the actual deposit is planned to be built in the sandy facies of Opalinus Clay. The aim of the present study is to investigate the relation between micro-fabric, mineral composition, and mechanical properties of different samples derived from the sandy facies (BLT-A2). Image analysis showed that the carbonates in the sandy facies mainly occur as 1) matrix which in turn acts as cement. Carbonates also occur 2) in the fine sand fraction and 3) biogenic carbonates as traces. The carbonates of the sandy facies, therefore, appear to be similar to the carbonates of the Callovo-Oxfordian Clay with respect to their possible influence on failure strength. The mechanical testing showed that the shear strength increases with increasing carbonate content. This phenomenon was also observed for the samples of the Callovo-Oxfordian Clay, while the opposite relation was found for the shaly facies of the Opalinus Clay. Preliminary results presented here, indicate that the sandy facies (drilling BLT-A2) and Callovo-Oxfordian Clay show similar mechanical properties - in detail: 1) Micro-fabric: carbonates predominate in the matrix, 2) Mineralogy: high carbonate content and 3) Mechanical testing: shear strength increases with increasing carbonate content, where the type of carbonates which controls the increase of strength has to be

  16. HDPE/clay hybrids: the effect of clay modified with poly(diphenyl siloxanes) on thermal and rheological properties

    Energy Technology Data Exchange (ETDEWEB)

    Monasterio, Fernanda E.; Carrera, Maria C.; Erdmann, Eleonora; Destefanis, Hugo A., E-mail: ferelenakq@gmail.co [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Buenos Aires (Argentina). Inst. de Investigaciones para la Industria Quimica; Pita, Victor J.R.R.; Dias, Marcos L. [Universidade Federal do Rio de Janeiro (IMA/UFRJ), RJ (Brazil). Inst. de Macromoleculas Profa. Eloisa Mano

    2009-07-01

    Poly(diphenyl siloxanes) (PDPhS) were synthesized in presence of organophilic clay in order to modify its nano structure. Two silane monomers were used: dimethoxydiphenylsilane and dichlorodiphenylsilane. The following characterizations were performed for all clays: XRD, FTIR and TGA/DTG. These siloxane-modified clays were more hydrophobic and had enhanced thermal stability. Solvent extraction was carried out in the siloxane-modified clays and the PDPhS soluble fraction analyzed according the molecular weight via GPC. The presence of free and grafted oligomers on clay surface was identified. The modified clays were added to HDPE by melt processing to obtain HDPE/clay hybrids which exhibited marked differences in the rheological behavior when compared with neat HDPE. (author)

  17. HDPE/clay hybrids: the effect of clay modified with poly(diphenyl siloxanes) on thermal and rheological properties

    International Nuclear Information System (INIS)

    Monasterio, Fernanda E.; Carrera, Maria C.; Erdmann, Eleonora; Destefanis, Hugo A.; Pita, Victor J.R.R.; Dias, Marcos L.

    2009-01-01

    Poly(diphenyl siloxanes) (PDPhS) were synthesized in presence of organophilic clay in order to modify its nano structure. Two silane monomers were used: dimethoxydiphenylsilane and dichlorodiphenylsilane. The following characterizations were performed for all clays: XRD, FTIR and TGA/DTG. These siloxane-modified clays were more hydrophobic and had enhanced thermal stability. Solvent extraction was carried out in the siloxane-modified clays and the PDPhS soluble fraction analyzed according the molecular weight via GPC. The presence of free and grafted oligomers on clay surface was identified. The modified clays were added to HDPE by melt processing to obtain HDPE/clay hybrids which exhibited marked differences in the rheological behavior when compared with neat HDPE. (author)

  18. The CEC benchmark interclay on rheological models for clays results of pilot phase (January-June 1989) about the boom clay at Mol (B)

    International Nuclear Information System (INIS)

    Come, B.

    1990-01-01

    A pilot phase of a benchmark exercise for rheological models for boom clay, called interclay, was launched by the CEC in January 1989. The purpose of the benchmark is to compare predictions of calculations made about well-defined rock-mechanical problems, similar to real cases at the Mol facilities, using existing data from laboratory tests on samples. Basically, two approaches were to be compared: one considering clay as an elasto-visco-plastic medium (rock-mechanics approach), and one isolating the role of pore-pressure dissipation (soil-mechanics approach)

  19. Possibility of inferring some general characters of deep clay deposits by means of superficial observations

    International Nuclear Information System (INIS)

    Anselmi, B.; Antonioli, F.; Brondi, A.; Ferretti, O.; Gerini, V.

    1984-02-01

    The aim of this work has been to infer mineralogical and sedimentological characteristics of deep clay deposits by means of low cost observations on surficial clay outcroppings. Main research objectives considered in the programme have been: a) assessing regional distribution pattern of different, if existing, clay mineralogical associations; b) assessing possible relationships between parent rock of clay formations and mineralogy of sediments derived from; c) assessing important variations of clay bodies according to the evolution of the basins. The researches have been developed on the most representative Italian clay basins, following this programme: a) systematic sampling and mineralogic analysis of the pliocenic clay formations; b) assessment and development of investigations on clay mineralogic provinces, possibly identified in the preceding general phase by means of investigations on the variations of structural and mineralogical characteristics of significative clay deposits. The final results have been: a) clay mineralogic associations show a regional distribution pattern, i.d. the existence of many mineralogic provinces at the Italian scale is demonstrated; b) besides depositional mechanisms the mineralogic differential distribution pattern is due also to the lithologic nature of parent rock of the clay. These results account for the possibility of forecasting general mineralogic composition of deep clay bodies starting from low cost observations on surficial clay outcroppings. A practical implication is the possibility of orienting detailed expensive researches only toward those situations probabilistically displaying more appropriate characters

  20. Aspects of clay/concrete interactions

    International Nuclear Information System (INIS)

    Oscarson, D.W.; Dixon, D.A.; Onofrei, M.

    1997-01-01

    In the Canadian concept for nuclear fuel waste management, both clay-based materials and concrete are proposed for use as barriers, seals or supporting structures. The main concern when clays and concrete are in proximity is the generation of a high-pH environment by concrete since clay minerals are relatively unstable at high pH. Here we examine the OH - -generating capacity of two high-performance concretes when in contact with several solutions. We also investigate various aspects of claylconcrete interactions. They are: (1) the alkalimetric titration of clay suspensions, (2) the effect of Ca(OH) 2 (portlandite) on the swelling and hydraulic properties of compacted bentonite, and (3) the influence of cement grout on a backfill clay retrieved from the 900-d Buffer/Container Experiment at the Underground Research Laboratory of AECL. The results indicate that although high-performance concretes establish significantly lower poresolution pH (9 to 10) than does ordinary portland cement, the pH is still somewhat higher than that of clay/groundwater systems of about pH 8. Hence, even if high-performance concrete is used in a disposal vault, the potential still exists for clay minerals to alter over long periods of time if in contact with this concrete. The data show, however, that clays have a substantial buffering capacity, and clay-based barriers can thus neutralize much of the OH - potentially released from concrete in a vault. Moreover, even after reacting for 120 d at 85 o C with up to 5 wt.% Ca(OH) 2 , compacted bentonite (dry density = 1.2 Mg/m 3 ) retains much of its swelling capacity and has a permeability low enough (hydraulic conductivity ≤ 10 -11 m/s) to ensure that molecular diffusion will be the main transport mechanism through compacted clay-based barriers. Furthermore, according to X-ray diffractometry, the clay mineral component of backfill was not altered by contact with a cement grout for 900 d in the Buffer/Container Experiment

  1. Thermal studies on unirradiated and γ-irradiated polymer of allyl diglycol carbonate

    International Nuclear Information System (INIS)

    Kalsi, P.C.; Pandey, A.K.; Iyer, R.H.; Singh Mudher, K.D.

    1995-01-01

    The thermal decomposition of unirradiated and γ-irradiated (5.93-15.5 MRad dose range) allyl diglycol carbonate polymer (trade name, CR-39) was studied by thermogravimetry (TG) and differential thermal analysis (DTA). These studies indicate four main decomposition steps in CR-39 polymer in air. Assessment of the influence of radiation dose on the above range shows that while the 5.93 MRad γ-irradiated polymer CR-39 degrades in three steps, the 15.5 MRad γ-irradiated polymer degrades in only two steps. The kinetics of the different stages of degradation were also evaluated from the TG curves. Irradiation enhances the decomposition rate and the effect increases further with increasing radiation dose. The activation energy values calculated for all the decomposition stages decrease on irradiation

  2. Repository tunnel construction in deep clay formations

    International Nuclear Information System (INIS)

    Clarke, B.G.; Mair, R.J.; Taylor, R.N.

    1992-01-01

    One of the objects of the Hades project at Mol, Belgium has been to evaluate the feasibility of construction of a deep repository in the Boom clay formation at depth of approximately 225 metres. The main objective of the present project was to analyse and interpret the detailed geotechnical measurements made around the Hades trial shaft and tunnel excavations and evaluate the safety of radioactive waste disposal in a repository facility in deep clay formations. Plasticity calculations and finite element analyses were used which gave results consistent with the in-situ measurements. It was shown that effective stress analysis could successfully predict the observed field behaviour. Correct modelling of the small-strain stiffness of the Boom clay was essential if reasonable predictions of the pore pressure response due to construction are to be made. The calculations undertaken indicated that, even in the long term, the pressures on the test drift tunnel lining are likely to be significantly lower than the overburden pressure. Larger long-term tunnel lining pressures are predicted for impermeable linings. A series of laboratory stress path tests was undertaken to determine the strength and stiffness characteristics of the Boom clay. The tests were conducted at appropriate effective stress levels on high-quality samples retrieved during construction of the test drift. The apparatus developed for the testing is described and the results discussed. The development of a self boring retracting pressure-meter is described. This novel in-situ testing device was specifically designed to determine from direct measurements the convergence/confinement curve relevant to tunnelling in clay formations. 44 refs., 60 figs., 3 tabs

  3. Imaging techniques in clay sciences: a key tool to go a step further

    International Nuclear Information System (INIS)

    Robinet, J.C.; Michau, N.; Schaefer, T.

    2012-01-01

    the need to study microstructure of clay-rocks and clay based materials from multi-scale techniques and multiple scientific disciplines. Nevertheless at the end of the 90's, several scientific and/or technological bottlenecks, like the imaging the clays in 3D, limited our capacity to bridge small scale processes to macro-scale behaviors and properties. Over the last decade, R and D programs on nuclear waste disposal have tackled many issues to go further in our understanding of clays. Through different results and current studies, we have reviewed various developments and improvements on imaging techniques and their applications on clay-rocks and clay based materials currently under investigations. The presentation will address successively the different questions asked at each step, from the acquisition to the use of the data: - improvement and development of sampling and microstructure preservation methods to image undisturbed samples, - emergence of 3D techniques (X-ray microtomography, FIB/SEM...) and their application to clay based materials and clay rocks, - improvement of image acquisition and treatment of 2D/3D images, - development of multi-scale methodologies, - cross-cutting between imaging and analytical techniques to get quantitative information on pore and mineral spatial distribution, - imaging in 2D/3D the microstructure of clay materials under THMC conditions and environmental conditions, - extraction of quantitative information from image analysis using statistical approaches or cross-correlation to quantitative techniques, - correlation between microstructure characteristic parameters and macroscopic properties, - modeling of multi-scale THMC processes using data extracted from images. Conclusions drawn up from this review show up that imaging techniques have progressively turned into an essential tool to support THMC experimental or numerical studies in a sense that they have gradually evolved from a qualitative observation mean to a quantitative

  4. Purification of bentonite clays from the district of Cubati, PB, for other uses

    International Nuclear Information System (INIS)

    Costa, M.R.; Araujo, J.P.; Silva, I.A.; Cardoso, M.A.; Silva, C.D.; Neves, G.A.; Ferreira, H.C.

    2012-01-01

    The state of Paraiba is responsible for the increased production of crude bentonite in the country, coming from one of the largest mines of Brazil, located in Boa Vista, PB. Recently, in the regions of Cubati and Pedra Lavrada, PB, found new deposits of bentonite that could expand the state reserves. The paper aims at the characterization and development of clay purified using the techniques of screening and hydrocycloning, from bentonite clay recently discovered in the city of Cubati, PB, for various uses. The sample characterization was performed through techniques: granulometric analysis by laser diffraction, X-ray diffraction and chemical analysis by X-ray fluorescence and thermogravimetric and differential thermogravimetric analysis. The results showed that the samples are typical of bentonite clay, and that the purification process using only the hydrocycloning shows better results. (author)

  5. Clay mineralogy of the mud banks of Cochin

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, R.R.; Murty, P.S.N.

    The mineralogy of the sediments constituting the mud banks formed off Cochin, Kerala, India was studied. The clay mineral composition was used as a means of understanding the nature and source of origin of the muds. Fine fraction of the mud samples...

  6. Enchanted Clays: 44th Annual Meeting of the Clay Minerals Society (June 2007)

    Energy Technology Data Exchange (ETDEWEB)

    Randall T. Cygan

    2007-06-01

    “Enchanted Clays: 44th Annual Meeting of the Clay Minerals Society” was held in early June 2007 in beautiful and historic Santa Fe, New Mexico, USA. Santa Fe provided an idyllic location in the southwestern United States for the attendees to enjoy technical and social sessions while soaking up the diverse culture and wonderful climate of New Mexico—The Land of Enchantment. The meeting included a large and varied group of scientists, sharing knowledge and ideas, benefitting from technical interactions, and enjoying the wonderful historic and enchanted environs of Santa Fe. Including significant number of international scientists, the meeting was attended by approximately two hundred participants. The meeting included three days of technical sessions (oral and poster presentations), three days of field trips to clay and geological sites of northern New Mexico, and a full day workshop on the stabilization of carbon by clays. Details can be found at the meeting web site: www.sandia.gov/clay.

  7. Evaluation of the bleaching flux in clays containing hematite and different clay minerals

    International Nuclear Information System (INIS)

    Silva Junior, E.M.; Lusa, T.; Silva, T.M.; Medeiros, B.B.; Santos, G.R. dos; Morelli, M.R.

    2016-01-01

    Previous studies have shown that the addition of a synthetic flux in a clay mineral constituted by illite phase in the presence of iron oxide with the hematite, promotes color change of the firing products, making the reddish color firing into whiteness. This flow is constituted of a vitreous phase of the silicates family obtained by fusion/solidification of oxides and carbonates. Thus, the objective of this work was that of studying the interaction of the iron element in the final color mechanism of the different types of mineral crystal phase of the clays. In order to study the phenomenon, we obtained different compositions between the select clays and the synthetic flow, and characterization using X-ray diffraction (XRD) and visual analysis. The results showed that the action of the synthetic flow as a modifying agent for color depends on the mineral crystal phase of the clays. The color firing modification does not occur in the clays content high levels of kaolinite mineral phase. (author)

  8. Columns in Clay

    Science.gov (United States)

    Leenhouts, Robin

    2010-01-01

    This article describes a clay project for students studying Greece and Rome. It provides a wonderful way to learn slab construction techniques by making small clay column capitols. With this lesson, students learn architectural vocabulary and history, understand the importance of classical architectural forms and their influence on today's…

  9. Relationship between the Morphology and Physico-Mechanical Properties of Polyethylene/Clay Nanocomposites

    International Nuclear Information System (INIS)

    Rezanavaz, R; Aghjeh, M K R

    2012-01-01

    Rheology, morphology and thermal behavior of HDPE/Clay nanocomposites were studied. The mechanical properties of these materials including tensile and creep behaviors were also taken into account. Different PE-g-MA samples with different MA contents and different rheological properties were laboratory synthesized and used as compatibilizer of PE and Clay. The results of X-ray diffraction in conjunction with the results of transmission electron microscopy (TEM) analysis indicated that, increasing in degree of grafted MA increases the penetration of PE chains onto the clay interlayer leading to intercalation and exfoliation. The intercalated and especially exfoliated nanocomposites exhibited higher viscosity and elasticity in particular at low frequency ranges, showing the formation of three dimensional networks with high interfacial interaction. The presence of such a network was evidenced by tand studies where the pseudo-solid like behavior was observed for exfoliated nanocomposites. From these results it was demonstrated that the linear viscoelastic properties of the nanocomposites have a reliable sensitivity to the extent of clay dispersion and they can be used as indirect method in the prediction of the morphology and therefore thermal and mechanical behavior of the nanocomposites. Incorporation of clay decreased the onset temperature of degradation due to the Hofmann elimination reaction, but increased remarkably the mid-point of the degradation temperature. Our laboratory synthesized intercalated nanocomposites displayed higher thermal stability than those of exfoliated samples. This was attributed to the barrier effect of clay layers to oxygen and volatile products, during the degradation of part of polymer chains which was intercalated in clay interlayer. Interestingly the results showed that the effect of Hofmann elimination reaction which decreases the onset temperature degradation of modified clay nanocomposites, can effectively be eliminated using a

  10. Removal and Adsorption of Vanadium and Boron by Some Egyptian Clay Sediments

    International Nuclear Information System (INIS)

    Mahdy, R.M.

    2016-01-01

    Due to the increase concerns of the environmental pollution problems, to have safer environment, it seems so important to propose an effective exploration of geological barriers, which are suitable for waste materials disposal. In fact, clay sediments play an essential role as natural adsorbents to immobilize nuclear elements contaminates such as uranium, vanadium and boron. In this study, the clay sediments was collected from either clay exploitation localities or from nearby radioactive mineralization provinces in Egypt. The obtained data clarifies that the adsorption of vanadium and boron by clay sediments were increased by increasing the initial concentration of vanadium and boron The adsorption maxima (B) for vanadium in kaolin samples namely Mossaba Salama, El Teah and EL Eessala reached 71.4, 66.7 and 47.6). On the other hand, the adsorption maxima (B) in bentonite samples namely North Coast – H ( El Sahel el shamaly) (high viscosity) followed by North Coast (El Sahel el shamaly) then North Coast (El Sahel el shamaly) (low viscosity) and finally Kasr El Sagha reached 135.1, 79.4, 61.5 and 47.6 respectively.The adsorption maxima for boron in kaolinite samples namely Mossaba Salama, El Teah and EL Eessala reached 47.5, 30.6 and 27.0 while in the bentonite samples it was arranged from Kaser El Sagha (35.7), North Coast (H) El Sahel el shamaly ( H) (32.3), North Coast (L) (27.9) ( El Sahel el shamaly L) to North Coast (El Sahel el shamaly) (3.5)

  11. Effect of carbonate content on the mechanical behaviour of clay fault-gouges

    Science.gov (United States)

    Bakker, Elisenda; Niemeijer, André; Hangx, Suzanne; Spiers, Chris

    2015-04-01

    Carbon dioxide capture and storage (CCS) in depleted oil and gas reservoirs is considered to be the most promising technology to achieve large-scale reduction in anthropogenic emissions. In order to retain the stored CO2 from the atmosphere for the very long-term, i.e. on timescales of the order of 103-104 years, it is essential to maintain the integrity of the caprock, and more specifically of any faults penetrating the seal. When selecting suitable CO2-storage reservoirs, pre-exisiting faults within the caprock require close attention, as changes in the stress state resulting from CO2-injection may induce fault slip motion which might cause leakage. Little is known about the effect of fluid-rock interactions on the mineral composition, mechanical properties and the integrity and sealing capacity of the caprock. Previous studies on the effect of mineral composition on the frictional properties of fault gouges have shown that friction is controlled by the dominant phase unless there is a frictionally weak, through-going fabric. However, the effect on stability is less clear. Since long-term CO2-exposure might cause chemical reactions, potentially resulting in the dissolution or precipitation of carbonate minerals, a change in mineralogy could affect the mechanical stability of a caprock significantly. Calcite, for example, is known to be prone to micro-seismicity and shows a transition from velocity-strengthening to velocity-weakening behaviour around 100-150°C. Therefore, we investigated the effect of varying clay:carbonate ratios on fault friction behaviour, fault reactivation potential and slip stability, i.e. seismic vs. aseismic behaviour. Three types of simulated fault gouges were used: i) carbonate-free, natural clay-rich caprock samples, consisting of predominantly phyllosilicates (~80%) and quartz ~20%), ii) pure calcite, and iii) mixtures of carbonate-free clay-rich caprock and pure calcite, with predetermined clay:carbonate ratios. For the natural clay

  12. Mineralogy of subducted clay and clay restite in the lower mantle

    Science.gov (United States)

    Armstrong, L.; Skora, S. E.; Walter, M. J.

    2012-12-01

    Light Source in Didcot, England. Preliminary analysis of diffraction data collected at ambient pressure indicates the following phase assemblages. At transition zone conditions the clay produces an assemblage of St+K-Holl+Gt+Cpx+CAS-phase, consistent with multi-anvil results [6]. CAS-phase is absent by 30 GPa, and K-Holl disappears from the assemblage between 40 and 50 GPa. At >30 GPa the assemblage consists of St+NAL+CF-structured phase±K-Holl. In the restite composition the assemblage at 19-24 GPa is St+Cor+Gt, and at higher pressures is mainly St+Mg-perovskite with minor unknown peaks. Further analysis of diffraction patterns and FEG-EPMA analysis of ion-milled samples are in progress to elucidate phase relations to 80 GPa. [1] van der Hilst et al., Nature 1997. 386:578-584 . [2] Fukao et al., Annu. Rev. Earth Planet. Sci. 2009. 37:19-46. [3] Skora & Blundy, J. Petrol., 2010. 51:2211-2243. [4] Bulanova et al., Contrib. Mineral. Petrol. 2010. DOI: 10.1007/s00410-010-0490-6. [5] Domanik & Holloway, GCA 1996. 60: 4133-1450. [6] Irifune et al., Earth Planet. Sci. Lett., 1994. 126:351-368.

  13. Micromechanics of non-active clays in saturated state and DEM modelling

    Directory of Open Access Journals (Sweden)

    Pagano Arianna Gea

    2017-01-01

    Full Text Available The paper presents a conceptual micromechanical model for 1-D compression behaviour of non-active clays in saturated state. An experimental investigation was carried out on kaolin clay samples saturated with fluids of different pH and dielectric permittivity. The effect of pore fluid characteristics on one-dimensional compressibility behaviour of kaolin was investigated. A three dimensional Discrete Element Method (DEM was implemented in order to simulate the response of saturated kaolin observed during the experiments. A complex contact model was introduced, considering both the mechanical and physico-chemical microscopic interactions between clay particles. A simple analysis with spherical particles only was performed as a preliminary step in the DEM study in the elastic regime.

  14. An assessment of dioxin levels in processed ball clay from the United States

    Energy Technology Data Exchange (ETDEWEB)

    Ferrario, J.; Byrne, C. [USEPA, Stennis Space Ctr. Mississippi (United States); Schaum, J. [USEPA, Washington, DC (United States)

    2004-09-15

    Introduction The presence of dioxin-like compounds in ball clay was discovered in 1996 as a result of an investigation to determine the sources of elevated levels of dioxin found in two chicken fat samples from a national survey of poultry. The investigation indicated that soybean meal added to chicken feed was the source of dioxin contamination. Further investigation showed that the dioxin contamination came from the mixing of a natural clay known as ''ball clay'' with the soybean meal as an anti-caking agent. The FDA subsequently discontinued the use of contaminated ball clay as an anti-caking agent in animal feeds. The source of the dioxins found in ball clay has yet to be established. A comparison of the characteristic dioxin profile found in ball clay to those of known anthropogenic sources from the U.S.EPA Source Inventory has been undertaken, and none of those examined match the features found in the clays. These characteristic features together with the fact that the geologic formations in which the clays are found are ancient suggest a natural origin for the dioxins. The plasticity of ball clays makes them an important commercial resource for a variety of commercial uses. The percentage of commercial uses of ball clay in 2000 included: 29% for floor and wall tile, 24% for sanitary ware, 10% pottery, and 37% for other industrial and commercial uses. The total mining of ball clay in the U.S. for 2003 was 1.12 million metric tons. EPA is examining the potential for the environmental release of dioxins from the processing/use of ball clays and evaluating potential exposure pathways. Part of this overall effort and the subject of this study includes the analysis of dioxin levels found in commercially available ball clays commonly used in ceramic art studios.

  15. Structural characterization of bentonite clays for utilization as nanofillers in nanocomposites; Caracterizacao estrutural de argilas bentoniticas para utilizacao como nanocargas

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Carlos Ivan Ribeiro de; Rocha, Marisa Cristina Guimares; Vogas, Arthur Considera, E-mail: carlosivanr@gmail.com [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Instituto Politecnico; Silva, Ana Lucia Nazareth da [Universidade Federal do Rio de Janeiro (IMA/UFRJ), RJ (Brazil). Instituto de Macromoleculas Professora Eloisa Mano; Bertolino, Luiz Carlos [Centro de Tecnologia Mineral (CETEM/MCTI), Rio de Janeiro, RJ (Brazil)

    2014-07-01

    Clays of different composition have been used in the development of polymer nanocomposites. However, the utilization of bentonite clays has been emphasized in Brazil, mainly due to their availability.The best known and studied deposits of bentonite clays are located in the state of Paraiba. However, these deposits are becoming exhausted after decades of exploitation. In this context, the aim of this work is to proceed the physical-mineralogical characterization of bentonite clays recently discovered in Cubati, PB. In order to achieve this objective, the samples underwent a particle size classification step and were characterized by X-ray fluorescence, X-ray diffraction, infrared spectroscopy, thermal analysis and scanning electron microscopy. Results of X-ray diffraction showed that the samples are composed of smectite, and kaolinite and quartz. The characterization of the samples by FTIR confirmed these results. Results of chemical analysis showed that the clays have predominantly different exchangeable cations. (author)

  16. Thixotropic Properties of Latvian Illite Containing Clays

    OpenAIRE

    Lakevičs, Vitālijs; Stepanova, Valentīna; Niedra, Santa; Dušenkova, Inga; Ruplis, Augusts

    2015-01-01

    Thixotropic properties of Latvian Devonian and Quaternary clays were studied. Dynamic viscosity of the water clay suspensions were measured with a rotating viscometer. Influence of concentration, pH and modifiers on the thixotropic clay properties was analyzed. It was found that Latvian clays have thixotropic properties. Stability of clay suspensions is described with the thixotropy hysteresis loop. Increasing the speed of the viscometer rotation, dynamic viscosity of the clay suspension decr...

  17. Clay exfoliation and polymer/clay aerogels by supercritical carbon dioxide

    Directory of Open Access Journals (Sweden)

    Simona eLongo

    2013-11-01

    Full Text Available Supercritical carbon dioxide (scCO2 treatments of a montmorillonite (MMT intercalated with ammonium cations bearing two long hydrocarbon tails (organo-modified MMT, OMMT led to OMMT exfoliation, with loss of the long-range order in the packing of the hydrocarbon tails and maintenance of the long-range order in the clay layers. The intercalated and the derived exfoliated OMMT have been deeply characterized, mainly by X-ray diffraction analyses. Monolithic composite aerogels, with large amounts of both intercalated and exfoliated OMMT and including the nanoporous-crystalline δ form of syndiotactic polystyrene (s-PS, have been prepared, by scCO2 extractions of s-PS-based gels. Also for high OMMT content, the gel and aerogel preparation procedures occur without re-aggregation of the exfoliated clay, which is instead observed for other kinds of polymer processing. Aerogels with the exfoliated OMMT have more even dispersion of the clay layers, higher elastic modulus and larger surface area than aerogels with the intercalated OMMT. Extremely light materials with relevant transport properties could be prepared. Moreover, s-PS-based aerogels with exfoliated OMMT could be helpful for the handling of exfoliated clay minerals.

  18. Kisameet Glacial Clay: an Unexpected Source of Bacterial Diversity.

    Science.gov (United States)

    Svensson, Sarah L; Behroozian, Shekooh; Xu, Wanjing; Surette, Michael G; Li, Loretta; Davies, Julian

    2017-05-23

    Widespread antibiotic resistance among bacterial pathogens is providing the impetus to explore novel sources of antimicrobial agents. Recently, the potent antibacterial activity of certain clay minerals has stimulated scientific interest in these materials. One such example is Kisameet glacial clay (KC), an antibacterial clay from a deposit on the central coast of British Columbia, Canada. However, our understanding of the active principles of these complex natural substances is incomplete. Like soils, clays may possess complex mixtures of bacterial taxa, including the Actinobacteria , a clade known to be rich in antibiotic-producing organisms. Here, we present the first characterization of both the microbial and geochemical characteristics of a glacial clay deposit. KC harbors surprising bacterial species richness, with at least three distinct community types. We show that the deposit has clines of inorganic elements that can be leached by pH, which may be drivers of community structure. We also note the prevalence of Gallionellaceae in samples recovered near the surface, as well as taxa that include medically or economically important bacteria such as Actinomycetes and Paenibacillus These results provide insight into the microbial taxa that may be the source of KC antibacterial activity and suggest that natural clays may be rich sources of microbial and molecular diversity. IMPORTANCE Identifying and characterizing the resident microbial populations (bacteria, viruses, protozoa, and fungi) is key to understanding the ecology, chemistry, and homeostasis of virtually all sites on Earth. The Kisameet Bay deposit in British Columbia, Canada, holds a novel glacial clay with a history of medicinal use by local indigenous people. We previously showed that it has potent activity against a variety of antibiotic-resistant bacteria, suggesting it could complement our dwindling arsenal of antibiotics. Here, we have characterized the microbiome of this deposit to gain insight

  19. Enhanced reductive dechlorination in clay till contaminated with chlorinated solvents

    DEFF Research Database (Denmark)

    Damgaard, Ida

    Chlorinated solvents are among the most frequently found contaminants in groundwater. In fractured media, chlorinated ethenes and ethanes are transported downwards through preferential pathways with subsequent diffusion into the sediment matrix. Due to slow back diffusion it can serve as a long...... (direct push delivery, Gl. Kongevej). Degradation of chlorinated ethenes (and ethanes) in the clay till matrix and in embedded high permeability features was investigated by high resolution sampling of intact cores combined with groundwater sampling. An integrated approach using chemical analysis...... (hydraulic fracturing with gravitational injection and direct push delivery) were therefore tested in clay till by injection of amendment-comparable tracers to investigate the possibility to overcome diffusion limitations in the low permeability matrix. The study of hydraulic fracturing demonstrated...

  20. What makes a natural clay antibacterial?

    Science.gov (United States)

    Williams, Lynda B.; Metge, David W.; Eberl, Dennis D.; Harvey, Ronald W.; Turner, Amanda G.; Prapaipong, Panjai; Port-Peterson, Amisha T.

    2011-01-01

    Natural clays have been used in ancient and modern medicine, but the mechanism(s) that make certain clays lethal against bacterial pathogens has not been identified. We have compared the depositional environments, mineralogies, and chemistries of clays that exhibit antibacterial effects on a broad spectrum of human pathogens including antibiotic resistant strains. Natural antibacterial clays contain nanoscale (2+ solubility.

  1. Viscosity and Plasticity of Latvian Illite Clays

    OpenAIRE

    Jurgelāne, I; Vecstaudža, J; Stepanova, V; Mālers, J; Bērziņa-Cimdiņa, L

    2012-01-01

    Due to viscosity and plasticity, clays and clay minerals are used in civil engineering, pottery and also in cosmetics and medicine as thickening agents and emulsion and suspension stabilizers. The rheological properties of clay suspensions are complex. Mostly it is an interaction between mineral composition, clay particle size and pH value and also depends on clay minerals. Clay-water suspension is non-Newtonian fluid showing thixotropic and pseudoplastic properties. Results showed that plast...

  2. Boom clay pore water, home of a diverse microbial community

    International Nuclear Information System (INIS)

    Wouters, Katinka; Moors, Hugo; Leys, Natalie

    2012-01-01

    Document available in extended abstract form only. Boom Clay pore water (BCPW) has been studied in the framework of geological disposal of nuclear waste for over two decades, thereby mainly addressing its geochemical properties. A reference composition for synthetic clay water has been derived earlier by modelling and spatial calibration efforts, mainly based on interstitial water sampled from different layers within the Boom clay. However, since microbial activity is found in a range of extreme circumstances, the possibility of microbes interacting with future radioactive waste in a host formation like Boom Clay, cannot be ignored. In this respect, BCPW was sampled from different Boom Clay layers using the Morpheus piezometer and subsequently analysed by a complementary set of microbiological and molecular techniques, in search for overall shared and abundant microorganisms. Similar to the previous characterization of the 'average' BCPW chemical composition, the primary aim of this microbiological study is to determine a representative BCPW microbial community which can be used in laboratory studies. Secondly, the in situ activity and the metabolic properties of members of this community were addressed, aiming to assess their survival and proliferation chances in repository conditions. In a first approach, total microbial DNA of the community was extracted from the BCPW samples. This molecular approach allows a broad insight in the total microbial ecology of the BCPW samples. By polymerase chain reaction (PCR) on the highly conserved 16S rRNA genes in this DNA pool and subsequent sequencing and bio-informatics analysis, operational taxonomic units (OTUs) could be assigned to the microbial community. The bacterial community was found to be quite diverse, with OTUs belonging to 8 different phyla (Proteobacteria, Actinobacteria, Firmicutes, Bacteroidetes, Chlorobi, Spirochetes, Chloroflexi and Deinococcus-Thermus). These results provide an overall view of the

  3. Boom clay pore water, home of a diverse microbial community

    Energy Technology Data Exchange (ETDEWEB)

    Wouters, Katinka; Moors, Hugo; Leys, Natalie [SCK.CEN, Environment, Health and Safety Institute, B-2400 Mol (Belgium)

    2012-10-15

    Document available in extended abstract form only. Boom Clay pore water (BCPW) has been studied in the framework of geological disposal of nuclear waste for over two decades, thereby mainly addressing its geochemical properties. A reference composition for synthetic clay water has been derived earlier by modelling and spatial calibration efforts, mainly based on interstitial water sampled from different layers within the Boom clay. However, since microbial activity is found in a range of extreme circumstances, the possibility of microbes interacting with future radioactive waste in a host formation like Boom Clay, cannot be ignored. In this respect, BCPW was sampled from different Boom Clay layers using the Morpheus piezometer and subsequently analysed by a complementary set of microbiological and molecular techniques, in search for overall shared and abundant microorganisms. Similar to the previous characterization of the 'average' BCPW chemical composition, the primary aim of this microbiological study is to determine a representative BCPW microbial community which can be used in laboratory studies. Secondly, the in situ activity and the metabolic properties of members of this community were addressed, aiming to assess their survival and proliferation chances in repository conditions. In a first approach, total microbial DNA of the community was extracted from the BCPW samples. This molecular approach allows a broad insight in the total microbial ecology of the BCPW samples. By polymerase chain reaction (PCR) on the highly conserved 16S rRNA genes in this DNA pool and subsequent sequencing and bio-informatics analysis, operational taxonomic units (OTUs) could be assigned to the microbial community. The bacterial community was found to be quite diverse, with OTUs belonging to 8 different phyla (Proteobacteria, Actinobacteria, Firmicutes, Bacteroidetes, Chlorobi, Spirochetes, Chloroflexi and Deinococcus-Thermus). These results provide an overall view of the

  4. Clay Portrait Boxes

    Science.gov (United States)

    Wilbert, Nancy Corrigan

    2009-01-01

    In an attempt to incorporate sculptural elements into her ceramics program, the author decided to try direct plaster casting of the face to make a plaster mold for clay. In this article, the author shares an innovative ceramics lesson that teaches students in making plaster casts and casting the face in clay. This project gives students the…

  5. CERAMIC PROPERTIES OF PUGU KAOLIN CLAYS. PART 2 ...

    African Journals Online (AJOL)

    a

    PART 2: EFFECT OF PHASE COMPOSITION ON FLEXURAL STRENGTH ... working in this field have established factors controlling the various ... The raw materials selected were kaolin clays from Pugu deposit in Tanzania, Norfloat potash .... the total mullite contents present in the samples since the method used does.

  6. Determination of gallium in flint clay by neutron activation analysis

    International Nuclear Information System (INIS)

    Padova, A.; Even, O.

    1975-01-01

    Neutron activation analysis was applied to determine gallium traces in different flint clay samples found in Israel. The principal 835 KeV gamma ray of gallium-72 was measured with a 60 cm 2 Ge(Li) spectrometer in conjunction with a Packard 4000 channel analyzer and Wang table computer, model 720 C. Samples were weighed into polyethylene vials, sealed and inserted into polyethylene rabbit. Gallium metal and gallium oxide used as standards were similarly prepared for irradiation for 10 minutes in the I.R.R.I., at a thermal flux of 3.5x10 12 n/cm 2 sec. Careful calibration of the spectrometer and judicious choice of cooling time eliminate the influence of such elements as europium-152, and sodium-24 and make possible the determination of gallium without prior chemical separation. Representative Israel flint clay samples contain about 55 ppm gallium. (B.G.)

  7. Clay Animals and Their Habitats

    Science.gov (United States)

    Adamson, Kay

    2010-01-01

    Creating clay animals and their habitats with second-grade students has long been one of the author's favorite classroom activities. Students love working with clay and they also enjoy drawing animal homes. In this article, the author describes how the students created a diorama instead of drawing their clay animal's habitat. This gave students…

  8. Surface modification of montmorillonite on surface Acid-base characteristics of clay and thermal stability of epoxy/clay nanocomposites.

    Science.gov (United States)

    Park, Soo-Jin; Seo, Dong-Il; Lee, Jae-Rock

    2002-07-01

    In this work, the effect of surface treatments on smectitic clay was investigated in surface energetics and thermal behaviors of epoxy/clay nanocomposites. The pH values, X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR) were used to analyze the effect of cation exchange on clay surface and the exfoliation phenomenon of clay interlayer. The surface energetics of clay and thermal properties of epoxy/clay nanocomposites were investigated in contact angles and thermogravimetric analysis (TGA), respectively. From the experimental results, the surface modification of clay by dodecylammonium chloride led to the increases in both distance between silicate layers of about 8 A and surface acid values, as well as in the electron acceptor component (gamma(+)(s)) of surface free energy, resulting in improved interfacial adhesion between basic (or electron donor) epoxy resins and acidic (electron acceptor) clay interlayers. Also, the thermal stability of nanocomposites was highly superior to pure epoxy resin due to the presence of the well-dispersed clay nanolayer, which has a barrier property in a composite system.

  9. Synthesis of Zeolite A from Kaolin (Shwe Taung Clay)

    International Nuclear Information System (INIS)

    Mie Mie Han Htun; Mu Mu Htay

    2010-12-01

    The synthesis of Zeolite A from locally available kaolin clay (Shwe Taung) in Myanmar has been attempted. The kaolinite was converted to metakaoli, by treating with NaOH at 820C for 1hr, and hydrothermal treatment.It was found that the solution of fused clay powder can be crystallized at 100C under ambient pressure to synthesize Zeolite A. The process variables for synthesis have been optimized in order to produce Zeolite A at a lower price. The mole ratio of SiO2/Al2O3 for kaolin was fixed at 2.54. The effects of various factors (aging time and agitation time) on the structure of the sample were extensively investigated. The Shwe Taung clay was characterized by X-ray Diffraction (XRD), X-ray fluorescence (XRF) and Scanning Electron Microscopy (SEM). The samples were characterized by XRD. The results show that the pure form Zeolite A can be prepared with a molar composition of (2.54 SiO3: Al2O3: 5.8Na2O: 256 H2O) by agitation at room temperature for 30min. The mixture was aged for 24 hour at the same temperature and crystallized at 100C for 48 hour.

  10. 21 CFR 186.1256 - Clay (kaolin).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Clay (kaolin). 186.1256 Section 186.1256 Food and... Substances Affirmed as GRAS § 186.1256 Clay (kaolin). (a) Clay (kaolin) Al2O3.2SiO2.nH2O, Cas Reg. No. 1332-58-7) consists of hydrated aluminum silicate. The commercial products of clay (kaolin) contain...

  11. Lithological and hydrological influences on ground-water composition in a heterogeneous carbonate-clay aquifer system

    Science.gov (United States)

    Kauffman, S.J.; Herman, J.S.; Jones, B.F.

    1998-01-01

    The influence of clay units on ground-water composition was investigated in a heterogeneous carbonate aquifer system of Miocene age in southwest Florida, known as the Intermediate aquifer system. Regionally, the ground water is recharged inland, flows laterally and to greater depths in the aquifer systems, and is discharged vertically upward at the saltwater interface along the coast. A depth profile of water composition was obtained by sampling ground water from discrete intervals within the permeable carbonate units during coring and by squeezing pore water from a core of the less-permeable clay layers. A normative salt analysis of solute compositions in the water indicated a marine origin for both types of water and an evolutionary pathway for the clay water that involves clay diagenesis. The chemical composition of the ground water in the carbonate bedrock is significantly different from that of the pore water in the clay layers. Dissolution of clays and opaline silica results in high silica concentrations relative to water in other parts of the Intermediate aquifer system. Water enriched in chloride relative to the overlying and underlying ground water recharges the aquifer inland where the confining clay layer is absent, and it dissolves carbonate and silicate minerals and reacts with clays along its flow path, eventually reaching this coastal site and resulting in the high chloride and silica concentrations observed in the middle part of the Intermediate aquifer system. Reaction-path modeling suggests that the recharging surficial water mixes with sulfate-rich water upwelling from the Upper Floridan aquifer, and carbonate mineral dissolution and precipitation, weathering and exchange reactions, clay mineral diagenesis, clay and silica dissolution, organic carbon oxidation, and iron and sulfate reduction result in the observed water compositions.A study was conducted to clarify the influence of clay units on ground-water composition in a heterogeneous

  12. Quantifying the effect of squirt flow dispersion from compliant clay porosity in clay bearing sandstones

    DEFF Research Database (Denmark)

    Sørensen, Morten Kanne; Fabricius, Ida Lykke

    2013-01-01

    Compliant porosity in the form of cracks is known to cause significant attenuation and velocity dispersion through pore pressure gradients and consequent relaxation, dubbed squirt flow. Squirt flow from cracks vanish at high confining stress due to crack closing. Studies on clay bearing sandstones......-squirt flow on the bulk modulus of a clay bearing sandstone. The predicted magnitude of the clay-squirt effect on the bulk modulus is compared with experimental data. The clay-squirt effect is found to possibly account for a significant portion of the deviances from Gassmann fluid substitution in claybearing...... sandstones....

  13. Reconstruction of a digital core containing clay minerals based on a clustering algorithm.

    Science.gov (United States)

    He, Yanlong; Pu, Chunsheng; Jing, Cheng; Gu, Xiaoyu; Chen, Qingdong; Liu, Hongzhi; Khan, Nasir; Dong, Qiaoling

    2017-10-01

    It is difficult to obtain a core sample and information for digital core reconstruction of mature sandstone reservoirs around the world, especially for an unconsolidated sandstone reservoir. Meanwhile, reconstruction and division of clay minerals play a vital role in the reconstruction of the digital cores, although the two-dimensional data-based reconstruction methods are specifically applicable as the microstructure reservoir simulation methods for the sandstone reservoir. However, reconstruction of clay minerals is still challenging from a research viewpoint for the better reconstruction of various clay minerals in the digital cores. In the present work, the content of clay minerals was considered on the basis of two-dimensional information about the reservoir. After application of the hybrid method, and compared with the model reconstructed by the process-based method, the digital core containing clay clusters without the labels of the clusters' number, size, and texture were the output. The statistics and geometry of the reconstruction model were similar to the reference model. In addition, the Hoshen-Kopelman algorithm was used to label various connected unclassified clay clusters in the initial model and then the number and size of clay clusters were recorded. At the same time, the K-means clustering algorithm was applied to divide the labeled, large connecting clusters into smaller clusters on the basis of difference in the clusters' characteristics. According to the clay minerals' characteristics, such as types, textures, and distributions, the digital core containing clay minerals was reconstructed by means of the clustering algorithm and the clay clusters' structure judgment. The distributions and textures of the clay minerals of the digital core were reasonable. The clustering algorithm improved the digital core reconstruction and provided an alternative method for the simulation of different clay minerals in the digital cores.

  14. Reconstruction of a digital core containing clay minerals based on a clustering algorithm

    Science.gov (United States)

    He, Yanlong; Pu, Chunsheng; Jing, Cheng; Gu, Xiaoyu; Chen, Qingdong; Liu, Hongzhi; Khan, Nasir; Dong, Qiaoling

    2017-10-01

    It is difficult to obtain a core sample and information for digital core reconstruction of mature sandstone reservoirs around the world, especially for an unconsolidated sandstone reservoir. Meanwhile, reconstruction and division of clay minerals play a vital role in the reconstruction of the digital cores, although the two-dimensional data-based reconstruction methods are specifically applicable as the microstructure reservoir simulation methods for the sandstone reservoir. However, reconstruction of clay minerals is still challenging from a research viewpoint for the better reconstruction of various clay minerals in the digital cores. In the present work, the content of clay minerals was considered on the basis of two-dimensional information about the reservoir. After application of the hybrid method, and compared with the model reconstructed by the process-based method, the digital core containing clay clusters without the labels of the clusters' number, size, and texture were the output. The statistics and geometry of the reconstruction model were similar to the reference model. In addition, the Hoshen-Kopelman algorithm was used to label various connected unclassified clay clusters in the initial model and then the number and size of clay clusters were recorded. At the same time, the K -means clustering algorithm was applied to divide the labeled, large connecting clusters into smaller clusters on the basis of difference in the clusters' characteristics. According to the clay minerals' characteristics, such as types, textures, and distributions, the digital core containing clay minerals was reconstructed by means of the clustering algorithm and the clay clusters' structure judgment. The distributions and textures of the clay minerals of the digital core were reasonable. The clustering algorithm improved the digital core reconstruction and provided an alternative method for the simulation of different clay minerals in the digital cores.

  15. Influence of natural mobile organic matter on europium retention on Bure clay rock

    International Nuclear Information System (INIS)

    Vu-Do, Laurence

    2013-01-01

    Bure clay rock (CR) was chosen as host rock for the French high and intermediate level long lived radioactive waste repository. This choice is mostly explained by the retention ability of the Callovo-Oxfordian rock (COx). Bure clay rock contains natural organic matter (OM) that could have an influence on radionuclide retention. The aim of this work is to assess the influence of natural mobile OM on the retention of Eu on clay rock. Eu was chosen as a chemical model for trivalent actinides contained in vitrified waste. Three organic molecules were studied: suberic, sorbic and tiglic acids, small organic acids identified in COx pore water. All the experiments were carried out in an environment recreating COx water (pH=7.5; I=0.1 mol/L; PCO 2 =10 -2 bar).Clay rock sample characterization showed that the sample used in this work was similar to those previously extracted from the area of interest and that it was necessary to maintain pH at 7.5 to avoid altering the clay rock. The Eu-OM system study indicated that organic acids had no influence on Eu speciation in COx water. The Eu-CR system experimental study confirmed that retention implied sorption on CR (C(Eu)≤6.10 -6 mol/L) and precipitation in COx water (C(Eu)≥6.10 -6 mol/L). Distribution coefficient Rd (quantifying sorption) was estimated at 170 ± 30 L/g. This high value is consistent with literature values obtained on clay rocks. The ternary Eu-OM-CR system study showed a slight increase of sorption in the presence of organic matter. This synergistic effect is very satisfactory in terms of storage security: the presence of small organic acids in clay rock does not question retention properties with respect to europium and trivalent actinides. (author)

  16. DIBENZO-P-DIOXINS IN THE ENVIRONMENT FROM CERAMICS AND POTTERY PRODUCED FROM BALL CLAY MINED IN THE U.S.

    Science.gov (United States)

    Processed ball clay samples used in the production of ceramics and samples of the ceramic products were collected and analyzed for the presence and concentration of the 2,3,7,8-Cl substituted polychlorinated dibenzo-p-dioxins and furans (PCDDs/PCDFs). The processed ball clay had...

  17. Nuclear magnetic resonance study of the effect of the addition of clay on polypropylene

    International Nuclear Information System (INIS)

    Nogueira, Regina F.; San Gil, Rosane A.S.; Tavares, Maria Ines B.

    2001-01-01

    Polypropylene (PP) samples and polypropylene (PP)/clay (M) composite prepared by melting mixing have been characterized by solution and solid state nuclear magnetic resonance spectroscopy (NMR). The monomer sequences distribution and the influence of time and temperature of mechanical mix on the modifications in the PP structure were investigated by 13 C solution NMR. The solid state NMR investigation showed that the 13 C routine spectra such as MAS and CPMAS allowed obtaining information on the molecular domains of chains, and also permits to evaluate the domains mobility. 29 Si and 27 Al solid state NMR were used to characterize the clay and the PP/M composite samples. The results showed that the heating and friction in the range of temperature and time used in the sample preparation did not affect the distribution of configurational sequence in the PP chains. The effect of clay in the PP/M composite structure could be detected, using both 13 C solution and in 29 Si solid state NMR spectra. (author)

  18. Carbon/Clay nanostructured composite obtained by hydrothermal method

    International Nuclear Information System (INIS)

    Barin, G.B.; Bispo, T.S.; Gimenez, I.F.; Barreto, L.S.; Souza Filho, A.G.

    2010-01-01

    The development of strategies for converting biomass into useful materials, more efficient energy carrier and / or hydrogen storage is shown a key issue for the present and future. Carbon nanostructure can be obtained by severe processing techniques such as arc discharge, chemical deposition and catalyzed pyrolysis of organic compounds. In this study we used hydrothermal methods for obtaining nanostructured composites of carbon / clay. To this end, we used coir dust and special clays. The samples were characterized by infrared spectroscopy, X-ray diffraction and Raman. The presence of the D band at 1350 cm -1 in the Raman spectrum shows the formation of amorphous carbon with particle size of about 8.85 nm. (author)

  19. Investigation of mineral composition of differently treated devonian, quaternary and triassic clays of Latvia

    International Nuclear Information System (INIS)

    Kosorukovs, A.; Viss, R.

    1999-01-01

    Clayey fractions (particle size less than 5 μm )of the Latvian Devonian (Kuprava and Liepa deposits), Quaternary (Laza and Ugale deposits) and Triassic (Akmene deposit, Republic of Lithuania) clays have been obtained. The clayey fractions were converted in the form in which all the cations were exchanged for magnesium ions. After the ion exchange the fractions were treated with dimethyl sulfoxide or glycerol in the course for two days, one sample being subjected to thermal treatment at 550±110 C for two hours. Diffractograms for the treated samples have been obtained using a DRON-2,0 diffractometer (Co-radiation). Analysis of the obtained diffractograms show that: 1) the main clayey minerals of the Devonian clays occur to be hydromicas (mainly hydromuscovite) containing admixtures of kaolinite and quartz; 2) the main clayey minerals of the Quarternary clays also occur to be hydromicas - mixtures of hydrobiotite and hydromuscovite containing admixtures of kaolinite and iron-containing chlorite; 3) smectite occurs to be the main mineral of the Triassic clay; it contains admixtures of hydromica and chlorite; 4) the Triassic and Quaternary clays contain fine- and coarse-grained carbonates, mainly calcite, in quantities of 10-16%; 5) iron and titanium are included in fine grained minerals. (author)

  20. Exchangeable Ions Are Responsible for the In Vitro Antibacterial Properties of Natural Clay Mixtures

    Science.gov (United States)

    Otto, Caitlin C.; Haydel, Shelley E.

    2013-01-01

    We have identified a natural clay mixture that exhibits in vitro antibacterial activity against a broad spectrum of bacterial pathogens. We collected four samples from the same source and demonstrated through antibacterial susceptibility testing that these clay mixtures have markedly different antibacterial activity against Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA). Here, we used X-ray diffraction (XRD) and inductively coupled plasma – optical emission spectroscopy (ICP-OES) and – mass spectrometry (ICP-MS) to characterize the mineralogical and chemical features of the four clay mixture samples. XRD analyses of the clay mixtures revealed minor mineralogical differences between the four samples. However, ICP analyses demonstrated that the concentrations of many elements, Fe, Co, Cu, Ni, and Zn, in particular, vary greatly across the four clay mixture leachates. Supplementation of a non-antibacterial leachate containing lower concentrations of Fe, Co, Ni, Cu, and Zn to final ion concentrations and a pH equivalent to that of the antibacterial leachate generated antibacterial activity against E. coli and MRSA, confirming the role of these ions in the antibacterial clay mixture leachates. Speciation modeling revealed increased concentrations of soluble Cu2+ and Fe2+ in the antibacterial leachates, compared to the non-antibacterial leachates, suggesting these ionic species specifically are modulating the antibacterial activity of the leachates. Finally, linear regression analyses comparing the log10 reduction in bacterial viability to the concentration of individual ion species revealed positive correlations with Zn2+ and Cu2+ and antibacterial activity, a negative correlation with Fe3+, and no correlation with pH. Together, these analyses further indicate that the ion concentration of specific species (Fe2+, Cu2+, and Zn2+) are responsible for antibacterial activity and that killing activity is not solely attributed to pH. PMID:23691149

  1. Mineral acquisition from clay by budongo forest chimpanzees

    NARCIS (Netherlands)

    Reynolds, Vernon; Lloyd, Andrew W.; English, Christopher J.; Lyons, Peter; Dodd, Howard; Hobaiter, Catherine; Newton-Fisher, Nicholas; Mullins, Caroline; Lamon, Noemie; Schel, Anne Marijke; Fallon, Brittany

    2015-01-01

    Chimpanzees of the Sonso community, Budongo Forest, Uganda were observed eating clay and drinking clay-water from waterholes. We show that clay, clay-rich water, and clay obtained with leaf sponges, provide a range of minerals in different concentrations. The presence of aluminium in the clay

  2. Field-scale transport of water and bromide in a cracking clay soil

    NARCIS (Netherlands)

    Hendriks, R.F.A.; Hamminga, W.; Oostindie, K.; Bronswijk, J.J.B.

    1995-01-01

    The transport of a bromide tracer was studied in a cracking heavy clay soil. The soil was sampled six times and the groundwater and drain discharge were sampled frequently. Samples were analysed for bromide content. Solutes were transported in three domains: macropores, such as large continuous

  3. Clay minerals in the sediments around the Andaman Islands

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, V.P

    on the Island proper and the slope samples show contribution from the Ganges. Distribution of detrital minerals such as quartz and feldspar support the above conclusions. The 2 distinct clay mineral provenances result because the Andaman Islands appear to be a...

  4. Sorption of water vapour by the Na+-exchanged clay-sized fractions of some tropical soil samples

    International Nuclear Information System (INIS)

    Yormah, T.B.R.; Hayes, M.H.B.

    1993-09-01

    Water vapour sorption isotherms at 299K for the Na + -exchanged clay-sized (≤ 2μm e.s.d.) fraction of two sets of samples taken at three different depths from a tropical soil profile have been studied. One set of samples was treated (with H 2 O 2 ) for the removal of much of the organic matter (OM); the other set (of the same samples) was not so treated. The isotherms obtained were all of type II and analyses by the BET method yielded values for the Specific Surface Areas (SSA) and for the average energy of adsorption of the first layer of adsorbate (E a ). OM content and SSA for the untreated samples were found to decrease with depth. Whereas removal of organic matter made negligible difference to the SSA of the top/surface soil, the same treatment produced a significant increase in the SSA of the samples taken from the middle and from the lower depths in the profile; the resulting increase was more pronounced for the subsoil. It has been deduced from these results that OM in the surface soil was less involved with the inorganic soil colloids than that in the subsoil. The increase in surface area which resulted from the removal of OM from the subsoil was most probably due to disaggregation. Values of E a obtained show that for all the samples the adsorption of water vapour became more energetic after the oxidative removal of organic matter; the resulting ΔE a also increased with depth. This suggests that in the dry state, the ''cleaned'' surface of the inorganic soil colloids was more energetic than the ''organic-matter-coater surface''. These data provide strong support for the deduction that OM in the subsoil was in a more ''combined'' state than that in the surface soil. (author). 21 refs, 4 figs, 2 tabs

  5. Evaluation of kaolinite clays of Moa for the production of cement based clinker-calcined clay-limestone (LC3

    Directory of Open Access Journals (Sweden)

    Roger S. Almenares-Reyes

    2016-12-01

    Full Text Available Clay materials from two outcrops of the Moa region were analyzed to determine their potential use as supplementary cementitious material in the production of ternary cements based on limestone-calcined clay. The clays were characterized by atomic absorption spectroscopy (EAA, X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR and thermogravimetric analysis (ATG. These methods revealed high aluminum in clays, moderate kaolinite content, a disordered structure and the presence of impurities. The solubility of aluminum and silicon in alkali and the compressive strength of LC3 systems is proportional to their content in clay, being higher for the one with higher kaolinite content and greater structural disorder (outcrop D1, although the clay of both outcrops may constitute supplementary cementitious materials in the production of ternary cements based clinker-calcined clay-limestone. The suitable thermal activation range for both clays is between 650 ° C and 850 ° C.

  6. Influence of herbicide structure, clay acidity, and humic acid coating on acetanilide herbicide adsorption on homoionic clays.

    Science.gov (United States)

    Liu, Weiping; Gan, Jianying; Yates, Scott R

    2002-07-03

    Adsorption of chloroacetanilide herbicides on homoionic montmorillonite was studied by coupling batch equilibration and FT-IR analysis. Adsorption decreased in the order metolachlor > acetochlor > alachlor > propachlor on Ca(2+)- or Mg(2+)-saturated clays and in the order metolachlor > alachlor > acetachlor > propachlor on Al(3+)- or Fe(3+)-saturated clays. FT-IR spectra showed that the carbonyl group of the herbicide molecule was involved in bonding. For the same herbicide, adsorption of alachlor, acetachlor, and metolachlor on clay followed the order Ca(2+) approximately Mg(2+) < Al(3+) < or = Fe(3+), which coincided with the increasing acidity of homoionic clays. Adsorption of propachlor, however, showed an opposite dependence, suggesting a different governing interaction. In clay and humic acid mixtures, herbicide adsorption was less than that expected from independent additive adsorption by the individual constituents, and the deviation was dependent on the clay-to-humic acid ratio, with the greatest deviation consistently occurring at a 60:40 clay-to-humic acid ratio.

  7. Letters and Viewpoints Potentials of Using Waste Burnt Clay as a ...

    African Journals Online (AJOL)

    Samples of waste burnt clay were collected from various parts of the country to study their pozzolanic properties. The samples were ground into fine powder and taken for chemical tests. Results from the chemical tests on all the samples showed high silica content. In fact the combined percentages of Silica (SiO2), Alumina ...

  8. Hydro-mechanical behaviour of two reference Belgian clay formations under non-isothermal conditions

    International Nuclear Information System (INIS)

    Lima, A.; Romero, E.; Gens, A.; Li, X.L.

    2012-01-01

    Document available in extended abstract form only. Two deep clay formations are being investigated in Belgium in connection with the design of a repository for 'High-Level Radioactive Waste': Boom clay BC at Mol (located between 160 and 270 m depths), considered the reference host formation, and Ypresian clay YC at Kallo (located between 300 and 450 m depths) as an alternative one. A comprehensive experimental programme has been carried out on these materials to explore water permeability at different temperatures and sample orientations, as well as to analyse volume change behaviour on loading/unloading at different temperatures and sample orientations (including pre and post-yield compressibility, yield properties and volume changes on drained thermal loading). Table 1 summarises some properties of BC and YC. Figure 1 presents the pore size distribution PSD curves of both clays obtained by mercury intrusion porosimetry. They display contrasting features (bi-modal pore network in YP with larger dominant pore sizes). Larger water permeability values are expected on YC as indicated in Table 1 and Figure 2, not only as a consequence of its higher void ratio but also due to these double porosity features. Water retention properties, of particular concern on sample retrieval from large depths, are also affected due to desaturation processes that are associated with the double porosity network of YP and its effects on air-entry value (a lower initial suction is measured on YP, despite being retrieved from larger depths). Figure 2 shows vertical and horizontal water permeability results under constant volume conditions and different temperatures. BC and YC display small anisotropy at sample scale - permeability is slightly larger on horizontal direction-. With regard to temperature effects, the figure shows that water permeability dependency on temperature in YC is slightly higher than the water viscosity prediction for both orientations. Instead BC displayed a thermal

  9. The Effect of Art Therapy with Clay on Hopelessness Levels Among Neurology Patients.

    Science.gov (United States)

    Akhan, Latife Utas; Kurtuncu, Meltem; Celik, Sevim

    This study was performed to determine the effect of art therapy with clay on hopelessness levels of patients under treatment in departments of neurology. The study was of one group, pre- and posttest design. This study was performed on patients who were hospitalized in the neurology departments of a university and a state hospital between February and May 2012 in Turkey. The sample for the study comprised 50 neurology patients with diagnoses of epilepsy (17 patients) and stroke (33 patients). The patients in the study were asked to create objects of clay of any shape they desired. Data for the research were collected with a sociodemographic data form and by using the Beck Hopelessness Scale (BHS). While BHS scores of neurology patients before clay therapy were found higher compared to the scores after therapy with clay, there was also a statistically significant difference. After clay therapy, BHS scores were lower in women, in married patients, in patients who suffered from a stroke, people who had chronic disease, people without psychological illness, and in the case of children. The study showed that clay therapy had an impact on the hopelessness levels of neurology patients. Art therapy with clay may be used for rehabilitation purposes in neurology patients, both in the hospital and at home after discharge.

  10. Damage and failure of unirradiated and irradiated fuel rods tested under film boiling conditions

    International Nuclear Information System (INIS)

    Mehner, A.S.; Hobbins, R.R.; Seiffert, S.L.; MacDonald, P.E.; McCardell, R.K.

    1979-01-01

    Power-cooling-mismatch experiments are being conducted as part of the Thermal Fuels Behavior Program in the Power Burst Facility at the Idaho National Engineering Laboratory to evaluate the behavior of unirradiated and previously irradiated light water reactor fuel rods tested under stable film boiling conditions. The observed damage that occurs to the fuel rod cladding and the fuel as a result of film boiling operation is reported. Analyses performed as a part of the study on the effects of operating failed fuel rods in film boiling, and rod failure mechanisms due to cladding embrittlement and cladding melting upon being contacted by molten fuel are summarized

  11. Improving the Mechanical Performance and Thermal Stability of a PVA-Clay Nanocomposite by Electron Beam Irradiation

    Science.gov (United States)

    Shokuhi Rad, A.; Ebrahimi, D.

    2017-07-01

    The effects of electron beam irradiation and presence of clay on the mechanical properties and thermal stability of montmorillonite clay-modified polyvinyl alcohol nanocomposites were studied. By using the X-ray diffraction (XRD) and transmission electron microscopy (TEM), the microstructure of the nanocomposites was investigated. The results obtained from TEM and XRD tests showed that montmorillonite clay nanoparticles were located in the polyvinyl alcohol phase. The XRD analysis confirmed the formation of an exfoliated structure in nanocomposites samples. Increasing the amount of clay to 20 wt.% increased the tensile strength and modulus of the nanocomposite. Irradiation up to an absorbed dose of 100 kGy increased its mechanical properties and thermal stability, but at higher irradiation levels, the mechanical strength and thermal stability declined. The sample with 20 wt.% of the nanofiller, exposed to 100 kGy, showed the highest mechanical strength and thermal stability.

  12. Gas breakthrough and emission through unsaturated compacted clay in landfill final cover

    International Nuclear Information System (INIS)

    Ng, C.W.W.; Chen, Z.K.; Coo, J.L.; Chen, R.; Zhou, C.

    2015-01-01

    Highlights: • Explore feasibility of unsaturated clay as a gas barrier in landfill cover. • Gas breakthrough pressure increases with clay thickness and degree of saturation. • Gas emission rate decreases with clay thickness and degree of saturation. • A 0.6 m-thick clay layer may be sufficient to meet gas emission rate limit. - Abstract: Determination of gas transport parameters in compacted clay plays a vital role for evaluating the effectiveness of soil barriers. The gas breakthrough pressure has been widely studied for saturated swelling clay buffer commonly used in high-level radioactive waste disposal facility where the generated gas pressure is very high (in the order of MPa). However, compacted clay in landfill cover is usually unsaturated and the generated landfill gas pressure is normally low (typically less than 10 kPa). Furthermore, effects of clay thickness and degree of saturation on gas breakthrough and emission rate in the context of unsaturated landfill cover has not been quantitatively investigated in previous studies. The feasibility of using unsaturated compacted clay as gas barrier in landfill covers is thus worthwhile to be explored over a wide range of landfill gas pressures under various degrees of saturation and clay thicknesses. In this study, to evaluate the effectiveness of unsaturated compacted clay to minimize gas emission, one-dimensional soil column tests were carried out on unsaturated compacted clay to determine gas breakthrough pressures at ultimate limit state (high pressure range) and gas emission rates at serviceability limit state (low pressure range). Various degrees of saturation and thicknesses of unsaturated clay sample were considered. Moreover, numerical simulations were carried out using a coupled gas–water flow finite element program (CODE-BRIGHT) to better understand the experimental results by extending the clay thickness and varying the degree of saturation to a broader range that is typical at different

  13. Gas breakthrough and emission through unsaturated compacted clay in landfill final cover

    Energy Technology Data Exchange (ETDEWEB)

    Ng, C.W.W.; Chen, Z.K.; Coo, J.L. [Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Chen, R., E-mail: chenrui1005@hotmail.com [Shenzhen Key Laboratory of Urban and Civil Engineering for Disaster Prevention and Mitigation, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518055 (China); Zhou, C. [Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2015-10-15

    Highlights: • Explore feasibility of unsaturated clay as a gas barrier in landfill cover. • Gas breakthrough pressure increases with clay thickness and degree of saturation. • Gas emission rate decreases with clay thickness and degree of saturation. • A 0.6 m-thick clay layer may be sufficient to meet gas emission rate limit. - Abstract: Determination of gas transport parameters in compacted clay plays a vital role for evaluating the effectiveness of soil barriers. The gas breakthrough pressure has been widely studied for saturated swelling clay buffer commonly used in high-level radioactive waste disposal facility where the generated gas pressure is very high (in the order of MPa). However, compacted clay in landfill cover is usually unsaturated and the generated landfill gas pressure is normally low (typically less than 10 kPa). Furthermore, effects of clay thickness and degree of saturation on gas breakthrough and emission rate in the context of unsaturated landfill cover has not been quantitatively investigated in previous studies. The feasibility of using unsaturated compacted clay as gas barrier in landfill covers is thus worthwhile to be explored over a wide range of landfill gas pressures under various degrees of saturation and clay thicknesses. In this study, to evaluate the effectiveness of unsaturated compacted clay to minimize gas emission, one-dimensional soil column tests were carried out on unsaturated compacted clay to determine gas breakthrough pressures at ultimate limit state (high pressure range) and gas emission rates at serviceability limit state (low pressure range). Various degrees of saturation and thicknesses of unsaturated clay sample were considered. Moreover, numerical simulations were carried out using a coupled gas–water flow finite element program (CODE-BRIGHT) to better understand the experimental results by extending the clay thickness and varying the degree of saturation to a broader range that is typical at different

  14. Exploring biotic vs. abiotic controls on syngenetic carbonate and clay mineral precipitation

    Science.gov (United States)

    Nascimento, Gabriela S.; McKenzie, Judith A.; Martinez Ruiz, Francisca; Bontognali, Tomaso R. R.; Vasconcelos, Crisogono

    2016-04-01

    A possible syngenetic relationship between carbonate and clay mineral precipitation has been reported for sedimentary rocks deposited in both lacustrine and marine sedimentary environments throughout the geological record. In particular, the mineral dolomite is often found associated with Mg-rich clays, such as stevensite. It is notable that this carbonate/clay association has been recorded in numerous samples taken from modern dolomite precipitating environments; for example, the Coorong lakes, South Australia, coastal sabkhas, Abu Dhabi, UAE and coastal hypersaline lagoons (Lagoa Vermelha and Brejo do Espinho) east of Rio de Janeiro, Brazil. An HRTEM study of samples from these three locations indicates a possible physical/chemical association between the Ca-dolomite and Mg-rich clays, demonstrating a probable co-precipitation. To test this hypothesis, we have conducted a series of biotic and abiotic laboratory experiments. If this syngenesis actually occurs in nature, what, if any, are the biogeochemical processes controlling these precipitation reactions? Our experiments were designed to determine the extent of the biotic versus abiotic component influencing the mineral precipitation and, in the case of a biotic influence, to understand the mechanism through which microorganisms might mediate the formation of clay minerals. The experiments were carried out in the Geomicrobiology Laboratory of ETH Zürich using cultures of living microbes and artificial organic compounds that simulate functional groups present in natural biofilms formed under both aerobic and anaerobic conditions. In addition, pure inorganic experiments were designed to understand possible physico-chemical conditions for diagenetic processes that could induce dissolution of Mg-carbonates and precipitation of Mg-rich clays. Our results show a remarkable biotic influence during the formation of clay minerals. Specifically, extracellular polymeric substances (EPS), released by microbes in their

  15. Intensified Pozzolanic Reaction on Kaolinite Clay-Based Mortar

    Directory of Open Access Journals (Sweden)

    Yang-Hee Kwon

    2017-05-01

    Full Text Available The objective of this study is to develop and characterize kaolinite clay-based structural mortar. The pozzolanic reaction induced from two mineral additives, i.e., calcium hydroxide and silica fume (SF, and the physical filling effect from SF, were found to be effective on the enhancement of structural properties. Based on several preliminary experiments, 7:3 ratio of kaolinite clay/calcium hydroxide was selected as a basic binder. Then, the amount of SF was chosen as 0%, 7.5%, and 15% of the total binder to consider both the chemical and physical effects. The results showed that compressive strengths of samples with 7.5% and 15% SF are significantly increased by approximately 200% and 350%, respectively, at 28 days compared to the sample without SF. However, based on the results of the sample with 15% SF, it is found that excessive addition of SF causes long-term strength loss, possibly owing to micro cracks. With the careful consideration on this long-term behavior, this suggested new mix design can be further extended to develop sustainable structural materials using natural minerals or waste materials with nonbinding properties.

  16. Identification of chlorinated solvents degradation zones in clay till by high resolution chemical, microbial and compound specific isotope analysis

    DEFF Research Database (Denmark)

    Damgaard, Ida; Bjerg, Poul Løgstrup; Bælum, Jacob

    2013-01-01

    subsampling of the clay till cores. The study demonstrates that an integrated approach combining chemical analysis, molecular microbial tools and compound specific isotope analysis (CSIA) was required in order to document biotic and abiotic degradations in the clay till system. © 2013 Elsevier B.V.......The degradation of chlorinated ethenes and ethanes in clay till was investigated at a contaminated site (Vadsby, Denmark) by high resolution sampling of intact cores combined with groundwater sampling. Over decades of contamination, bioactive zones with degradation of trichloroethene (TCE) and 1...

  17. A minimalistic microbial food web in an excavated deep subsurface clay rock.

    Science.gov (United States)

    Bagnoud, Alexandre; de Bruijn, Ino; Andersson, Anders F; Diomidis, Nikitas; Leupin, Olivier X; Schwyn, Bernhard; Bernier-Latmani, Rizlan

    2016-01-01

    Clay rocks are being considered for radioactive waste disposal, but relatively little is known about the impact of microbes on the long-term safety of geological repositories. Thus, a more complete understanding of microbial community structure and function in these environments would provide further detail for the evaluation of the safety of geological disposal of radioactive waste in clay rocks. It would also provide a unique glimpse into a poorly studied deep subsurface microbial ecosystem. Previous studies concluded that microorganisms were present in pristine Opalinus Clay, but inactive. In this work, we describe the microbial community and assess the metabolic activities taking place within borehole water. Metagenomic sequencing and genome-binning of a porewater sample containing suspended clay particles revealed a remarkably simple heterotrophic microbial community, fueled by sedimentary organic carbon, mainly composed of two organisms: a Pseudomonas sp. fermenting bacterium growing on organic macromolecules and releasing organic acids and H2, and a sulfate-reducing Peptococcaceae able to oxidize organic molecules to CO(2). In Opalinus Clay, this microbial system likely thrives where pore space allows it. In a repository, this may occur where the clay rock has been locally damaged by excavation or in engineered backfills. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Surface modification of synthetic clay aimed at biomolecule adsorption: synthesis and characterization

    Directory of Open Access Journals (Sweden)

    Angela de Mello Ferreira Guimarães

    2007-03-01

    Full Text Available This work describes the process for functionalization of laponite through the grafting of 3-mercaptopropyltrimethoxysilane (MPTS. Laponite is synthetic smectite clay with surface area of 350 m²/g. The samples, prior to and after functionalization, were characterized by chemical analyses, thermogravimetric analysis (TGA, x ray diffraction (XRD, diffuse reflectance infrared Fourier transform spectroscopy (DRIFT, scanning electron microscopy and energy dispersive spectrometry (MEV/EDS. Infrared spectroscopy and elemental analyses confirmed the presence of organic chains and thiol groups in the modified clay. The immobilized and available thiol group, measured according to the Volhard method, totaled 1.4 meq/g of clay, with approximately 90% accessible for Ag+ trapping. These results represent an improvement as compared to other works concerning the functionalization of smectite-type clays in which the effect produced by functional group blockage limits the access of species to less than 10% of the complexing sites.

  19. Xenon-129 NMR study of the microporous structure of clays and pillared clays

    International Nuclear Information System (INIS)

    Tsiao, C.; Carrado, K.A.

    1990-01-01

    129 Xe NMR studies have been carried out using xenon gas adsorbed in clays and pillared clays. Data from the measurements provide information on the pore structure of clays before and after pillaring. The results indicate that the effective pore diameter of montmorillonite increases, for example, from 5.4 Angstrom to 8.0 Angstrom after pillaring cheto-montmorillonite with aluminum polyoxohydroxy Keggin cations. The data are consistent with X-ray powder diffraction results, which show a corresponding increase in the interlamellar gallery height from 5.6 Angstrom to 8.4 Angstrom

  20. Role of clay as catalyst in Friedel–Craft alkylation

    Indian Academy of Sciences (India)

    component of soil and plays a crucial role in agriculture, po- tteries and ceramics ... platelets leading to dispersion of the catalyst samples was studied using XRD. .... Acidity of clay is a main factor for catalysis to take place. Among the various ...

  1. ADSORPTION OF ACID DYE ONTO ACTIVATED ALGERIAN CLAY ...

    African Journals Online (AJOL)

    In this work, activated clay from Algeria was used as adsorbent for the ... paper, cosmetics, printing, and plastics are one of the major sources of water pollution. These ..... Mohammadi, S.Z.; Shamspur, T.; Baghelani, Y.M. Combination of flame atomic absorption ... and determination of trace amount of lead in water samples.

  2. Clay mineralogy and magnetic susceptibility of Oxisols in geomorphic surfaces

    Directory of Open Access Journals (Sweden)

    Livia Arantes Camargo

    2014-06-01

    Full Text Available Studies analyzing the variability of clay minerals and magnetic susceptibility provide data for the delineation of site-specific management areas since many of their attributes are important to agronomy and the environment. This study aimed to evaluate the spatial variability of clay minerals, magnetic susceptibility, adsorbed phosphorus and physical attributes in Oxisols of sandstones in different geomorphic surfaces. For that purpose, soil samples were collected every 25 m along a transect located within the area where the geomorphic surfaces were identified and mapped. The transect occupied the central portion of 500 ha, where it was also sampled for density purposes with one sample per six hectares. Soil samples were collected at a depth of 0.0-0.2 m. The results of the physical, chemical, mineralogical and magnetic susceptibility analyses were subjected to statistical and geostatistical analyses. The nature of the clay minerals and magnetic susceptibility was dependent on the variation of the soil parent material. High values of magnetic susceptibility were associated with the presence of maghemite and magnetite of coarse size. The spatial variability of crystallinity and the content of Fe oxides, as well as magnetic susceptibility, were dependent on the age of the geomorphic surfaces. The youngest surface had greater spatial variability of these attributes. The iron (goethite and hematite and aluminum (gibbsite oxides in the youngest geomorphic surface influenced the low values of soil density and high values of total pore volume, micropores and P adsorption. The characterization of the spatial variability of Fe oxides and susceptibility allowed for the delineation of homogeneous areas.

  3. Dynamics of confined reactive water in smectite clay-zeolite composites.

    Science.gov (United States)

    Pitman, Michael C; van Duin, Adri C T

    2012-02-15

    The dynamics of water confined to mesoporous regions in minerals such as swelling clays and zeolites is fundamental to a wide range of resource management issues impacting many processes on a global scale, including radioactive waste containment, desalination, and enhanced oil recovery. Large-scale atomic models of freely diffusing multilayer smectite particles at low hydration confined in a silicalite cage are used to investigate water dynamics in the composite environment with the ReaxFF reactive force field over a temperature range of 300-647 K. The reactive capability of the force field enabled a range of relevant surface chemistry to emerge, including acid/base equilibria in the interlayer calcium hydrates and silanol formation on the edges of the clay and inner surface of the zeolite housing. After annealing, the resulting clay models exhibit both mono- and bilayer hydration structures. Clay surface hydration redistributed markedly and yielded to silicalite water loading. We find that the absolute rates and temperature dependence of water dynamics compare well to neutron scattering data and pulse field gradient measures from relevant samples of Ca-montmorillonite and silicalite, respectively. Within an atomistic, reactive context, our results distinguish water dynamics in the interlayer Ca(OH)(2)·nH(2)O environment from water flowing over the clay surface, and from water diffusing within silicalite. We find that the diffusion of water when complexed to Ca hydrates is considerably slower than freely diffusing water over the clay surface, and the reduced mobility is well described by a difference in the Arrhenius pre-exponential factor rather than a change in activation energy.

  4. Wave liquefaction in soils with clay content

    DEFF Research Database (Denmark)

    Kirca, Özgür; Sumer, B. Mutlu; Fredsøe, Jørgen

    2012-01-01

    The paper presents the results of an experimental study of the influence of clay content (in silt-clay and sand-clay mixtures) on liquefaction beneath progressive waves. The experiments showed that the influence of clay content is very significant. Susceptibility of silt to liquefaction is increa...

  5. Characterization of clay minerals

    International Nuclear Information System (INIS)

    Diaz N, C.; Olguin, M.T.; Solache R, M.; Alarcon H, T.; Aguilar E, A.

    2002-01-01

    The natural clays are the more abundant minerals on the crust. They are used for making diverse industrial products. Due to the adsorption and ion exchange properties of these, a great interest for developing research directed toward the use of natural clays for the waste water treatment has been aroused. As part of such researches it is very important to carry out previously the characterization of the interest materials. In this work the results of the mineral and elemental chemical composition are presented as well as the morphological characteristics of clay minerals from different regions of the Mexican Republic. (Author)

  6. CLAY SOIL STABILISATION USING POWDERED GLASS

    Directory of Open Access Journals (Sweden)

    J. OLUFOWOBI

    2014-10-01

    Full Text Available This paper assesses the stabilizing effect of powdered glass on clay soil. Broken waste glass was collected and ground into powder form suitable for addition to the clay soil in varying proportions namely 1%, 2%, 5%, 10% and 15% along with 15% cement (base by weight of the soil sample throughout. Consequently, the moisture content, specific gravity, particle size distribution and Atterberg limits tests were carried out to classify the soil using the ASSHTO classification system. Based on the results, the soil sample obtained corresponded to Group A-6 soils identified as ‘fair to poor’ soil type in terms of use as drainage and subgrade material. This justified stabilisation of the soil. Thereafter, compaction, California bearing ratio (CBR and direct shear tests were carried out on the soil with and without the addition of the powdered glass. The results showed improvement in the maximum dry density values on addition of the powdered glass and with corresponding gradual increase up to 5% glass powder content after which it started to decrease at 10% and 15% powdered glass content. The highest CBR values of 14.90% and 112.91% were obtained at 5% glass powder content and 5mm penetration for both the unsoaked and soaked treated samples respectively. The maximum cohesion and angle of internal friction values of 17.0 and 15.0 respectively were obtained at 10% glass powder content.

  7. Effect of seawater on consistency, infiltration rate and swelling characteristics of montmorillonite clay

    Directory of Open Access Journals (Sweden)

    Mohie Eldin Elmashad

    2016-08-01

    Full Text Available This paper presents the results of an experimental investigation performed to quantify the effect of mixing clayey soils with saltwater on consistency and swelling characteristics of clays. Massive natural clay deposits and compacted clay backfills either exist or are used in certain important and sensitive applications such as dams, liners, barriers and buffers in waste disposal facilities. In many cases, the clay deposits in these applications are subjected to saltwater. However, in standard laboratory classification tests, distilled or potable water are usually used in mixing test samples. This may lead to faulty interpretation of the actual in-situ consistency and volume change behaviors. In this research, an attempt is made to quantify the changes in consistency and swelling of clay soils from various locations around the Nile valley and possessing a wide range of consistency, when mixed with natural seawater with different salt concentrations. The results showed that the increase of the salt concentration of the mixing water may result in major decrease in the liquid limit and swelling characteristics of high plasticity montmorillonite clays. The reduction in the swelling of the clay soils is also proportional to the rate of saltwater infiltration. In an attempt to correlate the swelling of clays to the rate of water infiltration, a new simplified laboratory apparatus is proposed where swelling and infiltration are measured in one simple test “the swelling infiltrometer”.

  8. An analysis of facial nerve function in irradiated and unirradiated facial nerve grafts

    International Nuclear Information System (INIS)

    Brown, Paul D.; Eshleman, Jeffrey S.; Foote, Robert L.; Strome, Scott E.

    2000-01-01

    Purpose: The effect of high-dose radiation therapy on facial nerve grafts is controversial. Some authors believe radiotherapy is so detrimental to the outcome of facial nerve graft function that dynamic or static slings should be performed instead of facial nerve grafts in all patients who are to receive postoperative radiation therapy. Unfortunately, the facial function achieved with dynamic and static slings is almost always inferior to that after facial nerve grafts. In this retrospective study, we compared facial nerve function in irradiated and unirradiated nerve grafts. Methods and Materials: The medical records of 818 patients with neoplasms involving the parotid gland who received treatment between 1974 and 1997 were reviewed, of whom 66 underwent facial nerve grafting. Fourteen patients who died or had a recurrence less than a year after their facial nerve graft were excluded. The median follow-up for the remaining 52 patients was 10.6 years. Cable nerve grafts were performed in 50 patients and direct anastomoses of the facial nerve in two. Facial nerve function was scored by means of the House-Brackmann (H-B) facial grading system. Twenty-eight of the 52 patients received postoperative radiotherapy. The median time from nerve grafting to start of radiotherapy was 5.1 weeks. The median and mean doses of radiation were 6000 and 6033 cGy, respectively, for the irradiated grafts. One patient received preoperative radiotherapy to a total dose of 5000 cGy in 25 fractions and underwent surgery 1 month after the completion of radiotherapy. This patient was placed, by convention, in the irradiated facial nerve graft cohort. Results: Potential prognostic factors for facial nerve function such as age, gender, extent of surgery at the time of nerve grafting, preoperative facial nerve palsy, duration of preoperative palsy if present, or number of previous operations in the parotid bed were relatively well balanced between irradiated and unirradiated patients. However

  9. Clays and Clay Minerals and their environmental application in Food Technology

    Science.gov (United States)

    del Hoyo Martínez, Carmen; Cuéllar Antequera, Jorge; Sánchez Escribano, Vicente; Solange Lozano García, Marina; Cutillas Díez, Raul

    2013-04-01

    The clay materials have led to numerous applications in the field of public health (del Hoyo, 2007; Volzone, 2007) having been demonstrated its effectiveness as adsorbents of all contaminants. Some biodegradable materials are used for for adsorption of chemical contaminants: lignins (Valderrabano et al., 2008) and also clays and clay minerals, whose colloidal properties, ease of generating structural changes, abundance in nature, and low cost make them very suitable for this kind of applications. Among the strategies used at present to preserve the quality of the water and this way to diminish the environmental risk that supposes the chemical pollution, stands out the use of adsorbents of under cost, already they are natural or modified, to immobilize these compounds and to avoid the pollution of the water with the consequent reduction of environmental and economic costs Thanks to the development of the science and the technology of the nourishment in the last 50 years, there have revealed itself several new substances that can fulfill beneficial functions in the food, and these substances, named food additives, are today within reach of all. The food additives recover a very important role in the complex nourishing supply. The additives fulfill several useful functions in the food, which often we give for sat. Nevertheless the widespread use of food additives in the food production also influences the public health. The food industries, which are very important for the economy, spill residues proved from its activity that they have to be controlled to evaluate the environmental impact and to offer the necessary information about the quantitative evaluation of the chemical risk of the use of food additives for the public health. We have studied the adsorption of several contaminants by natural or modified clays, searching their interaction mechanisms and the possible recycling of these materials for environmental purposes and prevention of the health. References

  10. Thermal conductivity of unsaturated clay-rocks

    Directory of Open Access Journals (Sweden)

    D. Jougnot

    2010-01-01

    Full Text Available The parameters used to describe the electrical conductivity of a porous material can be used to describe also its thermal conductivity. A new relationship is developed to connect the thermal conductivity of an unsaturated porous material to the thermal conductivity of the different phases of the composite, and two electrical parameters called the first and second Archie's exponents. A good agreement is obtained between the new model and thermal conductivity measurements performed using packs of glass beads and core samples of the Callovo-Oxfordian clay-rocks at different saturations of the water phase. We showed that the three model parameters optimised to fit the new model against experimental data (namely the thermal conductivity of the solid phase and the two Archie's exponents are consistent with independent estimates. We also observed that the anisotropy of the effective thermal conductivity of the Callovo-Oxfordian clay-rock was mainly due to the anisotropy of the thermal conductivity of the solid phase.

  11. enhancement of gambe clay using un-fermentable polymers

    African Journals Online (AJOL)

    user

    aluminium, magnesium, and iron silicates that may contain sodium ... A rheological model describes the flow behaviour of a fluid by ... According to [6] and [7], numerous flow models which .... Sleeve, B1 Bob, F1 Torsion Spring, and a stainless steel sample cup for ... rheological properties and gel strength of Gambe clay.

  12. Mineral Acquisition from Clay by Budongo Forest Chimpanzees.

    Directory of Open Access Journals (Sweden)

    Vernon Reynolds

    Full Text Available Chimpanzees of the Sonso community, Budongo Forest, Uganda were observed eating clay and drinking clay-water from waterholes. We show that clay, clay-rich water, and clay obtained with leaf sponges, provide a range of minerals in different concentrations. The presence of aluminium in the clay consumed indicates that it takes the form of kaolinite. We discuss the contribution of clay geophagy to the mineral intake of the Sonso chimpanzees and show that clay eaten using leaf sponges is particularly rich in minerals. We show that termite mound soil, also regularly consumed, is rich in minerals. We discuss the frequency of clay and termite soil geophagy in the context of the disappearance from Budongo Forest of a formerly rich source of minerals, the decaying pith of Raphia farinifera palms.

  13. Mineral Acquisition from Clay by Budongo Forest Chimpanzees.

    Science.gov (United States)

    Reynolds, Vernon; Lloyd, Andrew W; English, Christopher J; Lyons, Peter; Dodd, Howard; Hobaiter, Catherine; Newton-Fisher, Nicholas; Mullins, Caroline; Lamon, Noemie; Schel, Anne Marijke; Fallon, Brittany

    2015-01-01

    Chimpanzees of the Sonso community, Budongo Forest, Uganda were observed eating clay and drinking clay-water from waterholes. We show that clay, clay-rich water, and clay obtained with leaf sponges, provide a range of minerals in different concentrations. The presence of aluminium in the clay consumed indicates that it takes the form of kaolinite. We discuss the contribution of clay geophagy to the mineral intake of the Sonso chimpanzees and show that clay eaten using leaf sponges is particularly rich in minerals. We show that termite mound soil, also regularly consumed, is rich in minerals. We discuss the frequency of clay and termite soil geophagy in the context of the disappearance from Budongo Forest of a formerly rich source of minerals, the decaying pith of Raphia farinifera palms.

  14. Natural attenuation of diesel fuel in heavy clay soil

    International Nuclear Information System (INIS)

    Berry, K.A.T.; Burton, D.L.

    1997-01-01

    The application of bioremediation techniques on heavy clay soils contaminated with diesel fuels was studied. Earlier studies suggested that in-situ bioreclamation was only effective on permeable soils such as medium- to coarse-textured sandy or loamy soils. It was assumed that heavy clay soils such as those found in the Red River Valley in Southern Manitoba had physical and chemical properties that would limit the usefulness of natural attenuation. In this study, the disappearance and the natural attenuation of diesel fuel added to soil at a rate of 5000 mg/kg soil in tilled and untilled heavy clay soil was monitored. Three methods of analysis were used: (1) oil and grease content, (2) extractable organics, and (3) the Millipore EnviroGard ELISA method for petroleum hydrocarbons. Effects of the contamination on the soil microbial population were measured using surface CO 2 flux measurements and microbial biomass carbon analysis. Soil moisture contents at all sample times were between 44 and 49 per cent. Soil temperature was also monitored. All three analytical methods used in the study showed the near-complete disappearance of detectable diesel fuel hydrocarbons from the soil after 30 days with half-lives ranging from 11 to 26 days. The advantages and limitations of the ELISA kit were described. No hydrocarbons were detected in the groundwater sample. 45 refs., 7 tabs., 2 figs

  15. Preparation of nanocomposites polyurethane water bone with clay montmorillonite sodica and organophilic clay

    International Nuclear Information System (INIS)

    Garcia, Claudia P.; Delpech, Marcia C.; Coutinho, Fernanda M.B.; Mello, Ivana L.

    2009-01-01

    Nanocomposites based on water bone polyurethane (NWPU's) were synthesized based on poli(propylene glycol), dimethylolpropionic acid (DMPA), isophorone diisocyanate (IPDI) and hydrazine (HYD), as chain extender. Two kinds of clays were employed: hydrophilic and organophilic. The nanocomposites were characterized by infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electronic microscopy (SEM) and the mechanical properties were evaluated. The FTIR results showed the presence of specific groups of clay and the XRD suggested that occurred their intercalation/exfoliation through polyurethane matrix. The mechanical resistance of the systems showed significant increase when compared to water dispersions synthesized without clay. (author)

  16. Electrical and Thermo-Mechanical properties of Irradiated Clay Nanoparticle/SBR Composites

    International Nuclear Information System (INIS)

    Ata, M.M.E.M.

    2011-01-01

    Polymer-Composites incorporating metal, semiconductors, Carbon black, nano materials and Clay materials have been widely used and studied as multifunctional materials with inherent polymer properties. Polymer-clay nano composites show remarkable property improvement when compared to conventionally scaled composites. For designing new materials with desirable, predicted properties, a better understanding of structure-property relationships is necessary. In this work, we employ dielectric relaxation spectroscopy (DRS) to investigate molecular mobility in relation to morphology in styrene butadiene rubber-SBR (treated and untreated) nano composites. In addition to the investigation of dipolar processes, special attention is paid here to the investigation of conductivity effects and mechanical as well as thermo-mechanical properties. From the stress-strain characteristics, one found that, all the compositions showed a tensile strength higher than the virgin rubber. By increasing the filler loading, the tensile strength of the prepared composites increases. The elongation at break for treated and untreated clay filed composites increases with an increase in filer loading up to 10 p hr and then followed by a decrease up to 15 p hr. The cross linking density, υ increases with both treated and untreated clay contents and treated samples have higher increasing rate of υ values than untreated one. To elucidate the tensile behavior of the test samples. The Ht model is tested by using non-Gaussian chain statistics, which give a good fitting with the experimental data.

  17. Characterization of clays used in the red ceramics industry at Itabaianinha-SE (Brazil)

    International Nuclear Information System (INIS)

    Azevedo, T.F.; Andrade, C.E.C. de; Santos, C.R. dos; Barreto, L.S.

    2011-01-01

    The Local Cluster of red ceramic industry in the state of Sergipe comprises Itabaianinha-SE, Itabaiana and Baixo Sao Francisco municipalities (Propria and Santana do Sao Francisco). The city of Itabaianinha concentrates a large number of ceramics and potteries producing ceramic bricks and tiles. The study was conducted in a red ceramic industry of the region. The focus of this work was an incremental innovation in the process and product. It was analyzed three types of clays used for manufacturing of ceramic bricks (barro preto, diamante and jardim). The samples were prepared by pressing and heat treated between 600 ° C - 1100 C °. The samples characterization was by thermogravimetry, X-ray diffraction and physical tests (water absorption, linear retraction and three points flection). The clays are composed mainly of kaolinite, illite-muscovite and quartz. The results showed that the Barro Preto clay showed better results in retraction, absorption and mechanical strain. (author)

  18. A large-scale laboratory investigation into the movement of gas and water through clay barriers exposed to the environment

    International Nuclear Information System (INIS)

    1993-01-01

    This report describes a large scale laboratory investigation into the movements of gas and water through clay barriers exposed to the environment. The test beds, each 3m square were constructed and filled with clay to a depth of 400 mm, after compaction. One test bed contained London Clay, the other Glacial Till. The clays were subjected to accelerated environmental cycling and tests carried out on samples of the clays at appropriate intervals. The tests included measurements of the mechanical, physical and chemical properties of the clays and their permeability to gas and water. Gas permeability emerged as the more appropriate for the clays being investigated. The report discusses the difficulties of measuring the permeability of partially saturated clays and the need to define the measuring techniques when specifying limiting acceptability values. 55 refs., 8 figs., 7 tabs., 27 plates

  19. Demonstration of the Attributes of Multi-increment Sampling and Proper Sample Processing Protocols for the Characterization of Metals on DoD Facilities

    Science.gov (United States)

    2013-06-01

    unconsolidated and interbedded sands and clays with minor amounts of gravel and shell fragments. Locally, the site geology consists of impermeable clays , silts...sand, which are well sorted and can contain up to 30% clay . These swale and slough deposits are locally perennially frozen with moderate to high ice...activities include travel, related lodging and meals , labor, and the shipment of samples off site. Unique to the costs associated with sampling activities

  20. Mineral potential of clays that cover the gypsum deposits in Araripina-PE region

    International Nuclear Information System (INIS)

    Lira, B.B.; Anjos, I.F. dos; Rego, S.A.B.C.

    2011-01-01

    In the present work the applicability of the clays that cover the deposits of Gypsum Plaster in the region of Araripina - PE for use as the ceramic pigments and for bricks production in the red ceramic industry was analyzed. The clay minerals contained the illite, kaolinite and smectite, with high proportion of the last one. The possibility of industrial application of this mineral clay is considerable; however, the mining industries that mine and process the gypsum in the region do not take the clays into account as the potential mineral. In general, industries use the clay minerals in manufacturing processes or as key raw materials, or as the alternatives for some kinds of the chemical processing industries. This paper aims to highlight the potential of materials that cover the deposits of gypsum in reference. The material sampled from different deposit layers was characterized and the physical treatment of ore was applied. The results showed that the material analyzed can be used in various kinds of industry, such as the production of natural ceramic pigments. (author)

  1. Crude oil polycyclic aromatic hydrocarbons removal via clay-microbe-oil interactions: Effect of acid activated clay minerals.

    Science.gov (United States)

    Ugochukwu, Uzochukwu C; Fialips, Claire I

    2017-07-01

    Acid treatment of clay minerals is known to modify their properties such as increase their surface area and surface acidity, making them suitable as catalysts in many chemical processes. However, the role of these surface properties during biodegradation processes of polycyclic aromatic hydrocarbons (PAHs) is only known for mild acid (0.5 M Hydrochloric acid) treated clays. Four different clay minerals were used for this study: a montmorillonite, a saponite, a palygorskite and a kaolinite. They were treated with 3 M hydrochloric acid to produce acid activated clay minerals. The role of the acid activated montmorillonite, saponite, palygorskite and kaolinite in comparison with the unmodified clay minerals in the removal of PAHs during biodegradation was investigated in microcosm experiments. The microcosm experiments contained micro-organisms, oil, and clays in aqueous medium with a hydrocarbon degrading microorganism community predominantly composed of Alcanivorax spp. Obtained results indicated that acid activated clays and unmodified kaolinite did not enhance the biodegradation of the PAHs whereas unmodified montmorillonite, palygorskite and saponite enhanced their biodegradation. In addition, unmodified palygorskite adsorbed the PAHs significantly due to its unique channel structure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Detailed mineralogical characterization of the Bullfrog and Tram members USW-G1, with emphasis on clay mineralogy

    International Nuclear Information System (INIS)

    Bish, D.L.

    1981-10-01

    The detailed mineralogy of the Bullfrog and Tram Members of the Crater Flat Tuff from drill hole USW-G1 has been examined, primarily to characterize fully the amounts and types of clay minerals in the tuffs and the possible effects clay minerals have on rock properties. Results of bulk sample x-ray diffraction analyses agree closely with previous determinations, although slightly higher clay mineral contents were found in this study. X-ray diffraction analysis of fine fractions revealed that the clay minerals in the tuffs are sodium-saturated montmorillonite-beidellites with typical layer charges and no high-charge layers. These smectites are found in virtually all samples of the Bullfrog and Tram, and there is no correlation between the amounts of smectites and the amounts of zeolite, quartz, and feldspar. Smectites are present in both welded and nonwelded horizons and are scarce in some zones with slight-to-absent welding

  3. Use of SCGE method for detection of DNA comet in irradiated samples of poultry and shrimp

    International Nuclear Information System (INIS)

    Rajaei, R.; Hosseini, S.L.

    2005-01-01

    DNA in food may sustain damage by gamma irradiation.This damage can be detected by a sensitive technique, called single cell gel electrophoresis. This is a simple and low-cost technique for rapid screening of the cells of irradiated foodstuffs. For this purpose, poultry and shrimp samples were irradiated by the 60 Co gamma radiation. The radiation doses for poultry were 2,5 and 7 kGy and for shrimp were 3 and 7kGy, respectively. The irradiation samples were compared with those of unirradiated types (control). In addition, the effects of shelf-life and temperature were considered on the poultry samples only. We have found that this technique is easily applicable for identification of irradiated from unirradiated samples and it is found to be irrespective of the applied dose. It is worth mentioning that any DNA change arising from any source, for example temperature fluctuation, may be detected by the single cell gel electrophoresis technique

  4. From clay bricks to deep underground storage

    International Nuclear Information System (INIS)

    2012-05-01

    This booklet issued by the Swiss National Cooperative for the Disposal of Radioactive Waste NAGRA takes a look at the use of clay strata for the storage of radioactive wastes in deep-lying repositories. First of all, a geological foray is made concerning the history of the use of clay and its multifarious uses. The characteristics of clay and its composition are examined and its formation in the geological past is explained. In particular Opalinus clay is looked at and the structures to be found are discussed. The clay's various properties and industrial uses are examined and its sealing properties are examined. Also, Bentonite clay is mentioned and work done by Nagra and co-researchers is noted

  5. Utilization of hard rock dust with red clay to produce roof tiles

    Directory of Open Access Journals (Sweden)

    Mst. Shanjida Sultana

    2015-03-01

    Full Text Available Utilization of rock dust to produce roof tiles and its effects on properties of tiles, mixed with red clay collected from Naogaon district of Bangladesh were investigated. After proper characterization of the raw materials, tiles were prepared with different percentages of rock dust (10-50% mixed with clay sintered from 850-1100 °C temperature. Rock dust has been found good for using as fluxing material after XRF study. The samples were tested for different properties such as water absorption, porosity, mechanical strength, linear shrinkage, and bulk density. The strength values have exceeded the minimum standard requirement for roof tiles with low water absorption in most samples. The results obtained made it possible to conclude about the possibility of producing roof tiles incorporating up to 40% of rock dust having better properties (lower water absorption 6.5%, strength value 31.97 MPa fired at 900 °C. Therefore these dust acts as a fluxing agent and reducing the sinteringtemperature of the clay material.

  6. Clay mineral distribution and provenance in the Heuksan mud belt, Yellow Sea

    Science.gov (United States)

    Cho, Hyen Goo; Kim, Soon-Oh; Kwak, Kyeong Yoon; Choi, Hunsoo; Khim, Boo-Keun

    2015-12-01

    The Heuksan mud belt (HMB), located in the southeastern Yellow Sea, runs parallel to the southwest coast of Korea. In this study, the distribution and relative contribution of four major clay minerals are investigated using 101 surface sediment samples collected in the course of KIOST (2001, 2010, 2011) and KIGAM (2012) cruises, as well as 33 river sediment samples (four from the Huanghe River, three from the Changjiang River, and 26 from Korean rivers) in order to clarify the provenance of fine-grained sediments in the HMB. Based on this currently largest and most robust dataset available for interpretation, the clay mineral assemblages of the fine-grained sediments in the HMB are found to be on average composed of 64.7% illite, 17.9% chlorite, 11.4% kaolinite, and 5.9% smectite. Overall, the clay mineral assemblages are similar in both the northern and the southern parts of the HMB, although smectite seems to be relatively enriched in the southern part, whereas kaolinite is slightly more dominant in the northern part. This clearly indicates that the clays are mostly derived from Korean rivers and, in the southern part of the HMB, partly also from the Huanghe River in China. The new data thus confirm and strengthen the tentative interpretation of some earlier work based on a more limited dataset.

  7. Microstructure and Thermal Properties of Polypropylene/Clay Nanocomposites with TiCl4/MgCl2/Clay Compound Catalyst

    Directory of Open Access Journals (Sweden)

    Limei Wang

    2015-01-01

    Full Text Available Polypropylene (PP/clay nanocomposites were synthesized by in situ intercalative polymerization with TiCl4/MgCl2/clay compound catalyst. Microstructure and thermal properties of PP/clay nanocomposites were studied in detail. Fourier transform infrared (FTIR spectra indicated that PP/clay nanocomposites were successfully prepared. Both wide-angle X-ray diffraction (XRD and transmission electron microscopy (TEM examination proved that clay layers are homogeneously distributed in PP matrix. XRD patterns also showed that the α phase was the dominate crystal phase of PP in the nanocomposites. Thermogravimetric analysis (TGA examinations confirmed that thermal stability of PP/clay nanocomposites was markedly superior to pure PP. Differential scanning calorimetry (DSC scans showed that the melt temperature and the crystallinity of nanocomposites were slightly lower than those of pure PP due to crystals imperfections.

  8. A parametric study on hydraulic conductivity and self-healing properties of geotextile clay liners used in landfills.

    Science.gov (United States)

    Parastar, Fatemeh; Hejazi, Sayyed Mahdi; Sheikhzadeh, Mohammad; Alirezazadeh, Azam

    2017-11-01

    Nowadays, the raise of excessive generation of solid wastes is considered as a major environmental concern due to the fast global population growth. The contamination of groundwater from landfill leachate compromises every living creature. Geotextile clay liner (GCL) that has a sandwich structure with two fibrous sheets and a clay core can be considered as an engineered solution to prevent hazardous pollutants from entering into groundwater. The main objective of the present study is therefore to enhance the performance of GCL structures. By changing some structural factors such as clay type (sodium vs. calcium bentonite), areal density of clay, density of geotextile, geotextile thickness, texture type (woven vs. nonwoven), and needle punching density a series of GCL samples were fabricated. Water pressure, type of cover soil and overburden pressure were the environmental variables, while the response variables were hydraulic conductivity and self-healing rate of GCL. Rigid wall constant head permeability test was conducted on all the samples. The outlet water flow was measured and evaluated at a defined time period and the hydraulic conductivity was determined for each sample. In the final stage, self-healing properties of samples were investigated and an analytical model was used to explain the results. It was found that higher Montmorillonite content of clay, overburden pressure, needle punching density and areal density of clay poses better self-healing properties and less hydraulic conductivity, meanwhile, an increase in water pressure increases the hydraulic conductivity. Moreover, the observations were aligned with the analytical model and indicated that higher fiber inclusion as a result of higher needle-punching density produces closer contact between bentonite and fibers, reduces hydraulic conductivity and increases self-healing properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Iodide Sorption to Clays and the Relationship to Surface Charge and Clay Texture - 12356

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Andrew; Kruichiak, Jessica; Tellez, Hernesto; Wang, Yifeng [Sandia National Laboratories, Albuquerque, NM 87185 (United States)

    2012-07-01

    Iodine is assumed to behave conservatively in clay barriers around nuclear waste repositories and in natural sediments. Batch experiments tend to show little to no sorption, while in column experiments iodine is often retarded relative to tritiated water. Current surface complexation theory cannot account for negatively charged ion sorption to a negatively charged clay particle. Surface protonation and iodide sorption to clay minerals were examined using surface titrations and batch sorption experiments with a suite of clay minerals. Surface titrations were completed spanning a range of both pH values and ionic strengths. For reference, similar titrations were performed on pure forms of an Al-O powder. The titration curves were deconvoluted to attain the pKa distribution for each material at each ionic strength. The pKa distribution for the Al-O shows two distinct peaks at 4.8 and 7.5, which are invariant with ionic strength. The pKa distribution of clays was highly variable between the different minerals and as a function of ionic strength. Iodide sorption experiments were completed at high solid:solution ratios to exacerbate sorption properties. Palygorskite and kaolinite had the highest amount of iodide sorption and montmorillonite had the least. (authors)

  10. Smectite clays of Serbia and their application in adsorption of organic dyes

    Science.gov (United States)

    Milošević, Maja; Logar, Mihovil

    2014-05-01

    Colorants and dyes are currently available in over a 100.000 different species and several biggest industries are using them daily in their manufacture processes (textile, cosmetics, food industry, etc.). Since colorants are easily dissoluble in water they pass through filter membranes without further decomposing and in that manner they end up in the environment. The main goal of this work is to apply certain methods in determining the suitability of individual clay in adsorbing and removing colorants from polluted waters. For this study we have chosen four different raw clays from three regions in Serbia: Svrljig (B), Bogovina (Bo) and Slatina-Ub (C and V) and as colorant - methylene blue dye (MB (MERCK, for analytical purposes)). Experiments where carried out to determine the sample structure (XRD and IR), grain size (granulometry), cationic exchange capacity (CEC via spectrophotometry using MB) and adsorption capabilities (spectrophotometry and fluorimetry using MB). XRD and IR data are showing that the samples are smectite clays where samples B i Bo are mainly montmorillonite while C and V are montmorillonite-illite clays. Granulometric distribution results indicate that samples B i Bo have smaller grain size, less that 1μ (over 60%) whereas the samples C and V are more coarse grained (40% over 20μ). This grain distribution is affecting their specific surface area in the manner that those coarse grained samples have smaller specific surface area. Cationic exchange capacity determined with methylene blue indicate that montmorillonite samples have larger CEC (B = 37 meq/100g, Bo = 50 meq/100g) and montmorillonite-illite samples smaller CEC (V = 5 meq/100g, V = 3 meq/100g). Fluorimetry measurement results gave us a clear distinction between those with higher and smaller adsorption capability. Montmorillonite samples (B and Bo) with higher CEC values and smaller grain size are adsorbing large amounts of methylene blue witch is visible by absence of fluorimetric

  11. Sorption of radionuclides by tertiary clays

    International Nuclear Information System (INIS)

    Wagner, J.F.; Czurda, K.A.

    1990-01-01

    The sorption capacity of different clay types for some metals (Co, Cs, Sr and Zn), occurring as common radionuclides in radioactive waste deposits, had been analysed by a static (batch technique) and a dynamic method (percolation tests, in which the driving force is a hydraulic gradient). Sorption capacity generally increased with an increasing pH of solution. A decrease of sorption capacity had been observed in the order Zn > Cs ≥ Co > Sr for the batch and Cs > Zn > Sr > Co for the percolation tests. Clay marls showed a distinctly higher sorption respectively retention capacity as pure clays. Sorption capacity depends on solution parameters like type and concentration of radionuclide, pH, salt concentration, etc., and on rock parameters like mineral content (e.g. swelling clay minerals and carbonates), organic material, rock pH, micro fabric, etc. A third parameter of great influence is the contact time between clay and solution. The adsorption isotherms reflect two different adsorption mechanisms: a very rapid adsorption (a few minutes) on the external surfaces of clay minerals and a slow adsorption process (weeks and longer), due to the diffusion of metal ions into the interlayer space of clay minerals. 12 refs., 9 figs., 1 tab

  12. Organophilization and characterization of commercial bentonite clays

    International Nuclear Information System (INIS)

    Cunha, B.B. da; Lima, J.C.C.; Alves, A.M.; Araujo, E.M.; Melo, T.J.A. de

    2012-01-01

    Bentonite clay is a plastic changes resulting from volcanic ash, consisting mostly of montmorillonite. The state of Paraiba is a major source of bentonite clay from Brazil, where the main oil fields are located in Boa Vista and represents the largest national production of raw and beneficiated bentonite. Aimed at the commercial value of this type of clay and its high applicability in the polls, this article aims to make a comparison between two kinds of clay, a national (Brasgel) and other imported (Cloisite) from organophilization of two commercial bentonite, ionic surfactant with Praepagem WB, and characterize them by XRD, FTIR and TG / DTG. We observe that despite getting inferior properties, the clay presents national values very similar to those presented by imported clay. (author)

  13. Clay shale as host rock. A geomechanical contribution about Opalinus clay; Tonstein als Wirtsgestein. Ein geomechanischer Beitrag ueber Opalinuston

    Energy Technology Data Exchange (ETDEWEB)

    Lempp, Christof; Menezes, Flora; Sachwitz, Simon [Halle-Wittenberg Univ., Halle (Saale) (Germany). Inst. fuer Geowissenschaften und Geographie

    2016-12-15

    The Opalinuston is a prominent rock representing the type of organic clay shales or clay stones within the sequence of Triassic and Jurassic marine sediments in Southern Germany. The rock forms a homogenous unit some ten meters thick. The degree of consolidation of this type of pelitic rock depends mainly on the former load conditions, but is also dependent on the long-term weathering and even on the present exposition. The geomechanical parameters such as shear strength, tensional strength and permeability vary with the state of consolidation and become important when the use is discussed of such rocks for radioactive waste disposal. A tunneling project at the northern escarpment of the Swabian Alb (Southwest Germany) within the Opalinus clay offered the rare opportunity to obtain fresh unweathered rock samples in greater amounts compared to fresh drilling cores from which geomechanical investigations are usually undertaken. Consequently, the results of geomechanical laboratory testings are presented in order to compare here the results of multistep triaxial compression tests, of hydraulic fracturing laboratory tests and of some other tests for rock characterization with the corresponding results of Opalinus clay sites in Switzerland that were investigated by the Swiss Nagra Company for host rock characterization. After a discussion of the relevant state of fresh Opalinus clay, especially of suction pressure conditions and saturation state, the results of triaxial shear tests are presented. Increasing shear deformation at increasing pressure and unchanged water saturation do not result in a significant strength reduction of the Opalinus clay. The rock shows increasing cohesion and stiffness, if multiple loading has repeatedly reached the failure point. Thus there is no increased permeability with continued shearing. Only at the beginning of the shearing process is a temporarily increased permeability to be expected due to dilatation processes. An increased

  14. Characterization and analysis of epoxy/clay nanotubes composites; Cacaterizacao e analise de compositos de epoxi, argila e nanotubos de carbono

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    An DGEBA epoxy matrix was used aiming to achieve a nanocomposite material, through the dispersion of (CNT) via mechanical stirring followed by sonication. In this work the following characterization were performed: mechanical characterization, differential scanning calorimetry (DSC), wide angle X-ray diffraction (WXRD) and scanning electron microscopy (SEM). The addition of CNT and modified clays promoted the increase of modulus of the epoxy matrix, and a synergistic effect between CNT and both clays could be presumed. SEM images of the fracture surface show the difference between the fracture surface area and the presence of clusters among the samples, allowing a correlation with the modulus of elasticity. X-ray diffractograms from 2{Theta} = 5 deg showed no peaks for modified clay samples, however it is possible to affirm that modified clay platelets are forming a less organized structure compared to the structure of the clay as natural in epoxy. (author)

  15. Silt-clay aggregates on Mars

    International Nuclear Information System (INIS)

    Greeley, R.

    1979-01-01

    Viking observations suggest abundant silt and clay particles on Mars. It is proposed that some of these particles agglomerate to form sand size aggregates that are redeposited as sandlike features such as drifts and dunes. Although the binding for the aggregates could include salt cementation or other mechanisms, electrostatic bonding is considered to be a primary force holding the aggregates together. Various laboratory experiments conducted since the 19th century, and as reported here for simulated Martian conditions, show that both the magnitude and sign of electrical charges on windblown particles are functions of particle velocity, shape and composition, atmospheric pressure, atmospheric composition, and other factors. Electrical charges have been measured for saltating particles in the wind tunnel and in the field, on the surfaces of sand dunes, and within dust clouds on earth. Similar, and perhaps even greater, charges are proposed to occur on Mars, which could form aggregates of silt and clay size particles. Electrification is proposed to occur within Martian dust clouds, generating silt-clay aggregates which would settle to the surface where they may be deposited in the form of sandlike structures. By analog, silt-clay dunes are known in many parts of the earth where silt-clay aggregated were transported by saltation and deposited as 'sand.' In these structures the binding forces were later destroyed, and the particles reassumed the physical properties of silt and clay, but the sandlike bedding structure within the 'dunes' was preserved. The bedding observed in drifts at the Viking landing site is suggested to result from a similar process involving silt-clay aggregates on Mars

  16. Characterisation of some Clays Used for Whiteware Ceramics I. Mineralogical composition

    Directory of Open Access Journals (Sweden)

    Marcel Benea

    2002-04-01

    Full Text Available In order to obtain a semiquantitative mineralogical composition of raw materials used for whiteware ceramics, four different clay types were analysed by X-ray diffraction. Studies were carried out by using a combination of analyses of the bulk sample, and of the fine fraction. Using a well-established pre-treatment methodology (use of chemicals, ultrasonic treatment, dispersion procedures, clay mineral concentration by centrifugation and sedimentation, oriented and random powder preparation, cation saturation, expansion/dehydration methods, 12 X-ray diffractometer traces were obtained from each sample. Based on these informations it was possible to establish the qualitative mineralogical composition, and also a semiquantitative one using peak intensities and peak area corrected by various factors. Scanning electron microscopy was also used in order to illustrate the identified mineral phases.

  17. What Makes a Natural Clay Antibacterial?

    Science.gov (United States)

    Williams, Lynda B.; Metge, David W.; Eberl, Dennis D.; Harvey, Ronald W.; Turner, Amanda G.; Prapaipong, Panjai; Poret-Peterson, Amisha T.

    2011-01-01

    Natural clays have been used in ancient and modern medicine, but the mechanism(s) that make certain clays lethal against bacterial pathogens has not been identified. We have compared the depositional environments, mineralogies, and chemistries of clays that exhibit antibacterial effects on a broad spectrum of human pathogens including antibiotic resistant strains. Natural antibacterial clays contain nanoscale (clay minerals in the bactericidal process is to buffer the aqueous pH and oxidation state to conditions that promote Fe2+ solubility. Chemical analyses of E. coli killed by aqueous leachates of an antibacterial clay show that intracellular concentrations of Fe and P are elevated relative to controls. Phosphorus uptake by the cells supports a regulatory role of polyphosphate or phospholipids in controlling Fe2+. Fenton reaction products can degrade critical cell components, but we deduce that extracellular processes do not cause cell death. Rather, Fe2+ overwhelms outer membrane regulatory proteins and is oxidized when it enters the cell, precipitating Fe3+ and producing lethal hydroxyl radicals. PMID:21413758

  18. Rheological properties of different minerals and clay soils

    Directory of Open Access Journals (Sweden)

    Dolgor Khaydapova

    2015-07-01

    Full Text Available Rheological properties of kaolinite, montmorillonite, ferralitic soil of the humid subtropics (Norfolk island, southwest of Oceania, alluvial clay soil of arid subtropics (Konyaprovince, Turkey and carbonate loess loam of Russian forest-steppe zone were determined. A parallel plate rheometer MCR-302 (Anton Paar, Austria was used in order to conduct amplitude sweep test. Rheological properties allow to assess quantitatively structural bonds and estimate structural resistance to a mechanical impact. Measurements were carried out on samples previously pounded and capillary humidified during 24 hours. In the amplitude sweep method an analyzed sample was placed between two plates. The upper plate makes oscillating motions with gradually extending amplitude. Software of the device allows to receive several rheological parameters such as elastic modulus (G’, Pa, viscosity modulus (G", Pa, linear viscoelasticity range (G’>>G”, and point of destruction of structure at which the elastic modulus becomes equal to the viscosity modulus (G’=G”- crossover. It was found out that in the elastic behavior at G '>> G " strength of structural links of kaolinite, alluvial clay soil and loess loam constituted one order of 105 Pa. Montmorillonit had a minimum strength - 104 Pa and ferrallitic soil of Norfolk island [has] - a maximum one -106 Pa. At the same time montmorillonite and ferralitic soil were characterized by the greatest plasticity. Destruction of their structure (G '= G" took place only in the cases when strain was reaching 11-12%. Destraction of the kaolinite structure happened at 5% of deformation and of the alluvial clay soil and loess loam - at 4.5%.

  19. Distribution of Clay Minerals in Light Coal Fractions and the Thermal Reaction Products of These Clay Minerals during Combustion in a Drop Tube Furnace

    Directory of Open Access Journals (Sweden)

    Sida Tian

    2016-06-01

    Full Text Available To estimate the contribution of clay minerals in light coal fractions to ash deposition in furnaces, we investigated their distribution and thermal reaction products. The light fractions of two Chinese coals were prepared using a 1.5 g·cm−3 ZnCl2 solution as a density separation medium and were burned in a drop-tube furnace (DTF. The mineral matter in each of the light coal fractions was compared to that of the relevant raw coal. The DTF ash from light coal fractions was analysed using hydrochloric acid separation. The acid-soluble aluminium fractions of DTF ash samples were used to determine changes in the amorphous aluminosilicate products with increasing combustion temperature. The results show that the clay mineral contents in the mineral matter of both light coal fractions were higher than those in the respective raw coals. For the coal with a high ash melting point, clay minerals in the light coal fraction thermally transformed more dehydroxylation products compared with those in the raw coal, possibly contributing to solid-state reactions of ash particles. For the coal with a low ash melting point, clay minerals in the light coal fraction produced more easily-slagging material compared with those in the raw coal, playing an important role in the occurrence of slagging. Additionally, ferrous oxide often produces low-melting substances in coal ash. Due to the similarities of zinc oxide and ferrous oxide in silicate reactions, we also investigated the interactions of clay minerals in light coal fractions with zinc oxide introduced by a zinc chloride solution. The extraneous zinc oxide could react, to a small extent, with clay minerals in the coal during DTF combustion.

  20. Study of new occurrences of plastic (ball) clays from northeastern Brazil for use in refractory ceramics; Estudo de novas ocorrencias de argilas plasticas (ball clays) do nordeste do Brasil para uso em ceramicas refratarias

    Energy Technology Data Exchange (ETDEWEB)

    Cartaxo, J.M.; Bastos, P. de M.; Santana, L.N.L.; Menezes, R.R.; Neves, G.A.; Ferreira, H.C., E-mail: julianamelo25@gmail.com, E-mail: paulos@cstr.ufcg.edu.br, E-mail: lisiane.navarro@ufcg.edu.br, E-mail: romualdo.menezes@ufcg.edu.br, E-mail: gelmires.neves@ufcg.edu.br, E-mail: heber.ferreira@ufcg.edu.br [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais

    2016-10-15

    The northeast of Brazil has large deposits of ball clays generally situated in Barreiras Formation and are used in white ceramic and refractory materials. These clays are composed of secondary kaolinite and organic matter, being very plastic and when subjected to elevated temperatures burn with white colors and present phase transformations showing mainly crystals formation of mullite and cristobalite. This work aims to study new deposits of ball clays in order to use them to refractory materials production. The clays were characterized by laser diffraction, X-ray diffraction (XRD), X-ray fluorescence, refractoriness, thermal analysis, and scanning electron microscopy (SEM). The samples were pressed and sintered at 1000, 1150, 1250, 1280 and 1400 °C. The characterization after firing was carried out by XRD and SEM. Then, the physical and mechanical properties - absorption, porosity and flexural strength, were determined. The results showed that the clays presented formation of mullite crystals with physical, chemical and mineralogical properties suitable for use in refractory ceramics. (author)

  1. Iodide uptake by negatively charged clay interlayers?

    International Nuclear Information System (INIS)

    Miller, Andrew; Kruichak, Jessica; Mills, Melissa; Wang, Yifeng

    2015-01-01

    Understanding iodide interactions with clay minerals is critical to quantifying risk associated with nuclear waste disposal. Current thought assumes that iodide does not interact directly with clay minerals due to electrical repulsion between the iodide and the negatively charged clay layers. However, a growing body of work indicates a weak interaction between iodide and clays. The goal of this contribution is to report a conceptual model for iodide interaction with clays by considering clay mineral structures and emergent behaviors of chemical species in confined spaces. To approach the problem, a suite of clay minerals was used with varying degrees of isomorphic substitution, chemical composition, and mineral structure. Iodide uptake experiments were completed with each of these minerals in a range of swamping electrolyte identities (NaCl, NaBr, KCl) and concentrations. Iodide uptake behaviors form distinct trends with cation exchange capacity and mineral structure. These trends change substantially with electrolyte composition and concentration, but do not appear to be affected by solution pH. The experimental results suggest that iodide may directly interact with clays by forming ion-pairs (e.g., NaI (aq) ) which may concentrate within the interlayer space as well as the thin areas surrounding the clay particle where water behavior is more structured relative to bulk water. Ion pairing and iodide concentration in these zones is probably driven by the reduced dielectric constant of water in confined space and by the relatively high polarizability of the iodide species. - Highlights: • Iodide sorption experiments were completed with a diverse array of clay minerals. • Iodide uptake trended with CEC and swamping electrolyte identity and concentration. • Results can be explained by considering the formation of ion pairs in clay interlayers

  2. Sample summary report for ARG 1 pressure tube sample

    International Nuclear Information System (INIS)

    Belinco, C.

    2006-01-01

    The ARG 1 sample is made from an un-irradiated Zr-2.5% Nb pressure tube. The sample has 103.4 mm ID, 112 mm OD and approximately 500 mm length. A punch mark was made very close to one end of the sample. The punch mark indicates the 12 O'clock position and also identifies the face of the tube for making all the measurements. ARG 1 sample contains flaws on ID and OD surface. There was no intentional flaw within the wall of the pressure tube sample. Once the flaws are machined the pressure tube sample was covered from outside to hide the OD flaws. Approximately 50 mm length of pressure tube was left open at both the ends to facilitate the holding of sample in the fixtures for inspection. No flaw was machined in this zone of 50 mm on either end of the pressure tube sample. A total of 20 flaws were machined in ARG 1 sample. Out of these, 16 flaws were on the OD surface and the remaining 4 on the ID surface of the pressure tube. The flaws were characterized in to various groups like axial flaws, circumferential flaws, etc

  3. Stools - pale or clay-colored

    Science.gov (United States)

    ... gov/ency/article/003129.htm Stools - pale or clay-colored To use the sharing features on this page, please enable JavaScript. Stools that are pale, clay, or putty-colored may be due to problems ...

  4. Concrete-Opalinus clay interaction

    International Nuclear Information System (INIS)

    Jenni, A.; Maeder, U.; Lerouge, C.; Gaboreau, S.; Schwyn, B.

    2012-01-01

    in a scanning electron microscope (SEM) provide an excellent characterisation of chemical gradients parallel to the interface. The mappings reveal complex chemical zonations in the cement, differing from one cement type to the other. The OPC shows a significant S enrichment at approx. 600 μm from the interface. The main feature of the ESDRED alteration is a distinct zone depleted in Ca but enriched in Mg at around 600 μm, whereas the LAC shows a strong Mg enrichment adjacent to the interface. Transmitted light microscopy and Raman spectroscopy give evidence for a carbonated zone, whose thickness seems to depend on water to binder ratio of the cement. Consistently, this zone shows lower porosity. Plotting large numbers of SEM EDX point measurements of elemental composition in element ratio diagrams give indications of phases and phase compositions involved in each interaction zone. For example, plotting S/Ca vs. (Al+Fe)/Ca indicates the presence of ettringite in the S enriched zone C5, but closer to the interface, monosulphate as S-containing phase explains the compositional trends. The first 100 μm next to the interface in the OPA show increased Ca (OPC) and Mg (LAC) content. The cation occupancy of clay exchanger phases within 1 mm next to the OPC interface is depleted in Mg, but enriched in Na, whereas porosity shows no gradient at all. So far, the interface characterisations indicate the following interaction mechanisms: - Migration of CO 2 /HCO 3 - from OPA into cement causes carbonation. - Mg species migrate into cement, where hydrotalcite or MSH might form. - SO 4 2- migration from OPA into cement. - pH decrease in the cement next to the interface leads to instability of ettringite, the S in solution diffuses towards higher pH (away from the interface), where ettringite can form and incorporate S. - Changes in interlayer cation occupancy of clay phases. Presently, examination of 4 year old samples taken recently is underway and expected to reveal the

  5. Mars, clays and the origins of life

    Science.gov (United States)

    Hartman, Hyman

    1989-01-01

    To detect life in the Martian soil, tests were designed to look for respiration and photosynthesis. Both tests (labeled release, LR, and pyrolytic release, PR) for life in the Martian soils were positive. However, when the measurement for organic molecules in the soil of Mars was made, none were found. The interpretation given is that the inorganic constituents of the soil of Mars were responsible for these observations. The inorganic analysis of the soil was best fitted by a mixture of minerals: 60 to 80 percent clay, iron oxide, quartz, and soluble salts such as halite (NaCl). The minerals most successful in simulating the PR and LR experiments are iron-rich clays. There is a theory that considers clays as the first organisms capable of replication, mutation, and catalysis, and hence of evolving. Clays are formed when liquid water causes the weathering of rocks. The distribution of ions such as aluminum, magnesium, and iron play the role of bases in the DNA. The information was stored in the distribution of ions in the octahedral and tetrahedral molecules, but that they could, like RNA and DNA, replicate. When the clays replicated, each sheet of clay would be a template for a new sheet. The ion substitutions in one clay sheet would give rise to a complementary or similar pattern on the clay synthesized on its surface. It was theorized that it was on the surface of replicating iron-rich clays that carbon dioxide would be fixed in the light into organic acids such as formic or oxalic acid. If Mars had liquid water during a warm period in its past, clay formation would have been abundant. These clays would have replicated and evolved until the liquid water was removed due to cooling of Mars. It is entirely possible that the Viking mission detected life on Mars, but it was clay life that awaits the return of water to continue its evolution into life based on organic molecules.

  6. Preparation of organophilic clays and polypropylene nano composites

    International Nuclear Information System (INIS)

    Lima, Martha Fogliato S.; Nascimento, Vinicius G. do; Lenz, Denise M.; Schenato, Flavia

    2011-01-01

    Polypropylene/montmorillonite nano composites were prepared by the melt intercalation technique. The clay was organically modified with different quaternary ammonium salts to obtain the organo clay. The modified clays with the quaternary ammonium salts were introduced in a polypropylene matrix with 3 wt. % of clay. The interlayer distance (d001) of the clay particles were obtained by X- ray diffraction and the thermal stability of the systems were investigated by thermogravimetry. The organo clay presence in the polymer matrix increased the degradation temperature in relation to the pure polymer. (author)

  7. Characterization of clays from Tharaka-Nithi County in Kenya for ...

    African Journals Online (AJOL)

    user

    spectroscopy (XRF), atomic absorption spectroscopy (AAS), TGA, scanning electron microscopy (SEM) ... Key words: Scanning electron microscopy, X-ray diffraction, clay minerals, Atterberg limits, atomic ..... Si is readily leached as compared to Al, and this ..... with angular edges suggest that, the samples contained.

  8. Speciation of neptunium after diffusion in Opalinus Clay

    Energy Technology Data Exchange (ETDEWEB)

    Reich, Tobias; Amayri, Samer; Drebert, Jakob; Froehlich, Daniel R.; Grolimund, Daniel; Rosemann, Jonathan [Mainz Univ. (Germany). Inst. of Nuclear Chemistry; Kaplan, Ugras [Paul Scherrer Institut, Villigen (Switzerland). Swiss Light Source

    2015-07-01

    Argillaceous rock formations are under consideration as a potential host rock for the construction of high-level nuclear waste repositories. Under environmental conditions the most stable oxidation states of {sup 237}Np (t{sub 1/2}=2.1 x 10{sup 6} a) are Np(IV) and Np(V). We have investigated the sorption and diffusion of the more mobile Np(V) in Opalinus Clay (OPA, Mont Terri, Switzerland) (Wu et al. 2009, Froehlich et al. 2011 and 2012 a). OPA, which is present in Switzerland and southern Germany, possesses a micro-scale heterogeneity and is composed of several types of clay minerals, but also of calcite, quartz and iron(II)-bearing minerals. In our previous diffusion (Wu et al. 2009) and anaerobic sorption experiments (Froehlich et al. 2011), we observed higher distribution coefficients, K{sub d}, than expected from batch experiments performed in air, indicating that a partial reduction of Np(V) to Np(IV) had occurred. To test this hypothesis, different sorption and diffusion samples with Np(V) were prepared at pH 7.6 for spatially resolved molecular-level investigations at the microXAS beamline at the Swiss Light Source (PSI, Villigen, Switzerland) (Froehlich et al. 2012 b). Elemental distributions of Ca, Fe and Np have been determined by μ-XRF mapping. Regions of high Np concentration were subsequently investigated by Np L{sub III}-edge μ-XANES. In most samples Np spots with considerable amounts of tetravalent Np could be found, even when the experiments were performed under ambient-air conditions. In some cases, almost pure Np(IV) L{sub III}-edge XANES spectra were recorded. In case of the anaerobic sorption sample, a clear correlation between Np and Fe was observed by μ-XRF, indicating that iron(II)-bearing minerals could be responsible for the reduction of Np(V). μ-XRD measurements of this sample showed that pyrite is at least one of the redox-active phases determining the speciation of Np in OPA. In this case, Np was accumulated on pyrite, indicating

  9. Microfabric of illitic clays from the Pacific deep-sea basin

    International Nuclear Information System (INIS)

    Burkett, D.J.; Bennett, R.H.; Bryant, W.R.

    1990-01-01

    The microfabric of deep-sea illitic clays was investigated using electron microscopy in support of the In-Situ Heat Transfer Experiment (ISHTE) Simulation test (ISIMU) and the Subseabed Disposal Program (SDP). Sandia National Laboratories, ISHTE and the field exercises were designed to investigate the thermal, fluid, and mechanical response of the sediment to the emplacement of radioactive waste in the seabed. Clay fabric of an undisturbed core sample, designated RAMA, was compared to dredge, remolded, reconsolidated material in order to investigate the effects of mechanical disturbances from sediment remolding and heater probe insertion and effects of induced thermal gradients caused by heating of the sediment

  10. Evaluation of elemental composition of clays from Campos Gerais (MG)

    International Nuclear Information System (INIS)

    Martins, Joao P.M.; Maduar, Marcelo F.; Silva, Paulo S.C da

    2013-01-01

    There are numerous applications given to clays including oil and water adsorbent, ceramic, whitening of beverages, porcelain, waste treatment, organic carrier molecules in cosmetics and pharmaceuticals, support for catalysts. In the pharmaceutical industry, the clays are used as excipients, diluents, desiccants, emulsifiers, to mask undesirable flavors, isotonic agent such as charger and delivery of active substances. These characteristics have contributed to the expansion of the search for applications of clay minerals in the cosmetic industry. The aim of this study was to determine the elemental composition of clays from Campos Gerais, Minas Gerais, with a view to their applicability in the production of cosmetics. The elements As, Ba, Br, Ce, Cl, Co, Cr, Cs, Eu, Fe, Hf, K, La, Lu, Na, Nd, Rb, Sb, Sc, Sm, Ta, Tb, Th,U, Yb and Zn were determined by neutron activation analysis and radionuclide activity concentration of 226 Ra, 228 Ra, 210 Pb and 40 K were determined by gamma spectrometry. It was verified that the activity concentration of radionuclides was in the same concentration as the global average, indicating that these samples do not present a risk of increased radiation exposure. The concentration of most elements determined is less than or equal to the overall mean concentrations, indicated by the values of Continental Upper Crust. (author)

  11. Preparation and characterization of polymer nanocomposites based on chitosan and clay minerals

    International Nuclear Information System (INIS)

    Fiori, Ana Paula Santos de Melo; Gabiraba, Victor Parizio; Praxedes, Ana Paula Perdigao; Nunes, Marcelo Ramon da Silva; Balliano, Tatiane L.; Silva, Rosanny Christhinny da; Tonholo, Josealdo; Ribeiro, Adriana Santos

    2014-01-01

    In this work nanocomposites based on chitosan and different clays were prepared using polyethyleneglycol (PEG) as plasticizer. The samples obtained were characterized by Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), thermogravimetric analysis (TGA/DTG) and by mechanical characterization (tensile test) with the aim of investigating the interactions between chitosan and clay. The nanocomposite films prepared using sodium bentonite (Ben) showed an increase of 81.2% in the maximum tensile stress values and a decrease of 16.0% in the Young’s modulus when compared to the chitosan with PEG (QuiPEG) films, evidencing that the introduction of the clay into the polymer matrix provided a more flexible and resistant film, whose elongation at break was 93.6% higher than for the QuiPEG film. (author)

  12. Physico-chemical properties of clay deposits of Bina and Jhingurdah mines of Singrauli coalfield, District Sidhi (MP)

    Energy Technology Data Exchange (ETDEWEB)

    Singh, V B; Joshi, V C

    1980-01-01

    Clay samples exposed over Baraker and Raniganj coal seams of Lower Gondwana System in Bina and Jhingurdah mines respectively are studied. The chemical and rational analyses of the samples indicate that range of variation of the different constituents. Infra-red, X-ray diffraction, differential thermal analysis and thermal gravimetric analysis were used to determine clay and other minerals. The deposits may be suitable for manufacture of triaxial wares, e.g. ordinary porcelain sanitary ware, stoneware, etc.

  13. R and D programme on radioactive waste disposal into a clay formation

    International Nuclear Information System (INIS)

    Heremans, R.

    1984-01-01

    The present report presents the main results obtained during the period 1980-82 in the Belgian R and D work on geological disposal of conditioned radioactive waste in the boom clay beneath the Mol site. Multiple research projects have been continued: both experimental research in the field and in the laboratory and theoretical studies. A regional hydrological observation network has been set up which permitted an assessment of the hydrogeological system over- and underlying the Boom clay as well as the modelling of groundwater flow in the area. Clay samples collected during the drilling campaigns were submitted to a number of analyses with a view to chemical characterization and determination of geotechnical properties. Various studies were performed concerning the migration of radionuclides through the clay and an analytical computer model was developed. The corrosion behaviour of various candidate materials for HLW containers and repository linings were tested under different conditions possibly encountered in the clay formation. Furthermore, various backfill and sealing materials and mixtures have been selected and are being tested. Finally, the activities deployed for the safety analysis were continued, mainly concentrated upon two approaches: the probabilistic risk assessment and the performance assessment of a mined repository under normal evolution conditions

  14. Pedological ~cterization, Clay Mine:at~ and .~cation of,

    African Journals Online (AJOL)

    namely, very deep, well drained, dark reddish brown to dark brown, sandy clay loams and sandy clays on the steep convex slopes; very deep, well drained, dark brown to dark red, sandy clay loams and; sandy clays on the linear slopes; and very ...

  15. Preparation and characterization of bentonite organo clay

    International Nuclear Information System (INIS)

    Bertagnolli, C.; Almeida Neto, A.F.; Silva, M.G.C.

    2009-01-01

    Bentonite clays organically modified have great potential use for environmental remediation, especially in the separation of organic compounds from the water. The aim of this work was the preparation of organophilic clays from 'Verde-Lodo' bentonite clay with the quaternary ammonium salts cetyl-pyridinium chloride and benzalkonium chloride. The materials obtained were characterized by XRD, thermogravimetric analyses, Helium picnometry, SEM and energy dispersive X-ray techniques. The results show consistently successful synthesis of the organoclay through the increase in the basal spacing, as well as salt elimination picks and presence of carbon and chlorine in the modified clays; they are inexistent elements in the natural clay. (author)

  16. Treatment for cracked and permeable Houston clay

    International Nuclear Information System (INIS)

    Vipulanandan, C.; Leung, M.

    1991-01-01

    In this study, the treatability of a field clay (obtained from Houston, Texas) and a clay-sand mixture to reduce their hydraulic conductivity was evaluated. Remolded field clay and clay-sand mixture with and without methanol contamination were treated to reduce their hydraulic conductivity by permeating very dilute grout solutions. The concentration of sodium silicate in the grout solution was 8%, while the solid content in the cement grout was 0.3%. The hydraulic conductivity of permeable Houston clay (hydraulic conductivity >10 -5 cm/sec) could be reduced to less than 10 -7 cm/sec (U.S. EPA limit for soil barriers) by permeating with a selected combination of grout solutions

  17. High Concentration of Red Clay as an Alternative for Antibiotics in Aquaculture.

    Science.gov (United States)

    Jung, Jaejoon; Jee, Seung Cheol; Sung, Jung-Suk; Park, Woojun

    2016-01-01

    The use of antibiotics in aquaculture raises environmental and food safety concerns because chronic exposure of an aquatic ecosystem to antibiotics can result in the spread of antibiotic resistance, bioaccumulation of antibiotics in the organisms, and transfer of antibiotics to humans. In an attempt to overcome these problems, high-concentration red clay was applied as an alternative antibiotic against the following common fish pathogens: Aeromonas salmonicida, Vibrio alginolyticus, and Streptococcus equinus. The growth of A. salmonicida and V. alginolyticus was retarded by red clay, whereas that of S. equinus was promoted. Phase contrast and scanning electron microscopy analyses confirmed the attachment of red clay on cell surfaces, resulting in rapid gravitational removal and cell surface damage in both A. salmonicida and V. alginolyticus, but not in S. equinus. Different cell wall properties of grampositive species may explain the unharmed cell surface of S. equinus. Significant levels of oxidative stress were generated in only the former two species, whereas significant changes in membrane permeability were found only in S. equinus, probably because of its physiological adaptation. The bacterial communities in water samples from Oncorhynchus mykiss aquacultures supplemented with red clay showed similar structure and diversity as those from oxytetracycline-treated water. Taken together, the antibiotic effects of high concentrations of red clay in aquaculture can be attributed to gravitational removal, cell surface damage, and oxidative stress production, and suggest that red clay may be used as an alternative for antibiotics in aquaculture.

  18. Applications of fractional calculus to diffusion transport in clay-water system

    International Nuclear Information System (INIS)

    Korosak, D.; Cvikl, B.; Kramer, J.; Jecl, R.; Praprotnik, A.; Veselic, M.

    2005-01-01

    The analysis of the low-frequency conductivity spectra of the clay-water mixtures is presented. The conductivity spectra for samples at different water content values are shown to collapse to a single master curve when appropriately rescaled. The frequency dependence of the conductivity is shown to follow the power-law with the exponent η=0,67 before reaching the frequency-independent part. It is argued that the observed conductivity dispersion is a consequence of the anomalously diffusing ions in the clay-water system. The fractional Langevin equation is then used to describe the stochastic dynamics of the single ion. (author)

  19. Characterization of clay used for red ceramic fabrication

    International Nuclear Information System (INIS)

    Pereira, P.S.; Morais, A.S.C.; Caldas, T.C.C.; Monteiro, S.N.; Vieira, C.M.F.

    2011-01-01

    The objective of this work is to characterize a clay used in the red ceramics fabrication, from Campos dos Goytacazes north of the State of Rio de Janeiro. The clay was submitted for physical, chemical and mineralogical tests. The results showed that the clay has a high content of clay minerals with kaolinitic predominance, high loss on ignition and low flux oxides. It is recommended that this clay is mixed with non-plastic materials. (author)

  20. Encapsulation of Clay Platelets inside Latex Particles

    NARCIS (Netherlands)

    Voorn, D.J.; Ming, W.; Herk, van A.M.; Fernando, R.H.; Sung, Li-Piin

    2009-01-01

    We present our recent attempts in encapsulating clay platelets inside latex particles by emulsion polymerization. Face modification of clay platelets by cationic exchange has been shown to be insufficient for clay encapsulation, leading to armored latex particles. Successful encapsulation of

  1. Characteristics of the streak clays of the hyacinth gold deposit by the techniques of DRX and AT

    International Nuclear Information System (INIS)

    Trueba Gaetano, R.; Cabrera Diaz, I.; Casanova Gomez, A.; Aguila Terry, A.; Martinez Montalvo, A.; Canel Carreras, L.; Rodriguez Garcia, J. C.; Alonso Perez, J. A.

    2016-01-01

    It is exposed the investigative work of the mineralogical characteristics of different types of clays present in the veins of the Oro Jacinto deposit through the use of XRD and TA analytical techniques, supported by a study of particle size in the range of 2 mm to 63 μm. Significant feature of these samples is that being crushed they generated high content of fine material below 0.074 mm. This size particles range is presented between 17.68% and 50.78% of samples volume, majority particles being smaller than 0.063 mm, this interstratificated fine material with different types of clay makes the fraction below 74 μm present characteristics of clayey material. The results of XRD analysis and comparative Thermo gravimetric that are achieved for samples of 'Jacinto' gold vein deposit indicate that the clays presented in the fine fractions are: chlorite-montmorillonite; illite; hidromoscovite and muscovite, which turned out to be higher in samples of the grain B eatriz . During the ores formation process of the veins S ur Elena , it is evident that the hydrothermal fluids that led to the formation of the rocks, experienced greater degree of alteration during its transformation into argillite, which is manifested in three mineralogical regularities: Low crystallinity of the chlorite-montmorillonite clay. Transformation of muscovite - hidromoscovite into illite. Presence of abundant calcite in some samples. Higher concentrations of iron oxides (goethite). (Author)

  2. Halloysite Clay Nanotubes for Enzyme Immobilization.

    Science.gov (United States)

    Tully, Joshua; Yendluri, Raghuvara; Lvov, Yuri

    2016-02-08

    Halloysite clay is an aluminosilicate nanotube formed by rolling flat sheets of kaolinite clay. They have a 15 nm lumen, 50-70 nm external diameter, length of 0.5-1 μm, and different inside/outside chemistry. Due to these nanoscale properties, they are used for loading, storage, and controlled release of active chemical agents, including anticorrosions, biocides, and drugs. We studied the immobilization in halloysite of laccase, glucose oxidase, and lipase. Overall, negatively charged proteins taken above their isoelectric points were mostly loaded into the positively charged tube's lumen. Typical tube loading with proteins was 6-7 wt % from which one-third was released in 5-10 h and the other two-thirds remained, providing enhanced biocatalysis in nanoconfined conditions. Immobilized lipase showed enhanced stability at acidic pH, and the optimum pH shifted to more alkaline pH. Immobilized laccase was more stable with respect to time, and immobilized glucose oxidase showed retention of enzymatic activity up to 70 °C, whereas the native sample was inactive.

  3. Sorption of Pu onto some kinds of clay

    International Nuclear Information System (INIS)

    Jia Haihong; Si Gaohua; Liu Wei; Yu Jing

    2010-01-01

    There are rich clay mines holding in one area, so it's necessary to know about these clays' sorption capacity to Pu, for building radioactive waste repository in the area. Distribution coefficients of Pu onto different clays were acquired in static method, with the result about 104. The size of clay is different, but the result of Kds is near. In addition, it's estimated how far Pu moves in the most rapid speed in the clay based on these Kids', disregarding the influence of Pu-colloid. In a word, as a kind of backfilling material clays in the area can effectively prevent Pu from moving to environment, and when designing the backfilling layer, it's not necessary to catch clays through NO.200 sieve, if only considering the influence of Kd. (authors)

  4. Rheological characterization of nanocomposites Nylon 6/bentonite clay

    International Nuclear Information System (INIS)

    Silva, T.R.G.; Fernandes, P.C.; Oliveira, S.V.; Araujo, E.M.; Melo, T.J.A.

    2010-01-01

    Polymer nanocomposites are a class of materials that have been widely used in various applications. Among them, has been emphasizing the preparation of polymer films with barrier properties for applications in polymer membranes. In this work, nanocomposites of nylon 6/bentonite clay were obtained from a Homogenizer, in the ratios of 1, 3 and 5 wt% clay. The Brasgel PA bentonite clay was treated organically with Praepagen HY salt, to make it organophilic. By X-ray diffraction (XRD), it was showed that the efficiency of the incorporation of salt in the clay. The rheological curves showed that for the AST clay the torque did not change when compared with the pure nylon 6, while for the clay ACT, the torque increased gradually with the percentage of clay. (author)

  5. The use of NAA for chemical characterisation of clay sources within an archaeological ceramic study in the Chaschuil-Abaucan region (Tinogasta, Catamarca, Argentina)

    International Nuclear Information System (INIS)

    Pla, R.R.; Moreno, M.A.; Ratto, N.R.; Fuente, G. de la; Orgaz, M.

    2002-01-01

    Application of Neutron Activation Analysis (NAA) to provenience studies of archaeological ceramics involves the determination of clay sources used for their production. This work presents the study on raw materials and its relation to sherd results, on samples from Argentine southern Puna,using NAA. An hypothesis was stated that the Puna region of Chaschuil served as a corridor for the circulation of goods, energy and information, interconnecting large areas and relating to facilities at the bottom of the valley, especially at the Bolson de Fiambala. Potential raw material source locations were sampled both in Puna and valley, considering availability, plasticity, workability and textural fractions of the deposits. Factor analysis was used for evaluation of the results. The graphical representation of the first three factors showed a dense grouping of valley clays with Puna samples as outliers. Within the valley group, those clays from La Troya river appeared closely related to each other. XRD of these samples showed 100 % good quality clays for ceramic manufacture and high presence of clay fraction (17 - 45 % concentration values), with excellent properties regarding their plasticity and workability. The evaluation of a matrix composed of clay and sherd analytical results showed that sherds from valley area were manufactured with local raw materials that included the already sampled sources and others still to be located; that most of Puna sherds were manufactured with raw materials from the valley area, mainly La Troya and that Puna sources of raw materials were not used in the manufacture of those sherds sampled at Puna sites. (author)

  6. Polymer-clay nanocomposites obtained by solution polymerization ...

    Indian Academy of Sciences (India)

    Clay minerals can be found all over the world.1 Clay minerals have ... salts or covalent bonding with silanes at the OH edges of the clay. ..... Marras S I, Tsimpliaraki A, Zuburtikudis I and ... Mansoori Y, Roojaei K, Zamanloo M R and Imanzadeh.

  7. Utilization of Nkpuma-Akpatakpa clay in ceramics: characterization ...

    African Journals Online (AJOL)

    Nkpuma – Akpatakpa clay was analysed for its ceramics suitability. Chemical, mechanical and spectral characterization of the clay was carried out to obtain more information from this clay found in commercial quantity at Ebonyi State Nigeria. The XRD analysis showed that the principal minerals in the clay are quartz, ...

  8. Preparation and properties of recycled HDPE/clay hybrids

    Science.gov (United States)

    Yong Lei; Qinglin Wu; Craig M. Clemons

    2007-01-01

    Hybrids based on recycled high density polyethylene (RHDPE) and organic clay were made by melt compounding. The influence of blending method, compatibilizers, and clay content on clay intercalation and exfoliation, RHDPE crystallization behavior, and the mechanical properties of RHDPE/clay hybrids were investigated. Both maleated polyethylene (MAPE) and titanate could...

  9. Iodide uptake by negatively charged clay interlayers?

    Science.gov (United States)

    Miller, Andrew; Kruichak, Jessica; Mills, Melissa; Wang, Yifeng

    2015-09-01

    Understanding iodide interactions with clay minerals is critical to quantifying risk associated with nuclear waste disposal. Current thought assumes that iodide does not interact directly with clay minerals due to electrical repulsion between the iodide and the negatively charged clay layers. However, a growing body of work indicates a weak interaction between iodide and clays. The goal of this contribution is to report a conceptual model for iodide interaction with clays by considering clay mineral structures and emergent behaviors of chemical species in confined spaces. To approach the problem, a suite of clay minerals was used with varying degrees of isomorphic substitution, chemical composition, and mineral structure. Iodide uptake experiments were completed with each of these minerals in a range of swamping electrolyte identities (NaCl, NaBr, KCl) and concentrations. Iodide uptake behaviors form distinct trends with cation exchange capacity and mineral structure. These trends change substantially with electrolyte composition and concentration, but do not appear to be affected by solution pH. The experimental results suggest that iodide may directly interact with clays by forming ion-pairs (e.g., NaI(aq)) which may concentrate within the interlayer space as well as the thin areas surrounding the clay particle where water behavior is more structured relative to bulk water. Ion pairing and iodide concentration in these zones is probably driven by the reduced dielectric constant of water in confined space and by the relatively high polarizability of the iodide species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. generalized constitutive model for stabilized quick clay

    African Journals Online (AJOL)

    QUICK CLAY. PANCRAS MUGISHAGWE BUJULU AND GUSTAV GRIMSTAD. ABSTRACT. An experimentally-based two yield surface constitutive model for cemented quick clay has been ... Clay Model, the Koiter Rule and two Mapping Rules. .... models, where a mobilization formulation is used, this is independent of q.

  11. Clay-Enriched Silk Biomaterials for Bone Formation

    Science.gov (United States)

    Mieszawska, Aneta J.; Llamas, Jabier Gallego; Vaiana, Christopher A.; Kadakia, Madhavi P.; Naik, Rajesh R.; Kaplan, David L.

    2011-01-01

    The formation of silk protein/clay composite biomaterials for bone tissue formation is described. Silk fibroin serves as an organic scaffolding material offering mechanical stability suitable for bone specific uses. Clay montmorillonite (Cloisite ® Na+) and sodium silicate are sources of osteoinductive silica-rich inorganic species, analogous to bioactive bioglass-like bone repair biomaterial systems. Different clay particle-silk composite biomaterial films were compared to silk films doped with sodium silicate as controls for support of human bone marrow derived mesenchymal stem cells (hMSCs) in osteogenic culture. The cells adhered and proliferated on the silk/clay composites over two weeks. Quantitative real-time RT-PCR analysis revealed increased transcript levels for alkaline phosphatase (ALP), bone sialoprotein (BSP), and collagen type 1 (Col I) osteogenic markers in the cells cultured on the silk/clay films in comparison to the controls. Early evidence for bone formation based on collagen deposition at the cell-biomaterial interface was also found, with more collagen observed for the silk films with higher contents of clay particles. The data suggest that the silk/clay composite systems may be useful for further study toward bone regenerative needs. PMID:21549864

  12. In-situ pH measurements and sample analyses in glass-iron-clay systems at 90 deg. C and 150 deg. C

    International Nuclear Information System (INIS)

    Rozsypal, Christophe; Mosser-Ruck, Regine; Truche, Laurent; Pignatelli, Isabella; Randi, Aurelien; Bartier, Daniele; Cathelineau, Michel; Michau, Nicolas

    2012-01-01

    Document available in extended abstract form only. The long term repository of long life and high activity radioactive waste consists in the burial of steel overpacks of vitrified waste in a clay-stone. As the natural interstitial fluid of the clay-stone is a potential corrosion enhancer for the containers, the viability of the repository requires previous data acquisition on the interactions between clays, water, metallic iron, and glass. A set of experiments have been performed in autoclaves at 90 deg. C (thermal peak of the site) in order to follow the pH evolution and to characterize fluids with time and solids at the end of the experiments. Another set of experiments at 150 deg. C have also been carried out in order to increase the rates of the involved chemical reactions and mineralogical transformations. The objectives of those two sets of experiments were to measure the in-situ pH, to study how it was influenced by various parameters, such as the presence of glass and/or iron, to estimate the increase of the CO 2 and H 2 pressures, and to analyze gas and liquids taken in the course or at the end of experiments and solids recovered at the end of the experiments. The initial aqueous solution simulating the natural interstitial fluid was made of 22 mM of sodium, 4 mM of calcium, 29.75 mM of chloride, and 0.25 mM of bromide as a tracer. The initial solution/clay mass ratio was 10 for all the experiments, the metallic iron/clay or glass/clay mass ratios were 0.1 or 0. The list of the experiments and their characteristics is given in Table (1). The first results concern the evolution of the in-situ pH during the A90pH experiment and are reported on Figure (1). The measurements started after a 48 hours stabilization time of the pH probe. The pH seemed to tend reaching a plateau after several weeks. (authors)

  13. Influence of non-clay minerals on the interaction between metallic iron and Callovo-Oxfordian clay fraction

    International Nuclear Information System (INIS)

    Rivard, C.; Pelletier, M.; Villieras, F.; Michau, N.

    2012-01-01

    Document available in extended abstract form only. In the context of the geological disposal of high-level radioactive waste, it is of prime importance to understand the interaction mechanisms between the geological matrix, Callovo-Oxfordian clay rock (COx) and metallic iron, from the package overpack. In order to evidence the individual role of each clay component entering in the mineralogy of the COx, interactions between metallic iron and pure clays (smectites, illite and kaolinite) were first conducted. To investigate the role of the other minerals, the reactivity of COx, COx clay fraction (COxCF) and mixtures between COxCF and quartz, calcite or pyrite, was studied. Clays and additional minerals were put in contact with powder metallic iron with a weight ratio iron:clay fixed at 1:3 and a clay:solution ratio of 1:20. Proportions of non-clay minerals were deduced from the average COx composition: 50% clays, 24.5% quartz, 24.5% calcite and 1% pyrite. Batch experiments were carried out in anoxic conditions at 90 deg. C in the presence of background electrolyte (NaCl 0.02 M.L -1 , CaCl 2 0.04 M.L -1 ) in Parr reactors for durations of one, three or nine months. After reaction, solid and liquid phases were separated by centrifugation and characterized by classical techniques combining chemical analyses (liquid analyses, transmission electron microscopy combined with Energy Dispersive of X-rays spectroscopy TEM-EDS), mineralogical (X-ray diffraction), spectroscopic ( 57 Fe Moessbauer) and morphometric techniques (TEM, scanning electron microscopy and N 2 adsorption). For COx, COxCF and all the pure clay phases, major evolutions were observed during the first month, which shows that the oxidation of metallic iron is rapid in our experimental conditions. Release of iron cations in solution, pH increase (8-10) and Eh decrease (reductive conditions) are responsible for the partial dissolution of initial clay phases. Released iron is involved in the crystallization of Fe

  14. Strength Properties of Aalborg Clay

    DEFF Research Database (Denmark)

    Iversen, Kirsten Malte; Nielsen, Benjaminn Nordahl; Augustesen, Anders Hust

    glacial time are characterised by the absence of this mussel. These deposits are named Aalborg Clay and Aalborg Sand. In the city of Aalborg, a fill layer superposes Aalborg Clay. This layer is at some places found to be 6m thick. This fill layer does not provide sufficient bearing capacity, which has...... resulted in many damaged buildings in Aalborg. To provide sufficient bearing capacity it is therefore necessary either to remove the fill or to construct the building on piles. Both methods imply that the strength of Aalborg Clay is important for the construction. This paper evaluates the strength...

  15. Mechanical interaction between swelling compacted clay and fractured rock, and the leaching of clay colloids

    NARCIS (Netherlands)

    Grindrod, P.; Peletier, M.A.; Takase, H.

    1999-01-01

    We consider the interaction between a saturated clay buffer layer and a fractured crystalline rock engineered disturbed zone. Once saturated, the clay extrudes into the available rock fractures, behaving as a compressible non-Newtonian fluid. We discuss the modelling implications of published

  16. Reactor Materials Program electrochemical potential measurements by ORNL with unirradiated and irradiated stainless steel specimens

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, E.W.; Caskey, G.R. Jr.

    1993-07-01

    Effect of irradiation of stainless steel on electrochemical potential (ECP) was investigated by measurements in dilute HNO{sub 3} and H{sub 2}O{sub 2} solutions, conditions simulating reactor moderator. The electrodes were made from unirradiated/irradiated, unsensitized/sensitized specimens from R-reactor piping. Results were inconclusive because of budgetary restrictions. The dose rate may have been too small to produce a significant radiolytic effect. Neither the earlier CERT corrosion susceptibility tests nor the present ECP measurements showed a pronounced effect of irradiation on susceptibility of the stainless steel to IGSCC; this is confirmed by the absence in the stainless steel of the SRS reactor tanks (except for the C Reactor tank knuckle area).

  17. Reactor Materials Program electrochemical potential measurements by ORNL with unirradiated and irradiated stainless steel specimens

    International Nuclear Information System (INIS)

    Baumann, E.W.; Caskey, G.R. Jr.

    1993-07-01

    Effect of irradiation of stainless steel on electrochemical potential (ECP) was investigated by measurements in dilute HNO 3 and H 2 O 2 solutions, conditions simulating reactor moderator. The electrodes were made from unirradiated/irradiated, unsensitized/sensitized specimens from R-reactor piping. Results were inconclusive because of budgetary restrictions. The dose rate may have been too small to produce a significant radiolytic effect. Neither the earlier CERT corrosion susceptibility tests nor the present ECP measurements showed a pronounced effect of irradiation on susceptibility of the stainless steel to IGSCC; this is confirmed by the absence in the stainless steel of the SRS reactor tanks (except for the C Reactor tank knuckle area)

  18. 1st International Conference on Calcined Clays for Sustainable Concrete

    CERN Document Server

    Favier, Aurélie

    2015-01-01

    This volume focuses on research and practical issues linked to Calcined Clays for Sustainable Concrete. The main subjects are geology of clays, hydration and performance of blended systems with calcined clays, alkali activated binders, economic and environmental impacts of the use of calcined clays in cement based materials. Topics addressed in this book include the influence of processing on reactivity of calcined clays, influence of clay mineralogy on reactivity, geology of clay deposits, Portland-calcined clay systems, hydration, durability, performance, Portland-calcined clay-limestone systems, hydration, durability, performance, calcined clay-alkali systems, life cycle analysis, economics and environmental impact of use of calcined clays in cement and concrete, and field applications. This book compiles the different contributions of the 1st International Conference on Calcined Clays for Sustainable Concrete, which took place in Lausanne, Switzerland, June, 23-25, 2015.The papers present the latest  res...

  19. Study of the influence of the addition of MMT clay in the preparation of biohydrogel based natural polymers

    International Nuclear Information System (INIS)

    Costa, M.P.M.; Ferreira, I.L.M.

    2014-01-01

    In this study, biohydrogels were produced from the combination of two polysaccharides (chitosan and sodium alginate). The concentrations of polysaccharide (0.5 to 3% m / m) and clay (0.5 and 2.0%) were varied. CaCl2 was used as a crosslinking agent. The samples were characterized by thermogravimetry (thermal stability), FTIR (chemical composition), scanning electron microscopy (SEM), and X-ray diffraction. The present work aims to study the influence of different clay content in biohydrogel produced. In the presence of clay, a differentiated morphology was observed by SEM. The degree of swelling was evaluated as a function of the composition of each mixture. The presence of clay caused a significant swelling of the hydrogel on the water absorption when the clay content was increased. The FTIR spectra showed the presence of characteristic bands of each polysaccharide, and the clay. The XRD showed that the amorphous presented biohydrogel behavior. (author)

  20. Evaluation of used fuel disposition in clay-bearing rock

    Energy Technology Data Exchange (ETDEWEB)

    Jove-Colon, Carlos F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hammond, Glenn Edward [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kuhlman, Kristopher L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Zheng, Liange [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kim, Kunhwi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Xu, Hao. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rutqvist, Jonny [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Caporuscio, Florie Andre [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Norskog, Katherine E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Maner, James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Palaich, Sarah [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cheshire, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zavarin, Mavrik [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wolery, Thomas J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Atkins-Duffin, Cindy [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jerden, James L. [Argonne National Lab. (ANL), Argonne, IL (United States); Copple, Jacqueline M. [Argonne National Lab. (ANL), Argonne, IL (United States); Cruse, Terry [Argonne National Lab. (ANL), Argonne, IL (United States); Ebert, William L. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-01

    The R&D program from the DOE Used Fuel Disposition Campaign (UFDC) has documented key advances in coupled Thermal-Hydrological-Mechanical-Chemical (THMC) modeling of clay to simulate its complex dynamic behavior in response to thermal and hydrochemical feedbacks. These efforts have been harnessed to assess the isolation performance of heat-generating nuclear waste in a deep geological repository in clay/shale/argillaceous rock formations. This report describes the ongoing disposal R&D efforts on the advancement and refinement of coupled THMC process models, hydrothermal experiments on barrier clay interactions, used fuel and canister material degradation, thermodynamic database development, and reactive transport modeling of the near-field under non-isothermal conditions. These play an important role to the evaluation of sacrificial zones as part of the EBS exposure to thermally-driven chemical and transport processes. Thermal inducement of chemical interactions at EBS domains enhances mineral dissolution/precipitation but also generates mineralogical changes that result in mineral H2O uptake/removal (hydration/dehydration reactions). These processes can result in volume changes that can affect the interface / bulk phase porosities and the mechanical (stress) state of the bentonite barrier. Characterization studies on bentonite barrier samples from the FEBEX-DP international activity have provided important insight on clay barrier microstructures (e.g., microcracks) and interactions at EBS interfaces. Enhancements to the used fuel degradation model outlines the need to include the effects of canister corrosion due the strong influence of H2 generation on the source term.

  1. Interphase vs confinement in starch-clay bionanocomposites.

    Science.gov (United States)

    Coativy, Gildas; Chevigny, Chloé; Rolland-Sabaté, Agnès; Leroy, Eric; Lourdin, Denis

    2015-03-06

    Starch-clay bionanocomposites containing 1-10% of natural montmorillonite were elaborated by melt processing in the presence of water. A complex macromolecular dynamics behavior was observed: depending on the clay content, an increase of the glass transition temperature and/or the presence of two overlapped α relaxation peaks were detected. Thanks to a model allowing the prediction of the average interparticle distance, and its comparison with the average size of starch macromolecules, it was possible to associate these phenomena to different populations of macromolecules. In particular, it seems that for high clay content (10%), the slowdown of segmental relaxation due to confinement of the starch macromolecules between the clay tactoïds is the predominant phenomenon. While for lower clay contents (3-5%), a significant modification of chain relaxation seems to occur, due to the formation of an interphase by the starch macromolecules in the vicinity of clay nanoparticles coexisting with the bulk polymer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Soil clay content underlies prion infection odds

    Science.gov (United States)

    David, Walter W.; Walsh, D.P.; Farnsworth, Matthew L.; Winkelman, D.L.; Miller, M.W.

    2011-01-01

    Environmental factors-especially soil properties-have been suggested as potentially important in the transmission of infectious prion diseases. Because binding to montmorillonite (an aluminosilicate clay mineral) or clay-enriched soils had been shown to enhance experimental prion transmissibility, we hypothesized that prion transmission among mule deer might also be enhanced in ranges with relatively high soil clay content. In this study, we report apparent influences of soil clay content on the odds of prion infection in free-ranging deer. Analysis of data from prion-infected deer herds in northern Colorado, USA, revealed that a 1% increase in the clay-sized particle content in soils within the approximate home range of an individual deer increased its odds of infection by up to 8.9%. Our findings suggest that soil clay content and related environmental properties deserve greater attention in assessing risks of prion disease outbreaks and prospects for their control in both natural and production settings. ?? 2011 Macmillan Publishers Limited. All rights reserved.

  3. Investigation of isothermal water infiltration into fired clay brick by scattered neutrons

    International Nuclear Information System (INIS)

    El Abd, A.; Abdel-Monem, A.M.; Kansouh, W.A.

    2012-01-01

    A method based on neutron scattering was proposed to investigate isothermal water infiltration in porous media. Two different kinds of fired clay bricks were investigated. While the sample absorb water, scattered neutrons from the different wetted regions, along the flow direction were continuously recorded. The results were discussed in terms of the theory of water infiltration in unsaturated porous media as well as by an anomalous diffusion approach. It was shown that the infiltration process in the Canadian clay brick (CCB) is Fickian and the water diffusivity was analytically determined, while it is non-Fickian in the Egyptian clay brick (ECB). The infiltration process in ECB can be modeled as a two stage Fickian process, at the low and high absorption times. The anomalous diffusion approach failed to describe the diffusion process in the ECB at all water contents. (author)

  4. Speciation of plutonium during sorption and diffusion in Opalinus clay

    International Nuclear Information System (INIS)

    Kaplan, Ugras

    2013-01-01

    The presented work was carried out in the framework of the BMWi-project ''Interaction and migration of actinides in natural clay rocks taking into account humic substances and clay organic matter - Interactions of neptunium and plutonium with natural clay rocks''. For the long-term safety assessments of nuclear repositories, the possible migration of the radiotoxic wastes into the environment must be considered. Due to its long half-life (T 1/2 = 24000 y) 239 Pu has a significant contribution to the radiotoxicity of spent nuclear fuel in a repository after long periods of storage. The redox-sensitive plutonium has a very complicated chemical behavior. In aqueous solution under environmental relevant conditions Pu can exist in oxidation states +III to +VI and it can exist in up to four oxidation states simultaneously in a solution. Clays are considered as a possible host rock formation for of high-level radioactive waste disposal. Therefore, detailed information on the mobilization and immobilization of plutonium through / into the groundwater from a repository are of special interest. In this work new insights into the interaction between Pu and natural Opalinus clay (OPA, Mont Terri, Switzerland) are obtained with regard to the disposal of heat-generating radioactive waste in a deep geological repository.rnThe focus of this work was on the determination of the speciation of Pu on the mineral surface after sorption and diffusion process by different synchrotron based techniques (μ-XRF, μ-XANES/-EXAFS, μ-XRD, and EXAFS/XANES). The interaction between Pu and OPA was studied in batch sorption and diffusion experiments in dependence of various experimental parameters (e.g. pH, Pu oxidation state). Sorption experiments showed that some experimental parameters (e.g. temperature, humic acid) have a significant impact on the sorption of Pu on OPA. Speciation studies were performed as a function of various chemical parameters on powder samples form batch experiments as

  5. Radiation synthesis and characterization of thermo-sensitive PNIPA/clay hydrogels

    International Nuclear Information System (INIS)

    Song Hongyan; He Suqin; Liu Wentao; Zhu Chengshen; Yang Mingcheng

    2007-01-01

    In this work, the thermo-sensitive hydrogels of PNIPA/Clay were synthesized by 60 Co-γ rays irradiation. The effects of organically modified clay and Na + clay, clay content, and dispersing condition on swelling behavior of PNIPA/clay hydrogels were investigated. The results showed that the equilibrium swelling ratio (SR) of the PNIPA/clay hydrogels is better than PNIPA, and the SR of PNIPA/organically modified clay hydrogels is the highest. With clay content increases, the SR of hydrogels became better. The deswelling behavior of hydrogel was improved, the deswelling ratio of the hydrogel with organically modified clay is highest, and ratio of losing water is 83%, while PNIPA is about 50%. The compressive properties of hydrogel composites were also examined. The results showed that the compressive properties of the PNIPA/clay hydrogels were improved distinctly than that of the conventional hydrogels without clay. And with increasing of clay content, the compressive properties of hydrogel composites improve rapidly. When the content of clay is 15%, the maximum compression force of the PNIPA/clay hydrogel is 5.28N, which is 14 times of PNIPA hydrogel and compression strength is 2.5 times. (authors)

  6. Geological and technological characterization of the Late Jurassic-Early Cretaceous clay deposits (Jebel Ammar, northeastern Tunisia) for ceramic industry

    Science.gov (United States)

    Ben M'barek-Jemaï, Moufida; Sdiri, Ali; Ben Salah, Imed; Ben Aissa, Lassaad; Bouaziz, Samir; Duplay, Joelle

    2017-05-01

    Late Jurassic-Lower Cretaceous clays of the Jebel Ammar study site were used as raw materials for potential applications in ceramic industry. Physico-chemical characterization of the collected samples was performed using atomic absorption spectroscopy, X-ray diffraction, thermogravimetry and dilatometry (Bugot's curve). Geotechnical study was also undertaken by the assessment of plasticity and liquidity limits. It was found that high concentrations of silica, alumina with SiO2/Al2O3 ratio characterized the studied clays; its high amounts of CaO and Fe2O3 in the Late Jurassic clays indicated their calcareous nature. In addition, technological tests indicated moderate to low plasticity values for the Late Jurassic and Lower Cretaceous clays, respectively. Clay fraction (<2 μm) reached 50% of the natural clay in some cases. Mineralogical analysis showed that Jurassic clays were dominated by smectite, illite and kaolinite, as clay mineral species; calcite was the main associated mineral. Lower Cretaceous clays were mainly composed of abundant illite accompanied by well-crystallized smectite and kaolinite. Kaolinite gradually increased upwards, reaching 70% of the total clay fraction (i.e. <2 μm). Quartz, calcite and feldspar were the main non-clay minerals. Based on these analyses, the clays meet technological requirements that would allow their use in the ceramic industry and for the manufacturing of ceramic tiles.

  7. Investigationof Clay Mineralogy, Micromorphology and Evolution of Soils in Bajestan Playa

    Directory of Open Access Journals (Sweden)

    Mohammad Ghasemzadeh Ganjehie

    2017-03-01

    , pediment and clay flat. Considering the diversity of geomorphic units, 11 soil profiles were described and diffrenet soil layers and horizons were sampled. Undisturbed soil samples were taken micromorphological studies. Some horizons were selected for clay mineralogy analysis. The mineralogy of clay fraction was determined using X-ray diffraction method. Results and discution: All studied soils except the profiles in the pediment were classified in the Aridisols order. There were two geomorphic surfaces in alluvial fans. In the first geomorphic surface a soil with the Bk horizon buried a soil with red Btk horizon. In the second geomorphic surface, it seems that the erosion has been removed the overlying soil. The Bk horizon showed the maximum soil development in the clay flat and intermediate alluvial fan-clay flat landforms. Clay coating on sand in thin section was the evidence of clay illuviation in Btk horizon. Carbonate nodules associated with clay coating are the compound pedofeature in Btk horizon. These evidences reflect polygenetic nature of the soils and different period of climate change and soil formation. Smectite, mica, chlorite and palygorskite are the clay minerals in the studied soils. Similar to soils in arid regions of Iran, palygorskite was found in Bk, Bt and Bz horizons. The existence of Bk horizon in overlying soils, buried Btk horizon, removal of surface horizon in alluvial fan are the evidences of regressive and progressive of pedogenic processes in the study area. Btk horizon represents a warm and wetter and Bk horizon indicates a relatively wetter period in comparison to present time. Conclusion: Btk was the most developed horizon in the study area that occurred as buried paleosol in alluvial fan. Bk, Bw, By and Bz were the common horizon in other landforms. Clay coating and red color of Btk horizon might seem as indicators of hot and humid conditions in the past, during the argillic horizon formation. Covered carbonate nodules with clay coating

  8. Carbon saturation in the silt and clay particles in soils with contrasting mineralogy

    Directory of Open Access Journals (Sweden)

    Francisco Matus

    2016-07-01

    Full Text Available The silt and clay particles play a key role as stabilizing agents of soil organic carbon (SOC. Several lines of evidence indicate a theoretical maximum or C saturation in individual particles. In the present study, we hypothesized that a C fraction displaying linear accumulation relative to the SOC is not influenced by C saturation, while a fraction displaying an asymptotic relationship is regarded as saturated (Stewart et al., 2008. The aim of the present study was to compare the amount of C in the silt and clay sized fractions in temperate and subtropical cropping soils across a range of textures with different mineralogy. Twenty-one and 18 soil samples containing 1:1 and 2:1 clay of temperate soil from Chile under monoculture of maize (Zea maiz L. for at least 30 years and 9 subtropical soils from Mexico under maize and bean (Phaseolus vulgaris L. cropping for 9 years having mixed clay were collected at 0-0.1 m. The SOC of 2:1 soils was significantly higher (14±0.5 g kg-1 dry soil than 1:1 soils (10±0.7 g kg-1. However, subtropical soils showed the highest values (59±0.5 g kg-1. A positive (P < 0.01 relationship was observed between the SOC and the C in the silt fraction (R2 0.80-0.97, P < 0.01. In contrast, the clay fraction remained constant or showed asymptotic behavior. We conclude that the silt fraction, unlike clay, showed no evidence of C saturation, while clay accumulates C to a maximum. On average, the 2:1 clay was saturated at 1-2 g C kg-1 and 1:1 at 1 g C kg-1, and subtropical soils at 14 g C kg-1.

  9. Influence of the mineral composition of clay rocks on the stability of oil wells

    International Nuclear Information System (INIS)

    Amorocho, P. R; Badillo, Juan

    2012-01-01

    In the oil companies, the operation of drilling well bore could be more expensive if the composition of the rocks is clay, the cost could increase between 10 and 15% from the starting budget. In order to decrease this problem, the oil industry has spent too much money for developing mechanisms that can provide better control and stability in clay formations during the drilling. The Society Petroleum Engineers (SPE) in some researches have published that the main chemical effects that are involved in the interaction of perforation fluids and the clay formation are: 1) chemical osmosis; and 2) hydration stresses, although, there are others like: Capillary effects, dehydration, differences in pressure and cationic exchange. These factors are not present generally in independent form. At Piedemonte Llanero the problem of the well bore stability represents a high spending of money for oil companies, caused in this region by chemical factors between fluid/rock and mechanical factors as resulted of the stresses in the area. Metil Blue Testing (MBT) and X-ray Diffraction (DR-X) were made in samples of clay; these were taken from cuts extracted of boreholes drilled in some places of the Colombian Llanos. It was found that these samples had a moderate content of reactive and low content of swell minerals.The samples main component was kaolinite, this mineral does not let the rock get swell, but it produces caving in the hole. However, it is necessary to do other tests to quantify the damages and evaluate the influence of there gime of the stress during the perforation of well bore.

  10. Developments in modelling of thermohydro-geomechanical behaviour of Boom clay and clay-based buffer materials (Volume 1)

    International Nuclear Information System (INIS)

    Baldi, G.; Hueckel, T.; Peano, A.; Pellegrini, R.

    1991-01-01

    The results of two years of research on thermomechanics of clays performed within CEC contract Fl1W/0150 are described herein. Previous studies (research contracts with CEC/WAS/380.83.7 l) performed by ISMES have evidenced the need for an improved modelling of the volumetric response of natural clays. In a coupled approach, this leads to an improved prediction of pore-pressure development and dissipation. This is crucial for assessing conditions of a possible local thermal failure as verified in laboratory tests done at ISMES. The first part of the study lays the foundations of a comprehensive theoretical treatment of the interaction between water and soil skeleton. It consists in: (a) developing a framework for inclusion of water/soil particle thermally induced interaction into a thermodynamically consistent mixture theory approach (Section 2); (b) studying possible modelling approaches of considering the effective thermal expansion coefficient of pore water dependency on pore water status (Section 2); (c) testing artificial clays to assess pore water thermal expansion dependence on temperature in the presence of different amounts of active clay minerals and also Boom clay (Section 3); (d) performing a laboratory test campaign on Boom clay with special attention to the response in the overconsolidated domain (Section 4). 89 figs., 18 tabs., 102 refs

  11. Developments in modelling of thermohydro-geomechanical behaviour of Boom clay and clay-based buffer materials (volume 2)

    International Nuclear Information System (INIS)

    Baldi, G.; Hueckel, T.; Peano, A.; Pellegrini, R.

    1991-01-01

    This study is composed of two parts: The first part (Volume 1) lays the foundations of a comprehensive theoretical treatment of the interaction between water and soil skeleton during thermal dilatation. The second part (volume 2) is devoted to the development and the application of advance constitutive modelling of mechanical behaviour of clays taking into account the extensive tests of Boom clay reported in the first volume. The development concentrated on the improvement of prediction of the volumetric response of clay skeleton: (a) improving the dilatancy prediction at low to high overconsolidation ratios (Section 2). An elasto-plastic constitutive model has been developed to account for this effect (Section 3.2.); (b) modelling of swelling effects (Section 2.5). A preliminary interpretative model for swelling prediction has been developed (Section 2.5). The application part consisted in interpreting the experimental results obtained for Boom clay to calibrate a set of constants (Section 3) for performing numerical analyses (Section 4) for the thermomechanical model already calibrated for Boom clay (Appendix). Interpretation of the tests required an assessment of influence of the strong anisotropy effects revealed by Boom clay on the basis of an interpretative model characterized by a kinematic hardening plasticity and coupled elasticity (section 3)

  12. Use of organophilic clays in purification of oily wastewater; Uso de argilas organofilicas na purificacao de efluentes oleosos

    Energy Technology Data Exchange (ETDEWEB)

    Silva, A.A. [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Engenharia de Processos], email: adriana_anp@yahoo.com.br; Pereira, K.R de O.; Wiebeck, H.; Valenzuela-Diaz, F.R. [Universidade de Sao Paulo (EPUSP), SP (Brazil). Escola Politecnica. Dept. de Engenharia Metalurgica e de Materiais; Rodrigues, M. G.F. [Universidade Federal de Campina Grande (UFCG), PB (Brazil). CCT. Dept. de Engenharia Quimica

    2006-07-01

    Water mixed with oil is produced in great volume in industrial processes and in petroleum refineries. This mixture must be treated to return to environment or can be reused in the same process. The refine of this water is expensive and presents a difficult execution. The process of separation of oil in water used organophilic clays can be a new option. In this work, the process of preparation of organophilic clays using smectitic clay polycationic and a industrial sodium bentonite both from Paraiba State, Brazil is described. The samples were characterized by two techniques: X-ray Diffraction and Thermal Analysis. After preparation of the organophilic clays it was determined theirs swelling in organic solvents and oil adsorption capacity. The organophilic clays presented higher capacity of oil adsorption when compared to activated carbon. (author)

  13. Synthesis and characterization of a PbO2-clay nanocomposite: Removal of lead from water using montmorillonite

    International Nuclear Information System (INIS)

    Aroui, L.; Zerroual, L.; Boutahala, M.

    2012-01-01

    Graphical abstract: The replacement of Na by Pb in the interlayer space of the smectite leads to a decrease in the intensity of the the (0 0 1) reflection as the concentration of lead nitrate increases. A significant restructuring at the particle scale is observed leading probably to the exfoliation of the caly. In addition, the thermal behaviour of the montmorillonite samples with regard to their dehydration and dehydroxilation capacities is significantly influenced. This leads to a lowering of the water content and a decrease in the ionic conductivity of the clay. Highlights: ► In the clay, Pb replaces Na ions and a significant restructuring at the particle scale is observed. ► Pb influenced significantly the thermal behaviour of the clay with regard to its dehydration. ► In the interlayer space, the exchange of Na by Pb leads to a decrease in the protonic conductivity. ► A PbO 2 -clay nanocomposite material with good conductivity is synthesized. -- Abstract: The aim of this paper is to present the results obtained with Pb(II) sorption on an Algerian Clay. The experiments were carried out using a batch process. Powder X-rays diffraction patterns (PXRD) prove that in the montmorillonite Pb replaces Na ions. A significant restructuring at the particle scale is observed leading to the disappearance of the d 001 reflection of the clay at high concentrations of lead. The replacement of hydrated Na with Pb ions influenced significantly the thermal behaviour of the montmorillonite samples with regard to their dehydration and dehydroxilation capacities with a lowering of the water content. A PbO 2 -clay composite material with good electrical conductivity is synthesized.

  14. Organic waste treatment with organically modified clays

    International Nuclear Information System (INIS)

    Evans, J.C.; Pancoski, S.E.; Alther, G.

    1989-01-01

    The use of organically modified clays in hazardous waste management applications offers a significant new and untapped potential. These clays may be used in the stabilization of organic wastes and organically contaminated soils, for waste water treatment, for oil spill control, for liner systems beneath fuel oil storage tanks, and as a component within liner systems of hazardous waste storage treatment and disposal facilities. Organically modified clays (organophilic clays) may be employed in each of these systems to adsorb organic waste constituents, enhancing the performance of the applications

  15. Moessbauer study of the transformations occurring in egyptian alluvial and calcareous clays during firing

    International Nuclear Information System (INIS)

    Sallam, H.A.; Gomma, N.S.; El Meligy, W.M.; Eissa, N.A.

    1994-01-01

    Egyptian alluvial and calcareous clay samples, which are used in pottery production, were heated at different temperatures in air up to 1100 degree C. The physicochemical transformations were followed up and could be separated in two main stages; i) the dehydroxilation, of the clay mineral, stage for firing up to 700 degree C, ii) the second stage for firing at 900 degree C and higher. In the later stage the effect of calcium content was very pronounced. 2 figs

  16. Application of fire-retardant treatment to the wood in Type A unirradiated nuclear fuel outer containers

    International Nuclear Information System (INIS)

    Whitlow, J.D.; Luna, R.E.

    1992-01-01

    Packagings for transporting unirradiated nuclear fuel assemblies in the United States are commonly constructed as rectangular boxes consisting of a metal inner container, a wooden outer container, and cushioning material separating the two. The wood in the outer container is a potential source of fuel for fire. Use of a fire-retardant treatment on the wood may reduce or eliminate the damage to nuclear fuel assemblies in some types of accidents involving fire. The applicability of using fire-retardant treatments on the wood of outer containers is addressed. An approximate cost-benefit analysis to determine if fire-retardant treatments are economically justified is presented. (Author)

  17. The influence of shale depositional fabric on the kinetics of hydrocarbon generation through control of mineral surface contact area on clay catalysis

    Science.gov (United States)

    Rahman, Habibur M.; Kennedy, Martin; Löhr, Stefan; Dewhurst, David N.; Sherwood, Neil; Yang, Shengyu; Horsfield, Brian

    2018-01-01

    Accurately assessing the temperature and hence the depth and timing of hydrocarbon generation is a critical step in the characterization of a petroleum system. Clay catalysis is a potentially significant modifier of hydrocarbon generation temperature, but experimental studies of clay catalysis show inconsistent or contradictory results. This study tests the hypothesis that source rock fabric itself is an influence on clay mineral catalysis as it controls the extent to which organic matter and clay minerals are physically associated. Two endmember clay-organic fabrics distinguish the source rocks studied: (1) a particulate fabric where organic matter is present as discrete, >5 μm particles and (2) a nanocomposite fabric in which amorphous organic matter is associated with clay mineral surfaces at sub-micron scale. High-resolution electron imaging and bulk geochemical characterisation confirm that samples of the Miocene Monterey Formation (California) are representative of the nanocomposite source rock endmember, whereas samples from the Permian Stuart Range Formation (South Australia) represent the particulate source rock endmember. Kinetic experiments are performed on paired whole rock and kerogen isolate samples from these two formations using open system, non-isothermal pyrolysis at three different heating rates (0.7, 2 and 5 K/min) to determine the effects of the different shale fabrics on hydrocarbon generation kinetics. Extrapolation to a modelled geological heating rate shows a 20 °C reduction in the onset temperature of hydrocarbon generation in Monterey Formation whole rock samples relative to paired kerogen isolates. This result is consistent with the Monterey Formations's nanocomposite fabric where clay catalysis can proceed because reactive clay minerals are intimately associated with organic matter. By contrast, there is no significant difference in the modelled hydrocarbon generation temperature of paired whole rock and kerogen isolates from the

  18. Compressibility characteristics of Sabak Bernam Marine Clay

    Science.gov (United States)

    Lat, D. C.; Ali, N.; Jais, I. B. M.; Baharom, B.; Yunus, N. Z. M.; Salleh, S. M.; Azmi, N. A. C.

    2018-04-01

    This study is carried out to determine the geotechnical properties and compressibility characteristics of marine clay collected at Sabak Bernam. The compressibility characteristics of this soil are determined from 1-D consolidation test and verified by existing correlations by other researchers. No literature has been found on the compressibility characteristics of Sabak Bernam Marine Clay. It is important to carry out this study since this type of marine clay covers large coastal area of west coast Malaysia. This type of marine clay was found on the main road connecting Klang to Perak and the road keeps experiencing undulation and uneven settlement which jeopardise the safety of the road users. The soil is indicated in the Generalised Soil Map of Peninsular Malaysia as a CLAY with alluvial soil on recent marine and riverine alluvium. Based on the British Standard Soil Classification and Plasticity Chart, the soil is classified as a CLAY with very high plasticity (CV). Results from laboratory test on physical properties and compressibility parameters show that Sabak Bernam Marine Clay (SBMC) is highly compressible, has low permeability and poor drainage characteristics. The compressibility parameters obtained for SBMC is in a good agreement with other researchers in the same field.

  19. Characterization of clay and mass used in red ceramic industry in Cariri region - Ceara

    International Nuclear Information System (INIS)

    Neta, I.A.B.; Cartaxo, A.S.; Esmeraldo, A.D.; Gomes, F.F.; Silva, F.C.; Ribeiro, S.B.N.; Neiva, L.S.; Brasileiro, M.I.

    2016-01-01

    The study of the characteristics of raw materials used in the production of red ceramic industry articles, such as bricks and tiles, has a key role in determining the quality of the final product. This study aims to evaluate the chemical and physical properties of clays and pasta from pottery G. Matos, Crato, Ceara. Three samples were collected, processed and submitted to the characterization DRX. They were also analyzed for plasticity by the methods of Atterberg and Pfefferkorn. In the method Atterberg, samples and Fat Mass Ready clay are within the plasticity index range for red ceramics, Pferfferkorn method, pasta and ready Fat also had plasticity, but with different results of the above method. In both ostestes, the red mass showed no moldability. XRD, the samples show quartz peaks, which were in the greatest amount in the sample that did not develop plasticity, addition, montmorillonite obtained peaks kaolinite. (author)

  20. Polypropylene reinforced with organophilic clay and brazilian nut fibers

    International Nuclear Information System (INIS)

    Rocha-Gomes, L.V.; Mondelo-Garcia, F.J.; Vaccioli, K.; Valera, S.T.; Silva-Valenzuela, M.G.; Valenzuela-Diaz, F.R.

    2014-01-01

    Polymer nanocomposites have been shown to possess better properties when compared with traditional composites. This study aims to investigate the effects of the addition of organophilic clay and Brazilian nut fiber on the polypropylene (PP). First, 5%, 10% and 20% PP/compatibilizer maleic anhydride (PP-g-MA) by weight was added to Pure PP, respectively. From the results, 5% PP-g-MA was defined for preparing the nanocomposites. Samples were prepared containing 5% PP / PP-g-MA reinforced with 5% organophilic Brazilian smectite clay and 5%, 10% and 15% Brazilian nut fiber. Specimens were tested for tensile strength and impact. The materials were characterized by laser diffraction particle size and X-ray diffraction, and the nanocomposites, by mechanical strength and impact. The best result was obtained by inserting 15% fiber. (author)

  1. Fracture behavior of polypropylene/clay nanocomposites.

    Science.gov (United States)

    Chen, Ling; Wang, Ke; Kotaki, Masaya; Hu, Charmaine; He, Chaobin

    2006-12-01

    Polypropylene (PP)/clay nanocomposites have been prepared via a reactive compounding approach with an epoxy based masterbatch. Compared with PP and common PP/organoclay nanocomposites, the PP/clay nanocomposites based on epoxy/clay masterbatch have higher impact strength. The phenomenon can be attributed to the epoxy phase dispersed uniformly in the PP matrix, which may act as impact energy absorber and helps to form a large damage zone, thus a higher impact strength value is achieved.

  2. Preparation and properties of biodegradable starch–clay nanocomposites

    KAUST Repository

    Chung, Yi-Lin; Ansari, Seema; Estevez, Luis; Hayrapetyan, Suren; Giannelis, Emmanuel P.; Lai, Hsi-Mei

    2010-01-01

    Well-dispersed starch-clay nanocomposites were prepared by adding a dilute clay dispersion to a solution of starch followed by coprecipitation in ethanol. The clay didn't significantly influence the type of crystalline structure of starch molecules although the amount of crystallinity appears to be somewhat lower in the nanocomposites. The nanocomposites show improved modulus and strength without a decrease in elongation at break. The increase in modulus and strength is 65% and 30%, respectively for the nanocomposite containing 5 wt.% clay compared to the unfilled starch materials. Further increases in clay result in deterioration in properties most likely due to poorer clay dispersion and lower polymer crystallinity. As the amount of water increases, the modulus of both pure starch and starch nanocomposites decreases, although the change is less pronounced in the nanocomposites suggesting that the addition of clay to form nanocomposites can improve the stability of starch-based products during transportation and storage. © 2009 Elsevier Ltd. All rights reserved.

  3. Preparation and properties of biodegradable starch–clay nanocomposites

    KAUST Repository

    Chung, Yi-Lin

    2010-01-01

    Well-dispersed starch-clay nanocomposites were prepared by adding a dilute clay dispersion to a solution of starch followed by coprecipitation in ethanol. The clay didn\\'t significantly influence the type of crystalline structure of starch molecules although the amount of crystallinity appears to be somewhat lower in the nanocomposites. The nanocomposites show improved modulus and strength without a decrease in elongation at break. The increase in modulus and strength is 65% and 30%, respectively for the nanocomposite containing 5 wt.% clay compared to the unfilled starch materials. Further increases in clay result in deterioration in properties most likely due to poorer clay dispersion and lower polymer crystallinity. As the amount of water increases, the modulus of both pure starch and starch nanocomposites decreases, although the change is less pronounced in the nanocomposites suggesting that the addition of clay to form nanocomposites can improve the stability of starch-based products during transportation and storage. © 2009 Elsevier Ltd. All rights reserved.

  4. Proceedings of the NEA Clay Club Workshop on Clay characterisation from nanoscopic to microscopic resolution

    International Nuclear Information System (INIS)

    2013-01-01

    A wide spectrum of argillaceous media are being considered in Nuclear Energy Agency (NEA) member countries as potential host rocks for the final, safe disposal of radioactive waste, and/or as major constituent of repository systems in which wastes will be emplaced. In this context, the NEA established the Working Group on the 'Characterisation, the Understanding and the Performance of Argillaceous Rocks as Repository Host Formations' in 1990, informally known as the 'Clay Club'. The Clay Club examines various argillaceous rocks that are being considered for the underground disposal of radioactive waste, ranging from soft clays to indurated shales. Very generally speaking, these clay rocks are composed of fine-grained minerals showing pore sizes from < 2 nm (micropores) up to > 50 nm (macro-pores). The water flow, solute transport and mechanical properties are largely determined by this microstructure, the spatial arrangement of the minerals and the chemical pore water composition. Examples include anion accessible ('geochemical') porosity and macroscopic membrane effects (chemical osmosis, hyper-filtration), geomechanical properties and the characteristics of two-phase flow properties (relevant for gas transport). At the current level of knowledge, there is a strong need to improve the nanoscale description of the phenomena observed at a more macroscopic scale. However, based on the scale of individual clay-minerals and pore sizes, for most of the imaging techniques this resolution is a clear challenge. The workshop, hosted by the Institute for Nuclear Waste Disposal (INE), Karlsruhe Institute of Technology (KIT) in the Akademiehotel Karlsruhe (Germany) from 6 to 8 September 2011, was intended to give, inter alia, a discussion platform on: - The current state-of-the-art of different spectro-microscopic methods - New developments addressing the above mentioned knowledge gaps in clays. - The perception of the interplay between geometry

  5. Feasibility and Performance of Full-Scale In-situ Remediation of TCE by ERD in Clay Tills

    DEFF Research Database (Denmark)

    Broholm, Mette Martina; Damgaard, Ida; Chambon, Julie Claire Claudia

    The feasibility and performance of full-scale applications of ERD in clay tills were investigated in a research project including 2 sites in Denmark, which have been undergoing remediation since 2006. At both sites organic substrates and bioaugmentation cultures have been injected in TCE-contamin......The feasibility and performance of full-scale applications of ERD in clay tills were investigated in a research project including 2 sites in Denmark, which have been undergoing remediation since 2006. At both sites organic substrates and bioaugmentation cultures have been injected in TCE......-contaminated clay till. An integrated investigative approach consisting of water and clay core sample analysis, including stable isotopes and specific degraders, as well as analysis for chlorinated solvents, degradation products, donor fermentation products and redox-sensitive parameters combined with modelling has...

  6. Dielectric properties of clay-rock and their influence on water content measurement with TDR probes

    International Nuclear Information System (INIS)

    Bore, T.; Coelho, D.; Robinet, J.C.; Delepine-Lesoille, S.; Placko, D.; Gatabin, C.; Sabouroux, P.; Six, G.; Taillade, F.

    2012-01-01

    Document available in extended abstract form only. Clays constitute major components for radioactive waste repositories managed by Andra. Water content monitoring is one of the indicators chosen to evaluate the health of the structure. In this perspective, several TDR probes have been installed in various structures, made of three types of clay materials: the bentonite, the clay-rock (Callovo-Oxfordian mud-stone) and the compacted crushed clay-rock. . The technique consists of a time-of-flight measurement of an electric pulse along the TDR probes. To convert flight time propagation delay into water content, calibrations are required. This conversion is however neither accurate, nor generalizable for other mixtures. For precise understanding and modeling of the sensing chain, a better knowledge the complex permittivity of clay materials is necessary. Chosen TDR sensing lines make use of a step electric pulse (such as Campbell TDR100). Considering the rise time of this system, the frequency content of the measured TDR wave form extends from about 20 kHz to roughly 1.5 GHz. Material dielectric must thus be characterized over a broad band frequency. The determination of the electromagnetic properties using non resonant method is fundamentally deduced from their impedance and the wave velocities in the materials. This kind of technique relies on a device able to direct the electromagnetic energy towards a material and to collect the reflected and transmitted parts. In a first step, we designed a transmission line to provide electromagnetic characterizations of clay material. The clay material under test is inserted into a brass coaxial cell specifically designed for our purposes. Two conical transition units surround the specimen holder. The electromagnetic properties of the sample are based on the reflection from the material and the transmission through the material measured by a vector network analyser (VNA). The determination of the electromagnetic properties from

  7. Clay with Desiccation Cracks is an Advection Dominated Environment

    Science.gov (United States)

    Baram, S.; Kurtzman, D.; Sher, Y.; Ronen, Z.; Dahan, O.

    2012-04-01

    Heavy clay sediments are regarded "safe" from the hydrological point of view due to their low hydraulic conductivities. However, the formation of desiccation cracks in dispersive clays may dramatically change their bulk hydraulic properties. The impact of desiccation cracks on water percolation, dissolved salts and contaminants transport and redox related reactions (microbial ammonium oxidation and denitrification) were investigated in 6 -12 m clay layer near a diary farm waste lagoon. The study implemented unique vadose-zone monitoring systems that enable in-situ measurements of the temporal variation of the sediment's water content along with frequent sampling of the sediment's pore water along the entire vadose zone (> 30 m). Results from four years of continuous measurements showed quick rises in sediment water content following rain events and temporal wastewater overflows. The percolation pattern indicated dominance of preferential flow through a desiccation-cracks network crossing the entire clay sediment layer. High water-propagation velocities (0.4 - 23.6 m h-1) were observed, indicating that the desiccation-crack network remains open and serves as a preferential flow pathway year-round, even at high sediment water content (~0.50 m3 m-3). The rapid percolation bypassed the most bio-geo-active parts of the soil, transporting even highly sorptive contaminants (testosterone and estrogen) in to the deep sections of the vadose zone, accelerating the underlying groundwater contamination. The ammonium and nitrate concentrations in the vadose zone and the high number of nitrifying and denitrifying bacteria (~108 gene copies gdry-sediemt-1, each) found in the sediment indicated that the entire vadose zone is aerated even at high water content conditions (~0.55 m3 m-3). The dissolved salts concentration in the pore-water and the δ2H-H2O and δ18O-H2O values of the pore-water substantially increased with depth (becoming less depleted) in the clay sediment

  8. Kinetics of thermal decomposition of γ-irradiated and unirradiated complexes of mandelhydroxamic acid

    International Nuclear Information System (INIS)

    Hassan, R.M.; Farid, T.; El-Bellihi, A.A.

    1992-01-01

    The thermal decomposition of γ-irradiated and unirradiated complexes of mandelhydroxamic acid (HMA), Co (HMA) 2 .1/2H 2 O, Mn (HMA) 2 .2H 2 O, Ba (HMA) 2 .2H 2 O and Cd (HMA) 2 .2H 2 O have been studied thermogravimetrically (under isothermal conditions). The thermal dehydration of each complex occured in one step, while the decomposition of dehydrated complexes occured in two steps. The kinetic parameters for dehydration were computed by different models. The thermal dehydration is regulated by random nucleation A 3 for Co-, Mn-, and Cd-complexes and by phase-boundary (R 3 ) for Ba-complex. The effect of γ-irradiation on the kinetic parameters of thermal decomposition is discussed. Radiation did not modify the mechanism of the reaction but accelarated the dehydration steps in the case of Mn- and Co-complexes. (author) 7 refs.; 1 fig.; 4 tabs

  9. The Strength Behaviour of Lime Stabilized Organic Clay Soil Modified by Catalyst Additeives

    Directory of Open Access Journals (Sweden)

    Khitam Abdulhussein Saeed

    2016-12-01

    Full Text Available The organic clay soil can be found in many large size reclaimed lands. These soils present enormously high settlement potential and low strength that needs to be improved by means of effective ground improvement techniques. One of the low cost techniques is to modify the soil with lime in-situ to make it suitable for construction and allow it to increase in strength by pozzolanic reactions between lime and clay minerals. Lime is known to be an effective stabilization material for clayey soil. Nevertheless, its effectiveness may be less with organic clay due to low effective strength properties. Thus, this study concerns the addition of catalyst i.e. zeolite which may improve the performance of lime stabilization to accelerate lime-organic clay reactions. The unconfined compressive test (UCT is conducted on remoulded samples (38mm x 80mm for 0, 7, 14 , 28, and 90 days of curing period. The addition of synthetic zeolite in lime-organic stabilized soil has increased the soil strength by 185% at 90 days curing period at the design mix of organic clay + 10% lime +10% zeolite. The higher value of UCS indicates that zeolite is an effective catalyst to enhance lime stabilization.

  10. Mineralogical and chemical study of Spanish common clays with regard to their use in pelotherapy; Estudio mineralogico y quomico de arcillas comunes espanolas para su empleo en peloterapia

    Energy Technology Data Exchange (ETDEWEB)

    Pozo Martin, E.; Martin Rubi, J. A.; Pozo Rodriguez, M.

    2011-07-01

    The mineralogical (whole sample and clay fraction) and chemical compositions of 5 representative samples of Spanish common clays have been studied to evaluate their use in pelotherapy. The mineralogy of the samples revealed clays with phyllosilicate contents of between 53% and 74% and minor quantities of quartz, calcite, dolomite, feldspars, gypsum, pyrite and hematite. Smectite was the predominant clay mineral, with the exception of one sample containing only illite. The results of analyses of the major chemical elements were consistent with the mineralogical composition. The samples contained low quantities (<130 ppm, with the exception of Ba) of potentially harmful elements; the CAR sample contained the highest quantities of Ba, V, Cr, Co, As, Sb, and Ni. Nevertheless, the concentrations of trace elements in the samples analysed showed lower levels of phytotoxicity than those permitted and were also lower than those found in peloids currently used in Spanish spas. (Author)

  11. Methylene blue adsorption in clay mineral dealt with organic cation; Sorcao de azul de metileno em argila esmectitica tratada com cation organico

    Energy Technology Data Exchange (ETDEWEB)

    Silva, T.L. [Universidade Federal do Para (UFPA), Maraba, PA (Brazil). Faculdade de Engenharia de Materiais; Lemos, V.P., E-mail: tls1981@hotmail.com [Universidade Federal do Para (UFPA), Belem, PA (Brazil). Centro de Geociencias

    2011-07-01

    The interaction among organic cations, as the methylene blue (AM) and benzyltrimethylammonium (BTMA), and clay minerals of the group of the smectite they result in the formation of applied materials in the adsorption of organic pollutant presents in waters, soils and you cultivate. In this work they were prepared the adsorbents (organic-clays) smectite - AM and smectite-BTMA. The precursory sample of smectite was collected in Rio Branco-Acre. We were also used an smectite sample collected in Sena Madureira (SM)-Acre already characterized in previous work and a sample of standard smectite Swy-2-Na-Montmorillonite (SWy-2) of Wymong - USA. The organic agents selected for this study they were: Blue of Methylene, denominated AM and Benzyltrimethylammonium, denominated BTMA. They were appraised the capacities adsorptive of the treated samples with BTMA being used AM as adsorbate. The results of these evaluations detected that ran total adsorption of AM (concentrations varying from 1 to 10 ppm) for the treated samples with BTMA. The organic cation, BTMA, interacting with the surfaces of the natural clay was more efficient in the adsorption of AM than the clay without the previous treatment with this salt. (author)

  12. Comparing uranyl sorption complexes on soil and reference clays

    International Nuclear Information System (INIS)

    Chisholm-Brause, C.J.; Berg, J.M.; Conradson, S.D.; Morris, D.E.; McKinley, J.P.; Zachara, J.M.

    1993-01-01

    Clay minerals and other components in natural soils may play a key role in limiting the mobility of uranium in the environment through the formation of sorption complexes. Reference clays are frequently used as models to study sorption processes because they have well-known chemical and physical properties, but they may differ chemically and morphologically from clays derived from natural soils. Therefore, inferences based on reference clay data have been questioned. The authors have used luminescence and x-ray absorption spectroscopies to characterize the sorption complexes of aqueous uranyl (UO 2 2+ ) species on two soil smectites from the Kenoma and Ringold formations, and compared these results to those obtained on reference smectite clays. The pH dependence of uptake suggests that the ratio of sorption on amphoteric edge sites is greater for the soil smectites than for reference clays such as Wyoming montmorillonite (SWy-1). The luminescence spectra for uranyl sorbed to the soil clays are very similar to those for uranyl sorbed principally to the edge sites of SWy-1. This observation supports the solution data suggesting that adsorption to amphoteric sites is a more important mechanism for soil clays. However, the spectral data indicate that the sorption complexes on natural and reference clays are quite similar. Furthermore, as with the reference clays, the authors have found that the chemistry of the solution plays a greater role in defining the sorption complex than does the clay matrix. Thus, if differences in surface properties are adequately taken into account, the reference clays may serve as useful analogs for soil clays in investigations of metal-ion sorption

  13. Geotechnical variability of permafrozen glaciomarine clays in Sdr. Strømfjord in Greenland

    DEFF Research Database (Denmark)

    Foged, Niels Nielsen; Ingeman-Nielsen, Thomas; Belmonte, Louise Josefine

    2014-01-01

    -going in the area at Strømfjordshavn. The C14 datings of marine shells collected on the marine clay terraces at level 300kPa. Clay minerals were weathered causing moderate to high activity and plasticity despite the formation age of only 7000 years. (b) The "River Bank Erosion Cut" 2 km east of the Airport Terminal...... level with Upper Marine Limit (UML) varying from +120 to +140m at the West Coast to +40 at Kangerlussuaq. This retreat is well documented through C14-dating in the local area near to Kangerlussuaq Airport related to Fjord Stages F2 (+60m/8300 y BC) and F3 (+40m/8100 y BC) and Mt. Keglen stage (+40m/7200....... We studied a frozen marine clay deposit at +35 m with stratified ice layers under sandy gravel top layer. During laboratory analysis using fall cone testing a thawed clay sample was found to be quick (St>700) due to dilution of pore water salts. Multidisciplinary approach was necessary for this study....

  14. Effects of Organic Matter and Clay Content in Soil on Pesticide Adsorption Processes

    Directory of Open Access Journals (Sweden)

    Rada Đurović

    2009-01-01

    Full Text Available The effect of organic matter and clay content on the adsorption of atrazine, acetochlor, clomazone, pendimethalin and oxyfluorfen in soil samples was studied. In order to determine whether and to what degree different soil properties affect the process of determinationof selected pesticides, three soils with different clay and organic matter contents were used. An optimized liquid-solid extraction procedure followed by SPME measurement was applied to analyse the selected pesticides in soil samples. Detection and quantificationwere done by gas chromatography-mass spectrometry (GC/MS. Relative standard deviation (RSD values for multiple analyses of soil samples fortified at 30 μg/kg of each pesticide were below 19%. Limits of detection (LODs for all compounds studied were less than 2 μg/kg. The results indicate that soils with different physico-chemical properties have different effects on the adsorption of most pesticides, especially at higher concentration levels.

  15. Flow sheet development for the dissolution of unirradiated Mark 42 fuel tubes in F-Canyon, Part II

    International Nuclear Information System (INIS)

    Murray, A.M.

    1999-01-01

    Two dissolution flow sheets were tested for the desorption of unirradiated Mark 42 fuel tubes. Both the aluminum (from the can, cladding, and fuel core) and the plutonium oxide (PuO 2 ) are dissolved simultaneously, i.e., a co-dissolution flow sheet. In the first series of tests, 0.15 and 0.20 molar (M) potassium fluoride (KF) solutions were used and the dissolution extended over several days. In the other series of tests, solutions with higher concentrations of fluoride (0.25 to 0.30 M) were used. Calcium fluoride (CaF 2 ) was used in those tests as the fluoride source

  16. Ice nucleation efficiency of clay minerals in the immersion mode

    Directory of Open Access Journals (Sweden)

    V. Pinti

    2012-07-01

    Full Text Available Emulsion and bulk freezing experiments were performed to investigate immersion ice nucleation on clay minerals in pure water, using various kaolinites, montmorillonites, illites as well as natural dust from the Hoggar Mountains in the Saharan region. Differential scanning calorimeter measurements were performed on three different kaolinites (KGa-1b, KGa-2 and K-SA, two illites (Illite NX and Illite SE and four natural and acid-treated montmorillonites (SWy-2, STx-1b, KSF and K-10. The emulsion experiments provide information on the average freezing behaviour characterized by the average nucleation sites. These experiments revealed one to sometimes two distinct heterogeneous freezing peaks, which suggest the presence of a low number of qualitatively distinct average nucleation site classes. We refer to the peak at the lowest temperature as "standard peak" and to the one occurring in only some clay mineral types at higher temperatures as "special peak". Conversely, freezing in bulk samples is not initiated by the average nucleation sites, but by a very low number of "best sites". The kaolinites and montmorillonites showed quite narrow standard peaks with onset temperatures 238 K<Tonstd<242 K and best sites with averaged median freezing temperature Tmedbest=257 K, but only some featuring a special peak (i.e. KSF, K-10, K-SA and SWy-2 with freezing onsets in the range 240–248 K. The illites showed broad standard peaks with freezing onsets at 244 K Tonstd<246 K and best sites with averaged median freezing temperature Tmedbest=262 K. The large difference between freezing temperatures of standard and best sites shows that characterizing ice nucleation efficiencies of dust particles on the basis of freezing onset temperatures from bulk experiments, as has been done in some atmospheric studies, is not appropriate. Our investigations

  17. Clay Cuffman: A Cool, Calm, Relaxed Guy

    Science.gov (United States)

    Booth, Gina

    2010-01-01

    This article describes Clay Cuffman, a simple clay-sculpture project that requires two or three sessions, and works for students from the upper-elementary level through high school. It takes about 1.5 pounds of clay per student--about the size of a small grapefruit. The Cuffman project is a great way for upper-elementary through high-school…

  18. Hygrothermal behavior for a clay brick wall

    Science.gov (United States)

    Allam, R.; Issaadi, N.; Belarbi, R.; El-Meligy, M.; Altahrany, A.

    2018-06-01

    In Egypt, the clay brick is the common building materials which are used. By studying clay brick walls behavior for the heat and moisture transfer, the efficient use of the clay brick can be reached. So, this research studies the hygrothermal transfer in this material by measuring the hygrothermal properties and performing experimental tests for a constructed clay brick wall. We present the model for the hygrothermal transfer in the clay brick which takes the temperature and the vapor pressure as driving potentials. In addition, this research compares the presented model with previous models. By constructing the clay brick wall between two climates chambers with different boundary conditions, we can validate the numerical model and analyze the hygrothermal transfer in the wall. The temperature and relative humidity profiles within the material are measured experimentally and determined numerically. The numerical and experimental results have a good convergence with 3.5% difference. The surface boundary conditions, the ground effect, the infiltration from the closed chambers and the material heterogeneity affects the results. Thermal transfer of the clay brick walls reaches the steady state very rapidly than the moisture transfer. That means the effect of using only the external brick wall in the building in hot climate without increase the thermal resistance for the wall, will add more energy losses in the clay brick walls buildings. Also, the behavior of the wall at the heat and mass transfer calls the three-dimensional analysis for the whole building to reach the real behavior.

  19. Hygrothermal behavior for a clay brick wall

    Science.gov (United States)

    Allam, R.; Issaadi, N.; Belarbi, R.; El-Meligy, M.; Altahrany, A.

    2018-01-01

    In Egypt, the clay brick is the common building materials which are used. By studying clay brick walls behavior for the heat and moisture transfer, the efficient use of the clay brick can be reached. So, this research studies the hygrothermal transfer in this material by measuring the hygrothermal properties and performing experimental tests for a constructed clay brick wall. We present the model for the hygrothermal transfer in the clay brick which takes the temperature and the vapor pressure as driving potentials. In addition, this research compares the presented model with previous models. By constructing the clay brick wall between two climates chambers with different boundary conditions, we can validate the numerical model and analyze the hygrothermal transfer in the wall. The temperature and relative humidity profiles within the material are measured experimentally and determined numerically. The numerical and experimental results have a good convergence with 3.5% difference. The surface boundary conditions, the ground effect, the infiltration from the closed chambers and the material heterogeneity affects the results. Thermal transfer of the clay brick walls reaches the steady state very rapidly than the moisture transfer. That means the effect of using only the external brick wall in the building in hot climate without increase the thermal resistance for the wall, will add more energy losses in the clay brick walls buildings. Also, the behavior of the wall at the heat and mass transfer calls the three-dimensional analysis for the whole building to reach the real behavior.

  20. Study of the feasibility of the utilization of clays from Poco Fundo (MG) for its use in bricks fabrication

    International Nuclear Information System (INIS)

    Gaspar Junior, L.A.; Souza, M.H.O.; Moreno, M.M.T.

    2012-01-01

    This work aimed to make an analysis of mineralogical (Macroscopic Description and X-Ray Diffraction), chemical (X-Ray Fluorescence and Organic Carbon Analysis) and ceramic (Particle Size Distribution, Mechanical Resistance, Water Absorption, Apparent Porosity, among others) properties of the alluvial clays collected in Poco Fundo county - Minas Gerais State, Brazil - in order to confirm the feasibility of these clays for bricks manufacturing. There were collected 4 samples from the main potteries of the county, and they were nominated PF-01, PF-02, PF-03 and MAC-01. The clays from these region display high content of quartz, kaolinite and present refractory behavior, and the alkalis content (Na 2 O and K 2 O) is low, because the studied area suffered an intense weathering process. The sample PF-03 presented the most promising ceramic results, mainly due to the lower content in silica and higher amounts of organic matter, denoting a clay coming from a swampy area. (author)

  1. Alpha particles emitted from the surface of granite, clay, and its fired products, 1

    International Nuclear Information System (INIS)

    Aratani, Michi; Otsuka, Hideko

    1975-01-01

    As a part of an investigation on ''the effect of long-time irradiation from a trace amount of radioisotopes'', the emitting rate of alpha particles per unit surface area (apparent) coming from natural alpha-particle emitters has been measured. The samples measured were granite and its weathered product; clay, especially potter's clay, and its fired product; pottery ware. The values obtained were 39.1 +-0.9--0.73+-0.08 cpm/100 cm 2 in granite, 16.8+-0.4--6.4+-0.2 cpm/100cm 2 in potter's clay, and 1.36+-0.04--0.82+-0.04 cpm/100cm 2 in pottery ware on substrate, and 1.33+-0.05--0.32+-0.02 cpm/100cm 2 on glazer. (auth.)

  2. Pulse heating tests on two reference Belgian clay formations. Laboratory experiments and numerical study

    International Nuclear Information System (INIS)

    Lima, A.; Romero, E.; Vaunat, J.; Gens, A.; Li, X.L.

    2012-01-01

    Document available in extended abstract form only. Two deep clay formations are being investigated in Belgium in connection with the design of a repository for 'High-Level Radioactive Waste': Boom clay at Mol (located between 160 and 270 m depths), considered the reference host formation, and Ypresian clay at Kallo (located between 300 and 450 m depths) as an alternative one. Thermal impact may play an important role on the behaviour of these low-permeability clayey formations. In this context, heating pulse tests on intact borehole samples retrieved in vertical and horizontal directions were carried out on both clays using an axisymmetric heating cell. Heating tests under nearly constant volume conditions and different target temperatures (maximum 85 C) were performed under controlled hydraulic boundary conditions. Attention is focused on the time evolution of temperature and pore water pressure changes during heating and cooling paths -i.e., pore pressure build-up during quasi-undrained heating and later dissipation to the applied hydraulic boundary conditions-. The finite element program CODE-BRIGHT was used to determine thermal parameters by back-analysis and to simulate the experimental results. Table 1 summarises the main properties of these clays. The experimental programme was carried out on a fully-instrumented cell (sample 75 mm diameter and 100 mm high) with a controlled-power heater housed inside the cell. Two miniature pore water pressure transducers located at different heights of the lateral wall of the cell and three thermocouples were used to monitor the sample response. The cell has top and bottom valves to control hydraulic conditions. The protocol of the tests included three main phases: hydration, heating and cooling. Throughout the heating and cooling phases, the bottom drainage was maintained open at a constant water pressure using an automatic pressure/volume controller, while the upper valve was kept closed. Figures 1a and 1c show the time

  3. In-situ nanoscale imaging of clay minerals with atomic force microscopy

    International Nuclear Information System (INIS)

    Bosbach, D.

    2010-01-01

    reactivity may be misleading, especially when discussing kinetic aspects of heterogeneous reactions. 4. The adsorption of organic matter/ molecules such as humic substances has been successfully imaged using a combination of AFM imaging modes (phase imaging), which allows to simultaneously measure locally the viscoelasticity of the sample surface. Since the viscoelasticity of clay minerals and humic substances is significantly different, the attachment of organic material to clay mineral surfaces can be studied down to molecular scales. 5. The swelling of clay minerals is also a property which may play a key role for the long-term safety of a nuclear waste repository system. Here, the swelling of clay mica due to Na + exchange for K + could be imaged time-resolved on (001) basal surfaces. Consequently, kinetic studies of ion exchange can be performed by AFM studies in-situ. AFM has been demonstrated in the last 15 years to be an ideal tool to study the nano-topography of mineral surfaces and in particular of clay minerals in-situ in aqueous solution (or any other fluid) time-resolved down to molecular scales. (authors)

  4. Comparison of ring compression testing to three point bend testing for unirradiated ZIRLO cladding

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-04-01

    Safe shipment and storage of nuclear reactor discharged fuel requires an understanding of how the fuel may perform under the various conditions that can be encountered. One specific focus of concern is performance during a shipment drop accident. Tests at Savannah River National Laboratory (SRNL) are being performed to characterize the properties of fuel clad relative to a mechanical accident condition such as a container drop. Unirradiated ZIRLO tubing samples have been charged with a range of hydride levels to simulate actual fuel rod levels. Samples of the hydrogen charged tubes were exposed to a radial hydride growth treatment (RHGT) consisting of heating to 400°C, applying initial hoop stresses of 90 to 170 MPa with controlled cooling and producing hydride precipitates. Initial samples have been tested using both a) ring compression test (RCT) which is shown to be sensitive to radial hydride and b) three-point bend tests which are less sensitive to radial hydride effects. Hydrides are generated in Zirconium based fuel cladding as a result of coolant (water) oxidation of the clad, hydrogen release, and a portion of the released (nascent) hydrogen absorbed into the clad and eventually exceeding the hydrogen solubility limit. The orientation of the hydrides relative to the subsequent normal and accident strains has a significant impact on the failure susceptability. In this study the impacts of stress, temperature and hydrogen levels are evaluated in reference to the propensity for hydride reorientation from the circumferential to the radial orientation. In addition the effects of radial hydrides on the Quasi Ductile Brittle Transition Temperature (DBTT) were measured. The results suggest that a) the severity of the radial hydride impact is related to the hydrogen level-peak temperature combination (for example at a peak drying temperature of 400°C; 800 PPM hydrogen has less of an impact/ less radial hydride fraction than 200 PPM hydrogen for the same thermal

  5. Study of the application of non-plastic clays from Pocos de Caldas - part 1: chemical-mineralogic characterization

    International Nuclear Information System (INIS)

    Roveri, C.D.; Mariano, N.A.; Faustino, L.M.; Aielo, G.F.; Pinto, L.P.A.; Maestrelli, S.C.

    2011-01-01

    Pocos de Caldas is an important 'hidrotermomineral' center of Brazil, where can be found non-plastic clays deposits with no significant records about its characterization; this fact difficult the studies of industrial application. These nonplastic clays, not used, have been stored in sheds or open, which creates a high cost to the industry, and become an environmental liability. In the present work, the chemical-mineralogical study of six samples of non-plastic clays was realized, to expand the horizons of researches about such materials. This preliminary study showed that, overall, the samples are composed of refractory minerals such as kaolinite and gibbsite, with less significant amounts of other phases such as quartz, illite and vermiculite. The chemical analysis permitted the grouping of raw materials into two groups according to their refractories proprieties, guiding to the subsequent characterization. (author)

  6. Geosynthetic clay liners shrinkage under simulated daily thermal cycles.

    Science.gov (United States)

    Sarabadani, Hamid; Rayhani, Mohammad T

    2014-06-01

    Geosynthetic clay liners are used as part of composite liner systems in municipal solid waste landfills and other applications to restrict the escape of contaminants into the surrounding environment. This is attainable provided that the geosynthetic clay liner panels continuously cover the subsoil. Previous case histories, however, have shown that some geosynthetic clay liner panels are prone to significant shrinkage and separation when an overlying geomembrane is exposed to solar radiation. Experimental models were initiated to evaluate the potential shrinkage of different geosynthetic clay liner products placed over sand and clay subsoils, subjected to simulated daily thermal cycles (60°C for 8 hours and 22°C for 16 hours) modelling field conditions in which the liner is exposed to solar radiation. The variation of geosynthetic clay liner shrinkage was evaluated at specified times by a photogrammetry technique. The manufacturing techniques, the initial moisture content, and the aspect ratio (ratio of length to width) of the geosynthetic clay liner were found to considerably affect the shrinkage of geosynthetic clay liners. The particle size distribution of the subsoil and the associated suction at the geosynthetic clay liner-subsoil interface was also found to have significant effects on the shrinkage of the geosynthetic clay liner. © The Author(s) 2014.

  7. Diffusion, sorption and stability of radionuclide-organic complexes in clays and clay-organic complexes

    International Nuclear Information System (INIS)

    Staunton, S.; Rees, L.V.C.

    1991-01-01

    The dependence on various parameters of the diffusion coefficient of neptunium (V) in clay systems has been studied. The effect of the clay mineralogy, the charge compensating cation in the clay, the ionic strength of a background perchlorate solution and the presence of three organic ligands have been investigated. The diffusion coefficients were compared to those predicted if diffusion occurred only in the liquid phase and adsorption was reversible; agreement was fairly good. An approximation to the diffusion coefficient can thus be obtained from readily measured experimental parameters. There is no evidence of surface phase diffusion. The most significant factor in determining the diffusion coefficient is the magnitude of the distribution ratio, itself highly dependent on the nature of the clay. Neither EDTA nor citrate modified the diffusion coefficient. Although the presence of 1 or 100 mg dm -3 of Aldrich humic acid had little effect on the distribution ratio of neptunium, it caused a lowering of the measured diffusion coefficient. This is interpreted in terms of the limiting liquid phase diffusion coefficient and the true liquid phase impedance factor of neptunium-humic acid complexes. 21 figs; 3 tabs; 20 refs

  8. Recent advances in clay mineral-containing nanocomposite hydrogels.

    Science.gov (United States)

    Zhao, Li Zhi; Zhou, Chun Hui; Wang, Jing; Tong, Dong Shen; Yu, Wei Hua; Wang, Hao

    2015-12-28

    Clay mineral-containing nanocomposite hydrogels have been proven to have exceptional composition, properties, and applications, and consequently have attracted a significant amount of research effort over the past few years. The objective of this paper is to summarize and evaluate scientific advances in clay mineral-containing nanocomposite hydrogels in terms of their specific preparation, formation mechanisms, properties, and applications, and to identify the prevailing challenges and future directions in the field. The state-of-the-art of existing technologies and insights into the exfoliation of layered clay minerals, in particular montmorillonite and LAPONITE®, are discussed first. The formation and structural characteristics of polymer/clay nanocomposite hydrogels made from in situ free radical polymerization, supramolecular assembly, and freezing-thawing cycles are then examined. Studies indicate that additional hydrogen bonding, electrostatic interactions, coordination bonds, hydrophobic interaction, and even covalent bonds could occur between the clay mineral nanoplatelets and polymer chains, thereby leading to the formation of unique three-dimensional networks. Accordingly, the hydrogels exhibit exceptional optical and mechanical properties, swelling-deswelling behavior, and stimuli-responsiveness, reflecting the remarkable effects of clay minerals. With the pivotal roles of clay minerals in clay mineral-containing nanocomposite hydrogels, the nanocomposite hydrogels possess great potential as superabsorbents, drug vehicles, tissue scaffolds, wound dressing, and biosensors. Future studies should lay emphasis on the formation mechanisms with in-depth insights into interfacial interactions, the tactical functionalization of clay minerals and polymers for desired properties, and expanding of their applications.

  9. Geotechnical properties of Karwar marine clay

    Digital Repository Service at National Institute of Oceanography (India)

    Bhat, S.T.; Nayak, B.U.; Naik, R.L.

    Karwar marine clay possesses high plasticity characteristics with natural water content higher than the liquid limit. Liquidity index was as high as 1.7. Predominant clay mineral was kaolinite. Undrained shear strength showed an increasing trend...

  10. The Dependence of the Physical Mechanical Properties of Expanded-Clay Lightweight Concrete on the Composition

    Directory of Open Access Journals (Sweden)

    Marija Vaičienė

    2011-04-01

    Full Text Available Binder material is the most expensive raw component of concrete; thus, scientists are looking for cheaper substitute materials. This paper shows that when manufacturing, a part of the binder material of expanded-clay lightweight concrete can be replaced with active filler. The conducted studies show that technogenic – catalyst waste could act as similar filler. The study also includes the dependence of the physical and mechanical properties of expanded-clay lightweight concrete on the concrete mixture and the chemical composition of the samples obtained. Different formation and composition mixtures of expanded-clay lightweight concrete were chosen to determine the properties of physical-mechanical properties such as density, water absorption and compressive strength.Article in Lithuanian

  11. Enrichment and activation of smectite-poor clay

    Energy Technology Data Exchange (ETDEWEB)

    Sarcevica, Inese; Kostjukovs, Juris; Actint, Andris, E-mail: inese.sarcevicha@gmail.com [Department of Chemistry, University of Latvia, Kr. Valdemara street 48, Riga (Latvia)

    2011-06-23

    A new method of smectite clay enrichment has been developed. The method is based on dispersing clay in a phosphate solution and sequential coagulation. The product of enrichment is characterized with X-ray powder diffraction, wavelength dispersive X-ray fluorescence spectrometry, differential thermal analysis and thermogravimetry. Sorption of methylene blue and hexadecylpyridinium bromide on raw and purified clays was studied.

  12. Pure and impure clays and their firing products

    International Nuclear Information System (INIS)

    Murad, E.; Wagner, U.

    1989-01-01

    Moessbauer spectroscopy is highly suited for the study of clays whose industrial uses depend on the iron content. Reactions that take place during clay firing can be readily monitored by Moessbauer spectroscopy. Following dehydroxylation of clay minerals, the quadrupole splitting of octahedrally coordinated iron (III) increases abruptly, but reverts to lower values upon the formation of new, better ordered phases at higher temperatures. It is also shown that iron oxides may account for a considerably higher proportion of the total iron content of many clays than is commonly recognized, and their existence must be taken into consideration for a correct interpretation of the Moessbauer spectra of clays. (orig.)

  13. Iridium, sulfur isotopes and rare earth elements in the Cretaceous-Tertiary boundary clay at Stevns Klint, Denmark

    Science.gov (United States)

    Schmitz, Birger; Andersson, Per; Dahl, Jeremy

    1988-01-01

    Microbial activity and redox-controlled precipitation have been of major importance in the process of metal accumulation in the strongly Ir-enriched Cretaceous-Tertiary (K-T) boundary clay, the Fish Clay, at Stevns Klint in Denmark. Two important findings support this view: 1) Kerogen, recovered by leaching the Fish Clay in HCl and HF, shows an Ir concentration of 1100 ppb; this represents about 50% of the Ir present in the bulk sample Fish Clay. Strong organometallic complexes is the most probable carrier phase for this fraction of Ir. Kerogen separated from the K-T boundary clay at Caravaca, Spain, similarly exhibits enhanced Ir concentrations. 2) Sulfur isotope analyses of metal-rich pyrite spherules, which occur in extreme abundance (about 10% by weight) in the basal Fish Clay, give a δ 34S value of -32%.. This very low value shows that sulfide formation by anaerobic bacteria was intensive in the Fish Clay during early diagenesis. Since the pyrite spherules are major carriers of elements such as Ni, Co, As, Sb and Zn, microbial activity may have played an important role for concentrating these elements. In the Fish Clay large amounts of rare earth elements have precipitated from sea water on fish scales. Analyses reveal that, compared with sea water, the Fish Clay is only about four times less enriched in sea-water derived lanthanides than in Ir. This shows that a sea-water origin is plausible for elements that are strongly enriched in the clay, but whose origin cannot be accounted for by a lithogenic precursor.

  14. Hydration Phase Diagram of Clay Particles from Molecular Simulations.

    Science.gov (United States)

    Honorio, Tulio; Brochard, Laurent; Vandamme, Matthieu

    2017-11-07

    Adsorption plays a fundamental role in the behavior of clays. Because of the confinement between solid clay layers on the nanoscale, adsorbed water is structured in layers, which can occupy a specific volume. The transition between these states is intimately related to key features of clay thermo-hydro-mechanical behavior. In this article, we consider the hydration states of clays as phases and the transition between these states as phase changes. The thermodynamic formulation supporting this idea is presented. Then, the results from grand canonical Monte Carlo simulations of sodium montmorillonite are used to derive hydration phase diagrams. The stability analysis presented here explains the coexistence of different hydration states at clay particle scale and improves our understanding of the irreversibilities of clay thermo-hydro-mechanical behavior. Our results provide insights into the mechanics of the elementary constituents of clays, which is crucial for a better understanding of the macroscopic behavior of clay-rich rocks and soils.

  15. 1.7. Acid decomposition of kaolin clays of Ziddi Deposit. 1.7.1. The hydrochloric acid decomposition of kaolin clays and siallites

    International Nuclear Information System (INIS)

    Mirsaidov, U.M.; Mirzoev, D.Kh.; Boboev, Kh.E.

    2016-01-01

    Present article of book is devoted to hydrochloric acid decomposition of kaolin clays and siallites. The chemical composition of kaolin clays and siallites was determined. The influence of temperature, process duration, acid concentration on hydrochloric acid decomposition of kaolin clays and siallites was studied. The optimal conditions of hydrochloric acid decomposition of kaolin clays and siallites were determined.

  16. Feasibility of classification of clay minerals by using PAS

    International Nuclear Information System (INIS)

    Honda, Y; Yoshida, Y; Akiyama, Y; Nishijima, S

    2015-01-01

    After the nuclear power plant disaster, the evaluation of radioactive Cs kept in soil, especially in clay minerals and the elucidation of its movement are urgent subjects to promote decontamination. It is known that the extractable level of Cs depends on the sort of clay minerals. We tried to find the characteristics of clay minerals belonging to phillosilicate group using positron annihilation spectroscopy (PAS) and the relationship between the results of PAS and the amounts of substantially extracted Cs from the clay minerals. The results showed that each clay mineral was found to be distinguishable from other clay minerals by PAS and the extraction rate of Cs was different among those clay minerals, however the direct correlation between the results of PAS and the extraction rates of Cs was not found. (paper)

  17. Clay-Alcohol-Water Dispersions: Anomalous Viscosity Changes Due to Network Formation of Clay Nanosheets Induced by Alcohol Clustering.

    Science.gov (United States)

    Kimura, Yuji; Haraguchi, Kazutoshi

    2017-05-16

    Clay-alcohol-water ternary dispersions were compared with alcohol-water binary mixtures in terms of viscosity and optical absorbance. Aqueous clay dispersions to which lower alcohols (ethanol, 1-propanol, 2-propanol, and tert-butanol) were added exhibited significant viscosity anomalies (maxima) when the alcohol content was 30-55 wt %, as well as optical absorbance anomalies (maxima). The maximum viscosity (η max ) depended strongly on the clay content and varied between 300 and 8000 mPa·s, making it remarkably high compared with the viscosity anomalies (2 mPa·s) observed in alcohol-water binary mixtures. The alcohol content at η max decreased as the hydrophobicity of the alcohol increased. The ternary dispersions with viscosity anomalies exhibited thixotropic behaviors. The effects of other hydrophilic solvents (glycols) and other kinds of clays were also clarified. Based on these findings and the average particle size changes, the viscosity anomalies in the ternary dispersions were explained by alcohol-clustering-induced network formation of the clay nanosheets. It was estimated that 0.9, 1.7, and 2.5 H 2 O molecules per alcohol molecule were required to stabilize the ethanol, 2-propanol, and tert-butanol, respectively, in the clay-alcohol-water dispersions.

  18. Chemo-hydro-mechanical behaviour of unsaturated clays

    International Nuclear Information System (INIS)

    Mokni, N.; Olivella, S.; Alonso, E.E.; Romero, E.

    2010-01-01

    Document available in extended abstract form only. Understanding of the chemical effects on clays is essential for many problems ranging from pollution studies and waste-containment. Several studies examined the effect of changes in pore fluid composition on the mechanical and hydraulic properties. Volume changes (contraction/ expansion) have been measured on clay specimens upon exposure to salt solutions or permeation with organic liquids. Moreover, it was shown that permeation of clay with brine induces an increase of the shear strength. In addition, several models have been proposed to describe the chemo-mechanical behaviour of saturated clays under saturated conditions. A new chemo-hydro-mechanical model for unsaturated clays is under development. The chemo-mechanical effects are described within an elasto-plastic framework using the concept that chemical effects act on the plastic properties by increasing or decreasing the pre-consolidation stress. The model is based on the distinction within the material of a microstructural and a macro-structural levels. Chemical loading has a significant effect on the microstructure. The negative pressure associated with the capillary water plays its role in the interconnected macro pores. By adopting simple assumptions concerning the coupling between the two levels it is intended to reproduce the features of the behaviour of unsaturated clays when there is a change in pore fluid composition (increase or decrease of concentration). A yield surface which defines the set of yield pre-consolidation stress values, for each associated capillary suction and concentration of pore fluid should be defined. In addition, the behaviour of clays under unsaturated condition and the behaviour at full saturation under chemical loading represent two limiting cases of the framework. Studies on the compatibility of Boom Clay with large amounts of nitrate- bearing bituminized radioactive waste have recently raised a particular interest on the

  19. Preparation, characterization and application in deep catalytic ODS of the mesoporous silica pillared clay incorporated with phosphotungstic acid.

    Science.gov (United States)

    Li, Baoshan; Liu, Zhenxing; Liu, Jianjun; Zhou, Zhiyuan; Gao, Xiaohui; Pang, Xinmei; Sheng, Huiting

    2011-10-15

    Mesoporous silica pillared clay (SPC) materials with different contents of H(3)PW(12)O(40) (HPW) heteropoly acid were synthesized by introducing HPW into clay interlayer template in an acidic suspension using sol-gel method. Samples with similar HPW loadings were also prepared by impregnation method using SPC as the support. The results of the characterizations showed that HPW was dispersed more homogeneously in the encapsulated samples than in the impregnated samples. The encapsulated materials exhibited better catalytic performance than the impregnated samples in oxidative desulfurization of dibenzothiophene-containing model oil. The sulfur removal reached up to 98.6% for the model oil under the experiential conditions. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Flocculation of Clay Colloids Induced by Model Polyelectrolytes: Effects of Relative Charge Density and Size.

    Science.gov (United States)

    Sakhawoth, Yasine; Michot, Laurent J; Levitz, Pierre; Malikova, Natalie

    2017-10-06

    Flocculation and its tuning are of utmost importance in the optimization of several industrial protocols in areas such as purification of waste water and civil engineering. Herein, we studied the polyelectrolyte-induced flocculation of clay colloids on a model system consisting of purified clay colloids of well-defined size fractions and ionene polyelectrolytes presenting regular and tunable chain charge density. To characterize ionene-induced clay flocculation, we turned to the combination of light absorbance (turbidity) and ζ-potential measurements, as well as adsorption isotherms. Our model system allowed us to identify the exact ratio of positive and negative charges in clay-ionene mixtures, the (c+/c-) ratio. For all samples studied, the onset of efficient flocculation occurred consistently at c+/c- ratios significantly below 1, which indicated the formation of highly ionene-deficient aggregates. At the same time, the ζ-potential measurements indicated an apparent zero charge on such aggregates. Thus, the ζ-potential values could not provide the stoichiometry inside the clay-ionene aggregates. The early onset of flocculation in clay-ionene mixtures is reminiscent of the behavior of multivalent salts and contrasts that of monovalent salts, for which a large excess amount of ions is necessary to achieve flocculation. Clear differences in the flocculation behavior are visible as a function of the ionene charge density, which governs the conformation of the ionene chains on the clay surface. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Synthetic mullite fabrication from smectite clays

    International Nuclear Information System (INIS)

    Lima, L.N. de; Kiminami, R.H.G.A.

    1988-01-01

    The technological importance of mullite is mostly due to its refractory properties. Mullite in native form is very rare, and therefore it may be necessary to produced it by synthetic means. Brazil has a large reserve of smectite clays. In this work the process to produce synthetic mullite from these clays by treatment with aluminum sulphate was studied. X-ray analyses has shown the presence of mullite crystals in treated smectite clays of several colours, sinterized at 1100 0 C. By sintering at 1300 0 C, pure mullite was obtained in some colours. (author) [pt

  2. Multifaceted role of clay minerals in pharmaceuticals

    OpenAIRE

    Khurana, Inderpreet Singh; Kaur, Satvinder; Kaur, Harpreet; Khurana, Rajneet Kaur

    2015-01-01

    The desirable physical and physiochemical properties of clay minerals have led them to play a substantial role in pharmaceutical formulations. Clay minerals like kaolin, smectite and palygorskite-sepiolite are among the world's most valuable industrial minerals and of considerable importance. The elemental features of clay minerals which caused them to be used in pharmaceutical formulations are high specific area, sorption capacity, favorable rheological properties, chemical inertness, swelli...

  3. Aluminium - Cobalt-Pillared Clay for Dye Filtration Membrane

    Science.gov (United States)

    Darmawan, A.; Widiarsih

    2018-04-01

    The manufacture of membrane support from cobalt aluminium pillared clay has been conducted. This research was conducted by mixing a clay suspension with pillared solution prepared from the mixture of Co(NO3)2.6H2O and AlCl3.6H2O. The molar ratio between Al and Co was 75:25 and the ratio of [OH-]/[metal] was 2. The clay suspension was stirred for 24 hours at room temperature, filtered and dried. The dried clay was then calcined at 200°C, 300°C and 400°C with a ramp rate of 2°C/min. Aluminium-cobalt-pillared clay was then characterized by XRD and GSA and moulded become a membrane support for subsequent tests on dye filtration. The XRD analysis showed that basal spacing (d 001) value of aluminium cobalt was 19.49 Å, which was higher than the natural clay of 15.08Å however, the basal spacing decreased with increasing calcination temperature. The result of the GSA analysis showed that the pore diameter of the aluminium cobalt pillared clay membrane was almost the same as that of natural clay that were 34.5Å and 34.2Å, respectively. Nevertheless, the pillared clay has a more uniform pore size distribution. The results of methylene blue filtration measurements demonstrated that the membrane filter support could well which shown by a clear filtrate at all concentrations tested. The value of rejection and flux decreased with the increasing concentration of methylene blue. The values of dye rejection and water flux reached 99.89% and 5. 80 x 10-6 kg min-1, respectively but they decreased with increasing concentration of methylene blue. The results of this study indicates that the aluminium-pillared clay cobalt could be used as membrane materials especially for ultrafiltration.

  4. clay nanocomposite by solution intercalation technique

    Indian Academy of Sciences (India)

    Polymer–clay nanocomposites of commercial polystyrene (PS) and clay laponite were prepared via solution intercalation technique. Laponite was modified suitably with the well known cationic surfactant cetyltrimethyl ammonium bromide by ion-exchange reaction to render laponite miscible with hydrophobic PS.

  5. Impact-Induced Clay Mineral Formation and Distribution on Mars

    Science.gov (United States)

    Rivera-Valentin, E. G.; Craig, P. I.

    2015-01-01

    Clay minerals have been identified in the central peaks and ejecta blankets of impact craters on Mars. Several studies have suggested these clay minerals formed as a result of impact induced hydrothermalism either during Mars' Noachian era or more recently by the melting of subsurface ice. Examples of post-impact clay formation is found in several locations on Earth such as the Mjolnir and Woodleigh Impact Structures. Additionally, a recent study has suggested the clay minerals observed on Ceres are the result of impact-induced hydrothermal processes. Such processes may have occurred on Mars, possibly during the Noachian. Distinguishing between clay minerals formed preor post-impact can be accomplished by studying their IR spectra. In fact, showed that the IR spectra of clay minerals is greatly affected at longer wavelengths (i.e. mid-IR, 5-25 micron) by impact-induced shock deformation while the near-IR spectra (1.0-2.5 micron) remains relatively unchanged. This explains the discrepancy between NIR and MIR observations of clay minerals in martian impact craters noted. Thus, it allows us to determine whether a clay mineral formed from impact-induced hydrothermalism or were pre-existing and were altered by the impact. Here we study the role of impacts on the formation and distribution of clay minerals on Mars via a fully 3-D Monte Carlo cratering model, including impact- melt production using results from modern hydrocode simulations. We identify regions that are conducive to clay formation and the location of clay minerals post-bombardment.

  6. Polyethersulfone/clay membranes and its water permeability

    International Nuclear Information System (INIS)

    Cavalho, Thamyres Cardoso de; Medeiros, Vanessa da Nobrega; Araujo, Edcleide Maria de; Lira, Helio Lucena; Leite, Amanda Melissa Damiao

    2017-01-01

    Membranes can be considered polymeric or inorganic films that function as a semipermeable barrier to filtration on a molecular scale, separating two phases and restricting, totally or partially, the transportation of one or more chemical species (solute) present in the solution. Therefore, the aim of this work is to produce polyethersulfone membranes (PES) and polyethersulfone/clay by phase inversion technique and evaluate the presence of clay in obtaining membranes for wastewater treatment. The used solvent was dimethylformamide (DMF) and clays were Brasgel PA (MMT) and Cloisite Na (CL Na) in the proportion of 3 to 5% (wt.). By Xray diffraction (XRD), the membranes with 3% of MMT and CL Na clays apparently had partially exfoliated structures. For the composition with 5% of CL Na a small peak was observed, which indicates that this is possibly an intercalated structure or microcomposite. By scanning electron microscopy (SEM), visualizes that the pure surface of the pure PES membrane a structure apparently without pores was observed in the used magnification and without roughness surface when compared to membranes with clay. The measurements of contact angle indicated that the inclusion of clay altered the wetting ability of the membranes. The flow with distilled water for all membranes started high and over time reached a stabilization level. Thus, it can be concluded that the presence and the content of clay altered the morphology of the membrane, contributing to an increase in water flow. (author)

  7. Compaction and Plasticity Comparative Behaviour of Soft Clay Treated with Coarse and Fine Sizes of Ceramic Tiles

    Science.gov (United States)

    Al-Bared, Mohammed Ali Mohammed; Marto, Aminaton; Sati Hamonangan Harahap, Indra; Kasim, Fauziah

    2018-03-01

    Recycled blended ceramic tiles (RBT) is a waste material produced from ceramic tile factories and construction activities. RBT is found to be cost effective, sustainable, environmental-friendly and has the potential to be used as an additive in soft soil stabilization. Recent reports show that massive amounts of RBT are dumped into legal or illegal landfills every year consuming very large spaces and creating major environmental problems. On the other hand, dredged marine clay obtained from Nusajaya, Johor, Malaysia has weak physical and engineering characteristics to be considered as unsuitable soft soil that is usually excavated, dumped into landfills and replaced by stiff soil. Hence, this study investigates the suitability of possible uses of RBT to treat marine clay. Laboratory tests included Standard proctor tests and Atterberg limits tests. The plasticity of marine clay was evaluated by adding 10%, 20%, 30% and 40% of 0.3 mm RBT. In addition, the compaction behaviour of treated marine clay was compared by adding two different sizes (0.3 mm and 1.18 mm diameter) of RBT. For both coarse and fine sizes of RBT, 10%, 20%, 30% and 40% of the dry weight of the soft clay were added. The mixture of each combination was examined in order to evaluate the Maximum Dry Density (MDD) and the optimum moisture content (OMC) for the treated soft clay. MDD and OMC for soft untreated samples were 1.59 Mg/m3 and 22%, respectively. Treated samples with 10%, 20%, 30% and 40% of 0.30 mm size RBT resulted in a significant reduction of OMC ranged from 19 to 15% while MDD resulted in increment ranged from 1.69 to 1.77 Mg/m3. In addition, samples treated with 10%, 20%, 30% and 40% of 1.18 mm size RBT resulted in major reduction of OMC ranged from 15 to 13.5% while MDD increased effectively from 1.75 to 1.82 Mg/m3. For all mix designs of soft clay-RBT, MDD was gradually increasing and OMC was sharply reducing with further increments of both sizes of RBT.

  8. Compaction and Plasticity Comparative Behaviour of Soft Clay Treated with Coarse and Fine Sizes of Ceramic Tiles

    Directory of Open Access Journals (Sweden)

    Al-Bared Mohammed Ali Mohammed

    2018-01-01

    Full Text Available Recycled blended ceramic tiles (RBT is a waste material produced from ceramic tile factories and construction activities. RBT is found to be cost effective, sustainable, environmental-friendly and has the potential to be used as an additive in soft soil stabilization. Recent reports show that massive amounts of RBT are dumped into legal or illegal landfills every year consuming very large spaces and creating major environmental problems. On the other hand, dredged marine clay obtained from Nusajaya, Johor, Malaysia has weak physical and engineering characteristics to be considered as unsuitable soft soil that is usually excavated, dumped into landfills and replaced by stiff soil. Hence, this study investigates the suitability of possible uses of RBT to treat marine clay. Laboratory tests included Standard proctor tests and Atterberg limits tests. The plasticity of marine clay was evaluated by adding 10%, 20%, 30% and 40% of 0.3 mm RBT. In addition, the compaction behaviour of treated marine clay was compared by adding two different sizes (0.3 mm and 1.18 mm diameter of RBT. For both coarse and fine sizes of RBT, 10%, 20%, 30% and 40% of the dry weight of the soft clay were added. The mixture of each combination was examined in order to evaluate the Maximum Dry Density (MDD and the optimum moisture content (OMC for the treated soft clay. MDD and OMC for soft untreated samples were 1.59 Mg/m3 and 22%, respectively. Treated samples with 10%, 20%, 30% and 40% of 0.30 mm size RBT resulted in a significant reduction of OMC ranged from 19 to 15% while MDD resulted in increment ranged from 1.69 to 1.77 Mg/m3. In addition, samples treated with 10%, 20%, 30% and 40% of 1.18 mm size RBT resulted in major reduction of OMC ranged from 15 to 13.5% while MDD increased effectively from 1.75 to 1.82 Mg/m3. For all mix designs of soft clay-RBT, MDD was gradually increasing and OMC was sharply reducing with further increments of both sizes of RBT.

  9. Influence of clay organic modifier on morphology and performance of poly(ε-caprolactone/clay nanocomposites

    Directory of Open Access Journals (Sweden)

    Nikolić Marija S.

    2015-01-01

    Full Text Available Two series of poly(e-caprolactone nanocomposites with different organo-modified clays (1 to 8 wt% were prepared by the solution casting method. Organoclays with polar (Cloisite®C30B and nonpolar (Cloisite®C15A organic modifier and with different miscibility with poly(e-caprolactone matrix, were chosen. Exfoliated and/or intercalated nanocomposite’s structures were obtained by using high dilution and an ultrasonic treatment for the composite preparation. The effect of the surface modification and clay content on the morphology, mechanical and thermal properties of the nanocomposites was studied. Scanning electron microscopy excluded the formation of microcomposite. The wide-angle X-ray diffraction analysis revealed that the tendency toward exfoliated structure is higher for the Cloisite®C30B, which had better miscibility with poly(e-caprolactone matrix. Differences in spherulites’ sizes and morphology between two series of the nanocomposites were observed by the optical microscopy performed on as-casted films. Enthalpies of fusion and degrees of crystallinity were higher for nanocomposites than for neat poly(e-caprolactone and increase with the clay loading in both series, as a consequence of the clay nucleating effect. Decreased thermal stability of nanocomposites was ascribed to thermal instability of organic modifiers of the clays. The Halpin-Tsai model was used to compare the theoretically predicted values of the Young’s modulus with experimentally obtained ones in tensile tests.[Projekat Ministarstva nauke Republike Srbije, br. 172062

  10. Effects of Fuel Oil on the Geotechnical Properties of Clay Soil

    Directory of Open Access Journals (Sweden)

    Mahdi Obaid Karkush

    2017-08-01

    Full Text Available The present study highlights the effects of medium fuel oil (MFO on the chemical, physical and mechanical properties of clay soil samples (disturbed and undisturbed obtained from the site of the electrical power plant in the campus of the University of Baghdad at Al-Jadriah district in Baghdad/Iraq. The soil sample was classified according to the unified soil classification system (USCS as CL and described as lean clay of low plasticity. The medium fuel oil is an industrial wastewater disposed as a byproduct from the fuel used in the electricity power plant. The soil samples are artificially contaminated with two percentages of medium fuel oil, 10 and 20 % related to the dry weight of soil. The soil samples were mixed with the contaminant (MFO by hand and then left for 4 days for homogeneity. A series of laboratory tests are conducted on both natural and artificially contaminated soil samples to measure the effects of medium fuel oil on the chemical, physical and mechanical properties of soil samples. The results of tests showed that the medium fuel oil has significant impacts on some properties of soil and slight effects on the others. Increasing the percentage of contaminant causes a slight decrease in the liquid limit and particle size distribution; on the other hand, it causes a considerable increase in the consolidation parameters and decrease in shear strength parameters. Also, there is a slight change in the chemical composition of soil samples.

  11. Clay-enhanced DNA separation in low-molecular-weight poly(N,N-dimethylacrylamide) solution by capillary electrophoresis.

    Science.gov (United States)

    Liang, D; Song, L; Chen, Z; Chu, B

    2001-06-01

    The effect of the separation medium in capillary electrophoresis consisting of a low-molecular-mass poly(N,N-dimethylacrylamide) (PDMA) solution on the DNA separation by adding a small amount of montmorillonite clay into the polymer matrix is presented. On the separation of the pBR322/HaeIII digest, both the resolution and the efficiency were increased by adding 2.5-5.0 x 10(-5) g/mL clay into the 5% w/v PDMA with a molecular mass of only 100 K. Moreover, there was no increase in the migration time of DNA fragments. Similar results were observed by using a C-terminated pGEM-3Zf(+) sequencing DNA sample in a sequencing buffer. Experimental data also showed that the addition of clay increased the viscosity of the polymer solution. We attribute this effect to the structural change of the polymer matrix caused by the exfoliated clay sheets, whereby the thin clay sheets function like a "dynamic cross-linking plate" for the PDMA chains and effectively increase the apparent molecular mass of PDMA.

  12. Environmental Degradation and Durability of Epoxy-Clay Nanocomposites

    Directory of Open Access Journals (Sweden)

    Raman P. Singh

    2010-01-01

    Full Text Available This experimental investigation reports on the durability of epoxy-clay nanocomposites upon exposure to multiple environments. Nanocomposites are fabricated by mixing the clay particles using various combinations of mechanical mixing, high-shear dispersion, and ultrasonication. Clay morphology is characterized using X-ray diffraction and transmission electron microscopy. Specimens of both neat epoxy and the epoxy-clay nanocomposite are subjected to two environmental conditions: combined UV radiation and condensation on 3-hour repeat cycle and constant temperature-humidity, for a total exposure duration of 4770 hours. The presence of nanoscale clay inhibits moisture uptake, as demonstrated by exposure to constant temperature-humidity. Nonetheless, both materials lose mass under exposure to combined UV radiation and condensation due to the erosion of epoxy by a synergistic process. Surprisingly, the epoxy-clay specimens exhibit greater mass loss, as compared to neat epoxy. Mechanical testing shows that either environment does not significant affect the flexure modulus of either material. On the other hand, both materials undergo degradation in flexural strength when exposed to either environment. However, the epoxy-clay nanocomposite retains 37% more flexure strength than the neat epoxy after 4072 hours of exposure.

  13. Environmental Degradation and Durability of Epoxy-Clay Nanocomposites

    International Nuclear Information System (INIS)

    Singh, R.P.; Zunjarrao, S.C.; Pandey, G.; Khait, M.; Korach, C.S.

    2010-01-01

    This experimental investigation reports on the durability of epoxy-clay nanocomposites upon exposure to multiple environments. Nanocomposites are fabricated by mixing the clay particles using various combinations of mechanical mixing, high-shear dispersion, and ultrasonication. Clay morphology is characterized using X-ray diffraction and transmission electron microscopy. Specimens of both neat epoxy and the epoxy-clay nanocomposite are subjected to two environmental conditions: combined UV radiation and condensation on 3-hour repeat cycle and constant temperature-humidity, for a total exposure duration of 4770 hours. The presence of nanoscale clay inhibits moisture uptake, as demonstrated by exposure to constant temperature-humidity. Nonetheless, both materials lose mass under exposure to combined UV radiation and condensation due to the erosion of epoxy by a synergistic process. Surprisingly, the epoxy-clay specimens exhibit greater mass loss, as compared to neat epoxy. Mechanical testing shows that either environment does not significant affect the flexure modulus of either material. On the other hand, both materials undergo degradation in flexural strength when exposed to either environment. However, the epoxy-clay nanocomposite retains 37% more flexure strength than the neat epoxy after 4072 hours of exposure.

  14. Micromechanism Underlying Nonlinear Stress-Dependent K0 of Clays at a Wide Range of Pressures

    Directory of Open Access Journals (Sweden)

    Xiang-yu Shang

    2015-01-01

    Full Text Available In order to investigate the mechanism underlying the reported nonlinear at-rest coefficient of earth pressure, K0 of clays at high pressure, a particle-scale model which can be used to calculate vertical and horizontal repulsion between clay particles has been proposed. This model has two initial states which represent the clays at low pressure and high pressure, and the particles in this model can undergo rotation and vertical translation. The computation shows that the majority of particles in a clay sample at high pressure state would experience rotation during one-dimensional compression. In addition, rotation of particles which tends to form a parallel structure causes an increase of the horizontal interparticle force, while vertical translation leads to a decrease in it. Finally, the link between interparticle force, microstructure, and macroscopic K0 is analyzed and it can be used to interpret well the nonlinear changes in K0 with both vertical consolidation stress and height-diameter ratio.

  15. Revealing Soil Structure and Functional Macroporosity along a Clay Gradient Using X-ray Computed Tomography

    DEFF Research Database (Denmark)

    Naveed, Muhammad; Møldrup, Per; Arthur, Emmanuel

    2013-01-01

    clay content, respectively) at a field site in Lerbjerg, Denmark. The water-holding capacity of soils markedly increased with increasing soil clay content, while significantly higher air permeability was observed for the L1 to L3 soils than for the L4 to L6 soils. Higher air permeability values......The influence of clay content in soil-pore structure development and the relative importance of macroporosity in governing convective fluid flow are two key challenges toward better understanding and quantifying soil ecosystem functions. In this study, soil physical measurements (soil-water...... retention and air permeability) and x-ray computed tomography (CT) scanning were combined and used from two scales on intact soil columns (100 and 580 cm3). The columns were sampled along a natural clay gradient at six locations (L1, L2, L3, L4, L5 and L6 with 0.11, 0.16, 0.21, 0.32, 0.38 and 0.46 kg kg−1...

  16. Study of the structural modifications in activated clays by Moessbauer spectroscopy and X-ray diffractometry

    Energy Technology Data Exchange (ETDEWEB)

    Huaypar, Yezena, E-mail: yhuaypar@yahoo.es; Bravo, Jorge, E-mail: jbravoc@unmsm.edu.pe [Universidad Nacional Mayor de San Marcos, Facultad de Ciencias Fisicas (Peru); Gutarra, Abel; Gabriel, Erika [Universidad Nacional de Ingenieria, Facultad de Ciencias (Peru)

    2007-02-15

    In this work we study the changes induced on the structure of a smectite clay by chemical acid activation with HCl using X-ray diffractometry (XRD) and transmission Moessbauer spectroscopy (TMS) techniques. By XRD we were able to determine the mineralogical composition of the clay samples and measure the changes in the interplanar distance associated to the structural modifications in the clays. We measured a reduction in the interplanar distance and reflection intensity as the acid concentration in the activation process increased. TMS allowed us identify and characterize the structural sites occupied by ferric and ferrous iron cations. In addition, we were able to monitor the effects caused by the chemical acid activation on the valence state of the iron cations that occupy these structural sites in the clay. For the treatment at low acid concentration, keeping time and temperature of activation constant, our results showed a strong effect on the ferrous and ferric iron sites, reducing and increasing their adsorption relative areas respectively.

  17. Study of the structural modifications in activated clays by Moessbauer spectroscopy and X-ray diffractometry

    International Nuclear Information System (INIS)

    Huaypar, Yezena; Bravo, Jorge; Gutarra, Abel; Gabriel, Erika

    2007-01-01

    In this work we study the changes induced on the structure of a smectite clay by chemical acid activation with HCl using X-ray diffractometry (XRD) and transmission Moessbauer spectroscopy (TMS) techniques. By XRD we were able to determine the mineralogical composition of the clay samples and measure the changes in the interplanar distance associated to the structural modifications in the clays. We measured a reduction in the interplanar distance and reflection intensity as the acid concentration in the activation process increased. TMS allowed us identify and characterize the structural sites occupied by ferric and ferrous iron cations. In addition, we were able to monitor the effects caused by the chemical acid activation on the valence state of the iron cations that occupy these structural sites in the clay. For the treatment at low acid concentration, keeping time and temperature of activation constant, our results showed a strong effect on the ferrous and ferric iron sites, reducing and increasing their adsorption relative areas respectively.

  18. Characterization of Heat-treated Clay Minerals in the Context of Nuclear Waste Disposal

    Science.gov (United States)

    Matteo, E. N.; Wang, Y.; Kruichak, J. N.; Mills, M. M.

    2015-12-01

    Clay minerals are likely candidates to aid in nuclear waste isolation due to their low permeability, favorable swelling properties, and high cation sorption capacities. Establishing the thermal limit for clay minerals in a nuclear waste repository is a potentially important component of repository design, as flexibility of the heat load within the repository can have a major impact on the selection of repository design. For example, the thermal limit plays a critical role in the time that waste packages would need to cool before being transferred to the repository. Understanding the chemical and physical changes, if any, that occur in clay minerals at various temperatures above the current thermal limit (of 100 °C) can enable decision-makers with information critical to evaluating the potential trade-offs of increasing the thermal limit within the repository. Most critical is gaining understanding of how varying thermal conditions in the repository will impact radionuclide sorption and transport in clay materials either as engineered barriers or as disposal media. A variety of repository-relevant clay minerals (illite, mixed layer illite/smectite, and montmorillonite), were heated for a range of temperatures between 100-1000 °C. These samples were characterized to determine surface area, mineralogical alteration, and cation exchange capacity (CEC). Our results show that for conditions up to 500 °C, no significant change occurs, so long as the clay mineral remains mineralogically intact. At temperatures above 500 °C, transformation of the layered silicates into silica phases leads to alteration that impacts important clay characteristics. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's Nation Nuclear Security Administration under contract DE-AC04-94AL85000. SAND Number: SAND2015-6524 A

  19. Use of nuclear magnetic resonance in the characterization of modified clays

    International Nuclear Information System (INIS)

    Leite, Sidnei Q.M.; Menezes, Sonia M.C. de; Gil, Rosane A.S. San

    1991-01-01

    This work uses NMR spectroscopy with rotation in the 29 Si, 27 Al and 23 Na magic angles for characterization of clays with Si/Al ratio in the range 3.0 - 16,5, obtained by chemical treatment of commercial samples, under different conditions of leaching with mineral acid

  20. Palaeomagnetic results from some panchet clay beds, Karanpura coalfield. Northeastern India

    NARCIS (Netherlands)

    Klootwijk, C.T.

    1974-01-01

    Reversely magnetized Panchet clay samples of Early Triassic or possibly Late Permian age, from the North Karanpura coalfield (Damodar Valley, NE. India) revealed, after thermal cleaning, the mean direction: D = llO.S”, I = +69” (k = 49, tugs = 6” , N = 13). The corresponding pole position is: