WorldWideScience

Sample records for unique biophysical studies

  1. Biophysics

    CERN Document Server

    Glaser, Roland

    1999-01-01

    The message of this book is that biophysics is the science of physical principles underlying the "phenomenon life" on all levels of organization. Rather than teaching "physics for biologists" or "physical methods applied to biology", it regards its subject as a defined discipline with its own network of ideas and approaches. The book starts by explaining molecular structures of biological systems, various kinds of atomic, molecular and ionic interactions, movements, energy transfer, self organization of supramolecular structures and dynamic properties of biological membranes. It then goes on to introduce the biological organism as a non-equilibrium system, before treating thermodynamic concepts of osmotic and electrolyte equilibria as well as currents and potential profiles. It continues with topics of environmental biophysics and such medical aspects as the influence of electromagnetic fields or radiation on living systems and the biophysics of hearing and noice protection. The book concludes with a discussi...

  2. Biophysics

    International Nuclear Information System (INIS)

    Danyluk, S.S.

    1975-01-01

    Research is reported on magnetic resonance spectroscopy of biological molecules, development of clinical applications of stable isotopes, circadian cybernetics, and X-ray crystallography of immunoglobulins. Biological processes occur in fluid media, and ultimately our knowledge of their mechanisms requires detailed information for chemical and molecular structural properties in biological fluids. Magnetic resonance spectroscopy has unique advantages over other approaches in this area that are being exploited in studies currently underway in the group. The program continues to develop along three interrelated lines, measurement and analysis of high resolution spectra for biological molecules (especially nucleic acid constituents and drugs), synthesis of selectively labeled nucleic acid fragments essential for complete spectral assignments, and computation of conformational properties from NMR parameters. This coordinated approach enabled the first complete conformation analysis for a dinucleoside monophosphate, ApA, in aqueous solution. It was found that the conformation is actually a time-average of right helical, loop, and extended conformations, the interchange being extremely rapid on an NMR time scale. Spectral analyses were also completed for all possible ribonucleotide dimers, the assignments again relying heavily on synthesis of appropriate deuterated counterparts. Studies of conformational flexibility in nucleic acid fragments showed that changes in hydrogen ion concentration and temperature produce correlated conformational changes specific for each nucleotidyl unit. Studies were also initiated in three new projects dealing with the effect of hapten binding on antibody structure, counter ion influence on nucleic acid free radicals, and membrane differences between normal and sickled erythrocytes

  3. Biophysical EPR Studies Applied to Membrane Proteins

    Science.gov (United States)

    Sahu, Indra D; Lorigan, Gary A

    2015-01-01

    Membrane proteins are very important in controlling bioenergetics, functional activity, and initializing signal pathways in a wide variety of complicated biological systems. They also represent approximately 50% of the potential drug targets. EPR spectroscopy is a very popular and powerful biophysical tool that is used to study the structural and dynamic properties of membrane proteins. In this article, a basic overview of the most commonly used EPR techniques and examples of recent applications to answer pertinent structural and dynamic related questions on membrane protein systems will be presented. PMID:26855825

  4. Biophysical and lipofection studies of DOTAP analogs.

    Science.gov (United States)

    Regelin, A E; Fankhaenel, S; Gürtesch, L; Prinz, C; von Kiedrowski, G; Massing, U

    2000-03-15

    In order to investigate the relationship between lipid structure and liposome-mediated gene transfer, we have studied biophysical parameters and transfection properties of monocationic DOTAP analogs, systematically modified in their non-polar hydrocarbon chains. Stability, size and (by means of anisotropy profiles) membrane fluidity of liposomes and lipoplexes were determined, and lipofection efficiency was tested in a luciferase reporter gene assay. DOTAP analogs were used as single components or combined with a helper lipid, either DOPE or cholesterol. Stability of liposomes was a precondition for formation of temporarily stable lipoplexes. Addition of DOPE or cholesterol improved liposome and lipoplex stability. Transfection efficiencies of lipoplexes based on pure DOTAP analogs could be correlated with stability data and membrane fluidity at transfection temperature. Inclusion of DOPE led to rather uniform transfection and anisotropy profiles, corresponding to lipoplex stability. Cholesterol-containing lipoplexes were generally stable, showing high transfection efficiency at low relative fluidity. Our results demonstrate that the efficiency of gene transfer mediated by monocationic lipids is greatly influenced by lipoplex biophysics due to lipid composition. The measurement of fluorescence anisotropy is an appropriate method to characterize membrane fluidity within a defined system of liposomes or lipoplexes and may be helpful to elucidate structure-activity relationships.

  5. Perspectives and Plans for Graduate Studies. 16. Biophysics 1974.

    Science.gov (United States)

    Ontario Council on Graduate Studies, Toronto. Advisory Committee on Academic Planning.

    In March, 1973, after a review of the Ontario universities' three-year plans, a provisional embargo was placed on doctoral work in biophysics. A full-scale assessment with outside consultants was not necessary in the case of a provisional embargo. Instead, the method used to remove the embargo was self-study by the discipline group leading to a…

  6. Biophysical studies of irradiated thymocytes. 1. Surface changes

    Energy Technology Data Exchange (ETDEWEB)

    Sungurov, A Yu; Tokalov, S V; Petrov, Yu P; Sharlaeva, T M

    1985-08-15

    In order to study postirradiation changes in thymus lymphocyte surface, a number of biophysical analytical methods was used: the cell two-partition method, the physical adhesion method, fluorescence intensity and binding parameters of negatively charged ANS probe. Reduction of cell distribution factor in two-phase system and adhesion of thymocytes to cotton 1 hour after irradiation, as well as abrupt change in parameters of binding the probe in the interval of 3-4 hours after X-ray irradiation at the dose of 4 Gy are demonstrated.

  7. Biophysics of Human Hair Structural, Nanomechanical, and Nanotribological Studies

    CERN Document Server

    Bhushan, Bharat

    2010-01-01

    This book presents the biophysics of hair. It deals with the structure of hair, its mechanical properties, the nanomechanical characterization, tensile deformation, tribological characterization, the thickness distribution and binding interactions on hair surface. Another important topic of the book is the health of hair, human hair and skin, hair care, cleaning and conditioning treatments and damaging processes. It is the first book on the biophysical properties of hair.

  8. Biophysical studies related to energy generation: Progress report

    International Nuclear Information System (INIS)

    Green, A.E.S.

    1988-01-01

    This report covers work subsequent to our previous report of December 24, 1986. At that time we were groping to find relationships between vibrational and rotational electron impact cross sections in the vapor and liquid phases of water. Having reached an impass within the radiological literature, we drew upon the atmospheric, oceanographic and flame radiation literatures. Here a much broader body of excitation energy and intensity data related to the vibrational and rotational excitation of water in the vapor phases and liquid phases enabled us to identify certain ''big bands'' of H 2 O. These bands account for the major infrared absorption features observed in atmospheric transmission studies as well as important spectral radiation features observed in hydrocarbon combustion. Related liquid phase-gas phase involvement also entered our work on co-combustion of biomass and waste, and natural gas in studies directed toward contributing to the solution of national energy-environmental and economic problems. Attachments to this report include our published works, submitted works, and in complete studies related to radiological, atmospheric, and combustion studies which encompass biophysical studies related to energy generation and which have a common thread involving water in liquid and vapor form. These works are tied together in this brief report, along with some comments on trends in science and technology which they might illustrate

  9. Biophysical and electrochemical studies of protein-nucleic acid interactions

    Czech Academy of Sciences Publication Activity Database

    Bowater, R. P.; Cobb, A:M.; Pivoňková, Hana; Havran, Luděk; Fojta, Miroslav

    2015-01-01

    Roč. 146, č. 5 (2015), s. 723-739 ISSN 0026-9247 R&D Projects: GA ČR(CZ) GBP206/12/G151; GA ČR(CZ) GAP301/11/2076 Institutional support: RVO:68081707 Keywords : ISOTHERMAL TITRATION CALORIMETRY * OSMIUM-TETROXIDE COMPLEXES * SURFACE-PLASMON RESONANCE Subject RIV: BO - Biophysics Impact factor: 1.131, year: 2015

  10. Winnowing and Flocculation in Bio-physical Cohesive Substrate: A Flume Experimental and Estuarine Study

    Science.gov (United States)

    Ye, L.; Parsons, D. R.; Manning, A. J.

    2016-12-01

    Cohesive sediment, or mud, is ubiquitously found in most aqueous environments, such as coasts and estuaries. The study of cohesive sediment behaviors requires the synchronous description of mutual interactions of grains (e.g., winnowing and flocculation), their physical properties (e.g., grain size) and also the ambient water. Herein, a series of flume experiments (14 runs) with different substrate mixtures of sand-clay-EPS (Extracellular Polymeric Substrates: secreted by aquatic microorganisms) are combined with an estuarine field survey (Dee estuary, NW England) to investigate the behavior of suspensions over bio-physical cohesive substrates. The experimental results indicate that winnowing and flocculation occur pervasively in bio-physical cohesive flow systems. Importantly however, the evolution of the bed and bedform dynamics and hence turbulence production can be lower when cohesivity is high. The estuarine survey also revealed that the bio-physical cohesion provided by both the clay and microorganism fractions in the bed, that pervasively exists in many natural estuarine systems, plays a significant role in controlling the interactions between bed substrate and sediment suspension and deposition, including controlling processes such as sediment winnowing, flocculation and re-deposition. Full understanding of these processes are essential in advancing sediment transport modelling and prediction studies across natural estuarine systems and the work will report on an improved conceptual model for sediment sorting deposition in bio-physical cohesive substrates.

  11. An ethnographic study: Becoming a physics expert in a biophysics research group

    Science.gov (United States)

    Rodriguez, Idaykis

    Expertise in physics has been traditionally studied in cognitive science, where physics expertise is understood through the difference between novice and expert problem solving skills. The cognitive perspective of physics experts only create a partial model of physics expertise and does not take into account the development of physics experts in the natural context of research. This dissertation takes a social and cultural perspective of learning through apprenticeship to model the development of physics expertise of physics graduate students in a research group. I use a qualitative methodological approach of an ethnographic case study to observe and video record the common practices of graduate students in their biophysics weekly research group meetings. I recorded notes on observations and conduct interviews with all participants of the biophysics research group for a period of eight months. I apply the theoretical framework of Communities of Practice to distinguish the cultural norms of the group that cultivate physics expert practices. Results indicate that physics expertise is specific to a topic or subfield and it is established through effectively publishing research in the larger biophysics research community. The participant biophysics research group follows a learning trajectory for its students to contribute to research and learn to communicate their research in the larger biophysics community. In this learning trajectory students develop expert member competencies to learn to communicate their research and to learn the standards and trends of research in the larger research community. Findings from this dissertation expand the model of physics expertise beyond the cognitive realm and add the social and cultural nature of physics expertise development. This research also addresses ways to increase physics graduate student success towards their PhD. and decrease the 48% attrition rate of physics graduate students. Cultivating effective research

  12. Biophysical study of mice blood after whole body irradiation

    Science.gov (United States)

    Saad El Din, Alsha A.; Desouky, Omar S.; El Behay, Amin Z.; El Sayed, Anwar A.

    1996-05-01

    The immediate of whole body fractionated doses of 137Cs gamma rays totalling 13 Gy on mice as well as the late effects of accumulative dose of 10 Gy (8 days after exposure) were studied. Changes due to gamma irradiation in hemoglobin conductivity and buffer capacity indicate the appearance of hydrophobic groups and changes in hydrophilic/hydrophobic ratio. These changes demonstrate different degrees of unfolding and refolding of the hemoglobin molecule. The viscosity coefficient of hemoglobin is found to increase at fractionated doses of 7 and 13 Gy. Such effect seems to be due to aggregation of the protein part of hemoglobin. The fractionated dose of 13 Gy causes changes in the electronic state of oxyhemoglobin indicated by an increase in methemoglobin which reduces biological activity.

  13. Toxin studies using an integrated biophysical and structural biology approach.

    Energy Technology Data Exchange (ETDEWEB)

    Last, Julie A.; Schroeder, Anne E.; Slade, Andrea Lynn; Sasaki, Darryl Yoshio; Yip, Christopher M. (University of Toronto, Toronto, Ontario, Canada); Schoeniger, Joseph S. (Sandia National Laboratories, Livermore, CA)

    2005-03-01

    Clostridial neurotoxins, such as botulinum and tetanus, are generally thought to invade neural cells through a process of high affinity binding mediated by gangliosides, internalization via endosome formation, and subsequent membrane penetration of the catalytic domain activated by a pH drop in the endosome. This surface recognition and internalization process is still not well understood with regard to what specific membrane features the toxins target, the intermolecular interactions between bound toxins, and the molecular conformational changes that occur as a result of pH lowering. In an effort to elucidate the mechanism of tetanus toxin binding and permeation through the membrane a simple yet representative model was developed that consisted of the ganglioside G{sub tlb} incorporated in a bilayer of cholesterol and DPPC (dipalmitoylphosphatidyl choline). The bilayers were stable over time yet sensitive towards the binding and activity of whole toxin. A liposome leakage study at constant pH as well as with a pH gradient, to mimic the processes of the endosome, was used to elucidate the effect of pH on the toxin's membrane binding and permeation capability. Topographic imaging of the membrane surface, via in situ tapping mode AFM, provided nanoscale characterization of the toxin's binding location and pore formation activity.

  14. Biophysical studies of cholesterol in unsaturated phospholipid model membranes

    Science.gov (United States)

    Williams, Justin Adam

    PUFAs can incorporate into lipid rafts, which are domains enriched in SM and chol in the plasma membrane, and potentially disrupt the activity of signaling proteins that reside therein. DHA, furthermore, may be the more potent component of fish oil. PUFA-chol interactions were also examined through affinity measurements. A novel method utilizing electron paramagnetic resonance (EPR) was developed, to monitor the partitioning of a spin-labeled analog of chol, 3beta-doxyl-5alpha-cholestane (chlstn), between large unilamellar vesicles (LUVs) and methyl-beta-cyclodextrin (mbetaCD). The EPR spectra for chlstn in the two environments are distinguishable due to the substantial differences in tumbling rates, allowing the population distribution ratio to be determined by spectral simulation. Advantages of this approach include speed of implementation and avoidance of potential artifacts associated with physical separation of LUV and mbetaCD. Additionally, in a check of the method, the relative partition coefficients between lipids measured for the spin label analog agree with values obtained for chol by isothermal titration calorimetry (ITC). Results from LUV with different composition confirmed a hierarchy of decreased sterol affinity for phospholipids with increasing acyl chain unsaturation, PDPC possessing half the affinity of the corresponding monounsaturated phospholipid. Taken together, the results of these studies on model membranes demonstrate the potential for PUFA-driven alteration of the architecture of biomembranes, a mechanism through which human health may be impacted.

  15. Radiation biophysics

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Summaries of research projects conducted during 1978 and 1979 are presented. The overall thrust of the research is aimed at understanding the effects of radiation on organisms. Specific subject areas include: the effects of heavy-particle beam nuclear interactions in tissue on dosimetry; tracer studies with radioactive fragments of heavy-ion beams; the effects of heavy/ions on human kidney cells and Chinese hamster cells; the response of a rhabdomyosarcoma tumor system in rats to heavy-ion beams; the use of heavy charged particles in radiotherapy of human cancer; heavy-ion radiography; the biological effects of high magnetic fields; central nervous system neurotoxicity; and biophysical studies on cell membranes

  16. Satellite mapping of surface biophysical parameters at the biome scale over the North American grasslands: A case study

    Science.gov (United States)

    Wylie, B.K.; Meyer, D.J.; Tieszen, L.L.; Mannel, S.

    2002-01-01

    Quantification of biophysical parameters is needed by terrestrial process modeling and other applications. A study testing the role of multispectral data for monitoring biophysical parameters was conducted over a network of grassland field sites in the Great Plains of North America. Grassland biophysical parameters [leaf area index (LAI), fraction of absorbed photosynthetically active radiation (fPAR), and biomass] and their relationships with ground radiometer normalized difference vegetation index (NDVI) were established in this study (r2=.66–.85) from data collected across the central and northern Great Plains in 1995. These spectral/biophysical relationships were compared to 1996 field data from the Tallgrass Prairie Preserve in northeastern Oklahoma and showed no consistent biases, with most regression estimates falling within the respective 95% confidence intervals. Biophysical parameters were estimated for 21 “ground pixels” (grids) at the Tallgrass Prairie Preserve in 1996, representing three grazing/burning treatments. Each grid was 30×30 m in size and was systematically sampled with ground radiometer readings. The radiometric measurements were then converted to biophysical parameters and spatially interpolated using geostatistical kriging. Grid-based biophysical parameters were monitored through the growing season and regressed against Landsat Thematic Mapper (TM) NDVI (r2=.92–.94). These regression equations were used to estimate biophysical parameters for grassland TM pixels over the Tallgrass Prairie Preserve in 1996. This method maintained consistent regression development and prediction scales and attempted to minimize scaling problems associated with mixed land cover pixels. A method for scaling Landsat biophysical parameters to coarser resolution satellite data sets (1 km2) was also investigated.

  17. Advanced Techniques in Biophysics

    CERN Document Server

    Arrondo, José Luis R

    2006-01-01

    Technical advancements are basic elements in our life. In biophysical studies, new applications and improvements in well-established techniques are being implemented every day. This book deals with advancements produced not only from a technical point of view, but also from new approaches that are being taken in the study of biophysical samples, such as nanotechniques or single-cell measurements. This book constitutes a privileged observatory for reviewing novel applications of biophysical techniques that can help the reader enter an area where the technology is progressing quickly and where a comprehensive explanation is not always to be found.

  18. Biophysical Regulation of Vascular Differentiation and Assembly

    CERN Document Server

    Gerecht, Sharon

    2011-01-01

    The ability to grow stem cells in the laboratory and to guide their maturation to functional cells allows us to study the underlying mechanisms that govern vasculature differentiation and assembly in health and disease. Accumulating evidence suggests that early stages of vascular growth are exquisitely tuned by biophysical cues from the microenvironment, yet the scientific understanding of such cellular environments is still in its infancy. Comprehending these processes sufficiently to manipulate them would pave the way to controlling blood vessel growth in therapeutic applications. This book assembles the works and views of experts from various disciplines to provide a unique perspective on how different aspects of its microenvironment regulate the differentiation and assembly of the vasculature. In particular, it describes recent efforts to exploit modern engineering techniques to study and manipulate various biophysical cues. Biophysical Regulation of Vascular Differentiation and Assembly provides an inter...

  19. Biophysical radiosensitization

    International Nuclear Information System (INIS)

    Vladescu, C.; Apetroae, M.

    1983-01-01

    Experimental studies on normal and tumor-bearing rats revealed that chronic treatment with hydroquinone (5 mg/kg/day) inhibited catalase activity in liver, spleen, blood, and H 18R tumor. 3 H-hydroquinone (1.5 μCi/g body weight) showed tumor specificity, with maximum radioactivity in the tumor at 1 h after administration. The biological half-time of 3 H-hydroquinone in the tumor was 2 h, but there seems to exist a longer component, since 24 h after administration, some 30% of the maximum radioactivity could be detected in the tumor. Hydroquinone treatment produces a specific inhibition of catalase in the tumor and a higher degree of oxygenation at this level. These findings support the assumption that the mechanism of action of hydroquinone as an anticancer agent is achieved mainly via peroxide production. The oxygenation of the hypoxic tumoral tissue is done at non-toxic levels of hydroquinone, through a natural and specific biophysical pathway, recommanding hydroquinone for combined anticancer treatment (radiotherapy and chemotherapy). (orig.)

  20. Linking biophysical models and public preferences for ecosystem service assessments: a case study for the Southern Rocky Mountains

    Science.gov (United States)

    Bagstad, Kenneth J.; Reed, James; Semmens, Darius J.; Sherrouse, Ben C.; Troy, Austin

    2016-01-01

    Through extensive research, ecosystem services have been mapped using both survey-based and biophysical approaches, but comparative mapping of public values and those quantified using models has been lacking. In this paper, we mapped hot and cold spots for perceived and modeled ecosystem services by synthesizing results from a social-values mapping study of residents living near the Pike–San Isabel National Forest (PSI), located in the Southern Rocky Mountains, with corresponding biophysically modeled ecosystem services. Social-value maps for the PSI were developed using the Social Values for Ecosystem Services tool, providing statistically modeled continuous value surfaces for 12 value types, including aesthetic, biodiversity, and life-sustaining values. Biophysically modeled maps of carbon sequestration and storage, scenic viewsheds, sediment regulation, and water yield were generated using the Artificial Intelligence for Ecosystem Services tool. Hotspots for both perceived and modeled services were disproportionately located within the PSI’s wilderness areas. Additionally, we used regression analysis to evaluate spatial relationships between perceived biodiversity and cultural ecosystem services and corresponding biophysical model outputs. Our goal was to determine whether publicly valued locations for aesthetic, biodiversity, and life-sustaining values relate meaningfully to results from corresponding biophysical ecosystem service models. We found weak relationships between perceived and biophysically modeled services, indicating that public perception of ecosystem service provisioning regions is limited. We believe that biophysical and social approaches to ecosystem service mapping can serve as methodological complements that can advance ecosystem services-based resource management, benefitting resource managers by showing potential locations of synergy or conflict between areas supplying ecosystem services and those valued by the public.

  1. Mathematical biophysics

    CERN Document Server

    Rubin, Andrew

    2014-01-01

    This book presents concise descriptions and analysis of the classical and modern models used in mathematical biophysics. The authors ask the question "what new information can be provided by the models that cannot be obtained directly from experimental data?" Actively developing fields such as regulatory mechanisms in cells and subcellular systems and electron transport and energy transport in membranes are addressed together with more classical topics such as metabolic processes, nerve conduction and heart activity, chemical kinetics, population dynamics, and photosynthesis. The main approach is to describe biological processes using different mathematical approaches necessary to reveal characteristic features and properties of simulated systems. With the emergence of powerful mathematics software packages such as MAPLE, Mathematica, Mathcad, and MatLab, these methodologies are now accessible to a wide audience. Provides succinct but authoritative coverage of a broad array of biophysical topics and models Wr...

  2. Biophysical influence of coumarin 35 on bovine serum albumin: Spectroscopic study

    Science.gov (United States)

    Bayraktutan, Tuğba; Onganer, Yavuz

    2017-01-01

    The binding mechanism and protein-fluorescence probe interactions between bovine serum albumin (BSA) and coumarin 35 (C35) was investigated by using UV-Vis absorption and fluorescence spectroscopies since they remain major research topics in biophysics. The spectroscopic data indicated that a fluorescence quenching process for BSA-C35 system was occurred. The fluorescence quenching processes were analyzed using Stern-Volmer method. In this regard, Stern-Volmer quenching constants (KSV) and binding constants were calculated at different temperatures. The distance r between BSA (donor) and C35 (acceptor) was determined by exploiting fluorescence resonance energy transfer (FRET) method. Synchronous fluorescence spectra were also studied to observe information about conformational changes. Moreover, thermodynamics parameters were calculated for better understanding of interactions and conformational changes of the system.

  3. Bone marrow-derived cells and biophysical stimulation for talar osteochondral lesions: a randomized controlled study.

    Science.gov (United States)

    Cadossi, Matteo; Buda, Roberto Emanuele; Ramponi, Laura; Sambri, Andrea; Natali, Simone; Giannini, Sandro

    2014-10-01

    Osteochondral lesions of the talus (OLT) frequently occur after ankle sprains in young patients participating in sports activities. These injuries may lead to chronic pain, joint swelling, and finally osteoarthritis, therefore, surgical repair is frequently needed. A collagen scaffold seeded with bone marrow-derived cells (BMDCs) harvested from patient's iliac crest and implanted into the OLT through a single arthroscopic procedure has been recently proposed as an effective treatment option. Nevertheless, BMDCs, embedded in an inflammatory environment, tend to differentiate toward a fibroblast phenotype with a consequential loss of mechanical characteristics. Biophysical stimulation with pulsed electromagnetic fields (PEMFs) has been shown to promote anabolic chondrocyte activity, stimulate proteoglycan synthesis, and reduce the release of the most relevant pro-inflammatory cytokines. The aim of this randomized controlled trial was to evaluate the effects of PEMFs on clinical outcome in patients who underwent BMDCs transplantation for OLT. Thirty patients affected by grade III and IV Outerbridge OLT underwent BMDCs transplantation. After surgery, patients were randomly assigned to either experimental group (PEMFs 4 hours per day for 60 days starting within 3 days after operation) or control group. Clinical outcome was evaluated with (American Orthopaedic Foot and Ankle Society) AOFAS score, Visual Analog Scale (VAS), and Short Form-36 (SF-36). Significantly higher AOFAS score was recorded in the experimental group both at 6 or 12 months follow-up. At 60 days and 6 and 12 months follow-up, significant lower pain was observed in the experimental group. No significant difference was found in SF-36 between groups. A superior clinical outcome was found in the experimental group with more than 10 points higher AOFAS score at final follow-up. Biophysical stimulation started soon after surgery aided patient recovery leading to pain control and a better clinical outcome

  4. [Uniqueness seeking behavior as a self-verification: an alternative approach to the study of uniqueness].

    Science.gov (United States)

    Yamaoka, S

    1995-06-01

    Uniqueness theory explains that extremely high perceived similarity between self and others evokes negative emotional reactions and causes uniqueness seeking behavior. However, the theory conceptualizes similarity so ambiguously that it appears to suffer from low predictive validity. The purpose of the current article is to propose an alternative explanation of uniqueness seeking behavior. It posits that perceived uniqueness deprivation is a threat to self-concepts, and therefore causes self-verification behavior. Two levels of self verification are conceived: one based on personal categorization and the other on social categorization. The present approach regards uniqueness seeking behavior as the personal-level self verification. To test these propositions, a 2 (very high or moderate similarity information) x 2 (with or without outgroup information) x 2 (high or low need for uniqueness) between-subject factorial-design experiment was conducted with 95 university students. Results supported the self-verification approach, and were discussed in terms of effects of uniqueness deprivation, levels of self-categorization, and individual differences in need for uniqueness.

  5. Structural biophysics

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Summaries of research projects conducted during 1978 and 1979 are presented. The structural biophysics group explores the high-resolution structure of biological macromolecules and cell organelles. Specific subject areas include: the basic characteristics of photosynthesis in plants; the chemical composition of individual fly ash particles at the site of their damaging action in tissues; direct analysis of frozen-hydrated biological samples by scanning electron microscopy; yeast genetics; the optical activity of DNA aggregates; measurement and characterization of lipoproteins; function of lipoproteins; and the effect of radiation and pollutants on mammalian cells

  6. Insulin amyloid fibrillation studied by terahertz spectroscopy and other biophysical methods

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Rui [State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); He, Mingxia [College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072 (China); Su, Rongxin, E-mail: surx@tju.edu.cn [State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072 (China); Yu, Yanjun [State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Qi, Wei; He, Zhimin [State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072 (China)

    2010-01-01

    Assembly and fibrillation of amyloid proteins are believed to play a key role in the etiology of various human diseases, including Alzheimer's, Parkinson's, Huntington's and type II diabetes. Insights into conformational changes and formation processes during amyloid fibrillation are essential for the clinical diagnosis and drug discovery. To study the changes in secondary, tertiary, quaternary structures, and the alteration in the collective vibrational mode density of states during the amyloid fibrillation, bovine insulin in 20% acetic acid was incubated at 60 {sup o}C, and its multi-level structures were followed by various biophysical techniques, including circular dichroism (CD), thioflavin T fluorescence (ThT), dynamic light scattering (DLS), electron microscopy, and terahertz (THz) absorption spectroscopy. The experimental data demonstrated a transformation of {alpha}-helix into {beta}-sheet starting at 26 h. This was followed by the aggregation of insulin, as shown by ThT binding, with a transition midpoint at 41 h, and by the bulk formation of mature aggregates after about 71 h. THz is a quick and non-invasive technique, which has the advantage of allowing the study of the conformational state of biomolecules and tissues. We first applied THz spectroscopy to study the amyloid fibrillation. At the terahertz frequency range of 0.2-2.0 THz, there was an apparent increase in both the absorbance and refractive index in THz spectra. Thus, THz is expected to provide a new way of looking into amyloid fibrillation.

  7. Interaction of biocompatible natural rosin-based surfactants with human serum albumin: A biophysical study

    International Nuclear Information System (INIS)

    Ishtikhar, Mohd; Ali, Mohd Sajid; Atta, Ayman M.; Al-Lohedan, H.A.; Nigam, Lokesh; Subbarao, Naidu; Hasan Khan, Rizwan

    2015-01-01

    Biophysical insight into interaction of biocompatible rosin-based surfactants with human serum albumin (HSA) was studied at physiological conditions using various spectroscopic, calorimetric and molecular docking approaches. The binding constant (K b ), enthalpy (ΔH 0 ), entropy (ΔS 0 ) and Gibbs free energy change (ΔG 0 ) were calculated by spectroscopic and calorimetric method. We have also calculated the probability of energy transfer by FRET analysis. The circular dichroism study showed that the cationic surfactant QRMAE significantly altered the secondary structure of HSA as compared to the nonionic rosin surfactants. The thermodynamic study was performed by ITC to determine binding constant as well as change in enthalpy of HSA in presence of rosin surfactants. It clearly showed that hydrogen binding and hydrophobic interaction play an important role in the binding of HSA to rosin surfactants. We have also performed molecular docking studies to locate the binding site on HSA and to visualize the mode of interaction. The present study provides a significant insight into HSA–rosin surfactants interaction, which also improves our understanding of the possible effect of rosin surfactants on human health. - Highlights: • RMPEG 750 has the highest Kb, Kq and Ksv value as compared to other rosin surfactants. • The probability of energy transfer from HSA to rosin surfactants was maximum in the case of RMPEG 750. • Cationic surfactant QRMAE significantly altered the secondary structure of the HSA as compared to other rosin surfactants. • Molecular docking and ITC experiment studies, to locate the binding site on HSA and to investigate the mode of interaction

  8. Interaction of biocompatible natural rosin-based surfactants with human serum albumin: A biophysical study

    Energy Technology Data Exchange (ETDEWEB)

    Ishtikhar, Mohd [Protein Biophysics Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002 (India); Ali, Mohd Sajid [Surfactant Research Chair, Department of Chemistry, King Saud University, P.O. Box-2455, Riyadh 11451 (Saudi Arabia); Atta, Ayman M. [Surfactant Research Chair, Department of Chemistry, King Saud University, P.O. Box-2455, Riyadh 11451 (Saudi Arabia); Petroleum Application department, Egyptian Petroleum Research Institute, Ahmad Elzomor St., Nasr city, Cairo-11727 (Egypt); Al-Lohedan, H.A. [Surfactant Research Chair, Department of Chemistry, King Saud University, P.O. Box-2455, Riyadh 11451 (Saudi Arabia); Nigam, Lokesh; Subbarao, Naidu [Centre for Computational Biology and Bioinformatics, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067 (India); Hasan Khan, Rizwan, E-mail: rizwanhkhan@hotmail.com [Protein Biophysics Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002 (India)

    2015-11-15

    Biophysical insight into interaction of biocompatible rosin-based surfactants with human serum albumin (HSA) was studied at physiological conditions using various spectroscopic, calorimetric and molecular docking approaches. The binding constant (K{sub b}), enthalpy (ΔH{sup 0}), entropy (ΔS{sup 0}) and Gibbs free energy change (ΔG{sup 0}) were calculated by spectroscopic and calorimetric method. We have also calculated the probability of energy transfer by FRET analysis. The circular dichroism study showed that the cationic surfactant QRMAE significantly altered the secondary structure of HSA as compared to the nonionic rosin surfactants. The thermodynamic study was performed by ITC to determine binding constant as well as change in enthalpy of HSA in presence of rosin surfactants. It clearly showed that hydrogen binding and hydrophobic interaction play an important role in the binding of HSA to rosin surfactants. We have also performed molecular docking studies to locate the binding site on HSA and to visualize the mode of interaction. The present study provides a significant insight into HSA–rosin surfactants interaction, which also improves our understanding of the possible effect of rosin surfactants on human health. - Highlights: • RMPEG 750 has the highest Kb, Kq and Ksv value as compared to other rosin surfactants. • The probability of energy transfer from HSA to rosin surfactants was maximum in the case of RMPEG 750. • Cationic surfactant QRMAE significantly altered the secondary structure of the HSA as compared to other rosin surfactants. • Molecular docking and ITC experiment studies, to locate the binding site on HSA and to investigate the mode of interaction.

  9. Fundamental Concepts in Biophysics Volume 1

    CERN Document Server

    Jue, Thomas

    2009-01-01

    HANDBOOK OF MODERN BIOPHYSICS Series Editor Thomas Jue, PhD Handbook of Modern Biophysics brings current biophysics topics into focus, so that biology, medical, engineering, mathematics, and physical-science students or researchers can learn fundamental concepts and the application of new techniques in addressing biomedical challenges. Chapters explicate the conceptual framework of the physics formalism and illustrate the biomedical applications. With the addition of problem sets, guides to further study, and references, the interested reader can continue to explore independently the ideas presented. Volume I: Fundamental Concepts in Biophysics Editor Thomas Jue, PhD In Fundamental Concepts in Biophysics, prominent professors have established a foundation for the study of biophysics related to the following topics: Mathematical Methods in Biophysics Quantum Mechanics Basic to Biophysical Methods Computational Modeling of Receptor–Ligand Binding and Cellular Signaling Processes Fluorescence Spectroscopy Elec...

  10. IDGenerator: unique identifier generator for epidemiologic or clinical studies

    Directory of Open Access Journals (Sweden)

    Matthias Olden

    2016-09-01

    Full Text Available Abstract Background Creating study identifiers and assigning them to study participants is an important feature in epidemiologic studies, ensuring the consistency and privacy of the study data. The numbering system for identifiers needs to be random within certain number constraints, to carry extensions coding for organizational information, or to contain multiple layers of numbers per participant to diversify data access. Available software can generate globally-unique identifiers, but identifier-creating tools meeting the special needs of epidemiological studies are lacking. We have thus set out to develop a software program to generate IDs for epidemiological or clinical studies. Results Our software IDGenerator creates unique identifiers that not only carry a random identifier for a study participant, but also support the creation of structured IDs, where organizational information is coded into the ID directly. This may include study center (for multicenter-studies, study track (for studies with diversified study programs, or study visit (baseline, follow-up, regularly repeated visits. Our software can be used to add a check digit to the ID to minimize data entry errors. It facilitates the generation of IDs in batches and the creation of layered IDs (personal data ID, study data ID, temporary ID, external data ID to ensure a high standard of data privacy. The software is supported by a user-friendly graphic interface that enables the generation of IDs in both standard text and barcode 128B format. Conclusion Our software IDGenerator can create identifiers meeting the specific needs for epidemiologic or clinical studies to facilitate study organization and data privacy. IDGenerator is freeware under the GNU General Public License version 3; a Windows port and the source code can be downloaded at the Open Science Framework website: https://osf.io/urs2g/ .

  11. Biophysics of skin and its treatments structural, nanotribological, and nanomechanical studies

    CERN Document Server

    Bhushan, Bharat

    2017-01-01

    This book provides a comprehensive overview of the structural, nanotribological and nanomechanical properties of skin with and without cream treatment as a function of operating environment. The biophysics of skin as the outer layer covering human or animal body is discussed as a complex biological structure. Skin cream is used to improve skin health and create a smooth, soft, and flexible surface with moist perception by altering the surface roughness, friction, adhesion, elastic modulus, and surface charge of the skin surface. .

  12. Physiological and Biophysical Studies on Gamma Irradiated Rat Treated with Dehydroepiandrosterone Sulfate (DHEAS)

    International Nuclear Information System (INIS)

    Hamza, G.R.A.

    2015-01-01

    Dehydroepiandrosterone Sulfate (DHEAS) is an adrenal hormone, and is the most abundant circulatory steroid hormone in the body. Serum DHEAS concentration peaks at around age 25 years, displaying a significant decrease with age linked with some pathological changes. Objective: This study was performed to investigate the effect(s) of DHEAS oral administration, and its possible prophylactic and/or mitigating roles against γ-irradiation-induced disorders in the irradiated rat. Experimental Animals and Design: Five groups of male Albino rats were used: 1- Control: untreated group. 2- Irradiated: animals exposed to a single dose of whole-body γ-irradiation (6 Gy). 3- DHEAS group: given a single dose of DHEAS (20 mg/100 g b. wt.), intra gastrically. 4-DHEAS + Irrad. group: given a single dose of DHEAS, 2 hrs before irradiation. 5- Irrad.+ DHEAS group: given DHEAS, 2 hrs after irradiation. Blood and testicular tissue samples were collected after one day, one week and two weeks post irradiation or DHEAS treatment. Parameters Measured: Plasma levels of triiodothyronine (T 3 ), thyroxin (T 4 ), thyrotropin (TSH), testosterone, acid phosphatase (ACP), triglycerides (TG), total cholesterol, high density lipoprotein-cholesterol (HDL-Ch), low density lipoprotein-cholesterol (LDL-Ch) were determined, and the atherogenic index (AI) was calculated. Reduced glutathione (GSH) content and malondialdehyde (MDA) levels were measured in blood and testes. A complete blood picture and some biophysical properties were also examined. Results: DHEAS administration pre-irradiation, and to a lesser magnitude, post-irradiation, improved the disturbances induced by irradiation in the plasma levels of the tested parameters: tT 3 , tT 4 , and TSH, testosterone and the lipid profile, showing almost normalization of the AI. Beneficial effects were also observed in the hematological picture, blood viscosity and conductivity. DHEAS elevated GSH levels and decreased lipid peroxidation (LPO) in blood

  13. Theoretical Molecular Biophysics

    CERN Document Server

    Scherer, Philipp

    2010-01-01

    "Theoretical Molecular Biophysics" is an advanced study book for students, shortly before or after completing undergraduate studies, in physics, chemistry or biology. It provides the tools for an understanding of elementary processes in biology, such as photosynthesis on a molecular level. A basic knowledge in mechanics, electrostatics, quantum theory and statistical physics is desirable. The reader will be exposed to basic concepts in modern biophysics such as entropic forces, phase separation, potentials of mean force, proton and electron transfer, heterogeneous reactions coherent and incoherent energy transfer as well as molecular motors. Basic concepts such as phase transitions of biopolymers, electrostatics, protonation equilibria, ion transport, radiationless transitions as well as energy- and electron transfer are discussed within the frame of simple models.

  14. New tools to study biophysical properties of single molecules and single cells

    Directory of Open Access Journals (Sweden)

    Márcio S. Rocha

    2007-03-01

    Full Text Available We present a review on two new tools to study biophysical properties of single molecules and single cells. A laser incident through a high numerical aperture microscope objective can trap small dielectric particles near the focus. This arrangement is named optical tweezers. This technique has the advantage to permit manipulation of a single individual object. We use optical tweezers to measure the entropic elasticity of a single DNA molecule and its interaction with the drug Psoralen. Optical tweezers are also used to hold a kidney cell MDCK away from the substrate to allow precise volume measurements of this single cell during an osmotic shock. This procedure allows us to obtain information about membrane water permeability and regulatory volume increase. Defocusing microscopy is a recent technique invented in our laboratory, which allows the observation of transparent objects, by simply defocusing the microscope in a controlled way. Our physical model of a defocused microscope shows that the image contrast observed in this case is proportional to the defocus distance and to the curvature of the transparent object. Defocusing microscopy is very useful to study motility and mechanical properties of cells. We show here the application of defocusing microscopy to measurements of macrophage surface fluctuations and their influence on phagocytosis.Apresentamos uma revisão de duas novas técnicas para estudar propriedades biofísicas de moléculas únicas e células únicas. Um laser incidindo em uma objetiva de microscópio de grande abertura numérica é capaz de aprisionar pequenas partículas dielétricas na região próxima ao foco. Este aparato é chamado de pinça óptica. Esta técnica tem a grande vantagem de permitir a manipulação de um objeto individual. Usamos a pinça óptica para medir a elasticidade entrópica de uma molécula única de DNA em sua interação com o fármaco Psoralen. A pinça óptica também é usada para segurar

  15. Biophysics of protein evolution and evolutionary protein biophysics

    Science.gov (United States)

    Sikosek, Tobias; Chan, Hue Sun

    2014-01-01

    The study of molecular evolution at the level of protein-coding genes often entails comparing large datasets of sequences to infer their evolutionary relationships. Despite the importance of a protein's structure and conformational dynamics to its function and thus its fitness, common phylogenetic methods embody minimal biophysical knowledge of proteins. To underscore the biophysical constraints on natural selection, we survey effects of protein mutations, highlighting the physical basis for marginal stability of natural globular proteins and how requirement for kinetic stability and avoidance of misfolding and misinteractions might have affected protein evolution. The biophysical underpinnings of these effects have been addressed by models with an explicit coarse-grained spatial representation of the polypeptide chain. Sequence–structure mappings based on such models are powerful conceptual tools that rationalize mutational robustness, evolvability, epistasis, promiscuous function performed by ‘hidden’ conformational states, resolution of adaptive conflicts and conformational switches in the evolution from one protein fold to another. Recently, protein biophysics has been applied to derive more accurate evolutionary accounts of sequence data. Methods have also been developed to exploit sequence-based evolutionary information to predict biophysical behaviours of proteins. The success of these approaches demonstrates a deep synergy between the fields of protein biophysics and protein evolution. PMID:25165599

  16. Effect of maternal exercises on biophysical fetal and maternal parameters: a transversal study.

    Science.gov (United States)

    Santos, Caroline Mombaque Dos; Santos, Wendel Mombaque Dos; Gallarreta, Francisco Maximiliano Pancich; Pigatto, Camila; Portela, Luiz Osório Cruz; Morais, Edson Nunes de

    2016-01-01

    To evaluate the acute effects of maternal and fetal hemodynamic responses in pregnant women submitted to fetal Doppler and an aerobic physical exercise test according to the degree of effort during the activity and the impact on the well-being. Transversal study with low risk pregnant women, obtained by convenience sample with gestational age between 26 to 34 weeks. The participants carry out a progressive exercise test. After the exercise session, reduced resistance (p=0.02) and pulsatility indices (p=0.01) were identified in the umbilical artery; however, other Doppler parameters analyzed, in addition to cardiotocography and fetal biophysical profile did not achieve significant change. Maternal parameters obtained linear growth with activity, but it was not possible to establish a standard with the Borg scale, and oxygen saturation remained stable. A short submaximal exercise had little effect on placental blood flow after exercise in pregnancies without complications, corroborating that healthy fetus maintains homeostasis even in situations that alter maternal hemodynamics. Avaliar os efeitos agudos de respostas hemodinâmicas maternas e fetais em gestantes submetidas a Doppler fetal e a um teste de exercício físico aeróbio, de acordo com o grau de esforço durante a atividade e o impacto sobre o bem-estar. Estudo transversal desenvolvido com gestantes de baixo risco, por amostra de conveniência com idade gestacional entre 26 e 34 semanas. As participantes realizam um teste de esforço progressivo. Na artéria umbilical, após sessão de exercício físico, identificou-se a redução do índice de resistência (p=0,02) e do índice de pulsatilidade (p=0,01), mas os demais parâmetros Doppler analisados, além da cardiotocografia e do perfil biofísico fetal, não obtiveram alteração significativa. Os parâmetros maternos obtiveram crescimento linear com a atividade, mas não foi possível estabelecer padrão com a escala de Borg, e a saturação de oxig

  17. 2. biophysical work meeting

    International Nuclear Information System (INIS)

    1992-11-01

    The report comprises 18 papers held at the 2nd Biophysical Work Meeting, 11 - 13 September 1991 in Schlema, Germany. The history of biophysics in Germany particularly of radiation biophysics and radon research, measurements of the radiation effects of radon and the derivation of limits, radon balneotherapy and consequences of uranium ore mining are dealt with. (orig.) [de

  18. Biophysics conference 1978

    International Nuclear Information System (INIS)

    1978-01-01

    The main subject on the biophysics meeting was the biophysics of membranes with practical subjects from photosynthesis and the transfer processes on membranes. In radiation biophysics, problems of radiation sensitisation, immunological problems after radiation exposure, the oxygen effect and inhibitory processes in RNS synthesis after radiation exposure were discussed with a view to tumour therapy. (AJ) [de

  19. NATO Advanced Study Institute on Biophysics and Structure to Counter Threats and Challenges

    CERN Document Server

    Margaris, Manolia

    2013-01-01

    This ASI brought together a diverse group of experts who span virology, biology, biophysics, chemistry, physics and engineering.  Prominent lecturers representing world renowned scientists from nine (9) different countries, and students from around the world representing eighteen (18) countries, participated in the ASI organized by Professors Joseph Puglisi (Stanford University, USA) and Alexander Arseniev (Moscow, RU).   The central hypothesis underlying this ASI was that interdisciplinary research, merging principles of physics, chemistry and biology, can drive new discovery in detecting and fighting chemical and bioterrorism agents, lead to cleaner environments and improved energy sources, and help propel development in NATO partner countries.  At the end of the ASI students had an appreciation of how to apply each technique to their own particular research problem and to demonstrate that multifaceted approaches and new technologies are needed to solve the biological challenges of our time.  The course...

  20. Biophysical chemistry

    International Nuclear Information System (INIS)

    Klein, M.P.

    1987-01-01

    Phosphorus-31 NMR spectroscopy is evolving into an important means for determining the in vivo concentrations of phosphorylated metabolites and is now entering the clinical arena. Our previous contributions to this field demonstrated the feasibility of employing implanted radio frequency coils around organs of laboratory animals to permit eliciting the NMR spectra over long periods to establish normative spectra. Using these devices and techniques we have determined phosphorus exchange reactions in rat hearts and kidney, in situ, and have demonstrated that there are pools of metabolic intermediates that are not directly visible in the conventional high resolution NMR spectra. Comparison of the results from NMR spectroscopy with those obtained from radiolabeling studies on chick embryo fibroblasts also showed that there are significant pools of phosphorus not visible in the P-31 NMR spectrum. Both sets of studies suggest that compartmentation occurs. The invisibility of these pools is assumed to result from the immobilization of the molecules by cellular macromolecules or organelles

  1. Methods in Modern Biophysics

    CERN Document Server

    Nölting, Bengt

    2006-01-01

    Incorporating recent dramatic advances, this textbook presents a fresh and timely introduction to modern biophysical methods. An array of new, faster and higher-power biophysical methods now enables scientists to examine the mysteries of life at a molecular level. This innovative text surveys and explains the ten key biophysical methods, including those related to biophysical nanotechnology, scanning probe microscopy, X-ray crystallography, ion mobility spectrometry, mass spectrometry, proteomics, and protein folding and structure. Incorporating much information previously unavailable in tutorial form, Nölting employs worked examples and 267 illustrations to fully detail the techniques and their underlying mechanisms. Methods in Modern Biophysics is written for advanced undergraduate and graduate students, postdocs, researchers, lecturers and professors in biophysics, biochemistry and related fields. Special features in the 2nd edition: • Illustrates the high-resolution methods for ultrashort-living protei...

  2. Methods in Modern Biophysics

    CERN Document Server

    Nölting, Bengt

    2010-01-01

    Incorporating recent dramatic advances, this textbook presents a fresh and timely introduction to modern biophysical methods. An array of new, faster and higher-power biophysical methods now enables scientists to examine the mysteries of life at a molecular level. This innovative text surveys and explains the ten key biophysical methods, including those related to biophysical nanotechnology, scanning probe microscopy, X-ray crystallography, ion mobility spectrometry, mass spectrometry, proteomics, and protein folding and structure. Incorporating much information previously unavailable in tutorial form, Nölting employs worked examples and about 270 illustrations to fully detail the techniques and their underlying mechanisms. Methods in Modern Biophysics is written for advanced undergraduate and graduate students, postdocs, researchers, lecturers, and professors in biophysics, biochemistry and related fields. Special features in the 3rd edition: Introduces rapid partial protein ladder sequencing - an important...

  3. New horizons in Biophysics

    Science.gov (United States)

    2011-01-01

    This editorial celebrates the re-launch of PMC Biophysics previously published by PhysMath Central, in its new format as BMC Biophysics published by BioMed Central with an expanded scope and Editorial Board. BMC Biophysics will fill its own niche in the BMC series alongside complementary companion journals including BMC Bioinformatics, BMC Medical Physics, BMC Structural Biology and BMC Systems Biology. PMID:21595996

  4. Biophysical analysis of bacterial and viral systems. A shock tube study of bio-aerosols and a correlated AFM/nanosims investigation of vaccinia virus

    Energy Technology Data Exchange (ETDEWEB)

    Gates, Sean Damien [Stanford Univ., CA (United States)

    2013-05-01

    The work presented herein is concerned with the development of biophysical methodology designed to address pertinent questions regarding the behavior and structure of select pathogenic agents. Two distinct studies are documented: a shock tube analysis of endospore-laden bio-aerosols and a correlated AFM/NanoSIMS study of the structure of vaccinia virus.

  5. Biophysics An Introduction

    CERN Document Server

    Glaser, Roland

    2012-01-01

    Biophysics is the science of physical principles underlying all processes of life, including the dynamics and kinetics of biological systems. This fully revised 2nd English edition is an introductory text that spans all steps of biological organization, from the molecular, to the organism level, as well as influences of environmental factors. In response to the enormous progress recently made, especially in theoretical and molecular biophysics, the author has updated the text, integrating new results and developments concerning protein folding and dynamics, molecular aspects of membrane assembly and transport, noise-enhanced processes, and photo-biophysics. The advances made in theoretical biology in the last decade call for a fully new conception of the corresponding sections. Thus, the book provides the background needed for fundamental training in biophysics and, in addition, offers a great deal of advanced biophysical knowledge.

  6. Radiation biophysics in space

    International Nuclear Information System (INIS)

    Buecker, H.; Horneck, G.

    1983-01-01

    In a demonstration experiment bacterium sporules have been exposed to the space vacuum and to the solar radiation field at 254 nm, with the following results: 1) a short vacuum exposition of 1.3 h does not affect the vitality of the sporules, 2) the survival rate of humid sporules after UV-irradiation is consistent with terrestrial control samples, 3) after a simultaneous exposition to vacuum and solar UV-radiation the effect on the sporules is enhanced by a factor of ten as compared to the situation without vaccum exposition. Additional studies in biophysical simulation systems revealed, that the enhanced UV sensitivity is caused by the dehydration of the sporules. By this process the structure of the essential macromolecules in cell, such as DNA and proteins, is modified such that new photo-products can be formed. For these products the cells have no effective repair systems. (AJ) [de

  7. Unique Opportunities: Influence of Study Abroad on Black Students

    Science.gov (United States)

    Lee, Jasmine; Green, Qiana

    2016-01-01

    This research adds to the dearth of literature examining the experiences of Black students who study abroad. Additionally, this project extends the literature on the influence of diasporic travel on US Black undergraduate students. Because study abroad has positive benefits for student learning and development (Brux & Fry, 2010), targeted…

  8. Considering dance practices as unique cases in interdisciplinary research studies

    DEFF Research Database (Denmark)

    Ravn, Susanne

    ” (Flyvbjerg, 2011) in the domain of qualitative research. Such designs are of specific relevance for research projects exploring body, movement and sensing in general. Thereafter I present the results of some of my resent studies. These studies are based in a critical constructive interdisciplinary......The aim of this paper is to present interdisciplinary considerations of relevance to strengthen dance research in relation to – and in cooperation with - other academic disciplines. I firstly describe how dance practices can be handled as “extreme cases” and cases with “maximal variations...

  9. Lipschitz Continuity The study of existence and uniqueness

    Indian Academy of Sciences (India)

    Department of Applied. Mathematics. University ... ential equation (DE) allows us to study all kinds of evolutionary processes with the ... This is a well known example of a non linear ODE. 492 ..... linear DEs is still a very active area of research.

  10. Structural, mutational and biophysical studies reveal a canonical mode of molecular recognition between immune receptor TIGIT and nectin-2

    Energy Technology Data Exchange (ETDEWEB)

    Samanta, Dibyendu; Guo, Haisu; Rubinstein, Rotem; Ramagopal, Udupi A.; Almo, Steven C.

    2017-01-01

    In addition to antigen-specific stimulation of T cell receptor (TCR) by a peptide-MHC complex, the functional outcome of TCR engagement is regulated by antigen-independent costimulatory signals. Costimulatory signals are provided by an array of interactions involving activating and inhibitory receptors expressed on T cells and their cognate ligands on antigen presenting cells. T cell immunoglobulin and ITIM domain (TIGIT), a recently identified immune receptor expressed on T and NK cells, upon interaction with either of its two ligands, nectin-2 or poliovirus receptor (PVR), inhibits activation of T and NK cells. Here we report the crystal structure of the human TIGIT ectodomain, which exhibits the classic two-layer β-sandwich topology observed in other immunoglobulin super family (IgSF) members. Biophysical studies indicate that TIGIT is monomeric in solution but can form a dimer at high concentrations, consistent with the observation of a canonical immunoglobulin-like dimer interface in the crystalline state. Based on existing structural data, we present a model of the TIGIT:nectin-2 complex and utilized complementary biochemical studies to map the nectin-binding interface on TIGIT. Our data provide important structural and biochemical determinants responsible for the recognition of nectin-2 by TIGIT. Defining the TIGIT:nectin-2 binding interface provides the basis for rational manipulation of this molecular interaction for the development of immunotherapeutic reagents in autoimmunity and cancer.

  11. The unique experience of adults with multimorbidity: a qualitative study

    Directory of Open Access Journals (Sweden)

    Cynthia Duguay

    2014-05-01

    Full Text Available Background: Findings from several countries indicate that the prevalence of multimorbidity is very high among clients of primary healthcare. A deeper understanding of patients’ experiences from their own perspective can greatly enrich any intervention to help them live as well as possible with multimorbidity. Objective: To describe the fundamental structure of adults’ experience with multimorbidity. Design: A phenomenological study was undertaken to describe the experiences of 11 adults with multimorbidity. These adults participated in two semi-structured interviews, the content of which was rigorously analyzed. Results: At the core of the study participants’ multimorbidity experience are the impression of aging prematurely, difficulties with self-care management, and issues with access to the healthcare system, which contribute to the problem’s complexity. Despite these issues, participants with multimorbidity report attempting to take control of their situation and adjusting to daily living. Conclusions: The description of this experience, through the systemic vision of participants, provides a better understanding of the realities experienced by people with multimorbidity.

  12. Perturbations of Native Membrane Protein Structure in Alkyl Phosphocholine Detergents: A Critical Assessment of NMR and Biophysical Studies

    Science.gov (United States)

    2018-01-01

    Membrane proteins perform a host of vital cellular functions. Deciphering the molecular mechanisms whereby they fulfill these functions requires detailed biophysical and structural investigations. Detergents have proven pivotal to extract the protein from its native surroundings. Yet, they provide a milieu that departs significantly from that of the biological membrane, to the extent that the structure, the dynamics, and the interactions of membrane proteins in detergents may considerably vary, as compared to the native environment. Understanding the impact of detergents on membrane proteins is, therefore, crucial to assess the biological relevance of results obtained in detergents. Here, we review the strengths and weaknesses of alkyl phosphocholines (or foscholines), the most widely used detergent in solution-NMR studies of membrane proteins. While this class of detergents is often successful for membrane protein solubilization, a growing list of examples points to destabilizing and denaturing properties, in particular for α-helical membrane proteins. Our comprehensive analysis stresses the importance of stringent controls when working with this class of detergents and when analyzing the structure and dynamics of membrane proteins in alkyl phosphocholine detergents. PMID:29488756

  13. Functional and biophysical studies on four ceratoplatanins from the fungus Moniliophthora perniciosa, causal agent of the Witche's broom disease

    International Nuclear Information System (INIS)

    Barsottini, M.; Zaparoli, G.; Garcia, O.; Pereira, G.A.G.; Oliveira, J.F.; Tiezzi, H.O.; Ambrosio, A.L.B.; Dias, S.M.G.

    2012-01-01

    Full text: Ceratoplatanin (CP) is a secreted protein of 12.4 kDa initially identified in culture filtrates of the disease ascomycete Ceratocystis fimbriata f. sp. platani, etiological agent of the canker stain disease. CP is also the founding member of the namesake protein family, which contains fungal-secreted proteins involved in various stages of the host-fungus interaction and may act as phytotoxins or elicitors of defense response. Besides the low molecular weight, CPs have a high percentage of hydrophobic residues and share two conserved intramolecular disulfide bonds. It has been suggested that CPs have important physiological functions, including interaction with cell wall or cell membrane and manipulation of the host's defense system. Furthermore, a recent work showed that the ceratoplatanin from C. fimbriata has some degree of affinity for the saccharide 4-N-acetylglucosamine. However, its precise molecular function remains elusive. Five putative CPs have been identified in Moniliophthora perniciosa a basidiomycete fungus responsible for great economic losses in cocoa industry in the form of Witches' broom disease (WBD) , four of which had their crystal structures resolved by our group. In this work we report biophysical and functional studies on these MpCPs aiming at understanding their role and importance during the WBD progression. (author)

  14. Encyclopedia of biophysics

    CERN Document Server

    2013-01-01

    The Encyclopedia of Biophysics is envisioned both as an easily accessible source of information and as an introductory guide to the scientific literature. It includes entries describing both Techniques and Systems.  In the Techniques entries, each of the wide range of methods which fall under the heading of Biophysics are explained in detail, together with the value and the limitations of the information each provides. Techniques covered range from diffraction (X-ray, electron and neutron) through a wide range of spectroscopic methods (X-ray, optical, EPR, NMR) to imaging (from electron microscopy to live cell imaging and MRI), as well as computational and simulation approaches. In the Systems entries, biophysical approaches to specific biological systems or problems – from protein and nucleic acid structure to membranes, ion channels and receptors – are described. These sections, which place emphasis on the integration of the different techniques, therefore provide an inroad into Biophysics from a biolo...

  15. Synthetic Biology: Engineering Living Systems from Biophysical Principles.

    Science.gov (United States)

    Bartley, Bryan A; Kim, Kyung; Medley, J Kyle; Sauro, Herbert M

    2017-03-28

    Synthetic biology was founded as a biophysical discipline that sought explanations for the origins of life from chemical and physical first principles. Modern synthetic biology has been reinvented as an engineering discipline to design new organisms as well as to better understand fundamental biological mechanisms. However, success is still largely limited to the laboratory and transformative applications of synthetic biology are still in their infancy. Here, we review six principles of living systems and how they compare and contrast with engineered systems. We cite specific examples from the synthetic biology literature that illustrate these principles and speculate on their implications for further study. To fully realize the promise of synthetic biology, we must be aware of life's unique properties. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. Radiation and biophysical studies on cells and viruses. Progress report, February 29, 1974--March 31, 1975

    International Nuclear Information System (INIS)

    Cole, A.

    Progress is reported on the following research projects: sedimentation analysis of chromosome components from interphase and mitotic chromosomes; electron microscopy of mitotic chromosomes; radiosensitive site analysis using short range particle beams; studies on nucleoproteins and DNA; RBE and OER for double strand breaks and single strand breaks of DNA irradiated with 241 Am alpha particles; use of 241 Am alpha particle track-ends to study the location of radiosensitive sites; gamma irradiation of nucleoprotein model systems; assembly of new equipment for the analysis of DNA size distributions; cell rejoining of DNA breaks induced by various radiations; studies on cell transformation induced by gamma radiation; localization of cellular sites for DNA breakage using labeled specific antibodies; and semiconductor properties of melanins related to preferential killing of melanoma cells. (U.S.)

  17. Radiation and biophysical studies on cells and viruses. Progress report, April 1, 1976--June 30, 1977

    International Nuclear Information System (INIS)

    Cole, A.

    1977-01-01

    Progress is reported on the following research projects: genetic structure of DNA, chromosomes, and nucleoproteins; particle beam studies of radiosensitive sites; division delay in CHO cells induced by partly penetrating alpha particles; location of cellular sites for mutation induction; sites for radioinduced cell transformation using partly penetrating particle beams; gamma-ray and particle irradiation of nucleoproteins and other model systems; quantitation of surface antigens on normal and neoplastic cells by x-ray fluorescence; hyperthermic effects on cell survival and DNA repair mechanisms; and studies on radioinduced cell transformation

  18. Radiation biophysical study of biological molecules. Progress report, July 1, 1976--August 31, 1977

    International Nuclear Information System (INIS)

    Fluke, D.J.

    1977-01-01

    Progress is reported on the following research projects: x-ray induction of uv mutagenesis enhancement in lambda-phage; action spectrum for uv mutagenesis in Escherichia coli; survival of E. coli colonies after uv damage; repair of radiation damage to lambda-phage by the W-reactivation system; experiments on the Weigle-reactivation of irradiated lambda-phage; and studies on the wavelength dependence of uv mutagenesis

  19. Investigating the Interaction of Fe Nanoparticles with Lysozyme by Biophysical and Molecular Docking Studies.

    Directory of Open Access Journals (Sweden)

    Zahra Aghili

    Full Text Available Herein, the interaction of hen egg white lysozyme (HEWL with iron nanoparticle (Fe NP was investigated by spectroscopic and docking studies. The zeta potential analysis revealed that addition of Fe NP (6.45±1.03 mV to HEWL (8.57±0.54 mV can cause to greater charge distribution of nanoparticle-protein system (17.33±1.84 mV. In addition, dynamic light scattering (DLS study revealed that addition of Fe NP (92.95±6.11 nm to HEWL (2.68±0.37 nm increases suspension potential of protein/nanoparticle system (51.17±3.19 nm. Fluorescence quenching studies reveled that both static and dynamic quenching mechanism occur and hydrogen bond and van der Waals interaction give rise to protein-NP system. Synchronous fluorescence spectroscopy of HEWL in the presence of Fe NP showed that the emission maximum wavelength of tryptophan (Trp residues undergoes a red-shift. ANS fluorescence data indicated a dramatic exposure of hydrophobic residues to the solvent. The considerable reduction in melting temperature (T(m of HEWL after addition of Fe NP determines an unfavorable interaction system. Furthermore circular dichoroism (CD experiments demonstrated that, the secondary structure of HEWL has not changed with increasing Fe NP concentrations; however, some conformational changes occur in tertiary structure of HEWL. Moreover, protein-ligand docking study confirmed that the Fe NP forms hydrogen bond contacts with HEWL.

  20. The effect of paracetamol on 5 fluorouracil and bovine serum albumin interaction: A biophysical study

    Science.gov (United States)

    Dahiya, Vandana; Pal, Samanwita

    2018-05-01

    Serum Albumin is a major carrier protein and its binding with drugs is important to examine the change in pharmacokinetic properties due to interaction amongst drugs. In the present study we have attempted to understand the relevant drug-drug interaction (DDI) between two common drugs viz, paracetamol, an anti-inflammatory and fluorouracil, an anti-cancer drug. In-vitro spectroscopic methods viz., fluorescence quenching and UV-vis absorption have been employed for the drug-bovine serum albumin (BSA) complexes studies. The binding parameters and quenching constants have been determined for BSA-Paracetamol and BSA-5Fluorouracil complex according to literature models. It is also predicted from the quenching studies that BSA-5Fluorouracil is a stronger complex than BSA-Paracetamol. On the other hand paracetamol can alter binding affinity of 5Fluorouracil towards BSA. Hence it becomes clear that although the drugs could be administered simultaneously but they influence each other's binding with protein in a concentration dependent fashion. Further these results also indicate that availability of free 5Fluorouracil in blood may increase in presence of paracetamol.

  1. BIOPHYSICAL PROFILE OF BLOOD PRESSURE IN URBAN HEALTHY SCHOOL CHILDREN- A CROSS SECTIONAL STUDY

    Directory of Open Access Journals (Sweden)

    M. Bhuvaneswari

    2018-02-01

    Full Text Available BACKGROUND Hypertension is a chronic non-communicable disease with high morbidity and mortality. Prevailing number of hypertensives diagnosed in society indicate just the tip of iceberg as it was documented that almost 75% hypertension cases and 90% of prehypertension cases are undiagnosed. Evidence suggests that pre-hypertension in childhood is precursor of hypertension in adulthood and children maintain their position in the blood pressure distribution over time.1 Evidence suggests that anthropometric measurements such as weight, height and BMI can be taken as surrogate marker of prevalence hypertension. Hence, measurement of these parameters can help in early detection children at risk of hypertension. Primary hypertension, once considered a rare occurrence in pediatric patients, is seen more often particularly in obese patients. Other factors responsible for increased prevalence of hypertension in children include lifestyle changes such as decreased physical activity, increased intake of high calories, high sodium and low potassium foods, use of caffeinated and alcohol beverages, smoking, mental stress and sleep deprivation.2 MATERIALS AND METHODS It is a cross sectional study. A total of 980 children were taken as sample from various urban schools of Kurnool city. Study was conducted during period of October 2016 to December 2017. The study was conducted after taking consent from the school authorities and parents of the concerned school children. The objectives and importance of the study were explained to the school staff a day prior to the commencement of the study to get their cooperation. The questionnaire comprised of information regarding the history of child, history of any past illness, family history of hypertension, dietary factors, socioeconomic status which may be potentially related to the development of hypertension. Following are the measurements made on the children: 1 Weight: Taken in kilograms using a pre

  2. Biophysical foundations for the study of the electrical excitability and action potential propagation in myocardium

    International Nuclear Information System (INIS)

    Suarez Antola, R.

    1991-01-01

    The electric current flow in the heterogeneous and anysotropic volume conductor of the myocardium is studied. The equations of bidomain theory are derived using an approach framed in the theory of averaged fields, introducing microscopic, mesoscopic and macroscopic spatial scales. However, the procedure, compatible with the histological and the anatomical details of the organ, is different from the multiple scale asymptotic expansions usually applied in homogeneization problems. A probabilistic approach framed in large numbers theorems is used to derive the equation for membrane ionic current from the stochastic activity of the channels at the microscopic level. An operational procedure suitable to define a sharp bidomain boundary from the fuzzy distribution of structural details and physical properties at the histological level is given. The problem of threshold is studied. The sizes and shapes of critical masses of cardiac cells that must be depolarized above threshold in order to produce a propagated action potential are determined by an approximate analytical procedure. The concept of family of threshold patterns for the emergence of action potentials in the heart is introduced. This concept is applied to discuss the conditions of emergence of ectopic focus. Analytical formulae are derived, for the time constant and the rheobase for electrical stimulation of the myocardium. These formulae are in good agreement with known experimental results. New experiments that could be done to confirm or reject them are suggested

  3. Radiation and biophysical studies on cells and viruses. Progress report, July 1, 1978-August 30, 1979

    International Nuclear Information System (INIS)

    Cole, A.

    1979-01-01

    Ionizing radiation beams of low linear energy transfer (LET) and high LET (alpha particles) which penetrated part way into or completely through cell monolayers were used to study a variety of molecular and cellular responses including: DNA damage, chromosome aberrations, division delay, lethality, mutation, and transformation. Modifiers of radiation response such as oxygen tension, cell temperature, cell growth cycle stage, dose fractionation and/or post irradiation repair incubation were studied. The following properties were evaluated: cellular location of radiation susceptible sites, optimum action cross-sections, relative biological effectiveness (RBE) for high LET radiation, effect of radiation modifiers, and the kinetics of cell repair of the initial damage. Correlations among these properties suggested that similar genetic damage was involved in most responses. These and other data suggest that an important mode of genetic damage involves nuclear membrane associated DNA which suffers multiple proximate lesions induced by the high LET component of any form of ionizing radiation. Such damage may be assayed as a single or double strand DNA break but includes other DNA lesions in close proximity. Failure of the cell to properly repair such complex lesions may contribute to a variety of biological responses

  4. Design of tryptophan-containing mutants of the symmetrical Pizza protein for biophysical studies.

    Science.gov (United States)

    Noguchi, Hiroki; Mylemans, Bram; De Zitter, Elke; Van Meervelt, Luc; Tame, Jeremy R H; Voet, Arnout

    2018-03-18

    β-propeller proteins are highly symmetrical, being composed of a repeated motif with four anti-parallel β-sheets arranged around a central axis. Recently we designed the first completely symmetrical β-propeller protein, Pizza6, consisting of six identical tandem repeats. Pizza6 is expected to prove a useful building block for bionanotechnology, and also a tool to investigate the folding and evolution of β-propeller proteins. Folding studies are made difficult by the high stability and the lack of buried Trp residues to act as monitor fluorophores, so we have designed and characterized several Trp-containing Pizza6 derivatives. In total four proteins were designed, of which three could be purified and characterized. Crystal structures confirm these mutant proteins maintain the expected structure, and a clear redshift of Trp fluorescence emission could be observed upon denaturation. Among the derivative proteins, Pizza6-AYW appears to be the most suitable model protein for future folding/unfolding kinetics studies as it has a comparable stability as natural β-propeller proteins. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Glycation, oxidation and glycoxidation of IgG: a biophysical, biochemical, immunological and hematological study.

    Science.gov (United States)

    Islam, Sidra; Moinuddin; Mir, Abdul Rouf; Raghav, Alok; Habib, Safia; Alam, Khursheed; Ali, Asif

    2017-09-12

    Glycation and oxidation induce structural alterations in the proteins in an interdependent manner with consequent pathological implications. The published literature presents wide range of modifications in conformational characteristics of proteins by glycation and oxidation; however, there is little data that could elaborate the cumulative effect of both the processes. This study has analysed the modifications in IgG by methylglyoxal (MG) (glycative stress), hydroxyl radical ([Formula: see text]) (oxidative stress) and by their combined action i.e. [Formula: see text] treatment of MG glycated IgG (glycoxidation). It further addresses the implications of the altered structural integrity of IgG on its immunological characteristics and impact on haematological parameters in rabbits. Using circular dichroism, FTIR, SDS-PAGE analysis, thioflavin-T fluorescence assay, congo red absorbance analysis, dynamic light scattering, transmission electron microscopy, ELISA, blood cell counts and rectal temperature studies, we report that the glycoxidative modification caused maximum alteration in the IgG as compared to the glycatively and oxidatively modified protein. Far-UV CD results confirmed the highest decline in the beta-pleated sheet content of the protein by glycoxidation. The damage led to the reduced flexibility and enhanced electronic interactions in IgG as observed by near-UV CD. Modifications caused cross-linking and adduct formation in the serum protein. The electron micrograph confirmed amorphous aggregation in modified IgG. The modifications increased the hydrodynamic radius of IgG by allowing the attachment of [Formula: see text] and MG residues. The glycoxidatively modified IgG induced the maximum antibody titres that showed high specificity towards the altered IgG. The glycoxidation of IgG leads to activation of inflammatory pathways.

  6. Biophysical characterization and functional studies on calbindin-D28K: A vitamin D-induced calcium-binding protein

    International Nuclear Information System (INIS)

    Leathers, V.L.

    1989-01-01

    Vitamin D dependent calcium binding protein, or calbindin-D, is the principal protein induced in the intestine in response to the steroid hormone 1,25(OH) 2 -vitamin D 3 . A definitive role for calbindin-D in vitamin D 3 mediated biological responses remains unclear. Biophysical and functional studies on chick intestinal calbindin-D 28K (CaBP) were initiated so that some insight might be gained into its relevance to the process of intestinal calcium transport. Calbindin-D belongs to a class of high affinity calcium binding proteins which includes calmodulin, parvalbumin and troponin C. The Ca 2+ binding stoichiometry and binding constants for calbindin-D 28K were quantitated by Quin 2 titration analysis. The protein was found to bind 5-6 Ca 2+ ions with a K D on the order of 10 -8 , in agreement with the 6 domains identified from the amino acid sequence. A slow Ca 2+ exchange rate (80 s -1 ) as assessed by 43 Ca NMR and extensive calcium dependent conformational changes in 1 H NMR spectra were also observed. Functional studies on chick intestinal CaBP were carried out by two different methods. Interactions between CaBP and intestinal cellular components were assessed via photoaffinity labeling techniques. Specific calcium dependent complexes for CaBP were identified with bovine intestinal alkaline phosphatase and brush border membrane proteins of 60 and 150 kD. CaBP was also found to co-migrate with the alkaline phosphatase activity of chick intestinal brush border membranes as evaluated by gel filtration chromatography. The second procedure for evaluating CaBP functionality has involved the quantitation of CaBP association with vesicular transport components as assessed by ELISA. CaBP, immunoreactivity was observed in purified lysosomes, microsomes and microtubules

  7. Historical and Critical Review on Biophysical Economics

    Science.gov (United States)

    Adigüzel, Yekbun

    2016-07-01

    Biophysical economics is initiated with the long history of the relation of economics with ecological basis and biophysical perspectives of the physiocrats. It inherently has social, economic, biological, environmental, natural, physical, and scientific grounds. Biological entities in economy like the resources, consumers, populations, and parts of production systems, etc. could all be dealt by biophysical economics. Considering this wide scope, current work is a “biophysical economics at a glance” rather than a comprehensive review of the full range of topics that may just be adequately covered in a book-length work. However, the sense of its wide range of applications is aimed to be provided to the reader in this work. Here, modern approaches and biophysical growth theory are presented after the long history and an overview of the concepts in biophysical economics. Examples of the recent studies are provided at the end with discussions. This review is also related to the work by Cleveland, “Biophysical Economics: From Physiocracy to Ecological Economics and Industrial Ecology” [C. J. Cleveland, in Advances in Bioeconomics and Sustainability: Essay in Honor of Nicholas Gerogescu-Roegen, eds. J. Gowdy and K. Mayumi (Edward Elgar Publishing, Cheltenham, England, 1999), pp. 125-154.]. Relevant parts include critics and comments on the presented concepts in a parallelized fashion with the Cleveland’s work.

  8. Biophysical studies with spatially correlated ions. IV. Analysis of cell survival data for diatomic deuterium

    International Nuclear Information System (INIS)

    Kellerer, A.M.; Lam, Y.M.P.; Rossi, H.H.

    1980-01-01

    An analysis is given of previously reported results of experiments in which cells have been irradiated with pairs of ions of variable mean separation. These studies were motivated by the theory of dual radiation action and specifically by the postulate that the lesions responsible for cell impairment by ionizing radiation are formed by the combination of pairs of sublesions that are molecular alterations produced by individual energy transfers in the cell nucleus. It is concluded that the observations are consistent with dual radiation action, and the most striking finding is that there appears to be a bimodal distribution of interaction distances with maxima at less than 0.1 μm and more than 1 μm. Single tracks cause primarily the lesions produced in short-range interactions but they also contribute, at least in late S phase, a relatively small proportion of the long-range interactions which are principally due to a two-track mechanism. The experiments suggest that the radiation-sensitive components of the cell are arranged in a highly nonuniform pattern which may take the form of floccules having diameters of less than 100 nm

  9. An exploratory modeling study on bio-physical processes associated with ENSO

    Science.gov (United States)

    Park, Jong-Yeon; Kug, Jong-Seong; Park, Young-Gyu

    2014-05-01

    Variability of marine phytoplankton associated with El Niño-Southern Oscillation (ENSO) and potential biological feedbacks onto ENSO are investigated by performing coupled ocean/biogeochemical model experiments forced by realistic surface winds from 1951 to 2010. The ocean model used in this study is the MOM4, which is coupled to a biogeochemical model, called TOPAZ (Tracers in the Ocean with Allometric Zooplankton). In general, it is shown that MOM4-TOPAZ mimics the observed main features of phytoplankton variability associated with ENSO. By comparing the actively coupled MOM4-TOPAZ experiment with the ocean model experiments using prescribed chlorophyll concentrations, potential impacts of phytoplankton on ENSO are evaluated. We found that chlorophyll generally increases mean sea surface temperature (SST) and decreases subsurface temperature by altering the penetration of solar radiation. However, as the chlorophyll concentration increases, the equatorial Pacific SST decreases due to the enhanced upwelling of the cooler subsurface water with shoaling of mixed layer and thermocline. The presence of chlorophyll generally intensifies ENSO amplitude by changing the ocean basic state. On the other hand, interactively varying chlorophyll associated with the ENSO tends to reduce ENSO amplitude. Therefore, the two biological effects on SST are competing against each other regarding the SST variance in the equatorial Pacific.

  10. Single Molecule and Nanoparticle Imaging in Biophysical, Surface, and Photocatalysis Studies

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Ji Won [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    A differential interference contrast (DIC) polarization anisotropy is reported that was successfully used for rotational tracking of gold nanorods attached onto a kinesin-driven microtubule. A dual-wavelength detection of single gold nanorods rotating on a live cell membrane is described. Both transverse and longitudinal surface plasmon resonance (SPR) modes were used for tracking the rotational motions during a fast dynamic process under a DIC microscope. A novel method is presented to determine the full three-dimensional (3D) orientation of single plasmonic gold nanorods rotating on live cell membranes by combining DIC polarization anisotropy with an image pattern recognition technique. Polarization- and wavelength-sensitive DIC microscopy imaging of 2- m long gold nanowires as optical probes in biological studies is reported. A new method is demonstrated to track 3D orientation of single gold nanorods supported on a gold film without angular degeneracy. The idea is to use the interaction (or coupling) of gold nanorods with gold film, yielding characteristic scattering patterns such as a doughnut shape. Imaging of photocatalytic activity, polarity and selectivity on single Au-CdS hybrid nanocatalysts using a high-resolution superlocalization fluorescence imaging technique is described.

  11. Dynamics of proteins and of their hydration layer studied by neutron scattering and additional biophysical methods

    International Nuclear Information System (INIS)

    Gallat, Francois-Xavier

    2011-01-01

    This thesis work focused on the dynamics of proteins, surrounded by their hydration layer, a water shell around the protein vital for its biological function. Each of these components is accompanied by a specific dynamics which union reforms the complex energy landscape of the system. The joint implementation of selective deuteration, incoherent neutron scattering and tera-hertz spectroscopy allowed to explore the dynamics of proteins and that of the hydration shell. The influence of the folding state of protein on its dynamics has been studied by elastic neutron scattering. Globular proteins were less dynamic than its intrinsically disordered analogues. Themselves appear to be stiffer than non-physiological unfolded proteins. The oligomerization state and the consequences on the dynamics were investigated. Aggregates of a globular protein proved to be more flexible than the soluble form. In contrast, aggregates of a disordered protein showed lower average dynamics compared to the soluble form. These observations demonstrate the wide range of dynamics among the proteome. Incoherent neutron scattering experiences on the hydration layer of globular and disordered proteins have yielded information on the nature of water motion around these proteins. The measurements revealed the presence of translational motions concomitant with the onset of the transition dynamics of hydration layers, at 220 K. Measurements have also shown a stronger coupling between a disordered protein and its hydration water, compared to a globular protein and its hydration shell. The nature of the hydration layer and its influence on its dynamics has been explored with the use of polymers that mimic the water behavior and that act as a source of flexibility for the protein. Eventually, the dynamics of methyl groups involved in the dynamical changes observed at 150 and 220 K, was investigated. (author) [fr

  12. Applications of synchrotron radiation in Biophysics

    International Nuclear Information System (INIS)

    Bemski, G.

    1983-01-01

    A short introduction to the generation of the synchrotron radiation is made. Following, the applications of such a radiation in biophysics with emphasis to the study of the hemoglobin molecule are presented. (L.C.) [pt

  13. Toward Biophysical Probes for the 5-HT3 Receptor: Structure−Activity Relationship Study of Granisetron Derivatives

    Science.gov (United States)

    2010-01-01

    This report describes the synthesis and biological characterization of novel granisetron derivatives that are antagonists of the human serotonin (5-HT3A) receptor. Some of these substituted granisetron derivatives showed low nanomolar binding affinity and allowed the identification of positions on the granisetron core that might be used as attachment points for biophysical tags. A BODIPY fluorophore was appended to one such position and specifically bound to 5-HT3A receptors in mammalian cells. PMID:20146481

  14. Toward biophysical probes for the 5-HT3 receptor: structure-activity relationship study of granisetron derivatives.

    Science.gov (United States)

    Vernekar, Sanjeev Kumar V; Hallaq, Hasan Y; Clarkson, Guy; Thompson, Andrew J; Silvestri, Linda; Lummis, Sarah C R; Lochner, Martin

    2010-03-11

    This report describes the synthesis and biological characterization of novel granisetron derivatives that are antagonists of the human serotonin (5-HT(3)A) receptor. Some of these substituted granisetron derivatives showed low nanomolar binding affinity and allowed the identification of positions on the granisetron core that might be used as attachment points for biophysical tags. A BODIPY fluorophore was appended to one such position and specifically bound to 5-HT(3)A receptors in mammalian cells.

  15. Recent progress in Biophysics

    International Nuclear Information System (INIS)

    Bemski, G.

    1980-03-01

    Recent progress in biophysics is reviewed, and three examples of the use of physical techniques and ideas in biological research are given. The first one deals with the oxygen transporting protein-hemoglobin, the second one with photosynthesis, and the third one with image formation, using nuclear magnetic resonance. (Author) [pt

  16. Biophysics of molecular gastronomy.

    Science.gov (United States)

    Brenner, Michael P; Sörensen, Pia M

    2015-03-26

    Chefs and scientists exploring biophysical processes have given rise to molecular gastronomy. In this Commentary, we describe how a scientific understanding of recipes and techniques facilitates the development of new textures and expands the flavor palette. The new dishes that result engage our senses in unexpected ways. PAPERCLIP. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Biophysical Cancer Transformation Pathway

    Czech Academy of Sciences Publication Activity Database

    Pokorný, Jiří

    2009-01-01

    Roč. 28, č. 2 (2009), s. 105-123 ISSN 1536-8378 Institutional research plan: CEZ:AV0Z20670512 Keywords : Biophysics * Cancer * Electromagnetic fields Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.729, year: 2009

  18. Irrigation Requirement Estimation using MODIS Vegetation Indices and Inverse Biophysical Modeling; A Case Study for Oran, Algeria

    Science.gov (United States)

    Bounoua, L.; Imhoff, M.L.; Franks, S.

    2008-01-01

    Human demand for food influences the water cycle through diversion and extraction of fresh water needed to support agriculture. Future population growth and economic development alone will substantially increase water demand and much of it for agricultural uses. For many semi-arid lands, socio-economic shifts are likely to exacerbate changes in climate as a driver of future water supply and demand. For these areas in particular, where the balance between water supply and demand is fragile, variations in regional climate can have potentially predictable effect on agricultural production. Satellite data and biophysically-based models provide a powerful method to quantify the interactions between local climate, plant growth and water resource requirements. In irrigated agricultural lands, satellite observations indicate high vegetation density while the precipitation amount indicates otherwise. This inconsistency between the observed precipitation and the observed canopy leaf density triggers the possibility that the observed high leaf density is due to an alternate source of water, irrigation. We explore an inverse process approach using observations from the Moderate Resolution Imaging Spectroradiometer (MODIS), climatological data, and the NASA's Simple Biosphere model, SiB2, to quantitatively assess water demand in a semi-arid agricultural land by constraining the carbon and water cycles modeled under both equilibrium (balance between vegetation and prevailing local climate) and nonequilibrium (water added through irrigation) conditions. We postulate that the degree to which irrigated lands vary from equilibrium conditions is related to the amount of irrigation water used. We added water using two distribution methods: The first method adds water on top of the canopy and is a proxy for the traditional spray irrigation. The second method allows water to be applied directly into the soil layer and serves as proxy for drip irrigation. Our approach indicates that over

  19. Structure and biophysics

    CERN Document Server

    Puglisi, Joseph D

    2007-01-01

    This volume is a collection of articles from the proceedings of the ISSBMR 7th Course: Structure and Biophysics - New Technologies for Current Challenges in Biology and Beyond. This NATO Advanced Institute (ASI) was held in Erice at the Ettore Majorana Foundation and Centre for Scientific Culture on 22 June through 3 July 2005. The ASI brought together a diverse group of experts in the fields of Structural Biology, Biophysics and Physics. Prominent lecturers, from seven different countries, and students from around the world participated in the NATO ASI organized by Professors Joseph Puglisi (Stanford University, USA) and Alexander Arseniev (Moscow, RU). Advances in nuclear magnetic resonance spectroscopy (NMR) and x-ray crystallography have allowed the three-dimensional structures of many biological macromolecules and their complexes, including the ribosome and RNA polymerase to be solved. Fundamental principles of NMR spectroscopy and dynamics, x-ray crystallography, computation and experimental dynamics we...

  20. Biophysics an introduction

    CERN Document Server

    Cotteril, Rodney

    2002-01-01

    Biophysics: An Introduction, is a concise balanced introduction to this subject. Written in an accessible and readable style, the book takes a fresh, modern approach with the author successfully combining key concepts and theory with relevant applications and examples drawn from the field as a whole. Beginning with a brief introduction to the origins of biophysics, the book takes the reader through successive levels of complexity, from atoms to molecules, structures, systems and ultimately to the behaviour of organisms. The book also includes extensive coverage of biopolymers, biomembranes, biological energy, and nervous systems. The text not only explores basic ideas, but also discusses recent developments, such as protein folding, DNA/RNA conformations, molecular motors, optical tweezers and the biological origins of consciousness and intelligence.

  1. Daytime Changes of Skin Biophysical Characteristics: A Study of Hydration, Transepidermal Water Loss, pH, Sebum, Elasticity, Erythema, and Color Index on Middle Eastern Skin.

    Science.gov (United States)

    Firooz, Alireza; Zartab, Hamed; Sadr, Bardia; Bagherpour, Leili Naraghi; Masoudi, Aidin; Fanian, Ferial; Dowlati, Yahya; Ehsani, Amir Hooshang; Samadi, Aniseh

    2016-01-01

    The exposure of skin to ultraviolet radiation and temperature differs significantly during the day. It is reasonable that biophysical parameters of human skin have periodic daily fluctuation. The objective of this study was to study the fluctuations of various biophysical characteristics of Middle Eastern skin in standardized experimental conditions. Seven biophysical parameters of skin including stratum corneum hydration, transepidermal water loss, pH, sebum, elasticity, skin color, and erythema index were measured at three time points (8 a.m., 12 p.m. and 4 p.m.) on the forearm of 12 healthy participants (mean age of 28.4 years) without any ongoing skin disease using the CK MPA 580 device in standard temperature and humidity conditions. A significant difference was observed between means of skin color index at 8 a.m. (175.42 ± 13.92) and 4 p.m. (164.44 ± 13.72, P = 0.025), between the pH at 8 a.m. (5.72 ± 0.48) and 4 p.m. (5.33 ± 0.55, P = 0.001) and pH at 12 p.m. (5.60 ± 0.48) and 4 p.m. (5.33 ± 0.55, P = 0.001). Other comparisons between the means of these parameters at different time points resulted in nonsignificant P values. There are daytime changes in skin color index and pH. Skin color index might be higher and cutaneous pH more basic in the early morning compared to later of the day.

  2. Daytime changes of skin biophysical characteristics: A study of hydration, transepidermal water loss, ph, sebum, elasticity, erythema, and color index on middle eastern skin

    Directory of Open Access Journals (Sweden)

    Alireza Firooz

    2016-01-01

    Full Text Available Background: The exposure of skin to ultraviolet radiation and temperature differs significantly during the day. It is reasonable that biophysical parameters of human skin have periodic daily fluctuation. The objective of this study was to study the fluctuations of various biophysical characteristics of Middle Eastern skin in standardized experimental conditions. Materials and Methods: Seven biophysical parameters of skin including stratum corneum hydration, transepidermal water loss, pH, sebum, elasticity, skin color, and erythema index were measured at three time points (8 a.m., 12 p.m. and 4 p.m. on the forearm of 12 healthy participants (mean age of 28.4 years without any ongoing skin disease using the CK MPA 580 device in standard temperature and humidity conditions. Results: A significant difference was observed between means of skin color index at 8 a.m. (175.42 ± 13.92 and 4 p.m. (164.44 ± 13.72, P = 0.025, between the pH at 8 a.m. (5.72 ± 0.48 and 4 p.m. (5.33 ± 0.55, P = 0.001 and pH at 12 p.m. (5.60 ± 0.48 and 4 p.m. (5.33 ± 0.55, P = 0.001. Other comparisons between the means of these parameters at different time points resulted in nonsignificant P values. Conclusion: There are daytime changes in skin color index and pH. Skin color index might be higher and cutaneous pH more basic in the early morning compared to later of the day.

  3. Melatonin reverses the enhanced oxidative damage to membrane lipids and improves skin biophysical characteristics in former-smokers - A study in postmenopausal women.

    Science.gov (United States)

    Sagan, Dorota; Stepniak, Jan; Gesing, Adam; Lewinski, Andrzej; Karbownik-Lewinska, Malgorzata

    2017-12-23

    Protective antioxidative effects of melatonin have been repeatedly documented in experimental and clinical studies. One of the most spectacular exogenous prooxidative agents is cigarette smoking. The aim of the study was to evaluate the level of oxidative damage to membrane lipids (lipid peroxidation; LPO) in blood serum, and in epidermis exfoliated during microdermabrasion collected from former-smokers who were treated with melatonin. The study was performed in postmenopausal women. Ninety (90) female volunteers, aged 46-67 years, were enrolled. Two major groups, i.e. never-smokers (n=44) and former-smokers (n=46), were divided into: Control, melatonin topical skin application, Restructurer (containing antioxidants) topical skin application, and melatonin oral treatment. Microdermabrasion was performed at point '0', after 2 weeks, and after 4 weeks of treatment. The following parameters were measured: LPO in blood serum, LPO in epidermis exfoliated during microdermabrasion, and skin biophysical characteristics, such as sebum, moisture, elasticity, and pigmentation. Malondialdehyde+4-hydroxyalkenals level (LPO index) was measured spectrophotometrically. Melatonin oral treatment significantly reversed the increased serum LPO level in former-smokers already after 2 weeks of treatment. In a univariate regression model, LPO blood level constituted the only independent factor negatively associated with melatonin oral treatment. After 4 weeks of treatment, melatonin given orally increased skin sebum, moisture and elasticity levels, and melatonin applied topically increased sebum level. Exogenous melatonin reverses the enhanced oxidative damage to membrane lipids and improves skin biophysical characteristics in former-smokers.

  4. Social marketing's unique contribution to mental health stigma reduction and HIV testing: two case studies.

    Science.gov (United States)

    Thackeray, Rosemary; Keller, Heidi; Heilbronner, Jennifer Messenger; Dellinger, Laura K Lee

    2011-03-01

    Since its inception in 2005, articles in Health Promotion Practice's social marketing department have focused on describing social marketing's unique contributions and the application of each to the practice of health promotion. This article provides a brief review of six unique features (marketing mix, consumer orientation, segmentation, exchange, competition, and continuous monitoring) and then presents two case studies-one on reducing stigma related to mental health and the other a large-scale campaign focused on increasing HIV testing among African American youth. The two successful case studies show that social marketing principles can be applied to a wide variety of topics among various population groups.

  5. Logic without unique readability - a study of semantic and syntactic ambiguity

    DEFF Research Database (Denmark)

    Bentzen, Martin Mose

    One of the main reasons for introducing a formal language is to remove ambiguity, the possibility of assigning several meanings to a linguistic expression. Typically, this is achieved through ensuring unique readability of formulas by using brackets (or another convention, such as Polish notation...... not hold true universally. Whereas e.g. scope ambiguities in natural languages have been studied extensively, ambiguous formal languages have not been the focus of in depth research. Here, we lift the assumption of unique readability by omitting the brackets from propositional logic, making it possible...... to formally distinguish between syntactic and semantic ambiguity. A valuation then amounts to a semantic disambiguation, and rather than a unique valuation (truth value), there is a set of valuations corresponding to ways a formula could have been constructed. We show what happens to familiar concepts...

  6. Biophysical regulation of stem cell differentiation.

    Science.gov (United States)

    Govey, Peter M; Loiselle, Alayna E; Donahue, Henry J

    2013-06-01

    Bone adaptation to its mechanical environment, from embryonic through adult life, is thought to be the product of increased osteoblastic differentiation from mesenchymal stem cells. In parallel with tissue-scale loading, these heterogeneous populations of multipotent stem cells are subject to a variety of biophysical cues within their native microenvironments. Bone marrow-derived mesenchymal stem cells-the most broadly studied source of osteoblastic progenitors-undergo osteoblastic differentiation in vitro in response to biophysical signals, including hydrostatic pressure, fluid flow and accompanying shear stress, substrate strain and stiffness, substrate topography, and electromagnetic fields. Furthermore, stem cells may be subject to indirect regulation by mechano-sensing osteocytes positioned to more readily detect these same loading-induced signals within the bone matrix. Such paracrine and juxtacrine regulation of differentiation by osteocytes occurs in vitro. Further studies are needed to confirm both direct and indirect mechanisms of biophysical regulation within the in vivo stem cell niche.

  7. The Munich MIDY Pig Biobank – A unique resource for studying organ crosstalk in diabetes

    Directory of Open Access Journals (Sweden)

    Andreas Blutke

    2017-08-01

    Conclusions: The broad spectrum of well-defined biosamples in the Munich MIDY Pig Biobank that will be available to the scientific community provides a unique resource for systematic studies of organ crosstalk in diabetes in a multi-organ, multi-omics dimension.

  8. Unique associations among emotion dysregulation dimensions and aggressive tendencies : A multi-site study

    NARCIS (Netherlands)

    Velotti, Patrizia; Casselman, Robert B.; Garofalo, C.; McKenzie, Melissa D.

    2017-01-01

    While problems with emotion regulation (ER) have long been associated with internalizing symptoms, only recently has an ER framework been applied to the study of aggression. Therefore, little is known about the unique and independent associations between specific domains of the ER construct and

  9. Biophysics and systems biology.

    Science.gov (United States)

    Noble, Denis

    2010-03-13

    Biophysics at the systems level, as distinct from molecular biophysics, acquired its most famous paradigm in the work of Hodgkin and Huxley, who integrated their equations for the nerve impulse in 1952. Their approach has since been extended to other organs of the body, notably including the heart. The modern field of computational biology has expanded rapidly during the first decade of the twenty-first century and, through its contribution to what is now called systems biology, it is set to revise many of the fundamental principles of biology, including the relations between genotypes and phenotypes. Evolutionary theory, in particular, will require re-assessment. To succeed in this, computational and systems biology will need to develop the theoretical framework required to deal with multilevel interactions. While computational power is necessary, and is forthcoming, it is not sufficient. We will also require mathematical insight, perhaps of a nature we have not yet identified. This article is therefore also a challenge to mathematicians to develop such insights.

  10. Research Institute for Medical Biophysics

    International Nuclear Information System (INIS)

    Wynchank, S.

    1989-01-01

    The effects of ionising and non-ionising radiation on rodent tumours and normal tissue were studied in terms of cellular repair and the relevant biochemical and biophysical changes following radiation. Rodent tumours investigated in vivo were the CaNT adenocarcinoma and a chemically induced transplantable rhabdomyosarcoma. Radiations used were 100KVp of X-Rays, neutron beams, various magnetic fields, and microwave radiation of 2450MHz. The biochemical parameters measured were, inter alia, levels of adenosine-5'-triphoshate (ATP) and the specific activity of hexokinase (HK). Metabolic changes in ATP levels and the activity of HK were observed in tumour and normal tissues following ionising and non-ionising radiation in normoxia and hypoxia. The observation that the effect of radiation and chemotherapeutic treatment of some tumours may be size dependent can possibly now be explained by the variation of ATP content with tumour size. The enhanced tumour HK specific activity implies increased metabolism, possibly a consequence of cellular requirements to maintain homeostasis during repair processes. Other research projects of the Research Institute for Medical Biophysics involved, inter alia, gastroesophageal scintigraphies to evaluate the results of new forms of therapy. 1 ill

  11. Lip prints- A study of its uniqueness among students of MediCiti Medical College.

    Science.gov (United States)

    Alzapur, Archana; Nagothu, Rajani S; Nalluri, Hima B

    2017-01-01

    "Cheiloscopy" is a technique that deals with lip prints. The pattern of fine creases on the lips are unique to the individual. They are similar to finger prints and useful in crime investigation. To study the uniqueness, prevalence, and gender significance of lip print patterns in human subjects. The study was conducted on 100 randomly selected male and female undergraduate medical students. The lip print of each subject was obtained and its pattern was analyzed according to Suzuki and Tsuchihashi classification. The study showed that Type I lip pattern was the commonest. Our study has added to confirmation of the distinctiveness of cheiloscopy, which can be used as an additional tool for identification. Studies on lip prints being very scanty, our findings add significantly to the meager literature on this subject. Further in-depth studies to establish prevalence of patterns in lip prints will certainly help as useful evidence in forensic investigations.

  12. Biophysical pathology in cancer transformation

    Czech Academy of Sciences Publication Activity Database

    Pokorný, Jiří; Pokorný, Jan

    S1, Nov (2013), s. 1-9 ISSN 2324-9110 R&D Projects: GA ČR(CZ) GAP102/11/0649 Institutional support: RVO:68378271 ; RVO:67985882 Keywords : cancer biophysics * Warburg effect * reverse Warburg effect * biological electrodynamics * coherent states Subject RIV: BO - Biophysics

  13. Biophysics of DNA

    CERN Document Server

    Vologodskii, Alexander

    2015-01-01

    Surveying the last sixty years of research, this book describes the physical properties of DNA in the context of its biological functioning. It is designed to enable both students and researchers of molecular biology, biochemistry and physics to better understand the biophysics of DNA, addressing key questions and facilitating further research. The chapters integrate theoretical and experimental approaches, emphasising throughout the importance of a quantitative knowledge of physical properties in building and analysing models of DNA functioning. For example, the book shows how the relationship between DNA mechanical properties and the sequence specificity of DNA-protein binding can be analyzed quantitatively by using our current knowledge of the physical and structural properties of DNA. Theoretical models and experimental methods in the field are critically considered to enable the reader to engage effectively with the current scientific literature on the physical properties of DNA.

  14. Biophysics of radiation action

    International Nuclear Information System (INIS)

    Dertinger, H.

    1984-01-01

    Understanding the cellular response to ionizing radiation is not only necessary to meet the requirements of radioprotection, but also for medical application of radiation in cancer treatment. In terms of radiobiology, cancer therapy means the selective inactivation of malignant cells without affecting the normal healthy tissue. However, for several physical and biological reasons, this ideal situation is normally not attained. The elaboration of biophysical parameters that could be used to improve the selective sterilization of tumor cells has become one of the main activities of cellular radiobiology during the last two decades. Progress in this field has been facilitated by the development of tissue culture techniques allowing to grow and analyze cells in a synthetic nutrient medium. This chapter describes the physical and biological factors which determine cellular radiosensitivity and which are important to know for better understanding the cellular radiation action, in particular with reference to cancer treatment

  15. Theoretical molecular biophysics

    CERN Document Server

    Scherer, Philipp O J

    2017-01-01

    This book gives an introduction to molecular biophysics. It starts from material properties at equilibrium related to polymers, dielectrics and membranes. Electronic spectra are developed for the understanding of elementary dynamic processes in photosynthesis including proton transfer and dynamics of molecular motors. Since the molecular structures of functional groups of bio-systems were resolved, it has become feasible to develop a theory based on the quantum theory and statistical physics with emphasis on the specifics of the high complexity of bio-systems. This introduction to molecular aspects of the field focuses on solvable models. Elementary biological processes provide as special challenge the presence of partial disorder in the structure which does not destroy the basic reproducibility of the processes. Apparently the elementary molecular processes are organized in a way to optimize the efficiency. Learning from nature by means exploring the relation between structure and function may even help to b...

  16. Biophysics and cancer

    CERN Document Server

    Nicolini, Claudio

    1986-01-01

    Since the early times of the Greek philosophers Leucippus and Democritus, and later of the Roman philosopher Lucretius, a simple, fundamental idea emerged that brought the life sciences into the realm of the physical sciences. Atoms, after various interactions, were assumed to acquire stable configurations that corresponded either to the living or to the inanimate world. This simple and unitary theory, which has evolved in successive steps to our present time, remarkably maintained its validity despite several centuries of alternative vicissitudes, and is the foundation of modern biophysics. Some of the recent developments of this ancient idea are the discovery of the direct relationship between spatial structures and chemical activity of such molecules as methane and benzene, and the later discovery of the three-dimensional structure of double-helical DNA, and of its relationship with biological activity. The relationship between the structure of various macromolecules and the function of living cells was on...

  17. Quantum-Sequencing: Biophysics of quantum tunneling through nucleic acids

    Science.gov (United States)

    Casamada Ribot, Josep; Chatterjee, Anushree; Nagpal, Prashant

    2014-03-01

    Tunneling microscopy and spectroscopy has extensively been used in physical surface sciences to study quantum tunneling to measure electronic local density of states of nanomaterials and to characterize adsorbed species. Quantum-Sequencing (Q-Seq) is a new method based on tunneling microscopy for electronic sequencing of single molecule of nucleic acids. A major goal of third-generation sequencing technologies is to develop a fast, reliable, enzyme-free single-molecule sequencing method. Here, we present the unique ``electronic fingerprints'' for all nucleotides on DNA and RNA using Q-Seq along their intrinsic biophysical parameters. We have analyzed tunneling spectra for the nucleotides at different pH conditions and analyzed the HOMO, LUMO and energy gap for all of them. In addition we show a number of biophysical parameters to further characterize all nucleobases (electron and hole transition voltage and energy barriers). These results highlight the robustness of Q-Seq as a technique for next-generation sequencing.

  18. The Biophysics Microgravity Initiative

    Science.gov (United States)

    Gorti, S.

    2016-01-01

    Biophysical microgravity research on the International Space Station using biological materials has been ongoing for several decades. The well-documented substantive effects of long duration microgravity include the facilitation of the assembly of biological macromolecules into large structures, e.g., formation of large protein crystals under micro-gravity. NASA is invested not only in understanding the possible physical mechanisms of crystal growth, but also promoting two flight investigations to determine the influence of µ-gravity on protein crystal quality. In addition to crystal growth, flight investigations to determine the effects of shear on nucleation and subsequent formation of complex structures (e.g., crystals, fibrils, etc.) are also supported. It is now considered that long duration microgravity research aboard the ISS could also make possible the formation of large complex biological and biomimetic materials. Investigations of various materials undergoing complex structure formation in microgravity will not only strengthen NASA science programs, but may also provide invaluable insight towards the construction of large complex tissues, organs, or biomimetic materials on Earth.

  19. Social and Biophysical Predictors of Public Perceptions of Extreme Fires

    Science.gov (United States)

    Hall, T. E.; Kooistra, C. M.; Paveglio, T.; Gress, S.; Smith, A. M.

    2013-12-01

    To date, what constitutes an 'extreme' fire has been approached separately by biophysical and social scientists. Research on the biophysical characteristics of fires has identified potential dimensions of extremity, including fire size and vegetation mortality. On the social side, factors such as the degree of immediate impact to one's life and property or the extent of social disruption in the community contribute to a perception of extremity. However, some biophysical characteristics may also contribute to perceptions of extremity, including number of simultaneous ignitions, rapidity of fire spread, atypical fire behavior, and intensity of smoke. Perceptions of these impacts can vary within and across communities, but no studies to date have investigated such perceptions in a comprehensive way. In this study, we address the question, to what extent is the magnitude of impact of fires on WUI residents' well-being explained by measurable biophysical characteristics of the fire and subjective evaluations of the personal and community-level impacts of the fire? We bring together diverse strands of psychological theory, including landscape perception, mental models, risk perception, and community studies. The majority of social science research on fires has been in the form of qualitative case studies, and our study is methodologically unique by using a nested design (hierarchical modeling) to enable generalizable conclusions across a wide range of fires and human communities. We identified fires that burned in 2011 or 2012 in the northern Rocky Mountain region that were at least 1,000 acres and that intersected (within 15 km) urban clusters or identified Census places. For fires where an adequately large number of households was located in proximity to the fire, we drew random samples of approximately 150 individuals for each fire. We used a hybrid internet (Qualtrics) and mail survey, following the Dillman method, to measure individual perceptions. We developed two

  20. Chiropractic biophysics technique: a linear algebra approach to posture in chiropractic.

    Science.gov (United States)

    Harrison, D D; Janik, T J; Harrison, G R; Troyanovich, S; Harrison, D E; Harrison, S O

    1996-10-01

    This paper discusses linear algebra as applied to human posture in chiropractic, specifically chiropractic biophysics technique (CBP). Rotations, reflections and translations are geometric functions studied in vector spaces in linear algebra. These mathematical functions are termed rigid body transformations and are applied to segmental spinal movement in the literature. Review of the literature indicates that these linear algebra concepts have been used to describe vertebral motion. However, these rigid body movers are presented here as applying to the global postural movements of the head, thoracic cage and pelvis. The unique inverse functions of rotations, reflections and translations provide a theoretical basis for making postural corrections in neutral static resting posture. Chiropractic biophysics technique (CBP) uses these concepts in examination procedures, manual spinal manipulation, instrument assisted spinal manipulation, postural exercises, extension traction and clinical outcome measures.

  1. Plutonium uniqueness

    International Nuclear Information System (INIS)

    Silver, G.L.

    1984-01-01

    A standard is suggested against which the putative uniqueness of plutonium may be tested. It is common folklore that plutonium is unique among the chemical elements because its four common oxidation states can coexist in the same solution. Whether this putative uniqueness appears only during transit to equilibrium, or only at equilibrium, or all of the time, is not generally made clear. But while the folklore may contain some truth, it cannot be put to test until some measure of 'uniqueness' is agreed upon so that quantitative comparisons are possible. One way of measuring uniqueness is as the magnitude of the product of the mole fractions of the element at equilibrium. A 'coexistence index' is defined and discussed. (author)

  2. Biophysical properties of membrane lipids of anammox bacteria : I. Ladderane phospholipids form highly organized fluid membranes

    NARCIS (Netherlands)

    Boumann, Henry A.; Longo, Marjorie L.; Stroeve, Pieter; Poolman, Bert; Hopmans, Ellen C.; Stuart, Marc C. A.; Damste, Jaap S. Sinninghe; Schouten, Stefan

    Anammox bacteria that are capable of anaerobically oxidizing ammonium (anammox) with nitrite to nitrogen gas produce unique membrane phospholipids that comprise hydrocarbon chains with three or five linearly condensed cyclobutane rings. To gain insight into the biophysical properties of these

  3. Unique characteristics of regulatory approval and pivotal studies of orphan anticancer drugs in Japan.

    Science.gov (United States)

    Nakayama, Hiroki; Tsukamoto, Katsura

    2018-04-17

    The approval of orphan anticancer drugs has increased, with the number exceeding that of non-orphan drugs in Japan in recent years. Although orphan anticancer drugs may have unique characteristics due to their rarity, these have not been fully characterized. We investigated anticancer drugs approved in Japan between April 2004 and November 2017 to reveal the characteristics of regulatory approval and pivotal studies on orphan anticancer drugs compared to non-orphan drugs. The median regulatory review time and number of patients in pivotal studies on orphan anticancer drugs (281.0 days [interquartile range, 263.3-336.0]; 222.5 patients [66.0-454.3]) were significantly lower than those on non-orphan drugs (353.0 days [277.0-535.5]; 521.0 patients [303.5-814.5], respectively) (P < 0.001). Phase II, non-randomized and non-controlled designs were more frequently used in pivotal studies on orphan anticancer drugs (45.9%, 41.9% and 43.2%) than non-orphan drugs (17.2%, 14.1% and 14.1%, respectively). Response rate was more commonly used as a primary endpoint in pivotal studies on orphan anticancer drugs (48.6%) than non-orphan drugs (17.2%). Indications limited by molecular features, second or later treatment line, and accelerated approval in the United States were associated with the use of response rate in orphan anticancer drug studies. In conclusion, we demonstrated that orphan anticancer drugs in Japan have unique characteristics compared to non-orphan drugs: shorter regulatory review and pivotal studies frequently using phase II, non-randomized, or non-controlled designs and response rate as a primary endpoint, with fewer patients.

  4. The zenithal 4-m International Liquid Mirror Telescope: a unique facility for supernova studies

    Science.gov (United States)

    Kumar, Brajesh; Pandey, Kanhaiya L.; Pandey, S. B.; Hickson, P.; Borra, E. F.; Anupama, G. C.; Surdej, J.

    2018-05-01

    The 4-m International Liquid Mirror Telescope (ILMT) will soon become operational at the newly developed Devasthal observatory near Nainital (Uttarakhand, India). Coupled with a 4k × 4k pixels CCD detector and TDI optical corrector, it will reach approximately 22.8, 22.3, and 21.4 mag in the g΄, r΄, and i΄ spectral bands, respectively, in a single scan. The limiting magnitudes can be further improved by co-adding the consecutive night images in particular filters. The uniqueness to observe the same sky region by looking towards the zenith direction every night makes the ILMT a unique instrument to detect new supernovae (SNe) by applying the image subtraction technique. High cadence (˜24 h) observations will help to construct dense sampling multi-band SNe light curves. We discuss the importance of the ILMT facility in the context of SNe studies. Considering the various plausible cosmological parameters and observational constraints, we perform detailed calculations of the expected SNe rate that can be detected with the ILMT in different spectral bands.

  5. The L3+C detector, a unique tool-set to study cosmic rays

    International Nuclear Information System (INIS)

    Adriani, O.; Akker, M. van den; Banerjee, S.; Baehr, J.; Betev, B.; Bourilkov, D.; Bottai, S.; Bobbink, G.; Cartacci, A.; Chemarin, M.; Chen, G.; Chen, H.S.; Chiarusi, T.; Dai, C.J.; Ding, L.K.; Duran, I.; Faber, G.; Fay, J.; Grabosch, H.J.; Groenstege, H.; Guo, Y.N.; Gupta, S.; Haller, Ch.; Hayashi, Y.; He, Z.X.; Hebbeker, T.; Hofer, H.; Hoferjun, H.; Huo, A.X.; Ito, N.; Jing, C.L.; Jones, L.; Kantserov, V.; Kawakami, S.; Kittel, W.; Koenig, A.C.; Kok, E.; Korn, A.; Kuang, H.H.; Kuijpers, J.; Ladron de Guevara, P.; Le Coultre, P.; Lei, Y.; Leich, H.; Leiste, R.; Li, D.; Li, L.; Li, Z.C.; Liu, Z.A.; Liu, H.T.; Lohmann, W.; Lu, Y.S.; Ma, X.H.; Ma, Y.Q.; Mil, A. van; Monteleoni, B.; Nahnhauer, R.; Pauss, F.; Parriaud, J.-F.; Petersen, B.; Pohl, M.; Qing, C.R.; Ramelli, R.; Ravindran, K.C.; Rewiersma, P.; Rojkov, A.; Saidi, R.; Schmitt, V.; Schoeneich, B.; Schotanus, D.J.; Shen, C.Q.; Sulanke, H.; Tang, X.W.; Timmermans, C.; Tonwar, S.; Trowitzsch, G.; Unger, M.; Verkooijen, H.; Wang, X.L.; Wang, X.W.; Wang, Z.M.; Wijk, R. van; Wijnen, Th.A.M.; Wilkens, H.; Xu, Y.P.; Xu, Z.Z.; Yang, C.G.; Yang, X.F.; Yao, Z.G.; Yu, Z.Q.; Zhang, S.; Zhu, G.Y.; Zhu, Q.Q.; Zhuang, H.L.; Zwart, A.N.M.

    2002-01-01

    The L3 detector at the CERN electron-positron collider, LEP, has been employed for the study of cosmic ray muons. The muon spectrometer of L3 consists of a set of high-precision drift chambers installed inside a magnet with a volume of about 1000 m 3 and a field of 0.5 T. Muon momenta are measured with a resolution of a few percent at 50 GeV. The detector is located under 30 m of overburden. A scintillator air shower array of 54 m by 30 m is installed on the roof of the surface hall above L3 in order to estimate the energy and the core position of the shower associated with a sample of detected muons. Thanks to the unique properties of the L3+C detector, muon research topics relevant to various current problems in cosmic ray and particle astrophysics can be studied

  6. The L3+C detector, a unique tool-set to study cosmic rays

    CERN Document Server

    Adriani, O; Banerjee, S; Bähr, J; Betev, B L; Bourilkov, D; Bottai, S; Bobbink, Gerjan J; Cartacci, A M; Chemarin, M; Chen, G; Chen He Sheng; Chiarusi, T; Dai Chang Jiang; Ding, L K

    2002-01-01

    The L3 detector at the CERN electron-positron collider, LEP, has been employed for the study of cosmic ray muons. The muon spectrometer of L3 consists of a set of high-precision drift chambers installed inside a magnet with a volume of about 1000 m**3 and a field of 0.5 T. Muon momenta are measured with a resolution of a few percent at 50 GeV. The detector is located under 30 m of overburden. A scintillator air shower array of 54 m by 30 m is installed on the roof of the surface hall above L3 in order to estimate the energy and the core position of the shower associated with a sample of detected muons. Thanks to the unique properties of the L3+C detector, muon research topics relevant to various current problems in cosmic ray and particle astrophysics can be studied.

  7. An introduction to environmental biophysics

    CERN Document Server

    Campbell, Gaylon S

    1977-01-01

    The study of environmental biophysics probably began earlier in man's history than that of any other science. The study of organism-environment interaction provided a key to survival and progress. Systematic study of the science and recording of experimental results goes back many hundreds of years. Ben­ jamin Franklin, the early American statesman, inventor, printer, and scientist studied conduction, evaporation, and radiation. One of his observations is as follows: My desk on which I now write, and the lock of my desk, are both exposed to the same temperature of the air, and have therefore the same degree of heat or cold; yet if I lay my hand successively on the wood and on the metal, the latter feels much the coldest, not that it is really so, but being a better conductor, it more readily than the wood takes away and draws into itself the fire that was in my skin. 1 Franklin probably was not the first to discover this principle, and certainly was not the last. Modem researchers rediscover this principle f...

  8. Biophysical Studies on BEX3, the p75NTR-Associated Cell Death Executor, Reveal a High-Order Oligomer with Partially Folded Regions.

    Directory of Open Access Journals (Sweden)

    Katia M S Cabral

    Full Text Available BEX3 (Brain Expressed X-linked protein 3 is a member of a mammal-specific placental protein family. Several studies have found the BEX proteins to be associated with neurodegeneration, the cell cycle and cancer. BEX3 has been predicted to be intrinsically disordered and also to represent an intracellular hub for cell signaling. The pro-apoptotic activity of BEX3 in association with a number of additional proteins has been widely supported; however, to the best of our knowledge, very limited data are available on the conformation of any of the members of the BEX family. In this study, we structurally characterized BEX3 using biophysical experimental data. Small angle X-ray scattering and atomic force microscopy revealed that BEX3 forms a specific higher-order oligomer that is consistent with a globular molecule. Solution nuclear magnetic resonance, partial proteinase K digestion, circular dichroism spectroscopy, and fluorescence techniques that were performed on the recombinant protein indicated that the structure of BEX3 is composed of approximately 31% α-helix and 20% β-strand, contains partially folded regions near the N- and C-termini, and a core which is proteolysis-resistant around residues 55-120. The self-oligomerization of BEX3 has been previously reported in cell culture and is consistent with our in vitro data.

  9. Biophysical Studies on BEX3, the p75NTR-Associated Cell Death Executor, Reveal a High-Order Oligomer with Partially Folded Regions.

    Science.gov (United States)

    Cabral, Katia M S; Raymundo, Diana P; Silva, Viviane S; Sampaio, Laura A G; Johanson, Laizes; Hill, Luis Fernando; Almeida, Fabio C L; Cordeiro, Yraima; Almeida, Marcius S

    2015-01-01

    BEX3 (Brain Expressed X-linked protein 3) is a member of a mammal-specific placental protein family. Several studies have found the BEX proteins to be associated with neurodegeneration, the cell cycle and cancer. BEX3 has been predicted to be intrinsically disordered and also to represent an intracellular hub for cell signaling. The pro-apoptotic activity of BEX3 in association with a number of additional proteins has been widely supported; however, to the best of our knowledge, very limited data are available on the conformation of any of the members of the BEX family. In this study, we structurally characterized BEX3 using biophysical experimental data. Small angle X-ray scattering and atomic force microscopy revealed that BEX3 forms a specific higher-order oligomer that is consistent with a globular molecule. Solution nuclear magnetic resonance, partial proteinase K digestion, circular dichroism spectroscopy, and fluorescence techniques that were performed on the recombinant protein indicated that the structure of BEX3 is composed of approximately 31% α-helix and 20% β-strand, contains partially folded regions near the N- and C-termini, and a core which is proteolysis-resistant around residues 55-120. The self-oligomerization of BEX3 has been previously reported in cell culture and is consistent with our in vitro data.

  10. Functional and biophysical studies on four ceratoplatanins from the fungus Moniliophthora perniciosa, causal agent of the Witche's broom disease

    Energy Technology Data Exchange (ETDEWEB)

    Barsottini, M.; Zaparoli, G.; Garcia, O.; Pereira, G.A.G. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil); Oliveira, J.F.; Tiezzi, H.O.; Ambrosio, A.L.B.; Dias, S.M.G. [Laboratorio Nacional de Biociencias - LNBIO, Campinas, SP (Brazil)

    2012-07-01

    Full text: Ceratoplatanin (CP) is a secreted protein of 12.4 kDa initially identified in culture filtrates of the disease ascomycete Ceratocystis fimbriata f. sp. platani, etiological agent of the canker stain disease. CP is also the founding member of the namesake protein family, which contains fungal-secreted proteins involved in various stages of the host-fungus interaction and may act as phytotoxins or elicitors of defense response. Besides the low molecular weight, CPs have a high percentage of hydrophobic residues and share two conserved intramolecular disulfide bonds. It has been suggested that CPs have important physiological functions, including interaction with cell wall or cell membrane and manipulation of the host's defense system. Furthermore, a recent work showed that the ceratoplatanin from C. fimbriata has some degree of affinity for the saccharide 4-N-acetylglucosamine. However, its precise molecular function remains elusive. Five putative CPs have been identified in Moniliophthora perniciosa a basidiomycete fungus responsible for great economic losses in cocoa industry in the form of Witches' broom disease (WBD) , four of which had their crystal structures resolved by our group. In this work we report biophysical and functional studies on these MpCPs aiming at understanding their role and importance during the WBD progression. (author)

  11. A physico-chemical study of some areas of fundamental significance to biophysics: Annual report, 1988--1989

    International Nuclear Information System (INIS)

    McGlynn, S.P.

    1989-01-01

    This paper discusses the following topics: Density Effects on High-n Rydbergs of Methyl Iodide; Photoelectron Spectroscopy of Biologically Active Molecules; Laser Optogalvanic Spectroscopy; Luminescence Studies; and Photoionization Studies

  12. Radiation and biophysical studies on cells and viruses. Progress report, 1 April 1975--31 March 1976

    International Nuclear Information System (INIS)

    Cole, A.; Ansevin, A.T.; Corry, P.M.; Humphrey, R.M.

    1976-01-01

    Progress is reported on the following research projects: studies on organization of chromosomes using sedimentation analysis, electron microscopy, and radiosensitive site analysis; studies on organization of nucleoproteins and DNA using thermal denaturation experiments; distribution of radiosensitive sites in mitotic and intraphase CHO cells using track and alpha particle irradiation; gamma ray and particle irradiation studies of cellular and nucleoprotein damage; and studies of semiconductor properties of biomolecules and applications to melanin-containing cells

  13. Integrated Molecular and Cellular Biophysics

    CERN Document Server

    Raicu, Valerica

    2008-01-01

    This book integrates concepts and methods from physics, biology, biochemistry and physical chemistry into a standalone, unitary text of biophysics that aims to provide a quantitative description of structures and processes occurring in living matter. The book introduces graduate physics students and physicists interested in biophysics research to 'classical' as well as emerging areas of biophysics. The advanced undergraduate physics students and the life scientists are also invited to join in, by building on their knowledge of basic physics. Essential notions of biochemistry and biology are introduced, as necessary, throughout the book, while the reader's familiarity with basic knowledge of physics is assumed. Topics covered include interactions between biological molecules, physical chemistry of phospholipids association into bilayer membranes, DNA and protein structure and folding, passive and active electrical properties of the cell membrane, classical as well as fractal aspects of reaction kinetics and di...

  14. Radiation and biophysical studies on cells and viruses. Progress report 1 July 1977--30 June 1978. [Particle beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Arthur; Ansevin, Allen T.; Corry, Peter M.

    1978-08-01

    Studies on genetic structure included arrangement of interphase and mitotic chromosomes, nucleoproteins, and DNA. Studies on analysis of sensitive sites by particle beam irradiation included location of cellular sites for mutation induction and cell transformation. Studies on radiation damage and repair and radiation as an investigative tool included damage to nuclear proteins and other model systems; detection and quantitation of cell surface antigens; interaction of hyperthermia and irradiation; radioinduced cell transformation alkaline elution studies of damage and repair; and low dose, low LET lethality. (HLW)

  15. Radiation and biophysical studies on cells and viruses. Progress report 1 July 1977--30 June 1978

    International Nuclear Information System (INIS)

    Studies on genetic structure included arrangement of interphase and mitotic chromosomes, nucleoproteins, and DNA. Studies on analysis of sensitive sites by particle beam irradiation included location of cellular sites for mutation induction and cell transformation. Studies on radiation damage and repair and radiation as an investigative tool included damage to nuclear proteins and other model systems; detection and quantitation of cell surface antigens; interaction of hyperthermia and irradiation; radioinduced cell transformation alkaline elution studies of damage and repair; and low dose, low LET lethality

  16. Handbook of Single-Molecule Biophysics

    CERN Document Server

    Hinterdorfer, Peter

    2009-01-01

    The last decade has seen the development of a number of novel biophysical methods that allow the manipulation and study of individual biomolecules. The ability to monitor biological processes at this fundamental level of sensitivity has given rise to an improved understanding of the underlying molecular mechanisms. Through the removal of ensemble averaging, distributions and fluctuations of molecular properties can be characterized, transient intermediates identified, and catalytic mechanisms elucidated. By applying forces on biomolecules while monitoring their activity, important information can be obtained on how proteins couple function to structure. The Handbook of Single-Molecule Biophysics provides an introduction to these techniques and presents an extensive discussion of the new biological insights obtained from them. Coverage includes: Experimental techniques to monitor and manipulate individual biomolecules The use of single-molecule techniques in super-resolution and functional imaging Single-molec...

  17. Biophysics and the Challenges of Emerging Threats

    CERN Document Server

    Puglisi, Joseph D

    2009-01-01

    This volume is a collection of articles from the proceedings of the International School of Structural Biology and Magnetic Resonance 8th Course: Biophysics and the Challenges of Emerging Threats. This NATO Advance Study Institute (ASI) was held in Erice at the Ettore Majorana Foundation and Centre for Scientific Culture on 19 through 30 June 2007. The ASI brought together a diverse group of experts who bridged the fields of virology and biology, biophysics, chemistry and physics. Prominent lecturers and students from around the world representant a total of 24 countries participated in the NATO ASI organized by Professors Joseph Puglisi (Stanford University, USA) and Alexander Arseniev (Moscow, RU). The central hypothesis underlying this ASI was that interdisciplinary research, merging principles of physics, chemistry and biology, can drive new discovery in detecting and fighting bioterrorism agents, lead to cleaner environments, and help propel development in NATO partner countries. The ASI merged the relat...

  18. The biophysics of neuronal growth

    International Nuclear Information System (INIS)

    Franze, Kristian; Guck, Jochen

    2010-01-01

    For a long time, neuroscience has focused on biochemical, molecular biological and electrophysiological aspects of neuronal physiology and pathology. However, there is a growing body of evidence indicating the importance of physical stimuli for neuronal growth and development. In this review we briefly summarize the historical background of neurobiophysics and give an overview over the current understanding of neuronal growth from a physics perspective. We show how biophysics has so far contributed to a better understanding of neuronal growth and discuss current inconsistencies. Finally, we speculate how biophysics may contribute to the successful treatment of lesions to the central nervous system, which have been considered incurable until very recently.

  19. Radiation dosimetry and radiation biophysics

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    Radiation dosimetry and radiation biophysics are two closely integrated programs whose joint purpose is to explore the connections between the primary physical events produced by radiation and their biological consequences in cellular systems. The radiation dosimetry program includes the theoretical description of primary events and their connection with the observable biological effects. This program also is concerned with the design and measurement of physical parameters used in theory or to support biological experiments. The radiation biophysics program tests and uses the theoretical developments for experimental design, and provides information for further theoretical development through experiments on cellular systems

  20. Radiation dosimetry and radiation biophysics

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Radiation dosimetry and radiation biophysics are two closely integrated programs whose joint purpose is to explore the connections between the primary physical events produced by radiation and their biological consequences in cellular systems. The radiation dosimetry program includes the theoretical description of primary events and their connection with the observable biological effects. This program also is concerned with design and measurement of those physical parameters used in the theory or to support biological experiments. The radiation biophysics program tests and makes use of the theoretical developments for experimental design. Also, this program provides information for further theoretical development through experiments on cellular systems

  1. Unveiling the 'unique bone': a study of the distribution of focal clavicular lesions

    International Nuclear Information System (INIS)

    Suresh, S.; Saifuddin, A.

    2008-01-01

    Clavicle is a unique bone for many reasons. There is no study discussing the differential diagnosis of clavicular lesions based on the site of occurrence or age at presentation. This study aims to determine whether the distribution of lesions affecting the clavicle and age at presentation aid in the differential diagnosis of focal clavicular lesions. Clinical notes, imaging and histopathological reports of the clavicular lesions between Jan 1999 and Jan 2006 were reviewed. Virtually, all patients had been referred as suspected neoplasm. Fifty-nine patients were identified. Patients 50 years (n=18) had predominantly malignant lesions. The lesions most commonly affected the medial third (n=35) and were predominantly non-neoplastic or benign. The middle third was affected in 15 patients and showed both benign and malignant lesions. The lateral third was least affected with predominance of malignant lesions. The clavicle is not a primary common site for any particular tumour; hence, diagnosis of the lesions can be challenging. Our study has suggested that few factors like age and site of the lesions may be helpful in diagnosis. (orig.)

  2. Radiation and biophysical studies on cells and viruses. Progress report, April 1, 1976--June 30, 1977. [Gamma radiation, alpha particles

    Energy Technology Data Exchange (ETDEWEB)

    Cole, A.

    1977-01-01

    Progress is reported on the following research projects: genetic structure of DNA, chromosomes, and nucleoproteins; particle beam studies of radiosensitive sites; division delay in CHO cells induced by partly penetrating alpha particles; location of cellular sites for mutation induction; sites for radioinduced cell transformation using partly penetrating particle beams; gamma-ray and particle irradiation of nucleoproteins and other model systems; quantitation of surface antigens on normal and neoplastic cells by x-ray fluorescence; hyperthermic effects on cell survival and DNA repair mechanisms; and studies on radioinduced cell transformation. (HLW)

  3. Physico-chemical study of some areas of fundamental significance to biophysics. Final report, 1974--1977

    Energy Technology Data Exchange (ETDEWEB)

    McGlynn, S.P.

    1977-08-18

    The comprehensive report includes a complete list of publications resulting from the work and a review of studies made in the vacuum ultraviolet, photoelectron spectroscopy, excited states and electron structure of inorganic salts, a model for polar molecules, application of abstract mathematics to the genetic code, the orbital approximation in which orbital properties are related to state properties. (JSR)

  4. Physico-chemical study of some areas of fundamental significance to biophysics. Final report, 1974--1977

    International Nuclear Information System (INIS)

    McGlynn, S.P.

    1977-01-01

    The comprehensive report includes a complete list of publications resulting from the work and a review of studies made in the vacuum ultraviolet, photoelectron spectroscopy, excited states and electron structure of inorganic salts, a model for polar molecules, application of abstract mathematics to the genetic code, the orbital approximation in which orbital properties are related to state properties

  5. Studies of land-cover, land-use, and biophysical properties of vegetation in the Large Scale Biosphere Atmosphere experiment in Amazonia.

    Science.gov (United States)

    Dar A. Robertsa; Michael Keller; Joao Vianei Soares

    2003-01-01

    We summarize early research on land-cover, land-use, and biophysical properties of vegetation from the Large Scale Biosphere Atmosphere (LBA) experiment in Amazoˆnia. LBA is an international research program developed to evaluate regional function and to determine how land-use and climate modify biological, chemical and physical processes there. Remote sensing has...

  6. Biophysical Influence of Airborne Carbon Nanomaterials on Natural Pulmonary Surfactant

    OpenAIRE

    Valle, Russell P.; Wu, Tony; Zuo, Yi Y.

    2015-01-01

    Inhalation of nanoparticles (NP), including lightweight airborne carbonaceous nanomaterials (CNM), poses a direct and systemic health threat to those who handle them. Inhaled NP penetrate deep pulmonary structures in which they first interact with the pulmonary surfactant (PS) lining at the alveolar air–water interface. In spite of many research efforts, there is a gap of knowledge between in vitro biophysical study and in vivo inhalation toxicology since all existing biophysical models handl...

  7. Gallium a unique anti-resorptive agent in bone: Preclinical studies on its mechanisms of action

    International Nuclear Information System (INIS)

    Bockman, R.; Adelman, R.; Donnelly, R.; Brody, L.; Warrell, R.; Jones, K.W.

    1990-01-01

    The discovery of gallium as a new and unique agent for the treatment of metabolic bone disorders was in part fortuitous. Gallium is an exciting new therapeutic agent for the treatment of pathologic states characterized by accelerated bone resorption. Compared to other therapeutic metal compounds containing platinum or germanium, gallium affects its antiresorptive action without any evidence of a cytotoxic effect on bone cells. Gallium is unique amongst all therapeutically available antiresorptive agents in that it favors bone formation. 18 refs., 1 fig

  8. Biophysical study on the interaction between two palladium(II) complexes and human serum albumin by Multispectroscopic methods

    Energy Technology Data Exchange (ETDEWEB)

    Saeidifar, Maryam, E-mail: saeidifar@merc.ac.ir [Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj (Iran, Islamic Republic of); Mansouri-Torshizi, Hassan [Department of Chemistry, University of Sistan and Baluchestan, Zahedan (Iran, Islamic Republic of); Akbar Saboury, Ali [Institute of Biochemistry and Biophysics, University of Tehran, Tehran (Iran, Islamic Republic of)

    2015-11-15

    The interaction of [Pd(bpy)(n-pr-dtc)]Br (I) and ([Pd(phen)(n-pr-dtc)]Br (II) (bpy=2,2′-bipyridine, phen=1,10-phenanthroline and n-pr-dtc=n-propyldithiocarbamate) with human serum albumin (HSA) was investigated using fluorescence, UV–vis absorption and circular dichroism (CD) spectroscopy techniques under simulative physiological conditions (pH=7.4). It was observed that the two complexes interact with HSA via static fluorescence quenching. The thermodynamic parameters indicate that the binding process was spontaneous and that hydrogen bonds and van der Waals forces play a major role in the association of the HSA–Pd(II) complexes. The activation energy (E{sub a}), binding constant (K{sub b}) and number of binding sites (n) of the HSA–Pd(II) complexes were calculated from fluorescence data at 293 K, 303 K and 311 K. The conformational alternations of protein secondary structure in the presence of Pd(II) complexes were demonstrated using synchronous fluorescence, three-dimensional fluorescence spectra, UV–vis absorption and circular dichroism techniques. Furthermore, the apparent distance between donor (HSA) and acceptor (Pd(II) complexes) was determined using fluorescence resonance energy transfer (FRET). The binding studies between these complexes and HSA give us key insights into the transportation, distribution and toxicity of newly design antitumor Pd(II) complexes in human blood. - Highlights: • The HSA binding properties of two Palladium (II) complexes were studied. • Static quenching mechanism is effective in the interaction of HSA with Pd(II) complexes. • Hydrogen bonds and van der Waals forces were involved in the Pd(II) complexes–HSA interaction. • 3D fluorescence was used to study the interaction between two complexes and HSA.

  9. Effect of excimer laser (Arf, 193 nm) on aqueous humor during photorefractive keratectomy biophysical and biochemical study

    International Nuclear Information System (INIS)

    Mahmoud, S.S.; Mahmoud, A.A.

    2004-01-01

    Ultraviolet light (193 nm) produced by an excimer laser has been used to produce precise tissue ablation with minimal thermal damage to adjacent tissue. The present study was designed to investigate the effect of excimer laser during photo refractive keratectomy (PRK) on aqueous humor constituents and also the effect of antioxidant enzyme superoxide dismutase (SOD)- applied topically- on these changes if exist. Five groups of schenchilla rabbits were involved in this study, where four groups underwent corneal stromal ablation using argon fluoride excimer laser (Ar F, 193 nm). Two of these four groups were treated with superoxide dismutase intra operatively. The fifth group was used as control one. The obtained results revealed depletion of aqueous humor ascorbate and glutathione contents. Aqueous humor refractive index, cholesterol, phospholipids, malondialdehyde (MDA) and total protein were measured. In conclusion, the excimer laser can induce changes in aqueous humor constituents during PRK. These changes lasted at least for 24 hours and as the time increased to 4 weeks, these changes became limited. The use of exogenous SOD seems to exert beneficial effect on aqueous humor refractive index and total protein

  10. Biophysical studies of interaction between hydrolysable tannins isolated from Oenothera gigas and Geranium sanguineum with human serum albumin.

    Science.gov (United States)

    Sekowski, Szymon; Ionov, Maksim; Kaszuba, Mateusz; Mavlyanov, Saidmukhtar; Bryszewska, Maria; Zamaraeva, Maria

    2014-11-01

    Tannins, secondary plant metabolites, possess diverse biological activities and can interact with biopolymers such as lipids or proteins. Interactions between tannins and proteins depend on the structures of both and can result in changes in protein structure and activity. Because human serum albumin is the most abundant protein in plasma and responsible for interactions with important biological compounds (e.g. bilirubin) and proper blood pressure, therefore, it is very important to investigate reactions between HSA and tannins. This paper describes the interaction between human serum albumin (HSA) and two tannins: bihexahydroxydiphenoyl-trigalloylglucose (BDTG) and 1-O-galloyl-4,6-hexahydroxydiphenoyl-β-d-glucose (OGβDG), isolated from Geranium sanguineum and Oenothera gigas leafs, respectively. Optical (spectrofluorimetric) and chiral optical (circular dichroism) methods were used in this study. Fluorescence analysis demonstrated that OGβDG quenched HSA fluorescence more strongly than BDTG. Both OGβDG and BDTG formed complexes with albumin and caused a red shift of the fluorescence spectra but did not significantly change the protein secondary structure. Our studies clearly demonstrate that the tested tannins interact very strongly with human serum albumin (quenching constant K=88,277.26±407.04 M(-1) and K=55,552.67±583.07 M(-1) respectively for OGβDG and BDTG) in a manner depending on their chemical structure. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Studies on Some Biophysical Properties of the Serum Protein of Mice blood exposed to an electric field

    International Nuclear Information System (INIS)

    Hanafy, M.S.

    2005-01-01

    As an indication of the effect of the electric field on each of the dielectric properties and the molecular structure of the serum protein of the mice blood, an electric field of a 6 kv/m strength and 50 Hz frequency was directed to three groups of mice for exposure periods 30, 45 and 60 days respectively, and investigated directly. Another group was exposed to also 60 days, but investigated after 30 days from switching off the electric field for delayed effect studies. The molecular structure of the serum protein was studied by measuring each of the dielectric relaxation and the electric conductivity in the frequency range 0.15 MHz at 4 ± 0.5 degree C and the dielectric increment (Δ), relaxation time (τ) and average molecular radii (τ) were calculated for all groups. The absorption spectra of the extracted protein were also measured in the wavelength range 200 600 nm. Moreover, electrophoresis of enzymes B-esterase, lactate and Malate dehydrogenase extracted from the blood serum of exposed mice were taken by using the gel electrophoresis technique. The results indicated that exposure of the animals to 50 H, 6 kv/m electric field resulted in the decrease of serum protein permittivity values and increase its conductivity a fact that indicates pronounced changes in the molecular structure of total serum protein the exposed mice. In addition, the intensity of the absorption spectral bands of serum protein of exposed mice were found to decrease relative to unexposed mice. Also the enzymes B-esterase and lactate dehydrogenase were slightly affected by exposing to the electric field whereas their number of bands and their intensities changed relative to the unexposed mice but the malate dehydrogenase was not affected

  12. The relationship between fetal biophysical profile and cord blood PH

    Directory of Open Access Journals (Sweden)

    Valadan M

    2009-02-01

    Full Text Available "nBackground: The Biophysical Profile (BPP is a noninvasive test that predicts the presence or absence of fetal asphyxia and, ultimately, the risk of fetal death in the antenatal period. Intervention on the basis of an abnormal biophysical profile result has been reported to yield a significant reduction in prenatal mortality, and an association exists between biophysical profile scoring and a decreased cerebral palsy rate in a given population. The BPP evaluates five characteristics: fetal movement, tone, breathing, heart reactivity, and amniotic fluid (AF volume estimation. The purpose of study was to determine whether there are different degree of acidosis at which the biophysical activity (acute marker are affected. "nMethods: In a prospective study of 140 patients undergoing cesarean section before onset of labor, the fetal biophysical profile was performed 24h before the time of cesarean and was matched with cord arterial PH that was obtained from a cord segment (10-20cm that was double clamped after delivery of newborn. (using cord arterial PH less than 7.20 for the diagnosis of acidosis. "nResults: The fetal biophysical profile was found to have a significant relationship with umbilical blood PH. The sensitivity, specificity, positive predictive value, negative predictive value of fetal biophysical profile score were: 88.9%, 88.6%, 50%, 98.1%. "nConclusion: The first manifestations of fetal acidosis are nonreactive nonstress testing and fetal breathing loss; in advanced acidemia fetal movements and fetal tone are compromised. A protocol of antepartum fetal evaluation is suggested based upon the individual biophysical components rather than the score alone.

  13. Biophysical applications of satellite remote sensing

    CERN Document Server

    Hanes, Jonathan

    2014-01-01

    Including an introduction and historical overview of the field, this comprehensive synthesis of the major biophysical applications of satellite remote sensing includes in-depth discussion of satellite-sourced biophysical metrics such as leaf area index.

  14. Drought propagation and its relation with catchment biophysical characteristics

    Science.gov (United States)

    Alvarez-Garreton, C. D.; Lara, A.; Garreaud, R. D.

    2016-12-01

    Droughts propagate in the hydrological cycle from meteorological to soil moisture to hydrological droughts. To understand the drivers of this process is of paramount importance since the economic and societal impacts in water resources are directly related with hydrological droughts (and not with meteorological droughts, which have been most studied). This research analyses drought characteristics over a large region and identify its main exogenous (climate forcing) and endogenous (biophysical characteristics such as land cover type and topography) explanatory factors. The study region is Chile, which covers seven major climatic subtypes according to Köppen system, it has unique geographic characteristics, very sharp topography and a wide range of landscapes and vegetation conditions. Meteorological and hydrological droughts (deficit in precipitation and streamflow, respectively) are characterized by their durations and standardized deficit volumes using a variable threshold method, over 300 representative catchments (located between 27°S and 50°S). To quantify the propagation from meteorological to hydrological drought, we propose a novel drought attenuation index (DAI), calculated as the ratio between the meteorological drought severity slope and the hydrological drought severity slope. DAI varies from zero (catchment that attenuates completely a meteorological drought) to one (the meteorological drought is fully propagated through the hydrological cycle). This novel index provides key (and comparable) information about drought propagation over a wide range of different catchments, which has been highlighted as a major research gap. Similar drought indicators across the wide range of catchments are then linked with catchment biophysical characteristics. A thorough compilation of land cover information (including the percentage of native forests, grass land, urban and industrial areas, glaciers, water bodies and no vegetated areas), catchment physical

  15. CARIAA Background Studies Biophysical Impacts

    International Development Research Centre (IDRC) Digital Library (Canada)

    Garrett Kilroy

    Services Framework. – Focus on topics in red box. • Entry points to link with social vulnerability. – Ecosystem Services (state and impact), i.e. degraded services impact ... ecosystems (e.g. mangroves). – Impacts on fisheries and other food production systems. A delta in the Ganges, Bangladesh. Picture: SPL / Barcroft Media ...

  16. Unique properties associated with normal martensitic transition and strain glass transition – A simulation study

    International Nuclear Information System (INIS)

    Wang, Dong; Ni, Yan; Gao, Jinghui; Zhang, Zhen; Ren, Xiaobing; Wang, Yunzhi

    2013-01-01

    Highlights: ► We model the unique properties of strain glass which is different from that of normal martensite. ► We describe the importance of point defects in the formation of strain glass and related properties. ► The role of point defect can be attributed to global transition temperature effect (GTTE) and local field effect (LFE). -- Abstract: The transition behavior and unique properties associated with normal martensitic transition and strain glass transition are investigated by computer simulations using the phase field method. The simulations are based on a physical model that assumes that point defects alter the thermodynamic stability of martensite and create local lattice distortion. The simulation results show that strain glass transition exhibits different properties from those found in normal martensitic transformations. These unique properties include diffuse scattering pattern, “smear” elastic modulus peak, disappearance of heat flow peak and non-ergodicity. These simulation predictions agree well with the experimental observations

  17. Photo-Elicitation and Visual Semiotics: A Unique Methodology for Studying Inclusion for Children with Disabilities

    Science.gov (United States)

    Stockall, Nancy

    2013-01-01

    The methodology in this paper discusses the use of photographs as an elicitation strategy that can reveal the thinking processes of participants in a qualitatively rich manner. Photo-elicitation techniques combined with a Piercian semiotic perspective offer a unique method for creating a frame of action for later participant analysis. Illustrative…

  18. Deep sea biophysics

    International Nuclear Information System (INIS)

    Yayanos, A.A.

    1982-01-01

    A collection of deep-sea bacterial cultures was completed. Procedures were instituted to shelter the culture collection from accidential warming. A substantial data base on the rates of reproduction of more than 100 strains of bacteria from that collection was obtained from experiments and the analysis of that data was begun. The data on the rates of reproduction were obtained under conditions of temperature and pressure found in the deep sea. The experiments were facilitated by inexpensively fabricated pressure vessels, by the streamlining of the methods for the study of kinetics at high pressures, and by computer-assisted methods. A polybarothermostat was used to study the growth of bacteria along temperature gradients at eight distinct pressures. This device should allow for the study of microbial processes in the temperature field simulating the environment around buried HLW. It is small enough to allow placement in a radiation field in future studies. A flow fluorocytometer was fabricated. This device will be used to determine the DNA content per cell in bacteria grown in laboratory culture and in microorganisms in samples from the ocean. The technique will be tested for its rapidity in determining the concentration of cells (standing stock of microorganisms) in samples from the ocean

  19. New opportunities for the study of Mediterranean storms: the unique capabilities of the Global Hawk aircraft

    Science.gov (United States)

    Cairo, F.; Curry, R. E.; Carli, B.

    2009-09-01

    Airborne measurements have often played a pivotal role in unravelling critical processess and improving our understanding of the genesis and development of atmospheric disturbances. The availability of innovative aerial platforms now opens new perspectives for the scientific research. One of these platforms is the high altitude long endurance unmanned aircraft Global Hawk (GH), which has unique capabilities in terms of altitude, range of operation, diurnal coverage and flexibility. The GH has an endurance of 31 hrs, a service ceiling of 20000 m and can host a payload of 680 kg. Since it can operate at altitudes close to the boundary conditions of radiative processes, can follow the diurnal variation of aerosol and clouds, can rapidly deploy new instruments with space-time coverage comparable to space-borne ones, it is a platform which is at the same time complementary and competitive with satellites. In fact it combines the short time deployment of aircraft instruments with the global coverage of satellite instruments, while its flight altitude allows better spatial resolution than a satellite and its endurance provides a sufficiently broad overview at a scale relevant for sinoptic meteorology studies. NASA has recently acquired two of such unmanned high altitude aircraft to address a variety of Earth Science objectives, and Italy has a decade long experience of stratospheric in-situ and remote sensing science missions using the Russian M-55 "Geophysica" high altitude piloted aircraft. There is a common interest in a bilateral cooperative program in climate change science using the GH. The collaboration between NASA and Italian scientific institutions may offer the opportunity of deploying the GH over the Mediterranean Basin. The Mediterranean area is of particular interest under many respects. As instance, it would be of great interest to measure, when possible, the 3-dimensional structure and evolution of the aerosol content over the Mediterranean, with

  20. MODELLING BIOPHYSICAL PARAMETERS OF MAIZE USING LANDSAT 8 TIME SERIES

    Directory of Open Access Journals (Sweden)

    T. Dahms

    2016-06-01

    Full Text Available Open and free access to multi-frequent high-resolution data (e.g. Sentinel – 2 will fortify agricultural applications based on satellite data. The temporal and spatial resolution of these remote sensing datasets directly affects the applicability of remote sensing methods, for instance a robust retrieving of biophysical parameters over the entire growing season with very high geometric resolution. In this study we use machine learning methods to predict biophysical parameters, namely the fraction of absorbed photosynthetic radiation (FPAR, the leaf area index (LAI and the chlorophyll content, from high resolution remote sensing. 30 Landsat 8 OLI scenes were available in our study region in Mecklenburg-Western Pomerania, Germany. In-situ data were weekly to bi-weekly collected on 18 maize plots throughout the summer season 2015. The study aims at an optimized prediction of biophysical parameters and the identification of the best explaining spectral bands and vegetation indices. For this purpose, we used the entire in-situ dataset from 24.03.2015 to 15.10.2015. Random forest and conditional inference forests were used because of their explicit strong exploratory and predictive character. Variable importance measures allowed for analysing the relation between the biophysical parameters with respect to the spectral response, and the performance of the two approaches over the plant stock evolvement. Classical random forest regression outreached the performance of conditional inference forests, in particular when modelling the biophysical parameters over the entire growing period. For example, modelling biophysical parameters of maize for the entire vegetation period using random forests yielded: FPAR: R² = 0.85; RMSE = 0.11; LAI: R² = 0.64; RMSE = 0.9 and chlorophyll content (SPAD: R² = 0.80; RMSE=4.9. Our results demonstrate the great potential in using machine-learning methods for the interpretation of long-term multi-frequent remote sensing

  1. Modelling Biophysical Parameters of Maize Using Landsat 8 Time Series

    Science.gov (United States)

    Dahms, Thorsten; Seissiger, Sylvia; Conrad, Christopher; Borg, Erik

    2016-06-01

    Open and free access to multi-frequent high-resolution data (e.g. Sentinel - 2) will fortify agricultural applications based on satellite data. The temporal and spatial resolution of these remote sensing datasets directly affects the applicability of remote sensing methods, for instance a robust retrieving of biophysical parameters over the entire growing season with very high geometric resolution. In this study we use machine learning methods to predict biophysical parameters, namely the fraction of absorbed photosynthetic radiation (FPAR), the leaf area index (LAI) and the chlorophyll content, from high resolution remote sensing. 30 Landsat 8 OLI scenes were available in our study region in Mecklenburg-Western Pomerania, Germany. In-situ data were weekly to bi-weekly collected on 18 maize plots throughout the summer season 2015. The study aims at an optimized prediction of biophysical parameters and the identification of the best explaining spectral bands and vegetation indices. For this purpose, we used the entire in-situ dataset from 24.03.2015 to 15.10.2015. Random forest and conditional inference forests were used because of their explicit strong exploratory and predictive character. Variable importance measures allowed for analysing the relation between the biophysical parameters with respect to the spectral response, and the performance of the two approaches over the plant stock evolvement. Classical random forest regression outreached the performance of conditional inference forests, in particular when modelling the biophysical parameters over the entire growing period. For example, modelling biophysical parameters of maize for the entire vegetation period using random forests yielded: FPAR: R² = 0.85; RMSE = 0.11; LAI: R² = 0.64; RMSE = 0.9 and chlorophyll content (SPAD): R² = 0.80; RMSE=4.9. Our results demonstrate the great potential in using machine-learning methods for the interpretation of long-term multi-frequent remote sensing datasets to model

  2. Cellular normoxic biophysical markers of hydroxyurea treatment in sickle cell disease

    OpenAIRE

    Hosseini, Poorya; Abidi, Sabia Z.; Du, E; Papageorgiou, Dimitrios P.; Choi, Youngwoon; Park, YongKeun; Higgins, John M.; Kato, Gregory J.; Suresh, Subra; Dao, Ming; Yaqoob, Zahid; So, Peter T. C.

    2016-01-01

    There exists a critical need for developing biomarkers reflecting clinical outcomes and for evaluating the effectiveness of treatments for sickle cell disease patients. Prior attempts to find such patient-specific markers have mostly relied upon chemical biomarkers or biophysical properties at hypoxia with limited success. We introduce unique biomarkers based on characterization of cellular biophysical properties at normoxia and show that these markers correlate sensitively with treatment usi...

  3. Delineating Biophysical Environments of the Sunda Banda Seascape, Indonesia

    Directory of Open Access Journals (Sweden)

    Mingshu Wang

    2015-01-01

    Full Text Available The Sunda Banda Seascape (SBS, located in the center of the Coral Triangle, is a global center of marine biodiversity and a conservation priority. We proposed the first biophysical environmental delineation of the SBS using globally available satellite remote sensing and model-assimilated data to categorize this area into unique and meaningful biophysical classes. Specifically, the SBS was partitioned into eight biophysical classes characterized by similar sea surface temperature, chlorophyll a concentration, currents, and salinity patterns. Areas within each class were expected to have similar habitat types and ecosystem functions. Our work supplemented prevailing global marine management schemes by focusing in on a regional scale with finer spatial resolution. It also provided a baseline for academic research, ecological assessments and will facilitate marine spatial planning and conservation activities in the area. In addition, the framework and methods of delineating biophysical environments we presented can be expanded throughout the whole Coral Triangle to support research and conservation activities in this important region.

  4. Unique Path Partitions

    DEFF Research Database (Denmark)

    Bessenrodt, Christine; Olsson, Jørn Børling; Sellers, James A.

    2013-01-01

    We give a complete classification of the unique path partitions and study congruence properties of the function which enumerates such partitions.......We give a complete classification of the unique path partitions and study congruence properties of the function which enumerates such partitions....

  5. Biophysical models of radiobiological effects

    International Nuclear Information System (INIS)

    Obaturov, G.M.

    1987-01-01

    Radiobiological effect models at different organization levels, developed by the author, are presented. Classification and analysis of concepts and biophysical models at molecular, genetic and cellular levels, developed by Soviet and foreign authors in comparison to inherent models, are conducted from the viewpoint of system approach to radiobiological processes and of modelling principles. Models are compared with each other, limits of their applicability and drawbacks are determined. Evaluation of the model truthfulness is conducted according to a number of criteria, ways of further investigations and experimental examination of some models are proposed

  6. Mass spectrometry in structural biology and biophysics architecture, dynamics, and interaction of biomolecules

    CERN Document Server

    Kaltashov, Igor A; Desiderio, Dominic M; Nibbering, Nico M

    2012-01-01

    The definitive guide to mass spectrometry techniques in biology and biophysics The use of mass spectrometry (MS) to study the architecture and dynamics of proteins is increasingly common within the biophysical community, and Mass Spectrometry in Structural Biology and Biophysics: Architecture, Dynamics, and Interaction of Biomolecules, Second Edition provides readers with detailed, systematic coverage of the current state of the art. Offering an unrivalled overview of modern MS-based armamentarium that can be used to solve the most challenging problems in biophysics, structural biol

  7. The physical basis of biochemistry the foundations of molecular biophysics

    CERN Document Server

    Bergethon, Peter R

    1998-01-01

    The objective of this book is to provide a unifying approach to the study of biophysical chemistry for the advanced undergraduate who has had a year of physics, organic chem­ istry, calculus, and biology. This book began as a revised edition of Biophysical Chemistry: Molecules to Membranes, which Elizabeth Simons and I coauthored. That short volume was written in an attempt to provide a concise text for a one-semester course in biophysical chemistry at the graduate level. The experience of teaching biophysical chemistry to bi­ ologically oriented students over the last decade has made it clear that the subject requires a more fundamental text that unifies the many threads of modem science: physics, chem­ istry, biology, mathematics, and statistics. This book represents that effort. This volume is not a treatment of modem biophysical chemistry with its rich history and many contro­ versies, although a book on that topic is also needed. The Physical Basis of Biochemistry is an introduction to the philosophy...

  8. Large-scale biophysical evaluation of protein PEGylation effects

    DEFF Research Database (Denmark)

    Vernet, Erik; Popa, Gina; Pozdnyakova, Irina

    2016-01-01

    PEGylation is the most widely used method to chemically modify protein biopharmaceuticals, but surprisingly limited public data is available on the biophysical effects of protein PEGylation. Here we report the first large-scale study, with site-specific mono-PEGylation of 15 different proteins...... of PEGylation on the thermal stability of a protein based on data generated by circular dichroism (CD), differential scanning calorimetry (DSC), or differential scanning fluorimetry (DSF). In addition, DSF was validated as a fast and inexpensive screening method for thermal unfolding studies of PEGylated...... proteins. Multivariate data analysis revealed clear trends in biophysical properties upon PEGylation for a subset of proteins, although no universal trends were found. Taken together, these findings are important in the consideration of biophysical methods and evaluation of second...

  9. Simulation study on exchange interaction and unique magnetization near ferromagnetic morphotropic phase boundary.

    Science.gov (United States)

    Wei, Songrui; Liao, Xiaoqi; Gao, Yipeng; Yang, Sen; Wang, Dong; Song, Xiaoping

    2017-11-08

    Extensive efforts have been made in searching enhanced functionalities near the so-called morphotropic phase boundaries (MPBs) in both ferroelectric and ferromagnetic materials. Due to the exchange anti-symmetry of the wave function of fermions, it is widely recognized that the exchange interaction plays a critical role in ferromagnetism. As a quantum effect, the exchange interaction is magnitudes larger than electric interaction, leading to a fundamental difference between ferroelectricity and ferromagnetism. In this paper, we establish an energetic model capturing the interplay among the anisotropy energy, magnetostatic energy and the exchange energy to investigate systematically the effects of the exchange energy on the behavior of the ferromagnetic MPB. For the first time, it is found that the exchange energy can narrow the width of MPB region in the composition temperature phase diagram for ferromagnetic MPB systems. As temperature increases, MPB region becomes wider because of the weakening of the exchange interaction. Our simulation results suggest that the exchange energy play a critical role on the unique behavior of ferromagnetic MPB, which is in contrast different from that of ferroelectric MPB.

  10. Study of unique trajectories in SU(2) and SU(3) lattice Gauge theories

    International Nuclear Information System (INIS)

    Nerses, Hudaverdian

    1985-01-01

    As is well known, in the context of quantum field theories describing different types of interactions in the domain of particle physics, there are rampant ultraviolet infinite which are subtly taken care of by adequate renormalization procedures. The most conventional perturbative regularization schemes are based on the Feynman expansion, so successfully used in quantum electrodynamics. But the unique feature of confinement in strong interactions has forced physicists to search for a non-perturbative cut-off, and this has been provided by the introduction of discrete spacetime lattices over which the field theories have been formulated. the lattice represents a mathematical trick, a more scaffolding, an intermediate step, used to analyze a difficult non-linear system, of an infinite number of degree of freedom. Herein lies the main virtue of the lattice, which directly eliminates all wavelengths less than twice the lattice spacing.Consequently, regarding the lattice merely as an ultraviolet cut-off, physicists should remove this regulator and expect observable quantities to approach their physical values. However as the removal of the regulator is discussed, the question of renormalization emerges, and it is here that the Migdal-Kadanoff recursion relations, representing a simple approximate method for comparing theories with different lattice spacings bring in their virtue by providing a simple method for obtaining an approximate renormalization group function. It is hoped, and currently extensively investigated whether the Migdal renormalization group approach, combined with some other methods, can really provide useful information on the phase structures of lattice gauge theories

  11. Biophysical aspects of photodynamic therapy.

    Science.gov (United States)

    Juzeniene, Asta; Nielsen, Kristian Pagh; Moan, Johan

    2006-01-01

    Over the last three decades photodynamic therapy (PDT) has been developed to a useful clinical tool, a viable alternative in the treatment of cancer and other diseases. Several disciplines have contributed to this development: chemistry in the development of new photosensitizing agents, biology in the elucidation of cellular processes involved in PDT, pharmacology and physiology in identifying the mechanisms of distribution of photosensitizers in an organism, and, last but not least, physics in the development of better light sources, dosimetric concepts and construction of imaging devices, optical sensors and spectroscopic methods for determining sensitizer concentrations in different tissues. Physics and biophysics have also helped to focus on the role of pH for sensitizer accumulation, dose rate effects, oxygen depletion, temperature, and optical penetration of light of different wavelengths into various types of tissue. These are all important parameters for optimally effective PDT. The present review will give a brief, physically based, overview of PDT and then discuss some of the main biophysical aspects of this therapeutic modality.

  12. The Svalbard study 1988-89: a unique setting for validation of self-reported alcohol consumption.

    Science.gov (United States)

    Høyer, G; Nilssen, O; Brenn, T; Schirmer, H

    1995-04-01

    The Norwegian island of Spitzbergen, Svalbard offers a unique setting for validation studies on self-reported alcohol consumption. No counterfeit production or illegal import exists, thus making complete registration of all sources of alcohol possible. In this study we recorded sales from all agencies selling alcohol on Svalbard over a 2-month period in 1988. During the same period all adults living permanently on Svalbard were invited to take part in a health screening. As part of the screening a self-administered questionnaire on alcohol consumption was introduced to the participants. We found that the self-reported volume accounted for approximately 40 percent of the sales volume. Because of the unique situation applying to Svalbard, the estimate made in this study is believed to be more reliable compared to other studies using sales volume to validate self-reports.

  13. Preface: Special Topic on Single-Molecule Biophysics.

    Science.gov (United States)

    Makarov, Dmitrii E; Schuler, Benjamin

    2018-03-28

    Single-molecule measurements are now almost routinely used to study biological systems and processes. The scope of this special topic emphasizes the physics side of single-molecule observations, with the goal of highlighting new developments in physical techniques as well as conceptual insights that single-molecule measurements bring to biophysics. This issue also comprises recent advances in theoretical physical models of single-molecule phenomena, interpretation of single-molecule signals, and fundamental areas of statistical mechanics that are related to single-molecule observations. A particular goal is to illustrate the increasing synergy between theory, simulation, and experiment in single-molecule biophysics.

  14. Cell biology, biophysics, and mechanobiology: From the basics to Clinics.

    Science.gov (United States)

    Zeng, Y

    2017-04-29

    Cell biology, biomechanics and biophysics are the key subjects that guide our understanding in diverse areas of tissue growth, development, remodeling and homeostasis. Novel discoveries such as molecular mechanism, and mechanobiological mechanism in cell biology, biomechanics and biophysics play essential roles in our understanding of the pathogenesis of various human diseases, as well as in designing the treatment of these diseases. In addition, studies in these areas will also facilitate early diagnostics of human diseases, such as cardiovascular diseases and cancer. In this special issue, we collected 10 original research articles and 1 review...

  15. Photobiology of Symbiodinium revisited: bio-physical and bio-optical signatures

    Science.gov (United States)

    Hennige, S. J.; Suggett, D. J.; Warner, M. E.; McDougall, K. E.; Smith, D. J.

    2009-03-01

    Light is often the most abundant resource within the nutrient-poor waters surrounding coral reefs. Consequently, zooxanthellae ( Symbiodinium spp.) must continually photoacclimate to optimise productivity and ensure coral success. In situ coral photobiology is becoming dominated by routine assessments using state-of-the-art non-invasive bio-optical or chlorophyll a fluorescence (bio-physical) techniques. Multiple genetic types of Symbiodinium are now known to exist; however, little focus has been given as to how these types differ in terms of characteristics that are observable using these techniques. Therefore, this investigation aimed to revisit and expand upon a pivotal study by Iglesias-Prieto and Trench (1994) by comparing the photoacclimation characteristics of different Symbiodinium types based on their bio-physical (chlorophyll a fluorescence, reaction centre counts) and bio-optical (optical absorption, pigment concentrations) ‘signatures’. Signatures described here are unique to Symbiodinium type and describe phenotypic responses to set conditions, and hence are not suitable to describe taxonomic structure of in hospite Symbiodinium communities. In this study, eight Symbiodinium types from clades and sub-clades (A-B, F) were grown under two PFDs (Photon Flux Density) and examined. The photoacclimation response by Symbiodinium was highly variable between algal types for all bio-physical and for many bio-optical measurements; however, a general preference to modifying reaction centre content over effective antennae-absorption was observed. Certain bio-optically derived patterns, such as light absorption, were independent of algal type and, when considered per photosystem, were matched by reaction centre stoichiometry. Only by better understanding genotypic and phenotypic variability between Symbiodinium types can future studies account for the relative taxonomic and physiological contribution by Symbiodinium to coral acclimation.

  16. Nanoscale biophysics of the cell

    CERN Document Server

    Ashrafuzzaman, Mohammad

    2018-01-01

    Macroscopic cellular structures and functions are generally investigated using biological and biochemical approaches. But these methods are no longer adequate when one needs to penetrate deep into the small-scale structures and understand their functions. The cell is found to hold various physical structures, molecular machines, and processes that require physical and mathematical approaches to understand and indeed manipulate them. Disorders in general cellular compartments, perturbations in single molecular structures, drug distribution therein, and target specific drug-binding, etc. are mostly physical phenomena. This book will show how biophysics has revolutionized our way of addressing the science and technology of nanoscale structures of cells, and also describes the potential for manipulating the events that occur in them.

  17. Quantum Nanobiology and Biophysical Chemistry

    DEFF Research Database (Denmark)

    2013-01-01

    An introduction was provided in the first issue by way of an Editorial to this special two issue volume of Current Physical Chemistry – “Quantum Nanobiology and Biophysical Chemistry” [1]. The Guest Editors would like to thank all the authors and referees who have contributed to this second issue....... Wu et al. use density functional theory to explore the use of Ni/Fe bimetallic nanotechnology in the bioremediation of decabromo-diphenyl esters. Araújo-Chaves et al. explore the binding and reactivity of Mn(III) porphyrins in the membrane mimetic setting of model liposomal systems. Claussen et al....... demonstrate extremely low detection performance of acyl-homoserine lactone in a biologically relevant system using surface enhanced Raman spectroscopy. Sugihara and Bondar evaluate the influence of methyl-groups and the protein environment on retinal geometries in rhodopsin and bacteriorhodopsin, two...

  18. Low temperature experiments in radiation biophysics

    International Nuclear Information System (INIS)

    Moan, J.

    1977-01-01

    The reasons for performing experiments in radiation biophysics at low temperatures, whereby electron spectra may be studied, are explained. The phenomenon of phosphorescence spectra observed in frozen aqueous solutions of tryptophan and adenosine is also described. Free radicals play an important part in biological radiation effects and may be studied by ESR spectroscopy. An ESR spectrum of T 1 bacteriophages irradiated dry at 130K is illustrated and discussed. Hydrogen atoms, which give lines on the spectrum, are believed to be those radiation products causing most biological damage in a dry system. Low temperature experiments are of great help in explaining the significance of direct and indirect effects. This is illustrated for the case of trypsin. (JIW)

  19. Biophysical analysis of the acute toxicity of radiotherapy in Hodgkin's lymphoma-a comparison between extended field and involved field radiotherapy based on the data of the German Hodgkin Study Group

    International Nuclear Information System (INIS)

    Eich, Hans Theodor; Haverkamp, Uwe; Engert, Andreas; Kocher, Martin; Skripnitchenko, Roman; Brillant, Corinne; Sehlen, Susanne; Duehmke, Eckhart; Diehl, Volker; Mueller, Rolf-Peter

    2005-01-01

    Purpose: To determine biophysical parameters from the complication probability data during and after radiotherapy of Hodgkin's lymphoma (HL), based on the number of gastrointestinal side effects that were found in the multicenter HD8 trial of the German Hodgkin Lymphoma Study Group. Methods and Materials: Between 1993 and 1998, 1204 patients with newly diagnosed, histology-proven HL in clinical Stages I/IIA/IIB with defined risk factors and stage IIIA without risk factors were enrolled into the multicenter HD8 study. Patients were randomized to receive two cycles of COPP (cyclophosphamide, vincristine, procarbazine, prednisone) alternating with two cycles of ABVD (doxorubicin, bleomycin, vinblastine, dacarbazine) followed by radiotherapy (RT) of 30 Gy extended field plus 10 Gy to bulky disease (Arm A) or 30 Gy involved field plus 10 Gy to bulky disease (Arm B). For 910 patients, the rates of acute gastrointestinal side effects during and after RT could be determined. Comparison showed differences between Arms A and B (Grade 1-2: 16.6 vs. 3.9; Grade 3-4: 0.9 vs. 0.2; p 3 ), we determined the normal tissue complication probability (NTCP) (V, D, m, n, TD 50 ), the biophysical parameter TD 50 , and n (volume dependent) in such a manner that the observed NTCP in Arm A in cases of supradiaphragmatic involvement only and in cases of infradiaphragmatic involvement correlated with the calculated values. Results: Of 1,204 patients randomized, 1,064 patients were informative for the comparison of study arms. The median observation time was 54 months. The overall survival for all eligible patients was 91%, and freedom from treatment failure was 83%. Survival rates at 5 years after start of RT revealed no differences in terms of freedom from treatment failure (85.8% in Arm A, 84.2% in Arm B) and overall survival (90.8% and 92.4%). There were also no differences between the two arms in terms of complete remission, progressive disease, relapse, death, and secondary neoplasias. In

  20. Temporal measurement and analysis of high-resolution spectral signatures of plants and relationships to biophysical characteristics

    Science.gov (United States)

    Bostater, Charles R., Jr.; Rebbman, Jan; Hall, Carlton; Provancha, Mark; Vieglais, David

    1995-11-01

    Measurements of temporal reflectance signatures as a function of growing season for sand live oak (Quercus geminata), myrtle oak (Q. myrtifolia, and saw palmetto (Serenoa repens) were collected during a two year study period. Canopy level spectral reflectance signatures, as a function of 252 channels between 368 and 1115 nm, were collected using near nadir viewing geometry and a consistent sun illumination angle. Leaf level reflectance measurements were made in the laboratory using a halogen light source and an environmental optics chamber with a barium sulfate reflectance coating. Spectral measurements were related to several biophysical measurements utilizing optimal passive ambient correlation spectroscopy (OPACS) technique. Biophysical parameters included percent moisture, water potential (MPa), total chlorophyll, and total Kjeldahl nitrogen. Quantitative data processing techniques were used to determine optimal bands based on the utilization of a second order derivative or inflection estimator. An optical cleanup procedure was then employed that computes the double inflection ratio (DIR) spectra for all possible three band combinations normalized to the previously computed optimal bands. These results demonstrate a unique approach to the analysis of high spectral resolution reflectance signatures for estimation of several biophysical measures of plants at the leaf and canopy level from optimally selected bands or bandwidths.

  1. A Unique Automation Platform for Measuring Low Level Radioactivity in Metabolite Identification Studies

    Science.gov (United States)

    Krauser, Joel; Walles, Markus; Wolf, Thierry; Graf, Daniel; Swart, Piet

    2012-01-01

    Generation and interpretation of biotransformation data on drugs, i.e. identification of physiologically relevant metabolites, defining metabolic pathways and elucidation of metabolite structures, have become increasingly important to the drug development process. Profiling using 14C or 3H radiolabel is defined as the chromatographic separation and quantification of drug-related material in a given biological sample derived from an in vitro, preclinical in vivo or clinical study. Metabolite profiling is a very time intensive activity, particularly for preclinical in vivo or clinical studies which have defined limitations on radiation burden and exposure levels. A clear gap exists for certain studies which do not require specialized high volume automation technologies, yet these studies would still clearly benefit from automation. Use of radiolabeled compounds in preclinical and clinical ADME studies, specifically for metabolite profiling and identification are a very good example. The current lack of automation for measuring low level radioactivity in metabolite profiling requires substantial capacity, personal attention and resources from laboratory scientists. To help address these challenges and improve efficiency, we have innovated, developed and implemented a novel and flexible automation platform that integrates a robotic plate handling platform, HPLC or UPLC system, mass spectrometer and an automated fraction collector. PMID:22723932

  2. A unique automation platform for measuring low level radioactivity in metabolite identification studies.

    Directory of Open Access Journals (Sweden)

    Joel Krauser

    Full Text Available Generation and interpretation of biotransformation data on drugs, i.e. identification of physiologically relevant metabolites, defining metabolic pathways and elucidation of metabolite structures, have become increasingly important to the drug development process. Profiling using (14C or (3H radiolabel is defined as the chromatographic separation and quantification of drug-related material in a given biological sample derived from an in vitro, preclinical in vivo or clinical study. Metabolite profiling is a very time intensive activity, particularly for preclinical in vivo or clinical studies which have defined limitations on radiation burden and exposure levels. A clear gap exists for certain studies which do not require specialized high volume automation technologies, yet these studies would still clearly benefit from automation. Use of radiolabeled compounds in preclinical and clinical ADME studies, specifically for metabolite profiling and identification are a very good example. The current lack of automation for measuring low level radioactivity in metabolite profiling requires substantial capacity, personal attention and resources from laboratory scientists. To help address these challenges and improve efficiency, we have innovated, developed and implemented a novel and flexible automation platform that integrates a robotic plate handling platform, HPLC or UPLC system, mass spectrometer and an automated fraction collector.

  3. Clinical Study of Bacillus coagulans Unique IS-2 (ATCC PTA-11748) in the Treatment of Patients with Bacterial Vaginosis.

    Science.gov (United States)

    Ratna Sudha, M; Yelikar, Kanan A; Deshpande, Sonali

    2012-09-01

    Bacterial vaginosis (BV) is the most prevalent vaginal infection worldwide and is characterized by reduction of native lactobacilli. Antimicrobial therapy used to cure the disease is often found to be ineffective. We postulate that Bacillus coagulans Unique IS-2 (Unique Biotech Limited, India) might provide an appendage to antimicrobial treatment and improve curing rate. In the present study 40 Indian women diagnosed with BV by the presence of symptoms including white discharge, pH greater than 4.7, burning micturation, itching, soreness and redness at vulva. The subjects were divided in 2 groups probiotic (n = 20) and control (n = 20) based on age (control group, 33 ± 3 years and probiotic group, 32.5 ± 3 years), history of previous vaginosis (control group, 75% or 15/20 and probiotic group, 75% or 15/20) and severity of current vaginosis infection (burning micturation and itching, 35% in each group). Probiotic group subjects were assigned to receive a dose of antibiotic therapy [Ofloxacin-Ornidazole with strength of 200-500 mg per capsule/day for 5 days along with vaginal peccaries (co-kimaxazol) for 3 days] simultaneously with two probiotic capsules (10(9) CFUs of Bacillus coagulans Unique IS-2 per capsule). The control group received only antibiotic therapy. At the end of the treatment the 80% of probiotic group subjects showed significant positive response as revealed by reduction of vaginosis symptoms compared to the control group which exhibited reduction in 45% subjects only. Thus, the results of present study indicate that strain Bacillus coagulans Unique IS-2 can provide benefits to women being treated with antibiotics to cure an infectious condition.

  4. No Need to Wait for Superman: A Case Study of One Unique High School

    Science.gov (United States)

    Ratcliff, N. J.; Jones, C. R.; Costner, R. H.; Knight, C.; Disney, G.; Savage-Davis, E.; Sheehan, H.; Hunt, G. H.

    2012-01-01

    Based on a theoretical model developed by Schlechty, this case study focuses on a small high school, located on a college campus and designed to address the educational needs of gifted 9th- through 12th-grade students. Eight teachers who taught 9th- and 12th-grade classes and their 60 students were observed. Each teacher was observed during six…

  5. Seminal Fluid Analysis And Biophysical Profile: Findings And ...

    African Journals Online (AJOL)

    Seminal Fluid Analysis And Biophysical Profile: Findings And Relevance In Infertile Males In Ilorin, Nigeria. EK Oghagbon, AAG Jimoh, SA Adebisi. Abstract. To determine if there was a bearing of body mass index (BMI) on male infertility, a cross-sectional study of males of infertile couples, attending our infertility clinic was ...

  6. Study unique artistic lopburi province for design brass tea set of bantahkrayang community

    Science.gov (United States)

    Pliansiri, V.; Seviset, S.

    2017-07-01

    The objectives of this study were as follows: 1) to study the production process of handcrafted Brass Tea Set; and 2) to design and develop the handcrafted of Brass Tea Set. The process of design was started by mutual analytical processes and conceptual framework for product design, Quality Function Deployment, Theory of Inventive Problem Solving, Principles of Craft Design, and Principle of Reverse Engineering. The experts in field of both Industrial Product Design and Brass Handicraft Product, have evaluated the Brass Tea Set design and created prototype of Brass tea set by the sample of consumers who have ever bought the Brass Tea Set of Bantahkrayang Community on this research. The statistics methods used were percentage, mean ({{{\\overline X}} = }) and standard deviation (S.D.) 3. To assess consumer satisfaction toward of handcrafted Brass tea set was at the high level.

  7. Unique roles of SPET brain imaging in clinical and research studies

    International Nuclear Information System (INIS)

    Seibyl, J.; Jennings, D.; Tabamo, R.; Marek, K.

    2005-01-01

    The increasing availability of PET imaging in Nuclear medicine expands the armamentarium of clinical and research tools for improving diagnosis and treatment of neuropsychiatric disorders. Nonetheless, the role of SPEC imaging remains critical to both research and clinical practice. The development of rational strategies for guiding the selection of imaging modalities flows from primarily the nature of the clinical or research question and the availability of appropriate radiopharmaceuticals. There has been extensive SPECT and PET work in Parkinson's disease (PD) which highlights the value of both these scintigraphic modalities. Three main areas of interest in PD include imaging for improving diagnostic accuracy, for monitoring the progression of disease, and for assessing the therapeutic efficacy of drugs with neoroprotective potential. The demands of the clinical or research question posed to imaging dictates the selection of radiotracer and imaging modality. Diagnosis of PD represents the easiest challenge with many imaging bio markers showing high sensitivity for detecting abnormal reduction of dopaminergic function based on qualitative review of images. On the other hand, using imaging to evaluate treatments which purportedly slow the rate of disease progression, indicated by the reduction of the rate of loss in a quantitative imaging signal in patients studied over time, represents the most rigorous requirement of the imaging measure. In each of these applications presynaptic markers of dopaminergic function using SPECT and PET have been extremely valuable. Review of neuroimaging studies of PD provides a useful example of optimized approaches to clinical and research studies in neuropsychiatric disorders

  8. An allosteric gating model recapitulates the biophysical properties of IK,L expressed in mouse vestibular type I hair cells.

    Science.gov (United States)

    Spaiardi, Paolo; Tavazzani, Elisa; Manca, Marco; Milesi, Veronica; Russo, Giancarlo; Prigioni, Ivo; Marcotti, Walter; Magistretti, Jacopo; Masetto, Sergio

    2017-11-01

    Vestibular type I and type II hair cells and their afferent fibres send information to the brain regarding the position and movement of the head. The characteristic feature of type I hair cells is the expression of a low-voltage-activated outward rectifying K + current, I K,L , whose biophysical properties and molecular identity are still largely unknown. In vitro, the afferent nerve calyx surrounding type I hair cells causes unstable intercellular K + concentrations, altering the biophysical properties of I K,L . We found that in the absence of the calyx, I K,L in type I hair cells exhibited unique biophysical activation properties, which were faithfully reproduced by an allosteric channel gating scheme. These results form the basis for a molecular and pharmacological identification of I K,L . Type I and type II hair cells are the sensory receptors of the mammalian vestibular epithelia. Type I hair cells are characterized by their basolateral membrane being enveloped in a single large afferent nerve terminal, named the calyx, and by the expression of a low-voltage-activated outward rectifying K + current, I K,L . The biophysical properties and molecular profile of I K,L are still largely unknown. By using the patch-clamp whole-cell technique, we examined the voltage- and time-dependent properties of I K,L in type I hair cells of the mouse semicircular canal. We found that the biophysical properties of I K,L were affected by an unstable K + equilibrium potential (V eq K + ). Both the outward and inward K + currents shifted V eq K + consistent with K + accumulation or depletion, respectively, in the extracellular space, which we attributed to a residual calyx attached to the basolateral membrane of the hair cells. We therefore optimized the hair cell dissociation protocol in order to isolate mature type I hair cells without their calyx. In these cells, the uncontaminated I K,L showed a half-activation at -79.6 mV and a steep voltage dependence (2.8 mV). I K,L also

  9. Biophysics of NASA radiation quality factors

    International Nuclear Information System (INIS)

    Cucinotta, Francis A.

    2015-01-01

    NASA has implemented new radiation quality factors (QFs) for projecting cancer risks from space radiation exposures to astronauts. The NASA QFs are based on particle track structure concepts with parameters derived from available radiobiology data, and NASA introduces distinct QFs for solid cancer and leukaemia risk estimates. The NASA model was reviewed by the US National Research Council and approved for use by NASA for risk assessment for International Space Station missions and trade studies of future exploration missions to Mars and other destinations. A key feature of the NASA QFs is to represent the uncertainty in the QF assessments and evaluate the importance of the QF uncertainty to overall uncertainties in cancer risk projections. In this article, the biophysical basis for the probability distribution functions representing QF uncertainties was reviewed, and approaches needed to reduce uncertainties were discussed. (author)

  10. Biophysics of NASA radiation quality factors.

    Science.gov (United States)

    Cucinotta, Francis A

    2015-09-01

    NASA has implemented new radiation quality factors (QFs) for projecting cancer risks from space radiation exposures to astronauts. The NASA QFs are based on particle track structure concepts with parameters derived from available radiobiology data, and NASA introduces distinct QFs for solid cancer and leukaemia risk estimates. The NASA model was reviewed by the US National Research Council and approved for use by NASA for risk assessment for International Space Station missions and trade studies of future exploration missions to Mars and other destinations. A key feature of the NASA QFs is to represent the uncertainty in the QF assessments and evaluate the importance of the QF uncertainty to overall uncertainties in cancer risk projections. In this article, the biophysical basis for the probability distribution functions representing QF uncertainties was reviewed, and approaches needed to reduce uncertainties were discussed. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Interaction studies in Japanese primatology: their scope, uniqueness, and the future.

    Science.gov (United States)

    Nakamura, Michio

    2009-04-01

    This paper aims to review social interaction studies in Japanese primatology, in order to introduce their utility into the current framework of primatology and their potential for understanding primate sociality. In the first part, I introduce some of the achievements in the field of Japanese primatology. It is a well-known fact that Japanese primatology, in its initial phases, strongly focused on society and sociality in nonhuman primates with respect to human society and sociality. Although Jun'ichiro Itani's theory on the evolution of social structure significantly influenced some of the Japanese primatologists, it had a comparatively minor impact on the West. As Itani himself admitted, he only treated the so-called "hardware" of society and did not deal with its "software" comprehensively, although he understood its importance and even provided some insightful ideas. In the latter part of the paper, I introduce some of the studies that directly dealt with the social interactions of primates and that were written mostly in Japanese. As compared to works in standard primatology, many of these papers were descriptive. This is because interaction cannot be decomposed into individual behaviors; thus, we have to focus on interaction itself. Finally, I argue that we need to explore the methodology for describing the lively and dynamic aspects of primate sociality.

  12. Modeling time-series count data: the unique challenges facing political communication studies.

    Science.gov (United States)

    Fogarty, Brian J; Monogan, James E

    2014-05-01

    This paper demonstrates the importance of proper model specification when analyzing time-series count data in political communication studies. It is common for scholars of media and politics to investigate counts of coverage of an issue as it evolves over time. Many scholars rightly consider the issues of time dependence and dynamic causality to be the most important when crafting a model. However, to ignore the count features of the outcome variable overlooks an important feature of the data. This is particularly the case when modeling data with a low number of counts. In this paper, we argue that the Poisson autoregressive model (Brandt and Williams, 2001) accurately meets the needs of many media studies. We replicate the analyses of Flemming et al. (1997), Peake and Eshbaugh-Soha (2008), and Ura (2009) and demonstrate that models missing some of the assumptions of the Poisson autoregressive model often yield invalid inferences. We also demonstrate that the effect of any of these models can be illustrated dynamically with estimates of uncertainty through a simulation procedure. The paper concludes with implications of these findings for the practical researcher. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Specific Preschool Executive Functions Predict Unique Aspects of Mathematics Development: A 3-Year Longitudinal Study.

    Science.gov (United States)

    Simanowski, Stefanie; Krajewski, Kristin

    2017-08-10

    This study assessed the extent to which executive functions (EF), according to their factor structure in 5-year-olds (N = 244), influenced early quantity-number competencies, arithmetic fluency, and mathematics school achievement throughout first and second grades. A confirmatory factor analysis resulted in updating as a first, and inhibition and shifting as a combined second factor. In the structural equation model, updating significantly affected knowledge of the number word sequence, suggesting a facilitatory effect on basic encoding processes in numerical materials that can be learnt purely by rote. Shifting and inhibition significantly influenced quantity to number word linkages, indicating that these processes promote developing a profound understanding of numbers. These results show the supportive role of specific EF for specific aspects of a numerical foundation. © 2017 The Authors. Child Development © 2017 Society for Research in Child Development, Inc.

  14. Unique electron transport in ultrathin black phosphorene: Ab-initio study

    International Nuclear Information System (INIS)

    Srivastava, Anurag; Khan, Md. Shahzad; Gupta, Sanjeev Kumar; Pandey, Ravindra

    2015-01-01

    Graphical abstract: Charge transfer configuration for NH 3 and NO 2 adsorbed 2D black-phospherene. - Highlights: • Ultrathin black phosphorene has been investigated, in terms of its optical and ballistic quantum transport properties. • The device performance subtaintially increases in armchair direction of black phosphorene. • Maximum reflectivity (43%) is observed at 1.85 eV (670 nm) and the reflective spectrum dispersed in visible range. • At low bias semiconducting and higher bias ohmic nature pointing black phospherene a promising material for high perfomrance device applications. • For NO 2 gas, this quasi 2D-black phosphorene surface shows strong affinity followed with substantial charge tranfer. - Abstract: We present first principle structural, electronic, optical and transport analysis of black phosphorene a 2D layered material. The studied configuration shows semiconducting nature and the states around the Fermi energy are mainly contributed by the p-orbitals of atoms. In optical properties, the reflective spectrum is approximately dispersed in visible range suggesting that this 2D-nanostructure can be considered as shielding for visible region. Due to the anisotropy of the electronic structure of black phosphorene, the device performance is subtaintially preferable in armchair direction. Zero-bias transmission shows no conductance channel near Fermi level but in far region prominent spectra for the same is observed for black-phospherene. The studied configurations show non-linear current–voltage (I–V) characteristics. The sensitivity for NH 3 and NO 2 gas molecule is explored using electronic and current–voltage (I–V) characteristics. Investigations show that the black phosphorene has strong affinity for electron seeking NO 2 molecule, thus providing an opportunity for its sensor application.

  15. Unique electron transport in ultrathin black phosphorene: Ab-initio study

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Anurag, E-mail: profanurag@gmail.com [Advanced Materials Research Group, Computational Nanoscience & Technology Lab, ABV-Indian Institute of Information Technology and Management, Gwalior (M.P.) 474010 India (India); Khan, Md. Shahzad [Advanced Materials Research Group, Computational Nanoscience & Technology Lab, ABV-Indian Institute of Information Technology and Management, Gwalior (M.P.) 474010 India (India); Gupta, Sanjeev Kumar [Department of Physics, St. Xavier' s College, Ahmedabad 380009 (India); Pandey, Ravindra [Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931 (United States)

    2015-11-30

    Graphical abstract: Charge transfer configuration for NH{sub 3} and NO{sub 2} adsorbed 2D black-phospherene. - Highlights: • Ultrathin black phosphorene has been investigated, in terms of its optical and ballistic quantum transport properties. • The device performance subtaintially increases in armchair direction of black phosphorene. • Maximum reflectivity (43%) is observed at 1.85 eV (670 nm) and the reflective spectrum dispersed in visible range. • At low bias semiconducting and higher bias ohmic nature pointing black phospherene a promising material for high perfomrance device applications. • For NO{sub 2} gas, this quasi 2D-black phosphorene surface shows strong affinity followed with substantial charge tranfer. - Abstract: We present first principle structural, electronic, optical and transport analysis of black phosphorene a 2D layered material. The studied configuration shows semiconducting nature and the states around the Fermi energy are mainly contributed by the p-orbitals of atoms. In optical properties, the reflective spectrum is approximately dispersed in visible range suggesting that this 2D-nanostructure can be considered as shielding for visible region. Due to the anisotropy of the electronic structure of black phosphorene, the device performance is subtaintially preferable in armchair direction. Zero-bias transmission shows no conductance channel near Fermi level but in far region prominent spectra for the same is observed for black-phospherene. The studied configurations show non-linear current–voltage (I–V) characteristics. The sensitivity for NH{sub 3} and NO{sub 2} gas molecule is explored using electronic and current–voltage (I–V) characteristics. Investigations show that the black phosphorene has strong affinity for electron seeking NO{sub 2} molecule, thus providing an opportunity for its sensor application.

  16. Surmounting the unique challenges in health disparities education: a multi-institution qualitative study.

    Science.gov (United States)

    Carter-Pokras, Olivia; Bereknyei, Sylvia; Lie, Desiree; Braddock, Clarence H

    2010-05-01

    The National Consortium for Multicultural Education for Health Professionals (Consortium) comprises educators representing 18 US medical schools, funded by the National Institutes of Health. Collective lessons learned from curriculum implementation by principal investigators (PIs) have the potential to guide similar educational endeavors. Describe Consortium PI's self-reported challenges with curricular development, solutions and their new curricular products. Information was collected from PIs over 2 months using a 53-question structured three-part questionnaire. The questionnaire addressed PI demographics, curriculum implementation challenges and solutions, and newly created curricular products. Study participants were 18 Consortium PIs. Descriptive analysis was used for quantitative data. Narrative responses were analyzed and interpreted using qualitative thematic coding. Response rate was 100%. Common barriers and challenges identified by PIs were: finding administrative and leadership support, sustaining the momentum, continued funding, finding curricular space, accessing and engaging communities, and lack of education research methodology skills. Solutions identified included engaging stakeholders, project-sharing across schools, advocacy and active participation in committees and community, and seeking sustainable funding. All Consortium PIs reported new curricular products and extensive dissemination efforts outside their own institutions. The Consortium model has added benefits for curricular innovation and dissemination for cultural competence education to address health disparities. Lessons learned may be applicable to other educational innovation efforts.

  17. Living with pulmonary hypertension: unique insights from an international ethnographic study.

    Science.gov (United States)

    Kingman, Martha; Hinzmann, Barbara; Sweet, Oliver; Vachiéry, Jean-Luc

    2014-05-16

    To better understand the patient's perspective of pulmonary hypertension (PH), including the impact of living with PH, disease management and treatment. This qualitative ethnographic study collected observational video footage, supplemented by field notes and patient diaries to assess the impact of PH on the patient's life. Patients were observed and filmed in their home for up to 6 h, capturing the environment, interactions and activities of everyday life. Patients with pulmonary arterial hypertension (PAH) or chronic thromboembolic PH who were receiving PAH-specific medication were recruited through healthcare professionals (HCPs) and patient associations in seven countries across four continents. Sampling was purposive and subgroup analysis was not intended. Overall, 39 patients with PH were enrolled. Many patients had a poor understanding of PH and found their 'invisible' disease difficult to explain to others. An important finding was the secrecy surrounding PH. Feelings of insecurity and isolation were regularly reported, and many patients admitted to hiding their symptoms. The marked improvement in symptoms after therapy initiation made assessment of disease progression more difficult as patients compared their quality of life (QoL) against pretreatment levels. Extensive planning and adherence to daily routines were required in patients' everyday life. Ethnography was used for the first time, in several countries, to evaluate the patient's perception of living with PH. This approach revealed key findings that would not typically be uncovered using other qualitative techniques, including the secrecy surrounding PH, the difficulties in describing the disease and the challenges in assessing disease progression. A more tailored dissemination of information from HCPs and development of a simple and understandable PH definition may be beneficial in alleviating the secrecy reported by patients. A greater appreciation of how patients perceive their disease and Qo

  18. Towards a network of Urban Forest Eddy Covariance stations: a unique case study in Naples

    Science.gov (United States)

    Guidolotti, Gabriele; Pallozzi, Emanuele; Esposito, Raffaela; Mattioni, Michele; Calfapietra, Carlo

    2015-04-01

    Urban forests are by definition integrated in highly human-made areas, and interact with different components of our cities. Thanks to those interactions, urban forests provide to people and to the urban environment a number of ecosystem services, including the absorption of CO2 and air pollutants thus influencing the local air quality. Moreover, in urban areas a relevant role is played by the photochemical pollution which is strongly influenced by the interactions between volatile organic compounds (VOC) and nitrogen oxides (NOx). In several cities, a high percentage of VOC is of biogenic origin mainly emitted from the urban trees. Despite their importance, experimental sites monitoring fluxes of trace gases fluxes in urban forest ecosystems are still scarce. Here we show the preliminary results of an innovative experimental site located in the Royal Park of Capodimonte within the city of Naples (40°51'N-14°15'E, 130 m above sea level). The site is mainly characterised by Quercus ilex with some patches of Pinus pinea and equipped with an eddy-covariance tower measuring the exchange of CO2, H2O, N2O, CH4, O3, PM, VOCs and NOx using state-of-the art instrumentations; it is running since the end of 2014 and it is part of the large infrastructural I-AMICA project. We suggest that the experience gained with research networks such as Fluxnet and ICOS should be duplicated for urban forests. This is crucial for carbon as there is now the ambition to include urban forests in the carbon stocks accounting system. This is even more important to understand the difficult interactions between anthropogenic and biogenic sources that often have negative implications for urban air quality. Urban environment can thus become an extraordinary case study and a network of such kind of stations might represent an important strategy both from the scientific and the applicative point of view.

  19. Unique proteomic signature for radiation sensitive patients; a comparative study between normo-sensitive and radiation sensitive breast cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Skiöld, Sara [Center for Radiation Protection Research, Department of Molecular Biosciences, The Wernner-Gren Institute, Stockholm University, Stockholm (Sweden); Azimzadeh, Omid [Institute of Radiation Biology, German Research Center for Environmental Health, Helmholtz Zentrum München (Germany); Merl-Pham, Juliane [Research Unit Protein Science, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg (Germany); Naslund, Ingemar; Wersall, Peter; Lidbrink, Elisabet [Division of Radiotherapy, Radiumhemmet, Karolinska University Hospital, Stockholm (Sweden); Tapio, Soile [Institute of Radiation Biology, German Research Center for Environmental Health, Helmholtz Zentrum München (Germany); Harms-Ringdahl, Mats [Center for Radiation Protection Research, Department of Molecular Biosciences, The Wernner-Gren Institute, Stockholm University, Stockholm (Sweden); Haghdoost, Siamak, E-mail: Siamak.Haghdoost@su.se [Center for Radiation Protection Research, Department of Molecular Biosciences, The Wernner-Gren Institute, Stockholm University, Stockholm (Sweden)

    2015-06-15

    Highlights: • The unique protein expression profiles were found that separate radiosensitive from normal sensitive breast cancer patients. • The oxidative stress response, coagulation properties and acute phase response suggested to be the hallmarks of radiation sensitivity. - Abstract: Radiation therapy is a cornerstone of modern cancer treatment. Understanding the mechanisms behind normal tissue sensitivity is essential in order to minimize adverse side effects and yet to prevent local cancer reoccurrence. The aim of this study was to identify biomarkers of radiation sensitivity to enable personalized cancer treatment. To investigate the mechanisms behind radiation sensitivity a pilot study was made where eight radiation-sensitive and nine normo-sensitive patients were selected from a cohort of 2914 breast cancer patients, based on acute tissue reactions after radiation therapy. Whole blood was sampled and irradiated in vitro with 0, 1, or 150 mGy followed by 3 h incubation at 37 °C. The leukocytes of the two groups were isolated, pooled and protein expression profiles were investigated using isotope-coded protein labeling method (ICPL). First, leukocytes from the in vitro irradiated whole blood from normo-sensitive and extremely sensitive patients were compared to the non-irradiated controls. To validate this first study a second ICPL analysis comparing only the non-irradiated samples was conducted. Both approaches showed unique proteomic signatures separating the two groups at the basal level and after doses of 1 and 150 mGy. Pathway analyses of both proteomic approaches suggest that oxidative stress response, coagulation properties and acute phase response are hallmarks of radiation sensitivity supporting our previous study on oxidative stress response. This investigation provides unique characteristics of radiation sensitivity essential for individualized radiation therapy.

  20. Unique proteomic signature for radiation sensitive patients; a comparative study between normo-sensitive and radiation sensitive breast cancer patients

    International Nuclear Information System (INIS)

    Skiöld, Sara; Azimzadeh, Omid; Merl-Pham, Juliane; Naslund, Ingemar; Wersall, Peter; Lidbrink, Elisabet; Tapio, Soile; Harms-Ringdahl, Mats; Haghdoost, Siamak

    2015-01-01

    Highlights: • The unique protein expression profiles were found that separate radiosensitive from normal sensitive breast cancer patients. • The oxidative stress response, coagulation properties and acute phase response suggested to be the hallmarks of radiation sensitivity. - Abstract: Radiation therapy is a cornerstone of modern cancer treatment. Understanding the mechanisms behind normal tissue sensitivity is essential in order to minimize adverse side effects and yet to prevent local cancer reoccurrence. The aim of this study was to identify biomarkers of radiation sensitivity to enable personalized cancer treatment. To investigate the mechanisms behind radiation sensitivity a pilot study was made where eight radiation-sensitive and nine normo-sensitive patients were selected from a cohort of 2914 breast cancer patients, based on acute tissue reactions after radiation therapy. Whole blood was sampled and irradiated in vitro with 0, 1, or 150 mGy followed by 3 h incubation at 37 °C. The leukocytes of the two groups were isolated, pooled and protein expression profiles were investigated using isotope-coded protein labeling method (ICPL). First, leukocytes from the in vitro irradiated whole blood from normo-sensitive and extremely sensitive patients were compared to the non-irradiated controls. To validate this first study a second ICPL analysis comparing only the non-irradiated samples was conducted. Both approaches showed unique proteomic signatures separating the two groups at the basal level and after doses of 1 and 150 mGy. Pathway analyses of both proteomic approaches suggest that oxidative stress response, coagulation properties and acute phase response are hallmarks of radiation sensitivity supporting our previous study on oxidative stress response. This investigation provides unique characteristics of radiation sensitivity essential for individualized radiation therapy

  1. The conformational stability and biophysical properties of the eukaryotic thioredoxins of Pisum sativum are not family-conserved.

    Directory of Open Access Journals (Sweden)

    David Aguado-Llera

    2011-02-01

    Full Text Available Thioredoxins (TRXs are ubiquitous proteins involved in redox processes. About forty genes encode TRX or TRX-related proteins in plants, grouped in different families according to their subcellular localization. For instance, the h-type TRXs are located in cytoplasm or mitochondria, whereas f-type TRXs have a plastidial origin, although both types of proteins have an eukaryotic origin as opposed to other TRXs. Herein, we study the conformational and the biophysical features of TRXh1, TRXh2 and TRXf from Pisum sativum. The modelled structures of the three proteins show the well-known TRX fold. While sharing similar pH-denaturations features, the chemical and thermal stabilities are different, being PsTRXh1 (Pisum sativum thioredoxin h1 the most stable isoform; moreover, the three proteins follow a three-state denaturation model, during the chemical-denaturations. These differences in the thermal- and chemical-denaturations result from changes, in a broad sense, of the several ASAs (accessible surface areas of the proteins. Thus, although a strong relationship can be found between the primary amino acid sequence and the structure among TRXs, that between the residue sequence and the conformational stability and biophysical properties is not. We discuss how these differences in the biophysical properties of TRXs determine their unique functions in pea, and we show how residues involved in the biophysical features described (pH-titrations, dimerizations and chemical-denaturations belong to regions involved in interaction with other proteins. Our results suggest that the sequence demands of protein-protein function are relatively rigid, with different protein-binding pockets (some in common for each of the three proteins, but the demands of structure and conformational stability per se (as long as there is a maintained core, are less so.

  2. Observations from Space: A Unique Vantage Point for the Study of the Environment and Possible Associations with Disease Occurrence

    Science.gov (United States)

    Estes, S.; Haynes, J.; Hamdan, M. Al; Estes, M.; Sprigg, W.

    2009-01-01

    Health providers/researchers need environmental data to study and understand the geographic, environmental, and meteorological differences in disease. Satellite remote sensing of the environment offers a unique vantage point that can fill in the gaps of environmental, spatial, and temporal data for tracking disease. The field of geospatial health remains in its infancy, and this program will demonstrate the need for collaborations between multi-disciplinary research groups to develop the full potential. NASA will discuss the Public Health Projects developed to work with Grantees and the CDC while providing them with information on opportunities for future collaborations with NASA for future research.

  3. NHash: Randomized N-Gram Hashing for Distributed Generation of Validatable Unique Study Identifiers in Multicenter Research.

    Science.gov (United States)

    Zhang, Guo-Qiang; Tao, Shiqiang; Xing, Guangming; Mozes, Jeno; Zonjy, Bilal; Lhatoo, Samden D; Cui, Licong

    2015-11-10

    A unique study identifier serves as a key for linking research data about a study subject without revealing protected health information in the identifier. While sufficient for single-site and limited-scale studies, the use of common unique study identifiers has several drawbacks for large multicenter studies, where thousands of research participants may be recruited from multiple sites. An important property of study identifiers is error tolerance (or validatable), in that inadvertent editing mistakes during their transmission and use will most likely result in invalid study identifiers. This paper introduces a novel method called "Randomized N-gram Hashing (NHash)," for generating unique study identifiers in a distributed and validatable fashion, in multicenter research. NHash has a unique set of properties: (1) it is a pseudonym serving the purpose of linking research data about a study participant for research purposes; (2) it can be generated automatically in a completely distributed fashion with virtually no risk for identifier collision; (3) it incorporates a set of cryptographic hash functions based on N-grams, with a combination of additional encryption techniques such as a shift cipher; (d) it is validatable (error tolerant) in the sense that inadvertent edit errors will mostly result in invalid identifiers. NHash consists of 2 phases. First, an intermediate string using randomized N-gram hashing is generated. This string consists of a collection of N-gram hashes f1, f2, ..., fk. The input for each function fi has 3 components: a random number r, an integer n, and input data m. The result, fi(r, n, m), is an n-gram of m with a starting position s, which is computed as (r mod |m|), where |m| represents the length of m. The output for Step 1 is the concatenation of the sequence f1(r1, n1, m1), f2(r2, n2, m2), ..., fk(rk, nk, mk). In the second phase, the intermediate string generated in Phase 1 is encrypted using techniques such as shift cipher. The result

  4. Effect of ambient light on the time needed to complete a fetal biophysical profile: A randomized controlled trial.

    Science.gov (United States)

    Said, Heather M; Gupta, Shweta; Vricella, Laura K; Wand, Katy; Nguyen, Thinh; Gross, Gilad

    2017-10-01

    The objective of this study is to determine whether ambient light serves as a fetal stimulus to decrease the amount of time needed to complete a biophysical profile. This is a randomized controlled trial of singleton gestations undergoing a biophysical profile. Patients were randomized to either ambient light or a darkened room. The primary outcome was the time needed to complete the biophysical profile. Secondary outcomes included total and individual component biophysical profile scores and scores less than 8. A subgroup analysis of different maternal body mass indices was also performed. 357 biophysical profile studies were analyzed. 182 studies were performed with ambient light and 175 were performed in a darkened room. There was no difference in the median time needed to complete the biophysical profile based on exposure to ambient light (6.1min in darkened room versus 6.6min with ambient light; P=0.73). No difference was found in total or individual component biophysical profile scores. Subgroup analysis by maternal body mass index did not demonstrate shorter study times with ambient light exposure in women who were normal weight, overweight or obese. Ambient light exposure did not decrease the time needed to complete the biophysical profile. There was no evidence that ambient light altered fetal behavior observed during the biophysical profile. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Evolution and Biophysics of the Escherichia coli lac Operon

    Science.gov (United States)

    Ray, J. Christian; Igoshin, Oleg; Quan, Selwyn; Monds, Russell; Cooper, Tim; Balázsi, Gábor

    2011-03-01

    To understand, predict, and control the evolution of living organisms, we consider biophysical effects and molecular network architectures. The lactose utilization system of E. coli is among the most well-studied molecular networks in biology, making it an ideal candidate for such studies. Simulations show how the genetic architecture of the wild-type operon attenuates large metabolic intermediate fluctuations that are predicted to occur in an equivalent system with the component genes on separate operons. Quantification of gene expression in the lac operon evolved in growth conditions containing constant lactose, alternating with glucose, or constant glucose, shows characteristic gene expression patterns depending on conditions. We are simulating these conditions to show context-dependent biophysical sources and costs of different lac operon architectures.

  6. Elucidating the molecular mechanisms underlying cellular response to biophysical cues using synthetic biology approaches

    NARCIS (Netherlands)

    Denning, Denise; Roos, Wouter H

    2016-01-01

    The use of synthetic surfaces and materials to influence and study cell behavior has vastly progressed our understanding of the underlying molecular mechanisms involved in cellular response to physicochemical and biophysical cues. Reconstituting cytoskeletal proteins and interfacing them with a

  7. Raman spectroscopy reveals biophysical markers in skin cancer surgical margins

    Science.gov (United States)

    Feng, Xu; Moy, Austin J.; Nguyen, Hieu T. M.; Zhang, Yao; Fox, Matthew C.; Sebastian, Katherine R.; Reichenberg, Jason S.; Markey, Mia K.; Tunnell, James W.

    2018-02-01

    The recurrence rate of nonmelanoma skin cancer is highly related to the residual tumor after surgery. Although tissueconserving surgery, such as Mohs surgery, is a standard method for the treatment of nonmelanoma skin cancer, they are limited by lengthy and costly frozen-section histopathology. Raman spectroscopy (RS) is proving to be an objective, sensitive, and non-destructive tool for detecting skin cancer. Previous studies demonstrated the high sensitivity of RS in detecting tumor margins of basal cell carcinoma (BCC). However, those studies rely on statistical classification models and do not elucidate the skin biophysical composition. As a result, we aim to discover the biophysical differences between BCC and primary normal skin structures (including epidermis, dermis, hair follicle, sebaceous gland and fat). We obtained freshly resected ex vivo skin samples from fresh resection specimens from 14 patients undergoing Mohs surgery. Raman images were acquired from regions containing one or more structures using a custom built 830nm confocal Raman microscope. The spectra were grouped using K-means clustering analysis and annotated as either BCC or each of the five normal structures by comparing with the histopathology image of the serial section. The spectral data were then fit by a previously established biophysical model with eight primary skin constituents. Our results show that BCC has significant differences in the fit coefficients of nucleus, collagen, triolein, keratin and elastin compared with normal structures. Our study reveals RS has the potential to detect biophysical changes in resection margins, and supports the development of diagnostic algorithms for future intraoperative implementation of RS during Mohs surgery.

  8. Biophysically realistic minimal model of dopamine neuron

    Science.gov (United States)

    Oprisan, Sorinel

    2008-03-01

    We proposed and studied a new biophysically relevant computational model of dopaminergic neurons. Midbrain dopamine neurons are involved in motivation and the control of movement, and have been implicated in various pathologies such as Parkinson's disease, schizophrenia, and drug abuse. The model we developed is a single-compartment Hodgkin-Huxley (HH)-type parallel conductance membrane model. The model captures the essential mechanisms underlying the slow oscillatory potentials and plateau potential oscillations. The main currents involved are: 1) a voltage-dependent fast calcium current, 2) a small conductance potassium current that is modulated by the cytosolic concentration of calcium, and 3) a slow voltage-activated potassium current. We developed multidimensional bifurcation diagrams and extracted the effective domains of sustained oscillations. The model includes a calcium balance due to the fundamental importance of calcium influx as proved by simultaneous electrophysiological and calcium imaging procedure. Although there are significant evidences to suggest a partially electrogenic calcium pump, all previous models considered only elecrtogenic pumps. We investigated the effect of the electrogenic calcium pump on the bifurcation diagram of the model and compared our findings against the experimental results.

  9. Achievements and challenges in structural bioinformatics and computational biophysics.

    Science.gov (United States)

    Samish, Ilan; Bourne, Philip E; Najmanovich, Rafael J

    2015-01-01

    The field of structural bioinformatics and computational biophysics has undergone a revolution in the last 10 years. Developments that are captured annually through the 3DSIG meeting, upon which this article reflects. An increase in the accessible data, computational resources and methodology has resulted in an increase in the size and resolution of studied systems and the complexity of the questions amenable to research. Concomitantly, the parameterization and efficiency of the methods have markedly improved along with their cross-validation with other computational and experimental results. The field exhibits an ever-increasing integration with biochemistry, biophysics and other disciplines. In this article, we discuss recent achievements along with current challenges within the field. © The Author 2014. Published by Oxford University Press.

  10. Biophysical Evaluation of Food Decontamination Effects on Tissue and Bacteria

    DEFF Research Database (Denmark)

    Andersen, Ann Zahle; Duelund, Lars; Brewer, Jonathan

    2011-01-01

    Traditionally, the effects and efficiency of food surface decontamination processes, such as chlorine washing, radiation, or heating, have been evaluated by sensoric analysis and colony-forming unit (CFU) counts of surface swabs or carcass rinses. These methods suffice when determining probable...... consumer responses or meeting legislative contamination limits. However, in the often very costly, optimization process of a new method, more quantitative and unbiased results are invaluable. In this study, we employed a biophysical approach for the investigation of qualitative and quantitative changes...... that there are no contradictions between data obtained by either approach. However, the biophysical methods draw a much more nuanced picture of the effects and efficiency of the investigated decontamination method, revealing, e.g., an exponential dose/response relationship between SonoSteam® treatment time and changes in collagen...

  11. Complete study of the existence and uniqueness of solutions for semilinear elliptic equations involving measures concentrated on boundary

    KAUST Repository

    Chen, Huyuan

    2017-02-06

    The purpose of this paper is to study the weak solutions of the fractional elliptic problem(Formula presented.) where (Formula presented.), (Formula presented.) or (Formula presented.), (Formula presented.) with (Formula presented.) is the fractional Laplacian defined in the principle value sense, (Formula presented.) is a bounded (Formula presented.) open set in (Formula presented.) with (Formula presented.), (Formula presented.) is a bounded Radon measure supported in (Formula presented.) and (Formula presented.) is defined in the distribution sense, i.e.(Formula presented.) here (Formula presented.) denotes the unit inward normal vector at (Formula presented.). In this paper, we prove that (0.1) with (Formula presented.) admits a unique weak solution when g is a continuous nondecreasing function satisfying(Formula presented.) Our interest then is to analyse the properties of weak solution when (Formula presented.) with (Formula presented.), including the asymptotic behaviour near (Formula presented.) and the limit of weak solutions as (Formula presented.). Furthermore, we show the optimality of the critical value (Formula presented.) in a certain sense, by proving the non-existence of weak solutions when (Formula presented.). The final part of this article is devoted to the study of existence for positive weak solutions to (0.1) when (Formula presented.) and (Formula presented.) is a bounded nonnegative Radon measure supported in (Formula presented.). We employ the Schauder’s fixed point theorem to obtain positive solution under the hypothesis that g is a continuous function satisfying(Formula presented.)-pagination

  12. Biophysical shunt theory for neuropsychopathology: Part I.

    Science.gov (United States)

    Naisberg, Y; Avnon, M; Weizman, A

    1995-11-01

    We present a new model of the origin of schizophrenia based on biophysical ionic shunts in neuronal (electrical) pathways. Microstructural and molecular evidence is presented for the way in which changes in the neuronal membrane ionic channels may facilitate membrane property rearrangement, leading to a change in the density and composition of the ion channel charge which in turn causes a change in ionic flow orientation and distribution. We suggest that, under abnormal conditions, ionic flow shunts are created which redirect the biophysical collateral neuronal (electrical) pathways, resulting in psychiatric signs and symptoms. This model is complementary to the biological basis of schizophrenia.

  13. Global energy modeling - A biophysical approach

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Michael

    2010-09-15

    This paper contrasts the standard economic approach to energy modelling with energy models using a biophysical approach. Neither of these approaches includes changing energy-returns-on-investment (EROI) due to declining resource quality or the capital intensive nature of renewable energy sources. Both of these factors will become increasingly important in the future. An extension to the biophysical approach is outlined which encompasses a dynamic EROI function that explicitly incorporates technological learning. The model is used to explore several scenarios of long-term future energy supply especially concerning the global transition to renewable energy sources in the quest for a sustainable energy system.

  14. Biophysical Evaluation of SonoSteam®:

    DEFF Research Database (Denmark)

    Andersen, Ann Zahle; Duelund, Lars; Brewer, Jonathan R.

    and safety evaluations. Our results show that there are no contradictions between data obtained by either approach. However, the biophysical methods draw a much more nuanced picture of the effects and efficiency of the investigated decontamination method, revealing e.g. an exponential dose/response...... relationship between SonoSteam treatment time and changes in collagen I, and a depth dependency in bacterial reduction, which points toward CFU counts overestimating total bacterial reduction. In conclusion the biophysical methods provide a less biased, reproducible and highly detailed system description...

  15. Single Nucleobase Identification Using Biophysical Signatures from Nanoelectronic Quantum Tunneling.

    Science.gov (United States)

    Korshoj, Lee E; Afsari, Sepideh; Khan, Sajida; Chatterjee, Anushree; Nagpal, Prashant

    2017-03-01

    Nanoelectronic DNA sequencing can provide an important alternative to sequencing-by-synthesis by reducing sample preparation time, cost, and complexity as a high-throughput next-generation technique with accurate single-molecule identification. However, sample noise and signature overlap continue to prevent high-resolution and accurate sequencing results. Probing the molecular orbitals of chemically distinct DNA nucleobases offers a path for facile sequence identification, but molecular entropy (from nucleotide conformations) makes such identification difficult when relying only on the energies of lowest-unoccupied and highest-occupied molecular orbitals (LUMO and HOMO). Here, nine biophysical parameters are developed to better characterize molecular orbitals of individual nucleobases, intended for single-molecule DNA sequencing using quantum tunneling of charges. For this analysis, theoretical models for quantum tunneling are combined with transition voltage spectroscopy to obtain measurable parameters unique to the molecule within an electronic junction. Scanning tunneling spectroscopy is then used to measure these nine biophysical parameters for DNA nucleotides, and a modified machine learning algorithm identified nucleobases. The new parameters significantly improve base calling over merely using LUMO and HOMO frontier orbital energies. Furthermore, high accuracies for identifying DNA nucleobases were observed at different pH conditions. These results have significant implications for developing a robust and accurate high-throughput nanoelectronic DNA sequencing technique. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Impact of extracorporeal shock waves on the human skin with cellulite: A case study of an unique instance

    Science.gov (United States)

    Kuhn, Christoph; Angehrn, Fiorenzo; Sonnabend, Ortrud; Voss, Axel

    2008-01-01

    In this case study of an unique instance, effects of medium-energy, high-focused extracorporeal generated shock waves (ESW) onto the skin and the underlying fat tissue of a cellulite afflicted, 50-year-old woman were investigated. The treatment consisted of four ESW applications within 21 days. Diagnostic high-resolution ultrasound (Collagenoson) was performed before and after treatment. Directly after the last ESW application, skin samples were taken for histopathological analysis from the treated and from the contra-lateral untreated area of skin with cellulite. No damage to the treated skin tissue, in particular no mechanical destruction to the subcutaneous fat, could be demonstrated by histopathological analysis. However an astounding induction of neocollageno- and neoelastino-genesis within the scaffolding fabric of the dermis and subcutis was observed. The dermis increased in thickness as well as the scaffolding within the subcutaneous fat-tissue. Optimization of critical application parameters may turn ESW into a noninvasive cellulite therapy. PMID:18488890

  17. Sonographic biophysical profile in detection of foetal hypoxia in 100 cases of suspected high risk pregnancy

    International Nuclear Information System (INIS)

    Ullah, N.; Khan, A.R.; Usman, M.

    2010-01-01

    Background: The foetus has become increasingly accessible and visible as a patient over the last two decades. Ultrasound imaging has broadened the scope of foetal assessment. Dynamic real time B-Mode ultrasound is used to monitor cluster of biophysical variables, both dynamic and static collectively termed as biophysical profile. The purpose of this study was to determine the effect of sonographic biophysical profile score on perinatal outcome in terms of mortality and morbidity. Methods: This descriptive study was carried on 100 randomly select ed high risk pregnant patients in Radiology Department PGMI, Government Lady Reading Hospital, Peshawar from December 2007 to June 2008. Manning biophysical profile including non-stress was employed for foetal screening, using Toshiba ultrasound machine model Nemio SSA-550A and 7.5 MHZ probe. Results: Out of 100 cases 79 (79%) had a normal biophysical profile in the last scan of 10/10 and had a normal perinatal outcome with 5 minutes Apgar score >7/10. In 13 (13%) cases Apgar score at 5 minute was < 7/10 and babies were shifted to nursery. There were 2 (2%) false positive cases that showed abnormal biophysical profile scores of 6/10 but babies were born with an Apgar score of 8/10 at 5 minutes. There were 2 (2%) neonatal deaths in this study group. The sensitivity of biophysical profile was 79.1%, specificity 92.9%. Predictive value for a positive test was 98.55%; predictive value for a negative test was 41.93%. Conclusion: Biophysical profile is highly accurate and reliable test of diagnosing foetal hypoxia. (author)

  18. Gratitude uniquely predicts lower depression in chronic illness populations: A longitudinal study of inflammatory bowel disease and arthritis.

    Science.gov (United States)

    Sirois, Fuschia M; Wood, Alex M

    2017-02-01

    Although gratitude has been identified as a key clinically relevant trait for improving well-being, it is understudied within medical populations. The current study addressed this gap and extended previous and limited cross-sectional research by examining the longitudinal associations of gratitude to depression in 2 chronic illness samples, arthritis and inflammatory bowel disease (IBD). Two chronic illness samples, arthritis (N = 423) and IBD (N = 427), completed online surveys at Time 1 (T1). One hundred sixty-three people with arthritis and 144 people with IBD completed the 6-month follow-up survey (T2). Depression, gratitude, illness cognitions, perceived stress, social support, and disease-related variables were assessed at T1 and T2. At T2, 57.2% of the arthritis sample and 53.4% of the IBD sample met the cut off scores for significant depression. T1 gratitude was negatively associated with depressive symptoms at T1 and T2 in both samples (rs from -.43 to -.50). Regression analyses revealed that T1 gratitude remained a significant and unique predictor of lower T2 depression after controlling for T1 depression, relevant demographic variables, illness cognitions, changes in illness-relevant variables, and another positive psychological construct, thriving, in both samples. As the first investigation of the longitudinal associations of gratitude to psychological well-being in the context of chronic illness, the current study provides important evidence for the relevance of gratitude for health-related clinical populations. Further intervention-based research is warranted to more fully understand the potential benefits of gratitude for adjustment to chronic illness. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  19. Biophysical aspects of cancer - Electromagnetic mechanism

    Czech Academy of Sciences Publication Activity Database

    Pokorný, Jiří; Hašek, Jiří; Vaniš, Jan; Jelínek, František

    2008-01-01

    Roč. 46, č. 5 (2008), s. 310-321 ISSN 0019-5189 Institutional research plan: CEZ:AV0Z20670512; CEZ:AV0Z50200510 Keywords : Electromagnetic Fields * Biophysics * Cancer Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.599, year: 2008

  20. Biophysics of Hair Cell Sensory Systems

    NARCIS (Netherlands)

    Duifhuis, Hendrikus; Horst, Johannes; van Dijk, Pim; van Netten, Sietse

    1993-01-01

    The last decade revealed to auditory researchers that hair cells can not only detect and process mechanical energy, but are also able to produce it. Thanks to the active hair cell, ears can produce otoacoustic emissions. This book gives the newest insights into the biophysics and physiology of

  1. An Australian Aboriginal birth cohort: a unique resource for a life course study of an Indigenous population. A study protocol

    Directory of Open Access Journals (Sweden)

    Flynn Kathryn

    2003-03-01

    Full Text Available Abstract Background The global rise of Type 2 diabetes and its complications has drawn attention to the burden of non-communicable diseases on populations undergoing epidemiological transition. The life course approach of a birth cohort has the potential to increase our understanding of the development of these chronic diseases. In 1987 we sought to establish an Australian Indigenous birth cohort to be used as a resource for descriptive and analytical studies with particular attention on non-communicable diseases. The focus of this report is the methodology of recruiting and following-up an Aboriginal birth cohort of mobile subjects belonging to diverse cultural and language groups living in a large sparsely populated area in the Top End of the Northern Territory of Australia. Methods A prospective longitudinal study of Aboriginal singletons born at the Royal Darwin Hospital 1987–1990, with second wave cross-sectional follow-up examination of subjects 1998–2001 in over 70 different locations. A multiphase protocol was used to locate and collect data on 686 subjects with different approaches for urban and rural children. Manual chart audits, faxes to remote communities, death registries and a full time subject locator with past experience of Aboriginal communities were all used. Discussion The successful recruitment of 686 Indigenous subjects followed up 14 years later with vital status determined for 95% of subjects and examination of 86% shows an Indigenous birth cohort can be established in an environment with geographic, cultural and climatic challenges. The high rates of recruitment and follow up indicate there were effective strategies of follow-up in a supportive population.

  2. A Validation Study of the Rank-Preserving Structural Failure Time Model: Confidence Intervals and Unique, Multiple, and Erroneous Solutions.

    Science.gov (United States)

    Ouwens, Mario; Hauch, Ole; Franzén, Stefan

    2018-05-01

    The rank-preserving structural failure time model (RPSFTM) is used for health technology assessment submissions to adjust for switching patients from reference to investigational treatment in cancer trials. It uses counterfactual survival (survival when only reference treatment would have been used) and assumes that, at randomization, the counterfactual survival distribution for the investigational and reference arms is identical. Previous validation reports have assumed that patients in the investigational treatment arm stay on therapy throughout the study period. To evaluate the validity of the RPSFTM at various levels of crossover in situations in which patients are taken off the investigational drug in the investigational arm. The RPSFTM was applied to simulated datasets differing in percentage of patients switching, time of switching, underlying acceleration factor, and number of patients, using exponential distributions for the time on investigational and reference treatment. There were multiple scenarios in which two solutions were found: one corresponding to identical counterfactual distributions, and the other to two different crossing counterfactual distributions. The same was found for the hazard ratio (HR). Unique solutions were observed only when switching patients were on investigational treatment for <40% of the time that patients in the investigational arm were on treatment. Distributions other than exponential could have been used for time on treatment. An HR equal to 1 is a necessary but not always sufficient condition to indicate acceleration factors associated with equal counterfactual survival. Further assessment to distinguish crossing counterfactual curves from equal counterfactual curves is especially needed when the time that switchers stay on investigational treatment is relatively long compared to the time direct starters stay on investigational treatment.

  3. Antimicrobial and biophysical properties of surfactant supplemented with an antimicrobial peptide for treatment of bacterial pneumonia.

    Science.gov (United States)

    Banaschewski, Brandon J H; Veldhuizen, Edwin J A; Keating, Eleonora; Haagsman, Henk P; Zuo, Yi Y; Yamashita, Cory M; Veldhuizen, Ruud A W

    2015-01-01

    Antibiotic-resistant bacterial infections represent an emerging health concern in clinical settings, and a lack of novel developments in the pharmaceutical pipeline is creating a "perfect storm" for multidrug-resistant bacterial infections. Antimicrobial peptides (AMPs) have been suggested as future therapeutics for these drug-resistant bacteria, since they have potent broad-spectrum activity, with little development of resistance. Due to the unique structure of the lung, bacterial pneumonia has the additional problem of delivering antimicrobials to the site of infection. One potential solution is coadministration of AMPs with exogenous surfactant, allowing for distribution of the peptides to distal airways and opening of collapsed lung regions. The objective of this study was to test various surfactant-AMP mixtures with regard to maintaining pulmonary surfactant biophysical properties and bactericidal functions. We compared the properties of four AMPs (CATH-1, CATH-2, CRAMP, and LL-37) suspended in bovine lipid-extract surfactant (BLES) by assessing surfactant-AMP mixture biophysical and antimicrobial functions. Antimicrobial activity was tested against methillicin-resistant Staphylococcus aureus and Pseudomonas aeruginosa. All AMP/surfactant mixtures exhibited an increase of spreading compared to a BLES control. BLES+CATH-2 mixtures had no significantly different minimum surface tension versus the BLES control. Compared to the other cathelicidins, CATH-2 retained the most bactericidal activity in the presence of BLES. The BLES+CATH-2 mixture appears to be an optimal surfactant-AMP mixture based on in vitro assays. Future directions involve investigating the potential of this mixture in animal models of bacterial pneumonia. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. Biophysical behavior of Scomberoides commersonianus skin collagen.

    Science.gov (United States)

    Kolli, Nagamalleswari; Joseph, K Thomas; Ramasami, T

    2002-06-01

    Some biophysical characteristics of the skin collagen from Scomberoides commersonianus were measured and compared to those of rat tail tendon. Stress-strain data indicate that the strain at break as well as the tensile strength of the fish skin without scales increased significantly. The maximum tension in case of rat skin is at least a factor of two higher than that observed in fish skin. The much lower hydrothermal isometric tension measurements observed in fish skin are attributable to a lesser number of heat stable crosslinks. Stress relaxation measurements in the fish skin indicate that more than one relaxation process may be involved in the stabilization of collagenous matrix. The observed differences in the biophysical behavior of fish skin may well arise from combination of changes in extent of hydroxylation of proline in collagen synthesis, hydrogen bond network and fibril orientation as compared to rat tail tendon.

  5. Biophysical and In Silico Studies of the Interaction between the Anti-Viral Agents Acyclovir and Penciclovir, and Human Serum Albumin

    Directory of Open Access Journals (Sweden)

    Ali S. Abdelhameed

    2017-11-01

    Full Text Available Acyclovir (ACV and penciclovir (PNV have been commonly used during the last few decades as potent antiviral agents, especially for the treatment of herpes virus infections. In the present research their binding properties with human serum albumin (HSA were studied using different advanced spectroscopic and in-silico methods. The interactions between ACV/PNV and HSA at the three investigated temperatures revealed a static type of binding. Extraction of the thermodynamic parameters of the ACV-HSA and PNV-HSA systems from the measured spectrofluorimetric data demonstrated spontaneous interactions with an enthalpy change (∆H0 of −1.79 ± 0.29 and −4.47 ± 0.51 kJ·mol−1 for ACV and PNV, respectively. The entropy change (∆S0 of 79.40 ± 0.95 and 69.95 ± 1.69 J·mol−1·K−1 for ACV and PNV, respectively, hence supported a potential contribution of electrostatic binding forces to the ACV-HSA and PNV-HSA systems. Putative binding of ACV/PNV to HSA, using previously reported site markers, showed that ACV/PNV were bound to HSA within subdomains IIA and IIIA (Sudlow sites I and II. Further confirmation was obtained through molecular docking studies of ACV-HSA and PNV-HSA binding, which confirmed the binding site of ACV/PNV with the most stable configurations of ACV/PNV within the HSA. These ACV/PNV conformers were shown to have free energies of −25.61 and −22.01 kJ·mol−1 for ACV within the HSA sites I and II and −22.97 and −26.53 kJ·mol−1 for PNV in HSA sites I and II, with hydrogen bonding and electrostatic forces being the main binding forces in such conformers.

  6. Short-Term Memory and Its Biophysical Model

    Science.gov (United States)

    Wang, Wei; Zhang, Kai; Tang, Xiao-wei

    1996-12-01

    The capacity of short-term memory has been studied using an integrate-and-fire neuronal network model. It is found that the storage of events depend on the manner of the correlation between the events, and the capacity is dominated by the value of after-depolarization potential. There is a monotonic increasing relationship between the value of after-depolarization potential and the memory numbers. The biophysics relevance of the network model is discussed and different kinds of the information processes are studied too.

  7. "I get by with a little help from my friends": A case study in Holy Cross and Grayling using geographic, ethnographic, and biophysical data to tell the story of climate change effects in the lower-middle Yukon River region

    Science.gov (United States)

    Hollingsworth, T. N.; Brown, C.; Cold, H.; Brinkman, T. J.; Brown, D. N.; Verbyla, D.

    2017-12-01

    Over the last century, Alaska has warmed more than twice as rapidly as the contiguous US. Climate change in boreal Alaska has created new and undocumented vulnerabilities for rural communities. In rural areas, subsistence harvesters rely on established travel networks to access traditional hunting, fishing, and gathering areas. These routes are being affected by ecosystem disturbances, such as thermokarst and increased wildfire severity, linked to climate change. Understanding these changes requires a collaborative effort, using many different forms of data to tell a complete story. Here, we present a case study from Holy Cross and Grayling, Alaska to demonstrate the importance of cross-discipline data integration. Local subsistence users documented GPS coordinates of encountered sites of ecosystem disturbances influencing their access to subsistence areas. These knowledge holders provided the ethnographic, historical and experiential descriptions of the effects of these changes. Then, remote-sensing imagery allows us to look at how these sites change over time. Finally, we returned to collaborate with subsistence users to visit specific sites and quantify the biophysical mechanisms that describe these disturbances. In Holy Cross, we visited areas that recently burned and are undergoing rapid changes in vegetation. We describe the fire regime characteristics such as fire severity, age of site when it burned, pre-fire composition, and post-fire successional trajectory. In Grayling, we visited areas with drying water bodies and associated vegetation change. We describe the current vegetation structure and composition, looked at potential shifts in soil moisture and used repeat imagery to quantify change in water. Our case study exemplifies the power of participatory research, collaboration, and a cross-disciplinary methodology to expand our collective understanding of landscape-level climate-related changes in boreal Alaska.

  8. Structural and biophysical studies with the MjTX-I, a Lys49-phospholipase A2 homologue from Bothrops moojeni venom

    International Nuclear Information System (INIS)

    Salvador, G.H.M.; Fernandes, C.A.H.; Fernandez, R.M.; Fontes, M.R.M.; Marchi-Salvador, D.P.; Soares, A.M.; Oliveira, C.L.P

    2012-01-01

    Full text: Phospholipases A 2 (PLA 2 ) are small proteins found in a great diversity of organisms and belong to a superfamily of proteins involved in many important pharmacological processes, such as neurotoxicity, myotoxicity, platelet aggregation, and anticoagulant activity. Ophidic accidents caused by snakes from Bothrops genus are not efficiently neutralized by conventional serum therapy, and then detailed studies with this class of proteins may be very important to supplement this conventional therapy. Miotoxin-I (MjTX-I) is a basic Lys49-PLA 2 , isolated from Bothrops moojeni snake venom, which induces a drastic local myonecrosis. Crystal structure of MjTX-I shows four molecules in the asymmetric unit, an unusually oligomeric conformation for snake venom Lys49-PLA 2 s. However, bioinformatics techniques indicate a dimer as the biological oligomeric conformation. To get additional information of its biological conformation, we also performed Dynamic Light Scattering, Size Exclusion Chromatography and Small Angle X-ray Scattering experiments. These techniques showed a monomer as the most probable biological conformation in water; however small changes in pH and ionic strength result in different oligomeric assemblies. These novel information for Lys49-PLA 2 s may result in important conclusions for this intriguing class of toxins. (author)

  9. Structural and biophysical studies with the MjTX-I, a Lys49-phospholipase A{sub 2} homologue from Bothrops moojeni venom

    Energy Technology Data Exchange (ETDEWEB)

    Salvador, G.H.M.; Fernandes, C.A.H.; Fernandez, R.M.; Fontes, M.R.M. [UNESP, Universidade Estadual Paulista, Botucatu, SP (Brazil); Marchi-Salvador, D.P. [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil); Soares, A.M. [Universidade de Sao Paulo (USP-RP), Ribeirao Preto, SP (Brazil); Oliveira, C.L.P [Universidade de Sao Paulo (USP), SP (Brazil)

    2012-07-01

    Full text: Phospholipases A{sub 2} (PLA{sub 2}) are small proteins found in a great diversity of organisms and belong to a superfamily of proteins involved in many important pharmacological processes, such as neurotoxicity, myotoxicity, platelet aggregation, and anticoagulant activity. Ophidic accidents caused by snakes from Bothrops genus are not efficiently neutralized by conventional serum therapy, and then detailed studies with this class of proteins may be very important to supplement this conventional therapy. Miotoxin-I (MjTX-I) is a basic Lys49-PLA{sub 2}, isolated from Bothrops moojeni snake venom, which induces a drastic local myonecrosis. Crystal structure of MjTX-I shows four molecules in the asymmetric unit, an unusually oligomeric conformation for snake venom Lys49-PLA{sub 2}s. However, bioinformatics techniques indicate a dimer as the biological oligomeric conformation. To get additional information of its biological conformation, we also performed Dynamic Light Scattering, Size Exclusion Chromatography and Small Angle X-ray Scattering experiments. These techniques showed a monomer as the most probable biological conformation in water; however small changes in pH and ionic strength result in different oligomeric assemblies. These novel information for Lys49-PLA{sub 2}s may result in important conclusions for this intriguing class of toxins. (author)

  10. Biophysical approach to chronic kidney disease management in older patients

    Directory of Open Access Journals (Sweden)

    Alberto Foletti

    2016-06-01

    Full Text Available Chronic kidney disease (CKD and its clinical progression are a critical issue in an aging population. Therefore, strategies aimed at preventing and managing the decline of renal function are warranted. Recent evidence has provided encouraging results for the improvement of renal function achieved through an integrated biophysical approach, but prospective studies on the clinical efficacy of this strategy are still lacking. This was an open-label prospective pilot study to investigate the effect of electromagnetic information transfer through the aqueous system on kidney function of older patients affected by stage 1 or 2 CKD. Patients received biophysical therapy every 3 months over a 1-year period. Estimated glomerular filtration rate (eGFR values were calculated using the CKD–Epidemiology Collaboration formula, and were recorded at baseline and at the end of treatment. Overall, 58 patients (mean age 74.8 ± 3.7 years were included in the study. At baseline, mean eGFR was 64.6 ± 15.5 mL/min, and it significantly increased to 69.9 ± 15.8 mL/min after 1 year (+5.2 ± 10 mL/min, p<0.0002. The same trend was observed among men (+5.7 ± 10.2 mL/min, p<0.0064 and women (+4.7 ± 9.9 mL/min, p<0.014. When results were analyzed by sex, no difference was found between the 2 groups. Although further and larger prospective studies are needed, our findings suggest that an integrated biophysical approach may be feasible in the management of older patients with early-stage CKD, to reduce and prevent the decline of renal function due to aging or comorbidities.

  11. What makes Ras an efficient molecular switch: a computational, biophysical, and structural study of Ras-GDP interactions with mutants of Raf.

    Science.gov (United States)

    Filchtinski, Daniel; Sharabi, Oz; Rüppel, Alma; Vetter, Ingrid R; Herrmann, Christian; Shifman, Julia M

    2010-06-11

    Ras is a small GTP-binding protein that is an essential molecular switch for a wide variety of signaling pathways including the control of cell proliferation, cell cycle progression and apoptosis. In the GTP-bound state, Ras can interact with its effectors, triggering various signaling cascades in the cell. In the GDP-bound state, Ras looses its ability to bind to known effectors. The interaction of the GTP-bound Ras (Ras(GTP)) with its effectors has been studied intensively. However, very little is known about the much weaker interaction between the GDP-bound Ras (Ras(GDP)) and Ras effectors. We investigated the factors underlying the nucleotide-dependent differences in Ras interactions with one of its effectors, Raf kinase. Using computational protein design, we generated mutants of the Ras-binding domain of Raf kinase (Raf) that stabilize the complex with Ras(GDP). Most of our designed mutations narrow the gap between the affinity of Raf for Ras(GTP) and Ras(GDP), producing the desired shift in binding specificity towards Ras(GDP). A combination of our best designed mutation, N71R, with another mutation, A85K, yielded a Raf mutant with a 100-fold improvement in affinity towards Ras(GDP). The Raf A85K and Raf N71R/A85K mutants were used to obtain the first high-resolution structures of Ras(GDP) bound to its effector. Surprisingly, these structures reveal that the loop on Ras previously termed the switch I region in the Ras(GDP).Raf mutant complex is found in a conformation similar to that of Ras(GTP) and not Ras(GDP). Moreover, the structures indicate an increased mobility of the switch I region. This greater flexibility compared to the same loop in Ras(GTP) is likely to explain the natural low affinity of Raf and other Ras effectors to Ras(GDP). Our findings demonstrate that an accurate balance between a rigid, high-affinity conformation and conformational flexibility is required to create an efficient and stringent molecular switch. Copyright 2010 Elsevier Ltd

  12. A Signal Detection Approach in a Multiple Cohort Study: Different Admission Tools Uniquely Select Different Successful Students

    Directory of Open Access Journals (Sweden)

    Linda van Ooijen-van der Linden

    2018-05-01

    Full Text Available Using multiple admission tools in university admission procedures is common practice. This is particularly useful if different admission tools uniquely select different subgroups of students who will be successful in university programs. A signal-detection approach was used to investigate the accuracy of Secondary School grade point average (SSGPA, an admission test score (ACS, and a non-cognitive score (NCS in uniquely selecting successful students. This was done for three consecutive first year cohorts of a broad psychology program. Each applicant's score on SSGPA, ACS, or NCS alone—and on seven combinations of these scores, all considered separate “admission tools”—was compared at two different (medium and high cut-off scores (criterion levels. Each of the tools selected successful students who were not selected by any of the other tools. Both sensitivity and specificity were enhanced by implementing multiple tools. The signal-detection approach distinctively provided useful information for decisions on admission instruments and cut-off scores.

  13. Efficacy of Bacillus coagulans Unique IS2 in treatment of irritable bowel syndrome in children: a double blind, randomised placebo controlled study.

    Science.gov (United States)

    Sudha, M Ratna; Jayanthi, N; Aasin, M; Dhanashri, R D; Anirudh, T

    2018-04-26

    The efficacy of the probiotic strain, Bacillus coagulans Unique IS2 in the treatment of Irritable Bowel Syndrome (IBS) was evaluated in children. A total of 141 children of either sex in the age group 4-12 years, diagnosed with IBS according to the Rome III criteria, participated in the double-blind randomised controlled trial. Children received either B. coagulans Unique IS2 chewable tablets or placebo once daily for eight weeks followed by a two week follow-up period. Reduction in pain intensity as well as other symptoms associated with Irritable Bowel Syndrome like abdominal discomfort, bloating, distension, sense of incomplete evacuation, straining at stool, urgency of bowel movement, passage of gas and mucus, and bowel habit satisfaction were assessed. B. coagulans Unique IS2 treated group showed a greater reduction in pain scores as evaluated by a weekly pain intensity scale. There was a significant reduction (Pcoagulans Unique IS2 treated group as compared to the placebo group. This study demonstrates the efficacy of B. coagulans Unique IS2 in reducing the symptoms of Irritable Bowel Syndrome in children in the age group of 4-12 years.

  14. Biophysical influence of airborne carbon nanomaterials on natural pulmonary surfactant.

    Science.gov (United States)

    Valle, Russell P; Wu, Tony; Zuo, Yi Y

    2015-05-26

    Inhalation of nanoparticles (NP), including lightweight airborne carbonaceous nanomaterials (CNM), poses a direct and systemic health threat to those who handle them. Inhaled NP penetrate deep pulmonary structures in which they first interact with the pulmonary surfactant (PS) lining at the alveolar air-water interface. In spite of many research efforts, there is a gap of knowledge between in vitro biophysical study and in vivo inhalation toxicology since all existing biophysical models handle NP-PS interactions in the liquid phase. This technical limitation, inherent in current in vitro methodologies, makes it impossible to simulate how airborne NP deposit at the PS film and interact with it. Existing in vitro NP-PS studies using liquid-suspended particles have been shown to artificially inflate the no-observed adverse effect level of NP exposure when compared to in vivo inhalation studies and international occupational exposure limits (OELs). Here, we developed an in vitro methodology called the constrained drop surfactometer (CDS) to quantitatively study PS inhibition by airborne CNM. We show that airborne multiwalled carbon nanotubes and graphene nanoplatelets induce a concentration-dependent PS inhibition under physiologically relevant conditions. The CNM aerosol concentrations controlled in the CDS are comparable to those defined in international OELs. Development of the CDS has the potential to advance our understanding of how submicron airborne nanomaterials affect the PS lining of the lung.

  15. Remote sensing of the Canadian Arctic: Modelling biophysical variables

    Science.gov (United States)

    Liu, Nanfeng

    overestimation of 0.08, which was attributed to PAR absorption by soil that could not be excluded from the fAPAR calculation. This research clearly demonstrates that high spectral and spatial resolution remote sensing VIs can be used to successfully model Arctic biophysical variables. The methods and results presented in this research provided a guide for future studies aiming to model other Arctic biophysical variables through remote sensing data.

  16. Unique Capabilities of the Situational Awareness Sensor Suite for the ISS (SASSI) Mission Concept to Study the Equatorial Ionosphere

    Science.gov (United States)

    Habash Krause, L.; Gilchrist, B. E.; Minow, J. I.; Gallagher, D. L.; Hoegy, W. R.; Coffey, V. N.; Willis, E. M.

    2014-12-01

    We present an overview of a mission concept named Situational Awareness Sensor Suite for the ISS (SASSI) with a special focus here on low-latitude ionospheric plasma turbulence measurements relevant to equatorial spread-F. SASSI is a suite of sensors that improves Space Situational Awareness for the ISS local space environment, as well as unique ionospheric measurements and support active plasma experiments on the ISS. As such, the mission concept has both operational and basic research objectives. We will describe two compelling measurement techniques enabled by SASSI's unique mission architecture. That is, SASSI provides new abilities to 1) measure space plasma potentials in low Earth orbit over ~100 m relative to a common potential, and 2) to investigate multi-scale ionospheric plasma turbulence morphology simultaneously of both ~ 1 cm and ~ 10 m scale lengths. The first measurement technique will aid in the distinction of vertical drifts within equatorial plasma bubbles from the vertical motions of the bulk of the layer due to zonal electric fields. The second will aid in understanding ionospheric plasma turbulence cascading in scale sizes that affect over the horizon radar. During many years of ISS operation, we have conducted effective (but not perfect) human and robotic extravehicular activities within the space plasma environment surrounding the ISS structure. However, because of the complexity of the interaction between the ISS and the space environment, there remain important sources of unpredictable environmental situations that affect operations. Examples of affected systems include EVA safety, solar panel efficiency, and scientific instrument integrity. Models and heuristically-derived best practices are well-suited for routine operations, but when it comes to unusual or anomalous events or situations, there is no substitute for real-time monitoring. SASSI is being designed to deploy and operate a suite of low-cost, medium/high-TRL plasma sensors on

  17. Indoor Fast Neutron Generator for Biophysical and Electronic Applications

    Science.gov (United States)

    Cannuli, A.; Caccamo, M. T.; Marchese, N.; Tomarchio, E. A.; Pace, C.; Magazù, S.

    2018-05-01

    This study focuses the attention on an indoor fast neutron generator for biophysical and electronic applications. More specifically, the findings obtained by several simulations with the MCNP Monte Carlo code, necessary for the realization of a shield for indoor measurements, are presented. Furthermore, an evaluation of the neutron spectrum modification caused by the shielding is reported. Fast neutron generators are a valid and interesting available source of neutrons, increasingly employed in a wide range of research fields, such as science and engineering. The employed portable pulsed neutron source is a MP320 Thermo Scientific neutron generator, able to generate 2.5 MeV neutrons with a neutron yield of 2.0 x 106 n/s, a pulse rate of 250 Hz to 20 KHz and a duty factor varying from 5% to 100%. The neutron generator, based on Deuterium-Deuterium nuclear fusion reactions, is employed in conjunction with a solid-state photon detector, made of n-type high-purity germanium (PINS-GMX by ORTEC) and it is mainly addressed to biophysical and electronic studies. The present study showed a proposal for the realization of a shield necessary for indoor applications for MP320 neutron generator, with a particular analysis of the transport of neutrons simulated with Monte Carlo code and described the two main lines of research in which the source will be used.

  18. Synchrotron radiation applications in biophysics and medicine

    International Nuclear Information System (INIS)

    Burattini, E.

    1985-01-01

    The peculiar properties of synchrotron radiation are briefly summarized. A short review on the possible applications of synchrotron radiation in two important fields like Biophysics and Medicine is presented. Details are given on experiments both in progress and carried out in many synchrotron radiation facilities, all over the world, using different techniques like X-ray absorption and fluorescence spectroscopy, X-ray fluorescence microanalysis, X-ray microscopy and digital subtraction angiography. Some news about the photon-activation therapy are briefly reported too

  19. Biophysical processes in the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Mc; Murtugudde, R.; Vialard, J.; Vinayachandran, P.N.; Wiggert, J.D.; Hood, R.R.; Shankar, D.; Shetye, S.R.

    Ocean Biogeochemical Processes and Ecological Variability Geophysical Monograph Series 185 Copyright 200� by the American Geophysical Union. 10.102�/2008GM000768 Biophysical Processes in the Indian Ocean J. P. McCreary, 1 R. Murtugudde, 2 J. Vialard, 3...) also plots the upper-layer thickness, h 1 , from the model of McCreary et al. [1��3] (hereinafter referred to as MKM); h 1 simulates the structure of the top of the actual thermocline reasonably well, except that it is somewhat too thin from 5...

  20. Assimilation of Biophysical Neuronal Dynamics in Neuromorphic VLSI.

    Science.gov (United States)

    Wang, Jun; Breen, Daniel; Akinin, Abraham; Broccard, Frederic; Abarbanel, Henry D I; Cauwenberghs, Gert

    2017-12-01

    Representing the biophysics of neuronal dynamics and behavior offers a principled analysis-by-synthesis approach toward understanding mechanisms of nervous system functions. We report on a set of procedures assimilating and emulating neurobiological data on a neuromorphic very large scale integrated (VLSI) circuit. The analog VLSI chip, NeuroDyn, features 384 digitally programmable parameters specifying for 4 generalized Hodgkin-Huxley neurons coupled through 12 conductance-based chemical synapses. The parameters also describe reversal potentials, maximal conductances, and spline regressed kinetic functions for ion channel gating variables. In one set of experiments, we assimilated membrane potential recorded from one of the neurons on the chip to the model structure upon which NeuroDyn was designed using the known current input sequence. We arrived at the programmed parameters except for model errors due to analog imperfections in the chip fabrication. In a related set of experiments, we replicated songbird individual neuron dynamics on NeuroDyn by estimating and configuring parameters extracted using data assimilation from intracellular neural recordings. Faithful emulation of detailed biophysical neural dynamics will enable the use of NeuroDyn as a tool to probe electrical and molecular properties of functional neural circuits. Neuroscience applications include studying the relationship between molecular properties of neurons and the emergence of different spike patterns or different brain behaviors. Clinical applications include studying and predicting effects of neuromodulators or neurodegenerative diseases on ion channel kinetics.

  1. Climate Change Effects on Agriculture: Economic Responses to Biophysical Shocks

    Science.gov (United States)

    Nelson, Gerald C.; Valin, Hugo; Sands, Ronald D.; Havlik, Petr; Ahammad, Helal; Deryng, Delphine; Elliott, Joshua; Fujimori, Shinichiro; Hasegawa, Tomoko; Heyhoe, Edwina

    2014-01-01

    Agricultural production is sensitive to weather and thus directly affected by climate change. Plausible estimates of these climate change impacts require combined use of climate, crop, and economic models. Results from previous studies vary substantially due to differences in models, scenarios, and data. This paper is part of a collective effort to systematically integrate these three types of models. We focus on the economic component of the assessment, investigating how nine global economic models of agriculture represent endogenous responses to seven standardized climate change scenarios produced by two climate and five crop models. These responses include adjustments in yields, area, consumption, and international trade. We apply biophysical shocks derived from the Intergovernmental Panel on Climate Change's representative concentration pathway with end-of-century radiative forcing of 8.5 W/m(sup 2). The mean biophysical yield effect with no incremental CO2 fertilization is a 17% reduction globally by 2050 relative to a scenario with unchanging climate. Endogenous economic responses reduce yield loss to 11%, increase area of major crops by 11%, and reduce consumption by 3%. Agricultural production, cropland area, trade, and prices show the greatest degree of variability in response to climate change, and consumption the lowest. The sources of these differences include model structure and specification; in particular, model assumptions about ease of land use conversion, intensification, and trade. This study identifies where models disagree on the relative responses to climate shocks and highlights research activities needed to improve the representation of agricultural adaptation responses to climate change.

  2. Comparison of biophysical factors influencing on emphysema quantification with low-dose CT

    Science.gov (United States)

    Heo, Chang Yong; Kim, Jong Hyo

    2014-03-01

    Emphysema Index(EI) measurements in MDCT is known to be influenced by various biophysical factors such as total lung volume, and body size. We investigated the association of the four biophysical factors with emphysema index in low-dose MDCT. In particular, we attempted to identify a potentially stronger biophysical factor than total lung volume. A total of 400 low-dose MDCT volumes taken at 120kVp, 40mAs, 1mm thickness, and B30f reconstruction kernel were used. The lungs, airways, and pulmonary vessels were automatically segmented, and two Emphysema Indices, relative area below -950HU(RA950) and 15th percentile(Perc15), were extracted from the segmented lungs. The biophysical factors such as total lung volume(TLV), mode of lung attenuation(ModLA), effective body diameter(EBD), and the water equivalent body diameter(WBD) were estimated from the segmented lung and body area. The association of biophysical factors with emphysema indices were evaluated by correlation coefficients. The mean emphysema indices were 8.3±5.5(%) in RA950, and -930±18(HU) in Perc15. The estimates of biophysical factors were 4.7±1.0(L) in TLV, -901±21(HU) in ModLA, 26.9±2.2(cm) in EBD, and 25.9±2.6(cm) in WBD. The correlation coefficients of biophysical factors with RA950 were 0.73 in TLV, 0.94 in ModLA, 0.31 in EBD, and 0.18 WBD, the ones with Perc15 were 0.74 in TLV, 0.98 in ModLA, 0.29 in EBD, and 0.15 WBD. Study results revealed that two biophysical factors, TLV and ModLA, mostly affects the emphysema indices. In particular, the ModLA exhibited strongest correlation of 0.98 with Perc15, which indicating the ModLA is the most significant confounding biophysical factor in emphysema indices measurement.

  3. X-Ray structure and biophysical properties of rabbit fibroblast growth factor 1

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jihun; Blaber, Sachiko I.; Irsigler, Andre; Aspinwall, Eric; Blaber, Michael; (FSU)

    2010-01-14

    The rabbit is an important and de facto animal model in the study of ischemic disease and angiogenic therapy. Additionally, fibroblast growth factor 1 (FGF-1) is emerging as one of the most important growth factors for novel pro-angiogenic and pro-arteriogenic therapy. However, despite its significance, the fundamental biophysical properties of rabbit FGF-1, including its X-ray structure, have never been reported. Here, the cloning, crystallization, X-ray structure and determination of the biophysical properties of rabbit FGF-1 are described. The X-ray structure shows that the amino-acid differences between human and rabbit FGF-1 are solvent-exposed and therefore potentially immunogenic, while the biophysical studies identify differences in thermostability and receptor-binding affinity that distinguish rabbit FGF-1 from human FGF-1.

  4. Cellular normoxic biophysical markers of hydroxyurea treatment in sickle cell disease.

    Science.gov (United States)

    Hosseini, Poorya; Abidi, Sabia Z; Du, E; Papageorgiou, Dimitrios P; Choi, Youngwoon; Park, YongKeun; Higgins, John M; Kato, Gregory J; Suresh, Subra; Dao, Ming; Yaqoob, Zahid; So, Peter T C

    2016-08-23

    Hydroxyurea (HU) has been used clinically to reduce the frequency of painful crisis and the need for blood transfusion in sickle cell disease (SCD) patients. However, the mechanisms underlying such beneficial effects of HU treatment are still not fully understood. Studies have indicated a weak correlation between clinical outcome and molecular markers, and the scientific quest to develop companion biophysical markers have mostly targeted studies of blood properties under hypoxia. Using a common-path interferometric technique, we measure biomechanical and morphological properties of individual red blood cells in SCD patients as a function of cell density, and investigate the correlation of these biophysical properties with drug intake as well as other clinically measured parameters. Our results show that patient-specific HU effects on the cellular biophysical properties are detectable at normoxia, and that these properties are strongly correlated with the clinically measured mean cellular volume rather than fetal hemoglobin level.

  5. Uniqueness in time measurement

    International Nuclear Information System (INIS)

    Lorenzen, P.

    1981-01-01

    According to P. Janich a clock is defined as an apparatus in which a point ( hand ) is moving uniformly on a straight line ( path ). For the definition of uniformly first the scaling (as a constant ratio of velocities) is defined without clocks. Thereafter the uniqueness of the time measurement can be proved using the prove of scaling of all clocks. But the uniqueness can be defined without scaling, as it is pointed out here. (orig.) [de

  6. Radiobiology, biochemistry and radiation biophysics at CYLAB

    International Nuclear Information System (INIS)

    Ftacnikova, S.

    1998-01-01

    The Cyclotron Laboratory (CYLAB) should fill the gap in the field of nuclear medicine, radiotherapy, basic research, metrology of ionizing radiation, education and implications of accelerator technology existing today in Slovak Republic. The main planned activities of this facility are in the fields of nuclear medicine (production of radioisotopes for Positron Emission Tomography - PET and for oncology) and radiotherapy (neutron capture therapy, fast neutron therapy and proton therapy). The radiobiological and biophysical research will be closely connected with medical applications, particularly with radiotherapy. Problems to be addressed include the determination of the values of Relative Biological Effectiveness (RBE) for different types of ionizing radiation involved in the therapy, microdosimetric measurements and calculations, which are indispensable in the calculation of the absorbed dose (lineal and specific energy spectra) at the cellular and macromolecular level. Radiation biophysics and medical physics help in creating therapeutic plans for radiotherapy (NCT and fast neutron therapy). In nuclear medicine, in diagnostic and therapeutical procedures it is necessary to assess the biodistribution of radiopharmaceuticals and to calculate doses in target and critical organs and to determine whole body burden - effective equivalent dose for newly developed radiopharmaceuticals

  7. A mathematical approach to protein biophysics

    CERN Document Server

    Scott, L Ridgway

    2017-01-01

    This book explores quantitative aspects of protein biophysics and attempts to delineate certain rules of molecular behavior that make atomic scale objects behave in a digital way.  This book will help readers to understand how certain biological systems involving proteins function as digital information systems despite the fact that underlying processes are analog in nature. The in-depth explanation of proteins from a quantitative point of view and the variety of level of exercises (including physical experiments) at the end of each chapter will appeal to graduate and senior undergraduate students in mathematics, computer science, mechanical engineering, and physics, wanting to learn about the biophysics of proteins.  L. Ridgway Scott has been Professor of Computer Science and of Mathematics at the University of Chicago since 1998, and the Louis Block Professor since 2001.  He obtained a B.S. degree (Magna Cum Laude) from Tulane University in 1969 and a PhD degree in Mathematics from the Massachusetts Ins...

  8. Developing a physics expert identity in a biophysics research group

    Science.gov (United States)

    Rodriguez, Idaykis; Goertzen, Renee Michelle; Brewe, Eric; Kramer, Laird H.

    2015-06-01

    We investigate the development of expert identities through the use of the sociocultural perspective of learning as participating in a community of practice. An ethnographic case study of biophysics graduate students focuses on the experiences the students have in their research group meetings. The analysis illustrates how the communities of practice-based identity constructs of competencies characterize student expert membership. A microanalysis of speech, sound, tones, and gestures in video data characterize students' social competencies in the physics community of practice. Results provide evidence that students at different stages of their individual projects have opportunities to develop social competencies such as mutual engagement, negotiability of the repertoire, and accountability to the enterprises as they interact with group members. The biophysics research group purposefully designed a learning trajectory including conducting research and writing it for publication in the larger community of practice as a pathway to expertise. The students of the research group learn to become socially competent as specific experts of their project topic and methodology, ensuring acceptance, agency, and membership in their community of practice. This work expands research on physics expertise beyond the cognitive realm and has implications for how to design graduate learning experiences to promote expert identity development.

  9. Biophysics of filament length regulation by molecular motors

    International Nuclear Information System (INIS)

    Kuan, Hui-Shun; Betterton, M D

    2013-01-01

    Regulating physical size is an essential problem that biological organisms must solve from the subcellular to the organismal scales, but it is not well understood what physical principles and mechanisms organisms use to sense and regulate their size. Any biophysical size-regulation scheme operates in a noisy environment and must be robust to other cellular dynamics and fluctuations. This work develops theory of filament length regulation inspired by recent experiments on kinesin-8 motor proteins, which move with directional bias on microtubule filaments and alter microtubule dynamics. Purified kinesin-8 motors can depolymerize chemically-stabilized microtubules. In the length-dependent depolymerization model, the rate of depolymerization tends to increase with filament length, because long filaments accumulate more motors at their tips and therefore shorten more quickly. When balanced with a constant filament growth rate, this mechanism can lead to a fixed polymer length. However, the mechanism by which kinesin-8 motors affect the length of dynamic microtubules in cells is less clear. We study the more biologically realistic problem of microtubule dynamic instability modulated by a motor-dependent increase in the filament catastrophe frequency. This leads to a significant decrease in the mean filament length and a narrowing of the filament length distribution. The results improve our understanding of the biophysics of length regulation in cells. (paper)

  10. The application of multiple biophysical cues to engineer functional neocartilage for treatment of osteoarthritis. Part II: signal transduction.

    Science.gov (United States)

    Brady, Mariea A; Waldman, Stephen D; Ethier, C Ross

    2015-02-01

    The unique mechanoelectrochemical environment of cartilage has motivated researchers to investigate the effect of multiple biophysical cues, including mechanical, magnetic, and electrical stimulation, on chondrocyte biology. It is well established that biophysical stimuli promote chondrocyte proliferation, differentiation, and maturation within "biological windows" of defined dose parameters, including mode, frequency, magnitude, and duration of stimuli (see companion review Part I: Cellular Response). However, the underlying molecular mechanisms and signal transduction pathways activated in response to multiple biophysical stimuli remain to be elucidated. Understanding the mechanisms of biophysical signal transduction will deepen knowledge of tissue organogenesis, remodeling, and regeneration and aiding in the treatment of pathologies such as osteoarthritis. Further, this knowledge will provide the tissue engineer with a potent toolset to manipulate and control cell fate and subsequently develop functional replacement cartilage. The aim of this article is to review chondrocyte signal transduction pathways in response to mechanical, magnetic, and electrical cues. Signal transduction does not occur along a single pathway; rather a number of parallel pathways appear to be activated, with calcium signaling apparently common to all three types of stimuli, though there are different modes of activation. Current tissue engineering strategies, such as the development of "smart" functionalized biomaterials that enable the delivery of growth factors or integration of conjugated nanoparticles, may further benefit from targeting known signal transduction pathways in combination with external biophysical cues.

  11. Ultrasound assessment of the fetal biophysical profile: What does an radiologist need to know?

    International Nuclear Information System (INIS)

    Guimaraes Filho, Helio Antonio; Araujo Junior, Edward; Marcondes Machado Nardozza, Luciano; Linhares Dias da Costa, Lavoisier; Fernandes Moron, Antonio; Mattar, Rosiane

    2008-01-01

    Proposed by Frank Manning about 26 years ago, fetal biophysical profile has been incorporated to the propaedeutics of non-invasive fetal well being assessment in high-risk gestations. Despite the existence of other methods for assessing fetal vitality, as Doppler flowmetry, the biophysical profile continues to be important in estimating the risk of hypoxia and perinatal morbimortality for those fetuses. In the present article, the authors review the regulatory mechanisms of fetal biophysical activities, as well as physiological and pathological factors that interfere with them. The main objective of the study is to discuss the present and important aspects of the method, and the practical applications and interpretation of its findings, in order to help radiologists improve their knowledge in this specific area of fetal ultrasonography

  12. An Underlying Common Factor, Influenced by Genetics and Unique Environment, Explains the Covariation Between Major Depressive Disorder, Generalized Anxiety Disorder, and Burnout: A Swedish Twin Study.

    Science.gov (United States)

    Mather, Lisa; Blom, Victoria; Bergström, Gunnar; Svedberg, Pia

    2016-12-01

    Depression and anxiety are highly comorbid due to shared genetic risk factors, but less is known about whether burnout shares these risk factors. We aimed to examine whether the covariation between major depressive disorder (MDD), generalized anxiety disorder (GAD), and burnout is explained by common genetic and/or environmental factors. This cross-sectional study included 25,378 Swedish twins responding to a survey in 2005-2006. Structural equation models were used to analyze whether the trait variances and covariances were due to additive genetics, non-additive genetics, shared environment, and unique environment. Univariate analyses tested sex limitation models and multivariate analysis tested Cholesky, independent pathway, and common pathway models. The phenotypic correlations were 0.71 (0.69-0.74) between MDD and GAD, 0.58 (0.56-0.60) between MDD and burnout, and 0.53 (0.50-0.56) between GAD and burnout. Heritabilities were 45% for MDD, 49% for GAD, and 38% for burnout; no statistically significant sex differences were found. A common pathway model was chosen as the final model. The common factor was influenced by genetics (58%) and unique environment (42%), and explained 77% of the variation in MDD, 69% in GAD, and 44% in burnout. GAD and burnout had additive genetic factors unique to the phenotypes (11% each), while MDD did not. Unique environment explained 23% of the variability in MDD, 20% in GAD, and 45% in burnout. In conclusion, the covariation was explained by an underlying common factor, largely influenced by genetics. Burnout was to a large degree influenced by unique environmental factors not shared with MDD and GAD.

  13. The liberal illusion of uniqueness.

    Science.gov (United States)

    Stern, Chadly; West, Tessa V; Schmitt, Peter G

    2014-01-01

    In two studies, we demonstrated that liberals underestimate their similarity to other liberals (i.e., display truly false uniqueness), whereas moderates and conservatives overestimate their similarity to other moderates and conservatives (i.e., display truly false consensus; Studies 1 and 2). We further demonstrated that a fundamental difference between liberals and conservatives in the motivation to feel unique explains this ideological distinction in the accuracy of estimating similarity (Study 2). Implications of the accuracy of consensus estimates for mobilizing liberal and conservative political movements are discussed.

  14. Epigenetic Modulation of the Biophysical Properties of Drug-Resistant Cell Lipids to Restore Drug Transport and Endocytic Functions

    OpenAIRE

    Vijayaraghavalu, Sivakumar; Peetla, Chiranjeevi; Lu, Shan; Labhasetwar, Vinod

    2012-01-01

    In our recent studies exploring the biophysical characteristics of resistant cell lipids, and the role they play in drug transport, we demonstrated the difference of drug-resistant breast cancer cells from drug-sensitive cells in lipid composition and biophysical properties, suggesting that cancer cells acquire a drug-resistant phenotype through the alteration of lipid synthesis to inhibit intracellular drug transport to protect from cytotoxic effect. In cancer cells, epigenetic changes (e.g....

  15. Biophysical models of larval dispersal in the Benguela Current ...

    African Journals Online (AJOL)

    We synthesise and update results from the suite of biophysical, larval-dispersal models developed in the Benguela Current ecosystem. Biophysical models of larval dispersal use outputs of physical hydrodynamic models as inputs to individual-based models in which biological processes acting during the larval life are ...

  16. Biophysics: for HTS hit validation, chemical lead optimization, and beyond.

    Science.gov (United States)

    Genick, Christine C; Wright, S Kirk

    2017-09-01

    There are many challenges to the drug discovery process, including the complexity of the target, its interactions, and how these factors play a role in causing the disease. Traditionally, biophysics has been used for hit validation and chemical lead optimization. With its increased throughput and sensitivity, biophysics is now being applied earlier in this process to empower target characterization and hit finding. Areas covered: In this article, the authors provide an overview of how biophysics can be utilized to assess the quality of the reagents used in screening assays, to validate potential tool compounds, to test the integrity of screening assays, and to create follow-up strategies for compound characterization. They also briefly discuss the utilization of different biophysical methods in hit validation to help avoid the resource consuming pitfalls caused by the lack of hit overlap between biophysical methods. Expert opinion: The use of biophysics early on in the drug discovery process has proven crucial to identifying and characterizing targets of complex nature. It also has enabled the identification and classification of small molecules which interact in an allosteric or covalent manner with the target. By applying biophysics in this manner and at the early stages of this process, the chances of finding chemical leads with novel mechanisms of action are increased. In the future, focused screens with biophysics as a primary readout will become increasingly common.

  17. Microwave Tissue Ablation: Biophysics, Technology and Applications

    Science.gov (United States)

    2010-01-01

    Microwave ablation is an emerging treatment option for many cancers, cardiac arrhythmias and other medical conditions. During treatment, microwaves are applied directly to tissues to produce rapid temperature elevations sufficient to produce immediate coagulative necrosis. The engineering design criteria for each application differ, with individual consideration for factors such as desired ablation zone size, treatment duration, and procedural invasiveness. Recent technological developments in applicator cooling, power control and system optimization for specific applications promise to increase the utilization of microwave ablation in the future. This article will review the basic biophysics of microwave tissue heating, provide an overview of the design and operation of current equipment, and outline areas for future research for microwave ablation. PMID:21175404

  18. Biophysical mechanisms complementing "classical" cell biology.

    Science.gov (United States)

    Funk, Richard H W

    2018-01-01

    This overview addresses phenomena in cell- and molecular biology which are puzzling by their fast and highly coordinated way of organization. Generally, it appears that informative processes probably involved are more on the biophysical than on the classical biochemical side. The coordination problem is explained within the first part of the review by the topic of endogenous electrical phenomena. These are found e.g. in fast tissue organization and reorganization processes like development, wound healing and regeneration. Here, coupling into classical biochemical signaling and reactions can be shown by modern microscopy, electronics and bioinformatics. Further, one can follow the triggered reactions seamlessly via molecular biology till into genetics. Direct observation of intracellular electric processes is very difficult because of e.g. shielding through the cell membrane and damping by other structures. Therefore, we have to rely on photonic and photon - phonon coupling phenomena like molecular vibrations, which are addressed within the second part. Molecules normally possess different charge moieties and thus small electromagnetic (EMF) patterns arise during molecular vibration. These patterns can now be measured best within the optical part of the spectrum - much less in the lower terahertz till kHz and lower Hz part (third part of this review). Finally, EMFs facilitate quantum informative processes in coherent domains of molecular, charge and electron spin motion. This helps to coordinate such manifold and intertwined processes going on within cells, tissues and organs (part 4). Because the phenomena described in part 3 and 4 of the review still await really hard proofs we need concerted efforts and a combination of biophysics, molecular biology and informatics to unravel the described mysteries in "physics of life".

  19. NASA Satellite Observations: A Unique Asset for the Study of the Environment and Implications for Public Health

    Science.gov (United States)

    Estes Sue M.

    2010-01-01

    This slide presentation highlights how satellite observation systems are assets for studying the environment in relation to public health. It includes information on current and future satellite observation systems, NASA's public health and safety research, surveillance projects, and NASA's public health partners.

  20. Using biophysical models to manage nitrogen pollution from agricultural sources: Utopic or realistic approach for non-scientist users? Case study of a drinking water catchment area in Lorraine, France.

    Science.gov (United States)

    Bernard, Pierre-Yves; Benoît, Marc; Roger-Estrade, Jean; Plantureux, Sylvain

    2016-12-01

    The objectives of this comparison of two biophysical models of nitrogen losses were to evaluate first whether results were similar and second whether both were equally practical for use by non-scientist users. Results were obtained with the crop model STICS and the environmental model AGRIFLUX based on nitrogen loss simulations across a small groundwater catchment area (<1 km(2)) located in the Lorraine region in France. Both models simulate the influences of leaching and cropping systems on nitrogen losses in a relevant manner. The authors conclude that limiting the simulations to areas where soils with a greater risk of leaching cover a significant spatial extent would likely yield acceptable results because those soils have more predictable leaching of nitrogen. In addition, the choice of an environmental model such as AGRIFLUX which requires fewer parameters and input variables seems more user-friendly for agro-environmental assessment. The authors then discuss additional challenges for non-scientists such as lack of parameter optimization, which is essential to accurately assessing nitrogen fluxes and indirectly not to limit the diversity of uses of simulated results. Despite current restrictions, with some improvement, biophysical models could become useful environmental assessment tools for non-scientists. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. The study of polymeric hydro-gels with unique properties obtained by polymerization with gamma radiation processing

    International Nuclear Information System (INIS)

    Dragusin, M.

    1995-01-01

    This thesis presents the work carried out on polymeric hydro-gels obtained by radiation processing using 60 Co gamma rays from the irradiation facility IETI-10.000 (10 k Ci), and on the polymeric hydro-gels obtained by irradiation with the electron beams from a linear accelerator (6 MeV). The aim of the study was to determine the effect of the rate dose and total dose absorbed in the materials. There are presented the preparation methods of homo- and co-polymer hydro-gels (acrylics, namely anionic and neutral monomers (acrylamide, acrylic acid, vinyl acetate) and cationic monomers (di-methyl di-allyl ammonium chloride)) such as floculants, additives, absorbers, etc. Concerning with these we have analysed the preparation methods, the mechanical, thermal, diffusivity, and swelling properties of polymeric hydro-gels in a large variety of gels of type I or II. The technological aspects and end use were studied in connection with the characteristics of the radiation processing of these hydro-gels as a function of chemical composition rate and absorbed dose, swelling degree (low and very high hydro-soluble), mechanical and diffusional properties. (author) 33 figs., 12 tabs., 101 refs

  2. Responding to Trauma at Sea: A Case Study in Psychological First Aid, Unique Occupational Stressors, and Resiliency Self-Care.

    Science.gov (United States)

    Millegan, Jeffrey; Delaney, Eileen M; Klam, Warren

    2016-11-01

    The U.S. Navy deploys Special Psychiatric Rapid Intervention Teams (SPRINT) to sites of military disasters to assist survivors and the command. SPRINT functions primarily as a consultant to help commands effectively respond to the mental health needs of their service members following a traumatic event. Utilizing the principles of psychological first aid, the overall goal of SPRINT is to mitigate long-term mental health dysfunction and facilitate recovery at both the individual and unit level. We present a case study of a SPRINT mission to a deployed U.S. Navy ship in response to a cluster of suicides and subsequent concerns about the well-being of the remaining crew. Throughout this mission, important themes emerged, such as the impact of accumulated operational stressors and the subsequent development of mental health stigma. Also, this case study demonstrates the potential effectiveness of introducing resiliency self-care meditation training to remote environments that lack ready access to mental health resources. From here, SPRINT can provide a model for immediate disaster mental health response that has potential relevancy beyond the military. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.

  3. The structural chemistry of metallocorroles: combined X-ray crystallography and quantum chemistry studies afford unique insights.

    Science.gov (United States)

    Thomas, Kolle E; Alemayehu, Abraham B; Conradie, Jeanet; Beavers, Christine M; Ghosh, Abhik

    2012-08-21

    Although they share some superficial structural similarities with porphyrins, corroles, trianionic ligands with contracted cores, give rise to fundamentally different transition metal complexes in comparison with the dianionic porphyrins. Many metallocorroles are formally high-valent, although a good fraction of them are also noninnocent, with significant corrole radical character. These electronic-structural characteristics result in a variety of fascinating spectroscopic behavior, including highly characteristic, paramagnetically shifted NMR spectra and textbook cases of charge-transfer spectra. Although our early research on corroles focused on spectroscopy, we soon learned that the geometric structures of metallocorroles provide a fascinating window into their electronic-structural characteristics. Thus, we used X-ray structure determinations and quantum chemical studies, chiefly using DFT, to obtain a comprehensive understanding of metallocorrole geometric and electronic structures. This Account describes our studies of the structural chemistry of metallocorroles. At first blush, the planar or mildly domed structure of metallocorroles might appear somewhat uninteresting particularly when compared to metalloporphyrins. Metalloporphyrins, especially sterically hindered ones, are routinely ruffled or saddled, but the missing meso carbon apparently makes the corrole skeleton much more resistant to nonplanar distortions. Ruffling, where the pyrrole rings are alternately twisted about the M-N bonds, is energetically impossible for metallocorroles. Saddling is also uncommon; thus, a number of sterically hindered, fully substituted metallocorroles exhibit almost perfectly planar macrocycle cores. Against this backdrop, copper corroles stand out as an important exception. As a result of an energetically favorable Cu(d(x2-y2))-corrole(π) orbital interaction, copper corroles, even sterically unhindered ones, are inherently saddled. Sterically hindered substituents

  4. Statistical and Biophysical Models for Predicting Total and Outdoor Water Use in Los Angeles

    Science.gov (United States)

    Mini, C.; Hogue, T. S.; Pincetl, S.

    2012-04-01

    Modeling water demand is a complex exercise in the choice of the functional form, techniques and variables to integrate in the model. The goal of the current research is to identify the determinants that control total and outdoor residential water use in semi-arid cities and to utilize that information in the development of statistical and biophysical models that can forecast spatial and temporal urban water use. The City of Los Angeles is unique in its highly diverse socio-demographic, economic and cultural characteristics across neighborhoods, which introduces significant challenges in modeling water use. Increasing climate variability also contributes to uncertainties in water use predictions in urban areas. Monthly individual water use records were acquired from the Los Angeles Department of Water and Power (LADWP) for the 2000 to 2010 period. Study predictors of residential water use include socio-demographic, economic, climate and landscaping variables at the zip code level collected from US Census database. Climate variables are estimated from ground-based observations and calculated at the centroid of each zip code by inverse-distance weighting method. Remotely-sensed products of vegetation biomass and landscape land cover are also utilized. Two linear regression models were developed based on the panel data and variables described: a pooled-OLS regression model and a linear mixed effects model. Both models show income per capita and the percentage of landscape areas in each zip code as being statistically significant predictors. The pooled-OLS model tends to over-estimate higher water use zip codes and both models provide similar RMSE values.Outdoor water use was estimated at the census tract level as the residual between total water use and indoor use. This residual is being compared with the output from a biophysical model including tree and grass cover areas, climate variables and estimates of evapotranspiration at very high spatial resolution. A

  5. Studies toward the unique pederin family member psymberin: full structure elucidation, two alternative total syntheses, and analogs.

    Science.gov (United States)

    Feng, Yu; Jiang, Xin; De Brabander, Jef K

    2012-10-17

    Two synthetic approaches to psymberin have been accomplished. A highly convergent first generation synthesis led to the complete stereochemical assignment and demonstrated that psymberin and irciniastatin A are identical compounds. This synthesis featured a diastereoselective aldol coupling between the aryl fragment and a central tetrahydropyran core and a novel one-pot procedure to convert an amide, via intermediacy of a sensitive methyl imidate, to the N-acyl aminal reminiscent of psymberin. The highlights of the second generation synthesis include an efficient iridium-catalyzed enantioselective bisallylation of neopentyl glycol and a stepwise Sonogashira coupling/cycloisomerization/reduction sequence to construct the dihydroisocoumarin unit. The two synthetic avenues were achieved in 17-18 steps (longest linear sequence, ~14-15 isolations) from 3 fragments prepared in 7-8 (first generation) and 3-8 (second generation) steps each. This convergent approach allowed for the preparation of sufficient amounts of psymberin (~ 0.5 g) for follow-up biological studies. Meanwhile, our highly flexible strategy enabled the design and synthesis of multiple analogs, including a psymberin-pederin hybrid, termed psympederin, that proved crucial to a comprehensive understanding of the chemical biology of psymberin and related compounds that will be described in a subsequent manuscript.

  6. Kinetic and structural studies reveal a unique binding mode of sulfite to the nickel center in urease.

    Science.gov (United States)

    Mazzei, Luca; Cianci, Michele; Benini, Stefano; Bertini, Leonardo; Musiani, Francesco; Ciurli, Stefano

    2016-01-01

    Urease is the most efficient enzyme known to date, and catalyzes the hydrolysis of urea using two Ni(II) ions in the active site. Urease is a virulence factor in several human pathogens, while causing severe environmental and agronomic problems. Sporosarcina pasteurii urease has been used extensively in the structural characterization of the enzyme. Sodium sulfite has been widely used as a preservative in urease solutions to prevent oxygen-induced oxidation, but its role as an inhibitor has also been suggested. In the present study, isothermal titration microcalorimetry was used to establish sulfite as a competitive inhibitor for S. pasteurii urease, with an inhibition constant of 0.19mM at pH7. The structure of the urease-sulfite complex, determined at 1.65Å resolution, shows the inhibitor bound to the dinuclear Ni(II) center of urease in a tridentate mode involving bonds between the two Ni(II) ions in the active site and all three oxygen atoms of the inhibitor, supporting the observed competitive inhibition kinetics. This coordination mode of sulfite has never been observed, either in proteins or in small molecule complexes, and could inspire synthetic coordination chemists as well as biochemists to develop urease inhibitors based on this chemical moiety. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Biophysical properties and functional significance of stem water storage tissues in Neotropical savanna trees.

    Science.gov (United States)

    F.G. Scholz; S.J. Bucci; G. Goldstein; F.C. Meinzer; A.C. Franco; F. Miralles-Wilhelm

    2007-01-01

    Biophysical characteristics of sapwood and outer parenchyma water storage compartments were studied in stems of eight dominant Brazilian Cerrado tree species to assess the impact of differences in tissue capacitance on whole-plant water relations. Both the sapwood and outer parenchyma tissues played an important role in regulation of internal water deficits of Cerrado...

  8. A multivariate decision tree analysis of biophysical factors in tropical forest fire occurrence

    Science.gov (United States)

    Rey S. Ofren; Edward Harvey

    2000-01-01

    A multivariate decision tree model was used to quantify the relative importance of complex hierarchical relationships between biophysical variables and the occurrence of tropical forest fires. The study site is the Huai Kha Kbaeng wildlife sanctuary, a World Heritage Site in northwestern Thailand where annual fires are common and particularly destructive. Thematic...

  9. Computational topology and the Unique Games Conjecture

    OpenAIRE

    Grochow, Joshua A.; Tucker-Foltz, Jamie

    2018-01-01

    Covering spaces of graphs have long been useful for studying expanders (as "graph lifts") and unique games (as the "label-extended graph"). In this paper we advocate for the thesis that there is a much deeper relationship between computational topology and the Unique Games Conjecture. Our starting point is Linial's 2005 observation that the only known problems whose inapproximability is equivalent to the Unique Games Conjecture - Unique Games and Max-2Lin - are instances of Maximum Section of...

  10. Highly diverse, poorly studied and uniquely threatened by climate change: an assessment of marine biodiversity on South Georgia's continental shelf.

    Directory of Open Access Journals (Sweden)

    Oliver T Hogg

    Full Text Available We attempt to quantify how significant the polar archipelago of South Georgia is as a source of regional and global marine biodiversity. We evaluate numbers of rare, endemic and range-edge species and how the faunal structure of South Georgia may respond to some of the fastest warming waters on the planet. Biodiversity data was collated from a comprehensive review of reports, papers and databases, collectively representing over 125 years of polar exploration. Classification of each specimen was recorded to species level and fully geo-referenced by depth, latitude and longitude. This information was integrated with physical data layers (e.g. temperature, salinity and flow providing a visualisation of South Georgia's biogeography across spatial, temporal and taxonomic scales, placing it in the wider context of the Southern Hemisphere. This study marks the first attempt to map the biogeography of an archipelago south of the Polar Front. Through it we identify the South Georgian shelf as the most speciose region of the Southern Ocean recorded to date. Marine biodiversity was recorded as rich across taxonomic levels with 17,732 records yielding 1,445 species from 436 families, 51 classes and 22 phyla. Most species recorded were rare, with 35% recorded only once and 86% recorded <10 times. Its marine fauna is marked by the cumulative dominance of endemic and range-edge species, potentially at their thermal tolerance limits. Consequently, our data suggests the ecological implications of environmental change to the South Georgian marine ecosystem could be severe. If sea temperatures continue to rise, we suggest that changes will include depth profile shifts of some fauna towards cooler Antarctic Winter Water (90-150 m, the loss of some range-edge species from regional waters, and the wholesale extinction at a global scale of some of South Georgia's endemic species.

  11. Lattices with unique complements

    CERN Document Server

    Saliĭ, V N

    1988-01-01

    The class of uniquely complemented lattices properly contains all Boolean lattices. However, no explicit example of a non-Boolean lattice of this class has been found. In addition, the question of whether this class contains any complete non-Boolean lattices remains unanswered. This book focuses on these classical problems of lattice theory and the various attempts to solve them. Requiring no specialized knowledge, the book is directed at researchers and students interested in general algebra and mathematical logic.

  12. EFFECTS OF ACOUSTIC STIMULATION ON BIOPHYSICAL PROFILE TESTING TIME

    Directory of Open Access Journals (Sweden)

    M. Pourissa

    2008-04-01

    Full Text Available Biophysical profile (BPP test is the most commonly used antenatal test of fetal well-being. Purpose of this study is determining the influence of acoustic stimulation (AS on BPP testing time. About 55 pregnant women at 35 to 42 weeks who referred to department of Obstetric & Gynecology at university of medical sciences, Tabriz, Iran, were selected randomly. We used abdominal ultrasound guidance to place buzzer like device with power of 110 dB at the skin surface of the maternal abdomen, close to the fetal head. BPP test performed and BPP mean testing time calculated before and after AS. Data compared and analyzed by paired t-test. The results showed that fetal AS reduces the overall mean testing time from 24 minutes to 5 minutes. This clinical application can be helpful in busy clinics when rapid assessment of fetal health is required.

  13. Electrophysiological Data and the Biophysical Modelling of Local Cortical Circuits

    Directory of Open Access Journals (Sweden)

    Dimitris Pinotsis

    2014-03-01

    Full Text Available This paper shows how recordings of gamma oscillations – under different experimental conditions or from different subjects – can be combined with a class of population models called neural fields and dynamic causal modeling (DCM to distinguish among alternative hypotheses regarding cortical structure and function. This approach exploits inter-subject variability and trial-specific effects associated with modulations in the peak frequency of gamma oscillations. It draws on the computational power of Bayesian model inversion, when applied to neural field models of cortical dynamics. Bayesian model comparison allows one to adjudicate among different mechanistic hypotheses about cortical excitability, synaptic kinetics and the cardinal topographic features of local cortical circuits. It also provides optimal parameter estimates that quantify neuromodulation and the spatial dispersion of axonal connections or summation of receptive fields in the visual cortex. This paper provides an overview of a family of neural field models that have been recently implemented using the DCM toolbox of the academic freeware Statistical Parametric Mapping (SPM. The SPM software is a popular platform for analyzing neuroimaging data, used by several neuroscience communities worldwide. DCM allows for a formal (Bayesian statistical analysis of cortical network connectivity, based upon realistic biophysical models of brain responses. It is this particular feature of DCM – the unique combination of generative models with optimization techniques based upon (variational Bayesian principles – that furnishes a novel way to characterize functional brain architectures. In particular, it provides answers to questions about how the brain is wired and how it responds to different experimental manipulations. For a review of the general role of neural fields in SPM the reader can consult e.g. see [1]. Neural fields have a long and illustrious history in mathematical

  14. A Unique (3+2) Annulation Reaction between Meldrum's Acid and Nitrones: Mechanistic Insight by ESI-IMS-MS and DFT Studies.

    Science.gov (United States)

    Lespes, Nicolas; Pair, Etienne; Maganga, Clisy; Bretier, Marie; Tognetti, Vincent; Joubert, Laurent; Levacher, Vincent; Hubert-Roux, Marie; Afonso, Carlos; Loutelier-Bourhis, Corinne; Brière, Jean-François

    2018-03-15

    The fragile intermediates of the domino process leading to an isoxazolidin-5-one, triggered by unique reactivity between Meldrum's acid and an N-benzyl nitrone in the presence of a Brønsted base, were determined thanks to the softness and accuracy of electrospray ionization mass spectrometry coupled to ion mobility spectrometry (ESI-IMS-MS). The combined DFT study shed light on the overall organocatalytic sequence that starts with a stepwise (3+2) annulation reaction that is followed by a decarboxylative protonation sequence encompassing a stereoselective pathway issue. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Apocynin: Chemical and Biophysical Properties of a NADPH Oxidase Inhibitor

    Directory of Open Access Journals (Sweden)

    Valdecir F. Ximenes

    2013-03-01

    Full Text Available Apocynin is the most employed inhibitor of NADPH oxidase (NOX, a multienzymatic complex capable of catalyzing the one-electron reduction of molecular oxygen to the superoxide anion. Despite controversies about its selectivity, apocynin has been used as one of the most promising drugs in experimental models of inflammatory and neurodegenerative diseases. Here, we aimed to study the chemical and biophysical properties of apocynin. The oxidation potential was determined by cyclic voltammetry (Epa = 0.76V, the hydrophobicity index was calculated (logP = 0.83 and the molar absorption coefficient was determined (e275nm = 1.1 × 104 M−1 cm−1. Apocynin was a weak free radical scavenger (as measured using the DPPH, peroxyl radical and nitric oxide assays when compared to protocatechuic acid, used here as a reference antioxidant. On the other hand, apocynin was more effective than protocatechuic acid as scavenger of the non-radical species hypochlorous acid. Apocynin reacted promptly with the non-radical reactive species H2O2 only in the presence of peroxidase. This finding is relevant, since it represents a new pathway for depleting H2O2 in cellular experimental models, besides the direct inhibition of NADPH oxidase. This could be relevant for its application as an inhibitor of NOX4, since this isoform produces H2O2 and not superoxide anion. The binding parameters calculated by fluorescence quenching showed that apocynin binds to human serum albumin (HSA with a binding affinity of 2.19 × 104 M−1. The association did not alter the secondary and tertiary structure of HSA, as verified by synchronous fluorescence and circular dichroism. The displacement of fluorescent probes suggested that apocynin binds to site I and site II of HSA. Considering the current biomedical applications of this phytochemical, the dissemination of these chemical and biophysical properties can be very helpful for scientists and physicians interested in the use of apocynin.

  16. Biophysical and biomathematical adventures in radiobiology

    International Nuclear Information System (INIS)

    Scott, B.R.

    1991-01-01

    Highlights of my biophysical and biomathematical adventures in radiobiology is presented. Early adventures involved developing ''state-vector models'' for specific harmful effects (cell killing, life shortening) of exposure to radiation. More recent adventures led to developing ''hazard-function models'' for predicting biological effects (e.g., cell killing, mutations, tumor induction) of combined exposure to different toxicants. Hazard-function models were also developed for predicting harm to man from exposure to large radiation doses. Major conclusions derived from the modeling adventures are as follows: (1) synergistic effects of different genotoxic agents should not occur at low doses; (2) for exposure of the lung or bone marrow to large doses of photon radiation, low rates of exposure should be better tolerated than high rates; and (3) for some types of radiation (e.g., alpha particles and fission neutrons), moderate doses delivered at a low rate may be more harmful than the same dose given at a high rate. 53 refs., 7 figs

  17. Review of FEWS NET Biophysical Monitoring Requirements

    Science.gov (United States)

    Ross, K. W.; Brown, Molly E.; Verdin, J.; Underwood, L. W.

    2009-01-01

    The Famine Early Warning System Network (FEWS NET) provides monitoring and early warning support to decision makers responsible for responding to famine and food insecurity. FEWS NET transforms satellite remote sensing data into rainfall and vegetation information that can be used by these decision makers. The National Aeronautics and Space Administration has recently funded activities to enhance remote sensing inputs to FEWS NET. To elicit Earth observation requirements, a professional review questionnaire was disseminated to FEWS NET expert end-users: it focused upon operational requirements to determine additional useful remote sensing data and; subsequently, beneficial FEWS NET biophysical supplementary inputs. The review was completed by over 40 experts from around the world, enabling a robust set of professional perspectives to be gathered and analyzed rapidly. Reviewers were asked to evaluate the relative importance of environmental variables and spatio-temporal requirements for Earth science data products, in particular for rainfall and vegetation products. The results showed that spatio-temporal resolution requirements are complex and need to vary according to place, time, and hazard: that high resolution remote sensing products continue to be in demand, and that rainfall and vegetation products were valued as data that provide actionable food security information.

  18. Contribution to researches in biophysics and biology

    International Nuclear Information System (INIS)

    Luccioni, Catherine

    2000-01-01

    In this accreditation to supervise research, the author indicates its curriculum and scientific works which mainly dealt with the different agents used in chemotherapy. Scientific works addressed anti-carcinogenic pharmacology, applied biophysics, and researches in oncology and radiobiology. Current research projects deal with mechanisms of cellular transformation and the implication of the anti-oxidising metabolism and of nucleotide metabolism in cell radio-sensitivity. Teaching and research supervising activities are also indicated. Several articles are proposed in appendix: Average quality factor and dose equivalent meter based on microdosimetry techniques; Activity of thymidylate synthetase, thymidine kinase and galactokinase in primary and xenografted human colorectal cancers in relation to their chromosomal patterns; Nucleotide metabolism in human gliomas, relation to the chromosomal profile; Pyrimidine nucleotide metabolism in human colon carcinomas: comparison of normal tissues, primary tumors and xenografts; Modifications of the antioxidant metabolism during proliferation and differentiation of colon tumours cell lines; Modulation of the antioxidant enzymes, p21 and p53 expression during proliferation and differentiation of human melanoma cell lines; Purine metabolism in 2 human melanoma cell lines, relation with proliferation and differentiation; Radiation-induced changes in nucleotide metabolism of 2 colon cancer cell lines with different radio-sensitivities

  19. Biochemical and Biophysical Cues in Matrix Design for Chronic and Diabetic Wound Treatment.

    Science.gov (United States)

    Xiao, Yun; Ahadian, Samad; Radisic, Milica

    2017-02-01

    Progress in biomaterial science and engineering and increasing knowledge in cell biology have enabled us to develop functional biomaterials providing appropriate biochemical and biophysical cues for tissue regeneration applications. Tissue regeneration is particularly important to treat chronic wounds of people with diabetes. Understanding and controlling the cellular microenvironment of the wound tissue are important to improve the wound healing process. In this study, we review different biochemical (e.g., growth factors, peptides, DNA, and RNA) and biophysical (e.g., topographical guidance, pressure, electrical stimulation, and pulsed electromagnetic field) cues providing a functional and instructive acellular matrix to heal diabetic chronic wounds. The biochemical and biophysical signals generally regulate cell-matrix interactions and cell behavior and function inducing the tissue regeneration for chronic wounds. Some technologies and devices have already been developed and used in the clinic employing biochemical and biophysical cues for wound healing applications. These technologies can be integrated with smart biomaterials to deliver therapeutic agents to the wound tissue in a precise and controllable manner. This review provides useful guidance in understanding molecular mechanisms and signals in the healing of diabetic chronic wounds and in designing instructive biomaterials to treat them.

  20. Is Life Unique?

    Science.gov (United States)

    Abel, David L.

    2011-01-01

    Is life physicochemically unique? No. Is life unique? Yes. Life manifests innumerable formalisms that cannot be generated or explained by physicodynamics alone. Life pursues thousands of biofunctional goals, not the least of which is staying alive. Neither physicodynamics, nor evolution, pursue goals. Life is largely directed by linear digital programming and by the Prescriptive Information (PI) instantiated particularly into physicodynamically indeterminate nucleotide sequencing. Epigenomic controls only compound the sophistication of these formalisms. Life employs representationalism through the use of symbol systems. Life manifests autonomy, homeostasis far from equilibrium in the harshest of environments, positive and negative feedback mechanisms, prevention and correction of its own errors, and organization of its components into Sustained Functional Systems (SFS). Chance and necessity—heat agitation and the cause-and-effect determinism of nature’s orderliness—cannot spawn formalisms such as mathematics, language, symbol systems, coding, decoding, logic, organization (not to be confused with mere self-ordering), integration of circuits, computational success, and the pursuit of functionality. All of these characteristics of life are formal, not physical. PMID:25382119

  1. Developing spatial biophysical accounting for multiple ecosystem services

    NARCIS (Netherlands)

    Remme, R.P.; Schroter, M.; Hein, L.G.

    2014-01-01

    Ecosystem accounting is receiving increasing interest as a way to systematically monitor the conditions of ecosystems and the ecosystem services they provide. A critical element of ecosystem accounting is understanding spatially explicit flows of ecosystem services. We developed spatial biophysical

  2. Developing a protocol for managing the biophysical condition of a ...

    African Journals Online (AJOL)

    Their function will focus on the overall management of water resources on a ... for the integrated management of the biophysical component of a catchment, with ... and implement a protocol which will combine and integrate the knowledge of ...

  3. Biophysical approach to low back pain: a pilot report

    Czech Academy of Sciences Publication Activity Database

    Foletti, A.; Pokorný, Jiří

    2015-01-01

    Roč. 34, č. 2 (2015), s. 156-159 ISSN 1536-8378 Institutional support: RVO:67985882 Keywords : Bioelectromagnetic medicine * Biophysical therapy * Coherence domains Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.208, year: 2015

  4. [Biophysical principles of collagen cross-linking].

    Science.gov (United States)

    Spörl, E; Raiskup-Wolf, F; Pillunat, L E

    2008-02-01

    The reduced mechanical stability of the cornea in keratoconus or in keratectasia after Lasik may be increased by photooxidative cross-linking of corneal collagen. The biophysical principles are compiled for the safe and effective application of this new treatment method. The setting of the therapy parameters should be elucidated from the absorption behaviour of the cornea. The safety of the method for the endothelium cells and the lens will be discussed. The induced cross-links are shown to be the result of changes in the physico-chemical properties of the cornea. To reach a high absorption of the irradiation energy in the cornea, riboflavin of a concentration of 0.1% and UV light of a wavelength of 370 nm, corresponding to the relative maximum of absorption of riboflavin, were used. An irradiance of 3 mW/cm(2) and an irradiation time of 30 min lead to an increase of the mechanical stiffness. The endothelium cells will be protected due to the high absorption within the cornea, that means the damaging threshold of the endothelium cells will not be reached in a 400 microm thick stroma. As evidence for cross-links we can consider the increase of the biomechanical stiffness, the increased resistance against enzymatic degradation, a higher shrinkage temperature, a lower swelling rate and an increased diameter of collagen fibres. The therapy parameters were tested experimentally and have been proven clinically in the corneal collagen cross-linking. These parameters should be respected to reach a safe cross-linking effect without damage of the adjacent tissues.

  5. Smoothing of, and parameter estimation from, noisy biophysical recordings.

    Directory of Open Access Journals (Sweden)

    Quentin J M Huys

    2009-05-01

    Full Text Available Biophysically detailed models of single cells are difficult to fit to real data. Recent advances in imaging techniques allow simultaneous access to various intracellular variables, and these data can be used to significantly facilitate the modelling task. These data, however, are noisy, and current approaches to building biophysically detailed models are not designed to deal with this. We extend previous techniques to take the noisy nature of the measurements into account. Sequential Monte Carlo ("particle filtering" methods, in combination with a detailed biophysical description of a cell, are used for principled, model-based smoothing of noisy recording data. We also provide an alternative formulation of smoothing where the neural nonlinearities are estimated in a non-parametric manner. Biophysically important parameters of detailed models (such as channel densities, intercompartmental conductances, input resistances, and observation noise are inferred automatically from noisy data via expectation-maximization. Overall, we find that model-based smoothing is a powerful, robust technique for smoothing of noisy biophysical data and for inference of biophysical parameters in the face of recording noise.

  6. Exploring the effect of Vitamin E in Cancer Chemotherapy- A Biochemical and Biophysical Insight.

    Science.gov (United States)

    Bhori, Mustansir; Singh, Kanchanlata; Marar, Thankamani; MuraliKrishna, C

    2018-05-16

    Many oncologists contend that patient undergoing chemotherapy must avoid antioxidant supplementation as it may interfere with the activity of the drug. In the present investigation, we have explored the influence of vitamin E, a well known antioxidant on Camptothecin (CPT), a potent anti-cancer drug induced cell apoptosis and death of cervical cancer cells. HeLa cells were treated with different concentrations of CPT in presence and absence of 100μm vitamin E. Treated cells were subjected to cytotoxicity studies, catalase assay, DNA fragmentation assay, clonogenic assay and flow cytometry based apoptosis detection. Also, Raman spectroscopy a label free technique which provides global information in conjunction with multivariate tools like PCA, PCLDA and FDA, was investigated to explore vitamin E supplementation induced alterations. Our data based on biochemical and biophysical experimental analysis reveals that CPT causes DNA damage along with protein and lipid alteration culminating in cell death. Importantly, Raman spectroscopic analysis could uniquely differentiate the cluster of control and vitamin E control from CPT and CPT+Vit E treated cells. We conclusively prove that presence of vitamin E at 100μM concentration shows promising antioxidant activity and displays no modulatory role on CPT induced effect, thereby causing no possible hindrance with the efficacy of the drug. Vitamin E may prove beneficial to alleviate chemotherapy associated side effects in patients during clinical settings which may open the doors further for subsequent exploration in in vivo pre clinical studies. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Application of next-generation sequencing technology to study genetic diversity and identify unique SNP markers in bread wheat from Kazakhstan.

    Science.gov (United States)

    Shavrukov, Yuri; Suchecki, Radoslaw; Eliby, Serik; Abugalieva, Aigul; Kenebayev, Serik; Langridge, Peter

    2014-09-28

    New SNP marker platforms offer the opportunity to investigate the relationships between wheat cultivars from different regions and assess the mechanism and processes that have led to adaptation to particular production environments. Wheat breeding has a long history in Kazakhstan and the aim of this study was to explore the relationship between key varieties from Kazakhstan and germplasm from breeding programs for other regions. The study revealed 5,898 polymorphic markers amongst ten cultivars, of which 2,730 were mapped in the consensus genetic map. Mapped SNP markers were distributed almost equally across the A and B genomes, with between 279 and 484 markers assigned to each chromosome. Marker coverage was approximately 10-fold lower in the D genome. There were 863 SNP markers identified as unique to specific cultivars, and clusters of these markers (regions containing more than three closely mapped unique SNPs) showed specific patterns on the consensus genetic map for each cultivar. Significant intra-varietal genetic polymorphism was identified in three cultivars (Tzelinnaya 3C, Kazakhstanskaya rannespelaya and Kazakhstanskaya 15). Phylogenetic analysis based on inter-varietal polymorphism showed that the very old cultivar Erythrospermum 841 was the most genetically distinct from the other nine cultivars from Kazakhstan, falling in a clade together with the American cultivar Sonora and genotypes from Central and South Asia. The modern cultivar Kazakhstanskaya 19 also fell into a separate clade, together with the American cultivar Thatcher. The remaining eight cultivars shared a single sub-clade but were categorised into four clusters. The accumulated data for SNP marker polymorphisms amongst bread wheat genotypes from Kazakhstan may be used for studying genetic diversity in bread wheat, with potential application for marker-assisted selection and the preparation of a set of genotype-specific markers.

  8. Biophysical characterization of a de novo elastin

    Science.gov (United States)

    Greenland, Kelly Nicole

    Natural human elastin is found in tissue such as the lungs, arteries, and skin. This protein is formed at birth with no mechanism present to repair or supplement the initial quantity formed. As a result, the functionality and durability of elastin's elasticity is critically important. To date, the mechanics of this ability to stretch and recoil is not fully understood. This study utilizes de novo protein design to create a small library of simplistic versions of elastin-like proteins, demonstrate the elastin-like proteins, maintain elastin's functionality, and inquire into its structure using solution nuclear magnetic resonance (NMR). Elastin is formed from cross-linked tropoelastin. Therefore, the first generation of designed proteins consisted of one protein that utilized homogony of interspecies tropoelastin by using three common domains, two hydrophobic and one cross-linking domains. Basic modifications were made to open the hydrophobic region and also to make the protein easier to purify and characterize. The designed protein maintained its functionality, self-aggregating as the temperature increased. Uniquely, the protein remained self-aggregated as the temperature returned below the critical transition temperature. Self-aggregation was additionally induced by increasing salt concentrations and by modifying the pH. The protein appeared to have little secondary structure when studied with solution NMR. These results fueled a second generation of designed elastin-like proteins. This generation contained variations designed to study the cross-linking domain, one specific hydrophobic domain, and the effect of the length of the elastin-like protein. The cross-linking domain in one variation has been significantly modified while the flanking hydrophobic domains have remained unchanged. This characterization of this protein will answer questions regarding the specificity of the homologous nature of the cross-linking domain of tropoelastin across species. A second

  9. Uniqueness theorems in linear elasticity

    CERN Document Server

    Knops, Robin John

    1971-01-01

    The classical result for uniqueness in elasticity theory is due to Kirchhoff. It states that the standard mixed boundary value problem for a homogeneous isotropic linear elastic material in equilibrium and occupying a bounded three-dimensional region of space possesses at most one solution in the classical sense, provided the Lame and shear moduli, A and J1 respectively, obey the inequalities (3 A + 2 J1) > 0 and J1>O. In linear elastodynamics the analogous result, due to Neumann, is that the initial-mixed boundary value problem possesses at most one solution provided the elastic moduli satisfy the same set of inequalities as in Kirchhoffs theorem. Most standard textbooks on the linear theory of elasticity mention only these two classical criteria for uniqueness and neglect altogether the abundant literature which has appeared since the original publications of Kirchhoff. To remedy this deficiency it seems appropriate to attempt a coherent description ofthe various contributions made to the study of uniquenes...

  10. Epigenetic modulation of the biophysical properties of drug-resistant cell lipids to restore drug transport and endocytic functions.

    Science.gov (United States)

    Vijayaraghavalu, Sivakumar; Peetla, Chiranjeevi; Lu, Shan; Labhasetwar, Vinod

    2012-09-04

    In our recent studies exploring the biophysical characteristics of resistant cell lipids, and the role they play in drug transport, we demonstrated the difference of drug-resistant breast cancer cells from drug-sensitive cells in lipid composition and biophysical properties, suggesting that cancer cells acquire a drug-resistant phenotype through the alteration of lipid synthesis to inhibit intracellular drug transport to protect from cytotoxic effect. In cancer cells, epigenetic changes (e.g., DNA hypermethylation) are essential to maintain this drug-resistant phenotype. Thus, altered lipid synthesis may be linked to epigenetic mechanisms of drug resistance. We hypothesize that reversing DNA hypermethylation in resistant cells with an epigenetic drug could alter lipid synthesis, changing the cell membrane's biophysical properties to facilitate drug delivery to overcome drug resistance. Herein we show that treating drug-resistant breast cancer cells (MCF-7/ADR) with the epigenetic drug 5-aza-2'-deoxycytidine (decitabine) significantly alters cell lipid composition and biophysical properties, causing the resistant cells to acquire biophysical characteristics similar to those of sensitive cell (MCF-7) lipids. Following decitabine treatment, resistant cells demonstrated increased sphingomyelinase activity, resulting in a decreased sphingomyelin level that influenced lipid domain structures, increased membrane fluidity, and reduced P-glycoprotein expression. Changes in the biophysical characteristics of resistant cell lipids facilitated doxorubicin transport and restored endocytic function for drug delivery with a lipid-encapsulated form of doxorubicin, enhancing the drug efficacy. In conclusion, we have established a new mechanism for efficacy of an epigenetic drug, mediated through changes in lipid composition and biophysical properties, in reversing cancer drug resistance.

  11. Effects of LiDAR point density, sampling size and height threshold on estimation accuracy of crop biophysical parameters.

    Science.gov (United States)

    Luo, Shezhou; Chen, Jing M; Wang, Cheng; Xi, Xiaohuan; Zeng, Hongcheng; Peng, Dailiang; Li, Dong

    2016-05-30

    Vegetation leaf area index (LAI), height, and aboveground biomass are key biophysical parameters. Corn is an important and globally distributed crop, and reliable estimations of these parameters are essential for corn yield forecasting, health monitoring and ecosystem modeling. Light Detection and Ranging (LiDAR) is considered an effective technology for estimating vegetation biophysical parameters. However, the estimation accuracies of these parameters are affected by multiple factors. In this study, we first estimated corn LAI, height and biomass (R2 = 0.80, 0.874 and 0.838, respectively) using the original LiDAR data (7.32 points/m2), and the results showed that LiDAR data could accurately estimate these biophysical parameters. Second, comprehensive research was conducted on the effects of LiDAR point density, sampling size and height threshold on the estimation accuracy of LAI, height and biomass. Our findings indicated that LiDAR point density had an important effect on the estimation accuracy for vegetation biophysical parameters, however, high point density did not always produce highly accurate estimates, and reduced point density could deliver reasonable estimation results. Furthermore, the results showed that sampling size and height threshold were additional key factors that affect the estimation accuracy of biophysical parameters. Therefore, the optimal sampling size and the height threshold should be determined to improve the estimation accuracy of biophysical parameters. Our results also implied that a higher LiDAR point density, larger sampling size and height threshold were required to obtain accurate corn LAI estimation when compared with height and biomass estimations. In general, our results provide valuable guidance for LiDAR data acquisition and estimation of vegetation biophysical parameters using LiDAR data.

  12. IS THERE ANY ASSOCIATION BETWEEN MATERNAL DEPRESSION AND BIOPHYSICAL PROFILE?

    Directory of Open Access Journals (Sweden)

    M Z Pezeshki

    2008-11-01

    Full Text Available "nMother's mental health status during pregnancy has important effects on fetal growth and development. However, there are few studies concerning association of maternal depression and biophysical profile (BPP of the fetus. We performed this research to know if maternal depression has any association with fetal BPP score. For measuring depression, Farsi version of Patient Health Questionnaire-9 (PHQ-9 was completed. A total of 100 pregnant women in their third trimester (>24 weeks who had not hyperthyroidism, hypothyroidism, eclampsia and preeclampsia, fever, infection, diabetes or a fetus with intrauterine growth retardation (IUGR and were not using any medication entered the study. Spearman correlation coefficient between the score of PHQ-9 questionnaire and BPP score was -0.08 (P = 0.43. Based on Kruskal Wallis test, there was no difference in BPP score of depressed and nondepressed women (P = 0.65. We found no relationship between maternal depression and BPP score in third trimester of pregnancy. Further studies for elucidating neuro-hormonal mechanisms related to the result of our study are suggested

  13. Biophysical and morphological effects of nanodiamond/nanoplatinum solution (DPV576) on metastatic murine breast cancer cells in vitro

    International Nuclear Information System (INIS)

    Ghoneum, Alia; Zhu, Huanqi; Woo, JungReem; Zabinyakov, Nikita; Sharma, Shivani; Gimzewski, James K

    2014-01-01

    Nanoparticles have recently gained increased attention as drug delivery systems for the treatment of cancer due to their minute size and unique chemical properties. However, very few studies have tested the biophysical changes associated with nanoparticles on metastatic cancer cells at the cellular and sub-cellular scales. Here, we investigated the mechanical and morphological properties of cancer cells by measuring the changes in cell Young’s Modulus using AFM, filopodial retraction (FR) by time lapse optical light microscopy imaging and filopodial disorganization by high resolution AFM imaging of cells upon treatment with nanoparticles. In the current study, nanomechanical changes in live murine metastatic breast cancer cells (4T1) post exposure to a nanodiamond/nanoplatinum mixture dispersed in aqueous solution (DPV576), were monitored. Results showed a decrease in Young’s modulus at two hours post treatment with DPV576 in a dose dependent manner. Partial FR at 20 min and complete FR at 40 min were observed. Moreover, analysis of the retraction distance (in microns) measured over time (minutes), showed that a DPV576 concentration of 15%v/v yielded the highest FR rate. In addition, DPV576 treated cells showed early signs of filopodial disorganization and disintegration. This study demonstrates the changes in cell stiffness and tracks early structural alterations of metastatic breast cancer cells post treatment with DPV576, which may have important implications in the role of nanodiamond/nanoplatinum based cancer cell therapy and sensitization to chemotherapy drugs. (paper)

  14. Unofficial Road Building in the Amazon: Socioeconomic and Biophysical Explanations

    Science.gov (United States)

    Perz, Stephen G.; Caldas, Marcellus M.; Arima, Eugenio; Walker, Robert J.

    2007-01-01

    Roads have manifold social and environmental impacts, including regional development, social conflicts and habitat fragmentation. 'Road ecology' has emerged as an approach to evaluate the various ecological and hydrological impacts of roads. This article aims to complement road ecology by examining the socio-spatial processes of road building itself. Focusing on the Brazilian Amazon, a heavily-studied context due to forest fragmentation by roads, the authors consider non-state social actors who build 'unofficial roads' for the purpose of gaining access to natural resources to support livelihoods and community development. They examine four case studies of roads with distinct histories in order to explain the socio-spatial processes behind road building in terms of profit maximization, land tenure claims, co-operative and conflictive political ecologies, and constraints as well as opportunities afforded by the biophysical environment. The study cases illustrate the need for a multi-pronged theoretical approach to understanding road building, and call for more attention to the role of non-state actors in unofficial road construction.

  15. Biophysical Characterization of α-Synuclein and Rotenone Interaction

    Directory of Open Access Journals (Sweden)

    Anthony L. Fink

    2013-09-01

    Full Text Available Previous studies revealed that pesticides interact with α-synuclein and accelerate the rate of fibrillation. These results are consistent with the prevailing hypothesis that the direct interaction of α-synuclein with pesticides is one of many suspected factors leading to α-synuclein fibrillation and ultimately to Parkinson’s disease. In this study, the biophysical properties and fibrillation kinetics of α-synuclein in the presence of rotenone were investigated and, more specifically, the effects of rotenone on the early-stage misfolded forms of α-synuclein were considered. The thioflavine T (ThT fluorescence assay studies provide evidence that early-phase misfolded α-synuclein forms are affected by rotenone and that the fibrillation process is accelerated. Further characterization by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR shows that rotenone increases the amount of ordered secondary structure in this intrinsically disordered protein. Morphological characterization by transmission electron microscopy (TEM and atomic force microscopy (AFM provide visualization of the differences in the aggregated α-synuclein species developing during the early kinetics of the fibrillation process in the absence and presence of rotenone. We believe that these data provide useful information for a better understanding of the molecular basis of rotenone-induced misfolding and aggregation of α-synuclein.

  16. Biophysical model of prokaryotic diversity in geothermal hot springs.

    Science.gov (United States)

    Klales, Anna; Duncan, James; Nett, Elizabeth Janus; Kane, Suzanne Amador

    2012-02-01

    Recent studies of photosynthetic bacteria living in geothermal hot spring environments have revealed surprisingly complex ecosystems with an unexpected level of genetic diversity. One case of particular interest involves the distribution along hot spring thermal gradients of genetically distinct bacterial strains that differ in their preferred temperatures for reproduction and photosynthesis. In such systems, a single variable, temperature, defines the relevant environmental variation. In spite of this, each region along the thermal gradient exhibits multiple strains of photosynthetic bacteria adapted to several distinct thermal optima, rather than a single thermal strain adapted to the local environmental temperature. Here we analyze microbiology data from several ecological studies to show that the thermal distribution data exhibit several universal features independent of location and specific bacterial strain. These include the distribution of optimal temperatures of different thermal strains and the functional dependence of the net population density on temperature. We present a simple population dynamics model of these systems that is highly constrained by biophysical data and by physical features of the environment. This model can explain in detail the observed thermal population distributions, as well as certain features of population dynamics observed in laboratory studies of the same organisms. © 2012 American Physical Society

  17. Soil functional types: surveying the biophysical dimensions of soil security

    Science.gov (United States)

    Cécillon, Lauric; Barré, Pierre

    2015-04-01

    Soil is a natural capital that can deliver key ecosystem services (ES) to humans through the realization of a series of soil processes controlling ecosystem functioning. Soil is also a diverse and endangered natural resource. A huge pedodiversity has been described at all scales, which is strongly altered by global change. The multidimensional concept soil security, encompassing biophysical, economic, social, policy and legal frameworks of soils has recently been proposed, recognizing the role of soils in global environmental sustainability challenges. The biophysical dimensions of soil security focus on the functionality of a given soil that can be viewed as the combination of its capability and its condition [1]. Indeed, all soils are not equal in term of functionality. They show different processes, provide different ES to humans and respond specifically to global change. Knowledge of soil functionality in space and time is thus a crucial step towards the achievement soil security. All soil classification systems incorporate some functional information, but soil taxonomy alone cannot fully describe the functioning, limitations, resistance and resilience of soils. Droogers and Bouma [2] introduced functional variants (phenoforms) for each soil type (genoform) so as to fit more closely to soil functionality. However, different genoforms can have the same functionality. As stated by McBratney and colleagues [1], there is a great need of an agreed methodology for defining the reference state of soil functionality. Here, we propose soil functional types (SFT) as a relevant classification system for the biophysical dimensions of soil security. Following the definition of plant functional types widely used in ecology, we define a soil functional type as "a set of soil taxons or phenoforms sharing similar processes (e.g. soil respiration), similar effects on ecosystem functioning (e.g. primary productivity) and similar responses to global change (land-use, management or

  18. The application of multiple biophysical cues to engineer functional neocartilage for treatment of osteoarthritis. Part I: cellular response.

    Science.gov (United States)

    Brady, Mariea A; Waldman, Stephen D; Ethier, C Ross

    2015-02-01

    Osteoarthritis (OA) is a complex disease of the joint for which current treatments are unsatisfactory, thus motivating development of tissue engineering (TE)-based therapies. To date, TE strategies have had some success, developing replacement tissue constructs with biochemical properties approaching that of native cartilage. However, poor biomechanical properties and limited postimplantation integration with surrounding tissue are major shortcomings that need to be addressed. Functional tissue engineering strategies that apply physiologically relevant biophysical cues provide a platform to improve TE constructs before implantation. In the previous decade, new experimental and theoretical findings in cartilage biomechanics and electromechanics have emerged, resulting in an increased understanding of the complex interplay of multiple biophysical cues in the extracellular matrix of the tissue. The effect of biophysical stimulation on cartilage, and the resulting chondrocyte-mediated biosynthesis, remodeling, degradation, and repair, has, therefore, been extensively explored by the TE community. This article compares and contrasts the cellular response of chondrocytes to multiple biophysical stimuli, and may be read in conjunction with its companion paper that compares and contrasts the subsequent intracellular signal transduction cascades. Mechanical, magnetic, and electrical stimuli promote proliferation, differentiation, and maturation of chondrocytes within established dose parameters or "biological windows." This knowledge will provide a framework for ongoing studies incorporating multiple biophysical cues in TE functional neocartilage for treatment of OA.

  19. Biophysical Aspects of Radiation Quality. Second Panel Report

    International Nuclear Information System (INIS)

    1968-01-01

    quality, the variation of radiosensitivity in the mammalian cell cycle and the relative biological effectiveness (RBE) of neutrons at very low doses. In addition to presenting and discussing their scientific work the participants found it desirable to give a brief survey of radiation biophysics under the headings of Radiobiology, Medical and Radiation Protection Applications, and Basic Physical Sciences. It is hoped that this survey, together with the papers, discussions and recommendations, will make a further impact on radiation biology studies and the Agency's programme in this field

  20. Cancer: Unique to Older Adults

    Science.gov (United States)

    ... A to Z › Cancer › Unique to Older Adults Font size A A A Print Share Glossary Unique ... group with other older people with the same type of cancer. Researchers have found that support groups ...

  1. Materials science and biophysics applications at the ISOLDE radioactive ion beam facility

    Energy Technology Data Exchange (ETDEWEB)

    Wahl, U., E-mail: uwahl@itn.pt [Instituto Tecnologico e Nuclear, Estrada Nacional 10, 2686-953 Sacavem (Portugal); Centro de Fisica Nuclear da Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003 Lisboa (Portugal)

    2011-12-15

    The ISOLDE isotope separator facility at CERN provides a variety of radioactive ion beams, currently more than 800 different isotopes from {approx}70 chemical elements. The radioisotopes are produced on-line by nuclear reactions from a 1.4 GeV proton beam with various types of targets, outdiffusion of the reaction products and, if possible, chemically selective ionisation, followed by 60 kV acceleration and mass separation. While ISOLDE is mainly used for nuclear and atomic physics studies, applications in materials science and biophysics account for a significant part (currently {approx}15%) of the delivered beam time, requested by 18 different experiments. The ISOLDE materials science and biophysics community currently consists of {approx}80 scientists from more than 40 participating institutes and 21 countries. In the field of materials science, investigations focus on the study of semiconductors and oxides, with the recent additions of nanoparticles and metals, while the biophysics studies address the toxicity of metal ions in biological systems. The characterisation methods used are typical radioactive probe techniques such as Moessbauer spectroscopy, perturbed angular correlation, emission channeling, and tracer diffusion studies. In addition to these 'classic' methods of nuclear solid state physics, also standard semiconductor analysis techniques such as photoluminescence or deep level transient spectroscopy profit from the application of radioactive isotopes, which helps them to overcome their chemical 'blindness' since the nuclear half life of radioisotopes provides a signal that changes in time with characteristic exponential decay or saturation curves. In this presentation an overview will be given on the recent research activities in materials science and biophysics at ISOLDE, presenting some of the highlights during the last five years, together with a short outlook on the new developments under way.

  2. Biochemical and Biophysical Cues in Matrix Design for Chronic and Diabetic Wound Treatment

    OpenAIRE

    Xiao, Yun; Ahadian, Samad; Radisic, Milica

    2017-01-01

    Progress in biomaterial science and engineering and increasing knowledge in cell biology have enabled us to develop functional biomaterials providing appropriate biochemical and biophysical cues for tissue regeneration applications. Tissue regeneration is particularly important to treat chronic wounds of people with diabetes. Understanding and controlling the cellular microenvironment of the wound tissue are important to improve the wound healing process. In this study, we review different bi...

  3. 2. biophysical work meeting. Papers; 2. Biophysikalische Arbeitstagung; Vortraege

    Energy Technology Data Exchange (ETDEWEB)

    1992-11-01

    The report comprises 18 papers held at the 2nd Biophysical Work Meeting, 11 - 13 September 1991 in Schlema, Germany. The history of biophysics in Germany particularly of radiation biophysics and radon research, measurements of the radiation effects of radon and the derivation of limits, radon balneotherapy and consequences of uranium ore mining are dealt with. (orig.) [Deutsch] Der Report enthaelt 18 Vortraege, die auf der 2. Biophysikalischen Arbeitstagung in Schlema vom 11. bis 13. September 1991 gehalten wurden. Es werden die Geschichte der Biophysik in Deutschland, speziell der Strahlenbiophysik und Radonforschung, Messungen von Radon und seinen Folgeprodukten, Epidemiologie und Strahlenbiologie zur Bestimmung der Strahlenwirkung des Radons und die Ableitung entsprechender Grenzwerte, Radon-Balneotherapie und Folgen des Uranerzbergbaus behandelt. (orig.)

  4. Role of Membrane Biophysics in Alzheimer's - related cell pathways

    Directory of Open Access Journals (Sweden)

    Donghui eZhu

    2015-05-01

    Full Text Available Cellular membrane alterations are commonly observed in many diseases, including Alzheimer’s disease (AD. Membrane biophysical properties, such as membrane molecular order, membrane fluidity, organization of lipid rafts, and adhesion between membrane and cytoskeleton, play an important role in various cellular activities and functions. While membrane biophysics impacts a broad range of cellular pathways, this review addresses the role of membrane biophysics in amyloid-β peptide aggregation, Aβ-induced oxidative pathways, amyloid precursor protein processing, and cerebral endothelial functions in AD. Understanding the mechanism(s underlying the effects of cell membrane properties on cellular processes should shed light on the development of new preventive and therapeutic strategies for this devastating disease.

  5. Biophysical and biological meanings of healthspan from C. elegans cohort

    International Nuclear Information System (INIS)

    Suda, Hitoshi

    2014-01-01

    Highlights: • We focus on a third factor, noise, as well as on genetic and environmental factors. • C. elegans fed a healthy food had an extended healthspan as compared to those fed a conventional diet. • An amplification of ATP noise was clearly evident from around the onset of biodemographic aging. • The extension of timing of noise amplification may contribute to effectively extending the healthspan. • The same mechanism of the mean lifespan extension in C. elegans may be realized in humans. - Abstract: Lifespan among individuals ranges widely in organisms from yeast to mammals, even in an isogenic cohort born in a nearly uniform environment. Needless to say, genetic and environmental factors are essential for aging and lifespan, but in addition, a third factor or the existence of a stochastic element must be reflected in aging and lifespan. An essential point is that lifespan or aging is an unpredictable phenomenon. The present study focuses on elucidating the biophysical and biological meanings of healthspan that latently indwells a stochastic nature. To perform this purpose, the nematode Caenorhabditis elegans served as a model animal. C. elegans fed a healthy food had an extended healthspan as compared to those fed a conventional diet. Then, utilizing this phenomenon, we clarified a mechanism of healthspan extension by measuring the single-worm ATP and estimating the ATP noise (or the variability of the ATP content) among individual worms and by quantitatively analyzing biodemographic data with the lifespan equation that was derived from a fluctuation theory

  6. Universal buffers for use in biochemistry and biophysical experiments

    Directory of Open Access Journals (Sweden)

    Dewey Brooke

    2015-08-01

    Full Text Available The use of buffers that mimic biological solutions is a foundation of biochemical and biophysical studies. However, buffering agents have both specific and nonspecific interactions with proteins. Buffer molecules can induce changes in conformational equilibria, dynamic behavior, and catalytic properties merely by their presence in solution. This effect is of concern because many of the standard experiments used to investigate protein structure and function involve changing solution conditions such as pH and/or temperature. In experiments in which pH is varied, it is common practice to switch buffering agents so that the pH is within the working range of the weak acid and conjugate base. If multiple buffers are used, it is not always possible to decouple buffer induced change from pH or temperature induced change. We have developed a series of mixed biological buffers for protein analysis that can be used across a broad pH range, are compatible with biologically relevant metal ions, and avoid complications that may arise from changing the small molecule composition of buffers when pH is used as an experimental variable.

  7. Energy efficient neural stimulation: coupling circuit design and membrane biophysics.

    Science.gov (United States)

    Foutz, Thomas J; Ackermann, D Michael; Kilgore, Kevin L; McIntyre, Cameron C

    2012-01-01

    The delivery of therapeutic levels of electrical current to neural tissue is a well-established treatment for numerous indications such as Parkinson's disease and chronic pain. While the neuromodulation medical device industry has experienced steady clinical growth over the last two decades, much of the core technology underlying implanted pulse generators remain unchanged. In this study we propose some new methods for achieving increased energy-efficiency during neural stimulation. The first method exploits the biophysical features of excitable tissue through the use of a centered-triangular stimulation waveform. Neural activation with this waveform is achieved with a statistically significant reduction in energy compared to traditional rectangular waveforms. The second method demonstrates energy savings that could be achieved by advanced circuitry design. We show that the traditional practice of using a fixed compliance voltage for constant-current stimulation results in substantial energy loss. A portion of this energy can be recuperated by adjusting the compliance voltage to real-time requirements. Lastly, we demonstrate the potential impact of axon fiber diameter on defining the energy-optimal pulse-width for stimulation. When designing implantable pulse generators for energy efficiency, we propose that the future combination of a variable compliance system, a centered-triangular stimulus waveform, and an axon diameter specific stimulation pulse-width has great potential to reduce energy consumption and prolong battery life in neuromodulation devices.

  8. Biophysical insight into the anti-amyloidogenic behavior of taurine.

    Science.gov (United States)

    Chaturvedi, Sumit Kumar; Alam, Parvez; Khan, Javed Masood; Siddiqui, Mohd Khursheed; Kalaiarasan, Ponnusamy; Subbarao, Naidu; Ahmad, Zeeshan; Khan, Rizwan Hasan

    2015-09-01

    In this work, we investigated the inhibitory ability of taurine on the aggregation of Human serum albumin (HSA) and also examined how it controls the kinetic parameters of the aggregation process. We demonstrated the structural alterations in the HSA after binding to the taurine at 65 °C by exploiting various biophysical techniques. UV-vis spectroscopy was used to check the turbidometric changes in the protein. Thioflavin T fluorescence kinetics was subjected to explore kinetic parameters comparing the amyloid formation in the presence of varying concentration of taurine. Further, Congo red binding and ANS binding assays were performed to determine the inhibitory effect of taurine on HSA fibrillation process and surface hydrophobicity modifications occurring before and after the addition of taurine with protein, respectively. Far UV CD and Dynamic Light Scattering (DLS) confirmed that taurine stabilized the protein α-helical structure and formed complex with HSA which is further supported by differential scanning calorimetry (DSC). Moreover, microscopic imaging techniques were also done to analyze the morphology of aggregation formed. Taurine is also capable of altering the cytotoxicity of the proteinaceous aggregates. Molecular docking study also deciphered the possible residues involved in protein and drug interaction. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Energy efficient neural stimulation: coupling circuit design and membrane biophysics.

    Directory of Open Access Journals (Sweden)

    Thomas J Foutz

    Full Text Available The delivery of therapeutic levels of electrical current to neural tissue is a well-established treatment for numerous indications such as Parkinson's disease and chronic pain. While the neuromodulation medical device industry has experienced steady clinical growth over the last two decades, much of the core technology underlying implanted pulse generators remain unchanged. In this study we propose some new methods for achieving increased energy-efficiency during neural stimulation. The first method exploits the biophysical features of excitable tissue through the use of a centered-triangular stimulation waveform. Neural activation with this waveform is achieved with a statistically significant reduction in energy compared to traditional rectangular waveforms. The second method demonstrates energy savings that could be achieved by advanced circuitry design. We show that the traditional practice of using a fixed compliance voltage for constant-current stimulation results in substantial energy loss. A portion of this energy can be recuperated by adjusting the compliance voltage to real-time requirements. Lastly, we demonstrate the potential impact of axon fiber diameter on defining the energy-optimal pulse-width for stimulation. When designing implantable pulse generators for energy efficiency, we propose that the future combination of a variable compliance system, a centered-triangular stimulus waveform, and an axon diameter specific stimulation pulse-width has great potential to reduce energy consumption and prolong battery life in neuromodulation devices.

  10. Biophysical and biological meanings of healthspan from C. elegans cohort

    Energy Technology Data Exchange (ETDEWEB)

    Suda, Hitoshi, E-mail: suda@tsc.u-tokai.ac.jp

    2014-09-12

    Highlights: • We focus on a third factor, noise, as well as on genetic and environmental factors. • C. elegans fed a healthy food had an extended healthspan as compared to those fed a conventional diet. • An amplification of ATP noise was clearly evident from around the onset of biodemographic aging. • The extension of timing of noise amplification may contribute to effectively extending the healthspan. • The same mechanism of the mean lifespan extension in C. elegans may be realized in humans. - Abstract: Lifespan among individuals ranges widely in organisms from yeast to mammals, even in an isogenic cohort born in a nearly uniform environment. Needless to say, genetic and environmental factors are essential for aging and lifespan, but in addition, a third factor or the existence of a stochastic element must be reflected in aging and lifespan. An essential point is that lifespan or aging is an unpredictable phenomenon. The present study focuses on elucidating the biophysical and biological meanings of healthspan that latently indwells a stochastic nature. To perform this purpose, the nematode Caenorhabditis elegans served as a model animal. C. elegans fed a healthy food had an extended healthspan as compared to those fed a conventional diet. Then, utilizing this phenomenon, we clarified a mechanism of healthspan extension by measuring the single-worm ATP and estimating the ATP noise (or the variability of the ATP content) among individual worms and by quantitatively analyzing biodemographic data with the lifespan equation that was derived from a fluctuation theory.

  11. Biophysical induction of vascular smooth muscle cell podosomes.

    Directory of Open Access Journals (Sweden)

    Na Young Kim

    Full Text Available Vascular smooth muscle cell (VSMC migration and matrix degradation occurs with intimal hyperplasia associated with atherosclerosis, vascular injury, and restenosis. One proposed mechanism by which VSMCs degrade matrix is through the use of podosomes, transient actin-based structures that are thought to play a role in extracellular matrix degradation by creating localized sites of matrix metalloproteinase (MMP secretion. To date, podosomes in VSMCs have largely been studied by stimulating cells with phorbol esters, such as phorbol 12,13-dibutyrate (PDBu, however little is known about the physiological cues that drive podosome formation. We present the first evidence that physiological, physical stimuli mimicking cues present within the microenvironment of diseased arteries can induce podosome formation in VSMCs. Both microtopographical cues and imposed pressure mimicking stage II hypertension induce podosome formation in A7R5 rat aortic smooth muscle cells. Moreover, wounding using a scratch assay induces podosomes at the leading edge of VSMCs. Notably the effect of each of these biophysical stimuli on podosome stimulation can be inhibited using a Src inhibitor. Together, these data indicate that physical cues can induce podosome formation in VSMCs.

  12. Symposium on Biophysics and Physiology of Biological Transport

    CERN Document Server

    Capraro, V; Porter, K; Robertson, J

    1967-01-01

    The study of cell membranes began to attract increasing interest before the turn of the present century with the observations of 0 verton. Since that time many investigators have become interested in the broad problem of structure and function of the membrane and today we find ourselVes at a stage in which several branches of research, particularly physical chemistry, biochemistry, biophysics, physiology and pharmacology have come together, leading to the possibility of obtaining a better perspective of the overall problems. The purpose of this Symposium was to assemble in an orderly sequence representations of the knowledge of membranes achieved to date in the areas of the various disciplines. It was thought that to bring together many points of view on a problem should allow the conferees to see better what had been accomplished, what has been overlooked and what needs further development. It is to be hoped that efforts of this type have and will fulfill the desired purpose. This volume contains the majorit...

  13. Biophysical Approach to Mechanisms of Cancer Prevention and Treatment with Green Tea Catechins.

    Science.gov (United States)

    Suganuma, Masami; Takahashi, Atsushi; Watanabe, Tatsuro; Iida, Keisuke; Matsuzaki, Takahisa; Yoshikawa, Hiroshi Y; Fujiki, Hirota

    2016-11-18

    Green tea catechin and green tea extract are now recognized as non-toxic cancer preventives for humans. We first review our brief historical development of green tea cancer prevention. Based on exciting evidence that green tea catechin, (-)-epigallocatechin gallate (EGCG) in drinking water inhibited lung metastasis of B16 melanoma cells, we and other researchers have studied the inhibitory mechanisms of metastasis with green tea catechins using biomechanical tools, atomic force microscopy (AFM) and microfluidic optical stretcher. Specifically, determination of biophysical properties of cancer cells, low cell stiffness, and high deformability in relation to migration, along with biophysical effects, were studied by treatment with green tea catechins. The study with AFM revealed that low average values of Young's moduli, indicating low cell stiffness, are closely associated with strong potential of cell migration and metastasis for various cancer cells. It is important to note that treatments with EGCG and green tea extract elevated the average values of Young's moduli resulting in increased stiffness (large elasticity) of melanomas and various cancer cells. We discuss here the biophysical basis of multifunctions of green tea catechins and green tea extract leading to beneficial effects for cancer prevention and treatment.

  14. Biophysical Approach to Mechanisms of Cancer Prevention and Treatment with Green Tea Catechins

    Directory of Open Access Journals (Sweden)

    Masami Suganuma

    2016-11-01

    Full Text Available Green tea catechin and green tea extract are now recognized as non-toxic cancer preventives for humans. We first review our brief historical development of green tea cancer prevention. Based on exciting evidence that green tea catechin, (−-epigallocatechin gallate (EGCG in drinking water inhibited lung metastasis of B16 melanoma cells, we and other researchers have studied the inhibitory mechanisms of metastasis with green tea catechins using biomechanical tools, atomic force microscopy (AFM and microfluidic optical stretcher. Specifically, determination of biophysical properties of cancer cells, low cell stiffness, and high deformability in relation to migration, along with biophysical effects, were studied by treatment with green tea catechins. The study with AFM revealed that low average values of Young’s moduli, indicating low cell stiffness, are closely associated with strong potential of cell migration and metastasis for various cancer cells. It is important to note that treatments with EGCG and green tea extract elevated the average values of Young’s moduli resulting in increased stiffness (large elasticity of melanomas and various cancer cells. We discuss here the biophysical basis of multifunctions of green tea catechins and green tea extract leading to beneficial effects for cancer prevention and treatment.

  15. Assessment of the biophysical impacts of utility-scale photovoltaics through observations and modelling

    Science.gov (United States)

    Broadbent, A. M.; Georgescu, M.; Krayenhoff, E. S.; Sailor, D.

    2017-12-01

    Utility-scale solar power plants are a rapidly growing component of the solar energy sector. Utility-scale photovoltaic (PV) solar power generation in the United States has increased by 867% since 2012 (EIA, 2016). This expansion is likely to continue as the cost PV technologies decrease. While most agree that solar power can decrease greenhouse gas emissions, the biophysical effects of PV systems on surface energy balance (SEB), and implications for surface climate, are not well understood. To our knowledge, there has never been a detailed observational study of SEB at a utility-scale solar array. This study presents data from an eddy covariance observational tower, temporarily placed above a utility-scale PV array in Southern Arizona. Comparison of PV SEB with a reference (unmodified) site, shows that solar panels can alter the SEB and near surface climate. SEB observations are used to develop and validate a new and more complete SEB PV model. In addition, the PV model is compared to simpler PV modelling methods. The simpler PV models produce differing results to our newly developed model and cannot capture the more complex processes that influence PV SEB. Finally, hypothetical scenarios of PV expansion across the continental United States (CONUS) were developed using various spatial mapping criteria. CONUS simulations of PV expansion reveal regional variability in biophysical effects of PV expansion. The study presents the first rigorous and validated simulations of the biophysical effects of utility-scale PV arrays.

  16. Ground-and satellite-based evidence of the biophysical mechanisms behind the greening Sahel

    DEFF Research Database (Denmark)

    Brandt, Martin Stefan; Mbow, Cheikh; Diouf, Abdoul A.

    2015-01-01

    After a dry period with prolonged droughts in the 1970s and 1980s, recent scientific outcome suggests that the decades of abnormally dry conditions in the Sahel have been reversed by positive anomalies in rainfall. Various remote sensing studies observed a positive trend in vegetation greenness...... over the last decades which is known as the re-greening of the Sahel. However, little investment has been made in including long-term ground-based data collections to evaluate and better understand the biophysical mechanisms behind these findings. Thus, deductions on a possible increment in biomass...... remain speculative. Our aim is to bridge these gaps and give specifics on the biophysical background factors of the re-greening Sahel. Therefore, a trend analysis was applied on long time series (1987-2013) of satellite-based vegetation and rainfall data, as well as on ground-observations of leaf biomass...

  17. Unique Distribution of Aromatase in the Human Brain: In Vivo Studies With PET and (N-Methyl-11C)Vorozole

    International Nuclear Information System (INIS)

    Biegon, A.; Kim, S.W.; Alexoff, D.; Millard, J.; Carter, P.; Hubbard, B.; King, P.; Logan, J.; Muench, L.; Pareto, D.; Schlyer, D.; Shea, C.; Telang, F.; Wang, G.-J.; Xu, Y.; Fowler, J.

    2010-01-01

    Aromatase catalyzes the last step in estrogen biosynthesis. Brain aromatase is involved in diverse neurophysiological and behavioral functions including sexual behavior, aggression, cognition, and neuroprotection. Using positron emission tomography (PET) with the radiolabeled aromatase inhibitor (N-methyl- 11 C)vorozole, we characterized the tracer distribution and kinetics in the living human brain. Six young, healthy subjects, three men and three women, were administered the radiotracer alone on two separate occasions. Women were scanned in distinct phases of the menstrual cycle. Specificity was confirmed by pretreatment with a pharmacological (2.5 mg) dose of the aromatase inhibitor letrozole. PET data were acquired over a 90-min period and regions of interest placed over selected brain regions. Brain and plasma time activity curves, corrected for metabolites, were used to derive kinetic parameters. Distribution volume (V T ) values in both men and women followed the following rank order: thalamus > amygdala = preoptic area > medulla (inferior olive) > accumbens, pons, occipital and temporal cortex, putamen, cerebellum, and white matter. Pretreatment with letrozole reduced VT in all regions, though the size of the reduction was region-dependent, ranging from ∼70% blocking in thalamus andpreoptic area to ∼10% in cerebellum. The high levels of aromatase in thalamus and medulla (inferior olive) appear to be unique to humans. These studies set the stage for the noninvasive assessment of aromatase involvement in various physiological and pathological processes affecting the human brain.

  18. Unique Distribution of Aromatase in the Human Brain: In Vivo Studies With PET and [N-Methyl-11C]Vorozole

    Energy Technology Data Exchange (ETDEWEB)

    Biegon, A.; Biegon, A.; Kim, S.W.; Alexoff, D.; Millard, J.; Carter, P.; Hubbard, B.; King, P.; Logan, J.; Muench, L.; Pareto, D.; Schlyer, D.; Shea, C.; Telang, F.; Wang, G.-J.; Xu, Y.; Fowler, J.

    2010-10-01

    Aromatase catalyzes the last step in estrogen biosynthesis. Brain aromatase is involved in diverse neurophysiological and behavioral functions including sexual behavior, aggression, cognition, and neuroprotection. Using positron emission tomography (PET) with the radiolabeled aromatase inhibitor [N-methyl-{sup 11}C]vorozole, we characterized the tracer distribution and kinetics in the living human brain. Six young, healthy subjects, three men and three women, were administered the radiotracer alone on two separate occasions. Women were scanned in distinct phases of the menstrual cycle. Specificity was confirmed by pretreatment with a pharmacological (2.5 mg) dose of the aromatase inhibitor letrozole. PET data were acquired over a 90-min period and regions of interest placed over selected brain regions. Brain and plasma time activity curves, corrected for metabolites, were used to derive kinetic parameters. Distribution volume (V{sub T}) values in both men and women followed the following rank order: thalamus > amygdala = preoptic area > medulla (inferior olive) > accumbens, pons, occipital and temporal cortex, putamen, cerebellum, and white matter. Pretreatment with letrozole reduced VT in all regions, though the size of the reduction was region-dependent, ranging from {approx}70% blocking in thalamus andpreoptic area to {approx}10% in cerebellum. The high levels of aromatase in thalamus and medulla (inferior olive) appear to be unique to humans. These studies set the stage for the noninvasive assessment of aromatase involvement in various physiological and pathological processes affecting the human brain.

  19. How a Training Program Is Transforming the Role of Traditional Birth Attendants from Cultural Practitioners to Unique Health-care Providers: A Community Case Study in Rural Guatemala

    Directory of Open Access Journals (Sweden)

    Sasha Hernandez

    2017-05-01

    Full Text Available In low- and middle-income countries (LMICs, where the rates of maternal mortality continue to be inappropriately high, there has been recognition of the importance of training traditional birth attendants (TBAs to help improve outcomes during pregnancy and childbirth. In Guatemala, there is no national comprehensive training program in place despite the fact that the majority of women rely on TBAs during pregnancy and childbirth. This community case study presents a unique education program led by TBAs for TBAs in rural Guatemala. Discussion of this training program focuses on programming implementation, curriculum development, sustainable methodology, and how an educational partnership with the current national health-care system can increase access to health care for women in LMICs. Recent modifications to this training model are also discussed including how a change in the clinical curriculum is further integrating TBAs into the national health infrastructure. The training program has demonstrated that Guatemalan TBAs are able to improve their basic obstetrical knowledge, are capable of identifying and referring early complications of pregnancy and labor, and can deliver basic prenatal care that would otherwise not be provided. This training model is helping transform the role of the TBA from a sole cultural practitioner to a validated health-care provider within the health-care infrastructure of Guatemala and has the potential to do the same in other LMICs.

  20. How a Training Program Is Transforming the Role of Traditional Birth Attendants from Cultural Practitioners to Unique Health-care Providers: A Community Case Study in Rural Guatemala.

    Science.gov (United States)

    Hernandez, Sasha; Oliveira, Jessica Bastos; Shirazian, Taraneh

    2017-01-01

    In low- and middle-income countries (LMICs), where the rates of maternal mortality continue to be inappropriately high, there has been recognition of the importance of training traditional birth attendants (TBAs) to help improve outcomes during pregnancy and childbirth. In Guatemala, there is no national comprehensive training program in place despite the fact that the majority of women rely on TBAs during pregnancy and childbirth. This community case study presents a unique education program led by TBAs for TBAs in rural Guatemala. Discussion of this training program focuses on programming implementation, curriculum development, sustainable methodology, and how an educational partnership with the current national health-care system can increase access to health care for women in LMICs. Recent modifications to this training model are also discussed including how a change in the clinical curriculum is further integrating TBAs into the national health infrastructure. The training program has demonstrated that Guatemalan TBAs are able to improve their basic obstetrical knowledge, are capable of identifying and referring early complications of pregnancy and labor, and can deliver basic prenatal care that would otherwise not be provided. This training model is helping transform the role of the TBA from a sole cultural practitioner to a validated health-care provider within the health-care infrastructure of Guatemala and has the potential to do the same in other LMICs.

  1. Unique distribution of aromatase in the human brain: in vivo studies with PET and [N-methyl-11C]vorozole.

    Science.gov (United States)

    Biegon, Anat; Kim, Sung Won; Alexoff, David L; Jayne, Millard; Carter, Pauline; Hubbard, Barbara; King, Payton; Logan, Jean; Muench, Lisa; Pareto, Deborah; Schlyer, David; Shea, Colleen; Telang, Frank; Wang, Gene-Jack; Xu, Youwen; Fowler, Joanna S

    2010-11-01

    Aromatase catalyzes the last step in estrogen biosynthesis. Brain aromatase is involved in diverse neurophysiological and behavioral functions including sexual behavior, aggression, cognition, and neuroprotection. Using positron emission tomography (PET) with the radiolabeled aromatase inhibitor [N-methyl-(11)C]vorozole, we characterized the tracer distribution and kinetics in the living human brain. Six young, healthy subjects, three men and three women, were administered the radiotracer alone on two separate occasions. Women were scanned in distinct phases of the menstrual cycle. Specificity was confirmed by pretreatment with a pharmacological (2.5 mg) dose of the aromatase inhibitor letrozole. PET data were acquired over a 90-min period and regions of interest placed over selected brain regions. Brain and plasma time activity curves, corrected for metabolites, were used to derive kinetic parameters. Distribution volume (V(T)) values in both men and women followed the following rank order: thalamus > amygdala = preoptic area > medulla (inferior olive) > accumbens, pons, occipital and temporal cortex, putamen, cerebellum, and white matter. Pretreatment with letrozole reduced V(T) in all regions, though the size of the reduction was region-dependent, ranging from ∼70% blocking in thalamus andpreoptic area to ∼10% in cerebellum. The high levels of aromatase in thalamus and medulla (inferior olive) appear to be unique to humans. These studies set the stage for the noninvasive assessment of aromatase involvement in various physiological and pathological processes affecting the human brain.

  2. The Multistream Self: Biophysical, Mental, Social, and Existential

    Directory of Open Access Journals (Sweden)

    Vinod D. Deshmukh

    2008-01-01

    Full Text Available Self is difficult to define because of its multiple, constitutive streams of functional existence. A more comprehensive and expanded definition of self is proposed. The standard bio-psycho-social model of psyche is expanded to biophysical-mental-social and existential self. The total human experience is better understood and explained by adding the existential component. Existential refers to lived human experience, which is firmly rooted in reality. Existential living is the capacity to live fully in the present, and respond freely and flexibly to new experience without fear. Four common fears of isolation, insecurity, insignificance, and death can be overcome by developing a lifestyle of whole-hearted engagement in the present reality, creative problem solving, self-actualization, and altruism. Such integrative living creates a sense of presence with self-awareness, understanding, and existential well-being. Well-being is defined as a life of happiness, contentment, low distress, and good health with positive outlook. Self is a complex, integrative process of living organisms. It organizes, coordinates, and integrates energy-information within and around itself, spontaneously, unconsciously, and consciously. Self-process is understood in terms of synergetics, coordination dynamics, and energy-information–directed self-organization. It is dynamic, composite, ever renewing, and enduring. It can be convergent or divergent, and can function as the source or target of its own behavior-mentation. The experience of self is continuously generated by spontaneous activation of neural networks in the cerebral neocortex by the brainstem-diencephalic arousal system. The multiple constitutive behavioral-mental streams develop concurrently into a unique experience of self, specific for a person at his/her developmental stage. The chronological neuro-behavioral-mental development of self is described in detail from embryonic stage to old age. Self can be

  3. Institute of Biochemistry and Biophysics. Research Report 1996-1997

    International Nuclear Information System (INIS)

    1998-01-01

    Scientific interests of the Institute of Biochemistry and Biophysics of the Polish Academy of Sciences have evolved from classical biochemistry, biophysics and physiological chemistry to up-to-date molecular biology. Research interests are focussed on replication, mutagenesis and repair of DNA; regulation of gene expression at various levels; biosynthesis and post-translational modifications of proteins; gene sequencing and functional analysis of open reading frames; structure, function and regulation of enzymes; conformation of proteins and peptides; modelling of structures and prediction of functions of proteins; mechanisms of electron transfer in polypeptides

  4. [Biophysical methods in assessment of the skin microcirculation system].

    Science.gov (United States)

    Dynnik, O B; Mostovoĭ, S E; Berezovskiĭ, V A

    2008-01-01

    In this work has been analyzed the potential of biophysics methods in estimations of the microcirculatory system. Capillaroresistometry, Computer capillaroscopy and Laser Doppler Flowmetry can to detect of the endothelial dysfunction in the patients with chronic hepatic diseases. This instrumentals biophysics methods may be used in clinical investigations for screening early pathological conditions with dysfunction of the microcirculatory system. The methods Laser Doppler Flowmetry is important for investigations the patients with others diseases and for dynamical monitoring by quality of the treatment. The purpose of these methods an objective estimation of disorders in the microcirculatory system.

  5. Institute of Biochemistry and Biophysics. Research Report 1996-1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    Scientific interests of the Institute of Biochemistry and Biophysics of the Polish Academy of Sciences have evolved from classical biochemistry, biophysics and physiological chemistry to up-to-date molecular biology. Research interests are focussed on replication, mutagenesis and repair of DNA; regulation of gene expression at various levels; biosynthesis and post-translational modifications of proteins; gene sequencing and functional analysis of open reading frames; structure, function and regulation of enzymes; conformation of proteins and peptides; modelling of structures and prediction of functions of proteins; mechanisms of electron transfer in polypeptides.

  6. Biophysical and sociocultural factors underlying spatial trade-offs of ecosystem services in semiarid watersheds

    Directory of Open Access Journals (Sweden)

    Marina García-Llorente

    2015-09-01

    Full Text Available Biophysical and social systems are linked to form social-ecological systems whose sustainability depends on their capacity to absorb uncertainty and cope with disturbances. In this study, we explored the key biophysical and socio-cultural factors underlying ecosystem service supply in two semiarid watersheds of southern Spain. These included variables associated with the role that freshwater flows and biodiversity play in securing the system's capacity to sustain essential ecosystem services and their relationship with social demand for services, local water governance, and land-use intensification. Our results reveal the importance of considering the invisible dimensions of water and biodiversity, i.e. green freshwater flows and trait-based indicators, because of their relevance to the supply of ecosystem services. Furthermore, they uncover the importance of traditional irrigation canals, a local water governance system, in maintaining the ecosystems' capacity to supply services. The study also highlights the complex trade-offs that occur because of the spatial mismatch between ecosystem service supply (upstream and ecosystem service demand (downstream in watersheds. Finally, we found that land-use intensification generally resulted in losses of the biophysical factors that underpin the supply of some ecosystem services, increases in social demand for less diversified services, and the abandonment of local governance practices. Attempts to manage social-ecological systems toward sustainability at the local scale should identify the key biophysical and socio-cultural factors that are essential for maintaining ecosystem services and should recognize existing interrelationships between them. Land-use management should also take into account ecosystem service trade-offs and the consequences resulting from land-use intensification.

  7. Predicting the Presence of Scyphozoan Jellyfish in the Gulf of Mexico Using a Biophysical Model

    Science.gov (United States)

    Aleksa, K. T.; Nero, R. W.; Wiggert, J. D.; Graham, W. M.

    2016-02-01

    The study and quantification of jellyfish (cnidarian medusae and ctenophores) is difficult due to their fragile body plan and a composition similar to their environment. The development of a predictive biophysical jellyfish model would be the first of its kind for the Gulf of Mexico and could provide assistance in ecological research and human interactions. In this study, the collection data of two scyphozoan medusae, Chrysaora quinquecirrha and Aurelia spp., were extracted from SEAMAP trawling surveys and were used to determine biophysical predictors for the presence of large jellyfish medusae in the Gulf of Mexico. Both in situ and remote sensing measurements from 2003 to 2013 were obtained. Logistic regressions were then applied to 27 biophysical parameters derived from these data to explore and determine significant predictors for the presence of medusae. Significant predictors identified by this analysis included water temperature, chlorophyll a, turbidity, distance from shore, and salinity. Future application for this model include foraging assessment of gelatinous predators as well as possible near real time monitoring of the distribution and movement of these medusae in the Gulf of Mexico.

  8. Variation of Biophysical Parameters of the Skin with Age, Gender, and Body Region

    Science.gov (United States)

    Firooz, Alireza; Sadr, Bardia; Babakoohi, Shahab; Sarraf-Yazdy, Maryam; Fanian, Ferial; Kazerouni-Timsar, Ali; Nassiri-Kashani, Mansour; Naghizadeh, Mohammad Mehdi; Dowlati, Yahya

    2012-01-01

    Background. Understanding the physiological, chemical, and biophysical characteristics of the skin helps us to arrange a proper approach to the management of skin diseases. Objective. The aim of this study was to measure 6 biophysical characteristics of normal skin (sebum content, hydration, transepidermal water loss (TEWL), erythema index, melanin index, and elasticity) in a normal population and assess the effect of sex, age, and body location on them. Methods. Fifty healthy volunteers in 5 age groups (5 males and females in each) were enrolled in this study. A multifunctional skin physiology monitor (Courage & Khazaka electronic GmbH, Germany) was used to measure skin sebum content, hydration, TEWL, erythema index, melanin index, and elasticity in 8 different locations of the body. Results. There were significant differences between the hydration, melanin index, and elasticity of different age groups. Regarding the locations, forehead had the highest melanin index, where as palm had the lowest value. The mean values of erythema index and melanin index and TEWL were significantly higher in males and anatomic location was a significant independent factor for all of 6 measured parameters. Conclusion. Several biophysical properties of the skin vary among different gender, age groups, and body locations. PMID:22536139

  9. Human Pluripotent Stem Cell Mechanobiology: Manipulating the Biophysical Microenvironment for Regenerative Medicine and Tissue Engineering Applications.

    Science.gov (United States)

    Ireland, Ronald G; Simmons, Craig A

    2015-11-01

    A stem cell in its microenvironment is subjected to a myriad of soluble chemical cues and mechanical forces that act in concert to orchestrate cell fate. Intuitively, many of these soluble and biophysical factors have been the focus of intense study to successfully influence and direct cell differentiation in vitro. Human pluripotent stem cells (hPSCs) have been of considerable interest in these studies due to their great promise for regenerative medicine. Culturing and directing differentiation of hPSCs, however, is currently extremely labor-intensive and lacks the efficiency required to generate large populations of clinical-grade cells. Improved efficiency may come from efforts to understand how the cell biophysical signals can complement biochemical signals to regulate cell pluripotency and direct differentiation. In this concise review, we explore hPSC mechanobiology and how the hPSC biophysical microenvironment can be manipulated to maintain and differentiate hPSCs into functional cell types for regenerative medicine and tissue engineering applications. © 2015 AlphaMed Press.

  10. Incorporating Modeling and Simulations in Undergraduate Biophysical Chemistry Course to Promote Understanding of Structure-Dynamics-Function Relationships in Proteins

    Science.gov (United States)

    Hati, Sanchita; Bhattacharyya, Sudeep

    2016-01-01

    A project-based biophysical chemistry laboratory course, which is offered to the biochemistry and molecular biology majors in their senior year, is described. In this course, the classroom study of the structure-function of biomolecules is integrated with the discovery-guided laboratory study of these molecules using computer modeling and…

  11. Enhancing the biophysical properties of mRFP1 through incorporation of fluoroproline

    Energy Technology Data Exchange (ETDEWEB)

    Deepankumar, Kanagavel; Nadarajan, Saravanan Prabhu; Ayyadurai, Niraikulam; Yun, Hyungdon, E-mail: hyungdon@ynu.ac.kr

    2013-11-01

    Graphical abstract: Enhancing the biophysical properties of mRFP1 through incorporation of (2S, 4R)-4-fluoroproline at proline residues after mutating non-permissive site Pro63 into Ala. -- Highlights: •We incorporate (4S)-FP into mRFP1 led to insoluble protein. •Whereas, incorporation of (4R)-FP resulted in soluble but lost its fluorescence. •mRFP1-P63A mutant accommodate (4R)-FP and gave soluble protein with fluorescence. •Moreover mRFP1-P63A[(4R)-FP] showed enhanced biophysical properties of protein. -- Abstract: Here we enhanced the stability and biophysical properties of mRFP1 through a combination of canonical and non-canonical amino acid mutagenesis. The global replacement of proline residue with (2S, 4R)-4-fluoroproline [(4R)-FP] into mRFP1 led to soluble protein but lost its fluorescence, whereas (2S, 4S)-4-fluoroproline [(4S)-FP] incorporation resulted in insoluble protein. The bioinformatics analysis revealed that (4R)-FP incorporation at Pro63 caused fluorescence loss due to the steric hindrance of fluorine atom of (4R)-FP with the chromophore. Therefore, Pro63 residue was mutated with the smallest amino acid Ala to maintain non coplanar conformation of the chromophore and helps to retain its fluorescence with (4R)-FP incorporation. The incorporation of (4R)-FP into mRFP1-P63A showed about 2–3-fold enhancement in thermal and chemical stability. The rate of maturation is also greatly accelerated over the presence of (4R)-FP into mRFP1-P63A. Our study showed that a successful enhancement in the biophysical property of mRFP1-P63A[(4R)-FP] using non-canonical amino acid mutagenesis after mutating non-permissive site Pro63 into Ala.

  12. Enhancing the biophysical properties of mRFP1 through incorporation of fluoroproline

    International Nuclear Information System (INIS)

    Deepankumar, Kanagavel; Nadarajan, Saravanan Prabhu; Ayyadurai, Niraikulam; Yun, Hyungdon

    2013-01-01

    Graphical abstract: Enhancing the biophysical properties of mRFP1 through incorporation of (2S, 4R)-4-fluoroproline at proline residues after mutating non-permissive site Pro63 into Ala. -- Highlights: •We incorporate (4S)-FP into mRFP1 led to insoluble protein. •Whereas, incorporation of (4R)-FP resulted in soluble but lost its fluorescence. •mRFP1-P63A mutant accommodate (4R)-FP and gave soluble protein with fluorescence. •Moreover mRFP1-P63A[(4R)-FP] showed enhanced biophysical properties of protein. -- Abstract: Here we enhanced the stability and biophysical properties of mRFP1 through a combination of canonical and non-canonical amino acid mutagenesis. The global replacement of proline residue with (2S, 4R)-4-fluoroproline [(4R)-FP] into mRFP1 led to soluble protein but lost its fluorescence, whereas (2S, 4S)-4-fluoroproline [(4S)-FP] incorporation resulted in insoluble protein. The bioinformatics analysis revealed that (4R)-FP incorporation at Pro63 caused fluorescence loss due to the steric hindrance of fluorine atom of (4R)-FP with the chromophore. Therefore, Pro63 residue was mutated with the smallest amino acid Ala to maintain non coplanar conformation of the chromophore and helps to retain its fluorescence with (4R)-FP incorporation. The incorporation of (4R)-FP into mRFP1-P63A showed about 2–3-fold enhancement in thermal and chemical stability. The rate of maturation is also greatly accelerated over the presence of (4R)-FP into mRFP1-P63A. Our study showed that a successful enhancement in the biophysical property of mRFP1-P63A[(4R)-FP] using non-canonical amino acid mutagenesis after mutating non-permissive site Pro63 into Ala

  13. Enhancing Irreversible Electroporation by Manipulating Cellular Biophysics with a Molecular Adjuvant.

    Science.gov (United States)

    Ivey, Jill W; Latouche, Eduardo L; Richards, Megan L; Lesser, Glenn J; Debinski, Waldemar; Davalos, Rafael V; Verbridge, Scott S

    2017-07-25

    Pulsed electric fields applied to cells have been used as an invaluable research tool to enhance delivery of genes or other intracellular cargo, as well as for tumor treatment via electrochemotherapy or tissue ablation. These processes involve the buildup of charge across the cell membrane, with subsequent alteration of transmembrane potential that is a function of cell biophysics and geometry. For traditional electroporation parameters, larger cells experience a greater degree of membrane potential alteration. However, we have recently demonstrated that the nuclear/cytoplasm ratio (NCR), rather than cell size, is a key predictor of response for cells treated with high-frequency irreversible electroporation (IRE). In this study, we leverage a targeted molecular therapy, ephrinA1, known to markedly collapse the cytoplasm of cells expressing the EphA2 receptor, to investigate how biophysical cellular changes resulting from NCR manipulation affect the response to IRE at varying frequencies. We present evidence that the increase in the NCR mitigates the cell death response to conventional electroporation pulsed-electric fields (∼100 μs), consistent with the previously noted size dependence. However, this same molecular treatment enhanced the cell death response to high-frequency electric fields (∼1 μs). This finding demonstrates the importance of considering cellular biophysics and frequency-dependent effects in developing electroporation protocols, and our approach provides, to our knowledge, a novel and direct experimental methodology to quantify the relationship between cell morphology, pulse frequency, and electroporation response. Finally, this novel, to our knowledge, combinatorial approach may provide a paradigm to enhance in vivo tumor ablation through a molecular manipulation of cellular morphology before IRE application. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. Estimation efficiency of usage satellite derived and modelled biophysical products for yield forecasting

    Science.gov (United States)

    Kolotii, Andrii; Kussul, Nataliia; Skakun, Sergii; Shelestov, Andrii; Ostapenko, Vadim; Oliinyk, Tamara

    2015-04-01

    Efficient and timely crop monitoring and yield forecasting are important tasks for ensuring of stability and sustainable economic development [1]. As winter crops pay prominent role in agriculture of Ukraine - the main focus of this study is concentrated on winter wheat. In our previous research [2, 3] it was shown that usage of biophysical parameters of crops such as FAPAR (derived from Geoland-2 portal as for SPOT Vegetation data) is far more efficient for crop yield forecasting to NDVI derived from MODIS data - for available data. In our current work efficiency of usage such biophysical parameters as LAI, FAPAR, FCOVER (derived from SPOT Vegetation and PROBA-V data at resolution of 1 km and simulated within WOFOST model) and NDVI product (derived from MODIS) for winter wheat monitoring and yield forecasting is estimated. As the part of crop monitoring workflow (vegetation anomaly detection, vegetation indexes and products analysis) and yield forecasting SPIRITS tool developed by JRC is used. Statistics extraction is done for landcover maps created in SRI within FP-7 SIGMA project. Efficiency of usage satellite based and modelled with WOFOST model biophysical products is estimated. [1] N. Kussul, S. Skakun, A. Shelestov, O. Kussul, "Sensor Web approach to Flood Monitoring and Risk Assessment", in: IGARSS 2013, 21-26 July 2013, Melbourne, Australia, pp. 815-818. [2] F. Kogan, N. Kussul, T. Adamenko, S. Skakun, O. Kravchenko, O. Kryvobok, A. Shelestov, A. Kolotii, O. Kussul, and A. Lavrenyuk, "Winter wheat yield forecasting in Ukraine based on Earth observation, meteorological data and biophysical models," International Journal of Applied Earth Observation and Geoinformation, vol. 23, pp. 192-203, 2013. [3] Kussul O., Kussul N., Skakun S., Kravchenko O., Shelestov A., Kolotii A, "Assessment of relative efficiency of using MODIS data to winter wheat yield forecasting in Ukraine", in: IGARSS 2013, 21-26 July 2013, Melbourne, Australia, pp. 3235 - 3238.

  15. Milnacipran: a unique antidepressant?

    Directory of Open Access Journals (Sweden)

    Siegfried Kasper

    2010-08-01

    Full Text Available Siegfried Kasper, Gerald PailDepartment of Psychiatry and Psychotherapy, Medical University of Vienna, AustriaAbstract: Tricyclic antidepressants (TCAs are among the most effective antidepressants available, although their poor tolerance at usual recommended doses and toxicity in ­overdose make them difficult to use. While selective serotonin reuptake inhibitors (SSRIs are ­better tolerated than TCAs, they have their own specific problems, such as the aggravation of sexual dysfunction, interaction with coadministered drugs, and for many, a discontinuation syndrome. In addition, some of them appear to be less effective than TCAs in more severely depressed patients. Increasing evidence of the importance of norepinephrine in the etiology of depression has led to the development of a new generation of antidepressants, the serotonin and ­norepinephrine reuptake inhibitors (SNRIs. Milnacipran, one of the pioneer SNRIs, was designed from theoretic considerations to be more effective than SSRIs and better tolerated than TCAs, and with a simple pharmacokinetic profile. Milnacipran has the most balanced potency ratio for reuptake inhibition of the two neurotransmitters compared with other SNRIs (1:1.6 for milnacipran, 1:10 for duloxetine, and 1:30 for venlafaxine, and in some studies milnacipran has been shown to inhibit norepinephrine uptake with greater potency than serotonin (2.2:1. Clinical studies have shown that milnacipran has efficacy comparable with the TCAs and is superior to SSRIs in severe depression. In addition, milnacipran is well tolerated, with a low potential for pharmacokinetic drug–drug interactions. Milnacipran is a first-line therapy suitable for most depressed patients. It is frequently successful when other treatments fail for reasons of efficacy or tolerability.Keywords: milnacipran, SNRI, antidepressant efficacy, tolerability

  16. A biophysical approach to the optimisation of dendritic-tumour cell electrofusion

    International Nuclear Information System (INIS)

    Sukhorukov, Vladimir L.; Reuss, Randolph; Endter, Joerg M.; Fehrmann, Steffen; Katsen-Globa, Alisa; Gessner, Petra; Steinbach, Andrea; Mueller, Kilian J.; Karpas, Abraham; Zimmermann, Ulrich; Zimmermann, Heiko

    2006-01-01

    Electrofusion of tumour and dendritic cells (DCs) is a promising approach for production of DC-based anti-tumour vaccines. Although human DCs are well characterised immunologically, little is known about their biophysical properties, including dielectric and osmotic parameters, both of which are essential for the development of efficient electrofusion protocols. In the present study, human DCs from the peripheral blood along with a tumour cell line used as a model fusion partner were examined by means of time-resolved cell volumetry and electrorotation. Based on the biophysical cell data, the electrofusion protocol could be rapidly optimised with respect to the sugar composition of the fusion medium, duration of hypotonic treatment, frequency range for stable cell alignment, and field strengths of breakdown pulses triggering membrane fusion. The hypotonic electrofusion consistently gave a tumour-DC hybrid rate of up to 19%, as determined by counting dually labelled fluorescent hybrids in a microscope. This fusion rate is nearly twice as high as that usually reported in the literature for isotonic media. The experimental findings and biophysical approach presented here are generally useful for the development of efficient electrofusion protocols, especially for rare and valuable human cells

  17. Quantifying Vegetation Biophysical Variables from Imaging Spectroscopy Data: A Review on Retrieval Methods

    Science.gov (United States)

    Verrelst, Jochem; Malenovský, Zbyněk; Van der Tol, Christiaan; Camps-Valls, Gustau; Gastellu-Etchegorry, Jean-Philippe; Lewis, Philip; North, Peter; Moreno, Jose

    2018-06-01

    An unprecedented spectroscopic data stream will soon become available with forthcoming Earth-observing satellite missions equipped with imaging spectroradiometers. This data stream will open up a vast array of opportunities to quantify a diversity of biochemical and structural vegetation properties. The processing requirements for such large data streams require reliable retrieval techniques enabling the spatiotemporally explicit quantification of biophysical variables. With the aim of preparing for this new era of Earth observation, this review summarizes the state-of-the-art retrieval methods that have been applied in experimental imaging spectroscopy studies inferring all kinds of vegetation biophysical variables. Identified retrieval methods are categorized into: (1) parametric regression, including vegetation indices, shape indices and spectral transformations; (2) nonparametric regression, including linear and nonlinear machine learning regression algorithms; (3) physically based, including inversion of radiative transfer models (RTMs) using numerical optimization and look-up table approaches; and (4) hybrid regression methods, which combine RTM simulations with machine learning regression methods. For each of these categories, an overview of widely applied methods with application to mapping vegetation properties is given. In view of processing imaging spectroscopy data, a critical aspect involves the challenge of dealing with spectral multicollinearity. The ability to provide robust estimates, retrieval uncertainties and acceptable retrieval processing speed are other important aspects in view of operational processing. Recommendations towards new-generation spectroscopy-based processing chains for operational production of biophysical variables are given.

  18. Biophysical constraints on leaf expansion in a tall conifer.

    Science.gov (United States)

    Fredrick C. Meinzer; Barbara J. Bond; Jennifer A. Karanian

    2008-01-01

    The physiological mechanisms responsible for reduced extension growth as trees increase in height remain elusive. We evaluated biophysical constraints on leaf expansion in old-growth Douglas-fir (Psuedotsuga menziesii (Mirb.) Franco) trees. Needle elongation rates, plastic and elastic extensibility, bulk leaf water, (L...

  19. Southwest Ecological Restoration Institutes (SWERI) Biophysical Monitoring Workshop Report

    Science.gov (United States)

    Joseph Seidenberg; Judy Springer; Tessa Nicolet; Mike Battaglia; Christina Vothja

    2009-01-01

    On October 15-16, 2009, the Southwest Ecological Restoration Institutes (SWERI) hosted a workshop in which the participants would 1) build a common understanding of the types of monitoring that are occurring in forested ecosystems of the Southwest; 2) analyze and agree on an efficient, yet robust set of biophysical variables that can be used by land mangers and...

  20. Polish Academy of Sciences Institute of Biochemistry and Biophysics research report 1994-1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    Scientific interests of Institute of Biochemistry and Biophysics Polish Academy of Sciences are focused on DNA replication and repair, gene expression, gene sequencing and molecular biophysics. The work reviews research projects of the Institute in 1994-1995.

  1. Polish Academy of Sciences Institute of Biochemistry and Biophysics research report 1994-1995

    International Nuclear Information System (INIS)

    1996-01-01

    Scientific interests of Institute of Biochemistry and Biophysics Polish Academy of Sciences are focused on DNA replication and repair, gene expression, gene sequencing and molecular biophysics. The work reviews research projects of the Institute in 1994-1995

  2. Polish Academy of Sciences Institute of Biochemistry and Biophysics research report 1994-1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    Scientific interests of Institute of Biochemistry and Biophysics Polish Academy of Sciences are focused on DNA replication and repair, gene expression, gene sequencing and molecular biophysics. The work reviews research projects of the Institute in 1994-1995.

  3. Surface-enhanced Raman scattering: a new optical probe in molecular biophysics and biomedicine

    DEFF Research Database (Denmark)

    Kneipp, J.; Wittig, B.; Bohr, Henrik

    2010-01-01

    Sensitive and detailed molecular structural information plays an increasing role in molecular biophysics and molecular medicine. Therefore, vibrational spectroscopic techniques, such as Raman scattering, which provide high structural information content are of growing interest in biophysical and ...

  4. Radiation physics, biophysics, and radiation biology

    International Nuclear Information System (INIS)

    Hall, E.J.; Zaider, M.

    1993-05-01

    Research at the Center for Radiological Research is a multidisciplenary blend of physics, chemistry and biology aimed at understanding the mechanisms involved in the health problems resulting from human exposure to ionizing radiations. The focus is increased on biochemistry and the application of the techniques of molecular biology to the problems of radiation biology. Research highlights of the program from the past year are described. A mathematical model describing the production of single-strand and double-strand breaks in DNA as a function radiation quality has been completed. For the first time Monte Carlo techniques have been used to obtain directly the spatial distribution of DNA moieties altered by radiation. This information was obtained by including the transport codes a realistic description of the electronic structure of DNA. We have investigated structure activity relationships for the potential oncogenicity of a new generation of bioreductive drugs that function as hypoxic cytotoxins. Experimental and theoretical investigation of the inverse dose rate effect, whereby medium LET radiations actually produce an c effect when the dose is protracted, is now at a point where the basic mechanisms are reasonably understood and the complex interplay between dose, dose rate and radiation quality which is necessary for the effect to be present can now be predicted at least in vitro. In terms of early radiobiological damage, a quantitative link has been established between basic energy deposition and locally multiply damaged sites, the radiochemical precursor of DNA double strand breaks; specifically, the spatial and energy deposition requirements necessary to form LMDs have been evaluated. For the first time, a mechanically understood ''biological fingerprint'' of high-LET radiation has been established. Specifically measurement of the ratio of inter-to intra-chromosomal aberrations produces a unique signature from alpha-particles or neutrons

  5. Radiation physics, biophysics, and radiation biology

    Energy Technology Data Exchange (ETDEWEB)

    Hall, E.J.; Zaider, M.

    1993-05-01

    Research at the Center for Radiological Research is a multidisciplenary blend of physics, chemistry and biology aimed at understanding the mechanisms involved in the health problems resulting from human exposure to ionizing radiations. The focus is increased on biochemistry and the application of the techniques of molecular biology to the problems of radiation biology. Research highlights of the program from the past year are described. A mathematical model describing the production of single-strand and double-strand breaks in DNA as a function radiation quality has been completed. For the first time Monte Carlo techniques have been used to obtain directly the spatial distribution of DNA moieties altered by radiation. This information was obtained by including the transport codes a realistic description of the electronic structure of DNA. We have investigated structure activity relationships for the potential oncogenicity of a new generation of bioreductive drugs that function as hypoxic cytotoxins. Experimental and theoretical investigation of the inverse dose rate effect, whereby medium LET radiations actually produce an c effect when the dose is protracted, is now at a point where the basic mechanisms are reasonably understood and the complex interplay between dose, dose rate and radiation quality which is necessary for the effect to be present can now be predicted at least in vitro. In terms of early radiobiological damage, a quantitative link has been established between basic energy deposition and locally multiply damaged sites, the radiochemical precursor of DNA double strand breaks; specifically, the spatial and energy deposition requirements necessary to form LMDs have been evaluated. For the first time, a mechanically understood biological fingerprint'' of high-LET radiation has been established. Specifically measurement of the ratio of inter-to intra-chromosomal aberrations produces a unique signature from alpha-particles or neutrons.

  6. Electron paramagnetic resonance biophysical radiation dosimetry with tooth enamel

    International Nuclear Information System (INIS)

    Khan, Rao F.H.

    2003-01-01

    This thesis deals with the advancements made in the field of Electron Paramagnetic Resonance (EPR) for biophysical dosimetry with tooth enamel for accident, emergency, and retrospective radiation dose reconstruction. A methodology has been developed to measure retrospective radiation exposures in human tooth enamel. This entails novel sample preparation procedures with minimum mechanical treatment to reduce the preparation induced uncertainties, establish optimum measurement conditions inside the EPR cavity, post-process the measured spectrum with functional simulation of dosimetric and other interfering signals, and reconstruct dose. By using this technique, retrospective gamma exposures as low as 80±30 mGy have been successfully deciphered. The notion of dose modifier was introduced in EPR biodosimetry for low dose measurements. It has been demonstrated that by using the modified zero added dose (MZAD) technique for low radiation exposures, doses in 100 mGy ranges can be easily reconstructed in teeth that were previously thought useless for EPR dosimetry. Also, the use of a dose modifier makes robust dose reconstruction possible for higher radiation exposures. The EPR dosimetry technique was also developed for tooth samples extracted from rodents, which represent small tooth sizing. EPR doses in the molars, extracted from the mice irradiated with whole body exposures, were reassessed and shown to be correct within the experimental uncertainty. The sensitivity of human tooth enamel for neutron irradiation, obtained from the 3 MV McMaster K.N. Van de Graaff accelerator, was also studied. For the first time this work has shown that the neutron sensitivity of the tooth enamel is approximately 1/10th of the equivalent gamma sensitivity. Parametric studies for neutron dose rate and neutron energy within the available range of the accelerator, showed no impact on the sensitivity of the tooth enamel. Therefore, tooth enamel can be used as a dosimeter for both neutrons

  7. Uniquely Strongly Clean Group Rings

    Institute of Scientific and Technical Information of China (English)

    WANG XIU-LAN

    2012-01-01

    A ring R is called clean if every element is the sum of an idempotent and a unit,and R is called uniquely strongly clean (USC for short) if every element is uniquely the sum of an idempotent and a unit that commute.In this article,some conditions on a ring R and a group G such that RG is clean are given.It is also shown that if G is a locally finite group,then the group ring RG is USC if and only if R is USC,and G is a 2-group.The left uniquely exchange group ring,as a middle ring of the uniquely clean ring and the USC ring,does not possess this property,and so does the uniquely exchange group ring.

  8. Hierarchy and Interactions in Environmental Interfaces Regarded as Biophysical Complex Systems

    Science.gov (United States)

    Mihailovic, Dragutin T.; Balaz, Igor

    The field of environmental sciences is abundant with various interfaces and is the right place for the application of new fundamental approaches leading towards a better understanding of environmental phenomena. For example, following the definition of environmental interface by Mihailovic and Balaž [23], such interface can be placed between: human or animal bodies and surrounding air, aquatic species and water and air around them, and natural or artificially built surfaces (vegetation, ice, snow, barren soil, water, urban communities) and the atmosphere. Complex environmental interface systems are open and hierarchically organised, interactions between their constituent parts are nonlinear, and the interaction with the surrounding environment is noisy. These systems are therefore very sensitive to initial conditions, deterministic external perturbations and random fluctuations always present in nature. The study of noisy non-equilibrium processes is fundamental for modelling the dynamics of environmental interface systems and for understanding the mechanisms of spatio-temporal pattern formation in contemporary environmental sciences, particularly in environmental fluid mechanics. In modelling complex biophysical systems one of the main tasks is to successfully create an operative interface with the external environment. It should provide a robust and prompt translation of the vast diversity of external physical and/or chemical changes into a set of signals, which are "understandable" for an organism. Although the establishment of organisation in any system is of crucial importance for its functioning, it should not be forgotten that in biophysical systems we deal with real-life problems where a number of other conditions should be reached in order to put the system to work. One of them is the proper supply of the system by the energy. Therefore, we will investigate an aspect of dynamics of energy flow based on the energy balance equation. The energy as well as

  9. Representing biophysical landscape interactions in soil models by bridging disciplines and scales.

    Science.gov (United States)

    van der Ploeg, M. J.; Carranza, C.; Teixeira da Silva, R.; te Brake, B.; Baartman, J.; Robinson, D.

    2017-12-01

    The combination of climate change, population growth and soil threats including carbon loss, biodiversity decline and erosion, increasingly confront the global community (Schwilch et al., 2016). One major challenge in studying processes involved in soil threats, landscape resilience, ecosystem stability, sustainable land management and resulting economic consequences, is that it is an interdisciplinary field (Pelletier et al., 2012). Less stringent scientific disciplinary boundaries are therefore important (Liu et al., 2007), because as a result of disciplinary focus, ambiguity may arise on the understanding of landscape interactions. This is especially true in the interaction between a landscape's physical and biological processes (van der Ploeg et al. 2012). Biophysical landscape interactions are those biotic and abiotic processes in a landscape that have an influence on the developments within and evolution of a landscape. An important aspect in biophysical landscape interactions is the differences in scale related to the various processes that play a role in these systems. Moreover, the interplay between the physical landscape and the occurring vegetation, which often co-evolve, and the resulting heterogeneity and emerging patterns are the reason why it is so challenging to establish a theoretical basis to describe biophysical processes in landscapes (e.g. te Brake et al. 2013, Robinson et al. 2016). Another complicating factor is the response of vegetation to changing environmental conditions, including a possible, and often unknown, time-lag (e.g. Metzger et al., 2009). An integrative description for modelling biophysical interactions has been a long standing goal in soil science (Vereecken et al., 2016). We need the development of soil models that are more focused on networks, connectivity and feedbacks incorporating the most important aspects of our detailed mechanistic modelling (Paola & Leeder, 2011). Additionally, remote sensing measurement techniques

  10. Are endometrial nerve fibres unique to endometriosis? A prospective case-control study of endometrial biopsy as a diagnostic test for endometriosis in women with pelvic pain.

    Science.gov (United States)

    Ellett, Lenore; Readman, Emma; Newman, Marsali; McIlwaine, Kate; Villegas, Rocio; Jagasia, Nisha; Maher, Peter

    2015-12-01

    Can the presence of endometrial nerve fibres be used as a diagnostic test for endometriosis in women with pelvic pain? Endometrial fine nerve fibres were seen in the endometrium of women both with and without endometriosis, making their detection a poor diagnostic tool for endometriosis. Laparoscopy and biopsy are currently the gold standard for making a diagnosis of endometriosis. It has been reported that small density nerve fibres in the functional layer of the endometrium are unique to women with endometriosis and hence nerve fibre detection could function as a less invasive diagnostic test of endometriosis. However, it may be that other painful conditions of the pelvis are also associated with these nerve fibres. We therefore focused this prospective study on women with pelvic pain to examine the efficacy of endometrial nerve fibre detection as a diagnostic test for endometriosis. This prospective case-control study conducted between July 2009 and July 2013 included 44 women with pelvic pain undergoing laparoscopic examination for the diagnosis of endometriosis. Immunohistochemical nerve fibre detection in endometrial curettings and biopsies using anti-protein gene product 9.5 was compared with surgical diagnosis. Paired endometrial biopsies and curettings were taken from patients with (n = 22, study group) and without (n = 22, control group) endometriosis. Tissue was analysed by immunohistochemistry and nerve fibres were counted whenever they were present in the functional layer of the endometrium. Fine nerve fibres were present in the eutopic endometrium of patients both with and without endometriosis. The presence of nerve fibres in curettings was not effective for either diagnosing or excluding endometriosis; sensitivity and specificity were 31.8 and 45.5% respectively, positive predictive value was 36.8% and negative predictive value was 40.0%. Few endometrial biopsy specimens were found to have nerve fibres present; sensitivity and specificity for

  11. Gradient Models in Molecular Biophysics: Progress, Challenges, Opportunities.

    Science.gov (United States)

    Bardhan, Jaydeep P

    2013-12-01

    In the interest of developing a bridge between researchers modeling materials and those modeling biological molecules, we survey recent progress in developing nonlocal-dielectric continuum models for studying the behavior of proteins and nucleic acids. As in other areas of science, continuum models are essential tools when atomistic simulations (e.g. molecular dynamics) are too expensive. Because biological molecules are essentially all nanoscale systems, the standard continuum model, involving local dielectric response, has basically always been dubious at best. The advanced continuum theories discussed here aim to remedy these shortcomings by adding features such as nonlocal dielectric response, and nonlinearities resulting from dielectric saturation. We begin by describing the central role of electrostatic interactions in biology at the molecular scale, and motivate the development of computationally tractable continuum models using applications in science and engineering. For context, we highlight some of the most important challenges that remain and survey the diverse theoretical formalisms for their treatment, highlighting the rigorous statistical mechanics that support the use and improvement of continuum models. We then address the development and implementation of nonlocal dielectric models, an approach pioneered by Dogonadze, Kornyshev, and their collaborators almost forty years ago. The simplest of these models is just a scalar form of gradient elasticity, and here we use ideas from gradient-based modeling to extend the electrostatic model to include additional length scales. The paper concludes with a discussion of open questions for model development, highlighting the many opportunities for the materials community to leverage its physical, mathematical, and computational expertise to help solve one of the most challenging questions in molecular biology and biophysics.

  12. Gradient Models in Molecular Biophysics: Progress, Challenges, Opportunities

    Science.gov (United States)

    Bardhan, Jaydeep P.

    2014-01-01

    In the interest of developing a bridge between researchers modeling materials and those modeling biological molecules, we survey recent progress in developing nonlocal-dielectric continuum models for studying the behavior of proteins and nucleic acids. As in other areas of science, continuum models are essential tools when atomistic simulations (e.g. molecular dynamics) are too expensive. Because biological molecules are essentially all nanoscale systems, the standard continuum model, involving local dielectric response, has basically always been dubious at best. The advanced continuum theories discussed here aim to remedy these shortcomings by adding features such as nonlocal dielectric response, and nonlinearities resulting from dielectric saturation. We begin by describing the central role of electrostatic interactions in biology at the molecular scale, and motivate the development of computationally tractable continuum models using applications in science and engineering. For context, we highlight some of the most important challenges that remain and survey the diverse theoretical formalisms for their treatment, highlighting the rigorous statistical mechanics that support the use and improvement of continuum models. We then address the development and implementation of nonlocal dielectric models, an approach pioneered by Dogonadze, Kornyshev, and their collaborators almost forty years ago. The simplest of these models is just a scalar form of gradient elasticity, and here we use ideas from gradient-based modeling to extend the electrostatic model to include additional length scales. The paper concludes with a discussion of open questions for model development, highlighting the many opportunities for the materials community to leverage its physical, mathematical, and computational expertise to help solve one of the most challenging questions in molecular biology and biophysics. PMID:25505358

  13. Gradient models in molecular biophysics: progress, challenges, opportunities

    Science.gov (United States)

    Bardhan, Jaydeep P.

    2013-12-01

    In the interest of developing a bridge between researchers modeling materials and those modeling biological molecules, we survey recent progress in developing nonlocal-dielectric continuum models for studying the behavior of proteins and nucleic acids. As in other areas of science, continuum models are essential tools when atomistic simulations (e.g., molecular dynamics) are too expensive. Because biological molecules are essentially all nanoscale systems, the standard continuum model, involving local dielectric response, has basically always been dubious at best. The advanced continuum theories discussed here aim to remedy these shortcomings by adding nonlocal dielectric response. We begin by describing the central role of electrostatic interactions in biology at the molecular scale, and motivate the development of computationally tractable continuum models using applications in science and engineering. For context, we highlight some of the most important challenges that remain, and survey the diverse theoretical formalisms for their treatment, highlighting the rigorous statistical mechanics that support the use and improvement of continuum models. We then address the development and implementation of nonlocal dielectric models, an approach pioneered by Dogonadze, Kornyshev, and their collaborators almost 40 years ago. The simplest of these models is just a scalar form of gradient elasticity, and here we use ideas from gradient-based modeling to extend the electrostatic model to include additional length scales. The review concludes with a discussion of open questions for model development, highlighting the many opportunities for the materials community to leverage its physical, mathematical, and computational expertise to help solve one of the most challenging questions in molecular biology and biophysics.

  14. Derivation of global vegetation biophysical parameters from EUMETSAT Polar System

    Science.gov (United States)

    García-Haro, Francisco Javier; Campos-Taberner, Manuel; Muñoz-Marí, Jordi; Laparra, Valero; Camacho, Fernando; Sánchez-Zapero, Jorge; Camps-Valls, Gustau

    2018-05-01

    This paper presents the algorithm developed in LSA-SAF (Satellite Application Facility for Land Surface Analysis) for the derivation of global vegetation parameters from the AVHRR (Advanced Very High Resolution Radiometer) sensor on board MetOp (Meteorological-Operational) satellites forming the EUMETSAT (European Organization for the Exploitation of Meteorological Satellites) Polar System (EPS). The suite of LSA-SAF EPS vegetation products includes the leaf area index (LAI), the fractional vegetation cover (FVC), and the fraction of absorbed photosynthetically active radiation (FAPAR). LAI, FAPAR, and FVC characterize the structure and the functioning of vegetation and are key parameters for a wide range of land-biosphere applications. The algorithm is based on a hybrid approach that blends the generalization capabilities offered by physical radiative transfer models with the accuracy and computational efficiency of machine learning methods. One major feature is the implementation of multi-output retrieval methods able to jointly and more consistently estimate all the biophysical parameters at the same time. We propose a multi-output Gaussian process regression (GPRmulti), which outperforms other considered methods over PROSAIL (coupling of PROSPECT and SAIL (Scattering by Arbitrary Inclined Leaves) radiative transfer models) EPS simulations. The global EPS products include uncertainty estimates taking into account the uncertainty captured by the retrieval method and input errors propagation. A sensitivity analysis is performed to assess several sources of uncertainties in retrievals and maximize the positive impact of modeling the noise in training simulations. The paper discusses initial validation studies and provides details about the characteristics and overall quality of the products, which can be of interest to assist the successful use of the data by a broad user's community. The consistent generation and distribution of the EPS vegetation products will

  15. Biophysical landscape interactions: Bridging disciplines and scale with connectivity

    Science.gov (United States)

    van der Ploeg, Martine; Baartman, Jantiene; Robinson, David

    2017-04-01

    The combination of climate change, population growth and soil threats, such as carbon loss, biodiversity decline or erosion amongst others , increasingly confront the global community [1]. One of the major challenges in studying processes involved in soil threats, landscape resilience, ecosystem stability, sustainable land management and the economic consequences, is that it is an interdisciplinary field [2], that needs less stringent scientific disciplinary boundaries [3]. As a result of disciplinary focus, ambiguity may arise on the understanding of landscape interactions, and this is especially true in the interaction between a landscape's physical and biological processes [4]. Another important aspect in biophysical landscape interactions are the differences in scale related to the various processes that play a role in these systems. While scaling of environmental processes is possible, as long as the phenomena at hand can be described by the same set of differential equations [5], biophysical landscape interactions pose problems for scaling approaches. Landscape position and land use impact the coupled processes in soil and vegetation. Differences in micro-behavior, driven by the interplay of heterogeneous soil and vegetation dynamics, impact emergent characteristics across a landscape. A complicating factor is the response of vegetation to changing environmental conditions, including a possible and often unknown time-lag. By altering soil conditions, plants may leave an imprint in the landscape that remains even after vegetation has disappeared due to e.g. drought, wildfire or overgrazing. Plants also respond biochemically to their environment, while the models used for hydrology are often based on physical interactions. Gene-expression and genotype adaptation may further complicate our modelling efforts in for example climate change impacts. What are we missing by not having more connectivity in our thinking, and what we can solve? We think that integrated

  16. Quantify the Biophysical and Socioeconomic Drivers of Changes in Forest and Agricultural Land in South and Southeast Asia

    Science.gov (United States)

    Xu, X.; Jain, A. K.; Calvin, K. V.

    2017-12-01

    Due to the rapid socioeconomic development and biophysical factors, South and Southeast Asia (SSEA) has become a hotspot region of land use and land cover changes (LULCCs) in past few decades. Uncovering the drivers of LULCC is crucial for improving the understanding of LULCC processes. Due to the differences from spatiotemporal scales, methods and data sources in previous studies, the quantitative relationships between the LULCC activities and biophysical and socioeconomic drivers at the regional scale of SSEA have not been established. Here we present a comprehensive estimation of the biophysical and socioeconomic drivers of the major LULCC activities in SSEA: changes in forest and agricultural land. We used the Climate Change Initiative land cover data developed by European Space Agency to reveal the dynamics of forest and agricultural land from 1992 to 2015. Then we synthesized 200 publications about LULCC drivers at different spatial scales in SSEA to identify the major drivers of these LULCC activities. Corresponding representative variables of the major drivers were collected. The geographically weighted regression was employed to assess the spatiotemporally heterogeneous drivers of LULCC. Moreover, we validated our results with some national level case studies in SSEA. The results showed that both biophysical conditions such as terrain, soil, and climate, and socioeconomic factors such as migration, poverty, and economy played important roles in driving the changes of forest and agricultural land. The major drivers varied in different locations and periods. Our study integrated the bottom-up knowledge from local scale case studies with the top-down estimation of LULCC drivers, therefore generated more accurate and credible results. The identified biophysical and socioeconomic components could be used to improve the LULCC modelling and projection.

  17. Tattoos and piercings: bodily expressions of uniqueness?

    Science.gov (United States)

    Tiggemann, Marika; Hopkins, Louise A

    2011-06-01

    The study aimed to investigate the motivations underlying the body modification practices of tattooing and piercing. There were 80 participants recruited from an Australian music store, who provided descriptions of their tattoos and piercings and completed measures of need for uniqueness, appearance investment and distinctive appearance investment. It was found that tattooed individuals scored significantly higher on need for uniqueness than non-tattooed individuals. Further, individuals with conventional ear piercings scored significantly lower on need for uniqueness than individuals with no piercings or with facial and body piercings. Neither appearance investment nor distinctive appearance investment differed significantly among tattoo or piercing status groups. Strength of identification with music was significantly correlated with number of tattoos, but not number of piercings. It was concluded that tattooing, but not body piercing, represents a bodily expression of uniqueness. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Diabetes: Unique to Older Adults

    Science.gov (United States)

    ... Stroke Urinary Incontinence Related Documents PDF Choosing Wisely: Diabetes Tests and Treatments Download Related Video Join our e-newsletter! Aging & Health A to Z Diabetes Unique to Older Adults This section provides information ...

  19. Chief, Structural Biophysics Laboratory | Center for Cancer Research

    Science.gov (United States)

    The SBL Chief is expected to establish a strong research program in structural biology/biophysics in addition to providing leadership of the SBL and the structural biology community in the NCI Intramural Program.  Applicants should hold a Ph.D., M.D./Ph.D., or equivalent doctoral degree in a relevant discipline, and should possess outstanding communication skills and documented leadership experience.  Tenured faculty or industrial scientists of equivalent rank with a demonstrated commitment to structural biophysics should apply.  Salary will be commensurate with experience and accomplishments.  This position is not restricted to U.S. citizens. A full civil service package of benefits (including health insurance, life insurance, and retirement) is available. This position is subject to a background investigation.  The NIH is dedicated to building a diverse community in its training and employment programs.

  20. From hadron therapy to cosmic rays: a life in biophysics

    CERN Multimedia

    Christine Sutton

    2014-01-01

    In 1954 – the year CERN was founded – another scientific journey began at what is now the Lawrence Berkeley National Laboratory. Beams of protons from a particle accelerator were used for the first time by John Lawrence – a doctor and the brother of Ernest Lawrence, the physicist after whom the Berkeley lab is named – to treat patients with cancer. For many years, Eleanor Blakely has been one of the leaders of that journey. She visited CERN last week and spoke with the Bulletin about her life in biophysics.   Use of the cylcotron beam to mimic "shooting stars" seen by astronauts. Black hood on subject Cornelius Tobias keeps out light during neutron irradiation experiment at the 184-inch accelerator. Helping to position Tobias in the beam line are (left to right) John Lyman of Biomedical Division, and Ralph Thomas of Health Physics. (Photo courtesy of Lawrence Berkeley National Laboratory.) Interested in biophysics, which was still a new...

  1. Biophysical dosimetry using electron paramagnetic resonance in human tooth

    International Nuclear Information System (INIS)

    Khan, R.F.H.; Boreham, D.R.; Rink, W.J.

    2002-01-01

    Accidental dosimetry utilizing radiation induced paramagnetic species in biophysical tissues like teeth is a technique; that can measure the amount of radiation exposure to an individual. The major problem in implementing this technique at low doses is the presence of native organic signal, and various other artifacts produced as a result of sample processing. After a series of experimental trials, we developed an optimum set of rules, which uses high temperature ultrasonic treatment of enamel in KOH, multiple sample rotation during in-cavity measurement of natural and calibrated added irradiations, and dose construction using a backward extrapolation method. By using this we report the successful dose reconstruction in a few of our laboratory samples in 100 mGy range (76.29 ± 30.14) mGy with reasonably low uncertainty. Keywords: biophysical dosimetry, human tooth enamel, low dose measurements, accidental dosimetry (author)

  2. Biophysical approach to low back pain: a pilot report.

    Science.gov (United States)

    Foletti, Alberto; Pokorný, Jiry

    2015-01-01

    Since biophysical treatment has been reported to be effective in the general management of pain, we decided to assess the specific effect and treatment duration of this therapeutic strategy in low back pain. We were interested in verifying the possibility that a single clinical procedure could reduce pain and improve patients' quality of life within a period of three months. An Electromagnetic Information Transfer Through Aqueous System was employed to record endogenous therapeutic signals from each individual using an electromagnetic recording device (Med Select 729). A highly significant reduction in the Roland Morris low back pain and disability questionnaire score was observed after 3 months following a single biophysical intervention (11.83 ± 6 at baseline versus 2.3 ± 3.25 at 3 months, p < 0.0001). This preliminary report provides further evidence of the theoretical implications and clinical applications of Quantum Electro Dynamic concepts in biology and medicine.

  3. The biophysics of renal sympathetic denervation using radiofrequency energy.

    Science.gov (United States)

    Patel, Hitesh C; Dhillon, Paramdeep S; Mahfoud, Felix; Lindsay, Alistair C; Hayward, Carl; Ernst, Sabine; Lyon, Alexander R; Rosen, Stuart D; di Mario, Carlo

    2014-05-01

    Renal sympathetic denervation is currently performed in the treatment of resistant hypertension by interventionists who otherwise do not typically use radiofrequency (RF) energy ablation in their clinical practice. Adequate RF lesion formation is dependent upon good electrode-tissue contact, power delivery, electrode-tissue interface temperature, target-tissue impedance and the size of the catheter's active electrode. There is significant interplay between these variables and hence an appreciation of the biophysical determinants of RF lesion formation is required to provide effective and safe clinical care to our patients. In this review article, we summarize the biophysics of RF ablation and explain why and how complications of renal sympathetic denervation may occur and discuss methods to minimise them.

  4. Mass spectrometry for the biophysical characterization of therapeutic monoclonal antibodies.

    Science.gov (United States)

    Zhang, Hao; Cui, Weidong; Gross, Michael L

    2014-01-21

    Monoclonal antibodies (mAbs) are powerful therapeutics, and their characterization has drawn considerable attention and urgency. Unlike small-molecule drugs (150-600 Da) that have rigid structures, mAbs (∼150 kDa) are engineered proteins that undergo complicated folding and can exist in a number of low-energy structures, posing a challenge for traditional methods in structural biology. Mass spectrometry (MS)-based biophysical characterization approaches can provide structural information, bringing high sensitivity, fast turnaround, and small sample consumption. This review outlines various MS-based strategies for protein biophysical characterization and then reviews how these strategies provide structural information of mAbs at the protein level (intact or top-down approaches), peptide, and residue level (bottom-up approaches), affording information on higher order structure, aggregation, and the nature of antibody complexes. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  5. 1 Evaluating Biophysical Attributes of Environmentally Degraded ...

    African Journals Online (AJOL)

    `123456789jkl''''#

    This study provides base-line information and add to land cover knowledge for this and similar regions. .... LANDSAT ETM Data and Image Processing .... attitudes (from 1500 to 2700 m asl), which .... combination of shallow rooting depth.

  6. A quantitative overview of biophysical forces impinging on neural function

    International Nuclear Information System (INIS)

    Mueller, Jerel K; Tyler, William J

    2014-01-01

    The fundamentals of neuronal membrane excitability are globally described using the Hodgkin-Huxley (HH) model. The HH model, however, does not account for a number of biophysical phenomena associated with action potentials or propagating nerve impulses. Physical mechanisms underlying these processes, such as reversible heat transfer and axonal swelling, have been compartmentalized and separately investigated to reveal neuronal activity is not solely influenced by electrical or biochemical factors. Instead, mechanical forces and thermodynamics also govern neuronal excitability and signaling. To advance our understanding of neuronal function and dysfunction, compartmentalized analyses of electrical, chemical, and mechanical processes need to be revaluated and integrated into more comprehensive theories. The present perspective is intended to provide a broad overview of biophysical forces that can influence neural function, but which have been traditionally underappreciated in neuroscience. Further, several examples where mechanical forces have been shown to exert their actions on nervous system development, signaling, and plasticity are highlighted to underscore their importance in sculpting neural function. By considering the collective actions of biophysical forces influencing neuronal activity, our working models can be expanded and new paradigms can be applied to the investigation and characterization of brain function and dysfunction. (topical review)

  7. Modelling benthic biophysical drivers of ecosystem structure and biogeochemical response

    Science.gov (United States)

    Stephens, Nicholas; Bruggeman, Jorn; Lessin, Gennadi; Allen, Icarus

    2016-04-01

    The fate of carbon deposited at the sea floor is ultimately decided by biophysical drivers that control the efficiency of remineralisation and timescale of carbon burial in sediments. Specifically, these drivers include bioturbation through ingestion and movement, burrow-flushing and sediment reworking, which enhance vertical particulate transport and solute diffusion. Unfortunately, these processes are rarely satisfactorily resolved in models. To address this, a benthic model that explicitly describes the vertical position of biology (e.g., habitats) and biogeochemical processes is presented that includes biological functionality and biogeochemical response capturing changes in ecosystem structure, benthic-pelagic fluxes and biodiversity on inter-annual timescales. This is demonstrated by the model's ability to reproduce temporal variability in benthic infauna, vertical pore water nutrients and pelagic-benthic solute fluxes compared to in-situ data. A key advance is the replacement of bulk parameterisation of bioturbation by explicit description of the bio-physical processes responsible. This permits direct comparison with observations and determination of key parameters in experiments. Crucially, the model resolves the two-way interaction between sediment biogeochemistry and ecology, allowing exploration of the benthic response to changing environmental conditions, the importance of infaunal functional traits in shaping benthic ecological structure and the feedback the resulting bio-physical processes exert on pore water nutrient profiles. The model is actively being used to understand shelf sea carbon cycling, the response of the benthos to climatic change, food provision and other societal benefits.

  8. 1 Evaluating Biophysical Attributes of Environmentally Degraded ...

    African Journals Online (AJOL)

    `123456789jkl''''#

    Ethiopian Journal of Environmental Studies and Management Vol.4 No. 1 2011. 1 Department of .... land cover types and other physical attributes. (soils and landform ..... Natural water bodies (Rivers). Figure 4: .... permanent or ephemeral rivers. .... evaluating land use/land cover change using participatory ... First Edition.

  9. Modularity, comparative cognition and human uniqueness.

    Science.gov (United States)

    Shettleworth, Sara J

    2012-10-05

    Darwin's claim 'that the difference in mind between man and the higher animals … is certainly one of degree and not of kind' is at the core of the comparative study of cognition. Recent research provides unprecedented support for Darwin's claim as well as new reasons to question it, stimulating new theories of human cognitive uniqueness. This article compares and evaluates approaches to such theories. Some prominent theories propose sweeping domain-general characterizations of the difference in cognitive capabilities and/or mechanisms between adult humans and other animals. Dual-process theories for some cognitive domains propose that adult human cognition shares simple basic processes with that of other animals while additionally including slower-developing and more explicit uniquely human processes. These theories are consistent with a modular account of cognition and the 'core knowledge' account of children's cognitive development. A complementary proposal is that human infants have unique social and/or cognitive adaptations for uniquely human learning. A view of human cognitive architecture as a mosaic of unique and species-general modular and domain-general processes together with a focus on uniquely human developmental mechanisms is consistent with modern evolutionary-developmental biology and suggests new questions for comparative research.

  10. The Biophysical Function of Pulmonary Surfactant

    OpenAIRE

    Rugonyi, Sandra; Biswas, Samares C.; Hall, Stephen B.

    2008-01-01

    Pulmonary surfactant lowers surface tension in the lungs. Physiological studies indicate two key aspects of this function: that the surfactant film forms rapidly; and that when compressed by the shrinking alveolar area during exhalation, the film reduces surface tension to very low values. These observations suggest that surfactant vesicles adsorb quickly, and that during compression, the adsorbed film resists the tendency to collapse from the interface to form a three-dimensional bulk phase....

  11. Radiation physics, biophysics, and radiation biology

    International Nuclear Information System (INIS)

    Hall, E.J.; Zaider, M.

    1991-05-01

    Research at the Radiological Research Laboratory is a blend of physics, chemistry, and biology, involving research at the basic level with the admixture of a small proportion of pragmatic or applied research in support of radiation protection and/or radiotherapy. Current research topics include: oncogenic transformation assays, mutation studies involving interactions between radiation and environmental contaminants, isolation, characterization and sequencing of a human repair gene, characterization of a dominant transforming gene found in C3H 10T1/2 cells, characterize ab initio the interaction of DNA and radiation, refine estimates of the radiation quality factor Q, a new mechanistic model of oncogenesis showing the role of long-term low dose medium LET radiation, and time dependent modeling of radiation induced chromosome damage and subsequent repair or misrepair

  12. Highly active antiretroviral therapy including protease inhibitors does not confer a unique CD4 cell benefit. The AVANTI and INCAS Study Groups.

    Science.gov (United States)

    2000-07-07

    To determine if triple combination therapy, particularly including HIV protease inhibitors (PI), confers an unique immunological benefit that is independent of reductions of plasma viral load (pVL). The correlation between changes from baseline in CD4 cell count and pVL was examined at all time points up to 52 weeks in three randomized clinical trials (AVANTI-2, AVANTI-3 and INCAS) that compared dual nucleoside therapy with triple combination therapy. Individual pVL and CD4 cell counts changes from baseline were entered into multivariate linear regression models for patients receiving double therapy and for those receiving triple therapy including a PI and/or a non-nucleoside reverse transcriptase inhibitor (NNRTI), and the null hypothesis was tested. After 52 weeks of therapy, the relationship between changes from baseline CD4 cell count and pVL was independent of whether patients were assigned double or triple therapy (P = 0.23 and 0.69 for intercept and slope, respectively), or whether patients were assigned triple therapy including a PI or triple therapy including an NNRTI (P = 0.92 and 0.95, respectively). Less than 5% of patients ever had 'discordant' increases in both CD4 cell count and pVL compared with baseline, and this proportion was unrelated to the class of therapy used. 'Discordant' decreases from baseline in both parameters were observed in up to 35% of individuals. The correlation between pVL and CD4 cell count changes from baseline improved over time on therapy, regardless of the therapeutic regimen involved. The data provide no evidence for a CD4 cell count benefit of highly active antiretroviral therapy (HAART) unique to triple therapy or PI-containing regimens.

  13. A biophysical model for transcription factories

    International Nuclear Information System (INIS)

    Canals-Hamann, Ana Z; Neves, Ricardo Pires das; Reittie, Joyce E; Iñiguez, Carlos; Soneji, Shamit; Enver, Tariq; Buckle, Veronica J; Iborra, Francisco J

    2013-01-01

    Transcription factories are nuclear domains where gene transcription takes place although the molecular basis for their formation and maintenance are unknown. In this study, we explored how the properties of chromatin as a polymer may contribute to the structure of transcription factories. We found that transcriptional active chromatin contains modifications like histone H4 acetylated at Lysine 16 (H4K16ac). Single fibre analysis showed that this modification spans the entire body of the gene. Furthermore, H4K16ac genes cluster in regions up to 500 Kb alternating active and inactive chromatin. The introduction of H4K16ac in chromatin induces stiffness in the chromatin fibre. The result of this change in flexibility is that chromatin could behave like a multi-block copolymer with repetitions of stiff-flexible (active-inactive chromatin) components. Copolymers with such structure self-organize through spontaneous phase separation into microdomains. Consistent with such model H4K16ac chromatin form foci that associates with nascent transcripts. We propose that transcription factories are the result of the spontaneous concentration of H4K16ac chromatin that are in proximity, mainly in cis

  14. Fab-based bispecific antibody formats with robust biophysical properties and biological activity.

    Science.gov (United States)

    Wu, Xiufeng; Sereno, Arlene J; Huang, Flora; Lewis, Steven M; Lieu, Ricky L; Weldon, Caroline; Torres, Carina; Fine, Cody; Batt, Micheal A; Fitchett, Jonathan R; Glasebrook, Andrew L; Kuhlman, Brian; Demarest, Stephen J

    2015-01-01

    A myriad of innovative bispecific antibody (BsAb) platforms have been reported. Most require significant protein engineering to be viable from a development and manufacturing perspective. Single-chain variable fragments (scFvs) and diabodies that consist only of antibody variable domains have been used as building blocks for making BsAbs for decades. The drawback with Fv-only moieties is that they lack the native-like interactions with CH1/CL domains that make antibody Fab regions stable and soluble. Here, we utilize a redesigned Fab interface to explore 2 novel Fab-based BsAbs platforms. The redesigned Fab interface designs limit heavy and light chain mixing when 2 Fabs are co-expressed simultaneously, thus allowing the use of 2 different Fabs within a BsAb construct without the requirement of one or more scFvs. We describe the stability and activity of a HER2×HER2 IgG-Fab BsAb, and compare its biophysical and activity properties with those of an IgG-scFv that utilizes the variable domains of the same parental antibodies. We also generated an EGFR × CD3 tandem Fab protein with a similar format to a tandem scFv (otherwise known as a bispecific T cell engager or BiTE). We show that the Fab-based BsAbs have superior biophysical properties compared to the scFv-based BsAbs. Additionally, the Fab-based BsAbs do not simply recapitulate the activity of their scFv counterparts, but are shown to possess unique biological activity.

  15. Similar Biophysical Abnormalities in Glomeruli and Podocytes from Two Distinct Models.

    Science.gov (United States)

    Embry, Addie E; Liu, Zhenan; Henderson, Joel M; Byfield, F Jefferson; Liu, Liping; Yoon, Joonho; Wu, Zhenzhen; Cruz, Katrina; Moradi, Sara; Gillombardo, C Barton; Hussain, Rihanna Z; Doelger, Richard; Stuve, Olaf; Chang, Audrey N; Janmey, Paul A; Bruggeman, Leslie A; Miller, R Tyler

    2018-03-23

    Background FSGS is a pattern of podocyte injury that leads to loss of glomerular function. Podocytes support other podocytes and glomerular capillary structure, oppose hemodynamic forces, form the slit diaphragm, and have mechanical properties that permit these functions. However, the biophysical characteristics of glomeruli and podocytes in disease remain unclear. Methods Using microindentation, atomic force microscopy, immunofluorescence microscopy, quantitative RT-PCR, and a three-dimensional collagen gel contraction assay, we studied the biophysical and structural properties of glomeruli and podocytes in chronic (Tg26 mice [HIV protein expression]) and acute (protamine administration [cytoskeletal rearrangement]) models of podocyte injury. Results Compared with wild-type glomeruli, Tg26 glomeruli became progressively more deformable with disease progression, despite increased collagen content. Tg26 podocytes had disordered cytoskeletons, markedly abnormal focal adhesions, and weaker adhesion; they failed to respond to mechanical signals and exerted minimal traction force in three-dimensional collagen gels. Protamine treatment had similar but milder effects on glomeruli and podocytes. Conclusions Reduced structural integrity of Tg26 podocytes causes increased deformability of glomerular capillaries and limits the ability of capillaries to counter hemodynamic force, possibly leading to further podocyte injury. Loss of normal podocyte mechanical integrity could injure neighboring podocytes due to the absence of normal biophysical signals required for podocyte maintenance. The severe defects in podocyte mechanical behavior in the Tg26 model may explain why Tg26 glomeruli soften progressively, despite increased collagen deposition, and may be the basis for the rapid course of glomerular diseases associated with severe podocyte injury. In milder injury (protamine), similar processes occur but over a longer time. Copyright © 2018 by the American Society of Nephrology.

  16. From autopoiesis to neurophenomenology: Francisco Varela's exploration of the biophysics of being

    Directory of Open Access Journals (Sweden)

    DAVID RUDRAUF

    2003-01-01

    Full Text Available This paper reviews in detail Francisco Varela's work on subjectivity and consciousness in the biological sciences. His original approach to this "hard problem" presents a subjectivity that is radically intertwined with its biological and physical roots. It must be understood within the framework of his theory of a concrete, embodied dynamics, grounded in his general theory of autonomous systems. Through concepts and paradigms such as biological autonomy, embodiment and neurophenomenology, the article explores the multiple levels of circular causality assumed by Varela to play a fundamental role in the emergence of human experience. The concept of biological autonomy provides the necessary and sufficient conditions for characterizing biological life and identity as an emergent and circular self-producing process. Embodiment provides a systemic and dynamical framework for understanding how a cognitive -a mind- can arise in an organism in the midst of its operational cycles of internal regulation and ongoing sensorimotor coupling. Global subjective properties can emerge at different levels from the interactions of components and can reciprocally constrain local processes through an ongoing, recursive morphodynamics. Neurophenomenology is a supplementary step in the study of consciousness. Through a rigorous method, it advocates the careful examination of experience with first-person methodologies. It attempts to create heuristic mutual constraints between biophysical data and data produced by accounts of subjective experience. The aim is to explicitly ground the active and disciplined insight the subject has about his/her experience in a biophysical emergent process. Finally, we discuss Varela's essential contribution to our understanding of the generation of consciousness in the framework of what we call his "biophysics of being."

  17. Unique bar-like sulfur-doped C3N4/TiO2 nanocomposite: Excellent visible light driven photocatalytic activity and mechanism study

    Science.gov (United States)

    Zhao, Yu; Xu, Shiping; Sun, Xiang; Xu, Xing; Gao, Baoyu

    2018-04-01

    In this work, a nanocomposite of TiO2 nanoparticles coupled with sulfur-doped C3N4 (S-C3N4) laminated layer was successfully fabricated using a facile impregnation method and the nanocomposite exhibited superior photocatalytic activity in pollutant removal under visible light irradiation, compared to bare TiO2, g-C3N4 and binary C3N4-TiO2 nanocomposite. The enhanced photocatalytic activity was benefited from the efficient migration and transformation of electron-hole (e--h+) pairs, improved visible light absorption capability, and relatively large specific surface area induce by sulfur doping. Interestingly, the introduction of sulfur changes regulated the morphology of g-C3N4 leading to the formation of ultrathin g-C3N4 layer nanosheet assemblies and unique bar-like g-C3N4/TiO2 nanocomposite, which is beneficial for the outstanding performance of the product. In addition, trapping experiment was carried out to identify the main active species in the photocatalytic reaction over the S-C3N4/TiO2 photocatalyst, and functional mechanism of the composite was proposed. This work may provide new ideas for the fabrication and utilization of highly efficient photocatalyst with excellent visible light response in environmental purification applications.

  18. Exploring the biophysical properties of phytosterols in the plasma membrane for novel cancer prevention strategies.

    Science.gov (United States)

    Fakih, Omar; Sanver, Didem; Kane, David; Thorne, James L

    2018-05-03

    Cancer is a global problem with no sign that incidences are reducing. The great costs associated with curing cancer, through developing novel treatments and applying patented therapies, is an increasing burden to developed and developing nations alike. These financial and societal problems will be alleviated by research efforts into prevention, or treatments that utilise off-patent or repurposed agents. Phytosterols are natural components of the diet found in an array of seeds, nuts and vegetables and have been added to several consumer food products for the management of cardio-vascular disease through their ability to lower LDL-cholesterol levels. In this review, we provide a connected view between the fields of structural biophysics and cellular and molecular biology to evaluate the growing evidence that phytosterols impair oncogenic pathways in a range of cancer types. The current state of understanding of how phytosterols alter the biophysical properties of plasma membrane is described, and the potential for phytosterols to be repurposed from cardio-vascular to oncology therapeutics. Through an overview of the types of biophysical and molecular biology experiments that have been performed to date, this review informs the reader of the molecular and biophysical mechanisms through which phytosterols could have anti-cancer properties via their interactions with the plasma cell membrane. We also outline emerging and under-explored areas such as computational modelling, improved biomimetic membranes and ex vivo tissue evaluation. Focus of future research in these areas should improve understanding, not just of phytosterols in cancer cell biology but also to give insights into the interaction between the plasma membrane and the genome. These fields are increasingly providing meaningful biological and clinical data but iterative experiments between molecular biology assays, biosynthetic membrane studies and computational membrane modelling improve and refine our

  19. Cellular Biophysics During Freezing of Rat and Mouse Sperm Predicts Post-thaw Motility1

    Science.gov (United States)

    Hagiwara, Mie; Choi, Jeung Hwan; Devireddy, Ramachandra V.; Roberts, Kenneth P.; Wolkers, Willem F.; Makhlouf, Antoine; Bischof, John C.

    2009-01-01

    Though cryopreservation of mouse sperm yields good survival and motility after thawing, cryopreservation of rat sperm remains a challenge. This study was designed to evaluate the biophysics (membrane permeability) of rat in comparison to mouse to better understand the cooling rate response that contributes to cryopreservation success or failure in these two sperm types. In order to extract subzero membrane hydraulic permeability in the presence of ice, a differential scanning calorimeter (DSC) method was used. By analyzing rat and mouse sperm frozen at 5°C/min and 20°C/min, heat release signatures characteristic of each sperm type were obtained and correlated to cellular dehydration. The dehydration response was then fit to a model of cellular water transport (dehydration) by adjusting cell-specific biophysical (membrane hydraulic permeability) parameters Lpg and ELp. A “combined fit” (to 5°C/min and 20°C/min data) for rat sperm in Biggers-Whitten-Whittingham media yielded Lpg = 0.007 μm min−1 atm−1 and ELp = 17.8 kcal/mol, and in egg yolk cryopreservation media yielded Lpg = 0.005 μm min−1 atm−1 and ELp = 14.3 kcal/mol. These parameters, especially the activation energy, were found to be lower than previously published parameters for mouse sperm. In addition, the biophysical responses in mouse and rat sperm were shown to depend on the constituents of the cryopreservation media, in particular egg yolk and glycerol. Using these parameters, optimal cooling rates for cryopreservation were predicted for each sperm based on a criteria of 5%–15% normalized cell water at −30°C during freezing in cryopreservation media. These predicted rates range from 53°C/min to 70°C/min and from 28°C/min to 36°C/min in rat and mouse, respectively. These predictions were validated by comparison to experimentally determined cryopreservation outcomes, in this case based on motility. Maximum motility was obtained with freezing rates between 50°C/min and 80

  20. Cellular biophysics during freezing of rat and mouse sperm predicts post-thaw motility.

    Science.gov (United States)

    Hagiwara, Mie; Choi, Jeung Hwan; Devireddy, Ramachandra V; Roberts, Kenneth P; Wolkers, Willem F; Makhlouf, Antoine; Bischof, John C

    2009-10-01

    Though cryopreservation of mouse sperm yields good survival and motility after thawing, cryopreservation of rat sperm remains a challenge. This study was designed to evaluate the biophysics (membrane permeability) of rat in comparison to mouse to better understand the cooling rate response that contributes to cryopreservation success or failure in these two sperm types. In order to extract subzero membrane hydraulic permeability in the presence of ice, a differential scanning calorimeter (DSC) method was used. By analyzing rat and mouse sperm frozen at 5 degrees C/min and 20 degrees C/min, heat release signatures characteristic of each sperm type were obtained and correlated to cellular dehydration. The dehydration response was then fit to a model of cellular water transport (dehydration) by adjusting cell-specific biophysical (membrane hydraulic permeability) parameters L(pg) and E(Lp). A "combined fit" (to 5 degrees C/min and 20 degrees C/min data) for rat sperm in Biggers-Whitten-Whittingham media yielded L(pg) = 0.007 microm min(-1) atm(-1) and E(Lp) = 17.8 kcal/mol, and in egg yolk cryopreservation media yielded L(pg) = 0.005 microm min(-1) atm(-1) and E(Lp) = 14.3 kcal/mol. These parameters, especially the activation energy, were found to be lower than previously published parameters for mouse sperm. In addition, the biophysical responses in mouse and rat sperm were shown to depend on the constituents of the cryopreservation media, in particular egg yolk and glycerol. Using these parameters, optimal cooling rates for cryopreservation were predicted for each sperm based on a criteria of 5%-15% normalized cell water at -30 degrees C during freezing in cryopreservation media. These predicted rates range from 53 degrees C/min to 70 degrees C/min and from 28 degrees C/min to 36 degrees C/min in rat and mouse, respectively. These predictions were validated by comparison to experimentally determined cryopreservation outcomes, in this case based on motility. Maximum

  1. Brain penetration of telmisartan, a unique centrally acting angiotensin II type 1 receptor blocker, studied by PET in conscious rhesus macaques

    International Nuclear Information System (INIS)

    Noda, Akihiro; Fushiki, Hiroshi; Murakami, Yoshihiro; Sasaki, Hiroshi; Miyoshi, Sosuke; Kakuta, Hirotoshi; Nishimura, Shintaro

    2012-01-01

    Introduction: Telmisartan is a widely used, long-acting antihypertensive agent. Known to be a selective angiotensin II type 1 (AT 1 ) receptor (AT 1 R) blocker (ARB), telmisartan acts as a partial agonist of peroxisome proliferator-activated receptor-gamma (PPAR-γ) and inhibits centrally mediated effects of angiotensin II in rats following peripheral administration, although the brain penetration of telmisartan remains unclear. We investigated the brain concentration and localization of telmisartan using 11 C-labeled telmisartan and positron emission tomography (PET) in conscious rhesus macaques. Methods: Three male rhesus macaques were bolus intravenously administered [ 11 C]telmisartan either alone or as a mixture with unlabeled telmisartan (1 mg/kg). Dynamic PET images were acquired for 95 min following administration. Blood samples were collected for the analysis of plasma concentration and metabolites, and brain and plasma concentrations were calculated from detected radioactivity using the specific activity of the administered drug preparation, in which whole blood radioactivity was used for the correction of intravascular blood radioactivity in brain. Results: Telmisartan penetrated into the brain little but enough to block AT 1 R and showed a consistently increasing brain/plasma ratio within the PET scanning period, suggesting slow clearance of the compound from the brain compared to the plasma clearance. Brain/plasma ratios at 30, 60, and 90 min were 0.06, 0.13, and 0.18, respectively. No marked localization according to the AT 1 R distribution was noted over the entire brain, even on tracer alone dosing. Conclusions: Telmisartan penetrated into the brain enough to block AT 1 R and showed a slow clearance from the brain in conscious rhesus macaques, supporting the long-acting and central responses of telmisartan as a unique property among ARBs.

  2. Chemical-modification studies of a unique sialic acid-binding lectin from the snail Achatina fulica. Involvement of tryptophan and histidine residues in biological activity.

    Science.gov (United States)

    Basu, S; Mandal, C; Allen, A K

    1988-01-01

    A unique sialic acid-binding lectin, achatininH (ATNH) was purified in single step from the haemolymph of the snail Achatina fulica by affinity chromatography on sheep submaxillary-gland mucin coupled to Sepharose 4B. The homogeneity was checked by alkaline gel electrophoresis, immunodiffusion and immunoelectrophoresis. Amino acid analysis showed that the lectin has a fairly high content of acidic amino acid residues (22% of the total). About 1.3% of the residues are half-cystine. The glycoprotein contains 21% carbohydrate. The unusually high content of xylose (6%) and fucose (2.7%) in this snail lectin is quite interesting. The protein was subjected to various chemical modifications in order to detect the amino acid residues and carbohydrate residues present in its binding sites. Modification of tyrosine and arginine residues did not affect the binding activity of ATNH; however, modification of tryptophan and histidine residues led to a complete loss of its biological activity. A marked decrease in the fluorescence emission was found as the tryptophan residues of ATNH were modified. The c.d. data showed the presence of an identical type of conformation in the native and modified agglutinin. The modification of lysine and carboxy residues partially diminished the biological activity. The activity was completely lost after a beta-elimination reaction, indicating that the sugars are O-glycosidically linked to the glycoprotein's protein moiety. This result confirms that the carbohydrate moiety also plays an important role in the agglutination property of this lectin. Images Fig. 3. PMID:3140796

  3. Betel quid chewing leads to the development of unique de novo malignancies in liver transplant recipients, a retrospective single center study in Taiwan.

    Science.gov (United States)

    Chen, Yi-Chan; Cheng, Chih-Hsien; Wang, Yu-Chao; Wu, Ting-Jun; Chou, Hong-Shiue; Chan, Kun-Ming; Lee, Wei-Chen; Lee, Chen-Fang; Soong, Ruey Shyang

    2016-09-01

    Orthotopic liver transplantation (OLT) is the choice of treatment not only for end-stage liver disease and acute liver failure but also for hepatocellular carcinoma (HCC). The development of de novo malignancies after liver transplantation plays an important role in late mortality; the incidence of late mortality has increased owing to improved survival. The incidence of de novo malignancies is 2.3% to 25%, which is 2 to 3 times that of malignancies in the general population. The most commonly reported de novo malignancies in solid organs are skin cancer, Karposi sarcoma, and colon cancer according to the frequency of exposure to a specific carcinogen. We hypothesized that exposure to different carcinogens would change the distribution of de novo malignancies among patients after OLT. In Taiwan, 10% of the population is exposed to a unique carcinogen, the betel quid, which is associated with a high incidence of head and neck cancer (HNC) among the Taiwanese population.From 2004 to 2014, we retrospectively reviewed 484 cases post-OLT at our institution and 16 patients with 17 de novo malignancies were identified. Most of the patients had HNC, which is in contrast to previous literature reports.Univariate and multivariate analyses identified betel quid chewing as the main leading factor for HNC in the Taiwanese population.Routine screening of the oral mucosa in patients with the habit of betel quid chewing is recommended in Taiwan for the early detection of HNC. Routine screening with aggressive treatment after diagnosis of HNC in patients with the habit of chewing betel quid, who underwent OLT, resulted in good patient prognosis.

  4. Biophysical characteristics reveal neural stem cell differentiation potential.

    Directory of Open Access Journals (Sweden)

    Fatima H Labeed

    Full Text Available Distinguishing human neural stem/progenitor cell (huNSPC populations that will predominantly generate neurons from those that produce glia is currently hampered by a lack of sufficient cell type-specific surface markers predictive of fate potential. This limits investigation of lineage-biased progenitors and their potential use as therapeutic agents. A live-cell biophysical and label-free measure of fate potential would solve this problem by obviating the need for specific cell surface markers.We used dielectrophoresis (DEP to analyze the biophysical, specifically electrophysiological, properties of cortical human and mouse NSPCs that vary in differentiation potential. Our data demonstrate that the electrophysiological property membrane capacitance inversely correlates with the neurogenic potential of NSPCs. Furthermore, as huNSPCs are continually passaged they decrease neuron generation and increase membrane capacitance, confirming that this parameter dynamically predicts and negatively correlates with neurogenic potential. In contrast, differences in membrane conductance between NSPCs do not consistently correlate with the ability of the cells to generate neurons. DEP crossover frequency, which is a quantitative measure of cell behavior in DEP, directly correlates with neuron generation of NSPCs, indicating a potential mechanism to separate stem cells biased to particular differentiated cell fates.We show here that whole cell membrane capacitance, but not membrane conductance, reflects and predicts the neurogenic potential of human and mouse NSPCs. Stem cell biophysical characteristics therefore provide a completely novel and quantitative measure of stem cell fate potential and a label-free means to identify neuron- or glial-biased progenitors.

  5. Synergistic linkage between remote sensing and biophysical models for estimating plant ecophysiological and ecosystem processes

    International Nuclear Information System (INIS)

    Inoue, Y.; Olioso, A.

    2004-01-01

    Abstract Information on the ecological and physiological status of crops is essential for growth diagnostics and yield prediction. Within-field or between-field spatial information is required, especially with the recent trend toward precision agriculture, which seeks the efficient use of agrochemicals, water, and energy. The study of carbon and nitrogen cycles as well as environmental management on local and regional scales requires assessment of the spatial variability of biophysical and ecophysiological variables, scaling up of which is also needed for scientific and decision-making purposes. Remote sensing has great potential for these applications because it enables wide-area non-destructive, and real-time acquisition of information about ecophysiological conditions of vegetation. With recent advances in sensor technology, a variety of electromagnetic signatures, such as hyperspectral reflectance, thermal-infrared temperature, and microwave backscattering coefficients, can be acquired for both plants and ecosystems using ground-based, airborne, and satellite platforms. Their spatial and temporal resolutions have both recently been improved. This article reviews the state of the art in the remote sensing of plant ecophysiological data, with special emphasis on the synergy between remote sensing signatures and biophysical and ecophysiological process models. Several case studies for the optical, thermal, and microwave domains have demonstrated the potential of this synergistic linkage. Remote sensing and process modeling methods complement each other when combined synergistically. Further research on this approach is needed f or a wide range of ecophysiological and ecosystem studies, as well as for practical crop management

  6. Biophysical and biochemical strategies to understand membrane binding and pore formation by sticholysins, pore-forming proteins from a sea anemone.

    Science.gov (United States)

    Alvarez, Carlos; Ros, Uris; Valle, Aisel; Pedrera, Lohans; Soto, Carmen; Hervis, Yadira P; Cabezas, Sheila; Valiente, Pedro A; Pazos, Fabiola; Lanio, Maria E

    2017-10-01

    Actinoporins constitute a unique class of pore-forming toxins found in sea anemones that are able to bind and oligomerize in membranes, leading to cell swelling, impairment of ionic gradients and, eventually, to cell death. In this review we summarize the knowledge generated from the combination of biochemical and biophysical approaches to the study of sticholysins I and II (Sts, StI/II), two actinoporins largely characterized by the Center of Protein Studies at the University of Havana during the last 20 years. These approaches include strategies for understanding the toxin structure-function relationship, the protein-membrane association process leading to pore formation and the interaction of toxin with cells. The rational combination of experimental and theoretical tools have allowed unraveling, at least partially, of the complex mechanisms involved in toxin-membrane interaction and of the molecular pathways triggered upon this interaction. The study of actinoporins is important not only to gain an understanding of their biological roles in anemone venom but also to investigate basic molecular mechanisms of protein insertion into membranes, protein-lipid interactions and the modulation of protein conformation by lipid binding. A deeper knowledge of the basic molecular mechanisms involved in Sts-cell interaction, as described in this review, will support the current investigations conducted by our group which focus on the design of immunotoxins against tumor cells and antigen-releasing systems to cell cytosol as Sts-based vaccine platforms.

  7. Surface enhanced raman spectroscopy analytical, biophysical and life science applications

    CERN Document Server

    Schlücker, Sebastian

    2013-01-01

    Covering everything from the basic theoretical and practical knowledge to new exciting developments in the field with a focus on analytical and life science applications, this monograph shows how to apply surface-enhanced Raman scattering (SERS) for solving real world problems. From the contents: * Theory and practice of SERS * Analytical applications * SERS combined with other analytical techniques * Biophysical applications * Life science applications including various microscopies Aimed at analytical, surface and medicinal chemists, spectroscopists, biophysicists and materials scientists. Includes a Foreword by the renowned Raman spectroscopist Professor Wolfgang Kiefer, the former Editor-in-Chief of the Journal of Raman Spectroscopy.

  8. Hydrophobic ampersand hydrophilic: Theoretical models of solvation for molecular biophysics

    International Nuclear Information System (INIS)

    Pratt, L.R.; Tawa, G.J.; Hummer, G.; Garcia, A.E.; Corcelli, S.A.

    1996-01-01

    Molecular statistical thermodynamic models of hydration for chemistry and biophysics have advanced abruptly in recent years. With liquid water as solvent, salvation phenomena are classified as either hydrophobic or hydrophilic effects. Recent progress in treatment of hydrophilic effects have been motivated by continuum dielectric models interpreted as a modelistic implementation of second order perturbation theory. New results testing that perturbation theory of hydrophilic effects are presented and discussed. Recent progress in treatment of hydrophobic effects has been achieved by applying information theory to discover models of packing effects in dense liquids. The simplest models to which those ideas lead are presented and discussed

  9. Esperanto: A Unique Model for General Linguistics.

    Science.gov (United States)

    Dulichenko, Aleksandr D.

    1988-01-01

    Esperanto presents a unique model for linguistic research by allowing the study of language development from project to fully functioning language. Esperanto provides insight into the growth of polysemy and redundancy, as well as into language universals and the phenomenon of social control. (Author/CB)

  10. The end of the unique myocardial band

    DEFF Research Database (Denmark)

    MacIver, David H; Partridge, John B; Agger, Peter

    2018-01-01

    Two of the leading concepts of mural ventricular architecture are the unique myocardial band and the myocardial mesh model. We have described, in an accompanying article published in this journal, how the anatomical, histological and high-resolution computed tomographic studies strongly favour th...

  11. Biophysical foundations for the study of the electrical excitability and action potential propagation in myocardium; Fundamentos biofisicos para el estudio de la excitacion electrica y la propagacion del potencial de accion en el miocardio

    Energy Technology Data Exchange (ETDEWEB)

    Suarez Antola, R [Universidad , Montevideo(Uruguay)

    1991-07-01

    The electric current flow in the heterogeneous and anysotropic volume conductor of the myocardium is studied. The equations of bidomain theory are derived using an approach framed in the theory of averaged fields, introducing microscopic, mesoscopic and macroscopic spatial scales. However, the procedure, compatible with the histological and the anatomical details of the organ, is different from the multiple scale asymptotic expansions usually applied in homogeneization problems. A probabilistic approach framed in large numbers theorems is used to derive the equation for membrane ionic current from the stochastic activity of the channels at the microscopic level. An operational procedure suitable to define a sharp bidomain boundary from the fuzzy distribution of structural details and physical properties at the histological level is given. The problem of threshold is studied. The sizes and shapes of critical masses of cardiac cells that must be depolarized above threshold in order to produce a propagated action potential are determined by an approximate analytical procedure. The concept of family of threshold patterns for the emergence of action potentials in the heart is introduced. This concept is applied to discuss the conditions of emergence of ectopic focus. Analytical formulae are derived, for the time constant and the rheobase for electrical stimulation of the myocardium. These formulae are in good agreement with known experimental results. New experiments that could be done to confirm or reject them are suggested.

  12. Kosovo case: A unique arbitrariness

    Directory of Open Access Journals (Sweden)

    Nakarada Radmila

    2007-01-01

    Full Text Available The end of Cold war, contrary to expectations has brought new conflicts and forms of violence, new divisions and new relativizations of the international legal order. Taking as an example the endeavors to resolve the Kosovo conflict, the author attempts to indicate the broader implications of the international efforts to constitute an independent state on part of the territory of an existing sovereign state. The arguments used to justify the redefinition of the borders of the Serbian state without its consent, the moral, democratic, peace arguments, are reviewed. Particular attention is paid to the argument that Kosovo is a unique case and therefore unique rules should be applied. The author seeks to understand the deeper significance of these efforts, concluding that dismantling the present international legal order is not only a potential danger but a possible aim.

  13. Biophysics environmental conditions of swamp buffalo Bubalus bubalis Pampangan in district Rambutan South Sumatera

    Directory of Open Access Journals (Sweden)

    Yuanita Windusari

    2015-06-01

    Full Text Available Swamp buffalo (Bubalus bubalis is a germ plasm specific of Pampangan and endemic in South Sumatera with low productivity and limited distribution. The aims of this study was to obtain information regarding biophysical conditions in the central areas of swamp buffalo in South Sumatera. The method used is purposive sampling method. Data collected in the form of quantitative and qualitative. Primary data were obtained through direct observation, interviews breeders selected as respondents while secondary data obtained from various related. The data obtained are presented descriptively and data tabulation. Productivity of swamp buffalo Pampangan can be increased by managing and maintaining habitat conditions although traditional maintenance. The results of observations of the biophysical condition of swamp buffalo (B. bubalis Pampangan showed that habitat of swamp buffalo Pampangan consists of dominated by lowland swamp area is overgrown with shrubs and grass. The conclution of the research are productivity and population of swamp buffalo (B. bubalis pampangan as specific plasma nutfah of South Sumatra can be improved by studying the characteristics and preferred habitat of the buffalo, although developed in a traditional farms but is good enough and so need to be developed, grass is most preferred by swamp buffalo Pampangan derived from ‘Kumpai’ grass group, and ‘Kasur’grass and ‘Kumpai’ grass is the dominant grass type found in habitat swamp buffalo Pampangan.

  14. Anti-pulmonary fibrotic activity of salvianolic acid B was screened by a novel method based on the cyto-biophysical properties

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Miao; Zheng, Mingjing; Xu, Hanying [Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016 (China); Liu, Lianqing [Shenyang Institute of Automation China Academy of Sciences, Shenyang, 110016 (China); Li, Yanchun [Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016 (China); Xiao, Wei [Jiangsu Kanion Pharmaceutical Co., Ltd., Nanjing, 222001 (China); Li, Jianchun, E-mail: lijianchun0317@sina.com.cn [Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016 (China); Ma, Enlong, E-mail: enlong_ma2014@hotmail.com [Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016 (China); Jiangsu Kanion Pharmaceutical Co., Ltd., Nanjing, 222001 (China)

    2015-12-04

    Various methods have been used to evaluate anti-fibrotic activity of drugs. However, most of them are complicated, labor-intensive and lack of efficiency. This study was intended to develop a rapid method for anti-fibrotic drugs screening based on biophysical properties. A549 cells in vitro were stimulated with transforming growth factor-β1 (TGF-β1), and fibrogenesis was confirmed by conventional immunological assays. Meanwhile, the alterations of cyto-biophysical properties including morphology, roughness and stiffness were measured utilizing atomic force microscopy (AFM). It was found that fibrogenesis was accompanied with changes of cellular biophysical properties. TGF-β1-stimulated A549 cells became remarkably longer, rougher and stiffer than the control. Then, the effect of N-acetyl-L-cysteine (NAC) as a positive drug on ameliorating fibrogenesis in TGF-β1-stimulated A549 cells was verified respectively by immunological and biophysical markers. The result of Principal Component Analysis showed that stiffness was a leading index among all biophysical markers during fibrogenesis. Salvianolic acid B (SalB), a natural anti-oxidant, was detected by AFM to protect TGF-β1-stimulated A549 cells against stiffening. Then, SalB treatment was provided in preventive mode on a rat model of bleomycin (BLM) -induced pulmonary fibrosis. The results showed that SalB treatment significantly ameliorated BLM-induced histological alterations, blocked collagen accumulations and reduced α-SMA expression in lung tissues. All these results revealed the anti-pulmonary fibrotic activity of SalB. Detection of cyto-biophysical properties were therefore recommended as a rapid method for anti-pulmonary fibrotic drugs screening. - Highlights: • Fibrogenesis was accompanied with the changes of cyto-biophysical properties. • Cyto-biophysical properties could be markers for anti-fibrotic drugs screening. • Stiffness is a leading index among all biophysical markers. • SalB was

  15. Anti-pulmonary fibrotic activity of salvianolic acid B was screened by a novel method based on the cyto-biophysical properties

    International Nuclear Information System (INIS)

    Liu, Miao; Zheng, Mingjing; Xu, Hanying; Liu, Lianqing; Li, Yanchun; Xiao, Wei; Li, Jianchun; Ma, Enlong

    2015-01-01

    Various methods have been used to evaluate anti-fibrotic activity of drugs. However, most of them are complicated, labor-intensive and lack of efficiency. This study was intended to develop a rapid method for anti-fibrotic drugs screening based on biophysical properties. A549 cells in vitro were stimulated with transforming growth factor-β1 (TGF-β1), and fibrogenesis was confirmed by conventional immunological assays. Meanwhile, the alterations of cyto-biophysical properties including morphology, roughness and stiffness were measured utilizing atomic force microscopy (AFM). It was found that fibrogenesis was accompanied with changes of cellular biophysical properties. TGF-β1-stimulated A549 cells became remarkably longer, rougher and stiffer than the control. Then, the effect of N-acetyl-L-cysteine (NAC) as a positive drug on ameliorating fibrogenesis in TGF-β1-stimulated A549 cells was verified respectively by immunological and biophysical markers. The result of Principal Component Analysis showed that stiffness was a leading index among all biophysical markers during fibrogenesis. Salvianolic acid B (SalB), a natural anti-oxidant, was detected by AFM to protect TGF-β1-stimulated A549 cells against stiffening. Then, SalB treatment was provided in preventive mode on a rat model of bleomycin (BLM) -induced pulmonary fibrosis. The results showed that SalB treatment significantly ameliorated BLM-induced histological alterations, blocked collagen accumulations and reduced α-SMA expression in lung tissues. All these results revealed the anti-pulmonary fibrotic activity of SalB. Detection of cyto-biophysical properties were therefore recommended as a rapid method for anti-pulmonary fibrotic drugs screening. - Highlights: • Fibrogenesis was accompanied with the changes of cyto-biophysical properties. • Cyto-biophysical properties could be markers for anti-fibrotic drugs screening. • Stiffness is a leading index among all biophysical markers. • SalB was

  16. Plasma lipoproteins as mediators of the oxidative stress induced by UV light in human skin: a review of biochemical and biophysical studies on mechanisms of apolipoprotein alteration, lipid peroxidation, and associated skin cell responses.

    Science.gov (United States)

    Filipe, Paulo; Morlière, Patrice; Silva, João N; Mazière, Jean-Claude; Patterson, Larry K; Freitas, João P; Santus, R

    2013-01-01

    There are numerous studies concerning the effect of UVB light on skin cells but fewer on other skin components such as the interstitial fluid. This review highlights high-density lipoprotein (HDL) and low-density lipoprotein (LDL) as important targets of UVB in interstitial fluid. Tryptophan residues are the sole apolipoprotein residues absorbing solar UVB. The UVB-induced one-electron oxidation of Trp produces (•)Trp and (•)O2 (-) radicals which trigger lipid peroxidation. Immunoblots from buffered solutions or suction blister fluid reveal that propagation of photooxidative damage to other residues such as Tyr or disulfide bonds produces intra- and intermolecular bonds in apolipoproteins A-I, A-II, and B100. Partial repair of phenoxyl tyrosyl radicals (TyrO(•)) by α -tocopherol is observed with LDL and HDL on millisecond or second time scales, whereas limited repair of α -tocopherol by carotenoids occurs in only HDL. More effective repair of Tyr and α -tocopherol is observed with the flavonoid, quercetin, bound to serum albumin, but quercetin is less potent than new synthetic polyphenols in inhibiting LDL lipid peroxidation or restoring α -tocopherol. The systemic consequences of HDL and LDL oxidation and the activation and/or inhibition of signalling pathways by oxidized LDL and their ability to enhance transcription factor DNA binding activity are also reviewed.

  17. Plasma Lipoproteins as Mediators of the Oxidative Stress Induced by UV Light in Human Skin: A Review of Biochemical and Biophysical Studies on Mechanisms of Apolipoprotein Alteration, Lipid Peroxidation, and Associated Skin Cell Responses

    Directory of Open Access Journals (Sweden)

    Paulo Filipe

    2013-01-01

    Full Text Available There are numerous studies concerning the effect of UVB light on skin cells but fewer on other skin components such as the interstitial fluid. This review highlights high-density lipoprotein (HDL and low-density lipoprotein (LDL as important targets of UVB in interstitial fluid. Tryptophan residues are the sole apolipoprotein residues absorbing solar UVB. The UVB-induced one-electron oxidation of Trp produces •Trp and O2•- radicals which trigger lipid peroxidation. Immunoblots from buffered solutions or suction blister fluid reveal that propagation of photooxidative damage to other residues such as Tyr or disulfide bonds produces intra- and intermolecular bonds in apolipoproteins A-I, A-II, and B100. Partial repair of phenoxyl tyrosyl radicals (TyrO• by α-tocopherol is observed with LDL and HDL on millisecond or second time scales, whereas limited repair of α-tocopherol by carotenoids occurs in only HDL. More effective repair of Tyr and α-tocopherol is observed with the flavonoid, quercetin, bound to serum albumin, but quercetin is less potent than new synthetic polyphenols in inhibiting LDL lipid peroxidation or restoring α-tocopherol. The systemic consequences of HDL and LDL oxidation and the activation and/or inhibition of signalling pathways by oxidized LDL and their ability to enhance transcription factor DNA binding activity are also reviewed.

  18. Mechanoresponsive stem cells to target cancer metastases through biophysical cues.

    Science.gov (United States)

    Liu, Linan; Zhang, Shirley X; Liao, Wenbin; Farhoodi, Henry P; Wong, Chi W; Chen, Claire C; Ségaliny, Aude I; Chacko, Jenu V; Nguyen, Lily P; Lu, Mengrou; Polovin, George; Pone, Egest J; Downing, Timothy L; Lawson, Devon A; Digman, Michelle A; Zhao, Weian

    2017-07-26

    Despite decades of effort, little progress has been made to improve the treatment of cancer metastases. To leverage the central role of the mechanoenvironment in cancer metastasis, we present a mechanoresponsive cell system (MRCS) to selectively identify and treat cancer metastases by targeting the specific biophysical cues in the tumor niche in vivo. Our MRCS uses mechanosensitive promoter-driven mesenchymal stem cell (MSC)-based vectors, which selectively home to and target cancer metastases in response to specific mechanical cues to deliver therapeutics to effectively kill cancer cells, as demonstrated in a metastatic breast cancer mouse model. Our data suggest a strong correlation between collagen cross-linking and increased tissue stiffness at the metastatic sites, where our MRCS is specifically activated by the specific cancer-associated mechano-cues. MRCS has markedly reduced deleterious effects compared to MSCs constitutively expressing therapeutics. MRCS indicates that biophysical cues, specifically matrix stiffness, are appealing targets for cancer treatment due to their long persistence in the body (measured in years), making them refractory to the development of resistance to treatment. Our MRCS can serve as a platform for future diagnostics and therapies targeting aberrant tissue stiffness in conditions such as cancer and fibrotic diseases, and it should help to elucidate mechanobiology and reveal what cells "feel" in the microenvironment in vivo. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  19. Biophysical basis for the geometry of conical stromatolites.

    Science.gov (United States)

    Petroff, Alexander P; Sim, Min Sub; Maslov, Andrey; Krupenin, Mikhail; Rothman, Daniel H; Bosak, Tanja

    2010-06-01

    Stromatolites may be Earth's oldest macroscopic fossils; however, it remains controversial what, if any, biological processes are recorded in their morphology. Although the biological interpretation of many stromatolite morphologies is confounded by the influence of sedimentation, conical stromatolites form in the absence of sedimentation and are, therefore, considered to be the most robust records of biophysical processes. A qualitative similarity between conical stromatolites and some modern microbial mats suggests a photosynthetic origin for ancient stromatolites. To better understand and interpret ancient fossils, we seek a quantitative relationship between the geometry of conical stromatolites and the biophysical processes that control their growth. We note that all modern conical stromatolites and many that formed in the last 2.8 billion years display a characteristic centimeter-scale spacing between neighboring structures. To understand this prominent-but hitherto uninterpreted-organization, we consider the role of diffusion in mediating competition between stromatolites. Having confirmed this model through laboratory experiments and field observation, we find that organization of a field of stromatolites is set by a diffusive time scale over which individual structures compete for nutrients, thus linking form to physiology. The centimeter-scale spacing between modern and ancient stromatolites corresponds to a rhythmically fluctuating metabolism with a period of approximately 20 hr. The correspondence between the observed spacing and the day length provides quantitative support for the photosynthetic origin of conical stromatolites throughout geologic time.

  20. Biophysical aspects of using liposomes as delivery vehicles.

    Science.gov (United States)

    Ulrich, Anne S

    2002-04-01

    Liposomes are used as biocompatible carriers of drugs, peptides, proteins, plasmic DNA, antisense oligonucleotides or ribozymes, for pharmaceutical, cosmetic, and biochemical purposes. The enormous versatility in particle size and in the physical parameters of the lipids affords an attractive potential for constructing tailor-made vehicles for a wide range of applications. Some of the recent literature will be reviewed here and presented from a biophysical point of view, thus providing a background for the more specialized articles in this special issue on liposome technology. Different properties (size, colloidal behavior, phase transitions, and polymorphism) of diverse lipid formulations (liposomes, lipoplexes, cubic phases, emulsions, and solid lipid nanoparticles) for distinct applications (parenteral, transdermal, pulmonary, and oral administration) will be rationalized in terms of common structural, thermodynamic and kinetic parameters of the lipids. This general biophysical basis helps to understand pharmaceutically relevant aspects such as liposome stability during storage and towards serum, the biodistribution and specific targeting of cargo, and how to trigger drug release and membrane fusion. Methods for the preparation and characterization of liposomal formulations in vitro will be outlined, too.

  1. Emergy analysis of a farm biogas project in China: A biophysical perspective of agricultural ecological engineering

    Science.gov (United States)

    Zhou, S. Y.; Zhang, B.; Cai, Z. F.

    2010-05-01

    This paper aims to present a biophysical understanding of the agricultural ecological engineering by emergy analysis for a farm biogas project in China as a representative case. Accounting for the resource inputs into and accumulation within the project, as well as the outputs to the social system, emergy analysis provides an empirical study in the biophysical dimension of the agricultural ecological engineering. Economic benefits and ecological economic benefits of the farm biogas project indicated by market value and emergy monetary value are discussed, respectively. Relative emergy-based indices such as renewability (R%), emergy yield ratio (EYR), environmental load ratio (ELR) and environmental sustainability index (ESI) are calculated to evaluate the environmental load and local sustainability of the concerned biogas project. The results show that the farm biogas project has more reliance on the local renewable resources input, less environmental pressure and higher sustainability compared with other typical agricultural systems. In addition, holistic evaluation and its policy implications for better operation and management of the biogas project are presented.

  2. An ultra-sensitive biophysical risk assessment of light effect on skin cells.

    Science.gov (United States)

    Bennet, Devasier; Viswanath, Buddolla; Kim, Sanghyo; An, Jeong Ho

    2017-07-18

    The aim of this study was to analyze photo-dynamic and photo-pathology changes of different color light radiations on human adult skin cells. We used a real-time biophysical and biomechanics monitoring system for light-induced cellular changes in an in vitro model to find mechanisms of the initial and continuous degenerative process. Cells were exposed to intermittent, mild and intense (1-180 min) light with On/Off cycles, using blue, green, red and white light. Cellular ultra-structural changes, damages, and ECM impair function were evaluated by up/down-regulation of biophysical, biomechanical and biochemical properties. All cells exposed to different color light radiation showed significant changes in a time-dependent manner. Particularly, cell growth, stiffness, roughness, cytoskeletal integrity and ECM proteins of the human dermal fibroblasts-adult (HDF-a) cells showed highest alteration, followed by human epidermal keratinocytes-adult (HEK-a) cells and human epidermal melanocytes-adult (HEM-a) cells. Such changes might impede the normal cellular functions. Overall, the obtained results identify a new insight that may contribute to premature aging, and causes it to look aged in younger people. Moreover, these results advance our understanding of the different color light-induced degenerative process and help the development of new therapeutic strategies.

  3. Biophysical Neural Spiking, Bursting, and Excitability Dynamics in Reconfigurable Analog VLSI.

    Science.gov (United States)

    Yu, T; Sejnowski, T J; Cauwenberghs, G

    2011-10-01

    We study a range of neural dynamics under variations in biophysical parameters underlying extended Morris-Lecar and Hodgkin-Huxley models in three gating variables. The extended models are implemented in NeuroDyn, a four neuron, twelve synapse continuous-time analog VLSI programmable neural emulation platform with generalized channel kinetics and biophysical membrane dynamics. The dynamics exhibit a wide range of time scales extending beyond 100 ms neglected in typical silicon models of tonic spiking neurons. Circuit simulations and measurements show transition from tonic spiking to tonic bursting dynamics through variation of a single conductance parameter governing calcium recovery. We similarly demonstrate transition from graded to all-or-none neural excitability in the onset of spiking dynamics through the variation of channel kinetic parameters governing the speed of potassium activation. Other combinations of variations in conductance and channel kinetic parameters give rise to phasic spiking and spike frequency adaptation dynamics. The NeuroDyn chip consumes 1.29 mW and occupies 3 mm × 3 mm in 0.5 μm CMOS, supporting emerging developments in neuromorphic silicon-neuron interfaces.

  4. On the biophysics and kinetics of toehold-mediated DNA strand displacement.

    Science.gov (United States)

    Srinivas, Niranjan; Ouldridge, Thomas E; Sulc, Petr; Schaeffer, Joseph M; Yurke, Bernard; Louis, Ard A; Doye, Jonathan P K; Winfree, Erik

    2013-12-01

    Dynamic DNA nanotechnology often uses toehold-mediated strand displacement for controlling reaction kinetics. Although the dependence of strand displacement kinetics on toehold length has been experimentally characterized and phenomenologically modeled, detailed biophysical understanding has remained elusive. Here, we study strand displacement at multiple levels of detail, using an intuitive model of a random walk on a 1D energy landscape, a secondary structure kinetics model with single base-pair steps and a coarse-grained molecular model that incorporates 3D geometric and steric effects. Further, we experimentally investigate the thermodynamics of three-way branch migration. Two factors explain the dependence of strand displacement kinetics on toehold length: (i) the physical process by which a single step of branch migration occurs is significantly slower than the fraying of a single base pair and (ii) initiating branch migration incurs a thermodynamic penalty, not captured by state-of-the-art nearest neighbor models of DNA, due to the additional overhang it engenders at the junction. Our findings are consistent with previously measured or inferred rates for hybridization, fraying and branch migration, and they provide a biophysical explanation of strand displacement kinetics. Our work paves the way for accurate modeling of strand displacement cascades, which would facilitate the simulation and construction of more complex molecular systems.

  5. Maximum likelihood estimation of biophysical parameters of synaptic receptors from macroscopic currents

    Directory of Open Access Journals (Sweden)

    Andrey eStepanyuk

    2014-10-01

    Full Text Available Dendritic integration and neuronal firing patterns strongly depend on biophysical properties of synaptic ligand-gated channels. However, precise estimation of biophysical parameters of these channels in their intrinsic environment is complicated and still unresolved problem. Here we describe a novel method based on a maximum likelihood approach that allows to estimate not only the unitary current of synaptic receptor channels but also their multiple conductance levels, kinetic constants, the number of receptors bound with a neurotransmitter and the peak open probability from experimentally feasible number of postsynaptic currents. The new method also improves the accuracy of evaluation of unitary current as compared to the peak-scaled non-stationary fluctuation analysis, leading to a possibility to precisely estimate this important parameter from a few postsynaptic currents recorded in steady-state conditions. Estimation of unitary current with this method is robust even if postsynaptic currents are generated by receptors having different kinetic parameters, the case when peak-scaled non-stationary fluctuation analysis is not applicable. Thus, with the new method, routinely recorded postsynaptic currents could be used to study the properties of synaptic receptors in their native biochemical environment.

  6. Nuclear techniques using radioactive beams for biophysical studies

    CERN Document Server

    Stachura, Monika Kinga

    Perturbed angular correlation of "-rays (PAC) spectroscopy and nuclear magnetic resonance measured by !-decay (betaNMR) spectroscopy are two very sensitive and, among life-scientists, infrequently encountered nuclear techniques. Both of them belong to the family of hyperfine techniques, which allow for measurements of the interactions of extra-nuclear electromagnetic fields with the nuclear moments. In this way - they can provide useful information about the local structure of the investigated systems. The first part of the work presented here focuses on investigating the fundamental chemistry of heavy metal ion - protein interactions mainly with PAC spectroscopy. A variety of questions concerning both the function of metal ions in natural systems and in synthetic biomolecules on the one hand and the toxic effects of some metal ions on the other were addressed, the results of which are described in four different papers. Paper I is a review article entitled ”Selected applications of perturbed angular correl...

  7. Biophysical and biochemical studies of modification of damage to DNA

    International Nuclear Information System (INIS)

    Myers, L.S. Jr.; Warnick, A.

    1976-01-01

    Progress is reported on the following research projects: tests of a proposed chemical mechanism by which incorporated 5-bromouracil may sensitize DNA to ionizing radiation; a serologic determination of uridine in irradiatd BU-substituted DNA; and reactivity of aminothiol radioprotectants with hydrated electrons and hydroxyl radicals

  8. Efficacy of betamethasone on the fetal motion and biophysical profile and amniotic fluid index in preterm fetuses.

    Science.gov (United States)

    Abbasalizadeh, Shamsi; Pharabar, Zahra Neghadan; Abbasalizadeh, Fatmeh; Ghojazadeh, Morteza; Goldust, Mohamad

    2013-11-15

    The term ofpreterm birth is used to define the premature neonates considering pregnancy age. In less than 34 week pregnancies, corticosteroids are prescribed to promote embryos' lung maturity. The presents study aimed at evaluating effects of betamethasone injection on feeling embryo motion by mother and index and biophysical profile in preterm pregnancies. In a descriptive-analytical study, 40 pregnant women with the pregnancy age of 30-34 weeks were evaluated. Embryo motion and index and biophysical profile of the amniotic fluid were checked before prescription of double dosage of muscular betamethasone (12 mg) at a 24 h time interval. The injection was repeated for 24 and 48 h after the first injection. The resulted outcomes were compared with those results related to before betamethasone injection. In this study, there was statistically meaningful relationship between embryo motions before injection of betamethasone and 12 h after its injection (p = 0.03). Also, there was a significant relationship between embryo motions 24 and 48 h after injection of betamethasone (p = 0.001). In other words, the embryo motions decreased 12 h after injection of betamethasone. They were improved 48 h after betamethasone injection. But, index and biophysical profile results of amniotic fluid were left unchanged. Application of betamethasone leads to evident but transient decrease in embryo motions. Although motion element of index and biophysical profile of amniotic fluid which is one of the tests used in evaluating the embryo health is fixed and normal, it can be concluded that injection of betamethasone may not affect embryo health.

  9. Biophysical characterization data on Aβ soluble oligomers produced through a method enabling prolonged oligomer stability and biological buffer conditions

    Directory of Open Access Journals (Sweden)

    Amanda C. Crisostomo

    2015-09-01

    Aβ1-40 soluble oligomers are produced that are suitable for biophysical studies requiring sufficient transient stability to exist in their “native” conformation in biological phosphate-saline buffers for extended periods of time. The production involves an initial preparation of highly monomeric Aβ in a phosphate saline buffer that transitions to fibrils and oligomers through time incubation alone, without added detergents or non-aqueous chemicals. This criteria ensures that the only difference between initial monomeric Aβ reactant and subsequent Aβ oligomer products is their degree of peptide assembly. A number of chemical and biophysical methods were used to characterize the monomeric reactants and soluble oligomer and amyloid fibril products, including chemical cross-linking, Western blots, fraction solubility, thioflvain T binding, size exclusion chromatography, transmission electron micrscopy, circular dichroism spectroscopy, and fluorescence resonance energy transfer.

  10. The Uniqueness of Milton Friedman

    OpenAIRE

    J. Daniel Hammond

    2013-01-01

    That there is no Milton Friedman today is not a mystery; the mystery is how Milton Friedman could have been. The facts of Friedman’s biography make him unique among twentieth-century public figures. He had extensive knowledge and expertise in mathematics and statistics. Yet he became a critic of ‘formal’ theory, exemplified by mathematical economics, that failed to engage with real-world facts and data, and of econometric modeling that presumed more knowledge of economic structure than Friedm...

  11. Unique Features of Halophilic Proteins.

    Science.gov (United States)

    Arakawa, Tsutomu; Yamaguchi, Rui; Tokunaga, Hiroko; Tokunaga, Masao

    2017-01-01

    Proteins from moderate and extreme halophiles have unique characteristics. They are highly acidic and hydrophilic, similar to intrinsically disordered proteins. These characteristics make the halophilic proteins soluble in water and fold reversibly. In addition to reversible folding, the rate of refolding of halophilic proteins from denatured structure is generally slow, often taking several days, for example, for extremely halophilic proteins. This slow folding rate makes the halophilic proteins a novel model system for folding mechanism analysis. High solubility and reversible folding also make the halophilic proteins excellent fusion partners for soluble expression of recombinant proteins.

  12. A unique gesture of sharing

    International Nuclear Information System (INIS)

    Mustafa, T.

    1985-01-01

    The Atoms for Peace program was a unique gesture of sharing on the part of the leading industrialized nation, and has very few parallels in modern history. The author says one of the major advantages of the program for developing nations was the much needed stimulation of their indigenous science and technology efforts and the awakening of their governments to the multifaceted benefits of atomic energy. The author discusses how the program benefited Pakistan in the production of electrical energy and in the application of nuclear techniques in the fields of agriculture and medicine, which help to alleviate hunger and combat disease

  13. Unexplored biophysical problem of manned flight to Mars

    Science.gov (United States)

    Avakyan, Sergey; Voronin, Nikolai; Kovalenok, Vladimir; Trchounian, Armen

    The presentation discusses so far unexplored biophysical problem of manned flight to the Mars, scheduled for the next decade. In long-term manned space flights on the orbital stations "Salyut-6" Soviet cosmonaut crews under the command of one of the co-authors (cosmonaut V.V. Kovalenok) had repeatedly observed the effect of certain geophysical conditions on the psychological state of each crew. These effects were coinciding with the increased intensity of global illumination in the upper ionosphere space on flight altitudes (300-360 km). It is important that, during all these periods, the geomagnetic pulsation's were completely absent. Previously a new but very important for long interplanetary expeditions problem of psychophysical state of the crew in the absence of alternating electromagnetic fields and radiation, including the ionosphere one, was first raised for evolutionarily adapted humanity. However, up to date, this subject, particularly during the long simulation experiments such as "Mars 500", which eliminates much of their value and contribution to the Mars mission, has almost no attention. Indeed, the obtained results have clearly shown that the cosmonaut crews in orbital flight, even deep one within geomagnetic sphere, might experience severe psychological discomfort, the nature of which is fully defined. This is the appearance of such rather unusual geophysical periods of different durations (from minutes to days) those are in the form of an almost complete lack of geomagnetic pulsations on the Earth. The aim is to confirm the need of considering possible pathological effects of the complete lack of rhythm forming, inherent for terrestrial environment geomagnetic pulsation's on psychological and physical state of the cosmonaut crew. This is important for the preparation and conducting the manned flights beyond the Earth's magnetosphere, particularly to the Mars. The influence of the presence of different types of geomagnetic pulsation's recorded by

  14. Principles and biophysical applications of single particle super-localization and rotational tracking

    Science.gov (United States)

    Gu, Yan

    While conventional Single Particle Tracking (SPT) techniques acquire 2D or 3D trajectories of particle probes, we have developed Single Particle Orientation and Rotational Tracking (SPORT) techniques to extract orientation and rotational information. Combined with DIC microscopy, the SPORT technique has been applied in biophysical studies, including membrane diffusion and intracellular transport. The rotational dynamics of nanoparticle vectors on live cell membranes was recorded and its influence on the fate of these nanoparticle vectors was elucidated. The rotational motions of gold nanorods with various surface modifiers were tracked continuously at a temporal resolution of 5 ms under a DIC microscope. We found that the rotational behaviors of gold nanorod vectors are strongly related to their surface charge, specific surface functional groups, and the availability of receptors on cell membranes. The study of rotational Brownian motion of nanoparticles on cell membranes will lead to a better understanding of the mechanisms of drug delivery and provide guidance in designing surface modification strategies for drug delivery vectors under various circumstances. To characterize the rotation mode of surface functionalized gold nanorods on cell membranes, the SPORT technique is combined with the correlation analysis of the bright and dark DIC intensities. The unique capabilities of visualizing and understanding rotational motions of functionalized nanoparticles on live cell membranes allow us to correlate rotational and translational dynamics in unprecedented detail and provide new insights for complex membrane processes, including electrostatic interactions, ligand-receptor binding, and lateral (confined and hopping) diffusion of membrane receptors. Surface-functionalized nanoparticles interact with the membrane in fundamentally different ways and exhibit distinct rotational modes. The early events of particle-membrane approach and attachment are directly visualized

  15. Principles and biophysical applications of single particle super-localization and rotational tracking

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Yan [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    While conventional Single Particle Tracking (SPT) techniques acquire 2D or 3D trajectories of particle probes, we have developed Single Particle Orientation and Rotational Tracking (SPORT) techniques to extract orientation and rotational information. Combined with DIC microscopy, the SPORT technique has been applied in biophysical studies, including membrane diffusion and intracellular transport. The rotational dynamics of nanoparticle vectors on live cell membranes was recorded and its influence on the fate of these nanoparticle vectors was elucidated. The rotational motions of gold nanorods with various surface modifiers were tracked continuously at a temporal resolution of 5 ms under a DIC microscope. We found that the rotational behaviors of gold nanorod vectors are strongly related to their surface charge, specific surface functional groups, and the availability of receptors on cell membranes. The study of rotational Brownian motion of nanoparticles on cell membranes will lead to a better understanding of the mechanisms of drug delivery and provide guidance in designing surface modification strategies for drug delivery vectors under various circumstances. To characterize the rotation mode of surface functionalized gold nanorods on cell membranes, the SPORT technique is combined with the correlation analysis of the bright and dark DIC intensities. The unique capabilities of visualizing and understanding rotational motions of functionalized nanoparticles on live cell membranes allow us to correlate rotational and translational dynamics in unprecedented detail and provide new insights for complex membrane processes, including electrostatic interactions, ligand-receptor binding, and lateral (confined and hopping) diffusion of membrane receptors. Surface-functionalized nanoparticles interact with the membrane in fundamentally different ways and exhibit distinct rotational modes. The early events of particle-membrane approach and attachment are directly visualized

  16. Evaluation of biophysical skin parameters and assessment of hair growth in patients with acne treated with isotretinoin.

    Science.gov (United States)

    Kmieć, Małgorzata L; Pajor, Anna; Broniarczyk-Dyła, Grażyna

    2013-12-01

    Treatment of the severe forms of acne vulgaris remains a challenge. Isotretinoin is a drug often used in these cases. Retinoids affect the mechanisms that play a role in the pathogenesis of acne, reduce the production of sebum and sizes of the sebaceous glands. However, isotretinoin appears to have undesirable side effects in the skin, mucous membranes and hair. THE AIM OF THIS STUDY WAS TO ASSESS THE EFFECT OF ACNE VULGARIS TREATMENT WITH ISOTRETINOIN ON BIOPHYSICAL SKIN PARAMETERS: skin sebum and stratum corneum hydration levels, transepidermal water loss values, pH, erythema and hair growth parameters: total number, density and proportion of anagen hair. THE STUDY INCLUDED THIRTY PATIENTS WITH ACNE TYPES: papulopustular, conglobata and phlegmonosa. Patients were treated with isotretinoin at a dose of 0.5-1.0 mg/kg/day for a period of 4-7 months. The measurements of skin biophysical parameters were performed before and after the treatment using Sebumeter SM815, Corneometer CM825, Tewameter TM300, MX Mexameter MX18 and Skin-pH-Meter PH908. Hair growth parameters were evaluated with FotoFinder Dermoscope using the TrichoScan Professional V3.0.8.76 software. The results of biophysical skin parameter measurements after the treatment showed a reduction in the severity of seborrhea. However, the skin was dry, which confirmed a lowered degree of stratum corneum hydration and an increase in transepidermal water loss values. Moreover, severity of erythema, an increase in pH value, and variations in selected hair growth parameters: decrease in total count, density and proportion of anagen hair were demonstrated. The reduction in the skin sebum levels was observed after the treatment. There was dryness of the skin, which was confirmed by biophysical skin parameter measurements. Changes in the hair growth parameters showed telogen effluvium hair loss.

  17. A fully synthetic human Fab antibody library based on fixed VH/VL framework pairings with favorable biophysical properties

    Science.gov (United States)

    Tiller, Thomas; Schuster, Ingrid; Deppe, Dorothée; Siegers, Katja; Strohner, Ralf; Herrmann, Tanja; Berenguer, Marion; Poujol, Dominique; Stehle, Jennifer; Stark, Yvonne; Heßling, Martin; Daubert, Daniela; Felderer, Karin; Kaden, Stefan; Kölln, Johanna; Enzelberger, Markus; Urlinger, Stefanie

    2013-01-01

    This report describes the design, generation and testing of Ylanthia, a fully synthetic human Fab antibody library with 1.3E+11 clones. Ylanthia comprises 36 fixed immunoglobulin (Ig) variable heavy (VH)/variable light (VL) chain pairs, which cover a broad range of canonical complementarity-determining region (CDR) structures. The variable Ig heavy and Ig light (VH/VL) chain pairs were selected for biophysical characteristics favorable to manufacturing and development. The selection process included multiple parameters, e.g., assessment of protein expression yield, thermal stability and aggregation propensity in fragment antigen binding (Fab) and IgG1 formats, and relative Fab display rate on phage. The framework regions are fixed and the diversified CDRs were designed based on a systematic analysis of a large set of rearranged human antibody sequences. Care was taken to minimize the occurrence of potential posttranslational modification sites within the CDRs. Phage selection was performed against various antigens and unique antibodies with excellent biophysical properties were isolated. Our results confirm that quality can be built into an antibody library by prudent selection of unmodified, fully human VH/VL pairs as scaffolds. PMID:23571156

  18. [Correlation analysis between biochemical and biophysical markers of endothelium damage in children with diabetes type 1].

    Science.gov (United States)

    Głowińska-Olszewska, Barbara; Urban, Mirosława; Tołwińska, Joanna; Peczyńska, Jadwiga; Florys, Bozena

    2005-01-01

    Endothelial damage is one of the earliest stages in the atherosclerosis process. Adhesion molecules, secreted from dysfunctional endothelial cells are considered as early markers of atherosclerotic disease. Ultrasonographic evaluation of brachial arteries serves to detect biophysical changes in endothelial function, and evaluation of carotid arteries intima-media thickness allows to evaluate the earliest structural changes in the vessels. The aim of the study was to the evaluate levels of selected adhesion molecules (sICAM-1, sVCAM-1, sE-selectin, sP-selectin) and endothelial function with use of brachial artery dilatation study (flow mediated dilation--FMD, nitroglycerine mediated dilation--NTGMD) and IMT in carotid arteries in children and adolescents with diabetes type 1, as well as the correlation analysis between biochemical and biophysical markers of endothelial dysfunction. We studied 76 children and adolescents, with mean age--15.6+/-2.5 years, suffering from diabetes mean 7.8+/-2.8 years, mean HbA1c--8.4+/-1.5%. Control group consisted of 33 healthy children age and gender matched. Adhesion molecules levels were estimated with the use of immunoenzymatic methods (R&D Systems). Endothelial function was evaluated by study of brachial arteries dilation--FMD, NTGMD, with ultrasonographic evaluation (Hewlett Packard Sonos 4500) after Celermajer method, and IMT after Pignoli method. In the study group we found elevated levels of sICAM-1: 309.54+/-64 vs. 277.85+/-52 ng/ml in the control group (p<00.05) and elevated level of sE-selectin: 87.81+/-35 vs. 66.21+/-22 ng/ml (p<00.05). We found significantly impaired FMD in brachial arteries in the study group--7.51+/-4.52 vs. 12.61+/-4.65% (p<00.05) and significantly higher IMT value: 0.51+/-0.07 vs. 0.42+/-0.05 mm (p<00.001). Correlation analysis revealed a significant negative correlation between sE-selectin and FMD - r=-0.33 (p=0.004), and a positive correlation between E-selectin and IMT: r=0.32 (p=0.005). 1. In

  19. A synthesized biophysical and social vulnerability assessment for Taiwan

    Science.gov (United States)

    Lee, Yung-Jaan

    2017-11-01

    Taiwan, located in the Western Pacific, is a country that is one of the most vulnerable to disasters that are associated with the changing climate; it is located within the Ring of Fire, which is the most geologically active region in the world. The environmental and geological conditions in Taiwan are sensitive and vulnerable to such disasters. Owing to increasing urbanization in Taiwan, floods and climate-related disasters have taken an increasing toll on human lives. As global warming accelerates the rising of sea levels and increasing of the frequency of extreme weather events, disasters will continue to affect socioeconomic development and human conditions. Under such circumstances, researchers and policymakers alike must recognize the importance of providing useful knowledge concerning vulnerability, disaster recovery and resilience. Strategies for reducing vulnerability and climate-related disaster risks and for increasing resilience involve preparedness, mitigation and adaptation. In the last two decades, extreme climate events have caused severe flash floods, debris flows, landslides, and other disasters and have had negative effects of many sectors, including agriculture, infrastructure and health. Since climate change is expected to have a continued impact on socio-economic development, this work develops a vulnerability assessment framework that integrates both biophysical and social vulnerability and supports synthesized vulnerability analyses to identify vulnerable areas in Taiwan. Owing to its geographical, geological and climatic features, Taiwan is susceptible to earthquakes, typhoons, droughts and various induced disasters. Therefore, Taiwan has the urgent task of establishing a framework for assessing vulnerability as a planning and policy tool that can be used to identify not only the regions that require special attention but also hotspots in which efforts should be made to reduce vulnerability and the risk of climate-related disaster. To

  20. Anti-pulmonary fibrotic activity of salvianolic acid B was screened by a novel method based on the cyto-biophysical properties.

    Science.gov (United States)

    Liu, Miao; Zheng, Mingjing; Xu, Hanying; Liu, Lianqing; Li, Yanchun; Xiao, Wei; Li, Jianchun; Ma, Enlong

    Various methods have been used to evaluate anti-fibrotic activity of drugs. However, most of them are complicated, labor-intensive and lack of efficiency. This study was intended to develop a rapid method for anti-fibrotic drugs screening based on biophysical properties. A549 cells in vitro were stimulated with transforming growth factor-β1 (TGF-β1), and fibrogenesis was confirmed by conventional immunological assays. Meanwhile, the alterations of cyto-biophysical properties including morphology, roughness and stiffness were measured utilizing atomic force microscopy (AFM). It was found that fibrogenesis was accompanied with changes of cellular biophysical properties. TGF-β1-stimulated A549 cells became remarkably longer, rougher and stiffer than the control. Then, the effect of N-acetyl-L-cysteine (NAC) as a positive drug on ameliorating fibrogenesis in TGF-β1-stimulated A549 cells was verified respectively by immunological and biophysical markers. The result of Principal Component Analysis showed that stiffness was a leading index among all biophysical markers during fibrogenesis. Salvianolic acid B (SalB), a natural anti-oxidant, was detected by AFM to protect TGF-β1-stimulated A549 cells against stiffening. Then, SalB treatment was provided in preventive mode on a rat model of bleomycin (BLM) -induced pulmonary fibrosis. The results showed that SalB treatment significantly ameliorated BLM-induced histological alterations, blocked collagen accumulations and reduced α-SMA expression in lung tissues. All these results revealed the anti-pulmonary fibrotic activity of SalB. Detection of cyto-biophysical properties were therefore recommended as a rapid method for anti-pulmonary fibrotic drugs screening. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Unique Features of Mobile Commerce

    Institute of Scientific and Technical Information of China (English)

    DING Xiaojun; IIJIMA Junichi; HO Sho

    2004-01-01

    While the market potentials and impacts of web-based e-commerce are still in the ascendant, the advances in wireless technologies and mobile networks have brought about a new business opportunity and research attention, what is termed mobile commerce. Commonly, mobile commerce is considered to be another new application of existing web-based e-commerce onto wireless networks, but as an independent business area, mobile commerce has its own advantages and challenges as opposed to traditional e-commerce applications. This paper focuses on exploring the unique features of mobile commerce as. Compared with traditional e-commerce. Also, there are still some limitations arisen in m-commerce in contrast to web-based e-commerce. Finally, current state of mobile commerce in Japan is presented in brief, with an introduction of several cases involving mobile commerce applications in today 's marketplace.

  2. Unique features of space reactors

    International Nuclear Information System (INIS)

    Buden, D.

    1990-01-01

    This paper reports on space reactors that are designed to meet a unique set of requirements; they must be sufficiently compact to be launched in a rocket to their operational location, operate for many years without maintenance and servicing, operate in extreme environments, and reject heat by radiation to space. To meet these restrictions, operating temperatures are much greater than in terrestrial power plants, and the reactors tend to have a fast neutron spectrum. Currently, a new generation of space reactor power plants is being developed. The major effort is in the SP-100 program, where the power plant is being designed for seven years of full power, and no maintenance operation at a reactor outlet operating temperature of 1350 K

  3. The Uniqueness of Islamic Culture

    Directory of Open Access Journals (Sweden)

    Sinan YILMAZ

    2014-12-01

    Full Text Available Abstract This paper examines the main reasons behind why Islamic culture is different than other cultures. In the introduction part of the paper, the usage area of the words culture and civilization were tackled. In the first part of the paper, an evaluation of the uniqueness of Islamic culture was made and examples about this were given. In the second part of the paper, evaluations about how Islamic culture has struggled with modernization and secularization and how it has shaped itself as a result of this were made. In the third part of the paper, the situation in which Islamic civilization has regressed against the Western civilization causing emerging arguments and the current situation in Islamic civilization have been addressed by making evaluations on culture and civilization. In the final part, evaluations on thesis this paper has used were made.

  4. Planning for sustainable tourism in southern Pulau Banggi: an assessment of biophysical conditions and their implications for future tourism development.

    Science.gov (United States)

    Teh, Lydia; Cabanban, Annadel S

    2007-12-01

    A priori assessments of a site's biophysical and socio-economic capacity for accommodating tourism are less common than tourism impact studies. A priori evaluations can provide a contextual understanding of ecological, economic and socio-cultural forces, which shape the prospects for sustainable tourism development at the host destination, and can avert adverse impacts of tourism. We conduct an a priori assessment of the biophysical environment of Pulau Banggi, in the Malaysian state of Sabah for sustainable tourism development. We characterise baseline conditions of the island's marine biodiversity, seasonality, and infrastructure. We then evaluate how existing biophysical conditions will influence options for sustainable tourism development. In particular, we suggest conditions, if there are any, which constitute a limit to future tourism development in terms of compatibility for recreation and resilience to visitor impacts. We find that the biggest constraint is the lack of adequate water and sanitation infrastructure. Blast fishing, although occurring less than once per hour, can potentially destroy the major attraction for tourists. We conclude that while Pulau Banggi possesses natural qualities that are attractive for ecotourism, financial and institutional support must be made available to provide facilities and services that will enable local participation in environmental protection and enhance prospects for future sustainable tourism.

  5. Irrigation Requirement Estimation Using Vegetation Indices and Inverse Biophysical Modeling

    Science.gov (United States)

    Bounoua, Lahouari; Imhoff, Marc L.; Franks, Shannon

    2010-01-01

    We explore an inverse biophysical modeling process forced by satellite and climatological data to quantify irrigation requirements in semi-arid agricultural areas. We constrain the carbon and water cycles modeled under both equilibrium, balance between vegetation and climate, and non-equilibrium, water added through irrigation. We postulate that the degree to which irrigated dry lands vary from equilibrium climate conditions is related to the amount of irrigation. The amount of water required over and above precipitation is considered as an irrigation requirement. For July, results show that spray irrigation resulted in an additional amount of water of 1.3 mm per occurrence with a frequency of 24.6 hours. In contrast, the drip irrigation required only 0.6 mm every 45.6 hours or 46% of that simulated by the spray irrigation. The modeled estimates account for 87% of the total reported irrigation water use, when soil salinity is not important and 66% in saline lands.

  6. The case for biophysics super-groups in physics departments.

    Science.gov (United States)

    Hoogenboom, Bart W; Leake, Mark

    2018-06-04

    Increasing numbers of physicists engage in research activities that address biological questions from physics perspectives or strive to develop physics insights from active biological processes. The on-going development and success of such activities morph our ways of thinking about what it is to 'do biophysics' and add to our understanding of the physics of life. Many scientists in this research and teaching landscape are homed in physics departments. A challenge for a hosting department is how to group, name and structure such biophysicists to best add value to their emerging research and teaching but also to the portfolio of the whole department. Here we discuss these issues and speculate on strategies. Creative Commons Attribution license.

  7. Fragility of complexity biophysical systems by neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Magazu, Salvatore [Dipartimento di Fisica, Universita di Messina, P.O. Box 55, I-98166 Messina (Italy)]. E-mail: smagazu@unime.it; Migliardo, Federica [Dipartimento di Fisica, Universita di Messina, P.O. Box 55, I-98166 Messina (Italy); Bellocco, Ersilia [Dipartimento di Chimica Organica e Biologica, Universita di Messina, I-98166 Messina (Italy); Lagana, Giuseppina [Dipartimento di Chimica Organica e Biologica, Universita di Messina, I-98166 Messina (Italy); Mondelli, Claudia [CNR-INFM OGG and CRS-SOFT, c/o ILL, 6 Jules Horowitz, BP 156, 38042 Grenoble Cedex 9 (France)

    2006-11-15

    Neutron scattering is an exceptional tool to investigate structural and dynamical properties of systems of biophysical interest, such as proteins, enzymes, lipids and sugars. Moreover, elastic neutron scattering enhances the investigation of atomic motions in hydrated proteins in a wide temperature range and on the picosecond timescale. Homologous disaccharides, such as trehalose, maltose and sucrose, are cryptobiotic substances, since they allow to many organisms to undergo in a 'suspended life' state, known as cryptobiosis in extreme environmental conditions. The present paper is aimed to discuss the fragility degree of disaccharides, as evaluated of the temperature dependence of the mean square displacement by elastic neutron scattering, in order to link this feature with their bioprotective functions.

  8. The physics, biophysics and technology of photodynamic therapy

    International Nuclear Information System (INIS)

    Wilson, Brian C; Patterson, Michael S

    2008-01-01

    Photodynamic therapy (PDT) uses light-activated drugs to treat diseases ranging from cancer to age-related macular degeneration and antibiotic-resistant infections. This paper reviews the current status of PDT with an emphasis on the contributions of physics, biophysics and technology, and the challenges remaining in the optimization and adoption of this treatment modality. A theme of the review is the complexity of PDT dosimetry due to the dynamic nature of the three essential components-light, photosensitizer and oxygen. Considerable progress has been made in understanding the problem and in developing instruments to measure all three, so that optimization of individual PDT treatments is becoming a feasible target. The final section of the review introduces some new frontiers of research including low dose rate (metronomic) PDT, two-photon PDT, activatable PDT molecular beacons and nanoparticle-based PDT. (topical review)

  9. Biophysical information in asymmetric and symmetric diurnal bidirectional canopy reflectance

    Science.gov (United States)

    Vanderbilt, Vern C.; Caldwell, William F.; Pettigrew, Rita E.; Ustin, Susan L.; Martens, Scott N.; Rousseau, Robert A.; Berger, Kevin M.; Ganapol, B. D.; Kasischke, Eric S.; Clark, Jenny A.

    1991-01-01

    The authors present a theory for partitioning the information content in diurnal bidirectional reflectance measurements in order to detect differences potentially related to biophysical variables. The theory, which divides the canopy reflectance into asymmetric and symmetric functions of solar azimuth angle, attributes asymmetric variation to diurnal changes in the canopy biphysical properties. The symmetric function is attributed to the effects of sunlight interacting with a hypothetical average canopy which would display the average diurnal properties of the actual canopy. The authors analyzed radiometer data collected diurnally in the Thematic Mapper wavelength bands from two walnut canopies that received differing irrigation treatments. The reflectance of the canopies varied with sun and view angles and across seven bands in the visible, near-infrared, and middle infrared wavelength regions. Although one of the canopies was permanently water stressed and the other was stressed in mid-afternoon each day, no water stress signature was unambiguously evident in the reflectance data.

  10. The physics, biophysics and technology of photodynamic therapy.

    Science.gov (United States)

    Wilson, Brian C; Patterson, Michael S

    2008-05-07

    Photodynamic therapy (PDT) uses light-activated drugs to treat diseases ranging from cancer to age-related macular degeneration and antibiotic-resistant infections. This paper reviews the current status of PDT with an emphasis on the contributions of physics, biophysics and technology, and the challenges remaining in the optimization and adoption of this treatment modality. A theme of the review is the complexity of PDT dosimetry due to the dynamic nature of the three essential components -- light, photosensitizer and oxygen. Considerable progress has been made in understanding the problem and in developing instruments to measure all three, so that optimization of individual PDT treatments is becoming a feasible target. The final section of the review introduces some new frontiers of research including low dose rate (metronomic) PDT, two-photon PDT, activatable PDT molecular beacons and nanoparticle-based PDT.

  11. Biophysical constraints on the computational capacity of biochemical signaling networks

    Science.gov (United States)

    Wang, Ching-Hao; Mehta, Pankaj

    Biophysics fundamentally constrains the computations that cells can carry out. Here, we derive fundamental bounds on the computational capacity of biochemical signaling networks that utilize post-translational modifications (e.g. phosphorylation). To do so, we combine ideas from the statistical physics of disordered systems and the observation by Tony Pawson and others that the biochemistry underlying protein-protein interaction networks is combinatorial and modular. Our results indicate that the computational capacity of signaling networks is severely limited by the energetics of binding and the need to achieve specificity. We relate our results to one of the theoretical pillars of statistical learning theory, Cover's theorem, which places bounds on the computational capacity of perceptrons. PM and CHW were supported by a Simons Investigator in the Mathematical Modeling of Living Systems Grant, and NIH Grant No. 1R35GM119461 (both to PM).

  12. Biophysical characterisation of GlycoPEGylated recombinant human factor VIIa

    DEFF Research Database (Denmark)

    Plesner, Bitten; Westh, Peter; Nielsen, Anders D.

    2011-01-01

    The effects of GlycoPEGylation on the structural, kinetic and thermal stability of recombinant human FVIIa were investigated using rFVIIa and linear 10 kDa and branched 40 kDa GlycoPEGylated® recombinant human FVIIa derivatives. The secondary and tertiary structure of rFVIIa measured by circular...... dichroism (CD) was maintained upon PEGylation. In contrast, the thermal and kinetic stability of rFVIIa was affected by GlycoPEGylation, as the apparent unfolding temperature Tm measured by differential scanning calorimetry (DSC) and the temperature of aggregation, Tagg, measured by light scattering (LS......) both increased with GlycoPEGylation. Both Tm and Tagg were independent of the molecular weight and the shape of the PEG chain. From the present biophysical characterisation it is concluded that after GlycoPEGylation, rFVIIa appears to be unaffected structurally (secondary and tertiary structure...

  13. 19th International School of Biophysics "Ettore Majorana"

    CERN Document Server

    Blank, M; Bioelectrochemistry III : Charge Separation across Biomembranes

    1988-01-01

    This book contains aseries of review papers related to the lectures given at the Third Course on Bioelectrochemistry held at Erice in November 1988, in the framework of the International School of Biophysics. The topics covered by this course, "Charge Separation Across Biomembranes, " deal with the electrochemical aspects of some basic phenomena in biological systems, such as transport of ions, ATP synthesis, formation and maintenance of ionic and protonic gradients. In the first part of the course some preliminary lectures introduce the students to the most basic phenomena and technical aspects of membrane bioelectrochemistry. The remaining part of the course is devoted to the description of a selected group of membrane-enzyme systems, capable of promoting, or exploiting, the processes of separation of electrically charged entities (electrons or ions) across the membrane barrier. These systems are systematically discussed both from a structural and functional point of view. The effort of the many dis...

  14. The physics, biophysics and technology of photodynamic therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Brian C [Division of Biophysics and Bioimaging, Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON M5G 2M9 (Canada); Patterson, Michael S [Department of Medical Physics, Juravinski Cancer Centre and Department of Medical Physics and Applied Radiation Sciences, McMaster University, 699 Concession Street, Hamilton, ON L8V 5C2 (Canada)], E-mail: wilson@uhnres.utoronto.ca, E-mail: mike.patterson@jcc.hhsc.ca

    2008-05-07

    Photodynamic therapy (PDT) uses light-activated drugs to treat diseases ranging from cancer to age-related macular degeneration and antibiotic-resistant infections. This paper reviews the current status of PDT with an emphasis on the contributions of physics, biophysics and technology, and the challenges remaining in the optimization and adoption of this treatment modality. A theme of the review is the complexity of PDT dosimetry due to the dynamic nature of the three essential components-light, photosensitizer and oxygen. Considerable progress has been made in understanding the problem and in developing instruments to measure all three, so that optimization of individual PDT treatments is becoming a feasible target. The final section of the review introduces some new frontiers of research including low dose rate (metronomic) PDT, two-photon PDT, activatable PDT molecular beacons and nanoparticle-based PDT. (topical review)

  15. Voltage-Sensitive Ion Channels Biophysics of Molecular Excitability

    CERN Document Server

    Leuchtag, H. Richard

    2008-01-01

    Voltage-sensitive ion channels are macromolecules embedded in the membranes of nerve and muscle fibers of animals. Because of their physiological functions, biochemical structures and electrical switching properties, they are at an intersection of biology, chemistry and physics. Despite decades of intensive research under the traditional approach of gated structural pores, the relation between the structure of these molecules and their function remains enigmatic. This book critically examines physically oriented approaches not covered in other ion-channel books. It looks at optical and thermal as well as electrical data, and at studies in the frequency domain as well as in the time domain. Rather than presenting the reader with only an option of mechanistic models at an inappropriate pseudo-macroscopic scale, it emphasizes concepts established in organic chemistry and condensed state physics. The book’s approach to the understanding of these unique structures breaks with the unproven view of ion channels as...

  16. A combined study of gas geochemistry, petrology, and lava effusion at Bagana, a unique persistently active lava cone in Papua New Guinea

    Science.gov (United States)

    McCormick, B. T.; Salem, L. C.; Edmonds, M.; D'Aleo, R. N. M.; Aiuppa, A.; Arellano, S. R.; Wallius, J.; Galle, B.; Barry, P. H.; Ballentine, C. J.; Mulina, K.; Sindang, M.; Itikarai, I.; Wadge, G.; Lopez, T. M.; Fischer, T. P.

    2016-12-01

    Bagana volcano (Bougainville Island, Papua New Guinea) has exhibited nearly continuous extrusion of andesitic lava for over a century, but has largely been studied by satellite remote sensing. Satellite UV spectroscopy has revealed Bagana to be among the largest volcanic sources of sulfur dioxide worldwide. Satellite radar measurements of lava extrusion rate suggest that the entire edifice could have been built in only a few centuries. Bagana is dominantly constructed from lava flows, but also exhibits violent PDC-forming explosive eruptions, which threaten local populations.We present new multi-parameter data from fieldwork on Bagana in September 2016. UV spectrometers were deployed to ground-truth satellite observations of SO2 emissions, and track sub-daily variations in gas output. In situ measurements and sampling of emissions provide the first gas composition data for this volcano. Aerial imagery filmed by UAV was obtained to generate a high resolution DEM of the edifice for use in calibrating ongoing satellite radar studies of deformation and extrusion rate. Lava and tephra samples were gathered, with the aim of comparing melt composition and volatile content between eruptions of different style. The combination of gas geochemistry, geophysical monitoring from space, and petrology will be used to build a model framework to understand the pulsatory nature of Bagana's lava extrusion, and transitions to explosive activity.A campaign to a continuously active but poorly-studied volcano affords many opportunities for education and outreach. The campaign participants included early career scientists from five countries, who planned and carried out the fieldwork and exchanged expertise in a range of techniques. All work was undertaken in close collaboration with Rabaul Volcano Observatory, and was informed by their strategic monitoring goals, a valuable experience for the field team of synergising research activities with more operational concerns. Footage obtained

  17. Characterization of a unique tomaymycin-d(CICGAATTCICG)2 adduct containing two drug molecules per duplex by NMR, fluorescence, and molecular modeling studies

    International Nuclear Information System (INIS)

    Boyd, F.L.; Stewart, D.; Hurley, L.H.; Remers, W.A.; Barkley, M.D.

    1990-01-01

    Tomaymycin is a member of the pyrrolo[1,4]benzodiazepine [P(1,4)B] antitumor antibiotic group. This antibiotic is proposed to react with the exocyclic 2-amino group (N2) of guanine to form a covalent adduct that lies snugly within the minor groove of DNA. While DNA-footprinting experiments using methidiumpropyl-EDTA have revealed the favored bonding sequences for tomaymycin and related drugs on DNA, the stereochemistry at the covalent bonding site (C-11) and orientation in the minor groove were not established by these experiments. In previous studies using a combined fluorescence, high-field NMR, and molecular modeling approach, the authors have shown that for tomaymycin there are two diastereomeric species (11R and 11S) on both calf thymus DNA and d(ATGCAT) 2 . Although they were able to infer the identify of the two species on d(ATGCAT) 2 , definitive experimental evidence was lacking. They have designed and synthesized a self-complementary 12-mer [d(CICGAATTCICG) 2 ] based on the Dickerson dodecamer [d(CGCGAATTCGCG) 2 ] that bonds identically two tomaymycin molecules, each having a defined orientation and stereochemistry. The results presented in this study together with previous investigations show that the orientation of the drug molecule in the minor groove, and stereochemistry at the covalent linkage site, is dependent upon both the flanking sequence and drug structure. This conclusion mandates caution be used in rationalizing the biochemical and and biological effects of P(1,4)B bonding to DNA until precise structural information is established

  18. Biophysics at the Boundaries: The Next Problem Sets

    Science.gov (United States)

    Skolnick, Malcolm

    2009-03-01

    The interface between physics and biology is one of the fastest growing subfields of physics. As knowledge of such topics as cellular processes and complex ecological systems advances, researchers have found that progress in understanding these and other systems requires application of more quantitative approaches. Today, there is a growing demand for quantitative and computational skills in biological research and the commercialization of that research. The fragmented teaching of science in our universities still leaves biology outside the quantitative and mathematical culture that is the foundation of physics. This is particularly inopportune at a time when the needs for quantitative thinking about biological systems are exploding. More physicists should be encouraged to become active in research and development in the growing application fields of biophysics including molecular genetics, biomedical imaging, tissue generation and regeneration, drug development, prosthetics, neural and brain function, kinetics of nonequilibrium open biological systems, metabolic networks, biological transport processes, large-scale biochemical networks and stochastic processes in biochemical systems to name a few. In addition to moving into basic research in these areas, there is increasing opportunity for physicists in industry beginning with entrepreneurial roles in taking research results out of the laboratory and in the industries who perfect and market the inventions and developments that physicists produce. In this talk we will identify and discuss emerging opportunities for physicists in biophysical and biotechnological pursuits ranging from basic research through development of applications and commercialization of results. This will include discussion of the roles of physicists in non-traditional areas apart from academia such as patent law, financial analysis and regulatory science and the problem sets assigned in education and training that will enable future

  19. Biophysical mechanisms of endotoxin neutralization by cationic amphiphilic peptides.

    Science.gov (United States)

    Kaconis, Yani; Kowalski, Ina; Howe, Jörg; Brauser, Annemarie; Richter, Walter; Razquin-Olazarán, Iosu; Iñigo-Pestaña, Melania; Garidel, Patrick; Rössle, Manfred; Martinez de Tejada, Guillermo; Gutsmann, Thomas; Brandenburg, Klaus

    2011-06-08

    Bacterial endotoxins (lipopolysaccharides (LPS)) are strong elicitors of the human immune system by interacting with serum and membrane proteins such as lipopolysaccharide-binding protein (LBP) and CD14 with high specificity. At LPS concentrations as low as 0.3 ng/ml, such interactions may lead to severe pathophysiological effects, including sepsis and septic shock. One approach to inhibit an uncontrolled inflammatory reaction is the use of appropriate polycationic and amphiphilic antimicrobial peptides, here called synthetic anti-LPS peptides (SALPs). We designed various SALP structures and investigated their ability to inhibit LPS-induced cytokine secretion in vitro, their protective effect in a mouse model of sepsis, and their cytotoxicity in physiological human cells. Using a variety of biophysical techniques, we investigated selected SALPs with considerable differences in their biological responses to characterize and understand the mechanism of LPS inactivation by SALPs. Our investigations show that neutralization of LPS by peptides is associated with a fluidization of the LPS acyl chains, a strong exothermic Coulomb interaction between the two compounds, and a drastic change of the LPS aggregate type from cubic into multilamellar, with an increase in the aggregate sizes, inhibiting the binding of LBP and other mammalian proteins to the endotoxin. At the same time, peptide binding to phospholipids of human origin (e.g., phosphatidylcholine) does not cause essential structural changes, such as changes in membrane fluidity and bilayer structure. The absence of cytotoxicity is explained by the high specificity of the interaction of the peptides with LPS. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. Biophysical and structural considerations for protein sequence evolution

    Directory of Open Access Journals (Sweden)

    Grahnen Johan A

    2011-12-01

    Full Text Available Abstract Background Protein sequence evolution is constrained by the biophysics of folding and function, causing interdependence between interacting sites in the sequence. However, current site-independent models of sequence evolutions do not take this into account. Recent attempts to integrate the influence of structure and biophysics into phylogenetic models via statistical/informational approaches have not resulted in expected improvements in model performance. This suggests that further innovations are needed for progress in this field. Results Here we develop a coarse-grained physics-based model of protein folding and binding function, and compare it to a popular informational model. We find that both models violate the assumption of the native sequence being close to a thermodynamic optimum, causing directional selection away from the native state. Sampling and simulation show that the physics-based model is more specific for fold-defining interactions that vary less among residue type. The informational model diffuses further in sequence space with fewer barriers and tends to provide less support for an invariant sites model, although amino acid substitutions are generally conservative. Both approaches produce sequences with natural features like dN/dS Conclusions Simple coarse-grained models of protein folding can describe some natural features of evolving proteins but are currently not accurate enough to use in evolutionary inference. This is partly due to improper packing of the hydrophobic core. We suggest possible improvements on the representation of structure, folding energy, and binding function, as regards both native and non-native conformations, and describe a large number of possible applications for such a model.

  1. Modularity, comparative cognition and human uniqueness

    OpenAIRE

    Shettleworth, Sara J.

    2012-01-01

    Darwin's claim ‘that the difference in mind between man and the higher animals … is certainly one of degree and not of kind’ is at the core of the comparative study of cognition. Recent research provides unprecedented support for Darwin's claim as well as new reasons to question it, stimulating new theories of human cognitive uniqueness. This article compares and evaluates approaches to such theories. Some prominent theories propose sweeping domain-general characterizations of the difference ...

  2. Early estimation of pandemic influenza Antiviral and Vaccine Effectiveness (EAVE): use of a unique community and laboratory national data-linked cohort study.

    Science.gov (United States)

    Simpson, Colin R; Lone, Nazir; McMenamin, Jim; Gunson, Rory; Robertson, Chris; Ritchie, Lewis D; Sheikh, Aziz

    2015-10-01

    After the introduction of any new pandemic influenza, population-level surveillance and rapid assessment of the effectiveness of a new vaccination will be required to ensure that it is targeted to those at increased risk of serious illness or death from influenza. We aimed to build a pandemic influenza reporting platform that will determine, once a new pandemic is under way: the uptake and effectiveness of any new pandemic vaccine or any protective effect conferred by antiviral drugs once available; the clinical attack rate of pandemic influenza; and the existence of protection provided by previous exposure to, and vaccination from, A/H1N1 pandemic or seasonal influenza/identification of susceptible groups. An observational cohort and test-negative study design will be used (post pandemic). A national linkage of patient-level general practice data from 41 Practice Team Information general practices, hospitalisation and death certification, virological swab and serology-linked data. We will study a nationally representative sample of the Scottish population comprising 300,000 patients. Confirmation of influenza using reverse transcription polymerase chain reaction and, in a subset of the population, serology. Future available pandemic influenza vaccination and antivirals will be evaluated. To build a reporting platform tailored towards the evaluation of pandemic influenza vaccination. This system will rapidly measure vaccine effectiveness (VE), adjusting for confounders, estimated by determining laboratory-confirmed influenza; influenza-related morbidity and mortality, including general practice influenza-like illnesses (ILIs); and hospitalisation and death from influenza and pneumonia. Once a validated haemagglutination inhibition assay has been developed (and prior to the introduction of any vaccination), cross-reactivity with previous exposure to A/H1N1 or A/H1N1 vaccination, other pandemic influenza or other seasonal influenza vaccination or exposure will be

  3. In vivo and in vitro studies of Cry5B and nicotinic acetylcholine receptor agonist anthelmintics reveal a powerful and unique combination therapy against intestinal nematode parasites.

    Directory of Open Access Journals (Sweden)

    Yan Hu

    2018-05-01

    Full Text Available The soil-transmitted nematodes (STNs or helminths (hookworms, whipworms, large roundworms infect the intestines of ~1.5 billion of the poorest peoples and are leading causes of morbidity worldwide. Only one class of anthelmintic or anti-nematode drugs, the benzimidazoles, is currently used in mass drug administrations, which is a dangerous situation. New anti-nematode drugs are urgently needed. Bacillus thuringiensis crystal protein Cry5B is a powerful, promising new candidate. Drug combinations, when properly made, are ideal for treating infectious diseases. Although there are some clinical trials using drug combinations against STNs, little quantitative and systemic work has been performed to define the characteristics of these combinations in vivo.Working with the hookworm Ancylostoma ceylanicum-hamster infection system, we establish a laboratory paradigm for studying anti-nematode combinations in vivo using Cry5B and the nicotinic acetylcholine receptor (nAChR agonists tribendimidine and pyrantel pamoate. We demonstrate that Cry5B strongly synergizes in vivo with both tribendimidine and pyrantel at specific dose ratios against hookworm infections. For example, whereas 1 mg/kg Cry5B and 1 mg/kg tribendimidine individually resulted in only a 0%-6% reduction in hookworm burdens, the combination of the two resulted in a 41% reduction (P = 0.020. Furthermore, when mixed at synergistic ratios, these combinations eradicate hookworm infections at doses where the individual doses do not. Using cyathostomin nematode parasites of horses, we find based on inhibitory concentration 50% values that a strongylid parasite population doubly resistant to nAChR agonists and benzimidazoles is more susceptible or "hypersusceptible" to Cry5B than a cyathostomin population not resistant to nAChR agonists, consistent with previous Caenhorhabditis elegans results.Our study provides a powerful means by which anthelmintic combination therapies can be examined in vivo

  4. A unique mountainous vertical distribution patterns and related environmental interpretation-a case study on the northern slope of the ili river valley

    International Nuclear Information System (INIS)

    Tian, Z.P.; Wang, X.L.; Zhuang, L.

    2016-01-01

    Patterns of plant diversity and soil factors along the altitude gradient on the northern slope of Ili River Valley were examined. Plant and environment characteristics were surveyed from 1000-2200 m. There were a total of 155 vascular plant, 133 herbage, 18 shrub, and 7 tree species in 44 sampled plots. The plant richness of vegetation types generally showed a special pattern along altitude, with a bimodal change of plant species number at 100m intervals of altitude samples. The two belts of higher plant richness were in transient areas between vegetation types, the first in areas from low-mountain desert to forest, and the other from dry grass to coniferous forest. Matching the change of richness of plant species to environmental factors along altitude by GAM model and relation analysis revealed that the environmental factors controlling species richness and their patterns were the combined effects of soil salt and nutrition. Water was more important at lower altitude, and temperature at higher altitude, the role of the inversion layer at high altitude coniferous forest species diversity appearing to rise. Soil nutrition and salt also showed a similar distribution pattern of diversity. Especially, diversity index and soil salinity showed a strong correlation. This study provides insights into plant diversity conservation of ili River Valley in Tianshan Mountain. (author)

  5. Evaluation of international case studies within 'Live.Learn.Laugh.': a unique global public-private partnership to promote oral health.

    Science.gov (United States)

    Dugdill, Lindsey; Pine, Cynthia M

    2011-08-01

    The partnership between the Féderation Dentaire International (FDI), and Unilever Oral Care, aims to raise awareness of oral health globally; to enable FDI member associations to promote oral health; and to increase the visibility of the FDI and authority of Unilever oral care brands worldwide. Country Projects between National Dental Associations (NDAs), the member associations of FDI, and Unilever Oral Care local companies have been established as a key strand of the partnership. This paper reports on the evaluation of an in-depth sample of Country Projects (n=5) to determine their potential to impact on oral health. Five country sites were selected as being indicative of different programme delivery types. Each site received a two-day visit during Spring-Summer 2009, which enabled the evaluators to audit what was delivered in practice compared with the original written project briefs and to undertake interviews of study site staff. 39 projects in 36 countries have been initiated. In those examined by site visits, clear evidence was found of capacity building to deliver oral health. In some countries, widespread population reach had been prioritised. Effectiveness of partnership working varied depending on the strength of the relationship between the NDA and local Unilever Oral Care representatives and alignment with national marketing strategy. The quality of internal evaluation varied considerably. Over a million people had been reached directly by Country Projects and this public-private partnership has made a successful start. To move towards improving oral health rather than only awareness raising; future Country Projects would benefit from being limited to certain evidence-based intervention designs, and using an agreed core indicator set in order to allow cross-country comparison of intervention outcomes. © 2011 FDI World Dental Federation.

  6. Novel organic NLO material bis(N-phenylbiguanidium(1+)) oxalate - A combined X-ray diffraction, DSC and vibrational spectroscopic study of its unique polymorphism

    Science.gov (United States)

    Matulková, Irena; Císařová, Ivana; Vaněk, Přemysl; Němec, Petr; Němec, Ivan

    2017-01-01

    Three polymorphic modifications of bis(N-phenylbiguanidium(1+)) oxalate are reported, and their characterization is discussed in this paper. The non-centrosymmetric bis(N-phenylbiguanidium(1+)) oxalate (I), which was obtained from an aqueous solution at 313 K, belongs to the monoclinic space group Cc (a = 6.2560(2) Å, b = 18.6920(3) Å, c = 18.2980(5) Å, β = 96.249(1)°, V = 2127.0(1) Å3, Z = 4, R = 0.0314 for 4738 observed reflections). The centrosymmetric bis(N-phenylbiguanidium(1+)) oxalate (II) was obtained from an aqueous solution at 298 K and belongs to the monoclinic space group P21/n (a = 6.1335(3) Å, b = 11.7862(6) Å, c = 14.5962(8) Å, β = 95.728(2)°, V = 1049.90(9) Å3, Z = 4, R = 0.0420 for 2396 observed reflections). The cooling of the centrosymmetric phase (II) leads to the formation of bis(N-phenylbiguanidium(1+)) oxalate (III) (a = 6.1083(2) Å, b = 11.3178(5) Å, c = 14.9947(5) Å, β = 93.151(2)°, V = 1035.05(8) Å3, Z = 4, R = 0.0345 for 2367 observed reflections and a temperature of 110 K), which also belongs to the monoclinic space group P21/n. The crystal structures of the three characterized phases are generally based on layers of isolated N-phenylbiguanidium(1 +) cations separated by oxalate anions and interconnected with them by several types of N-H...O hydrogen bonds. The observed phases generally differ not only in their crystal packing but also in the lengths and characteristics of their hydrogen bonds. The thermal behaviour of the prepared compounds was studied using the DSC method in the temperature range from 90 K up to a temperature near the melting point of each crystal. The bis(N-phenylbiguanidium(1+)) oxalate (II) crystals exhibit weak reversible thermal effects on the DSC curve at 147 K (heating run). Further investigation of this effect, which was assigned to the isostructural phase transformation, was performed using FTIR, Raman spectroscopy and X-ray diffraction analysis in a wide temperature range.

  7. Diffusion-weighted MRI and quantitative biophysical modeling of hippocampal neurite loss in chronic stress.

    Directory of Open Access Journals (Sweden)

    Peter Vestergaard-Poulsen

    Full Text Available Chronic stress has detrimental effects on physiology, learning and memory and is involved in the development of anxiety and depressive disorders. Besides changes in synaptic formation and neurogenesis, chronic stress also induces dendritic remodeling in the hippocampus, amygdala and the prefrontal cortex. Investigations of dendritic remodeling during development and treatment of stress are currently limited by the invasive nature of histological and stereological methods. Here we show that high field diffusion-weighted MRI combined with quantitative biophysical modeling of the hippocampal dendritic loss in 21 day restraint stressed rats highly correlates with former histological findings. Our study strongly indicates that diffusion-weighted MRI is sensitive to regional dendritic loss and thus a promising candidate for non-invasive studies of dendritic plasticity in chronic stress and stress-related disorders.

  8. Biophysical Screening of a Focused Library for the Discovery of CYP121 Inhibitors as Novel Antimycobacterials.

    Science.gov (United States)

    Brengel, Christian; Thomann, Andreas; Schifrin, Alexander; Allegretta, Giuseppe; Kamal, Ahmed A M; Haupenthal, Jörg; Schnorr, Isabell; Cho, Sang Hyun; Franzblau, Scott G; Empting, Martin; Eberhard, Jens; Hartmann, Rolf W

    2017-10-09

    The development of novel antimycobacterial agents against Mycobacterium tuberculosis (Mtb) is urgently required due to the appearance of multidrug resistance (MDR) combined with complicated long-term treatment. CYP121 was shown to be a promising novel target for inhibition of mycobacterial growth. In this study, we describe the rational discovery of new CYP121 inhibitors by a systematic screening based on biophysical and microbiological methods. The best hits originating from only one structural class gave initial information about molecular motifs required for binding and activity. The initial screening procedure was followed by mode-of-action studies and further biological characterizations. The results demonstrate superior antimycobacterial efficacy and a decreased toxicity profile of our frontrunner compound relative to the reference compound econazole. Due to its low molecular weight, promising biological profile, and physicochemical properties, this compound is an excellent starting point for further rational optimization. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. C- and N-truncated antimicrobial peptides from LFampin 265 - 284: Biophysical versus microbiology results

    Directory of Open Access Journals (Sweden)

    Regina Adão

    2011-01-01

    Full Text Available Lactoferrin is a glycoprotein with two globular lobes, each having two domains. Since the discovery of its antimicrobial properties, efforts have been made to find peptides derived from this protein showing antimicrobial properties. Most peptides initially studied were derived from Lactoferricin B, obtained from the protein by digestion with pepsin. More recently, a new family of antimicrobial peptides (AMPs derived from Lactoferrin was discovered by Bolcher et al, and named Lactoferrampin (LFampin. The original sequence of LFampin contained residues 268 - 284 from the N1 domain of Lactoferrin. From this peptide, the Bolscher′s group synthesized a collection of peptides obtained by extension and / or truncation at the C or N-terminal sides, in order to unravel the main structural features responsible for antimicrobial action. Here, we present results for three of these peptides, namely LFampin 265 - 284, LFampin 265 - 280, and LFampin 270 - 284. The peptides were tested against bacteria (E. coli and S. sanguinis, fungi (C. albicans, and model membranes of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC, 1,2-dimyristoyl-sn-glycero-3-[phospho-rac-(1-glycerol] (DMPG, and their mixtures at a ratio of 3 : 1 (DMPC : DMPG (3 : 1. The ability to adopt a helical conformation was followed by a circular dichroism (CD, and the perturbation of the gel to the liquid-crystalline phase transition of the membrane was characterized by differential scanning calorimetry (DSC. Distinct behavior was observed in the three peptides, both from the microbiology and model membrane studies, with the biophysical results showing excellent correlation with the microbiology activity studies. LFampin 265 - 284 was the most active peptide toward the tested microorganisms, and in the biophysical studies it showed the highest ability to form an a-helix and the strongest interaction with model membranes, followed by LFampin 265 - 280. LFampin 270 - 284 was inactive, showing

  10. Study of Wind Effects on Unique Buildings

    Science.gov (United States)

    Olenkov, V.; Puzyrev, P.

    2017-11-01

    The article deals with a numerical simulation of wind effects on the building of the Church of the Intercession of the Holy Virgin in the village Bulzi of the Chelyabinsk region. We presented a calculation algorithm and obtained pressure fields, velocity fields and the fields of kinetic energy of a wind stream, as well as streamlines. Computational fluid dynamic (CFD) evolved three decades ago at the interfaces of calculus mathematics and theoretical hydromechanics and has become a separate branch of science the subject of which is a numerical simulation of different fluid and gas flows as well as the solution of arising problems with the help of methods that involve computer systems. This scientific field which is of a great practical value is intensively developing. The increase in CFD-calculations is caused by the improvement of computer technologies, creation of multipurpose easy-to-use CFD-packagers that are available to a wide group of researchers and cope with various tasks. Such programs are not only competitive in comparison with physical experiments but sometimes they provide the only opportunity to answer the research questions. The following advantages of computer simulation can be pointed out: a) Reduction in time spent on design and development of a model in comparison with a real experiment (variation of boundary conditions). b) Numerical experiment allows for the simulation of conditions that are not reproducible with environmental tests (use of ideal gas as environment). c) Use of computational gas dynamics methods provides a researcher with a complete and ample information that is necessary to fully describe different processes of the experiment. d) Economic efficiency of computer calculations is more attractive than an experiment. e) Possibility to modify a computational model which ensures efficient timing (change of the sizes of wall layer cells in accordance with the chosen turbulence model).

  11. Retrieval of biophysical parameters with AVIRIS and ISM: The Landes Forest, south west France

    Science.gov (United States)

    Zagolski, F.; Gastellu-Etchegorry, J. P.; Mougin, E.; Giordano, G.; Marty, G.; Letoan, T.; Beaudoin, A.

    1992-01-01

    The first steps of an experiment for investigating the capability of airborne spectrometer data for retrieval of biophysical parameters of vegetation, especially water conditions are presented. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and ISM data were acquired in the frame of the 1991 NASA/JPL and CNES campaigns on the Landes, South west France, a large and flat forest area with mainly maritime pines. In-situ measurements were completed at that time; i.e. reflectance spectra, atmospheric profiles, sampling for further laboratory analyses of elements concentrations (lignin, water, cellulose, nitrogen,...). All information was integrated in an already existing data base (age, LAI, DBH, understory cover,...). A methodology was designed for (1) obtaining geometrically and atmospherically corrected reflectance data, (2) registering all available information, and (3) analyzing these multi-source informations. Our objective is to conduct comparative studies with simulation reflectance models, and to improve these models, especially in the MIR.

  12. On The Development of Biophysical Models for Space Radiation Risk Assessment

    Science.gov (United States)

    Cucinotta, F. A.; Dicello, J. F.

    1999-01-01

    Experimental techniques in molecular biology are being applied to study biological risks from space radiation. The use of molecular assays presents a challenge to biophysical models which in the past have relied on descriptions of energy deposition and phenomenological treatments of repair. We describe a biochemical kinetics model of cell cycle control and DNA damage response proteins in order to model cellular responses to radiation exposures. Using models of cyclin-cdk, pRB, E2F's, p53, and GI inhibitors we show that simulations of cell cycle populations and GI arrest can be described by our biochemical approach. We consider radiation damaged DNA as a substrate for signal transduction processes and consider a dose and dose-rate reduction effectiveness factor (DDREF) for protein expression.

  13. Using Biophysical Models to Understand the Effect of tDCS on Neurorehabilitation: Searching for Optimal Covariates to Enhance Poststroke Recovery.

    Science.gov (United States)

    Malerba, Paola; Straudi, Sofia; Fregni, Felipe; Bazhenov, Maxim; Basaglia, Nino

    2017-01-01

    Stroke is a leading cause of worldwide disability, and up to 75% of survivors suffer from some degree of arm paresis. Recently, rehabilitation of stroke patients has focused on recovering motor skills by taking advantage of use-dependent neuroplasticity, where high-repetition of goal-oriented movement is at times combined with non-invasive brain stimulation, such as transcranial direct current stimulation (tDCS). Merging the two approaches is thought to provide outlasting clinical gains, by enhancing synaptic plasticity and motor relearning in the motor cortex primary area. However, this general approach has shown mixed results across the stroke population. In particular, stroke location has been found to correlate with the likelihood of success, which suggests that different patients might require different protocols. Understanding how motor rehabilitation and stimulation interact with ongoing neural dynamics is crucial to optimize rehabilitation strategies, but it requires theoretical and computational models to consider the multiple levels at which this complex phenomenon operate. In this work, we argue that biophysical models of cortical dynamics are uniquely suited to address this problem. Specifically, biophysical models can predict treatment efficacy by introducing explicit variables and dynamics for damaged connections, changes in neural excitability, neurotransmitters, neuromodulators, plasticity mechanisms, and repetitive movement, which together can represent brain state, effect of incoming stimulus, and movement-induced activity. In this work, we hypothesize that effects of tDCS depend on ongoing neural activity and that tDCS effects on plasticity may be also related to enhancing inhibitory processes. We propose a model design for each step of this complex system, and highlight strengths and limitations of the different modeling choices within our approach. Our theoretical framework proposes a change in paradigm, where biophysical models can contribute

  14. Integrating socio-economic and biophysical data to enhance watershed management and planning

    Science.gov (United States)

    Pirani, Farshad Jalili; Mousavi, Seyed Alireza

    2016-09-01

    Sustainability has always been considered as one of the main aspects of watershed management plans. In many developing countries, watershed management practices and planning are usually performed by integrating biophysical layers, and other existing layers which cannot be identified as geographic layers are ignored. We introduce an approach to consider some socioeconomic parameters which are important for watershed management decisions. Ganj basin in Chaharmahal-Bakhtiari Province was selected as the case study area, which includes three traditional sanctums: Ganj, Shiremard and Gerdabe Olya. Socioeconomic data including net agricultural income, net ranching income, population and household number, literacy rate, unemployment rate, population growth rate and active population were mapped within traditional sanctums and then were integrated into other biophysical layers. After overlaying and processing these data to determine management units, different quantitative and qualitative approaches were adopted to achieve a practical framework for watershed management planning and relevant plans for homogeneous units were afterwards proposed. Comparing the results with current plans, the area of allocated lands to different proposed operations considering both qualitative and quantitative approaches were the same in many cases and there was a meaningful difference with current plans; e.g., 3820 ha of lands are currently managed under an enclosure plan, while qualitative and quantitative approaches in this study suggest 1388 and 1428 ha to be allocated to this operation type, respectively. Findings show that despite the ambiguities and complexities, different techniques could be adopted to incorporate socioeconomic conditions in watershed management plans. This introductory approach will help to enhance watershed management decisions with more attention to societal background and economic conditions, which will presumably motivate local communities to participate in

  15. Combining biophysical methods for the analysis of protein complex stoichiometry and affinity in SEDPHAT

    International Nuclear Information System (INIS)

    Zhao, Huaying; Schuck, Peter

    2015-01-01

    Global multi-method analysis for protein interactions (GMMA) can increase the precision and complexity of binding studies for the determination of the stoichiometry, affinity and cooperativity of multi-site interactions. The principles and recent developments of biophysical solution methods implemented for GMMA in the software SEDPHAT are reviewed, their complementarity in GMMA is described and a new GMMA simulation tool set in SEDPHAT is presented. Reversible macromolecular interactions are ubiquitous in signal transduction pathways, often forming dynamic multi-protein complexes with three or more components. Multivalent binding and cooperativity in these complexes are often key motifs of their biological mechanisms. Traditional solution biophysical techniques for characterizing the binding and cooperativity are very limited in the number of states that can be resolved. A global multi-method analysis (GMMA) approach has recently been introduced that can leverage the strengths and the different observables of different techniques to improve the accuracy of the resulting binding parameters and to facilitate the study of multi-component systems and multi-site interactions. Here, GMMA is described in the software SEDPHAT for the analysis of data from isothermal titration calorimetry, surface plasmon resonance or other biosensing, analytical ultracentrifugation, fluorescence anisotropy and various other spectroscopic and thermodynamic techniques. The basic principles of these techniques are reviewed and recent advances in view of their particular strengths in the context of GMMA are described. Furthermore, a new feature in SEDPHAT is introduced for the simulation of multi-method data. In combination with specific statistical tools for GMMA in SEDPHAT, simulations can be a valuable step in the experimental design

  16. Building biophysics in mid-century China: the University of Science and Technology of China.

    Science.gov (United States)

    Luk, Yi Lai Christine

    2015-01-01

    Biophysics has been either an independent discipline or an element of another discipline in the United States, but it has always been recognized as a stand-alone discipline in the People's Republic of China (PRC) since 1949. To inquire into this apparent divergence, this paper investigates the formational history of biophysics in China by examining the early institutional history of one of the best-known and prestigious science and technology universities in the PRC, the University of Science and Technology of China (USTC). By showing how the university and its biophysics program co-evolved with national priorities from the school's founding in 1958 to the eve of the Cultural Revolution in 1966, the purpose of this paper is to assess the development of a scientific discipline in the context of national demands and institutional politics. Specific materials for analysis include the school's admission policies, curricula, students' dissertations, and research program. To further contextualize the institutional setting of Chinese biophysics, this paper begins with a general history of proto-biophysical institutions in China during the Nationalist-Communist transitional years. This paper could be of interest to historians wanting to know more about the origin of the biophysics profession in China, and in particular how research areas that constitute biophysics changed in tandem with socio-political contingencies.

  17. CREB Overexpression Ameliorates Age-related Behavioral and Biophysical Deficits

    Science.gov (United States)

    Yu, Xiao-Wen

    Age-related cognitive deficits are observed in both humans and animals. Yet, the molecular mechanisms underlying these deficits are not yet fully elucidated. In aged animals, a decrease in intrinsic excitability of pyramidal neurons from the CA1 sub-region of hippocampus is believed to contribute to age-related cognitive impairments, but the molecular mechanism(s) that modulate both these factors has yet to be identified. Increasing activity of the transcription factor cAMP response element-binding protein (CREB) in young adult rodents has been shown to facilitate cognition, and increase intrinsic excitability of their neurons. However, how CREB changes with age, and how that impacts cognition in aged animals, is not clear. Therefore, we first systematically characterized age- and training-related changes in CREB levels in dorsal hippocampus. At a remote time point after undergoing behavioral training, levels of total CREB and activated CREB (phosphorylated at S133, pCREB) were measured in both young and aged rats. We found that pCREB, but not total CREB was significantly reduced in dorsal CA1 of aged rats. Importantly, levels of pCREB were found to be positively correlated with short-term spatial memory in both young and aged rats i.e. higher pCREB in dorsal CA1 was associated with better spatial memory. These findings indicate that an age-related deficit in CREB activity may contribute to the development of age-related cognitive deficits. However, it was still unclear if increasing CREB activity would be sufficient to ameliorate age-related cognitive, and biophysical deficits. To address this question, we virally overexpressed CREB in CA1, where we found the age-related deficit. Young and aged rats received control or CREB virus, and underwent water maze training. While control aged animals exhibited deficits in long-term spatial memory, aged animals with CREB overexpression performed at levels comparable to young animals. Concurrently, aged neurons

  18. Constructing Precisely Computing Networks with Biophysical Spiking Neurons.

    Science.gov (United States)

    Schwemmer, Michael A; Fairhall, Adrienne L; Denéve, Sophie; Shea-Brown, Eric T

    2015-07-15

    While spike timing has been shown to carry detailed stimulus information at the sensory periphery, its possible role in network computation is less clear. Most models of computation by neural networks are based on population firing rates. In equivalent spiking implementations, firing is assumed to be random such that averaging across populations of neurons recovers the rate-based approach. Recently, however, Denéve and colleagues have suggested that the spiking behavior of neurons may be fundamental to how neuronal networks compute, with precise spike timing determined by each neuron's contribution to producing the desired output (Boerlin and Denéve, 2011; Boerlin et al., 2013). By postulating that each neuron fires to reduce the error in the network's output, it was demonstrated that linear computations can be performed by networks of integrate-and-fire neurons that communicate through instantaneous synapses. This left open, however, the possibility that realistic networks, with conductance-based neurons with subthreshold nonlinearity and the slower timescales of biophysical synapses, may not fit into this framework. Here, we show how the spike-based approach can be extended to biophysically plausible networks. We then show that our network reproduces a number of key features of cortical networks including irregular and Poisson-like spike times and a tight balance between excitation and inhibition. Lastly, we discuss how the behavior of our model scales with network size or with the number of neurons "recorded" from a larger computing network. These results significantly increase the biological plausibility of the spike-based approach to network computation. We derive a network of neurons with standard spike-generating currents and synapses with realistic timescales that computes based upon the principle that the precise timing of each spike is important for the computation. We then show that our network reproduces a number of key features of cortical networks

  19. Ground- and satellite-based evidence of the biophysical mechanisms behind the greening Sahel.

    Science.gov (United States)

    Brandt, Martin; Mbow, Cheikh; Diouf, Abdoul A; Verger, Aleixandre; Samimi, Cyrus; Fensholt, Rasmus

    2015-04-01

    After a dry period with prolonged droughts in the 1970s and 1980s, recent scientific outcome suggests that the decades of abnormally dry conditions in the Sahel have been reversed by positive anomalies in rainfall. Various remote sensing studies observed a positive trend in vegetation greenness over the last decades which is known as the re-greening of the Sahel. However, little investment has been made in including long-term ground-based data collections to evaluate and better understand the biophysical mechanisms behind these findings. Thus, deductions on a possible increment in biomass remain speculative. Our aim is to bridge these gaps and give specifics on the biophysical background factors of the re-greening Sahel. Therefore, a trend analysis was applied on long time series (1987-2013) of satellite-based vegetation and rainfall data, as well as on ground-observations of leaf biomass of woody species, herb biomass, and woody species abundance in different ecosystems located in the Sahel zone of Senegal. We found that the positive trend observed in satellite vegetation time series (+36%) is caused by an increment of in situ measured biomass (+34%), which is highly controlled by precipitation (+40%). Whereas herb biomass shows large inter-annual fluctuations rather than a clear trend, leaf biomass of woody species has doubled within 27 years (+103%). This increase in woody biomass did not reflect on biodiversity with 11 of 16 woody species declining in abundance over the period. We conclude that the observed greening in the Senegalese Sahel is primarily related to an increasing tree cover that caused satellite-driven vegetation indices to increase with rainfall reversal. © 2014 John Wiley & Sons Ltd.

  20. Across Space and Time: Social Responses to Large-Scale Biophysical Systems

    Science.gov (United States)

    Macmynowski, Dena P.

    2007-06-01

    The conceptual rubric of ecosystem management has been widely discussed and deliberated in conservation biology, environmental policy, and land/resource management. In this paper, I argue that two critical aspects of the ecosystem management concept require greater attention in policy and practice. First, although emphasis has been placed on the “space” of systems, the “time”—or rates of change—associated with biophysical and social systems has received much less consideration. Second, discussions of ecosystem management have often neglected the temporal disconnects between changes in biophysical systems and the response of social systems to management issues and challenges. The empirical basis of these points is a case study of the “Crown of the Continent Ecosystem,” an international transboundary area of the Rocky Mountains that surrounds Glacier National Park (USA) and Waterton Lakes National Park (Canada). This project assessed the experiences and perspectives of 1) middle- and upper-level government managers responsible for interjurisdictional cooperation, and 2) environmental nongovernment organizations with an international focus. I identify and describe 10 key challenges to increasing the extent and intensity of transboundary cooperation in land/resource management policy and practice. These issues are discussed in terms of their political, institutional, cultural, information-based, and perceptual elements. Analytic techniques include a combination of environmental history, semistructured interviews with 48 actors, and text analysis in a systematic qualitative framework. The central conclusion of this work is that the rates of response of human social systems must be better integrated with the rates of ecological change. This challenge is equal to or greater than the well-recognized need to adapt the spatial scale of human institutions to large-scale ecosystem processes and transboundary wildlife.

  1. Micro-morphologic changes around biophysically-stimulated titanium implants in ovariectomized rats

    Directory of Open Access Journals (Sweden)

    Chang Ting-Ling

    2007-07-01

    Full Text Available Abstract Background Osteoporosis may present a risk factor in achievement of osseointegration because of its impact on bone remodeling properties of skeletal phsiology. The purpose of this study was to evaluate micro-morphological changes in bone around titanium implants exposed to mechanical and electrical-energy in osteoporotic rats. Methods Fifteen 12-week old sprague-dowley rats were ovariectomized to develop osteoporosis. After 8 weeks of healing period, two titanium implants were bilaterally placed in the proximal metaphyses of tibia. The animals were randomly divided into a control group and biophysically-stimulated two test groups with five animals in each group. In the first test group, a pulsed electromagnetic field (PEMF stimulation was administrated at a 0.2 mT 4 h/day, whereas the second group received low-magnitude high-frequency mechanical vibration (MECHVIB at 50 Hz 14 min/day. Following completion of two week treatment period, all animals were sacrificed. Bone sites including implants were sectioned, removed en bloc and analyzed using a microCT unit. Relative bone volume and bone micro-structural parameters were evaluated for 144 μm wide peri-implant volume of interest (VOI. Results Mean relative bone volume in the peri-implant VOI around implants PEMF and MECHVIB was significantly higher than of those in control (P P > .05 while the difference in trabecular-number among test and control groups was significant in all VOIs (P Conclusion Biophysical stimulation remarkably enhances bone volume around titanium implants placed in osteoporotic rats. Low-magnitude high-frequency MECHVIB is more effective than PEMF on bone healing in terms of relative bone volume.

  2. Analysis of MODIS 250 m Time Series Product for LULC Classification and Retrieval of Crop Biophysical Parameter

    Science.gov (United States)

    Verma, A. K.; Garg, P. K.; Prasad, K. S. H.; Dadhwal, V. K.

    2016-12-01

    Agriculture is a backbone of Indian economy, providing livelihood to about 70% of the population. The primary objective of this research is to investigate the general applicability of time-series MODIS 250m Normalized difference vegetation index (NDVI) and Enhanced vegetation index (EVI) data for various Land use/Land cover (LULC) classification. The other objective is the retrieval of crop biophysical parameter using MODIS 250m resolution data. The Uttar Pradesh state of India is selected for this research work. A field study of 38 farms was conducted during entire crop season of the year 2015 to evaluate the applicability of MODIS 8-day, 250m resolution composite images for assessment of crop condition. The spectroradiometer is used for ground reflectance and the AccuPAR LP-80 Ceptometer is used to measure the agricultural crops Leaf Area Index (LAI). The AccuPAR measures Photosynthetically Active Radiation (PAR) and can invert these readings to give LAI for plant canopy. Ground-based canopy reflectance and LAI were used to calibrate a radiative transfer model to create look-up table (LUT) that was used to simulate LAI. The seasonal trend of MODIS-derived LAI was used to find crop parameter by adjusting the LAI simulated from climate-based crop yield model. Cloud free MODIS images of 250m resolution (16 day composite period) were downloaded using LP-DAAC website over a period of 12 months (Jan to Dec 2015). MODIS both the VI products were found to have sufficient spectral, spatial and temporal resolution to detect unique signatures for each class (water, fallow land, urban, dense vegetation, orchard, sugarcane and other crops). Ground truth data were collected using JUNO GPS. Multi-temporal VI signatures for vegetation classes were consistent with its general phenological characteristic and were spectrally separable at some point during the growing season. The MODIS NDVI and EVI multi-temporal images tracked similar seasonal responses for all croplands and were

  3. Ecosystem biophysical memory in the southwestern North America climate system

    International Nuclear Information System (INIS)

    Forzieri, G; Feyen, L; Vivoni, E R

    2013-01-01

    To elucidate the potential role of vegetation to act as a memory source in the southwestern North America climate system, we explore correlation structures of remotely sensed vegetation dynamics with precipitation, temperature and teleconnection indices over 1982–2006 for six ecoregions. We found that lagged correlations between vegetation dynamics and climate variables are modulated by the dominance of monsoonal or Mediterranean regimes and ecosystem-specific physiological processes. Subtropical and tropical ecosystems exhibit a one month lag positive correlation with precipitation, a zero- to one-month lag negative correlation with temperature, and modest negative effects of sea surface temperature (SST). Mountain forests have a zero month lag negative correlation with precipitation, a zero–one month lag negative correlation with temperature, and no significant correlation with SSTs. Deserts show a strong one–four month lag positive correlation with precipitation, a low zero–two month lag negative correlation with temperature, and a high four–eight month lag positive correlation with SSTs. The ecoregion-specific biophysical memories identified offer an opportunity to improve the predictability of land–atmosphere interactions and vegetation feedbacks onto climate. (letter)

  4. A Biophysical Neural Model To Describe Spatial Visual Attention

    International Nuclear Information System (INIS)

    Hugues, Etienne; Jose, Jorge V.

    2008-01-01

    Visual scenes have enormous spatial and temporal information that are transduced into neural spike trains. Psychophysical experiments indicate that only a small portion of a spatial image is consciously accessible. Electrophysiological experiments in behaving monkeys have revealed a number of modulations of the neural activity in special visual area known as V4, when the animal is paying attention directly towards a particular stimulus location. The nature of the attentional input to V4, however, remains unknown as well as to the mechanisms responsible for these modulations. We use a biophysical neural network model of V4 to address these issues. We first constrain our model to reproduce the experimental results obtained for different external stimulus configurations and without paying attention. To reproduce the known neuronal response variability, we found that the neurons should receive about equal, or balanced, levels of excitatory and inhibitory inputs and whose levels are high as they are in in vivo conditions. Next we consider attentional inputs that can induce and reproduce the observed spiking modulations. We also elucidate the role played by the neural network to generate these modulations

  5. Editorial: The Sackler International Prize in Biophysical Sciences

    Science.gov (United States)

    Frydman, Lucio

    2018-02-01

    The Raymond and Beverly Sackler International Prize is awarded alternatively in the fields of Biophysics, Chemistry and Physics on a yearly basis, by Tel Aviv University. The price is intended to encourage dedication to science, originality and excellence, by rewarding outstanding scientists under 45 years of age, with a total purse of 100,000. The 2016 Raymond and Beverly Sackler Prize was awarded in the field of Magnetic Resonance last February in a festive symposium, to three excellent researchers: Professor John Morton (University College London), Professor Guido Pintacuda (Ecole Normale Supérieure de Lyon and CNRS), and Professor Charalampos Kalodimos (at the time at the University of Minnesota). John was recognized for his novel contributions to quantum information processing, by means of a range of highly elegant physical phenomena involving both NMR and EPR. Guido was recognized for his methodological advances in solid state NMR spectroscopy, including advances in proton detection under ultrafast MAS at ultrahigh magnetic field, and for his insightful applications to challenging biological systems. While Charalampos (Babis) was recognized for beautifully detailed characterizations of structure, function, and dynamics in challenging and important biological systems through solution NMR spectroscopy.

  6. Estimating the biophysical properties of neurons with intracellular calcium dynamics.

    Science.gov (United States)

    Ye, Jingxin; Rozdeba, Paul J; Morone, Uriel I; Daou, Arij; Abarbanel, Henry D I

    2014-06-01

    We investigate the dynamics of a conductance-based neuron model coupled to a model of intracellular calcium uptake and release by the endoplasmic reticulum. The intracellular calcium dynamics occur on a time scale that is orders of magnitude slower than voltage spiking behavior. Coupling these mechanisms sets the stage for the appearance of chaotic dynamics, which we observe within certain ranges of model parameter values. We then explore the question of whether one can, using observed voltage data alone, estimate the states and parameters of the voltage plus calcium (V+Ca) dynamics model. We find the answer is negative. Indeed, we show that voltage plus another observed quantity must be known to allow the estimation to be accurate. We show that observing both the voltage time course V(t) and the intracellular Ca time course will permit accurate estimation, and from the estimated model state, accurate prediction after observations are completed. This sets the stage for how one will be able to use a more detailed model of V+Ca dynamics in neuron activity in the analysis of experimental data on individual neurons as well as functional networks in which the nodes (neurons) have these biophysical properties.

  7. The interface of protein structure, protein biophysics, and molecular evolution

    Science.gov (United States)

    Liberles, David A; Teichmann, Sarah A; Bahar, Ivet; Bastolla, Ugo; Bloom, Jesse; Bornberg-Bauer, Erich; Colwell, Lucy J; de Koning, A P Jason; Dokholyan, Nikolay V; Echave, Julian; Elofsson, Arne; Gerloff, Dietlind L; Goldstein, Richard A; Grahnen, Johan A; Holder, Mark T; Lakner, Clemens; Lartillot, Nicholas; Lovell, Simon C; Naylor, Gavin; Perica, Tina; Pollock, David D; Pupko, Tal; Regan, Lynne; Roger, Andrew; Rubinstein, Nimrod; Shakhnovich, Eugene; Sjölander, Kimmen; Sunyaev, Shamil; Teufel, Ashley I; Thorne, Jeffrey L; Thornton, Joseph W; Weinreich, Daniel M; Whelan, Simon

    2012-01-01

    Abstract The interface of protein structural biology, protein biophysics, molecular evolution, and molecular population genetics forms the foundations for a mechanistic understanding of many aspects of protein biochemistry. Current efforts in interdisciplinary protein modeling are in their infancy and the state-of-the art of such models is described. Beyond the relationship between amino acid substitution and static protein structure, protein function, and corresponding organismal fitness, other considerations are also discussed. More complex mutational processes such as insertion and deletion and domain rearrangements and even circular permutations should be evaluated. The role of intrinsically disordered proteins is still controversial, but may be increasingly important to consider. Protein geometry and protein dynamics as a deviation from static considerations of protein structure are also important. Protein expression level is known to be a major determinant of evolutionary rate and several considerations including selection at the mRNA level and the role of interaction specificity are discussed. Lastly, the relationship between modeling and needed high-throughput experimental data as well as experimental examination of protein evolution using ancestral sequence resurrection and in vitro biochemistry are presented, towards an aim of ultimately generating better models for biological inference and prediction. PMID:22528593

  8. Biophysical Properties of Cultivated Pastures in the Brazilian Savanna Biome: An Analysis in the Spatial-Temporal Domains Based on Ground and Satellite Data

    Directory of Open Access Journals (Sweden)

    Fernando M. Araújo

    2013-01-01

    Full Text Available Brazil has the largest commercial beef cattle herd in the world, with cattle ranching being particularly prominent in the 200-million ha, Brazilian neotropical moist savanna biome, known as Cerrado, one of the world’s hotspots for biodiversity conservation. As decreasing productivity is a major concern affecting the Cerrado pasturelands, evaluation of pasture conditions through the determination of biophysical parameters is instrumental for more effective management practices and herd occupation strategies. Within this context, the primary goal of this study was the regional assessment of pasture biophysical properties, through the scaling of wet- and dry-season ground truth data (total biomass, green biomass, and % green cover via the combined use of high (Landsat-TM and moderate (MODIS spatial resolution vegetation index images. Based on the high correlation found between NDVI (normalized difference vegetation index and % green cover (r = 0.95, monthly MODIS-based % green cover images were derived for the 2009–2010 hydrological cycle, which were able to capture major regional patterns and differences in pasture biophysical responses, including the increasing greenness values towards the southern portions of the biome, due to both local conditions (e.g., more fertile soils and management practices. These results corroborate the development of biophysically-based landscape degradation indices, in support of improved land use governance and natural area conservation in the Cerrado.

  9. HIV is Now a Manageable Long-Term Condition, But What Makes it Unique? A Qualitative Study Exploring Views About Distinguishing Features from Multi-Professional HIV Specialists in North West England.

    Science.gov (United States)

    Jelliman, Pauline; Porcellato, Lorna

    HIV is evolving from a life-threatening infection to a long-term, manageable condition because of medical advances, radical changes in health and social care policy, and the impact of an aging population. However, HIV remains complex, presenting unique characteristics distinguishing it from other long-term conditions (LTCs). Our aim in this qualitative descriptive study was to identify and explore these features in the context of LTCs. A focus group (FG) method was used to gather the views and experiences of multi-professional HIV specialists who worked in North West England. Twenty-four staff participated in FGs (n = 3), which were audio recorded, manually transcribed, and thematically analyzed. We found four main themes: (a) stigma, (b) challenges faced by HIV specialists, (c) lack HIV-related knowledge, and (d) unique features, termed "stand alone." We concluded that these distinguishing features hindered full recognition and acceptance of HIV as an LTC. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  10. Heart Failure: Unique to Older Adults

    Science.gov (United States)

    ... to Z › Heart Failure › Unique to Older Adults Font size A A A Print Share Glossary Unique ... will suffer from depression at some point. This type of severe depression is more serious than the ...

  11. A comparison of students who chose a traditional or a problem-based learning curriculum after failing year 2 in the traditional curriculum: a unique case study at the Nelson R. Mandela School of Medicine.

    Science.gov (United States)

    McLean, Michelle

    2004-01-01

    To canvas perceptions and experiences of students who had failed Year 2 of a traditional medical program and who chose to remain in the conventional program (n = 6) or had swapped to Curriculum 2001 (C2001), a problem-based learning (PBL) curriculum (n = 14). A year after their decision regarding curriculum choice, students were canvassed (largely open-ended survey) about this decision and about their perceptions of their curricular experiences. C2001 students were positive about their PBL experiences. Overwhelmingly, their decision to swap streams had been a good one. They identified PBL features as supporting their learning. Repeating traditional curriculum students were, however, more circumspect in their opinions. C2001 students had clearly embraced PBL. They were now medical students, largely because of PBL activities underpinned by a sound educational philosophy. This unique case study has provided additional evidence that PBL students are generally more content with their studies than their conventional curriculum counterparts.

  12. Customization: Ideal Varieties, Product Uniqueness and Price Competition

    OpenAIRE

    Oksana Loginova; X. Henry Wang

    2009-01-01

    We study customization in the Hotelling model with two firms. In addition to providing ideal varieties, the perceived uniqueness of a customized product contributes independently to consumer utility. We show that only when consumer preferences for uniqueness are high customization occurs in equilibrium.

  13. Novel biophysical determination of miRNAs related to prostate and head and neck cancers

    Czech Academy of Sciences Publication Activity Database

    Hudcová, K.; Trnková, L.; Kejnovská, Iva; Vorlíčková, Michaela; Gumulec, J.; Kizek, R.; Masarik, M.

    2015-01-01

    Roč. 44, č. 3 (2015), s. 131-138 ISSN 0175-7571 Institutional support: RVO:68081707 Keywords : SQUAMOUS-CELL CARCINOMA * ELIMINATION VOLTAMMETRY * CYTOSINE SIGNALS Subject RIV: BO - Biophysics Impact factor: 1.444, year: 2015

  14. LBA-ECO ND-01 Reflectance and Biophysical Measures, Grass Pastures: Rondonia, Brazil

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set provides the results of spectral reflectance (350 to 2,500 nm at 1-nm increments) and biophysical measurements on grass pastures in eight...

  15. Study of a unique 16th century Antwerp majolica floor in the Rameyenhof castle's chapel by means of X-ray fluorescence and portable Raman analytical instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Van de Voorde, Lien, E-mail: lien.vandevoorde@ugent.be [Ghent University, Department of Analytical Chemistry, X-Ray Microspectroscopy and Imaging Research Group, Krijgslaan 281 S12, B-9000 Ghent (Belgium); Vandevijvere, Melissa [Ghent University, Department of Analytical Chemistry, X-Ray Microspectroscopy and Imaging Research Group, Krijgslaan 281 S12, B-9000 Ghent (Belgium); University of Antwerp, Faculty of Architecture and Design, Conservation Studies, Centre for Conservation Research (CCR), Blindestraat 9, 2000 Antwerp (Belgium); University of Antwerp, Department of Chemistry, X-ray and Instrumentation Lab (AXI2L), Groenenborgerlaan 171, 2020 Antwerp (Belgium); Vekemans, Bart [Ghent University, Department of Analytical Chemistry, X-Ray Microspectroscopy and Imaging Research Group, Krijgslaan 281 S12, B-9000 Ghent (Belgium); Van Pevenage, Jolien [Ghent University, Department of Analytical Chemistry, Raman Spectroscopy Research Group, Krijgslaan 281 S12, B-9000 Ghent (Belgium); Caen, Joost [University of Antwerp, Faculty of Architecture and Design, Conservation Studies, Centre for Conservation Research (CCR), Blindestraat 9, 2000 Antwerp (Belgium); Vandenabeele, Peter [Ghent University, Department of Archaeology, Archaeometry Research Group, Sint-Pietersnieuwstraat 35, B-9000 Ghent (Belgium); Van Espen, Piet [University of Antwerp, Department of Chemistry, X-ray and Instrumentation Lab (AXI2L), Groenenborgerlaan 171, 2020 Antwerp (Belgium); Vincze, Laszlo [Ghent University, Department of Analytical Chemistry, X-Ray Microspectroscopy and Imaging Research Group, Krijgslaan 281 S12, B-9000 Ghent (Belgium)

    2014-12-01

    The most unique and only known 16th century Antwerp majolica tile floor in Belgium is situated in a tower of the Rameyenhof castle (Gestel, Belgium). This exceptional work of art has recently been investigated in situ by using X-ray fluorescence (XRF) and Raman spectroscopy in order to study the material characteristics. This study reports on the result of the analyses based on the novel combination of non-destructive and portable instrumentation, including a handheld XRF spectrometer for obtaining elemental information and a mobile Raman spectrometer for retrieving structural and molecular information on the floor tiles in the Rameyenhof castle and on a second, similar medallion, which is stored in the Rubens House museum in Antwerp (Belgium). The investigated material, majolica, is a type of ceramic, which fascinated many people and potters throughout history by its beauty and colourful appearance. In this study the characteristic major/minor and trace element signature of 16th century Antwerp majolica is determined and the pigments used for the colourful paintings present on the floor are identified. Furthermore, based on the elemental fingerprint of the white glaze, and in particular on the presence of zinc in the tiles – an element that was not used for making 16th century majolica – valuable information about the originality of the chapel floor and the two central medallions is acquired. - Highlights: • In situ, non-destructive investigation of a unique Antwerp majolica floor • Multi-methodological approach: make use of a mobile Raman and X-ray spectrometer • Obtaining information about layered structure of Antwerp majolica • The used pigments in the majolica floor in Rameyenhof castle are characterized. • The verification of the authenticity of the floor and two central medallions are performed.

  16. A Method Sustaining the Bioelectric, Biophysical, and Bioenergetic Function of Cultured Rabbit Atrial Cells

    OpenAIRE

    Noa Kirschner Peretz; Sofia Segal; Limor Arbel-Ganon; Ronen Ben Jehuda; Ronen Ben Jehuda; Yuval Shemer; Yuval Shemer; Binyamin Eisen; Binyamin Eisen; Moran Davoodi; Ofer Binah; Ofer Binah; Yael Yaniv

    2017-01-01

    Culturing atrial cells leads to a loss in their ability to be externally paced at physiological rates and to maintain their shape. We aim to develop a culture method that sustains the shape of atrial cells along with their biophysical and bioenergetic properties in response to physiological pacing. We hypothesize that adding 2,3-Butanedione 2-monoxime (BDM), which inhibits contraction during the culture period, will preserve these biophysical and bioenergetic properties. Rabbit atrial cells w...

  17. Engineered biomaterial and biophysical stimulation as combinatorial strategies to address prosthetic infection by pathogenic bacteria.

    Science.gov (United States)

    Boda, Sunil Kumar; Basu, Bikramjit

    2017-10-01

    A plethora of antimicrobial strategies are being developed to address prosthetic infection. The currently available methods for implant infection treatment include the use of antibiotics and revision surgery. Among the bacterial strains, Staphylococcus species pose significant challenges particularly, with regard to hospital acquired infections. In order to combat such life threatening infectious diseases, researchers have developed implantable biomaterials incorporating nanoparticles, antimicrobial reinforcements, surface coatings, slippery/non-adhesive and contact killing surfaces. This review discusses a few of the biomaterial and biophysical antimicrobial strategies, which are in the developmental stage and actively being pursued by several research groups. The clinical efficacy of biophysical stimulation methods such as ultrasound, electric and magnetic field treatments against prosthetic infection depends critically on the stimulation protocol and parameters of the treatment modality. A common thread among the three biophysical stimulation methods is the mechanism of bactericidal action, which is centered on biophysical rupture of bacterial membranes, the generation of reactive oxygen species (ROS) and bacterial membrane depolarization evoked by the interference of essential ion-transport. Although the extent of antimicrobial effect, normally achieved through biophysical stimulation protocol is insufficient to warrant therapeutic application, a combination of antibiotic/ROS inducing agents and biophysical stimulation methods can elicit a clinically relevant reduction in viable bacterial numbers. In this review, we present a detailed account of both the biomaterial and biophysical approaches for achieving maximum bacterial inactivation. Summarizing, the biophysical stimulation methods in a combinatorial manner with material based strategies can be a more potent solution to control bacterial infections. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B

  18. Time-resolved biophysical approaches to nucleocytoplasmic transport

    Directory of Open Access Journals (Sweden)

    Francesco Cardarelli

    Full Text Available Molecules are continuously shuttling across the nuclear envelope barrier that separates the nucleus from the cytoplasm. Instead of being just a barrier to diffusion, the nuclear envelope is rather a complex filter that provides eukaryotes with an elaborate spatiotemporal regulation of fundamental molecular processes, such as gene expression and protein translation. Given the highly dynamic nature of nucleocytoplasmic transport, during the past few decades large efforts were devoted to the development and application of time resolved, fluorescence-based, biophysical methods to capture the details of molecular motion across the nuclear envelope. These methods are here divided into three major classes, according to the differences in the way they report on the molecular process of nucleocytoplasmic transport. In detail, the first class encompasses those methods based on the perturbation of the fluorescence signal, also known as ensemble-averaging methods, which average the behavior of many molecules (across many pores. The second class comprises those methods based on the localization of single fluorescently-labelled molecules and tracking of their position in space and time, potentially across single pores. Finally, the third class encompasses methods based on the statistical analysis of spontaneous fluorescence fluctuations out of the equilibrium or stationary state of the system. In this case, the behavior of single molecules is probed in presence of many similarly-labelled molecules, without dwelling on any of them. Here these three classes, with their respective pros and cons as well as their main applications to nucleocytoplasmic shuttling will be briefly reviewed and discussed. Keywords: Fluorescence recovery after photobleaching, Single particle tracking, Fluorescence correlation spectroscopy, Diffusion, Transport, GFP, Nuclear pore complex, Live cell, Confocal microscopy

  19. The Colorado Plateau II: biophysical, socioeconomic, and cultural research

    Science.gov (United States)

    Mattson, David J.; van Riper, Charles

    2005-01-01

    The publication of The Colorado Plateau: Cultural, Biological, and Physical Research in 2004 marked a timely summation of current research in the Four Corners states. This new volume, derived from the seventh Biennial Conference on the Colorado Plateau in 2003, complements the previous book by focusing on the integration of science into resource management issues. The 32 chapters range in content from measuring human impacts on cultural resources, through grazing and the wildland-urban interface issues, to parameters of climate change on the Plateau. The book also introduces economic perspectives by considering shifting patterns and regional disparities in the Colorado Plateau economy. A series of chapters on mountain lions explores the human-wildland interface. These chapters deal with the entire spectrum of challenges associated with managing this large mammal species in Arizona and on the Colorado Plateau, conveying a wealth of timely information of interest to wildlife managers and enthusiasts. Another provocative set of chapters on biophysical resources explores the management of forest restoration, from the micro scale all the way up to large-scale GIS analyses of ponderosa pine ecosystems on the Colorado Plateau. Given recent concerns for forest health in the wake of fires, severe drought, and bark-beetle infestation, these chapters will prove enlightening for forest service, park service, and land management professionals at both the federal and state level, as well as general readers interested in how forest management practices will ultimately affect their recreation activities. With broad coverage that touches on topics as diverse as movement patterns of rattlesnakes, calculating watersheds, and rescuing looted rockshelters, this volume stands as a compendium of cutting-edge research on the Colorado Plateau that offers a wealth of insights for many scholars.

  20. Biophysics of malarial parasite exit from infected erythrocytes.

    Science.gov (United States)

    Chandramohanadas, Rajesh; Park, YongKeun; Lui, Lena; Li, Ang; Quinn, David; Liew, Kingsley; Diez-Silva, Monica; Sung, Yongjin; Dao, Ming; Lim, Chwee Teck; Preiser, Peter Rainer; Suresh, Subra

    2011-01-01

    Upon infection and development within human erythrocytes, P. falciparum induces alterations to the infected RBC morphology and bio-mechanical properties to eventually rupture the host cells through parasitic and host derived proteases of cysteine and serine families. We used previously reported broad-spectrum inhibitors (E64d, EGTA-AM and chymostatin) to inhibit these proteases and impede rupture to analyze mechanical signatures associated with parasite escape. Treatment of late-stage iRBCs with E64d and EGTA-AM prevented rupture, resulted in no major RBC cytoskeletal reconfiguration but altered schizont morphology followed by dramatic re-distribution of three-dimensional refractive index (3D-RI) within the iRBC. These phenotypes demonstrated several-fold increased iRBC membrane flickering. In contrast, chymostatin treatment showed no 3D-RI changes and caused elevated fluctuations solely within the parasitophorous vacuole. We show that E64d and EGTA-AM supported PV breakdown and the resulting elevated fluctuations followed non-Gaussian pattern that resulted from direct merozoite impingement against the iRBC membrane. Optical trapping experiments highlighted reduced deformability of the iRBC membranes upon rupture-arrest, more specifically in the treatments that facilitated PV breakdown. Taken together, our experiments provide novel mechanistic interpretations on the role of parasitophorous vacuole in maintaining the spherical schizont morphology, the impact of PV breakdown on iRBC membrane fluctuations leading to eventual parasite escape and the evolution of membrane stiffness properties of host cells in which merozoites were irreversibly trapped, recourse to protease inhibitors. These findings provide a comprehensive, previously unavailable, body of information on the combined effects of biochemical and biophysical factors on parasite egress from iRBCs.

  1. Biophysical impacts of climate-smart agriculture in the Midwest United States.

    Science.gov (United States)

    Bagley, Justin E; Miller, Jesse; Bernacchi, Carl J

    2015-09-01

    The potential impacts of climate change in the Midwest United States present unprecedented challenges to regional agriculture. In response to these challenges, a variety of climate-smart agricultural methodologies have been proposed to retain or improve crop yields, reduce agricultural greenhouse gas emissions, retain soil quality and increase climate resilience of agricultural systems. One component that is commonly neglected when assessing the environmental impacts of climate-smart agriculture is the biophysical impacts, where changes in ecosystem fluxes and storage of moisture and energy lead to perturbations in local climate and water availability. Using a combination of observational data and an agroecosystem model, a series of climate-smart agricultural scenarios were assessed to determine the biophysical impacts these techniques have in the Midwest United States. The first scenario extended the growing season for existing crops using future temperature and CO2 concentrations. The second scenario examined the biophysical impacts of no-till agriculture and the impacts of annually retaining crop debris. Finally, the third scenario evaluated the potential impacts that the adoption of perennial cultivars had on biophysical quantities. Each of these scenarios was found to have significant biophysical impacts. However, the timing and magnitude of the biophysical impacts differed between scenarios. © 2014 John Wiley & Sons Ltd.

  2. Radiation fields, dosimetry, biokinetics and biophysical models for cancer induction by ionising radiation 1996-1999. Executive summary

    International Nuclear Information System (INIS)

    Jacob, P.; Paretzke, H.G.; Roth, P.

    2000-01-01

    The Association Contract covers a range of research domains that are important to the Radiation Protection Research Action, especially in the areas 'Evaluation of Radiation Risks' and 'Understanding Radiation Mechanisms and Epidemiology'. Three research projects concentrate on radiation dosimetry research and two projects on the modelling of radiation carcinogenesis. The following list gives an overview on the topics and responsible scientific project leaders of the Association Contract: Study of radiation fields and dosimetry at aviation altitudes. Biokinetics and dosimetry of incorporated radionuclides. Dose reconstruction. Biophysical models for the induction of cancer by radiation. Experimental data for the induction of cancer by radiation of different qualities. (orig.)

  3. Biophysical characterization of the complex between human papillomavirus E6 protein and synapse-associated protein 97

    DEFF Research Database (Denmark)

    Chi, Celestine Ngang; Bach, Anders; Engström, Åke

    2011-01-01

    The E6 protein of human papillomavirus exhibits complex interaction patterns with several host proteins and their roles in HPV mediated oncogenesis have proved challenging to study. Here we use several biophysical techniques to explore the binding of E6 to the three PDZ domains of the tumor......, this quaternary complex has the same apparent hydrodynamic volume as the unliganded PDZ region, suggesting that a conformational change occurs in the PDZ region upon binding, a conclusion supported by kinetic experiments. Using NMR, we discovered a new mode of interaction between E6 and PDZ: a subset of residues...

  4. Straightening: existence, uniqueness and stability

    Science.gov (United States)

    Destrade, M.; Ogden, R. W.; Sgura, I.; Vergori, L.

    2014-01-01

    One of the least studied universal deformations of incompressible nonlinear elasticity, namely the straightening of a sector of a circular cylinder into a rectangular block, is revisited here and, in particular, issues of existence and stability are addressed. Particular attention is paid to the system of forces required to sustain the large static deformation, including by the application of end couples. The influence of geometric parameters and constitutive models on the appearance of wrinkles on the compressed face of the block is also studied. Different numerical methods for solving the incremental stability problem are compared and it is found that the impedance matrix method, based on the resolution of a matrix Riccati differential equation, is the more precise. PMID:24711723

  5. Paradigm Lost: Ocean Acidification Will Overturn the Concept of Larval-Fish Biophysical Dispersal

    Directory of Open Access Journals (Sweden)

    Jeffrey M. Leis

    2018-02-01

    Full Text Available Most marine ecologists have in the past 25 years changed from supporting a passive-dispersal paradigm for larval marine fishes to supporting a biophysical-dispersal paradigm wherein the behaviour of larvae plays a central role. Research shows larvae of demersal perciform fishes have considerable swimming and orientation abilities over a major portion of their pelagic larval duration. These abilities depend on sensory function, and some recent research has indicated anthropogenic acidification of the oceans will by the end of the century result in sensory dysfunction. This could strongly alter the ability of fish larvae to orientate in the pelagic environment, to locate suitable settlement habitat, to bet-hedge, and to colonize new locations. This paper evaluates the available publications on the effects of acidification on senses and behaviours relevant to dispersal of fish early life-history stages. A large majority of studies tested CO2 values predicted for the middle to end of the century. Larvae of fourteen families—all but two perciform—were studied. However, half of studies used Damselfishes (Pomacentridae, and except for swimming, most studies used settlement-stage larvae or later stages. In spite of these taxonomic and ontogenetic restrictions, all but two studies on sensory function (chemosensation, hearing, vision, detection of estuarine cues found deleterious effects from acidification. The four studies on lateralization and settlement timing all found deleterious effects from acidification. No clear effect of acidification on swimming ability was found. If fish larvae cannot orientate due to sensory dysfunction, their dispersal will, in effect, conform to the passive dispersal paradigm. Modelling incorporating larval behaviour derived from empirical studies indicates that relative to active larvae, passive larvae will have less self-recruitment, higher median and mean dispersal distances, and lower settlement rates: further, bet

  6. Event segmentation ability uniquely predicts event memory.

    Science.gov (United States)

    Sargent, Jesse Q; Zacks, Jeffrey M; Hambrick, David Z; Zacks, Rose T; Kurby, Christopher A; Bailey, Heather R; Eisenberg, Michelle L; Beck, Taylor M

    2013-11-01

    Memory for everyday events plays a central role in tasks of daily living, autobiographical memory, and planning. Event memory depends in part on segmenting ongoing activity into meaningful units. This study examined the relationship between event segmentation and memory in a lifespan sample to answer the following question: Is the ability to segment activity into meaningful events a unique predictor of subsequent memory, or is the relationship between event perception and memory accounted for by general cognitive abilities? Two hundred and eight adults ranging from 20 to 79years old segmented movies of everyday events and attempted to remember the events afterwards. They also completed psychometric ability tests and tests measuring script knowledge for everyday events. Event segmentation and script knowledge both explained unique variance in event memory above and beyond the psychometric measures, and did so as strongly in older as in younger adults. These results suggest that event segmentation is a basic cognitive mechanism, important for memory across the lifespan. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. A unique collaboration in Chile.

    Science.gov (United States)

    1989-01-01

    The Chilean Red Cross Society and the family planning association--APROFA, International Planned Parenthood Federation's affiliate, are joining forces to help prevent the spread of the acquired immunodeficiency syndrome (AIDS) and human immunodeficiency virus (HIV) infection. APROFA established a working group to study the knowledge, attitudes, and sexual behavior of students at the National Training Institute, INACAP. 7000 students were sampled in 11 Chilean cities. The study found that 36% of the females, and 77% of males were sexually active before the age of 20. Nearly 1/2 of the women and 1/5 of the men did not know that condoms could protect them against sexually transmitted diseases (STDs) and pregnancy. APROFA designed a program to increase students knowledge of AIDS, reduce promiscuity and increase knowledge of and use of condoms. In October, 1988 an educational package distributed, consisting of a training manual, slides, educational booklets, a poster, and a video of 3 films. It has proved so successful that APROFA has adapted it for community groups, educational institutions, and its youth program. APROFA/Red Cross nurses and Red Cross volunteers have participated in workshops and training with the package. The Red Cross has organized AIDS-related activities in Chile since 1986, including education campaigns, information for blood donors, and a telephone hotline to provide AIDS counseling. Goals are to target more poor areas and groups outside of society's mainstream in the next year for sex education and information on STDs.

  8. The roles of the RIIβ linker and N-terminal cyclic nucleotide-binding domain in determining the unique structures of the type IIβ protein kinase A: a small angle x-ray and neutron scattering study.

    Science.gov (United States)

    Blumenthal, Donald K; Copps, Jeffrey; Smith-Nguyen, Eric V; Zhang, Ping; Heller, William T; Taylor, Susan S

    2014-10-10

    Protein kinase A (PKA) is ubiquitously expressed and is responsible for regulating many important cellular functions in response to changes in intracellular cAMP concentrations. The PKA holoenzyme is a tetramer (R2:C2), with a regulatory subunit homodimer (R2) that binds and inhibits two catalytic (C) subunits; binding of cAMP to the regulatory subunit homodimer causes activation of the catalytic subunits. Four different R subunit isoforms exist in mammalian cells, and these confer different structural features, subcellular localization, and biochemical properties upon the PKA holoenzymes they form. The holoenzyme containing RIIβ is structurally unique in that the type IIβ holoenzyme is much more compact than the free RIIβ homodimer. We have used small angle x-ray scattering and small angle neutron scattering to study the solution structure and subunit organization of a holoenzyme containing an RIIβ C-terminal deletion mutant (RIIβ(1-280)), which is missing the C-terminal cAMP-binding domain to better understand the structural organization of the type IIβ holoenzyme and the RIIβ domains that contribute to stabilizing the holoenzyme conformation. Our results demonstrate that compaction of the type IIβ holoenzyme does not require the C-terminal cAMP-binding domain but rather involves large structural rearrangements within the linker and N-terminal cyclic nucleotide-binding domain of the RIIβ homodimer. The structural rearrangements are significantly greater than seen previously with RIIα and are likely to be important in mediating short range and long range interdomain and intersubunit interactions that uniquely regulate the activity of the type IIβ isoform of PKA. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Why Pandemic Response is Unique

    DEFF Research Database (Denmark)

    Bækkeskov, Erik; Rubin, Olivier

    2014-01-01

    , the case studies of media coverage in the USA and Denmark demonstrate that the response was bureaucratized in the public health agencies (CDC and DMHA, respectively). Hence, while natural disaster responses appear to follow a political logic, the response to pandemics appears to be more strongly instituted......Purpose – The purpose of this paper is to show that 2009 H1N1 “swine” influenza pandemic vaccination policies deviated from predictions established in the theory of political survival, and to propose that pandemic response deviated because it was ruled by bureaucratized experts rather than...... by elected politicians. Design/methodology/approach – Focussing on the 2009 H1N1 pandemic, the paper employs descriptive statistical analysis of vaccination policies in nine western democracies. To probe the plausibility of the novel explanation, it uses quantitative and qualitative content analyses of media...

  10. Xylan utilization in human gut commensal bacteria is orchestrated by unique modular organization of polysaccharide-degrading enzymes.

    Science.gov (United States)

    Zhang, Meiling; Chekan, Jonathan R; Dodd, Dylan; Hong, Pei-Ying; Radlinski, Lauren; Revindran, Vanessa; Nair, Satish K; Mackie, Roderick I; Cann, Isaac

    2014-09-02

    Enzymes that degrade dietary and host-derived glycans represent the most abundant functional activities encoded by genes unique to the human gut microbiome. However, the biochemical activities of a vast majority of the glycan-degrading enzymes are poorly understood. Here, we use transcriptome sequencing to understand the diversity of genes expressed by the human gut bacteria Bacteroides intestinalis and Bacteroides ovatus grown in monoculture with the abundant dietary polysaccharide xylan. The most highly induced carbohydrate active genes encode a unique glycoside hydrolase (GH) family 10 endoxylanase (BiXyn10A or BACINT_04215 and BACOVA_04390) that is highly conserved in the Bacteroidetes xylan utilization system. The BiXyn10A modular architecture consists of a GH10 catalytic module disrupted by a 250 amino acid sequence of unknown function. Biochemical analysis of BiXyn10A demonstrated that such insertion sequences encode a new family of carbohydrate-binding modules (CBMs) that binds to xylose-configured oligosaccharide/polysaccharide ligands, the substrate of the BiXyn10A enzymatic activity. The crystal structures of CBM1 from BiXyn10A (1.8 Å), a cocomplex of BiXyn10A CBM1 with xylohexaose (1.14 Å), and the CBM from its homolog in the Prevotella bryantii B14 Xyn10C (1.68 Å) reveal an unanticipated mode for ligand binding. A minimal enzyme mix, composed of the gene products of four of the most highly up-regulated genes during growth on wheat arabinoxylan, depolymerizes the polysaccharide into its component sugars. The combined biochemical and biophysical studies presented here provide a framework for understanding fiber metabolism by an important group within the commensal bacterial population known to influence human health.

  11. Xylan utilization in human gut commensal bacteria is orchestrated by unique modular organization of polysaccharide-degrading enzymes

    KAUST Repository

    Zhang, Meiling

    2014-08-18

    Enzymes that degrade dietary and host-derived glycans represent the most abundant functional activities encoded by genes unique to the human gut microbiome. However, the biochemical activities of a vast majority of the glycan-degrading enzymes are poorly understood. Here, we use transcriptome sequencing to understand the diversity of genes expressed by the human gut bacteria Bacteroides intestinalis and Bacteroides ovatus grown in monoculture with the abundant dietary polysaccharide xylan. The most highly induced carbohydrate active genes encode a unique glycoside hydrolase (GH) family 10 endoxylanase (BiXyn10A or BACINT-04215 and BACOVA-04390) that is highly conserved in the Bacteroidetes xylan utilization system. The BiXyn10A modular architecture consists of a GH10 catalytic module disrupted by a 250 amino acid sequence of unknown function. Biochemical analysis of BiXyn10A demonstrated that such insertion sequences encode a new family of carbohydrate-binding modules (CBMs) that binds to xy-lose- configured oligosaccharide/polysaccharide ligands, the substrate of the BiXyn10A enzymatic activity. The crystal structures of CBM1 from BiXyn10A (1.8 Å), a cocomplex of BiXyn10A CBM1 with xylohexaose (1.14 Å), and the CBM fromits homolog in the Prevotella bryantii B 14 Xyn10C (1.68 Å) reveal an unanticipated mode for ligand binding. Aminimal enzyme mix, composed of the gene products of four of the most highly up-regulated genes during growth on wheat arabinoxylan, depolymerizes the polysaccharide into its component sugars. The combined biochemical and biophysical studies presented here provide a framework for understanding fiber metabolism by an important group within the commensal bacterial population known to influence human health.

  12. PWR.2 - the unique transportation

    International Nuclear Information System (INIS)

    Howell, G.E.; Wills, L.I.

    1987-01-01

    Design studies of the prototype machinery and installation of same to be used for test and evaluation of a new design of nuclear power plant for submarines, showed that there were advantages if large units could be fitted out entirely at the manufacturer's base in Barrow-in-Furness. However, they had then to be shipped to the customer at the Vulcan Naval Reactor Test Establishment in Caithness, Scotland. The transportation of the loads involved is described. The main loads were the primary unit which weighed 1300 tonnes and the secondary unit which was transported as five separate assemblies, the largest two of which weighed 151 and 43 tonnes. Five basic transportation methods were used: skidding on PTFE pads, sea passage with barge on submersible barge, rolling on airbags, skating on water skates and lifting and rolling on multi-wheeled trailers. By careful planning the primary unit was moved in 16 days and the secondary unit in 19 days. The route and methods used are described and illustrated. (U.K.)

  13. DEPENDENCE OF THE SPECKLE-PATTERNS SIZE AND THEIR CONTRAST ON THE BIOPHYSICAL AND STRUCTURAL PARAMETERS OF BIOLOGICAL TISSUES

    Directory of Open Access Journals (Sweden)

    N. D. Abramovich

    2017-01-01

    Full Text Available Speckle fields are widely used in optical diagnostics of biotissues and evaluation of the functional state of bioobjects. The speckle field is formed by laser radiation scattered from the object under study. It bears information about the average dimensions of the scatterers, the degree of surface roughness makes it possible to judge the structural and biophysical characteristics of individual tissue cells (particles, on the one hand, and the integral optical characteristics of the entire biological tissue. The aim of the study was – the determination of connections between the biophysical and structural characteristics of the biotissue and the light fields inside the biotissues.The model developed of the medium gives a direct relationship between the optical and biophysical parameters of the biotissue. Calculations were carried out using known solutions of the radiation transfer equation, taking into account the multilayer structure of the tissue, multiple scattering in the medium, and multiple reflection of irradiation between the layers.With the increase wavelength, the size of speckles formed by the non-scattered component (direct light of laser radiation increases by a factor of 2 from 400 to 800 μm in the stratum corneum and 5 times from 0.6 to 3 μm for the epidermis and from 0.27 to 1.4 μm to the dermis. Typical values of sizes of speckles formed by the diffraction component of laser radiation for the stratum corneum and epidermis range from 0.02 to 0.15 μm. For the dermis typical spot sizes are up to 0.03 μm. The speckle-spot size of the diffusion component in the dermis can vary from ±10 % at 400 nm and up to ±23 % for 800 nm when the volume concentration of blood capillaries changes. Characteristic dependencies are obtained and biophysical factors associated with the volume concentration of blood and the degree of it’s oxygenation that affect the contrast of the speckle structure in the dermis are discussed.The of speckles

  14. Unique Physician Identification Number (UPIN) Directory

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Unique Physician Identification Number (UPIN) Directory contains selected information on physicians, doctors of Osteopathy, limited licensed practitioners and...

  15. Detecting beer intake by unique metabolite patterns

    DEFF Research Database (Denmark)

    Gürdeniz, Gözde; Jensen, Morten Georg; Meier, Sebastian

    2016-01-01

    Evaluation of health related effects of beer intake is hampered by the lack of accurate tools for assessing intakes (biomarkers). Therefore, we identified plasma and urine metabolites associated with recent beer intake by untargeted metabolomics and established a characteristic metabolite pattern...... representing raw materials and beer production as a qualitative biomarker of beer intake. In a randomized, crossover, single-blinded meal study (MSt1) 18 participants were given one at a time four different test beverages: strong, regular and non-alcoholic beers and a soft drink. Four participants were...... assigned to have two additional beers (MSt2). In addition to plasma and urine samples, test beverages, wort and hops extract were analyzed by UPLC-QTOF. A unique metabolite pattern reflecting beer metabolome, including metabolites derived from beer raw material (i.e. N-methyl tyramine sulfate and the sum...

  16. Replacing natural wetlands with stormwater management facilities: Biophysical and perceived social values.

    Science.gov (United States)

    Rooney, R C; Foote, L; Krogman, N; Pattison, J K; Wilson, M J; Bayley, S E

    2015-04-15

    Urban expansion replaces wetlands of natural origin with artificial stormwater management facilities. The literature suggests that efforts to mimic natural wetlands in the design of stormwater facilities can expand the provision of ecosystem services. Policy developments seek to capitalize on these improvements, encouraging developers to build stormwater wetlands in place of stormwater ponds; however, few have compared the biophysical values and social perceptions of these created wetlands to those of the natural wetlands they are replacing. We compared four types of wetlands: natural references sites, natural wetlands impacted by agriculture, created stormwater wetlands, and created stormwater ponds. We anticipated that they would exhibit a gradient in biodiversity, ecological integrity, chemical and hydrologic stress. We further anticipated that perceived values would mirror measured biophysical values. We found higher biophysical values associated with wetlands of natural origin (both reference and agriculturally impacted). The biophysical values of stormwater wetlands and stormwater ponds were lower and indistinguishable from one another. The perceived wetland values assessed by the public differed from the observed biophysical values. This has important policy implications, as the public are not likely to perceive the loss of values associated with the replacement of natural wetlands with created stormwater management facilities. We conclude that 1) agriculturally impacted wetlands provide biophysical values equivalent to those of natural wetlands, meaning that land use alone is not a great predictor of wetland value; 2) stormwater wetlands are not a substantive improvement over stormwater ponds, relative to wetlands of natural origin; 3) stormwater wetlands are poor mimics of natural wetlands, likely due to fundamental distinctions in terms of basin morphology, temporal variation in hydrology, ground water connectivity, and landscape position; 4) these

  17. Combining biophysical methods to analyze the disulfide bond in SH2 domain of C-terminal Src kinase.

    Science.gov (United States)

    Liu, Dongsheng; Cowburn, David

    2016-01-01

    The Src Homology 2 (SH2) domain is a structurally conserved protein domain that typically binds to a phosphorylated tyrosine in a peptide motif from the target protein. The SH2 domain of C-terminal Src kinase (Csk) contains a single disulfide bond, which is unusual for most SH2 domains. Although the global motion of SH2 domain regulates Csk function, little is known about the relationship between the disulfide bond and binding of the ligand. In this study, we combined X-ray crystallography, solution NMR, and other biophysical methods to reveal the interaction network in Csk. Denaturation studies have shown that disulfide bond contributes significantly to the stability of SH2 domain, and crystal structures of the oxidized and C122S mutant showed minor conformational changes. We further investigated the binding of SH2 domain to a phosphorylated peptide from Csk-binding protein upon reduction and oxidation using both NMR and fluorescence approaches. This work employed NMR, X-ray cryptography, and other biophysical methods to study a disulfide bond in Csk SH2 domain. In addition, this work provides in-depth understanding of the structural dynamics of Csk SH2 domain.

  18. Biophysical analysis of HTLV-1 particles reveals novel insights into particle morphology and Gag stochiometry

    Directory of Open Access Journals (Sweden)

    Fogarty Keir H

    2010-09-01

    Full Text Available Abstract Background Human T-lymphotropic virus type 1 (HTLV-1 is an important human retrovirus that is a cause of adult T-cell leukemia/lymphoma. While an important human pathogen, the details regarding virus replication cycle, including the nature of HTLV-1 particles, remain largely unknown due to the difficulties in propagating the virus in tissue culture. In this study, we created a codon-optimized HTLV-1 Gag fused to an EYFP reporter as a model system to quantitatively analyze HTLV-1 particles released from producer cells. Results The codon-optimized Gag led to a dramatic and highly robust level of Gag expression as well as virus-like particle (VLP production. The robust level of particle production overcomes previous technical difficulties with authentic particles and allowed for detailed analysis of particle architecture using two novel methodologies. We quantitatively measured the diameter and morphology of HTLV-1 VLPs in their native, hydrated state using cryo-transmission electron microscopy (cryo-TEM. Furthermore, we were able to determine HTLV-1 Gag stoichiometry as well as particle size with the novel biophysical technique of fluorescence fluctuation spectroscopy (FFS. The average HTLV-1 particle diameter determined by cryo-TEM and FFS was 71 ± 20 nm and 75 ± 4 nm, respectively. These values are significantly smaller than previous estimates made of HTLV-1 particles by negative staining TEM. Furthermore, cryo-TEM reveals that the majority of HTLV-1 VLPs lacks an ordered structure of the Gag lattice, suggesting that the HTLV-1 Gag shell is very likely to be organized differently compared to that observed with HIV-1 Gag in immature particles. This conclusion is supported by our observation that the average copy number of HTLV-1 Gag per particle is estimated to be 510 based on FFS, which is significantly lower than that found for HIV-1 immature virions. Conclusions In summary, our studies represent the first quantitative biophysical

  19. A study of Huntington disease-like syndromes in black South African patients reveals a single SCA2 mutation and a unique distribution of normal alleles across five repeat loci.

    Science.gov (United States)

    Baine, Fiona K; Peerbhai, Nabeelah; Krause, Amanda

    2018-07-15

    Huntington disease (HD) is a progressive neurodegenerative disease, characterised by a triad of movement disorder, emotional and behavioural disturbances and cognitive impairment. The underlying cause is an expanded CAG repeat in the huntingtin gene. For a small proportion of patients presenting with HD-like symptoms, the mutation in this gene is not identified and they are said to have a HD "phenocopy". South Africa has the highest number of recorded cases of an African-specific phenocopy, Huntington disease-like 2 (HDL2), caused by a repeat expansion in the junctophilin-3 gene. However, a significant proportion of black patients with clinical symptoms suggestive of HD still test negative for HD and HDL2. This study thus aimed to investigate five other loci associated with HD phenocopy syndromes - ATN1, ATXN2, ATXN7, TBP and C9orf72. In a sample of patients in whom HD and HDL2 had been excluded, a single expansion was identified in the ATXN2 gene, confirming a diagnosis of Spinocerebellar ataxia 2. The results indicate that common repeat expansion disorders do not contribute significantly to the HD-like phenotype in black South African patients. Importantly, allele sizing reveals unique distributions of normal repeat lengths across the associated loci in the African population studied. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Uniqueness of time-independent electromagnetic fields

    DEFF Research Database (Denmark)

    Karlsson, Per W.

    1974-01-01

    As a comment on a recent paper by Steele, a more general uniqueness theorem for time-independent fields is mentioned. ©1974 American Institute of Physics......As a comment on a recent paper by Steele, a more general uniqueness theorem for time-independent fields is mentioned. ©1974 American Institute of Physics...

  1. Unique specification of Yang-Mills solutions

    International Nuclear Information System (INIS)

    Campbell, W.B.; Joseph, D.W.; Morgan, T.A.

    1980-01-01

    Screened time-independent cylindrically-symmetric solutions of Yang-Mills equations are given which show that the source does not uniquely determine the field. However, these particular solutions suggest a natural way of uniquely specifying solutions in terms of a physical realization of a symmetry group. (orig.)

  2. Constructing Dense Graphs with Unique Hamiltonian Cycles

    Science.gov (United States)

    Lynch, Mark A. M.

    2012-01-01

    It is not difficult to construct dense graphs containing Hamiltonian cycles, but it is difficult to generate dense graphs that are guaranteed to contain a unique Hamiltonian cycle. This article presents an algorithm for generating arbitrarily large simple graphs containing "unique" Hamiltonian cycles. These graphs can be turned into dense graphs…

  3. Use of an integrated biophysical process for the treatment of halo- and nitro- organic wastes

    Directory of Open Access Journals (Sweden)

    Liron Shoshani

    2017-07-01

    Full Text Available This study assessed the use of an integrated biophysical process incorporating the addition of powdered activated carbon (PAC to a dual-sludge biological process, in order to improve the removal of problematic contaminants from complex herbicides production wastewater. The main focus was on the removal of nitrogen compounds, total organic carbon (TOC, and halogenated organics (AOX. The dual-sludge pilot setup comprised a conventional activated sludge (CAS system followed by a membrane bioreactor (MBR system. The dilution ratio of raw wastewater was gradually decreased (with groundwater from 0.8 to 0 (no dilution, and PAC was added in the last phase of the study to maintain an equilibrium concentration of 2000 mg/L. PAC addition stimulated a high and steady removal (98% of the ammoniacal nitrogen, conforming to the sea discharge limit of 5 mg/L. However, the effluent concentrations of total nitrogen, TOC, and AOX were still above the stringent discharge limits of 20, 100 and 0.5 mg/L respectively. Furthermore, it was shown that synergistic effect of various toxic organic compounds, rather than mineral salinity, was the major cause for the acute inhibitions of nitrification and AOX removal. The study showed that the proposed process can function as an efficient treatment system for the complex wastewater typically produced in the herbicide industry, however, it is recommended that complementary physico-chemical treatment steps be added to the treatment process.

  4. FIACH: A biophysical model for automatic retrospective noise control in fMRI.

    Science.gov (United States)

    Tierney, Tim M; Weiss-Croft, Louise J; Centeno, Maria; Shamshiri, Elhum A; Perani, Suejen; Baldeweg, Torsten; Clark, Christopher A; Carmichael, David W

    2016-01-01

    Different noise sources in fMRI acquisition can lead to spurious false positives and reduced sensitivity. We have developed a biophysically-based model (named FIACH: Functional Image Artefact Correction Heuristic) which extends current retrospective noise control methods in fMRI. FIACH can be applied to both General Linear Model (GLM) and resting state functional connectivity MRI (rs-fcMRI) studies. FIACH is a two-step procedure involving the identification and correction of non-physiological large amplitude temporal signal changes and spatial regions of high temporal instability. We have demonstrated its efficacy in a sample of 42 healthy children while performing language tasks that include overt speech with known activations. We demonstrate large improvements in sensitivity when FIACH is compared with current methods of retrospective correction. FIACH reduces the confounding effects of noise and increases the study's power by explaining significant variance that is not contained within the commonly used motion parameters. The method is particularly useful in detecting activations in inferior temporal regions which have proven problematic for fMRI. We have shown greater reproducibility and robustness of fMRI responses using FIACH in the context of task induced motion. In a clinical setting this will translate to increasing the reliability and sensitivity of fMRI used for the identification of language lateralisation and eloquent cortex. FIACH can benefit studies of cognitive development in young children, patient populations and older adults. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Understanding the biophysical effects of transcranial magnetic stimulation on brain tissue: the bridge between brain stimulation and cognition.

    Science.gov (United States)

    Neggers, Sebastiaan F W; Petrov, Petar I; Mandija, Stefano; Sommer, Iris E C; van den Berg, Nico A T

    2015-01-01

    Transcranial magnetic stimulation (TMS) is rapidly being adopted in neuroscience, medicine, psychology, and biology, for basic research purposes, diagnosis, and therapy. However, a coherent picture of how TMS affects neuronal processing, and especially how this in turn influences behavior, is still largely unavailable despite several studies that investigated aspects of the underlying neurophysiological effects of TMS. Perhaps as a result from this "black box approach," TMS studies show a large interindividual variability in applied paradigms and TMS treatment outcome can be quite variable, hampering its general efficacy and introduction into the clinic. A better insight into the biophysical, neuronal, and cognitive mechanisms underlying TMS is crucial in order to apply it effectively in the clinic and to increase our understanding of brain-behavior relationship. Therefore, computational and experimental efforts have been started recently to understand and control the effect TMS has on neuronal functioning. Especially, how the brain shapes magnetic fields induced by a TMS coil, how currents are generated locally in the cortical surface, and how they interact with complex functional neuronal circuits within and between brain areas are crucial to understand the observed behavioral changes and potential therapeutic effects resulting from TMS. Here, we review the current knowledge about the biophysical underpinnings of single-pulse TMS and argue how to move forward to fully understand and exploit the powerful technique that TMS can be. © 2015 Elsevier B.V. All rights reserved.

  6. Unique Fock quantization of scalar cosmological perturbations

    Science.gov (United States)

    Fernández-Méndez, Mikel; Mena Marugán, Guillermo A.; Olmedo, Javier; Velhinho, José M.

    2012-05-01

    We investigate the ambiguities in the Fock quantization of the scalar perturbations of a Friedmann-Lemaître-Robertson-Walker model with a massive scalar field as matter content. We consider the case of compact spatial sections (thus avoiding infrared divergences), with the topology of a three-sphere. After expanding the perturbations in series of eigenfunctions of the Laplace-Beltrami operator, the Hamiltonian of the system is written up to quadratic order in them. We fix the gauge of the local degrees of freedom in two different ways, reaching in both cases the same qualitative results. A canonical transformation, which includes the scaling of the matter-field perturbations by the scale factor of the geometry, is performed in order to arrive at a convenient formulation of the system. We then study the quantization of these perturbations in the classical background determined by the homogeneous variables. Based on previous work, we introduce a Fock representation for the perturbations in which: (a) the complex structure is invariant under the isometries of the spatial sections and (b) the field dynamics is implemented as a unitary operator. These two properties select not only a unique unitary equivalence class of representations, but also a preferred field description, picking up a canonical pair of field variables among all those that can be obtained by means of a time-dependent scaling of the matter field (completed into a linear canonical transformation). Finally, we present an equivalent quantization constructed in terms of gauge-invariant quantities. We prove that this quantization can be attained by a mode-by-mode time-dependent linear canonical transformation which admits a unitary implementation, so that it is also uniquely determined.

  7. Biotic games and cloud experimentation as novel media for biophysics education

    Science.gov (United States)

    Riedel-Kruse, Ingmar; Blikstein, Paulo

    2014-03-01

    First-hand, open-ended experimentation is key for effective formal and informal biophysics education. We developed, tested and assessed multiple new platforms that enable students and children to directly interact with and learn about microscopic biophysical processes: (1) Biotic games that enable local and online play using galvano- and photo-tactic stimulation of micro-swimmers, illustrating concepts such as biased random walks, Low Reynolds number hydrodynamics, and Brownian motion; (2) an undergraduate course where students learn optics, electronics, micro-fluidics, real time image analysis, and instrument control by building biotic games; and (3) a graduate class on the biophysics of multi-cellular systems that contains a cloud experimentation lab enabling students to execute open-ended chemotaxis experiments on slimemolds online, analyze their data, and build biophysical models. Our work aims to generate the equivalent excitement and educational impact for biophysics as robotics and video games have had for mechatronics and computer science, respectively. We also discuss how scaled-up cloud experimentation systems can support MOOCs with true lab components and life-science research in general.

  8. Integrating Economic Models with Biophysical Models in the Willamette Water 2100 Project

    Science.gov (United States)

    Jaeger, W. K.; Plantinga, A.

    2013-12-01

    This paper highlights the human system modeling components for Willamette Water 2100, a comprehensive, highly integrated study of hydrological, ecological, and human factors affecting water scarcity in the Willamette River Basin (WRB). The project is developing a spatiotemporal simulation model to predict future trajectories of water scarcity, and to evaluate mitigation policies. Economic models of land use and water use are the main human system models in WW2100. Water scarcity depends on both supply and demand for water, and varies greatly across time and space (Jaeger et al., 2013). Thus, the locations of human water use can have enormous influence on where and when water is used, and hence where water scarcity may arise. Modeling the locations of human uses of water (e.g., urban versus agricultural) as well as human values and choices, are the principal quantitative ways that social science can contribute to research of this kind. Our models are empirically-based models of human resource allocation. Each model reflects private behavior (choices by households, farms, firms), institutions (property rights, laws, markets, regulations), public infrastructure (dams, canals, highways), and also 'external drivers' that influence the local economy (migration, population growth, national markets and policies). This paper describes the main model components, emphasizing similarities between human and biophysical components of the overall project, and the model's linkages and feedbacks relevant to our predictions of changes in water scarcity between now and 2100. Results presented include new insights from individual model components as well as available results from the integrated system model. Issues include water scarcity and water quality (temperature) for out-of-stream and instream uses, the impact of urban expansion on water use and potential flood damage. Changes in timing and variability of spring discharge with climate change, as well as changes in human uses of

  9. Biophysical Aspects of Alzheimer's Disease: Implications for Pharmaceutical Sciences : Theme: Drug Discovery, Development and Delivery in Alzheimer's Disease Guest Editor: Davide Brambilla.

    Science.gov (United States)

    Arosio, Paolo

    2017-12-01

    An increasing amount of findings suggests that the aggregation of soluble peptides and proteins into amyloid fibrils is a relevant upstream process in the complex cascade of events leading to the pathology of Alzheimer's disease and several other neurodegenerative disorders. Nevertheless, several aspects of the correlation between the aggregation process and the onset and development of the pathology remain largely elusive. In this context, biophysical and biochemical studies in test tubes have proven extremely powerful in providing quantitative information about the structure and the reactivity of amyloids at the molecular level. In this review we use selected recent examples to illustrate the importance of such biophysical research to complement phenomenological studies based on cellular and molecular biology, and we discuss the implications for pharmaceutical applications associated with Alzheimer's disease and other neurodegenerative disorders in both academic and industrial contexts.

  10. Biophysical analysis of water filtration phenomenon in the roots of halophytes

    Science.gov (United States)

    Kim, Kiwoong; Lee, Sang Joon

    2015-11-01

    The water management systems of plants, such as water collection and water filtration have been optimized through a long history. In this point of view, new bio-inspired technologies can be developed by mimicking the nature's strategies for the survival of the fittest. In this study, the biophysical characteristics of water filtration process in the roots of halophytes are experimentally investigated in the plant hydrodynamic point of view. To understand the functional features of the halophytes 3D morphological structure of their roots are analyzed using advanced bioimaging techniques. The surface properties of the roots of halophytes are also examined Based on the quantitatively analyzed information, water filtration phenomenon in the roots is examined. Sodium treated mangroves are soaked in sodium acting fluorescent dye solution to trace sodium ions in the roots. In addition, in vitroexperiment is carried out by using the roots. As a result, the outermost layer of the roots filters out continuously most of sodium ions. This study on developing halophytes would be helpful for understanding the water filtration mechanism of the roots of halophytes and developing a new bio inspired desalination system. This research was financially supported by the National Research Foundation (NRF) of Korea (Contract grant number: 2008-0061991).

  11. Course on Bioelectrochemistry which was the 11th International School of Biophysics

    CERN Document Server

    Blank, Martin

    1983-01-01

    This is the first course devoted to bioelectrochemistry held within the frame­ work of the International School of Biophysics. Although this branch of scientific research is already about two centuries old, as a truly independent one it has been in a stage of lively development since only a few decades ago and this is why a first course at the E. Majorana Center was devoted to it. Since bioelectrochemistry consists of many sub-fields, it is impossible to include, even superficially, all of them in a short course lasting just a week, and therefore the chapter of redox-reactions was chosen for this first course as being most general in character. But even restricting the course to redox-reactions, only a few subjects could be included and therefore the choice among them was made considering the most general guidelines that could serve as a basis for the further study of individual problems. In this way we hope to give a sound basis to the study of and to stimulate further interest in this branch of both biolog...

  12. Copper complexes containing thiosemicarbazones derived from 6-nitropiperonal: Antimicrobial and biophysical properties

    Science.gov (United States)

    Beckford, Floyd A.; Webb, Kelsey R.

    2017-08-01

    A series of four thiosemicarbazones from 6-nitropiperonal along with the corresponding copper complexes were synthesized. The biophysical characteristics of the complexes were investigated by the binding to DNA and human serum albumin. The binding to DNA is moderate; the binding constants run from (0.49-7.50) × 104 M- 1. In relation to HSA, the complexes interact strongly with binding constants on the order of 105 M- 1. The complexes also display antioxidant behavior as determined by the ability to scavenge diphenylpicrylhydrazyl (dpph) and nitric oxide radicals. The antimicrobial profiles of the compounds, tested against a panel of microbes including five of the ESKAPE pathogens (Staphylococcus aureus, MRSA, Escherichia coli, Klebsiella pneumoniae, MDR, Acinetobacter baumannii, Pseudomonas aeruginosa) and two yeasts (Candida albicans and Cryptococcus neoformans var. grubii), are also described. The compounds contain a core moiety that is similar to oxolinic acid, a quinolone antibiotic that targets DNA gyrase and topoisomerase (IV). The binding interaction between the complexes and these important antibacterial targets were studied by computational methods, chiefly docking studies. The calculated dissociation constants for the interaction with DNA gyrase B (from Staphylococcus aureus) range from 4.32 to 24.65 μM; the binding was much stronger to topoisomerase IV, with dissociation constants ranging from 0.37 to 1.27 μM.

  13. Graphene oxide as a protein matrix: influence on protein biophysical properties.

    Science.gov (United States)

    Hernández-Cancel, Griselle; Suazo-Dávila, Dámaris; Ojeda-Cruzado, Axel J; García-Torres, Desiree; Cabrera, Carlos R; Griebenow, Kai

    2015-10-19

    This study provides fundamental information on the influence of graphene oxide (GO) nanosheets and glycans on protein catalytic activity, dynamics, and thermal stability. We provide evidence of protein stabilization by glycans and how this strategy could be implemented when GO nanosheets is used as protein immobilization matrix. A series of bioconjugates was constructed using two different strategies: adsorbing or covalently attaching native and glycosylated bilirubin oxidase (BOD) to GO. Bioconjugate formation was followed by FT-IR, zeta-potential, and X-ray photoelectron spectroscopy measurements. Enzyme kinetic parameters (k(m) and k(cat)) revealed that the substrate binding affinity was not affected by glycosylation and immobilization on GO, but the rate of enzyme catalysis was reduced. Structural analysis by circular dichroism showed that glycosylation did not affect the tertiary or the secondary structure of BOD. However, GO produced slight changes in the secondary structure. To shed light into the biophysical consequence of protein glycosylation and protein immobilization on GO nanosheets, we studied structural protein dynamical changes by FT-IR H/D exchange and thermal inactivation. It was found that glycosylation caused a reduction in structural dynamics that resulted in an increase in thermostability and a decrease in the catalytic activity for both, glycoconjugate and immobilized enzyme. These results establish the usefulness of chemical glycosylation to modulate protein structural dynamics and stability to develop a more stable GO-protein matrix.

  14. Applications of the BIOPHYS Algorithm for Physically-Based Retrieval of Biophysical, Structural and Forest Disturbance Information

    Science.gov (United States)

    Peddle, Derek R.; Huemmrich, K. Fred; Hall, Forrest G.; Masek, Jeffrey G.; Soenen, Scott A.; Jackson, Chris D.

    2011-01-01

    Canopy reflectance model inversion using look-up table approaches provides powerful and flexible options for deriving improved forest biophysical structural information (BSI) compared with traditional statistical empirical methods. The BIOPHYS algorithm is an improved, physically-based inversion approach for deriving BSI for independent use and validation and for monitoring, inventory and quantifying forest disturbance as well as input to ecosystem, climate and carbon models. Based on the multiple-forward mode (MFM) inversion approach, BIOPHYS results were summarized from different studies (Minnesota/NASA COVER; Virginia/LEDAPS; Saskatchewan/BOREAS), sensors (airborne MMR; Landsat; MODIS) and models (GeoSail; GOMS). Applications output included forest density, height, crown dimension, branch and green leaf area, canopy cover, disturbance estimates based on multi-temporal chronosequences, and structural change following recovery from forest fires over the last century. Good correspondences with validation field data were obtained. Integrated analyses of multiple solar and view angle imagery further improved retrievals compared with single pass data. Quantifying ecosystem dynamics such as the area and percent of forest disturbance, early regrowth and succession provide essential inputs to process-driven models of carbon flux. BIOPHYS is well suited for large-area, multi-temporal applications involving multiple image sets and mosaics for assessing vegetation disturbance and quantifying biophysical structural dynamics and change. It is also suitable for integration with forest inventory, monitoring, updating, and other programs.

  15. How trees uptake carbon, release water and cool themselves in air: a marriage between biophysics and turbulent fluid dynamics

    Science.gov (United States)

    Banerjee, Tirtha; Linn, Rodman

    2017-11-01

    Resolving the role of the biosphere as a terrestrial carbon sink and the nature of nonlinear couplings between carbon and water cycles across a very wide range of spatiotemporal scales constitute the scope of this work. To achieve this goal, plant physiology models are coupled with atmospheric turbulence simulations. The plant biophysics code is based on the following principles: (1) a model for photosynthesis; (2) a mass transfer model through the laminar boundary layer on leaves; (3) an optimal leaf water use strategy regulated by stomatal aperture variation; (4) a leaf-level energy balance to accommodate evaporative cooling. Leaf-level outputs are upscaled to plant, canopy and landscape scales using HIGRAD/FIRETEC, a high fidelity large eddy simulation (LES) framework developed at LANL. The coupled biophysics-CFD code can take inputs such as wind speed, light availability, ambient CO2 concentration, air temperature, site characteristics etc. and can deliver predictions for leaf temperature, transpiration, carbon assimilation, sensible and latent heat flux, which is used to illustrate the complex the complex interaction between trees and their surrounding environments. These simulation capabilities are being used to study climate feedbacks of forests and agroecosystems.

  16. Uniqueness conditions for finitely dependent random fields

    International Nuclear Information System (INIS)

    Dobrushin, R.L.; Pecherski, E.A.

    1981-01-01

    The authors consider a random field for which uniqueness and some additional conditions guaranteeing that the correlations between the variables of the field decrease rapidly enough with the distance between the values of the parameter occur. The main result of the paper states that in such a case uniqueness is true for any other field with transition probabilities sufficiently close to those of the original field. Then they apply this result to some ''degenerate'' classes of random fields for which one can check this condition of correlation to decay, and thus obtain some new conditions of uniqueness. (Auth.)

  17. Predictive biophysical modeling and understanding of the dynamics of mRNA translation and its evolution

    Science.gov (United States)

    Zur, Hadas; Tuller, Tamir

    2016-01-01

    mRNA translation is the fundamental process of decoding the information encoded in mRNA molecules by the ribosome for the synthesis of proteins. The centrality of this process in various biomedical disciplines such as cell biology, evolution and biotechnology, encouraged the development of dozens of mathematical and computational models of translation in recent years. These models aimed at capturing various biophysical aspects of the process. The objective of this review is to survey these models, focusing on those based and/or validated on real large-scale genomic data. We consider aspects such as the complexity of the models, the biophysical aspects they regard and the predictions they may provide. Furthermore, we survey the central systems biology discoveries reported on their basis. This review demonstrates the fundamental advantages of employing computational biophysical translation models in general, and discusses the relative advantages of the different approaches and the challenges in the field. PMID:27591251

  18. Indigenous community health and climate change: integrating biophysical and social science indicators

    Science.gov (United States)

    Donatuto, Jamie; Grossman, Eric E.; Konovsky, John; Grossman, Sarah; Campbell, Larry W.

    2014-01-01

    This article describes a pilot study evaluating the sensitivity of Indigenous community health to climate change impacts on Salish Sea shorelines (Washington State, United States and British Columbia, Canada). Current climate change assessments omit key community health concerns, which are vital to successful adaptation plans, particularly for Indigenous communities. Descriptive scaling techniques, employed in facilitated workshops with two Indigenous communities, tested the efficacy of ranking six key indicators of community health in relation to projected impacts to shellfish habitat and shoreline archaeological sites stemming from changes in the biophysical environment. Findings demonstrate that: when shellfish habitat and archaeological resources are impacted, so is Indigenous community health; not all community health indicators are equally impacted; and, the community health indicators of highest concern are not necessarily the same indicators most likely to be impacted. Based on the findings and feedback from community participants, exploratory trials were successful; Indigenous-specific health indicators may be useful to Indigenous communities who are assessing climate change sensitivities and creating adaptation plans.

  19. Investigating Irregularly Patterned Deep Brain Stimulation Signal Design Using Biophysical Models

    Directory of Open Access Journals (Sweden)

    Samantha Rose Summerson

    2015-06-01

    Full Text Available Parkinson’s disease (PD is a neurodegenerative disorder which follows from cell loss of dopaminergic neurons in the substantia nigra pars compacta (SNc, a nucleus in the basal ganglia (BG. Deep brain stimulation (DBS is an electrical therapy that modulates the pathological activity to treat the motor symptoms of PD. Although this therapy is currently used in clinical practice, the sufficient conditions for therapeutic efficacy are unknown. In this work we develop a model of critical motor circuit structures in the brain using biophysical cell models as the base components and then evaluate performance of different DBS signals in this model to perform comparative studies of their efficacy. Biological models are an important tool for gaining insights into neural function and, in this case, serve as effective tools for investigating innovative new DBS paradigms. Experiments were performed using the hemi-parkinsonian rodent model to test the same set of signals, verifying the obedience of the model to physiological trends. We show that antidromic spiking from DBS of the subthalamic nucleus (STN has a significant impact on cortical neural activity, which is frequency dependent and additionally modulated by the regularity of the stimulus pulse train used. Irregular spacing between stimulus pulses, where the amount of variability added is bounded, is shown to increase diversification of response of basal ganglia neurons and reduce entropic noise in cortical neurons, which may be fundamentally important to restoration of information flow in the motor circuit.

  20. Coupling the Biophysical and Social Dimensions of Wildfire Risk to Improve Wildfire Mitigation Planning.

    Science.gov (United States)

    Ager, Alan A; Kline, Jeffrey D; Fischer, A Paige

    2015-08-01

    We describe recent advances in biophysical and social aspects of risk and their potential combined contribution to improve mitigation planning on fire-prone landscapes. The methods and tools provide an improved method for defining the spatial extent of wildfire risk to communities compared to current planning processes. They also propose an expanded role for social science to improve understanding of community-wide risk perceptions and to predict property owners' capacities and willingness to mitigate risk by treating hazardous fuels and reducing the susceptibility of dwellings. In particular, we identify spatial scale mismatches in wildfire mitigation planning and their potential adverse impact on risk mitigation goals. Studies in other fire-prone regions suggest that these scale mismatches are widespread and contribute to continued wildfire dwelling losses. We discuss how risk perceptions and behavior contribute to scale mismatches and how they can be minimized through integrated analyses of landscape wildfire transmission and social factors that describe the potential for collaboration among landowners and land management agencies. These concepts are then used to outline an integrated socioecological planning framework to identify optimal strategies for local community risk mitigation and improve landscape-scale prioritization of fuel management investments by government entities. © 2015 Society for Risk Analysis.