WorldWideScience

Sample records for unique proteins identified

  1. Proteomics approach to identify unique xylem sap proteins in Pierce's disease-tolerant Vitis species.

    Science.gov (United States)

    Basha, Sheikh M; Mazhar, Hifza; Vasanthaiah, Hemanth K N

    2010-03-01

    Pierce's disease (PD) is a destructive bacterial disease of grapes caused by Xylella fastidiosa which is xylem-confined. The tolerance level to this disease varies among Vitis species. Our research was aimed at identifying unique xylem sap proteins present in PD-tolerant Vitis species. The results showed wide variation in the xylem sap protein composition, where a set of polypeptides with pI between 4.5 and 4.7 and M(r) of 31 kDa were present in abundant amount in muscadine (Vitis rotundifolia, PD-tolerant), in reduced levels in Florida hybrid bunch (Vitis spp., PD-tolerant) and absent in bunch grapes (Vitis vinifera, PD-susceptible). Liquid chromatography/mass spectrometry/mass spectrometry analysis of these proteins revealed their similarity to beta-1, 3-glucanase, peroxidase, and a subunit of oxygen-evolving enhancer protein 1, which are known to play role in defense and oxygen generation. In addition, the amount of free amino acids and soluble sugars was found to be significantly lower in xylem sap of muscadine genotypes compared to V. vinifera genotypes, indicating that the higher nutritional value of bunch grape sap may be more suitable for Xylella growth. These data suggest that the presence of these unique proteins in xylem sap is vital for PD tolerance in muscadine and Florida hybrid bunch grapes.

  2. BLAST screening of chlamydial genomes to identify signature proteins that are unique for the Chlamydiales, Chlamydiaceae, Chlamydophila and Chlamydia groups of species

    Directory of Open Access Journals (Sweden)

    Gupta Radhey S

    2006-01-01

    Full Text Available Abstract Background Chlamydiae species are of much importance from a clinical viewpoint. Their diversity both in terms of their numbers as well as clinical involvement are presently believed to be significantly underestimated. The obligate intracellular nature of chlamydiae has also limited their genetic and biochemical studies. Thus, it is of importance to develop additional means for their identification and characterization. Results We have carried out analyses of available chlamydiae genomes to identify sets of unique proteins that are either specific for all Chlamydiales genomes, or different Chlamydiaceae family members, or members of the Chlamydia and Chlamydophila genera, or those unique to Protochlamydia amoebophila, but which are not found in any other bacteria. In total, 59 Chlamydiales-specific proteins, 79 Chlamydiaceae-specific proteins, 20 proteins each that are specific for both Chlamydia and Chlamydophila and 445 ORFs that are Protochlamydia-specific were identified. Additionally, 33 cases of possible gene loss or lateral gene transfer were also detected. Conclusion The identified chlamydiae-lineage specific proteins, many of which are highly conserved, provide novel biomarkers that should prove of much value in the diagnosis of these bacteria and in exploration of their prevalence and diversity. These conserved protein sequences (CPSs also provide novel therapeutic targets for drugs that are specific for these bacteria. Lastly, functional studies on these chlamydiae or chlamydiae subgroup-specific proteins should lead to important insights into lineage-specific adaptations with regards to development, infectivity and pathogenicity.

  3. Unique Features of Halophilic Proteins.

    Science.gov (United States)

    Arakawa, Tsutomu; Yamaguchi, Rui; Tokunaga, Hiroko; Tokunaga, Masao

    2017-01-01

    Proteins from moderate and extreme halophiles have unique characteristics. They are highly acidic and hydrophilic, similar to intrinsically disordered proteins. These characteristics make the halophilic proteins soluble in water and fold reversibly. In addition to reversible folding, the rate of refolding of halophilic proteins from denatured structure is generally slow, often taking several days, for example, for extremely halophilic proteins. This slow folding rate makes the halophilic proteins a novel model system for folding mechanism analysis. High solubility and reversible folding also make the halophilic proteins excellent fusion partners for soluble expression of recombinant proteins.

  4. Spermidine is bound to a unique protein in early sea urchin embryos

    International Nuclear Information System (INIS)

    Canellakis, Z.N.; Bondy, P.K.; Infante, A.A.

    1985-01-01

    Spermidine is rapidly taken up and becomes bound to protein during the very early hours of sea urchin embryogenesis. During the first 6 hr after fertilization of freshly obtained sea urchin eggs (Strongylocentrotus purpuratus), which are incubated in the presence of exogenous [ 3 H]-spermidine, up to 7% of the total cell-associated spermidine appears uniquely as spermidine bound in macromolecular form. This unique protein containing spermidine migrates as a single radioactive band in gel electrophoresis. It has a Mr of approximately equal to 30,000 and is readily distinguishable from the protein initiation factor eIF-4D, which has a Mr of 18,000, the only other identifiable protein known to date to be posttranslationally modified by polyamines

  5. Shared and Unique Proteins in Human, Mouse and Rat Saliva Proteomes: Footprints of Functional Adaptation

    Directory of Open Access Journals (Sweden)

    Robert C. Karn

    2013-12-01

    Full Text Available The overall goal of our study was to compare the proteins found in the saliva proteomes of three mammals: human, mouse and rat. Our first objective was to compare two human proteomes with very different analysis depths. The 89 shared proteins in this comparison apparently represent a core of highly-expressed human salivary proteins. Of the proteins unique to each proteome, one-half to 2/3 lack signal peptides and probably are contaminants instead of less highly-represented salivary proteins. We recently published the first rodent saliva proteomes with saliva collected from the genome mouse (C57BL/6 and the genome rat (BN/SsNHsd/Mcwi. Our second objective was to compare the proteins in the human proteome with those we identified in the genome mouse and rat to determine those common to all three mammals, as well as the specialized rodent subset. We also identified proteins unique to each of the three mammals, because differences in the secreted protein constitutions can provide clues to differences in the evolutionary adaptation of the secretions in the three different mammals.

  6. Unique Protein Signature of Circulating Microparticles in Systemic Lupus Erythematosus

    DEFF Research Database (Denmark)

    Østergaard, Ole; Nielsen, Christoffer; Iversen, Line V

    2013-01-01

    To characterize the unique qualities of proteins associated with circulating subcellular material in systemic lupus erythematosus (SLE) patients compared with healthy controls and patients with other chronic autoimmune diseases.......To characterize the unique qualities of proteins associated with circulating subcellular material in systemic lupus erythematosus (SLE) patients compared with healthy controls and patients with other chronic autoimmune diseases....

  7. Plastic-casting intrinsic-surface unique identifier (tag)

    International Nuclear Information System (INIS)

    Palm, R.G.; De Volpi, A.

    1995-04-01

    This report describes the development of an authenticated intrinsic-surf ace tagging method for unique- identification of controlled items. Although developed for control of items limited by an arms control treaty, this method has other potential applications to keep track of critical or high-value items. Each tag (unique-identifier) consists of the intrinsic, microscopic surface topography of a small designated area on a controlled item. It is implemented by making a baseline plastic casting of the designated tag area and usually placing a cover (for example, a bar-code label) over this area to protect the surface from environmental alteration. The plastic casting is returned to a laboratory and prepared for high-resolution scanning electron microscope imaging. Several images are digitized and stored for use as a standard for authentication of castings taken during future inspections. Authentication is determined by numerically comparing digital images. Commercially available hardware and software are used for this tag. Tag parameters are optimized, so unique casting images are obtained from original surfaces, and images obtained from attempted duplicate surfaces are detected. This optimization uses the modulation transfer function, a first principle of image analysis, to determine the parameters. Surface duplication experiments confirmed the optimization

  8. The Protein Identifier Cross-Referencing (PICR service: reconciling protein identifiers across multiple source databases

    Directory of Open Access Journals (Sweden)

    Leinonen Rasko

    2007-10-01

    Full Text Available Abstract Background Each major protein database uses its own conventions when assigning protein identifiers. Resolving the various, potentially unstable, identifiers that refer to identical proteins is a major challenge. This is a common problem when attempting to unify datasets that have been annotated with proteins from multiple data sources or querying data providers with one flavour of protein identifiers when the source database uses another. Partial solutions for protein identifier mapping exist but they are limited to specific species or techniques and to a very small number of databases. As a result, we have not found a solution that is generic enough and broad enough in mapping scope to suit our needs. Results We have created the Protein Identifier Cross-Reference (PICR service, a web application that provides interactive and programmatic (SOAP and REST access to a mapping algorithm that uses the UniProt Archive (UniParc as a data warehouse to offer protein cross-references based on 100% sequence identity to proteins from over 70 distinct source databases loaded into UniParc. Mappings can be limited by source database, taxonomic ID and activity status in the source database. Users can copy/paste or upload files containing protein identifiers or sequences in FASTA format to obtain mappings using the interactive interface. Search results can be viewed in simple or detailed HTML tables or downloaded as comma-separated values (CSV or Microsoft Excel (XLS files suitable for use in a local database or a spreadsheet. Alternatively, a SOAP interface is available to integrate PICR functionality in other applications, as is a lightweight REST interface. Conclusion We offer a publicly available service that can interactively map protein identifiers and protein sequences to the majority of commonly used protein databases. Programmatic access is available through a standards-compliant SOAP interface or a lightweight REST interface. The PICR

  9. Unique expression of cytoskeletal proteins in human soft palate muscles.

    Science.gov (United States)

    Shah, Farhan; Berggren, Diana; Holmlund, Thorbjörn; Levring Jäghagen, Eva; Stål, Per

    2016-03-01

    The human oropharyngeal muscles have a unique anatomy with diverse and intricate functions. To investigate if this specialization is also reflected in the cytoarchitecture of muscle fibers, intermediate filament proteins and the dystrophin-associated protein complex have been analyzed in two human palate muscles, musculus uvula (UV) and musculus palatopharyngeus (PP), with immunohistochenmical and morphological techniques. Human limb muscles were used as reference. The findings show that the soft palate muscle fibers have a cytoskeletal architecture that differs from the limb muscles. While all limb muscles showed immunoreaction for a panel of antibodies directed against different domains of cytoskeletal proteins desmin and dystrophin, a subpopulation of palate muscle fibers lacked or had a faint immunoreaction for desmin (UV 11.7% and PP 9.8%) and the C-terminal of the dystrophin molecule (UV 4.2% and PP 6.4%). The vast majority of these fibers expressed slow contractile protein myosin heavy chain I. Furthermore, an unusual staining pattern was also observed in these fibers for β-dystroglycan, caveolin-3 and neuronal nitric oxide synthase nNOS, which are all membrane-linking proteins associated with the dystrophin C-terminus. While the immunoreaction for nNOS was generally weak or absent, β-dystroglycan and caveolin-3 showed a stronger immunostaining. The absence or a low expression of cytoskeletal proteins otherwise considered ubiquitous and important for integration and contraction of muscle cells indicate a unique cytoarchitecture designed to meet the intricate demands of the upper airway muscles. It can be concluded that a subgroup of muscle fibers in the human soft palate appears to have special biomechanical properties, and their unique cytoarchitecture must be taken into account while assessing function and pathology in oropharyngeal muscles. © 2015 Anatomical Society.

  10. Secretomics identifies Fusarium graminearum proteins involved in the interaction with barley and wheat

    DEFF Research Database (Denmark)

    Yang, Fen; Jensen, Jens D.; Svensson, Birte

    2012-01-01

    Fusarium graminearum is a phytopathogenic fungus primarily infecting small grain cereals, including barley and wheat. Secreted enzymes play important roles in the pathogenicity of many fungi. In order to access the secretome of F. graminearum, the fungus was grown in liquid culture with barley...... or wheat flour as the sole nutrient source to mimic the host–pathogen interaction. A gel‐based proteomics approach was employed to identify the proteins secreted into the culture medium. Sixty‐nine unique fungal proteins were identified in 154 protein spots, including enzymes involved in the degradation...... between wheat and barley flour medium were mainly involved in fungal cell wall remodelling and the degradation of plant cell walls, starch and proteins. The in planta expression of corresponding F. graminearum genes was confirmed by quantitative reverse transcriptase‐polymerase chain reaction in barley...

  11. IDGenerator: unique identifier generator for epidemiologic or clinical studies

    Directory of Open Access Journals (Sweden)

    Matthias Olden

    2016-09-01

    Full Text Available Abstract Background Creating study identifiers and assigning them to study participants is an important feature in epidemiologic studies, ensuring the consistency and privacy of the study data. The numbering system for identifiers needs to be random within certain number constraints, to carry extensions coding for organizational information, or to contain multiple layers of numbers per participant to diversify data access. Available software can generate globally-unique identifiers, but identifier-creating tools meeting the special needs of epidemiological studies are lacking. We have thus set out to develop a software program to generate IDs for epidemiological or clinical studies. Results Our software IDGenerator creates unique identifiers that not only carry a random identifier for a study participant, but also support the creation of structured IDs, where organizational information is coded into the ID directly. This may include study center (for multicenter-studies, study track (for studies with diversified study programs, or study visit (baseline, follow-up, regularly repeated visits. Our software can be used to add a check digit to the ID to minimize data entry errors. It facilitates the generation of IDs in batches and the creation of layered IDs (personal data ID, study data ID, temporary ID, external data ID to ensure a high standard of data privacy. The software is supported by a user-friendly graphic interface that enables the generation of IDs in both standard text and barcode 128B format. Conclusion Our software IDGenerator can create identifiers meeting the specific needs for epidemiologic or clinical studies to facilitate study organization and data privacy. IDGenerator is freeware under the GNU General Public License version 3; a Windows port and the source code can be downloaded at the Open Science Framework website: https://osf.io/urs2g/ .

  12. Father involvement: Identifying and predicting family members' shared and unique perceptions.

    Science.gov (United States)

    Dyer, W Justin; Day, Randal D; Harper, James M

    2014-08-01

    Father involvement research has typically not recognized that reports of involvement contain at least two components: 1 reflecting a view of father involvement that is broadly recognized in the family, and another reflecting each reporter's unique perceptions. Using a longitudinal sample of 302 families, this study provides a first examination of shared and unique views of father involvement (engagement and warmth) from the perspectives of fathers, children, and mothers. This study also identifies influences on these shared and unique perspectives. Father involvement reports were obtained when the child was 12 and 14 years old. Mother reports overlapped more with the shared view than father or child reports. This suggests the mother's view may be more in line with broadly recognized father involvement. Regarding antecedents, for fathers' unique view, a compensatory model partially explains results; that is, negative aspects of family life were positively associated with fathers' unique view. Children's unique view of engagement may partially reflect a sentiment override with father antisocial behaviors being predictive. Mothers' unique view of engagement was predicted by father and mother work hours and her unique view of warmth was predicted by depression and maternal gatekeeping. Taken, together finding suggests a far more nuanced view of father involvement should be considered.

  13. Fluorescent Photo-conversion: A second chance to label unique cells.

    Science.gov (United States)

    Mellott, Adam J; Shinogle, Heather E; Moore, David S; Detamore, Michael S

    2015-03-01

    Not all cells behave uniformly after treatment in tissue engineering studies. In fact, some treated cells display no signs of treatment or show unique characteristics not consistent with other treated cells. What if the "unique" cells could be isolated from a treated population, and further studied? Photo-convertible reporter proteins, such as Dendra2 , allow for the ability to selectively identify unique cells with a secondary label within a primary labeled treated population. In the current study, select cells were identified and labeled through photo-conversion of Dendra2 -transfected human Wharton's Jelly cells (hWJCs) for the first time. Robust photo-conversion of green-to-red fluorescence was achieved consistently in arbitrarily selected cells, allowing for precise cell identification of select hWJCs. The current study demonstrates a method that offers investigators the opportunity to selectively label and identify unique cells within a treated population for further study or isolation from the treatment population. Photo-convertible reporter proteins, such as Dendra2 , offer the ability over non-photo-convertible reporter proteins, such as green fluorescent protein, to analyze unique individual cells within a treated population, which allows investigators to gain more meaningful information on how a treatment affects all cells within a target population.

  14. Protein Correlation Profiles Identify Lipid Droplet Proteins with High Confidence*

    Science.gov (United States)

    Krahmer, Natalie; Hilger, Maximiliane; Kory, Nora; Wilfling, Florian; Stoehr, Gabriele; Mann, Matthias; Farese, Robert V.; Walther, Tobias C.

    2013-01-01

    Lipid droplets (LDs) are important organelles in energy metabolism and lipid storage. Their cores are composed of neutral lipids that form a hydrophobic phase and are surrounded by a phospholipid monolayer that harbors specific proteins. Most well-established LD proteins perform important functions, particularly in cellular lipid metabolism. Morphological studies show LDs in close proximity to and interacting with membrane-bound cellular organelles, including the endoplasmic reticulum, mitochondria, peroxisomes, and endosomes. Because of these close associations, it is difficult to purify LDs to homogeneity. Consequently, the confident identification of bona fide LD proteins via proteomics has been challenging. Here, we report a methodology for LD protein identification based on mass spectrometry and protein correlation profiles. Using LD purification and quantitative, high-resolution mass spectrometry, we identified LD proteins by correlating their purification profiles to those of known LD proteins. Application of the protein correlation profile strategy to LDs isolated from Drosophila S2 cells led to the identification of 111 LD proteins in a cellular LD fraction in which 1481 proteins were detected. LD localization was confirmed in a subset of identified proteins via microscopy of the expressed proteins, thereby validating the approach. Among the identified LD proteins were both well-characterized LD proteins and proteins not previously known to be localized to LDs. Our method provides a high-confidence LD proteome of Drosophila cells and a novel approach that can be applied to identify LD proteins of other cell types and tissues. PMID:23319140

  15. Proteomic Analysis of Intact Flagella of Procyclic Trypanosoma brucei Cells Identifies Novel Flagellar Proteins with Unique Sub-localization and Dynamics*

    Science.gov (United States)

    Subota, Ines; Julkowska, Daria; Vincensini, Laetitia; Reeg, Nele; Buisson, Johanna; Blisnick, Thierry; Huet, Diego; Perrot, Sylvie; Santi-Rocca, Julien; Duchateau, Magalie; Hourdel, Véronique; Rousselle, Jean-Claude; Cayet, Nadège; Namane, Abdelkader; Chamot-Rooke, Julia; Bastin, Philippe

    2014-01-01

    Cilia and flagella are complex organelles made of hundreds of proteins of highly variable structures and functions. Here we report the purification of intact flagella from the procyclic stage of Trypanosoma brucei using mechanical shearing. Structural preservation was confirmed by transmission electron microscopy that showed that flagella still contained typical elements such as the membrane, the axoneme, the paraflagellar rod, and the intraflagellar transport particles. It also revealed that flagella severed below the basal body, and were not contaminated by other cytoskeletal structures such as the flagellar pocket collar or the adhesion zone filament. Mass spectrometry analysis identified a total of 751 proteins with high confidence, including 88% of known flagellar components. Comparison with the cell debris fraction revealed that more than half of the flagellum markers were enriched in flagella and this enrichment criterion was taken into account to identify 212 proteins not previously reported to be associated to flagella. Nine of these were experimentally validated including a 14-3-3 protein not yet reported to be associated to flagella and eight novel proteins termed FLAM (FLAgellar Member). Remarkably, they localized to five different subdomains of the flagellum. For example, FLAM6 is restricted to the proximal half of the axoneme, no matter its length. In contrast, FLAM8 is progressively accumulating at the distal tip of growing flagella and half of it still needs to be added after cell division. A combination of RNA interference and Fluorescence Recovery After Photobleaching approaches demonstrated very different dynamics from one protein to the other, but also according to the stage of construction and the age of the flagellum. Structural proteins are added to the distal tip of the elongating flagellum and exhibit slow turnover whereas membrane proteins such as the arginine kinase show rapid turnover without a detectible polarity. PMID:24741115

  16. Proteomic analysis of intact flagella of procyclic Trypanosoma brucei cells identifies novel flagellar proteins with unique sub-localization and dynamics.

    Science.gov (United States)

    Subota, Ines; Julkowska, Daria; Vincensini, Laetitia; Reeg, Nele; Buisson, Johanna; Blisnick, Thierry; Huet, Diego; Perrot, Sylvie; Santi-Rocca, Julien; Duchateau, Magalie; Hourdel, Véronique; Rousselle, Jean-Claude; Cayet, Nadège; Namane, Abdelkader; Chamot-Rooke, Julia; Bastin, Philippe

    2014-07-01

    Cilia and flagella are complex organelles made of hundreds of proteins of highly variable structures and functions. Here we report the purification of intact flagella from the procyclic stage of Trypanosoma brucei using mechanical shearing. Structural preservation was confirmed by transmission electron microscopy that showed that flagella still contained typical elements such as the membrane, the axoneme, the paraflagellar rod, and the intraflagellar transport particles. It also revealed that flagella severed below the basal body, and were not contaminated by other cytoskeletal structures such as the flagellar pocket collar or the adhesion zone filament. Mass spectrometry analysis identified a total of 751 proteins with high confidence, including 88% of known flagellar components. Comparison with the cell debris fraction revealed that more than half of the flagellum markers were enriched in flagella and this enrichment criterion was taken into account to identify 212 proteins not previously reported to be associated to flagella. Nine of these were experimentally validated including a 14-3-3 protein not yet reported to be associated to flagella and eight novel proteins termed FLAM (FLAgellar Member). Remarkably, they localized to five different subdomains of the flagellum. For example, FLAM6 is restricted to the proximal half of the axoneme, no matter its length. In contrast, FLAM8 is progressively accumulating at the distal tip of growing flagella and half of it still needs to be added after cell division. A combination of RNA interference and Fluorescence Recovery After Photobleaching approaches demonstrated very different dynamics from one protein to the other, but also according to the stage of construction and the age of the flagellum. Structural proteins are added to the distal tip of the elongating flagellum and exhibit slow turnover whereas membrane proteins such as the arginine kinase show rapid turnover without a detectible polarity. © 2014 by The

  17. Unique self-assembly properties of a bridge-shaped protein dimer with quantum dots

    Science.gov (United States)

    Wang, Jianhao; Jiang, Pengju; Gao, Liqian; Yu, Yongsheng; Lu, Yao; Qiu, Lin; Wang, Cheli; Xia, Jiang

    2013-09-01

    How protein-protein interaction affects protein-nanoparticle self-assembly is the key to the understanding of biomolecular coating of nanoparticle in biological fluids. However, the relationship between protein shape and its interaction with nanoparticles is still under-exploited because of lack of a well-conceived binding system and a method to detect the subtle change in the protein-nanoparticle assemblies. Noticing this unresolved need, we cloned and expressed a His-tagged SpeA protein that adopts a bridge-shaped dimer structure, and utilized a high-resolution capillary electrophoresis method to monitor assembly formation between the protein and quantum dots (QDs, 5 nm in diameter). We observed that the bridge-shaped structure rendered a low SpeA:QD stoichiometry at saturation. Also, close monitoring of imidazole (Im) displacement of surface-bound protein revealed a unique two-step process. High-concentration Im could displace surface-bound SpeA protein and form a transient QD-protein intermediate, through a kinetically controlled displacement process. An affinity-driven equilibrium step then followed, resulting in re-assembling of the QD-protein complex in about 1 h. Through a temporarily formed intermediate, Im causes a rearrangement of His-tagged proteins on the surface. Thus, our work showcases that the synergistic interplay between QD-His-tag interaction and protein-protein interaction can result in unique properties of protein-nanoparticle assembly for the first time.

  18. Deep Coverage Proteomics Identifies More Low-Abundance Missing Proteins in Human Testis Tissue with Q-Exactive HF Mass Spectrometer.

    Science.gov (United States)

    Wei, Wei; Luo, Weijia; Wu, Feilin; Peng, Xuehui; Zhang, Yao; Zhang, Manli; Zhao, Yan; Su, Na; Qi, YingZi; Chen, Lingsheng; Zhang, Yangjun; Wen, Bo; He, Fuchu; Xu, Ping

    2016-11-04

    Since 2012, missing proteins (MPs) investigation has been one of the critical missions of Chromosome-Centric Human Proteome Project (C-HPP) through various biochemical strategies. On the basis of our previous testis MPs study, faster scanning and higher resolution mass-spectrometry-based proteomics might be conducive to MPs exploration, especially for low-abundance proteins. In this study, Q-Exactive HF (HF) was used to survey proteins from the same testis tissues separated by two separating methods (tricine- and glycine-SDS-PAGE), as previously described. A total of 8526 proteins were identified, of which more low-abundance proteins were uniquely detected in HF data but not in our previous LTQ Orbitrap Velos (Velos) reanalysis data. Further transcriptomics analysis showed that these uniquely identified proteins by HF also had lower expression at the mRNA level. Of the 81 total identified MPs, 74 and 39 proteins were listed as MPs in HF and Velos data sets, respectively. Among the above MPs, 47 proteins (43 neXtProt PE2 and 4 PE3) were ranked as confirmed MPs after verifying with the stringent spectra match and isobaric and single amino acid variants filtering. Functional investigation of these 47 MPs revealed that 11 MPs were testis-specific proteins and 7 MPs were involved in spermatogenesis process. Therefore, we concluded that higher scanning speed and resolution of HF might be factors for improving the low-abundance MP identification in future C-HPP studies. All mass-spectrometry data from this study have been deposited in the ProteomeXchange with identifier PXD004092.

  19. Unique self-assembly properties of a bridge-shaped protein dimer with quantum dots

    International Nuclear Information System (INIS)

    Wang, Jianhao; Jiang, Pengju; Gao, Liqian; Yu, Yongsheng; Lu, Yao; Qiu, Lin; Wang, Cheli; Xia, Jiang

    2013-01-01

    How protein–protein interaction affects protein–nanoparticle self-assembly is the key to the understanding of biomolecular coating of nanoparticle in biological fluids. However, the relationship between protein shape and its interaction with nanoparticles is still under-exploited because of lack of a well-conceived binding system and a method to detect the subtle change in the protein–nanoparticle assemblies. Noticing this unresolved need, we cloned and expressed a His-tagged SpeA protein that adopts a bridge-shaped dimer structure, and utilized a high-resolution capillary electrophoresis method to monitor assembly formation between the protein and quantum dots (QDs, 5 nm in diameter). We observed that the bridge-shaped structure rendered a low SpeA:QD stoichiometry at saturation. Also, close monitoring of imidazole (Im) displacement of surface-bound protein revealed a unique two-step process. High-concentration Im could displace surface-bound SpeA protein and form a transient QD–protein intermediate, through a kinetically controlled displacement process. An affinity-driven equilibrium step then followed, resulting in re-assembling of the QD–protein complex in about 1 h. Through a temporarily formed intermediate, Im causes a rearrangement of His-tagged proteins on the surface. Thus, our work showcases that the synergistic interplay between QD–His-tag interaction and protein–protein interaction can result in unique properties of protein–nanoparticle assembly for the first time

  20. Identifying different transcribed proteins in the newly described Theraphosidae Pamphobeteus verdolaga.

    Science.gov (United States)

    Estrada-Gómez, Sebastian; Vargas-Muñoz, Leidy Johana; Saldarriaga-Córdoba, Mónica; Cifuentes, Yeimy; Perafan, Carlos

    2017-04-01

    Theraphosidae spider venoms are well known for possess a complex mixture of protein and non-protein compounds in their venom. The objective of this study was to report and identify different proteins translated from the venom gland DNA information of the recently described Theraphosidae spider Pamphobeteus verdolaga. Using a venom gland transcriptomic analysis, we reported a set of the first complete sequences of seven different proteins of the recenlty described Theraphosidae spider P. verdolaga. Protein analysis indicates the presence of different proteins on the venom composition of this new spider, some of them uncommon in the Theraphosidae family. MS/MS analysis of P. verdolaga showed different fragments matching sphingomyelinases (sicaritoxin), barytoxins, hexatoxins, latroinsectotoxins, and linear (zadotoxins) peptides. Only four of the MS/MS fragments showed 100% sequence similarity with one of the transcribed proteins. Transcriptomic analysis showed the presence of different groups of proteins like phospholipases, hyaluronidases, inhibitory cysteine knots (ICK) peptides among others. The three database of protein domains used in this study (Pfam, SMART and CDD) showed congruency in the search of unique conserved protein domain for only four of the translated proteins. Those proteins matched with EF-hand proteins, cysteine rich secretory proteins, jingzhaotoxins, theraphotoxins and hexatoxins, from different Mygalomorphae spiders belonging to the families Theraphosidae, Barychelidae and Hexathelidae. None of the analyzed sequences showed a complete 100% similarity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Metastasis-related plasma membrane proteins of human breast cancer cells identified by comparative quantitative mass spectrometry

    DEFF Research Database (Denmark)

    Leth-Larsen, Rikke; Lund, Rikke; Hansen, Helle V

    2009-01-01

    The spread of cancer cells from a primary tumor to form metastasis at distant sites is a complex multi-step process. The cancer cell proteins, and plasma membrane proteins in particular, involved in this process are poorly defined and a study of the very early events of the metastatic process using...... clinical samples or in vitro assays is not feasible. We have used a unique model system consisting of two isogenic human breast cancer cell lines that are equally tumorigenic in mice, but while one gives rise to metastasis, the other disseminates single cells that remain dormant at distant organs. Membrane...... purification and comparative quantitative LC-MS/MS proteomic analysis identified 13 membrane proteins that were expressed at higher levels and 3 that were under-expressed in the metastatic compared to the non-metastatic cell line from a total of 1919 identified protein entries. Among the proteins were ecto-5...

  2. Using Quantum Confinement to Uniquely Identify Devices

    Science.gov (United States)

    Roberts, J.; Bagci, I. E.; Zawawi, M. A. M.; Sexton, J.; Hulbert, N.; Noori, Y. J.; Young, M. P.; Woodhead, C. S.; Missous, M.; Migliorato, M. A.; Roedig, U.; Young, R. J.

    2015-11-01

    Modern technology unintentionally provides resources that enable the trust of everyday interactions to be undermined. Some authentication schemes address this issue using devices that give a unique output in response to a challenge. These signatures are generated by hard-to-predict physical responses derived from structural characteristics, which lend themselves to two different architectures, known as unique objects (UNOs) and physically unclonable functions (PUFs). The classical design of UNOs and PUFs limits their size and, in some cases, their security. Here we show that quantum confinement lends itself to the provision of unique identities at the nanoscale, by using fluctuations in tunnelling measurements through quantum wells in resonant tunnelling diodes (RTDs). This provides an uncomplicated measurement of identity without conventional resource limitations whilst providing robust security. The confined energy levels are highly sensitive to the specific nanostructure within each RTD, resulting in a distinct tunnelling spectrum for every device, as they contain a unique and unpredictable structure that is presently impossible to clone. This new class of authentication device operates with minimal resources in simple electronic structures above room temperature.

  3. Identifying Key Attributes for Protein Beverages.

    Science.gov (United States)

    Oltman, A E; Lopetcharat, K; Bastian, E; Drake, M A

    2015-06-01

    This study identified key attributes of protein beverages and evaluated effects of priming on liking of protein beverages. An adaptive choice-based conjoint study was conducted along with Kano analysis to gain insight on protein beverage consumers (n = 432). Attributes evaluated included label claim, protein type, amount of protein, carbohydrates, sweeteners, and metabolic benefits. Utility scores for levels and importance scores for attributes were determined. Subsequently, two pairs of clear acidic whey protein beverages were manufactured that differed by age of protein source or the amount of whey protein per serving. Beverages were evaluated by 151 consumers on two occasions with or without priming statements. One priming statement declared "great flavor," the other priming statement declared 20 g protein per serving. A two way analysis of variance was applied to discern the role of each priming statement. The most important attribute for protein beverages was sweetener type, followed by amount of protein, followed by type of protein followed by label claim. Beverages with whey protein, naturally sweetened, reduced sugar and ≥15 g protein per serving were most desired. Three consumer clusters were identified, differentiated by their preferences for protein type, sweetener and amount of protein. Priming statements positively impacted concept liking (P 0.05). Consistent with trained panel profiles of increased cardboard flavor with higher protein content, consumers liked beverages with 10 g protein more than beverages with 20 g protein (6.8 compared with 5.7, P appeal. © 2015 Institute of Food Technologists®

  4. Discrete and structurally unique proteins (tāpirins) mediate attachment of extremely thermophilic Caldicellulosiruptor species to cellulose.

    Science.gov (United States)

    Blumer-Schuette, Sara E; Alahuhta, Markus; Conway, Jonathan M; Lee, Laura L; Zurawski, Jeffrey V; Giannone, Richard J; Hettich, Robert L; Lunin, Vladimir V; Himmel, Michael E; Kelly, Robert M

    2015-04-24

    A variety of catalytic and noncatalytic protein domains are deployed by select microorganisms to deconstruct lignocellulose. These extracellular proteins are used to attach to, modify, and hydrolyze the complex polysaccharides present in plant cell walls. Cellulolytic enzymes, often containing carbohydrate-binding modules, are key to this process; however, these enzymes are not solely responsible for attachment. Few mechanisms of attachment have been discovered among bacteria that do not form large polypeptide structures, called cellulosomes, to deconstruct biomass. In this study, bioinformatics and proteomics analyses identified unique, discrete, hypothetical proteins ("tāpirins," origin from Māori: to join), not directly associated with cellulases, that mediate attachment to cellulose by species in the noncellulosomal, extremely thermophilic bacterial genus Caldicellulosiruptor. Two tāpirin genes are located directly downstream of a type IV pilus operon in strongly cellulolytic members of the genus, whereas homologs are absent from the weakly cellulolytic Caldicellulosiruptor species. Based on their amino acid sequence, tāpirins are specific to these extreme thermophiles. Tāpirins are also unusual in that they share no detectable protein domain signatures with known polysaccharide-binding proteins. Adsorption isotherm and trans vivo analyses demonstrated the carbohydrate-binding module-like affinity of the tāpirins for cellulose. Crystallization of a cellulose-binding truncation from one tāpirin indicated that these proteins form a long β-helix core with a shielded hydrophobic face. Furthermore, they are structurally unique and define a new class of polysaccharide adhesins. Strongly cellulolytic Caldicellulosiruptor species employ tāpirins to complement substrate-binding proteins from the ATP-binding cassette transporters and multidomain extracellular and S-layer-associated glycoside hydrolases to process the carbohydrate content of lignocellulose.

  5. Uniqueness plots: A simple graphical tool for identifying poor peak fits in X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Singh, Bhupinder; Diwan, Anubhav; Jain, Varun; Herrera-Gomez, Alberto; Terry, Jeff; Linford, Matthew R.

    2016-01-01

    Highlights: • Uniqueness plots are introduced as a new tool for identifying poor XPS peak fits. • Uniqueness plots are demonstrated on real XPS data sets. • A horizontal line in a uniqueness plot indicates a poor fit, i.e., fit parameter correlation. • A parabolic shape in a uniqueness plot indicates that a fit may be appropriate. - Abstract: Peak fitting is an essential part of X-ray photoelectron spectroscopy (XPS) narrow scan analysis, and the Literature contains both good and bad examples of peak fitting. A common cause of poor peak fitting is the inclusion of too many fit parameters, often without a sound chemical and/or physical basis for them, and/or the failure to reasonably constrain them. Under these conditions, fit parameters are often correlated, and therefore lacking in statistical meaning. Here we introduce the uniqueness plot as a simple graphical tool for identifying bad peak fits in XPS, i.e., fit parameter correlation. These plots are widely used in spectroscopic ellipsometry. We illustrate uniqueness plots with two data sets: a C 1s narrow scan from ozone-treated carbon nanotube forests and an Si 2p narrow scan from an air-oxidized silicon wafer. For each fit, we consider different numbers of parameters and constraints on them. As expected, the uniqueness plots are parabolic when fewer fit parameters and/or more constraints are applied. However, they fan out and eventually become horizontal lines as more unconstrained parameters are included in the fits. Uniqueness plots are generated by plotting the chi squared (χ 2 ) value for a fit vs. a systematically varied value of a parameter in the fit. The Abbe criterion is also considered as a figure of merit for uniqueness plots in the Supporting Information. We recommend that uniqueness plots be used by XPS practitioners for identifying inappropriate peak fits.

  6. Uniqueness plots: A simple graphical tool for identifying poor peak fits in X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Bhupinder; Diwan, Anubhav; Jain, Varun [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84606 (United States); Herrera-Gomez, Alberto [CINVESTAV-Unidad Queretaro, Queretaro, 76230 (Mexico); Terry, Jeff [Department of Physics, Illinois Institute of Technology, Chicago, IL, 60616 (United States); Linford, Matthew R., E-mail: mrlinford@chem.byu.edu [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84606 (United States)

    2016-11-30

    Highlights: • Uniqueness plots are introduced as a new tool for identifying poor XPS peak fits. • Uniqueness plots are demonstrated on real XPS data sets. • A horizontal line in a uniqueness plot indicates a poor fit, i.e., fit parameter correlation. • A parabolic shape in a uniqueness plot indicates that a fit may be appropriate. - Abstract: Peak fitting is an essential part of X-ray photoelectron spectroscopy (XPS) narrow scan analysis, and the Literature contains both good and bad examples of peak fitting. A common cause of poor peak fitting is the inclusion of too many fit parameters, often without a sound chemical and/or physical basis for them, and/or the failure to reasonably constrain them. Under these conditions, fit parameters are often correlated, and therefore lacking in statistical meaning. Here we introduce the uniqueness plot as a simple graphical tool for identifying bad peak fits in XPS, i.e., fit parameter correlation. These plots are widely used in spectroscopic ellipsometry. We illustrate uniqueness plots with two data sets: a C 1s narrow scan from ozone-treated carbon nanotube forests and an Si 2p narrow scan from an air-oxidized silicon wafer. For each fit, we consider different numbers of parameters and constraints on them. As expected, the uniqueness plots are parabolic when fewer fit parameters and/or more constraints are applied. However, they fan out and eventually become horizontal lines as more unconstrained parameters are included in the fits. Uniqueness plots are generated by plotting the chi squared (χ{sup 2}) value for a fit vs. a systematically varied value of a parameter in the fit. The Abbe criterion is also considered as a figure of merit for uniqueness plots in the Supporting Information. We recommend that uniqueness plots be used by XPS practitioners for identifying inappropriate peak fits.

  7. Bioinformatics analysis identifies several intrinsically disordered human E3 ubiquitin-protein ligases

    Directory of Open Access Journals (Sweden)

    Wouter Boomsma

    2016-02-01

    Full Text Available The ubiquitin-proteasome system targets misfolded proteins for degradation. Since the accumulation of such proteins is potentially harmful for the cell, their prompt removal is important. E3 ubiquitin-protein ligases mediate substrate ubiquitination by bringing together the substrate with an E2 ubiquitin-conjugating enzyme, which transfers ubiquitin to the substrate. For misfolded proteins, substrate recognition is generally delegated to molecular chaperones that subsequently interact with specific E3 ligases. An important exception is San1, a yeast E3 ligase. San1 harbors extensive regions of intrinsic disorder, which provide both conformational flexibility and sites for direct recognition of misfolded targets of vastly different conformations. So far, no mammalian ortholog of San1 is known, nor is it clear whether other E3 ligases utilize disordered regions for substrate recognition. Here, we conduct a bioinformatics analysis to examine >600 human and S. cerevisiae E3 ligases to identify enzymes that are similar to San1 in terms of function and/or mechanism of substrate recognition. An initial sequence-based database search was found to detect candidates primarily based on the homology of their ordered regions, and did not capture the unique disorder patterns that encode the functional mechanism of San1. However, by searching specifically for key features of the San1 sequence, such as long regions of intrinsic disorder embedded with short stretches predicted to be suitable for substrate interaction, we identified several E3 ligases with these characteristics. Our initial analysis revealed that another remarkable trait of San1 is shared with several candidate E3 ligases: long stretches of complete lysine suppression, which in San1 limits auto-ubiquitination. We encode these characteristic features into a San1 similarity-score, and present a set of proteins that are plausible candidates as San1 counterparts in humans. In conclusion, our work

  8. Positive lysosomal modulation as a unique strategy to treat age-related protein accumulation diseases.

    Science.gov (United States)

    Bahr, Ben A; Wisniewski, Meagan L; Butler, David

    2012-04-01

    Lysosomes are involved in degrading and recycling cellular ingredients, and their disruption with age may contribute to amyloidogenesis, paired helical filaments (PHFs), and α-synuclein and mutant huntingtin aggregation. Lysosomal cathepsins are upregulated by accumulating proteins and more so by the modulator Z-Phe-Ala-diazomethylketone (PADK). Such positive modulators of the lysosomal system have been studied in the well-characterized hippocampal slice model of protein accumulation that exhibits the pathogenic cascade of tau aggregation, tubulin breakdown, microtubule destabilization, transport failure, and synaptic decline. Active cathepsins were upregulated by PADK; Rab proteins were modified as well, indicating enhanced trafficking, whereas lysosome-associated membrane protein and proteasome markers were unchanged. Lysosomal modulation reduced the pre-existing PHF deposits, restored tubulin structure and transport, and recovered synaptic components. Further proof-of-principle studies used Alzheimer disease mouse models. It was recently reported that systemic PADK administration caused dramatic increases in cathepsin B protein and activity levels, whereas neprilysin, insulin-degrading enzyme, α-secretase, and β-secretase were unaffected by PADK. In the transgenic models, PADK treatment resulted in clearance of intracellular amyloid beta (Aβ) peptide and concomitant reduction of extracellular deposits. Production of the less pathogenic Aβ(1-38) peptide corresponded with decreased levels of Aβ(1-42), supporting the lysosome's antiamyloidogenic role through intracellular truncation. Amelioration of synaptic and behavioral deficits also indicates a neuroprotective function of the lysosomal system, identifying lysosomal modulation as an avenue for disease-modifying therapies. From the in vitro and in vivo findings, unique lysosomal modulators represent a minimally invasive, pharmacologically controlled strategy against protein accumulation disorders to enhance

  9. Salivary gland proteome analysis reveals modulation of anopheline unique proteins in insensitive acetylcholinesterase resistant Anopheles gambiae mosquitoes.

    Directory of Open Access Journals (Sweden)

    Sylvie Cornelie

    Full Text Available Insensitive acetylcholinesterase resistance due to a mutation in the acetylcholinesterase (ace encoding ace-1 gene confers cross-resistance to organophosphate and carbamate insecticides in Anopheles gambiae populations from Central and West Africa. This mutation is associated with a strong genetic cost revealed through alterations of some life history traits but little is known about the physiological and behavioural changes in insects bearing the ace-1(R allele. Comparative analysis of the salivary gland contents between An. gambiae susceptible and ace-1(R resistant strains was carried out to charaterize factors that could be involved in modifications of blood meal process, trophic behaviour or pathogen interaction in the insecticide-resistant mosquitoes. Differential analysis of the salivary gland protein profiles revealed differences in abundance for several proteins, two of them showing major differences between the two strains. These two proteins identified as saglin and TRIO are salivary gland-1 related proteins, a family unique to anopheline mosquitoes, one of them playing a crucial role in salivary gland invasion by Plasmodium falciparum sporozoites. Differential expression of two other proteins previously identified in the Anopheles sialome was also observed. The differentially regulated proteins are involved in pathogen invasion, blood feeding process, and protection against oxidation, relevant steps in the outcome of malaria infection. Further functional studies and insect behaviour experiments would confirm the impact of the modification of the sialome composition on blood feeding and pathogen transmission abilities of the resistant mosquitoes. The data supports the hypothesis of alterations linked to insecticide resistance in the biology of the primary vector of human malaria in Africa.

  10. Cytotoxic protein from the mushroom Coprinus comatus possesses a unique mode for glycan binding and specificity.

    Science.gov (United States)

    Zhang, Peilan; Li, Kunhua; Yang, Guang; Xia, Changqing; Polston, Jane E; Li, Gengnan; Li, Shiwu; Lin, Zhao; Yang, Li-Jun; Bruner, Steven D; Ding, Yousong

    2017-08-22

    Glycans possess significant chemical diversity; glycan binding proteins (GBPs) recognize specific glycans to translate their structures to functions in various physiological and pathological processes. Therefore, the discovery and characterization of novel GBPs and characterization of glycan-GBP interactions are significant to provide potential targets for therapeutic intervention of many diseases. Here, we report the biochemical, functional, and structural characterization of a 130-amino-acid protein, Y3, from the mushroom Coprinus comatus Biochemical studies of recombinant Y3 from a yeast expression system demonstrated the protein is a unique GBP. Additionally, we show that Y3 exhibits selective and potent cytotoxicity toward human T-cell leukemia Jurkat cells compared with a panel of cancer cell lines via inducing caspase-dependent apoptosis. Screening of a glycan array demonstrated GalNAcβ1-4(Fucα1-3)GlcNAc (LDNF) as a specific Y3-binding ligand. To provide a structural basis for function, the crystal structure was solved to a resolution of 1.2 Å, revealing a single-domain αβα-sandwich motif. Two monomers were dimerized to form a large 10-stranded, antiparallel β-sheet flanked by α-helices on each side, representing a unique oligomerization mode among GBPs. A large glycan binding pocket extends into the dimeric interface, and docking of LDNF identified key residues for glycan interactions. Disruption of residues predicted to be involved in LDNF/Y3 interactions resulted in the significant loss of binding to Jurkat T-cells and severely impaired their cytotoxicity. Collectively, these results demonstrate Y3 to be a GBP with selective cytotoxicity toward human T-cell leukemia cells and indicate its potential use in cancer diagnosis and treatment.

  11. Uniqueness plots: A simple graphical tool for identifying poor peak fits in X-ray photoelectron spectroscopy

    Science.gov (United States)

    Singh, Bhupinder; Diwan, Anubhav; Jain, Varun; Herrera-Gomez, Alberto; Terry, Jeff; Linford, Matthew R.

    2016-11-01

    Peak fitting is an essential part of X-ray photoelectron spectroscopy (XPS) narrow scan analysis, and the Literature contains both good and bad examples of peak fitting. A common cause of poor peak fitting is the inclusion of too many fit parameters, often without a sound chemical and/or physical basis for them, and/or the failure to reasonably constrain them. Under these conditions, fit parameters are often correlated, and therefore lacking in statistical meaning. Here we introduce the uniqueness plot as a simple graphical tool for identifying bad peak fits in XPS, i.e., fit parameter correlation. These plots are widely used in spectroscopic ellipsometry. We illustrate uniqueness plots with two data sets: a C 1s narrow scan from ozone-treated carbon nanotube forests and an Si 2p narrow scan from an air-oxidized silicon wafer. For each fit, we consider different numbers of parameters and constraints on them. As expected, the uniqueness plots are parabolic when fewer fit parameters and/or more constraints are applied. However, they fan out and eventually become horizontal lines as more unconstrained parameters are included in the fits. Uniqueness plots are generated by plotting the chi squared (χ2) value for a fit vs. a systematically varied value of a parameter in the fit. The Abbe criterion is also considered as a figure of merit for uniqueness plots in the Supporting Information. We recommend that uniqueness plots be used by XPS practitioners for identifying inappropriate peak fits.

  12. Experimental Evolution of a Green Fluorescent Protein Composed of 19 Unique Amino Acids without Tryptophan

    Science.gov (United States)

    Kawahara-Kobayashi, Akio; Hitotsuyanagi, Mitsuhiro; Amikura, Kazuaki; Kiga, Daisuke

    2014-04-01

    At some stage of evolution, genes of organisms may have encoded proteins that were synthesized using fewer than 20 unique amino acids. Similar to evolution of the natural 19-amino-acid proteins GroEL/ES, proteins composed of 19 unique amino acids would have been able to evolve by accumulating beneficial mutations within the 19-amino-acid repertoire encoded in an ancestral genetic code. Because Trp is thought to be the last amino acid included in the canonical 20-amino-acid repertoire, this late stage of protein evolution could be mimicked by experimental evolution of 19-amino-acid proteins without tryptophan (Trp). To further understand the evolution of proteins, we tried to mimic the evolution of a 19-amino-acid protein involving the accumulation of beneficial mutations using directed evolution by random mutagenesis on the whole targeted gene sequence. We created active 19-amino-acid green fluorescent proteins (GFPs) without Trp from a poorly fluorescent 19-amino-acid mutant, S1-W57F, by using directed evolution with two rounds of mutagenesis and selection. The N105I and S205T mutations showed beneficial effects on the S1-W57F mutant. When these two mutations were combined on S1-W57F, we observed an additive effect on the fluorescence intensity. In contrast, these mutations showed no clear improvement individually or in combination on GFPS1, which is the parental GFP mutant composed of 20 amino acids. Our results provide an additional example for the experimental evolution of 19-amino-acid proteins without Trp, and would help understand the mechanisms underlying the evolution of 19-amino-acid proteins. (236 words)

  13. High confidence proteomic analysis of yeast LDs identifies additional droplet proteins and reveals connections to dolichol synthesis and sterol acetylation.

    Science.gov (United States)

    Currie, Erin; Guo, Xiuling; Christiano, Romain; Chitraju, Chandramohan; Kory, Nora; Harrison, Kenneth; Haas, Joel; Walther, Tobias C; Farese, Robert V

    2014-07-01

    Accurate protein inventories are essential for understanding an organelle's functions. The lipid droplet (LD) is a ubiquitous intracellular organelle with major functions in lipid storage and metabolism. LDs differ from other organelles because they are bounded by a surface monolayer, presenting unique features for protein targeting to LDs. Many proteins of varied functions have been found in purified LD fractions by proteomics. While these studies have become increasingly sensitive, it is often unclear which of the identified proteins are specific to LDs. Here we used protein correlation profiling to identify 35 proteins that specifically enrich with LD fractions of Saccharomyces cerevisiae Of these candidates, 30 fluorophore-tagged proteins localize to LDs by microscopy, including six proteins, several with human orthologs linked to diseases, which we newly identify as LD proteins (Cab5, Rer2, Say1, Tsc10, YKL047W, and YPR147C). Two of these proteins, Say1, a sterol deacetylase, and Rer2, a cis-isoprenyl transferase, are enzymes involved in sterol and polyprenol metabolism, respectively, and we show their activities are present in LD fractions. Our results provide a highly specific list of yeast LD proteins and reveal that the vast majority of these proteins are involved in lipid metabolism. Copyright © 2014 by the American Society for Biochemistry and Molecular Biology, Inc.

  14. Cytotoxic protein from the mushroom Coprinus comatus possesses a unique mode for glycan binding and specificity

    Science.gov (United States)

    Zhang, Peilan; Yang, Guang; Xia, Changqing; Polston, Jane E.; Li, Gengnan; Li, Shiwu; Lin, Zhao; Yang, Li-jun; Bruner, Steven D.

    2017-01-01

    Glycans possess significant chemical diversity; glycan binding proteins (GBPs) recognize specific glycans to translate their structures to functions in various physiological and pathological processes. Therefore, the discovery and characterization of novel GBPs and characterization of glycan–GBP interactions are significant to provide potential targets for therapeutic intervention of many diseases. Here, we report the biochemical, functional, and structural characterization of a 130-amino-acid protein, Y3, from the mushroom Coprinus comatus. Biochemical studies of recombinant Y3 from a yeast expression system demonstrated the protein is a unique GBP. Additionally, we show that Y3 exhibits selective and potent cytotoxicity toward human T-cell leukemia Jurkat cells compared with a panel of cancer cell lines via inducing caspase-dependent apoptosis. Screening of a glycan array demonstrated GalNAcβ1–4(Fucα1–3)GlcNAc (LDNF) as a specific Y3-binding ligand. To provide a structural basis for function, the crystal structure was solved to a resolution of 1.2 Å, revealing a single-domain αβα-sandwich motif. Two monomers were dimerized to form a large 10-stranded, antiparallel β-sheet flanked by α-helices on each side, representing a unique oligomerization mode among GBPs. A large glycan binding pocket extends into the dimeric interface, and docking of LDNF identified key residues for glycan interactions. Disruption of residues predicted to be involved in LDNF/Y3 interactions resulted in the significant loss of binding to Jurkat T-cells and severely impaired their cytotoxicity. Collectively, these results demonstrate Y3 to be a GBP with selective cytotoxicity toward human T-cell leukemia cells and indicate its potential use in cancer diagnosis and treatment. PMID:28784797

  15. Interaction of Proteins Identified in Human Thyroid Cells

    Science.gov (United States)

    Pietsch, Jessica; Riwaldt, Stefan; Bauer, Johann; Sickmann, Albert; Weber, Gerhard; Grosse, Jirka; Infanger, Manfred; Eilles, Christoph; Grimm, Daniela

    2013-01-01

    Influence of gravity forces on the regulation of protein expression by healthy and malignant thyroid cells was studied with the aim to identify protein interactions. Western blot analyses of a limited number of proteins suggested a time-dependent regulation of protein expression by simulated microgravity. After applying free flow isoelectric focusing and mass spectrometry to search for differently expressed proteins by thyroid cells exposed to simulated microgravity for three days, a considerable number of candidates for gravi-sensitive proteins were detected. In order to show how proteins sensitive to microgravity could directly influence other proteins, we investigated all polypeptide chains identified with Mascot scores above 100, looking for groups of interacting proteins. Hence, UniProtKB entry numbers of all detected proteins were entered into the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and processed. The program indicated that we had detected various groups of interacting proteins in each of the three cell lines studied. The major groups of interacting proteins play a role in pathways of carbohydrate and protein metabolism, regulation of cell growth and cell membrane structuring. Analyzing these groups, networks of interaction could be established which show how a punctual influence of simulated microgravity may propagate via various members of interaction chains. PMID:23303277

  16. Interaction of Proteins Identified in Human Thyroid Cells

    Directory of Open Access Journals (Sweden)

    Jessica Pietsch

    2013-01-01

    Full Text Available Influence of gravity forces on the regulation of protein expression by healthy and malignant thyroid cells was studied with the aim to identify protein interactions. Western blot analyses of a limited number of proteins suggested a time-dependent regulation of protein expression by simulated microgravity. After applying free flow isoelectric focusing and mass spectrometry to search for differently expressed proteins by thyroid cells exposed to simulated microgravity for three days, a considerable number of candidates for gravi-sensitive proteins were detected. In order to show how proteins sensitive to microgravity could directly influence other proteins, we investigated all polypeptide chains identified with Mascot scores above 100, looking for groups of interacting proteins. Hence, UniProtKB entry numbers of all detected proteins were entered into the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING and processed. The program indicated that we had detected various groups of interacting proteins in each of the three cell lines studied. The major groups of interacting proteins play a role in pathways of carbohydrate and protein metabolism, regulation of cell growth and cell membrane structuring. Analyzing these groups, networks of interaction could be established which show how a punctual influence of simulated microgravity may propagate via various members of interaction chains.

  17. SitesIdentify: a protein functional site prediction tool

    Directory of Open Access Journals (Sweden)

    Doig Andrew J

    2009-11-01

    Full Text Available Abstract Background The rate of protein structures being deposited in the Protein Data Bank surpasses the capacity to experimentally characterise them and therefore computational methods to analyse these structures have become increasingly important. Identifying the region of the protein most likely to be involved in function is useful in order to gain information about its potential role. There are many available approaches to predict functional site, but many are not made available via a publicly-accessible application. Results Here we present a functional site prediction tool (SitesIdentify, based on combining sequence conservation information with geometry-based cleft identification, that is freely available via a web-server. We have shown that SitesIdentify compares favourably to other functional site prediction tools in a comparison of seven methods on a non-redundant set of 237 enzymes with annotated active sites. Conclusion SitesIdentify is able to produce comparable accuracy in predicting functional sites to its closest available counterpart, but in addition achieves improved accuracy for proteins with few characterised homologues. SitesIdentify is available via a webserver at http://www.manchester.ac.uk/bioinformatics/sitesidentify/

  18. A lanthipeptide library used to identify a protein-protein interaction inhibitor.

    Science.gov (United States)

    Yang, Xiao; Lennard, Katherine R; He, Chang; Walker, Mark C; Ball, Andrew T; Doigneaux, Cyrielle; Tavassoli, Ali; van der Donk, Wilfred A

    2018-04-01

    In this article we describe the production and screening of a genetically encoded library of 10 6 lanthipeptides in Escherichia coli using the substrate-tolerant lanthipeptide synthetase ProcM. This plasmid-encoded library was combined with a bacterial reverse two-hybrid system for the interaction of the HIV p6 protein with the UEV domain of the human TSG101 protein, which is a critical protein-protein interaction for HIV budding from infected cells. Using this approach, we identified an inhibitor of this interaction from the lanthipeptide library, whose activity was verified in vitro and in cell-based virus-like particle-budding assays. Given the variety of lanthipeptide backbone scaffolds that may be produced with ProcM, this method may be used for the generation of genetically encoded libraries of natural product-like lanthipeptides containing substantial structural diversity. Such libraries may be combined with any cell-based assay to identify lanthipeptides with new biological activities.

  19. Je, a versatile suite to handle multiplexed NGS libraries with unique molecular identifiers

    OpenAIRE

    Girardot, Charles; Scholtalbers, Jelle; Sauer, Sajoscha; Su, Shu-Yi; Furlong, Eileen E.M.

    2016-01-01

    Background The yield obtained from next generation sequencers has increased almost exponentially in recent years, making sample multiplexing common practice. While barcodes (known sequences of fixed length) primarily encode the sample identity of sequenced DNA fragments, barcodes made of random sequences (Unique Molecular Identifier or UMIs) are often used to distinguish between PCR duplicates and transcript abundance in, for example, single-cell RNA sequencing (scRNA-seq). In paired-end sequ...

  20. Identifying Non-Volatile Data Storage Areas: Unique Notebook Identification Information as Digital Evidence

    Directory of Open Access Journals (Sweden)

    Nikica Budimir

    2007-03-01

    Full Text Available The research reported in this paper introduces new techniques to aid in the identification of recovered notebook computers so they may be returned to the rightful owner. We identify non-volatile data storage areas as a means of facilitating the safe storing of computer identification information. A forensic proof of concept tool has been designed to test the feasibility of several storage locations identified within this work to hold the data needed to uniquely identify a computer. The tool was used to perform the creation and extraction of created information in order to allow the analysis of the non-volatile storage locations as valid storage areas capable of holding and preserving the data created within them.  While the format of the information used to identify the machine itself is important, this research only discusses the insertion, storage and ability to retain such information.

  1. Novel mitochondria-targeted heat-soluble proteins identified in the anhydrobiotic Tardigrade improve osmotic tolerance of human cells.

    Directory of Open Access Journals (Sweden)

    Sae Tanaka

    Full Text Available Tardigrades are able to tolerate almost complete dehydration through transition to a metabolically inactive state, called "anhydrobiosis". Late Embryogenesis Abundant (LEA proteins are heat-soluble proteins involved in the desiccation tolerance of many anhydrobiotic organisms. Tardigrades, Ramazzottius varieornatus, however, express predominantly tardigrade-unique heat-soluble proteins: CAHS (Cytoplasmic Abundant Heat Soluble and SAHS (Secretory Abundant Heat Soluble proteins, which are secreted or localized in most intracellular compartments, except the mitochondria. Although mitochondrial integrity is crucial to ensure cellular survival, protective molecules for mitochondria have remained elusive. Here, we identified two novel mitochondrial heat-soluble proteins, RvLEAM and MAHS (Mitochondrial Abundant Heat Soluble, as potent mitochondrial protectants from Ramazzottius varieornatus. RvLEAM is a group3 LEA protein and immunohistochemistry confirmed its mitochondrial localization in tardigrade cells. MAHS-green fluorescent protein fusion protein localized in human mitochondria and was heat-soluble in vitro, though no sequence similarity with other known proteins was found, and one region was conserved among tardigrades. Furthermore, we demonstrated that RvLEAM protein as well as MAHS protein improved the hyperosmotic tolerance of human cells. The findings of the present study revealed that tardigrade mitochondria contain at least two types of heat-soluble proteins that might have protective roles in water-deficient environments.

  2. Automatically identifying gene/protein terms in MEDLINE abstracts.

    Science.gov (United States)

    Yu, Hong; Hatzivassiloglou, Vasileios; Rzhetsky, Andrey; Wilbur, W John

    2002-01-01

    Natural language processing (NLP) techniques are used to extract information automatically from computer-readable literature. In biology, the identification of terms corresponding to biological substances (e.g., genes and proteins) is a necessary step that precedes the application of other NLP systems that extract biological information (e.g., protein-protein interactions, gene regulation events, and biochemical pathways). We have developed GPmarkup (for "gene/protein-full name mark up"), a software system that automatically identifies gene/protein terms (i.e., symbols or full names) in MEDLINE abstracts. As a part of marking up process, we also generated automatically a knowledge source of paired gene/protein symbols and full names (e.g., LARD for lymphocyte associated receptor of death) from MEDLINE. We found that many of the pairs in our knowledge source do not appear in the current GenBank database. Therefore our methods may also be used for automatic lexicon generation. GPmarkup has 73% recall and 93% precision in identifying and marking up gene/protein terms in MEDLINE abstracts. A random sample of gene/protein symbols and full names and a sample set of marked up abstracts can be viewed at http://www.cpmc.columbia.edu/homepages/yuh9001/GPmarkup/. Contact. hy52@columbia.edu. Voice: 212-939-7028; fax: 212-666-0140.

  3. Identifying Hierarchical and Overlapping Protein Complexes Based on Essential Protein-Protein Interactions and “Seed-Expanding” Method

    Directory of Open Access Journals (Sweden)

    Jun Ren

    2014-01-01

    Full Text Available Many evidences have demonstrated that protein complexes are overlapping and hierarchically organized in PPI networks. Meanwhile, the large size of PPI network wants complex detection methods have low time complexity. Up to now, few methods can identify overlapping and hierarchical protein complexes in a PPI network quickly. In this paper, a novel method, called MCSE, is proposed based on λ-module and “seed-expanding.” First, it chooses seeds as essential PPIs or edges with high edge clustering values. Then, it identifies protein complexes by expanding each seed to a λ-module. MCSE is suitable for large PPI networks because of its low time complexity. MCSE can identify overlapping protein complexes naturally because a protein can be visited by different seeds. MCSE uses the parameter λ_th to control the range of seed expanding and can detect a hierarchical organization of protein complexes by tuning the value of λ_th. Experimental results of S. cerevisiae show that this hierarchical organization is similar to that of known complexes in MIPS database. The experimental results also show that MCSE outperforms other previous competing algorithms, such as CPM, CMC, Core-Attachment, Dpclus, HC-PIN, MCL, and NFC, in terms of the functional enrichment and matching with known protein complexes.

  4. Proteomic analysis of cerebrospinal fluid from children with central nervous system tumors identifies candidate proteins relating to tumor metastatic spread.

    Science.gov (United States)

    Spreafico, Filippo; Bongarzone, Italia; Pizzamiglio, Sara; Magni, Ruben; Taverna, Elena; De Bortoli, Maida; Ciniselli, Chiara M; Barzanò, Elena; Biassoni, Veronica; Luchini, Alessandra; Liotta, Lance A; Zhou, Weidong; Signore, Michele; Verderio, Paolo; Massimino, Maura

    2017-07-11

    Central nervous system (CNS) tumors are the most common solid tumors in childhood. Since the sensitivity of combined cerebrospinal fluid (CSF) cytology and radiological neuroimaging in detecting meningeal metastases remains relatively low, we sought to characterize the CSF proteome of patients with CSF tumors to identify biomarkers predictive of metastatic spread. CSF samples from 27 children with brain tumors and 13 controls (extra-CNS non-Hodgkin lymphoma) were processed using core-shell hydrogel nanoparticles, and analyzed with reverse-phase liquid chromatography/electrospray tandem mass spectrometry (LC-MS/MS). Candidate proteins were identified with Fisher's exact test and/or a univariate logistic regression model. Reverse phase protein array (RPPA), Western blot (WB), and ELISA were used in the training set and in an independent set of CFS samples (60 cases, 14 controls) to validate our discovery findings. Among the 558 non-redundant proteins identified by LC-MS/MS, 147 were missing from the CSF database at http://www.biosino.org. Fourteen of the 26 final top-candidate proteins were chosen for validation with WB, RPPA and ELISA methods. Six proteins (type 1 collagen, insulin-like growth factor binding protein 4, procollagen C-endopeptidase enhancer 1, glial cell-line derived neurotrophic factor receptor α2, inter-alpha-trypsin inhibitor heavy chain 4, neural proliferation and differentiation control protein-1) revealed the ability to discriminate metastatic cases from controls. Combining a unique dataset of CSFs from pediatric CNS tumors with a novel enabling nanotechnology led us to identify CSF proteins potentially related to metastatic status.

  5. Incorporation of unique molecular identifiers in TruSeq adapters improves the accuracy of quantitative sequencing.

    Science.gov (United States)

    Hong, Jungeui; Gresham, David

    2017-11-01

    Quantitative analysis of next-generation sequencing (NGS) data requires discriminating duplicate reads generated by PCR from identical molecules that are of unique origin. Typically, PCR duplicates are identified as sequence reads that align to the same genomic coordinates using reference-based alignment. However, identical molecules can be independently generated during library preparation. Misidentification of these molecules as PCR duplicates can introduce unforeseen biases during analyses. Here, we developed a cost-effective sequencing adapter design by modifying Illumina TruSeq adapters to incorporate a unique molecular identifier (UMI) while maintaining the capacity to undertake multiplexed, single-index sequencing. Incorporation of UMIs into TruSeq adapters (TrUMIseq adapters) enables identification of bona fide PCR duplicates as identically mapped reads with identical UMIs. Using TrUMIseq adapters, we show that accurate removal of PCR duplicates results in improved accuracy of both allele frequency (AF) estimation in heterogeneous populations using DNA sequencing and gene expression quantification using RNA-Seq.

  6. NHash: Randomized N-Gram Hashing for Distributed Generation of Validatable Unique Study Identifiers in Multicenter Research.

    Science.gov (United States)

    Zhang, Guo-Qiang; Tao, Shiqiang; Xing, Guangming; Mozes, Jeno; Zonjy, Bilal; Lhatoo, Samden D; Cui, Licong

    2015-11-10

    A unique study identifier serves as a key for linking research data about a study subject without revealing protected health information in the identifier. While sufficient for single-site and limited-scale studies, the use of common unique study identifiers has several drawbacks for large multicenter studies, where thousands of research participants may be recruited from multiple sites. An important property of study identifiers is error tolerance (or validatable), in that inadvertent editing mistakes during their transmission and use will most likely result in invalid study identifiers. This paper introduces a novel method called "Randomized N-gram Hashing (NHash)," for generating unique study identifiers in a distributed and validatable fashion, in multicenter research. NHash has a unique set of properties: (1) it is a pseudonym serving the purpose of linking research data about a study participant for research purposes; (2) it can be generated automatically in a completely distributed fashion with virtually no risk for identifier collision; (3) it incorporates a set of cryptographic hash functions based on N-grams, with a combination of additional encryption techniques such as a shift cipher; (d) it is validatable (error tolerant) in the sense that inadvertent edit errors will mostly result in invalid identifiers. NHash consists of 2 phases. First, an intermediate string using randomized N-gram hashing is generated. This string consists of a collection of N-gram hashes f1, f2, ..., fk. The input for each function fi has 3 components: a random number r, an integer n, and input data m. The result, fi(r, n, m), is an n-gram of m with a starting position s, which is computed as (r mod |m|), where |m| represents the length of m. The output for Step 1 is the concatenation of the sequence f1(r1, n1, m1), f2(r2, n2, m2), ..., fk(rk, nk, mk). In the second phase, the intermediate string generated in Phase 1 is encrypted using techniques such as shift cipher. The result

  7. Improvements in the Protein Identifier Cross-Reference service.

    Science.gov (United States)

    Wein, Samuel P; Côté, Richard G; Dumousseau, Marine; Reisinger, Florian; Hermjakob, Henning; Vizcaíno, Juan A

    2012-07-01

    The Protein Identifier Cross-Reference (PICR) service is a tool that allows users to map protein identifiers, protein sequences and gene identifiers across over 100 different source databases. PICR takes input through an interactive website as well as Representational State Transfer (REST) and Simple Object Access Protocol (SOAP) services. It returns the results as HTML pages, XLS and CSV files. It has been in production since 2007 and has been recently enhanced to add new functionality and increase the number of databases it covers. Protein subsequences can be Basic Local Alignment Search Tool (BLAST) against the UniProt Knowledgebase (UniProtKB) to provide an entry point to the standard PICR mapping algorithm. In addition, gene identifiers from UniProtKB and Ensembl can now be submitted as input or mapped to as output from PICR. We have also implemented a 'best-guess' mapping algorithm for UniProt. In this article, we describe the usefulness of PICR, how these changes have been implemented, and the corresponding additions to the web services. Finally, we explain that the number of source databases covered by PICR has increased from the initial 73 to the current 102. New resources include several new species-specific Ensembl databases as well as the Ensembl Genome ones. PICR can be accessed at http://www.ebi.ac.uk/Tools/picr/.

  8. Coupling genetics and proteomics to identify aphid proteins associated with vector-specific transmission of polerovirus (luteoviridae).

    Science.gov (United States)

    Yang, Xiaolong; Thannhauser, T W; Burrows, Mary; Cox-Foster, Diana; Gildow, Fred E; Gray, Stewart M

    2008-01-01

    Cereal yellow dwarf virus-RPV (CYDV-RPV) is transmitted specifically by the aphids Rhopalosiphum padi and Schizaphis graminum in a circulative nonpropagative manner. The high level of vector specificity results from the vector aphids having the functional components of the receptor-mediated endocytotic pathways to allow virus to transverse the gut and salivary tissues. Studies of F(2) progeny from crosses of vector and nonvector genotypes of S. graminum showed that virus transmission efficiency is a heritable trait regulated by multiple genes acting in an additive fashion and that gut- and salivary gland-associated factors are not genetically linked. Utilizing two-dimensional difference gel electrophoresis to compare the proteomes of vector and nonvector parental and F(2) genotypes, four aphid proteins (S4, S8, S29, and S405) were specifically associated with the ability of S. graminum to transmit CYDV-RPV. The four proteins were coimmunoprecipitated with purified RPV, indicating that the aphid proteins are capable of binding to virus. Analysis by mass spectrometry identified S4 as a luciferase and S29 as a cyclophilin, both of which have been implicated in macromolecular transport. Proteins S8 and S405 were not identified from available databases. Study of this unique genetic system coupled with proteomic analysis indicated that these four virus-binding aphid proteins were specifically inherited and conserved in different generations of vector genotypes and suggests that they play a major role in regulating polerovirus transmission.

  9. Digital identifiers as permanent unique registers for researchers in the university context

    Directory of Open Access Journals (Sweden)

    Luisa F. Acosta-Ortega

    2016-09-01

    Full Text Available The increase in the use of Internet and the web allows a wide access to a greater warehouse of information sources in thousand of journals and publications, nets of almost unlimited number of people, computers and opportunities for learning and research without precedents. That makes the correct identification and recovery of scientific production of researchers very difficult. For that reason, during the last years different attemps of different organizations have been made to create a permanent unique register for authors, which permits to identify their articles wherever they are placed and without taking into account the specificity in the author’s name, publishing and  processing practices In data base,  and different bibliographic description styles as well. ORCID (Openn Researcher and Contribution ID is an identifier with the greatest posibilities of becoming universal to achieve visibility and positioning of Latin-American universities in the present international context.

  10. Unique Trichomonas vaginalis gene sequences identified in multinational regions of Northwest China.

    Science.gov (United States)

    Liu, Jun; Feng, Meng; Wang, Xiaolan; Fu, Yongfeng; Ma, Cailing; Cheng, Xunjia

    2017-07-24

    Trichomonas vaginalis (T. vaginalis) is a flagellated protozoan parasite that infects humans worldwide. This study determined the sequence of the 18S ribosomal RNA gene of T. vaginalis infecting both females and males in Xinjiang, China. Samples from 73 females and 28 males were collected and confirmed for infection with T. vaginalis, a total of 110 sequences were identified when the T. vaginalis 18S ribosomal RNA gene was sequenced. These sequences were used to prepare a phylogenetic network. The rooted network comprised three large clades and several independent branches. Most of the Xinjiang sequences were in one group. Preliminary results suggest that Xinjiang T. vaginalis isolates might be genetically unique, as indicated by the sequence of their 18S ribosomal RNA gene. Low migration rate of local people in this province may contribute to a genetic conservativeness of T. vaginalis. The unique genetic feature of our isolates may suggest a different clinical presentation of trichomoniasis, including metronidazole susceptibility, T. vaginalis virus or Mycoplasma co-infection characteristics. The transmission and evolution of Xinjiang T. vaginalis is of interest and should be studied further. More attention should be given to T. vaginalis infection in both females and males in Xinjiang.

  11. Cells determine cell density using a small protein bound to a unique tissue-specific phospholipid

    Directory of Open Access Journals (Sweden)

    Christopher J. Petzold

    2013-10-01

    bone cofactor was identified as a lipid containing a ceramide phosphate, a single chained glycerol lipid and a linker. Tendon uses a different cofactor made up of two fatty acid chains linked directly to the phosphate yielding a molecule about half the size. Moreover, adding the tendon factor/cofactor to osteosarcoma cells causes them to stop growing, which is opposite to its role with tendon cells. Thus, the cofactor is cell type specific both in composition and in the triggered response. Further support of its proposed role came from frozen sections from 5 week old mice where an antibody to the factor stained strongly at the growing ends of the tendon as predicted. In conclusion, the molecule needed for cell density signaling is a small protein bound to a unique, tissue-specific phospholipid yielding a membrane associated but diffusible molecule. Signal transduction is postulated to occur by an increased ordering of the plasma membrane as the concentration of this protein/lipid increases with cell density.

  12. Adopting ORCID as a unique identifier will benefit all involved in scholarly communication.

    Science.gov (United States)

    Arunachalam, Subbiah; Madhan, Muthu

    2016-01-01

    ORCID, the Open Researcher and Contributor ID, is a non- profit, community-driven effort to create and maintain a registry of unique researcher identifiers and a transparent method of linking research activities and outputs to these identifiers. Together with other persistent identifiers for scholarly works such as digital object identifiers (DOIs) and identifiers for organizations, ORCID makes research more discoverable. It helps ensure that one's grants, publications and outputs are correctly attributed. It helps the research community not just in aggregating publications, but in every stage of research, viz. publishing, reviewing, profiling, metrics, accessing and archiving. Funding agencies in Austria, Australia, Denmark, Portugal, Sweden and the UK, and the world's leading scholarly publishers and associations have integrated their systems with ORCID registry. Among the BRICS countries, China and South Africa are adopting ORCID avidly. India is yet to make a beginning. If research councils and funding agencies in India require researchers to adopt ORCID and link ORCID iDs to funding as well as tracking performance, it will help them keep track of the workflow. Journal editors can also keep track of contributions made by different authors and work assigned to different reviewers through their ORCID iDs.

  13. A predicted protein interactome identifies conserved global networks and disease resistance subnetworks in maize.

    Directory of Open Access Journals (Sweden)

    Matt eGeisler

    2015-06-01

    Full Text Available Interactomes are genome-wide roadmaps of protein-protein interactions. They have been produced for humans, yeast, the fruit fly, and Arabidopsis thaliana and have become invaluable tools for generating and testing hypotheses. A predicted interactome for Zea mays (PiZeaM is presented here as an aid to the research community for this valuable crop species. PiZeaM was built using a proven method of interologs (interacting orthologs that were identified using both one-to-one and many-to-many orthology between genomes of maize and reference species. Where both maize orthologs occurred for an experimentally determined interaction in the reference species, we predicted a likely interaction in maize. A total of 49,026 unique interactions for 6,004 maize proteins were predicted. These interactions are enriched for processes that are evolutionarily conserved, but include many otherwise poorly annotated proteins in maize. The predicted maize interactions were further analyzed by comparing annotation of interacting proteins, including different layers of ontology. A map of pairwise gene co-expression was also generated and compared to predicted interactions. Two global subnetworks were constructed for highly conserved interactions. These subnetworks showed clear clustering of proteins by function. Another subnetwork was created for disease response using a bait and prey strategy to capture interacting partners for proteins that respond to other organisms. Closer examination of this subnetwork revealed the connectivity between biotic and abiotic hormone stress pathways. We believe PiZeaM will provide a useful tool for the prediction of protein function and analysis of pathways for Z. mays researchers and is presented in this paper as a reference tool for the exploration of protein interactions in maize.

  14. Identifying Bacterial Immune Evasion Proteins Using Phage Display.

    Science.gov (United States)

    Fevre, Cindy; Scheepmaker, Lisette; Haas, Pieter-Jan

    2017-01-01

    Methods aimed at identification of immune evasion proteins are mainly rely on in silico prediction of sequence, structural homology to known evasion proteins or use a proteomics driven approach. Although proven successful these methods are limited by a low efficiency and or lack of functional identification. Here we describe a high-throughput genomic strategy to functionally identify bacterial immune evasion proteins using phage display technology. Genomic bacterial DNA is randomly fragmented and ligated into a phage display vector that is used to create a phage display library expressing bacterial secreted and membrane bound proteins. This library is used to select displayed bacterial secretome proteins that interact with host immune components.

  15. Je, a versatile suite to handle multiplexed NGS libraries with unique molecular identifiers.

    Science.gov (United States)

    Girardot, Charles; Scholtalbers, Jelle; Sauer, Sajoscha; Su, Shu-Yi; Furlong, Eileen E M

    2016-10-08

    The yield obtained from next generation sequencers has increased almost exponentially in recent years, making sample multiplexing common practice. While barcodes (known sequences of fixed length) primarily encode the sample identity of sequenced DNA fragments, barcodes made of random sequences (Unique Molecular Identifier or UMIs) are often used to distinguish between PCR duplicates and transcript abundance in, for example, single-cell RNA sequencing (scRNA-seq). In paired-end sequencing, different barcodes can be inserted at each fragment end to either increase the number of multiplexed samples in the library or to use one of the barcodes as UMI. Alternatively, UMIs can be combined with the sample barcodes into composite barcodes, or with standard Illumina® indexing. Subsequent analysis must take read duplicates and sample identity into account, by identifying UMIs. Existing tools do not support these complex barcoding configurations and custom code development is frequently required. Here, we present Je, a suite of tools that accommodates complex barcoding strategies, extracts UMIs and filters read duplicates taking UMIs into account. Using Je on publicly available scRNA-seq and iCLIP data containing UMIs, the number of unique reads increased by up to 36 %, compared to when UMIs are ignored. Je is implemented in JAVA and uses the Picard API. Code, executables and documentation are freely available at http://gbcs.embl.de/Je . Je can also be easily installed in Galaxy through the Galaxy toolshed.

  16. Identifying New Small Proteins in Escherichia coli.

    Science.gov (United States)

    VanOrsdel, Caitlin E; Kelly, John P; Burke, Brittany N; Lein, Christina D; Oufiero, Christopher E; Sanchez, Joseph F; Wimmers, Larry E; Hearn, David J; Abuikhdair, Fatimeh J; Barnhart, Kathryn R; Duley, Michelle L; Ernst, Sarah E G; Kenerson, Briana A; Serafin, Aubrey J; Hemm, Matthew R

    2018-04-12

    The number of small proteins (SPs) encoded in the Escherichia coli genome is unknown, as current bioinformatics and biochemical techniques make short gene and small protein identification challenging. One method of small protein identification involves adding an epitope tag to the 3' end of a short open reading frame (sORF) on the chromosome, with synthesis confirmed by immunoblot assays. In this study, this strategy was used to identify new E. coli small proteins, tagging 80 sORFs in the E. coli genome, and assayed for protein synthesis. The selected sORFs represent diverse sequence characteristics, including degrees of sORF conservation, predicted transmembrane domains, sORF direction with respect to flanking genes, ribosome binding site (RBS) prediction, and ribosome profiling results. Of 80 sORFs, 36 resulted in encoded synthesized proteins-a 45% success rate. Modeling of detected versus non-detected small proteins analysis showed predictions based on RBS prediction, transcription data, and ribosome profiling had statistically-significant correlation with protein synthesis; however, there was no correlation between current sORF annotation and protein synthesis. These results suggest substantial numbers of small proteins remain undiscovered in E. coli, and existing bioinformatics techniques must continue to improve to facilitate identification. © 2018 The Authors. Proteomics Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Towson University.

  17. Coupling Genetics and Proteomics To Identify Aphid Proteins Associated with Vector-Specific Transmission of Polerovirus (Luteoviridae)▿

    Science.gov (United States)

    Yang, Xiaolong; Thannhauser, T. W.; Burrows, Mary; Cox-Foster, Diana; Gildow, Fred E.; Gray, Stewart M.

    2008-01-01

    Cereal yellow dwarf virus-RPV (CYDV-RPV) is transmitted specifically by the aphids Rhopalosiphum padi and Schizaphis graminum in a circulative nonpropagative manner. The high level of vector specificity results from the vector aphids having the functional components of the receptor-mediated endocytotic pathways to allow virus to transverse the gut and salivary tissues. Studies of F2 progeny from crosses of vector and nonvector genotypes of S. graminum showed that virus transmission efficiency is a heritable trait regulated by multiple genes acting in an additive fashion and that gut- and salivary gland-associated factors are not genetically linked. Utilizing two-dimensional difference gel electrophoresis to compare the proteomes of vector and nonvector parental and F2 genotypes, four aphid proteins (S4, S8, S29, and S405) were specifically associated with the ability of S. graminum to transmit CYDV-RPV. The four proteins were coimmunoprecipitated with purified RPV, indicating that the aphid proteins are capable of binding to virus. Analysis by mass spectrometry identified S4 as a luciferase and S29 as a cyclophilin, both of which have been implicated in macromolecular transport. Proteins S8 and S405 were not identified from available databases. Study of this unique genetic system coupled with proteomic analysis indicated that these four virus-binding aphid proteins were specifically inherited and conserved in different generations of vector genotypes and suggests that they play a major role in regulating polerovirus transmission. PMID:17959668

  18. Identifying Floppy and Rigid Regions in Proteins

    Science.gov (United States)

    Jacobs, D. J.; Thorpe, M. F.; Kuhn, L. A.

    1998-03-01

    In proteins it is possible to separate hard covalent forces involving bond lengths and bond angles from other weak forces. We model the microstructure of the protein as a generic bar-joint truss framework, where the hard covalent forces and strong hydrogen bonds are regarded as rigid bar constraints. We study the mechanical stability of proteins using FIRST (Floppy Inclusions and Rigid Substructure Topography) based on a recently developed combinatorial constraint counting algorithm (the 3D Pebble Game), which is a generalization of the 2D pebble game (D. J. Jacobs and M. F. Thorpe, ``Generic Rigidity: The Pebble Game'', Phys. Rev. Lett.) 75, 4051-4054 (1995) for the special class of bond-bending networks (D. J. Jacobs, "Generic Rigidity in Three Dimensional Bond-bending Networks", Preprint Aug (1997)). This approach is useful in identifying rigid motifs and flexible linkages in proteins, and thereby determines the essential degrees of freedom. We will show some preliminary results from the FIRST analysis on the myohemerythrin and lyozyme proteins.

  19. Unique Pattern of Protein-Bound Maillard Reaction Products in Manuka (Leptospermum scoparium) Honey.

    Science.gov (United States)

    Hellwig, Michael; Rückriemen, Jana; Sandner, Daniel; Henle, Thomas

    2017-05-03

    As a unique feature, honey from the New Zealand manuka tree (Leptospermum scoparium) contains substantial amounts of dihydroxyacetone (DHA) and methylglyoxal (MGO). Although MGO is a reactive intermediate in the Maillard reaction, very little is known about reactions of MGO with honey proteins. We hypothesized that the abundance of MGO should result in a particular pattern of protein-bound Maillard reaction products (MRPs) in manuka honey. A protein-rich high-molecular-weight fraction was isolated from 12 manuka and 8 non-manuka honeys and hydrolyzed enzymatically. By HPLC-MS/MS, 8 MRPs, namely, N-ε-fructosyllysine, N-ε-maltulosyllysine, carboxymethyllysine, carboxyethyllysine (CEL), pyrraline, formyline, maltosine, and methylglyoxal-derived hydroimidazolone 1 (MG-H1), were quantitated. Compared to non-manuka honeys, the manuka honeys were characterized by high concentrations of CEL and MG-H1, whereas the formation of N-ε-fructosyllysine was suppressed, indicating concurrence reactions of glucose and MGO at the ε-amino group of protein-bound lysine. Up to 31% of the lysine and 8% of the arginine residues, respectively, in the manuka honey protein can be modified to CEL and MG-H1, respectively. CEL and MG-H1 concentrations correlated strongly with the MGO concentration of the honeys. Manuka honey possesses a special pattern of protein-bound MRPs, which might be used to prove the reliability of labeled MGO levels in honeys and possibly enable the detection of fraudulent MGO or DHA addition to honey.

  20. Exploiting genomic data to identify proteins involved in abalone reproduction.

    Science.gov (United States)

    Mendoza-Porras, Omar; Botwright, Natasha A; McWilliam, Sean M; Cook, Mathew T; Harris, James O; Wijffels, Gene; Colgrave, Michelle L

    2014-08-28

    Aside from their critical role in reproduction, abalone gonads serve as an indicator of sexual maturity and energy balance, two key considerations for effective abalone culture. Temperate abalone farmers face issues with tank restocking with highly marketable abalone owing to inefficient spawning induction methods. The identification of key proteins in sexually mature abalone will serve as the foundation for a greater understanding of reproductive biology. Addressing this knowledge gap is the first step towards improving abalone aquaculture methods. Proteomic profiling of female and male gonads of greenlip abalone, Haliotis laevigata, was undertaken using liquid chromatography-mass spectrometry. Owing to the incomplete nature of abalone protein databases, in addition to searching against two publicly available databases, a custom database comprising genomic data was used. Overall, 162 and 110 proteins were identified in females and males respectively with 40 proteins common to both sexes. For proteins involved in sexual maturation, sperm and egg structure, motility, acrosomal reaction and fertilization, 23 were identified only in females, 18 only in males and 6 were common. Gene ontology analysis revealed clear differences between the female and male protein profiles reflecting a higher rate of protein synthesis in the ovary and higher metabolic activity in the testis. A comprehensive mass spectrometry-based analysis was performed to profile the abalone gonad proteome providing the foundation for future studies of reproduction in abalone. Key proteins involved in both reproduction and energy balance were identified. Genomic resources were utilised to build a database of molluscan proteins yielding >60% more protein identifications than in a standard workflow employing public protein databases. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Use of globally unique identifiers (GUIDs) to link herbarium specimen records to physical specimens.

    Science.gov (United States)

    Nelson, Gil; Sweeney, Patrick; Gilbert, Edward

    2018-02-01

    With the advent of the U.S. National Science Foundation's Advancing Digitization of Biodiversity Collections program and related worldwide digitization initiatives, the rate of herbarium specimen digitization in the United States has expanded exponentially. As the number of electronic herbarium records proliferates, the importance of linking these records to the physical specimens they represent as well as to related records from other sources will intensify. Although a rich and diverse literature has developed over the past decade that addresses the use of specimen identifiers for facilitating linking across the internet, few implementable guidelines or recommended practices for herbaria have been advanced. Here we review this literature with the express purpose of distilling a specific set of recommendations especially tailored to herbarium specimen digitization, curation, and management. We argue that associating globally unique identifiers (GUIDs) with physical herbarium specimens and including these identifiers in all electronic records about those specimens is essential to effective digital data curation. We also address practical applications for ensuring these associations.

  2. O'nyong nyong virus molecular determinants of unique vector specificity reside in non-structural protein 3.

    Directory of Open Access Journals (Sweden)

    Kali D Saxton-Shaw

    Full Text Available O'nyong nyong virus (ONNV and Chikungunya virus (CHIKV are two closely related alphaviruses with very different infection patterns in the mosquito, Anopheles gambiae. ONNV is the only alphavirus transmitted by anopheline mosquitoes, but specific molecular determinants of infection of this unique vector specificity remain unidentified. Fifteen distinct chimeric viruses were constructed to evaluate both structural and non-structural regions of the genome and infection patterns were determined through artificial infectious feeds in An. gambiae with each of these chimeras. Only one region, non-structural protein 3 (nsP3, was sufficient to up-regulate infection to rates similar to those seen with parental ONNV. When ONNV non-structural protein 3 (nsP3 replaced nsP3 from CHIKV virus in one of the chimeric viruses, infection rates in An. gambiae went from 0% to 63.5%. No other single gene or viral region addition was able to restore infection rates. Thus, we have shown that a non-structural genome element involved in viral replication is a major element involved in ONNV's unique vector specificity.

  3. Gene Unprediction with Spurio: A tool to identify spurious protein sequences.

    Science.gov (United States)

    Höps, Wolfram; Jeffryes, Matt; Bateman, Alex

    2018-01-01

    We now have access to the sequences of tens of millions of proteins. These protein sequences are essential for modern molecular biology and computational biology. The vast majority of protein sequences are derived from gene prediction tools and have no experimental supporting evidence for their translation.  Despite the increasing accuracy of gene prediction tools there likely exists a large number of spurious protein predictions in the sequence databases.  We have developed the Spurio tool to help identify spurious protein predictions in prokaryotes.  Spurio searches the query protein sequence against a prokaryotic nucleotide database using tblastn and identifies homologous sequences. The tblastn matches are used to score the query sequence's likelihood of being a spurious protein prediction using a Gaussian process model. The most informative feature is the appearance of stop codons within the presumed translation of homologous DNA sequences. Benchmarking shows that the Spurio tool is able to distinguish spurious from true proteins. However, transposon proteins are prone to be predicted as spurious because of the frequency of degraded homologs found in the DNA sequence databases. Our initial experiments suggest that less than 1% of the proteins in the UniProtKB sequence database are likely to be spurious and that Spurio is able to identify over 60 times more spurious proteins than the AntiFam resource. The Spurio software and source code is available under an MIT license at the following URL: https://bitbucket.org/bateman-group/spurio.

  4. Semantic integration to identify overlapping functional modules in protein interaction networks

    Directory of Open Access Journals (Sweden)

    Ramanathan Murali

    2007-07-01

    Full Text Available Abstract Background The systematic analysis of protein-protein interactions can enable a better understanding of cellular organization, processes and functions. Functional modules can be identified from the protein interaction networks derived from experimental data sets. However, these analyses are challenging because of the presence of unreliable interactions and the complex connectivity of the network. The integration of protein-protein interactions with the data from other sources can be leveraged for improving the effectiveness of functional module detection algorithms. Results We have developed novel metrics, called semantic similarity and semantic interactivity, which use Gene Ontology (GO annotations to measure the reliability of protein-protein interactions. The protein interaction networks can be converted into a weighted graph representation by assigning the reliability values to each interaction as a weight. We presented a flow-based modularization algorithm to efficiently identify overlapping modules in the weighted interaction networks. The experimental results show that the semantic similarity and semantic interactivity of interacting pairs were positively correlated with functional co-occurrence. The effectiveness of the algorithm for identifying modules was evaluated using functional categories from the MIPS database. We demonstrated that our algorithm had higher accuracy compared to other competing approaches. Conclusion The integration of protein interaction networks with GO annotation data and the capability of detecting overlapping modules substantially improve the accuracy of module identification.

  5. A coevolution analysis for identifying protein-protein interactions by Fourier transform

    Science.gov (United States)

    Yin, Changchuan; Yau, Stephen S. -T.

    2017-01-01

    Protein-protein interactions (PPIs) play key roles in life processes, such as signal transduction, transcription regulations, and immune response, etc. Identification of PPIs enables better understanding of the functional networks within a cell. Common experimental methods for identifying PPIs are time consuming and expensive. However, recent developments in computational approaches for inferring PPIs from protein sequences based on coevolution theory avoid these problems. In the coevolution theory model, interacted proteins may show coevolutionary mutations and have similar phylogenetic trees. The existing coevolution methods depend on multiple sequence alignments (MSA); however, the MSA-based coevolution methods often produce high false positive interactions. In this paper, we present a computational method using an alignment-free approach to accurately detect PPIs and reduce false positives. In the method, protein sequences are numerically represented by biochemical properties of amino acids, which reflect the structural and functional differences of proteins. Fourier transform is applied to the numerical representation of protein sequences to capture the dissimilarities of protein sequences in biophysical context. The method is assessed for predicting PPIs in Ebola virus. The results indicate strong coevolution between the protein pairs (NP-VP24, NP-VP30, NP-VP40, VP24-VP30, VP24-VP40, and VP30-VP40). The method is also validated for PPIs in influenza and E.coli genomes. Since our method can reduce false positive and increase the specificity of PPI prediction, it offers an effective tool to understand mechanisms of disease pathogens and find potential targets for drug design. The Python programs in this study are available to public at URL (https://github.com/cyinbox/PPI). PMID:28430779

  6. A coevolution analysis for identifying protein-protein interactions by Fourier transform.

    Directory of Open Access Journals (Sweden)

    Changchuan Yin

    Full Text Available Protein-protein interactions (PPIs play key roles in life processes, such as signal transduction, transcription regulations, and immune response, etc. Identification of PPIs enables better understanding of the functional networks within a cell. Common experimental methods for identifying PPIs are time consuming and expensive. However, recent developments in computational approaches for inferring PPIs from protein sequences based on coevolution theory avoid these problems. In the coevolution theory model, interacted proteins may show coevolutionary mutations and have similar phylogenetic trees. The existing coevolution methods depend on multiple sequence alignments (MSA; however, the MSA-based coevolution methods often produce high false positive interactions. In this paper, we present a computational method using an alignment-free approach to accurately detect PPIs and reduce false positives. In the method, protein sequences are numerically represented by biochemical properties of amino acids, which reflect the structural and functional differences of proteins. Fourier transform is applied to the numerical representation of protein sequences to capture the dissimilarities of protein sequences in biophysical context. The method is assessed for predicting PPIs in Ebola virus. The results indicate strong coevolution between the protein pairs (NP-VP24, NP-VP30, NP-VP40, VP24-VP30, VP24-VP40, and VP30-VP40. The method is also validated for PPIs in influenza and E.coli genomes. Since our method can reduce false positive and increase the specificity of PPI prediction, it offers an effective tool to understand mechanisms of disease pathogens and find potential targets for drug design. The Python programs in this study are available to public at URL (https://github.com/cyinbox/PPI.

  7. The unique fold and lability of the [2Fe-2S] clusters of NEET proteins mediate their key functions in health and disease.

    Science.gov (United States)

    Karmi, Ola; Marjault, Henri-Baptiste; Pesce, Luca; Carloni, Paolo; Onuchic, Jose' N; Jennings, Patricia A; Mittler, Ron; Nechushtai, Rachel

    2018-02-12

    NEET proteins comprise a new class of [2Fe-2S] cluster proteins. In human, three genes encode for NEET proteins: cisd1 encodes mitoNEET (mNT), cisd2 encodes the Nutrient-deprivation autophagy factor-1 (NAF-1) and cisd3 encodes MiNT (Miner2). These recently discovered proteins play key roles in many processes related to normal metabolism and disease. Indeed, NEET proteins are involved in iron, Fe-S, and reactive oxygen homeostasis in cells and play an important role in regulating apoptosis and autophagy. mNT and NAF-1 are homodimeric and reside on the outer mitochondrial membrane. NAF-1 also resides in the membranes of the ER associated mitochondrial membranes (MAM) and the ER. MiNT is a monomer with distinct asymmetry in the molecular surfaces surrounding the clusters. Unlike its paralogs mNT and NAF-1, it resides within the mitochondria. NAF-1 and mNT share similar backbone folds to the plant homodimeric NEET protein (At-NEET), while MiNT's backbone fold resembles a bacterial MiNT protein. Despite the variation of amino acid composition among these proteins, all NEET proteins retained their unique CDGSH domain harboring their unique 3Cys:1His [2Fe-2S] cluster coordination through evolution. The coordinating exposed His was shown to convey the lability to the NEET proteins' [2Fe-2S] clusters. In this minireview, we discuss the NEET fold and its structural elements. Special attention is given to the unique lability of the NEETs' [2Fe-2S] cluster and the implication of the latter to the NEET proteins' cellular and systemic function in health and disease.

  8. Using the Theory of Planned Behavior to Identify Predictors of Oral Hygiene: A Collection of Unique Behaviors.

    Science.gov (United States)

    Brein, Daniel J; Fleenor, Thomas J; Kim, Soo-Woo; Krupat, Edward

    2016-03-01

    This study aims to identify predictors of performed oral hygiene behaviors (OHBs) based on the Theory of Planned Behavior (TPB), oral health knowledge, and demographic factors. Using a questionnaire, 381 participants in three general dental offices and one hospital dental department in York, Pennsylvania, were surveyed regarding performed OHB, attitudes, subjective norms, perceived behavioral control, oral health knowledge, income, age, and sex. Three unique elements of OHB were identified for analysis: brushing, interdental cleaning, and tongue cleaning. Regression analysis revealed that attitude was the strongest predictor of brushing behavior, followed by oral health knowledge, perceived behavior control, subjective norms, and income. Perceived behavior control was the strongest predictor of interdental cleaning, followed by increased age and attitude. Female sex was the strongest predictor of tongue cleaning, followed by subjective norms, decreased age, and perceived behavior control. Respectively, these three groups of predictive variables explained 22.5% of brushing behavior, 22.7% of interdental cleaning behavior, and 9.5% of tongue cleaning behavior. The present findings highlight the utility of viewing OHB as a set of unique behaviors with unique predictive variables and provide additional support for use of TPB in predicting OHB. Periodontal practitioners should consider the strong associations of attitude and perceived behavioral control with brushing and interdental cleaning behaviors when designing interventional efforts to improve patient home care.

  9. Protein-protein interaction networks identify targets which rescue the MPP+ cellular model of Parkinson’s disease

    Science.gov (United States)

    Keane, Harriet; Ryan, Brent J.; Jackson, Brendan; Whitmore, Alan; Wade-Martins, Richard

    2015-11-01

    Neurodegenerative diseases are complex multifactorial disorders characterised by the interplay of many dysregulated physiological processes. As an exemplar, Parkinson’s disease (PD) involves multiple perturbed cellular functions, including mitochondrial dysfunction and autophagic dysregulation in preferentially-sensitive dopamine neurons, a selective pathophysiology recapitulated in vitro using the neurotoxin MPP+. Here we explore a network science approach for the selection of therapeutic protein targets in the cellular MPP+ model. We hypothesised that analysis of protein-protein interaction networks modelling MPP+ toxicity could identify proteins critical for mediating MPP+ toxicity. Analysis of protein-protein interaction networks constructed to model the interplay of mitochondrial dysfunction and autophagic dysregulation (key aspects of MPP+ toxicity) enabled us to identify four proteins predicted to be key for MPP+ toxicity (P62, GABARAP, GBRL1 and GBRL2). Combined, but not individual, knockdown of these proteins increased cellular susceptibility to MPP+ toxicity. Conversely, combined, but not individual, over-expression of the network targets provided rescue of MPP+ toxicity associated with the formation of autophagosome-like structures. We also found that modulation of two distinct proteins in the protein-protein interaction network was necessary and sufficient to mitigate neurotoxicity. Together, these findings validate our network science approach to multi-target identification in complex neurological diseases.

  10. ApicoAP: the first computational model for identifying apicoplast-targeted proteins in multiple species of Apicomplexa.

    Directory of Open Access Journals (Sweden)

    Gokcen Cilingir

    Full Text Available Most of the parasites of the phylum Apicomplexa contain a relict prokaryotic-derived plastid called the apicoplast. This organelle is important not only for the survival of the parasite, but its unique properties make it an ideal drug target. The majority of apicoplast-associated proteins are nuclear encoded and targeted post-translationally to the organellar lumen via a bipartite signaling mechanism that requires an N-terminal signal and transit peptide (TP. Attempts to define a consensus motif that universally identifies apicoplast TPs have failed.In this study, we propose a generalized rule-based classification model to identify apicoplast-targeted proteins (ApicoTPs that use a bipartite signaling mechanism. Given a training set specific to an organism, this model, called ApicoAP, incorporates a procedure based on a genetic algorithm to tailor a discriminating rule that exploits the known characteristics of ApicoTPs. Performance of ApicoAP is evaluated for four labeled datasets of Plasmodium falciparum, Plasmodium yoelii, Babesia bovis, and Toxoplasma gondii proteins. ApicoAP improves the classification accuracy of the published dataset for P. falciparum to 94%, originally 90% using PlasmoAP.We present a parametric model for ApicoTPs and a procedure to optimize the model parameters for a given training set. A major asset of this model is that it is customizable to different parasite genomes. The ApicoAP prediction software is available at http://code.google.com/p/apicoap/ and http://bcb.eecs.wsu.edu.

  11. Mcl-1 Ubiquitination: Unique Regulation of an Essential Survival Protein

    Directory of Open Access Journals (Sweden)

    Barbara Mojsa

    2014-05-01

    Full Text Available Mcl-1 is an anti-apoptotic protein of the Bcl-2 family that is essential for the survival of multiple cell lineages and that is highly amplified in human cancer. Under physiological conditions, Mcl-1 expression is tightly regulated at multiple levels, involving transcriptional, post-transcriptional and post-translational processes. Ubiquitination of Mcl-1, that targets it for proteasomal degradation, allows for rapid elimination of the protein and triggering of cell death, in response to various cellular events. In the last decade, a number of studies have elucidated different pathways controlling Mcl-1 ubiquitination and degradation. Four different E3 ubiquitin-ligases (e.g., Mule, SCFβ-TrCP, SCFFbw7 and Trim17 and one deubiquitinase (e.g., USP9X, that respectively mediate and oppose Mcl-1 ubiquitination, have been formerly identified. The interaction between Mule and Mcl-1 can be modulated by other Bcl-2 family proteins, while recognition of Mcl-1 by the other E3 ubiquitin-ligases and deubiquitinase is influenced by phosphorylation of specific residues in Mcl-1. The protein kinases and E3 ubiquitin-ligases that are involved in the regulation of Mcl-1 stability vary depending on the cellular context, highlighting the complexity and pivotal role of Mcl-1 regulation. In this review, we attempt to recapitulate progress in understanding Mcl-1 regulation by the ubiquitin-proteasome system.

  12. Protein functional links in Trypanosoma brucei, identified by gene fusion analysis

    Directory of Open Access Journals (Sweden)

    Trimpalis Philip

    2011-07-01

    Full Text Available Abstract Background Domain or gene fusion analysis is a bioinformatics method for detecting gene fusions in one organism by comparing its genome to that of other organisms. The occurrence of gene fusions suggests that the two original genes that participated in the fusion are functionally linked, i.e. their gene products interact either as part of a multi-subunit protein complex, or in a metabolic pathway. Gene fusion analysis has been used to identify protein functional links in prokaryotes as well as in eukaryotic model organisms, such as yeast and Drosophila. Results In this study we have extended this approach to include a number of recently sequenced protists, four of which are pathogenic, to identify fusion linked proteins in Trypanosoma brucei, the causative agent of African sleeping sickness. We have also examined the evolution of the gene fusion events identified, to determine whether they can be attributed to fusion or fission, by looking at the conservation of the fused genes and of the individual component genes across the major eukaryotic and prokaryotic lineages. We find relatively limited occurrence of gene fusions/fissions within the protist lineages examined. Our results point to two trypanosome-specific gene fissions, which have recently been experimentally confirmed, one fusion involving proteins involved in the same metabolic pathway, as well as two novel putative functional links between fusion-linked protein pairs. Conclusions This is the first study of protein functional links in T. brucei identified by gene fusion analysis. We have used strict thresholds and only discuss results which are highly likely to be genuine and which either have already been or can be experimentally verified. We discuss the possible impact of the identification of these novel putative protein-protein interactions, to the development of new trypanosome therapeutic drugs.

  13. Computational identification of strain-, species- and genus-specific proteins

    Directory of Open Access Journals (Sweden)

    Thiagarajan Rathi

    2005-11-01

    Full Text Available Abstract Background The identification of unique proteins at different taxonomic levels has both scientific and practical value. Strain-, species- and genus-specific proteins can provide insight into the criteria that define an organism and its relationship with close relatives. Such proteins can also serve as taxon-specific diagnostic targets. Description A pipeline using a combination of computational and manual analyses of BLAST results was developed to identify strain-, species-, and genus-specific proteins and to catalog the closest sequenced relative for each protein in a proteome. Proteins encoded by a given strain are preliminarily considered to be unique if BLAST, using a comprehensive protein database, fails to retrieve (with an e-value better than 0.001 any protein not encoded by the query strain, species or genus (for strain-, species- and genus-specific proteins respectively, or if BLAST, using the best hit as the query (reverse BLAST, does not retrieve the initial query protein. Results are manually inspected for homology if the initial query is retrieved in the reverse BLAST but is not the best hit. Sequences unlikely to retrieve homologs using the default BLOSUM62 matrix (usually short sequences are re-tested using the PAM30 matrix, thereby increasing the number of retrieved homologs and increasing the stringency of the search for unique proteins. The above protocol was used to examine several food- and water-borne pathogens. We find that the reverse BLAST step filters out about 22% of proteins with homologs that would otherwise be considered unique at the genus and species levels. Analysis of the annotations of unique proteins reveals that many are remnants of prophage proteins, or may be involved in virulence. The data generated from this study can be accessed and further evaluated from the CUPID (Core and Unique Protein Identification system web site (updated semi-annually at http://pir.georgetown.edu/cupid. Conclusion CUPID

  14. Identifying protein phosphorylation sites with kinase substrate specificity on human viruses.

    Directory of Open Access Journals (Sweden)

    Neil Arvin Bretaña

    Full Text Available Viruses infect humans and progress inside the body leading to various diseases and complications. The phosphorylation of viral proteins catalyzed by host kinases plays crucial regulatory roles in enhancing replication and inhibition of normal host-cell functions. Due to its biological importance, there is a desire to identify the protein phosphorylation sites on human viruses. However, the use of mass spectrometry-based experiments is proven to be expensive and labor-intensive. Furthermore, previous studies which have identified phosphorylation sites in human viruses do not include the investigation of the responsible kinases. Thus, we are motivated to propose a new method to identify protein phosphorylation sites with its kinase substrate specificity on human viruses. The experimentally verified phosphorylation data were extracted from virPTM--a database containing 301 experimentally verified phosphorylation data on 104 human kinase-phosphorylated virus proteins. In an attempt to investigate kinase substrate specificities in viral protein phosphorylation sites, maximal dependence decomposition (MDD is employed to cluster a large set of phosphorylation data into subgroups containing significantly conserved motifs. The experimental human phosphorylation sites are collected from Phospho.ELM, grouped according to its kinase annotation, and compared with the virus MDD clusters. This investigation identifies human kinases such as CK2, PKB, CDK, and MAPK as potential kinases for catalyzing virus protein substrates as confirmed by published literature. Profile hidden Markov model is then applied to learn a predictive model for each subgroup. A five-fold cross validation evaluation on the MDD-clustered HMMs yields an average accuracy of 84.93% for Serine, and 78.05% for Threonine. Furthermore, an independent testing data collected from UniProtKB and Phospho.ELM is used to make a comparison of predictive performance on three popular kinase

  15. Identifying protein phosphorylation sites with kinase substrate specificity on human viruses.

    Science.gov (United States)

    Bretaña, Neil Arvin; Lu, Cheng-Tsung; Chiang, Chiu-Yun; Su, Min-Gang; Huang, Kai-Yao; Lee, Tzong-Yi; Weng, Shun-Long

    2012-01-01

    Viruses infect humans and progress inside the body leading to various diseases and complications. The phosphorylation of viral proteins catalyzed by host kinases plays crucial regulatory roles in enhancing replication and inhibition of normal host-cell functions. Due to its biological importance, there is a desire to identify the protein phosphorylation sites on human viruses. However, the use of mass spectrometry-based experiments is proven to be expensive and labor-intensive. Furthermore, previous studies which have identified phosphorylation sites in human viruses do not include the investigation of the responsible kinases. Thus, we are motivated to propose a new method to identify protein phosphorylation sites with its kinase substrate specificity on human viruses. The experimentally verified phosphorylation data were extracted from virPTM--a database containing 301 experimentally verified phosphorylation data on 104 human kinase-phosphorylated virus proteins. In an attempt to investigate kinase substrate specificities in viral protein phosphorylation sites, maximal dependence decomposition (MDD) is employed to cluster a large set of phosphorylation data into subgroups containing significantly conserved motifs. The experimental human phosphorylation sites are collected from Phospho.ELM, grouped according to its kinase annotation, and compared with the virus MDD clusters. This investigation identifies human kinases such as CK2, PKB, CDK, and MAPK as potential kinases for catalyzing virus protein substrates as confirmed by published literature. Profile hidden Markov model is then applied to learn a predictive model for each subgroup. A five-fold cross validation evaluation on the MDD-clustered HMMs yields an average accuracy of 84.93% for Serine, and 78.05% for Threonine. Furthermore, an independent testing data collected from UniProtKB and Phospho.ELM is used to make a comparison of predictive performance on three popular kinase-specific phosphorylation site

  16. Analysis of secreted proteins from Aspergillus flavus.

    Science.gov (United States)

    Medina, Martha L; Haynes, Paul A; Breci, Linda; Francisco, Wilson A

    2005-08-01

    MS/MS techniques in proteomics make possible the identification of proteins from organisms with little or no genome sequence information available. Peptide sequences are obtained from tandem mass spectra by matching peptide mass and fragmentation information to protein sequence information from related organisms, including unannotated genome sequence data. This peptide identification data can then be grouped and reconstructed into protein data. In this study, we have used this approach to study protein secretion by Aspergillus flavus, a filamentous fungus for which very little genome sequence information is available. A. flavus is capable of degrading the flavonoid rutin (quercetin 3-O-glycoside), as the only source of carbon via an extracellular enzyme system. In this continuing study, a proteomic analysis was used to identify secreted proteins from A. flavus when grown on rutin. The growth media glucose and potato dextrose were used to identify differentially expressed secreted proteins. The secreted proteins were analyzed by 1- and 2-DE and MS/MS. A total of 51 unique A. flavus secreted proteins were identified from the three growth conditions. Ten proteins were unique to rutin-, five to glucose- and one to potato dextrose-grown A. flavus. Sixteen secreted proteins were common to all three media. Fourteen identifications were of hypothetical proteins or proteins of unknown functions. To our knowledge, this is the first extensive proteomic study conducted to identify the secreted proteins from a filamentous fungus.

  17. Genomes2Drugs: identifies target proteins and lead drugs from proteome data.

    LENUS (Irish Health Repository)

    Toomey, David

    2009-01-01

    BACKGROUND: Genome sequencing and bioinformatics have provided the full hypothetical proteome of many pathogenic organisms. Advances in microarray and mass spectrometry have also yielded large output datasets of possible target proteins\\/genes. However, the challenge remains to identify new targets for drug discovery from this wealth of information. Further analysis includes bioinformatics and\\/or molecular biology tools to validate the findings. This is time consuming and expensive, and could fail to yield novel drugs if protein purification and crystallography is impossible. To pre-empt this, a researcher may want to rapidly filter the output datasets for proteins that show good homology to proteins that have already been structurally characterised or proteins that are already targets for known drugs. Critically, those researchers developing novel antibiotics need to select out the proteins that show close homology to any human proteins, as future inhibitors are likely to cross-react with the host protein, causing off-target toxicity effects later in clinical trials. METHODOLOGY\\/PRINCIPAL FINDINGS: To solve many of these issues, we have developed a free online resource called Genomes2Drugs which ranks sequences to identify proteins that are (i) homologous to previously crystallized proteins or (ii) targets of known drugs, but are (iii) not homologous to human proteins. When tested using the Plasmodium falciparum malarial genome the program correctly enriched the ranked list of proteins with known drug target proteins. CONCLUSIONS\\/SIGNIFICANCE: Genomes2Drugs rapidly identifies proteins that are likely to succeed in drug discovery pipelines. This free online resource helps in the identification of potential drug targets. Importantly, the program further highlights proteins that are likely to be inhibited by FDA-approved drugs. These drugs can then be rapidly moved into Phase IV clinical studies under \\'change-of-application\\' patents.

  18. Genomes2Drugs: identifies target proteins and lead drugs from proteome data.

    Directory of Open Access Journals (Sweden)

    David Toomey

    Full Text Available BACKGROUND: Genome sequencing and bioinformatics have provided the full hypothetical proteome of many pathogenic organisms. Advances in microarray and mass spectrometry have also yielded large output datasets of possible target proteins/genes. However, the challenge remains to identify new targets for drug discovery from this wealth of information. Further analysis includes bioinformatics and/or molecular biology tools to validate the findings. This is time consuming and expensive, and could fail to yield novel drugs if protein purification and crystallography is impossible. To pre-empt this, a researcher may want to rapidly filter the output datasets for proteins that show good homology to proteins that have already been structurally characterised or proteins that are already targets for known drugs. Critically, those researchers developing novel antibiotics need to select out the proteins that show close homology to any human proteins, as future inhibitors are likely to cross-react with the host protein, causing off-target toxicity effects later in clinical trials. METHODOLOGY/PRINCIPAL FINDINGS: To solve many of these issues, we have developed a free online resource called Genomes2Drugs which ranks sequences to identify proteins that are (i homologous to previously crystallized proteins or (ii targets of known drugs, but are (iii not homologous to human proteins. When tested using the Plasmodium falciparum malarial genome the program correctly enriched the ranked list of proteins with known drug target proteins. CONCLUSIONS/SIGNIFICANCE: Genomes2Drugs rapidly identifies proteins that are likely to succeed in drug discovery pipelines. This free online resource helps in the identification of potential drug targets. Importantly, the program further highlights proteins that are likely to be inhibited by FDA-approved drugs. These drugs can then be rapidly moved into Phase IV clinical studies under 'change-of-application' patents.

  19. A unique bivalent binding and inhibition mechanism by the yatapoxvirus interleukin 18 binding protein.

    Directory of Open Access Journals (Sweden)

    Brian Krumm

    Full Text Available Interleukin 18 (IL18 is a cytokine that plays an important role in inflammation as well as host defense against microbes. Mammals encode a soluble inhibitor of IL18 termed IL18 binding protein (IL18BP that modulates IL18 activity through a negative feedback mechanism. Many poxviruses encode homologous IL18BPs, which contribute to virulence. Previous structural and functional studies on IL18 and IL18BPs revealed an essential binding hot spot involving a lysine on IL18 and two aromatic residues on IL18BPs. The aromatic residues are conserved among the very diverse mammalian and poxviruses IL18BPs with the notable exception of yatapoxvirus IL18BPs, which lack a critical phenylalanine residue. To understand the mechanism by which yatapoxvirus IL18BPs neutralize IL18, we solved the crystal structure of the Yaba-Like Disease Virus (YLDV IL18BP and IL18 complex at 1.75 Å resolution. YLDV-IL18BP forms a disulfide bonded homo-dimer engaging IL18 in a 2∶2 stoichiometry, in contrast to the 1∶1 complex of ectromelia virus (ECTV IL18BP and IL18. Disruption of the dimer interface resulted in a functional monomer, however with a 3-fold decrease in binding affinity. The overall architecture of the YLDV-IL18BP:IL18 complex is similar to that observed in the ECTV-IL18BP:IL18 complex, despite lacking the critical lysine-phenylalanine interaction. Through structural and mutagenesis studies, contact residues that are unique to the YLDV-IL18BP:IL18 binding interface were identified, including Q67, P116 of YLDV-IL18BP and Y1, S105 and D110 of IL18. Overall, our studies show that YLDV-IL18BP is unique among the diverse family of mammalian and poxvirus IL-18BPs in that it uses a bivalent binding mode and a unique set of interacting residues for binding IL18. However, despite this extensive divergence, YLDV-IL18BP binds to the same surface of IL18 used by other IL18BPs, suggesting that all IL18BPs use a conserved inhibitory mechanism by blocking a putative receptor

  20. Juvenile hormone-binding proteins of Melanoplus bivittatus identified by EFDA photoaffinity labeling

    International Nuclear Information System (INIS)

    Winder, B.S.

    1988-01-01

    Proteins that bind juvenile hormone in the hemolymph and fat body of the grasshopper, Melanoplus bivittatus were identified by photoaffinity labeling with radiolabeled epoxyfarnesyl diazoacetate ( 3 H-EFDA), and were characterized by electrophoretic analysis. A protocol was developed which allowed detection of 3 H-EFDA that was covalently linked to proteins upon exposure to ultraviolet light at 254 nm. Quantification of protein-linked 3 H-EFDA by liquid scintillation spectrometry took advantage of the differential solubility of unlinked 3 H-EFDA in toluene alone, and of the protein-linked 3 H-EFDA in toluene plus the detergent, Triton X-100. Competition between EFDA and juvenile hormone (JH) for binding to JH-specific binding sites was measured by hydroxyapatite protein binding assays in the presence of radiolabeled JH or EFDA and competing non-radiolabeled hormone. The protein-linked EFDA was detected on fluorograms of SDS or nondenaturing polyacrylamide gels (PAGE), and by liquid scintillation spectrometry of membranes to which the proteins had been electrophoretically transferred. Proteins which specifically bound JH were identified by photolabeling proteins in the presence and absence of nonlabeled JH-III

  1. Multi-Population Selective Genotyping to Identify Soybean [Glycine max (L.) Merr.] Seed Protein and Oil QTLs.

    Science.gov (United States)

    Phansak, Piyaporn; Soonsuwon, Watcharin; Hyten, David L; Song, Qijian; Cregan, Perry B; Graef, George L; Specht, James E

    2016-06-01

    Plant breeders continually generate ever-higher yielding cultivars, but also want to improve seed constituent value, which is mainly protein and oil, in soybean [Glycine max (L.) Merr.]. Identification of genetic loci governing those two traits would facilitate that effort. Though genome-wide association offers one such approach, selective genotyping of multiple biparental populations offers a complementary alternative, and was evaluated here, using 48 F2:3 populations (n = ∼224 plants) created by mating 48 high protein germplasm accessions to cultivars of similar maturity, but with normal seed protein content. All F2:3 progeny were phenotyped for seed protein and oil, but only 22 high and 22 low extreme progeny in each F2:3 phenotypic distribution were genotyped with a 1536-SNP chip (ca 450 bimorphic SNPs detected per mating). A significant quantitative trait locus (QTL) on one or more chromosomes was detected for protein in 35 (73%), and for oil in 25 (52%), of the 48 matings, and these QTL exhibited additive effects of ≥ 4 g kg(-1) and R(2) values of 0.07 or more. These results demonstrated that a multiple-population selective genotyping strategy, when focused on matings between parental phenotype extremes, can be used successfully to identify germplasm accessions possessing large-effect QTL alleles. Such accessions would be of interest to breeders to serve as parental donors of those alleles in cultivar development programs, though 17 of the 48 accessions were not unique in terms of SNP genotype, indicating that diversity among high protein accessions in the germplasm collection is less than what might ordinarily be assumed. Copyright © 2016 Phansak et al.

  2. vProtein: identifying optimal amino acid complements from plant-based foods.

    Directory of Open Access Journals (Sweden)

    Peter J Woolf

    Full Text Available BACKGROUND: Indispensible amino acids (IAAs are used by the body in different proportions. Most animal-based foods provide these IAAs in roughly the needed proportions, but many plant-based foods provide different proportions of IAAs. To explore how these plant-based foods can be better used in human nutrition, we have created the computational tool vProtein to identify optimal food complements to satisfy human protein needs. METHODS: vProtein uses 1251 plant-based foods listed in the United States Department of Agriculture standard release 22 database to determine the quantity of each food or pair of foods required to satisfy human IAA needs as determined by the 2005 daily recommended intake. The quantity of food in a pair is found using a linear programming approach that minimizes total calories, total excess IAAs, or the total weight of the combination. RESULTS: For single foods, vProtein identifies foods with particularly balanced IAA patterns such as wheat germ, quinoa, and cauliflower. vProtein also identifies foods with particularly unbalanced IAA patterns such as macadamia nuts, degermed corn products, and wakame seaweed. Although less useful alone, some unbalanced foods provide unusually good complements, such as Brazil nuts to legumes. Interestingly, vProtein finds no statistically significant bias toward grain/legume pairings for protein complementation. These analyses suggest that pairings of plant-based foods should be based on the individual foods themselves instead of based on broader food group-food group pairings. Overall, the most efficient pairings include sweet corn/tomatoes, apple/coconut, and sweet corn/cherry. The top pairings also highlight the utility of less common protein sources such as the seaweeds laver and spirulina, pumpkin leaves, and lambsquarters. From a public health perspective, many of the food pairings represent novel, low cost food sources to combat malnutrition. Full analysis results are available online

  3. Proteomic profiling of human plasma exosomes identifies PPARγ as an exosome-associated protein

    International Nuclear Information System (INIS)

    Looze, Christopher; Yui, David; Leung, Lester; Ingham, Matthew; Kaler, Maryann; Yao, Xianglan; Wu, Wells W.; Shen Rongfong; Daniels, Mathew P.; Levine, Stewart J.

    2009-01-01

    Exosomes are nanovesicles that are released from cells as a mechanism of cell-free intercellular communication. Only a limited number of proteins have been identified from the plasma exosome proteome. Here, we developed a multi-step fractionation scheme incorporating gel exclusion chromatography, rate zonal centrifugation through continuous sucrose gradients, and high-speed centrifugation to purify exosomes from human plasma. Exosome-associated proteins were separated by SDS-PAGE and 66 proteins were identified by LC-MS/MS, which included both cellular and extracellular proteins. Furthermore, we identified and characterized peroxisome proliferator-activated receptor-γ (PPARγ), a nuclear receptor that regulates adipocyte differentiation and proliferation, as well as immune and inflammatory cell functions, as a novel component of plasma-derived exosomes. Given the important role of exosomes as intercellular messengers, the discovery of PPARγ as a component of human plasma exosomes identifies a potential new pathway for the paracrine transfer of nuclear receptors.

  4. Unique features of a global human ectoparasite identified through sequencing of the bed bug genome.

    Science.gov (United States)

    Benoit, Joshua B; Adelman, Zach N; Reinhardt, Klaus; Dolan, Amanda; Poelchau, Monica; Jennings, Emily C; Szuter, Elise M; Hagan, Richard W; Gujar, Hemant; Shukla, Jayendra Nath; Zhu, Fang; Mohan, M; Nelson, David R; Rosendale, Andrew J; Derst, Christian; Resnik, Valentina; Wernig, Sebastian; Menegazzi, Pamela; Wegener, Christian; Peschel, Nicolai; Hendershot, Jacob M; Blenau, Wolfgang; Predel, Reinhard; Johnston, Paul R; Ioannidis, Panagiotis; Waterhouse, Robert M; Nauen, Ralf; Schorn, Corinna; Ott, Mark-Christoph; Maiwald, Frank; Johnston, J Spencer; Gondhalekar, Ameya D; Scharf, Michael E; Peterson, Brittany F; Raje, Kapil R; Hottel, Benjamin A; Armisén, David; Crumière, Antonin Jean Johan; Refki, Peter Nagui; Santos, Maria Emilia; Sghaier, Essia; Viala, Sèverine; Khila, Abderrahman; Ahn, Seung-Joon; Childers, Christopher; Lee, Chien-Yueh; Lin, Han; Hughes, Daniel S T; Duncan, Elizabeth J; Murali, Shwetha C; Qu, Jiaxin; Dugan, Shannon; Lee, Sandra L; Chao, Hsu; Dinh, Huyen; Han, Yi; Doddapaneni, Harshavardhan; Worley, Kim C; Muzny, Donna M; Wheeler, David; Panfilio, Kristen A; Vargas Jentzsch, Iris M; Vargo, Edward L; Booth, Warren; Friedrich, Markus; Weirauch, Matthew T; Anderson, Michelle A E; Jones, Jeffery W; Mittapalli, Omprakash; Zhao, Chaoyang; Zhou, Jing-Jiang; Evans, Jay D; Attardo, Geoffrey M; Robertson, Hugh M; Zdobnov, Evgeny M; Ribeiro, Jose M C; Gibbs, Richard A; Werren, John H; Palli, Subba R; Schal, Coby; Richards, Stephen

    2016-02-02

    The bed bug, Cimex lectularius, has re-established itself as a ubiquitous human ectoparasite throughout much of the world during the past two decades. This global resurgence is likely linked to increased international travel and commerce in addition to widespread insecticide resistance. Analyses of the C. lectularius sequenced genome (650 Mb) and 14,220 predicted protein-coding genes provide a comprehensive representation of genes that are linked to traumatic insemination, a reduced chemosensory repertoire of genes related to obligate hematophagy, host-symbiont interactions, and several mechanisms of insecticide resistance. In addition, we document the presence of multiple putative lateral gene transfer events. Genome sequencing and annotation establish a solid foundation for future research on mechanisms of insecticide resistance, human-bed bug and symbiont-bed bug associations, and unique features of bed bug biology that contribute to the unprecedented success of C. lectularius as a human ectoparasite.

  5. Unique features of a global human ectoparasite identified through sequencing of the bed bug genome

    Science.gov (United States)

    Benoit, Joshua B.; Adelman, Zach N.; Reinhardt, Klaus; Dolan, Amanda; Poelchau, Monica; Jennings, Emily C.; Szuter, Elise M.; Hagan, Richard W.; Gujar, Hemant; Shukla, Jayendra Nath; Zhu, Fang; Mohan, M.; Nelson, David R.; Rosendale, Andrew J.; Derst, Christian; Resnik, Valentina; Wernig, Sebastian; Menegazzi, Pamela; Wegener, Christian; Peschel, Nicolai; Hendershot, Jacob M.; Blenau, Wolfgang; Predel, Reinhard; Johnston, Paul R.; Ioannidis, Panagiotis; Waterhouse, Robert M.; Nauen, Ralf; Schorn, Corinna; Ott, Mark-Christoph; Maiwald, Frank; Johnston, J. Spencer; Gondhalekar, Ameya D.; Scharf, Michael E.; Peterson, Brittany F.; Raje, Kapil R.; Hottel, Benjamin A.; Armisén, David; Crumière, Antonin Jean Johan; Refki, Peter Nagui; Santos, Maria Emilia; Sghaier, Essia; Viala, Sèverine; Khila, Abderrahman; Ahn, Seung-Joon; Childers, Christopher; Lee, Chien-Yueh; Lin, Han; Hughes, Daniel S. T.; Duncan, Elizabeth J.; Murali, Shwetha C.; Qu, Jiaxin; Dugan, Shannon; Lee, Sandra L.; Chao, Hsu; Dinh, Huyen; Han, Yi; Doddapaneni, Harshavardhan; Worley, Kim C.; Muzny, Donna M.; Wheeler, David; Panfilio, Kristen A.; Vargas Jentzsch, Iris M.; Vargo, Edward L.; Booth, Warren; Friedrich, Markus; Weirauch, Matthew T.; Anderson, Michelle A. E.; Jones, Jeffery W.; Mittapalli, Omprakash; Zhao, Chaoyang; Zhou, Jing-Jiang; Evans, Jay D.; Attardo, Geoffrey M.; Robertson, Hugh M.; Zdobnov, Evgeny M.; Ribeiro, Jose M. C.; Gibbs, Richard A.; Werren, John H.; Palli, Subba R.; Schal, Coby; Richards, Stephen

    2016-01-01

    The bed bug, Cimex lectularius, has re-established itself as a ubiquitous human ectoparasite throughout much of the world during the past two decades. This global resurgence is likely linked to increased international travel and commerce in addition to widespread insecticide resistance. Analyses of the C. lectularius sequenced genome (650 Mb) and 14,220 predicted protein-coding genes provide a comprehensive representation of genes that are linked to traumatic insemination, a reduced chemosensory repertoire of genes related to obligate hematophagy, host–symbiont interactions, and several mechanisms of insecticide resistance. In addition, we document the presence of multiple putative lateral gene transfer events. Genome sequencing and annotation establish a solid foundation for future research on mechanisms of insecticide resistance, human–bed bug and symbiont–bed bug associations, and unique features of bed bug biology that contribute to the unprecedented success of C. lectularius as a human ectoparasite. PMID:26836814

  6. Comparative Genomics Identifies Epidermal Proteins Associated with the Evolution of the Turtle Shell.

    Science.gov (United States)

    Holthaus, Karin Brigit; Strasser, Bettina; Sipos, Wolfgang; Schmidt, Heiko A; Mlitz, Veronika; Sukseree, Supawadee; Weissenbacher, Anton; Tschachler, Erwin; Alibardi, Lorenzo; Eckhart, Leopold

    2016-03-01

    The evolution of reptiles, birds, and mammals was associated with the origin of unique integumentary structures. Studies on lizards, chicken, and humans have suggested that the evolution of major structural proteins of the outermost, cornified layers of the epidermis was driven by the diversification of a gene cluster called Epidermal Differentiation Complex (EDC). Turtles have evolved unique defense mechanisms that depend on mechanically resilient modifications of the epidermis. To investigate whether the evolution of the integument in these reptiles was associated with specific adaptations of the sequences and expression patterns of EDC-related genes, we utilized newly available genome sequences to determine the epidermal differentiation gene complement of turtles. The EDC of the western painted turtle (Chrysemys picta bellii) comprises more than 100 genes, including at least 48 genes that encode proteins referred to as beta-keratins or corneous beta-proteins. Several EDC proteins have evolved cysteine/proline contents beyond 50% of total amino acid residues. Comparative genomics suggests that distinct subfamilies of EDC genes have been expanded and partly translocated to loci outside of the EDC in turtles. Gene expression analysis in the European pond turtle (Emys orbicularis) showed that EDC genes are differentially expressed in the skin of the various body sites and that a subset of beta-keratin genes within the EDC as well as those located outside of the EDC are expressed predominantly in the shell. Our findings give strong support to the hypothesis that the evolutionary innovation of the turtle shell involved specific molecular adaptations of epidermal differentiation. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  7. AMP N1-Oxide, a Unique Compound of Royal Jelly, Induces Neurite Outgrowth from PC12 Vells via Signaling by Protein Kinase A Independent of that by Mitogen-Activated Protein Kinase

    Directory of Open Access Journals (Sweden)

    Noriko Hattori

    2010-01-01

    Full Text Available Earlier we identified adenosine monophosphate (AMP N1-oxide as a unique compound of royal jelly (RJ that induces neurite outgrowth (neuritegenesis from cultured rat pheochromocytoma PC12 cells via the adenosine A2A receptor. Now, we found that AMP N1-oxide stimulated the phosphorylation of not only mitogen-activated protein kinase (MAPK but also that of cAMP/calcium-response element-binding protein (CREB in a dose-dependent manner. Inhibition of MAPK activation by a MEK inhibitor, PD98059, did not influence the AMP N1-oxide-induced neuritegenesis, whereas that of protein kinase A (PKA by a selective inhibitor, KT5720, significantly reduced neurite outgrowth. AMP N1-oxide also had the activity of suppressing the growth of PC12 cells, which correlated well with the neurite outgrowth-promoting activity. KT5720 restored the growth of AMP N1-oxide-treated PC12 cells. It is well known that nerve growth factor suppresses proliferation of PC12 cells before causing stimulation of neuronal differentiation. Thus, AMP N1-oxide elicited neuronal differentiation of PC12 cells, as evidenced by generation of neurites, and inhibited cell growth through adenosine A2A receptor-mediated PKA signaling, which may be responsible for characteristic actions of RJ.

  8. Identify High-Quality Protein Structural Models by Enhanced K-Means.

    Science.gov (United States)

    Wu, Hongjie; Li, Haiou; Jiang, Min; Chen, Cheng; Lv, Qiang; Wu, Chuang

    2017-01-01

    Background. One critical issue in protein three-dimensional structure prediction using either ab initio or comparative modeling involves identification of high-quality protein structural models from generated decoys. Currently, clustering algorithms are widely used to identify near-native models; however, their performance is dependent upon different conformational decoys, and, for some algorithms, the accuracy declines when the decoy population increases. Results. Here, we proposed two enhanced K -means clustering algorithms capable of robustly identifying high-quality protein structural models. The first one employs the clustering algorithm SPICKER to determine the initial centroids for basic K -means clustering ( SK -means), whereas the other employs squared distance to optimize the initial centroids ( K -means++). Our results showed that SK -means and K -means++ were more robust as compared with SPICKER alone, detecting 33 (59%) and 42 (75%) of 56 targets, respectively, with template modeling scores better than or equal to those of SPICKER. Conclusions. We observed that the classic K -means algorithm showed a similar performance to that of SPICKER, which is a widely used algorithm for protein-structure identification. Both SK -means and K -means++ demonstrated substantial improvements relative to results from SPICKER and classical K -means.

  9. Adding biological meaning to human protein-protein interactions identified by yeast two-hybrid screenings: A guide through bioinformatics tools.

    Science.gov (United States)

    Felgueiras, Juliana; Silva, Joana Vieira; Fardilha, Margarida

    2018-01-16

    "A man is known by the company he keeps" is a popular expression that perfectly fits proteins. A common approach to characterize the function of a target protein is to identify its interacting partners and thus infer its roles based on the known functions of the interactors. Protein-protein interaction networks (PPINs) have been created for several organisms, including humans, primarily as results of high-throughput screenings, such as yeast two-hybrid (Y2H). Their unequivocal use to understand events underlying human pathophysiology is promising in identifying genes and proteins associated with diseases. Therefore, numerous opportunities have emerged for PPINs as tools for clinical management of diseases: network-based disease classification systems, discovery of biomarkers and identification of therapeutic targets. Despite the great advantages of PPINs, their use is still unrecognised by several researchers who generate high-throughput data to generally characterize interactions in a certain model or to select an interaction to study in detail. We strongly believe that both approaches are not exclusive and that we can use PPINs as a complementary methodology and rich-source of information to the initial study proposal. Here, we suggest a pipeline to deal with Y2H results using bioinformatics tools freely available for academics. Yeast two-hybrid is widely-used to identify protein-protein interactions. Conventionally, the positive clones that result from a yeast two-hybrid screening are sequenced to identify the interactors of the protein of interest (also known as bait protein), and few interactions, thought as potentially relevant for the model in study, are selected for further validation using biochemical methods (e.g. co-immunoprecipitation and co-localization). The huge amount of data that is potentially lost during this conservative approach motivated us to write this tutorial-like review, so that researchers feel encouraged to take advantage of

  10. Mass spectrometric analyses of organophosphate insecticide oxon protein adducts.

    Science.gov (United States)

    Thompson, Charles M; Prins, John M; George, Kathleen M

    2010-01-01

    Organophosphate (OP) insecticides continue to be used to control insect pests. Acute and chronic exposures to OP insecticides have been documented to cause adverse health effects, but few OP-adducted proteins have been correlated with these illnesses at the molecular level. Our aim was to review the literature covering the current state of the art in mass spectrometry (MS) used to identify OP protein biomarkers. We identified general and specific research reports related to OP insecticides, OP toxicity, OP structure, and protein MS by searching PubMed and Chemical Abstracts for articles published before December 2008. A number of OP-based insecticides share common structural elements that result in predictable OP-protein adducts. The resultant OP-protein adducts show an increase in molecular mass that can be identified by MS and correlated with the OP agent. Customized OP-containing probes have also been used to tag and identify protein targets that can be identified by MS. MS is a useful and emerging tool for the identification of proteins that are modified by activated organophosphate insecticides. MS can characterize the structure of the OP adduct and also the specific amino acid residue that forms the key bond with the OP. Each protein that is modified in a unique way by an OP represents a unique molecular biomarker that with further research can lead to new correlations with exposure.

  11. Affinity resins as new tools for identifying target proteins of ascorbic acid.

    Science.gov (United States)

    Iwaoka, Yuji; Nishino, Kohei; Ishikawa, Takahiro; Ito, Hideyuki; Sawa, Yoshihiro; Tai, Akihiro

    2018-02-12

    l-Ascorbic acid (AA) has diverse physiological functions, but little is known about the functional mechanisms of AA. In this study, we synthesized two types of affinity resin on which AA is immobilized in a stable form to identify new AA-targeted proteins, which can provide important clues for elucidating unknown functional mechanisms of AA. To our knowledge, an affinity resin on which AA as a ligand is immobilized has not been prepared, because AA is very unstable and rapidly degraded in an aqueous solution. By using the affinity resins, cytochrome c (cyt c) was identified as an AA-targeted protein, and we showed that oxidized cyt c exhibits specific affinity for AA. These results suggest that two kinds of AA-affinity resin can be powerful tools to identify new target proteins of AA.

  12. Method for early detection of infectious mononucleosis by identifying Inmono proteins

    Science.gov (United States)

    Willard, Karen E.

    1984-01-01

    Early detection of infectious mononucleosis is carried out using a sample of human blood by isolating and identifying the presence of Inmono proteins in the sample from a two-dimensional protein map with the proteins being characterized by having isoelectric banding as measured in urea of about -16 to -17 with respect to certain isoelectric point standards and molecular mass of about 70 to 75 K daltons as measured in the presence of sodium dodecylsulfate containing polyacrylamide gels, the presence of the Inmono proteins being correlated with the existence of infectious mononucleosis.

  13. Target and identify: triazene linker helps identify azidation sites of labelled proteins via click and cleave strategy.

    Science.gov (United States)

    Lohse, Jonas; Schindl, Alexandra; Danda, Natasha; Williams, Chris P; Kramer, Karl; Kuster, Bernhard; Witte, Martin D; Médard, Guillaume

    2017-10-31

    A method for identifying probe modification of proteins via tandem mass spectrometry was developed. Azide bearing molecules are immobilized on functionalised sepharose beads via copper catalysed Huisgen-type click chemistry and selectively released under acidic conditions by chemical cleavage of the triazene linkage. We applied this method to identify the modification site of targeted-diazotransfer on BirA.

  14. msiDBN: A Method of Identifying Critical Proteins in Dynamic PPI Networks

    Directory of Open Access Journals (Sweden)

    Yuan Zhang

    2014-01-01

    Full Text Available Dynamics of protein-protein interactions (PPIs reveals the recondite principles of biological processes inside a cell. Shown in a wealth of study, just a small group of proteins, rather than the majority, play more essential roles at crucial points of biological processes. This present work focuses on identifying these critical proteins exhibiting dramatic structural changes in dynamic PPI networks. First, a comprehensive way of modeling the dynamic PPIs is presented which simultaneously analyzes the activity of proteins and assembles the dynamic coregulation correlation between proteins at each time point. Second, a novel method is proposed, named msiDBN, which models a common representation of multiple PPI networks using a deep belief network framework and analyzes the reconstruction errors and the variabilities across the time courses in the biological process. Experiments were implemented on data of yeast cell cycles. We evaluated our network construction method by comparing the functional representations of the derived networks with two other traditional construction methods. The ranking results of critical proteins in msiDBN were compared with the results from the baseline methods. The results of comparison showed that msiDBN had better reconstruction rate and identified more proteins of critical value to yeast cell cycle process.

  15. Evaluation of unique identifiers used as keys to match identical publications in Pure and SciVal

    DEFF Research Database (Denmark)

    Madsen, Heidi Holst; Madsen, Dicte; Gauffriau, Marianne

    2016-01-01

    , and erroneous optical or special character recognition. The case study explores the use of UIDs in the integration between the databases Pure and SciVal. Specifically journal publications in English are matched between the two databases. We find all error types except erroneous optical or special character......Unique identifiers (UID) are seen as an effective key to match identical publications across databases or identify duplicates in a database. The objective of the present study is to investigate how well UIDs work as match keys in the integration between Pure and SciVal, based on a case...... also briefly discuss how publication sets formed by using UIDs as the match keys may affect the bibliometric indicators number of publications, number of citations, and the average number of citations per publication. The objective is addressed in a literature review and a case study. The literature...

  16. In-Depth, Label-Free Analysis of the Erythrocyte Cytoplasmic Proteome in Diamond Blackfan Anemia Identifies a Unique Inflammatory Signature.

    Directory of Open Access Journals (Sweden)

    Esther N Pesciotta

    Full Text Available Diamond Blackfan Anemia (DBA is a rare, congenital erythrocyte aplasia that is usually caused by haploinsufficiency of ribosomal proteins due to diverse mutations in one of several ribosomal genes. A striking feature of this disease is that a range of different mutations in ribosomal proteins results in similar disease phenotypes primarily characterized by erythrocyte abnormalities and macrocytic anemia, while most other cell types in the body are minimally affected. Previously, we analyzed the erythrocyte membrane proteomes of several DBA patients and identified several proteins that are not typically associated with this cell type and that suggested inflammatory mechanisms contribute to the pathogenesis of DBA. In this study, we evaluated the erythrocyte cytosolic proteome of DBA patients through in-depth analysis of hemoglobin-depleted erythrocyte cytosols. Simple, reproducible, hemoglobin depletion using nickel columns enabled in-depth analysis of over 1000 cytosolic erythrocyte proteins with only moderate total analysis time per proteome. Label-free quantitation and statistical analysis identified 29 proteins with significantly altered abundance levels in DBA patients compared to matched healthy control donors. Proteins that were significantly increased in DBA erythrocyte cytoplasms included three proteasome subunit beta proteins that make up the immunoproteasome and proteins induced by interferon-γ such as n-myc interactor and interferon-induced 35 kDa protein [NMI and IFI35 respectively]. Pathway analysis confirmed the presence of an inflammatory signature in erythrocytes of DBA patients and predicted key upstream regulators including mitogen activated kinase 1, interferon-γ, tumor suppressor p53, and tumor necrosis factor. These results show that erythrocytes in DBA patients are intrinsically different from those in healthy controls which may be due to an inflammatory response resulting from the inherent molecular defect of ribosomal

  17. MiAMP1, a novel protein from macadamia integrifolia adopts a greek key β-barrel fold unique amongst plant antimicrobial proteins

    International Nuclear Information System (INIS)

    McManus, A.M.; Nielsen, K.J.; Craik, D.J.; Marcus, J.P.; Harrison, S.J.; Green, J.L.; Manners, J.M.

    1999-01-01

    Full text: MiAMP1 is a recently discovered 76 amino acid, highly basic protein from the nut kernel of Macadamia integrifolia which possesses no sequence homology to any known protein. A study of its antimicrobial activity revealed that it inhibited the growth of several microbial plant pathogens in vitro but had no effect on mammalian or plant cells. For these reasons, MiAMP1 is considered to be a potentially useful tool for the genetic engineering of disease resistance in transgenic crop plants and for the design of new fungicides. The three-dimensional structure of MiAMP1 was determined through homonuclear and heteronuclear ( 15 N) 2D NMR spectroscopy and subsequent simulated annealing calculations. MiAMP1 is made up of eight β-strands which are arranged in two Greek key motifs. These Greek key motifs associate to form a Greek key β-barrel. This structure is unique amongst plant antimicrobial proteins and forms a new class which we term the β-Barrelins. Interestingly, the structure of MiAMP1 bears remarkable similarity to a yeast killer toxin from Williopsis mrakii. The structural similarity of MiAMP1 and WmKT, which originate from plant and fungal phyla respectively, may reflect a similar mode of action

  18. Toward a rigorous network of protein-protein interactions of the model sulfate reducer Desulfovibrio vulgaris Hildenborough

    Energy Technology Data Exchange (ETDEWEB)

    Chhabra, S.R.; Joachimiak, M.P.; Petzold, C.J.; Zane, G.M.; Price, M.N.; Gaucher, S.; Reveco, S.A.; Fok, V.; Johanson, A.R.; Batth, T.S.; Singer, M.; Chandonia, J.M.; Joyner, D.; Hazen, T.C.; Arkin, A.P.; Wall, J.D.; Singh, A.K.; Keasling, J.D.

    2011-05-01

    Protein–protein interactions offer an insight into cellular processes beyond what may be obtained by the quantitative functional genomics tools of proteomics and transcriptomics. The aforementioned tools have been extensively applied to study E. coli and other aerobes and more recently to study the stress response behavior of Desulfovibrio 5 vulgaris Hildenborough, a model anaerobe and sulfate reducer. In this paper we present the first attempt to identify protein-protein interactions in an obligate anaerobic bacterium. We used suicide vector-assisted chromosomal modification of 12 open reading frames encoded by this sulfate reducer to append an eight amino acid affinity tag to the carboxy-terminus of the chosen proteins. Three biological replicates of the 10 ‘pulled-down’ proteins were separated and analyzed using liquid chromatography-mass spectrometry. Replicate agreement ranged between 35% and 69%. An interaction network among 12 bait and 90 prey proteins was reconstructed based on 134 bait-prey interactions computationally identified to be of high confidence. We discuss the biological significance of several unique metabolic features of D. vulgaris revealed by this protein-protein interaction data 15 and protein modifications that were observed. These include the distinct role of the putative carbon monoxide-induced hydrogenase, unique electron transfer routes associated with different oxidoreductases, and the possible role of methylation in regulating sulfate reduction.

  19. Multidimensional protein fractionation of blood proteins coupled to data-independent nanoLC-MS/MS analysis.

    Science.gov (United States)

    Levin, Yishai; Jaros, Julian A J; Schwarz, Emanuel; Bahn, Sabine

    2010-01-03

    In order to exploit human blood as a source of protein disease biomarkers, robust analytical methods are needed to overcome the inherent molecular complexity of this bio-fluid. We present the coupling of label-free SAX chromatography and IMAC to a data-independent nanoLC-MS/MS (nanoLC-MS(E)) platform for analysis of blood plasma and serum proteins. The methods were evaluated using protein standards added at different concentrations to two groups of samples. The results demonstrate that both techniques enable accurate protein quantitation using low sample volumes and a minimal number of fractions. Combining both methods, 883 unique proteins were identified, of which 423 proteins showed high reproducibility. The two approaches resulted in identification of unique molecular signatures with an overlap of approximately 30%, thus providing complimentary information on sub-proteomes. These methods are potentially useful for systems biology, biomarker discovery, and investigation of phosphoproteins in blood. (c) 2009 Elsevier B.V. All rights reserved.

  20. Expression of three topologically distinct membrane proteins elicits unique stress response pathways in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Buck, Teresa M; Jordan, Rick; Lyons-Weiler, James; Adelman, Joshua L; Needham, Patrick G; Kleyman, Thomas R; Brodsky, Jeffrey L

    2015-06-01

    Misfolded membrane proteins are retained in the endoplasmic reticulum (ER) and are subject to ER-associated degradation, which clears the secretory pathway of potentially toxic species. While the transcriptional response to environmental stressors has been extensively studied, limited data exist describing the cellular response to misfolded membrane proteins. To this end, we expressed and then compared the transcriptional profiles elicited by the synthesis of three ER retained, misfolded ion channels: The α-subunit of the epithelial sodium channel, ENaC, the cystic fibrosis transmembrane conductance regulator, CFTR, and an inwardly rectifying potassium channel, Kir2.1, which vary in their mass, membrane topologies, and quaternary structures. To examine transcriptional profiles in a null background, the proteins were expressed in yeast, which was previously used to examine the degradation requirements for each substrate. Surprisingly, the proteins failed to induce a canonical unfolded protein response or heat shock response, although messages encoding several cytosolic and ER lumenal protein folding factors rose when αENaC or CFTR was expressed. In contrast, the levels of these genes were unaltered by Kir2.1 expression; instead, the yeast iron regulon was activated. Nevertheless, a significant number of genes that respond to various environmental stressors were upregulated by all three substrates, and compared with previous microarray data we deduced the existence of a group of genes that reflect a novel misfolded membrane protein response. These data indicate that aberrant proteins in the ER elicit profound yet unique cellular responses. Copyright © 2015 the American Physiological Society.

  1. Participatory role of zinc in structural and functional characterization of bioremediase: a unique thermostable microbial silica leaching protein.

    Science.gov (United States)

    Chowdhury, Trinath; Sarkar, Manas; Chaudhuri, Biswadeep; Chattopadhyay, Brajadulal; Halder, Umesh Chandra

    2015-07-01

    A unique protein, bioremediase (UniProt Knowledgebase Accession No.: P86277), isolated from a hot spring bacterium BKH1 (GenBank Accession No.: FJ177512), has shown to exhibit silica leaching activity when incorporated to prepare bio-concrete material. Matrix-assisted laser desorption ionization mass spectrometry analysis suggests that bioremediase is 78% homologous to bovine carbonic anhydrase II though it does not exhibit carbonic anhydrase-like activity. Bioinformatics study is performed for understanding the various physical and chemical parameters of the protein which predicts the involvement of zinc encircled by three histidine residues (His94, His96 and His119) at the active site of the protein. Isothermal titration calorimetric-based thermodynamic study on diethyl pyrocarbonate-modified protein recognizes the presence of Zn(2+) in the enzyme moiety. Exothermic to endothermic transition as observed during titration of the protein with Zn(2+) discloses that there are at least two binding sites for zinc within the protein moiety. Addition of Zn(2+) regains the activity of EDTA chelated bioremediase confirming the presence of extra binding site of Zn(2+) in the protein moiety. Revival of folding pattern of completely unfolded urea-treated protein by Zn(2+) explains the participatory role of zinc in structural stability of the protein. Restoration of the λ max in intrinsic fluorescence emission study of the urea-treated protein by Zn(2+) similarly confirms the involvement of Zn in the refolding of the protein. The utility of bioremediase for silica nanoparticles preparation is observed by field emission scanning electron microscopy.

  2. Spot Accession Protein Protein Unique Secuence Number number ...

    Indian Academy of Sciences (India)

    36. 702. 2,5. 0,021. 57. 5,26. 143. 13. 33. 865. 2,2. 0,007. 47. 5,24. 321. 6. 20. 492. GRP75_MOUSE. Stress-70 protein, mitochondrial. 2,9. 0,054. 73,4 5,81. 66. 5,18. 118. 6. 10. 663. 2,6. 0,046. 59. 6,18. 162. 10. 33. 717. 2,2. 0,003. 56. 6,2. 259. 11. 43. 1107. 2,1. 0,033. 37. 6,28. 334. 12. 40. 1113. 1,9. 0,013. 36. 6,16. 627. 15.

  3. Up-Regulation of Antioxidant Proteins in the Plasma Proteome during Saturation Diving: Unique Coincidence under Hypobaric Hypoxia.

    Science.gov (United States)

    Domoto, Hideharu; Iwaya, Keiichi; Ikomi, Fumitaka; Matsuo, Hirotaka; Tadano, Yutaka; Fujii, Shigenori; Tachi, Kazuyoshi; Itoh, Yoshiyuki; Sato, Michiya; Inoue, Kimitoshi; Shinomiya, Nariyoshi

    2016-01-01

    Saturation diving (SD) is one of the safest techniques for tolerating hyperbaric conditions for long durations. However, the changes in the human plasma protein profile that occur during SD are unknown. To identify differential protein expression during or after SD, 65 blood samples from 15 healthy Japanese men trained in SD were analyzed by two-dimensional fluorescence difference gel electrophoresis. The expression of two proteins, one 32.4 kDa with an isoelectric point (pI) of 5.8 and the other 44.8 kDa with pI 4.0, were elevated during SD to 60, 100, and 200 meters sea water (msw). The expression of these proteins returned to pre-diving level when the SD training was completed. The two proteins were identified using in-gel digestion and mass spectrometric analysis; the 32.4 kDa protein was transthyretin and the 44.8 kDa protein was alpha-1-acid glycoprotein 1. Oxidation was detected at methionine 13 of transthyretin and at methionine 129 of alpha-1-acid glycoprotein 1 by tandem mass spectrometry. Moreover, haptoglobin was up-regulated during the decompression phase of 200 msw. These plasma proteins up-regulated during SD have a common function as anti-oxidants. This suggests that by coordinating their biological effects, these proteins activate a defense mechanism to counteract the effects of hyperbaric-hyperoxic conditions during SD.

  4. Up-Regulation of Antioxidant Proteins in the Plasma Proteome during Saturation Diving: Unique Coincidence under Hypobaric Hypoxia.

    Directory of Open Access Journals (Sweden)

    Hideharu Domoto

    Full Text Available Saturation diving (SD is one of the safest techniques for tolerating hyperbaric conditions for long durations. However, the changes in the human plasma protein profile that occur during SD are unknown. To identify differential protein expression during or after SD, 65 blood samples from 15 healthy Japanese men trained in SD were analyzed by two-dimensional fluorescence difference gel electrophoresis. The expression of two proteins, one 32.4 kDa with an isoelectric point (pI of 5.8 and the other 44.8 kDa with pI 4.0, were elevated during SD to 60, 100, and 200 meters sea water (msw. The expression of these proteins returned to pre-diving level when the SD training was completed. The two proteins were identified using in-gel digestion and mass spectrometric analysis; the 32.4 kDa protein was transthyretin and the 44.8 kDa protein was alpha-1-acid glycoprotein 1. Oxidation was detected at methionine 13 of transthyretin and at methionine 129 of alpha-1-acid glycoprotein 1 by tandem mass spectrometry. Moreover, haptoglobin was up-regulated during the decompression phase of 200 msw. These plasma proteins up-regulated during SD have a common function as anti-oxidants. This suggests that by coordinating their biological effects, these proteins activate a defense mechanism to counteract the effects of hyperbaric-hyperoxic conditions during SD.

  5. Lipidomic Profiling of Lung Pleural Effusion Identifies Unique Metabotype for EGFR Mutants in Non-Small Cell Lung Cancer

    OpenAIRE

    Ying Swan Ho; Lian Yee Yip; Nurhidayah Basri; Vivian Su Hui Chong; Chin Chye Teo; Eddy Tan; Kah Ling Lim; Gek San Tan; Xulei Yang; Si Yong Yeo; Mariko Si Yue Koh; Anantham Devanand; Angela Takano; Eng Huat Tan; Daniel Shao Weng Tan

    2016-01-01

    Cytology and histology forms the cornerstone for the diagnosis of non-small cell lung cancer (NSCLC) but obtaining sufficient tumour cells or tissue biopsies for these tests remains a challenge. We investigate the lipidome of lung pleural effusion (PE) for unique metabolic signatures to discriminate benign versus malignant PE and EGFR versus non-EGFR malignant subgroups to identify novel diagnostic markers that is independent of tumour cell availability. Using liquid chromatography mass spect...

  6. A unique deubiquitinase that deconjugates phosphoribosyl-linked protein ubiquitination

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Jiazhang; Yu, Kaiwen; Fei, Xiaowen; Liu, Yao; Nakayasu, Ernesto S.; Piehowski, Paul D.; Shaw, Jared B.; Puvar, Kedar; Das, Chittaranjan; Liu, Xiaoyun; Luo, Zhao-Qing

    2017-05-12

    Ubiquitination regulates many aspects of host immunity and thus is a common target for infectious agents. Recent studies revealed that members of the SidE effector family of the bacterial pathogen Legionella pneumophila attacked several small GTPases associated with the endoplasmic reticulum by a novel ubiquitination mechanism that does not require the E1 and E2 enzymes of the host ubiquitination machinery. Following ubiquitin activation by ADP- ribosylation via a mono-ADP-ribosylation motif, ADP-ribosylated ubiquitin is cleaved by a phosphodiesterasedomainwithinSdeA,whichisconcomitantwiththelinkof phosphoribosylated ubiquitin to serine residues in the substrate. Here we demonstrate that the activity of SidEs is regulated by SidJ, another effector encoded by a gene situated in the locus coding for three members of the SidE family (SdeC, SdeB and SdeA). SidJ functions to remove ubiquitin from SidEs-modified substrates by cleaving the phosphodiester bond that links phosphoribosylated ubiquitin to protein substrates. Further, the deubiquitinase activity of SidJ is essential for its role in L. pneumophila infection. Finally, the activity of SidJ is required for efficiently reducing the abundance of ubiquitinated Rab33b in infected cells within a few hours after bacterial uptake. Our results establish SidJ as a deubiquitinase that functions to impose temporal regulation of the activity of the SidE effectors. The identification of SidJ may shed light on future study of signaling cascades mediated by this unique ubiquitination that also potentially regulates cellular processes in eukaryotic cells.

  7. Lipoproteins comprise at least 10 different classes in rats, each of which contains a unique set of proteins as the primary component.

    Science.gov (United States)

    Konishi, Tomokazu; Takahashi, Yoko

    2018-01-01

    Although lipoproteins are conventionally separated into a few classes using density gradient centrifugation, there may be a much higher number of physical classes that differ in origin or phase. Comprehensive knowledge of the classes of lipoproteins is rather limited, which hinders both the study of their functions and the identification of the primary causes of related diseases. This study aims to determine the number of classes of lipoproteins that can be practically distinguishable and identify the differences between them. We separated rat serum samples by gel filtration. The elution was continuously monitored for triglyceride (TG), cholesterol, and protein, and fractionated for further SDS-PAGE and immunological detection of apoprotein A-I (ApoA1) and apoprotein B (ApoB). The elution patterns were analyzed using a parsimonious method, i.e., the estimation of the least number of classes. Ten classes were recognized that contained different amounts of TG and cholesterol, as well as a unique protein content. Each of the classes contained much more protein than that observed previously, especially in low-density lipoproteins (LDL) classes. In particular, two major antiproteases formed complexes with specific classes of LDL; because these classes exclusively carry cholesterol and antiproteases, they may lead to the progression of atheroma by supplying materials that enlarge fatty streaks and protecting thrombi from enzymatic digestion. The separated classes may have specific biological functions. The attribution of protein species to certain classes will help understand the functions. A distinction among lipoprotein classes may provide important information in the field of vascular pathology.

  8. F-Type Lectins: A Highly Diversified Family of Fucose-Binding Proteins with a Unique Sequence Motif and Structural Fold, Involved in Self/Non-Self-Recognition

    Directory of Open Access Journals (Sweden)

    Gerardo R. Vasta

    2017-11-01

    Full Text Available The F-type lectin (FTL family is one of the most recent to be identified and structurally characterized. Members of the FTL family are characterized by a fucose recognition domain [F-type lectin domain (FTLD] that displays a novel jellyroll fold (“F-type” fold and unique carbohydrate- and calcium-binding sequence motifs. This novel lectin family comprises widely distributed proteins exhibiting single, double, or greater multiples of the FTLD, either tandemly arrayed or combined with other structurally and functionally distinct domains, yielding lectin subunits of pleiotropic properties even within a single species. Furthermore, the extraordinary variability of FTL sequences (isoforms that are expressed in a single individual has revealed genetic mechanisms of diversification in ligand recognition that are unique to FTLs. Functions of FTLs in self/non-self-recognition include innate immunity, fertilization, microbial adhesion, and pathogenesis, among others. In addition, although the F-type fold is distinctive for FTLs, a structure-based search revealed apparently unrelated proteins with minor sequence similarity to FTLs that displayed the FTLD fold. In general, the phylogenetic analysis of FTLD sequences from viruses to mammals reveals clades that are consistent with the currently accepted taxonomy of extant species. However, the surprisingly discontinuous distribution of FTLDs within each taxonomic category suggests not only an extensive structural/functional diversification of the FTLs along evolutionary lineages but also that this intriguing lectin family has been subject to frequent gene duplication, secondary loss, lateral transfer, and functional co-option.

  9. Distinct Host Tropism Protein Signatures to Identify Possible Zoonotic Influenza A Viruses.

    Science.gov (United States)

    Eng, Christine L P; Tong, Joo Chuan; Tan, Tin Wee

    2016-01-01

    Zoonotic influenza A viruses constantly pose a health threat to humans as novel strains occasionally emerge from the avian population to cause human infections. Many past epidemic as well as pandemic strains have originated from avian species. While most viruses are restricted to their primary hosts, zoonotic strains can sometimes arise from mutations or reassortment, leading them to acquire the capability to escape host species barrier and successfully infect a new host. Phylogenetic analyses and genetic markers are useful in tracing the origins of zoonotic infections, but there are still no effective means to identify high risk strains prior to an outbreak. Here we show that distinct host tropism protein signatures can be used to identify possible zoonotic strains in avian species which have the potential to cause human infections. We have discovered that influenza A viruses can now be classified into avian, human, or zoonotic strains based on their host tropism protein signatures. Analysis of all influenza A viruses with complete proteome using the host tropism prediction system, based on machine learning classifications of avian and human viral proteins has uncovered distinct signatures of zoonotic strains as mosaics of avian and human viral proteins. This is in contrast with typical avian or human strains where they show mostly avian or human viral proteins in their signatures respectively. Moreover, we have found that zoonotic strains from the same influenza outbreaks carry similar host tropism protein signatures characteristic of a common ancestry. Our results demonstrate that the distinct host tropism protein signature in zoonotic strains may prove useful in influenza surveillance to rapidly identify potential high risk strains circulating in avian species, which may grant us the foresight in anticipating an impending influenza outbreak.

  10. Combining modelling and mutagenesis studies of synaptic vesicle protein 2A to identify a series of residues involved in racetam binding.

    Science.gov (United States)

    Shi, Jiye; Anderson, Dina; Lynch, Berkley A; Castaigne, Jean-Gabriel; Foerch, Patrik; Lebon, Florence

    2011-10-01

    LEV (levetiracetam), an antiepileptic drug which possesses a unique profile in animal models of seizure and epilepsy, has as its unique binding site in brain, SV2A (synaptic vesicle protein 2A). Previous studies have used a chimaeric and site-specific mutagenesis approach to identify three residues in the putative tenth transmembrane helix of SV2A that, when mutated, alter binding of LEV and related racetam derivatives to SV2A. In the present paper, we report a combined modelling and mutagenesis study that successfully identifies another 11 residues in SV2A that appear to be involved in ligand binding. Sequence analysis and modelling of SV2A suggested residues equivalent to critical functional residues of other MFS (major facilitator superfamily) transporters. Alanine scanning of these and other SV2A residues resulted in the identification of residues affecting racetam binding, including Ile273 which differentiated between racetam analogues, when mutated to alanine. Integrating mutagenesis results with docking analysis led to the construction of a mutant in which six SV2A residues were replaced with corresponding SV2B residues. This mutant showed racetam ligand-binding affinity intermediate to the affinities observed for SV2A and SV2B.

  11. Characterization of the CLASP2 Protein Interaction Network Identifies SOGA1 as a Microtubule-Associated Protein

    DEFF Research Database (Denmark)

    Sørensen, Rikke Kruse; Krantz, James; Barker, Natalie

    2017-01-01

    . The GTPase-activating proteins AGAP1 and AGAP3 were also enriched in the CLASP2 interactome, although subsequent AGAP3 and CLIP2 interactome analysis suggests a preference of AGAP3 for CLIP2. Follow-up MARK2 interactome analysis confirmed reciprocal co-IP of CLASP2 and also revealed MARK2 can co-IP SOGA1......, glycogen synthase, and glycogenin. Investigating the SOGA1 interactome confirmed SOGA1 can reciprocal co-IP both CLASP2 and MARK2 as well as glycogen synthase and glycogenin. SOGA1 was confirmed to colocalize with CLASP2 and also with tubulin, which identifies SOGA1 as a new microtubule-associated protein....... These results introduce the metabolic function of these proposed novel protein networks and their relationship with microtubules as new fields of cytoskeleton-associated protein biology....

  12. An unbiased expression screen for synaptogenic proteins identifies the LRRTM protein family as synaptic organizers.

    Science.gov (United States)

    Linhoff, Michael W; Laurén, Juha; Cassidy, Robert M; Dobie, Frederick A; Takahashi, Hideto; Nygaard, Haakon B; Airaksinen, Matti S; Strittmatter, Stephen M; Craig, Ann Marie

    2009-03-12

    Delineating the molecular basis of synapse development is crucial for understanding brain function. Cocultures of neurons with transfected fibroblasts have demonstrated the synapse-promoting activity of candidate molecules. Here, we performed an unbiased expression screen for synaptogenic proteins in the coculture assay using custom-made cDNA libraries. Reisolation of NGL-3/LRRC4B and neuroligin-2 accounts for a minority of positive clones, indicating that current understanding of mammalian synaptogenic proteins is incomplete. We identify LRRTM1 as a transmembrane protein that induces presynaptic differentiation in contacting axons. All four LRRTM family members exhibit synaptogenic activity, LRRTMs localize to excitatory synapses, and artificially induced clustering of LRRTMs mediates postsynaptic differentiation. We generate LRRTM1(-/-) mice and reveal altered distribution of the vesicular glutamate transporter VGLUT1, confirming an in vivo synaptic function. These results suggest a prevalence of LRR domain proteins in trans-synaptic signaling and provide a cellular basis for the reported linkage of LRRTM1 to handedness and schizophrenia.

  13. Protein nanoparticle: A unique system as drug delivery vehicles

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-29

    Dec 29, 2008 ... Nanobiotechnology Research Center, Faculty of Chemical Engineering, Babol University of Technology, Iran. ... as potential carriers with unique advantages including ..... for intracellular uptake in BT/20 human breast cancer.

  14. Combination of Multiple Spectral Libraries Improves the Current Search Methods Used to Identify Missing Proteins in the Chromosome-Centric Human Proteome Project.

    Science.gov (United States)

    Cho, Jin-Young; Lee, Hyoung-Joo; Jeong, Seul-Ki; Kim, Kwang-Youl; Kwon, Kyung-Hoon; Yoo, Jong Shin; Omenn, Gilbert S; Baker, Mark S; Hancock, William S; Paik, Young-Ki

    2015-12-04

    searching and significantly increased the number of matches. From this trial, 12 new missing proteins were identified that passed the following criterion: at least 2 peptides of 7 or more amino acids in length or one of 9 or more amino acids in length with one or more unique sequences. Thus, the iRefSPL and simSPL combination can be used to help identify peptides that have not been detected by conventional sequence database searches with improved sensitivity and a low error rate.

  15. The unique N-terminal zinc finger of synaptotagmin-like protein 4 reveals FYVE structure.

    Science.gov (United States)

    Miyamoto, Kazuhide; Nakatani, Arisa; Saito, Kazuki

    2017-12-01

    Synaptotagmin-like protein 4 (Slp4), expressed in human platelets, is associated with dense granule release. Slp4 is comprised of the N-terminal zinc finger, Slp homology domain, and C2 domains. We synthesized a compact construct (the Slp4N peptide) corresponding to the Slp4 N-terminal zinc finger. Herein, we have determined the solution structure of the Slp4N peptide by nuclear magnetic resonance (NMR). Furthermore, experimental, chemical modification of Cys residues revealed that the Slp4N peptide binds two zinc atoms to mediate proper folding. NMR data showed that eight Cys residues coordinate zinc atoms in a cross-brace fashion. The Simple Modular Architecture Research Tool database predicted the structure of Slp4N as a RING finger. However, the actual structure of the Slp4N peptide adopts a unique C 4 C 4 -type FYVE fold and is distinct from a RING fold. To create an artificial RING finger (ARF) with specific ubiquitin-conjugating enzyme (E2)-binding capability, cross-brace structures with eight zinc-ligating residues are needed as the scaffold. The cross-brace structure of the Slp4N peptide could be utilized as the scaffold for the design of ARFs. © 2017 The Protein Society.

  16. Codon-triplet context unveils unique features of the Candida albicans protein coding genome

    Directory of Open Access Journals (Sweden)

    Oliveira José L

    2007-11-01

    Full Text Available Abstract Background The evolutionary forces that determine the arrangement of synonymous codons within open reading frames and fine tune mRNA translation efficiency are not yet understood. In order to tackle this question we have carried out a large scale study of codon-triplet contexts in 11 fungal species to unravel associations or relationships between codons present at the ribosome A-, P- and E-sites during each decoding cycle. Results Our analysis unveiled high bias within the context of codon-triplets, in particular strong preference for triplets of identical codons. We have also identified a surprisingly large number of codon-triplet combinations that vanished from fungal ORFeomes. Candida albicans exacerbated these features, showed an unbalanced tRNA population for decoding its pool of codons and used near-cognate decoding for a large set of codons, suggesting that unique evolutionary forces shaped the evolution of its ORFeome. Conclusion We have developed bioinformatics tools for large-scale analysis of codon-triplet contexts. These algorithms identified codon-triplets context biases, allowed for large scale comparative codon-triplet analysis, and identified rules governing codon-triplet context. They could also detect alterations to the standard genetic code.

  17. Efficient Isothermal Titration Calorimetry Technique Identifies Direct Interaction of Small Molecule Inhibitors with the Target Protein.

    Science.gov (United States)

    Gal, Maayan; Bloch, Itai; Shechter, Nelia; Romanenko, Olga; Shir, Ofer M

    2016-01-01

    Protein-protein interactions (PPI) play a critical role in regulating many cellular processes. Finding novel PPI inhibitors that interfere with specific binding of two proteins is considered a great challenge, mainly due to the complexity involved in characterizing multi-molecular systems and limited understanding of the physical principles governing PPIs. Here we show that the combination of virtual screening techniques, which are capable of filtering a large library of potential small molecule inhibitors, and a unique secondary screening by isothermal titration calorimetry, a label-free method capable of observing direct interactions, is an efficient tool for finding such an inhibitor. In this study we applied this strategy in a search for a small molecule capable of interfering with the interaction of the tumor-suppressor p53 and the E3-ligase MDM2. We virtually screened a library of 15 million small molecules that were filtered to a final set of 80 virtual hits. Our in vitro experimental assay, designed to validate the activity of mixtures of compounds by isothermal titration calorimetry, was used to identify an active molecule against MDM2. At the end of the process the small molecule (4S,7R)-4-(4-chlorophenyl)-5-hydroxy-2,7-dimethyl-N-(6-methylpyridin-2-yl)-4,6,7,8 tetrahydrIoquinoline-3-carboxamide was found to bind MDM2 with a dissociation constant of ~2 µM. Following the identification of this single bioactive compound, spectroscopic measurements were used to further characterize the interaction of the small molecule with the target protein. 2D NMR spectroscopy was used to map the binding region of the small molecule, and fluorescence polarization measurement confirmed that it indeed competes with p53.

  18. CD4-specific designed ankyrin repeat proteins are novel potent HIV entry inhibitors with unique characteristics.

    Directory of Open Access Journals (Sweden)

    Andreas Schweizer

    2008-07-01

    Full Text Available Here, we describe the generation of a novel type of HIV entry inhibitor using the recently developed Designed Ankyrin Repeat Protein (DARPin technology. DARPin proteins specific for human CD4 were selected from a DARPin DNA library using ribosome display. Selected pool members interacted specifically with CD4 and competed with gp120 for binding to CD4. DARPin proteins derived in the initial selection series inhibited HIV in a dose-dependent manner, but showed a relatively high variability in their capacity to block replication of patient isolates on primary CD4 T cells. In consequence, a second series of CD4-specific DARPins with improved affinity for CD4 was generated. These 2nd series DARPins potently inhibit infection of genetically divergent (subtype B and C HIV isolates in the low nanomolar range, independent of coreceptor usage. Importantly, the actions of the CD4 binding DARPins were highly specific: no effect on cell viability or activation, CD4 memory cell function, or interference with CD4-independent virus entry was observed. These novel CD4 targeting molecules described here combine the unique characteristics of DARPins-high physical stability, specificity and low production costs-with the capacity to potently block HIV entry, rendering them promising candidates for microbicide development.

  19. Identifying protein complex by integrating characteristic of core-attachment into dynamic PPI network.

    Directory of Open Access Journals (Sweden)

    Xianjun Shen

    Full Text Available How to identify protein complex is an important and challenging task in proteomics. It would make great contribution to our knowledge of molecular mechanism in cell life activities. However, the inherent organization and dynamic characteristic of cell system have rarely been incorporated into the existing algorithms for detecting protein complexes because of the limitation of protein-protein interaction (PPI data produced by high throughput techniques. The availability of time course gene expression profile enables us to uncover the dynamics of molecular networks and improve the detection of protein complexes. In order to achieve this goal, this paper proposes a novel algorithm DCA (Dynamic Core-Attachment. It detects protein-complex core comprising of continually expressed and highly connected proteins in dynamic PPI network, and then the protein complex is formed by including the attachments with high adhesion into the core. The integration of core-attachment feature into the dynamic PPI network is responsible for the superiority of our algorithm. DCA has been applied on two different yeast dynamic PPI networks and the experimental results show that it performs significantly better than the state-of-the-art techniques in terms of prediction accuracy, hF-measure and statistical significance in biology. In addition, the identified complexes with strong biological significance provide potential candidate complexes for biologists to validate.

  20. Proteomics strategy for identifying candidate bioactive proteins in complex mixtures: application to the platelet releasate.

    LENUS (Irish Health Repository)

    O'Connor, Roisin

    2010-01-01

    Proteomic approaches have proven powerful at identifying large numbers of proteins, but there are fewer reports of functional characterization of proteins in biological tissues. Here, we describe an experimental approach that fractionates proteins released from human platelets, linking bioassay activity to identity. We used consecutive orthogonal separation platforms to ensure sensitive detection: (a) ion-exchange of intact proteins, (b) SDS-PAGE separation of ion-exchange fractions and (c) HPLC separation of tryptic digests coupled to electrospray tandem mass spectrometry. Migration of THP-1 monocytes in response to complete or fractionated platelet releasate was assessed and located to just one of the forty-nine ion-exchange fractions. Over 300 proteins were identified in the releasate, with a wide range of annotated biophysical and biochemical properties, in particular platelet activation, adhesion, and wound healing. The presence of PEDF and involucrin, two proteins not previously reported in platelet releasate, was confirmed by western blotting. Proteins identified within the fraction with monocyte promigratory activity and not in other inactive fractions included vimentin, PEDF, and TIMP-1. We conclude that this analytical platform is effective for the characterization of complex bioactive samples.

  1. LigSearch: a knowledge-based web server to identify likely ligands for a protein target

    Energy Technology Data Exchange (ETDEWEB)

    Beer, Tjaart A. P. de; Laskowski, Roman A. [European Bioinformatics Institute (EMBL–EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD (United Kingdom); Duban, Mark-Eugene [Northwestern University Feinberg School of Medicine, Chicago, Illinois (United States); Chan, A. W. Edith [University College London, London WC1E 6BT (United Kingdom); Anderson, Wayne F. [Northwestern University Feinberg School of Medicine, Chicago, Illinois (United States); Thornton, Janet M., E-mail: thornton@ebi.ac.uk [European Bioinformatics Institute (EMBL–EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD (United Kingdom)

    2013-12-01

    LigSearch is a web server for identifying ligands likely to bind to a given protein. Identifying which ligands might bind to a protein before crystallization trials could provide a significant saving in time and resources. LigSearch, a web server aimed at predicting ligands that might bind to and stabilize a given protein, has been developed. Using a protein sequence and/or structure, the system searches against a variety of databases, combining available knowledge, and provides a clustered and ranked output of possible ligands. LigSearch can be accessed at http://www.ebi.ac.uk/thornton-srv/databases/LigSearch.

  2. The unique architecture and function of cellulose-interacting proteins in oomycetes revealed by genomic and structural analyses

    Directory of Open Access Journals (Sweden)

    Larroque Mathieu

    2012-11-01

    provides insight into the evolution and biological roles of CBM1-containing proteins from oomycetes. We show that while CBM1s from fungi and oomycetes are similar, they team up with different protein domains, either in proteins implicated in the degradation of plant cell wall components in the case of fungi or in proteins involved in adhesion to polysaccharidic substrates in the case of oomycetes. This work highlighted the unique role and evolution of CBM1 proteins in oomycete among the Stramenopile lineage.

  3. Identifying specific protein interaction partners using quantitative mass spectrometry and bead proteomes

    Science.gov (United States)

    Trinkle-Mulcahy, Laura; Boulon, Séverine; Lam, Yun Wah; Urcia, Roby; Boisvert, François-Michel; Vandermoere, Franck; Morrice, Nick A.; Swift, Sam; Rothbauer, Ulrich; Leonhardt, Heinrich; Lamond, Angus

    2008-01-01

    The identification of interaction partners in protein complexes is a major goal in cell biology. Here we present a reliable affinity purification strategy to identify specific interactors that combines quantitative SILAC-based mass spectrometry with characterization of common contaminants binding to affinity matrices (bead proteomes). This strategy can be applied to affinity purification of either tagged fusion protein complexes or endogenous protein complexes, illustrated here using the well-characterized SMN complex as a model. GFP is used as the tag of choice because it shows minimal nonspecific binding to mammalian cell proteins, can be quantitatively depleted from cell extracts, and allows the integration of biochemical protein interaction data with in vivo measurements using fluorescence microscopy. Proteins binding nonspecifically to the most commonly used affinity matrices were determined using quantitative mass spectrometry, revealing important differences that affect experimental design. These data provide a specificity filter to distinguish specific protein binding partners in both quantitative and nonquantitative pull-down and immunoprecipitation experiments. PMID:18936248

  4. Petunia nectar proteins have ribonuclease activity.

    Science.gov (United States)

    Hillwig, Melissa S; Liu, Xiaoteng; Liu, Guangyu; Thornburg, Robert W; Macintosh, Gustavo C

    2010-06-01

    Plants requiring an insect pollinator often produce nectar as a reward for the pollinator's visitations. This rich secretion needs mechanisms to inhibit microbial growth. In Nicotiana spp. nectar, anti-microbial activity is due to the production of hydrogen peroxide. In a close relative, Petunia hybrida, limited production of hydrogen peroxide was found; yet petunia nectar still has anti-bacterial properties, suggesting that a different mechanism may exist for this inhibition. The nectar proteins of petunia plants were compared with those of ornamental tobacco and significant differences were found in protein profiles and function between these two closely related species. Among those proteins, RNase activities unique to petunia nectar were identified. The genes corresponding to four RNase T2 proteins from Petunia hybrida that show unique expression patterns in different plant tissues were cloned. Two of these enzymes, RNase Phy3 and RNase Phy4 are unique among the T2 family and contain characteristics similar to both S- and S-like RNases. Analysis of amino acid patterns suggest that these proteins are an intermediate between S- and S-like RNases, and support the hypothesis that S-RNases evolved from defence RNases expressed in floral parts. This is the first report of RNase activities in nectar.

  5. Lsa63, a newly identified surface protein of Leptospira interrogans binds laminin and collagen IV.

    Science.gov (United States)

    Vieira, Monica L; de Morais, Zenaide M; Gonçales, Amane P; Romero, Eliete C; Vasconcellos, Silvio A; Nascimento, Ana L T O

    2010-01-01

    Leptospira interrogans is the etiological agent of leptospirosis, a zoonotic disease that affects populations worldwide. We have identified in proteomic studies a protein that is encoded by the gene LIC10314 and expressed in virulent strain of L. interrogans serovar Pomona. This protein was predicted to be surface exposed by PSORT program and contains a p83/100 domain identified by BLAST analysis that is conserved in protein antigens of several strains of Borrelia and Treponema spp. The proteins containing this domain have been claimed antigen candidates for serodiagnosis of Lyme borreliosis. Thus, we have cloned the LIC10314 and expressed the protein in Escherichia coli BL21-SI strain by using the expression vector pAE. The recombinant protein tagged with N-terminal hexahistidine was purified by metal-charged chromatography and characterized by circular dichroism spectroscopy. This protein is conserved among several species of pathogenic Leptospira and absent in the saprophytic strain L. biflexa. We confirm by liquid-phase immunofluorescence assays with living organisms that this protein is most likely a new surface leptospiral protein. The ability of the protein to mediate attachment to ECM components was evaluated by binding assays. The leptospiral protein encoded by LIC10314, named Lsa63 (Leptospiral surface adhesin of 63kDa), binds strongly to laminin and collagen IV in a dose-dependent and saturable fashion. In addition, Lsa63 is probably expressed during infection since it was recognized by antibodies of serum samples of confirmed-leptospirosis patients in convalescent phase of the disease. Altogether, the data suggests that this novel identified surface protein may be involved in leptospiral pathogenesis. 2009 The British Infection Society. Published by Elsevier Ltd. All rights reserved.

  6. Probabilistic analysis for identifying the driving force of protein folding

    Science.gov (United States)

    Tokunaga, Yoshihiko; Yamamori, Yu; Matubayasi, Nobuyuki

    2018-03-01

    Toward identifying the driving force of protein folding, energetics was analyzed in water for Trp-cage (20 residues), protein G (56 residues), and ubiquitin (76 residues) at their native (folded) and heat-denatured (unfolded) states. All-atom molecular dynamics simulation was conducted, and the hydration effect was quantified by the solvation free energy. The free-energy calculation was done by employing the solution theory in the energy representation, and it was seen that the sum of the protein intramolecular (structural) energy and the solvation free energy is more favorable for a folded structure than for an unfolded one generated by heat. Probabilistic arguments were then developed to determine which of the electrostatic, van der Waals, and excluded-volume components of the interactions in the protein-water system governs the relative stabilities between the folded and unfolded structures. It was found that the electrostatic interaction does not correspond to the preference order of the two structures. The van der Waals and excluded-volume components were shown, on the other hand, to provide the right order of preference at probabilities of almost unity, and it is argued that a useful modeling of protein folding is possible on the basis of the excluded-volume effect.

  7. Using distant supervised learning to identify protein subcellular localizations from full-text scientific articles.

    Science.gov (United States)

    Zheng, Wu; Blake, Catherine

    2015-10-01

    Databases of curated biomedical knowledge, such as the protein-locations reflected in the UniProtKB database, provide an accurate and useful resource to researchers and decision makers. Our goal is to augment the manual efforts currently used to curate knowledge bases with automated approaches that leverage the increased availability of full-text scientific articles. This paper describes experiments that use distant supervised learning to identify protein subcellular localizations, which are important to understand protein function and to identify candidate drug targets. Experiments consider Swiss-Prot, the manually annotated subset of the UniProtKB protein knowledge base, and 43,000 full-text articles from the Journal of Biological Chemistry that contain just under 11.5 million sentences. The system achieves 0.81 precision and 0.49 recall at sentence level and an accuracy of 57% on held-out instances in a test set. Moreover, the approach identifies 8210 instances that are not in the UniProtKB knowledge base. Manual inspection of the 50 most likely relations showed that 41 (82%) were valid. These results have immediate benefit to researchers interested in protein function, and suggest that distant supervision should be explored to complement other manual data curation efforts. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Extensive proteomic screening identifies the obesity-related NYGGF4 protein as a novel LRP1-interactor, showing reduced expression in early Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Taddei Kevin

    2010-01-01

    Full Text Available Abstract Background The low-density lipoprotein receptor related protein 1 (LRP1 has been implicated in Alzheimer's disease (AD but its signalling has not been fully evaluated. There is good evidence that the cytoplasmic domain of LRP1 is involved in protein-protein interactions, important in the cell biology of LRP1. Results We carried out three yeast two-hybrid screens to identify proteins that interact with the cytoplasmic domain of LRP1. The screens included both conventional screens as well as a novel, split-ubiquitin-based screen in which an LRP1 construct was expressed and screened as a transmembrane protein. The split-ubiquitin screen was validated in a screen using full-length amyloid protein precursor (APP, which successfully identified FE65 and FE65L2, as well as novel interactors (Rab3a, Napg, and ubiquitin b. Using both a conventional screen as well as the split-ubiquitin screen, we identified NYGGF4 as a novel LRP1 interactor. The interaction between LRP1 and NYGGF4 was validated using two-hybrid assays, coprecipitation and colocalization in mammalian cells. Mutation analysis demonstrated a specific interaction of NYGGF4 with an NPXY motif that required an intact tyrosine residue. Interestingly, while we confirmed that other LRP1 interactors we identified, including JIP1B and EB-1, were also able to bind to APP, NYGGF4 was unique in that it showed specific binding with LRP1. Expression of NYGGF4 decreased significantly in patients with AD as compared to age-matched controls, and showed decreasing expression with AD disease progression. Examination of Nyggf4 expression in mice with different alleles of the human APOE4 gene showed significant differences in Nyggf4 expression. Conclusions These results implicate NYGGF4 as a novel and specific interactor of LRP1. Decreased expression of LRP1 and NYGGF4 over disease, evident with the presence of even moderate numbers of neuritic plaques, suggests that LRP1-NYGGF4 is a system altered

  9. Identifying Novel Candidate Genes Related to Apoptosis from a Protein-Protein Interaction Network

    Directory of Open Access Journals (Sweden)

    Baoman Wang

    2015-01-01

    Full Text Available Apoptosis is the process of programmed cell death (PCD that occurs in multicellular organisms. This process of normal cell death is required to maintain the balance of homeostasis. In addition, some diseases, such as obesity, cancer, and neurodegenerative diseases, can be cured through apoptosis, which produces few side effects. An effective comprehension of the mechanisms underlying apoptosis will be helpful to prevent and treat some diseases. The identification of genes related to apoptosis is essential to uncover its underlying mechanisms. In this study, a computational method was proposed to identify novel candidate genes related to apoptosis. First, protein-protein interaction information was used to construct a weighted graph. Second, a shortest path algorithm was applied to the graph to search for new candidate genes. Finally, the obtained genes were filtered by a permutation test. As a result, 26 genes were obtained, and we discuss their likelihood of being novel apoptosis-related genes by collecting evidence from published literature.

  10. Bat wing biometrics: using collagen–elastin bundles in bat wings as a unique individual identifier

    Science.gov (United States)

    Hooper, Sarah E.; Womack, Kathryn M.

    2017-01-01

    Abstract The ability to recognize individuals within an animal population is fundamental to conservation and management. Identification of individual bats has relied on artificial marking techniques that may negatively affect the survival and alter the behavior of individuals. Biometric systems use biological characteristics to identify individuals. The field of animal biometrics has expanded to include recognition of individuals based upon various morphologies and phenotypic variations including pelage patterns, tail flukes, and whisker arrangement. Biometric systems use 4 biologic measurement criteria: universality, distinctiveness, permanence, and collectability. Additionally, the system should not violate assumptions of capture–recapture methods that include no increased mortality or alterations of behavior. We evaluated whether individual bats could be uniquely identified based upon the collagen–elastin bundles that are visible with gross examination of their wings. We examined little brown bats (Myotis lucifugus), northern long-eared bats (M. septentrionalis), big brown bats (Eptesicus fuscus), and tricolored bats (Perimyotis subflavus) to determine whether the “wing prints” from the bundle network would satisfy the biologic measurement criteria. We evaluated 1,212 photographs from 230 individual bats comparing week 0 photos with those taken at weeks 3 or 6 and were able to confirm identity of individuals over time. Two blinded evaluators were able to successfully match 170 individuals in hand to photographs taken at weeks 0, 3, and 6. This study suggests that bats can be successfully re-identified using photographs taken at previous times. We suggest further evaluation of this methodology for use in a standardized system that can be shared among bat conservationists. PMID:29674784

  11. Bat wing biometrics: using collagen-elastin bundles in bat wings as a unique individual identifier.

    Science.gov (United States)

    Amelon, Sybill K; Hooper, Sarah E; Womack, Kathryn M

    2017-05-29

    The ability to recognize individuals within an animal population is fundamental to conservation and management. Identification of individual bats has relied on artificial marking techniques that may negatively affect the survival and alter the behavior of individuals. Biometric systems use biological characteristics to identify individuals. The field of animal biometrics has expanded to include recognition of individuals based upon various morphologies and phenotypic variations including pelage patterns, tail flukes, and whisker arrangement. Biometric systems use 4 biologic measurement criteria: universality, distinctiveness, permanence, and collectability. Additionally, the system should not violate assumptions of capture-recapture methods that include no increased mortality or alterations of behavior. We evaluated whether individual bats could be uniquely identified based upon the collagen-elastin bundles that are visible with gross examination of their wings. We examined little brown bats ( Myotis lucifugus ), northern long-eared bats ( M. septentrionalis ), big brown bats ( Eptesicus fuscus ), and tricolored bats ( Perimyotis subflavus ) to determine whether the "wing prints" from the bundle network would satisfy the biologic measurement criteria. We evaluated 1,212 photographs from 230 individual bats comparing week 0 photos with those taken at weeks 3 or 6 and were able to confirm identity of individuals over time. Two blinded evaluators were able to successfully match 170 individuals in hand to photographs taken at weeks 0, 3, and 6. This study suggests that bats can be successfully re-identified using photographs taken at previous times. We suggest further evaluation of this methodology for use in a standardized system that can be shared among bat conservationists.

  12. RECOVIR Software for Identifying Viruses

    Science.gov (United States)

    Chakravarty, Sugoto; Fox, George E.; Zhu, Dianhui

    2013-01-01

    Most single-stranded RNA (ssRNA) viruses mutate rapidly to generate a large number of strains with highly divergent capsid sequences. Determining the capsid residues or nucleotides that uniquely characterize these strains is critical in understanding the strain diversity of these viruses. RECOVIR (an acronym for "recognize viruses") software predicts the strains of some ssRNA viruses from their limited sequence data. Novel phylogenetic-tree-based databases of protein or nucleic acid residues that uniquely characterize these virus strains are created. Strains of input virus sequences (partial or complete) are predicted through residue-wise comparisons with the databases. RECOVIR uses unique characterizing residues to identify automatically strains of partial or complete capsid sequences of picorna and caliciviruses, two of the most highly diverse ssRNA virus families. Partition-wise comparisons of the database residues with the corresponding residues of more than 300 complete and partial sequences of these viruses resulted in correct strain identification for all of these sequences. This study shows the feasibility of creating databases of hitherto unknown residues uniquely characterizing the capsid sequences of two of the most highly divergent ssRNA virus families. These databases enable automated strain identification from partial or complete capsid sequences of these human and animal pathogens.

  13. Proteomic analysis identifies differentially expressed proteins after red propolis treatment in Hep-2 cells.

    Science.gov (United States)

    Frozza, Caroline Olivieri da Silva; Ribeiro, Tanara da Silva; Gambato, Gabriela; Menti, Caroline; Moura, Sidnei; Pinto, Paulo Marcos; Staats, Charley Christian; Padilha, Francine Ferreira; Begnini, Karine Rech; de Leon, Priscila Marques Moura; Borsuk, Sibele; Savegnago, Lucielli; Dellagostin, Odir; Collares, Tiago; Seixas, Fabiana Kömmling; Henriques, João Antonio Pêgas; Roesch-Ely, Mariana

    2014-01-01

    Here we investigated alterations in the protein profile of Hep-2 treated with red propolis using two-dimensional electrophoresis associated to mass spectrometry and apoptotic rates of cells treated with and without red propolis extracts through TUNEL and Annexin-V assays. A total of 325 spots were manually excised from the two-dimensional gel electrophoresis and 177 proteins were identified using LC-MS-MS. Among all proteins identified that presented differential expression, most were down-regulated in presence of red propolis extract at a concentration of 120 μg/mL (IC50): GRP78, PRDX2, LDHB, VIM and TUBA1A. Only two up-regulated proteins were identified in this study in the non-cytotoxic (6 μg/mL) red propolis treated group: RPLP0 and RAD23B. TUNEL staining assay showed a markedly increase in the mid- to late-stage apoptosis of Hep-2 cells induced by red propolis at concentrations of 60 and 120 μg/mL when compared with non-treated cells. The increase of late apoptosis was confirmed by in situ Annexin-V analysis in which red propolis extract induced late apoptosis in a dose-dependent manner. The differences in tumor cell protein profiles warrant further investigations including isolation of major bioactive compounds of red propolis in different cell lines using proteomics and molecular tests to validate the protein expression here observed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Transcriptional profiling of whole blood identifies a unique 5-gene signature for myelofibrosis and imminent myelofibrosis transformation.

    Directory of Open Access Journals (Sweden)

    Hans Carl Hasselbalch

    Full Text Available Identifying a distinct gene signature for myelofibrosis may yield novel information of the genes, which are responsible for progression of essential thrombocythemia and polycythemia vera towards myelofibrosis. We aimed at identifying a simple gene signature - composed of a few genes - which were selectively and highly deregulated in myelofibrosis patients. Gene expression microarray studies have been performed on whole blood from 69 patients with myeloproliferative neoplasms. Amongst the top-20 of the most upregulated genes in PMF compared to controls, we identified 5 genes (DEFA4, ELA2, OLFM4, CTSG, and AZU1, which were highly significantly deregulated in PMF only. None of these genes were significantly regulated in ET and PV patients. However, hierarchical cluster analysis showed that these genes were also highly expressed in a subset of patients with ET (n = 1 and PV (n = 4 transforming towards myelofibrosis and/or being featured by an aggressive phenotype. We have identified a simple 5-gene signature, which is uniquely and highly significantly deregulated in patients in transitional stages of ET and PV towards myelofibrosis and in patients with PMF only. Some of these genes are considered to be responsible for the derangement of bone marrow stroma in myelofibrosis. Accordingly, this gene-signature may reflect key processes in the pathogenesis and pathophysiology of myelofibrosis development.

  15. Na+/K+-ATPase α1 identified as an abundant protein in the blood-labyrinth barrier that plays an essential role in the barrier integrity.

    Directory of Open Access Journals (Sweden)

    Yue Yang

    2011-01-01

    Full Text Available The endothelial-blood/tissue barrier is critical for maintaining tissue homeostasis. The ear harbors a unique endothelial-blood/tissue barrier which we term "blood-labyrinth-barrier". This barrier is critical for maintaining inner ear homeostasis. Disruption of the blood-labyrinth-barrier is closely associated with a number of hearing disorders. Many proteins of the blood-brain-barrier and blood-retinal-barrier have been identified, leading to significant advances in understanding their tissue specific functions. In contrast, capillaries in the ear are small in volume and anatomically complex. This presents a challenge for protein analysis studies, which has resulted in limited knowledge of the molecular and functional components of the blood-labyrinth-barrier. In this study, we developed a novel method for isolation of the stria vascularis capillary from CBA/CaJ mouse cochlea and provided the first database of protein components in the blood-labyrinth barrier as well as evidence that the interaction of Na(+/K(+-ATPase α1 (ATP1A1 with protein kinase C eta (PKCη and occludin is one of the mechanisms of loud sound-induced vascular permeability increase.Using a mass-spectrometry, shotgun-proteomics approach combined with a novel "sandwich-dissociation" method, more than 600 proteins from isolated stria vascularis capillaries were identified from adult CBA/CaJ mouse cochlea. The ion transporter ATP1A1 was the most abundant protein in the blood-labyrinth barrier. Pharmacological inhibition of ATP1A1 activity resulted in hyperphosphorylation of tight junction proteins such as occludin which increased the blood-labyrinth-barrier permeability. PKCη directly interacted with ATP1A1 and was an essential mediator of ATP1A1-initiated occludin phosphorylation. Moreover, this identified signaling pathway was involved in the breakdown of the blood-labyrinth-barrier resulting from loud sound trauma.The results presented here provide a novel method for

  16. Identification of unique expression signatures and therapeutic targets in esophageal squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Yan Wusheng

    2012-01-01

    Full Text Available Abstract Background Esophageal squamous cell carcinoma (ESCC, the predominant histological subtype of esophageal cancer, is characterized by high mortality. Previous work identified important mRNA expression differences between normal and tumor cells; however, to date there are limited ex vivo studies examining expression changes occurring during normal esophageal squamous cell differentiation versus those associated with tumorigenesis. In this study, we used a unique tissue microdissection strategy and microarrays to measure gene expression profiles associated with cell differentiation versus tumorigenesis in twelve cases of patient-matched normal basal squamous epithelial cells (NB, normal differentiated squamous epithelium (ND, and squamous cell cancer. Class comparison and pathway analysis were used to compare NB versus tumor in a search for unique therapeutic targets. Results As a first step towards this goal, gene expression profiles and pathways were evaluated. Overall, ND expression patterns were markedly different from NB and tumor; whereas, tumor and NB were more closely related. Tumor showed a general decrease in differentially expressed genes relative to NB as opposed to ND that exhibited the opposite trend. FSH and IgG networks were most highly dysregulated in normal differentiation and tumorigenesis, respectively. DNA repair pathways were generally elevated in NB and tumor relative to ND indicating involvement in both normal and pathological growth. PDGF signaling pathway and 12 individual genes unique to the tumor/NB comparison were identified as therapeutic targets, and 10 associated ESCC gene-drug pairs were identified. We further examined the protein expression level and the distribution patterns of four genes: ODC1, POSTN, ASPA and IGF2BP3. Ultimately, three genes (ODC1, POSTN, ASPA were verified to be dysregulated in the same pattern at both the mRNA and protein levels. Conclusions These data reveal insight into genes and

  17. Identifying the unique characteristics of independent fashion retailers in Scotland by utilising Porter’s generic competitive strategy model and the marketing mix

    Directory of Open Access Journals (Sweden)

    Nicola O’HARE

    2018-01-01

    Full Text Available El mismo texto del Independent retailers in the fashion sector make a substantial contribution to the UK economy at the time of significant change on the high street due to financial pressures and the growth of online trade. They provide an element of creativity and innovation to a homogenous retail landscape. The independent fashion retailer creates a destination and individual identity by presenting a unique offering and differentiated experience. Whilst independent retailers are important to the future of our high street, research is limited, particularly in the area of fashion independents. Therefore this research examines and identifies the unique characteristics of independent fashion retailers within Scotland. The research adopts a case study approach, qualitative methods of data collection in order to fulfil the aim and objectives of the study. Porter’s Generic Competitive Strategies and the marketing mix were utilised as a means of drawing out the individual aspects and unique characteristics of the independent fashion retailer.

  18. Can Natural Proteins Designed with ‘Inverted’ Peptide Sequences Adopt Native-Like Protein Folds?

    Science.gov (United States)

    Sridhar, Settu; Guruprasad, Kunchur

    2014-01-01

    We have carried out a systematic computational analysis on a representative dataset of proteins of known three-dimensional structure, in order to evaluate whether it would possible to ‘swap’ certain short peptide sequences in naturally occurring proteins with their corresponding ‘inverted’ peptides and generate ‘artificial’ proteins that are predicted to retain native-like protein fold. The analysis of 3,967 representative proteins from the Protein Data Bank revealed 102,677 unique identical inverted peptide sequence pairs that vary in sequence length between 5–12 and 18 amino acid residues. Our analysis illustrates with examples that such ‘artificial’ proteins may be generated by identifying peptides with ‘similar structural environment’ and by using comparative protein modeling and validation studies. Our analysis suggests that natural proteins may be tolerant to accommodating such peptides. PMID:25210740

  19. Proteomic analysis identifies insulin-like growth factor-binding protein-related protein-1 as a podocyte product.

    Science.gov (United States)

    Matsumoto, Takayuki; Hess, Sonja; Kajiyama, Hiroshi; Sakairi, Toru; Saleem, Moin A; Mathieson, Peter W; Nojima, Yoshihisa; Kopp, Jeffrey B

    2010-10-01

    The podocyte secretory proteome may influence the phenotype of adjacent podocytes, endothelial cells, parietal epithelial cells, and tubular epithelial cells but has not been systematically characterized. We have initiated studies to characterize this proteome, with the goal of further understanding the podocyte cell biology. We cultured differentiated conditionally immortalized human podocytes and subjected the proteins in conditioned medium to mass spectrometry. At a false discovery rate of factor-binding protein-related protein-1 (IGFBP-rP1), was expressed in mRNA and protein of cultured podocytes. In addition, transforming growth factor-β1 stimulation increased IGFBP-rP1 in conditioned medium. We analyzed IGFBP-rP1 glomerular expression in a mouse model of human immunodeficiency virus-associated nephropathy. IGFBP-rP1 was absent from podocytes of normal mice and was expressed in podocytes and pseudocrescents of transgenic mice, where it was coexpressed with desmin, a podocyte injury marker. We conclude that IGFBP-rP1 may be a product of injured podocytes. Further analysis of the podocyte secretory proteome may identify biomarkers of podocyte injury.

  20. Identifying the molecular functions of electron transport proteins using radial basis function networks and biochemical properties.

    Science.gov (United States)

    Le, Nguyen-Quoc-Khanh; Nguyen, Trinh-Trung-Duong; Ou, Yu-Yen

    2017-05-01

    The electron transport proteins have an important role in storing and transferring electrons in cellular respiration, which is the most proficient process through which cells gather energy from consumed food. According to the molecular functions, the electron transport chain components could be formed with five complexes with several different electron carriers and functions. Therefore, identifying the molecular functions in the electron transport chain is vital for helping biologists understand the electron transport chain process and energy production in cells. This work includes two phases for discriminating electron transport proteins from transport proteins and classifying categories of five complexes in electron transport proteins. In the first phase, the performances from PSSM with AAIndex feature set were successful in identifying electron transport proteins in transport proteins with achieved sensitivity of 73.2%, specificity of 94.1%, and accuracy of 91.3%, with MCC of 0.64 for independent data set. With the second phase, our method can approach a precise model for identifying of five complexes with different molecular functions in electron transport proteins. The PSSM with AAIndex properties in five complexes achieved MCC of 0.51, 0.47, 0.42, 0.74, and 1.00 for independent data set, respectively. We suggest that our study could be a power model for determining new proteins that belongs into which molecular function of electron transport proteins. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Identification of discriminant proteins through antibody profiling, methods and apparatus for identifying an individual

    Science.gov (United States)

    Thompson, Vicki S; Lacey, Jeffrey A; Gentillon, Cynthia A; Apel, William A

    2015-03-03

    A method for determining a plurality of proteins for discriminating and positively identifying an individual based from a biological sample. The method may include profiling a biological sample from a plurality of individuals against a protein array including a plurality of proteins. The protein array may include proteins attached to a support in a preselected pattern such that locations of the proteins are known. The biological sample may be contacted with the protein array such that a portion of antibodies in the biological sample reacts with and binds to the proteins forming immune complexes. A statistical analysis method, such as discriminant analysis, may be performed to determine discriminating proteins for distinguishing individuals. Proteins of interest may be used to form a protein array. Such a protein array may be used, for example, to compare a forensic sample from an unknown source with a sample from a known source.

  2. Identification of discriminant proteins through antibody profiling, methods and apparatus for identifying an individual

    Energy Technology Data Exchange (ETDEWEB)

    Apel, William A.; Thompson, Vicki S; Lacey, Jeffrey A.; Gentillon, Cynthia A.

    2016-08-09

    A method for determining a plurality of proteins for discriminating and positively identifying an individual based from a biological sample. The method may include profiling a biological sample from a plurality of individuals against a protein array including a plurality of proteins. The protein array may include proteins attached to a support in a preselected pattern such that locations of the proteins are known. The biological sample may be contacted with the protein array such that a portion of antibodies in the biological sample reacts with and binds to the proteins forming immune complexes. A statistical analysis method, such as discriminant analysis, may be performed to determine discriminating proteins for distinguishing individuals. Proteins of interest may be used to form a protein array. Such a protein array may be used, for example, to compare a forensic sample from an unknown source with a sample from a known source.

  3. The malaria parasite RhopH protein complex interacts with erythrocyte calmyrin identified from a comprehensive erythrocyte protein library.

    Science.gov (United States)

    Miura, Toyokazu; Takeo, Satoru; Ntege, Edward H; Otsuki, Hitoshi; Sawasaki, Tatsuya; Ishino, Tomoko; Takashima, Eizo; Tsuboi, Takafumi

    2018-06-02

    Malaria merozoite apical organelles; microneme and rhoptry secreted proteins play functional roles during and following invasion of host erythrocytes. Among numerous proteins, the rhoptries discharge high molecular weight proteins known as RhopH complex. Recent reports suggest that the RhopH complex is essential for growth and survival of the malaria parasite within erythrocytes. However, an in-depth understanding of the host-parasite molecular interactions is indispensable. Here we utilized a comprehensive mouse erythrocyte protein library consisting of 443 proteins produced by a wheat germ cell-free system, combined with AlphaScreen technology to identify mouse erythrocyte calmyrin as an interacting molecule of the rodent malaria parasite Plasmodium yoelii RhopH complex (PyRhopH). The PyRhopH interaction was dependent on the calmyrin N-terminus and divalent cation capacity. The finding unveils a recommendable and invaluable usefulness of our comprehensive mouse erythrocyte protein library together with the AlphaScreen technology in investigating a wide-range of host-parasite molecular interactions. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Proteomic analysis of exosomes from nasopharyngeal carcinoma cell identifies intercellular transfer of angiogenic proteins

    KAUST Repository

    Chan, Yuk-kit

    2015-04-01

    Exosomes, a group of secreted extracellular nanovesicles containing genetic materials and signaling molecules, play a critical role in intercellular communication. During tumorigenesis, exosomes have been demonstrated to promote tumor angiogenesis and metastasis while their biological functions in nasopharyngeal carcinoma (NPC) are poorly understood. In this study, we focused on the role of NPC-derived exosomes on angiogenesis. Exosomes derived from the NPC C666-1 cells and immortalized nasopharyngeal epithelial cells (NP69 and NP460) were isolated using ultracentrifugation. The molecular profile and biophysical characteristics of exosomes were verified by Western blotting, sucrose density gradient, and electron microscopy. We showed that the C666-1 exosomes (10 and 20 μg/ml) could significantly increase the tubulogenesis, migration and invasion of human umbilical vein endothelial cells (HUVECs) in a dose-dependent manner. Subsequently, an iTRAQ-based quantitative proteomics was used to identify the differentially expressed proteins in C666-1 exosomes. Among the 640 identified proteins, 51 and 89 proteins were considered as up- and down-regulated (≥ 1.5-fold variations) in C666-1 exosomes compared to the normal counterparts, respectively. As expected, pro-angiogenic proteins including intercellular adhesion molecule-1 (ICAM-1) and CD44 variant isoform 5 (CD44v5) are among the up-regulated proteins, whereas angio-suppressive protein, thrombospondin-1 (TSP-1) was down-regulated in C666-1 exosomes. Further confocal microscopic study and Western blotting clearly demonstrated that the alteration of ICAM-1, and TSP-1 expressions in recipient HUVECs are due to internalization of exosomes. Taken together, these data strongly indicated the critical roles of identified angiogenic proteins in the involvement of exosomes-induced angiogenesis, which could potentially be developed as therapeutic targets in future. This article is protected by copyright. All rights reserved.

  5. Proteomic analysis of exosomes from nasopharyngeal carcinoma cell identifies intercellular transfer of angiogenic proteins

    KAUST Repository

    Chan, Yuk-kit; Zhang, Huoming; Liu, Pei; Tsao, George Sai-wah; Li Lung, Maria; Mak, Nai-ki; Ngok-shun Wong, Ricky; Ying-kit Yue, Patrick

    2015-01-01

    Exosomes, a group of secreted extracellular nanovesicles containing genetic materials and signaling molecules, play a critical role in intercellular communication. During tumorigenesis, exosomes have been demonstrated to promote tumor angiogenesis and metastasis while their biological functions in nasopharyngeal carcinoma (NPC) are poorly understood. In this study, we focused on the role of NPC-derived exosomes on angiogenesis. Exosomes derived from the NPC C666-1 cells and immortalized nasopharyngeal epithelial cells (NP69 and NP460) were isolated using ultracentrifugation. The molecular profile and biophysical characteristics of exosomes were verified by Western blotting, sucrose density gradient, and electron microscopy. We showed that the C666-1 exosomes (10 and 20 μg/ml) could significantly increase the tubulogenesis, migration and invasion of human umbilical vein endothelial cells (HUVECs) in a dose-dependent manner. Subsequently, an iTRAQ-based quantitative proteomics was used to identify the differentially expressed proteins in C666-1 exosomes. Among the 640 identified proteins, 51 and 89 proteins were considered as up- and down-regulated (≥ 1.5-fold variations) in C666-1 exosomes compared to the normal counterparts, respectively. As expected, pro-angiogenic proteins including intercellular adhesion molecule-1 (ICAM-1) and CD44 variant isoform 5 (CD44v5) are among the up-regulated proteins, whereas angio-suppressive protein, thrombospondin-1 (TSP-1) was down-regulated in C666-1 exosomes. Further confocal microscopic study and Western blotting clearly demonstrated that the alteration of ICAM-1, and TSP-1 expressions in recipient HUVECs are due to internalization of exosomes. Taken together, these data strongly indicated the critical roles of identified angiogenic proteins in the involvement of exosomes-induced angiogenesis, which could potentially be developed as therapeutic targets in future. This article is protected by copyright. All rights reserved.

  6. The RNA binding protein HuR differentially regulates unique subsets of mRNAs in estrogen receptor negative and estrogen receptor positive breast cancer

    Directory of Open Access Journals (Sweden)

    Chen Jing

    2010-04-01

    Full Text Available Abstract Background The discordance between steady-state levels of mRNAs and protein has been attributed to posttranscriptional control mechanisms affecting mRNA stability and translation. Traditional methods of genome wide microarray analysis, profiling steady-state levels of mRNA, may miss important mRNA targets owing to significant posttranscriptional gene regulation by RNA binding proteins (RBPs. Methods The ribonomic approach, utilizing RNA immunoprecipitation hybridized to microarray (RIP-Chip, provides global identification of putative endogenous mRNA targets of different RBPs. HuR is an RBP that binds to the AU-rich elements (ARE of labile mRNAs, such as proto-oncogenes, facilitating their translation into protein. HuR has been shown to play a role in cancer progression and elevated levels of cytoplasmic HuR directly correlate with increased invasiveness and poor prognosis for many cancers, including those of the breast. HuR has been described to control genes in several of the acquired capabilities of cancer and has been hypothesized to be a tumor-maintenance gene, allowing for cancers to proliferate once they are established. Results We used HuR RIP-Chip as a comprehensive and systematic method to survey breast cancer target genes in both MCF-7 (estrogen receptor positive, ER+ and MDA-MB-231 (estrogen receptor negative, ER- breast cancer cell lines. We identified unique subsets of HuR-associated mRNAs found individually or in both cell types. Two novel HuR targets, CD9 and CALM2 mRNAs, were identified and validated by quantitative RT-PCR and biotin pull-down analysis. Conclusion This is the first report of a side-by-side genome-wide comparison of HuR-associated targets in wild type ER+ and ER- breast cancer. We found distinct, differentially expressed subsets of cancer related genes in ER+ and ER- breast cancer cell lines, and noted that the differential regulation of two cancer-related genes by HuR was contingent upon the cellular

  7. [Family of ribosomal proteins S1 contains unique conservative domain].

    Science.gov (United States)

    Deriusheva, E I; Machulin, A V; Selivanova, O M; Serdiuk, I N

    2010-01-01

    Different representatives of bacteria have different number of amino acid residues in the ribosomal proteins S1. This number varies from 111 (Spiroplasma kunkelii) to 863 a.a. (Treponema pallidum). Traditionally and for lack of this protein three-dimensional structure, its architecture is represented as repeating S1 domains. Number of these domains depends on the protein's length. Domain's quantity and its boundaries data are contained in the specialized databases, such as SMART, Pfam and PROSITE. However, for the same object these data may be very different. For search of domain's quantity and its boundaries, new approach, based on the analysis of dicted secondary structure (PsiPred), was used. This approach allowed us to reveal structural domains in amino acid sequences of S1 proteins and at that number varied from one to six. Alignment of S1 proteins, containing different domain's number, with the S1 RNAbinding domain of Escherichia coli PNPase elicited a fact that in family of ribosomal proteins SI one domain has maximal homology with S1 domain from PNPase. This conservative domain migrates along polypeptide chain and locates in proteins, containing different domain's number, according to specified pattern. In this domain as well in the S1 domain from PNPase, residues Phe-19, Phe-22, His-34, Asp-64 and Arg-68 are clustered on the surface and formed RNA binding site.

  8. cDNA Library Screening Identifies Protein Interactors Potentially Involved in Non-telomeric Roles of Arabidopsis Telomerase

    Directory of Open Access Journals (Sweden)

    Ladislav eDokládal

    2015-11-01

    Full Text Available Telomerase-reverse transcriptase (TERT plays an essential catalytic role in maintaining telomeres. However, in animal systems telomerase plays additional non-telomeric functional roles. We previously screened an Arabidopsis cDNA library for proteins that interact with the C-terminal extension (CTE TERT domain and identified a nuclear-localized protein that contains a RNA recognition motif (RRM. This RRM-protein forms homodimers in both plants and yeast. Mutation of the gene encoding the RRM-protein had no detectable effect on plant growth and development, nor did it affect telomerase activity or telomere length in vivo, suggesting a non-telomeric role for TERT/RRM-protein complexes. The gene encoding the RRM-protein is highly expressed in leaf and reproductive tissues. We further screened an Arabidopsis cDNA library for proteins that interact with the RRM-protein and identified five interactors. These proteins are involved in numerous non-telomere-associated cellular activities. In plants, the RRM-protein, both alone and in a complex with its interactors, localizes to nuclear speckles. Transcriptional analyses in wild-type and rrm mutant plants, as well as transcriptional co-analyses, suggest that TERT, the RRM-protein, and the RRM-protein interactors may play important roles in non-telomeric cellular functions.

  9. The PMDB Protein Model Database

    Science.gov (United States)

    Castrignanò, Tiziana; De Meo, Paolo D'Onorio; Cozzetto, Domenico; Talamo, Ivano Giuseppe; Tramontano, Anna

    2006-01-01

    The Protein Model Database (PMDB) is a public resource aimed at storing manually built 3D models of proteins. The database is designed to provide access to models published in the scientific literature, together with validating experimental data. It is a relational database and it currently contains >74 000 models for ∼240 proteins. The system is accessible at and allows predictors to submit models along with related supporting evidence and users to download them through a simple and intuitive interface. Users can navigate in the database and retrieve models referring to the same target protein or to different regions of the same protein. Each model is assigned a unique identifier that allows interested users to directly access the data. PMID:16381873

  10. Proteome analysis of Aspergillus fumigatus identifies glycosylphosphatidylinositol-anchored proteins associated to the cell wall biosynthesis.

    Science.gov (United States)

    Bruneau, J M; Magnin, T; Tagat, E; Legrand, R; Bernard, M; Diaquin, M; Fudali, C; Latgé, J P

    2001-08-01

    Previous studies in Aspergillus fumigatus (Mouyna I., Fontaine T., Vai M., Monod M., Fonzi W. A., Diaquin M., Popolo L., Hartland R. P., Latgé J.-P, J. Biol. Chem. 2000, 275, 14882-14889) have shown that a glucanosyltransferase playing an important role in fungal cell wall biosynthesis is glycosylphosphatidylinositol (GPI) anchored to the membrane. To identify other GPI-anchored proteins putatively involved in cell wall biogenesis, a proteomic analysis has been undertaken in A. fumigatus and the protein data were matched with the yeast genomic data. GPI-anchored proteins of A. fumigatus were released from membrane preparation by an endogenous GPI-phospholipase C, purified by liquid chromatography and separated by two-dimensional electrophoresis. They were characterized by their peptide mass fingerprint through matrix-assisted laser desorption/ionization-time of flight-(MALDI-TOF)-mass spectrometry and by internal amino acid sequencing. Nine GPI-anchored proteins were identified in A. fumigatus. Five of them were homologs of putatively GPI-anchored yeast proteins (Csa1p, Crh1p, Crh2p, Ecm33p, Gas1p) of unknown function but shown by gene disruption analysis to play a role in cell wall morphogenesis. In addition, a comparative study performed with chitin synthase and glucanosyl transferase mutants of A. fumigatus showed that a modification of the growth phenotype seen in these mutants was associated to an alteration of the pattern of GPI-anchored proteins. These results suggest that GPI-anchored proteins identified in this study are involved in A. fumigatus cell wall organization.

  11. Mass Spectrometry-Based Methods for Identifying Oxidized Proteins in Disease: Advances and Challenges

    Directory of Open Access Journals (Sweden)

    Ivan Verrastro

    2015-04-01

    Full Text Available Many inflammatory diseases have an oxidative aetiology, which leads to oxidative damage to biomolecules, including proteins. It is now increasingly recognized that oxidative post-translational modifications (oxPTMs of proteins affect cell signalling and behaviour, and can contribute to pathology. Moreover, oxidized proteins have potential as biomarkers for inflammatory diseases. Although many assays for generic protein oxidation and breakdown products of protein oxidation are available, only advanced tandem mass spectrometry approaches have the power to localize specific oxPTMs in identified proteins. While much work has been carried out using untargeted or discovery mass spectrometry approaches, identification of oxPTMs in disease has benefitted from the development of sophisticated targeted or semi-targeted scanning routines, combined with chemical labeling and enrichment approaches. Nevertheless, many potential pitfalls exist which can result in incorrect identifications. This review explains the limitations, advantages and challenges of all of these approaches to detecting oxidatively modified proteins, and provides an update on recent literature in which they have been used to detect and quantify protein oxidation in disease.

  12. A feedback framework for protein inference with peptides identified from tandem mass spectra

    Directory of Open Access Journals (Sweden)

    Shi Jinhong

    2012-11-01

    Full Text Available Abstract Background Protein inference is an important computational step in proteomics. There exists a natural nest relationship between protein inference and peptide identification, but these two steps are usually performed separately in existing methods. We believe that both peptide identification and protein inference can be improved by exploring such nest relationship. Results In this study, a feedback framework is proposed to process peptide identification reports from search engines, and an iterative method is implemented to exemplify the processing of Sequest peptide identification reports according to the framework. The iterative method is verified on two datasets with known validity of proteins and peptides, and compared with ProteinProphet and PeptideProphet. The results have shown that not only can the iterative method infer more true positive and less false positive proteins than ProteinProphet, but also identify more true positive and less false positive peptides than PeptideProphet. Conclusions The proposed iterative method implemented according to the feedback framework can unify and improve the results of peptide identification and protein inference.

  13. Suspended marine particulate proteins in coastal and oligotrophic waters

    Science.gov (United States)

    Bridoux, Maxime C.; Neibauer, Jaqui; Ingalls, Anitra E.; Nunn, Brook L.; Keil, Richard G.

    2015-03-01

    Metaproteomic analyses were performed on suspended sediments collected in one coastal environment (Washington margin, Pacific Ocean, n = 5) and two oligotrophic environments (Atlantic Ocean near BATS, n = 5, and Pacific Ocean near HOTS, n = 5). Using a database of 2.3 million marine proteins developed using the NCBI database, 443 unique peptides were detected from which 363 unique proteins were identified. Samples from the euphotic zone contained on average 2-3x more identifiable proteins than deeper waters (150-1500 m) and these proteins were predominately from photosynthetic organisms. Diatom peptides dominate the spectra of the Washington margin while peptides from cyanobacteria, such as Synechococcus sp. dominated the spectra of both oligotrophic sites. Despite differences in the exact proteins identified at each location, there is good agreement for protein function and cellular location. Proteins in surface waters code for a variety of cellular functions including photosynthesis (24% of detected proteins), energy production (10%), membrane production (9%) and genetic coding and reading (9%), and are split 60-40 between membrane proteins and intracellular cytoplasmic proteins. Sargasso Sea surface waters contain a suite of peptides consistent with proteins involved in circadian rhythms that promote both C and N fixation at night. At depth in the Sargasso Sea, both muscle-derived myosin protein and the muscle-hydrolyzing proteases deseasin MCP-01 and metalloprotease Mcp02 from γ-proteobacteria were observed. Deeper waters contain peptides predominately sourced from γ-proteobacteria (37% of detected proteins) and α-proteobacteria (26%), although peptides from membrane and photosynthetic proteins attributable to phytoplankton were still observed (13%). Relative to surface values, detection frequencies for bacterial membrane proteins and extracellular enzymes rose from 9 to 16 and 2 to 4% respectively below the thermocline and the overall balance between

  14. Unique proteomic signatures distinguish macrophages and dendritic cells.

    Directory of Open Access Journals (Sweden)

    Lev Becker

    Full Text Available Monocytes differentiate into heterogeneous populations of tissue macrophages and dendritic cells (DCs that regulate inflammation and immunity. Identifying specific populations of myeloid cells in vivo is problematic, however, because only a limited number of proteins have been used to assign cellular phenotype. Using mass spectrometry and bone marrow-derived cells, we provided a global view of the proteomes of M-CSF-derived macrophages, classically and alternatively activated macrophages, and GM-CSF-derived DCs. Remarkably, the expression levels of half the plasma membrane proteins differed significantly in the various populations of cells derived in vitro. Moreover, the membrane proteomes of macrophages and DCs were more distinct than those of classically and alternatively activated macrophages. Hierarchical cluster and dual statistical analyses demonstrated that each cell type exhibited a robust proteomic signature that was unique. To interrogate the phenotype of myeloid cells in vivo, we subjected elicited peritoneal macrophages harvested from wild-type and GM-CSF-deficient mice to mass spectrometric and functional analysis. Unexpectedly, we found that peritoneal macrophages exhibited many features of the DCs generated in vitro. These findings demonstrate that global analysis of the membrane proteome can help define immune cell phenotypes in vivo.

  15. Identifying biological concepts from a protein-related corpus with a probabilistic topic model

    Directory of Open Access Journals (Sweden)

    Lu Xinghua

    2006-02-01

    Full Text Available Abstract Background Biomedical literature, e.g., MEDLINE, contains a wealth of knowledge regarding functions of proteins. Major recurring biological concepts within such text corpora represent the domains of this body of knowledge. The goal of this research is to identify the major biological topics/concepts from a corpus of protein-related MEDLINE© titles and abstracts by applying a probabilistic topic model. Results The latent Dirichlet allocation (LDA model was applied to the corpus. Based on the Bayesian model selection, 300 major topics were extracted from the corpus. The majority of identified topics/concepts was found to be semantically coherent and most represented biological objects or concepts. The identified topics/concepts were further mapped to the controlled vocabulary of the Gene Ontology (GO terms based on mutual information. Conclusion The major and recurring biological concepts within a collection of MEDLINE documents can be extracted by the LDA model. The identified topics/concepts provide parsimonious and semantically-enriched representation of the texts in a semantic space with reduced dimensionality and can be used to index text.

  16. A genome-wide association study identifies protein quantitative trait loci (pQTLs.

    Directory of Open Access Journals (Sweden)

    David Melzer

    2008-05-01

    Full Text Available There is considerable evidence that human genetic variation influences gene expression. Genome-wide studies have revealed that mRNA levels are associated with genetic variation in or close to the gene coding for those mRNA transcripts - cis effects, and elsewhere in the genome - trans effects. The role of genetic variation in determining protein levels has not been systematically assessed. Using a genome-wide association approach we show that common genetic variation influences levels of clinically relevant proteins in human serum and plasma. We evaluated the role of 496,032 polymorphisms on levels of 42 proteins measured in 1200 fasting individuals from the population based InCHIANTI study. Proteins included insulin, several interleukins, adipokines, chemokines, and liver function markers that are implicated in many common diseases including metabolic, inflammatory, and infectious conditions. We identified eight Cis effects, including variants in or near the IL6R (p = 1.8x10(-57, CCL4L1 (p = 3.9x10(-21, IL18 (p = 6.8x10(-13, LPA (p = 4.4x10(-10, GGT1 (p = 1.5x10(-7, SHBG (p = 3.1x10(-7, CRP (p = 6.4x10(-6 and IL1RN (p = 7.3x10(-6 genes, all associated with their respective protein products with effect sizes ranging from 0.19 to 0.69 standard deviations per allele. Mechanisms implicated include altered rates of cleavage of bound to unbound soluble receptor (IL6R, altered secretion rates of different sized proteins (LPA, variation in gene copy number (CCL4L1 and altered transcription (GGT1. We identified one novel trans effect that was an association between ABO blood group and tumour necrosis factor alpha (TNF-alpha levels (p = 6.8x10(-40, but this finding was not present when TNF-alpha was measured using a different assay , or in a second study, suggesting an assay-specific association. Our results show that protein levels share some of the features of the genetics of gene expression. These include the presence of strong genetic effects in cis

  17. The neXtProt peptide uniqueness checker: a tool for the proteomics community.

    Science.gov (United States)

    Schaeffer, Mathieu; Gateau, Alain; Teixeira, Daniel; Michel, Pierre-André; Zahn-Zabal, Monique; Lane, Lydie

    2017-11-01

    The neXtProt peptide uniqueness checker allows scientists to define which peptides can be used to validate the existence of human proteins, i.e. map uniquely versus multiply to human protein sequences taking into account isobaric substitutions, alternative splicing and single amino acid variants. The pepx program is available at https://github.com/calipho-sib/pepx and can be launched from the command line or through a cgi web interface. Indexing requires a sequence file in FASTA format. The peptide uniqueness checker tool is freely available on the web at https://www.nextprot.org/tools/peptide-uniqueness-checker and from the neXtProt API at https://api.nextprot.org/. lydie.lane@sib.swiss. © The Author(s) 2017. Published by Oxford University Press.

  18. UNiquant, a Program for Quantitative Proteomics Analysis Using Stable Isotope Labeling

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xin; Tolmachev, Aleksey V.; Shen, Yulei; Liu, Miao; Huang, Lin; Zhang, Zhixin; Anderson, Gordon A.; Smith, Richard D.; Chan, Wing C.; Hinrichs, Steven; Fu, Kai; Ding, Shi-Jian

    2011-03-04

    We present UNiquant, a new software program for analyzing stable isotope labeling (SIL) based quantitative proteomics data. UNiquant surpassed the performance of two other platforms, MaxQuant and Mascot Distiller, using complex proteome mixtures having either known or unknown heavy/light ratios. UNiquant is compatible with a broad spectrum of search engines and SIL methods, providing outstanding peptide pair identification and accurate measurement of the relative peptide/protein abundance.

  19. Identifying secondary structures in proteins using NMR chemical shift 3D correlation maps

    Science.gov (United States)

    Kumari, Amrita; Dorai, Kavita

    2013-06-01

    NMR chemical shifts are accurate indicators of molecular environment and have been extensively used as aids in protein structure determination. This work focuses on creating empirical 3D correlation maps of backbone chemical shift nuclei for use as identifiers of secondary structure elements in proteins. A correlated database of backbone nuclei chemical shifts was constructed from experimental structural data gathered from entries in the Protein Data Bank (PDB) as well as isotropic chemical shift values from the RefDB database. Rigorous statistical analysis of the maps led to the conclusion that specific correlations between triplets of backbone chemical shifts are best able to differentiate between different secondary structures such as α-helices, β-strands and turns. The method is compared with similar techniques that use NMR chemical shift information as aids in biomolecular structure determination and performs well in tests done on experimental data determined for different types of proteins, including large multi-domain proteins and membrane proteins.

  20. Incorporating deep learning with convolutional neural networks and position specific scoring matrices for identifying electron transport proteins.

    Science.gov (United States)

    Le, Nguyen-Quoc-Khanh; Ho, Quang-Thai; Ou, Yu-Yen

    2017-09-05

    In several years, deep learning is a modern machine learning technique using in a variety of fields with state-of-the-art performance. Therefore, utilization of deep learning to enhance performance is also an important solution for current bioinformatics field. In this study, we try to use deep learning via convolutional neural networks and position specific scoring matrices to identify electron transport proteins, which is an important molecular function in transmembrane proteins. Our deep learning method can approach a precise model for identifying of electron transport proteins with achieved sensitivity of 80.3%, specificity of 94.4%, and accuracy of 92.3%, with MCC of 0.71 for independent dataset. The proposed technique can serve as a powerful tool for identifying electron transport proteins and can help biologists understand the function of the electron transport proteins. Moreover, this study provides a basis for further research that can enrich a field of applying deep learning in bioinformatics. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Identification of unique interactions between the flexible linker and the RecA-like domains of DEAD-box helicase Mss116

    International Nuclear Information System (INIS)

    Zhang, Yuan; Palla, Mirkó; Liao, Jung-Chi; Sun, Andrew

    2013-01-01

    DEAD-box RNA helicases are ATP-dependent proteins implicated in nearly all aspects of RNA metabolism. The yeast DEAD-box helicase Mss116 is unique in its functions of splicing group I and group II introns and activating mRNA translation, but the structural understanding of why it performs these unique functions remains unclear. Here we used sequence analysis and molecular dynamics simulation to identify residues in the flexible linker specific for yeast Mss116, potentially associated with its unique functions. We first identified residues that are 100% conserved in Mss116 of different species of the Saccharomycetaceae family. The amino acids of these conserved residues were then compared with the amino acids of the corresponding residue positions of other RNA helicases to identify residues that have distinct amino acids from other DEAD-box proteins. Four residues in the flexible linker, i.e. N334, E335, P336 and H339, are conserved and Mss116-specific. Molecular dynamics simulation was conducted for the wild-type Mss116 structure and mutant models to examine mutational effects of the linker on the conformational equilibrium. Relatively short MD simulation runs (within 20 ns) were enough for us to observe mutational effects, suggesting serious structural perturbations by these mutations. The mutation of E335 depletes the interactions between E335 and K95 in domain 1. The interactions between N334/P336 and N496/I497 of domain 2 are also abolished by mutation. Our results suggest that tight interactions between the Mss116-specific flexible linker and the two RecA-like domains may be mechanically required to crimp RNA for the unique RNA processes of yeast Mss116. (paper)

  2. Identification of unique interactions between the flexible linker and the RecA-like domains of DEAD-box helicase Mss116

    Science.gov (United States)

    Zhang, Yuan; Palla, Mirkó; Sun, Andrew; Liao, Jung-Chi

    2013-09-01

    DEAD-box RNA helicases are ATP-dependent proteins implicated in nearly all aspects of RNA metabolism. The yeast DEAD-box helicase Mss116 is unique in its functions of splicing group I and group II introns and activating mRNA translation, but the structural understanding of why it performs these unique functions remains unclear. Here we used sequence analysis and molecular dynamics simulation to identify residues in the flexible linker specific for yeast Mss116, potentially associated with its unique functions. We first identified residues that are 100% conserved in Mss116 of different species of the Saccharomycetaceae family. The amino acids of these conserved residues were then compared with the amino acids of the corresponding residue positions of other RNA helicases to identify residues that have distinct amino acids from other DEAD-box proteins. Four residues in the flexible linker, i.e. N334, E335, P336 and H339, are conserved and Mss116-specific. Molecular dynamics simulation was conducted for the wild-type Mss116 structure and mutant models to examine mutational effects of the linker on the conformational equilibrium. Relatively short MD simulation runs (within 20 ns) were enough for us to observe mutational effects, suggesting serious structural perturbations by these mutations. The mutation of E335 depletes the interactions between E335 and K95 in domain 1. The interactions between N334/P336 and N496/I497 of domain 2 are also abolished by mutation. Our results suggest that tight interactions between the Mss116-specific flexible linker and the two RecA-like domains may be mechanically required to crimp RNA for the unique RNA processes of yeast Mss116.

  3. Protein phosphatases active on acetyl-CoA carboxylase phosphorylated by casein kinase I, casein kinase II and the cAMP-dependent protein kinase

    International Nuclear Information System (INIS)

    Witters, L.A.; Bacon, G.W.

    1985-01-01

    The protein phosphatases in rat liver cytosol, active on rat liver acetyl-CoA carboxylase (ACC) phosphorylated by casein kinase I, casein kinase II and the cAMP-dependent protein kinase, have been partially purified by anion-exchange and gel filtration chromatography. The major phosphatase activities against all three substrates copurify through fractionation and appear to be identical to protein phosphatases 2A1 and 2A2. No unique protein phosphatase active on 32 P-ACC phosphorylated by the casein kinases was identified

  4. Ankle brachial index, C-reactive protein, and central augmentation index to identify individuals with severe atherosclerosis

    DEFF Research Database (Denmark)

    Eldrup, Nikolaj; Sillesen, Henrik; Prescott, Eva

    2006-01-01

    We examined the ability of ankle brachial index, C-reactive protein and central augmentation index to identify individuals in the general population with severe atherosclerosis, diagnosed as those with ischaemic cardiovascular disease.......We examined the ability of ankle brachial index, C-reactive protein and central augmentation index to identify individuals in the general population with severe atherosclerosis, diagnosed as those with ischaemic cardiovascular disease....

  5. A Unique Immunofluorescence Protocol to Detect Protein Expression in Vascular Tissues: Tacking a Long Standing Pathological Hitch

    Directory of Open Access Journals (Sweden)

    Puneet GANDHI

    2018-01-01

    Full Text Available Objective: Autofluorescence induced interference is one of the major drawbacks in immunofluorescence analysis of formalin-fixed paraffin-embedded tissues, as it decreases the signal-to-noise ratio of specific labeling. Apart from aldehyde-fixation induced artifacts; collagen and elastin, red blood cells and endogenous fluorescent pigment lipofuscin are prime sources of autofluorescence in vascular and aging tissues. We describe herein, an optimized indirect-immunofluorescence method for archival formalin-fixed paraffin-embedded tissues tissues and cryo sections, using a combination of 3-reagents in a specific order, to achieve optimal fluorescence signals and imaging. Material and Method: Human telomerase reverse transcriptase, a protein implicated as a proliferation marker, was chosen relevant to its expression in solid tumors along with 3 other intracellular proteins exhibiting nuclear and/or cytoplasmic expression. Staining was performed on 10 glioma tissue sections along with 5 of their cryo sections, 5 sections each of hepatocellular, lung, papillary-thyroid and renal cell carcinoma, with 10 non-malignant brain tissue samples serving as control. Specimens were imaged using epifluorescence microscopy, followed by software-based quantification of fluorescence signals for statistical analysis and validation. Results: We observed that the combined application of sodium-borohydride followed by crystal violet before antigen retrieval and a Sudan black B treatment after secondary antibody application proved to be most efficacious for masking autofluorescence/non-specific background in vascular tissues. Conclusion: This unique trio-methodology provides quantifiable observations with maximized fluorescence signal intensity of the target protein for longer retention time of the signal even after prolonged storage. The results can be extrapolated to other human tissues for different protein targets.

  6. Comparative kinomics of human and chimpanzee reveal unique kinship and functional diversity generated by new domain combinations

    Directory of Open Access Journals (Sweden)

    Martin Juliette

    2008-12-01

    Full Text Available Abstract Background Phosphorylation by protein kinases is a common event in many cellular processes. Further, many kinases perform specialized roles and are regulated by non-kinase domains tethered to kinase domain. Perturbation in the regulation of kinases leads to malignancy. We have identified and analysed putative protein kinases encoded in the genome of chimpanzee which is a close evolutionary relative of human. Result The shared core biology between chimpanzee and human is characterized by many orthologous protein kinases which are involved in conserved pathways. Domain architectures specific to chimp/human kinases have been observed. Chimp kinases with unique domain architectures are characterized by deletion of one or more non-kinase domains in the human kinases. Interestingly, counterparts of some of the multi-domain human kinases in chimp are characterized by identical domain architectures but with kinase-like non-kinase domain. Remarkably, out of 587 chimpanzee kinases no human orthologue with greater than 95% sequence identity could be identified for 160 kinases. Variations in chimpanzee kinases compared to human kinases are brought about also by differences in functions of domains tethered to the catalytic kinase domain. For example, the heterodimer forming PB1 domain related to the fold of ubiquitin/Ras-binding domain is seen uniquely tethered to PKC-like chimpanzee kinase. Conclusion Though the chimpanzee and human are evolutionary very close, there are chimpanzee kinases with no close counterpart in the human suggesting differences in their functions. This analysis provides a direction for experimental analysis of human and chimpanzee protein kinases in order to enhance our understanding on their specific biological roles.

  7. Identifying three-dimensional structures of autophosphorylation complexes in crystals of protein kinases

    Science.gov (United States)

    Xu, Qifang; Malecka, Kimberly L.; Fink, Lauren; Jordan, E. Joseph; Duffy, Erin; Kolander, Samuel; Peterson, Jeffrey; Dunbrack, Roland L.

    2016-01-01

    Protein kinase autophosphorylation is a common regulatory mechanism in cell signaling pathways. Crystal structures of several homomeric protein kinase complexes have a serine, threonine, or tyrosine autophosphorylation site of one kinase monomer located in the active site of another monomer, a structural complex that we call an “autophosphorylation complex.” We developed and applied a structural bioinformatics method to identify all such autophosphorylation kinase complexes in X-ray crystallographic structures in the Protein Data Bank (PDB). We identified 15 autophosphorylation complexes in the PDB, of which 5 complexes had not previously been described in the publications describing the crystal structures. These 5 consist of tyrosine residues in the N-terminal juxtamembrane regions of colony stimulating factor 1 receptor (CSF1R, Tyr561) and EPH receptor A2 (EPHA2, Tyr594), tyrosine residues in the activation loops of the SRC kinase family member LCK (Tyr394) and insulin-like growth factor 1 receptor (IGF1R, Tyr1166), and a serine in a nuclear localization signal region of CDC-like kinase 2 (CLK2, Ser142). Mutations in the complex interface may alter autophosphorylation activity and contribute to disease; therefore we mutated residues in the autophosphorylation complex interface of LCK and found that two mutations impaired autophosphorylation (T445V and N446A) and mutation of Pro447 to Ala, Gly, or Leu increased autophosphorylation. The identified autophosphorylation sites are conserved in many kinases, suggesting that, by homology, these complexes may provide insight into autophosphorylation complex interfaces of kinases that are relevant drug targets. PMID:26628682

  8. Immunohistochemical Detection of a Unique Protein within Cells of Snakes Having Inclusion Body Disease, a World-Wide Disease Seen in Members of the Families Boidae and Pythonidae

    Science.gov (United States)

    Chang, Li-Wen; Fu, Ann; Wozniak, Edward; Chow, Marjorie; Duke, Diane G.; Green, Linda; Kelley, Karen; Hernandez, Jorge A.; Jacobson, Elliott R.

    2013-01-01

    Inclusion body disease (IBD) is a worldwide disease in captive boa constrictors (boa constrictor) and occasionally in other snakes of the families Boidae and Pythonidae. The exact causative agent(s) and pathogenesis are not yet fully understood. Currently, diagnosis of IBD is based on the light microscopic identification of eosinophilic intracytoplasmic inclusion bodies in hematoxylin and eosin stained tissues or blood smears. An antigenically unique 68 KDa protein was identified within the IBD inclusion bodies, called IBD protein. A validated immuno-based ante-mortem diagnostic test is needed for screening snakes that are at risk of having IBD. In this study, despite difficulties in solubilizing semi-purified inclusion bodies, utilizing hybridoma technology a mouse anti-IBD protein monoclonal antibody (MAB) was produced. The antigenic specificity of the antibody was confirmed and validated by western blots, enzyme-linked immunosorbent assay, immuno-transmission electron microscopy, and immunohistochemical staining. Paraffin embedded tissues of IBD positive and negative boa constrictors (n=94) collected from 1990 to 2011 were tested with immunohistochemical staining. In boa constrictors, the anti-IBDP MAB had a sensitivity of 83% and specificity of 100% in detecting IBD. The antibody also cross-reacted with IBD inclusion bodies in carpet pythons (Morelia spilota) and a ball python (python regius). This validated antibody can serve as a tool for the development of ante-mortem immunodiagnostic tests for IBD. PMID:24340066

  9. Immunohistochemical detection of a unique protein within cells of snakes having inclusion body disease, a world-wide disease seen in members of the families Boidae and Pythonidae.

    Directory of Open Access Journals (Sweden)

    Li-Wen Chang

    Full Text Available Inclusion body disease (IBD is a worldwide disease in captive boa constrictors (boa constrictor and occasionally in other snakes of the families Boidae and Pythonidae. The exact causative agent(s and pathogenesis are not yet fully understood. Currently, diagnosis of IBD is based on the light microscopic identification of eosinophilic intracytoplasmic inclusion bodies in hematoxylin and eosin stained tissues or blood smears. An antigenically unique 68 KDa protein was identified within the IBD inclusion bodies, called IBD protein. A validated immuno-based ante-mortem diagnostic test is needed for screening snakes that are at risk of having IBD. In this study, despite difficulties in solubilizing semi-purified inclusion bodies, utilizing hybridoma technology a mouse anti-IBD protein monoclonal antibody (MAB was produced. The antigenic specificity of the antibody was confirmed and validated by western blots, enzyme-linked immunosorbent assay, immuno-transmission electron microscopy, and immunohistochemical staining. Paraffin embedded tissues of IBD positive and negative boa constrictors (n=94 collected from 1990 to 2011 were tested with immunohistochemical staining. In boa constrictors, the anti-IBDP MAB had a sensitivity of 83% and specificity of 100% in detecting IBD. The antibody also cross-reacted with IBD inclusion bodies in carpet pythons (Morelia spilota and a ball python (python regius. This validated antibody can serve as a tool for the development of ante-mortem immunodiagnostic tests for IBD.

  10. Unique protein expression signatures of survival time in kidney renal clear cell carcinoma through a pan-cancer screening.

    Science.gov (United States)

    Han, Guangchun; Zhao, Wei; Song, Xiaofeng; Kwok-Shing Ng, Patrick; Karam, Jose A; Jonasch, Eric; Mills, Gordon B; Zhao, Zhongming; Ding, Zhiyong; Jia, Peilin

    2017-10-03

    In 2016, it is estimated that there will be 62,700 new cases of kidney cancer in the United States, and 14,240 patients will die from the disease. Because the incidence of kidney renal clear cell carcinoma (KIRC), the most common type of kidney cancer, is expected to continue to increase in the US, there is an urgent need to find effective diagnostic biomarkers for KIRC that could help earlier detection of and customized treatment strategies for the disease. Accordingly, in this study we systematically investigated KIRC's prognostic biomarkers for survival using the reverse phase protein array (RPPA) data and the high throughput sequencing data from The Cancer Genome Atlas (TCGA). With comprehensive data available in TCGA, we systematically screened protein expression based survival biomarkers in 10 major cancer types, among which KIRC presented many protein prognostic biomarkers of survival time. This is in agreement with a previous report that expression level changes (mRNAs, microRNA and protein) may have a better performance for prognosis of KIRC. In this study, we also identified 52 prognostic genes for KIRC, many of which are involved in cell-cycle and cancer signaling, as well as 15 tumor-stage-specific prognostic biomarkers. Notably, we found fewer prognostic biomarkers for early-stage than for late-stage KIRC. Four biomarkers (the RPPA protein IDs: FASN, ACC1, Cyclin_B1 and Rad51) were found to be prognostic for survival based on both protein and mRNA expression data. Through pan-cancer screening, we found that many protein biomarkers were prognostic for patients' survival in KIRC. Stage-specific survival biomarkers in KIRC were also identified. Our study indicated that these protein biomarkers might have potential clinical value in terms of predicting survival in KIRC patients and developing individualized treatment strategies. Importantly, we found many biomarkers in KIRC at both the mRNA expression level and the protein expression level. These

  11. A systems biology strategy to identify molecular mechanisms of action and protein indicators of traumatic brain injury.

    Science.gov (United States)

    Yu, Chenggang; Boutté, Angela; Yu, Xueping; Dutta, Bhaskar; Feala, Jacob D; Schmid, Kara; Dave, Jitendra; Tawa, Gregory J; Wallqvist, Anders; Reifman, Jaques

    2015-02-01

    The multifactorial nature of traumatic brain injury (TBI), especially the complex secondary tissue injury involving intertwined networks of molecular pathways that mediate cellular behavior, has confounded attempts to elucidate the pathology underlying the progression of TBI. Here, systems biology strategies are exploited to identify novel molecular mechanisms and protein indicators of brain injury. To this end, we performed a meta-analysis of four distinct high-throughput gene expression studies involving different animal models of TBI. By using canonical pathways and a large human protein-interaction network as a scaffold, we separately overlaid the gene expression data from each study to identify molecular signatures that were conserved across the different studies. At 24 hr after injury, the significantly activated molecular signatures were nonspecific to TBI, whereas the significantly suppressed molecular signatures were specific to the nervous system. In particular, we identified a suppressed subnetwork consisting of 58 highly interacting, coregulated proteins associated with synaptic function. We selected three proteins from this subnetwork, postsynaptic density protein 95, nitric oxide synthase 1, and disrupted in schizophrenia 1, and hypothesized that their abundance would be significantly reduced after TBI. In a penetrating ballistic-like brain injury rat model of severe TBI, Western blot analysis confirmed our hypothesis. In addition, our analysis recovered 12 previously identified protein biomarkers of TBI. The results suggest that systems biology may provide an efficient, high-yield approach to generate testable hypotheses that can be experimentally validated to identify novel mechanisms of action and molecular indicators of TBI. © 2014 The Authors. Journal of Neuroscience Research Published by Wiley Periodicals, Inc.

  12. The systematic functional analysis of plasmodium protein kinases identifies essential regulators of mosquito transmission

    KAUST Repository

    Tewari, Rita; Straschil, Ursula; Bateman, Alex; Bö hme, Ulrike; Cherevach, Inna; Gong, Peng; Pain, Arnab; Billker, Oliver

    2010-01-01

    Although eukaryotic protein kinases (ePKs) contribute to many cellular processes, only three Plasmodium falciparum ePKs have thus far been identified as essential for parasite asexual blood stage development. To identify pathways essential for parasite transmission between their mammalian host and mosquito vector, we undertook a systematic functional analysis of ePKs in the genetically tractable rodent parasite Plasmodium berghei. Modeling domain signatures of conventional ePKs identified 66 putative Plasmodium ePKs. Kinomes are highly conserved between Plasmodium species. Using reverse genetics, we show that 23 ePKs are redundant for asexual erythrocytic parasite development in mice. Phenotyping mutants at four life cycle stages in Anopheles stephensi mosquitoes revealed functional clusters of kinases required for sexual development and sporogony. Roles for a putative SR protein kinase (SRPK) in microgamete formation, a conserved regulator of clathrin uncoating (GAK) in ookinete formation, and a likely regulator of energy metabolism (SNF1/KIN) in sporozoite development were identified. 2010 Elsevier Inc.

  13. The systematic functional analysis of plasmodium protein kinases identifies essential regulators of mosquito transmission

    KAUST Repository

    Tewari, Rita

    2010-10-21

    Although eukaryotic protein kinases (ePKs) contribute to many cellular processes, only three Plasmodium falciparum ePKs have thus far been identified as essential for parasite asexual blood stage development. To identify pathways essential for parasite transmission between their mammalian host and mosquito vector, we undertook a systematic functional analysis of ePKs in the genetically tractable rodent parasite Plasmodium berghei. Modeling domain signatures of conventional ePKs identified 66 putative Plasmodium ePKs. Kinomes are highly conserved between Plasmodium species. Using reverse genetics, we show that 23 ePKs are redundant for asexual erythrocytic parasite development in mice. Phenotyping mutants at four life cycle stages in Anopheles stephensi mosquitoes revealed functional clusters of kinases required for sexual development and sporogony. Roles for a putative SR protein kinase (SRPK) in microgamete formation, a conserved regulator of clathrin uncoating (GAK) in ookinete formation, and a likely regulator of energy metabolism (SNF1/KIN) in sporozoite development were identified. 2010 Elsevier Inc.

  14. Data on proteins of lysenin family in coelomocytes of Eisenia andrei and E. fetida obtained by tandem mass spectrometry coupled with liquid chromatography

    Directory of Open Access Journals (Sweden)

    Bianka Swiderska

    2016-12-01

    Full Text Available The data described are related to the article “Lysenin family proteins in earthworm coelomocytes – comparative approach” (B. Swiderska, S. Kedracka-Krok, T. Panz, A.J. Morgan, A. Falniowski, P.Grzmil, B. Plytycz, 2016 [1]. Lysenin family proteins were identified based on unique peptides sequenced by tandem mass spectrometry coupled with liquid chromatography (LC-MS/MS in lumbricid earthworms Eisenia andrei and E. fetida, the latter with or without the MUG-like fluorophore. Lysenin and lysenin-related protein 2 (LRP-2, fetidin were identified in all 9 investigated specimens of Eisenia sp. LRP-1 was identified in 5 of 6 specimens of E. fetida, while LRP-3 was present in 2 of 3 investigated specimens of E. andrei. Here, the detailed characteristics of identified peptides unique to the particular members of lysenin family present in each particular earthworm specimen was provided. The information concerning mass to charge ratio, retention time, modifications and score of unique peptides was given.

  15. A Proteomic Screen Identified Stress-Induced Chaperone Proteins as Targets of Akt Phosphorylation in Mesangial Cells

    OpenAIRE

    Barati, Michelle T.; Rane, Madhavi J.; Klein, Jon B.; McLeish, Kenneth R.

    2006-01-01

    The serine-threonine kinase Akt regulates mesangial cell apoptosis, proliferation, and hypertrophy. To define Akt signaling pathways in mesangial cells, we performed a functional proteomic screen for rat mesangial cell proteins phosphorylated by Akt. A group of chaperone proteins, heat shock protein (Hsp) 70, Hsp90α, Hsp90β, Glucose-regulated protein (Grp) Grp78, Grp94, and protein disulfide isomerase (PDI) were identified as potential Akt substrates by two techniques: (a) in vitro phosphoryl...

  16. A newly identified protein of Leptospira interrogans mediates binding to laminin.

    Science.gov (United States)

    Longhi, Mariana T; Oliveira, Tatiane R; Romero, Eliete C; Gonçales, Amane P; de Morais, Zenaide M; Vasconcellos, Silvio A; Nascimento, Ana L T O

    2009-10-01

    Pathogenic Leptospira is the aetiological agent of leptospirosis, a life-threatening disease that affects populations worldwide. The search for novel antigens that could be relevant in host-pathogen interactions is being pursued. These antigens have the potential to elicit several activities, including adhesion. This study focused on a hypothetical predicted lipoprotein of Leptospira, encoded by the gene LIC12895, thought to mediate attachment to extracellular matrix (ECM) components. The gene was cloned and expressed in Escherichia coli BL21 Star (DE3)pLys by using the expression vector pAE. The recombinant protein tagged with N-terminal hexahistidine was purified by metal-charged chromatography and characterized by circular dichroism spectroscopy. The capacity of the protein to mediate attachment to ECM components was evaluated by binding assays. The leptospiral protein encoded by LIC12895, named Lsa27 (leptospiral surface adhesin, 27 kDa), bound strongly to laminin in a dose-dependent and saturable fashion. Moreover, Lsa27 was recognized by antibodies from serum samples of confirmed leptospirosis specimens in both the initial and the convalescent phases of the disease. Lsa27 is most likely a surface protein of Leptospira as revealed in liquid-phase immunofluorescence assays with living organisms. Taken together, these data indicate that this newly identified membrane protein is expressed during natural infection and may play a role in mediating adhesion of L. interrogans to its host.

  17. Genome, secretome and glucose transport highlight unique features of the protein production host Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Mattanovich Diethard

    2009-06-01

    Full Text Available Abstract Background Pichia pastoris is widely used as a production platform for heterologous proteins and model organism for organelle proliferation. Without a published genome sequence available, strain and process development relied mainly on analogies to other, well studied yeasts like Saccharomyces cerevisiae. Results To investigate specific features of growth and protein secretion, we have sequenced the 9.4 Mb genome of the type strain DSMZ 70382 and analyzed the secretome and the sugar transporters. The computationally predicted secretome consists of 88 ORFs. When grown on glucose, only 20 proteins were actually secreted at detectable levels. These data highlight one major feature of P. pastoris, namely the low contamination of heterologous proteins with host cell protein, when applying glucose based expression systems. Putative sugar transporters were identified and compared to those of related yeast species. The genome comprises 2 homologs to S. cerevisiae low affinity transporters and 2 to high affinity transporters of other Crabtree negative yeasts. Contrary to other yeasts, P. pastoris possesses 4 H+/glycerol transporters. Conclusion This work highlights significant advantages of using the P. pastoris system with glucose based expression and fermentation strategies. As only few proteins and no proteases are actually secreted on glucose, it becomes evident that cell lysis is the relevant cause of proteolytic degradation of secreted proteins. The endowment with hexose transporters, dominantly of the high affinity type, limits glucose uptake rates and thus overflow metabolism as observed in S. cerevisiae. The presence of 4 genes for glycerol transporters explains the high specific growth rates on this substrate and underlines the suitability of a glycerol/glucose based fermentation strategy. Furthermore, we present an open access web based genome browser http://www.pichiagenome.org.

  18. Proteomic profiling of Plasmodium sporozoite maturation identifies new proteins essential for parasite development and infectivity

    DEFF Research Database (Denmark)

    Lasonder, Edwin; Janse, Chris J; van Gemert, Geert-Jan

    2008-01-01

    Plasmodium falciparum sporozoites that develop and mature inside an Anopheles mosquito initiate a malaria infection in humans. Here we report the first proteomic comparison of different parasite stages from the mosquito -- early and late oocysts containing midgut sporozoites, and the mature...... whose annotation suggest an involvement in sporozoite maturation, motility, infection of the human host and associated metabolic adjustments. Analyses of proteins identified in the P. falciparum sporozoite proteomes by orthologous gene disruption in the rodent malaria parasite, P. berghei, revealed...... three previously uncharacterized Plasmodium proteins that appear to be essential for sporozoite development at distinct points of maturation in the mosquito. This study sheds light on the development and maturation of the malaria parasite in an Anopheles mosquito and also identifies proteins that may...

  19. Characterization of the yam tuber storage proteins from Dioscorea batatas exhibiting unique lectin activities.

    Science.gov (United States)

    Gaidamashvili, Mariam; Ohizumi, Yuki; Iijima, Shinichiro; Takayama, Tomo; Ogawa, Tomohisa; Muramoto, Koji

    2004-06-18

    anhydrase, amylase, or trypsin inhibitor activity. These results show that two of the four major proteins isolated from the yam tubers D. batatas have unique lectin activities.

  20. On the potential of using peculiarities of the protein intrinsic disorder distribution in mitochondrial cytochrome b to identify the source of animal meats

    Science.gov (United States)

    Yacoub, Haitham A.; Sadek, Mahmoud A.; Uversky, Vladimir N.

    2017-01-01

    ABSTRACT This study was conducted to identify the source of animal meat based on the peculiarities of protein intrinsic disorder distribution in mitochondrial cytochrome b (mtCyt-b). The analysis revealed that animal and avian species can be discriminated based on the proportions of the two groups of residues, Leu+Ile, and Ser+Pro+Ala, in the amino acid sequences of their mtCyt-b. Although levels of the overall intrinsic disorder in mtCyt-b is not very high, the peculiarities of disorder distribution within the sequences of mtCyt-b from different species varies in a rather specific way. In fact, positions and intensities of disorder/flexibility “signals” in the corresponding disorder profiles are relatively unique for avian and animal species. Therefore, it is possible to devise a set of simple rules based on the peculiarities of disorder profiles of their mtCyt-b proteins to discriminate among species. This intrinsic disorder-based analysis represents a new technique that could be used to provide a promising solution for identification of the source of meats. PMID:28331777

  1. Proteomic analysis of a pleistocene mammoth femur reveals more than one hundred ancient bone proteins

    DEFF Research Database (Denmark)

    Cappellini, Enrico; Jensen, Lars Juhl; Szklarczyk, Damian Milosz

    2012-01-01

    We used high-sensitivity, high-resolution tandem mass spectrometry to shotgun sequence ancient protein remains extracted from a 43 000 year old woolly mammoth (Mammuthus primigenius) bone preserved in the Siberian permafrost. For the first time, 126 unique protein accessions, mostly low-abundance......We used high-sensitivity, high-resolution tandem mass spectrometry to shotgun sequence ancient protein remains extracted from a 43 000 year old woolly mammoth (Mammuthus primigenius) bone preserved in the Siberian permafrost. For the first time, 126 unique protein accessions, mostly low......-abundance extracellular matrix and plasma proteins, were confidently identified by solid molecular evidence. Among the best characterized was the carrier protein serum albumin, presenting two single amino acid substitutions compared to extant African (Loxodonta africana) and Indian (Elephas maximus) elephants. Strong...

  2. Top-down proteomics reveals a unique protein S-thiolation switch in Salmonella Typimurium in response to infection-like conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ansong, Charles; Wu, Si; Meng, Da; Liu, Xiaowen; Brewer, Heather M.; Kaiser, Brooke LD; Nakayasu, Ernesto S.; Cort, John R.; Pevzner, Pavel A.; Smith, Richard D.; Heffron, Fred; Adkins, Joshua N.; Pasa-Tolic, Ljiljana

    2013-06-18

    Characterization of the mature protein complement in cells is crucial for a better understanding of cellular processes on a systems-wide scale. Bottom-up proteomic approaches often lead to loss of critical information about an endogenous protein’s actual state due to post translational modifications (PTMs) and other processes. Top-down approaches that involve analysis of the intact protein can address this concern but present significant analytical challenges related to the separation quality needed, measurement sensitivity, and speed that result in low throughput and limited coverage. Here we used single-dimension ultra high pressure liquid chromatography mass spectrometry to investigate the comprehensive ‘intact’ proteome of the Gram negative bacterial pathogen Salmonella Typhimurium. Top-down proteomics analysis revealed 563 unique proteins including 1665 proteoforms generated by PTMs, representing the largest microbial top-down dataset reported to date. Our analysis not only confirmed several previously recognized aspects of Salmonella biology and bacterial PTMs in general, but also revealed several novel biological insights. Of particular interest was differential utilization of the protein S-thiolation forms S-glutathionylation and S-cysteinylation in response to infection-like conditions versus basal conditions, which was corroborated by changes in corresponding biosynthetic pathways. This differential utilization highlights underlying metabolic mechanisms that modulate changes in cellular signaling, and represents to our knowledge the first report of S-cysteinylation in Gram negative bacteria. The demonstrated utility of our simple proteome-wide intact protein level measurement strategy for gaining biological insight should promote broader adoption and applications of top-down proteomics approaches.

  3. Identifying technical aliases in SELDI mass spectra of complex mixtures of proteins

    Science.gov (United States)

    2013-01-01

    Background Biomarker discovery datasets created using mass spectrum protein profiling of complex mixtures of proteins contain many peaks that represent the same protein with different charge states. Correlated variables such as these can confound the statistical analyses of proteomic data. Previously we developed an algorithm that clustered mass spectrum peaks that were biologically or technically correlated. Here we demonstrate an algorithm that clusters correlated technical aliases only. Results In this paper, we propose a preprocessing algorithm that can be used for grouping technical aliases in mass spectrometry protein profiling data. The stringency of the variance allowed for clustering is customizable, thereby affecting the number of peaks that are clustered. Subsequent analysis of the clusters, instead of individual peaks, helps reduce difficulties associated with technically-correlated data, and can aid more efficient biomarker identification. Conclusions This software can be used to pre-process and thereby decrease the complexity of protein profiling proteomics data, thus simplifying the subsequent analysis of biomarkers by decreasing the number of tests. The software is also a practical tool for identifying which features to investigate further by purification, identification and confirmation. PMID:24010718

  4. Maize MeJA-responsive proteins identified by high-resolution 2-DE PAGE

    Directory of Open Access Journals (Sweden)

    Yuliang Zhang

    2015-12-01

    Full Text Available Exogenous methyl jasmonate (MeJA is well-known to induce plant defense mechanisms effective against a wide variety of insect and microbial pests. High-resolution 2-DE gel electrophoresis was used to discover changes in the leaf proteome of maize exposed to MeJA. We sequenced 62 MeJA-responsive proteins by tandem mass spectroscopy, and deposited the mass spectra and identities in the EMBL-EBI PRIDE repository under reference number PXD001793. An analysis and discussion of the identified proteins in relation to maize defense against Asian corn borer is published by Zhang et al. (2015 [1].

  5. Virtual target screening to rapidly identify potential protein targets of natural products in drug discovery

    Directory of Open Access Journals (Sweden)

    Yuri Pevzner

    2014-05-01

    Full Text Available Inherent biological viability and diversity of natural products make them a potentially rich source for new therapeutics. However, identification of bioactive compounds with desired therapeutic effects and identification of their protein targets is a laborious, expensive process. Extracts from organism samples may show desired activity in phenotypic assays but specific bioactive compounds must be isolated through further separation methods and protein targets must be identified by more specific phenotypic and in vitro experimental assays. Still, questions remain as to whether all relevant protein targets for a compound have been identified. The desire is to understand breadth of purposing for the compound to maximize its use and intellectual property, and to avoid further development of compounds with insurmountable adverse effects. Previously we developed a Virtual Target Screening system that computationally screens one or more compounds against a collection of virtual protein structures. By scoring each compound-protein interaction, we can compare against averaged scores of synthetic drug-like compounds to determine if a particular protein would be a potential target of a compound of interest. Here we provide examples of natural products screened through our system as we assess advantages and shortcomings of our current system in regards to natural product drug discovery.

  6. Virtual target screening to rapidly identify potential protein targets of natural products in drug discovery

    Directory of Open Access Journals (Sweden)

    Yuri Pevzner

    2015-08-01

    Full Text Available Inherent biological viability and diversity of natural products make them a potentially rich source for new therapeutics. However, identification of bioactive compounds with desired therapeutic effects and identification of their protein targets is a laborious, expensive process. Extracts from organism samples may show desired activity in phenotypic assays but specific bioactive compounds must be isolated through further separation methods and protein targets must be identified by more specific phenotypic and in vitro experimental assays. Still, questions remain as to whether all relevant protein targets for a compound have been identified. The desire is to understand breadth of purposing for the compound to maximize its use and intellectual property, and to avoid further development of compounds with insurmountable adverse effects. Previously we developed a Virtual Target Screening system that computationally screens one or more compounds against a collection of virtual protein structures. By scoring each compound-protein interaction, we can compare against averaged scores of synthetic drug-like compounds to determine if a particular protein would be a potential target of a compound of interest. Here we provide examples of natural products screened through our system as we assess advantages and shortcomings of our current system in regards to natural product drug discovery.

  7. Identification of surface proteins in Enterococcus faecalis V583

    Directory of Open Access Journals (Sweden)

    Eijsink Vincent GH

    2011-03-01

    Full Text Available Abstract Background Surface proteins are a key to a deeper understanding of the behaviour of Gram-positive bacteria interacting with the human gastro-intestinal tract. Such proteins contribute to cell wall synthesis and maintenance and are important for interactions between the bacterial cell and the human host. Since they are exposed and may play roles in pathogenicity, surface proteins are interesting targets for drug design. Results Using methods based on proteolytic "shaving" of bacterial cells and subsequent mass spectrometry-based protein identification, we have identified surface-located proteins in Enterococcus faecalis V583. In total 69 unique proteins were identified, few of which have been identified and characterized previously. 33 of these proteins are predicted to be cytoplasmic, whereas the other 36 are predicted to have surface locations (31 or to be secreted (5. Lipid-anchored proteins were the most dominant among the identified surface proteins. The seemingly most abundant surface proteins included a membrane protein with a potentially shedded extracellular sulfatase domain that could act on the sulfate groups in mucin and a lipid-anchored fumarate reductase that could contribute to generation of reactive oxygen species. Conclusions The present proteome analysis gives an experimental impression of the protein landscape on the cell surface of the pathogenic bacterium E. faecalis. The 36 identified secreted (5 and surface (31 proteins included several proteins involved in cell wall synthesis, pheromone-regulated processes, and transport of solutes, as well as proteins with unknown function. These proteins stand out as interesting targets for further investigation of the interaction between E. faecalis and its environment.

  8. Signature proteins for the major clades of Cyanobacteria

    Directory of Open Access Journals (Sweden)

    Mathews Divya W

    2010-01-01

    Full Text Available Abstract Background The phylogeny and taxonomy of cyanobacteria is currently poorly understood due to paucity of reliable markers for identification and circumscription of its major clades. Results A combination of phylogenomic and protein signature based approaches was used to characterize the major clades of cyanobacteria. Phylogenetic trees were constructed for 44 cyanobacteria based on 44 conserved proteins. In parallel, Blastp searches were carried out on each ORF in the genomes of Synechococcus WH8102, Synechocystis PCC6803, Nostoc PCC7120, Synechococcus JA-3-3Ab, Prochlorococcus MIT9215 and Prochlor. marinus subsp. marinus CCMP1375 to identify proteins that are specific for various main clades of cyanobacteria. These studies have identified 39 proteins that are specific for all (or most cyanobacteria and large numbers of proteins for other cyanobacterial clades. The identified signature proteins include: (i 14 proteins for a deep branching clade (Clade A of Gloebacter violaceus and two diazotrophic Synechococcus strains (JA-3-3Ab and JA2-3-B'a; (ii 5 proteins that are present in all other cyanobacteria except those from Clade A; (iii 60 proteins that are specific for a clade (Clade C consisting of various marine unicellular cyanobacteria (viz. Synechococcus and Prochlorococcus; (iv 14 and 19 signature proteins that are specific for the Clade C Synechococcus and Prochlorococcus strains, respectively; (v 67 proteins that are specific for the Low B/A ecotype Prochlorococcus strains, containing lower ratio of chl b/a2 and adapted to growth at high light intensities; (vi 65 and 8 proteins that are specific for the Nostocales and Chroococcales orders, respectively; and (vii 22 and 9 proteins that are uniquely shared by various Nostocales and Oscillatoriales orders, or by these two orders and the Chroococcales, respectively. We also describe 3 conserved indels in flavoprotein, heme oxygenase and protochlorophyllide oxidoreductase proteins that

  9. Salvage of Failed Protein Targets by Reductive Alkylation

    Science.gov (United States)

    Tan, Kemin; Kim, Youngchang; Hatzos-Skintges, Catherine; Chang, Changsoo; Cuff, Marianne; Chhor, Gekleng; Osipiuk, Jerzy; Michalska, Karolina; Nocek, Boguslaw; An, Hao; Babnigg, Gyorgy; Bigelow, Lance; Joachimiak, Grazyna; Li, Hui; Mack, Jamey; Makowska-Grzyska, Magdalena; Maltseva, Natalia; Mulligan, Rory; Tesar, Christine; Zhou, Min; Joachimiak, Andrzej

    2014-01-01

    The growth of diffraction-quality single crystals is of primary importance in protein X-ray crystallography. Chemical modification of proteins can alter their surface properties and crystallization behavior. The Midwest Center for Structural Genomics (MCSG) has previously reported how reductive methylation of lysine residues in proteins can improve crystallization of unique proteins that initially failed to produce diffraction-quality crystals. Recently, this approach has been expanded to include ethylation and isopropylation in the MCSG protein crystallization pipeline. Applying standard methods, 180 unique proteins were alkylated and screened using standard crystallization procedures. Crystal structures of 12 new proteins were determined, including the first ethylated and the first isopropylated protein structures. In a few cases, the structures of native and methylated or ethylated states were obtained and the impact of reductive alkylation of lysine residues was assessed. Reductive methylation tends to be more efficient and produces the most alkylated protein structures. Structures of methylated proteins typically have higher resolution limits. A number of well-ordered alkylated lysine residues have been identified, which make both intermolecular and intramolecular contacts. The previous report is updated and complemented with the following new data; a description of a detailed alkylation protocol with results, structural features, and roles of alkylated lysine residues in protein crystals. These contribute to improved crystallization properties of some proteins. PMID:24590719

  10. Salvage of failed protein targets by reductive alkylation.

    Science.gov (United States)

    Tan, Kemin; Kim, Youngchang; Hatzos-Skintges, Catherine; Chang, Changsoo; Cuff, Marianne; Chhor, Gekleng; Osipiuk, Jerzy; Michalska, Karolina; Nocek, Boguslaw; An, Hao; Babnigg, Gyorgy; Bigelow, Lance; Joachimiak, Grazyna; Li, Hui; Mack, Jamey; Makowska-Grzyska, Magdalena; Maltseva, Natalia; Mulligan, Rory; Tesar, Christine; Zhou, Min; Joachimiak, Andrzej

    2014-01-01

    The growth of diffraction-quality single crystals is of primary importance in protein X-ray crystallography. Chemical modification of proteins can alter their surface properties and crystallization behavior. The Midwest Center for Structural Genomics (MCSG) has previously reported how reductive methylation of lysine residues in proteins can improve crystallization of unique proteins that initially failed to produce diffraction-quality crystals. Recently, this approach has been expanded to include ethylation and isopropylation in the MCSG protein crystallization pipeline. Applying standard methods, 180 unique proteins were alkylated and screened using standard crystallization procedures. Crystal structures of 12 new proteins were determined, including the first ethylated and the first isopropylated protein structures. In a few cases, the structures of native and methylated or ethylated states were obtained and the impact of reductive alkylation of lysine residues was assessed. Reductive methylation tends to be more efficient and produces the most alkylated protein structures. Structures of methylated proteins typically have higher resolution limits. A number of well-ordered alkylated lysine residues have been identified, which make both intermolecular and intramolecular contacts. The previous report is updated and complemented with the following new data; a description of a detailed alkylation protocol with results, structural features, and roles of alkylated lysine residues in protein crystals. These contribute to improved crystallization properties of some proteins.

  11. Identifying and engineering promoters for high level and sustainable therapeutic recombinant protein production in cultured mammalian cells.

    Science.gov (United States)

    Ho, Steven C L; Yang, Yuansheng

    2014-08-01

    Promoters are essential on plasmid vectors to initiate transcription of the transgenes when generating therapeutic recombinant proteins expressing mammalian cell lines. High and sustained levels of gene expression are desired during therapeutic protein production while gene expression is useful for cell engineering. As many finely controlled promoters exhibit cell and product specificity, new promoters need to be identified, optimized and carefully evaluated before use. Suitable promoters can be identified using techniques ranging from simple molecular biology methods to modern high-throughput omics screenings. Promoter engineering is often required after identification to either obtain high and sustained expression or to provide a wider range of gene expression. This review discusses some of the available methods to identify and engineer promoters for therapeutic recombinant protein expression in mammalian cells.

  12. Structure of Stenotrophomonas maltophilia FeoA complexed with zinc: a unique prokaryotic SH3-domain protein that possibly acts as a bacterial ferrous iron-transport activating factor

    International Nuclear Information System (INIS)

    Su, Yi-Che; Chin, Ko-Hsin; Hung, Hui-Chih; Shen, Gwan-Han; Wang, Andrew H.-J.; Chou, Shan-Ho

    2010-01-01

    The crystal structure of FeoA from Stenotrophomonas maltophilia has been determined to a resolution of 1.7 Å using an Se single-wavelength anomalous dispersion (Se-SAD) approach and revealed a unique dimer cross-linked by two zinc ions and six chloride ions. Iron is vital to the majority of prokaryotes, with ferrous iron believed to be the preferred form for iron uptake owing to its much better solubility. The major route for bacterial ferrous iron uptake is found to be via an Feo (ferrous iron-transport) system comprising the three proteins FeoA, FeoB and FeoC. Although the structure and function of FeoB have received much attention recently, the roles played by FeoA and FeoC have been little investigated to date. Here, the tertiary structure of FeoA from Stenotrophomonas maltophilia (Sm), a vital opportunistic pathogen in immunodepressed hosts, is reported. The crystal structure of SmFeoA has been determined to a resolution of 1.7 Å using an Se single-wavelength anomalous dispersion (Se-SAD) approach. Although SmFeoA bears low sequence identity to eukaryotic proteins, its structure is found to adopt a eukaryotic SH3-domain-like fold. It also bears weak similarity to the C-terminal SH3 domain of bacterial DtxR (diphtheria toxin regulator), with some unique characteristics. Intriguingly, SmFeoA is found to adopt a unique dimer cross-linked by two zinc ions and six anions (chloride ions). Since FeoB has been found to contain a G-protein-like domain with low GTPase activity, FeoA may interact with FeoB through the SH3–G-protein domain interaction to act as a ferrous iron-transport activating factor

  13. Hidden Markov model approach for identifying the modular framework of the protein backbone.

    Science.gov (United States)

    Camproux, A C; Tuffery, P; Chevrolat, J P; Boisvieux, J F; Hazout, S

    1999-12-01

    The hidden Markov model (HMM) was used to identify recurrent short 3D structural building blocks (SBBs) describing protein backbones, independently of any a priori knowledge. Polypeptide chains are decomposed into a series of short segments defined by their inter-alpha-carbon distances. Basically, the model takes into account the sequentiality of the observed segments and assumes that each one corresponds to one of several possible SBBs. Fitting the model to a database of non-redundant proteins allowed us to decode proteins in terms of 12 distinct SBBs with different roles in protein structure. Some SBBs correspond to classical regular secondary structures. Others correspond to a significant subdivision of their bounding regions previously considered to be a single pattern. The major contribution of the HMM is that this model implicitly takes into account the sequential connections between SBBs and thus describes the most probable pathways by which the blocks are connected to form the framework of the protein structures. Validation of the SBBs code was performed by extracting SBB series repeated in recoding proteins and examining their structural similarities. Preliminary results on the sequence specificity of SBBs suggest promising perspectives for the prediction of SBBs or series of SBBs from the protein sequences.

  14. Evaluation of unique identifiers used for citation linking [version 1; referees: 1 approved, 2 approved with reservations

    Directory of Open Access Journals (Sweden)

    Heidi Holst Madsen

    2016-06-01

    Full Text Available Unique identifiers (UID are seen as an effective tool to create links between identical publications in databases or identify duplicates in a database. The purpose of the present study is to investigate how well UIDs work for citation linking. We have two objectives: Explore the coverage, precision, and characteristics of publications matched versus not matched with UIDs as the match key.   Illustrate how publication sets formed by using UIDs as the match key may affect the bibliometric indicators: Number of publications, number of citations and the average number of citations per publication.   The objectives are addressed in a literature review and a case study. The literature review shows that only a few studies evaluate how well UIDs work as a match key. From the literature we identify four error types: Duplicate digital object identifiers (DOI, incorrect DOIs in reference lists and databases, DOIs not registered by the database where a bibliometric analysis is performed, and erroneous optical or special character recognition.   The case study explores the use of UIDs in the integration between the databases Pure and SciVal. Specifically journal publications in English are matched between the two databases. We find all error types except erroneous optical or special character recognition in our publication sets. In particular the duplicate DOIs constitute a problem for the calculation of bibliometric indicators as both keeping the duplicates to improve the reliability of citation counts and deleting them to improve the reliability of publication counts will distort the calculation of average number of citations per publication.   The use of UIDs as a match key in citation linking is implemented in many settings, and the availability of UIDs may become critical for the inclusion of a publication or a database in a bibliometric analysis.

  15. Identifying Key Proteins in Hg Methylation Pathways of Desulfovibrio by Global Proteomics, Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Summers, Anne O. [Univ. of Georgia, Athens, GA (United States). Dept. of Microbiology; Miller, Susan M. [Univ. of California, San Francisco, CA (United States). Dept. of Pharmaceutical Chemistry; Wall, Judy [Univ. of Missouri, Columbia, MO (United States). Dept. of Biochemistry; Lipton, Mary [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-06-18

    Elemental mercury, Hg(0) is a contaminant at many DOE sites, especially at Oak Ridge National Laboratory (ORNL) where the spread of spilled Hg and its effects on microbial populations have been monitored for decades. To explore the microbial interactions with Hg, we have devised a global proteomic approach capable of directly detecting Hg-adducts of proteins. This technique developed in the facultative anaerobe, Escherichia coli, allows us to identify the proteins most vulnerable to acute exposure to organomercurials phenyl- and ethyl-mercury (as surrogates for the highly neurotoxic methyl-Hg) (Polacco, et al, 2011). We have found >300 such proteins in all metabolic functional groups and cellular compartments; most are highly conserved and can serve as markers for acute Hg exposure (Zink, et al. 2016, in preparation). We have also discovered that acute Hg exposure severely disrupts thiol, iron and redox homeostases, and electrolyte balance (LaVoie, et al., 2015) Thus, we proposed to bring these techniques to bear on the central problem of identifying the cellular proteins involved in bacterial uptake and methylation of mercury and its release from the cell.

  16. Effectively identifying compound-protein interactions by learning from positive and unlabeled examples.

    Science.gov (United States)

    Cheng, Zhanzhan; Zhou, Shuigeng; Wang, Yang; Liu, Hui; Guan, Jihong; Chen, Yi-Ping Phoebe

    2016-05-18

    Prediction of compound-protein interactions (CPIs) is to find new compound-protein pairs where a protein is targeted by at least a compound, which is a crucial step in new drug design. Currently, a number of machine learning based methods have been developed to predict new CPIs in the literature. However, as there is not yet any publicly available set of validated negative CPIs, most existing machine learning based approaches use the unknown interactions (not validated CPIs) selected randomly as the negative examples to train classifiers for predicting new CPIs. Obviously, this is not quite reasonable and unavoidably impacts the CPI prediction performance. In this paper, we simply take the unknown CPIs as unlabeled examples, and propose a new method called PUCPI (the abbreviation of PU learning for Compound-Protein Interaction identification) that employs biased-SVM (Support Vector Machine) to predict CPIs using only positive and unlabeled examples. PU learning is a class of learning methods that leans from positive and unlabeled (PU) samples. To the best of our knowledge, this is the first work that identifies CPIs using only positive and unlabeled examples. We first collect known CPIs as positive examples and then randomly select compound-protein pairs not in the positive set as unlabeled examples. For each CPI/compound-protein pair, we extract protein domains as protein features and compound substructures as chemical features, then take the tensor product of the corresponding compound features and protein features as the feature vector of the CPI/compound-protein pair. After that, biased-SVM is employed to train classifiers on different datasets of CPIs and compound-protein pairs. Experiments over various datasets show that our method outperforms six typical classifiers, including random forest, L1- and L2-regularized logistic regression, naive Bayes, SVM and k-nearest neighbor (kNN), and three types of existing CPI prediction models. Source code, datasets and

  17. Geomfinder: a multi-feature identifier of similar three-dimensional protein patterns: a ligand-independent approach.

    Science.gov (United States)

    Núñez-Vivanco, Gabriel; Valdés-Jiménez, Alejandro; Besoaín, Felipe; Reyes-Parada, Miguel

    2016-01-01

    Since the structure of proteins is more conserved than the sequence, the identification of conserved three-dimensional (3D) patterns among a set of proteins, can be important for protein function prediction, protein clustering, drug discovery and the establishment of evolutionary relationships. Thus, several computational applications to identify, describe and compare 3D patterns (or motifs) have been developed. Often, these tools consider a 3D pattern as that described by the residues surrounding co-crystallized/docked ligands available from X-ray crystal structures or homology models. Nevertheless, many of the protein structures stored in public databases do not provide information about the location and characteristics of ligand binding sites and/or other important 3D patterns such as allosteric sites, enzyme-cofactor interaction motifs, etc. This makes necessary the development of new ligand-independent methods to search and compare 3D patterns in all available protein structures. Here we introduce Geomfinder, an intuitive, flexible, alignment-free and ligand-independent web server for detailed estimation of similarities between all pairs of 3D patterns detected in any two given protein structures. We used around 1100 protein structures to form pairs of proteins which were assessed with Geomfinder. In these analyses each protein was considered in only one pair (e.g. in a subset of 100 different proteins, 50 pairs of proteins can be defined). Thus: (a) Geomfinder detected identical pairs of 3D patterns in a series of monoamine oxidase-B structures, which corresponded to the effectively similar ligand binding sites at these proteins; (b) we identified structural similarities among pairs of protein structures which are targets of compounds such as acarbose, benzamidine, adenosine triphosphate and pyridoxal phosphate; these similar 3D patterns are not detected using sequence-based methods; (c) the detailed evaluation of three specific cases showed the versatility

  18. Identifying neuropeptide and protein hormone receptors in Drosophila melanogaster by exploiting genomic data

    DEFF Research Database (Denmark)

    Hauser, Frank; Williamson, Michael; Cazzamali, Giuseppe

    2006-01-01

    insect genome, that of the fruitfly Drosophila melanogaster, was sequenced in 2000, and about 200 GPCRs have been annnotated in this model insect. About 50 of these receptors were predicted to have neuropeptides or protein hormones as their ligands. Since 2000, the cDNAs of most of these candidate...... receptors have been cloned and for many receptors the endogenous ligand has been identified. In this review, we will give an update about the current knowledge of all Drosophila neuropeptide and protein hormone receptors, and discuss their phylogenetic relationships. Udgivelsesdato: 2006-Feb...

  19. AT_CHLORO, a comprehensive chloroplast proteome database with subplastidial localization and curated information on envelope proteins.

    Science.gov (United States)

    Ferro, Myriam; Brugière, Sabine; Salvi, Daniel; Seigneurin-Berny, Daphné; Court, Magali; Moyet, Lucas; Ramus, Claire; Miras, Stéphane; Mellal, Mourad; Le Gall, Sophie; Kieffer-Jaquinod, Sylvie; Bruley, Christophe; Garin, Jérôme; Joyard, Jacques; Masselon, Christophe; Rolland, Norbert

    2010-06-01

    Recent advances in the proteomics field have allowed a series of high throughput experiments to be conducted on chloroplast samples, and the data are available in several public databases. However, the accurate localization of many chloroplast proteins often remains hypothetical. This is especially true for envelope proteins. We went a step further into the knowledge of the chloroplast proteome by focusing, in the same set of experiments, on the localization of proteins in the stroma, the thylakoids, and envelope membranes. LC-MS/MS-based analyses first allowed building the AT_CHLORO database (http://www.grenoble.prabi.fr/protehome/grenoble-plant-proteomics/), a comprehensive repertoire of the 1323 proteins, identified by 10,654 unique peptide sequences, present in highly purified chloroplasts and their subfractions prepared from Arabidopsis thaliana leaves. This database also provides extensive proteomics information (peptide sequences and molecular weight, chromatographic retention times, MS/MS spectra, and spectral count) for a unique chloroplast protein accurate mass and time tag database gathering identified peptides with their respective and precise analytical coordinates, molecular weight, and retention time. We assessed the partitioning of each protein in the three chloroplast compartments by using a semiquantitative proteomics approach (spectral count). These data together with an in-depth investigation of the literature were compiled to provide accurate subplastidial localization of previously known and newly identified proteins. A unique knowledge base containing extensive information on the proteins identified in envelope fractions was thus obtained, allowing new insights into this membrane system to be revealed. Altogether, the data we obtained provide unexpected information about plastidial or subplastidial localization of some proteins that were not suspected to be associated to this membrane system. The spectral counting-based strategy was further

  20. Separation and identification of Musa acuminate Colla (banana) leaf proteins by two-dimensional gel electrophoresis and mass spectrometry.

    Science.gov (United States)

    Lu, Y; Qi, Y X; Zhang, H; Zhang, H Q; Pu, J J; Xie, Y X

    2013-12-19

    To establish a proteomic reference map of Musa acuminate Colla (banana) leaf, we separated and identified leaf proteins using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and mass spectrometry (MS). Tryptic digests of 44 spots were subjected to peptide mass fingerprinting (PMF) by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS. Three spots that were not identified by MALDI-TOF MS analysis were identified by searching against the NCBInr, SwissProt, and expressed sequence tag (EST) databases. We identified 41 unique proteins. The majority of the identified leaf proteins were found to be involved in energy metabolism. The results indicate that 2D-PAGE is a sensitive and powerful technique for the separation and identification of Musa leaf proteins. A summary of the identified proteins and their putative functions is discussed.

  1. Genome-wide RNAi screen identifies novel host proteins required for alphavirus entry.

    Directory of Open Access Journals (Sweden)

    Yaw Shin Ooi

    Full Text Available The enveloped alphaviruses include important and emerging human pathogens such as Chikungunya virus and Eastern equine encephalitis virus. Alphaviruses enter cells by clathrin-mediated endocytosis, and exit by budding from the plasma membrane. While there has been considerable progress in defining the structure and function of the viral proteins, relatively little is known about the host factors involved in alphavirus infection. We used a genome-wide siRNA screen to identify host factors that promote or inhibit alphavirus infection in human cells. Fuzzy homologue (FUZ, a protein with reported roles in planar cell polarity and cilia biogenesis, was required for the clathrin-dependent internalization of both alphaviruses and the classical endocytic ligand transferrin. The tetraspanin membrane protein TSPAN9 was critical for the efficient fusion of low pH-triggered virus with the endosome membrane. FUZ and TSPAN9 were broadly required for infection by the alphaviruses Sindbis virus, Semliki Forest virus, and Chikungunya virus, but were not required by the structurally-related flavivirus Dengue virus. Our results highlight the unanticipated functions of FUZ and TSPAN9 in distinct steps of alphavirus entry and suggest novel host proteins that may serve as targets for antiviral therapy.

  2. 2S protein Ara h 7.0201 has unique epitopes compared to other Ara h 7 isoforms and is comparable to 2S proteins Ara h 2 and 6 in basophil degranulation capacity.

    Science.gov (United States)

    Hayen, S M; Ehlers, A M; den Hartog Jager, C F; Garssen, J; Knol, E F; Knulst, A C; Suer, W; Willemsen, L E M; Otten, H G

    2018-07-01

    Screening for specific IgE against 2S albumin proteins Ara h 2 and 6 has good positive predictive value in diagnosing peanut allergy. From the third 2S member Ara h 7, 3 isoforms have been identified. Their allergenicity has not been elucidated. This study investigated the allergenicity of Ara h 7 isoforms compared to Ara h 2 and 6. Sensitization of 15 DBPCFC-confirmed peanut-allergic patients to recombinant Ara h 2.0201, Ara h 6.01 and isoforms of recombinant Ara h 7 was determined by IgE immunoblotting strips. A basophil activation test (BAT) was performed in 9 patients to determine IgE-cross-linking capacities of the allergens. Sensitivity to the allergens was tested in 5 patients who were sensitized to at least 1 Ara h 7 isoform, by a concentration range in the BAT. 3D prediction models and sequence alignments were used to visualize differences between isoforms and to predict allergenic epitope regions. Sensitization to Ara h 7.0201 was most frequent (80%) and showed to be equally potent as Ara h 2.0201 and 6.01 in inducing basophil degranulation. Sensitization to Ara h 7.0201 together with Ara h 2.0201 and/or 6.01 was observed, indicating the presence of unique epitopes compared to the other 2 isoforms. Differences between the 3 Ara h 7 isoforms were observed in C-terminal cysteine residues, pepsin and trypsin cleavage sites and 3 single amino acid substitutions. The majority of peanut-allergic patients are sensitized to isoform Ara h 7.0201, which is functionally as active as Ara h 2.0201 and 6.01. Unique epitopes are most likely located in the C-terminus or an allergenic loop region which is a known allergenic epitope region for Ara h 2.0201 and 6.01. Due to its unique epitopes and allergenicity, it is an interesting candidate to improve the diagnostic accuracy for peanut allergy. © 2018 The Authors. Clinical & Experimental Allergy Published by John Wiley & Sons Ltd.

  3. Genome-wide analysis of protein-protein interactions and involvement of viral proteins in SARS-CoV replication.

    Directory of Open Access Journals (Sweden)

    Ji'an Pan

    Full Text Available Analyses of viral protein-protein interactions are an important step to understand viral protein functions and their underlying molecular mechanisms. In this study, we adopted a mammalian two-hybrid system to screen the genome-wide intraviral protein-protein interactions of SARS coronavirus (SARS-CoV and therefrom revealed a number of novel interactions which could be partly confirmed by in vitro biochemical assays. Three pairs of the interactions identified were detected in both directions: non-structural protein (nsp 10 and nsp14, nsp10 and nsp16, and nsp7 and nsp8. The interactions between the multifunctional nsp10 and nsp14 or nsp16, which are the unique proteins found in the members of Nidovirales with large RNA genomes including coronaviruses and toroviruses, may have important implication for the mechanisms of replication/transcription complex assembly and functions of these viruses. Using a SARS-CoV replicon expressing a luciferase reporter under the control of a transcription regulating sequence, it has been shown that several viral proteins (N, X and SUD domains of nsp3, and nsp12 provided in trans stimulated the replicon reporter activity, indicating that these proteins may regulate coronavirus replication and transcription. Collectively, our findings provide a basis and platform for further characterization of the functions and mechanisms of coronavirus proteins.

  4. Topology based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival.

    Science.gov (United States)

    Nicolau, Monica; Levine, Arnold J; Carlsson, Gunnar

    2011-04-26

    High-throughput biological data, whether generated as sequencing, transcriptional microarrays, proteomic, or other means, continues to require analytic methods that address its high dimensional aspects. Because the computational part of data analysis ultimately identifies shape characteristics in the organization of data sets, the mathematics of shape recognition in high dimensions continues to be a crucial part of data analysis. This article introduces a method that extracts information from high-throughput microarray data and, by using topology, provides greater depth of information than current analytic techniques. The method, termed Progression Analysis of Disease (PAD), first identifies robust aspects of cluster analysis, then goes deeper to find a multitude of biologically meaningful shape characteristics in these data. Additionally, because PAD incorporates a visualization tool, it provides a simple picture or graph that can be used to further explore these data. Although PAD can be applied to a wide range of high-throughput data types, it is used here as an example to analyze breast cancer transcriptional data. This identified a unique subgroup of Estrogen Receptor-positive (ER(+)) breast cancers that express high levels of c-MYB and low levels of innate inflammatory genes. These patients exhibit 100% survival and no metastasis. No supervised step beyond distinction between tumor and healthy patients was used to identify this subtype. The group has a clear and distinct, statistically significant molecular signature, it highlights coherent biology but is invisible to cluster methods, and does not fit into the accepted classification of Luminal A/B, Normal-like subtypes of ER(+) breast cancers. We denote the group as c-MYB(+) breast cancer.

  5. Solution NMR structure determination of proteins revisited

    International Nuclear Information System (INIS)

    Billeter, Martin; Wagner, Gerhard; Wuethrich, Kurt

    2008-01-01

    This 'Perspective' bears on the present state of protein structure determination by NMR in solution. The focus is on a comparison of the infrastructure available for NMR structure determination when compared to protein crystal structure determination by X-ray diffraction. The main conclusion emerges that the unique potential of NMR to generate high resolution data also on dynamics, interactions and conformational equilibria has contributed to a lack of standard procedures for structure determination which would be readily amenable to improved efficiency by automation. To spark renewed discussion on the topic of NMR structure determination of proteins, procedural steps with high potential for improvement are identified

  6. The antibacterial protein lysozyme identified as the termite egg recognition pheromone.

    Directory of Open Access Journals (Sweden)

    Kenji Matsuura

    Full Text Available Social insects rely heavily on pheromone communication to maintain their sociality. Egg protection is one of the most fundamental social behaviours in social insects. The recent discovery of the termite-egg mimicking fungus 'termite-ball' and subsequent studies on termite egg protection behaviour have shown that termites can be manipulated by using the termite egg recognition pheromone (TERP, which strongly evokes the egg-carrying and -grooming behaviours of workers. Despite the great scientific and economic importance, TERP has not been identified because of practical difficulties. Herein we identified the antibacterial protein lysozyme as the TERP. We isolated the target protein using ion-exchange and hydrophobic interaction chromatography, and the MALDI-TOF MS analysis showed a molecular size of 14.5 kDa. We found that the TERP provided antibacterial activity against a gram-positive bacterium. Among the currently known antimicrobial proteins, the molecular size of 14.5 kDa limits the target to lysozyme. Termite lysozymes obtained from eggs and salivary glands, and even hen egg lysozyme, showed a strong termite egg recognition activity. Besides eggs themselves, workers also supply lysozyme to eggs through frequent egg-grooming, by which egg surfaces are coated with saliva containing lysozyme. Reverse transcript PCR analysis showed that mRNA of termite lysozyme was expressed in both salivary glands and eggs. Western blot analysis confirmed that lysozyme production begins in immature eggs in queen ovaries. This is the first identification of proteinaceous pheromone in social insects. Researchers have focused almost exclusively on hydrocarbons when searching for recognition pheromones in social insects. The present finding of a proteinaceous pheromone represents a major step forward in, and result in the broadening of, the search for recognition pheromones. This novel function of lysozyme as a termite pheromone illuminates the profound influence

  7. Tumor cell surface proteins

    International Nuclear Information System (INIS)

    Kennel, S.J.; Braslawsky, G.R.; Flynn, K.; Foote, L.J.; Friedman, E.; Hotchkiss, J.A.; Huang, A.H.L.; Lankford, P.K.

    1982-01-01

    Cell surface proteins mediate interaction between cells and their environment. Unique tumor cell surface proteins are being identified and quantified in several tumor systems to address the following questions: (i) how do tumor-specific proteins arise during cell transformation; (ii) can these proteins be used as markers of tumor cell distribution in vivo; (iii) can cytotoxic drugs be targeted specifically to tumor cells using antibody; and (iv) can solid state radioimmunoassay of these proteins provide a means to quantify transformation frequencies. A tumor surface protein of 180,000 M/sub r/ (TSP-180) has been identified on cells of several lung carcinomas of BALB/c mice. TSP-180 was not detected on normal lung tissue, embryonic tissue, or other epithelial or sarcoma tumors, but it was found on lung carcinomas of other strains of mice. Considerable amino acid sequence homology exists among TSP-180's from several cell sources, indicating that TSP-180 synthesis is directed by normal cellular genes although it is not expressed in normal cells. The regulation of synthesis of TSP-180 and its relationship to normal cell surface proteins are being studied. Monoclonal antibodies (MoAb) to TSP-180 have been developed. The antibodies have been used in immunoaffinity chromatography to isolate TSP-180 from tumor cell sources. This purified tumor antigen was used to immunize rats. Antibody produced by these animals reacted at different sites (epitopes) on the TSP-180 molecule than did the original MoAb. These sera and MoAb from these animals are being used to identify normal cell components related to the TSP-180 molecule

  8. EST mining identifies proteins putatively secreted by the anthracnose pathogen Colletotrichum truncatum

    Directory of Open Access Journals (Sweden)

    Vandenberg Albert

    2011-06-01

    Full Text Available Abstract Background Colletotrichum truncatum is a haploid, hemibiotrophic, ascomycete fungal pathogen that causes anthracnose disease on many economically important leguminous crops. This pathogen exploits sequential biotrophic- and necrotrophic- infection strategies to colonize the host. Transition from biotrophy to a destructive necrotrophic phase called the biotrophy-necrotrophy switch is critical in symptom development. C. truncatum likely secretes an arsenal of proteins that are implicated in maintaining a compatible interaction with its host. Some of them might be transition specific. Results A directional cDNA library was constructed from mRNA isolated from infected Lens culinaris leaflet tissues displaying the biotrophy-necrotrophy switch of C. truncatum and 5000 expressed sequence tags (ESTs with an average read of > 600 bp from the 5-prime end were generated. Nearly 39% of the ESTs were predicted to encode proteins of fungal origin and among these, 162 ESTs were predicted to contain N-terminal signal peptides (SPs in their deduced open reading frames (ORFs. The 162 sequences could be assembled into 122 tentative unigenes comprising 32 contigs and 90 singletons. Sequence analyses of unigenes revealed four potential groups: hydrolases, cell envelope associated proteins (CEAPs, candidate effectors and other proteins. Eleven candidate effector genes were identified based on features common to characterized fungal effectors, i.e. they encode small, soluble (lack of transmembrane domain, cysteine-rich proteins with a putative SP. For a selected subset of CEAPs and candidate effectors, semiquantitative RT-PCR showed that these transcripts were either expressed constitutively in both in vitro and in planta or induced during plant infection. Using potato virus X (PVX based transient expression assays, we showed that one of the candidate effectors, i. e. contig 8 that encodes a cerato-platanin (CP domain containing protein, unlike CP proteins

  9. The dengue vector Aedes aegypti contains a functional high mobility group box 1 (HMGB1 protein with a unique regulatory C-terminus.

    Directory of Open Access Journals (Sweden)

    Fabio Schneider Ribeiro

    Full Text Available The mosquito Aedes aegypti can spread the dengue, chikungunya and yellow fever viruses. Thus, the search for key molecules involved in the mosquito survival represents today a promising vector control strategy. High Mobility Group Box (HMGB proteins are essential nuclear factors that maintain the high-order structure of chromatin, keeping eukaryotic cells viable. Outside the nucleus, secreted HMGB proteins could alert the innate immune system to foreign antigens and trigger the initiation of host defenses. In this work, we cloned and functionally characterized the HMGB1 protein from Aedes aegypti (AaHMGB1. The AaHMGB1 protein typically consists of two HMG-box DNA binding domains and an acidic C-terminus. Interestingly, AaHMGB1 contains a unique alanine/glutamine-rich (AQ-rich C-terminal region that seems to be exclusive of dipteran HMGB proteins. AaHMGB1 is localized to the cell nucleus, mainly associated with heterochromatin. Circular dichroism analyses of AaHMGB1 or the C-terminal truncated proteins revealed α-helical structures. We showed that AaHMGB1 can effectively bind and change the topology of DNA, and that the AQ-rich and the C-terminal acidic regions can modulate its ability to promote DNA supercoiling, as well as its preference to bind supercoiled DNA. AaHMGB1 is phosphorylated by PKA and PKC, but not by CK2. Importantly, phosphorylation of AaHMGB1 by PKA or PKC completely abolishes its DNA bending activity. Thus, our study shows that a functional HMGB1 protein occurs in Aedes aegypt and we provide the first description of a HMGB1 protein containing an AQ-rich regulatory C-terminus.

  10. Identification and analysis of multi-protein complexes in placenta.

    Directory of Open Access Journals (Sweden)

    Fuqiang Wang

    Full Text Available Placental malfunction induces pregnancy disorders which contribute to life-threatening complications for both the mother and the fetus. Identification and characterization of placental multi-protein complexes is an important step to integratedly understand the protein-protein interaction networks in placenta which determine placental function. In this study, blue native/sodium dodecyl sulfate polyacrylamide gel electrophoresis (BN/SDS-PAGE and Liquid chromatography-tandem mass spectrometry (LC-MS/MS were used to screen the multi-protein complexes in placenta. 733 unique proteins and 34 known and novel heterooligomeric multi-protein complexes including mitochondrial respiratory chain complexes, integrin complexes, proteasome complexes, histone complex, and heat shock protein complexes were identified. A novel protein complex, which involves clathrin and small conductance calcium-activated potassium (SK channel protein 2, was identified and validated by antibody based gel shift assay, co-immunoprecipitation and immunofluorescence staining. These results suggest that BN/SDS-PAGE, when integrated with LC-MS/MS, is a very powerful and versatile tool for the investigation of placental protein complexes. This work paves the way for deeper functional characterization of the placental protein complexes associated with pregnancy disorders.

  11. Coevolution analysis of Hepatitis C virus genome to identify the structural and functional dependency network of viral proteins

    Science.gov (United States)

    Champeimont, Raphaël; Laine, Elodie; Hu, Shuang-Wei; Penin, Francois; Carbone, Alessandra

    2016-05-01

    A novel computational approach of coevolution analysis allowed us to reconstruct the protein-protein interaction network of the Hepatitis C Virus (HCV) at the residue resolution. For the first time, coevolution analysis of an entire viral genome was realized, based on a limited set of protein sequences with high sequence identity within genotypes. The identified coevolving residues constitute highly relevant predictions of protein-protein interactions for further experimental identification of HCV protein complexes. The method can be used to analyse other viral genomes and to predict the associated protein interaction networks.

  12. PDB2Graph: A toolbox for identifying critical amino acids map in proteins based on graph theory.

    Science.gov (United States)

    Niknam, Niloofar; Khakzad, Hamed; Arab, Seyed Shahriar; Naderi-Manesh, Hossein

    2016-05-01

    The integrative and cooperative nature of protein structure involves the assessment of topological and global features of constituent parts. Network concept takes complete advantage of both of these properties in the analysis concomitantly. High compatibility to structural concepts or physicochemical properties in addition to exploiting a remarkable simplification in the system has made network an ideal tool to explore biological systems. There are numerous examples in which different protein structural and functional characteristics have been clarified by the network approach. Here, we present an interactive and user-friendly Matlab-based toolbox, PDB2Graph, devoted to protein structure network construction, visualization, and analysis. Moreover, PDB2Graph is an appropriate tool for identifying critical nodes involved in protein structural robustness and function based on centrality indices. It maps critical amino acids in protein networks and can greatly aid structural biologists in selecting proper amino acid candidates for manipulating protein structures in a more reasonable and rational manner. To introduce the capability and efficiency of PDB2Graph in detail, the structural modification of Calmodulin through allosteric binding of Ca(2+) is considered. In addition, a mutational analysis for three well-identified model proteins including Phage T4 lysozyme, Barnase and Ribonuclease HI, was performed to inspect the influence of mutating important central residues on protein activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Application of next-generation sequencing technology to study genetic diversity and identify unique SNP markers in bread wheat from Kazakhstan.

    Science.gov (United States)

    Shavrukov, Yuri; Suchecki, Radoslaw; Eliby, Serik; Abugalieva, Aigul; Kenebayev, Serik; Langridge, Peter

    2014-09-28

    New SNP marker platforms offer the opportunity to investigate the relationships between wheat cultivars from different regions and assess the mechanism and processes that have led to adaptation to particular production environments. Wheat breeding has a long history in Kazakhstan and the aim of this study was to explore the relationship between key varieties from Kazakhstan and germplasm from breeding programs for other regions. The study revealed 5,898 polymorphic markers amongst ten cultivars, of which 2,730 were mapped in the consensus genetic map. Mapped SNP markers were distributed almost equally across the A and B genomes, with between 279 and 484 markers assigned to each chromosome. Marker coverage was approximately 10-fold lower in the D genome. There were 863 SNP markers identified as unique to specific cultivars, and clusters of these markers (regions containing more than three closely mapped unique SNPs) showed specific patterns on the consensus genetic map for each cultivar. Significant intra-varietal genetic polymorphism was identified in three cultivars (Tzelinnaya 3C, Kazakhstanskaya rannespelaya and Kazakhstanskaya 15). Phylogenetic analysis based on inter-varietal polymorphism showed that the very old cultivar Erythrospermum 841 was the most genetically distinct from the other nine cultivars from Kazakhstan, falling in a clade together with the American cultivar Sonora and genotypes from Central and South Asia. The modern cultivar Kazakhstanskaya 19 also fell into a separate clade, together with the American cultivar Thatcher. The remaining eight cultivars shared a single sub-clade but were categorised into four clusters. The accumulated data for SNP marker polymorphisms amongst bread wheat genotypes from Kazakhstan may be used for studying genetic diversity in bread wheat, with potential application for marker-assisted selection and the preparation of a set of genotype-specific markers.

  14. A cohort of new adhesive proteins identified from transcriptomic analysis of mussel foot glands.

    Science.gov (United States)

    DeMartini, Daniel G; Errico, John M; Sjoestroem, Sebastian; Fenster, April; Waite, J Herbert

    2017-06-01

    The adaptive attachment of marine mussels to a wide range of substrates in a high-energy, saline environment has been explored for decades and is a significant driver of bioinspired wet adhesion research. Mussel attachment relies on a fibrous holdfast known as the byssus, which is made by a specialized appendage called the foot. Multiple adhesive and structural proteins are rapidly synthesized, secreted and moulded by the foot into holdfast threads. About 10 well-characterized proteins, namely the mussel foot proteins (Mfps), the preCols and the thread matrix proteins, are reported as representing the bulk of these structures. To explore how robust this proposition is, we sequenced the transcriptome of the glandular tissues that produce and secrete the various holdfast components using next-generation sequencing methods. Surprisingly, we found around 15 highly expressed genes that have not previously been characterized, but bear key similarities to the previously defined mussel foot proteins, suggesting additional contribution to byssal function. We verified the validity of these transcripts by polymerase chain reaction, cloning and Sanger sequencing as well as confirming their presence as proteins in the byssus. These newly identified proteins greatly expand the palette of mussel holdfast biochemistry and provide new targets for investigation into bioinspired wet adhesion. © 2017 The Author(s).

  15. Strategy to Identify and Test Putative Light-Sensitive Non-Opsin G-Protein-Coupled Receptors: A Case Study.

    Science.gov (United States)

    Faggionato, Davide; Serb, Jeanne M

    2017-08-01

    The rise of high-throughput RNA sequencing (RNA-seq) and de novo transcriptome assembly has had a transformative impact on how we identify and study genes in the phototransduction cascade of non-model organisms. But the advantage provided by the nearly automated annotation of RNA-seq transcriptomes may at the same time hinder the possibility for gene discovery and the discovery of new gene functions. For example, standard functional annotation based on domain homology to known protein families can only confirm group membership, not identify the emergence of new biochemical function. In this study, we show the importance of developing a strategy that circumvents the limitations of semiautomated annotation and apply this workflow to photosensitivity as a means to discover non-opsin photoreceptors. We hypothesize that non-opsin G-protein-coupled receptor (GPCR) proteins may have chromophore-binding lysines in locations that differ from opsin. Here, we provide the first case study describing non-opsin light-sensitive GPCRs based on tissue-specific RNA-seq data of the common bay scallop Argopecten irradians (Lamarck, 1819). Using a combination of sequence analysis and three-dimensional protein modeling, we identified two candidate proteins. We tested their photochemical properties and provide evidence showing that these two proteins incorporate 11-cis and/or all-trans retinal and react to light photochemically. Based on this case study, we demonstrate that there is potential for the discovery of new light-sensitive GPCRs, and we have developed a workflow that starts from RNA-seq assemblies to the discovery of new non-opsin, GPCR-based photopigments.

  16. A combinatorial perspective of the protein inference problem.

    Science.gov (United States)

    Yang, Chao; He, Zengyou; Yu, Weichuan

    2013-01-01

    In a shotgun proteomics experiment, proteins are the most biologically meaningful output. The success of proteomics studies depends on the ability to accurately and efficiently identify proteins. Many methods have been proposed to facilitate the identification of proteins from peptide identification results. However, the relationship between protein identification and peptide identification has not been thoroughly explained before. In this paper, we devote ourselves to a combinatorial perspective of the protein inference problem. We employ combinatorial mathematics to calculate the conditional protein probabilities (protein probability means the probability that a protein is correctly identified) under three assumptions, which lead to a lower bound, an upper bound, and an empirical estimation of protein probabilities, respectively. The combinatorial perspective enables us to obtain an analytical expression for protein inference. Our method achieves comparable results with ProteinProphet in a more efficient manner in experiments on two data sets of standard protein mixtures and two data sets of real samples. Based on our model, we study the impact of unique peptides and degenerate peptides (degenerate peptides are peptides shared by at least two proteins) on protein probabilities. Meanwhile, we also study the relationship between our model and ProteinProphet. We name our program ProteinInfer. Its Java source code, our supplementary document and experimental results are available at: >http://bioinformatics.ust.hk/proteininfer.

  17. A proteomics method using immunoaffinity fluorogenic derivatization-liquid chromatography/tandem mass spectrometry (FD-LC-MS/MS) to identify a set of interacting proteins.

    Science.gov (United States)

    Nakata, Katsunori; Saitoh, Ryoichi; Ishigai, Masaki; Imai, Kazuhiro

    2018-02-01

    Biological functions in organisms are usually controlled by a set of interacting proteins, and identifying the proteins that interact is useful for understanding the mechanism of the functions. Immunoprecipitation is a method that utilizes the affinity of an antibody to isolate and identify the proteins that have interacted in a biological sample. In this study, the FD-LC-MS/MS method, which involves fluorogenic derivatization followed by separation and quantification by HPLC and finally identification of proteins by HPLC-tandem mass spectrometry, was used to identify proteins in immunoprecipitated samples, using heat shock protein 90 (HSP90) as a model of an interacting protein in HepaRG cells. As a result, HSC70 protein, which was known to form a complex with HSP90, was isolated, together with three different types of HSP90-beta. The results demonstrated that the proposed immunoaffinity-FD-LC-MS/MS method could be useful for simultaneously detecting and identifying the proteins that interact with a certain protein. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Quantitative assessment of in-solution digestion efficiency identifies optimal protocols for unbiased protein analysis

    DEFF Research Database (Denmark)

    Leon, Ileana R; Schwämmle, Veit; Jensen, Ole N

    2013-01-01

    a combination of qualitative and quantitative LC-MS/MS methods and statistical data analysis. In contrast to previous studies we employed both standard qualitative as well as data-independent quantitative workflows to systematically assess trypsin digestion efficiency and bias using mitochondrial protein...... conditions (buffer, RapiGest, deoxycholate, urea), and two methods for removal of detergents prior to analysis of peptides (acid precipitation or phase separation with ethyl acetate). Our data-independent quantitative LC-MS/MS workflow quantified over 3700 distinct peptides with 96% completeness between all...... protocols and replicates, with an average 40% protein sequence coverage and an average of 11 peptides identified per protein. Systematic quantitative and statistical analysis of physicochemical parameters demonstrated that deoxycholate-assisted in-solution digestion combined with phase transfer allows...

  19. A unique metal-semiconductor interface and resultant electron transfer phenomenon

    OpenAIRE

    Taft, S. L.

    2012-01-01

    An unusual electron transfer phenomenon has been identified from an n-type semiconductor to Schottky metal particles, the result of a unique metal semiconductor interface that results when the metal particles are grown from the semiconductor substrate. The unique interface acts as a one-way (rectifying) open gateway and was first identified in reduced rutile polycrystalline titanium dioxide (an n-type semiconductor) to Group VIII (noble) metal particles. The interface significantly affects th...

  20. The bone morphogenetic protein antagonist gremlin 1 is overexpressed in human cancers and interacts with YWHAH protein

    International Nuclear Information System (INIS)

    Namkoong, Hong; Shin, Seung Min; Kim, Hyun Kee; Ha, Seon-Ah; Cho, Goang Won; Hur, Soo Young; Kim, Tae Eung; Kim, Jin Woo

    2006-01-01

    Basic studies of oncogenesis have demonstrated that either the elevated production of particular oncogene proteins or the occurrence of qualitative abnormalities in oncogenes can contribute to neoplastic cellular transformation. The purpose of our study was to identify an unique gene that shows cancer-associated expression, and characterizes its function related to human carcinogenesis. We used the differential display (DD) RT-PCR method using normal cervical, cervical cancer, metastatic cervical tissues, and cervical cancer cell lines to identify genes overexpressed in cervical cancers and identified gremlin 1 which was overexpressed in cervical cancers. We determined expression levels of gremlin 1 using Northern blot analysis and immunohistochemical study in various types of human normal and cancer tissues. To understand the tumorigenesis pathway of identified gremlin 1 protein, we performed a yeast two-hybrid screen, GST pull down assay, and immunoprecipitation to identify gremlin 1 interacting proteins. DDRT-PCR analysis revealed that gremlin 1 was overexpressed in uterine cervical cancer. We also identified a human gremlin 1 that was overexpressed in various human tumors including carcinomas of the lung, ovary, kidney, breast, colon, pancreas, and sarcoma. PIG-2-transfected HEK 293 cells exhibited growth stimulation and increased telomerase activity. Gremlin 1 interacted with homo sapiens tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, eta polypeptide (14-3-3 eta; YWHAH). YWHAH protein binding site for gremlin 1 was located between residues 61–80 and gremlin 1 binding site for YWHAH was found to be located between residues 1 to 67. Gremlin 1 may play an oncogenic role especially in carcinomas of the uterine cervix, lung, ovary, kidney, breast, colon, pancreas, and sarcoma. Over-expressed gremlin 1 functions by interaction with YWHAH. Therefore, Gremlin 1 and its binding protein YWHAH could be good targets for developing diagnostic and

  1. C2 Domains as Protein-Protein Interaction Modules in the Ciliary Transition Zone

    Directory of Open Access Journals (Sweden)

    Kim Remans

    2014-07-01

    Full Text Available RPGR-interacting protein 1 (RPGRIP1 is mutated in the eye disease Leber congenital amaurosis (LCA and its structural homolog, RPGRIP1-like (RPGRIP1L, is mutated in many different ciliopathies. Both are multidomain proteins that are predicted to interact with retinitis pigmentosa G-protein regulator (RPGR. RPGR is mutated in X-linked retinitis pigmentosa and is located in photoreceptors and primary cilia. We solved the crystal structure of the complex between the RPGR-interacting domain (RID of RPGRIP1 and RPGR and demonstrate that RPGRIP1L binds to RPGR similarly. RPGRIP1 binding to RPGR affects the interaction with PDEδ, the cargo shuttling factor for prenylated ciliary proteins. RPGRIP1-RID is a C2 domain with a canonical β sandwich structure that does not bind Ca2+ and/or phospholipids and thus constitutes a unique type of protein-protein interaction module. Judging from the large number of C2 domains in most of the ciliary transition zone proteins identified thus far, the structure presented here seems to constitute a cilia-specific module that is present in multiprotein transition zone complexes.

  2. Comparative genome analysis to identify SNPs associated with high oleic acid and elevated protein content in soybean.

    Science.gov (United States)

    Kulkarni, Krishnanand P; Patil, Gunvant; Valliyodan, Babu; Vuong, Tri D; Shannon, J Grover; Nguyen, Henry T; Lee, Jeong-Dong

    2018-03-01

    The objective of this study was to determine the genetic relationship between the oleic acid and protein content. The genotypes having high oleic acid and elevated protein (HOEP) content were crossed with five elite lines having normal oleic acid and average protein (NOAP) content. The selected accessions were grown at six environments in three different locations and phenotyped for protein, oil, and fatty acid components. The mean protein content of parents, HOEP, and NOAP lines was 34.6%, 38%, and 34.9%, respectively. The oleic acid concentration of parents, HOEP, and NOAP lines was 21.7%, 80.5%, and 20.8%, respectively. The HOEP plants carried both FAD2-1A (S117N) and FAD2-1B (P137R) mutant alleles contributing to the high oleic acid phenotype. Comparative genome analysis using whole-genome resequencing data identified six genes having single nucleotide polymorphism (SNP) significantly associated with the traits analyzed. A single SNP in the putative gene Glyma.10G275800 was associated with the elevated protein content, and palmitic, oleic, and linoleic acids. The genes from the marker intervals of previously identified QTL did not carry SNPs associated with protein content and fatty acid composition in the lines used in this study, indicating that all the genes except Glyma.10G278000 may be the new genes associated with the respective traits.

  3. New technique of identifying the hierarchy of dynamic domains in proteins using a method of molecular dynamics simulations

    Directory of Open Access Journals (Sweden)

    Yesylevskyy S. O.

    2010-04-01

    Full Text Available Aim. Despite a large number of existing domain identification techniques there is no universally accepted method, which identifies the hierarchy of dynamic domains using the data of molecular dynamics (MD simulations. The goal of this work is to develop such technique. Methods. The dynamic domains are identified by eliminating systematic motions from MD trajectories recursively in a model-free manner. Results. The technique called the Hierarchical Domain-Wise Alignment (HDWA to identify hierarchically organized dynamic domains in proteins using the MD trajectories has been developed. Conclusion. A new method of domain identification in proteins is proposed

  4. Three-Dimentional Structures of Autophosphorylation Complexes in Crystals of Protein Kinases

    KAUST Repository

    Dumbrack, Roland

    2016-01-26

    Protein kinase autophosphorylation is a common regulatory mechanism in cell signaling pathways. Several autophosphorylation complexes have been identified in crystals of protein kinases, with a known serine, threonine, or tyrosine autophosphorylation site of one kinase monomer sitting in the active site of another monomer of the same protein in the crystal. We utilized a structural bioinformatics method to identify all such autophosphorylation complexes in X-ray crystallographic structures in the Protein Data Bank (PDB) by generating all unique kinase/kinase interfaces within and between asymmetric units of each crystal and measuring the distance between the hydroxyl oxygen of potential autophosphorylation sites and the oxygen atoms of the active site aspartic acid residue side chain. We have identified 15 unique autophosphorylation complexes in the PDB, of which 5 complexes have not previously been described in the relevant publications on the crystal structures (N-terminal juxtamembrane regions of CSF1R and EPHA2, activation loop tyrosines of LCK and IGF1R, and a serine in a nuclear localization signal region of CLK2. Mutation of residues in the autophosphorylation complex interface of LCK either severely impaired autophosphorylation or increased it. Taking the autophosphorylation complexes as a whole and comparing them with peptide-substrate/kinase complexes, we observe a number of important features among them. The novel and previously observed autophosphorylation sites are conserved in many kinases, indicating that by homology we can extend the relevance of these complexes to many other clinically relevant drug targets.

  5. Plutonium uniqueness

    International Nuclear Information System (INIS)

    Silver, G.L.

    1984-01-01

    A standard is suggested against which the putative uniqueness of plutonium may be tested. It is common folklore that plutonium is unique among the chemical elements because its four common oxidation states can coexist in the same solution. Whether this putative uniqueness appears only during transit to equilibrium, or only at equilibrium, or all of the time, is not generally made clear. But while the folklore may contain some truth, it cannot be put to test until some measure of 'uniqueness' is agreed upon so that quantitative comparisons are possible. One way of measuring uniqueness is as the magnitude of the product of the mole fractions of the element at equilibrium. A 'coexistence index' is defined and discussed. (author)

  6. Comprehensive Characterization of Minichromosome Maintenance Complex (MCM) Protein Interactions Using Affinity and Proximity Purifications Coupled to Mass Spectrometry.

    Science.gov (United States)

    Dubois, Marie-Line; Bastin, Charlotte; Lévesque, Dominique; Boisvert, François-Michel

    2016-09-02

    The extensive identification of protein-protein interactions under different conditions is an important challenge to understand the cellular functions of proteins. Here we use and compare different approaches including affinity purification and purification by proximity coupled to mass spectrometry to identify protein complexes. We explore the complete interactome of the minichromosome maintenance (MCM) complex by using both approaches for all of the different MCM proteins. Overall, our analysis identified unique and shared interaction partners and proteins enriched for distinct biological processes including DNA replication, DNA repair, and cell cycle regulation. Furthermore, we mapped the changes in protein interactions of the MCM complex in response to DNA damage, identifying a new role for this complex in DNA repair. In summary, we demonstrate the complementarity of these approaches for the characterization of protein interactions within the MCM complex.

  7. Maternal serum protein profile and immune response protein subunits as markers for non-invasive prenatal diagnosis of trisomy 21, 18, and 13

    KAUST Repository

    Narasimhan, Kothandaraman

    2013-02-01

    Objectives: To use proteomics to identify and characterize proteins in maternal serum from patients at high-risk for fetal trisomy 21, trisomy 18, and trisomy 13 on the basis of ultrasound and maternal serum triple tests. Methods: We performed a comprehensive proteomic analysis on 23 trisomy cases and 85 normal cases during the early second trimester of pregnancy. Protein profiling along with conventional sodium dodecyl sulfate polyacrylamide gel electrophoresis/Tandem mass spectrometry analysis was carried out to characterize proteins associated with each trisomy condition and later validated using Western blot. Results: Protein profiling approach using surface enhanced laser desorption/ionization time-of-flight mass (SELDI-TOF/MS) spectrometry resulted in the identification of 37 unique hydrophobic proteomic features for three trisomy conditions. Using sodium dodecyl sulfate polyacrylamide gel electrophoresis followed by Matrix Assisted Laser Desorption Ionization - Time of Flight/Time of Flight (MALDI-TOF/TOF) and western blot, glyco proteins such as alpha-1-antitrypsin, apolipoprotein E, apolipoprotein H, and serum carrier protein transthyretin were identified as potential maternal serum markers for fetal trisomy condition. The identified proteins showed differential expression at the subunit level. Conclusions: Maternal serum protein profiling using proteomics may allow non-invasive diagnostic testing for the most common trisomies and may complement ultrasound-based methods to more accurately determine pregnancies with fetal aneuploidies. © 2013 John Wiley & Sons, Ltd.

  8. Transcriptome of interstitial cells of Cajal reveals unique and selective gene signatures.

    Directory of Open Access Journals (Sweden)

    Moon Young Lee

    Full Text Available Transcriptome-scale data can reveal essential clues into understanding the underlying molecular mechanisms behind specific cellular functions and biological processes. Transcriptomics is a continually growing field of research utilized in biomarker discovery. The transcriptomic profile of interstitial cells of Cajal (ICC, which serve as slow-wave electrical pacemakers for gastrointestinal (GI smooth muscle, has yet to be uncovered. Using copGFP-labeled ICC mice and flow cytometry, we isolated ICC populations from the murine small intestine and colon and obtained their transcriptomes. In analyzing the transcriptome, we identified a unique set of ICC-restricted markers including transcription factors, epigenetic enzymes/regulators, growth factors, receptors, protein kinases/phosphatases, and ion channels/transporters. This analysis provides new and unique insights into the cellular and biological functions of ICC in GI physiology. Additionally, we constructed an interactive ICC genome browser (http://med.unr.edu/physio/transcriptome based on the UCSC genome database. To our knowledge, this is the first online resource that provides a comprehensive library of all known genetic transcripts expressed in primary ICC. Our genome browser offers a new perspective into the alternative expression of genes in ICC and provides a valuable reference for future functional studies.

  9. Simple and efficient machine learning frameworks for identifying protein-protein interaction relevant articles and experimental methods used to study the interactions.

    Science.gov (United States)

    Agarwal, Shashank; Liu, Feifan; Yu, Hong

    2011-10-03

    Protein-protein interaction (PPI) is an important biomedical phenomenon. Automatically detecting PPI-relevant articles and identifying methods that are used to study PPI are important text mining tasks. In this study, we have explored domain independent features to develop two open source machine learning frameworks. One performs binary classification to determine whether the given article is PPI relevant or not, named "Simple Classifier", and the other one maps the PPI relevant articles with corresponding interaction method nodes in a standardized PSI-MI (Proteomics Standards Initiative-Molecular Interactions) ontology, named "OntoNorm". We evaluated our system in the context of BioCreative challenge competition using the standardized data set. Our systems are amongst the top systems reported by the organizers, attaining 60.8% F1-score for identifying relevant documents, and 52.3% F1-score for mapping articles to interaction method ontology. Our results show that domain-independent machine learning frameworks can perform competitively well at the tasks of detecting PPI relevant articles and identifying the methods that were used to study the interaction in such articles. Simple Classifier is available at http://sourceforge.net/p/simpleclassify/home/ and OntoNorm at http://sourceforge.net/p/ontonorm/home/.

  10. Research Resource: A Dual Proteomic Approach Identifies Regulated Islet Proteins During β-Cell Mass Expansion In Vivo

    DEFF Research Database (Denmark)

    Horn, Signe; Kirkegaard, Jeannette S.; Hoelper, Soraya

    2016-01-01

    to be up regulated as a response to pregnancy. These included several proteins, not previously associated with pregnancy-induced islet expansion, such as CLIC1, STMN1, MCM6, PPIB, NEDD4, and HLTF. Confirming the validity of our approach, we also identified proteins encoded by genes known to be associated...

  11. A PQL (protein quantity loci) analysis of mature pea seed proteins identifies loci determining seed protein composition.

    Science.gov (United States)

    Bourgeois, Michael; Jacquin, Françoise; Cassecuelle, Florence; Savois, Vincent; Belghazi, Maya; Aubert, Grégoire; Quillien, Laurence; Huart, Myriam; Marget, Pascal; Burstin, Judith

    2011-05-01

    Legume seeds are a major source of dietary proteins for humans and animals. Deciphering the genetic control of their accumulation is thus of primary significance towards their improvement. At first, we analysed the genetic variability of the pea seed proteome of three genotypes over 3 years of cultivation. This revealed that seed protein composition variability was under predominant genetic control, with as much as 60% of the spots varying quantitatively among the three genotypes. Then, by combining proteomic and quantitative trait loci (QTL) mapping approaches, we uncovered the genetic architecture of seed proteome variability. Protein quantity loci (PQL) were searched for 525 spots detected on 2-D gels obtained for 157 recombinant inbred lines. Most protein quantity loci mapped in clusters, suggesting that the accumulation of the major storage protein families was under the control of a limited number of loci. While convicilin accumulation was mainly under the control of cis-regulatory regions, vicilins and legumins were controlled by both cis- and trans-regulatory regions. Some loci controlled both seed protein composition and protein content and a locus on LGIIa appears to be a major regulator of protein composition and of protein in vitro digestibility. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Unique inflammatory RNA profiles of microglia in Creutzfeldt-Jakob disease

    Science.gov (United States)

    Baker, Christopher A.; Manuelidis, Laura

    2003-01-01

    Previous studies in Creutzfeldt-Jakob disease (CJD) have shown that myeloid cells in the periphery as well as derivative microglial cells in the brain are infectious. Microglia can show an activated phenotype before prion protein (PrP) pathology is detectable in brain, and isolated infectious microglia contain very little PrP. To find whether a set of inflammatory genes are significantly induced or suppressed with infection, we analyzed RNA from isolated microglia with relevant cDNA arrays, and identified 30 transcripts not previously examined in any transmissible spongiform encephalopathy. This CJD expression profile contrasted with that of uninfected microglia exposed to prototypic inflammatory stimuli such as lipopolysaccharide and IFN-, as well as PrP amyloid. These findings underscore inflammatory pathways evoked by the infectious agent in brain. Transcript profiles unique for CJD microglia and other myeloid cells provide opportunities for more sensitive preclinical diagnoses of infectious and noninfectious neurodegenerative diseases.

  13. Identifying essential proteins based on sub-network partition and prioritization by integrating subcellular localization information.

    Science.gov (United States)

    Li, Min; Li, Wenkai; Wu, Fang-Xiang; Pan, Yi; Wang, Jianxin

    2018-06-14

    Essential proteins are important participants in various life activities and play a vital role in the survival and reproduction of living organisms. Identification of essential proteins from protein-protein interaction (PPI) networks has great significance to facilitate the study of human complex diseases, the design of drugs and the development of bioinformatics and computational science. Studies have shown that highly connected proteins in a PPI network tend to be essential. A series of computational methods have been proposed to identify essential proteins by analyzing topological structures of PPI networks. However, the high noise in the PPI data can degrade the accuracy of essential protein prediction. Moreover, proteins must be located in the appropriate subcellular localization to perform their functions, and only when the proteins are located in the same subcellular localization, it is possible that they can interact with each other. In this paper, we propose a new network-based essential protein discovery method based on sub-network partition and prioritization by integrating subcellular localization information, named SPP. The proposed method SPP was tested on two different yeast PPI networks obtained from DIP database and BioGRID database. The experimental results show that SPP can effectively reduce the effect of false positives in PPI networks and predict essential proteins more accurately compared with other existing computational methods DC, BC, CC, SC, EC, IC, NC. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Intermediate filament protein evolution and protists.

    Science.gov (United States)

    Preisner, Harald; Habicht, Jörn; Garg, Sriram G; Gould, Sven B

    2018-03-23

    Metazoans evolved from a single protist lineage. While all eukaryotes share a conserved actin and tubulin-based cytoskeleton, it is commonly perceived that intermediate filaments (IFs), including lamin, vimentin or keratin among many others, are restricted to metazoans. Actin and tubulin proteins are conserved enough to be detectable across all eukaryotic genomes using standard phylogenetic methods, but IF proteins, in contrast, are notoriously difficult to identify by such means. Since the 1950s, dozens of cytoskeletal proteins in protists have been identified that seemingly do not belong to any of the IF families described for metazoans, yet, from a structural and functional perspective fit criteria that define metazoan IF proteins. Here, we briefly review IF protein discovery in metazoans and the implications this had for the definition of this protein family. We argue that the many cytoskeletal and filament-forming proteins of protists should be incorporated into a more comprehensive picture of IF evolution by aligning it with the recent identification of lamins across the phylogenetic diversity of eukaryotic supergroups. This then brings forth the question of how the diversity of IF proteins has unfolded. The evolution of IF proteins likely represents an example of convergent evolution, which, in combination with the speed with which these cytoskeletal proteins are evolving, generated their current diversity. IF proteins did not first emerge in metazoa, but in protists. Only the emergence of cytosolic IF proteins that appear to stem from a nuclear lamin is unique to animals and coincided with the emergence of true animal multicellularity. © 2018 Wiley Periodicals, Inc.

  15. Structural and biochemical analysis of a unique phosphatase from Bdellovibrio bacteriovorus reveals its structural and functional relationship with the protein tyrosine phosphatase class of phytase.

    Directory of Open Access Journals (Sweden)

    Robert J Gruninger

    Full Text Available Bdellovibrio bacteriovorus is an unusual δ-proteobacterium that invades and preys on other Gram-negative bacteria and is of potential interest as a whole cell therapeutic against pathogens of man, animals and crops. PTPs (protein tyrosine phosphatases are an important class of enzyme involved in desphosphorylating a variety of substrates, often with implications in cell signaling. The B. bacteriovorus open reading frame Bd1204 is predicted to encode a PTP of unknown function. Bd1204 is both structurally and mechanistically related to the PTP-like phytase (PTPLP class of enzymes and possesses a number of unique properties not observed in any other PTPLPs characterized to date. Bd1204 does not display catalytic activity against some common protein tyrosine phosphatase substrates but is highly specific for hydrolysis of phosphomonoester bonds of inositol hexakisphosphate. The structure reveals that Bd1204 has the smallest and least electropositive active site of all characterized PTPLPs to date yet possesses a unique substrate specificity characterized by a strict preference for inositol hexakisphosphate. These two active site features are believed to be the most significant contributors to the specificity of phytate degrading enzymes. We speculate that Bd1204 may be involved in phosphate acquisition outside of prey.

  16. 77 FR 35921 - Defense Federal Acquisition Regulation Supplement: Item Unique Identifier Update (DFARS Case 2011...

    Science.gov (United States)

    2012-06-15

    ... lifecycle to strengthen supply chain integrity, enhance cyber security and combat counterfeiting. 4. Section... include your name, company name (if any), and ``DFARS Case 2011-D055'' on your attached document. [cir... businesses registered in the Item Unique Identification Registry, out of 2,431 total companies registered...

  17. Integrin-linked kinase: a Scaffold protein unique among its ilk.

    Science.gov (United States)

    Dagnino, Lina

    2011-06-01

    Integrin-linked kinase (ILK) is a scaffolding protein with central roles in tissue development and homeostasis. Much debate has focused on whether ILK is a bona fide or a pseudo- kinase. This aspect of ILK function has been complicated by the large volumes of conflicting observations obtained from a wide variety of experimental approaches, from in vitro models, to analyses in invertebrates and in mammals. Key findings in support or against the notion that ILK is catalytically active are summarized. The importance of ILK as an adaptor protein is well established, and defining its role as a signaling hub will be the next key step to understand its distinct biological roles across tissues and species.

  18. Selaginella moellendoffii telomeres: conserved and unique features in an ancient land plant lineage

    Directory of Open Access Journals (Sweden)

    Eugene V Shakirov

    2012-07-01

    Full Text Available Telomeres, the essential terminal regions of linear eukaryotic chromosomes, consist of G-rich DNA repeats bound by a plethora of associated proteins. While the general pathways of telomere maintenance are evolutionarily conserved, individual telomere complex components show remarkable variation between eukaryotic lineages and even within closely related species. The recent genome sequencing of the lycophyte Selaginella moellendoffii and the availability of an ever-increasing number of flowering plant genomes provides a unique opportunity to evaluate the molecular and functional evolution of telomere components from the early evolving non-seed plants to the more developmentally advanced angiosperms. Here we analyzed telomere sequence in S. moellendorffii and found it to consist of TTTAGGG repeats, typical of most plants. Telomere tracts in S. moellendorffii range from 1-5.5 kb, closely resembling Arabidopsis thaliana. We identified several S. moellendorffii genes encoding sequence homologues of proteins involved in telomere maintenance in other organisms, including CST complex components and the telomere-binding proteins POT1 and TRFL. Notable sequence similarities and differences were uncovered among the telomere-related genes in some of the plant lineages. Taken together, the data indicate that comparative analysis of the telomere complex in early diverging land plants such as S. moellendorffii and green algae will yield important insights into the evolution of telomeres and their protein constituents.

  19. Heat-Treatment-Responsive Proteins in Different Developmental Stages of Tomato Pollen Detected by Targeted Mass Accuracy Precursor Alignment (tMAPA).

    Science.gov (United States)

    Chaturvedi, Palak; Doerfler, Hannes; Jegadeesan, Sridharan; Ghatak, Arindam; Pressman, Etan; Castillejo, Maria Angeles; Wienkoop, Stefanie; Egelhofer, Volker; Firon, Nurit; Weckwerth, Wolfram

    2015-11-06

    Recently, we have developed a quantitative shotgun proteomics strategy called mass accuracy precursor alignment (MAPA). The MAPA algorithm uses high mass accuracy to bin mass-to-charge (m/z) ratios of precursor ions from LC-MS analyses, determines their intensities, and extracts a quantitative sample versus m/z ratio data alignment matrix from a multitude of samples. Here, we introduce a novel feature of this algorithm that allows the extraction and alignment of proteotypic peptide precursor ions or any other target peptide from complex shotgun proteomics data for accurate quantification of unique proteins. This strategy circumvents the problem of confusing the quantification of proteins due to indistinguishable protein isoforms by a typical shotgun proteomics approach. We applied this strategy to a comparison of control and heat-treated tomato pollen grains at two developmental stages, post-meiotic and mature. Pollen is a temperature-sensitive tissue involved in the reproductive cycle of plants and plays a major role in fruit setting and yield. By LC-MS-based shotgun proteomics, we identified more than 2000 proteins in total for all different tissues. By applying the targeted MAPA data-processing strategy, 51 unique proteins were identified as heat-treatment-responsive protein candidates. The potential function of the identified candidates in a specific developmental stage is discussed.

  20. A protein-binding domain, EH, identified in the receptor tyrosine kinase substrate Eps15 and conserved in evolution

    DEFF Research Database (Denmark)

    Wong, W T; Schumacher, C; Salcini, A E

    1995-01-01

    In this report we structurally and functionally define a binding domain that is involved in protein association and that we have designated EH (for Eps15 homology domain). This domain was identified in the tyrosine kinase substrate Eps15 on the basis of regional conservation with several heteroge......In this report we structurally and functionally define a binding domain that is involved in protein association and that we have designated EH (for Eps15 homology domain). This domain was identified in the tyrosine kinase substrate Eps15 on the basis of regional conservation with several...... heterogeneous proteins of yeast and nematode. The EH domain spans about 70 amino acids and shows approximately 60% overall amino acid conservation. We demonstrated the ability of the EH domain to specifically bind cytosolic proteins in normal and malignant cells of mesenchymal, epithelial, and hematopoietic...... (for Eps15-related). Structural comparison of Eps15 and Eps15r defines a family of signal transducers possessing extensive networking abilities including EH-mediated binding and association with Src homology 3-containing proteins....

  1. Affinity purification combined with mass spectrometry to identify herpes simplex virus protein-protein interactions.

    Science.gov (United States)

    Meckes, David G

    2014-01-01

    The identification and characterization of herpes simplex virus protein interaction complexes are fundamental to understanding the molecular mechanisms governing the replication and pathogenesis of the virus. Recent advances in affinity-based methods, mass spectrometry configurations, and bioinformatics tools have greatly increased the quantity and quality of protein-protein interaction datasets. In this chapter, detailed and reliable methods that can easily be implemented are presented for the identification of protein-protein interactions using cryogenic cell lysis, affinity purification, trypsin digestion, and mass spectrometry.

  2. Proteome-wide analysis of the amino terminal status of Escherichia coli proteins at the steady-state and upon deformylation inhibition.

    Science.gov (United States)

    Bienvenut, Willy V; Giglione, Carmela; Meinnel, Thierry

    2015-07-01

    A proteome wide analysis was performed in Escherichia coli to identify the impact on protein N-termini of actinonin, an antibiotic specifically inhibiting peptide deformylase (PDF). A strategy and tool suite (SILProNaQ) was employed to provide large-scale quantitation of N-terminal modifications. In control conditions, more than 1000 unique N-termini were identified with 56% showing initiator methionine removal. Additional modifications corresponded to partial or complete Nα-acetylation (10%) and N-formyl retention (5%). Among the proteins undergoing these N-terminal modifications, 140 unique N-termini from translocated membrane proteins were highlighted. The very early time-course impact of actinonin was followed after addition of bacteriostatic concentrations of the drug. Under these conditions, 26% of all proteins did not undergo deformylation any longer after 10 min, a value reaching more than 60% of all characterized proteins after 40 min of treatment. The N-formylation ratio measured on individual proteins increased with the same trend. Upon early PDF inhibition, two major categories of proteins retained their N-formyl group: a large number of inner membrane proteins and many proteins involved in protein synthesis including factors assisting the nascent chains in early cotranslational events. All MS data have been deposited in the ProteomeXchange with identifiers PXD001979, PXD002012 and PXD001983 (http://proteomecentral.proteomexchange.org/dataset/PXD001979, http://proteomecentral.proteomexchange.org/dataset/PXD002012 and http://proteomecentral.proteomexchange.org/dataset/PXD001983). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Systematic analysis of protein turnover in primary cells.

    Science.gov (United States)

    Mathieson, Toby; Franken, Holger; Kosinski, Jan; Kurzawa, Nils; Zinn, Nico; Sweetman, Gavain; Poeckel, Daniel; Ratnu, Vikram S; Schramm, Maike; Becher, Isabelle; Steidel, Michael; Noh, Kyung-Min; Bergamini, Giovanna; Beck, Martin; Bantscheff, Marcus; Savitski, Mikhail M

    2018-02-15

    A better understanding of proteostasis in health and disease requires robust methods to determine protein half-lives. Here we improve the precision and accuracy of peptide ion intensity-based quantification, enabling more accurate protein turnover determination in non-dividing cells by dynamic SILAC-based proteomics. This approach allows exact determination of protein half-lives ranging from 10 to >1000 h. We identified 4000-6000 proteins in several non-dividing cell types, corresponding to 9699 unique protein identifications over the entire data set. We observed similar protein half-lives in B-cells, natural killer cells and monocytes, whereas hepatocytes and mouse embryonic neurons show substantial differences. Our data set extends and statistically validates the previous observation that subunits of protein complexes tend to have coherent turnover. Moreover, analysis of different proteasome and nuclear pore complex assemblies suggests that their turnover rate is architecture dependent. These results illustrate that our approach allows investigating protein turnover and its implications in various cell types.

  4. Transport proteins promoting Escherichia coli pathogenesis

    Science.gov (United States)

    Tang, Fengyi; Saier, Milton H.

    2014-01-01

    Escherichia coli is a genetically diverse species infecting hundreds of millions of people worldwide annually. We examined seven well-characterized E. coli pathogens causing urinary tract infections, gastroenteritis, pyelonephritis and haemorrhagic colitis. Their transport proteins were identified and compared with each other and a non-pathogenic E. coli K12 strain to identify transport proteins related to pathogenesis. Each pathogen possesses a unique set of protein secretion systems for export to the cell surface or for injecting effector proteins into host cells. Pathogens have increased numbers of iron siderophore receptors and ABC iron uptake transporters, but the numbers and types of low-affinity secondary iron carriers were uniform in all strains. The presence of outer membrane iron complex receptors and high-affinity ABC iron uptake systems correlated, suggesting co-evolution. Each pathovar encodes a different set of pore-forming toxins and virulence-related outer membrane proteins lacking in K12. Intracellular pathogens proved to have a characteristically distinctive set of nutrient uptake porters, different from those of extracellular pathogens. The results presented in this report provide information about transport systems relevant to various types of E. coli pathogenesis that can be exploited in future basic and applied studies. PMID:24747185

  5. Transport proteins promoting Escherichia coli pathogenesis.

    Science.gov (United States)

    Tang, Fengyi; Saier, Milton H

    2014-01-01

    Escherichia coli is a genetically diverse species infecting hundreds of millions of people worldwide annually. We examined seven well-characterized E. coli pathogens causing urinary tract infections, gastroenteritis, pyelonephritis and haemorrhagic colitis. Their transport proteins were identified and compared with each other and a non-pathogenic E. coli K12 strain to identify transport proteins related to pathogenesis. Each pathogen possesses a unique set of protein secretion systems for export to the cell surface or for injecting effector proteins into host cells. Pathogens have increased numbers of iron siderophore receptors and ABC iron uptake transporters, but the numbers and types of low-affinity secondary iron carriers were uniform in all strains. The presence of outer membrane iron complex receptors and high-affinity ABC iron uptake systems correlated, suggesting co-evolution. Each pathovar encodes a different set of pore-forming toxins and virulence-related outer membrane proteins lacking in K12. Intracellular pathogens proved to have a characteristically distinctive set of nutrient uptake porters, different from those of extracellular pathogens. The results presented in this report provide information about transport systems relevant to various types of E. coli pathogenesis that can be exploited in future basic and applied studies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Unique proteomic signature for radiation sensitive patients; a comparative study between normo-sensitive and radiation sensitive breast cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Skiöld, Sara [Center for Radiation Protection Research, Department of Molecular Biosciences, The Wernner-Gren Institute, Stockholm University, Stockholm (Sweden); Azimzadeh, Omid [Institute of Radiation Biology, German Research Center for Environmental Health, Helmholtz Zentrum München (Germany); Merl-Pham, Juliane [Research Unit Protein Science, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg (Germany); Naslund, Ingemar; Wersall, Peter; Lidbrink, Elisabet [Division of Radiotherapy, Radiumhemmet, Karolinska University Hospital, Stockholm (Sweden); Tapio, Soile [Institute of Radiation Biology, German Research Center for Environmental Health, Helmholtz Zentrum München (Germany); Harms-Ringdahl, Mats [Center for Radiation Protection Research, Department of Molecular Biosciences, The Wernner-Gren Institute, Stockholm University, Stockholm (Sweden); Haghdoost, Siamak, E-mail: Siamak.Haghdoost@su.se [Center for Radiation Protection Research, Department of Molecular Biosciences, The Wernner-Gren Institute, Stockholm University, Stockholm (Sweden)

    2015-06-15

    Highlights: • The unique protein expression profiles were found that separate radiosensitive from normal sensitive breast cancer patients. • The oxidative stress response, coagulation properties and acute phase response suggested to be the hallmarks of radiation sensitivity. - Abstract: Radiation therapy is a cornerstone of modern cancer treatment. Understanding the mechanisms behind normal tissue sensitivity is essential in order to minimize adverse side effects and yet to prevent local cancer reoccurrence. The aim of this study was to identify biomarkers of radiation sensitivity to enable personalized cancer treatment. To investigate the mechanisms behind radiation sensitivity a pilot study was made where eight radiation-sensitive and nine normo-sensitive patients were selected from a cohort of 2914 breast cancer patients, based on acute tissue reactions after radiation therapy. Whole blood was sampled and irradiated in vitro with 0, 1, or 150 mGy followed by 3 h incubation at 37 °C. The leukocytes of the two groups were isolated, pooled and protein expression profiles were investigated using isotope-coded protein labeling method (ICPL). First, leukocytes from the in vitro irradiated whole blood from normo-sensitive and extremely sensitive patients were compared to the non-irradiated controls. To validate this first study a second ICPL analysis comparing only the non-irradiated samples was conducted. Both approaches showed unique proteomic signatures separating the two groups at the basal level and after doses of 1 and 150 mGy. Pathway analyses of both proteomic approaches suggest that oxidative stress response, coagulation properties and acute phase response are hallmarks of radiation sensitivity supporting our previous study on oxidative stress response. This investigation provides unique characteristics of radiation sensitivity essential for individualized radiation therapy.

  7. Unique proteomic signature for radiation sensitive patients; a comparative study between normo-sensitive and radiation sensitive breast cancer patients

    International Nuclear Information System (INIS)

    Skiöld, Sara; Azimzadeh, Omid; Merl-Pham, Juliane; Naslund, Ingemar; Wersall, Peter; Lidbrink, Elisabet; Tapio, Soile; Harms-Ringdahl, Mats; Haghdoost, Siamak

    2015-01-01

    Highlights: • The unique protein expression profiles were found that separate radiosensitive from normal sensitive breast cancer patients. • The oxidative stress response, coagulation properties and acute phase response suggested to be the hallmarks of radiation sensitivity. - Abstract: Radiation therapy is a cornerstone of modern cancer treatment. Understanding the mechanisms behind normal tissue sensitivity is essential in order to minimize adverse side effects and yet to prevent local cancer reoccurrence. The aim of this study was to identify biomarkers of radiation sensitivity to enable personalized cancer treatment. To investigate the mechanisms behind radiation sensitivity a pilot study was made where eight radiation-sensitive and nine normo-sensitive patients were selected from a cohort of 2914 breast cancer patients, based on acute tissue reactions after radiation therapy. Whole blood was sampled and irradiated in vitro with 0, 1, or 150 mGy followed by 3 h incubation at 37 °C. The leukocytes of the two groups were isolated, pooled and protein expression profiles were investigated using isotope-coded protein labeling method (ICPL). First, leukocytes from the in vitro irradiated whole blood from normo-sensitive and extremely sensitive patients were compared to the non-irradiated controls. To validate this first study a second ICPL analysis comparing only the non-irradiated samples was conducted. Both approaches showed unique proteomic signatures separating the two groups at the basal level and after doses of 1 and 150 mGy. Pathway analyses of both proteomic approaches suggest that oxidative stress response, coagulation properties and acute phase response are hallmarks of radiation sensitivity supporting our previous study on oxidative stress response. This investigation provides unique characteristics of radiation sensitivity essential for individualized radiation therapy

  8. Comparative Proteomics Identifies Host Immune System Proteins Affected by Infection with Mycobacterium bovis.

    Directory of Open Access Journals (Sweden)

    Vladimir López

    2016-03-01

    Full Text Available Mycobacteria of the Mycobacterium tuberculosis complex (MTBC greatly impact human and animal health worldwide. The mycobacterial life cycle is complex, and the mechanisms resulting in pathogen infection and survival in host cells are not fully understood. Eurasian wild boar (Sus scrofa are natural reservoir hosts for MTBC and a model for mycobacterial infection and tuberculosis (TB. In the wild boar TB model, mycobacterial infection affects the expression of innate and adaptive immune response genes in mandibular lymph nodes and oropharyngeal tonsils, and biomarkers have been proposed as correlates with resistance to natural infection. However, the mechanisms used by mycobacteria to manipulate host immune response are not fully characterized. Our hypothesis is that the immune system proteins under-represented in infected animals, when compared to uninfected controls, are used by mycobacteria to guarantee pathogen infection and transmission. To address this hypothesis, a comparative proteomics approach was used to compare host response between uninfected (TB- and M. bovis-infected young (TB+ and adult animals with different infection status [TB lesions localized in the head (TB+ or affecting multiple organs (TB++]. The results identified host immune system proteins that play an important role in host response to mycobacteria. Calcium binding protein A9, Heme peroxidase, Lactotransferrin, Cathelicidin and Peptidoglycan-recognition protein were under-represented in TB+ animals when compared to uninfected TB- controls, but protein levels were higher as infection progressed in TB++ animals when compared to TB- and/or TB+ adult wild boar. MHCI was the only protein over-represented in TB+ adult wild boar when compared to uninfected TB- controls. The results reported here suggest that M. bovis manipulates host immune response by reducing the production of immune system proteins. However, as infection progresses, wild boar immune response recovers to

  9. Comparative Proteomics Identifies Host Immune System Proteins Affected by Infection with Mycobacterium bovis.

    Science.gov (United States)

    López, Vladimir; Villar, Margarita; Queirós, João; Vicente, Joaquín; Mateos-Hernández, Lourdes; Díez-Delgado, Iratxe; Contreras, Marinela; Alves, Paulo C; Alberdi, Pilar; Gortázar, Christian; de la Fuente, José

    2016-03-01

    Mycobacteria of the Mycobacterium tuberculosis complex (MTBC) greatly impact human and animal health worldwide. The mycobacterial life cycle is complex, and the mechanisms resulting in pathogen infection and survival in host cells are not fully understood. Eurasian wild boar (Sus scrofa) are natural reservoir hosts for MTBC and a model for mycobacterial infection and tuberculosis (TB). In the wild boar TB model, mycobacterial infection affects the expression of innate and adaptive immune response genes in mandibular lymph nodes and oropharyngeal tonsils, and biomarkers have been proposed as correlates with resistance to natural infection. However, the mechanisms used by mycobacteria to manipulate host immune response are not fully characterized. Our hypothesis is that the immune system proteins under-represented in infected animals, when compared to uninfected controls, are used by mycobacteria to guarantee pathogen infection and transmission. To address this hypothesis, a comparative proteomics approach was used to compare host response between uninfected (TB-) and M. bovis-infected young (TB+) and adult animals with different infection status [TB lesions localized in the head (TB+) or affecting multiple organs (TB++)]. The results identified host immune system proteins that play an important role in host response to mycobacteria. Calcium binding protein A9, Heme peroxidase, Lactotransferrin, Cathelicidin and Peptidoglycan-recognition protein were under-represented in TB+ animals when compared to uninfected TB- controls, but protein levels were higher as infection progressed in TB++ animals when compared to TB- and/or TB+ adult wild boar. MHCI was the only protein over-represented in TB+ adult wild boar when compared to uninfected TB- controls. The results reported here suggest that M. bovis manipulates host immune response by reducing the production of immune system proteins. However, as infection progresses, wild boar immune response recovers to limit pathogen

  10. Label-Free LC-MS/MS Proteomic Analysis of Cerebrospinal Fluid Identifies Protein/Pathway Alterations and Candidate Biomarkers for Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Collins, Mahlon A; An, Jiyan; Hood, Brian L; Conrads, Thomas P; Bowser, Robert P

    2015-11-06

    Analysis of the cerebrospinal fluid (CSF) proteome has proven valuable to the study of neurodegenerative disorders. To identify new protein/pathway alterations and candidate biomarkers for amyotrophic lateral sclerosis (ALS), we performed comparative proteomic profiling of CSF from sporadic ALS (sALS), healthy control (HC), and other neurological disease (OND) subjects using label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS). A total of 1712 CSF proteins were detected and relatively quantified by spectral counting. Levels of several proteins with diverse biological functions were significantly altered in sALS samples. Enrichment analysis was used to link these alterations to biological pathways, which were predominantly related to inflammation, neuronal activity, and extracellular matrix regulation. We then used our CSF proteomic profiles to create a support vector machines classifier capable of discriminating training set ALS from non-ALS (HC and OND) samples. Four classifier proteins, WD repeat-containing protein 63, amyloid-like protein 1, SPARC-like protein 1, and cell adhesion molecule 3, were identified by feature selection and externally validated. The resultant classifier distinguished ALS from non-ALS samples with 83% sensitivity and 100% specificity in an independent test set. Collectively, our results illustrate the utility of CSF proteomic profiling for identifying ALS protein/pathway alterations and candidate disease biomarkers.

  11. Phenotypic Screening Identifies Protein Synthesis Inhibitors as H-Ras-Nanocluster-Increasing Tumor Growth Inducers.

    Science.gov (United States)

    Najumudeen, Arafath K; Posada, Itziar M D; Lectez, Benoit; Zhou, Yong; Landor, Sebastian K-J; Fallarero, Adyary; Vuorela, Pia; Hancock, John; Abankwa, Daniel

    2015-12-15

    Ras isoforms H-, N-, and K-ras are each mutated in specific cancer types at varying frequencies and have different activities in cell fate control. On the plasma membrane, Ras proteins are laterally segregated into isoform-specific nanoscale signaling hubs, termed nanoclusters. As Ras nanoclusters are required for Ras signaling, chemical modulators of nanoclusters represent ideal candidates for the specific modulation of Ras activity in cancer drug development. We therefore conducted a chemical screen with commercial and in-house natural product libraries using a cell-based H-ras-nanoclustering FRET assay. Next to established Ras inhibitors, such as a statin and farnesyl-transferase inhibitor, we surprisingly identified five protein synthesis inhibitors as positive regulators. Using commonly employed cycloheximide as a representative compound, we show that protein synthesis inhibition increased nanoclustering and effector recruitment specifically of active H-ras but not of K-ras. Consistent with these data, cycloheximide treatment activated both Erk and Akt kinases and specifically promoted H-rasG12V-induced, but not K-rasG12V-induced, PC12 cell differentiation. Intriguingly, cycloheximide increased the number of mammospheres, which are enriched for cancer stem cells. Depletion of H-ras in combination with cycloheximide significantly reduced mammosphere formation, suggesting an exquisite synthetic lethality. The potential of cycloheximide to promote tumor cell growth was also reflected in its ability to increase breast cancer cell tumors grown in ovo. These results illustrate the possibility of identifying Ras-isoform-specific modulators using nanocluster-directed screening. They also suggest an unexpected feedback from protein synthesis inhibition to Ras signaling, which might present a vulnerability in certain tumor cell types.

  12. In-Culture Cross-Linking of Bacterial Cells Reveals Large-Scale Dynamic Protein-Protein Interactions at the Peptide Level.

    Science.gov (United States)

    de Jong, Luitzen; de Koning, Edward A; Roseboom, Winfried; Buncherd, Hansuk; Wanner, Martin J; Dapic, Irena; Jansen, Petra J; van Maarseveen, Jan H; Corthals, Garry L; Lewis, Peter J; Hamoen, Leendert W; de Koster, Chris G

    2017-07-07

    Identification of dynamic protein-protein interactions at the peptide level on a proteomic scale is a challenging approach that is still in its infancy. We have developed a system to cross-link cells directly in culture with the special lysine cross-linker bis(succinimidyl)-3-azidomethyl-glutarate (BAMG). We used the Gram-positive model bacterium Bacillus subtilis as an exemplar system. Within 5 min extensive intracellular cross-linking was detected, while intracellular cross-linking in a Gram-negative species, Escherichia coli, was still undetectable after 30 min, in agreement with the low permeability in this organism for lipophilic compounds like BAMG. We were able to identify 82 unique interprotein cross-linked peptides with cross-links occur in assemblies involved in transcription and translation. Several of these interactions are new, and we identified a binding site between the δ and β' subunit of RNA polymerase close to the downstream DNA channel, providing a clue into how δ might regulate promoter selectivity and promote RNA polymerase recycling. Our methodology opens new avenues to investigate the functional dynamic organization of complex protein assemblies involved in bacterial growth. Data are available via ProteomeXchange with identifier PXD006287.

  13. 76 FR 39234 - Federal Acquisition Regulation; Unique Procurement Instrument Identifier

    Science.gov (United States)

    2011-07-05

    ..., therefore, was not subject to review under section 6(b) of E.O. 12866, Regulatory Planning and Review, dated... for procurement actions, such as delivery and task orders or basic ordering agreements, the order or... Instrument Identifier (PIID). Agencies shall have in place a process that ensures that each PIID reported to...

  14. Structure determination of human Lck unique and SH3 domains by nuclear magnetic resonance spectroscopy

    Directory of Open Access Journals (Sweden)

    Willbold Dieter

    2003-05-01

    Full Text Available Abstract Background Protein tyrosine kinases are involved in signal transduction pathways that regulate cell growth, differentiation, activation and transformation. Human lymphocyte specific kinase (Lck is a 56 kDa protein involved in T-cell- and IL2-receptor signaling. Three-dimensional structures are known for SH3, SH2 and kinase domains of Lck as well as for other tyrosine kinases. No structure is known for the unique domain of any Src-type tyrosine kinase. Results Lck(1–120 comprising unique and SH3 domains was structurally investigated by nuclear magnetic resonance spectroscopy. We found the unique domain, in contrast to the SH3 part, to have basically no defined structural elements. The solution structure of the SH3 part could be determined with very high precision. It does not show significant differences to Lck SH3 in the absence of the unique domain. Minor differences were observed to the X-ray structure of Lck SH3. Conclusion The unique domain of Lck does not contain any defined structure elements in the absence of ligands and membranes. Presence of the unique domain is not relevant to the three-dimensional structure of the Lck SH3 domain.

  15. Avian papillomaviruses: the parrot Psittacus erithacus papillomavirus (PePV genome has a unique organization of the early protein region and is phylogenetically related to the chaffinch papillomavirus

    Directory of Open Access Journals (Sweden)

    Jenson A Bennett

    2002-07-01

    Full Text Available Abstract Background An avian papillomavirus genome has been cloned from a cutaneous exophytic papilloma from an African grey parrot (Psittacus erithacus. The nucleotide sequence, genome organization, and phylogenetic position of the Psittacus erithacus papillomavirus (PePV were determined. This PePV sequence represents the first complete avian papillomavirus genome defined. Results The PePV genome (7304 basepairs differs from other papillomaviruses, in that it has a unique organization of the early protein region lacking classical E6 and E7 open reading frames. Phylogenetic comparison of the PePV sequence with partial E1 and L1 sequences of the chaffinch (Fringilla coelebs papillomavirus (FPV reveals that these two avian papillomaviruses form a monophyletic cluster with a common branch that originates near the unresolved center of the papillomavirus evolutionary tree. Conclusions The PePV genome has a unique layout of the early protein region which represents a novel prototypic genomic organization for avian papillomaviruses. The close relationship between PePV and FPV, and between their Psittaciformes and Passeriformes hosts, supports the hypothesis that papillomaviruses have co-evolved and speciated together with their host species throughout evolution.

  16. Bioinformatics analysis identify novel OB fold protein coding genes in C. elegans.

    Directory of Open Access Journals (Sweden)

    Daryanaz Dargahi

    Full Text Available BACKGROUND: The C. elegans genome has been extensively annotated by the WormBase consortium that uses state of the art bioinformatics pipelines, functional genomics and manual curation approaches. As a result, the identification of novel genes in silico in this model organism is becoming more challenging requiring new approaches. The Oligonucleotide-oligosaccharide binding (OB fold is a highly divergent protein family, in which protein sequences, in spite of having the same fold, share very little sequence identity (5-25%. Therefore, evidence from sequence-based annotation may not be sufficient to identify all the members of this family. In C. elegans, the number of OB-fold proteins reported is remarkably low (n=46 compared to other evolutionary-related eukaryotes, such as yeast S. cerevisiae (n=344 or fruit fly D. melanogaster (n=84. Gene loss during evolution or differences in the level of annotation for this protein family, may explain these discrepancies. METHODOLOGY/PRINCIPAL FINDINGS: This study examines the possibility that novel OB-fold coding genes exist in the worm. We developed a bioinformatics approach that uses the most sensitive sequence-sequence, sequence-profile and profile-profile similarity search methods followed by 3D-structure prediction as a filtering step to eliminate false positive candidate sequences. We have predicted 18 coding genes containing the OB-fold that have remarkably partially been characterized in C. elegans. CONCLUSIONS/SIGNIFICANCE: This study raises the possibility that the annotation of highly divergent protein fold families can be improved in C. elegans. Similar strategies could be implemented for large scale analysis by the WormBase consortium when novel versions of the genome sequence of C. elegans, or other evolutionary related species are being released. This approach is of general interest to the scientific community since it can be used to annotate any genome.

  17. Proteomics identifies Bacillus cereus EntD as a pivotal protein for the production of numerous virulence factors

    Directory of Open Access Journals (Sweden)

    Hélène eOmer

    2015-10-01

    Full Text Available Bacillus cereus is a gram-positive pathogen that causes a wide variety of diseases in humans. It secretes into the extracellular milieu proteins that may contribute directly or indirectly to its virulence. EntD is a novel exoprotein identified by proteogenomics of B. cereus ATCC 14579. We constructed a ΔentD mutant and analyzed the impact of entD disruption on the cellular proteome and exoproteome isolated from early, late and stationary-phase cultures. We identified 308 and 79 proteins regulated by EntD in the cellular proteome and the exoproteome, respectively. The contribution of these proteins to important virulence-associated functions, including central metabolism, cell structure, antioxidative ability, cell motility and toxin production, are presented. The proteomic data were correlated with the growth defect, cell morphology change, reduced motility and reduced cytotoxicity of the ΔentD mutant strain. We conclude that EntD is an important player in B. cereus virulence. The function of EntD and the putative EntD-dependent regulatory network are discussed. To our knowledge, this study is the first characterization of an Ent family protein in a species of the B. cereus group.

  18. Identifying reliable predictors of protein-energy malnutrition in hospitalized frail older adults. A prospective longitudinal study.

    Science.gov (United States)

    Sanson, Gianfranco; Bertocchi, Luca; Dal Bo, Eugenia; Di Pasquale, Carmen Luisa; Zanetti, Michela

    2018-03-07

    Decreased food intake is a risk factor for relevant complications (e.g. infections, pressure ulcers), longer hospital stays, higher readmission rates, greater health care costs and increased patient mortality, particularly in frail hospitalized older adults who are malnourished or at risk of malnutrition. Nurses are called to improve this criticality, starting from accurately identify patients for malnutrition at hospital admission and effectively monitoring their food intake. The primary aim was to identify reliable predictive indicators of reduced food intake at hospital admission. The secondary aims were to assess the adequacy of daily energy and protein intake and the impact of nutrient intake on patient outcomes. Prospective observational longitudinal study. Internal Medicine Ward of an Academic Teaching University Hospital. Acute older adults who were malnourished or at risk of malnutrition (Nutritional Risk Score-2002 ≥ 3, middle-upper arm circumference energy and protein intake was monitored during the first 5 days of hospital stay by a photographic method and compared to the daily energy and protein requirement calculated by specific equations. Data on anthropometry, inflammation/malnutrition laboratory data and body composition (phase angle calculated using bioelectrical impedance analysis) were collected. Eighty-one subjects (age 81.5 ± 11.5 years) were enrolled. Mean energy intake was 669.0 ± 573.9 kcal/day, and mean protein intake was 30.7 ± 25.8 g/day. Over 60% of patients ingested ≤50% of their calculated energy and protein requirements: these patients were older (p = 0.026), had a lower middle-upper arm circumference (p = 0.022) and total arm area (p = 0.038), a higher C-reactive protein/albumin ratio and Instant Nutritional Assessment score (p protein/albumin ratio, and impaired self-feeding at admission were independently associated with critically reduced energy and protein intake. Middle

  19. Small-molecule inhibitors of phosphatidylcholine transfer protein/StarD2 identified by high-throughput screening.

    Science.gov (United States)

    Wagle, Neil; Xian, Jun; Shishova, Ekaterina Y; Wei, Jie; Glicksman, Marcie A; Cuny, Gregory D; Stein, Ross L; Cohen, David E

    2008-12-01

    Phosphatidylcholine transfer protein (PC-TP, also referred to as StarD2) is a highly specific intracellular lipid-binding protein that catalyzes the transfer of phosphatidylcholines between membranes in vitro. Recent studies have suggested that PC-TP in vivo functions to regulate fatty acid and glucose metabolism, possibly via interactions with selected other proteins. To begin to address the relationship between activity in vitro and biological function, we undertook a high-throughput screen to identify small-molecule inhibitors of the phosphatidylcholine transfer activity of PC-TP. After adapting a fluorescence quench assay to measure phosphatidylcholine transfer activity, we screened 114,752 compounds of a small-molecule library. The high-throughput screen identified 14 potential PC-TP inhibitors. Of these, 6 compounds exhibited characteristics consistent with specific inhibition of PC-TP activity, with IC(50) values that ranged from 4.1 to 95.0muM under conditions of the in vitro assay. These compounds should serve as valuable reagents to elucidate the biological function of PC-TP. Because mice with homozygous disruption of the PC-TP gene (Pctp) are sensitized to insulin action and relatively resistant to the development of atherosclerosis, these inhibitors may also prove to be of value in the management of diabetes and atherosclerotic cardiovascular diseases.

  20. Protein profile of mouse ovarian follicles grown in vitro.

    Science.gov (United States)

    Anastácio, Amandine; Rodriguez-Wallberg, Kenny A; Chardonnet, Solenne; Pionneau, Cédric; Fédérici, Christian; Almeida Santos, Teresa; Poirot, Catherine

    2017-12-01

    Could the follicle proteome be mapped by identifying specific proteins that are common or differ between three developmental stages from the secondary follicle (SF) to the antrum-like stage? From a total of 1401 proteins identified in the follicles, 609 were common to the three developmental stages investigated and 444 were found uniquely at one of the stages. The importance of the follicle as a functional structure has been recognized; however, up-to-date the proteome of the whole follicle has not been described. A few studies using proteomics have previously reported on either isolated fully-grown oocytes before or after meiosis resumption or cumulus cells. The experimental design included a validated mice model for isolation and individual culture of SFs. The system was chosen as it allows continuous evaluation of follicle growth and selection of follicles for analysis at pre-determined developmental stages: SF, complete Slavjanski membrane rupture (SMR) and antrum-like cavity (AF). The experiments were repeated 13 times independently to acquire the material that was analyzed by proteomics. SFs (n = 2166) were isolated from B6CBA/F1 female mice (n = 42), 12 days old, from 15 l. About half of the follicles isolated as SF were analyzed as such (n = 1143) and pooled to obtain 139 μg of extracted protein. Both SMR (n = 359) and AF (n = 124) were obtained after individual culture of 1023 follicles in a microdrop system under oil, selected for analysis and pooled, to obtain 339 μg and 170 μg of protein, respectively. The follicle proteome was analyzed combining isoelectric focusing (IEF) fractionation with 1D and 2D LC-MS/MS analysis to enhance protein identification. The three protein lists were submitted to the 'Compare gene list' tool in the PANTHER website to gain insights on the Gene Ontology Biological processes present and to Ingenuity Pathway Analysis to highlight protein networks. A label-free quantification was performed with 1D LC-MS/MS analyses to

  1. Protein space: a natural method for realizing the nature of protein universe.

    Science.gov (United States)

    Yu, Chenglong; Deng, Mo; Cheng, Shiu-Yuen; Yau, Shek-Chung; He, Rong L; Yau, Stephen S-T

    2013-02-07

    Current methods cannot tell us what the nature of the protein universe is concretely. They are based on different models of amino acid substitution and multiple sequence alignment which is an NP-hard problem and requires manual intervention. Protein structural analysis also gives a direction for mapping the protein universe. Unfortunately, now only a minuscule fraction of proteins' 3-dimensional structures are known. Furthermore, the phylogenetic tree representations are not unique for any existing tree construction methods. Here we develop a novel method to realize the nature of protein universe. We show the protein universe can be realized as a protein space in 60-dimensional Euclidean space using a distance based on a normalized distribution of amino acids. Every protein is in one-to-one correspondence with a point in protein space, where proteins with similar properties stay close together. Thus the distance between two points in protein space represents the biological distance of the corresponding two proteins. We also propose a natural graphical representation for inferring phylogenies. The representation is natural and unique based on the biological distances of proteins in protein space. This will solve the fundamental question of how proteins are distributed in the protein universe. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Structural analysis of a set of proteins resulting from a bacterial genomics project.

    Science.gov (United States)

    Badger, J; Sauder, J M; Adams, J M; Antonysamy, S; Bain, K; Bergseid, M G; Buchanan, S G; Buchanan, M D; Batiyenko, Y; Christopher, J A; Emtage, S; Eroshkina, A; Feil, I; Furlong, E B; Gajiwala, K S; Gao, X; He, D; Hendle, J; Huber, A; Hoda, K; Kearins, P; Kissinger, C; Laubert, B; Lewis, H A; Lin, J; Loomis, K; Lorimer, D; Louie, G; Maletic, M; Marsh, C D; Miller, I; Molinari, J; Muller-Dieckmann, H J; Newman, J M; Noland, B W; Pagarigan, B; Park, F; Peat, T S; Post, K W; Radojicic, S; Ramos, A; Romero, R; Rutter, M E; Sanderson, W E; Schwinn, K D; Tresser, J; Winhoven, J; Wright, T A; Wu, L; Xu, J; Harris, T J R

    2005-09-01

    The targets of the Structural GenomiX (SGX) bacterial genomics project were proteins conserved in multiple prokaryotic organisms with no obvious sequence homolog in the Protein Data Bank of known structures. The outcome of this work was 80 structures, covering 60 unique sequences and 49 different genes. Experimental phase determination from proteins incorporating Se-Met was carried out for 45 structures with most of the remainder solved by molecular replacement using members of the experimentally phased set as search models. An automated tool was developed to deposit these structures in the Protein Data Bank, along with the associated X-ray diffraction data (including refined experimental phases) and experimentally confirmed sequences. BLAST comparisons of the SGX structures with structures that had appeared in the Protein Data Bank over the intervening 3.5 years since the SGX target list had been compiled identified homologs for 49 of the 60 unique sequences represented by the SGX structures. This result indicates that, for bacterial structures that are relatively easy to express, purify, and crystallize, the structural coverage of gene space is proceeding rapidly. More distant sequence-structure relationships between the SGX and PDB structures were investigated using PDB-BLAST and Combinatorial Extension (CE). Only one structure, SufD, has a truly unique topology compared to all folds in the PDB. Copyright 2005 Wiley-Liss, Inc.

  3. Microfluidic screening and whole-genome sequencing identifies mutations associated with improved protein secretion by yeast

    DEFF Research Database (Denmark)

    Huang, Mingtao; Bai, Yunpeng; Sjostrom, Staffan L.

    2015-01-01

    There is an increasing demand for biotech-based production of recombinant proteins for use as pharmaceuticals in the food and feed industry and in industrial applications. Yeast Saccharomyces cerevisiae is among preferred cell factories for recombinant protein production, and there is increasing...... interest in improving its protein secretion capacity. Due to the complexity of the secretory machinery in eukaryotic cells, it is difficult to apply rational engineering for construction of improved strains. Here we used high-throughput microfluidics for the screening of yeast libraries, generated by UV...... mutagenesis. Several screening and sorting rounds resulted in the selection of eight yeast clones with significantly improved secretion of recombinant a-amylase. Efficient secretion was genetically stable in the selected clones. We performed whole-genome sequencing of the eight clones and identified 330...

  4. Large anterior temporal Virchow-Robin spaces: unique MR imaging features

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Anthony T. [Monash University, Neuroradiology Service, Monash Imaging, Monash Health, Melbourne, Victoria (Australia); Chandra, Ronil V. [Monash University, Neuroradiology Service, Monash Imaging, Monash Health, Melbourne, Victoria (Australia); Monash University, Department of Surgery, Faculty of Medicine, Nursing and Health Sciences, Melbourne (Australia); Trost, Nicholas M. [St Vincent' s Hospital, Neuroradiology Service, Melbourne (Australia); McKelvie, Penelope A. [St Vincent' s Hospital, Anatomical Pathology, Melbourne (Australia); Stuckey, Stephen L. [Monash University, Neuroradiology Service, Monash Imaging, Monash Health, Melbourne, Victoria (Australia); Monash University, Southern Clinical School, Faculty of Medicine, Nursing and Health Sciences, Melbourne (Australia)

    2015-05-01

    Large Virchow-Robin (VR) spaces may mimic cystic tumor. The anterior temporal subcortical white matter is a recently described preferential location, with only 18 reported cases. Our aim was to identify unique MR features that could increase prospective diagnostic confidence. Thirty-nine cases were identified between November 2003 and February 2014. Demographic, clinical data and the initial radiological report were retrospectively reviewed. Two neuroradiologists reviewed all MR imaging; a neuropathologist reviewed histological data. Median age was 58 years (range 24-86 years); the majority (69 %) was female. There were no clinical symptoms that could be directly referable to the lesion. Two thirds were considered to be VR spaces on the initial radiological report. Mean maximal size was 9 mm (range 5-17 mm); majority (79 %) had perilesional T2 or fluid-attenuated inversion recovery (FLAIR) hyperintensity. The following were identified as potential unique MR features: focal cortical distortion by an adjacent branch of the middle cerebral artery (92 %), smaller adjacent VR spaces (26 %), and a contiguous cerebrospinal fluid (CSF) intensity tract (21 %). Surgery was performed in three asymptomatic patients; histopathology confirmed VR spaces. Unique MR features were retrospectively identified in all three patients. Large anterior temporal lobe VR spaces commonly demonstrate perilesional T2 or FLAIR signal and can be misdiagnosed as cystic tumor. Potential unique MR features that could increase prospective diagnostic confidence include focal cortical distortion by an adjacent branch of the middle cerebral artery, smaller adjacent VR spaces, and a contiguous CSF intensity tract. (orig.)

  5. The SsgA-like proteins in actinomycetes: small proteins up to a big task.

    Science.gov (United States)

    Traag, Bjørn A; van Wezel, Gilles P

    2008-06-01

    Several unique protein families have been identified that play a role in the control of developmental cell division in streptomycetes. The SsgA-like proteins or SALPs, of which streptomycetes typically have at least five paralogues, control specific steps of sporulation-specific cell division in streptomycetes, affecting cell wall-related events such as septum localization and synthesis, thickening of the spore wall and autolytic spore separation. The expression level of SsgA, the best studied SALP, has a rather dramatic effect on septation and on hyphal morphology, which is not only of relevance for our understanding of (developmental) cell division but has also been successfully applied in industrial fermentation, to improve growth and production of filamentous actinomycetes. Recent observations suggest that SsgB most likely is the archetypal SALP, with only SsgB orthologues occurring in all morphologically complex actinomycetes. Here we review 10 years of research on the SsgA-like proteins in actinomycetes and discuss the most interesting regulatory, functional, phylogenetic and applied aspects of this relatively unknown protein family.

  6. Comparative genomic analysis identified a mutation related to enhanced heterologous protein production in the filamentous fungus Aspergillus oryzae.

    Science.gov (United States)

    Jin, Feng-Jie; Katayama, Takuya; Maruyama, Jun-Ichi; Kitamoto, Katsuhiko

    2016-11-01

    Genomic mapping of mutations using next-generation sequencing technologies has facilitated the identification of genes contributing to fundamental biological processes, including human diseases. However, few studies have used this approach to identify mutations contributing to heterologous protein production in industrial strains of filamentous fungi, such as Aspergillus oryzae. In a screening of A. oryzae strains that hyper-produce human lysozyme (HLY), we previously isolated an AUT1 mutant that showed higher production of various heterologous proteins; however, the underlying factors contributing to the increased heterologous protein production remained unclear. Here, using a comparative genomic approach performed with whole-genome sequences, we attempted to identify the genes responsible for the high-level production of heterologous proteins in the AUT1 mutant. The comparative sequence analysis led to the detection of a gene (AO090120000003), designated autA, which was predicted to encode an unknown cytoplasmic protein containing an alpha/beta-hydrolase fold domain. Mutation or deletion of autA was associated with higher production levels of HLY. Specifically, the HLY yields of the autA mutant and deletion strains were twofold higher than that of the control strain during the early stages of cultivation. Taken together, these results indicate that combining classical mutagenesis approaches with comparative genomic analysis facilitates the identification of novel genes involved in heterologous protein production in filamentous fungi.

  7. Fibrinogen-Related Proteins in Tissue Repair: How a Unique Domain with a Common Structure Controls Diverse Aspects of Wound Healing.

    Science.gov (United States)

    Zuliani-Alvarez, Lorena; Midwood, Kim S

    2015-05-01

    Significance: Fibrinogen-related proteins (FRePs) comprise an intriguing collection of extracellular molecules, each containing a conserved fibrinogen-like globe (FBG). This group includes the eponymous fibrinogen as well as the tenascin, angiopoietin, and ficolin families. Many of these proteins are upregulated during tissue repair and exhibit diverse roles during wound healing. Recent Advances: An increasing body of evidence highlights the specific expression of a number of FRePs following tissue injury and infection. Upon induction, each FReP uses its FBG domain to mediate quite distinct effects that contribute to different stages of tissue repair, such as driving coagulation, pathogen detection, inflammation, angiogenesis, and tissue remodeling. Critical Issues: Despite a high degree of homology among FRePs, each contains unique sequences that enable their diversification of function. Comparative analysis of the structure and function of FRePs and precise mapping of regions that interact with a variety of ligands has started to reveal the underlying molecular mechanisms by which these proteins play very different roles using their common domain. Future Directions: Fibrinogen has long been used in the clinic as a synthetic matrix serving as a scaffold or a delivery system to aid tissue repair. Novel therapeutic strategies are now emerging that harness the use of other FRePs to improve wound healing outcomes. As we learn more about the underlying mechanisms by which each FReP contributes to the repair response, specific blockade, or indeed potentiation, of their function offers real potential to enable regulation of distinct processes during pathological wound healing.

  8. Biofilm-specific extracellular matrix proteins of non-typeable Haemophilus influenzae

    Science.gov (United States)

    Wu, Siva; Baum, Marc M.; Kerwin, James; Guerrero-Given, Debbie; Webster, Simon; Schaudinn, Christoph; VanderVelde, David; Webster, Paul

    2014-01-01

    Non-typeable Haemophilus influenzae (NTHi), a human respiratory tract pathogen can form colony biofilms in vitro. Bacterial cells and the amorphous extracellular matrix (ECM) constituting the biofilm can be separated using sonication. The ECM from 24 hr and 96 hr NTHi biofilms contained polysaccharides and proteinaceous components as detected by NMR and FTIR spectroscopy. More conventional chemical assays on the biofilm ECM confirmed the presence of these components and also DNA. Proteomics revealed eighteen proteins present in biofilm ECM that were not detected in planktonic bacteria. One ECM protein was unique to 24 hr biofilms, two were found only in 96 hr biofilms, and fifteen were present in the ECM of both 24 hr and 96 hr NTHi biofilms. All proteins identified were either associated with bacterial membranes or were cytoplasmic proteins. Immunocytochemistry showed two of the identified proteins, a DNA-directed RNA polymerase and the outer membrane protein OMP P2, associated with bacteria and biofilm ECM. Identification of biofilm-specific proteins present in immature biofilms is an important step in understanding the in vitro process of NTHi biofilm formation. The presence of a cytoplasmic protein and a membrane protein in the biofilm ECM of immature NTHi biofilms suggests that bacterial cell lysis may be a feature of early biofilm formation. PMID:24942343

  9. Enhanced detection method for corneal protein identification using shotgun proteomics

    Directory of Open Access Journals (Sweden)

    Schlager John J

    2009-06-01

    Full Text Available Abstract Background The cornea is a specialized transparent connective tissue responsible for the majority of light refraction and image focus for the retina. There are three main layers of the cornea: the epithelium that is exposed and acts as a protective barrier for the eye, the center stroma consisting of parallel collagen fibrils that refract light, and the endothelium that is responsible for hydration of the cornea from the aqueous humor. Normal cornea is an immunologically privileged tissue devoid of blood vessels, but injury can produce a loss of these conditions causing invasion of other processes that degrade the homeostatic properties resulting in a decrease in the amount of light refracted onto the retina. Determining a measure and drift of phenotypic cornea state from normal to an injured or diseased state requires knowledge of the existing protein signature within the tissue. In the study of corneal proteins, proteomics procedures have typically involved the pulverization of the entire cornea prior to analysis. Separation of the epithelium and endothelium from the core stroma and performing separate shotgun proteomics using liquid chromatography/mass spectrometry results in identification of many more proteins than previously employed methods using complete pulverized cornea. Results Rabbit corneas were purchased, the epithelium and endothelium regions were removed, proteins processed and separately analyzed using liquid chromatography/mass spectrometry. Proteins identified from separate layers were compared against results from complete corneal samples. Protein digests were separated using a six hour liquid chromatographic gradient and ion-trap mass spectrometry used for detection of eluted peptide fractions. The SEQUEST database search results were filtered to allow only proteins with match probabilities of equal or better than 10-3 and peptides with a probability of 10-2 or less with at least two unique peptides isolated within

  10. Short communication: Proteins from circulating exosomes represent metabolic state in transition dairy cows.

    Science.gov (United States)

    Crookenden, M A; Walker, C G; Peiris, H; Koh, Y; Heiser, A; Loor, J J; Moyes, K M; Murray, A; Dukkipati, V S R; Kay, J K; Meier, S; Roche, J R; Mitchell, M D

    2016-09-01

    Biomarkers that identify prepathological disease could enhance preventive management, improve animal health and productivity, and reduce costs. Circulating extracellular vesicles, particularly exosomes, are considered to be long-distance, intercellular communication systems in human medicine. Exosomes provide tissue-specific messages of functional state and can alter the cellular activity of recipient tissues through their protein and microRNA content. We hypothesized that exosomes circulating in the blood of cows during early lactation would contain proteins representative of the metabolic state of important tissues, such as liver, which play integral roles in regulating the physiology of cows postpartum. From a total of 150 cows of known metabolic phenotype, 10 cows were selected with high (n=5; high risk) and low (n=5; low risk) concentrations of nonesterified fatty acids, β-hydroxybutyrate, and liver triacylglycerol during wk 1 and 2 after calving. Exosomes were extracted from blood on the day of calving (d 0) and postcalving at wk 1 and wk 4, and their protein composition was determined by mass spectroscopy. Extracellular vesicle protein concentration and the number of exosome vesicles were not affected by risk category; however, the exosome protein cargo differed between the groups, with proteins at each time point identified as being unique to the high- and low-risk groups. The proteins α-2 macroglobulin, fibrinogen, and oncoprotein-induced transcript 3 were unique to the high-risk cows on d 0 and have been associated with metabolic syndrome and liver function in humans. Their presence may indicate a more severe inflammatory state and a greater degree of liver dysfunction in the high-risk cows than in the low-risk cows, consistent with the high-risk cows' greater plasma β-hydroxybutyrate and liver triacylglycerol concentrations. The commonly shared proteins and those unique to the low-risk category indicate a role for exosomes in immune function. The data

  11. CSI 3.0: a web server for identifying secondary and super-secondary structure in proteins using NMR chemical shifts.

    Science.gov (United States)

    Hafsa, Noor E; Arndt, David; Wishart, David S

    2015-07-01

    The Chemical Shift Index or CSI 3.0 (http://csi3.wishartlab.com) is a web server designed to accurately identify the location of secondary and super-secondary structures in protein chains using only nuclear magnetic resonance (NMR) backbone chemical shifts and their corresponding protein sequence data. Unlike earlier versions of CSI, which only identified three types of secondary structure (helix, β-strand and coil), CSI 3.0 now identifies total of 11 types of secondary and super-secondary structures, including helices, β-strands, coil regions, five common β-turns (type I, II, I', II' and VIII), β hairpins as well as interior and edge β-strands. CSI 3.0 accepts experimental NMR chemical shift data in multiple formats (NMR Star 2.1, NMR Star 3.1 and SHIFTY) and generates colorful CSI plots (bar graphs) and secondary/super-secondary structure assignments. The output can be readily used as constraints for structure determination and refinement or the images may be used for presentations and publications. CSI 3.0 uses a pipeline of several well-tested, previously published programs to identify the secondary and super-secondary structures in protein chains. Comparisons with secondary and super-secondary structure assignments made via standard coordinate analysis programs such as DSSP, STRIDE and VADAR on high-resolution protein structures solved by X-ray and NMR show >90% agreement between those made with CSI 3.0. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Macrophage replication screen identifies a novel Francisella hydroperoxide resistance protein involved in virulence.

    Directory of Open Access Journals (Sweden)

    Anna C Llewellyn

    Full Text Available Francisella tularensis is a gram-negative facultative intracellular pathogen and the causative agent of tularemia. Recently, genome-wide screens have identified Francisella genes required for virulence in mice. However, the mechanisms by which most of the corresponding proteins contribute to pathogenesis are still largely unknown. To further elucidate the roles of these virulence determinants in Francisella pathogenesis, we tested whether each gene was required for replication of the model pathogen F. novicida within macrophages, an important virulence trait. Fifty-three of the 224 genes tested were involved in intracellular replication, including many of those within the Francisella pathogenicity island (FPI, validating our results. Interestingly, over one third of the genes identified are annotated as hypothetical, indicating that F. novicida likely utilizes novel virulence factors for intracellular replication. To further characterize these virulence determinants, we selected two hypothetical genes to study in more detail. As predicted by our screen, deletion mutants of FTN_0096 and FTN_1133 were attenuated for replication in macrophages. The mutants displayed differing levels of attenuation in vivo, with the FTN_1133 mutant being the most attenuated. FTN_1133 has sequence similarity to the organic hydroperoxide resistance protein Ohr, an enzyme involved in the bacterial response to oxidative stress. We show that FTN_1133 is required for F. novicida resistance to, and degradation of, organic hydroperoxides as well as resistance to the action of the NADPH oxidase both in macrophages and mice. Furthermore, we demonstrate that F. holarctica LVS, a strain derived from a highly virulent human pathogenic species of Francisella, also requires this protein for organic hydroperoxide resistance as well as replication in macrophages and mice. This study expands our knowledge of Francisella's largely uncharacterized intracellular lifecycle and

  13. Evaluation of Optical Detection Platforms for Multiplexed Detection of Proteins and the Need for Point-of-Care Biosensors for Clinical Use

    Directory of Open Access Journals (Sweden)

    Samantha Spindel

    2014-11-01

    Full Text Available This review investigates optical sensor platforms for protein multiplexing, the ability to analyze multiple analytes simultaneously. Multiplexing is becoming increasingly important for clinical needs because disease and therapeutic response often involve the interplay between a variety of complex biological networks encompassing multiple, rather than single, proteins. Multiplexing is generally achieved through one of two routes, either through spatial separation on a surface (different wells or spots or with the use of unique identifiers/labels (such as spectral separation—different colored dyes, or unique beads—size or color. The strengths and weaknesses of conventional platforms such as immunoassays and new platforms involving protein arrays and lab-on-a-chip technology, including commercially-available devices, are discussed. Three major public health concerns are identified whereby detecting medically-relevant markers using Point-of-Care (POC multiplex assays could potentially allow for a more efficient diagnosis and treatment of diseases.

  14. Efficient identification of critical residues based only on protein structure by network analysis.

    Directory of Open Access Journals (Sweden)

    Michael P Cusack

    2007-05-01

    Full Text Available Despite the increasing number of published protein structures, and the fact that each protein's function relies on its three-dimensional structure, there is limited access to automatic programs used for the identification of critical residues from the protein structure, compared with those based on protein sequence. Here we present a new algorithm based on network analysis applied exclusively on protein structures to identify critical residues. Our results show that this method identifies critical residues for protein function with high reliability and improves automatic sequence-based approaches and previous network-based approaches. The reliability of the method depends on the conformational diversity screened for the protein of interest. We have designed a web site to give access to this software at http://bis.ifc.unam.mx/jamming/. In summary, a new method is presented that relates critical residues for protein function with the most traversed residues in networks derived from protein structures. A unique feature of the method is the inclusion of the conformational diversity of proteins in the prediction, thus reproducing a basic feature of the structure/function relationship of proteins.

  15. Conservation of a unique mechanism of immune evasion across the Lyssavirus genus.

    Science.gov (United States)

    Wiltzer, L; Larrous, F; Oksayan, S; Ito, N; Marsh, G A; Wang, L F; Blondel, D; Bourhy, H; Jans, D A; Moseley, G W

    2012-09-01

    The evasion of host innate immunity by Rabies virus, the prototype of the genus Lyssavirus, depends on a unique mechanism of selective targeting of interferon-activated STAT proteins by the viral phosphoprotein (P-protein). However, the immune evasion strategies of other lyssaviruses, including several lethal human pathogens, are unresolved. Here, we show that this mechanism is conserved between the most distantly related members of the genus, providing important insights into the pathogenesis and potential therapeutic targeting of lyssaviruses.

  16. Identifying diabetes-related important protein targets with few interacting partners with the PageRank algorithm.

    Science.gov (United States)

    Grolmusz, Vince I

    2015-04-01

    Diabetes is a growing concern for the developed nations worldwide. New genomic, metagenomic and gene-technologic approaches may yield considerable results in the next several years in its early diagnosis, or in advances in therapy and management. In this work, we highlight some human proteins that may serve as new targets in the early diagnosis and therapy. With the help of a very successful mathematical tool for network analysis that formed the basis of the early successes of Google(TM), Inc., we analyse the human protein-protein interaction network gained from the IntAct database with a mathematical algorithm. The novelty of our approach is that the new protein targets suggested do not have many interacting partners (so, they are not hubs or super-hubs), so their inhibition or promotion probably will not have serious side effects. We have identified numerous possible protein targets for diabetes therapy and/or management; some of these have been well known for a long time (these validate our method), some of them appeared in the literature in the last 12 months (these show the cutting edge of the algorithm), and the remainder are still unknown to be connected with diabetes, witnessing completely new hits of the method.

  17. Molecular characterization and functional analysis of PR-1-like proteins identified from the wheat head blight fungus Fusarium graminearum

    Science.gov (United States)

    The group 1 pathogenesis-related (PR-1) proteins originally identified from plants and their homologues are also found in other eukaryotic kingdoms. Studies on non-plant PR-1-like (PR-1L) proteins have been pursued widely in humans/animals but rarely in filamentous ascomycetes. Here we report the ch...

  18. Transcriptome analysis of the Cryptocaryon irritans tomont stage identifies potential genes for the detection and control of cryptocaryonosis

    Directory of Open Access Journals (Sweden)

    Wan Kiew-Lian

    2010-01-01

    Full Text Available Abstract Background Cryptocaryon irritans is a parasitic ciliate that causes cryptocaryonosis (white spot disease in marine fish. Diagnosis of cryptocaryonosis often depends on the appearance of white spots on the surface of the fish, which are usually visible only during later stages of the disease. Identifying suitable biomarkers of this parasite would aid the development of diagnostic tools and control strategies for C. irritans. The C. irritans genome is virtually unexplored; therefore, we generated and analyzed expressed sequence tags (ESTs of the parasite to identify genes that encode for surface proteins, excretory/secretory proteins and repeat-containing proteins. Results ESTs were generated from a cDNA library of C. irritans tomonts isolated from infected Asian sea bass, Lates calcarifer. Clustering of the 5356 ESTs produced 2659 unique transcripts (UTs containing 1989 singletons and 670 consensi. BLAST analysis showed that 74% of the UTs had significant similarity (E-value -5 to sequences that are currently available in the GenBank database, with more than 15% of the significant hits showing unknown function. Forty percent of the UTs had significant similarity to ciliates from the genera Tetrahymena and Paramecium. Comparative gene family analysis with related taxa showed that many protein families are conserved among the protozoans. Based on gene ontology annotation, functional groups were successfully assigned to 790 UTs. Genes encoding excretory/secretory proteins and membrane and membrane-associated proteins were identified because these proteins often function as antigens and are good antibody targets. A total of 481 UTs were classified as encoding membrane proteins, 54 were classified as encoding for membrane-bound proteins, and 155 were found to contain excretory/secretory protein-coding sequences. Amino acid repeat-containing proteins and GPI-anchored proteins were also identified as potential candidates for the development of

  19. Membrane protein profiling of Acidovorax avenae subsp. avenae under various growth conditions.

    Science.gov (United States)

    Li, Bin; Wang, Li; Ibrahim, Muhammad; Ge, Mengyu; Wang, Yanli; Mannan, Shazia; Asif, Muhammad; Sun, Guochang

    2015-06-01

    Membrane proteins (MPs) of plant pathogenic bacteria have been reported to be able to regulate many essential cellular processes associated with plant disease. The aim of the current study was to examine and compare the expression of MPs of the rice bacterial pathogen Acidovorax avenae subsp. avenae strain RS-1 under Luria-Bertani (LB) medium, M9 medium, in vivo rice plant conditions and leaf extract (LE) medium mimicking in vivo plant condition. Proteomic analysis identified 95, 72, 75, and 87 MPs under LB, in vivo, M9 and LE conditions, respectively. Among them, six proteins were shared under all tested growth conditions designated as abundant class of proteins. Twenty-six and 21 proteins were expressed uniquely under in vivo versus LB medium and LE versus M9 medium, respectively, with 17 proteins common among these uniquely induced proteins. Moreover, most of the shared proteins are mainly related to energy metabolism, transport of small molecules, protein synthesis and secretion as well as virulence such as NADH, OmpA, secretion proteins. Therefore, the result of this study not only suggests that it may be an alternate method to analyze the in vivo expression of proteins by using LE medium to mimic plant conditions, but also reveals that the two sets of differentially expressed MPs, in particular the common MPs between them, might be important in energy metabolism, stress response and virulence of A. avenae subsp. avenae strain RS-1.

  20. Identification of fibrinogen-binding proteins of Aspergillus fumigatus using proteomic approach.

    Science.gov (United States)

    Upadhyay, Santosh Kumar; Gautam, Poonam; Pandit, Hrishikesh; Singh, Yogendra; Basir, Seemi Farhat; Madan, Taruna

    2012-03-01

    Aspergillus fumigatus, the main etiological agent for various forms of human aspergillosis, gets access to the respiratory system of human host by inhalation of airborne conidia. These conidia possibly adhere to extracellular matrix (ECM) proteins. Among the ECM proteins involved in adherence, fibrinogen is thought to be crucial. Here, we studied whether A. fumigatus three-week culture filtrate (3wcf) proteins promote binding of A. fumigatus to ECM proteins and promote fungal growth. We observed that incubation of ECM with 3wcf proteins led to dose- and time-dependent increase in adherence of conidia to the ECM. In order to identify the catalogue of fibrinogen-binding A. fumigatus proteins, we carried out fibrinogen affinity blotting using two-dimensional gel electrophoresed 3wcf proteins. A total of 15 fibrinogen-binding protein spots corresponding to 7 unique proteins were identified in 3wcf using matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF-TOF). Among these, 4 proteins, namely, beta-glucosidase, alpha-mannosidase, pectate lyase A and oryzin precursor were predicted to have cell wall or extracellular localization, whereas amidase family protein and two hypothetical proteins did not display the signal sequence. This study reports seven novel fibrinogen-binding proteins of A. fumigatus, some of which could be further explored for targeting the adhesion phenomenon as antifungal strategy.

  1. RUCS: Rapid identification of PCR primers for unique core sequences

    DEFF Research Database (Denmark)

    Thomsen, Martin Christen Frølund; Hasman, Henrik; Westh, Henrik

    2017-01-01

    Designing PCR primers to target a specific selection of whole genome sequenced strains can be a long, arduous, and sometimes impractical task. Such tasks would benefit greatly from an automated tool to both identify unique targets, and to validate the vast number of potential primer pairs...... for the targets in silico . Here we present RUCS, a program that will find PCR primer pairs and probes for the unique core sequences of a positive genome dataset complement to a negative genome dataset. The resulting primer pairs and probes are in addition to simple selection also validated through a complex...... in silico PCR simulation. We compared our method, which identifies the unique core sequences, against an existing tool called ssGeneFinder, and found that our method was 6.5-20 times more sensitive. We used RUCS to design primer pairs that would target a set of genomes known to contain the mcr-1 colistin...

  2. Comparative genome analysis reveals a conserved family of actin-like proteins in apicomplexan parasites

    Directory of Open Access Journals (Sweden)

    Sibley L David

    2005-12-01

    Full Text Available Abstract Background The phylum Apicomplexa is an early-branching eukaryotic lineage that contains a number of important human and animal pathogens. Their complex life cycles and unique cytoskeletal features distinguish them from other model eukaryotes. Apicomplexans rely on actin-based motility for cell invasion, yet the regulation of this system remains largely unknown. Consequently, we focused our efforts on identifying actin-related proteins in the recently completed genomes of Toxoplasma gondii, Plasmodium spp., Cryptosporidium spp., and Theileria spp. Results Comparative genomic and phylogenetic studies of apicomplexan genomes reveals that most contain only a single conventional actin and yet they each have 8–10 additional actin-related proteins. Among these are a highly conserved Arp1 protein (likely part of a conserved dynactin complex, and Arp4 and Arp6 homologues (subunits of the chromatin-remodeling machinery. In contrast, apicomplexans lack canonical Arp2 or Arp3 proteins, suggesting they lost the Arp2/3 actin polymerization complex on their evolutionary path towards intracellular parasitism. Seven of these actin-like proteins (ALPs are novel to apicomplexans. They show no phylogenetic associations to the known Arp groups and likely serve functions specific to this important group of intracellular parasites. Conclusion The large diversity of actin-like proteins in apicomplexans suggests that the actin protein family has diverged to fulfill various roles in the unique biology of intracellular parasites. Conserved Arps likely participate in vesicular transport and gene expression, while apicomplexan-specific ALPs may control unique biological traits such as actin-based gliding motility.

  3. Molecular Characterization and Functional Analysis of PR-1-Like Proteins Identified from the Wheat Head Blight Fungus Fusarium graminearum.

    Science.gov (United States)

    Lu, Shunwen; Edwards, Michael C

    2018-04-01

    The group 1 pathogenesis-related (PR-1) proteins originally identified from plants and their homologs are also found in other eukaryotic kingdoms. Studies on nonplant PR-1-like (PR-1L) proteins have been pursued widely in humans and animals but rarely in filamentous ascomycetes. Here, we report the characterization of four PR-1L proteins identified from the ascomycete fungus Fusarium graminearum, the primary cause of Fusarium head blight of wheat and barley (designated FgPR-1L). Molecular cloning revealed that the four FgPR-1L proteins are all encoded by small open reading frames (612 to 909 bp) that are often interrupted by introns, in contrast to plant PR-1 genes that lack introns. Sequence analysis indicated that all FgPR-1L proteins contain the PR-1-specific three-dimensional structure, and one of them features a C-terminal transmembrane (TM) domain that has not been reported for any stand-alone PR-1 proteins. Transcriptional analysis revealed that the four FgPR-1L genes are expressed in axenic cultures and in planta with different spatial or temporal expression patterns. Phylogenetic analysis indicated that fungal PR-1L proteins fall into three major groups, one of which harbors FgPR-1L-2-related TM-containing proteins from both phytopathogenic and human-pathogenic ascomycetes. Low-temperature sodium dodecyl sulfate polyacrylamide gel electrophoresis and proteolytic assays indicated that the recombinant FgPR-1L-4 protein exists as a monomer and is resistant to subtilisin of the serine protease family. Functional analysis confirmed that deletion of the FgPR-1L-4 gene from the fungal genome results in significantly reduced virulence on susceptible wheat. This study provides the first example that the F. graminearum-wheat interaction involves a pathogen-derived PR-1L protein that affects fungal virulence on the host.

  4. DECISIONS ET COMPETITIVITE SUR LE MARCHE UNIQUE EUROPEEN

    Directory of Open Access Journals (Sweden)

    Sirghi Nicoleta

    2008-05-01

    Full Text Available L’un des traits importants du marché unique européen, a comme source le męme énoncé du principal objectif de l’intégration européenne ainsi que: l’harmonisation des niveaux du développement des Etats Membres et l’augmentation du niveau de vie dans l’ensemble de la communauté. Pour le marché unique européen, cet aspect se traduit par une permanente et soutenue augmentation de la demande. Cet ouvrage présente au début une analyse des éléments spécifiques du marché européen. Ensuite on identifie les opportunités et les risques au niveau macroéconomique adjointes aux perspectives du marché unique européen. Comme fondement on présente des stratégies du développement réalisables au niveau microéconomique que puissent assurer l’augmentation du niveau sur la compétitivité des sociétés sur le marché unique européen.

  5. Conservation of a Unique Mechanism of Immune Evasion across the Lyssavirus Genus

    Science.gov (United States)

    Wiltzer, L.; Larrous, F.; Oksayan, S.; Ito, N.; Marsh, G. A.; Wang, L. F.; Blondel, D.; Bourhy, H.; Jans, D. A.

    2012-01-01

    The evasion of host innate immunity by Rabies virus, the prototype of the genus Lyssavirus, depends on a unique mechanism of selective targeting of interferon-activated STAT proteins by the viral phosphoprotein (P-protein). However, the immune evasion strategies of other lyssaviruses, including several lethal human pathogens, are unresolved. Here, we show that this mechanism is conserved between the most distantly related members of the genus, providing important insights into the pathogenesis and potential therapeutic targeting of lyssaviruses. PMID:22740405

  6. Proteomic Analysis of Rhizoctonia solani Identifies Infection-specific, Redox Associated Proteins and Insight into Adaptation to Different Plant Hosts*

    Science.gov (United States)

    Anderson, Jonathan P.; Hane, James K.; Stoll, Thomas; Pain, Nicholas; Hastie, Marcus L.; Kaur, Parwinder; Hoogland, Christine; Gorman, Jeffrey J.; Singh, Karam B.

    2016-01-01

    Rhizoctonia solani is an important root infecting pathogen of a range of food staples worldwide including wheat, rice, maize, soybean, potato and others. Conventional resistance breeding strategies are hindered by the absence of tractable genetic resistance in any crop host. Understanding the biology and pathogenicity mechanisms of this fungus is important for addressing these disease issues, however, little is known about how R. solani causes disease. This study capitalizes on recent genomic studies by applying mass spectrometry based proteomics to identify soluble, membrane-bound and culture filtrate proteins produced under wheat infection and vegetative growth conditions. Many of the proteins found in the culture filtrate had predicted functions relating to modification of the plant cell wall, a major activity required for pathogenesis on the plant host, including a number found only under infection conditions. Other infection related proteins included a high proportion of proteins with redox associated functions and many novel proteins without functional classification. The majority of infection only proteins tested were confirmed to show transcript up-regulation during infection including a thaumatin which increased susceptibility to R. solani when expressed in Nicotiana benthamiana. In addition, analysis of expression during infection of different plant hosts highlighted how the infection strategy of this broad host range pathogen can be adapted to the particular host being encountered. Data are available via ProteomeXchange with identifier PXD002806. PMID:26811357

  7. A genome-wide screen identifies conserved protein hubs required for cadherin-mediated cell–cell adhesion

    Science.gov (United States)

    Toret, Christopher P.; D’Ambrosio, Michael V.; Vale, Ronald D.; Simon, Michael A.

    2014-01-01

    Cadherins and associated catenins provide an important structural interface between neighboring cells, the actin cytoskeleton, and intracellular signaling pathways in a variety of cell types throughout the Metazoa. However, the full inventory of the proteins and pathways required for cadherin-mediated adhesion has not been established. To this end, we completed a genome-wide (∼14,000 genes) ribonucleic acid interference (RNAi) screen that targeted Ca2+-dependent adhesion in DE-cadherin–expressing Drosophila melanogaster S2 cells in suspension culture. This novel screen eliminated Ca2+-independent cell–cell adhesion, integrin-based adhesion, cell spreading, and cell migration. We identified 17 interconnected regulatory hubs, based on protein functions and protein–protein interactions that regulate the levels of the core cadherin–catenin complex and coordinate cadherin-mediated cell–cell adhesion. Representative proteins from these hubs were analyzed further in Drosophila oogenesis, using targeted germline RNAi, and adhesion was analyzed in Madin–Darby canine kidney mammalian epithelial cell–cell adhesion. These experiments reveal roles for a diversity of cellular pathways that are required for cadherin function in Metazoa, including cytoskeleton organization, cell–substrate interactions, and nuclear and cytoplasmic signaling. PMID:24446484

  8. A reverse-phase protein microarray-based screen identifies host signaling dynamics upon Burkholderia spp. infection

    Directory of Open Access Journals (Sweden)

    Chih-Yuan eChiang

    2015-07-01

    Full Text Available Burkholderia is a diverse genus of Gram-negative bacteria that cause high mortality rate in humans and cattle. The lack of effective therapeutic treatments poses serious public health threats. Insights toward host-Burkholderia spp. interaction are critical in understanding the pathogenesis of the infection as well as identifying therapeutic targets for drug development. Reverse-phase protein microarray (RPMA technology was previously proven to characterize novel biomarkers and molecular signatures associated with infectious diseases and cancers. In the present study, this technology was utilized to interrogate changes in host protein expression and post-translational phosphorylation events in macrophages infected with a collection of geographically diverse strains of Burkholderia spp. The expression or phosphorylation state of 25 proteins was altered during Burkholderia spp. infections and of which eight proteins were selected for further validation by immunoblotting. Kinetic expression patterns of phosphorylated AMPK-α1, Src, and GSK3β suggested the importance of their roles in regulating Burkholderia spp. mediated innate immune responses. Modulating inflammatory responses by perturbing AMPK-α1, Src, and GSK3β activities may provide novel therapeutic targets for future treatments.

  9. VNARs: An Ancient and Unique Repertoire of Molecules That Deliver Small, Soluble, Stable and High Affinity Binders of Proteins

    Directory of Open Access Journals (Sweden)

    Caroline Barelle

    2015-09-01

    Full Text Available At 420 million years, the variable domain of New Antigen Receptors or VNARs are undoubtedly the oldest (and smallest antigen binding single domains identified in the vertebrate kingdom. Their role as an integral part of the adaptive immune system of sharks has been well established and has served to provide a greater understanding of the evolution of humoral immunity; their cellular components and processes as well as the underlying genetic organization and molecular control mechanisms. Intriguingly, unlike the variable domain of the camelid heavy chain antibodies or VHH, VNARs do not conform to all of the characteristic properties of classical antibodies with an ancestral origin that clearly distinguishes them from true immunoglobulin antibodies. However, this uniqueness of their origin only adds to their potential as next generation therapeutic biologics with their structural and functional attributes and commercial freedom all enhancing their profile and current success. In fact their small size, remarkable stability, molecular flexibility and solubility, together with their high affinity and selectivity for target, all reinforce the potential of these domains as drug candidates. The purpose of this review is to provide an overview of the existing basic biology of these unique domains, to highlight the drug-like properties of VNARs and describe current progress in their journey towards the clinic.

  10. Identification of avocado (Persea americana) pulp proteins by nano-LC-MS/MS via combinatorial peptide ligand libraries.

    Science.gov (United States)

    Esteve, Clara; D'Amato, Alfonsina; Marina, María Luisa; García, María Concepción; Righetti, Pier Giorgio

    2012-09-01

    Avocado (Persea americana) proteins have been scarcely studied despite their importance, especially in food related allergies. The proteome of avocado pulp was explored in depth by extracting proteins with capture by combinatorial peptide ligand libraries at pH 7.4 and under conditions mimicking reverse-phase capture at pH 2.2. The total number of unique gene products identified amounts to 1012 proteins, of which 174 are in common with the control, untreated sample, 190 are present only in the control and 648 represent the new species detected via combinatorial peptide ligand libraries of all combined eluates and likely represent low-abundance proteins. Among the 1012 proteins, it was possible to identify the already known avocado allergen Pers a 1 and different proteins susceptible to be allergens such as a profilin, a polygalacturonase, a thaumatin-like protein, a glucanase, and an isoflavone reductase like protein. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The Protein Model Portal

    OpenAIRE

    Arnold, Konstantin; Kiefer, Florian; Kopp, J?rgen; Battey, James N. D.; Podvinec, Michael; Westbrook, John D.; Berman, Helen M.; Bordoli, Lorenza; Schwede, Torsten

    2008-01-01

    Structural Genomics has been successful in determining the structures of many unique proteins in a high throughput manner. Still, the number of known protein sequences is much larger than the number of experimentally solved protein structures. Homology (or comparative) modeling methods make use of experimental protein structures to build models for evolutionary related proteins. Thereby, experimental structure determination efforts and homology modeling complement each other in the exploratio...

  12. Towards a rigorous network of protein-protein interactions of the model sulfate reducer Desulfovibrio vulgaris Hildenborough.

    Directory of Open Access Journals (Sweden)

    Swapnil R Chhabra

    Full Text Available Protein-protein interactions offer an insight into cellular processes beyond what may be obtained by the quantitative functional genomics tools of proteomics and transcriptomics. The aforementioned tools have been extensively applied to study Escherichia coli and other aerobes and more recently to study the stress response behavior of Desulfovibrio vulgaris Hildenborough, a model obligate anaerobe and sulfate reducer and the subject of this study. Here we carried out affinity purification followed by mass spectrometry to reconstruct an interaction network among 12 chromosomally encoded bait and 90 prey proteins based on 134 bait-prey interactions identified to be of high confidence. Protein-protein interaction data are often plagued by the lack of adequate controls and replication analyses necessary to assess confidence in the results, including identification of potential false positives. We addressed these issues through the use of biological replication, exponentially modified protein abundance indices, results from an experimental negative control, and a statistical test to assign confidence to each putative interacting pair applicable to small interaction data studies. We discuss the biological significance of metabolic features of D. vulgaris revealed by these protein-protein interaction data and the observed protein modifications. These include the distinct role of the putative carbon monoxide-induced hydrogenase, unique electron transfer routes associated with different oxidoreductases, and the possible role of methylation in regulating sulfate reduction.

  13. Reactive Oxygen Species (ROS)-Activated ATM-Dependent Phosphorylation of Cytoplasmic Substrates Identified by Large-Scale Phosphoproteomics Screen*

    Science.gov (United States)

    Kozlov, Sergei V.; Waardenberg, Ashley J.; Engholm-Keller, Kasper; Arthur, Jonathan W.; Graham, Mark E.; Lavin, Martin

    2016-01-01

    Ataxia-telangiectasia, mutated (ATM) protein plays a central role in phosphorylating a network of proteins in response to DNA damage. These proteins function in signaling pathways designed to maintain the stability of the genome and minimize the risk of disease by controlling cell cycle checkpoints, initiating DNA repair, and regulating gene expression. ATM kinase can be activated by a variety of stimuli, including oxidative stress. Here, we confirmed activation of cytoplasmic ATM by autophosphorylation at multiple sites. Then we employed a global quantitative phosphoproteomics approach to identify cytoplasmic proteins altered in their phosphorylation state in control and ataxia-telangiectasia (A-T) cells in response to oxidative damage. We demonstrated that ATM was activated by oxidative damage in the cytoplasm as well as in the nucleus and identified a total of 9,833 phosphorylation sites, including 6,686 high-confidence sites mapping to 2,536 unique proteins. A total of 62 differentially phosphorylated peptides were identified; of these, 43 were phosphorylated in control but not in A-T cells, and 19 varied in their level of phosphorylation. Motif enrichment analysis of phosphopeptides revealed that consensus ATM serine glutamine sites were overrepresented. When considering phosphorylation events, only observed in control cells (not observed in A-T cells), with predicted ATM sites phosphoSerine/phosphoThreonine glutamine, we narrowed this list to 11 candidate ATM-dependent cytoplasmic proteins. Two of these 11 were previously described as ATM substrates (HMGA1 and UIMCI/RAP80), another five were identified in a whole cell extract phosphoproteomic screens, and the remaining four proteins had not been identified previously in DNA damage response screens. We validated the phosphorylation of three of these proteins (oxidative stress responsive 1 (OSR1), HDGF, and ccdc82) as ATM dependent after H2O2 exposure, and another protein (S100A11) demonstrated ATM

  14. Unique genetic loci identified for emotional behavior in control and chronic stress conditions.

    Directory of Open Access Journals (Sweden)

    Kimberly AK Carhuatanta

    2014-10-01

    Full Text Available An individual’s genetic background affects their emotional behavior and response to stress. Although studies have been conducted to identify genetic predictors for emotional behavior or stress response, it remains unknown how prior stress history alters the interaction between an individual’s genome and their emotional behavior. Therefore, the purpose of this study is to identify chromosomal regions that affect emotional behavior and are sensitive to stress exposure. We utilized the BXD behavioral genetics mouse model to identify chromosomal regions that predict fear learning and emotional behavior following exposure to a control or chronic stress environment. 62 BXD recombinant inbred strains and C57BL/6 and DBA/2 parental strains underwent behavioral testing including a classical fear conditioning paradigm and the elevated plus maze. Distinct quantitative trait loci (QTLs were identified for emotional learning, anxiety and locomotion in control and chronic stress populations. Candidate genes, including those with already known functions in learning and stress were found to reside within the identified QTLs. Our data suggest that chronic stress history reveals novel genetic predictors of emotional behavior.

  15. IL-1beta induced protein changes in diabetes prone BB rat islets of Langerhans identified by proteome analysis

    DEFF Research Database (Denmark)

    Sparre, T; Bjerre-Christensen, Ulla; Mose Larsen, P

    2002-01-01

    of 82 out of 1 815 protein spots detected by two dimensional gel electrophoresis in IL-1beta exposed diabetes prone Bio Breeding (BB-DP) rat islets of Langerhans in vitro. The aim of this study was to identify the proteins in these 82 spots by mass spectrometry and compare these changes with those seen......Type I (insulin-dependent) diabetes mellitus is characterized by selective destruction of the insulin producing beta cells. Interleukin-1beta (IL-1beta) modulates the beta-cell function, protein synthesis, energy production and causes apoptosis. We have previously shown changes in the expression...

  16. Targeting protein-protein interactions for parasite control.

    Directory of Open Access Journals (Sweden)

    Christina M Taylor

    2011-04-01

    Full Text Available Finding new drug targets for pathogenic infections would be of great utility for humanity, as there is a large need to develop new drugs to fight infections due to the developing resistance and side effects of current treatments. Current drug targets for pathogen infections involve only a single protein. However, proteins rarely act in isolation, and the majority of biological processes occur via interactions with other proteins, so protein-protein interactions (PPIs offer a realm of unexplored potential drug targets and are thought to be the next-generation of drug targets. Parasitic worms were chosen for this study because they have deleterious effects on human health, livestock, and plants, costing society billions of dollars annually and many sequenced genomes are available. In this study, we present a computational approach that utilizes whole genomes of 6 parasitic and 1 free-living worm species and 2 hosts. The species were placed in orthologous groups, then binned in species-specific orthologous groups. Proteins that are essential and conserved among species that span a phyla are of greatest value, as they provide foundations for developing broad-control strategies. Two PPI databases were used to find PPIs within the species specific bins. PPIs with unique helminth proteins and helminth proteins with unique features relative to the host, such as indels, were prioritized as drug targets. The PPIs were scored based on RNAi phenotype and homology to the PDB (Protein DataBank. EST data for the various life stages, GO annotation, and druggability were also taken into consideration. Several PPIs emerged from this study as potential drug targets. A few interactions were supported by co-localization of expression in M. incognita (plant parasite and B. malayi (H. sapiens parasite, which have extremely different modes of parasitism. As more genomes of pathogens are sequenced and PPI databases expanded, this methodology will become increasingly

  17. The BridgeDb framework: standardized access to gene, protein and metabolite identifier mapping services

    Directory of Open Access Journals (Sweden)

    Hanspers Kristina

    2010-01-01

    Full Text Available Abstract Background Many complementary solutions are available for the identifier mapping problem. This creates an opportunity for bioinformatics tool developers. Tools can be made to flexibly support multiple mapping services or mapping services could be combined to get broader coverage. This approach requires an interface layer between tools and mapping services. Results Here we present BridgeDb, a software framework for gene, protein and metabolite identifier mapping. This framework provides a standardized interface layer through which bioinformatics tools can be connected to different identifier mapping services. This approach makes it easier for tool developers to support identifier mapping. Mapping services can be combined or merged to support multi-omics experiments or to integrate custom microarray annotations. BridgeDb provides its own ready-to-go mapping services, both in webservice and local database forms. However, the framework is intended for customization and adaptation to any identifier mapping service. BridgeDb has already been integrated into several bioinformatics applications. Conclusion By uncoupling bioinformatics tools from mapping services, BridgeDb improves capability and flexibility of those tools. All described software is open source and available at http://www.bridgedb.org.

  18. The Ebola virus VP35 protein binds viral immunostimulatory and host RNAs identified through deep sequencing.

    Directory of Open Access Journals (Sweden)

    Kari A Dilley

    Full Text Available Ebola virus and Marburg virus are members of the Filovirdae family and causative agents of hemorrhagic fever with high fatality rates in humans. Filovirus virulence is partially attributed to the VP35 protein, a well-characterized inhibitor of the RIG-I-like receptor pathway that triggers the antiviral interferon (IFN response. Prior work demonstrates the ability of VP35 to block potent RIG-I activators, such as Sendai virus (SeV, and this IFN-antagonist activity is directly correlated with its ability to bind RNA. Several structural studies demonstrate that VP35 binds short synthetic dsRNAs; yet, there are no data that identify viral immunostimulatory RNAs (isRNA or host RNAs bound to VP35 in cells. Utilizing a SeV infection model, we demonstrate that both viral isRNA and host RNAs are bound to Ebola and Marburg VP35s in cells. By deep sequencing the purified VP35-bound RNA, we identified the SeV copy-back defective interfering (DI RNA, previously identified as a robust RIG-I activator, as the isRNA bound by multiple filovirus VP35 proteins, including the VP35 protein from the West African outbreak strain (Makona EBOV. Moreover, RNAs isolated from a VP35 RNA-binding mutant were not immunostimulatory and did not include the SeV DI RNA. Strikingly, an analysis of host RNAs bound by wild-type, but not mutant, VP35 revealed that select host RNAs are preferentially bound by VP35 in cell culture. Taken together, these data support a model in which VP35 sequesters isRNA in virus-infected cells to avert RIG-I like receptor (RLR activation.

  19. The Ebola virus VP35 protein binds viral immunostimulatory and host RNAs identified through deep sequencing.

    Science.gov (United States)

    Dilley, Kari A; Voorhies, Alexander A; Luthra, Priya; Puri, Vinita; Stockwell, Timothy B; Lorenzi, Hernan; Basler, Christopher F; Shabman, Reed S

    2017-01-01

    Ebola virus and Marburg virus are members of the Filovirdae family and causative agents of hemorrhagic fever with high fatality rates in humans. Filovirus virulence is partially attributed to the VP35 protein, a well-characterized inhibitor of the RIG-I-like receptor pathway that triggers the antiviral interferon (IFN) response. Prior work demonstrates the ability of VP35 to block potent RIG-I activators, such as Sendai virus (SeV), and this IFN-antagonist activity is directly correlated with its ability to bind RNA. Several structural studies demonstrate that VP35 binds short synthetic dsRNAs; yet, there are no data that identify viral immunostimulatory RNAs (isRNA) or host RNAs bound to VP35 in cells. Utilizing a SeV infection model, we demonstrate that both viral isRNA and host RNAs are bound to Ebola and Marburg VP35s in cells. By deep sequencing the purified VP35-bound RNA, we identified the SeV copy-back defective interfering (DI) RNA, previously identified as a robust RIG-I activator, as the isRNA bound by multiple filovirus VP35 proteins, including the VP35 protein from the West African outbreak strain (Makona EBOV). Moreover, RNAs isolated from a VP35 RNA-binding mutant were not immunostimulatory and did not include the SeV DI RNA. Strikingly, an analysis of host RNAs bound by wild-type, but not mutant, VP35 revealed that select host RNAs are preferentially bound by VP35 in cell culture. Taken together, these data support a model in which VP35 sequesters isRNA in virus-infected cells to avert RIG-I like receptor (RLR) activation.

  20. Lipidomic Profiling of Lung Pleural Effusion Identifies Unique Metabotype for EGFR Mutants in Non-Small Cell Lung Cancer.

    Science.gov (United States)

    Ho, Ying Swan; Yip, Lian Yee; Basri, Nurhidayah; Chong, Vivian Su Hui; Teo, Chin Chye; Tan, Eddy; Lim, Kah Ling; Tan, Gek San; Yang, Xulei; Yeo, Si Yong; Koh, Mariko Si Yue; Devanand, Anantham; Takano, Angela; Tan, Eng Huat; Tan, Daniel Shao Weng; Lim, Tony Kiat Hon

    2016-10-14

    Cytology and histology forms the cornerstone for the diagnosis of non-small cell lung cancer (NSCLC) but obtaining sufficient tumour cells or tissue biopsies for these tests remains a challenge. We investigate the lipidome of lung pleural effusion (PE) for unique metabolic signatures to discriminate benign versus malignant PE and EGFR versus non-EGFR malignant subgroups to identify novel diagnostic markers that is independent of tumour cell availability. Using liquid chromatography mass spectrometry, we profiled the lipidomes of the PE of 30 benign and 41 malignant cases with or without EGFR mutation. Unsupervised principal component analysis revealed distinctive differences between the lipidomes of benign and malignant PE as well as between EGFR mutants and non-EGFR mutants. Docosapentaenoic acid and Docosahexaenoic acid gave superior sensitivity and specificity for detecting NSCLC when used singly. Additionally, several 20- and 22- carbon polyunsaturated fatty acids and phospholipid species were significantly elevated in the EGFR mutants compared to non-EGFR mutants. A 7-lipid panel showed great promise in the stratification of EGFR from non-EGFR malignant PE. Our data revealed novel lipid candidate markers in the non-cellular fraction of PE that holds potential to aid the diagnosis of benign, EGFR mutation positive and negative NSCLC.

  1. IBT-based quantitative proteomics identifies potential regulatory proteins involved in pigmentation of purple sea cucumber, Apostichopus japonicus.

    Science.gov (United States)

    Xing, Lili; Sun, Lina; Liu, Shilin; Li, Xiaoni; Zhang, Libin; Yang, Hongsheng

    2017-09-01

    Sea cucumbers are an important economic species and exhibit high yield value among aquaculture animals. Purple sea cucumbers are very rare and beautiful and have stable hereditary patterns. In this study, isobaric tags (IBT) were first used to reveal the molecular mechanism of pigmentation in the body wall of the purple sea cucumber. We analyzed the proteomes of purple sea cucumber in early pigmentation stage (Pa), mid pigmentation stage (Pb) and late pigmentation stage (Pc), resulting in the identification of 5580 proteins, including 1099 differentially expressed proteins in Pb: Pa and 339 differentially expressed proteins in Pc: Pb. GO and KEGG analyses revealed possible differentially expressed proteins, including"melanogenesis", "melanosome", "melanoma", "pigment-biosynthetic process", "Epidermis development", "Ras-signaling pathway", "Wnt-signaling pathway", "response to UV light", and "tyrosine metabolism", involved in pigment synthesis and regulation in purple sea cucumbers. The large number of differentially expressed proteins identified here should be highly useful in further elucidating the mechanisms underlying pigmentation in sea cucumbers. Furthermore, these results may also provide the base for further identification of proteins involved in resistance mechanisms against melanoma, albinism, UV damage, and other diseases in sea cucumbers. Copyright © 2017. Published by Elsevier Inc.

  2. Meeting Unique Student Needs: Dual-Identified Students and Teacher Self-Efficacy

    Science.gov (United States)

    Dornayi, Hassan Mohsen

    2017-01-01

    This study explored the connection between how confident teachers feel about their skills in teaching dual-identified students and the types and amounts of training they have received. Additionally, this study attempted to find out what the needs of teachers were in order to help them feel more confident in their abilities to teach these students.…

  3. Reaction of protein and carbohydrates with EDC for making unique biomaterials

    Science.gov (United States)

    Prior research from this laboratory has demonstrated the feasibility of using chemical and enzymatic treatments on protein and carbohydrate waste products for the purpose of making fillers to enhance the properties of leather. These treatments (microbial transglutaminase, genipin, and polyphenols i...

  4. Protein recognition by a pattern-generating fluorescent molecular probe

    Science.gov (United States)

    Pode, Zohar; Peri-Naor, Ronny; Georgeson, Joseph M.; Ilani, Tal; Kiss, Vladimir; Unger, Tamar; Markus, Barak; Barr, Haim M.; Motiei, Leila; Margulies, David

    2017-12-01

    Fluorescent molecular probes have become valuable tools in protein research; however, the current methods for using these probes are less suitable for analysing specific populations of proteins in their native environment. In this study, we address this gap by developing a unimolecular fluorescent probe that combines the properties of small-molecule-based probes and cross-reactive sensor arrays (the so-called chemical 'noses/tongues'). On the one hand, the probe can detect different proteins by generating unique identification (ID) patterns, akin to cross-reactive arrays. On the other hand, its unimolecular scaffold and selective binding enable this ID-generating probe to identify combinations of specific protein families within complex mixtures and to discriminate among isoforms in living cells, where macroscopic arrays cannot access. The ability to recycle the molecular device and use it to track several binding interactions simultaneously further demonstrates how this approach could expand the fluorescent toolbox currently used to detect and image proteins.

  5. Selenoproteins-What unique properties can arise with selenocysteine in place of cysteine?

    Science.gov (United States)

    Arnér, Elias S J

    2010-05-01

    The defining entity of a selenoprotein is the inclusion of at least one selenocysteine (Sec) residue in its sequence. Sec, the 21st naturally occurring genetically encoded amino acid, differs from its significantly more common structural analog cysteine (Cys) by the identity of a single atom: Sec contains selenium instead of the sulfur found in Cys. Selenium clearly has unique chemical properties that differ from sulfur, but more striking are perhaps the similarities between the two elements. Selenium was discovered by Jöns Jacob Berzelius, a renowned Swedish scientist instrumental in establishing the institution that would become Karolinska Institutet. Written at the occasion of the bicentennial anniversary of Karolinska Institutet, this mini review focuses on the unique selenium-derived properties that may potentially arise in a protein upon the inclusion of Sec in place of Cys. With 25 human genes encoding selenoproteins and in total several thousand selenoproteins yet described in nature, it seems likely that the presence of that single selenium atom of Sec should convey some specific feature, thereby explaining the existence of selenoproteins in spite of demanding and energetically costly Sec-specific synthesis machineries. Nonetheless, most, if not all, of the currently known selenoproteins are also found as Cys-containing non-selenoprotein orthologues in other organisms, wherefore any potentially unique properties of selenoproteins are yet a matter of debate. The pK(a) of free Sec (approximately 5.2) being significantly lower than that of free Cys (approximately 8.5) has often been proposed as one of the unique features of Sec. However, as discussed herein, this pK(a) difference between Sec and Cys can hardly provide an evolutionary pressure for maintenance of selenoproteins. Moreover, the typically 10- to 100-fold lower enzymatic efficiencies of Sec-to-Cys mutants of selenoprotein oxidoreductases, are also weak arguments for the overall existence of

  6. Combining RNA-seq and proteomic profiling to identify seminal fluid proteins in the migratory grasshopper Melanoplus sanguinipes (F).

    Science.gov (United States)

    Bonilla, Martha L; Todd, Christopher; Erlandson, Martin; Andres, Jose

    2015-12-22

    Seminal fluid proteins control many aspects of fertilization and in turn, they play a key role in post-mating sexual selection and possibly reproductive isolation. Because effective proteome profiling relies on the availability of high-quality DNA reference databases, our knowledge of these proteins is still largely limited to model organisms with ample genetic resources. New advances in sequencing technology allow for the rapid characterization of transcriptomes at low cost. By combining high throughput RNA-seq and shotgun proteomic profiling, we have characterized the seminal fluid proteins secreted by the primary male accessory gland of the migratory grasshopper (Melanoplus sanguinipes), one of the main agricultural pests in central North America. Using RNA sequencing, we characterized the transcripts of ~ 8,100 genes expressed in the long hyaline tubules (LHT) of the accessory glands. Proteomic profiling identified 353 proteins expressed in the long hyaline tubules (LHT). Of special interest are seminal fluid proteins (SFPs), such as EJAC-SP, ACE and prostaglandin synthetases, which are known to regulate female oviposition in insects. Our study provides new insights into the proteomic components of male ejaculate in Orthopterans, and highlights several important patterns. First, the presence of proteins that lack predicted classical secretory tags in accessory gland proteomes is common in male accessory glands. Second, the products of a few highly expressed genes dominate the accessory gland secretions. Third, accessory gland transcriptomes are enriched for novel transcripts. Fourth, there is conservation of SFPs' functional classes across distantly related taxonomic groups with very different life histories, mating systems and sperm transferring mechanisms. The identified SFPs may serve as targets of future efforts to develop species- specific genetic control strategies.

  7. Distribution of circular proteins in plants: large-scale mapping of cyclotides in the Violaceae

    Directory of Open Access Journals (Sweden)

    Robert eBurman

    2015-10-01

    Full Text Available During the last decade there has been increasing interest in small circular proteins found in plants of the violet family (Violaceae. These so-called cyclotides consist of a circular chain of approximately 30 amino acids, including six cysteines forming three disulfide bonds, arranged in a cyclic cystine knot motif. In this study we map the occurrence and distribution of cyclotides throughout the Violaceae. Plant material was obtained from herbarium sheets containing samples up to 200 years of age. Even the oldest specimens contained cyclotides in the preserved leaves, with no degradation products observable, confirming their place as one of the most stable proteins in nature. Over 200 samples covering 17 of the 23 genera in Violaceae were analysed, and cyclotides were positively identified in 150 species. Each species contained a unique set of between one and 25 cyclotides, with many exclusive to individual species. We estimate the number of different cyclotides in the Violaceae to be 5,000-25,000, and propose that cyclotides are ubiquitous among all Violaceae species. Twelve new cyclotides from eight phylogenetically dispersed genera were sequenced. Furthermore, the first glycosylated derivatives of cyclotides were identified and characterized, further increasing the diversity and complexity of this unique protein family.

  8. Proteoglycan-based diversification of disease outcome in head and neck cancer patients identifies NG2/CSPG4 and syndecan-2 as unique relapse and overall survival predicting factors.

    Science.gov (United States)

    Farnedi, Anna; Rossi, Silvia; Bertani, Nicoletta; Gulli, Mariolina; Silini, Enrico Maria; Mucignat, Maria Teresa; Poli, Tito; Sesenna, Enrico; Lanfranco, Davide; Montebugnoli, Lucio; Leonardi, Elisa; Marchetti, Claudio; Cocchi, Renato; Ambrosini-Spaltro, Andrea; Foschini, Maria Pia; Perris, Roberto

    2015-05-03

    Tumour relapse is recognized to be the prime fatal burden in patients affected by head and neck squamous cell carcinoma (HNSCC), but no discrete molecular trait has yet been identified to make reliable early predictions of tumour recurrence. Expression of cell surface proteoglycans (PGs) is frequently altered in carcinomas and several of them are gradually emerging as key prognostic factors. A PG expression analysis at both mRNA and protein level, was pursued on primary lesions derived from 173 HNSCC patients from whom full clinical history and 2 years post-surgical follow-up was accessible. Gene and protein expression data were correlated with clinical traits and previously proposed tumour relapse markers to stratify high-risk patient subgroups. HNSCC lesions were indeed found to exhibit a widely aberrant PG expression pattern characterized by a variable expression of all PGs and a characteristic de novo transcription/translation of GPC2, GPC5 and NG2/CSPG4 respectively in 36%, 72% and 71% on 119 cases. Importantly, expression of NG2/CSPG4, on neoplastic cells and in the intralesional stroma (Hazard Ratio [HR], 6.76, p = 0.017) was strongly associated with loco-regional relapse, whereas stromal enrichment of SDC2 (HR, 7.652, p = 0.007) was independently tied to lymphnodal infiltration and disease-related death. Conversely, down-regulated SDC1 transcript (HR, 0.232, p = 0.013) uniquely correlated with formation of distant metastases. Altered expression of PGs significantly correlated with the above disease outcomes when either considered alone or in association with well-established predictors of poor prognosis (i.e. T classification, previous occurrence of precancerous lesions and lymphnodal metastasis). Combined alteration of all three PGs was found to be a reliable predictor of shorter survival. An unprecedented PG-based prognostic portrait is unveiled that incisively diversifies disease course in HNSCC patients beyond the currently known clinical and molecular

  9. Proteoglycan-based diversification of disease outcome in head and neck cancer patients identifies NG2/CSPG4 and syndecan-2 as unique relapse and overall survival predicting factors

    International Nuclear Information System (INIS)

    Farnedi, Anna; Rossi, Silvia; Bertani, Nicoletta; Gulli, Mariolina; Silini, Enrico Maria; Mucignat, Maria Teresa; Poli, Tito; Sesenna, Enrico; Lanfranco, Davide; Montebugnoli, Lucio; Leonardi, Elisa; Marchetti, Claudio; Cocchi, Renato; Ambrosini-Spaltro, Andrea; Foschini, Maria Pia; Perris, Roberto

    2015-01-01

    Tumour relapse is recognized to be the prime fatal burden in patients affected by head and neck squamous cell carcinoma (HNSCC), but no discrete molecular trait has yet been identified to make reliable early predictions of tumour recurrence. Expression of cell surface proteoglycans (PGs) is frequently altered in carcinomas and several of them are gradually emerging as key prognostic factors. A PG expression analysis at both mRNA and protein level, was pursued on primary lesions derived from 173 HNSCC patients from whom full clinical history and 2 years post-surgical follow-up was accessible. Gene and protein expression data were correlated with clinical traits and previously proposed tumour relapse markers to stratify high-risk patient subgroups. HNSCC lesions were indeed found to exhibit a widely aberrant PG expression pattern characterized by a variable expression of all PGs and a characteristic de novo transcription/translation of GPC2, GPC5 and NG2/CSPG4 respectively in 36%, 72% and 71% on 119 cases. Importantly, expression of NG2/CSPG4, on neoplastic cells and in the intralesional stroma (Hazard Ratio [HR], 6.76, p = 0.017) was strongly associated with loco-regional relapse, whereas stromal enrichment of SDC2 (HR, 7.652, p = 0.007) was independently tied to lymphnodal infiltration and disease-related death. Conversely, down-regulated SDC1 transcript (HR, 0.232, p = 0.013) uniquely correlated with formation of distant metastases. Altered expression of PGs significantly correlated with the above disease outcomes when either considered alone or in association with well-established predictors of poor prognosis (i.e. T classification, previous occurrence of precancerous lesions and lymphnodal metastasis). Combined alteration of all three PGs was found to be a reliable predictor of shorter survival. An unprecedented PG-based prognostic portrait is unveiled that incisively diversifies disease course in HNSCC patients beyond the currently known clinical and molecular

  10. Mutational analysis of the EMCV 2A protein identifies a nuclear localization signal and an eIF4E binding site

    International Nuclear Information System (INIS)

    Groppo, Rachel; Brown, Bradley A.; Palmenberg, Ann C.

    2011-01-01

    Cardioviruses have a unique 2A protein (143 aa). During genome translation, the encephalomyocarditis virus (EMCV) 2A is released through a ribosome skipping event mitigated through C-terminal 2A sequences and by subsequent N-terminal reaction with viral 3C pro . Although viral replication is cytoplasmic, mature 2A accumulates in nucleoli shortly after infection. Some protein also transiently associates with cytoplasmic 40S ribosomal subunits, an activity contributing to inhibition of cellular cap-dependent translation. Cardiovirus sequences predict an eIF4E binding site (aa 126-134) and a nuclear localization signal (NLS, aa 91-102), within 2A, both of which are functional during EMCV infection. Point mutations preventing eIF4E:2A interactions gave small-plaque phenotype viruses, but still inhibited cellular cap-dependent translation. Deletions within the NLS motif relocalized 2A to the cytoplasm and abrogated the inhibition of cap-dependent translation. A fusion protein linking the 2A NLS to eGFP was sufficient to redirect the reporter to the nucleus but not into nucleoli.

  11. Comparative evaluation of low-molecular-mass proteins from Mycobacterium tuberculosis identifies members of the ESAT-6 family as immunodominant T-cell antigens

    DEFF Research Database (Denmark)

    Skjøt, R L; Oettinger, T; Rosenkrands, I

    2000-01-01

    Culture filtrate from Mycobacterium tuberculosis contains protective antigens of relevance for the generation of a new antituberculosis vaccine. We have identified two previously uncharacterized M. tuberculosis proteins (TB7.3 and TB10.4) from the highly active low-mass fraction of culture filtrate....... The molecules were characterized, mapped in a two-dimensional electrophoresis reference map of short-term culture filtrate, and compared with another recently identified low-mass protein, CFP10 (F. X. Berthet, P. B. Rasmussen, I. Rosenkrands, P. Andersen, and B. Gicquel. Microbiology 144:3195-3203, 1998......), and the well-described ESAT-6 antigen. Genetic analyses demonstrated that TB10.4 as well as CFP10 belongs to the ESAT-6 family of low-mass proteins, whereas TB7.3 is a low-molecular-mass protein outside this family. The proteins were expressed in Escherichia coli, and their immunogenicity was tested...

  12. Unique Outcomes in the Narratives of Young Adults Who Experienced Dating Violence as Adolescents.

    Science.gov (United States)

    Draucker, Claire Burke; Smith, Carolyn; Mazurczyk, Jill; Thomas, Destini; Ramirez, Patricia; McNealy, Kim; Thomas, Jade; Martsolf, Donna S

    2016-01-01

    Narrative therapy, an approach based on the reauthoring of life narratives, may be a useful psychotherapeutic strategy for youth who have experienced dating violence. A cornerstone of narrative therapy is the concept of unique outcomes, which are moments that stand in contrast to a client's otherwise problem-saturated narratives. The purpose of this study was to identify and categorize unique outcomes embedded in narratives about adolescent dating violence. Text units representing unique outcomes were extracted from transcripts of interviews with 88 young adults who had experienced dating violence and were categorized using standard content analytic techniques. Six categories of unique outcome stories were identified: facing-facts stories, standing-up-for-myself stories, cutting-it-off stories, cutting-'em-loose stories, getting-back-on-track stories, and changing-it-up stories. This typology of unique outcomes can inform clinicians who work with clients who have a history of adolescent dating violence. © The Author(s) 2015.

  13. Beyond BLASTing: Tertiary and Quaternary Structure Analysis Helps Identify Major Vault Proteins

    Science.gov (United States)

    Daly, Toni K.; Sutherland-Smith, Andrew J.; Penny, David

    2013-01-01

    We examine the advantages of going beyond sequence similarity and use both protein three-dimensional (3D) structure prediction and then quaternary structure (docking) of inferred 3D structures to help evaluate whether comparable sequences can fold into homologous structures with sufficient lateral associations for quaternary structure formation. Our test case is the major vault protein (MVP) that oligomerizes in multiple copies to form barrel-like vault particles and is relatively widespread among eukaryotes. We used the iterative threading assembly refinement server (I-TASSER) to predict whether putative MVP sequences identified by BLASTp and PSI Basic Local Alignment Search Tool are structurally similar to the experimentally determined rodent MVP tertiary structures. Then two identical predicted quaternary structures from I-TASSER are analyzed by RosettaDock to test whether a pair-wise association occurs, and hence whether the oligomeric vault complex is likely to form for a given MVP sequence. Positive controls for the method are the experimentally determined rat (Rattus norvegicus) vault X-ray crystal structure and the purple sea urchin (Strongylocentrotus purpuratus) MVP sequence that forms experimentally observed vaults. These and two kinetoplast MVP structural homologs were predicted with high confidence value, and RosettaDock predicted that these MVP sequences would dock laterally and therefore could form oligomeric vaults. As the negative control, I-TASSER did not predict an MVP-like structure from a randomized rat MVP sequence, even when constrained to the rat MVP crystal structure (PDB:2ZUO), thus further validating the method. The protocol identified six putative homologous MVP sequences in the heterobolosean Naegleria gruberi within the excavate kingdom. Two of these sequences are predicted to be structurally similar to rat MVP, despite being in excess of 300 residues shorter. The method can be used generally to help test predictions of homology via

  14. Protein Network Signatures Associated with Exogenous Biofuels Treatments in Cyanobacterium Synechocystis sp. PCC 6803

    International Nuclear Information System (INIS)

    Pei, Guangsheng; Chen, Lei; Wang, Jiangxin; Qiao, Jianjun; Zhang, Weiwen

    2014-01-01

    Although recognized as a promising microbial cell factory for producing biofuels, current productivity in cyanobacterial systems is low. To make the processes economically feasible, one of the hurdles, which need to be overcome is the low tolerance of hosts to toxic biofuels. Meanwhile, little information is available regarding the cellular responses to biofuels stress in cyanobacteria, which makes it challenging for tolerance engineering. Using large proteomic datasets of Synechocystis under various biofuels stress and environmental perturbation, a protein co-expression network was first constructed and then combined with the experimentally determined protein–protein interaction network. Proteins with statistically higher topological overlap in the integrated network were identified as common responsive proteins to both biofuels stress and environmental perturbations. In addition, a weighted gene co-expression network analysis was performed to distinguish unique responses to biofuels from those to environmental perturbations and to uncover metabolic modules and proteins uniquely associated with biofuels stress. The results showed that biofuel-specific proteins and modules were enriched in several functional categories, including photosynthesis, carbon fixation, and amino acid metabolism, which may represent potential key signatures for biofuels stress responses in Synechocystis. Network-based analysis allowed determination of the responses specifically related to biofuels stress, and the results constituted an important knowledge foundation for tolerance engineering against biofuels in Synechocystis.

  15. Protein Network Signatures Associated with Exogenous Biofuels Treatments in Cyanobacterium Synechocystis sp. PCC 6803

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Guangsheng; Chen, Lei; Wang, Jiangxin; Qiao, Jianjun, E-mail: jianjunq@tju.edu.cn; Zhang, Weiwen, E-mail: jianjunq@tju.edu.cn [Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin (China); Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin (China); SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin (China)

    2014-11-03

    Although recognized as a promising microbial cell factory for producing biofuels, current productivity in cyanobacterial systems is low. To make the processes economically feasible, one of the hurdles, which need to be overcome is the low tolerance of hosts to toxic biofuels. Meanwhile, little information is available regarding the cellular responses to biofuels stress in cyanobacteria, which makes it challenging for tolerance engineering. Using large proteomic datasets of Synechocystis under various biofuels stress and environmental perturbation, a protein co-expression network was first constructed and then combined with the experimentally determined protein–protein interaction network. Proteins with statistically higher topological overlap in the integrated network were identified as common responsive proteins to both biofuels stress and environmental perturbations. In addition, a weighted gene co-expression network analysis was performed to distinguish unique responses to biofuels from those to environmental perturbations and to uncover metabolic modules and proteins uniquely associated with biofuels stress. The results showed that biofuel-specific proteins and modules were enriched in several functional categories, including photosynthesis, carbon fixation, and amino acid metabolism, which may represent potential key signatures for biofuels stress responses in Synechocystis. Network-based analysis allowed determination of the responses specifically related to biofuels stress, and the results constituted an important knowledge foundation for tolerance engineering against biofuels in Synechocystis.

  16. Temporal Profiling and Pulsed SILAC Labeling Identify Novel Secreted Proteins During Ex Vivo Osteoblast Differentiation of Human Stromal Stem Cells*

    Science.gov (United States)

    Kristensen, Lars P.; Chen, Li; Nielsen, Maria Overbeck; Qanie, Diyako W.; Kratchmarova, Irina; Kassem, Moustapha; Andersen, Jens S.

    2012-01-01

    It is well established that bone forming cells (osteoblasts) secrete proteins with autocrine, paracrine, and endocrine function. However, the identity and functional role for the majority of these secreted and differentially expressed proteins during the osteoblast (OB) differentiation process, is not fully established. To address these questions, we quantified the temporal dynamics of the human stromal (mesenchymal, skeletal) stem cell (hMSC) secretome during ex vivo OB differentiation using stable isotope labeling by amino acids in cell culture (SILAC). In addition, we employed pulsed SILAC labeling to distinguish genuine secreted proteins from intracellular contaminants. We identified 466 potentially secreted proteins that were quantified at 5 time-points during 14-days ex vivo OB differentiation including 41 proteins known to be involved in OB functions. Among these, 315 proteins exhibited more than 2-fold up or down-regulation. The pulsed SILAC method revealed a strong correlation between the fraction of isotope labeling and the subset of proteins known to be secreted and involved in OB differentiation. We verified SILAC data using qRT-PCR analysis of 9 identified potential novel regulators of OB differentiation. Furthermore, we studied the biological effects of one of these proteins, the hormone stanniocalcin 2 (STC2) and demonstrated its autocrine effects in enhancing osteoblastic differentiation of hMSC. In conclusion, combining complete and pulsed SILAC labeling facilitated the identification of novel factors produced by hMSC with potential role in OB differentiation. Our study demonstrates that the secretome of osteoblastic cells is more complex than previously reported and supports the emerging evidence that osteoblastic cells secrete proteins with endocrine functions and regulate cellular processes beyond bone formation. PMID:22801418

  17. Differences in protein expression among five species of stream stonefly (Plecoptera) along a latitudinal gradient in Japan.

    Science.gov (United States)

    Gamboa, Maribet; Tsuchiya, Maria Claret; Matsumoto, Suguru; Iwata, Hisato; Watanabe, Kozo

    2017-11-01

    Proteome variation among natural populations along an environmental gradient may provide insights into how the biological functions of species are related to their local adaptation. We investigated protein expression in five stream stonefly species from four geographic regions along a latitudinal gradient in Japan with varying climatic conditions. The extracted proteins were separated by two-dimensional gel electrophoresis and identified by matrix-assisted laser desorption/ionization of time-of-flight (MALDI TOF/TOF), yielding 446 proteins. Low interspecies variation in the proteome profiles was observed among five species within geographical regions, presumably due to the co-occurring species sharing the environments. However, large spatial variations in protein expression were found among four geographic regions, suggesting strong regulation of protein expression in heterogeneous environments, where the spatial variations were positively correlated with water temperature. We identified 21 unique proteins expressed specifically in a geographical region and six common proteins expressed throughout all regions. In warmer regions, metabolic proteins were upregulated, whereas proteins related to cold stress, the photoperiod, and mating were downregulated. Oxygen-related and energy-production proteins were upregulated in colder regions with higher altitudes. Thus, our proteomic approach is useful for identifying and understanding important biological functions related to local adaptations by populations of stoneflies. © 2017 Wiley Periodicals, Inc.

  18. Antiproliferative Effects of Bacillus coagulans Unique IS2 in Colon Cancer Cells.

    Science.gov (United States)

    Madempudi, Ratna Sudha; Kalle, Arunasree M

    2017-10-01

    In the present study, the in vitro anticancer (antiproliferative) effects of Bacillus coagulans Unique IS2 were evaluated on human colon cancer (COLO 205), cervical cancer (HeLa), and chronic myeloid leukemia (K562) cell lines with a human embryonic kidney cell line (HEK 293T) as noncancerous control cells. The Cytotoxicity assay (MTT) clearly demonstrated a 22%, 31.7%, and 19.5% decrease in cell proliferation of COLO 205, HeLa, and K562 cells, respectively, when compared to the noncancerous HEK 293T cells. Normal phase-contrast microscopic images clearly suggested that the mechanism of cell death is by apoptosis. To further confirm the induction of apoptosis by Unique IS2, the sub-G0-G1 peak of the cell cycle was quantified using a flow cytometer and the data indicated 40% of the apoptotic cells in Unique IS2-treated COLO cells when compared with their untreated control cells. The Western blot analysis showed an increase in pro-apoptotic protein BAX, decrease in antiapoptotic protein, Bcl2, decrease in mitochondrial membrane potential, increase in cytochrome c release, increase in Caspase 3 activity, and cleavage of poly(ADP-ribose) polymerase. The present study suggests that the heat-killed culture supernatant of B. coagulans can be more effective in inducing apoptosis of colon cancer cells and that can be considered for adjuvant therapy in the treatment of colon carcinoma.

  19. Use of the Operon Structure of the C. elegans Genome as a Tool to Identify Functionally Related Proteins

    Directory of Open Access Journals (Sweden)

    Silvia Dossena

    2013-12-01

    Full Text Available One of the most pressing challenges in the post genomic era is the identification and characterization of protein-protein interactions (PPIs, as these are essential in understanding the cellular physiology of health and disease. Experimental techniques suitable for characterizing PPIs (X-ray crystallography or nuclear magnetic resonance spectroscopy, among others are usually laborious, time-consuming and often difficult to apply to membrane proteins, and therefore require accurate prediction of the candidate interacting partners. High-throughput experimental methods (yeast two-hybrid and affinity purification succumb to the same shortcomings, and can also lead to high rates of false positive and negative results. Therefore, reliable tools for predicting PPIs are needed. The use of the operon structure in the eukaryote Caenorhabditis elegans genome is a valuable, though underserved, tool for identifying physically or functionally interacting proteins. Based on the concept that genes organized in the same operon may encode physically or functionally related proteins, this algorithm is easy to be applied and, importantly, gives a limited number of candidate partners of a given protein, allowing for focused experimental verification. Moreover, this approach can be successfully used to predict PPIs in the human system, including those of membrane proteins.

  20. Quantitative proteomics identifies altered O-GlcNAcylation of structural, synaptic and memory-associated proteins in Alzheimer's disease: Brain protein O-GlcNAcylation in Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Sheng [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA USA; Yang, Feng [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA USA; Petyuk, Vladislav A. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA USA; Shukla, Anil K. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA USA; Monroe, Matthew E. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA USA; Gritsenko, Marina A. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA USA; Rodland, Karin D. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA USA; Smith, Richard D. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA USA; Qian, Wei-Jun [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA USA; Gong, Cheng-Xin [New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York USA; Liu, Tao [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA USA

    2017-07-28

    Protein modification by O-linked beta-N-acetylglucosamine (O-GlcNAc) is emerging as an important factor in the pathogenesis of sporadic Alzheimer’s disease. Herein we report the most comprehensive, quantitative proteomics analysis for protein O-GlcNAcylation in post-mortem human brains with and without Alzheimer’s using isobaric tandem mass tags labeling, chemoenzymatic photocleavage enrichment and liquid chromatography coupled to mass spectrometry. A total of 1,850 O-GlcNAc peptides covering 1,094 O-GlcNAcylation sites were identified from 530 proteins in the human brain. 128 O-GlcNAc peptides covering 78 proteins were altered significantly in Alzheimer’s brain as compared to controls (q<0.05). Moreover, alteration of the O-GlcNAc peptide abundance could be attributed more to O-GlcNAcylation level than to protein level changes. The altered O-GlcNAcylated proteins belong to several structural and functional categories, including synaptic proteins, cytoskeleton proteins, and memory-associated proteins. These findings suggest that dysregulation of O-GlcNAcylation of multiple brain proteins may be involved in the development of sporadic Alzheimer’s disease.

  1. Lipid and protein maps defining arterial layers in atherosclerotic aorta

    Directory of Open Access Journals (Sweden)

    Marta Martin-Lorenzo

    2015-09-01

    Full Text Available Subclinical atherosclerosis cannot be predicted and novel therapeutic targets are needed. The molecular anatomy of healthy and atherosclerotic tissue is pursued to identify ongoing molecular changes in atherosclerosis development. Mass Spectrometry Imaging (MSI accounts with the unique advantage of analyzing proteins and metabolites (lipids while preserving their original localization; thus two dimensional maps can be obtained. Main molecular alterations were investigated in a rabbit model in response to early development of atherosclerosis. Aortic arterial layers (intima and media and calcified regions were investigated in detail by MALDI-MSI and proteins and lipids specifically defining those areas of interest were identified. These data further complement main findings previously published in J Proteomics (M. Martin-Lorenzo et al., J. Proteomics. (In press; M. Martin-Lorenzo et al., J. Proteomics 108 (2014 465–468. [1,2].

  2. Identification of a mitochondrial target of thiazolidinedione insulin sensitizers (mTOT--relationship to newly identified mitochondrial pyruvate carrier proteins.

    Directory of Open Access Journals (Sweden)

    Jerry R Colca

    Full Text Available Thiazolidinedione (TZD insulin sensitizers have the potential to effectively treat a number of human diseases, however the currently available agents have dose-limiting side effects that are mediated via activation of the transcription factor PPARγ. We have recently shown PPARγ-independent actions of TZD insulin sensitizers, but the molecular target of these molecules remained to be identified. Here we use a photo-catalyzable drug analog probe and mass spectrometry-based proteomics to identify a previously uncharacterized mitochondrial complex that specifically recognizes TZDs. These studies identify two well-conserved proteins previously known as brain protein 44 (BRP44 and BRP44 Like (BRP44L, which recently have been renamed Mpc2 and Mpc1 to signify their function as a mitochondrial pyruvate carrier complex. Knockdown of Mpc1 or Mpc2 in Drosophila melanogaster or pre-incubation with UK5099, an inhibitor of pyruvate transport, blocks the crosslinking of mitochondrial membranes by the TZD probe. Knockdown of these proteins in Drosophila also led to increased hemolymph glucose and blocked drug action. In isolated brown adipose tissue (BAT cells, MSDC-0602, a PPARγ-sparing TZD, altered the incorporation of (13C-labeled carbon from glucose into acetyl CoA. These results identify Mpc1 and Mpc2 as components of the mitochondrial target of TZDs (mTOT and suggest that understanding the modulation of this complex, which appears to regulate pyruvate entry into the mitochondria, may provide a viable target for insulin sensitizing pharmacology.

  3. Alba-domain proteins of Trypanosoma brucei are cytoplasmic RNA-binding proteins that interact with the translation machinery.

    Directory of Open Access Journals (Sweden)

    Jan Mani

    Full Text Available Trypanosoma brucei and related pathogens transcribe most genes as polycistronic arrays that are subsequently processed into monocistronic mRNAs. Expression is frequently regulated post-transcriptionally by cis-acting elements in the untranslated regions (UTRs. GPEET and EP procyclins are the major surface proteins of procyclic (insect midgut forms of T. brucei. Three regulatory elements common to the 3' UTRs of both mRNAs regulate mRNA turnover and translation. The glycerol-responsive element (GRE is unique to the GPEET 3' UTR and regulates its expression independently from EP. A synthetic RNA encompassing the GRE showed robust sequence-specific interactions with cytoplasmic proteins in electromobility shift assays. This, combined with column chromatography, led to the identification of 3 Alba-domain proteins. RNAi against Alba3 caused a growth phenotype and reduced the levels of Alba1 and Alba2 proteins, indicative of interactions between family members. Tandem-affinity purification and co-immunoprecipitation verified these interactions and also identified Alba4 in sub-stoichiometric amounts. Alba proteins are cytoplasmic and are recruited to starvation granules together with poly(A RNA. Concomitant depletion of all four Alba proteins by RNAi specifically reduced translation of a reporter transcript flanked by the GPEET 3' UTR. Pulldown of tagged Alba proteins confirmed interactions with poly(A binding proteins, ribosomal protein P0 and, in the case of Alba3, the cap-binding protein eIF4E4. In addition, Alba2 and Alba3 partially cosediment with polyribosomes in sucrose gradients. Alba-domain proteins seem to have exhibited great functional plasticity in the course of evolution. First identified as DNA-binding proteins in Archaea, then in association with nuclear RNase MRP/P in yeast and mammalian cells, they were recently described as components of a translationally silent complex containing stage-regulated mRNAs in Plasmodium. Our results are

  4. The association of 83 plasma proteins with CHD mortality, BMI, HDL-, and total-cholesterol in men: applying multivariate statistics to identify proteins with prognostic value and biological relevance.

    Science.gov (United States)

    Heidema, A Geert; Thissen, Uwe; Boer, Jolanda M A; Bouwman, Freek G; Feskens, Edith J M; Mariman, Edwin C M

    2009-06-01

    In this study, we applied the multivariate statistical tool Partial Least Squares (PLS) to analyze the relative importance of 83 plasma proteins in relation to coronary heart disease (CHD) mortality and the intermediate end points body mass index, HDL-cholesterol and total cholesterol. From a Dutch monitoring project for cardiovascular disease risk factors, men who died of CHD between initial participation (1987-1991) and end of follow-up (January 1, 2000) (N = 44) and matched controls (N = 44) were selected. Baseline plasma concentrations of proteins were measured by a multiplex immunoassay. With the use of PLS, we identified 15 proteins with prognostic value for CHD mortality and sets of proteins associated with the intermediate end points. Subsequently, sets of proteins and intermediate end points were analyzed together by Principal Components Analysis, indicating that proteins involved in inflammation explained most of the variance, followed by proteins involved in metabolism and proteins associated with total-C. This study is one of the first in which the association of a large number of plasma proteins with CHD mortality and intermediate end points is investigated by applying multivariate statistics, providing insight in the relationships among proteins, intermediate end points and CHD mortality, and a set of proteins with prognostic value.

  5. Proteomic identification of secreted proteins of Propionibacterium acnes

    Directory of Open Access Journals (Sweden)

    Holland Carsten

    2010-08-01

    Full Text Available Abstract Background The anaerobic Gram-positive bacterium Propionibacterium acnes is a human skin commensal that resides preferentially within sebaceous follicles; however, it also exhibits many traits of an opportunistic pathogen, playing roles in a variety of inflammatory diseases such as acne vulgaris. To date, the underlying disease-causing mechanisms remain ill-defined and knowledge of P. acnes virulence factors remains scarce. Here, we identified proteins secreted during anaerobic cultivation of a range of skin and clinical P. acnes isolates, spanning the four known phylogenetic groups. Results Culture supernatant proteins of P. acnes were separated by two-dimensional electrophoresis (2-DE and all Coomassie-stained spots were subsequently identified by MALDI mass spectrometry (MALDI-MS. A set of 20 proteins was secreted in the mid-exponential growth phase by the majority of strains tested. Functional annotation revealed that many of these common proteins possess degrading activities, including glycoside hydrolases with similarities to endoglycoceramidase, β-N-acetylglucosaminidase and muramidase; esterases such as lysophospholipase and triacylglycerol lipase; and several proteases. Other secreted factors included Christie-Atkins-Munch-Petersen (CAMP factors, glyceraldehyde 3-phosphate dehydrogenase (GAPDH, and several hypothetical proteins, a few of which are unique to P. acnes. Strain-specific differences were apparent, mostly in the secretion of putative adhesins, whose genes exhibit variable phase variation-like sequence signatures. Conclusions Our proteomic investigations have revealed that the P. acnes secretome harbors several proteins likely to play a role in host-tissue degradation and inflammation. Despite a large overlap between the secretomes of all four P. acnes phylotypes, distinct differences between predicted host-tissue interacting proteins were identified, providing potential insight into the differential virulence

  6. Poliovirus infection induces the co-localization of cellular protein SRp20 with TIA-1, a cytoplasmic stress granule protein.

    Science.gov (United States)

    Fitzgerald, Kerry D; Semler, Bert L

    2013-09-01

    Different types of environmental stress cause mammalian cells to form cytoplasmic foci, termed stress granules, which contain mRNPs that are translationally silenced. These foci are transient and dynamic, and contain components of the cellular translation machinery as well as certain mRNAs and RNA binding proteins. Stress granules are known to be induced by conditions such as hypoxia, nutrient deprivation, and oxidative stress, and a number of cellular factors have been identified that are commonly associated with these foci. More recently it was discovered that poliovirus infection also induces the formation of stress granules, although these cytoplasmic foci appear to be somewhat compositionally unique. Work described here examined the punctate pattern of SRp20 (a host cell mRNA splicing protein) localization in the cytoplasm of poliovirus-infected cells, demonstrating the partial co-localization of SRp20 with the stress granule marker protein TIA-1. We determined that SRp20 does not co-localize with TIA-1, however, under conditions of oxidative stress, indicating that the close association of these two proteins during poliovirus infection is not representative of a general response to cellular stress. We confirmed that the expression of a dominant negative version of TIA-1 (TIA-1-PRD) results in the dissociation of stress granules. Finally, we demonstrated that expression of wild type TIA-1 or dominant negative TIA-1-PRD in cells during poliovirus infection does not dramatically affect viral translation. Taken together, these studies provide a new example of the unique cytoplasmic foci that form during poliovirus infection. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Poliovirus infection induces the co-localization of cellular protein SRp20 with TIA-1, a cytoplasmic stress granule protein

    Science.gov (United States)

    Fitzgerald, Kerry D.; Semler, Bert L.

    2013-01-01

    Different types of environmental stress cause mammalian cells to form cytoplasmic foci, termed stress granules, which contain mRNPs that are translationally silenced. These foci are transient and dynamic, and contain components of the cellular translation machinery as well as certain mRNAs and RNA binding proteins. Stress granules are known to be induced by conditions such as hypoxia, nutrient deprivation, and oxidative stress, and a number of cellular factors have been identified that are commonly associated with these foci. More recently it was discovered that poliovirus infection also induces the formation of stress granules, although these cytoplasmic foci appear to be somewhat compositionally unique. Work described here examined the punctate pattern of SRp20 (a host cell mRNA splicing protein) localization in the cytoplasm of poliovirus-infected cells, demonstrating the partial co-localization of SRp20 with the stress granule marker protein TIA-1. We determined that SRp20 does not co-localize with TIA-1, however, under conditions of oxidative stress, indicating that the close association of these two proteins during poliovirus infection is not representative of a general response to cellular stress. We confirmed that the expression of a dominant negative version of TIA-1 (TIA-1-PRD) results in the dissociation of stress granules. Finally, we demonstrated that expression of wild type TIA-1 or dominant negative TIA-1-PRD in cells during poliovirus infection does not dramatically affect viral translation. Taken together, these studies provide a new example of the unique cytoplasmic foci that form during poliovirus infection. PMID:23830997

  8. Watching proteins function with picosecond X-ray crystallography and molecular dynamics simulations.

    Science.gov (United States)

    Anfinrud, Philip

    2006-03-01

    Time-resolved electron density maps of myoglobin, a ligand-binding heme protein, have been stitched together into movies that unveil with molecular dynamics (MD) calculations and picosecond time-resolved X-ray structures provides single-molecule insights into mechanisms of protein function. Ensemble-averaged MD simulations of the L29F mutant of myoglobin following ligand dissociation reproduce the direction, amplitude, and timescales of crystallographically-determined structural changes. This close agreement with experiments at comparable resolution in space and time validates the individual MD trajectories, which identify and structurally characterize a conformational switch that directs dissociated ligands to one of two nearby protein cavities. This unique combination of simulation and experiment unveils functional protein motions and illustrates at an atomic level relationships among protein structure, dynamics, and function. In collaboration with Friedrich Schotte and Gerhard Hummer, NIH.

  9. Identification of Two Protein-Signaling States Delineating Transcriptionally Heterogeneous Human Medulloblastoma

    Directory of Open Access Journals (Sweden)

    Walderik W. Zomerman

    2018-03-01

    Full Text Available Summary: The brain cancer medulloblastoma consists of different transcriptional subgroups. To characterize medulloblastoma at the phosphoprotein-signaling level, we performed high-throughput peptide phosphorylation profiling on a large cohort of SHH (Sonic Hedgehog, group 3, and group 4 medulloblastomas. We identified two major protein-signaling profiles. One profile was associated with rapid death post-recurrence and resembled MYC-like signaling for which MYC lesions are sufficient but not necessary. The second profile showed enrichment for DNA damage, as well as apoptotic and neuronal signaling. Integrative analysis demonstrated that heterogeneous transcriptional input converges on these protein-signaling profiles: all SHH and a subset of group 3 patients exhibited the MYC-like protein-signaling profile; the majority of the other group 3 subset and group 4 patients displayed the DNA damage/apoptotic/neuronal signaling profile. Functional analysis of enriched pathways highlighted cell-cycle progression and protein synthesis as therapeutic targets for MYC-like medulloblastoma. : Using peptide phosphorylation profiling, Zomerman et al. identify two medulloblastoma phosphoprotein-signaling profiles that have prognostic value and are potentially targetable. They find that these profiles extend across transcriptome-based subgroup borders. This suggests that diverse genetic information converges on common protein-signaling pathways and highlights protein-signaling as a unique information layer. Keywords: medulloblastoma, protein-signaling, protein synthesis, MYC, TP53, proteome, phosphoproteome

  10. Human neuronal cell protein responses to Nipah virus infection

    Directory of Open Access Journals (Sweden)

    Hassan Sharifah

    2007-06-01

    Full Text Available Abstract Background Nipah virus (NiV, a recently discovered zoonotic virus infects and replicates in several human cell types. Its replication in human neuronal cells, however, is less efficient in comparison to other fully susceptible cells. In the present study, the SK-N-MC human neuronal cell protein response to NiV infection is examined using proteomic approaches. Results Method for separation of the NiV-infected human neuronal cell proteins using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE was established. At least 800 protein spots were resolved of which seven were unique, six were significantly up-regulated and eight were significantly down-regulated. Six of these altered proteins were identified using mass spectrometry (MS and confirmed using MS/MS. The heterogenous nuclear ribonucleoprotein (hnRNP F, guanine nucleotide binding protein (G protein, voltage-dependent anion channel 2 (VDAC2 and cytochrome bc1 were present in abundance in the NiV-infected SK-N-MC cells in contrast to hnRNPs H and H2 that were significantly down-regulated. Conclusion Several human neuronal cell proteins that are differentially expressed following NiV infection are identified. The proteins are associated with various cellular functions and their abundance reflects their significance in the cytopathologic responses to the infection and the regulation of NiV replication. The potential importance of the ratio of hnRNP F, and hnRNPs H and H2 in regulation of NiV replication, the association of the mitochondrial protein with the cytopathologic responses to the infection and induction of apoptosis are highlighted.

  11. Identification of a key structural element for protein folding within beta-hairpin turns.

    Science.gov (United States)

    Kim, Jaewon; Brych, Stephen R; Lee, Jihun; Logan, Timothy M; Blaber, Michael

    2003-05-09

    Specific residues in a polypeptide may be key contributors to the stability and foldability of the unique native structure. Identification and prediction of such residues is, therefore, an important area of investigation in solving the protein folding problem. Atypical main-chain conformations can help identify strains within a folded protein, and by inference, positions where unique amino acids may have a naturally high frequency of occurrence due to favorable contributions to stability and folding. Non-Gly residues located near the left-handed alpha-helical region (L-alpha) of the Ramachandran plot are a potential indicator of structural strain. Although many investigators have studied mutations at such positions, no consistent energetic or kinetic contributions to stability or folding have been elucidated. Here we report a study of the effects of Gly, Ala and Asn substitutions found within the L-alpha region at a characteristic position in defined beta-hairpin turns within human acidic fibroblast growth factor, and demonstrate consistent effects upon stability and folding kinetics. The thermodynamic and kinetic data are compared to available data for similar mutations in other proteins, with excellent agreement. The results have identified that Gly at the i+3 position within a subset of beta-hairpin turns is a key contributor towards increasing the rate of folding to the native state of the polypeptide while leaving the rate of unfolding largely unchanged.

  12. NMR Studies of Protein Hydration and Protein-Ligand Interactions

    Science.gov (United States)

    Chong, Yuan

    Water on the surface of a protein is called hydration water. Hydration water is known to play a crucial role in a variety of biological processes including protein folding, enzymatic activation, and drug binding. Although the significance of hydration water has been recognized, the underlying mechanism remains far from being understood. This dissertation employs a unique in-situ nuclear magnetic resonance (NMR) technique to study the mechanism of protein hydration and the role of hydration in alcohol-protein interactions. Water isotherms in proteins are measured at different temperatures via the in-situ NMR technique. Water is found to interact differently with hydrophilic and hydrophobic groups on the protein. Water adsorption on hydrophilic groups is hardly affected by the temperature, while water adsorption on hydrophobic groups strongly depends on the temperature around 10 C, below which the adsorption is substantially reduced. This effect is induced by the dramatic decrease in the protein flexibility below 10 C. Furthermore, nanosecond to microsecond protein dynamics and the free energy, enthalpy, and entropy of protein hydration are studied as a function of hydration level and temperature. A crossover at 10 C in protein dynamics and thermodynamics is revealed. The effect of water at hydrophilic groups on protein dynamics and thermodynamics shows little temperature dependence, whereas water at hydrophobic groups has stronger effect above 10 C. In addition, I investigate the role of water in alcohol binding to the protein using the in-situ NMR detection. The isotherms of alcohols are first measured on dry proteins, then on proteins with a series of controlled hydration levels. The free energy, enthalpy, and entropy of alcohol binding are also determined. Two distinct types of alcohol binding are identified. On the one hand, alcohols can directly bind to a few specific sites on the protein. This type of binding is independent of temperature and can be

  13. Preservation of the bone protein osteocalcin in dinosaurs

    Science.gov (United States)

    Muyzer, Gerard; Sandberg, Philip; Knapen, Marjo H. J.; Vermeer, Cees; Collins, Matthew; Westbroek, Peter

    1992-10-01

    Two different immunological assays were used to identify the remains of a bone matrix protein, osteocalcin (OC), in the bones of dinosaurs and other fossil vertebrates. Antibodies raised against OC from modern vertebrates showed strong immunological cross-reactivity with modern and relatively young fossil samples and significant reactions with some of the dinosaur bone extracts. The presence of OC was confirmed by the detection of a peptide-bound, uniquely vertebrate amino acid, γcarboxyglutamic acid (Gla). Preservation of OC in fossil bones appears to be strongly dependent on the burial history and not simply on age. These results extend the range of protein preservation in the geologic record and provide a first step toward a molecular phylogeny of the dinosaurs.

  14. An All-Recombinant Protein-Based Culture System Specifically Identifies Hematopoietic Stem Cell Maintenance Factors

    Directory of Open Access Journals (Sweden)

    Aki Ieyasu

    2017-03-01

    Full Text Available Hematopoietic stem cells (HSCs are considered one of the most promising therapeutic targets for the treatment of various blood disorders. However, due to difficulties in establishing stable maintenance and expansion of HSCs in vitro, their insufficient supply is a major constraint to transplantation studies. To solve these problems we have developed a fully defined, all-recombinant protein-based culture system. Through this system, we have identified hemopexin (HPX and interleukin-1α as responsible for HSC maintenance in vitro. Subsequent molecular analysis revealed that HPX reduces intracellular reactive oxygen species levels within cultured HSCs. Furthermore, bone marrow immunostaining and 3D immunohistochemistry revealed that HPX is expressed in non-myelinating Schwann cells, known HSC niche constituents. These results highlight the utility of this fully defined all-recombinant protein-based culture system for reproducible in vitro HSC culture and its potential to contribute to the identification of factors responsible for in vitro maintenance, expansion, and differentiation of stem cell populations.

  15. Mining the Human Complexome Database Identifies RBM14 as an XPO1-Associated Protein Involved in HIV-1 Rev Function

    OpenAIRE

    Budhiraja, Sona; Liu, Hongbing; Couturier, Jacob; Malovannaya, Anna; Qin, Jun; Lewis, Dorothy E.; Rice, Andrew P.

    2015-01-01

    By recruiting the host protein XPO1 (CRM1), the HIV-1 Rev protein mediates the nuclear export of incompletely spliced viral transcripts. We mined data from the recently described human nuclear complexome to identify a host protein, RBM14, which associates with XPO1 and Rev and is involved in Rev function. Using a Rev-dependent p24 reporter plasmid, we found that RBM14 depletion decreased Rev activity and Rev-mediated enhancement of the cytoplasmic levels of unspliced viral transcripts. RBM14 ...

  16. Automated local bright feature image analysis of nuclear protein distribution identifies changes in tissue phenotype

    International Nuclear Information System (INIS)

    Knowles, David; Sudar, Damir; Bator, Carol; Bissell, Mina

    2006-01-01

    The organization of nuclear proteins is linked to cell and tissue phenotypes. When cells arrest proliferation, undergo apoptosis, or differentiate, the distribution of nuclear proteins changes. Conversely, forced alteration of the distribution of nuclear proteins modifies cell phenotype. Immunostaining and fluorescence microscopy have been critical for such findings. However, there is an increasing need for quantitative analysis of nuclear protein distribution to decipher epigenetic relationships between nuclear structure and cell phenotype, and to unravel the mechanisms linking nuclear structure and function. We have developed imaging methods to quantify the distribution of fluorescently-stained nuclear protein NuMA in different mammary phenotypes obtained using three-dimensional cell culture. Automated image segmentation of DAPI-stained nuclei was generated to isolate thousands of nuclei from three-dimensional confocal images. Prominent features of fluorescently-stained NuMA were detected using a novel local bright feature analysis technique, and their normalized spatial density calculated as a function of the distance from the nuclear perimeter to its center. The results revealed marked changes in the distribution of the density of NuMA bright features as non-neoplastic cells underwent phenotypically normal acinar morphogenesis. In contrast, we did not detect any reorganization of NuMA during the formation of tumor nodules by malignant cells. Importantly, the analysis also discriminated proliferating non-neoplastic cells from proliferating malignant cells, suggesting that these imaging methods are capable of identifying alterations linked not only to the proliferation status but also to the malignant character of cells. We believe that this quantitative analysis will have additional applications for classifying normal and pathological tissues

  17. How many proteins can be identified in a 2DE gel spot within an analysis of a complex human cancer tissue proteome?

    Science.gov (United States)

    Zhan, Xianquan; Yang, Haiyan; Peng, Fang; Li, Jianglin; Mu, Yun; Long, Ying; Cheng, Tingting; Huang, Yuda; Li, Zhao; Lu, Miaolong; Li, Na; Li, Maoyu; Liu, Jianping; Jungblut, Peter R

    2018-04-01

    Two-dimensional gel electrophoresis (2DE) in proteomics is traditionally assumed to contain only one or two proteins in each 2DE spot. However, 2DE resolution is being complemented by the rapid development of high sensitivity mass spectrometers. Here we compared MALDI-MS, LC-Q-TOF MS and LC-Orbitrap Velos MS for the identification of proteins within one spot. With LC-Orbitrap Velos MS each Coomassie Blue-stained 2DE spot contained an average of at least 42 and 63 proteins/spot in an analysis of a human glioblastoma proteome and a human pituitary adenoma proteome, respectively, if a single gel spot was analyzed. If a pool of three matched gel spots was analyzed this number further increased up to an average of 230 and 118 proteins/spot for glioblastoma and pituitary adenoma proteome, respectively. Multiple proteins per spot confirm the necessity of isotopic labeling in large-scale quantification of different protein species in a proteome. Furthermore, a protein abundance analysis revealed that most of the identified proteins in each analyzed 2DE spot were low-abundance proteins. Many proteins were present in several of the analyzed spots showing the ability of 2DE-MS to separate at the protein species level. Therefore, 2DE coupled with high-sensitivity LC-MS has a clearly higher sensitivity as expected until now to detect, identify and quantify low abundance proteins in a complex human proteome with an estimated resolution of about 500 000 protein species. This clearly exceeds the resolution power of bottom-up LC-MS investigations. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Unique genetic loci identified for emotional behavior in control and chronic stress conditions

    OpenAIRE

    Carhuatanta, Kimberly A. K.; Shea, Chloe J. A.; Herman, James P.; Jankord, Ryan

    2014-01-01

    An individual's genetic background affects their emotional behavior and response to stress. Although studies have been conducted to identify genetic predictors for emotional behavior or stress response, it remains unknown how prior stress history alters the interaction between an individual's genome and their emotional behavior. Therefore, the purpose of this study is to identify chromosomal regions that affect emotional behavior and are sensitive to stress exposure. We utilized the BXD behav...

  19. Identify drug repurposing candidates by mining the protein data bank.

    Science.gov (United States)

    Moriaud, Fabrice; Richard, Stéphane B; Adcock, Stewart A; Chanas-Martin, Laetitia; Surgand, Jean-Sébastien; Ben Jelloul, Marouane; Delfaud, François

    2011-07-01

    Predicting off-targets by computational methods is gaining increasing interest in early-stage drug discovery. Here, we present a computational method based on full 3D comparisons of 3D structures. When a similar binding site is detected in the Protein Data Bank (PDB) (or any protein structure database), it is possible that the corresponding ligand also binds to that similar site. On one hand, this target hopping case is probably rare because it requires a high similarity between the binding sites. On the other hand, it could be a strong rational evidence to highlight possible off-target reactions and possibly a potential undesired side effect. This target-based drug repurposing can be extended a significant step further with the capability of searching the full surface of all proteins in the PDB, and therefore not relying on pocket detection. Using this approach, we describe how MED-SuMo reproduces the repurposing of tadalafil from PDE5A to PDE4A and a structure of PDE4A with tadalafil. Searching for local protein similarities generates more hits than for whole binding site similarities and therefore fragment repurposing is more likely to occur than for drug-sized compounds. In this work, we illustrate that by mining the PDB for proteins sharing similarities with the hinge region of protein kinases. The experimentally validated examples, biotin carboxylase and synapsin, are retrieved. Further to fragment repurposing, this approach can be applied to the detection of druggable sites from 3D structures. This is illustrated with detection of the protein kinase hinge motif in the HIV-RT non-nucleosidic allosteric site.

  20. Unique Path Partitions

    DEFF Research Database (Denmark)

    Bessenrodt, Christine; Olsson, Jørn Børling; Sellers, James A.

    2013-01-01

    We give a complete classification of the unique path partitions and study congruence properties of the function which enumerates such partitions.......We give a complete classification of the unique path partitions and study congruence properties of the function which enumerates such partitions....

  1. Signatures of pleiotropy, economy and convergent evolution in a domain-resolved map of human-virus protein-protein interaction networks.

    Science.gov (United States)

    Garamszegi, Sara; Franzosa, Eric A; Xia, Yu

    2013-01-01

    A central challenge in host-pathogen systems biology is the elucidation of general, systems-level principles that distinguish host-pathogen interactions from within-host interactions. Current analyses of host-pathogen and within-host protein-protein interaction networks are largely limited by their resolution, treating proteins as nodes and interactions as edges. Here, we construct a domain-resolved map of human-virus and within-human protein-protein interaction networks by annotating protein interactions with high-coverage, high-accuracy, domain-centric interaction mechanisms: (1) domain-domain interactions, in which a domain in one protein binds to a domain in a second protein, and (2) domain-motif interactions, in which a domain in one protein binds to a short, linear peptide motif in a second protein. Analysis of these domain-resolved networks reveals, for the first time, significant mechanistic differences between virus-human and within-human interactions at the resolution of single domains. While human proteins tend to compete with each other for domain binding sites by means of sequence similarity, viral proteins tend to compete with human proteins for domain binding sites in the absence of sequence similarity. Independent of their previously established preference for targeting human protein hubs, viral proteins also preferentially target human proteins containing linear motif-binding domains. Compared to human proteins, viral proteins participate in more domain-motif interactions, target more unique linear motif-binding domains per residue, and contain more unique linear motifs per residue. Together, these results suggest that viruses surmount genome size constraints by convergently evolving multiple short linear motifs in order to effectively mimic, hijack, and manipulate complex host processes for their survival. Our domain-resolved analyses reveal unique signatures of pleiotropy, economy, and convergent evolution in viral-host interactions that are

  2. Co-ordinate synthesis and protein localization in a bacterial organelle by the action of a penicillin-binding-protein.

    Science.gov (United States)

    Hughes, H Velocity; Lisher, John P; Hardy, Gail G; Kysela, David T; Arnold, Randy J; Giedroc, David P; Brun, Yves V

    2013-12-01

    Organelles with specialized form and function occur in diverse bacteria. Within the Alphaproteobacteria, several species extrude thin cellular appendages known as stalks, which function in nutrient uptake, buoyancy and reproduction. Consistent with their specialization, stalks maintain a unique molecular composition compared with the cell body, but how this is achieved remains to be fully elucidated. Here we dissect the mechanism of localization of StpX, a stalk-specific protein in Caulobacter crescentus. Using a forward genetics approach, we identify a penicillin-binding-protein, PbpC, which is required for the localization of StpX in the stalk. We show that PbpC acts at the stalked cell pole to anchor StpX to rigid components of the outer membrane of the elongating stalk, concurrent with stalk synthesis. Stalk-localized StpX in turn functions in cellular responses to copper and zinc, suggesting that the stalk may contribute to metal homeostasis in Caulobacter. Together, these results identify a novel role for a penicillin-binding-protein in compartmentalizing a bacterial organelle it itself helps create, raising the possibility that cell wall-synthetic enzymes may broadly serve not only to synthesize the diverse shapes of bacteria, but also to functionalize them at the molecular level. © 2013 John Wiley & Sons Ltd.

  3. Functional profiling of microtumors to identify cancer associated fibroblast-derived drug targets.

    Science.gov (United States)

    Horman, Shane R; To, Jeremy; Lamb, John; Zoll, Jocelyn H; Leonetti, Nicole; Tu, Buu; Moran, Rita; Newlin, Robbin; Walker, John R; Orth, Anthony P

    2017-11-21

    Recent advances in chemotherapeutics highlight the importance of molecularly-targeted perturbagens. Although these therapies typically address dysregulated cancer cell proteins, there are increasing therapeutic modalities that take into consideration cancer cell-extrinsic factors. Targeting components of tumor stroma such as vascular or immune cells has been shown to represent an efficacious approach in cancer treatment. Cancer-associated fibroblasts (CAFs) exemplify an important stromal component that can be exploited in targeted therapeutics, though their employment in drug discovery campaigns has been relatively minimal due to technical logistics in assaying for CAF-tumor interactions. Here we report a 3-dimensional multi-culture tumor:CAF spheroid phenotypic screening platform that can be applied to high-content drug discovery initiatives. Using a functional genomics approach we systematically profiled 1,024 candidate genes for CAF-intrinsic anti-spheroid activity; identifying several CAF genes important for development and maintenance of tumor:CAF co-culture spheroids. Along with previously reported genes such as WNT, we identify CAF-derived targets such as ARAF and COL3A1 upon which the tumor compartment depends for spheroid development. Specifically, we highlight the G-protein-coupled receptor OGR1 as a unique CAF-specific protein that may represent an attractive drug target for treating colorectal cancer. In vivo , murine colon tumor implants in OGR1 knockout mice displayed delayed tumor growth compared to tumors implanted in wild type littermate controls. These findings demonstrate a robust microphysiological screening approach for identifying new CAF targets that may be applied to drug discovery efforts.

  4. Unique nonstructural proteins of Pneumonia Virus of Mice (PVM) promote degradation of interferon (IFN) pathway components and IFN-stimulated gene proteins.

    Science.gov (United States)

    Dhar, Jayeeta; Barik, Sailen

    2016-12-01

    Pneumonia Virus of Mice (PVM) is the only virus that shares the Pneumovirus genus of the Paramyxoviridae family with Respiratory Syncytial Virus (RSV). A deadly mouse pathogen, PVM has the potential to serve as a robust animal model of RSV infection, since human RSV does not fully replicate the human pathology in mice. Like RSV, PVM also encodes two nonstructural proteins that have been implicated to suppress the IFN pathway, but surprisingly, they exhibit no sequence similarity with their RSV equivalents. The molecular mechanism of PVM NS function, therefore, remains unknown. Here, we show that recombinant PVM NS proteins degrade the mouse counterparts of the IFN pathway components. Proteasomal degradation appears to be mediated by ubiquitination promoted by PVM NS proteins. Interestingly, NS proteins of PVM lowered the levels of several ISG (IFN-stimulated gene) proteins as well. These results provide a molecular foundation for the mechanisms by which PVM efficiently subverts the IFN response of the murine cell. They also reveal that in spite of their high sequence dissimilarity, the two pneumoviral NS proteins are functionally and mechanistically similar.

  5. Unique type of isolated cardiac valvular amyloidosis

    Directory of Open Access Journals (Sweden)

    Reehana Salma

    2006-10-01

    Full Text Available Abstract Background Amyloid deposition in heart is a common occurrence in systemic amyloidosis. But localised valvular amyloid deposits are very uncommon. It was only in 1922 that the cases of valvular amyloidosis were reported. Then in 1980, Goffin et al reported another type of valvular amyloidosis, which he called the dystrophic valvular amyloidosis. We report a case of aortic valve amyloidosis which is different from the yet described valvular amyloidosis. Case presentation A 72 years old gentleman underwent urgent aortic valve replacement. Intraoperatively, a lesion was found attached to the inferior surface of his bicuspid aortic valve. Histopathology examination of the valve revealed that the lesion contained amyloid deposits, identified as AL amyloidosis. The serum amyloid A protein (SAP scan was normal and showed no evidence of systemic amyloidosis. The ECG and echocardiogram were not consistent with cardiac amyloidosis. Conclusion Two major types of cardiac amyloidosis have been described in literature: primary-myelomatous type (occurs with systemic amyolidosis, and senile type(s. Recently, a localised cardiac dystrophic valvular amyloidosis has been described. In all previously reported cases, there was a strong association of localised valvular amyloidosis with calcific deposits. Ours is a unique case which differs from the previously reported cases of localised valvular amyloidosis. In this case, the lesion was not associated with any scar tissue. Also there was no calcific deposit found. This may well be a yet unknown type of isolated valvular amyloidosis.

  6. Gene expression profile and immunological evaluation of unique hypothetical unknown proteins of Mycobacterium leprae by using quantitative real-time PCR.

    Science.gov (United States)

    Kim, Hee Jin; Prithiviraj, Kalyani; Groathouse, Nathan; Brennan, Patrick J; Spencer, John S

    2013-02-01

    The cell-mediated immunity (CMI)-based in vitro gamma interferon release assay (IGRA) of Mycobacterium leprae-specific antigens has potential as a promising diagnostic means to detect those individuals in the early stages of M. leprae infection. Diagnosis of leprosy is a major obstacle toward ultimate disease control and has been compromised in the past by the lack of specific markers. Comparative bioinformatic analysis among mycobacterial genomes identified potential M. leprae-specific proteins called "hypothetical unknowns." Due to massive gene decay and the prevalence of pseudogenes, it is unclear whether any of these proteins are expressed or are immunologically relevant. In this study, we performed cDNA-based quantitative real-time PCR to investigate the expression status of 131 putative open reading frames (ORFs) encoding hypothetical unknowns. Twenty-six of the M. leprae-specific antigen candidates showed significant levels of gene expression compared to that of ESAT-6 (ML0049), which is an important T cell antigen of low abundance in M. leprae. Fifteen of 26 selected antigen candidates were expressed and purified in Escherichia coli. The seroreactivity to these proteins of pooled sera from lepromatous leprosy patients and cavitary tuberculosis patients revealed that 9 of 15 recombinant hypothetical unknowns elicited M. leprae-specific immune responses. These nine proteins may be good diagnostic reagents to improve both the sensitivity and specificity of detection of individuals with asymptomatic leprosy.

  7. Isolation and Analysis of Keratins and Keratin-Associated Proteins from Hair and Wool.

    Science.gov (United States)

    Deb-Choudhury, Santanu; Plowman, Jeffrey E; Harland, Duane P

    2016-01-01

    The presence of highly cross-linked protein networks in hair and wool makes them very difficult substrates for protein extraction, a prerequisite for further protein analysis and characterization. It is therefore imperative that these cross-links formed by disulfide bridges are first disrupted for the efficient extraction of proteins. Chaotropes such as urea are commonly used as efficient extractants. However, a combination of urea and thiourea not only improves recovery of proteins but also results in improved resolution of the keratins in 2DE gels. Reductants also play an important role in protein dissolution. Dithiothreitol effectively removes keratinous material from the cortex, whereas phosphines, like Tris(2-carboxyethyl)phosphine, remove material from the exocuticle. The relative extractability of the keratins and keratin-associated proteins is also dependent on the concentration of chaotropes, reductants, and pH, thus providing a means to preferentially extract these proteins. Ionic liquids such as 1-butyl-3-methylimidazolium chloride (BMIM(+)[Cl](-)) are known to solubilize wool by disrupting noncovalent interactions, specifically intermolecular hydrogen bonds. BMIM(+)[Cl](-) proved to be an effective extractant of wool proteins and complementary in nature to chaotropes such as urea and thiourea for identifying unique peptides of wool proteins using mass spectrometry (MS). Successful identification of proteins resolved by one- or two-dimensional electrophoresis and MS is highly dependent on the optimal recovery of its protease-digested peptides with an efficient removal of interfering substances. The detergent sodium deoxycholate used in conjunction with Empore™ disks improved identification of proteins by mass spectrometry leading to higher percentage sequence coverage, identification of unique peptides and higher score. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Comparing Unique Title Coverage of Web of Science and Scopus in Earth and Atmospheric Sciences

    Science.gov (United States)

    Barnett, Philip; Lascar, Claudia

    2012-01-01

    The current journal titles in earth and atmospheric sciences, that are unique to each of two databases, Web of Science and Scopus, were identified using different methods. Comparing by subject category shows that Scopus has hundreds of unique titles, and Web of Science just 16. The titles unique to each database have low SCImago Journal Rank…

  9. Requesting a unique personal identifier or providing a souvenir incentive did not affect overall consent to health record linkage: evidence from an RCT nested within a cohort.

    Science.gov (United States)

    Ni, Michael Y; Li, Tom K; Hui, Rex W H; McDowell, Ian; Leung, Gabriel M

    2017-04-01

    It is unclear if unique personal identifiers should be requested from participants for health record linkage: this permits high-quality data linkage but at the potential cost of lower consent rates due to privacy concerns. Drawing from a sampling frame based on the FAMILY Cohort, using a 2 × 2 factorial design, we randomly assigned 1,200 participants to (1) request for Hong Kong Identity Card number (HKID) or no request and (2) receiving a souvenir incentive (valued at USD4) or no incentive. The primary outcome was consent to health record linkage. We also investigated associations between demographics, health status, and postal reminders with consent. Overall, we received signed consent forms from 33.3% (95% confidence interval [CI] 30.6-36.0%) of respondents. We did not find an overall effect of requesting HKID (-4.3%, 95% CI -9.8% to 1.2%) or offering souvenir incentives (2.4%, 95% CI -3.1% to 7.9%) on consent to linkage. In subgroup analyses, requesting HKID significantly reduced consent among adults aged 18-44 years (odds ratio [OR] 0.53, 95% CI 0.30-0.94, compared to no request). Souvenir incentives increased consent among women (OR 1.55, 95% CI 1.13-2.11, compared to no souvenirs). Requesting a unique personal identifier or providing a souvenir incentive did not affect overall consent to health record linkage. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Novel algorithms for protein sequence analysis

    NARCIS (Netherlands)

    Ye, Kai

    2008-01-01

    Each protein is characterized by its unique sequential order of amino acids, the so-called protein sequence. Biology”s paradigm is that this order of amino acids determines the protein”s architecture and function. In this thesis, we introduce novel algorithms to analyze protein sequences. Chapter 1

  11. The Interferon-signature of Sjögren’s Syndrome: How Unique Biomarkers Can Identify Underlying Inflammatory and Immunopathological Mechanisms of Specific Diseases

    Directory of Open Access Journals (Sweden)

    Cuong eNguyen

    2013-07-01

    Full Text Available Innate immune responses direct the nature and specificity of downstream adaptive responses in autoimmune diseases. One of the strongest markers of innate immunity is the up-regulated expression of interferon (IFN and IFN-responsive/stimulated genes (IRGs/ISGs. While multiple IRGs are induced during the innate phase of host responses, transcriptome data suggest unique IRG-signatures for different diseases. Sjögren’s syndrome (SjS is characterized by chronic immune attacks against exocrine glands leading to exocrine dysfunction, plus strong up-regulated expressions of IFN IRG transcripts. Genome-wide transcriptome analyses indicate that differentially-expressed IRGs are restricted during disease development and therefore define underlying etiopathological mechanisms. Here we review the innate immune-associated IFN-signature of SjS and show how differential gene expressions of IRG/ISG sets interact molecularly and biologically to identify critical details of SjS etiopathogenesis.

  12. The Protein Composition of the Digestive Fluid from the Venus Flytrap Sheds Light on Prey Digestion Mechanisms*

    Science.gov (United States)

    Schulze, Waltraud X.; Sanggaard, Kristian W.; Kreuzer, Ines; Knudsen, Anders D.; Bemm, Felix; Thøgersen, Ida B.; Bräutigam, Andrea; Thomsen, Line R.; Schliesky, Simon; Dyrlund, Thomas F.; Escalante-Perez, Maria; Becker, Dirk; Schultz, Jörg; Karring, Henrik; Weber, Andreas; Højrup, Peter; Hedrich, Rainer; Enghild, Jan J.

    2012-01-01

    The Venus flytrap (Dionaea muscipula) is one of the most well-known carnivorous plants because of its unique ability to capture small animals, usually insects or spiders, through a unique snap-trapping mechanism. The animals are subsequently killed and digested so that the plants can assimilate nutrients, as they grow in mineral-deficient soils. We deep sequenced the cDNA from Dionaea traps to obtain transcript libraries, which were used in the mass spectrometry-based identification of the proteins secreted during digestion. The identified proteins consisted of peroxidases, nucleases, phosphatases, phospholipases, a glucanase, chitinases, and proteolytic enzymes, including four cysteine proteases, two aspartic proteases, and a serine carboxypeptidase. The majority of the most abundant proteins were categorized as pathogenesis-related proteins, suggesting that the plant's digestive system evolved from defense-related processes. This in-depth characterization of a highly specialized secreted fluid from a carnivorous plant provides new information about the plant's prey digestion mechanism and the evolutionary processes driving its defense pathways and nutrient acquisition. PMID:22891002

  13. Endosulfan induced alteration in bacterial protein profile and RNA yield of Klebsiella sp. M3, Achromobacter sp. M6, and Rhodococcus sp. M2.

    Science.gov (United States)

    Singh, Madhu; Singh, Dileep Kumar

    2014-01-30

    Three bacterial strains identified as Klebsiella sp. M3, Achromobacter sp. M6 and Rhodococcus sp. M2 were isolated by soil enrichment with endosulfan followed by shake flask enrichment technique. They were efficiently degrading endosulfan in the NSM (non sulfur medium) broth. Degradation of endosulfan was faster with the cell free extract of bacterial cells grown in the sulfur deficient medium (NSM) supplemented with endosulfan than that of nutrient rich medium (Luria Bertani). In the cell free extract of NSM supplemented with endosulfan as sole sulfur source, a unique band was visualized on SDS-PAGE but not with magnesium sulfate as the sole sulfur source in NSM and LB with endosulfan. Expression of a unique polypeptide band was speculated to be induced by endosulfan under sulfur starved condition. These unique polypeptide bands were identified as OmpK35 protein, sulfate binding protein and outer membrane porin protein, respectively, in Klebsiella sp. M3, Achromobacter sp. M6 and Rhodococcus sp. M2. Endosulfan showed dose dependent negative effect on total RNA yield of bacterial strains in nutrient rich medium. Absence of plasmid DNA indicated the presence of endosulfan metabolizing gene on genomic DNA. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Outer membrane proteins analysis of Shigella sonnei and evaluation of their antigenicity in Shigella infected individuals.

    Directory of Open Access Journals (Sweden)

    Hemavathy Harikrishnan

    Full Text Available Bacillary dysentery caused by infection with Shigella spp. remains as serious and common health problem throughout the world. It is a highly multi drug resistant organism and rarely identified from the patient at the early stage of infection. S. sonnei is the most frequently isolated species causing shigellosis in industrialized countries. The antigenicity of outer membrane protein of this pathogen expressed during human infection has not been identified to date. We have studied the antigenic outer membrane proteins expressed by S. sonnei, with the aim of identifying presence of specific IgA and IgG in human serum against the candidate protein biomarkers. Three antigenic OMPs sized 33.3, 43.8 and 100.3 kDa were uniquely recognized by IgA and IgG from patients with S. sonnei infection, and did not cross-react with sera from patients with other types of infection. The antigenic proteome data generated in this study are a first for OMPs of S. sonnei, and they provide important insights of human immune responses. Furthermore, numerous prime candidate proteins were identified which will aid the development of new diagnostic tools for the detection of S. sonnei.

  15. Uniqueness and non-uniqueness of semigroups generated by singular diffusion operators

    CERN Document Server

    Eberle, Andreas

    1999-01-01

    This book addresses both probabilists working on diffusion processes and analysts interested in linear parabolic partial differential equations with singular coefficients. The central question discussed is whether a given diffusion operator, i.e., a second order linear differential operator without zeroth order term, which is a priori defined on test functions over some (finite or infinite dimensional) state space only, uniquely determines a strongly continuous semigroup on a corresponding weighted Lp space. Particular emphasis is placed on phenomena causing non-uniqueness, as well as on the relation between different notions of uniqueness appearing in analytic and probabilistic contexts.

  16. Marketing the Uniqueness of Small Towns. Small Town Strategy.

    Science.gov (United States)

    Hogg, David H.; Dunn, Douglas

    A small town can strengthen its local economy as a result of business people and concerned citizens collectively identifying that community's uniqueness and then capitalizing on it via advertising, personal selling, sales promotion, or publicity. This publication relates the science of marketing to communities. Seven simple techniques are provided…

  17. Identifying Unique Versus Shared Pre- and Perinatal Risk Factors for ASD and ADHD Using a Simplex-Multiplex Stratification

    NARCIS (Netherlands)

    Oerlemans, Anoek M.; Burmanje, Marlot J.; Franke, Barbara; Buitelaar, Jan K.; Hartman, Catharina A.; Rommelse, Nanda N. J.

    Autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD) frequently co-occur. Besides shared genetic factors, pre- and perinatal risk factors (PPFs) may determine if ASD, ADHD, or the combination of both disorders becomes manifest. This study aimed to test shared and unique

  18. Unique genome organization of non-mammalian papillomaviruses provides insights into the evolution of viral early proteins.

    Science.gov (United States)

    Van Doorslaer, Koenraad; Ruoppolo, Valeria; Schmidt, Annie; Lescroël, Amelie; Jongsomjit, Dennis; Elrod, Megan; Kraberger, Simona; Stainton, Daisy; Dugger, Katie M; Ballard, Grant; Ainley, David G; Varsani, Arvind

    2017-07-01

    The family Papillomaviridae contains more than 320 papillomavirus types, with most having been identified as infecting skin and mucosal epithelium in mammalian hosts. To date, only nine non-mammalian papillomaviruses have been described from birds ( n  = 5), a fish ( n  = 1), a snake ( n  = 1), and turtles ( n  = 2). The identification of papillomaviruses in sauropsids and a sparid fish suggests that early ancestors of papillomaviruses were already infecting the earliest Euteleostomi. The Euteleostomi clade includes more than 90 per cent of the living vertebrate species, and progeny virus could have been passed on to all members of this clade, inhabiting virtually every habitat on the planet. As part of this study, we isolated a novel papillomavirus from a 16-year-old female Adélie penguin ( Pygoscelis adeliae ) from Cape Crozier, Ross Island (Antarctica). The new papillomavirus shares ∼64 per cent genome-wide identity to a previously described Adélie penguin papillomavirus. Phylogenetic analyses show that the non-mammalian viruses (expect the python, Morelia spilota , associated papillomavirus) cluster near the base of the papillomavirus evolutionary tree. A papillomavirus isolated from an avian host (Northern fulmar; Fulmarus glacialis ), like the two turtle papillomaviruses, lacks a putative E9 protein that is found in all other avian papillomaviruses. Furthermore, the Northern fulmar papillomavirus has an E7 more similar to the mammalian viruses than the other avian papillomaviruses. Typical E6 proteins of mammalian papillomaviruses have two Zinc finger motifs, whereas the sauropsid papillomaviruses only have one such motif. Furthermore, this motif is absent in the fish papillomavirus. Thus, it is highly likely that the most recent common ancestor of the mammalian and sauropsid papillomaviruses had a single motif E6. It appears that a motif duplication resulted in mammalian papillomaviruses having a double Zinc finger motif in E6. We

  19. Unique genome organization of non-mammalian papillomaviruses provides insights into the evolution of viral early proteins

    Science.gov (United States)

    Van Doorslaer, Koenraad; Ruoppolo, Valeria; Schmidt, Annie; Lescroël, Amelie; Jongsomjit, Dennis; Elrod, Megan; Kraberger, Simona; Stainton, Daisy; Dugger, Katie M.; Ballard, Grant; Ainley, David G.; Varsani, Arvind

    2017-01-01

    The family Papillomaviridae contains more than 320 papillomavirus types, with most having been identified as infecting skin and mucosal epithelium in mammalian hosts. To date, only nine non-mammalian papillomaviruses have been described from birds (n = 5), a fish (n = 1), a snake (n = 1), and turtles (n = 2). The identification of papillomaviruses in sauropsids and a sparid fish suggests that early ancestors of papillomaviruses were already infecting the earliest Euteleostomi. The Euteleostomi clade includes more than 90 per cent of the living vertebrate species, and progeny virus could have been passed on to all members of this clade, inhabiting virtually every habitat on the planet. As part of this study, we isolated a novel papillomavirus from a 16-year-old female Adélie penguin (Pygoscelis adeliae) from Cape Crozier, Ross Island (Antarctica). The new papillomavirus shares ∼64 per cent genome-wide identity to a previously described Adélie penguin papillomavirus. Phylogenetic analyses show that the non-mammalian viruses (expect the python, Morelia spilota, associated papillomavirus) cluster near the base of the papillomavirus evolutionary tree. A papillomavirus isolated from an avian host (Northern fulmar; Fulmarus glacialis), like the two turtle papillomaviruses, lacks a putative E9 protein that is found in all other avian papillomaviruses. Furthermore, the Northern fulmar papillomavirus has an E7 more similar to the mammalian viruses than the other avian papillomaviruses. Typical E6 proteins of mammalian papillomaviruses have two Zinc finger motifs, whereas the sauropsid papillomaviruses only have one such motif. Furthermore, this motif is absent in the fish papillomavirus. Thus, it is highly likely that the most recent common ancestor of the mammalian and sauropsid papillomaviruses had a single motif E6. It appears that a motif duplication resulted in mammalian papillomaviruses having a double Zinc finger motif in E6. We estimated the

  20. Unique cytologic features of thyroiditis caused by immune checkpoint inhibitor therapy for malignant melanoma

    Directory of Open Access Journals (Sweden)

    Trevor E. Angell

    2018-03-01

    Full Text Available Blockade of immune checkpoint molecules to reverse cancer-induced immune suppression can improve anti-tumor immune responses in cancer patients. Monoclonal antibodies targeting two such molecules, Programmed cell death protein 1 (PD-1 and cytotoxic T-lymphocyte associated protein 4 (CTLA-4 have shown clinical benefit in the treatment of advanced malignancies, including metastatic melanoma. Adverse effects of these immune checkpoint inhibitors include immune-related adverse events (irAE, of which one of the most common is autoimmune thyroiditis. Though thyroiditis is increasingly recognized, there are no reports of the pathological findings that occur in immunotherapy-induced thyroiditis. We present a case of immunotherapy-induced thyroiditis demonstrating its unique cytopathologic features. A 51-year-old woman with metastatic melanoma was found to have a suppressed TSH and elevated free thyroxine concentration 14 days after starting treatment with nivolumab (PD-1 antagonist plus ipilimumab (CTLA-4 antagonist therapy. A thyroid biopsy was performed based on ultrasound findings and cytopathology revealed unique features including abundant clusters of necrotic cells, lymphocytes and CD163-positive histiocytes. This case reports cytopathologic features found in immune checkpoint inhibitor related thyroiditis. These appear to be unique findings and may help inform future research regarding the pathophysiology and mechanisms of this condition.

  1. Putative drug and vaccine target protein identification using comparative genomic analysis of KEGG annotated metabolic pathways of Mycoplasma hyopneumoniae.

    Science.gov (United States)

    Damte, Dereje; Suh, Joo-Won; Lee, Seung-Jin; Yohannes, Sileshi Belew; Hossain, Md Akil; Park, Seung-Chun

    2013-07-01

    In the present study, a computational comparative and subtractive genomic/proteomic analysis aimed at the identification of putative therapeutic target and vaccine candidate proteins from Kyoto Encyclopedia of Genes and Genomes (KEGG) annotated metabolic pathways of Mycoplasma hyopneumoniae was performed for drug design and vaccine production pipelines against M.hyopneumoniae. The employed comparative genomic and metabolic pathway analysis with a predefined computational systemic workflow extracted a total of 41 annotated metabolic pathways from KEGG among which five were unique to M. hyopneumoniae. A total of 234 proteins were identified to be involved in these metabolic pathways. Although 125 non homologous and predicted essential proteins were found from the total that could serve as potential drug targets and vaccine candidates, additional prioritizing parameters characterize 21 proteins as vaccine candidate while druggability of each of the identified proteins evaluated by the DrugBank database prioritized 42 proteins suitable for drug targets. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Chemical synthesis and X-ray structure of a heterochiral {D-protein antagonist plus vascular endothelial growth factor} protein complex by racemic crystallography.

    Science.gov (United States)

    Mandal, Kalyaneswar; Uppalapati, Maruti; Ault-Riché, Dana; Kenney, John; Lowitz, Joshua; Sidhu, Sachdev S; Kent, Stephen B H

    2012-09-11

    Total chemical synthesis was used to prepare the mirror image (D-protein) form of the angiogenic protein vascular endothelial growth factor (VEGF-A). Phage display against D-VEGF-A was used to screen designed libraries based on a unique small protein scaffold in order to identify a high affinity ligand. Chemically synthesized D- and L- forms of the protein ligand showed reciprocal chiral specificity in surface plasmon resonance binding experiments: The L-protein ligand bound only to D-VEGF-A, whereas the D-protein ligand bound only to L-VEGF-A. The D-protein ligand, but not the L-protein ligand, inhibited the binding of natural VEGF(165) to the VEGFR1 receptor. Racemic protein crystallography was used to determine the high resolution X-ray structure of the heterochiral complex consisting of {D-protein antagonist + L-protein form of VEGF-A}. Crystallization of a racemic mixture of these synthetic proteins in appropriate stoichiometry gave a racemic protein complex of more than 73 kDa containing six synthetic protein molecules. The structure of the complex was determined to a resolution of 1.6 Å. Detailed analysis of the interaction between the D-protein antagonist and the VEGF-A protein molecule showed that the binding interface comprised a contact surface area of approximately 800 Å(2) in accord with our design objectives, and that the D-protein antagonist binds to the same region of VEGF-A that interacts with VEGFR1-domain 2.

  3. Protein carbonylation sites in bovine raw milk and processed milk products.

    Science.gov (United States)

    Milkovska-Stamenova, Sanja; Mnatsakanyan, Ruzanna; Hoffmann, Ralf

    2017-08-15

    During thermal treatment of milk, proteins are oxidized, which may reduce the nutritional value of milk, abolish protein functions supporting human health, especially important for newborns, and yield potentially harmful products. The side chains of several amino acids can be oxidized to reactive carbonyls, which are often used to monitor oxidative stress in organisms. Here we mapped protein carbonylation sites in raw milk and different brands of pasteurized, ultra high temperature (UHT) treated milk, and infant formulas (IFs) after digesting the precipitated proteins with trypsin. Reactive carbonyls were derivatized with O-(biotinylcarbazoylmethyl)hydroxylamine to enrich the modified peptides by avidin-biotin affinity chromatography and analyze them by nanoRP-UPLC-ESI-MS. Overall, 53 unique carbonylated peptides (37 carbonylation sites, 15 proteins) were identified. Most carbonyls were derived from dicarbonyls (mainly glyoxal). The number of carbonylation sites increased with the harsher processing from raw milk (4) to pasteurized (16) and UHT milk (16) and to IF (24). Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Phylogeny and molecular signatures (conserved proteins and indels that are specific for the Bacteroidetes and Chlorobi species

    Directory of Open Access Journals (Sweden)

    Lorenzini Emily

    2007-05-01

    Full Text Available Abstract Background The Bacteroidetes and Chlorobi species constitute two main groups of the Bacteria that are closely related in phylogenetic trees. The Bacteroidetes species are widely distributed and include many important periodontal pathogens. In contrast, all Chlorobi are anoxygenic obligate photoautotrophs. Very few (or no biochemical or molecular characteristics are known that are distinctive characteristics of these bacteria, or are commonly shared by them. Results Systematic blast searches were performed on each open reading frame in the genomes of Porphyromonas gingivalis W83, Bacteroides fragilis YCH46, B. thetaiotaomicron VPI-5482, Gramella forsetii KT0803, Chlorobium luteolum (formerly Pelodictyon luteolum DSM 273 and Chlorobaculum tepidum (formerly Chlorobium tepidum TLS to search for proteins that are uniquely present in either all or certain subgroups of Bacteroidetes and Chlorobi. These studies have identified > 600 proteins for which homologues are not found in other organisms. This includes 27 and 51 proteins that are specific for most of the sequenced Bacteroidetes and Chlorobi genomes, respectively; 52 and 38 proteins that are limited to species from the Bacteroidales and Flavobacteriales orders, respectively, and 5 proteins that are common to species from these two orders; 185 proteins that are specific for the Bacteroides genus. Additionally, 6 proteins that are uniquely shared by species from the Bacteroidetes and Chlorobi phyla (one of them also present in the Fibrobacteres have also been identified. This work also describes two large conserved inserts in DNA polymerase III (DnaE and alanyl-tRNA synthetase that are distinctive characteristics of the Chlorobi species and a 3 aa deletion in ClpB chaperone that is mainly found in various Bacteroidales, Flavobacteriales and Flexebacteraceae, but generally not found in the homologs from other organisms. Phylogenetic analyses of the Bacteroidetes and Chlorobi species is also

  5. Protein-induced changes during the maturation process of human dendritic cells: A 2-D DIGE approach

    DEFF Research Database (Denmark)

    Ferreira, Gb; Overbergh, L; Hansen, Kasper Lage

    2008-01-01

    Dendritic cells (DCs) are unique antigen presenting cells, which upon maturation change from a specialized antigen-capturing cell towards a professional antigen presenting cells. In this study, a 2-D DIGE analysis of immature and mature DCs was performed, to identify proteins changing in expression...... upon maturation. The protein expression profile of immature and mature DCs, derived from CD14+ peripheral blood monocytes was investigated using two pH ranges (pH 4-7 and 6-9) (n = 4). Ninety one differentially expressed spots (p...

  6. Protein synthesis in geostimulated root caps

    Science.gov (United States)

    Feldman, L. J.

    1982-01-01

    A study is presented of the processes occurring in the root cap of corn which are requisite for the formation of root cap inhibitor and which can be triggered or modulated by both light and gravity. The results of this study indicate the importance of protein synthesis for light-induced gravitropic bending in roots. Root caps in which protein synthesis is prevented are unable to induce downward bending. This suggests that light acts by stimulating proteins which are necessary for the translation of the gravitropic stimulus into a growth response (downward bending). The turnover of protein with time was also examined in order to determine whether light acts by stimulating the synthesis of unique proteins required for downward growth. It is found that auxin in combination with light allows for the translation of the gravitropic stimulus into a growth response at least in part through the modification of protein synthesis. It is concluded that unique proteins are stimulated by light and are involved in promoting the downward growth in roots which are responding to gravity.

  7. Comparative gene expression profiling of in vitro differentiated megakaryocytes and erythroblasts identifies novel activatory and inhibitory platelet membrane proteins.

    Science.gov (United States)

    Macaulay, Iain C; Tijssen, Marloes R; Thijssen-Timmer, Daphne C; Gusnanto, Arief; Steward, Michael; Burns, Philippa; Langford, Cordelia F; Ellis, Peter D; Dudbridge, Frank; Zwaginga, Jaap-Jan; Watkins, Nicholas A; van der Schoot, C Ellen; Ouwehand, Willem H

    2007-04-15

    To identify previously unknown platelet receptors we compared the transcriptomes of in vitro differentiated megakaryocytes (MKs) and erythroblasts (EBs). RNA was obtained from purified, biologically paired MK and EB cultures and compared using cDNA microarrays. Bioinformatical analysis of MK-up-regulated genes identified 151 transcripts encoding transmembrane domain-containing proteins. Although many of these were known platelet genes, a number of previously unidentified or poorly characterized transcripts were also detected. Many of these transcripts, including G6b, G6f, LRRC32, LAT2, and the G protein-coupled receptor SUCNR1, encode proteins with structural features or functions that suggest they may be involved in the modulation of platelet function. Immunoblotting on platelets confirmed the presence of the encoded proteins, and flow cytometric analysis confirmed the expression of G6b, G6f, and LRRC32 on the surface of platelets. Through comparative analysis of expression in platelets and other blood cells we demonstrated that G6b, G6f, and LRRC32 are restricted to the platelet lineage, whereas LAT2 and SUCNR1 were also detected in other blood cells. The identification of the succinate receptor SUCNR1 in platelets is of particular interest, because physiologically relevant concentrations of succinate were shown to potentiate the effect of low doses of a variety of platelet agonists.

  8. Molecular and functional analyses of a maize autoactive NB-LRR protein identify precise structural requirements for activity.

    Directory of Open Access Journals (Sweden)

    Guan-Feng Wang

    2015-02-01

    Full Text Available Plant disease resistance is often mediated by nucleotide binding-leucine rich repeat (NLR proteins which remain auto-inhibited until recognition of specific pathogen-derived molecules causes their activation, triggering a rapid, localized cell death called a hypersensitive response (HR. Three domains are recognized in one of the major classes of NLR proteins: a coiled-coil (CC, a nucleotide binding (NB-ARC and a leucine rich repeat (LRR domains. The maize NLR gene Rp1-D21 derives from an intergenic recombination event between two NLR genes, Rp1-D and Rp1-dp2 and confers an autoactive HR. We report systematic structural and functional analyses of Rp1 proteins in maize and N. benthamiana to characterize the molecular mechanism of NLR activation/auto-inhibition. We derive a model comprising the following three main features: Rp1 proteins appear to self-associate to become competent for activity. The CC domain is signaling-competent and is sufficient to induce HR. This can be suppressed by the NB-ARC domain through direct interaction. In autoactive proteins, the interaction of the LRR domain with the NB-ARC domain causes de-repression and thus disrupts the inhibition of HR. Further, we identify specific amino acids and combinations thereof that are important for the auto-inhibition/activity of Rp1 proteins. We also provide evidence for the function of MHD2, a previously uncharacterized, though widely conserved NLR motif. This work reports several novel insights into the precise structural requirement for NLR function and informs efforts towards utilizing these proteins for engineering disease resistance.

  9. Molecular and functional analyses of a maize autoactive NB-LRR protein identify precise structural requirements for activity.

    Science.gov (United States)

    Wang, Guan-Feng; Ji, Jiabing; El-Kasmi, Farid; Dangl, Jeffery L; Johal, Guri; Balint-Kurti, Peter J

    2015-02-01

    Plant disease resistance is often mediated by nucleotide binding-leucine rich repeat (NLR) proteins which remain auto-inhibited until recognition of specific pathogen-derived molecules causes their activation, triggering a rapid, localized cell death called a hypersensitive response (HR). Three domains are recognized in one of the major classes of NLR proteins: a coiled-coil (CC), a nucleotide binding (NB-ARC) and a leucine rich repeat (LRR) domains. The maize NLR gene Rp1-D21 derives from an intergenic recombination event between two NLR genes, Rp1-D and Rp1-dp2 and confers an autoactive HR. We report systematic structural and functional analyses of Rp1 proteins in maize and N. benthamiana to characterize the molecular mechanism of NLR activation/auto-inhibition. We derive a model comprising the following three main features: Rp1 proteins appear to self-associate to become competent for activity. The CC domain is signaling-competent and is sufficient to induce HR. This can be suppressed by the NB-ARC domain through direct interaction. In autoactive proteins, the interaction of the LRR domain with the NB-ARC domain causes de-repression and thus disrupts the inhibition of HR. Further, we identify specific amino acids and combinations thereof that are important for the auto-inhibition/activity of Rp1 proteins. We also provide evidence for the function of MHD2, a previously uncharacterized, though widely conserved NLR motif. This work reports several novel insights into the precise structural requirement for NLR function and informs efforts towards utilizing these proteins for engineering disease resistance.

  10. Mechanism underlying selective regulation of G protein-gated inwardly rectifying potassium channels by the psychostimulant-sensitive sorting nexin 27

    Science.gov (United States)

    Balana, Bartosz; Maslennikov, Innokentiy; Kwiatkowski, Witek; Stern, Kalyn M.; Bahima, Laia; Choe, Senyon; Slesinger, Paul A.

    2011-01-01

    G protein-gated inwardly rectifying potassium (GIRK) channels are important gatekeepers of neuronal excitability. The surface expression of neuronal GIRK channels is regulated by the psychostimulant-sensitive sorting nexin 27 (SNX27) protein through a class I (-X-Ser/Thr-X-Φ, where X is any residue and Φ is a hydrophobic amino acid) PDZ-binding interaction. The G protein-insensitive inward rectifier channel (IRK1) contains the same class I PDZ-binding motif but associates with a different synaptic PDZ protein, postsynaptic density protein 95 (PSD95). The mechanism by which SNX27 and PSD95 discriminate these channels was previously unclear. Using high-resolution structures coupled with biochemical and functional analyses, we identified key amino acids upstream of the channel's canonical PDZ-binding motif that associate electrostatically with a unique structural pocket in the SNX27-PDZ domain. Changing specific charged residues in the channel's carboxyl terminus or in the PDZ domain converts the selective association and functional regulation by SNX27. Elucidation of this unique interaction site between ion channels and PDZ-containing proteins could provide a therapeutic target for treating brain diseases. PMID:21422294

  11. Solid-phase synthesis and screening of N-acylated polyamine (NAPA) combinatorial libraries for protein binding.

    Science.gov (United States)

    Iera, Jaclyn A; Jenkins, Lisa M Miller; Kajiyama, Hiroshi; Kopp, Jeffrey B; Appella, Daniel H

    2010-11-15

    Inhibitors for protein-protein interactions are challenging to design, in part due to the unique and complex architectures of each protein's interaction domain. Most approaches to develop inhibitors for these interactions rely on rational design, which requires prior structural knowledge of the target and its ligands. In the absence of structural information, a combinatorial approach may be the best alternative to finding inhibitors of a protein-protein interaction. Current chemical libraries, however, consist mostly of molecules designed to inhibit enzymes. In this manuscript, we report the synthesis and screening of a library based on an N-acylated polyamine (NAPA) scaffold that we designed to have specific molecular features necessary to inhibit protein-protein interactions. Screens of the library identified a member with favorable binding properties to the HIV viral protein R (Vpr), a regulatory protein from HIV, that is involved in numerous interactions with other proteins critical for viral replication. Published by Elsevier Ltd.

  12. [Uniqueness seeking behavior as a self-verification: an alternative approach to the study of uniqueness].

    Science.gov (United States)

    Yamaoka, S

    1995-06-01

    Uniqueness theory explains that extremely high perceived similarity between self and others evokes negative emotional reactions and causes uniqueness seeking behavior. However, the theory conceptualizes similarity so ambiguously that it appears to suffer from low predictive validity. The purpose of the current article is to propose an alternative explanation of uniqueness seeking behavior. It posits that perceived uniqueness deprivation is a threat to self-concepts, and therefore causes self-verification behavior. Two levels of self verification are conceived: one based on personal categorization and the other on social categorization. The present approach regards uniqueness seeking behavior as the personal-level self verification. To test these propositions, a 2 (very high or moderate similarity information) x 2 (with or without outgroup information) x 2 (high or low need for uniqueness) between-subject factorial-design experiment was conducted with 95 university students. Results supported the self-verification approach, and were discussed in terms of effects of uniqueness deprivation, levels of self-categorization, and individual differences in need for uniqueness.

  13. Using non-invasive molecular spectroscopic techniques to detect unique aspects of protein Amide functional groups and chemical properties of modeled forage from different sourced-origins.

    Science.gov (United States)

    Ji, Cuiying; Zhang, Xuewei; Yu, Peiqiang

    2016-03-05

    The non-invasive molecular spectroscopic technique-FT/IR is capable to detect the molecular structure spectral features that are associated with biological, nutritional and biodegradation functions. However, to date, few researches have been conducted to use these non-invasive molecular spectroscopic techniques to study forage internal protein structures associated with biodegradation and biological functions. The objectives of this study were to detect unique aspects and association of protein Amide functional groups in terms of protein Amide I and II spectral profiles and chemical properties in the alfalfa forage (Medicago sativa L.) from different sourced-origins. In this study, alfalfa hay with two different origins was used as modeled forage for molecular structure and chemical property study. In each forage origin, five to seven sources were analyzed. The molecular spectral profiles were determined using FT/IR non-invasive molecular spectroscopy. The parameters of protein spectral profiles included functional groups of Amide I, Amide II and Amide I to II ratio. The results show that the modeled forage Amide I and Amide II were centered at 1653 cm(-1) and 1545 cm(-1), respectively. The Amide I spectral height and area intensities were from 0.02 to 0.03 and 2.67 to 3.36 AI, respectively. The Amide II spectral height and area intensities were from 0.01 to 0.02 and 0.71 to 0.93 AI, respectively. The Amide I to II spectral peak height and area ratios were from 1.86 to 1.88 and 3.68 to 3.79, respectively. Our results show that the non-invasive molecular spectroscopic techniques are capable to detect forage internal protein structure features which are associated with forage chemical properties. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. A unique virulence factor for proliferation and dwarfism in plants identified from a phytopathogenic bacterium

    Science.gov (United States)

    Hoshi, Ayaka; Oshima, Kenro; Kakizawa, Shigeyuki; Ishii, Yoshiko; Ozeki, Johji; Hashimoto, Masayoshi; Komatsu, Ken; Kagiwada, Satoshi; Yamaji, Yasuyuki; Namba, Shigetou

    2009-01-01

    One of the most important themes in agricultural science is the identification of virulence factors involved in plant disease. Here, we show that a single virulence factor, tengu-su inducer (TENGU), induces witches' broom and dwarfism and is a small secreted protein of the plant-pathogenic bacterium, phytoplasma. When tengu was expressed in Nicotiana benthamiana plants, these plants showed symptoms of witches' broom and dwarfism, which are typical of phytoplasma infection. Transgenic Arabidopsis thaliana lines expressing tengu exhibited similar symptoms, confirming the effects of tengu expression on plants. Although the localization of phytoplasma was restricted to the phloem, TENGU protein was detected in apical buds by immunohistochemical analysis, suggesting that TENGU was transported from the phloem to other cells. Microarray analyses showed that auxin-responsive genes were significantly down-regulated in the tengu-transgenic plants compared with GUS-transgenic control plants. These results suggest that TENGU inhibits auxin-related pathways, thereby affecting plant development. PMID:19329488

  15. Uniqueness for inverse problems of determining orders of multi-term time-fractional derivatives of diffusion equation

    OpenAIRE

    Li, Zhiyuan; Yamamoto, Masahiro

    2014-01-01

    This article proves the uniqueness for two kinds of inverse problems of identifying fractional orders in diffusion equations with multiple time-fractional derivatives by pointwise observation. By means of eigenfunction expansion and Laplace transform, we reduce the uniqueness for our inverse problems to the uniqueness of expansions of some special function and complete the proof.

  16. Oligomeric protein structure networks: insights into protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Brinda KV

    2005-12-01

    Full Text Available Abstract Background Protein-protein association is essential for a variety of cellular processes and hence a large number of investigations are being carried out to understand the principles of protein-protein interactions. In this study, oligomeric protein structures are viewed from a network perspective to obtain new insights into protein association. Structure graphs of proteins have been constructed from a non-redundant set of protein oligomer crystal structures by considering amino acid residues as nodes and the edges are based on the strength of the non-covalent interactions between the residues. The analysis of such networks has been carried out in terms of amino acid clusters and hubs (highly connected residues with special emphasis to protein interfaces. Results A variety of interactions such as hydrogen bond, salt bridges, aromatic and hydrophobic interactions, which occur at the interfaces are identified in a consolidated manner as amino acid clusters at the interface, from this study. Moreover, the characterization of the highly connected hub-forming residues at the interfaces and their comparison with the hubs from the non-interface regions and the non-hubs in the interface regions show that there is a predominance of charged interactions at the interfaces. Further, strong and weak interfaces are identified on the basis of the interaction strength between amino acid residues and the sizes of the interface clusters, which also show that many protein interfaces are stronger than their monomeric protein cores. The interface strengths evaluated based on the interface clusters and hubs also correlate well with experimentally determined dissociation constants for known complexes. Finally, the interface hubs identified using the present method correlate very well with experimentally determined hotspots in the interfaces of protein complexes obtained from the Alanine Scanning Energetics database (ASEdb. A few predictions of interface hot

  17. De novo origin of human protein-coding genes.

    Directory of Open Access Journals (Sweden)

    Dong-Dong Wu

    2011-11-01

    Full Text Available The de novo origin of a new protein-coding gene from non-coding DNA is considered to be a very rare occurrence in genomes. Here we identify 60 new protein-coding genes that originated de novo on the human lineage since divergence from the chimpanzee. The functionality of these genes is supported by both transcriptional and proteomic evidence. RNA-seq data indicate that these genes have their highest expression levels in the cerebral cortex and testes, which might suggest that these genes contribute to phenotypic traits that are unique to humans, such as improved cognitive ability. Our results are inconsistent with the traditional view that the de novo origin of new genes is very rare, thus there should be greater appreciation of the importance of the de novo origination of genes.

  18. De Novo Origin of Human Protein-Coding Genes

    Science.gov (United States)

    Wu, Dong-Dong; Irwin, David M.; Zhang, Ya-Ping

    2011-01-01

    The de novo origin of a new protein-coding gene from non-coding DNA is considered to be a very rare occurrence in genomes. Here we identify 60 new protein-coding genes that originated de novo on the human lineage since divergence from the chimpanzee. The functionality of these genes is supported by both transcriptional and proteomic evidence. RNA–seq data indicate that these genes have their highest expression levels in the cerebral cortex and testes, which might suggest that these genes contribute to phenotypic traits that are unique to humans, such as improved cognitive ability. Our results are inconsistent with the traditional view that the de novo origin of new genes is very rare, thus there should be greater appreciation of the importance of the de novo origination of genes. PMID:22102831

  19. A Proteomics Approach to Identify New Putative Cardiac Intercalated Disk Proteins.

    Directory of Open Access Journals (Sweden)

    Siddarth Soni

    Full Text Available Synchronous beating of the heart is dependent on the efficient functioning of the cardiac intercalated disk (ID. The ID is composed of a complex protein network enabling electrical continuity and chemical communication between individual cardiomyocytes. Recently, several different studies have shed light on increasingly prevalent cardiac diseases involving the ID. Insufficient knowledge of its composition makes it difficult to study these disease mechanisms in more detail and therefore here we aim expand the ID proteome. Here, using a combination of general membrane enrichment, in-depth quantitative proteomics and an intracellular location driven bioinformatics approach, we aim to discover new putative ID proteins in rat ventricular tissue.General membrane isolation, enriched amongst others also with ID proteins as based on presence of the established markers connexin-43 and n-cadherin, was performed using centrifugation. By mass spectrometry, we quantitatively evaluated the level of 3455 proteins in the enriched membrane fraction (EMF and its counterpart, the soluble cytoplasmic fraction. These data were stringently filtered to generate a final set of 97 enriched, putative ID proteins. These included Cx43 and n-cadherin, but also many interesting novel candidates. We selected 4 candidates (Flotillin-2 (FLOT2, Nexilin (NEXN, Popeye-domain-containg-protein 2 (POPDC2 and thioredoxin-related-transmembrane-protein 2 (TMX2 and confirmed their co-localization with n-cadherin in the ID of human and rat heart cryo-sections, and isolated dog cardiomyocytes.The presented proteomics dataset of putative new ID proteins is a valuable resource for future research into this important molecular intersection of the heart.

  20. Comparative proteomics of cucurbit phloem indicates both unique and shared sets of proteins.

    Science.gov (United States)

    Lopez-Cobollo, Rosa M; Filippis, Ioannis; Bennett, Mark H; Turnbull, Colin G N

    2016-11-01

    Cucurbits are well-studied models for phloem biology but unusually possess both fascicular phloem (FP) within vascular bundles and additional extrafascicular phloem (EFP). Although the functional differences between the two systems are not yet clear, sugar analysis and limited protein profiling have established that FP and EFP have divergent compositions. Here we report a detailed comparative proteomics study of FP and EFP in two cucurbits, pumpkin and cucumber. We re-examined the sites of exudation by video microscopy, and confirmed that in both species, the spontaneous exudate following tissue cutting derives almost exclusively from EFP. Comparative gel electrophoresis and mass spectrometry-based proteomics of exudates, sieve element contents and microdissected stem tissues established that EFP and FP profiles are highly dissimilar, and that there are also species differences. Searches against cucurbit databases enabled identification of more than 300 FP proteins from each species. Few of the detected proteins (about 10%) were shared between the sieve element contents of FP and EFP, and enriched Gene Ontology categories also differed. To explore quantitative differences in the proteomes, we developed multiple reaction monitoring methods for cucumber proteins that are representative markers for FP or EFP and assessed exudate composition at different times after tissue cutting. Based on failure to detect FP markers in exudate samples, we conclude that FP is blocked very rapidly and therefore makes a minimal contribution to the exudates. Overall, the highly divergent contents of FP and EFP indicate that they are substantially independent vascular compartments. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  1. GRP94: An HSP90-like protein specialized for protein folding and quality control in the endoplasmic reticulum

    DEFF Research Database (Denmark)

    Marzec, Michal; Eletto, Davide; Argon, Yair

    2012-01-01

    Glucose-regulated protein 94 is the HSP90-like protein in the lumen of the endoplasmic reticulum and therefore it chaperones secreted and membrane proteins. It has essential functions in development and physiology of multicellular organisms, at least in part because of this unique clientele. GRP94...

  2. Coevolution study of mitochondria respiratory chain proteins: toward the understanding of protein--protein interaction.

    Science.gov (United States)

    Yang, Ming; Ge, Yan; Wu, Jiayan; Xiao, Jingfa; Yu, Jun

    2011-05-20

    Coevolution can be seen as the interdependency between evolutionary histories. In the context of protein evolution, functional correlation proteins are ever-present coordinated evolutionary characters without disruption of organismal integrity. As to complex system, there are two forms of protein--protein interactions in vivo, which refer to inter-complex interaction and intra-complex interaction. In this paper, we studied the difference of coevolution characters between inter-complex interaction and intra-complex interaction using "Mirror tree" method on the respiratory chain (RC) proteins. We divided the correlation coefficients of every pairwise RC proteins into two groups corresponding to the binary protein--protein interaction in intra-complex and the binary protein--protein interaction in inter-complex, respectively. A dramatical discrepancy is detected between the coevolution characters of the two sets of protein interactions (Wilcoxon test, p-value = 4.4 × 10(-6)). Our finding reveals some critical information on coevolutionary study and assists the mechanical investigation of protein--protein interaction. Furthermore, the results also provide some unique clue for supramolecular organization of protein complexes in the mitochondrial inner membrane. More detailed binding sites map and genome information of nuclear encoded RC proteins will be extraordinary valuable for the further mitochondria dynamics study. Copyright © 2011. Published by Elsevier Ltd.

  3. Functional capacity of XRCC1 protein variants identified in DNA repair-deficient Chinese hamster ovary cell lines and the human population

    DEFF Research Database (Denmark)

    Berquist, Brian R; Singh, Dharmendra Kumar; Fan, Jinshui

    2010-01-01

    XRCC1 operates as a scaffold protein in base excision repair, a pathway that copes with base and sugar damage in DNA. Studies using recombinant XRCC1 proteins revealed that: a C389Y substitution, responsible for the repair defects of the EM-C11 CHO cell line, caused protein instability; a V86R...... mutation abolished the interaction with POLbeta, but did not disrupt the interactions with PARP-1, LIG3alpha and PCNA; and an E98K substitution, identified in EM-C12, reduced protein integrity, marginally destabilized the POLbeta interaction, and slightly enhanced DNA binding. Two rare (P161L and Y576S...

  4. Computational exploration of single-protein mechanics by steered molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Sotomayor, Marcos [Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio (United States)

    2015-12-31

    Hair cell mechanotransduction happens in tens of microseconds, involves forces of a few picoNewtons, and is mediated by nanometer-scale molecular conformational changes. As proteins involved in this process become identified and their high resolution structures become available, multiple tools are being used to explore their “single-molecule responses” to force. Optical tweezers and atomic force microscopy offer exquisite force and extension resolution, but cannot reach the high loading rates expected for high frequency auditory stimuli. Molecular dynamics (MD) simulations can reach these fast time scales, and also provide a unique view of the molecular events underlying protein mechanics, but its predictions must be experimentally verified. Thus a combination of simulations and experiments might be appropriate to study the molecular mechanics of hearing. Here I review the basics of MD simulations and the different methods used to apply force and study protein mechanics in silico. Simulations of tip link proteins are used to illustrate the advantages and limitations of this method.

  5. MoMuLV-ts-1: A Unique Mouse Model of Retrovirus-Induced Lymphoma Transmitted by Breast Milk

    Directory of Open Access Journals (Sweden)

    J. Chakraborty

    2011-01-01

    Full Text Available Our laboratory has developed a murine model of lymphoma via breast milk transmission of MoMuLV-ts-1 (Moloney murine leukemia virus-temperature sensitive mutant-1. Uninfected offspring suckled from infected surrogate mothers become infected and develop lymphoma. Multiple gene integration sites of ts-1 into the infected mouse genome including tacc3, aurka, ndel1, tpx2, p53, and rhamm were identified, and mRNA expressions were quantitated. These genes produce centrosomal proteins, which may be involved in abnormal chromosomal segregation leading to aneuploidy or multiploidy, thus causing lymphoma. Since there is no report to date on this retroviral model leading to centrosomal abnormality, and causing lymphoma development, this is a valuable and unique model to study the centrosomal involvement in lymphomagenesis.

  6. The toxicity of NaF on BmN cells and a comparative proteomics approach to identify protein expression changes in cells under NaF-stress

    International Nuclear Information System (INIS)

    Chen, Liang; Chen, Huiqing; Yao, Chun; Chang, Cheng; Xia, Hengchuan; Zhang, Chunxia; Zhou, Yang; Yao, Qin; Chen, Keping

    2015-01-01

    Highlights: • On the cellular level, we identified IC 50 of NaF on BmN cell by flow cytometry. • High concentration of NaF gives effect on BmN cell morphology. • Five significantly differential proteins were identified by two-dimensional electrophoresis and mass spectrometry. • ALDH2 and WPH were up-regulated, while CRT and SCF were down-regulated, providing new information for metabolic pathway of fluoride. - Abstract: Fluorides negatively affect the development of organisms and are a threat to human health and environmental safety. In this study, Bombyx mori N cell line (BmN) were used to explore effects of NaF on insect cells. We found that 8 h (hrs) culture with high concentration of NaF (≥1 mM) induced significantly morphological changes. Dose-response curves of 72 h continuously cultured BmN treated with NaF showed that the half inhibitory concentration (IC 50 ) value was 56.60 μM. Treatment of BmN with 100 and 300 μM of NaF induced apoptosis and necrosis. 2-D electrophoresis of whole cell extracted from BmN showed that treatment with 300 μM NaF up-regulated 32 proteins and down-regulated 11 proteins when compared with controls. We identified 5 different proteins by MALDI-TOF MS, and 4 of them were identified for the first time, including 2 up-regulated proteins (mitochondrial aldehyde dehydrogenase ALDH2 and prohibitin protein WPH) and 2 down-regulated proteins (calreticulin precursor CRT and DNA supercoiling factor SCF). These observations were further confirmed by fluorescence quantitative PCR. Together, our data suggest that these target proteins could be regarded as targets influenced by NaF and also provide clues for studies on the response metabolism pathway under NaF stress

  7. The toxicity of NaF on BmN cells and a comparative proteomics approach to identify protein expression changes in cells under NaF-stress

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Liang; Chen, Huiqing [Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013 (China); Yao, Chun [Department of Stomatology, Zhenjiang First People’s Hospital, Zhenjiang, Jiangsu 212013 (China); Chang, Cheng; Xia, Hengchuan; Zhang, Chunxia; Zhou, Yang; Yao, Qin [Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013 (China); Chen, Keping, E-mail: kpchen@ujs.edu.cn [Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013 (China)

    2015-04-09

    Highlights: • On the cellular level, we identified IC{sub 50} of NaF on BmN cell by flow cytometry. • High concentration of NaF gives effect on BmN cell morphology. • Five significantly differential proteins were identified by two-dimensional electrophoresis and mass spectrometry. • ALDH2 and WPH were up-regulated, while CRT and SCF were down-regulated, providing new information for metabolic pathway of fluoride. - Abstract: Fluorides negatively affect the development of organisms and are a threat to human health and environmental safety. In this study, Bombyx mori N cell line (BmN) were used to explore effects of NaF on insect cells. We found that 8 h (hrs) culture with high concentration of NaF (≥1 mM) induced significantly morphological changes. Dose-response curves of 72 h continuously cultured BmN treated with NaF showed that the half inhibitory concentration (IC{sub 50}) value was 56.60 μM. Treatment of BmN with 100 and 300 μM of NaF induced apoptosis and necrosis. 2-D electrophoresis of whole cell extracted from BmN showed that treatment with 300 μM NaF up-regulated 32 proteins and down-regulated 11 proteins when compared with controls. We identified 5 different proteins by MALDI-TOF MS, and 4 of them were identified for the first time, including 2 up-regulated proteins (mitochondrial aldehyde dehydrogenase ALDH2 and prohibitin protein WPH) and 2 down-regulated proteins (calreticulin precursor CRT and DNA supercoiling factor SCF). These observations were further confirmed by fluorescence quantitative PCR. Together, our data suggest that these target proteins could be regarded as targets influenced by NaF and also provide clues for studies on the response metabolism pathway under NaF stress.

  8. Identification of TOEFAZ1-interacting proteins reveals key regulators of Trypanosoma brucei cytokinesis.

    Science.gov (United States)

    Hilton, Nicholas A; Sladewski, Thomas E; Perry, Jenna A; Pataki, Zemplen; Sinclair-Davis, Amy N; Muniz, Richard S; Tran, Holly L; Wurster, Jenna I; Seo, Jiwon; de Graffenried, Christopher L

    2018-05-21

    The protist parasite Trypanosoma brucei is an obligate extracellular pathogen that retains its highly-polarized morphology during cell division and has evolved a novel cytokinetic process independent of non-muscle myosin II. The polo-like kinase homolog TbPLK is essential for transmission of cell polarity during division and for cytokinesis. We previously identified a putative TbPLK substrate named Tip of the Extending FAZ 1 (TOEFAZ1) as an essential kinetoplastid-specific component of the T. brucei cytokinetic machinery. We performed a proximity-dependent biotinylation (BioID) screen using TOEFAZ1 as a means to identify additional proteins that are involved in cytokinesis. Using quantitative proteomic methods, we identified nearly 500 TOEFAZ1-proximal proteins and characterized 59 in further detail. Among the candidates, we identified an essential putative phosphatase that regulates the expression level and localization of both TOEFAZ1 and TbPLK, a previously uncharacterized protein that is necessary for the assembly of a new cell posterior, and a microtubule plus-end directed orphan kinesin that is required for completing cleavage furrow ingression. The identification of these proteins provides new insight into T. brucei cytokinesis and establishes TOEFAZ1 as a key component of this essential and uniquely-configured process in kinetoplastids. This article is protected by copyright. All rights reserved. © 2018 John Wiley & Sons Ltd.

  9. Template-directed covalent conjugation of DNA to native antibodies, transferrin and other metal-binding proteins

    Science.gov (United States)

    Rosen, Christian B.; Kodal, Anne L. B.; Nielsen, Jesper S.; Schaffert, David H.; Scavenius, Carsten; Okholm, Anders H.; Voigt, Niels V.; Enghild, Jan J.; Kjems, Jørgen; Tørring, Thomas; Gothelf, Kurt V.

    2014-09-01

    DNA-protein conjugates are important in bioanalytical chemistry, molecular diagnostics and bionanotechnology, as the DNA provides a unique handle to identify, functionalize or otherwise manipulate proteins. To maintain protein activity, conjugation of a single DNA handle to a specific location on the protein is often needed. However, preparing such high-quality site-specific conjugates often requires genetically engineered proteins, which is a laborious and technically challenging approach. Here we demonstrate a simpler method to create site-selective DNA-protein conjugates. Using a guiding DNA strand modified with a metal-binding functionality, we directed a second DNA strand to the vicinity of a metal-binding site of His6-tagged or wild-type metal-binding proteins, such as serotransferrin, where it subsequently reacted with lysine residues at that site. This method, DNA-templated protein conjugation, facilitates the production of site-selective protein conjugates, and also conjugation to IgG1 antibodies via a histidine cluster in the constant domain.

  10. Characterization of mini-protein S, a recombinant variant of protein S that lacks the sex hormone binding globulin-like domain

    NARCIS (Netherlands)

    van Wijnen, M.; Stam, J. G.; Chang, G. T.; Meijers, J. C.; Reitsma, P. H.; Bertina, R. M.; Bouma, B. N.

    1998-01-01

    Protein S is a vitamin K-dependent glycoprotein involved in the regulation of the anticoagulant activity of activated protein C (APC). Also, an anticoagulant role for protein S, independent of APC, has been described. Protein S has a unique C-terminal sex hormone binding globulin (SHBG)-like domain

  11. Proteomic-based detection of a protein cluster dysregulated during cardiovascular development identifies biomarkers of congenital heart defects.

    Directory of Open Access Journals (Sweden)

    Anjali K Nath

    Full Text Available Cardiovascular development is vital for embryonic survival and growth. Early gestation embryo loss or malformation has been linked to yolk sac vasculopathy and congenital heart defects (CHDs. However, the molecular pathways that underlie these structural defects in humans remain largely unknown hindering the development of molecular-based diagnostic tools and novel therapies.Murine embryos were exposed to high glucose, a condition known to induce cardiovascular defects in both animal models and humans. We further employed a mass spectrometry-based proteomics approach to identify proteins differentially expressed in embryos with defects from those with normal cardiovascular development. The proteins detected by mass spectrometry (WNT16, ST14, Pcsk1, Jumonji, Morca2a, TRPC5, and others were validated by Western blotting and immunoflorescent staining of the yolk sac and heart. The proteins within the proteomic dataset clustered to adhesion/migration, differentiation, transport, and insulin signaling pathways. A functional role for several proteins (WNT16, ADAM15 and NOGO-A/B was demonstrated in an ex vivo model of heart development. Additionally, a successful application of a cluster of protein biomarkers (WNT16, ST14 and Pcsk1 as a prenatal screen for CHDs was confirmed in a study of human amniotic fluid (AF samples from women carrying normal fetuses and those with CHDs.The novel finding that WNT16, ST14 and Pcsk1 protein levels increase in fetuses with CHDs suggests that these proteins may play a role in the etiology of human CHDs. The information gained through this bed-side to bench translational approach contributes to a more complete understanding of the protein pathways dysregulated during cardiovascular development and provides novel avenues for diagnostic and therapeutic interventions, beneficial to fetuses at risk for CHDs.

  12. Signatures of pleiotropy, economy and convergent evolution in a domain-resolved map of human-virus protein-protein interaction networks.

    Directory of Open Access Journals (Sweden)

    Sara Garamszegi

    Full Text Available A central challenge in host-pathogen systems biology is the elucidation of general, systems-level principles that distinguish host-pathogen interactions from within-host interactions. Current analyses of host-pathogen and within-host protein-protein interaction networks are largely limited by their resolution, treating proteins as nodes and interactions as edges. Here, we construct a domain-resolved map of human-virus and within-human protein-protein interaction networks by annotating protein interactions with high-coverage, high-accuracy, domain-centric interaction mechanisms: (1 domain-domain interactions, in which a domain in one protein binds to a domain in a second protein, and (2 domain-motif interactions, in which a domain in one protein binds to a short, linear peptide motif in a second protein. Analysis of these domain-resolved networks reveals, for the first time, significant mechanistic differences between virus-human and within-human interactions at the resolution of single domains. While human proteins tend to compete with each other for domain binding sites by means of sequence similarity, viral proteins tend to compete with human proteins for domain binding sites in the absence of sequence similarity. Independent of their previously established preference for targeting human protein hubs, viral proteins also preferentially target human proteins containing linear motif-binding domains. Compared to human proteins, viral proteins participate in more domain-motif interactions, target more unique linear motif-binding domains per residue, and contain more unique linear motifs per residue. Together, these results suggest that viruses surmount genome size constraints by convergently evolving multiple short linear motifs in order to effectively mimic, hijack, and manipulate complex host processes for their survival. Our domain-resolved analyses reveal unique signatures of pleiotropy, economy, and convergent evolution in viral

  13. Sequence Analysis of Hypothetical Proteins from 26695 to Identify Potential Virulence Factors

    Directory of Open Access Journals (Sweden)

    Ahmad Abu Turab Naqvi

    2016-09-01

    Full Text Available Helicobacter pylori is a Gram-negative bacteria that is responsible for gastritis in human. Its spiral flagellated body helps in locomotion and colonization in the host environment. It is capable of living in the highly acidic environment of the stomach with the help of acid adaptive genes. The genome of H. pylori 26695 strain contains 1,555 coding genes that encode 1,445 proteins. Out of these, 340 proteins are characterized as hypothetical proteins (HP. This study involves extensive analysis of the HPs using an established pipeline which comprises various bioinformatics tools and databases to find out probable functions of the HPs and identification of virulence factors. After extensive analysis of all the 340 HPs, we found that 104 HPs are showing characteristic similarities with the proteins with known functions. Thus, on the basis of such similarities, we assigned probable functions to 104 HPs with high confidence and precision. All the predicted HPs contain representative members of diverse functional classes of proteins such as enzymes, transporters, binding proteins, regulatory proteins, proteins involved in cellular processes and other proteins with miscellaneous functions. Therefore, we classified 104 HPs into aforementioned functional groups. During the virulence factors analysis of the HPs, we found 11 HPs are showing significant virulence. The identification of virulence proteins with the help their predicted functions may pave the way for drug target estimation and development of effective drug to counter the activity of that protein.

  14. Transformation Resistance in a Premature Aging Disorder Identifies a Tumor-Protective Function of BRD4

    Directory of Open Access Journals (Sweden)

    Patricia Fernandez

    2014-10-01

    Full Text Available Summary: Advanced age and DNA damage accumulation are prominent risk factors for cancer. The premature aging disorder Hutchinson-Gilford progeria syndrome (HGPS provides a unique opportunity for studying the interplay between DNA damage and aging-associated tumor mechanisms, given that HGPS patients do not develop tumors despite elevated levels of DNA damage. Here, we have used HGPS patient cells to identify a protective mechanism to oncogenesis. We find that HGPS cells are resistant to neoplastic transformation. Resistance is mediated by the bromodomain protein BRD4, which exhibits altered genome-wide binding patterns in transformation-resistant cells, leading to inhibition of oncogenic dedifferentiation. BRD4 also inhibits, albeit to a lower extent, the tumorigenic potential of transformed cells from healthy individuals. BRD4-mediated tumor protection is clinically relevant given that a BRD4 gene signature predicts positive clinical outcome in breast and lung cancer. Our results demonstrate a protective function for BRD4 and suggest tissue-specific roles for BRD4 in tumorigenesis. : The premature aging disorder Hutchinson-Gilford progeria syndrome (HGPS provides a unique tool for studying the interplay between DNA damage and aging-associated tumor mechanisms, given that HGPS patients do not develop tumors despite elevated levels of DNA damage. Using a genome-wide RNAi screen, Fernandez et al. now identify the bromodomain protein BRD4 as a mediator of the oncogenic resistance of HGPS cells. This tumor-protective function of BRD4 involves inhibition of oncogenic dedifferentiation and is also active in non-HGPS cells in a tissue-specific manner.

  15. Cardiac contractility structure-activity relationship and ligand-receptor interactions; the discovery of unique and novel molecular switches in myosuppressin signaling.

    Directory of Open Access Journals (Sweden)

    Megan Leander

    Full Text Available Peptidergic signaling regulates cardiac contractility; thus, identifying molecular switches, ligand-receptor contacts, and antagonists aids in exploring the underlying mechanisms to influence health. Myosuppressin (MS, a decapeptide, diminishes cardiac contractility and gut motility. Myosuppressin binds to G protein-coupled receptor (GPCR proteins. Two Drosophila melanogaster myosuppressin receptors (DrmMS-Rs exist; however, no mechanism underlying MS-R activation is reported. We predicted DrmMS-Rs contained molecular switches that resembled those of Rhodopsin. Additionally, we believed DrmMS-DrmMS-R1 and DrmMS-DrmMS-R2 interactions would reflect our structure-activity relationship (SAR data. We hypothesized agonist- and antagonist-receptor contacts would differ from one another depending on activity. Lastly, we expected our study to apply to other species; we tested this hypothesis in Rhodnius prolixus, the Chagas disease vector. Searching DrmMS-Rs for molecular switches led to the discovery of a unique ionic lock and a novel 3-6 lock, as well as transmission and tyrosine toggle switches. The DrmMS-DrmMS-R1 and DrmMS-DrmMS-R2 contacts suggested tissue-specific signaling existed, which was in line with our SAR data. We identified R. prolixus (RhpMS-R and discovered it, too, contained the unique myosuppressin ionic lock and novel 3-6 lock found in DrmMS-Rs as well as transmission and tyrosine toggle switches. Further, these motifs were present in red flour beetle, common water flea, honey bee, domestic silkworm, and termite MS-Rs. RhpMS and DrmMS decreased R. prolixus cardiac contractility dose dependently with EC50 values of 140 nM and 50 nM. Based on ligand-receptor contacts, we designed RhpMS analogs believed to be an active core and antagonist; testing on heart confirmed these predictions. The active core docking mimicked RhpMS, however, the antagonist did not. Together, these data were consistent with the unique ionic lock, novel 3-6 lock

  16. Physical properties, molecular structures and protein quality of texturized whey protein isolate: effect of extrusion temperature

    Science.gov (United States)

    Extrusion is a powerful food processing operation, which utilizes high temperature and high shear force to produce a product with unique physical and chemical characteristics. Texturization of whey protein isolate (WPI) through extrusion for the production of protein fortified snack foods has provid...

  17. Orthogonal Electric Field Measurements near the Green Fluorescent Protein Fluorophore through Stark Effect Spectroscopy and pKa Shifts Provide a Unique Benchmark for Electrostatics Models.

    Science.gov (United States)

    Slocum, Joshua D; First, Jeremy T; Webb, Lauren J

    2017-07-20

    continuum-based model in this system and offer this experimentally self-consistent data set as a target benchmark for electrostatics models, which could allow for a more rigorous test of pK a prediction techniques due to the unique environment of the water-filled GFP barrel compared to traditional globular proteins.

  18. Novel Endogenous, Insulin-Stimulated Akt2 Protein Interaction Partners in L6 Myoblasts.

    Directory of Open Access Journals (Sweden)

    Michael Caruso

    Full Text Available Insulin resistance and Type 2 diabetes are marked by an aberrant response in the insulin signaling network. The phosphoinositide-dependent serine/threonine kinase, Akt2, plays a key role in insulin signaling and glucose uptake, most notably within skeletal muscle. Protein-protein interaction regulates the functional consequence of Akt2 and in turn, Akt2's role in glucose uptake. However, only few insulin-responsive Akt2 interaction partners have been identified in skeletal muscle cells. In the present work, rat L6 myoblasts, a widely used insulin sensitive skeletal muscle cell line, were used to examine endogenous, insulin-stimulated Akt2 protein interaction partners. Akt2 co-immunoprecipitation was coupled with 1D-SDS-PAGE and fractions were analyzed by HPLC-ESI-MS/MS to reveal Akt2 protein-protein interactions. The pull-down assay displayed specificity for the Akt2 isoform; Akt1 and Akt3 unique peptides were not detected. A total of 49 were detected with a significantly increased (47 or decreased (2 association with Akt2 following insulin administration (n = 4; p<0.05. Multiple pathways were identified for the novel Akt2 interaction partners, such as the EIF2 and ubiquitination pathways. These data suggest that multiple new endogenous proteins may associate with Akt2 under basal as well as insulin-stimulated conditions, providing further insight into the insulin signaling network. Data are available via ProteomeXchange with identifier PXD002557.

  19. Plant Proteins Are Smaller Because They Are Encoded by Fewer Exons than Animal Proteins.

    Science.gov (United States)

    Ramírez-Sánchez, Obed; Pérez-Rodríguez, Paulino; Delaye, Luis; Tiessen, Axel

    2016-12-01

    Protein size is an important biochemical feature since longer proteins can harbor more domains and therefore can display more biological functionalities than shorter proteins. We found remarkable differences in protein length, exon structure, and domain count among different phylogenetic lineages. While eukaryotic proteins have an average size of 472 amino acid residues (aa), average protein sizes in plant genomes are smaller than those of animals and fungi. Proteins unique to plants are ∼81aa shorter than plant proteins conserved among other eukaryotic lineages. The smaller average size of plant proteins could neither be explained by endosymbiosis nor subcellular compartmentation nor exon size, but rather due to exon number. Metazoan proteins are encoded on average by ∼10 exons of small size [∼176 nucleotides (nt)]. Streptophyta have on average only ∼5.7 exons of medium size (∼230nt). Multicellular species code for large proteins by increasing the exon number, while most unicellular organisms employ rather larger exons (>400nt). Among subcellular compartments, membrane proteins are the largest (∼520aa), whereas the smallest proteins correspond to the gene ontology group of ribosome (∼240aa). Plant genes are encoded by half the number of exons and also contain fewer domains than animal proteins on average. Interestingly, endosymbiotic proteins that migrated to the plant nucleus became larger than their cyanobacterial orthologs. We thus conclude that plants have proteins larger than bacteria but smaller than animals or fungi. Compared to the average of eukaryotic species, plants have ∼34% more but ∼20% smaller proteins. This suggests that photosynthetic organisms are unique and deserve therefore special attention with regard to the evolutionary forces acting on their genomes and proteomes. Copyright © 2016 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.

  20. Plant Proteins Are Smaller Because They Are Encoded by Fewer Exons than Animal Proteins

    Directory of Open Access Journals (Sweden)

    Obed Ramírez-Sánchez

    2016-12-01

    Full Text Available Protein size is an important biochemical feature since longer proteins can harbor more domains and therefore can display more biological functionalities than shorter proteins. We found remarkable differences in protein length, exon structure, and domain count among different phylogenetic lineages. While eukaryotic proteins have an average size of 472 amino acid residues (aa, average protein sizes in plant genomes are smaller than those of animals and fungi. Proteins unique to plants are ∼81 aa shorter than plant proteins conserved among other eukaryotic lineages. The smaller average size of plant proteins could neither be explained by endosymbiosis nor subcellular compartmentation nor exon size, but rather due to exon number. Metazoan proteins are encoded on average by ∼10 exons of small size [∼176 nucleotides (nt]. Streptophyta have on average only ∼5.7 exons of medium size (∼230 nt. Multicellular species code for large proteins by increasing the exon number, while most unicellular organisms employ rather larger exons (>400 nt. Among subcellular compartments, membrane proteins are the largest (∼520 aa, whereas the smallest proteins correspond to the gene ontology group of ribosome (∼240 aa. Plant genes are encoded by half the number of exons and also contain fewer domains than animal proteins on average. Interestingly, endosymbiotic proteins that migrated to the plant nucleus became larger than their cyanobacterial orthologs. We thus conclude that plants have proteins larger than bacteria but smaller than animals or fungi. Compared to the average of eukaryotic species, plants have ∼34% more but ∼20% smaller proteins. This suggests that photosynthetic organisms are unique and deserve therefore special attention with regard to the evolutionary forces acting on their genomes and proteomes.

  1. Differential proteomic analysis to identify proteins associated with quality traits of frozen mud shrimp (Solenocera melantho) using an iTRAQ-based strategy.

    Science.gov (United States)

    Shi, Jing; Zhang, Longteng; Lei, Yutian; Shen, Huixing; Yu, Xunpei; Luo, Yongkang

    2018-06-15

    An iTRAQ-based strategy was applied to investigate proteome changes in mud shrimp during long-term frozen storage under different conditions. A total of 226 proteins was identified as differential abundance proteins (DAPs) in mud shrimp from two frozen treatment groups (-20 °C and -40 °C) compared with the fresh control group. The proteome changes in mud shrimp muscle stored under -20 °C was much greater than that under -40 °C. Correlation analysis between DAPs and quality traits of mud shrimp muscle showed that 12 proteins were correlated closely with color (L ∗ , a ∗ , and b ∗ value) and texture (hardness, elasticity, and chewiness). Bioinformatic analysis revealed that most of these proteins were involved in protein structure, metabolic enzymes, and protein turnover. Among them, several proteins might be potential protein markers for color, and some proteins are good candidate predictors for textural properties of mud shrimp muscle. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Comparative evaluation of low-molecular-mass proteins from Mycobacterium tuberculosis identifies members of the ESAT-6 family as immunodominant T-cell antigens

    DEFF Research Database (Denmark)

    Skjøt, Rikke L. V.; Oettinger, Thomas; Rosenkrands, Ida

    2000-01-01

    . The molecules were characterized, mapped in a two-dimensional electrophoresis reference map of short-term culture filtrate, and compared with another recently identified low-mass protein, CFP10 (F. X. Berthet, P, B. Rasmussen, I. Rosenkrands, P. Andersen, and B. Gicquel. Microbiology 144:3195-3203, 1998......), and the well-described ESAT-6 antigen. Genetic analyses demonstrated that TB10.4 as well as CFP10 belongs to the ESAT-6 family of low-mass proteins, whereas TB7.3 is a low-molecular-mass protein outside this family. The proteins were expressed in Escherichia coli, and their immunogenicity was tested...

  3. The 1.1 Å resolution structure of a periplasmic phosphate-binding protein from Stenotrophomonas maltophilia: a crystallization contaminant identified by molecular replacement using the entire Protein Data Bank.

    Science.gov (United States)

    Keegan, Ronan; Waterman, David G; Hopper, David J; Coates, Leighton; Taylor, Graham; Guo, Jingxu; Coker, Alun R; Erskine, Peter T; Wood, Steve P; Cooper, Jonathan B

    2016-08-01

    During efforts to crystallize the enzyme 2,4-dihydroxyacetophenone dioxygenase (DAD) from Alcaligenes sp. 4HAP, a small number of strongly diffracting protein crystals were obtained after two years of crystal growth in one condition. The crystals diffracted synchrotron radiation to almost 1.0 Å resolution and were, until recently, assumed to be formed by the DAD protein. However, when another crystal form of this enzyme was eventually solved at lower resolution, molecular replacement using this new structure as the search model did not give a convincing solution with the original atomic resolution data set. Hence, it was considered that these crystals might have arisen from a protein impurity, although molecular replacement using the structures of common crystallization contaminants as search models again failed. A script to perform molecular replacement using MOLREP in which the first chain of every structure in the PDB was used as a search model was run on a multi-core cluster. This identified a number of prokaryotic phosphate-binding proteins as scoring highly in the MOLREP peak lists. Calculation of an electron-density map at 1.1 Å resolution based on the solution obtained with PDB entry 2q9t allowed most of the amino acids to be identified visually and built into the model. A BLAST search then indicated that the molecule was most probably a phosphate-binding protein from Stenotrophomonas maltophilia (UniProt ID B4SL31; gene ID Smal_2208), and fitting of the corresponding sequence to the atomic resolution map fully corroborated this. Proteins in this family have been linked to the virulence of antibiotic-resistant strains of pathogenic bacteria and with biofilm formation. The structure of the S. maltophilia protein has been refined to an R factor of 10.15% and an Rfree of 12.46% at 1.1 Å resolution. The molecule adopts the type II periplasmic binding protein (PBP) fold with a number of extensively elaborated loop regions. A fully dehydrated phosphate

  4. Antibody screening identifies 78 putative host proteins involved in Cyprinid herpesvirus 3 infection or propagation in common carp, Cyprinus carpio L.

    Science.gov (United States)

    Gotesman, M; Soliman, H; El-Matbouli, M

    2014-01-01

    Cyprinid herpesvirus 3 (CyHV-3) is the aetiological agent of a serious and notifiable disease afflicting common and koi carp, Cyprinus carpio L., termed koi herpesvirus disease (KHVD). Significant progress has been achieved in the last 15 years, since the initial reports surfaced from Germany, USA and Israel of the CyHV-3 virus, in terms of pathology and detection. However, relatively few studies have been carried out in understanding viral replication and propagation. Antibody-based affinity has been used for detection of CyHV-3 in enzyme-linked immunosorbent assay and PCR-based techniques, and immunohistological assays have been used to describe a CyHV-3 membrane protein, termed ORF81. In this study, monoclonal antibodies linked to N-hydroxysuccinimide (NHS)-activated spin columns were used to purify CyHV-3 and host proteins from tissue samples originating in either CyHV-3 symptomatic or asymptomatic fish. The samples were next analysed either by polyacrylamide gel electrophoresis (PAGE) and subsequently by electrospray ionization coupled to mass spectrometry (ESI-MS) or by ESI-MS analysis directly after purification. A total of 78 host proteins and five CyHV-3 proteins were identified in the two analyses. These data can be used to develop novel control methods for CyHV-3, based on pathways or proteins identified in this study. PMID:23347276

  5. Structural investigation of ribonuclease A conformational preferences using high pressure protein crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Kurpiewska, Katarzyna, E-mail: kurpiews@chemia.uj.edu.pl [Jagiellonian University, Faculty of Chemistry, Department of Crystal Chemistry and Crystal Physics, Protein Crystallography Group, Ingardena 3, 30-060 Kraków (Poland); Dziubek, Kamil; Katrusiak, Andrzej [Adam Mickiewicz University, Faculty of Chemistry, Department of Materials Chemistry, Umultowska 89b, 61-61 Poznań (Poland); Font, Josep [School of Medical Science, University of Sydney, NSW 2006 (Australia); Ribò, Marc; Vilanova, Maria [Universitat de Girona, Laboratorid’Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Campus de Montilivi, 17071 Girona (Spain); Lewiński, Krzysztof [Jagiellonian University, Faculty of Chemistry, Department of Crystal Chemistry and Crystal Physics, Protein Crystallography Group, Ingardena 3, 30-060 Kraków (Poland)

    2016-04-01

    Highlights: • A unique crystallographic studies of wild-type and mutated form of the same protein under high pressure. • Compressibility of RNase A molecule is significantly affected by a single amino acid substitution. • High pressure protein crystallography helps understanding protein flexibility and identify conformational substrates. - Abstract: Hydrostatic pressure in range 0.1–1.5 GPa is used to modify biological system behaviour mostly in biophysical studies of proteins in solution. Due to specific influence on the system equilibrium high pressure can act as a filter that enables to identify and investigate higher energy protein conformers. The idea of the presented experiments is to examine the behaviour of RNase A molecule under high pressure before and after introduction of destabilizing mutation. For the first time crystal structures of wild-type bovine pancreatic ribonuclease A and its markedly less stable variant modified at position Ile106 were determined at different pressures. X-ray diffraction experiments at high pressure showed that the secondary structure of RNase A is well preserved even beyond 0.67 GPa at room temperature. Detailed structural analysis of ribonuclease A conformation observed under high pressure revealed that pressure influences hydrogen bonds pattern, cavity size and packing of molecule.

  6. Structural investigation of ribonuclease A conformational preferences using high pressure protein crystallography

    International Nuclear Information System (INIS)

    Kurpiewska, Katarzyna; Dziubek, Kamil; Katrusiak, Andrzej; Font, Josep; Ribò, Marc; Vilanova, Maria; Lewiński, Krzysztof

    2016-01-01

    Highlights: • A unique crystallographic studies of wild-type and mutated form of the same protein under high pressure. • Compressibility of RNase A molecule is significantly affected by a single amino acid substitution. • High pressure protein crystallography helps understanding protein flexibility and identify conformational substrates. - Abstract: Hydrostatic pressure in range 0.1–1.5 GPa is used to modify biological system behaviour mostly in biophysical studies of proteins in solution. Due to specific influence on the system equilibrium high pressure can act as a filter that enables to identify and investigate higher energy protein conformers. The idea of the presented experiments is to examine the behaviour of RNase A molecule under high pressure before and after introduction of destabilizing mutation. For the first time crystal structures of wild-type bovine pancreatic ribonuclease A and its markedly less stable variant modified at position Ile106 were determined at different pressures. X-ray diffraction experiments at high pressure showed that the secondary structure of RNase A is well preserved even beyond 0.67 GPa at room temperature. Detailed structural analysis of ribonuclease A conformation observed under high pressure revealed that pressure influences hydrogen bonds pattern, cavity size and packing of molecule.

  7. Prolyl hydroxylation regulates protein degradation, synthesis, and splicing in human induced pluripotent stem cell-derived cardiomyocytes.

    Science.gov (United States)

    Stoehr, Andrea; Yang, Yanqin; Patel, Sajni; Evangelista, Alicia M; Aponte, Angel; Wang, Guanghui; Liu, Poching; Boylston, Jennifer; Kloner, Philip H; Lin, Yongshun; Gucek, Marjan; Zhu, Jun; Murphy, Elizabeth

    2016-06-01

    Protein hydroxylases are oxygen- and α-ketoglutarate-dependent enzymes that catalyse hydroxylation of amino acids such as proline, thus linking oxygen and metabolism to enzymatic activity. Prolyl hydroxylation is a dynamic post-translational modification that regulates protein stability and protein-protein interactions; however, the extent of this modification is largely uncharacterized. The goals of this study are to investigate the biological consequences of prolyl hydroxylation and to identify new targets that undergo prolyl hydroxylation in human cardiomyocytes. We used human induced pluripotent stem cell-derived cardiomyocytes in combination with pulse-chase amino acid labelling and proteomics to analyse the effects of prolyl hydroxylation on protein degradation and synthesis. We identified 167 proteins that exhibit differences in degradation with inhibition of prolyl hydroxylation by dimethyloxalylglycine (DMOG); 164 were stabilized. Proteins involved in RNA splicing such as serine/arginine-rich splicing factor 2 (SRSF2) and splicing factor and proline- and glutamine-rich (SFPQ) were stabilized with DMOG. DMOG also decreased protein translation of cytoskeletal and sarcomeric proteins such as α-cardiac actin. We searched the mass spectrometry data for proline hydroxylation and identified 134 high confidence peptides mapping to 78 unique proteins. We identified SRSF2, SFPQ, α-cardiac actin, and cardiac titin as prolyl hydroxylated. We identified 29 prolyl hydroxylated proteins that showed a significant difference in either protein degradation or synthesis. Additionally, we performed next-generation RNA sequencing and showed that the observed decrease in protein synthesis was not due to changes in mRNA levels. Because RNA splicing factors were prolyl hydroxylated, we investigated splicing ± inhibition of prolyl hydroxylation and detected 369 alternative splicing events, with a preponderance of exon skipping. This study provides the first extensive

  8. Dissection of Ire1 functions reveals stress response mechanisms uniquely evolved in Candida glabrata.

    Directory of Open Access Journals (Sweden)

    Taiga Miyazaki

    2013-01-01

    Full Text Available Proper protein folding in the endoplasmic reticulum (ER is vital in all eukaryotes. When misfolded proteins accumulate in the ER lumen, the transmembrane kinase/endoribonuclease Ire1 initiates splicing of HAC1 mRNA to generate the bZIP transcription factor Hac1, which subsequently activates its target genes to increase the protein-folding capacity of the ER. This cellular machinery, called the unfolded protein response (UPR, is believed to be an evolutionarily conserved mechanism in eukaryotes. In this study, we comprehensively characterized mutant phenotypes of IRE1 and other related genes in the human fungal pathogen Candida glabrata. Unexpectedly, Ire1 was required for the ER stress response independently of Hac1 in this fungus. C. glabrata Ire1 did not cleave mRNAs encoding Hac1 and other bZIP transcription factors identified in the C. glabrata genome. Microarray analysis revealed that the transcriptional response to ER stress is not mediated by Ire1, but instead is dependent largely on calcineurin signaling and partially on the Slt2 MAPK pathway. The loss of Ire1 alone did not confer increased antifungal susceptibility in C. glabrata contrary to UPR-defective mutants in other fungi. Taken together, our results suggest that the canonical Ire1-Hac1 UPR is not conserved in C. glabrata. It is known in metazoans that active Ire1 nonspecifically cleaves and degrades a subset of ER-localized mRNAs to reduce the ER load. Intriguingly, this cellular response could occur in an Ire1 nuclease-dependent fashion in C. glabrata. We also uncovered the attenuated virulence of the C. glabrata Δire1 mutant in a mouse model of disseminated candidiasis. This study has unveiled the unique evolution of ER stress response mechanisms in C. glabrata.

  9. Marginal and happy? The need for uniqueness predicts the adjustment of marginal immigrants.

    Science.gov (United States)

    Debrosse, Régine; de la Sablonnière, Roxane; Rossignac-Milon, Maya

    2015-12-01

    Marginalization is often presented as the strategy associated with the worst adjustment for immigrants. This study identifies a critical variable that buffers marginal immigrants from the negative effects of marginalization on adjustment: The need for uniqueness. In three studies, we surveyed immigrants recruited on university campuses (n = 119, n = 116) and in the field (n = 61). Among marginal immigrants, a higher need for uniqueness predicted higher self-esteem (Study 1), affect (Study 2), and life satisfaction (Study 3), and marginally higher happiness (Study 2) and self-esteem (Study 3). No relationship between the need for uniqueness and adjustment was found among non-marginal immigrants. The adaptive value of the need for uniqueness for marginal immigrants is discussed. © 2015 The British Psychological Society.

  10. HPASubC: A suite of tools for user subclassification of human protein atlas tissue images.

    Science.gov (United States)

    Cornish, Toby C; Chakravarti, Aravinda; Kapoor, Ashish; Halushka, Marc K

    2015-01-01

    The human protein atlas (HPA) is a powerful proteomic tool for visualizing the distribution of protein expression across most human tissues and many common malignancies. The HPA includes immunohistochemically-stained images from tissue microarrays (TMAs) that cover 48 tissue types and 20 common malignancies. The TMA data are used to provide expression information at the tissue, cellular, and occasionally, subcellular level. The HPA also provides subcellular data from confocal immunofluorescence data on three cell lines. Despite the availability of localization data, many unique patterns of cellular and subcellular expression are not documented. To get at this more granular data, we have developed a suite of Python scripts, HPASubC, to aid in subcellular, and cell-type specific classification of HPA images. This method allows the user to download and optimize specific HPA TMA images for review. Then, using a playstation-style video game controller, a trained observer can rapidly step through 10's of 1000's of images to identify patterns of interest. We have successfully used this method to identify 703 endothelial cell (EC) and/or smooth muscle cell (SMCs) specific proteins discovered within 49,200 heart TMA images. This list will assist us in subdividing cardiac gene or protein array data into expression by one of the predominant cell types of the myocardium: Myocytes, SMCs or ECs. The opportunity to further characterize unique staining patterns across a range of human tissues and malignancies will accelerate our understanding of disease processes and point to novel markers for tissue evaluation in surgical pathology.

  11. HPASubC: A suite of tools for user subclassification of human protein atlas tissue images

    Science.gov (United States)

    Cornish, Toby C.; Chakravarti, Aravinda; Kapoor, Ashish; Halushka, Marc K.

    2015-01-01

    Background: The human protein atlas (HPA) is a powerful proteomic tool for visualizing the distribution of protein expression across most human tissues and many common malignancies. The HPA includes immunohistochemically-stained images from tissue microarrays (TMAs) that cover 48 tissue types and 20 common malignancies. The TMA data are used to provide expression information at the tissue, cellular, and occasionally, subcellular level. The HPA also provides subcellular data from confocal immunofluorescence data on three cell lines. Despite the availability of localization data, many unique patterns of cellular and subcellular expression are not documented. Materials and Methods: To get at this more granular data, we have developed a suite of Python scripts, HPASubC, to aid in subcellular, and cell-type specific classification of HPA images. This method allows the user to download and optimize specific HPA TMA images for review. Then, using a playstation-style video game controller, a trained observer can rapidly step through 10's of 1000's of images to identify patterns of interest. Results: We have successfully used this method to identify 703 endothelial cell (EC) and/or smooth muscle cell (SMCs) specific proteins discovered within 49,200 heart TMA images. This list will assist us in subdividing cardiac gene or protein array data into expression by one of the predominant cell types of the myocardium: Myocytes, SMCs or ECs. Conclusions: The opportunity to further characterize unique staining patterns across a range of human tissues and malignancies will accelerate our understanding of disease processes and point to novel markers for tissue evaluation in surgical pathology. PMID:26167380

  12. A simple recipe for the non-expert bioinformaticist for building experimentally-testable hypotheses for proteins with no known homologs

    CSIR Research Space (South Africa)

    Zawaira, A

    2012-12-01

    Full Text Available The study of the protein-protein interactions (PPIs) of unique ORFs is a strategy for deciphering the biological roles of unique ORFs of interest. For uniform reference, we define unique ORFs as those for which no matching protein is found after PDB...

  13. Proteins interacting with cloning scars: a source of false positive protein-protein interactions.

    Science.gov (United States)

    Banks, Charles A S; Boanca, Gina; Lee, Zachary T; Florens, Laurence; Washburn, Michael P

    2015-02-23

    A common approach for exploring the interactome, the network of protein-protein interactions in cells, uses a commercially available ORF library to express affinity tagged bait proteins; these can be expressed in cells and endogenous cellular proteins that copurify with the bait can be identified as putative interacting proteins using mass spectrometry. Control experiments can be used to limit false-positive results, but in many cases, there are still a surprising number of prey proteins that appear to copurify specifically with the bait. Here, we have identified one source of false-positive interactions in such studies. We have found that a combination of: 1) the variable sequence of the C-terminus of the bait with 2) a C-terminal valine "cloning scar" present in a commercially available ORF library, can in some cases create a peptide motif that results in the aberrant co-purification of endogenous cellular proteins. Control experiments may not identify false positives resulting from such artificial motifs, as aberrant binding depends on sequences that vary from one bait to another. It is possible that such cryptic protein binding might occur in other systems using affinity tagged proteins; this study highlights the importance of conducting careful follow-up studies where novel protein-protein interactions are suspected.

  14. Four signature motifs define the first class of structurally related large coiled-coil proteins in plants.

    Directory of Open Access Journals (Sweden)

    Meier Iris

    2002-04-01

    Full Text Available Abstract Background Animal and yeast proteins containing long coiled-coil domains are involved in attaching other proteins to the large, solid-state components of the cell. One subgroup of long coiled-coil proteins are the nuclear lamins, which are involved in attaching chromatin to the nuclear envelope and have recently been implicated in inherited human diseases. In contrast to other eukaryotes, long coiled-coil proteins have been barely investigated in plants. Results We have searched the completed Arabidopsis genome and have identified a family of structurally related long coiled-coil proteins. Filament-like plant proteins (FPP were identified by sequence similarity to a tomato cDNA that encodes a coiled-coil protein which interacts with the nuclear envelope-associated protein, MAF1. The FPP family is defined by four novel unique sequence motifs and by two clusters of long coiled-coil domains separated by a non-coiled-coil linker. All family members are expressed in a variety of Arabidopsis tissues. A homolog sharing the structural features was identified in the monocot rice, indicating conservation among angiosperms. Conclusion Except for myosins, this is the first characterization of a family of long coiled-coil proteins in plants. The tomato homolog of the FPP family binds in a yeast two-hybrid assay to a nuclear envelope-associated protein. This might suggest that FPP family members function in nuclear envelope biology. Because the full Arabidopsis genome does not appear to contain genes for lamins, it is of interest to investigate other long coiled-coil proteins, which might functionally replace lamins in the plant kingdom.

  15. Membrane-associated proteomics of chickpea identifies Sad1/UNC-84 protein (CaSUN1), a novel component of dehydration signaling

    Science.gov (United States)

    Jaiswal, Dinesh Kumar; Mishra, Poonam; Subba, Pratigya; Rathi, Divya; Chakraborty, Subhra; Chakraborty, Niranjan

    2014-02-01

    Dehydration affects almost all the physiological processes including those that result in the accumulation of misfolded proteins in the endoplasmic reticulum (ER), which in turn elicits a highly conserved signaling, the unfolded protein response (UPR). We investigated the dehydration-responsive membrane-associated proteome of a legume, chickpea, by 2-DE coupled with mass spectrometry. A total of 184 protein spots were significantly altered over a dehydration treatment of 120 h. Among the differentially expressed proteins, a non-canonical SUN domain protein, designated CaSUN1 (Cicer arietinum Sad1/UNC-84), was identified. CaSUN1 localized to the nuclear membrane and ER, besides small vacuolar vesicles. The transcripts were downregulated by both abiotic and biotic stresses, but not by abscisic acid treatment. Overexpression of CaSUN1 conferred stress tolerance in transgenic Arabidopsis. Furthermore, functional complementation of the yeast mutant, slp1, could rescue its growth defects. We propose that the function of CaSUN1 in stress response might be regulated via UPR signaling.

  16. Applying the Concept of Peptide Uniqueness to Anti-Polio Vaccination

    Directory of Open Access Journals (Sweden)

    Darja Kanduc

    2015-01-01

    Full Text Available Background. Although rare, adverse events may associate with anti-poliovirus vaccination thus possibly hampering global polio eradication worldwide. Objective. To design peptide-based anti-polio vaccines exempt from potential cross-reactivity risks and possibly able to reduce rare potential adverse events such as the postvaccine paralytic poliomyelitis due to the tendency of the poliovirus genome to mutate. Methods. Proteins from poliovirus type 1, strain Mahoney, were analyzed for amino acid sequence identity to the human proteome at the pentapeptide level, searching for sequences that (1 have zero percent of identity to human proteins, (2 are potentially endowed with an immunologic potential, and (3 are highly conserved among poliovirus strains. Results. Sequence analyses produced a set of consensus epitopic peptides potentially able to generate specific anti-polio immune responses exempt from cross-reactivity with the human host. Conclusion. Peptide sequences unique to poliovirus proteins and conserved among polio strains might help formulate a specific and universal anti-polio vaccine able to react with multiple viral strains and exempt from the burden of possible cross-reactions with human proteins. As an additional advantage, using a peptide-based vaccine instead of current anti-polio DNA vaccines would eliminate the rare post-polio poliomyelitis cases and other disabling symptoms that may appear following vaccination.

  17. Applying the Concept of Peptide Uniqueness to Anti-Polio Vaccination.

    Science.gov (United States)

    Kanduc, Darja; Fasano, Candida; Capone, Giovanni; Pesce Delfino, Antonella; Calabrò, Michele; Polimeno, Lorenzo

    2015-01-01

    Although rare, adverse events may associate with anti-poliovirus vaccination thus possibly hampering global polio eradication worldwide. To design peptide-based anti-polio vaccines exempt from potential cross-reactivity risks and possibly able to reduce rare potential adverse events such as the postvaccine paralytic poliomyelitis due to the tendency of the poliovirus genome to mutate. Proteins from poliovirus type 1, strain Mahoney, were analyzed for amino acid sequence identity to the human proteome at the pentapeptide level, searching for sequences that (1) have zero percent of identity to human proteins, (2) are potentially endowed with an immunologic potential, and (3) are highly conserved among poliovirus strains. Sequence analyses produced a set of consensus epitopic peptides potentially able to generate specific anti-polio immune responses exempt from cross-reactivity with the human host. Peptide sequences unique to poliovirus proteins and conserved among polio strains might help formulate a specific and universal anti-polio vaccine able to react with multiple viral strains and exempt from the burden of possible cross-reactions with human proteins. As an additional advantage, using a peptide-based vaccine instead of current anti-polio DNA vaccines would eliminate the rare post-polio poliomyelitis cases and other disabling symptoms that may appear following vaccination.

  18. Intracellular Transport and Kinesin Superfamily Proteins: Structure, Function and Dynamics

    Science.gov (United States)

    Hirokawa, N.; Takemura, R.

    Using various molecular cell biological and molecular genetic approaches, we identified kinesin superfamily proteins (KIFs) and characterized their significant functions in intracellular transport, which is fundamental for cellular morphogenesis, functioning, and survival. We showed that KIFs not only transport various membranous organelles, proteins complexes and mRNAs fundamental for cellular functions but also play significant roles in higher brain functions such as memory and learning, determination of important developmental processes such as left-right asymmetry formation and brain wiring. We also elucidated that KIFs recognize and bind to their specific cargoes using scaffolding or adaptor protein complexes. Concerning the mechanism of motility, we discovered the simplest unique monomeric motor KIF1A and determined by molecular biophysics, cryoelectron microscopy and X-ray crystallography that KIF1A can move on a microtubule processively as a monomer by biased Brownian motion and by hydolyzing ATP.

  19. Juvenile Hormone Prevents 20-Hydroxyecdysone-induced Metamorphosis by Regulating the Phosphorylation of a Newly Identified Broad Protein*

    Science.gov (United States)

    Cai, Mei-Juan; Liu, Wen; Pei, Xu-Yang; Li, Xiang-Ru; He, Hong-Juan; Wang, Jin-Xing; Zhao, Xiao-Fan

    2014-01-01

    The steroid hormone 20-hydroxyecdysone (20E) initiates insect molting and metamorphosis. By contrast, juvenile hormone (JH) prevents metamorphosis. However, the mechanism by which JH inhibits metamorphosis remains unclear. In this study, we propose that JH induces the phosphorylation of Broad isoform Z7 (BrZ7), a newly identified protein, to inhibit 20E-mediated metamorphosis in the lepidopteran insect Helicoverpa armigera. The knockdown of BrZ7 in larvae inhibited metamorphosis by repressing the expression of the 20E response gene. BrZ7 was weakly expressed and phosphorylated during larval growth but highly expressed and non-phosphorylated during metamorphosis. JH regulated the rapid phosphorylation of BrZ7 via a G-protein-coupled receptor-, phospholipase C-, and protein kinase C-triggered pathway. The phosphorylated BrZ7 bound to the 5′-regulatory region of calponin to regulate its expression in the JH pathway. Exogenous JH induced BrZ7 phosphorylation to prevent metamorphosis by suppressing 20E-related gene transcription. JH promoted non-phosphorylated calponin interacting with ultraspiracle protein to activate the JH pathway and antagonize the 20E pathway. This study reveals one of the possible mechanisms by which JH counteracts 20E-regulated metamorphosis by inducing the phosphorylation of BrZ7. PMID:25096576

  20. Unique in vitro and in vivo thrombopoietic activities of ingenol 3,20 dibenzoate, a Ca(++-independent protein kinase C isoform agonist.

    Directory of Open Access Journals (Sweden)

    Frederick K Racke

    Full Text Available Thrombopoiesis following severe bone marrow injury frequently is delayed, thereby resulting in life-threatening thrombocytopenia for which there are limited treatment options. The reasons for these delays in recovery are not well understood. Protein kinase C (PKC agonists promote megakaryocyte differentiation in leukemia cell lines and primary cells. However, little is known about the megakaryopoietic effects of PKC agonists on primary CD34+ cells grown in culture or in vivo. Here we present evidence that the novel PKC isoform-selective agonist 3,20 ingenol dibenzoate (IDB potently stimulates early megakaryopoiesis of human CD34+ cells. In contrast, broad spectrum PKC agonists failed to do so. In vivo, a single intraperitoneal injection of IDB selectively increased platelets in mice without affecting hemoglobin or white counts. Finally, IDB strongly mitigated radiation-induced thrombocytopenia, even when administered 24 hours after irradiation. Our data demonstrate that novel PKC isoform agonists such as IDB may represent a unique therapeutic strategy for accelerating the recovery of platelet counts following severe marrow injury.

  1. An effective approach for annotation of protein families with low sequence similarity and conserved motifs: identifying GDSL hydrolases across the plant kingdom.

    Science.gov (United States)

    Vujaklija, Ivan; Bielen, Ana; Paradžik, Tina; Biđin, Siniša; Goldstein, Pavle; Vujaklija, Dušica

    2016-02-18

    The massive accumulation of protein sequences arising from the rapid development of high-throughput sequencing, coupled with automatic annotation, results in high levels of incorrect annotations. In this study, we describe an approach to decrease annotation errors of protein families characterized by low overall sequence similarity. The GDSL lipolytic family comprises proteins with multifunctional properties and high potential for pharmaceutical and industrial applications. The number of proteins assigned to this family has increased rapidly over the last few years. In particular, the natural abundance of GDSL enzymes reported recently in plants indicates that they could be a good source of novel GDSL enzymes. We noticed that a significant proportion of annotated sequences lack specific GDSL motif(s) or catalytic residue(s). Here, we applied motif-based sequence analyses to identify enzymes possessing conserved GDSL motifs in selected proteomes across the plant kingdom. Motif-based HMM scanning (Viterbi decoding-VD and posterior decoding-PD) and the here described PD/VD protocol were successfully applied on 12 selected plant proteomes to identify sequences with GDSL motifs. A significant number of identified GDSL sequences were novel. Moreover, our scanning approach successfully detected protein sequences lacking at least one of the essential motifs (171/820) annotated by Pfam profile search (PfamA) as GDSL. Based on these analyses we provide a curated list of GDSL enzymes from the selected plants. CLANS clustering and phylogenetic analysis helped us to gain a better insight into the evolutionary relationship of all identified GDSL sequences. Three novel GDSL subfamilies as well as unreported variations in GDSL motifs were discovered in this study. In addition, analyses of selected proteomes showed a remarkable expansion of GDSL enzymes in the lycophyte, Selaginella moellendorffii. Finally, we provide a general motif-HMM scanner which is easily accessible through

  2. Differential proteomics analysis to identify proteins and pathways associated with male sterility of soybean using iTRAQ-based strategy.

    Science.gov (United States)

    Li, Jiajia; Ding, Xianlong; Han, Shaohuai; He, Tingting; Zhang, Hao; Yang, Longshu; Yang, Shouping; Gai, Junyi

    2016-04-14

    To further elucidate the molecular mechanism of cytoplasmic male sterility (CMS) in soybean, a differential proteomic analysis was completed between the CMS line NJCMS1A and its maintainer NJCMS1B using iTRAQ-based strategy. As a result, 180 differential abundance proteins (DAPs) were identified, of which, 60 were down-regulated and 120 were up-regulated in NJCMS1A compared with NJCMS1B. Bioinformatic analysis showed that 167 DAPs were annotated in 41 Gene Ontology functional groups, 106 DAPs were classified into 20 clusters of orthologous groups of protein categories, and 128 DAPs were enrichment in 53 KEGG pathways. Fifteen differential level proteins/genes with the same expression pattern were identified in the further conjoint analysis of DAPs and the previously reported differential expression genes. Moreover, multiple reaction monitoring test, qRT-PCR analysis and enzyme activity assay validated that the iTRAQ results were reliable. Based on functional analysis of DAPs, we concluded that male sterility in NJCMS1A might be related to insufficiencies in energy supply, unbalance of protein synthesis and degradation, disruption of flavonoid synthesis, programmed cell death, abnormalities of substance metabolism, etc. These results might facilitate our understanding of the molecular mechanisms behind CMS in soybean. Soybean is an important global crop that provides protein and oil. Heterosis is a significantly potential approach to increase the yield of soybean. Cytoplasmic male sterility (CMS) plays a vital role in the production of hybrid seeds. However, the genetic and molecular mechanisms of male sterility in soybean still need to be further elucidated. In the present paper, a differential proteomic analysis was carried out and the results showed that several key proteins involved in key pathways were associated with male sterility in soybean. This work provides a new insight to understand the genetic and molecular mechanisms underlying CMS in soybean

  3. Comparison of secretory signal peptides for heterologous protein expression in microalgae: Expanding the secretion portfolio for Chlamydomonas reinhardtii.

    Directory of Open Access Journals (Sweden)

    João Vitor Dutra Molino

    Full Text Available Efficient protein secretion is a desirable trait for any recombinant protein expression system, together with simple, low-cost, and defined media, such as the typical media used for photosynthetic cultures of microalgae. However, low titers of secreted heterologous proteins are usually obtained, even with the most extensively studied microalga Chlamydomonas reinhardtii, preventing their industrial application. In this study, we aimed to expand and evaluate secretory signal peptides (SP for heterologous protein secretion in C. reinhardtii by comparing previously described SP with untested sequences. We compared the SPs from arylsulfatase 1 and carbonic anhydrase 1, with those of untried SPs from binding protein 1, an ice-binding protein, and six sequences identified in silico. We identified over 2000 unique SPs using the SignalP 4.0 software. mCherry fluorescence was used to compare the protein secretion of up to 96 colonies for each construct, non-secretion construct, and parental wild-type cc1690 cells. Supernatant fluorescence varied according to the SP used, with a 10-fold difference observed between the highest and lowest secretors. Moreover, two SPs identified in silico secreted the highest amount of mCherry. Our results demonstrate that the SP should be carefully selected and that efficient sequences can be coded in the C. reinhardtii genome. The SPs described here expand the portfolio available for research on heterologous protein secretion and for biomanufacturing applications.

  4. Border patrol: insights into the unique role of perlecan/heparan sulfate proteoglycan 2 at cell and tissue borders.

    Science.gov (United States)

    Farach-Carson, Mary C; Warren, Curtis R; Harrington, Daniel A; Carson, Daniel D

    2014-02-01

    The extracellular matrix proteoglycan (ECM) perlecan, also known as heparan sulfate proteoglycan 2 or HSPG2, is one of the largest (>200 nm) and oldest (>550 M years) extracellular matrix molecules. In vertebrates, perlecan's five-domain structure contains numerous independently folding modules with sequence similarities to other ECM proteins, all connected like cars into one long, diverse complex train following a unique N-terminal domain I decorated with three long glycosaminoglycan chains, and an additional glycosaminoglycan attachment site in the C-terminal domain V. In lower invertebrates, perlecan is not typically a proteoglycan, possessing the majority of the core protein modules, but lacking domain I where the attachment sites for glycosaminoglycan chains are located. This suggests that uniting the heparan sulfate binding growth factor functions of domain I and the core protein functions of the rest of the molecule in domains II-V occurred later in evolution for a new functional purpose. In this review, we surveyed several decades of pertinent literature to ask a fundamental question: Why did nature design this protein uniquely as an extraordinarily long multifunctional proteoglycan with a single promoter regulating expression, rather than separating these functions into individual proteins that could be independently regulated? We arrived at the conclusion that the concentration of perlecan at functional borders separating tissues and tissue layers is an ancient key function of the core protein. The addition of the heparan sulfate chains in domain I likely occurred as an additional means of binding the core protein to other ECM proteins in territorial matrices and basement membranes, and as a means to reserve growth factors in an on-site depot to assist with rapid repair of those borders when compromised, such as would occur during wounding. We propose a function for perlecan that extends its role from that of an extracellular scaffold, as we previously

  5. Near Identifiability of Dynamical Systems

    Science.gov (United States)

    Hadaegh, F. Y.; Bekey, G. A.

    1987-01-01

    Concepts regarding approximate mathematical models treated rigorously. Paper presents new results in analysis of structural identifiability, equivalence, and near equivalence between mathematical models and physical processes they represent. Helps establish rigorous mathematical basis for concepts related to structural identifiability and equivalence revealing fundamental requirements, tacit assumptions, and sources of error. "Structural identifiability," as used by workers in this field, loosely translates as meaning ability to specify unique mathematical model and set of model parameters that accurately predict behavior of corresponding physical system.

  6. Human-Chromatin-Related Protein Interactions Identify a Demethylase Complex Required for Chromosome Segregation

    Directory of Open Access Journals (Sweden)

    Edyta Marcon

    2014-07-01

    Full Text Available Chromatin regulation is driven by multicomponent protein complexes, which form functional modules. Deciphering the components of these modules and their interactions is central to understanding the molecular pathways these proteins are regulating, their functions, and their relation to both normal development and disease. We describe the use of affinity purifications of tagged human proteins coupled with mass spectrometry to generate a protein-protein interaction map encompassing known and predicted chromatin-related proteins. On the basis of 1,394 successful purifications of 293 proteins, we report a high-confidence (85% precision network involving 11,464 protein-protein interactions among 1,738 different human proteins, grouped into 164 often overlapping protein complexes with a particular focus on the family of JmjC-containing lysine demethylases, their partners, and their roles in chromatin remodeling. We show that RCCD1 is a partner of histone H3K36 demethylase KDM8 and demonstrate that both are important for cell-cycle-regulated transcriptional repression in centromeric regions and accurate mitotic division.

  7. Uniquely Strongly Clean Group Rings

    Institute of Scientific and Technical Information of China (English)

    WANG XIU-LAN

    2012-01-01

    A ring R is called clean if every element is the sum of an idempotent and a unit,and R is called uniquely strongly clean (USC for short) if every element is uniquely the sum of an idempotent and a unit that commute.In this article,some conditions on a ring R and a group G such that RG is clean are given.It is also shown that if G is a locally finite group,then the group ring RG is USC if and only if R is USC,and G is a 2-group.The left uniquely exchange group ring,as a middle ring of the uniquely clean ring and the USC ring,does not possess this property,and so does the uniquely exchange group ring.

  8. Identification and analysis of potential targets in Streptococcus sanguinis using computer aided protein data analysis.

    Science.gov (United States)

    Chowdhury, Md Rabiul Hossain; Bhuiyan, Md IqbalKaiser; Saha, Ayan; Mosleh, Ivan Mhai; Mondol, Sobuj; Ahmed, C M Sabbir

    2014-01-01

    Streptococcus sanguinis is a Gram-positive, facultative aerobic bacterium that is a member of the viridans streptococcus group. It is found in human mouths in dental plaque, which accounts for both dental cavities and bacterial endocarditis, and which entails a mortality rate of 25%. Although a range of remedial mediators have been found to control this organism, the effectiveness of agents such as penicillin, amoxicillin, trimethoprim-sulfamethoxazole, and erythromycin, was observed. The emphasis of this investigation was on finding substitute and efficient remedial approaches for the total destruction of this bacterium. In this computational study, various databases and online software were used to ascertain some specific targets of S. sanguinis. Particularly, the Kyoto Encyclopedia of Genes and Genomes databases were applied to determine human nonhomologous proteins, as well as the metabolic pathways involved with those proteins. Different software such as Phyre2, CastP, DoGSiteScorer, the Protein Function Predictor server, and STRING were utilized to evaluate the probable active drug binding site with its known function and protein-protein interaction. In this study, among 218 essential proteins of this pathogenic bacterium, 81 nonhomologous proteins were accrued, and 15 proteins that are unique in several metabolic pathways of S. sanguinis were isolated through metabolic pathway analysis. Furthermore, four essentially membrane-bound unique proteins that are involved in distinct metabolic pathways were revealed by this research. Active sites and druggable pockets of these selected proteins were investigated with bioinformatic techniques. In addition, this study also mentions the activity of those proteins, as well as their interactions with the other proteins. Our findings helped to identify the type of protein to be considered as an efficient drug target. This study will pave the way for researchers to develop and discover more effective and specific

  9. Methanophosphagen: Unique cyclic pyrophosphate isolated from Methanobacterium thermoautotrophicum

    OpenAIRE

    Kanodia, Sushila; Roberts, Mary Fedarko

    1983-01-01

    A unique cyclic pyrophosphate compound has been detected at 10-12 mM intracellular concentration in Methanobacterium thermoautotrophicum by in vivo31P NMR. This compound has been extracted from cells and purified by anion-exchange chromatography. Studies with 1H, 13C, and 31P NMR and fast-atom-bombardment mass spectrometry have identified it as 2,3-cyclopyrophosphoglycerate, an intramolecularly cyclized pyrophosphate of 2,3-diphosphoglycerate. Chemical degradation to 2,3-diphosphoglycerate an...

  10. Common and unique elements of the ABA-regulated transcriptome of Arabidopsis guard cells

    Directory of Open Access Journals (Sweden)

    Zhao Zhixin

    2011-05-01

    Full Text Available Abstract Background In the presence of drought and other desiccating stresses, plants synthesize and redistribute the phytohormone abscisic acid (ABA. ABA promotes plant water conservation by acting on specialized cells in the leaf epidermis, guard cells, which border and regulate the apertures of stomatal pores through which transpirational water loss occurs. Following ABA exposure, solute uptake into guard cells is rapidly inhibited and solute loss is promoted, resulting in inhibition of stomatal opening and promotion of stomatal closure, with consequent plant water conservation. There is a wealth of information on the guard cell signaling mechanisms underlying these rapid ABA responses. To investigate ABA regulation of gene expression in guard cells in a systematic genome-wide manner, we analyzed data from global transcriptomes of guard cells generated with Affymetrix ATH1 microarrays, and compared these results to ABA regulation of gene expression in leaves and other tissues. Results The 1173 ABA-regulated genes of guard cells identified by our study share significant overlap with ABA-regulated genes of other tissues, and are associated with well-defined ABA-related promoter motifs such as ABREs and DREs. However, we also computationally identified a unique cis-acting motif, GTCGG, associated with ABA-induction of gene expression specifically in guard cells. In addition, approximately 300 genes showing ABA-regulation unique to this cell type were newly uncovered by our study. Within the ABA-regulated gene set of guard cells, we found that many of the genes known to encode ion transporters associated with stomatal opening are down-regulated by ABA, providing one mechanism for long-term maintenance of stomatal closure during drought. We also found examples of both negative and positive feedback in the transcriptional regulation by ABA of known ABA-signaling genes, particularly with regard to the PYR/PYL/RCAR class of soluble ABA receptors and

  11. Common and unique elements of the ABA-regulated transcriptome of Arabidopsis guard cells

    Science.gov (United States)

    2011-01-01

    Background In the presence of drought and other desiccating stresses, plants synthesize and redistribute the phytohormone abscisic acid (ABA). ABA promotes plant water conservation by acting on specialized cells in the leaf epidermis, guard cells, which border and regulate the apertures of stomatal pores through which transpirational water loss occurs. Following ABA exposure, solute uptake into guard cells is rapidly inhibited and solute loss is promoted, resulting in inhibition of stomatal opening and promotion of stomatal closure, with consequent plant water conservation. There is a wealth of information on the guard cell signaling mechanisms underlying these rapid ABA responses. To investigate ABA regulation of gene expression in guard cells in a systematic genome-wide manner, we analyzed data from global transcriptomes of guard cells generated with Affymetrix ATH1 microarrays, and compared these results to ABA regulation of gene expression in leaves and other tissues. Results The 1173 ABA-regulated genes of guard cells identified by our study share significant overlap with ABA-regulated genes of other tissues, and are associated with well-defined ABA-related promoter motifs such as ABREs and DREs. However, we also computationally identified a unique cis-acting motif, GTCGG, associated with ABA-induction of gene expression specifically in guard cells. In addition, approximately 300 genes showing ABA-regulation unique to this cell type were newly uncovered by our study. Within the ABA-regulated gene set of guard cells, we found that many of the genes known to encode ion transporters associated with stomatal opening are down-regulated by ABA, providing one mechanism for long-term maintenance of stomatal closure during drought. We also found examples of both negative and positive feedback in the transcriptional regulation by ABA of known ABA-signaling genes, particularly with regard to the PYR/PYL/RCAR class of soluble ABA receptors and their downstream targets

  12. Genetic interactions of MAF1 identify a role for Med20 in transcriptional repression of ribosomal protein genes.

    Directory of Open Access Journals (Sweden)

    Ian M Willis

    2008-07-01

    Full Text Available Transcriptional repression of ribosomal components and tRNAs is coordinately regulated in response to a wide variety of environmental stresses. Part of this response involves the convergence of different nutritional and stress signaling pathways on Maf1, a protein that is essential for repressing transcription by RNA polymerase (pol III in Saccharomyces cerevisiae. Here we identify the functions buffering yeast cells that are unable to down-regulate transcription by RNA pol III. MAF1 genetic interactions identified in screens of non-essential gene-deletions and conditionally expressed essential genes reveal a highly interconnected network of 64 genes involved in ribosome biogenesis, RNA pol II transcription, tRNA modification, ubiquitin-dependent proteolysis and other processes. A survey of non-essential MAF1 synthetic sick/lethal (SSL genes identified six gene-deletions that are defective in transcriptional repression of ribosomal protein (RP genes following rapamycin treatment. This subset of MAF1 SSL genes included MED20 which encodes a head module subunit of the RNA pol II Mediator complex. Genetic interactions between MAF1 and subunits in each structural module of Mediator were investigated to examine the functional relationship between these transcriptional regulators. Gene expression profiling identified a prominent and highly selective role for Med20 in the repression of RP gene transcription under multiple conditions. In addition, attenuated repression of RP genes by rapamycin was observed in a strain deleted for the Mediator tail module subunit Med16. The data suggest that Mediator and Maf1 function in parallel pathways to negatively regulate RP mRNA and tRNA synthesis.

  13. Chloroplast Chaperonin: An Intricate Protein Folding Machine for Photosynthesis

    Directory of Open Access Journals (Sweden)

    Qian Zhao

    2018-01-01

    Full Text Available Group I chaperonins are large cylindrical-shaped nano-machines that function as a central hub in the protein quality control system in the bacterial cytosol, mitochondria and chloroplasts. In chloroplasts, proteins newly synthesized by chloroplast ribosomes, unfolded by diverse stresses, or translocated from the cytosol run the risk of aberrant folding and aggregation. The chloroplast chaperonin system assists these proteins in folding into their native states. A widely known protein folded by chloroplast chaperonin is the large subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco, an enzyme responsible for the fixation of inorganic CO2 into organic carbohydrates during photosynthesis. Chloroplast chaperonin was initially identified as a Rubisco-binding protein. All photosynthetic eucaryotes genomes encode multiple chaperonin genes which can be divided into α and β subtypes. Unlike the homo-oligomeric chaperonins from bacteria and mitochondria, chloroplast chaperonins are more complex and exists as intricate hetero-oligomers containing both subtypes. The Group I chaperonin requires proper interaction with a detachable lid-like co-chaperonin in the presence of ATP and Mg2+ for substrate encapsulation and conformational transition. Besides the typical Cpn10-like co-chaperonin, a unique co-chaperonin consisting of two tandem Cpn10-like domains joined head-to-tail exists in chloroplasts. Since chloroplasts were proposed as sensors to various environmental stresses, this diversified chloroplast chaperonin system has the potential to adapt to complex conditions by accommodating specific substrates or through regulation at both the transcriptional and post-translational levels. In this review, we discuss recent progress on the unique structure and function of the chloroplast chaperonin system based on model organisms Chlamydomonas reinhardtii and Arabidopsis thaliana. Knowledge of the chloroplast chaperonin system may ultimately lead

  14. Differential expression profiling of membrane proteins by quantitative proteomics in a human mesenchymal stem cell line undergoing osteoblast differentiation

    DEFF Research Database (Denmark)

    Foster, Leonard J; Zeemann, Patricia A; Li, Chen

    2005-01-01

    in a cell model of hMSCs established by overexpression of human telomerase reverse-transcriptase gene. We identified 463 unique proteins with extremely high confidence, including all known markers of hMSCs (e.g., SH3 [CD71], SH2 [CD105], CD166, CD44, Thy1, CD29, and HOP26 [CD63]) among 148 integral membrane...

  15. Protein profiling of the dimorphic, pathogenic fungus, Penicillium marneffei

    Directory of Open Access Journals (Sweden)

    Rundle William T

    2008-06-01

    Full Text Available Abstract Background Penicillium marneffei is a pathogenic fungus that afflicts immunocompromised individuals having lived or traveled in Southeast Asia. This species is unique in that it is the only dimorphic member of the genus. Dimorphism results from a process, termed phase transition, which is regulated by temperature of incubation. At room temperature, the fungus grows filamentously (mould phase, but at body temperature (37°C, a uninucleate yeast form develops that reproduces by fission. Formation of the yeast phase appears to be a requisite for pathogenicity. To date, no genes have been identified in P. marneffei that strictly induce mould-to-yeast phase conversion. In an effort to help identify potential gene products associated with morphogenesis, protein profiles were generated from the yeast and mould phases of P. marneffei. Results Whole cell proteins from the early stages of mould and yeast development in P. marneffei were resolved by two-dimensional gel electrophoresis. Selected proteins were recovered and sequenced by capillary-liquid chromatography-nanospray tandem mass spectrometry. Putative identifications were derived by searching available databases for homologous fungal sequences. Proteins found common to both mould and yeast phases included the signal transduction proteins cyclophilin and a RACK1-like ortholog, as well as those related to general metabolism, energy production, and protection from oxygen radicals. Many of the mould-specific proteins identified possessed similar functions. By comparison, proteins exhibiting increased expression during development of the parasitic yeast phase comprised those involved in heat-shock responses, general metabolism, and cell-wall biosynthesis, as well as a small GTPase that regulates nuclear membrane transport and mitotic processes in fungi. The cognate gene encoding the latter protein, designated RanA, was subsequently cloned and characterized. The P. marneffei RanA protein

  16. Molecular and clinical diversity in paraneoplastic immunity to Ma proteins.

    Science.gov (United States)

    Rosenfeld, M R; Eichen, J G; Wade, D F; Posner, J B; Dalmau, J

    2001-09-01

    Antibodies to Ma1 and Ma2 proteins identify a paraneoplastic disorder that affects the limbic system, brain stem, and cerebellum. Preliminary studies suggested the existence of other Ma proteins and different patterns of immune response associated with distinct neurologic symptoms and cancers. In this study, our aim was to isolate the full-length sequence of Ma2 and new family members, identify the major autoantigen of the disorder, and extend the dinical-immunological analysis to 29 patients. Sera from selected patients were used to probe a brainstem cDNA library and isolate the entire Ma2 gene and a new family member, Ma3. Ma3 mRNA is ubiquitously expressed in brain, testis, and several systemic tissues. The variable cellular expression of Ma proteins and analysis of protein motifs suggest that these proteins play roles in the biogenesis of mRNA. Immunoblot studies identify Ma2 as the major autoantigen with unique epitopes recognized by all patients' sera. Eighteen patients had antibodies limited to Ma2: they developed limbic, hypothalamic, and brainstem encephalitis, and 78% had germ-cell tumors of the testis. Eleven patients had antibodies to Ma2 and additional antibodies to Ma1 and/or Ma3; they usually developed additional cerebellar symptoms and more intense brainstem dysfunction, and 82% of these patients had tumors other than germ-cell neoplasms. Overall, 17 of 24 patients (71%) with brain magnetic resonance imaging studies had abnormalities within or outside the temporal lobes, some as contrast-enhancing nodular lesions. A remarkable finding of immunity to Ma proteins is that neurologic symptoms may improve or resolve. This improvement segregated to a group of patients with antibodies limited to Ma2.

  17. Identification and characterization of proteins involved in nuclear organization using Drosophila GFP protein trap lines.

    Directory of Open Access Journals (Sweden)

    Margaret Rohrbaugh

    Full Text Available Strains from a collection of Drosophila GFP protein trap lines express GFP in the normal tissues where the endogenous protein is present. This collection can be used to screen for proteins distributed in the nucleus in a non-uniform pattern.We analyzed four lines that show peripheral or punctate nuclear staining. One of these lines affects an uncharacterized gene named CG11138. The CG11138 protein shows a punctate distribution in the nuclear periphery similar to that of Drosophila insulator proteins but does not co-localize with known insulators. Interestingly, mutations in Lamin proteins result in alterations in CG11138 localization, suggesting that this protein may be a novel component of the nuclear lamina. A second line affects the Decondensation factor 31 (Df31 gene, which encodes a protein with a unique nuclear distribution that appears to segment the nucleus into four different compartments. The X-chromosome of males is confined to one of these compartments. We also find that Drosophila Nucleoplasmin (dNlp is present in regions of active transcription. Heat shock leads to loss of dNlp from previously transcribed regions of polytene chromosome without redistribution to the heat shock genes. Analysis of Stonewall (Stwl, a protein previously found to be necessary for the maintenance of germline stem cells, shows that Stwl is present in a punctate pattern in the nucleus that partially overlaps with that of known insulator proteins. Finally we show that Stwl, dNlp, and Df31 form part of a highly interactive network. The properties of other components of this network may help understand the role of these proteins in nuclear biology.These results establish screening of GFP protein trap alleles as a strategy to identify factors with novel cellular functions. Information gained from the analysis of CG11138 Stwl, dNlp, and Df31 sets the stage for future studies of these proteins.

  18. PUTATIVE CREATINE KINASE M-ISOFORM IN HUMAN SPERM IS IDENTIFIED AS THE 70-KILODALTON HEAT SHOCK PROTEIN HSPA2

    Science.gov (United States)

    THE PUTATIVE CREATINE KINASE M-ISOFORM IN HUMAN SPERM IS IDENTIFIED AS THE 70 kDa HEAT SHOCK PROTEIN HSPA2* Gabor Huszar1, Kathryn Stone2, David Dix3 and Lynne Vigue11The Sperm Physiology Laboratory, Department of Obstetrics and Gynecology, 2 W.M. Keck Foundatio...

  19. A FRET-based high throughput screening assay to identify inhibitors of anthrax protective antigen binding to capillary morphogenesis gene 2 protein.

    Directory of Open Access Journals (Sweden)

    Michael S Rogers

    Full Text Available Anti-angiogenic therapies are effective for the treatment of cancer, a variety of ocular diseases, and have potential benefits in cardiovascular disease, arthritis, and psoriasis. We have previously shown that anthrax protective antigen (PA, a non-pathogenic component of anthrax toxin, is an inhibitor of angiogenesis, apparently as a result of interaction with the cell surface receptors capillary morphogenesis gene 2 (CMG2 protein and tumor endothelial marker 8 (TEM8. Hence, molecules that bind the anthrax toxin receptors may be effective to slow or halt pathological vascular growth. Here we describe development and testing of an effective homogeneous steady-state fluorescence resonance energy transfer (FRET high throughput screening assay designed to identify molecules that inhibit binding of PA to CMG2. Molecules identified in the screen can serve as potential lead compounds for the development of anti-angiogenic and anti-anthrax therapies. The assay to screen for inhibitors of this protein-protein interaction is sensitive and robust, with observed Z' values as high as 0.92. Preliminary screens conducted with a library of known bioactive compounds identified tannic acid and cisplatin as inhibitors of the PA-CMG2 interaction. We have confirmed that tannic acid both binds CMG2 and has anti-endothelial properties. In contrast, cisplatin appears to inhibit PA-CMG2 interaction by binding both PA and CMG2, and observed cisplatin anti-angiogenic effects are not mediated by interaction with CMG2. This work represents the first reported high throughput screening assay targeting CMG2 to identify possible inhibitors of both angiogenesis and anthrax intoxication.

  20. Biospectroscopy of Nanodiamond-Induced Alterations in Conformation of Intra- and Extracellular Proteins: A Nanoscale IR Study.

    Science.gov (United States)

    Khanal, Dipesh; Kondyurin, Alexey; Hau, Herman; Knowles, Jonathan C; Levinson, Olga; Ramzan, Iqbal; Fu, Dong; Marcott, Curtis; Chrzanowski, Wojciech

    2016-08-02

    The toxicity of nanomaterials raises major concerns because of the impact that nanomaterials may have on health, which remains poorly understood. We need to explore the fate of individual nanoparticles in cells at nano and molecular levels to establish their safety. Conformational changes in secondary protein structures are one of the main indicators of impaired biological function, and hence, the ability to identify these changes at a nanoscale level offers unique insights into the nanotoxicity of materials. Here, we used nanoscale infrared spectroscopy and demonstrated for the first time that nanodiamond-induced alterations in both extra- and intracellular secondary protein structures lead to the formation of antiparallel β-sheet, β-turns, intermolecular β-sheet, and aggregation of proteins. These conformational changes of the protein structure may result in the loss of functionality of proteins and in turn lead to adverse effects.

  1. Identification and analysis of potential targets in Streptococcus sanguinis using computer aided protein data analysis

    Science.gov (United States)

    Chowdhury, Md Rabiul Hossain; Bhuiyan, Md IqbalKaiser; Saha, Ayan; Mosleh, Ivan MHAI; Mondol, Sobuj; Ahmed, C M Sabbir

    2014-01-01

    Purpose Streptococcus sanguinis is a Gram-positive, facultative aerobic bacterium that is a member of the viridans streptococcus group. It is found in human mouths in dental plaque, which accounts for both dental cavities and bacterial endocarditis, and which entails a mortality rate of 25%. Although a range of remedial mediators have been found to control this organism, the effectiveness of agents such as penicillin, amoxicillin, trimethoprim–sulfamethoxazole, and erythromycin, was observed. The emphasis of this investigation was on finding substitute and efficient remedial approaches for the total destruction of this bacterium. Materials and methods In this computational study, various databases and online software were used to ascertain some specific targets of S. sanguinis. Particularly, the Kyoto Encyclopedia of Genes and Genomes databases were applied to determine human nonhomologous proteins, as well as the metabolic pathways involved with those proteins. Different software such as Phyre2, CastP, DoGSiteScorer, the Protein Function Predictor server, and STRING were utilized to evaluate the probable active drug binding site with its known function and protein–protein interaction. Results In this study, among 218 essential proteins of this pathogenic bacterium, 81 nonhomologous proteins were accrued, and 15 proteins that are unique in several metabolic pathways of S. sanguinis were isolated through metabolic pathway analysis. Furthermore, four essentially membrane-bound unique proteins that are involved in distinct metabolic pathways were revealed by this research. Active sites and druggable pockets of these selected proteins were investigated with bioinformatic techniques. In addition, this study also mentions the activity of those proteins, as well as their interactions with the other proteins. Conclusion Our findings helped to identify the type of protein to be considered as an efficient drug target. This study will pave the way for researchers to

  2. Identification of Differentially Abundant Proteins of Edwardsiella ictaluri during Iron Restriction.

    Directory of Open Access Journals (Sweden)

    Pradeep R Dumpala

    Full Text Available Edwardsiella ictaluri is a Gram-negative facultative anaerobe intracellular bacterium that causes enteric septicemia in channel catfish. Iron is an essential inorganic nutrient of bacteria and is crucial for bacterial invasion. Reduced availability of iron by the host may cause significant stress for bacterial pathogens and is considered a signal that leads to significant alteration in virulence gene expression. However, the precise effect of iron-restriction on E. ictaluri protein abundance is unknown. The purpose of this study was to identify differentially abundant proteins of E. ictaluri during in vitro iron-restricted conditions. We applied two-dimensional difference in gel electrophoresis (2D-DIGE for determining differentially abundant proteins and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF/TOF MS for protein identification. Gene ontology and pathway-based functional modeling of differentially abundant proteins was also conducted. A total of 50 unique differentially abundant proteins at a minimum of 2-fold (p ≤ 0.05 difference in abundance due to iron-restriction were detected. The numbers of up- and down-regulated proteins were 37 and 13, respectively. We noted several proteins, including EsrB, LamB, MalM, MalE, FdaA, and TonB-dependent heme/hemoglobin receptor family proteins responded to iron restriction in E. ictaluri.

  3. Prions and prion-like proteins.

    Science.gov (United States)

    Fraser, Paul E

    2014-07-18

    Prions are self-replicating protein aggregates and are the primary causative factor in a number of neurological diseases in mammals. The prion protein (PrP) undergoes a conformational transformation leading to aggregation into an infectious cellular pathogen. Prion-like protein spreading and transmission of aggregates between cells have also been demonstrated for other proteins associated with Alzheimer disease and Parkinson disease. This protein-only phenomenon may therefore have broader implications in neurodegenerative disorders. The minireviews in this thematic series highlight the recent advances in prion biology and the roles these unique proteins play in disease. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Screening and expression of selected taxonomically conserved and unique hypothetical proteins in Burkholderia pseudomallei K96243

    Science.gov (United States)

    Akhir, Nor Azurah Mat; Nadzirin, Nurul; Mohamed, Rahmah; Firdaus-Raih, Mohd

    2015-09-01

    Hypothetical proteins of bacterial pathogens represent a large numbers of novel biological mechanisms which could belong to essential pathways in the bacteria. They lack functional characterizations mainly due to the inability of sequence homology based methods to detect functional relationships in the absence of detectable sequence similarity. The dataset derived from this study showed 550 candidates conserved in genomes that has pathogenicity information and only present in the Burkholderiales order. The dataset has been narrowed down to taxonomic clusters. Ten proteins were selected for ORF amplification, seven of them were successfully amplified, and only four proteins were successfully expressed. These proteins will be great candidates in determining the true function via structural biology.

  5. Potential Role of Meiosis Proteins in Melanoma Chromosomal Instability

    International Nuclear Information System (INIS)

    Lindsey, S. F.; Byrnes, D. M.; Eller, M. S.; Rosa, A. M.; Dabas, N.; Escandon, J.; Grichnik, J. M.; Grichnik, J. M.; Grichnik, J. M.; Grichnik, J. M.

    2013-01-01

    Melanomas demonstrate chromosomal instability (CIN). In fact, CIN can be used to differentiate melanoma from benign nevi. The exact molecular mechanisms that drive CIN in melanoma have yet to be fully elucidated. Cancer/testis antigens are a unique group of germ cell proteins that are found to be primarily expressed in melanoma as compared to benign nevi. The abnormal expression of these germ cell proteins, normally expected only in the testis and ovaries, in somatic cells may lead to interference with normal cellular pathways. Germ cell proteins that may be particularly critical in CIN are meiosis proteins. Here, we review pathways unique to meiosis with a focus on how the aberrant expression of meiosis proteins in normal mitotic cells "meiomitosis"could impact chromosomal instability in melanoma and other cancers.

  6. NRIP is newly identified as a Z-disc protein, activating calmodulin signaling for skeletal muscle contraction and regeneration.

    Science.gov (United States)

    Chen, Hsin-Hsiung; Chen, Wen-Pin; Yan, Wan-Lun; Huang, Yuan-Chun; Chang, Szu-Wei; Fu, Wen-Mei; Su, Ming-Jai; Yu, I-Shing; Tsai, Tzung-Chieh; Yan, Yu-Ting; Tsao, Yeou-Ping; Chen, Show-Li

    2015-11-15

    Nuclear receptor interaction protein (NRIP, also known as DCAF6 and IQWD1) is a Ca(2+)-dependent calmodulin-binding protein. In this study, we newly identify NRIP as a Z-disc protein in skeletal muscle. NRIP-knockout mice were generated and found to have reduced muscle strength, susceptibility to fatigue and impaired adaptive exercise performance. The mechanisms of NRIP-regulated muscle contraction depend on NRIP being downstream of Ca(2+) signaling, where it stimulates activation of both 'calcineurin-nuclear factor of activated T-cells, cytoplasmic 1' (CaN-NFATc1; also known as NFATC1) and calmodulin-dependent protein kinase II (CaMKII) through interaction with calmodulin (CaM), resulting in the induction of mitochondrial activity and the expression of genes encoding the slow class of myosin, and in the regulation of Ca(2+) homeostasis through the internal Ca(2+) stores of the sarcoplasmic reticulum. Moreover, NRIP-knockout mice have a delayed regenerative capacity. The amount of NRIP can be enhanced after muscle injury and is responsible for muscle regeneration, which is associated with the increased expression of myogenin, desmin and embryonic myosin heavy chain during myogenesis, as well as for myotube formation. In conclusion, NRIP is a novel Z-disc protein that is important for skeletal muscle strength and regenerative capacity. © 2015. Published by The Company of Biologists Ltd.

  7. The Interactomic Analysis Reveals Pathogenic Protein Networks in Phomopsis longicolla Underlying Seed Decay of Soybean

    Directory of Open Access Journals (Sweden)

    Shuxian Li

    2018-04-01

    Full Text Available Phomopsis longicolla T. W. Hobbs (syn. Diaporthe longicolla is the primary cause of Phomopsis seed decay (PSD in soybean, Glycine max (L. Merrill. This disease results in poor seed quality and is one of the most economically important seed diseases in soybean. The objectives of this study were to infer protein–protein interactions (PPI and to identify conserved global networks and pathogenicity subnetworks in P. longicolla including orthologous pathways for cell signaling and pathogenesis. The interlog method used in the study identified 215,255 unique PPIs among 3,868 proteins. There were 1,414 pathogenicity related genes in P. longicolla identified using the pathogen host interaction (PHI database. Additionally, 149 plant cell wall degrading enzymes (PCWDE were detected. The network captured five different classes of carbohydrate degrading enzymes, including the auxiliary activities, carbohydrate esterases, glycoside hydrolases, glycosyl transferases, and carbohydrate binding molecules. From the PPI analysis, novel interacting partners were determined for each of the PCWDE classes. The most predominant class of PCWDE was a group of 60 glycoside hydrolases proteins. The glycoside hydrolase subnetwork was found to be interacting with 1,442 proteins within the network and was among the largest clusters. The orthologous proteins FUS3, HOG, CYP1, SGE1, and the g5566t.1 gene identified in this study could play an important role in pathogenicity. Therefore, the P. longicolla protein interactome (PiPhom generated in this study can lead to a better understanding of PPIs in soybean pathogens. Furthermore, the PPI may aid in targeting of genes and proteins for further studies of the pathogenicity mechanisms.

  8. Phosphorylation of stress protein pp80 is related to promotion of transformation

    International Nuclear Information System (INIS)

    Smith, B.M.; Gindhart, T.D.; Hirano, K.; Colburn, N.H.

    1986-01-01

    The JB6 mouse epidermal cell system is an in vitro model of late stage promotion, and includes cell lines sensitive (P+) or resistant (P-) to phorbol ester-induced anchorage independent transformation, and transformed (T/sub x/) lines. Certain promoter-induced changes in phosphoproteins, identified by gel electrophoresis, are unique to cells of one phenotype, and occur only with specific promoters. An 80Kd protein is inversely correlated with phenotype: P- cells have a constitutively higher level (p 35 S-methionine. pp80 shares properties with the 80Kd heat stress protein: molecular weight relative abundance, and isoelectric point (4.5). Pharmacological analogs of calcium, the lanthanides, promote transformation of JB6 cells, but have no effect on phosphorylation of the 80Kd protein. If pp80 is on the promotion pathway, it is limited to a specific subset of transformation promoters

  9. Pathogenic Leptospira species express surface-exposed proteins belonging to the bacterial immunoglobulin superfamily

    Science.gov (United States)

    Matsunaga, James; Barocchi, Michele A.; Croda, Julio; Young, Tracy A.; Sanchez, Yolanda; Siqueira, Isadora; Bolin, Carole A.; Reis, Mitermayer G.; Riley, Lee W.; Haake, David A.; Ko, Albert I.

    2005-01-01

    Summary Proteins with bacterial immunoglobulin-like (Big) domains, such as the Yersinia pseudotuberculosis invasin and Escherichia coli intimin, are surface-expressed proteins that mediate host mammalian cell invasion or attachment. Here, we report the identification and characterization of a new family of Big domain proteins, referred to as Lig (leptospiral Ig-like) proteins, in pathogenic Leptospira. Screening of L. interrogans and L. kirschneri expression libraries with sera from leptospirosis patients identified 13 lambda phage clones that encode tandem repeats of the 90 amino acid Big domain. Two lig genes, designated ligA and ligB, and one pseudo-gene, ligC, were identified. The ligA and ligB genes encode amino-terminal lipoprotein signal peptides followed by 10 or 11 Big domain repeats and, in the case of ligB, a unique carboxy-terminal non-repeat domain. The organization of ligC is similar to that of ligB but contains mutations that disrupt the reading frame. The lig sequences are present in pathogenic but not saprophytic Leptospira species. LigA and LigB are expressed by a variety of virulent leptospiral strains. Loss of Lig protein and RNA transcript expression is correlated with the observed loss of virulence during culture attenuation of pathogenic strains. High-pressure freeze substitution followed by immunocytochemical electron microscopy confirmed that the Lig proteins were localized to the bacterial surface. Immunoblot studies with patient sera found that the Lig proteins are a major antigen recognized during the acute host infection. These observations demonstrate that the Lig proteins are a newly identified surface protein of pathogenic Leptospira, which by analogy to other bacterial immunoglobulin superfamily virulence factors, may play a role in host cell attachment and invasion during leptospiral pathogenesis. PMID:12890019

  10. A unique virulence factor for proliferation and dwarfism in plants identified from a phytopathogenic bacterium

    OpenAIRE

    Hoshi, Ayaka; Oshima, Kenro; Kakizawa, Shigeyuki; Ishii, Yoshiko; Ozeki, Johji; Hashimoto, Masayoshi; Komatsu, Ken; Kagiwada, Satoshi; Yamaji, Yasuyuki; Namba, Shigetou

    2009-01-01

    One of the most important themes in agricultural science is the identification of virulence factors involved in plant disease. Here, we show that a single virulence factor, tengu-su inducer (TENGU), induces witches' broom and dwarfism and is a small secreted protein of the plant-pathogenic bacterium, phytoplasma. When tengu was expressed in Nicotiana benthamiana plants, these plants showed symptoms of witches' broom and dwarfism, which are typical of phytoplasma infection. Transgenic Arabidop...

  11. Proteomic analysis identifies MMP-9, DJ-1 and A1BG as overexpressed proteins in pancreatic juice from pancreatic ductal adenocarcinoma patients

    International Nuclear Information System (INIS)

    Tian, Mei; Cui, Ya-Zhou; Song, Guan-Hua; Zong, Mei-Juan; Zhou, Xiao-Yan; Chen, Yu; Han, Jin-Xiang

    2008-01-01

    There is an urgent need to discover more sensitive and specific biomarkers to improve early diagnosis and screen high-risk patients for pancreatic ductal adenocarcinoma (PDAC). Pancreatic juice is an ideal specimen for PDAC biomarkers discovery, because it is an exceptionally rich source of proteins released from pancreatic cancer cells. To identify novel potential biomarkers for PDAC from pancreatic juice, we carried out difference gel electrophoresis (DIGE) and tandem mass spectrometry (MS/MS) to compare the pancreatic juice profiling from 9 PDAC patients and 9 cancer-free controls. Of the identified differently expressed proteins, three up-regulated proteins in pancreatic cancer juice, matrix metalloproteinase-9 (MMP-9), oncogene DJ1 (DJ-1) and alpha-1B-glycoprotein precursor (A1BG), were selected for validation by Western blot and immunohistochemistry. Serum MMP-9 levels were also detected by enzyme linked immunosorbent assay (ELISA). Fourteen proteins were up-regulated and ten proteins were down-regulated in cancerous pancreatic juice compared with cancer-free controls. Increased MMP-9, DJ-1 and A1BG expression in cancerous pancreatic juice were confirmed by Western blot. Immunohistochemical study showed MMP-9, DJ-1 and A1BG positively expressed in 82.4%, 72.5% and 86.3% of pancreatic cancer tissues, significantly higher than that in normal pancreas tissues. Up-regulation of DJ-1 was associated with better differentiation (p < 0.05). Serum MMP-9 levels were significantly higher in PDAC (255.14 ng/ml) than those in chronic pancreatitis (210.22 ng/ml, p = 0.009) and healthy control (203.77 ng/ml, p = 0.027). The present proteome analysis revealed MMP-9, DJ-1 and A1BG proteins as elevated in pancreatic juice from PDAC, which suggest their further utility in PDAC diagnosis and screening. This is the first time A1BG was identified as a potential biomarker in pancreatic cancer associated samples. The measurement of serum MMP-9 might be clinically useful for PDAC

  12. Annotation of Selaginella moellendorffii major intrinsic proteins and the evolution of the protein family in terrestrial plants

    Directory of Open Access Journals (Sweden)

    Hanna Isa Anderberg

    2012-02-01

    Full Text Available Major intrinsic proteins (MIPs also called aquaporins form pores in membranes to facilitate the permeation of water and certain small polar solutes across membranes. MIPs are present in virtually every organism but are uniquely abundant in land plants. To elucidate the evolution and function of MIPs in terrestrial plants, the MIPs encoded in the genome of the spikemoss Selaginella moellendorffii were identified and analyzed. In total 19 MIPs were found in S. moellendorffii belonging to six of the seven MIP subfamilies previously identified in the moss Physcomitrella patens. Only three of the MIPs were classified as members of the conserved water specific plasma membrane intrinsic protein (PIP subfamily whereas almost half were found to belong to the diverse NOD26-like intrinsic protein (NIP subfamily permeating various solutes. The small number of PIPs in S. moellendorffii is striking compared to all other land plants and no other species has more NIPs than PIPs. Similar to moss, S. moellendorffii only has one type of tonoplast intrinsic protein (TIP. Based on ESTs from non-angiosperms we conclude that the specialized groups of TIPs present in higher plants are not found in primitive vascular plants but evolved later in a common ancestor of seed plants. We also note that the silicic acid permeable NIP2 group that has been reported from angiosperms appears at the same time. We suggest that the expansion of the number MIP isoforms in higher plants is primarily associated with an increase in the different types of specialized tissues rather than the emergence of vascular tissue per se and that the loss of subfamilies has been possible due to a functional overlap between some subfamilies.

  13. HAMS: High-Affinity Mass Spectrometry Screening. A High-Throughput Screening Method for Identifying the Tightest-Binding Lead Compounds for Target Proteins with No False Positive Identifications.

    Science.gov (United States)

    Imaduwage, Kasun P; Go, Eden P; Zhu, Zhikai; Desaire, Heather

    2016-11-01

    A major challenge in drug discovery is the identification of high affinity lead compounds that bind a particular target protein; these leads are typically identified by high throughput screens. Mass spectrometry has become a detection method of choice in drug screening assays because the target and the ligand need not be modified. Label-free assays are advantageous because they can be developed more rapidly than assays requiring labels, and they eliminate the risk of the label interfering with the binding event. However, in commonly used MS-based screening methods, detection of false positives is a major challenge. Here, we describe a detection strategy designed to eliminate false positives. In this approach, the protein and the ligands are incubated together, and the non-binders are separated for detection. Hits (protein binders) are not detectable by MS after incubation with the protein, but readily identifiable by MS when the target protein is not present in the incubation media. The assay was demonstrated using three different proteins and hundreds of non-inhibitors; no false positive hits were identified in any experiment. The assay can be tuned to select for ligands of a particular binding affinity by varying the quantity of protein used and the immobilization method. As examples, the method selectively detected inhibitors that have K i values of 0.2 μM, 50 pM, and 700 pM. These findings demonstrate that the approach described here compares favorably with traditional MS-based screening methods. Graphical Abstract ᅟ.

  14. Proteomic analysis of Taenia hydatigena cyst fluid reveals unique internal microenvironment.

    Science.gov (United States)

    Zheng, Yadong

    2017-12-01

    Taenia hydatigena is a parasitic flatworm that is widely distributed around the world. Using MS/MS, the proteome of T. hydatigena cyst fluid (CF) was profiled and a total of 520 proteins were identified, 430 of which were of sheep origin. T. hydatigena shared 37 parasite-origin and 109 host-origin CF proteins with Echinococcus granulosus. Compared with E. granulosus, T. hydatigena had much more CF proteins associated with amino acid synthesis and complement cascades. In addition, glutamate metabolism and anti-oxidative reactions were identified as relatively more important events. These results suggest that T. hydatigena metacestodes have internal microenvironment with special immune and oxidative conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Juvenile hormone prevents 20-hydroxyecdysone-induced metamorphosis by regulating the phosphorylation of a newly identified broad protein.

    Science.gov (United States)

    Cai, Mei-Juan; Liu, Wen; Pei, Xu-Yang; Li, Xiang-Ru; He, Hong-Juan; Wang, Jin-Xing; Zhao, Xiao-Fan

    2014-09-19

    The steroid hormone 20-hydroxyecdysone (20E) initiates insect molting and metamorphosis. By contrast, juvenile hormone (JH) prevents metamorphosis. However, the mechanism by which JH inhibits metamorphosis remains unclear. In this study, we propose that JH induces the phosphorylation of Broad isoform Z7 (BrZ7), a newly identified protein, to inhibit 20E-mediated metamorphosis in the lepidopteran insect Helicoverpa armigera. The knockdown of BrZ7 in larvae inhibited metamorphosis by repressing the expression of the 20E response gene. BrZ7 was weakly expressed and phosphorylated during larval growth but highly expressed and non-phosphorylated during metamorphosis. JH regulated the rapid phosphorylation of BrZ7 via a G-protein-coupled receptor-, phospholipase C-, and protein kinase C-triggered pathway. The phosphorylated BrZ7 bound to the 5'-regulatory region of calponin to regulate its expression in the JH pathway. Exogenous JH induced BrZ7 phosphorylation to prevent metamorphosis by suppressing 20E-related gene transcription. JH promoted non-phosphorylated calponin interacting with ultraspiracle protein to activate the JH pathway and antagonize the 20E pathway. This study reveals one of the possible mechanisms by which JH counteracts 20E-regulated metamorphosis by inducing the phosphorylation of BrZ7. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Hydrogen bonding-assisted thermal conduction in β-sheet crystals of spider silk protein

    Science.gov (United States)

    Zhang, Lin; Chen, Teli; Ban, Heng; Liu, Ling

    2014-06-01

    Using atomistic simulations, we demonstrate that β-sheet, an essential component of spider silk protein, has a thermal conductivity 1-2 orders of magnitude higher than that of some other protein structures reported in the literature. In contrast to several other nanostructured materials of similar bundled/layered structures (e.g. few-layer graphene and bundled carbon nanotubes), the β-sheet is found to uniquely feature enhanced thermal conductivity with an increased number of constituting units, i.e. β-strands. Phonon analysis identifies inter-β-strand hydrogen bonding as the main contributor to the intriguing phenomenon, which prominently influences the state of phonons in both low- and high-frequency regimes. A thermal resistance model further verifies the critical role of hydrogen bonding in thermal conduction through β-sheet structures.Using atomistic simulations, we demonstrate that β-sheet, an essential component of spider silk protein, has a thermal conductivity 1-2 orders of magnitude higher than that of some other protein structures reported in the literature. In contrast to several other nanostructured materials of similar bundled/layered structures (e.g. few-layer graphene and bundled carbon nanotubes), the β-sheet is found to uniquely feature enhanced thermal conductivity with an increased number of constituting units, i.e. β-strands. Phonon analysis identifies inter-β-strand hydrogen bonding as the main contributor to the intriguing phenomenon, which prominently influences the state of phonons in both low- and high-frequency regimes. A thermal resistance model further verifies the critical role of hydrogen bonding in thermal conduction through β-sheet structures. Electronic supplementary information (ESI) available: Structure of the β-sheets, computational model, determination of area and temperature gradient, and additional phonon DOS results. See DOI: 10.1039/c4nr01195c

  17. A Nucleotide Phosphatase Activity in the Nucleotide Binding Domain of an Orphan Resistance Protein from Rice*

    Science.gov (United States)

    Fenyk, Stepan; de San Eustaquio Campillo, Alba; Pohl, Ehmke; Hussey, Patrick J.; Cann, Martin J.

    2012-01-01

    Plant resistance proteins (R-proteins) are key components of the plant immune system activated in response to a plethora of different pathogens. R-proteins are P-loop NTPase superfamily members, and current models describe their main function as ATPases in defense signaling pathways. Here we show that a subset of R-proteins have evolved a new function to combat pathogen infection. This subset of R-proteins possesses a nucleotide phosphatase activity in the nucleotide-binding domain. Related R-proteins that fall in the same phylogenetic clade all show the same nucleotide phosphatase activity indicating a conserved function within at least a subset of R-proteins. R-protein nucleotide phosphatases catalyze the production of nucleoside from nucleotide with the nucleotide monophosphate as the preferred substrate. Mutation of conserved catalytic residues substantially reduced activity consistent with the biochemistry of P-loop NTPases. Kinetic analysis, analytical gel filtration, and chemical cross-linking demonstrated that the nucleotide-binding domain was active as a multimer. Nuclear magnetic resonance and nucleotide analogues identified the terminal phosphate bond as the target of a reaction that utilized a metal-mediated nucleophilic attack by water on the phosphoester. In conclusion, we have identified a group of R-proteins with a unique function. This biochemical activity appears to have co-evolved with plants in signaling pathways designed to resist pathogen attack. PMID:22157756

  18. A nucleotide phosphatase activity in the nucleotide binding domain of an orphan resistance protein from rice.

    Science.gov (United States)

    Fenyk, Stepan; Campillo, Alba de San Eustaquio; Pohl, Ehmke; Hussey, Patrick J; Cann, Martin J

    2012-02-03

    Plant resistance proteins (R-proteins) are key components of the plant immune system activated in response to a plethora of different pathogens. R-proteins are P-loop NTPase superfamily members, and current models describe their main function as ATPases in defense signaling pathways. Here we show that a subset of R-proteins have evolved a new function to combat pathogen infection. This subset of R-proteins possesses a nucleotide phosphatase activity in the nucleotide-binding domain. Related R-proteins that fall in the same phylogenetic clade all show the same nucleotide phosphatase activity indicating a conserved function within at least a subset of R-proteins. R-protein nucleotide phosphatases catalyze the production of nucleoside from nucleotide with the nucleotide monophosphate as the preferred substrate. Mutation of conserved catalytic residues substantially reduced activity consistent with the biochemistry of P-loop NTPases. Kinetic analysis, analytical gel filtration, and chemical cross-linking demonstrated that the nucleotide-binding domain was active as a multimer. Nuclear magnetic resonance and nucleotide analogues identified the terminal phosphate bond as the target of a reaction that utilized a metal-mediated nucleophilic attack by water on the phosphoester. In conclusion, we have identified a group of R-proteins with a unique function. This biochemical activity appears to have co-evolved with plants in signaling pathways designed to resist pathogen attack.

  19. Proteomic Analysis Reveals the Deregulation of Inflammation-Related Proteins in Acupuncture-Treated Rats with Asthma Onset

    Directory of Open Access Journals (Sweden)

    Yu-Dong Xu

    2012-01-01

    Full Text Available Although the beneficial effects of acupuncture in asthma treatment have been well documented, little is known regarding the biological basis of this treatment. Changes in the lung proteome of acupuncture-treated rats with asthma onset were comparatively analyzed using a two-dimensional gel electrophoresis (2DE and mass-spectrometry- (MS- based proteomic approach. Acupuncture on specific acupuncture points appeared to improve respiratory function and reduce the total number of leukocytes and eosinophils in bronchoalveolar lavage fluid in OVA-induced asthma onset. Image analysis of 2DE gels revealed 32 differentially expressed acupuncture-specific protein spots in asthma onset; 30 of which were successfully identified as 28 unique proteins using LC-MS/MS. Bioinformatic analyses indicated that these altered proteins are most likely involved in inflammation-related biological functions, and the functional associations of these proteins result in an inflammation signaling pathway. Acupuncture regulates the pathway at different levels by regulating several key nodal proteins, including downregulating of proinflammatory proteins (e.g., S100A8, RAGE, and S100A11 and upregulating of anti-inflammatory proteins (e.g., CC10, ANXA5, and sRAGE. These deregulated inflammation-related proteins may mediate, at least in part, the antiasthmatic effect of acupuncture. Further functional investigation of these acupuncture-specific effector proteins could identify new drug candidates for the prophylaxis and treatment of asthma.

  20. FANCG promotes formation of a newly identified protein complex containing BRCA2, FANCD2 and XRCC3.

    Science.gov (United States)

    Wilson, J B; Yamamoto, K; Marriott, A S; Hussain, S; Sung, P; Hoatlin, M E; Mathew, C G; Takata, M; Thompson, L H; Kupfer, G M; Jones, N J

    2008-06-12

    Fanconi anemia (FA) is a human disorder characterized by cancer susceptibility and cellular sensitivity to DNA crosslinks and other damages. Thirteen complementation groups and genes are identified, including BRCA2, which is defective in the FA-D1 group. Eight of the FA proteins, including FANCG, participate in a nuclear core complex that is required for the monoubiquitylation of FANCD2 and FANCI. FANCD2, like FANCD1/BRCA2, is not part of the core complex, and we previously showed direct BRCA2-FANCD2 interaction using yeast two-hybrid analysis. We now show in human and hamster cells that expression of FANCG protein, but not the other core complex proteins, is required for co-precipitation of BRCA2 and FANCD2. We also show that phosphorylation of FANCG serine 7 is required for its co-precipitation with BRCA2, XRCC3 and FANCD2, as well as the direct interaction of BRCA2-FANCD2. These results argue that FANCG has a role independent of the FA core complex, and we propose that phosphorylation of serine 7 is the signalling event required for forming a discrete complex comprising FANCD1/BRCA2-FANCD2-FANCG-XRCC3 (D1-D2-G-X3). Cells that fail to express either phospho-Ser7-FANCG, or full length BRCA2 protein, lack the interactions amongst the four component proteins. A role for D1-D2-G-X3 in homologous recombination repair (HRR) is supported by our finding that FANCG and the RAD51-paralog XRCC3 are epistatic for sensitivity to DNA crosslinking compounds in DT40 chicken cells. Our findings further define the intricate interface between FANC and HRR proteins in maintaining chromosome stability.

  1. A fractionation method to identify qauntitative changes in protein expression mediated by IGF-1 on the proteome of murine C2C12 myoblasts

    Directory of Open Access Journals (Sweden)

    Friedmann Theodore

    2009-08-01

    Full Text Available Abstract Although much is known about signal transduction downstream of insulin-like growth factor-1 (IGF-1, relatively little is known about the global changes in protein expression induced by this hormone. In this study, the acute effects of IGF-1 on the proteome of murine C2C12 cells were examined. Cells were treated with IGF-1 for up to 24 hours, lysed, and fractionated into cytosolic, nuclear, and insoluble portions. Proteins from the cytosolic fraction were further separated using a new batch ion-exchange chromatography method to reduce sample complexity, followed by two-dimensional (2D electrophoresis, and identification of selected proteins by mass spectrometry. PDQuest software was utilized to identify and catalogue temporal changes in protein expression during IGF-1 stimulation. In response to IGF-1 stimulation, expression of 23 proteins increased at least three-fold and expression of 17 proteins decreased at least three-fold compared with control un-stimulated C2C12 cells. Changes in expression of selected proteins from each group, including Rho-GDI, cofillin, RAD50, enolase, IκB kinase b (IκBKb and Hsp70 were confirmed by Western blotting. Additionally, the position of 136 'landmark' proteins whose expression levels and physicochemical properties did not change appreciably or consistently during IGF-1 treatment were mapped and identified. This characterization of large-scale changes in protein expression in response to growth factor stimulation of C2C12 cells will further help to establish a comprehensive understanding of the networks and pathways involved in the action of IGF-1.

  2. Reticulomics: Protein-Protein Interaction Studies with Two Plasmodesmata-Localized Reticulon Family Proteins Identify Binding Partners Enriched at Plasmodesmata, Endoplasmic Reticulum, and the Plasma Membrane.

    Science.gov (United States)

    Kriechbaumer, Verena; Botchway, Stanley W; Slade, Susan E; Knox, Kirsten; Frigerio, Lorenzo; Oparka, Karl; Hawes, Chris

    2015-11-01

    The endoplasmic reticulum (ER) is a ubiquitous organelle that plays roles in secretory protein production, folding, quality control, and lipid biosynthesis. The cortical ER in plants is pleomorphic and structured as a tubular network capable of morphing into flat cisternae, mainly at three-way junctions, and back to tubules. Plant reticulon family proteins (RTNLB) tubulate the ER by dimerization and oligomerization, creating localized ER membrane tensions that result in membrane curvature. Some RTNLB ER-shaping proteins are present in the plasmodesmata (PD) proteome and may contribute to the formation of the desmotubule, the axial ER-derived structure that traverses primary PD. Here, we investigate the binding partners of two PD-resident reticulon proteins, RTNLB3 and RTNLB6, that are located in primary PD at cytokinesis in tobacco (Nicotiana tabacum). Coimmunoprecipitation of green fluorescent protein-tagged RTNLB3 and RTNLB6 followed by mass spectrometry detected a high percentage of known PD-localized proteins as well as plasma membrane proteins with putative membrane-anchoring roles. Förster resonance energy transfer by fluorescence lifetime imaging microscopy assays revealed a highly significant interaction of the detected PD proteins with the bait RTNLB proteins. Our data suggest that RTNLB proteins, in addition to a role in ER modeling, may play important roles in linking the cortical ER to the plasma membrane. © 2015 American Society of Plant Biologists. All Rights Reserved.

  3. Fragile X mental retardation protein: A paradigm for translational control by RNA-binding proteins.

    Science.gov (United States)

    Chen, Eileen; Joseph, Simpson

    2015-07-01

    Translational control is a common mechanism used to regulate gene expression and occur in bacteria to mammals. Typically in translational control, an RNA-binding protein binds to a unique sequence in the mRNA to regulate protein synthesis by the ribosomes. Alternatively, a protein may bind to or modify a translation factor to globally regulate protein synthesis by the cell. Here, we review translational control by the fragile X mental retardation protein (FMRP), the absence of which causes the neurological disease, fragile X syndrome (FXS). Copyright © 2015 Elsevier B.V. and Société française de biochimie et biologie Moléculaire (SFBBM). All rights reserved.

  4. Beyond genes, proteins, and abstracts: Identifying scientific claims from full-text biomedical articles.

    Science.gov (United States)

    Blake, Catherine

    2010-04-01

    Massive increases in electronically available text have spurred a variety of natural language processing methods to automatically identify relationships from text; however, existing annotated collections comprise only bioinformatics (gene-protein) or clinical informatics (treatment-disease) relationships. This paper introduces the Claim Framework that reflects how authors across biomedical spectrum communicate findings in empirical studies. The Framework captures different levels of evidence by differentiating between explicit and implicit claims, and by capturing under-specified claims such as correlations, comparisons, and observations. The results from 29 full-text articles show that authors report fewer than 7.84% of scientific claims in an abstract, thus revealing the urgent need for text mining systems to consider the full-text of an article rather than just the abstract. The results also show that authors typically report explicit claims (77.12%) rather than an observations (9.23%), correlations (5.39%), comparisons (5.11%) or implicit claims (2.7%). Informed by the initial manual annotations, we introduce an automated approach that uses syntax and semantics to identify explicit claims automatically and measure the degree to which each feature contributes to the overall precision and recall. Results show that a combination of semantics and syntax is required to achieve the best system performance. 2009 Elsevier Inc. All rights reserved.

  5. Quantitative proteomics as a tool to identify resistance mechanisms in erlotinib-resistant subclones of the non-small cell lung cancer cell line HCC827

    DEFF Research Database (Denmark)

    Jacobsen, Kirstine

    , which in 43-50% of cases are caused by a secondary mutation (T790M) in EGFR. Importantly, a majority of resistance cases are still unexplained (Lin & Bivona, 2012). Our aim is to identify novel resistance mechanisms – and potentially new drug targets - in erlotinib-resistant subclones of the NSCLC cell...... of erlotinib, and in biological triplicates on a Q-Exactive mass spectrometer. Only proteins identified with minimum 2 unique peptides and in minimum 2 of 3 replicates were accepted. Results: Importantly, the resistant clones did not acquire the T790M or other EGFR or KRAS mutations, potentiating...... the identification of novel resistance mechanisms. We identified 2875 cytoplasmic proteins present in all 4 cell lines. Of these 87, 56 and 23 are upregulated >1.5 fold; and 117, 72 and 32 are downregulated >1.5 fold, respectively, in the 3 resistant clones compared to the parental cell line. By network analysis, we...

  6. Gibberellic Acid-Induced Aleurone Layers Responding to Heat Shock or Tunicamycin Provide Insight into the N-Glycoproteome, Protein Secretion, and Endoplasmic Reticulum Stress

    DEFF Research Database (Denmark)

    Barba Espin, Gregorio; Dedvisitsakul, Plaipol; Hägglund, Per

    2014-01-01

    respond to gibberellic acid by secreting an array of proteins and provide a unique system for the analysis of plant protein secretion. Perturbation of protein secretion in gibberellic acid-induced aleurone layers by two independent mechanisms, heat shock and tunicamycin treatment, demonstrated overlapping...... and secretion, such as calreticulin, protein disulfide isomerase, proteasome subunits, and isopentenyl diphosphate isomerase. Sixteen heat shock proteins in 29 spots showed diverse responses to the treatments, with only a minority increasing in response to heat shock. The majority, all of which were small heat...... shock proteins, decreased in heat-shocked aleurone layers. Additionally, glycopeptide enrichment and N-glycosylation analysis identified 73 glycosylation sites in 65 aleurone layer proteins, with 53 of the glycoproteins found in extracellular fractions and 36 found in intracellular fractions...

  7. Size-matched alkyne-conjugated cyanine fluorophores to identify differences in protein glycosylation.

    Science.gov (United States)

    Burnham-Marusich, Amanda R; Plechaty, Anna M; Berninsone, Patricia M

    2014-09-01

    Currently, there are few methods to detect differences in posttranslational modifications (PTMs) in a specific manner from complex mixtures. Thus, we developed an approach that combines the sensitivity and specificity of click chemistry with the resolution capabilities of 2D-DIGE. In "Click-DIGE", posttranslationally modified proteins are metabolically labeled with azido-substrate analogs, then size- and charge-matched alkyne-Cy3 or alkyne-Cy5 dyes are covalently attached to the azide of the PTM by click chemistry. The fluorescently-tagged protein samples are then multiplexed for 2DE analysis. Whereas standard DIGE labels all proteins, Click-DIGE focuses the analysis of protein differences to a targeted subset of posttranslationally modified proteins within a complex sample (i.e. specific labeling and analysis of azido glycoproteins within a cell lysate). Our data indicate that (i) Click-DIGE specifically labels azido proteins, (ii) the resulting Cy-protein conjugates are spectrally distinct, and (iii) the conjugates are size- and charge-matched at the level of 2DE. We demonstrate the utility of this approach by detecting multiple differentially expressed glycoproteins between a mutant cell line defective in UDP-galactose transport and the parental cell line. We anticipate that the diversity of azido substrates already available will enable Click-DIGE to be compatible with analysis of a wide range of PTMs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. EZID: Long term identifiers made easy (Invited)

    Science.gov (United States)

    Starr, J.

    2013-12-01

    Scholarly research is producing ever increasing amounts of digital research data, and this data should be managed throughout the research life cycle both as part of good scientific practice, but also to comply with funder mandates, such as the 2013 OSTP Public Access Memo (http://www.whitehouse.gov/sites/default/files/microsites/ostp/ostp_public_access_memo_2013.pdf). By assigning unique and persistent identifiers to data objects, data managers can gain control and flexibility over what can be a daunting task. This is due to the fact that the objects can be moved to new locations without disruption to links, as long as the identifier target is maintained. EZID is a tool that makes assigning and maintaining unique, persistent identifiers easy. It was designed and built by California Digital Library (CDL) and has both a user interface and a RESTful API. EZID currently offers services for two globally unique, persistent identifier schemes: Digital Object Identifiers (DOIs) and Archival Resource Keys (ARKs). DOIs are identifiers originating from the publishing world and are in widespread use for journal articles. CDL is able to offer DOIs because of being a founding member of DataCite (http://www.datacite.org/), an international consortium established to provide easier access to scientific research data on the Internet. ARKs are identifiers originating from the library, archive and museum community. Like DOIs, they become persistent when the objects and identifier forwarding information is maintained. DOIs and ARKs have a key role in data management and, therefore, in data management plans. DOIs are the recommended identifier for use in data citation, and ARKs provide the maximum flexibility needed for data documentation and management throughout the early phases of a project. The two identifier schemes are able to be used together, and EZID is made to work with both. EZID clients, coming from education, research, government, and the private sector, are utilizing the

  9. Hepatitis C Virus Protein Interaction Network Analysis Based on Hepatocellular Carcinoma.

    Directory of Open Access Journals (Sweden)

    Yuewen Han

    Full Text Available Epidemiological studies have validated the association between hepatitis C virus (HCV infection and hepatocellular carcinoma (HCC. An increasing number of studies show that protein-protein interactions (PPIs between HCV proteins and host proteins play a vital role in infection and mediate HCC progression. In this work, we collected all published interaction between HCV and human proteins, which include 455 unique human proteins participating in 524 HCV-human interactions. Then, we construct the HCV-human and HCV-HCC protein interaction networks, which display the biological knowledge regarding the mechanism of HCV pathogenesis, particularly with respect to pathogenesis of HCC. Through in-depth analysis of the HCV-HCC interaction network, we found that interactors are enriched in the JAK/STAT, p53, MAPK, TNF, Wnt, and cell cycle pathways. Using a random walk with restart algorithm, we predicted the importance of each protein in the HCV-HCC network and found that AKT1 may play a key role in the HCC progression. Moreover, we found that NS5A promotes HCC cells proliferation and metastasis by activating AKT/GSK3β/β-catenin pathway. This work provides a basis for a detailed map tracking new cellular interactions of HCV and identifying potential targets for HCV-related hepatocellular carcinoma treatment.

  10. Identification and analysis of potential targets in Streptococcus sanguinis using computer aided protein data analysis

    Directory of Open Access Journals (Sweden)

    Chowdhury MRH

    2014-11-01

    pathways were revealed by this research. Active sites and druggable pockets of these selected proteins were investigated with bioinformatic techniques. In addition, this study also mentions the activity of those proteins, as well as their interactions with the other proteins. Conclusion: Our findings helped to identify the type of protein to be considered as an efficient drug target. This study will pave the way for researchers to develop and discover more effective and specific therapeutic agents against S. sanguinis. Keywords: Streptococcus sanguinis, essential proteins, unique metabolic pathways, therapeutic targets

  11. HPASubC: A suite of tools for user subclassification of human protein atlas tissue images

    Directory of Open Access Journals (Sweden)

    Toby C Cornish

    2015-01-01

    Full Text Available Background: The human protein atlas (HPA is a powerful proteomic tool for visualizing the distribution of protein expression across most human tissues and many common malignancies. The HPA includes immunohistochemically-stained images from tissue microarrays (TMAs that cover 48 tissue types and 20 common malignancies. The TMA data are used to provide expression information at the tissue, cellular, and occasionally, subcellular level. The HPA also provides subcellular data from confocal immunofluorescence data on three cell lines. Despite the availability of localization data, many unique patterns of cellular and subcellular expression are not documented. Materials and Methods: To get at this more granular data, we have developed a suite of Python scripts, HPASubC, to aid in subcellular, and cell-type specific classification of HPA images. This method allows the user to download and optimize specific HPA TMA images for review. Then, using a playstation-style video game controller, a trained observer can rapidly step through 10′s of 1000′s of images to identify patterns of interest. Results: We have successfully used this method to identify 703 endothelial cell (EC and/or smooth muscle cell (SMCs specific proteins discovered within 49,200 heart TMA images. This list will assist us in subdividing cardiac gene or protein array data into expression by one of the predominant cell types of the myocardium: Myocytes, SMCs or ECs. Conclusions: The opportunity to further characterize unique staining patterns across a range of human tissues and malignancies will accelerate our understanding of disease processes and point to novel markers for tissue evaluation in surgical pathology.

  12. HKC: An Algorithm to Predict Protein Complexes in Protein-Protein Interaction Networks

    Directory of Open Access Journals (Sweden)

    Xiaomin Wang

    2011-01-01

    Full Text Available With the availability of more and more genome-scale protein-protein interaction (PPI networks, research interests gradually shift to Systematic Analysis on these large data sets. A key topic is to predict protein complexes in PPI networks by identifying clusters that are densely connected within themselves but sparsely connected with the rest of the network. In this paper, we present a new topology-based algorithm, HKC, to detect protein complexes in genome-scale PPI networks. HKC mainly uses the concepts of highest k-core and cohesion to predict protein complexes by identifying overlapping clusters. The experiments on two data sets and two benchmarks show that our algorithm has relatively high F-measure and exhibits better performance compared with some other methods.

  13. Down-regulation of triose phosphate isomerase in Vineristine-resistant gastric cancer SGC7901 cell line identified by immobilized pH gradient two-dimensional gel electrophoresis and mierosequencing

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objective:To exkplore new multidrug-resistance-related proteins in gastric SC7901 cells and clarify their mechanisms.Methods:Two-dimensional(2-D) polyacrylamide gel electrophoresis with immobilized pH gradients(IPG) was applied to compare the differential expression of multidrug-resistance-related proteins in gastric cancer SGC7901 cells and Vineristine-resistant SGC7901 cells (SGC7901/VCR) induced by vincristine sulfate.The 2-D gels were silver-stained.Then,preparative 2-D PAGE was performed.The differential proteins of PVDF membranes were cxcised and identified by N-terminal microsequencing.The mRNA expressions of differential proteins were detected in SGC 7901 cells and SGC7901/VCR cells by RT-PCR.Results:Approximatedly 680 protein sports were resolved on each 2-D gel by silver staining.Most protein spots showed no difference in composition,shape or density.25 proteins differed in abundance (6 higher in SGC7901/VCR cells;19 higher in 7901 cells);5 proteins were unique to one kind of cell or the othe(3 in SGC7901/VRC cells,2 in 7901 cells).One drug-resistance-related protein,which was down-regulated in SGC7901/VCR cells,was identified as trisephosphate isomerase(TPI),a glycolytic pathway enzyme.Conclusions:the results suggest that these differential proteins including TPI may be related to the Vincristine-resistant mechanism in human gastric cancer SGC7901/VCR cell line.

  14. A proteomic screen reveals the mitochondrial outer membrane protein Mdm34p as an essential target of the F-box protein Mdm30p.

    Science.gov (United States)

    Ota, Kazuhisa; Kito, Keiji; Okada, Satoshi; Ito, Takashi

    2008-10-01

    Ubiquitination plays various critical roles in eukaryotic cellular regulation and is mediated by a cascade of enzymes including ubiquitin protein ligase (E3). The Skp1-Cullin-F-box protein complex comprises the largest E3 family, in each member of which a unique F-box protein binds its targets to define substrate specificity. Although genome sequencing uncovers a growing number of F-box proteins, most of them have remained as "orphans" because of the difficulties in identification of their substrates. To address this issue, we tested a quantitative proteomic approach by combining the stable isotope labeling by amino acids in cell culture (SILAC), parallel affinity purification (PAP) that we had developed for efficient enrichment of ubiquitinated proteins, and mass spectrometry (MS). We applied this SILAC-PAP-MS approach to compare ubiquitinated proteins between yeast cells with and without over-expressed Mdm30p, an F-box protein implicated in mitochondrial morphology. Consequently, we identified the mitochondrial outer membrane protein Mdm34p as a target of Mdm30p. Furthermore, we found that mitochondrial defects induced by deletion of MDM30 are not only recapitulated by a mutant Mdm34p defective in interaction with Mdm30p but alleviated by ubiquitination-mimicking forms of Mdm34p. These results indicate that Mdm34p is a physiologically important target of Mdm30p.

  15. Protein kinase substrate identification on functional protein arrays

    Directory of Open Access Journals (Sweden)

    Zhou Fang

    2008-02-01

    Full Text Available Abstract Background Over the last decade, kinases have emerged as attractive therapeutic targets for a number of different diseases, and numerous high throughput screening efforts in the pharmaceutical community are directed towards discovery of compounds that regulate kinase function. The emerging utility of systems biology approaches has necessitated the development of multiplex tools suitable for proteomic-scale experiments to replace lower throughput technologies such as mass spectroscopy for the study of protein phosphorylation. Recently, a new approach for identifying substrates of protein kinases has applied the miniaturized format of functional protein arrays to characterize phosphorylation for thousands of candidate protein substrates in a single experiment. This method involves the addition of protein kinases in solution to arrays of immobilized proteins to identify substrates using highly sensitive radioactive detection and hit identification algorithms. Results To date, the factors required for optimal performance of protein array-based kinase substrate identification have not been described. In the current study, we have carried out a detailed characterization of the protein array-based method for kinase substrate identification, including an examination of the effects of time, buffer compositions, and protein concentration on the results. The protein array approach was compared to standard solution-based assays for assessing substrate phosphorylation, and a correlation of greater than 80% was observed. The results presented here demonstrate how novel substrates for protein kinases can be quickly identified from arrays containing thousands of human proteins to provide new clues to protein kinase function. In addition, a pooling-deconvolution strategy was developed and applied that enhances characterization of specific kinase-substrate relationships and decreases reagent consumption. Conclusion Functional protein microarrays are an

  16. RGS proteins in heart: brakes on the vagus

    Directory of Open Access Journals (Sweden)

    Adele eStewart

    2012-04-01

    Full Text Available It has been nearly a century since Otto Loewi discovered that acetylcholine (ACh release from the vagus produces bradycardia and reduced cardiac contractility. It is now known that parasympathetic control of the heart is mediated by ACh stimulation of Gi/o-coupled muscarinic M2 receptors, which directly activate G protein-coupled inwardly rectifying potassium (GIRK channels via Gβγ resulting in membrane hyperpolarization and inhibition of action potential (AP firing. However, expression of M2R-GIRK signaling components in heterologous systems failed to recapitulate native channel gating kinetics. The missing link was identified with the discovery of RGS proteins, which act as GTPase-activating proteins to accelerate the intrinsic GTPase activity of Gα resulting in termination of Gα- and Gβγ-mediated signaling to downstream effectors. Studies in mice expressing an RGS-insensitive Gαi2 mutant (G184S implicated endogenous RGS proteins as key regulators of parasympathetic signaling in heart. Recently, two RGS proteins have been identified as critical regulators of M2R signaling in heart. RGS6 exhibits a uniquely robust expression in heart, especially in sinoatrial (SAN and atrioventricular nodal (AVN regions. Mice lacking RGS6 exhibit increased bradycardia and inhibition of SAN AP firing in response to CCh as well as a loss of rapid activation and deactivation kinetics and current desensitization for ACh-induced GIRK current (IKACh. Similar findings were observed in mice lacking RGS4. Thus, dysregulation in RGS protein expression or function may contribute to pathologies involving aberrant electrical activity in cardiac pacemaker cells. Moreover, RGS6 expression was found to be up-regulated in heart under certain pathological conditions, including doxorubicin treatment, which is known to cause life-threatening cardiotoxicity and atrial fibrillation in cancer patients. On the other hand, increased vagal tone may be cardioprotective in heart

  17. Identification of brain-specific angiogenesis inhibitor 2 as an interaction partner of glutaminase interacting protein

    International Nuclear Information System (INIS)

    Zencir, Sevil; Ovee, Mohiuddin; Dobson, Melanie J.; Banerjee, Monimoy; Topcu, Zeki; Mohanty, Smita

    2011-01-01

    Highlights: → Brain-specific angiogenesis inhibitor 2 (BAI2) is a new partner protein for GIP. → BAI2 interaction with GIP was revealed by yeast two-hybrid assay. → Binding of BAI2 to GIP was characterized by NMR, CD and fluorescence. → BAI2 and GIP binding was mediated through the C-terminus of BAI2. -- Abstract: The vast majority of physiological processes in living cells are mediated by protein-protein interactions often specified by particular protein sequence motifs. PDZ domains, composed of 80-100 amino acid residues, are an important class of interaction motif. Among the PDZ-containing proteins, glutaminase interacting protein (GIP), also known as Tax Interacting Protein TIP-1, is unique in being composed almost exclusively of a single PDZ domain. GIP has important roles in cellular signaling, protein scaffolding and modulation of tumor growth and interacts with a number of physiological partner proteins, including Glutaminase L, β-Catenin, FAS, HTLV-1 Tax, HPV16 E6, Rhotekin and Kir 2.3. To identify the network of proteins that interact with GIP, a human fetal brain cDNA library was screened using a yeast two-hybrid assay with GIP as bait. We identified brain-specific angiogenesis inhibitor 2 (BAI2), a member of the adhesion-G protein-coupled receptors (GPCRs), as a new partner of GIP. BAI2 is expressed primarily in neurons, further expanding GIP cellular functions. The interaction between GIP and the carboxy-terminus of BAI2 was characterized using fluorescence, circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy assays. These biophysical analyses support the interaction identified in the yeast two-hybrid assay. This is the first study reporting BAI2 as an interaction partner of GIP.

  18. Unique features of Myf-5 in turtles: nucleotide deletion, alternative splicing, and unusual expression pattern.

    Science.gov (United States)

    Ohya, Yoshie Kawashima; Usuda, Ryo; Kuraku, Shigehiro; Nagashima, Hiroshi; Kuratani, Shigeru

    2006-01-01

    Turtles characteristically possess a bony shell and show an extensive reduction of the trunk muscles. To gain insight into the evolution of this animal group, we focused on the underlying mechanism of the turtle-specific developmental pattern associated with the somitic mesoderm, which differentiates into both skeleton and muscle. We isolated Myf-5, a member of the myogenic-transcription-factor-encoding gene family expressed in the myotome, from the Chinese soft-shelled turtle Pelodiscus sinensis. We detected a deletion of 12 sequential nucleotides in P. sinensis Myf-5 (PsMyf-5), which appears to be shared by the turtle group. The expression pattern of PsMyf-5 in P. sinensis embryos differed from those of its orthologs in other amniotes, especially in the hypaxial region of the flank. We also identified two isoforms of the PsMyf-5 protein, a normal form similar to those of other vertebrates, and a short form produced by a translational frameshift. The short PsMyf-5 showed weaker myogenic activity in cultured cells than that of the normal protein, although the tissue distribution of the two isoforms overlapped perfectly. We propose that the unusual features of PsMyf-5 may be related to the unique developmental patterns of this animal group, and constitute one of the molecular bases for their evolutionary origin.

  19. Chagas disease vector blood meal sources identified by protein mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Judith I Keller

    Full Text Available Chagas disease is a complex vector borne parasitic disease involving blood feeding Triatominae (Hemiptera: Reduviidae insects, also known as kissing bugs, and the vertebrates they feed on. This disease has tremendous impacts on millions of people and is a global health problem. The etiological agent of Chagas disease, Trypanosoma cruzi (Kinetoplastea: Trypanosomatida: Trypanosomatidae, is deposited on the mammalian host in the insect's feces during a blood meal, and enters the host's blood stream through mucous membranes or a break in the skin. Identifying the blood meal sources of triatomine vectors is critical in understanding Chagas disease transmission dynamics, can lead to identification of other vertebrates important in the transmission cycle, and aids management decisions. The latter is particularly important as there is little in the way of effective therapeutics for Chagas disease. Several techniques, mostly DNA-based, are available for blood meal identification. However, further methods are needed, particularly when sample conditions lead to low-quality DNA or to assess the risk of human cross-contamination. We demonstrate a proteomics-based approach, using liquid chromatography tandem mass spectrometry (LC-MS/MS to identify host-specific hemoglobin peptides for blood meal identification in mouse blood control samples and apply LC-MS/MS for the first time to Triatoma dimidiata insect vectors, tracing blood sources to species. In contrast to most proteins, hemoglobin, stabilized by iron, is incredibly stable even being preserved through geologic time. We compared blood stored with and without an anticoagulant and examined field-collected insect specimens stored in suboptimal conditions such as at room temperature for long periods of time. To our knowledge, this is the first study using LC-MS/MS on field-collected arthropod disease vectors to identify blood meal composition, and where blood meal identification was confirmed with more

  20. Identification of proteins from 4200-year-old skin and muscle tissue biopsies from ancient Egyptian mummies of the first intermediate period shows evidence of acute inflammation and severe immune response.

    Science.gov (United States)

    Jones, Jana; Mirzaei, Mehdi; Ravishankar, Prathiba; Xavier, Dylan; Lim, Do Seon; Shin, Dong Hoon; Bianucci, Raffaella; Haynes, Paul A

    2016-10-28

    We performed proteomics analysis on four skin and one muscle tissue samples taken from three ancient Egyptian mummies of the first intermediate period, approximately 4200 years old. The mummies were first dated by radiocarbon dating of the accompany-\\break ing textiles, and morphologically examined by scanning electron microscopy of additional skin samples. Proteins were extracted, separated on SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis) gels, and in-gel digested with trypsin. The resulting peptides were analysed using nanoflow high-performance liquid chromatography-mass spectrometry. We identified a total of 230 unique proteins from the five samples, which consisted of 132 unique protein identifications. We found a large number of collagens, which was confirmed by our microscopy data, and is in agreement with previous studies showing that collagens are very long-lived. As expected, we also found a large number of keratins. We identified numerous proteins that provide evidence of activation of the innate immunity system in two of the mummies, one of which also contained proteins indicating severe tissue inflammation, possibly indicative of an infection that we can speculate may have been related to the cause of death.This article is part of the themed issue 'Quantitative mass spectrometry'. © 2016 The Author(s).

  1. Pharmacokinetic and pharmacodynamic considerations for the next generation protein therapeutics.

    Science.gov (United States)

    Shah, Dhaval K

    2015-10-01

    Increasingly sophisticated protein engineering efforts have been undertaken lately to generate protein therapeutics with desired properties. This has resulted in the discovery of the next generation of protein therapeutics, which include: engineered antibodies, immunoconjugates, bi/multi-specific proteins, antibody mimetic novel scaffolds, and engineered ligands/receptors. These novel protein therapeutics possess unique physicochemical properties and act via a unique mechanism-of-action, which collectively makes their pharmacokinetics (PK) and pharmacodynamics (PD) different than other established biological molecules. Consequently, in order to support the discovery and development of these next generation molecules, it becomes important to understand the determinants controlling their PK/PD. This review discusses the determinants that a PK/PD scientist should consider during the design and development of next generation protein therapeutics. In addition, the role of systems PK/PD models in enabling rational development of the next generation protein therapeutics is emphasized.

  2. Advances in extrusion for texturized whey proteins

    Science.gov (United States)

    Dairy proteins like whey proteins play an important role in human nutrition because of their characteristic structure and associated numerous benefits such as ease of digestion, in- vivo assimilation, creating new or maintaining the muscle mass and the unique ability of boosting immune functions. W...

  3. Breaking barriers to interoperability: assigning spatially and temporally unique identifiers to spaces and buildings.

    Science.gov (United States)

    Pyke, Christopher R; Madan, Isaac

    2013-08-01

    The real estate industry routinely uses specialized information systems for functions, including design, construction, facilities management, brokerage, tax assessment, and utilities. These systems are mature and effective within vertically integrated market segments. However, new questions are reaching across these traditional information silos. For example, buyers may be interested in evaluating the design, energy efficiency characteristics, and operational performance of a commercial building. This requires the integration of information across multiple databases held by different institutions. Today, this type of data integration is difficult to automate and propone to errors due, in part, to the lack of generally accepted building and spaces identifiers. Moving forward, the real estate industry needs a new mechanism to assign identifiers for whole buildings and interior spaces for the purpose of interoperability, data exchange, and integration. This paper describes a systematic process to identify activities occurring at building or within interior spaces to provide a foundation for exchange and interoperability. We demonstrate the application of the approach with a prototype Web application. This concept and demonstration illustrate the elements of a practical interoperability framework that can increase productivity, create new business opportunities, and reduce errors, waste, and redundancy. © 2013 New York Academy of Sciences.

  4. Lipid droplet-binding protein TIP47 regulates hepatitis C Virus RNA replication through interaction with the viral NS5A protein.

    Directory of Open Access Journals (Sweden)

    Dorothee A Vogt

    Full Text Available The nonstructural protein NS5A has emerged as a new drug target in antiviral therapies for Hepatitis C Virus (HCV infection. NS5A is critically involved in viral RNA replication that takes place at newly formed membranes within the endoplasmic reticulum (membranous web and assists viral assembly in the close vicinity of lipid droplets (LDs. To identify host proteins that interact with NS5A, we performed a yeast two-hybrid screen with the N-terminus of NS5A (amino acids 1-31, a well-studied α-helical domain important for the membrane tethering of NS5A. Our studies identified the LD-associated host protein, Tail-Interacting Protein 47 (TIP47 as a novel NS5A interaction partner. Coimmunoprecipitation experiments in Huh7 hepatoma cells confirmed the interaction of TIP47 with full-length NS5A. shRNA-mediated knockdown of TIP47 caused a more than 10-fold decrease in the propagation of full-length infectious HCV in Huh7.5 hepatoma cells. A similar reduction was observed when TIP47 was knocked down in cells harboring an autonomously replicating HCV RNA (subgenomic replicon, indicating that TIP47 is required for efficient HCV RNA replication. A single point mutation (W9A in NS5A that disrupts the interaction with TIP47 but preserves proper subcellular localization severely decreased HCV RNA replication. In biochemical membrane flotation assays, TIP47 cofractionated with HCV NS3, NS5A, NS5B proteins, and viral RNA, and together with nonstructural viral proteins was uniquely distributed to lower-density LD-rich membrane fractions in cells actively replicating HCV RNA. Collectively, our data support a model where TIP47--via its interaction with NS5A--serves as a novel cofactor for HCV infection possibly by integrating LD membranes into the membranous web.

  5. An ontology-based search engine for protein-protein interactions.

    Science.gov (United States)

    Park, Byungkyu; Han, Kyungsook

    2010-01-18

    Keyword matching or ID matching is the most common searching method in a large database of protein-protein interactions. They are purely syntactic methods, and retrieve the records in the database that contain a keyword or ID specified in a query. Such syntactic search methods often retrieve too few search results or no results despite many potential matches present in the database. We have developed a new method for representing protein-protein interactions and the Gene Ontology (GO) using modified Gödel numbers. This representation is hidden from users but enables a search engine using the representation to efficiently search protein-protein interactions in a biologically meaningful way. Given a query protein with optional search conditions expressed in one or more GO terms, the search engine finds all the interaction partners of the query protein by unique prime factorization of the modified Gödel numbers representing the query protein and the search conditions. Representing the biological relations of proteins and their GO annotations by modified Gödel numbers makes a search engine efficiently find all protein-protein interactions by prime factorization of the numbers. Keyword matching or ID matching search methods often miss the interactions involving a protein that has no explicit annotations matching the search condition, but our search engine retrieves such interactions as well if they satisfy the search condition with a more specific term in the ontology.

  6. Identifying potential survival strategies of HIV-1 through virus-host protein interaction networks

    Directory of Open Access Journals (Sweden)

    Boucher Charles AB

    2010-07-01

    Full Text Available Abstract Background The National Institute of Allergy and Infectious Diseases has launched the HIV-1 Human Protein Interaction Database in an effort to catalogue all published interactions between HIV-1 and human proteins. In order to systematically investigate these interactions functionally and dynamically, we have constructed an HIV-1 human protein interaction network. This network was analyzed for important proteins and processes that are specific for the HIV life-cycle. In order to expose viral strategies, network motif analysis was carried out showing reoccurring patterns in virus-host dynamics. Results Our analyses show that human proteins interacting with HIV form a densely connected and central sub-network within the total human protein interaction network. The evaluation of this sub-network for connectivity and centrality resulted in a set of proteins essential for the HIV life-cycle. Remarkably, we were able to associate proteins involved in RNA polymerase II transcription with hubs and proteasome formation with bottlenecks. Inferred network motifs show significant over-representation of positive and negative feedback patterns between virus and host. Strikingly, such patterns have never been reported in combined virus-host systems. Conclusions HIV infection results in a reprioritization of cellular processes reflected by an increase in the relative importance of transcriptional machinery and proteasome formation. We conclude that during the evolution of HIV, some patterns of interaction have been selected for resulting in a system where virus proteins preferably interact with central human proteins for direct control and with proteasomal proteins for indirect control over the cellular processes. Finally, the patterns described by network motifs illustrate how virus and host interact with one another.

  7. MRI: unique costing and pricing issues.

    Science.gov (United States)

    Schwartz, H W; Jarl, D F

    1985-01-01

    Acquisition of magnetic resonance imaging (MRI) involves a plethora of costs not traditionally encountered in radiology procedure cost accounting models. Experiences with MRI gained at the University of Minnesota Hospitals and Clinics during 1984 uncovered a wide variety of unique costing issues which were eventually identified at the time when the MRI hospital charge was being established. Our experience at UMHC can provide those radiology departments now acquiring MRI with an earlier awareness of these special costing issues, hopefully resulting in better and more timely data collection. Current reimbursement and pricing issues are also having a dramatic impact on MRI costs at each institution and must be assessed in terms of third-party payor intentions.

  8. Characterizing alpha helical properties of Ebola viral proteins as potential targets for inhibition of alpha-helix mediated protein-protein interactions [v3; ref status: indexed, http://f1000r.es/50u

    Directory of Open Access Journals (Sweden)

    Sandeep Chakraborty

    2015-01-01

    Full Text Available Ebola, considered till recently as a rare and endemic disease, has dramatically transformed into a potentially global humanitarian crisis. The genome of Ebola, a member of the Filoviridae family, encodes seven proteins. Based on the recently implemented software (PAGAL for analyzing the hydrophobicity and amphipathicity properties of alpha helices (AH in proteins, we characterize the helices in the Ebola proteome. We demonstrate that AHs with characteristically unique features are involved in critical interactions with the host proteins. For example, the Ebola virus membrane fusion subunit, GP2, from the envelope glycoprotein ectodomain has an AH with a large hydrophobic moment. The neutralizing antibody (KZ52 derived from a human survivor of the 1995 Kikwit outbreak recognizes a protein epitope on this AH, emphasizing the critical nature of this secondary structure in the virulence of the Ebola virus. Our method ensures a comprehensive list of such `hotspots'. These helices probably are or can be the target of molecules designed to inhibit AH mediated protein-protein interactions. Further, by comparing the AHs in proteins of the related Marburg viruses, we are able to elicit subtle changes in the proteins that might render them ineffective to previously successful drugs. Such differences are difficult to identify by a simple sequence or structural alignment. Thus, analyzing AHs in the small Ebola proteome can aid rational design aimed at countering the `largest Ebola epidemic, affecting multiple countries in West Africa' (http://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/index.html.

  9. COMe: the ontology of bioinorganic proteins

    Directory of Open Access Journals (Sweden)

    Contrino Sergio

    2004-02-01

    Full Text Available Abstract Background Many characterised proteins contain metal ions, small organic molecules or modified residues. In contrast, the huge amount of data generated by genome projects consists exclusively of sequences with almost no annotation. One of the goals of the structural genomics initiative is to provide representative three-dimensional (3-D structures for as many protein/domain folds as possible to allow successful homology modelling. However, important functional features such as metal co-ordination or a type of prosthetic group are not always conserved in homologous proteins. So far, the problem of correct annotation of bioinorganic proteins has been largely ignored by the bioinformatics community and information on bioinorganic centres obtained by methods other than crystallography or NMR is only available in literature databases. Results COMe (Co-Ordination of Metals represents the ontology for bioinorganic and other small molecule centres in complex proteins. COMe consists of three types of entities: 'bioinorganic motif' (BIM, 'molecule' (MOL, and 'complex proteins' (PRX, with each entity being assigned a unique identifier. A BIM consists of at least one centre (metal atom, inorganic cluster, organic molecule and two or more endogenous and/or exogenous ligands. BIMs are represented as one-dimensional (1-D strings and 2-D diagrams. A MOL entity represents a 'small molecule' which, when in complex with one or more polypeptides, forms a functional protein. The PRX entities refer to the functional proteins as well as to separate protein domains and subunits. The complex proteins in COMe are subdivided into three categories: (i metalloproteins, (ii organic prosthetic group proteins and (iii modified amino acid proteins. The data are currently stored in both XML format and a relational database and are available at http://www.ebi.ac.uk/come/. Conclusion COMe provides the classification of proteins according to their 'bioinorganic' features

  10. Relative Abundance of Integral Plasma Membrane Proteins in Arabidopsis Leaf and Root Tissue Determined by Metabolic Labeling and Mass Spectrometry

    Science.gov (United States)

    Bernfur, Katja; Larsson, Olaf; Larsson, Christer; Gustavsson, Niklas

    2013-01-01

    Metabolic labeling of proteins with a stable isotope (15N) in intact Arabidopsis plants was used for accurate determination by mass spectrometry of differences in protein abundance between plasma membranes isolated from leaves and roots. In total, 703 proteins were identified, of which 188 were predicted to be integral membrane proteins. Major classes were transporters, receptors, proteins involved in membrane trafficking and cell wall-related proteins. Forty-one of the integral proteins, including nine of the 13 isoforms of the PIP (plasma membrane intrinsic protein) aquaporin subfamily, could be identified by peptides unique to these proteins, which made it possible to determine their relative abundance in leaf and root tissue. In addition, peptides shared between isoforms gave information on the proportions of these isoforms. A comparison between our data for protein levels and corresponding data for mRNA levels in the widely used database Genevestigator showed an agreement for only about two thirds of the proteins. By contrast, localization data available in the literature for 21 of the 41 proteins show a much better agreement with our data, in particular data based on immunostaining of proteins and GUS-staining of promoter activity. Thus, although mRNA levels may provide a useful approximation for protein levels, detection and quantification of isoform-specific peptides by proteomics should generate the most reliable data for the proteome. PMID:23990937

  11. Characterization and Prediction of Protein Phosphorylation Hotspots in Arabidopsis thaliana.

    Science.gov (United States)

    Christian, Jan-Ole; Braginets, Rostyslav; Schulze, Waltraud X; Walther, Dirk

    2012-01-01

    The regulation of protein function by modulating the surface charge status via sequence-locally enriched phosphorylation sites (P-sites) in so called phosphorylation "hotspots" has gained increased attention in recent years. We set out to identify P-hotspots in the model plant Arabidopsis thaliana. We analyzed the spacing of experimentally detected P-sites within peptide-covered regions along Arabidopsis protein sequences as available from the PhosPhAt database. Confirming earlier reports (Schweiger and Linial, 2010), we found that, indeed, P-sites tend to cluster and that distributions between serine and threonine P-sites to their respected closest next P-site differ significantly from those for tyrosine P-sites. The ability to predict P-hotspots by applying available computational P-site prediction programs that focus on identifying single P-sites was observed to be severely compromised by the inevitable interference of nearby P-sites. We devised a new approach, named HotSPotter, for the prediction of phosphorylation hotspots. HotSPotter is based primarily on local amino acid compositional preferences rather than sequence position-specific motifs and uses support vector machines as the underlying classification engine. HotSPotter correctly identified experimentally determined phosphorylation hotspots in A. thaliana with high accuracy. Applied to the Arabidopsis proteome, HotSPotter-predicted 13,677 candidate P-hotspots in 9,599 proteins corresponding to 7,847 unique genes. Hotspot containing proteins are involved predominantly in signaling processes confirming the surmised modulating role of hotspots in signaling and interaction events. Our study provides new bioinformatics means to identify phosphorylation hotspots and lays the basis for further investigating novel candidate P-hotspots. All phosphorylation hotspot annotations and predictions have been made available as part of the PhosPhAt database at http://phosphat.mpimp-golm.mpg.de.

  12. Quantitative Secretomic Analysis Identifies Extracellular Protein Factors That Modulate the Metastatic Phenotype of Non-Small Cell Lung Cancer.

    Science.gov (United States)

    Hu, Rongkuan; Huffman, Kenneth E; Chu, Michael; Zhang, Yajie; Minna, John D; Yu, Yonghao

    2016-02-05

    Lung cancer is the leading cause of cancer-related deaths for men and women in the United States, with non-small cell lung cancer (NSCLC) representing 85% of all diagnoses. Late stage detection, metastatic disease and lack of actionable biomarkers contribute to the high mortality rate. Proteins in the extracellular space are known to be critically involved in regulating every stage of the pathogenesis of lung cancer. To investigate the mechanism by which secreted proteins contribute to the pathogenesis of NSCLC, we performed quantitative secretomic analysis of two isogenic NSCLC cell lines (NCI-H1993 and NCI-H2073) and an immortalized human bronchial epithelial cell line (HBEC3-KT) as control. H1993 was derived from a chemo-naïve metastatic tumor, while H2073 was derived from the primary tumor after etoposide/cisplatin therapy. From the conditioned media of these three cell lines, we identified and quantified 2713 proteins, including a series of proteins involved in regulating inflammatory response, programmed cell death and cell motion. Gene Ontology (GO) analysis indicates that a number of proteins overexpressed in H1993 media are involved in biological processes related to cancer metastasis, including cell motion, cell-cell adhesion and cell migration. RNA interference (RNAi)-mediated knock down of a number of these proteins, including SULT2B1, CEACAM5, SPRR3, AGR2, S100P, and S100A14, leads to dramatically reduced migration of these cells. In addition, meta-analysis of survival data indicates NSCLC patients whose tumors express higher levels of several of these secreted proteins, including SULT2B1, CEACAM5, SPRR3, S100P, and S100A14, have a worse prognosis. Collectively, our results provide a potential molecular link between deregulated secretome and NSCLC cell migration/metastasis. In addition, the identification of these aberrantly secreted proteins might facilitate the development of biomarkers for early detection of this devastating disease.

  13. Architectures and Functional Coverage of Protein-Protein Interfaces

    Science.gov (United States)

    Tuncbag, Nurcan; Gursoy, Attila; Guney, Emre; Nussinov, Ruth; Keskin, Ozlem

    2008-01-01

    The diverse range of cellular functions is performed by a limited number of protein folds existing in nature. One may similarly expect that cellular functional diversity would be covered by a limited number of protein-protein interface architectures. Here, we present 8205 interface clusters, each representing unique interface architecture. This dataset of protein-protein interfaces is analyzed and compared with older datasets. We observe that the number of both biological and crystal interfaces increase significantly compared to the number of PDB entries. Further, we find that the number of distinct interface architectures grows at a much faster rate than the number of folds and is yet to level off. We further analyze the growth trend of the functional coverage by constructing functional interaction networks from interfaces. The functional coverage is also found to steadily increase. Interestingly, we also observe that despite the diversity of interface architectures, some are more favorable and frequently used, and of particular interest, those are the ones which are also preferred in single chains. PMID:18620705

  14. Machine learning in computational biology to accelerate high-throughput protein expression.

    Science.gov (United States)

    Sastry, Anand; Monk, Jonathan; Tegel, Hanna; Uhlen, Mathias; Palsson, Bernhard O; Rockberg, Johan; Brunk, Elizabeth

    2017-08-15

    The Human Protein Atlas (HPA) enables the simultaneous characterization of thousands of proteins across various tissues to pinpoint their spatial location in the human body. This has been achieved through transcriptomics and high-throughput immunohistochemistry-based approaches, where over 40 000 unique human protein fragments have been expressed in E. coli. These datasets enable quantitative tracking of entire cellular proteomes and present new avenues for understanding molecular-level properties influencing expression and solubility. Combining computational biology and machine learning identifies protein properties that hinder the HPA high-throughput antibody production pipeline. We predict protein expression and solubility with accuracies of 70% and 80%, respectively, based on a subset of key properties (aromaticity, hydropathy and isoelectric point). We guide the selection of protein fragments based on these characteristics to optimize high-throughput experimentation. We present the machine learning workflow as a series of IPython notebooks hosted on GitHub (https://github.com/SBRG/Protein_ML). The workflow can be used as a template for analysis of further expression and solubility datasets. ebrunk@ucsd.edu or johanr@biotech.kth.se. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  15. Deep sequencing of Salmonella RNA associated with heterologous Hfq proteins in vivo reveals small RNAs as a major target class and identifies RNA processing phenotypes.

    Science.gov (United States)

    Sittka, Alexandra; Sharma, Cynthia M; Rolle, Katarzyna; Vogel, Jörg

    2009-01-01

    The bacterial Sm-like protein, Hfq, is a key factor for the stability and function of small non-coding RNAs (sRNAs) in Escherichia coli. Homologues of this protein have been predicted in many distantly related organisms yet their functional conservation as sRNA-binding proteins has not entirely been clear. To address this, we expressed in Salmonella the Hfq proteins of two eubacteria (Neisseria meningitides, Aquifex aeolicus) and an archaeon (Methanocaldococcus jannaschii), and analyzed the associated RNA by deep sequencing. This in vivo approach identified endogenous Salmonella sRNAs as a major target of the foreign Hfq proteins. New Salmonella sRNA species were also identified, and some of these accumulated specifically in the presence of a foreign Hfq protein. In addition, we observed specific RNA processing defects, e.g., suppression of precursor processing of SraH sRNA by Methanocaldococcus Hfq, or aberrant accumulation of extracytoplasmic target mRNAs of the Salmonella GcvB, MicA or RybB sRNAs. Taken together, our study provides evidence of a conserved inherent sRNA-binding property of Hfq, which may facilitate the lateral transmission of regulatory sRNAs among distantly related species. It also suggests that the expression of heterologous RNA-binding proteins combined with deep sequencing analysis of RNA ligands can be used as a molecular tool to dissect individual steps of RNA metabolism in vivo.

  16. Proteogenomic Analysis Greatly Expands the Identification of Proteins Related to Reproduction in the Apogamous Fern Dryopteris affinis ssp. affinis.

    Science.gov (United States)

    Grossmann, Jonas; Fernández, Helena; Chaubey, Pururawa M; Valdés, Ana E; Gagliardini, Valeria; Cañal, María J; Russo, Giancarlo; Grossniklaus, Ueli

    2017-01-01

    Performing proteomic studies on non-model organisms with little or no genomic information is still difficult. However, many specific processes and biochemical pathways occur only in species that are poorly characterized at the genomic level. For example, many plants can reproduce both sexually and asexually, the first one allowing the generation of new genotypes and the latter their fixation. Thus, both modes of reproduction are of great agronomic value. However, the molecular basis of asexual reproduction is not well understood in any plant. In ferns, it combines the production of unreduced spores (diplospory) and the formation of sporophytes from somatic cells (apogamy). To set the basis to study these processes, we performed transcriptomics by next-generation sequencing (NGS) and shotgun proteomics by tandem mass spectrometry in the apogamous fern D. affinis ssp. affinis . For protein identification we used the public viridiplantae database (VPDB) to identify orthologous proteins from other plant species and new transcriptomics data to generate a "species-specific transcriptome database" (SSTDB). In total 1,397 protein clusters with 5,865 unique peptide sequences were identified (13 decoy proteins out of 1,410, protFDR 0.93% on protein cluster level). We show that using the SSTDB for protein identification increases the number of identified peptides almost four times compared to using only the publically available VPDB. We identified homologs of proteins involved in reproduction of higher plants, including proteins with a potential role in apogamy. With the increasing availability of genomic data from non-model species, similar proteogenomics approaches will improve the sensitivity in protein identification for species only distantly related to models.

  17. High-throughput screening identifies Ceefourin 1 and Ceefourin 2 as highly selective inhibitors of multidrug resistance protein 4 (MRP4).

    Science.gov (United States)

    Cheung, Leanna; Flemming, Claudia L; Watt, Fujiko; Masada, Nanako; Yu, Denise M T; Huynh, Tony; Conseil, Gwenaëlle; Tivnan, Amanda; Polinsky, Alexander; Gudkov, Andrei V; Munoz, Marcia A; Vishvanath, Anasuya; Cooper, Dermot M F; Henderson, Michelle J; Cole, Susan P C; Fletcher, Jamie I; Haber, Michelle; Norris, Murray D

    2014-09-01

    Multidrug resistance protein 4 (MRP4/ABCC4), a member of the ATP-binding cassette (ABC) transporter superfamily, is an organic anion transporter capable of effluxing a wide range of physiologically important signalling molecules and drugs. MRP4 has been proposed to contribute to numerous functions in both health and disease; however, in most cases these links remain to be unequivocally established. A major limitation to understanding the physiological and pharmacological roles of MRP4 has been the absence of specific small molecule inhibitors, with the majority of established inhibitors also targeting other ABC transporter family members, or inhibiting the production, function or degradation of important MRP4 substrates. We therefore set out to identify more selective and well tolerated inhibitors of MRP4 that might be used to study the many proposed functions of this transporter. Using high-throughput screening, we identified two chemically distinct small molecules, Ceefourin 1 and Ceefourin 2, that inhibit transport of a broad range of MRP4 substrates, yet are highly selective for MRP4 over other ABC transporters, including P-glycoprotein (P-gp), ABCG2 (Breast Cancer Resistance Protein; BCRP) and MRP1 (multidrug resistance protein 1; ABCC1). Both compounds are more potent MRP4 inhibitors in cellular assays than the most widely used inhibitor, MK-571, requiring lower concentrations to effect a comparable level of inhibition. Furthermore, Ceefourin 1 and Ceefourin 2 have low cellular toxicity, and high microsomal and acid stability. These newly identified inhibitors should be of great value for efforts to better understand the biological roles of MRP4, and may represent classes of compounds with therapeutic application. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Identification and characterisation of seed storage protein transcripts from Lupinus angustifolius

    Directory of Open Access Journals (Sweden)

    Goggin Danica E

    2011-04-01

    Full Text Available Abstract Background In legumes, seed storage proteins are important for the developing seedling and are an important source of protein for humans and animals. Lupinus angustifolius (L., also known as narrow-leaf lupin (NLL is a grain legume crop that is gaining recognition as a potential human health food as the grain is high in protein and dietary fibre, gluten-free and low in fat and starch. Results Genes encoding the seed storage proteins of NLL were characterised by sequencing cDNA clones derived from developing seeds. Four families of seed storage proteins were identified and comprised three unique α, seven β, two γ and four δ conglutins. This study added eleven new expressed storage protein genes for the species. A comparison of the deduced amino acid sequences of NLL conglutins with those available for the storage proteins of Lupinus albus (L., Pisum sativum (L., Medicago truncatula (L., Arachis hypogaea (L. and Glycine max (L. permitted the analysis of a phylogenetic relationships between proteins and demonstrated, in general, that the strongest conservation occurred within species. In the case of 7S globulin (β conglutins and 2S sulphur-rich albumin (δ conglutins, the analysis suggests that gene duplication occurred after legume speciation. This contrasted with 11S globulin (α conglutin and basic 7S (γ conglutin sequences where some of these sequences appear to have diverged prior to speciation. The most abundant NLL conglutin family was β (56%, followed by α (24%, δ (15% and γ (6% and the transcript levels of these genes increased 103 to 106 fold during seed development. We used the 16 NLL conglutin sequences identified here to determine that for individuals specifically allergic to lupin, all seven members of the β conglutin family were potential allergens. Conclusion This study has characterised 16 seed storage protein genes in NLL including 11 newly-identified members. It has helped lay the foundation for efforts to use

  19. Targeted nanodiamonds for identification of subcellular protein assemblies in mammalian cells

    Science.gov (United States)

    Lake, Michael P.; Bouchard, Louis-S.

    2017-01-01

    Transmission electron microscopy (TEM) can be used to successfully determine the structures of proteins. However, such studies are typically done ex situ after extraction of the protein from the cellular environment. Here we describe an application for nanodiamonds as targeted intensity contrast labels in biological TEM, using the nuclear pore complex (NPC) as a model macroassembly. We demonstrate that delivery of antibody-conjugated nanodiamonds to live mammalian cells using maltotriose-conjugated polypropylenimine dendrimers results in efficient localization of nanodiamonds to the intended cellular target. We further identify signatures of nanodiamonds under TEM that allow for unambiguous identification of individual nanodiamonds from a resin-embedded, OsO4-stained environment. This is the first demonstration of nanodiamonds as labels for nanoscale TEM-based identification of subcellular protein assemblies. These results, combined with the unique fluorescence properties and biocompatibility of nanodiamonds, represent an important step toward the use of nanodiamonds as markers for correlated optical/electron bioimaging. PMID:28636640

  20. Targeted nanodiamonds for identification of subcellular protein assemblies in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Michael P Lake

    Full Text Available Transmission electron microscopy (TEM can be used to successfully determine the structures of proteins. However, such studies are typically done ex situ after extraction of the protein from the cellular environment. Here we describe an application for nanodiamonds as targeted intensity contrast labels in biological TEM, using the nuclear pore complex (NPC as a model macroassembly. We demonstrate that delivery of antibody-conjugated nanodiamonds to live mammalian cells using maltotriose-conjugated polypropylenimine dendrimers results in efficient localization of nanodiamonds to the intended cellular target. We further identify signatures of nanodiamonds under TEM that allow for unambiguous identification of individual nanodiamonds from a resin-embedded, OsO4-stained environment. This is the first demonstration of nanodiamonds as labels for nanoscale TEM-based identification of subcellular protein assemblies. These results, combined with the unique fluorescence properties and biocompatibility of nanodiamonds, represent an important step toward the use of nanodiamonds as markers for correlated optical/electron bioimaging.