Tan, Say Hwa; Nguyen, Nam-Trung
2011-09-01
This paper demonstrates the use of magnetically controlled microfluidic devices to produce monodispersed ferrofluid emulsions. By applying a uniform magnetic field on flow-focusing and T-junction configurations, the size of the ferrofluid emulsions can be actively controlled. The influences of the flow rates, the orientation, and the polarity of the magnetic field on the size of ferrofluid emulsions produced in both flow-focusing and T-junction configurations are compared and discussed.
Quijano, Jessica Kim
2009-07-01
The stability and uniformity of the low-frequency flat fields {L-flat} of the UVIS detector will be assessed by using multiple-pointing observations of the globular clusters 47 Tucanae {NGC104} and Omega Centauri {NGC5139}, thus imaging moderately dense stellar fields. By placing the same star over different portions of the detector and measuring relative changes in its brightness, it will be possible to determine local variations in the response of the UVIS detector. Based on previous experience with STIS and ACS, it is deemed that a total of 9 different pointings will suffice to provide adequate characterization of the flat field stability in any given band. For each filter to be tested, the baseline consists of 9 pointings in a 3X3 box pattern with dither steps of about 25% of the FOV, or 40.5", in either the x or y direction {useful also for CTE measurements, if needed in the future}. During SMOV, the complement of filters to be tested is limited to the following 6 filters: F225W, F275W, F336W, for Omega Cen, and F438W, F606W, and F814W for 47 Tuc. Three long exposures for each target are arranged such that the initial dither position is observed with the appropriate filters for that target within one orbit at a single pointing, so that filter-to-filter differences in the observed star positions can be checked. In addition to the 9 baseline exposures, two sets of short exposures will be taken:a} one short exposure will be taken of OmegaCen with each of the visible filters {F438W, F606W and F814W} in order to check the geometric distortion solution to be obtained with the data from proposal 11444;b} for each target, a single short exposure will be taken with each filter to facilitate the study of the PSF as a function of position on the detector by providing unsaturated images of sparsely-spaced bright stars.This proposal corresponds to Activity Description ID WF39. It should execute only after the following proposal has executed:WF21 - 11434
Theory of field reversed configurations
International Nuclear Information System (INIS)
Steinhauer, L.C.
1990-01-01
This final report surveys the results of work conducted on the theory of field reversed configurations. This project has spanned ten years, beginning in early 1980. During this period, Spectra Technology was one of the leading contributors to the advances in understanding FRC. The report is organized into technical topic areas, FRC formation, equilibrium, stability, and transport. Included as an appendix are papers published in archival journals that were generated in the course of this report. 33 refs
Uniformity on the grid via a configuration framework
International Nuclear Information System (INIS)
Igor V Terekhov et al.
2003-01-01
As Grid permeates modern computing, Grid solutions continue to emerge and take shape. The actual Grid development projects continue to provide higher-level services that evolve in functionality and operate with application-level concepts which are often specific to the virtual organizations that use them. Physically, however, grids are comprised of sites whose resources are diverse and seldom project readily onto a grid's set of concepts. In practice, this also creates problems for site administrators who actually instantiate grid services. In this paper, we present a flexible, uniform framework to configure a grid site and its facilities, and otherwise describe the resources and services it offers. We start from a site configuration and instantiate services for resource advertisement, monitoring and data handling; we also apply our framework to hosting environment creation. We use our ideas in the Information Management part of the SAM-Grid project, a grid system which will deliver petabyte-scale data to the hundreds of users. Our users are High Energy Physics experimenters who are scattered worldwide across dozens of institutions and always use facilities that are shared with other experiments as well as other grids. Our implementation represents information in the XML format and includes tools written in XQuery and XSLT
International Nuclear Information System (INIS)
Paul, J.D.
1993-01-01
Each new HEPA filter installation presents a different physical configuration based on the system requirements, the available space and designer preference. Each different configuration can result in variations of air flow uniformity inside the filter housing across the filter banks. This paper presents the results of air flow uniformity testing for six different filter housing/ductwork configurations and discusses if any of those variations in air flow uniformity is attributable to the difference in the physical arrangements for the six cases
Physical optics in a uniform gravitational field
Hacyan, Shahen
2012-01-01
The motion of a (quasi-)plane wave in a uniform gravitational field is studied. It is shown that the energy of an elliptically polarized wave does not propagate along a geodesic, but in a direction that is rotated with respect to the gravitational force. The similarity with the walk-off effect in anisotropic crystals or the optical Magnus effect in inhomogeneous media is pointed out.
Pair creation by dynamic field configurations
International Nuclear Information System (INIS)
Aoyama, H.
1982-01-01
This thesis deals with the dynamics of the classical configuration of a quantum field unstable due to pair creation. The effective action method is developed first to treat such problems for a simple two-field model. Physical quantities such as pair creation probabilities are related to a complex function called the effective configuration, which is defined to minimize the effective action. Unitarity of the S-matrix is verified at the lowest order of the weak-field approximation. At the same order, the real valued vacuum expectation value of the quantum field, named the real configuration, is constructed in terms of the effective configuration. An integro-differential equation for the real configuration is given and is used to show that the real configuration is causal, while the effective configuration is not. Two practical applications of the effective action method are discussed. The first deals with pair creation in an anisotropic universe, and the real geometry is given in terms of the effective geometry in the samll anisotropy limit. The second deals with expanding vacuum bubbles. Corresponding to three possible situations, three kinds of field equations of each of the effective configuration and the real configuration are obtained. The behavior of the bubble is also studied by a semi-classical method, and one of the three situations is suggested to be plausible
Effect of bed configuration on pebble flow uniformity and stagnation in the pebble bed reactor
International Nuclear Information System (INIS)
Gui, Nan; Yang, Xingtuan; Tu, Jiyuan; Jiang, Shengyao
2014-01-01
Highlights: • Pebble flow uniformity and stagnation characteristics are very important for HTR-PM. • Arc- and brachistochrone-shaped configuration effects are studied by DEM simulation. • Best bed configurations with uniform flow and no stagnated pebbles are suggested. • Detailed quantified characteristics of bed configuration effects are shown for explanation. - Abstract: Pebble flow uniformity and stagnation characteristics are very important for the design of pebble bed high temperature gas-cooled reactor. Pebble flows inside some specifically designed contraction configurations of pebble bed are studied by discrete element method. The results show the characteristics of stagnation rates, recycling rates, radial distribution of pebble velocity and residence time. It is demonstrated clearly that the bed with a brachistochrone-shaped configuration achieves optimum levels of flow uniformity and recycling rate concentration, and almost no pebbles are stagnated in the bed. Moreover, the optimum choice among the arc-shaped bed configurations is demonstrated too. Detailed information shows the quantified characteristics of bed configuration effects on flow uniformity. In addition, a good design of the pebble bed configuration is suggested
External magnetic field configurations for EXTRAP
International Nuclear Information System (INIS)
Bonnevier, B.
1982-08-01
The strongly inhomogeneous magnetic field for stabilization of a pinch in an Extrap configuration can be created in various ways. Some possibilities both for the linear case and for the toroidal case are discussed. (author)
Particle transort in field-reversed configurations
Energy Technology Data Exchange (ETDEWEB)
Tuszewski, M.; Linford, R.K.; Lipson, J.; Sgro, A.G.
1981-01-01
A field reversed configuration (FRC) is a compact toroid that contains no toroidal field. These plasmas are observed to be grossly stable for about 10-100 ..mu..sec. The lifetimes appear limited by an n = 2 rotational instability which may be caused by particle loss. Particle transport is therefore an important issue for these configurations. We investigate particle loss with a steady-state, 1-D model which approximates the experimental observation of elongated FRC equilibrium with about constant separatrix radius.
Configuration mixing of mean-field states
International Nuclear Information System (INIS)
Bender, M; Heenen, P-H
2005-01-01
Starting from self-consistent mean-field models, we discuss how to include correlations from fluctuations in collective degrees of freedom through symmetry restoration and configuration mixing, which give access to ground-state correlations and collective excitations. As an example for the method, we discuss the spectroscopy of neutron-deficient Pb isotopes
Liquid toroidal drop under uniform electric field
Zabarankin, Michael
2017-06-01
The problem of a stationary liquid toroidal drop freely suspended in another fluid and subjected to an electric field uniform at infinity is addressed analytically. Taylor's discriminating function implies that, when the phases have equal viscosities and are assumed to be slightly conducting (leaky dielectrics), a spherical drop is stationary when Q=(2R2+3R+2)/(7R2), where R and Q are ratios of the phases' electric conductivities and dielectric constants, respectively. This condition holds for any electric capillary number, CaE, that defines the ratio of electric stress to surface tension. Pairam and Fernández-Nieves showed experimentally that, in the absence of external forces (CaE=0), a toroidal drop shrinks towards its centre, and, consequently, the drop can be stationary only for some CaE>0. This work finds Q and CaE such that, under the presence of an electric field and with equal viscosities of the phases, a toroidal drop having major radius ρ and volume 4π/3 is qualitatively stationary-the normal velocity of the drop's interface is minute and the interface coincides visually with a streamline. The found Q and CaE depend on R and ρ, and for large ρ, e.g. ρ≥3, they have simple approximations: Q˜(R2+R+1)/(3R2) and CaE∼3 √{3 π ρ / 2 } (6 ln ρ +2 ln [96 π ]-9 )/ (12 ln ρ +4 ln [96 π ]-17 ) (R+1 ) 2/ (R-1 ) 2.
Instanton Field Configurations and Black Holes
Konopleva, N P
2005-01-01
The role of vacuum relativization in QCD and nucleus theory is discussed. It is shown that relativistic vacuum must be described by vacuum Einstein equations. Black Holes have to make their appearance in QCD because of Schwarzschildean solution of these equations. Instanton configurations of any fields do not change vacuum Einstein equations and their solutions, because their energy-momentum tensors are zero. But they make it possible to determine a space-time topology, which cannot be defined by differential Einstein equations. Therefore, Black Holes number in space-time is possibly connected with instanton configurations of fields and other matter. Instantons do not fall into Black Holes and are the very matter which surrounds them.
Non-stationary classical diffusion in field - reversed configurations
International Nuclear Information System (INIS)
Clemente, R.A.; Sakanaka, P.H.; Mania, A.J.
1988-01-01
Plasma decay in field-reversed configurations (FRC) is described using resistive MHD equations. Assuming non-stationariety together with uniform but time dependent plasma temperature and neglecting inertial effects in the momentum balance equation, it is possible to show that the functional dependence of the plasma pressure with the poloidal magnetic flux remains fixed during diffusion. This allows to describe FRC evolution as a continuous sequence of plasma equilibria satisfying proper boundary conditions. The method is applied to pressure profiles linear with the poloidal magnetic flux obtaining the evolution of the flux, the number of confined particles and the size of the plasma boundary. (author) [pt
Particle transport in field-reversed configurations
Energy Technology Data Exchange (ETDEWEB)
Tuszewski, M.; Linford, R.K.
1982-05-01
Particle transport in field-reversed configurations is investigated using a one-dimensional, nondecaying, magnetic field structure. The radial profiles are constrained to satisfy an average ..beta.. condition from two-dimensional equilibrium and a boundary condition at the separatrix to model the balance between closed and open-field-line transport. When applied to the FRX-B experimental data and to the projected performance of the FRX-C device, this model suggests that the particle confinement times obtained with anomalous lower-hybrid-drift transport are in good agreement with the available numerical and experimental data. Larger values of confinement times can be achieved by increasing the ratio of the separatrix radius to the conducting wall radius. Even larger increases in lifetimes might be obtained by improving the open-field-line confinement.
Particle transport in field-reversed configurations
International Nuclear Information System (INIS)
Tuszewski, M.; Linford, R.K.
1982-01-01
Particle transport in field-reversed configurations is investigated using a one-dimensional, nondecaying, magnetic field structure. The radial profiles are constrained to satisfy an average β condition from two-dimensional equilibrium and a boundary condition at the separatrix to model the balance between closed and open-field-line transport. When applied to the FRX-B experimental data and to the projected performance of the FRX-C device, this model suggests that the particle confinement times obtained with anomalous lower-hybrid-drift transport are in good agreement with the available numerical and experimental data. Larger values of confinement times can be achieved by increasing the ratio of the separatrix radius to the conducting wall radius. Even larger increases in lifetimes might be obtained by improving the open-field-line confinement
Kinetic Stability of the Field Reversed Configuration
International Nuclear Information System (INIS)
E.V. Belova; R.C. Davidson; H. Ji; and M. Yamada
2002-01-01
New computational results are presented which advance the understanding of the stability properties of the Field-Reversed Configuration (FRC). The FRC is an innovative confinement approach that offers a unique fusion reactor potential because of its compact and simple geometry, translation properties, and high plasma beta. One of the most important issues is FRC stability with respect to low-n (toroidal mode number) MHD modes. There is a clear discrepancy between the predictions of standard MHD theory that many modes should be unstable on the MHD time scale, and the observed macroscopic resilience of FRCs in experiments
The configuration of the Brazilian scientific field.
Barata, Rita B; Aragão, Erika; de Sousa, Luis E P Fernandes; Santana, Taris M; Barreto, Mauricio L
2014-03-01
This article describes the configuration of the scientific field in Brazil, characterizing the scientific communities in every major area of knowledge in terms of installed capacity, ability to train new researchers, and capacity for academic production. Empirical data from several sources of information are used to characterize the different communities. Articulating the theoretical contributions of Pierre Bourdieu, Ludwik Fleck, and Thomas Kuhn, the following types of capital are analyzed for each community: social capital (scientific prestige), symbolic capital (dominant paradigm), political capital (leadership in S & T policy), and economic capital (resources). Scientific prestige is analyzed by taking into account the volume of production, activity index, citations, and other indicators. To characterize symbolic capital, the dominant paradigms that distinguish the natural sciences, the humanities, applied sciences, and technology development are analyzed theoretically. Political capital is measured by presidency in one of the main agencies in the S & T national system, and research resources and fellowships define the economic capital. The article discusses the composition of these different types of capital and their correspondence to structural capacities in various communities with the aim of describing the configuration of the Brazilian scientific field.
Tilting mode in field-reversed configurations
International Nuclear Information System (INIS)
Schwarzmeier, J.L.; Barnes, D.C.; Lewis, H.R.; Seyler, C.E.; Shestakov, A.I.
1982-01-01
Field Reversed Configurations (FRCs) experimentally have exhibited remarkable stability on the magnetohydrodynamic (MHD) timescale, despite numerous MHD calculations showing FRCs to be unstable. It is easy to believe that local modes are stabilized by finite Larmor radius (FLR) effects, but more puzzling is the apparent stability of FRCs against global modes, where one would expect FLR effects to be less important. In this paper we study the tilting mode, which MHD has shown to be a rapidly growing global mode. The tilting mode in FRCs is driven by the pressure gradient, and magnetic compression and field line bending are the stabilizing forces. A schematic of the evolution of the tilting mode is shown. The tilting mode is considered dangerous, because it would lead to rapid tearing across the separatrix. Unlike spheromaks, the tilting mode in FRCs has a separatrix that is fixed in space, so that the mode is strictly internal
Gauge field configurations in curved spacetimes (II)
International Nuclear Information System (INIS)
Boutaleb-Joutei, H.; Chakrabarti, A.; Comtet, A.
1979-05-01
One continues the study of gauge field configurations in curved spaces, using the formalism and results of a previous paper. A class of static, finite action, selfdual solutions of SU(2) gauge fields on a Euclidean section of de Sitter space is presented. The action depends on a continuous parameter. The spin connection solution is obtained as a particular case and a certain passage to the limiting case of a flat space is shown to reproduce the Euclidean Prasad-Sommerfield solution. The significance and possible interest of such solutions are discussed. The results are then generalized to a non-Einstein but conformally flat space, including de Sitter space as an Einstein limit. Next Baecklund type transformations are constructed starting from selfduality constraints for such curved spaces. These transformations are applied to the above mentioned solutions. The last two sections contain remarks on solutions with a background Robinson-Bertotti metric and on static, axially symmetric solutions respectively
Coupled transport in field-reversed configurations
Steinhauer, L. C.; Berk, H. L.; TAE Team
2018-02-01
Coupled transport is the close interconnection between the cross-field and parallel fluxes in different regions due to topological changes in the magnetic field. This occurs because perpendicular transport is necessary for particles or energy to leave closed field-line regions, while parallel transport strongly affects evolution of open field-line regions. In most toroidal confinement systems, the periphery, namely, the portion with open magnetic surfaces, is small in thickness and volume compared to the core plasma, the portion with closed surfaces. In field-reversed configurations (FRCs), the periphery plays an outsized role in overall confinement. This effect is addressed by an FRC-relevant model of coupled particle transport that is well suited for immediate interpretation of experiments. The focus here is particle confinement rather than energy confinement since the two track together in FRCs. The interpretive tool yields both the particle transport rate χn and the end-loss time τǁ. The results indicate that particle confinement depends on both χn across magnetic surfaces throughout the plasma and τǁ along open surfaces and that they provide roughly equal transport barriers, inhibiting particle loss. The interpretation of traditional FRCs shows Bohm-like χn and inertial (free-streaming) τǁ. However, in recent advanced beam-driven FRC experiments, χn approaches the classical rate and τǁ is comparable to classic empty-loss-cone mirrors.
International Nuclear Information System (INIS)
Zubarev, A; Dragoman, D
2014-01-01
We investigate charge carrier transport in graphene multi-barrier structures placed in a uniform magnetic field. The transmission coefficient is found analytically by generalizing the transfer matrix method for the case of graphene regions subjected to a uniform magnetic field. The transmission coefficient through the structure can be modulated by varying the gate voltages, the magnetic field and/or the width of the gated regions. Such a configuration could be used in multiple-valued logic circuits, since it has several output states with discrete and easily selectable transmission/current values. (paper)
Theory of field-reversed configurations
International Nuclear Information System (INIS)
Steinhauer, L.C.
1993-01-01
This report summarizes results from the theoretical program on field reversed configurations (FRC) at STI Optronics. The program, which has spanned the last 13 years, has included analytical as well as computational components. It has led to published papers on every major topic of FRC theory. The report is outlined to summarize results from each of these topic areas: formation, equilibrium, stability, and confinement. Also briefly described are Steinhauer's activities as Compact Toroid Theory Listening Post. Appendix A is a brief listing of the major advances achieved in this program. Attached at the back of this report is a collection of technical papers in archival journals that resulted from work in this program. The discussion within each subsection is given chronologically in order to give a historical sense of the evolution of understanding of FRC physics
Rotational instabilities in field reversed configurations
International Nuclear Information System (INIS)
Santiago, M.A.M.; Tsui, K.H.; Ponciano, B.M.B.; Sakanaka, P.H.
1988-01-01
The rotational instability (n = 2 toroidal mode) in field reversed configurations (FRC) using the ideal MHD equations in cylindrical geometry is studied. These equations are solved using a realistic densite profile, and the influence of some plasma parameters on the growth rate is analysed. The model shows good qualitative results. The growth rate increases rapidly as rotational frequency goes up and the mode m = 2 dominates over the m = 1 mode. With the variation of the density profile, it is observed that the growth rate decreases as the density dip at the center fills up. Calculated value ranges from 1/2 to 1/7 of the rotational frequency Ω whereas the measured value is around Ω/50. The developed analysis is valid for larger machines. The influence of the plasma resistivity on the mode stabilization is also analysed. The resistivity, which is the fundamental factor in the formation of compact torus, tends to decrease the growth rate. (author) [pt
Kinetic stability of field-reversed configurations
International Nuclear Information System (INIS)
Staudenmeier, J.L.; Hsiao, M.-Y.
1991-01-01
The internal tilt mode is considered to be the biggest threat to Field-Reversed Configuration (FRC) global stability. The tilt stability of the FRC is studied using the MHD, Hall MHD, and the Vlasov-fluid (Vlasov ions, cold massless fluid electrons) models. Nonlinear Hall MHD calculations showed that the FRC was stable to the tilt mode when the s value of the FRC was below a critical value that was dependent on plasma length. The critical s value is larger for longer plasma equilibria. The stability of FRC's with toroidal field was studied with a linear initial value MHD code. The calculations showed an axial perturbation wavelength of the most unstable eigenfunction that was consistent with internal probe measurements made on translated FRC's. Linear Vlasov-fluid eigenvalue calculations showed that kinetic ion effects can change both the growth rate and the structure of the eigenfunctions when compared to the corresponding MHD modes. Calculations on short FRC equilibria indicate that MHD is not the appropriate small gyroradius limit of the Vlasov-fluid model because the axial transit time of a thermal ion is approximately equal to an MHD growth time for the tilt mode. Calculations were done using a small number of unstable MHD eigenfunctions as basis functions in order to reduce the dimensionality of the stability problem. The results indicated that this basis set can produce inaccurate growth rates at large value for s for some equilibria
International Nuclear Information System (INIS)
Riera, S; Barrau, J; Rosell, J I; Omri, M; Fréchette, L G
2013-01-01
In this work, an experimental study of a novel microfabricated heat sink configuration that tends to uniform the wall temperature, even with increasing flow temperature, is presented. The design consists of a series of microchannel sections with stepwise varying width. This scheme counteracts the flow temperature increase by reducing the local thermal resistance along the flow path. A test apparatus with uniform heat flux and distributed wall temperature measurements was developed for microchannel heat exchanger characterisation. The energy balance is checked and the temperature distribution is analysed for each test. The results show that the wall temperature decreases slightly along the flow path while the fluid temperature increases, highlighting the strong impact of this approach. For a flow rate of 16 ml/s, the mean thermal resistance of the heat sink is 2,35·10 −5 m 2 ·K/W which enhances the results compared to the millimeter scale channels nearly three-fold. For the same flow rate and a heat flux of 50 W/cm 2 , the temperature uniformity, expressed as the standard deviation of the wall temperature, is around 6 °C
The large-s field-reversed configuration experiment
International Nuclear Information System (INIS)
Hoffman, A.L.; Carey, L.N.; Crawford, E.A.; Harding, D.G.; DeHart, T.E.; McDonald, K.F.; McNeil, J.L.; Milroy, R.D.; Slough, J.T.; Maqueda, R.; Wurden, G.A.
1993-01-01
The Large-s Experiment (LSX) was built to study the formation and equilibrium properties of field-reversed configurations (FRCs) as the scale size increases. The dynamic, field-reversed theta-pinch method of FRC creation produces axial and azimuthal deformations and makes formation difficult, especially in large devices with large s (number of internal gyroradii) where it is difficult to achieve initial plasma uniformity. However, with the proper technique, these formation distortions can be minimized and are then observed to decay with time. This suggests that the basic stability and robustness of FRCs formed, and in some cases translated, in smaller devices may also characterize larger FRCs. Elaborate formation controls were included on LSX to provide the initial uniformity and symmetry necessary to minimize formation disturbances, and stable FRCs could be formed up to the design goal of s = 8. For x ≤ 4, the formation distortions decayed away completely, resulting in symmetric equilibrium FRCs with record confinement times up to 0.5 ms, agreeing with previous empirical scaling laws (τ∝sR). Above s = 4, reasonably long-lived (up to 0.3 ms) configurations could still be formed, but the initial formation distortions were so large that they never completely decayed away, and the equilibrium confinement was degraded from the empirical expectations. The LSX was only operational for 1 yr, and it is not known whether s = 4 represents a fundamental limit for good confinement in simple (no ion beam stabilization) FRCs or whether it simply reflects a limit of present formation technology. Ideally, s could be increased through flux buildup from neutral beams. Since the addition of kinetic or beam ions will probably be desirable for heating, sustainment, and further stabilization of magnetohydrodynamic modes at reactor-level s values, neutral beam injection is the next logical step in FRC development. 24 refs., 21 figs., 2 tabs
Field errors in the RFX magnetic field configuration
International Nuclear Information System (INIS)
Bellina, F.; Campostrini, P.P.; Chitarin, G.; Fauri, M.; Zaccaria, P.L.
1987-01-01
Several factors can jeopardize the desired field configuration in the plasma region of a toroidal machine, namely: the wrong positioning of the coil conductors; the displacement of the coils due to the deflection of the mechanical structure; the currents in the busbars feeding the coils; the ferromagnetic materials around the machine; and the eddy currents in any conducting loop in the neighbourhood of the machine. This paper describes the various methods used for evaluating the effects of each item listed above and the technical solutions which have been adopted, case by case, in order to comply with the requirements on the field errors
Magnetic fluid bridge in a non-uniform magnetic field
International Nuclear Information System (INIS)
Pelevina, D.A.; Naletova, V.A.; Turkov, V.A.
2017-01-01
The shape of a magnetic fluid bridge between a horizontal ferrite rod of circular cross-section and a horizontal plate above the rod in a vertical applied uniform magnetic field is studied. Various static shapes of the bridges are obtained theoretically and experimentally for the same magnetic field value. Abrupt changes and the hysteresis of the bridge shape in alternating magnetic fields are observed experimentally. - Highlights: • Magnetic fluid bridge between rod and horizontal plate in magnetic field is studied. • Magnetic field is created by a ferrite rod in a uniform vertical magnetic field. • Various static bridge shapes for fixed field are obtained in theory and experiment. • A good agreement of experimental and theoretical results is obtained. • Hysteresis of the bridge shape in alternating field is observed experimentally.
Magnetic fluid bridge in a non-uniform magnetic field
Energy Technology Data Exchange (ETDEWEB)
Pelevina, D.A., E-mail: pelevina.daria@gmail.com; Naletova, V.A.; Turkov, V.A.
2017-06-01
The shape of a magnetic fluid bridge between a horizontal ferrite rod of circular cross-section and a horizontal plate above the rod in a vertical applied uniform magnetic field is studied. Various static shapes of the bridges are obtained theoretically and experimentally for the same magnetic field value. Abrupt changes and the hysteresis of the bridge shape in alternating magnetic fields are observed experimentally. - Highlights: • Magnetic fluid bridge between rod and horizontal plate in magnetic field is studied. • Magnetic field is created by a ferrite rod in a uniform vertical magnetic field. • Various static bridge shapes for fixed field are obtained in theory and experiment. • A good agreement of experimental and theoretical results is obtained. • Hysteresis of the bridge shape in alternating field is observed experimentally.
Leader propagation in uniform background fields in SF6
International Nuclear Information System (INIS)
Seeger, M; Niemeyer, L; Bujotzek, M
2009-01-01
The breakdown mechanism of compressed SF 6 in gas insulation is known to be controlled by stepped leader propagation. This process is still not well understood in uniform and weakly non-uniform background fields with small electrode protrusions, such as particles or surface roughness. In a previous publication an investigation of partial discharges and breakdown in uniform background fields that focused on streamer and leader inception mechanisms was presented (Seeger et al 2008 J. Phys. D: Appl. Phys. 41 185204). In this paper we present for the first time a physical leader propagation model that consistently describes the observed phenomena in uniform background fields in SF 6 . The model explains two different types of leader breakdown; these can be associated with the precursor and the stem mechanisms. It also yields the parameters of stepped leader propagation, which include step lengths, associated step charges, step times and fields and temperatures in the leader channel. Further, it explains the features of arrested leaders in uniform background fields. The model predicts the range of parameters under which arrested and breakdown leaders occur in good agreement with the experimental data.
The demagnetizing field of a non-uniform rectangular prism
DEFF Research Database (Denmark)
Smith, Anders; Nielsen, Kaspar Kirstein; Christensen, Dennis
2010-01-01
The effect of demagnetization on the magnetic properties of a rectangular ferromagnetic prism under non-uniform conditions is investigated. A numerical model for solving the spatially varying internal magnetic field is developed, validated and applied to relevant cases. The demagnetizing field...... is solved by an analytical calculation and the coupling between applied field, the demagnetization tensor field and spatially varying temperature is solved through iteration. We show that the demagnetizing field is of great importance in many cases and that it is necessary to take into account the non...
Experimental study of flow field characteristics on bed configurations in the pebble bed reactor
International Nuclear Information System (INIS)
Jia, Xinlong; Gui, Nan; Yang, Xingtuan; Tu, Jiyuan; Jia, Haijun; Jiang, Shengyao
2017-01-01
Highlights: • PTV study of flow fields of pebble bed reactor with different configurations are carried out. • Some criteria are proposed to quantify vertical velocity field and flow uniformity. • The effect of different pebble bed configurations is also compared by the proposed criteria. • The displacement thickness is used analogically to analyze flow field characteristics. • The effect of mass flow variation in the stagnated region of the funnel flow is measured. - Abstract: The flow field characteristics are of fundamental importance in the design work of the pebble bed high temperature gas cooled reactor (HTGR). The different effects of bed configurations on the flow characteristics of pebble bed are studied through the PTV (Particle Tracking Velocimetry) experiment. Some criteria, e.g. flow uniformity (σ) and mass flow level (α), are proposed to estimate vertical velocity field and compare the bed configurations. The distribution of the Δθ (angle difference between the individual particle velocity and the velocity vector sum of all particles) is also used to estimate the resultant motion consistency level. Moreover, for each bed configuration, the thickness of displacement is analyzed to measure the effect of the funnel flow zone based on the boundary layer theory. Detailed information shows the quantified characteristics of bed configuration effects on flow uniformity and other characteristics; and the sequence of levels of each estimation criterion is obtained for all bed configurations. In addition, a good design of the pebble bed configuration is suggested and these estimation criteria can be also applied and adopted in testing other geometry designs of pebble bed.
A charged black hole in a uniform magnetic field
International Nuclear Information System (INIS)
Krori, K.D.; Chaudhury, S.; Dowerah, S.
1983-01-01
We present here an investigation of the event horizon of a charged black hole embedded in a uniform magnetic field studying the Gaussian curvature. It is shown that the Gauss-Bonnet theorem holds for this magnetized black hole and for a magnetized Kerr black hole
Flood field uniformity testing - effects of crystal hydration
International Nuclear Information System (INIS)
Dimcheva, M.; Sergieva, S.; Doldurova, M.; Jovanovska, A.
2012-01-01
The most basic and sensitive routine quality control (QC) of gamma camera is that of intrinsic flood-field uniformity. The routine QC test must be assessed daily and any nonuniformity must be eliminated before patient testing to eliminate artifacts and false positive or false-negative patient results. The purpose of this study was to compare uniformity analysis results for scintillation crystal hydration with symmetric and asymmetric energy window on the Siemens Symbia T2 SPECTCT camera. Integral and differential uniformity analysis was performed by placing a point source 99m Tc in front of the detector with removed collimator to measure the effect of correction matrix, a count rate and activity volume on intrinsic uniformity. A 15% energy window set symmetrically over the 99m Tc photo peak is equivalent to 140±10% keV or a window spanning 126-154 keV. The results, received from Detector 2 gave the following uniformity parameter values: Both asymmetric energy window images show clearly multiple focal spots due to crystal hydration: discrete hot spots in the asymmetric low window image and discrete cold spots in the asymmetric high window image. The above results are not seen yet on the symmetric window image. We had replaced Detector 2 in order to avoid spots become visible in flood images obtained with the clinical energy window. The uniformity of a gamma camera is maybe the most important parameter that expresses the quality of the camera's performance. Non uniform areas in the field of view can result in misdiagnosed patients and low quality of clinical services. (authors)
One-way Ponderomotive Barrier in a Uniform Magnetic Field
International Nuclear Information System (INIS)
Dodin, I.Y.; Fisch, N.J.
2005-01-01
The possibility of an asymmetric ponderomotive barrier in a nonuniform dc magnetic field by high-frequency radiation near the cyclotron resonance for selected plasma species was contemplated in Physics of Plasmas 11 (November 2004) 5046-5064. Here we show that a similar one-way barrier, which reflects particles incident from one side while transmitting those incident from the opposite side, can be produced also in a uniform magnetic field, entirely due to inhomogeneity of high-frequency drive
Ideal flood field images for SPECT uniformity correction
International Nuclear Information System (INIS)
Oppenheim, B.E.; Appledorn, C.R.
1984-01-01
Since as little as 2.5% camera non-uniformity can cause disturbing artifacts in SPECT imaging, the ideal flood field images for uniformity correction would be made with the collimator in place using a perfectly uniform sheet source. While such a source is not realizable the equivalent images can be generated by mapping the activity distribution of a Co-57 sheet source and correcting subsequent images of the source with this mapping. Mapping is accomplished by analyzing equal-time images of the source made in multiple precisely determined positions. The ratio of counts detected in the same region of two images is a measure of the ratio of the activities of the two portions of the source imaged in that region. The activity distribution in the sheet source is determined from a set of such ratios. The more source positions imaged in a given time, the more accurate the source mapping, according to results of a computer simulation. A 1.9 mCi Co-57 sheet source was shifted by 12 mm increments along the horizontal and vertical axis of the camera face to 9 positions on each axis. The source was imaged for 20 min in each position and 214 million total counts were accumulated. The activity distribution of the source, relative to the center pixel, was determined for a 31 x 31 array. The integral uniformity was found to be 2.8%. The RMS error for such a mapping was determined by computer simulation to be 0.46%. The activity distribution was used to correct a high count flood field image for non-uniformities attributable to the Co-57 source. Such a corrected image represents camera plus collimator response to an almost perfectly uniform sheet source
Five-dimensional rotating black hole in a uniform magnetic field: The gyromagnetic ratio
International Nuclear Information System (INIS)
Aliev, A.N.; Frolov, Valeri P.
2004-01-01
In four-dimensional general relativity, the fact that a Killing vector in a vacuum spacetime serves as a vector potential for a test Maxwell field provides one with an elegant way of describing the behavior of electromagnetic fields near a rotating Kerr black hole immersed in a uniform magnetic field. We use a similar approach to examine the case of a five-dimensional rotating black hole placed in a uniform magnetic field of configuration with biazimuthal symmetry that is aligned with the angular momenta of the Myers-Perry spacetime. Assuming that the black hole may also possess a small electric charge we construct the five-vector potential of the electromagnetic field in the Myers-Perry metric using its three commuting Killing vector fields. We show that, like its four-dimensional counterparts, the five-dimensional Myers-Perry black hole rotating in a uniform magnetic field produces an inductive potential difference between the event horizon and an infinitely distant surface. This potential difference is determined by a superposition of two independent Coulomb fields consistent with the two angular momenta of the black hole and two nonvanishing components of the magnetic field. We also show that a weakly charged rotating black hole in five dimensions possesses two independent magnetic dipole moments specified in terms of its electric charge, mass, and angular momentum parameters. We prove that a five-dimensional weakly charged Myers-Perry black hole must have the value of the gyromagnetic ratio g=3
Design of a high field uniformity electromagnet for Penning trap
International Nuclear Information System (INIS)
Itteera, Janvin; Singh, Kumud; Teotia, Vikas; Ukarde, Priti; Malhotra, Sanjay; Taly, Y.K.; Joshi, Manoj; Rao, Pushpa
2013-01-01
An ion trap (Penning trap) facility is being developed at BARC for spectroscopy studies. This requires the design of an iron core electromagnet capable of generating high magnetic fields (∼1.7T) at the centre of an 88 mm long air gap. This electromagnet provides the requisite dipole magnetic field which when superimposed on the electrostatic quadrupoles ensures a stable trapping of ions. To conduct high precision spectroscopy studies, we need to ensure a high degree of magnetic field uniformity ( 3 volume (Trap zone). Various pole shoe profiles were studied and modelled, FEM simulation of the same were conducted to compute the magnetic field intensity and field uniformity. Owing to the large air gap and requirement of high field intensity in the GFR, the exciting coils need to handle high current densities, which require water cooled systems. Double Pan-Cake coil design is selected for powering the magnet. Electrical, thermal and hydraulic designs of the coils are completed and a prototype double pancake coil was fabricated and tested for verifying the electrical and thermal parameter. The spatial field homogeneity is achieved by shimming the pole tip. Temporal stability of magnet requires a highly stable power supply for exciting the coils and its stability class is derived from FEM simulations. This paper discusses the electromagnetic design and development of the penning trap magnet being developed at BARC. (author)
Uniform electromagnetic field as viscous medium for moving particles
International Nuclear Information System (INIS)
Amusia, M.Ya.; Baltenkov, A.S.; Felfli, Z.; Msezane, A.Z.; Voitkiv, A.B.
2002-01-01
The mechanism of transverse radiation viscosity acting on free charges, atomic, and small macroscopic particles in uniform electromagnetic fields is analyzed. It is shown that in the process of light scattering by these particles, besides the force accelerating them in the direction of propagation of the radiation, there is a force in the transverse direction slowing them down. The general expression for this force is obtained. It is considered how this force can influence: (i) the motion of ultrarelativistic electrons in transverse photon fluxes; (ii) the behavior of a beam of nonrelativistic electrons moving in a copropagating uniform electromagnetic field; (iii) the transverse motion of atoms under the action of resonant radiation and (iv) the motion of small macroscopic particles
Laser heating of field-reversed configurations
International Nuclear Information System (INIS)
Carson, R.S.; Vlases, G.C.
1983-01-01
The experimental facility is a 21-cm-long solenoid with a 5.5-cm bore. The 4-cm ID quartz tube is filled with slowly flowing H 2 to 0.5-3.0 torr. Fields up to 6.5 T in 3.7 μsec are produced, with reverse-bias fields up -1.9 T. Preionization is by 40kA axial discharge 4.5 μsec before field-reversal is begun. The CO 2 laser used produces 300 to 400 J in 2 μsec, in an annular beam that can be defocused for preheating the outer edges of the plasma, or focused tightly for central-column heating and beam propagation during formation. The focusing system includes a return mirror for multiple passing of the laser energy. Diagnostics include compensated, diamagnetic flux loops, internal field probes, cross-tube and axial interferometers, fast photography, and spectroscopy
Classical field configurations and infrared slavery
Swanson, Mark S.
1987-09-01
The problem of determining the energy of two spinor particles interacting through massless-particle exchange is analyzed using the path-integral method. A form for the long-range interaction energy is obtained by analyzing an abridged vertex derived from the parent theory. This abridged vertex describes the radiation of zero-momentum particles by pointlike sources. A path-integral formalism for calculating the energy of the radiation field associated with this abridged vertex is developed and applications are made to determine the energy necessary for adiabatic separation of two sources in quantum electrodynamics and for an SU(2) Yang-Mills theory. The latter theory is shown to be consistent with confinement via infrared slavery.
The electric field of a uniformly charged cubic shell
McCreery, Kaitlin; Greenside, Henry
2018-01-01
As an integrative and insightful example for undergraduates learning about electrostatics, we discuss how to use symmetry, Coulomb's law, superposition, Gauss's law, and visualization to understand the electric field E (x ,y ,z ) produced by a uniformly charged cubic shell. We first discuss how to deduce qualitatively, using freshman-level physics, the perhaps surprising fact that the interior electric field is nonzero and has a complex structure, pointing inwards from the middle of each face of the shell and pointing outwards towards each edge and corner. We then discuss how to understand the quantitative features of the electric field by plotting an analytical expression for E along symmetry lines and on symmetry surfaces of the shell.
Shape and fission instabilities of ferrofluids in non-uniform magnetic fields
Vieu, Thibault; Walter, Clément
2018-04-01
We study static distributions of ferrofluid submitted to non-uniform magnetic fields. We show how the normal-field instability is modified in the presence of a weak magnetic field gradient. Then we consider a ferrofluid droplet and show how the gradient affects its shape. A rich phase transitions phenomenology is found. We also investigate the creation of droplets by successive splits when a magnet is vertically approached from below and derive theoretical expressions which are solved numerically to obtain the number of droplets and their aspect ratio as function of the field configuration. A quantitative comparison is performed with previous experimental results, as well as with our own experiments, and yields good agreement with the theoretical modeling.
Pure gauge configurations and solutions to fermionic superstring field theory equations of motion
International Nuclear Information System (INIS)
Aref'eva, I Ya; Gorbachev, R V; Medvedev, P B
2009-01-01
Recent results on solutions to the equation of motion of the cubic fermionic string field theory and an equivalence of nonpolynomial and cubic string field theory are discussed. To have the possibility of dealing with both GSO(+) and GSO(-) sectors in the uniform way, a matrix formulation for the NS fermionic SFT is used. In constructions of analytical solutions to open-string field theories truncated pure gauge configurations parametrized by wedge states play an essential role. The matrix form of this parametrization for NS fermionic SFT is presented. Using the cubic open superstring field theory as an example we demonstrate explicitly that for the large parameter of the perturbation expansion these truncated pure gauge configurations give divergent contributions to the equations of motion on the subspace of the wedge states. The perturbation expansion is corrected by adding extra terms that are just those necessary for the equation of motion contracted with the solution itself to be satisfied.
Uniform magnetic fields in density-functional theory
Tellgren, Erik I.; Laestadius, Andre; Helgaker, Trygve; Kvaal, Simen; Teale, Andrew M.
2018-01-01
We construct a density-functional formalism adapted to uniform external magnetic fields that is intermediate between conventional density functional theory and Current-Density Functional Theory (CDFT). In the intermediate theory, which we term linear vector potential-DFT (LDFT), the basic variables are the density, the canonical momentum, and the paramagnetic contribution to the magnetic moment. Both a constrained-search formulation and a convex formulation in terms of Legendre-Fenchel transformations are constructed. Many theoretical issues in CDFT find simplified analogs in LDFT. We prove results concerning N-representability, Hohenberg-Kohn-like mappings, existence of minimizers in the constrained-search expression, and a restricted analog to gauge invariance. The issue of additivity of the energy over non-interacting subsystems, which is qualitatively different in LDFT and CDFT, is also discussed.
Helicons in uniform fields. I. Wave diagnostics with hodograms
Urrutia, J. M.; Stenzel, R. L.
2018-03-01
The wave equation for whistler waves is well known and has been solved in Cartesian and cylindrical coordinates, yielding plane waves and cylindrical waves. In space plasmas, waves are usually assumed to be plane waves; in small laboratory plasmas, they are often assumed to be cylindrical "helicon" eigenmodes. Experimental observations fall in between both models. Real waves are usually bounded and may rotate like helicons. Such helicons are studied experimentally in a large laboratory plasma which is essentially a uniform, unbounded plasma. The waves are excited by loop antennas whose properties determine the field rotation and transverse dimensions. Both m = 0 and m = 1 helicon modes are produced and analyzed by measuring the wave magnetic field in three dimensional space and time. From Ampère's law and Ohm's law, the current density and electric field vectors are obtained. Hodograms for these vectors are produced. The sign ambiguity of the hodogram normal with respect to the direction of wave propagation is demonstrated. In general, electric and magnetic hodograms differ but both together yield the wave vector direction unambiguously. Vector fields of the hodogram normal yield the phase flow including phase rotation for helicons. Some helicons can have locally a linear polarization which is identified by the hodogram ellipticity. Alternatively the amplitude oscillation in time yields a measure for the wave polarization. It is shown that wave interference produces linear polarization. These observations emphasize that single point hodogram measurements are inadequate to determine the wave topology unless assuming plane waves. Observations of linear polarization indicate wave packets but not plane waves. A simple qualitative diagnostics for the wave polarization is the measurement of the magnetic field magnitude in time. Circular polarization has a constant amplitude; linear polarization results in amplitude modulations.
Euclidean self-dual Yang-Mills field configurations
International Nuclear Information System (INIS)
Sartori, G.
1980-01-01
The determination of a large class of regular and singular Euclidean self-dual Yang-Mills field configurations is reduced to the solution of a set of linear algebraic equations. The matrix of the coefficients is a polynomial functions of x and the rules for its construction are elementary. (author)
A Mirnov loop array for field-reversed configurations
International Nuclear Information System (INIS)
Tuszewski, M.
1990-01-01
An array of 64 magnetic pick-up loops has been used for stability studies of large field-reversed configurations in the FRX-C/LSM device. This array proved reliable, could resolve signals of a few Gauss, and allowed the detection of several plasma instabilities. 3 refs., 4 figs
Brane configurations and 4D field theory dualities
International Nuclear Information System (INIS)
Brandhuber, A.; Sonnenschein, J.; Yankielowicz, S.
1997-01-01
We study brane configurations which correspond to field theories in four dimension with N=2 and N=1 supersymmetry. In particular we discuss brane motions that translate to Seiberg's duality in N=1 models recently studied by Elitzur, Giveon and Kutasov. We investigate, using the brane picture, the moduli spaces of the dual theories. Deformations of these models like mass terms and vacuum expectation values of scalar fields can be identified with positions of branes. The map of these deformations between the electric and dual magnetic theories is clarified. The models we study reproduce known field theory results and we provide an example of new dual pairs with N=1 supersymmetry. Possible relations between brane configurations and non-supersymmetric field theories are discussed. (orig.)
Closed expressions for the magnetic field of toroidal multipole configurations
International Nuclear Information System (INIS)
Sheffield, G.V.
1983-04-01
Closed analytic expressions for the vector potential and the magnetic field for the lower order toroidal multipoles are presented. These expressions can be applied in the study of tokamak plasma cross section shaping. An example of such an application is included. These expressions also allow the vacuum fields required for plasma equilibrium to be specified in a general form independent of a particular coil configuration
Steady state magnetic field configurations for the earth's magnetotail
Hau, L.-N.; Wolf, R. A.; Voigt, G.-H.; Wu, C. C.
1989-01-01
A two-dimensional, force-balance magnetic field model is presented. The theoretical existence of a steady state magnetic field configuration that is force-balanced and consistent with slow, lossless, adiabatic, earthward convection within the limit of the ideal MHD is demonstrated. A numerical solution is obtained for a two-dimensional magnetosphere with a rectangular magnetopause and nonflaring tail. The results are consistent with the convection time sequences reported by Erickson (1985).
Modelling of radial electric field profile for different divertor configurations
International Nuclear Information System (INIS)
Rozhansky, V; Kaveeva, E; Voskoboynikov, S; Counsell, G; Kirk, A; Meyer, H; Coster, D; Conway, G; Schirmer, J; Schneider, R
2006-01-01
The impact of divertor configuration on the structure of the radial electric field has been simulated by the B2SOLPS5.0 transport fluid code. It is shown that the change in the parallel flows in the scrape-off layer, which are transported through the separatrix due to turbulent viscosity and diffusivity, should result in variation of the radial electric field and toroidal rotation in the separatrix vicinity. The modelling predictions are compared with the measurements of the radial electric field for the low field side equatorial mid-plane of ASDEX Upgrade in lower, upper and double-null (DN) divertor configurations. The parallel (toroidal) flows in the scrape-off layer and mechanisms for their formation are analysed for different geometries. It is demonstrated that a spike in the electric field exists at the high field side equatorial mid-plane in the connected DN divertor configuration. Its origin is connected with different potential drops between the separatrix vicinity and divertor plates in the two disconnected scrape-off layers, while the separatrix should be at almost the same potential. The spike might be important for additional turbulent suppression
Detection of electric field around field-reversed configuration plasma
International Nuclear Information System (INIS)
Ikeyama, Taeko; Hiroi, Masanori; Nogi, Yasuyuki; Ohkuma, Yasunori
2010-01-01
Electric-field probes consisting of copper plates are developed to measure electric fields in a vacuum region around a plasma. The probes detect oscillating electric fields with a maximum strength of approximately 100 V/m through a discharge. Reproducible signals from the probes are obtained with an unstable phase dominated by a rotational instability. It is found that the azimuthal structure of the electric field can be explained by the sum of an n=2 mode charge distribution and a convex-surface electron distribution on the deformed separatrix at the unstable phase. The former distribution agrees with that anticipated from the diamagnetic drift motions of plasma when the rotational instability occurs. The latter distribution suggests that an electron-rich plasma covers the separatrix.
The ITER poloidal field configuration and operation scenario
International Nuclear Information System (INIS)
Gribov, Y.; Portone, A.; Mondino, P.L.
1995-01-01
The ITER Poloidal Field (PF) system must satisfy the following requirements. (1) ITER must have a well-controlled, single null divertor magnetic configuration with nominal plasma current 21MA and moderate plasma elongation k95 < 1.65. (2) For a variety of plasma scenarios the ITER PF system must provide: inductive breakdown and start-up in an expanding-aperture limiter configuration near the outboard first wall; an inductive current ramp-up to the nominal plasma current with a reasonable assumption of resistive loss during current ramp-up; a pulse length of 1,000s for ignition and inductively-sustained burn at nominal plasma current; plasma shutdown (following fusion power termination) in a similar contracting-aperture limiter configuration. The present design of the PF system can satisfy the ITER requirements within specified limitations
Structure of the magnetic field line diversion in Helias configurations
International Nuclear Information System (INIS)
Strumberger, E.
1991-01-01
The vacuum magnetic field outside the last closed magnetic surface of Helias configurations is investigated with respect to its field line diversion properties. In a Helias configuration with N periods N half-helix like edges run on the toroidally outward side of the plasma boundary and yield the possibility of separatrix formation due to the coincidence of helical edge and x-points between islands. With the choice N=5, and ι=1 at the plasma boundary, there are five magnetic islands outside the last closed magnetic surface. In the case considered, islands are lying in front of the helical edge at the beginning, in the middle and at the end of this edge, while in positions in between x-points are in front of the helical edge. (author) 3 refs., 5 figs
Analytic, two fluid, field reversed configuration equilibrium with sheared rotation
International Nuclear Information System (INIS)
Sobehart, J.R.
1989-01-01
A two fluid model is used to derive an analytical equilibrium for elongated field reversed configurations containing shear in both the electron and ion velocity profiles. Like some semiempirical models used previously, the analytical expressions obtained provide a satisfactory fit to the experimental results for all radii with a few key parameters. The present results reduce to the rigid rotor model and the infinite conductivity case for a specific choice of the parameters
Adiabatic compression of elongated field-reversed configurations
Energy Technology Data Exchange (ETDEWEB)
Spencer, R.L.; Tuszewski, M.; Linford, R.K.
1983-06-01
The adiabatic compression of an elongated field-reversed configuration (FRC) is computed by using a one-dimensional approximation. The one-dimensional results are checked against a two-dimensional equilibrium code. For ratios of FRC separatrix length to separatrix radius greater than about ten, the one-dimensional results are accurate within 10%. To this accuracy, the adiabatic compression of FRC's can be described by simple analytic formulas.
Adiabatic compression of elongated field-reversed configurations
International Nuclear Information System (INIS)
Spencer, R.L.; Tuszewski, M.; Linford, R.K.
1983-01-01
The adiabatic compression of an elongated field-reversed configuration (FRC) is computed by using a one-dimensional approximation. The one-dimensional results are checked against a two-dimensional equilibrium code. For ratios of FRC separatrix length to separatrix radius greater than about ten, the one-dimensional results are accurate within 10%. To this accuracy, the adiabatic compression of FRC's can be described by simple analytic formulas
Magnetosphere of Uranus: plasma sources, convection, and field configuration
International Nuclear Information System (INIS)
Voigt, G.; Hill, T.W.; Dessler, A.J.
1983-01-01
At the time of the Voyager 2 flyby of Uranus, the planetary rotational axis will be roughly antiparallel to the solar wind flow. If Uranus has a magnetic dipole moment that is approximately aligned with its spin axis, and if the heliospheric shock has not been encountered, we will have the rare opportunity to observe a ''pole-on'' magnetosphere as discussed qualitatively by Siscoe. Qualitative arguments based on analogy with Earth, Jupiter, and Saturn suggest that the magnetosphere of Uranus may lack a source of plasma adequate to produce significant internal currents, internal convection, and associated effects. In order to provide a test of this hypothesis with the forthcoming Voyager measurements, we have constructed a class of approximately self-consistent quantitative magnetohydrostatic equilibrium configurations for a pole-on magnetosphere with variable plasma pressure parameters. Given a few simplifying assumptions, the geometries of the magnetic field and of the tail current sheet can be computed for a given distribution of trapped plasma pressure. The configurations have a single funnel-shaped polar cusp that points directly into the solar wind and a cylindrical tail plasma sheet whose currents close within the tail rather than on the tail magnetopause, and whose length depends on the rate of decrease of thermal plasma pressure down the tail. Interconnection between magnetospheric and interplanetary fields results in a highly asymmetric tail-field configuration. These features were predicted qualtitatively by Siscoe; the quantitative models presented here may be useful in the interpretation of Voyager encounter results
Heterogeneous analysis of non-uniform neutron field formation
International Nuclear Information System (INIS)
Zagrebaev, A.M.; Fedosov, A.M.
1979-01-01
Investigated are the specific features of spatial-energy neutron distribution formation in the transient zone between regions, operating at different levels of energy release with accounting for the real structure of fuel element lattice and control elements in the channel reactors of high power. Presented are the calculation results, obtained by heterogeneous method in the two-group monopole approximation by means of the HETLAT code. The analysis, based on the homogeneous model shows, that the efficiency of the transient zone in forming neutron flux qradient can be increased by introducing an additional interlayer of moderator between the layers with extreme multiplying properties. It is stressed, that the most favourable from the point of view of energy release uniformity in zones and width of the transient zone is the variant in which neutron flux gradient is carried out by moving the control elements on the boundaries of regions while the internal rows of control elements create the conditions for flattening the energy release in the zones. The result obtained corresponds to the recommendation on optimal control, coming from the Pontryagin maximum principle. The analysis of neutron field formation using heterogeneous models mainly proves the conclusions following from homogeneous calculations using the maximum principle. At the same time quantitative results for the zones of small dimensions (less than 10 migration lengths) with a vividly expressed heterogeneous structure essentially differ from the forecast, obtained on the basis of the simplified homogeneous one-group model. The heterogeneous analysis shows possibilities for further optimization of the transient zone structure with account of the control element location
Group quantization on configuration space: Gauge symmetries and linear fields
International Nuclear Information System (INIS)
Navarro, M.; Aldaya, V.; Calixto, M.
1997-01-01
A new, configuration-space picture of a formalism of group quantization, the GAQ formalism, is presented in the context of a previous algebraic generalization. This presentation serves to make a comprehensive discussion in which other extensions of the formalism, principally to incorporate gauge symmetries, are developed as well. Both images are combined in order to analyze, in a systematic manner and with complete generality, the case of linear fields (Abelian current groups). To illustrate these developments we particularize them for several fields and, in particular, we carry out the quantization of the Abelian Chern endash Simons models over an arbitrary closed surface in detail. copyright 1997 American Institute of Physics
Nonintegrability of an extensible conducting rod in a uniform magnetic field
Energy Technology Data Exchange (ETDEWEB)
Van der Heijden, G H M [Centre for Nonlinear Dynamics and its Applications, Department of Civil, Environmental and Geomatic Engineering, University College London, Gower Street, London WC1E 6BT (United Kingdom); Yagasaki, K, E-mail: g.heijden@ucl.ac.uk, E-mail: yagasaki@ie.niigata-u.ac.jp [Mathematics Division, Department of Information Engineering, Niigata University, Ikarashi 2-no-cho, Nishi-ku, Niigata 950-2181 (Japan)
2011-12-09
The equilibrium equations for an isotropic Kirchhoff rod are known to be completely integrable. It is also known that neither the effects of extensibility and shearability, nor the effects of a uniform magnetic field, individually break integrability. Here, we show, by means of a Melnikov-type analysis, that, when combined, these effects do break integrability giving rise to spatially chaotic configurations of the rod. A previous analysis of the problem suffered from the presence of an Euler-angle singularity. Our analysis provides an example of how in a system with such a singularity a Melnikov-type technique can be applied by introducing an artificial unfolding parameter. This technique is applicable to more general problems. (paper)
A filament supported by different magnetic field configurations
Guo, Y.; Schmieder, B.; Démoulin, P.; Wiegelmann, T.; Aulanier, G.; Török, T.; Bommier, V.
2011-08-01
A nonlinear force-free magnetic field extrapolation of vector magnetogram data obtained by THEMIS/MTR on 2005 May 27 suggests the simultaneous existence of different magnetic configurations within one active region filament: one part of the filament is supported by field line dips within a flux rope, while the other part is located in dips within an arcade structure. Although the axial field chirality (dextral) and the magnetic helicity (negative) are the same along the whole filament, the chiralities of the filament barbs at different sections are opposite, i.e., right-bearing in the flux rope part and left-bearing in the arcade part. This argues against past suggestions that different barb chiralities imply different signs of helicity of the underlying magnetic field. This new finding about the chirality of filaments will be useful to associate eruptive filaments and magnetic cloud using the helicity parameter in the Space Weather Science.
Impact of error fields on equilibrium configurations in ITER
Energy Technology Data Exchange (ETDEWEB)
Barbato, Lucio [DIEI, Università di Cassino and Lazio Meridionale, Cassino (Italy); Formisano, Alessandro, E-mail: alessandro.formisano@unina2.it [Department of Industrial and Information Engineering, Seconda Univ. di Napoli, Aversa (Italy); Martone, Raffaele [Department of Industrial and Information Engineering, Seconda Univ. di Napoli, Aversa (Italy); Villone, Fabio [DIEI, Università di Cassino and Lazio Meridionale, Cassino (Italy)
2015-10-15
Highlights: • Error fields (EF) are discrepancies from nominal magnetic field, and may alter plasma behaviour. • They are due to, e.g., coils manufacturing and assembly errors. • EF impact in ITER equilibria is analyzed using numerical simulations. • A high accuracy 3D field computation module and a Grad-Shafranov solver are used. • Deformations size allow using a linearized model, and performing a sensitivity analysis. - Abstract: Discrepancies between design and actual magnetic field maps in tokamaks are unavoidable, and are associated to a number of causes, e.g. manufacturing and assembly tolerances on magnets, presence of feeders and joints, non-symmetric iron parts. Such error fields may drive plasma to loss of stability, and must be carefully controlled using suitable correction coils. Anyway, even when kept below safety threshold, error fields may alter the behavior of plasma. The present paper, using as example the error fields induced by tolerances in toroidal field coils, quantifies their effect on the plasma boundary shape in equilibrium configurations. In particular, a procedure able to compute the shape perturbations due to given deformations of the coils has been set up and used to carry out a thorough statistical analysis of the error field-shape perturbations relationship.
Phase diagram and tricritical behavior of an metamagnet in uniform and random fields
International Nuclear Information System (INIS)
Liang Yaqiu; Wei Guozhu; Xu Xiaojuan; Song Guoli
2010-01-01
A two-sublattice Ising metamagnet in both uniform and random fields is studied within the mean-field approach based on Bogoliubov's inequality for the Gibbs free energy. We show that the qualitative features of the phase diagrams are dependent on the parameters of the model and the uniform field values. The tricritical point and reentrant phenomenon can be observed on the phase diagram. The reentrance is due to the competition between uniform and random interactions.
Compact toroid development: activity plan for field reversed configurations
International Nuclear Information System (INIS)
1984-06-01
This document contains the description, goals, status, plans, and approach for the investigation of the properties of a magnetic configuration for plasma confinement identified as the field reversed configuration (FRC). This component of the magnetic fusion development program has been characterized by its potential for physical compactness and a flexible range of output power. The included material represents the second phase of FRC program planning. The first was completed in February 1983, and was reported in DOE/ER-0160; Compact Toroid Development. This planning builds on that previous report and concentrates on the detailed plans for the next several years of the current DOE sponsored program. It has been deliberately restricted to the experimental and theoretical efforts possible within the present scale of effort. A third phase of this planning exercise will examine the subsequent effort and resources needed to achieve near term (1987 to 1990) FRC technical objectives
Experimental studies of field-reversed configuration translation
Energy Technology Data Exchange (ETDEWEB)
Rej, D.J.; Armstrong, W.T.; Chrien, R.E.; Klingner, P.L.; Linford, R.K.; McKenna, K.F.; Sherwood, E.G.; Siemon, R.E.; Tuszewski, M.; Milroy, R.D.
1986-03-01
In the FRX-C/T experiment (Proceedings of the 9th Symposium for Engineering Problems of Fusion Research (IEEE, New York, 1981), p. 1751), field-reversed configuration (FRC) plasmas have been formed in, and launched from, a field-reversed theta-pinch source and subsequently trapped in an adjacent confinement region. No destructive instabilities or enhanced losses of poloidal flux, particles, or thermal energy are observed for FRC total trajectories of up to 16 m. The observed translation dynamics agree with two-dimensional magnetohydrodynamic (MHD) simulations. When translated into reduced external magnetic fields, FRC's are observed to accelerate, expand, and cool in partial agreement with adiabatic theory. The plasmas reflect from an external mirror and after each reflection, the axial kinetic energy is reduced by approximately 50%. Because of this reduction, FRC's are readily trapped without the need of pulsed gate magnet coils.
Steady state magnetic field configurations for the earth's magnetotail
International Nuclear Information System (INIS)
Hau, L.N.; Wolf, R.A.; Voigt, G.H.; Wu, C.C.
1989-01-01
The authors present a two-dimensional, force-balanced magnetic field model in which flux tubes have constant pVγ throughout an extended region of the nightside plasma sheet, between approximately 36 R E geocentric distance and the region of the inner edge of the plasma sheet. They have thus demonstrated the theoretical existence of a steady state magnetic field configuration that is force-balanced and also consistent with slow, lossless, adiabatic, earthward convection within the limit of the ideal MHD (isotropic pressure, perfect conductivity). The numerical solution was constructed for a two-dimensional magnetosphere with a rectangular magnetopause and nonflaring tail. The primary characteristics of the steady state convection solution are (1) a pressure maximum just tailward of the inner edge of the plasma sheet and (2) a deep, broad minimum in equatorial magnetic field strength B ze , also just tailward of the inner edge. The results are consistent with Erickson's (1985) convection time sequences, which exhibited analogous pressure peaks and B ze minima. Observations do not indicate the existence of a B ze minimum, on the average. They suggest that the configurations with such deep minima in B ze may be tearing-mode unstable, thus leading to substorm onset in the inner plasma sheet
Reactor prospects and present status of field-reversed configurations
International Nuclear Information System (INIS)
Hoffman, A.L.
1995-01-01
Field-Reversed Configurations (FRC) have an ideal geometry for a reactor, combining high beta toroidal confinement, with a linear external geometry. Present small diameter FRCs are thought to be stabilized by kinetic effects, but recent experiments in the Large s Experiment (LSX) have demonstrated stability as well into the MHD regime. Present empirical transport coefficients are already sufficient for a small pulsed reactor, but small steady state reactors will require about an order of magnitude reduction in plasma diffusivity. 13 refs., 4 figs., 1 tab
Tilting mode in rigidly rotating field-reversed configurations
International Nuclear Information System (INIS)
Clemente, R.A.; Milovich, J.L.
1983-01-01
The tilting-mode stability of field-reversed configurations is analyzed taking into account plasma rotational effects that had not been included in previous theoretical treatments. It is shown that for a rigidly rotating plasma in stationary equilibrium, stability can be attained if the plasma rotational energy is of the same order as the thermal energy. Since presently available values of the rotational velocities are quite lower than required by the stabilization mechanism considered here, the contribution of this effect to the overall stability of the mode does not appear to be significant
Rotational stability of a long field-reversed configuration
International Nuclear Information System (INIS)
Barnes, D. C.; Steinhauer, L. C.
2014-01-01
Rotationally driven modes of long systems with dominantly axial magnetic field are considered. We apply the incompressible model and order axial wavenumber small. A recently developed gyro-viscous model is incorporated. A one-dimensional equilibrium is assumed, but radial profiles are arbitrary. The dominant toroidal (azimuthal) mode numbers ℓ=1 and ℓ=2 modes are examined for a variety of non-reversed (B) and reversed profiles. Previous results for both systems with rigid rotor equilibria are reproduced. New results are obtained by incorporation of finite axial wavenumber and by relaxing the assumption of rigid electron and ion rotation. It is shown that the frequently troublesome ℓ=2 field reversed configuration (FRC) mode is not strongly affected by ion kinetic effects (in contrast to non-reversed cases) and is likely stabilized experimentally only by finite length effects. It is also shown that the ℓ=1 wobble mode has a complicated behavior and is affected by a variety of configuration and profile effects. The rotationally driven ℓ=1 wobble is completely stabilized by strong rotational shear, which is anticipated to be active in high performance FRC experiments. Thus, observed wobble modes in these systems are likely not driven by rotation alone
Rotational stability of a long field-reversed configuration
Energy Technology Data Exchange (ETDEWEB)
Barnes, D. C., E-mail: coronadocon@msn.com; Steinhauer, L. C. [Tri Alpha Energy, Rancho Santa Margarita, California 92688 (United States)
2014-02-15
Rotationally driven modes of long systems with dominantly axial magnetic field are considered. We apply the incompressible model and order axial wavenumber small. A recently developed gyro-viscous model is incorporated. A one-dimensional equilibrium is assumed, but radial profiles are arbitrary. The dominant toroidal (azimuthal) mode numbers ℓ=1 and ℓ=2 modes are examined for a variety of non-reversed (B) and reversed profiles. Previous results for both systems with rigid rotor equilibria are reproduced. New results are obtained by incorporation of finite axial wavenumber and by relaxing the assumption of rigid electron and ion rotation. It is shown that the frequently troublesome ℓ=2 field reversed configuration (FRC) mode is not strongly affected by ion kinetic effects (in contrast to non-reversed cases) and is likely stabilized experimentally only by finite length effects. It is also shown that the ℓ=1 wobble mode has a complicated behavior and is affected by a variety of configuration and profile effects. The rotationally driven ℓ=1 wobble is completely stabilized by strong rotational shear, which is anticipated to be active in high performance FRC experiments. Thus, observed wobble modes in these systems are likely not driven by rotation alone.
Perturbation fields in W VII-AS and Helias configurations
International Nuclear Information System (INIS)
Harmeyer, E.; Kisslinger, J.; Montvai, A.; Rau, F.; Wobig, H.
1988-01-01
Effects of pertubed topologies of the W VII-AS vacuum fields on the configuration with rational and irrational rotational transform are illustrated. Even small perturbation fields are unacceptable at rational values of the rotational transform. For example at a rotational transform = 1/2 in W VII-AS, when exceeding an effective homogeneous Bx/B = 3 x 10 -4 , the size of the rotational transform = 1/2 = 5/10 islands is doubled. At irrational values a Bx/B = 1/2% shows tolerable effects, for both W VII-AS and HS4-12. At rational values of the rotational transform = 1 near the edge, Bx/B values = 1/4 to 1/8% show a rather large increase of the aspect ratio, so an edge value of rotational transform = 1 should be avoided
Resistive m=o mode in reverse-field configurations
International Nuclear Information System (INIS)
Galvao, R.M.O.; Santiago, M.A.M.
1982-01-01
The resistive m=0 mode is studied. Where m is the azimuthal mode number in magnetic confinement configurations with parallel field lines such that the magnetic field reverses direction inside the plasma. A cylindrical plasma column which rotates rigidly with a rotation velocity Ω is considered. It is found that the growth rate of the mode γ scales differently with the plasma resistivity depending on whether Ω vanishes or not; γα sup(3/5) for Ω=0 and γα sup(1/3) for Ω different 0. When the Hall term is also included in the generalized Ohm's law, γα sup(1/2) is obtained. This last result is in disagreement with the results of Krappraff et al. (Author) [pt
Field-reversed configuration confinement in TRX-1
International Nuclear Information System (INIS)
Steinhauer, L.; Slough, J.
1984-01-01
Particle and poloidal flux lifetime data from the TRX-1, field-reversed theta pinch experiment, have been used to infer information on the basic transport behavior. The field-reversed configurations were created over a broad range of plasma parameters: separatrix radii, 4-8 cm; lengths, 35-80 cm; and temperature T/sub e/ + T/sub i/, 150-1000 eV. The confinement times covered a wide range as well: Particles, tau/sub N/ = 30-170 μs; poloidal flux, tau/sub phi/ = 30-140 μs; and energy tau/sub E/ = 20-75 μs. The experimental data was divided, a priori, into three classes: 1) the triggered-reconnection mode; 2) the programmed-formation mode with a good preionization (PI); and 3) programmed formation with poor PI
International Nuclear Information System (INIS)
Yu, He; Meng, Liang; Szott, Matthew M; Meister, Jack T; Cho, Tae S; Ruzic, David N
2013-01-01
An effort to optimize the magnetic field configuration specifically for high-power impulse magnetron sputtering (HiPIMS) was made. Magnetic field configurations with different field strengths, race track widths and race track patterns were designed using COMSOL. Their influence on HiPIMS plasma properties was investigated using a 36 cm diameter copper target. The I–V discharge characteristics were measured. The temporal evolution of electron temperature (T e ) and density (n e ) was studied employing a triple Langmuir probe, which was also scanned in the whole discharge region to characterize the plasma distribution and transport. Based on the studies, a closed path for electrons to drift along was still essential in HiPIMS in order to efficiently confine electrons and achieve a high pulse current. Very dense plasmas (10 19 –10 20 m −3 ) were generated in front of the race tracks during the pulse, and expanded downstream afterwards. As the magnetic field strength increased from 200 to 800 G, the expansion became faster and less isotropic, i.e. more directional toward the substrate. The electric potential distribution accounted for these effects. Varied race track widths and patterns altered the plasma distribution from the target to the substrate. A spiral-shaped magnetic field design was able to produce superior plasma uniformity on the substrate in addition to improved target utilization. (paper)
Electron Beam Dose Distribution in the Presence of Non-Uniform Magnetic Field
Directory of Open Access Journals (Sweden)
Mohamad Javad Tahmasebi-Birgani
2014-04-01
Full Text Available Introduction Magnetic fields are capable of altering the trajectory of electron beams andcan be used in radiation therapy.Theaim of this study was to produce regions with dose enhancement and reduction in the medium. Materials and Methods The NdFeB permanent magnets were arranged on the electron applicator in several configurations. Then, after the passage of the electron beams (9 and 15 MeV Varian 2100C/D through the non-uniform magnetic field, the Percentage Depth Dose(PDDs on central axis and dose profiles in three depths for each energy were measured in a 3D water phantom. Results For all magnet arrangements and for two different energies, the surface dose increment and shift in depth of maximum dose (dmax were observed. In addition, the pattern of dose distribution in buildup region was changed. Measurement of dose profile showed dose localization and spreading in some other regions. Conclusion The results of this study confirms that using magnetic field can alter the dose deposition patterns and as a result can produce dose enhancement as well as dose reduction in the medium using high-energy electron beams. These effects provide dose distribution with arbitrary shapes for use in radiation therapy.
Bui, Huu Nguyen; Pham, Thanh Son; Ngo, Viet; Lee, Jong-Wook
2017-09-01
Controlling power to an unintended area is an important issue for enabling wireless power transfer (WPT) systems. The control allows us to enhance efficiency as well as suppress unnecessary flux leakage. The flux leakage from WPT can be reduced effectively via selective field localization. To realize field localization, we propose the use of cavities formed on a single metamaterial slab that acts as a defected metasurface. The cavity is formed by strong field confinement using a hybridization bandgap (HBG), which is created by wave interaction with a two-dimensional array of local resonators on the metasurface. This approach using an HBG demonstrates strong field localization around the cavity regions. Motivated by this result, we further investigate various cavity configurations for different sizes of the transmitter (Tx) and receiver (Rx) resonators. Experiments show that the area of field localization increases with the number of cavities, confirming the successful control of different cavity configurations on the metasurface. Transmission measurements of different cavities show that the number of cavities is an important parameter for efficiency, and excess cavities do not enhance the efficiency but increase unnecessary power leakage. Thus, there exists an optimum number of cavities for a given size ratio between the Tx and Rx resonators. For a 6:1 size ratio, this approach achieves efficiency improvements of 3.69× and 1.59× compared to free space and a uniform metasurface, respectively. For 10:1 and 10:2 size ratios, the efficiency improvements are 3.26× and 1.98× compared to free space and a uniform metasurface, respectively.
Numerical simulation on multi-peak magnetic field configuration for negative hydrogen ion source
International Nuclear Information System (INIS)
Wang Xiaomin; Yang Chao; Liu Dagang; Wang Xueqiong
2011-01-01
Based on the magnetic charge model, the numerical algorithm of three-dimensional permanent magnets was derived by the finite difference method. Then combining the full three-dimensional particle-in-cell/Monte Carlo algorithm (PIC/MCC), two multi-peak magnetic field configurations, external magnetic filter and tent-shaped filter, were analyzed respectively, and their influences on electron energy distribution were compared. The simulation results show that both configurations can confine the diffusion of particles and can extract negative hydrogen ions; their electron energy distributions are basically similar, presenting double energy state, which are consistent with the basic mechanism of plasma discharge. The former configuration is stronger in confining and can produce more particles, whose total number is approximately four times that of the latter. The tent-shaped magnetic filter can efficiently prevent electron drift caused by inhomogeneous longitudinal magnetic field, leading to more uniform spatial distribution of negative hydrogen ions. The results of simulation are consistent with those from the foreign experiment. (authors)
Dynamic processes in field-reversed-configuration compact toroids
International Nuclear Information System (INIS)
Rej, D.J.
1987-01-01
In this lecture, the dynamic processes involved in field-reversed configuration (FRC) formation, translation, and compression will be reviewed. Though the FRC is related to the field-reversed mirror concept, the formation method used in most experiments is a variant of the field-reversed Θ-pinch. Formation of the FRC eqilibrium occurs rapidly, usually in less than 20 μs. The formation sequence consists of several coupled processes: preionization; radial implosion and compression; magnetic field line closure; axial contraction; equilibrium formation. Recent experiments and theory have led to a significantly improved understanding of these processes; however, the experimental method still relies on a somewhat empirical approach which involves the optimization of initial preionization plasma parameters and symmetry. New improvements in FRC formation methods include the use of lower voltages which extrapolate better to larger devices. The axial translation of compact toroid plasmas offers an attractive engineering convenience in a fusion reactor. FRC translation has been demonstrated in several experiments worldwide, and these plasmas are found to be robust, moving at speeds up to the Alfven velocity over distances of up to 16 m, with no degradation in the confinement. Compact toroids are ideal for magnetic compression. Translated FRCs have been compressed and heated by imploding liners. Upcoming experiments will rely on external flux compression to heat a translater FRC at 1-GW power levels. 39 refs
2015-01-01
Understanding protein–surface interactions is crucial to solid-state biomedical applications whose functionality is directly correlated with the precise control of the adsorption configuration, surface packing, loading density, and bioactivity of protein molecules. Because of the small dimensions and highly amphiphilic nature of proteins, investigation of protein adsorption performed on nanoscale topology can shed light on subprotein-level interaction preferences. In this study, we examine the adsorption and assembly behavior of a highly elongated protein, fibrinogen, on both chemically uniform (as-is and buffered HF-treated SiO2/Si, and homopolymers of polystyrene and poly(methyl methacrylate)) and varying (polystyrene-block-poly(methyl methacrylate)) surfaces. By focusing on high-resolution imaging of individual protein molecules whose configurations are influenced by protein–surface rather than protein–protein interactions, fibrinogen conformations characteristic to each surface are identified and statistically analyzed for structural similarities/differences in key protein domains. By exploiting block copolymer nanodomains whose repeat distance is commensurate with the length of the individual protein, we determine that fibrinogen exhibits a more neutral tendency for interaction with both polystyrene and poly(methyl methacrylate) blocks relative to the case of common globular proteins. Factors affecting fibrinogen–polymer interactions are discussed in terms of hydrophobic and electrostatic interactions. In addition, assembly and packing attributes of fibrinogen are determined at different loading conditions. Primary orientations of fibrinogen and its rearrangements with respect to the underlying diblock nanodomains associated with different surface coverage are explained by pertinent protein interaction mechanisms. On the basis of two-dimensional stacking behavior, a protein assembly model is proposed for the formation of an extended fibrinogen network
Electrified BPS giants: BPS configurations on giant gravitons with static electric field
International Nuclear Information System (INIS)
Ali-Akbari, Mohammad; Sheikh-Jabbari, Mohammad Mahdi
2007-01-01
We consider D3-brane action in the maximally supersymmetric type IIB plane-wave background. Upon fixing the light-cone gauge, we obtain the light-cone Hamiltonian which is manifestly supersymmetric. The 1/2 BPS solutions of this theory (solutions which preserve 16 supercharges) are either of the form of spherical three branes, the giant gravitons, or zero size point like branes. We then construct specific classes of 1/4 BPS solutions of this theory in which static electric field on the brane is turned on. These solutions are deformations about either of the two 1/2 BPS solutions. In particular, we study in some detail 1/4 BPS configurations with electric dipole on the three sphere giant, i.e. BIons on the giant gravitons, which we hence call BIGGons. We also study BPS configurations corresponding to turning on a background uniform constant electric field. As a result of this background electric field the three sphere giant is deformed to squashed sphere, while the zero size point like branes turn into circular or straight fundamental strings in the plane-wave background, with their tension equal to the background electric field
Complexity of Configurators Relative to Integrations and Field of Application
DEFF Research Database (Denmark)
Kristjansdottir, Katrin; Shafiee, Sara; Battistello, Loris
. Moreover, configurators are commonly integrated to various IT systems within companies. The complexity of configurators is an important factor when it comes to performance, development and maintenance of the systems. A direct comparison of the complexity based on the different application...... integrations to other IT systems. The research method adopted in the paper is based on a survey followed with interviews where the unit of analysis is based on operating configurators within a company.......Configurators are applied widely to automate the specification processes at companies. The literature describes the industrial application of configurators supporting both sales and engineering processes, where configurators supporting the engineering processes are described more challenging...
Profile stabilization of tilt mode in a Field Reversed Configuration
Energy Technology Data Exchange (ETDEWEB)
Cobb, J.W.; Tajima, T. [Texas Univ., Austin, TX (United States). Inst. for Fusion Studies; Barnes, D.C. [Los Alamos National Lab., NM (United States)
1993-06-01
The possibility of stabilizing the tilt mode in Field Reversed Configurations without resorting to explicit kinetic effects such as large ion orbits is investigated. Various pressure profiles, P({Psi}), are chosen, including ``hollow`` profiles where current is strongly peaked near the separatrix. Numerical equilibria are used as input for an initial value simulation which uses an extended Magnetohydrodynamic (MHD) model that includes viscous and Hall terms. Tilt stability is found for specific hollow profiles when accompanied by high values of separatrix beta, {beta}{sub sep}. The stable profiles also have moderate to large elongation, racetrack separatrix shape, and lower values of 3, average ratio of Larmor radius to device radius. The stability is unaffected by changes in viscosity, but the neglect of the Hall term does cause stable results to become marginal or unstable. Implications for interpretation of recent experiments are discussed.
Profile stabilization of tilt mode in a Field Reversed Configuration
International Nuclear Information System (INIS)
Cobb, J.W.; Tajima, T.
1993-06-01
The possibility of stabilizing the tilt mode in Field Reversed Configurations without resorting to explicit kinetic effects such as large ion orbits is investigated. Various pressure profiles, P(Ψ), are chosen, including ''hollow'' profiles where current is strongly peaked near the separatrix. Numerical equilibria are used as input for an initial value simulation which uses an extended Magnetohydrodynamic (MHD) model that includes viscous and Hall terms. Tilt stability is found for specific hollow profiles when accompanied by high values of separatrix beta, β sep . The stable profiles also have moderate to large elongation, racetrack separatrix shape, and lower values of 3, average ratio of Larmor radius to device radius. The stability is unaffected by changes in viscosity, but the neglect of the Hall term does cause stable results to become marginal or unstable. Implications for interpretation of recent experiments are discussed
Ruggeri, Michele; Luo, Hongjun; Alavi, Ali
Full Configuration Interaction Quantum Monte Carlo (FCIQMC) is able to give remarkably accurate results in the study of atoms and molecules. The study of the uniform electron gas (UEG) on the other hand has proven to be much harder, particularly in the low density regime. The source of this difficulty comes from the strong interparticle correlations that arise at low density, and essentially forbid the study of the electron gas in proximity of Wigner crystallization. We extend a previous study on the three dimensional electron gas computing the energy of a fully polarized gas for N=27 electrons at high and medium density (rS = 0 . 5 to 5 . 0). We show that even when dealing with a polarized UEG the computational cost of the study of systems with rS > 5 . 0 is prohibitive; in order to deal with correlations and to extend the density range that to be studied we introduce a basis of localized states and an effective transcorrelated Hamiltonian.
The magnetostriction in a superconductor-magnet system under non-uniform magnetic field
Energy Technology Data Exchange (ETDEWEB)
Li, Xueyi; Jiang, Lang; Wu, Hao [Key Laboratory of Mechanics on Disaster and Environment in Western China attached to the Ministry of Education of China, Lanzhou University, Lanzhou, Gansu 730000 (China); Gao, Zhiwen, E-mail: gaozhw@lzu.edu.cn [Department of Mechanics and Engineering Science, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China)
2017-03-15
Highlights: • We studied firstly magnetostriction in HTS under non-uniform magnetic field. • The superconductors may be homogeneous and nonhomogeneous. • The magnetostrictions response of the HTS is sensitive to the critical current density and amplitude of the applied magnetic field. • The magnetostriction of nonhomogeneous HTS is larger than that of homogeneous HTS. - Abstract: This paper describes a numerical model to examine the magnetostriction of bulk high-temperature superconductor (HTS) under non-uniform magnetic field in conjunction with finite element analysis. Through this model, the magnetostriction of homogeneous and nonhomogeneous HTS can be implemented under non-uniform magnetic field. Further, the effects of critical current density, applied field frequency and amplitude are also considered. The computational study can provide a fundamental mechanistic understanding the effects of non-uniform magnetic field on magnetostriction of HTS.
Influence of Non-Uniform Magnetic Field on Quantum Teleportation in Heisenberg XY Model
Institute of Scientific and Technical Information of China (English)
SHAO Bin; YANG Tie-jian; ZHAO Yue-hong; ZOU Jian
2007-01-01
By considering the intrinsic decoherence, the validity of quantum teleportation of a two-qubit 1D Heisenberg XY chain in a non-uniform external magnetic field is studied. The fidelity as the measurement of a possible quantum teleportation is calculated and the effects of the non-uniform magnetic field and the intrinsic decoherence are discussed. It is found that anti-parallel magnetic field is more favorable for teleportation and the fidelity is suppressed by the intrinsic decoherence.
Khine, Y. Y.; Walker, J. S.
1995-02-01
This paper treats the buoyant convection during the Czochralski growth of silicon crystals with a steady, strong, non-uniform, axisymmetric magnetic field. We consider a family of magnetic fields which includes a uniform axial magnetic field and a "cusp" field which is produced by identical solenoids placed symmetrically above and below the plane of the crystal-melt interface and free surface. We investigate the evolution of the buoyant convection as the magnetic field is changed continuously from a uniform axial field to a cusp field, with a constant value of the root-mean-squared magnetic flux density in the melt. We also investigate changes as the magnetic flux density is increased. While the cusp field appears very promising, perfect alignment between the local magnetic field vector and the crystal-melt interface or free surface is not possible, so the effects of a slight misalignment are also investigated.
End-shorting and electric field in edge plasmas with application to field-reversed configurations
International Nuclear Information System (INIS)
Steinhauer, Loren C.
2002-01-01
The shorting of open field lines where they intersect external boundaries strongly modifies the transverse electric field all along the field lines. The modified electric field is found by an extension of the familiar Boltzmann relation for the electric potential. This leads to a prediction of the electric drift. Flow generation by electrical shorting is applied here to three aspects of elongated field-reversed configurations: plasma rotation rate; the particle-loss spin-up mechanism; and the sustainability of the rotating magnetic field current drive method
International Nuclear Information System (INIS)
Zhou, J. F.; Shao, C. L.; Gu, B. Q.
2016-01-01
Magnetic particles (MPs) are known to respond to a magnetic field and can be moved by magnetic force, which make them good carriers in bioengineering and pharmaceutical engineering. In this paper, a pose control method for the straight chain composed of MPs is proposed, and the chain with one pose can be moved to another position with another pose using alternately employed uniform and gradient magnetic fields. Based on computer simulations, it is revealed that in the uniform magnetic field, the MPs form a straight chain with the same separation space along the field lines, and once the uniform magnetic field rotates, the chain also rotates with the field. In the gradient magnetic field, the MPs move toward the higher field so that the translation of the chain can be realized. The simulation results indicate that while the uniform magnetic field is rotating, there exists certain hysteresis between the chain and the field, and the chain is not straight anymore. So the uniform magnetic field should rest at the target angle for a period to make the chain fully relax to be straight. For nanoMP, its magnetic moment directly determines the gradient magnetic force which is much smaller than the dipole–dipole force among MPs. Therefore, the translation of the chain is much more time-consuming than rotation. To enlarge the translational velocity, it is suggested to increase the size of MPs or the magnetic field gradient
Effects of flux conservation on the field configuration in Scyllac
International Nuclear Information System (INIS)
Van der Laan, P.C.T.
1977-04-01
Flux conservation in Scyllac-type experiments shows up in two ways. First of all the poloidal flux between the outside edge of the plasma and the inside of the coil is conserved. This requires a net longitudinal current in the plasma, to cancel the poloidal flux caused by the helical stellarator fields. An expression for this net current is derived, and effects that could occur in sector experiments are discussed. The flux conservation inside the conducting plasma leads to a conservation of the local rotational transform. Since the pinch itself is surrounded by a well-conducting low-density plasma, the rotational transform is conserved in a wide region. Depending on the time history of the applied fields, volume currents are induced in this region, as is shown for two examples. Although an additional capacitor bank can be used to cancel the net current, a cancellation of all the volume currents is extremely difficult. The resulting equilibrium configurations differ considerably from the Scyllac equilibria without volume currents, which are used in stability calculations
Helicons in uniform fields. II. Poynting vector and angular momenta
Stenzel, R. L.; Urrutia, J. M.
2018-03-01
The orbital and spin angular momenta of helicon modes have been determined quantitatively from laboratory experiments. The current density is obtained unambiguously from three dimensional magnetic field measurements. The only approximation made is to obtain the electric field from Hall Ohm's law which is usually the case for low frequency whistler modes. This allows the evaluation of the Poynting vector from which the angular momentum is obtained. Comparing two helicon modes (m = 0 and m = 1), one can separate the contribution of angular momentum of a rotating and non-rotating wave field. The orbital angular momentum is important to assess the wave-particle interaction by the transverse Doppler shift of rotating waves which has not been considered so far.
Khine, Y. Y.; Walker, J. S.
1996-08-01
Centrifugal pumping flows are produced in the melt by the rotations of crystal and crucible during the Czochralski growth of silicon crystals. This paper treats the centrifugal pumping effects with a steady, strong, non-uniform axisymmetric magnetic field. We consider a family of magnetic fields ranging from a uniform axial field to a "cusp" field, which has a purely radial field at the crystal-melt interface and free surface. We present the numerical solutions for the centrifugal pumping flows as the magnetic field is changed continuously from a uniform axial field to a cusp one, and for arbitrary Hartmann number. Since the perfect alignment between the local magnetic field vector and the crystal-melt interface or free surface is not likely, we also investigate the effects of a slight misalignment.
International Nuclear Information System (INIS)
Ramos-Alvarado, Bladimir; Li Peiwen; Liu Hong; Hernandez-Guerrero, Abel
2011-01-01
A study of the heat transfer performance of liquid-cooled heat sinks with conventional and novel micro-channel flow field configurations for application in electronic devices, fuel cells, and concentrated solar cells is presented in this paper. The analyses were based on computations using the CFD software ANSYS FLUENT. The flow regime in heat sinks is constrained to laminar flow in the study. Details of the heat transfer performance, particularly, the uniformity of temperature distribution on the heating surface, as well as the pressure losses and pumping power in the operation of the studied heat sinks were obtained. Comparisons of the flow distribution uniformity in multiple flow channels, temperature uniformity on heating surfaces, and pumping power consumption of heat sinks with novel flow field configurations and conventional flow field configurations were conducted. It was concluded that the novel flow field configurations studied in this work exhibit appreciable benefits for application in heat sinks. - Highlights: → We present novel designs of flow channel configurations in liquid cooled heat sinks. → The flow and heat transfer in heat sinks were simulated using CFD tool. → The temperature and pressure loss in novel and conventional heat sinks were studied. → Figure of merit of heat sinks in different flow channel configurations was presented. → The heat sinks having our novel design of flow channel configurations are excellent.
Helical undulator based on partial redistribution of uniform magnetic field
Balal, N.; Bandurkin, I. V.; Bratman, V. L.; Fedotov, A. E.
2017-12-01
A new type of helical undulator based on redistribution of magnetic field of a solenoid by ferromagnetic helix has been proposed and studied both in theory and experiment. Such undulators are very simple and efficient for promising sources of coherent spontaneous THz undulator radiation from dense electron bunches formed in laser-driven photo-injectors.
Helical undulator based on partial redistribution of uniform magnetic field
Directory of Open Access Journals (Sweden)
N. Balal
2017-12-01
Full Text Available A new type of helical undulator based on redistribution of magnetic field of a solenoid by ferromagnetic helix has been proposed and studied both in theory and experiment. Such undulators are very simple and efficient for promising sources of coherent spontaneous THz undulator radiation from dense electron bunches formed in laser-driven photo-injectors.
Calculation of gas gain fluctuations in uniform fields
Schindler, H; Veenhof, R
2010-01-01
Fluctuations of the charge amplification factor (gain) are a key element for assessing the performance of gas-based particle detectors In this report we present Monte Carlo calculations of electron avalanches based on the Magboltz program In terms of a simple model extracted from the simulation an intuitive explanation for the impact of the gas mixture and the electric field on the gain spectrum is proposed.
Energy Technology Data Exchange (ETDEWEB)
Huang, Yung-Jui [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Chang, Hsin-Yueh; Chang, Hsuan-Chen [Department of Electronic and computer Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Shih, Yi-Ting; Su, Wei-Jhih [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Ciou, Chen-Hong [Department of Electronic and computer Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Chen, Yi-Ling [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Honda, Shin-ichi [Graduate School of Engineering, University of Hyogo, Himeji, Hyogo 671-2280 (Japan); Huang, Ying-Sheng [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Department of Electronic and computer Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Lee, Kuei-Yi, E-mail: kylee@mail.ntust.edu.tw [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Department of Electronic and computer Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China)
2014-03-15
Highlights: • We have successfully designed the honeycomb patterns on glass substrate by photolithography technique. • Honeycomb-VACNTs were synthesized successfully onto glass substrate by using thermal CVD and covered different Ti films on VACNTs by e-beam evaporation. • After coating the Ti films, the current density reached 7 mA/cm{sup 2} when the electric field was 2.5 V/μm. • The fluorescence of VACNTs with Ti 15 nm films exhibits the high brightness screen and emission uniformity. -- Abstract: Carbon nanotubes (CNTs) were grown successfully onto a glass substrate using thermal chemical vapor deposition (TCVD) with C{sub 2}H{sub 2} gas at 700 °C. The synthesized CNTs exhibited good crystallinity and a vertically aligned morphology. The vertically aligned CNTs (VACNTs) were patterned with a honeycomb configuration using photolithography and characterized using field emission (FE) applications. Owing to the electric field concentration, the FE current density of VACNTs with honeycomb configuration was higher than that of the un-patterned VACNTs. Ti was coated onto the VACNT surface utilizing the relatively lower work function property to enhance the FE current density. The FE current density reached up to 7.0 mA/cm{sup 2} at an applied electric field of 2.5 V/μm. A fluorescent screen was monitored to demonstrate uniform FE VACNTs with a honeycomb configuration. The designed field emitter provided an admirable example for FE applications.
Energy Technology Data Exchange (ETDEWEB)
Sehgal, A K; Gupta, S C [Punjabi Univ., Patiala (India). Dept. of Physics
1982-12-14
The complementary variational principles method (CVP) is applied to the thermal conductivities of a plasma in a uniform magnetic field. The results of computations show that the CVP derived results are very useful.
Uniformity of fully gravure printed organic field-effect transistors
International Nuclear Information System (INIS)
Hambsch, M.; Reuter, K.; Stanel, M.; Schmidt, G.; Kempa, H.; Fuegmann, U.; Hahn, U.; Huebler, A.C.
2010-01-01
Fully mass-printed organic field-effect transistors were made completely by means of gravure printing. Therefore a special printing layout was developed in order to avoid register problems in print direction. Upon using this layout, contact pads for source-drain electrodes of the transistors are printed together with the gate electrodes in one and the same printing run. More than 50,000 transistors have been produced and by random tests a yield of approximately 75% has been determined. The principle suitability of the gravure printed transistors for integrated circuits has been shown by the realization of ring oscillators.
Proportional counter with uniform electric field with Penning's mixture
International Nuclear Information System (INIS)
Pawlowski, Z.; Marzec, J.; Zaremba, K.
1984-01-01
Some calculations are given and the design of proportional counters with a homogeneous electric field filled with Penning's mixtures, which ensure the best energy resolution is described. The counters with mixtures of Ne+Ar, Ne+CH 4 , Ne+CO 2 and Ar+C 2 H 2 have been checked. The admixtures (Ar, CH 4 , CO 2 , C 2 H 2 ) constitute from 0.1 to 2%, with pressure from 125 Tr to 760 Torr. The best energy resolution has been obtained for the mixture of Ne+1%CH 4 at the pressure of 190 Torr
Resonance and Chaotic Trajectories in Magnetic Field Reversed Configuration
Energy Technology Data Exchange (ETDEWEB)
A.S. Landsman; S.A. Cohen; M. Edelman; G.M. Zaslavsky
2005-04-13
The nonlinear dynamics of a single ion in a field-reversed configuration (FRC) were investigated. FRC is a toroidal fusion device which uses a specific type of magnetic field to confine ions. As a result of angular invariance, the full three-dimensional Hamiltonian system can be expressed as two coupled, highly nonlinear oscillators. Due to the high nonlinearity in the equations of motion, the behavior of the system is extremely complex, showing different regimes, depending on the values of the conserved canonical angular momentum and the geometry of the fusion vessel. Perturbation theory and averaging were used to derive the unperturbed Hamiltonian and frequencies of the two degrees of freedom. The derived equations were then used to find resonances and compare to Poincar{copyright} surface-of-section plots. A regime was found where the nonlinear resonances were clearly separated by KAM [Kolmogorov-Arnold-Mosher] curves. The structure of the observed island chains was explained. The condition for the destruction of KAM curves and the onset of strong chaos was derived, using Chirikov island overlap criterion, and shown qualitatively to depend both on the canonical angular momentum and geometry of the device. After a brief discussion of the adiabatic regime the paper goes on to explore the degenerate regime that sets in at higher values of angular momenta. In this regime, the unperturbed Hamiltonian can be approximated as two uncoupled linear oscillators. In this case, the system is near-integrable, except in cases of a universal resonance, which results in large island structures, due to the smallness of nonlinear terms, which bound the resonance. The linear force constants, dominant in this regime, were derived and the geometry for a large one-to-one resonance identified. The above analysis showed good agreement with numerical simulations and was able to explain characteristic features of the dynamics.
Resonance and Chaotic Trajectories in Magnetic Field Reversed Configuration
International Nuclear Information System (INIS)
Landsman, A.S.; Cohen, S.A.; Edelman, M.; Zaslavsky, G.M.
2005-01-01
The nonlinear dynamics of a single ion in a field-reversed configuration (FRC) were investigated. FRC is a toroidal fusion device which uses a specific type of magnetic field to confine ions. As a result of angular invariance, the full three-dimensional Hamiltonian system can be expressed as two coupled, highly nonlinear oscillators. Due to the high nonlinearity in the equations of motion, the behavior of the system is extremely complex, showing different regimes, depending on the values of the conserved canonical angular momentum and the geometry of the fusion vessel. Perturbation theory and averaging were used to derive the unperturbed Hamiltonian and frequencies of the two degrees of freedom. The derived equations were then used to find resonances and compare to Poincar(copyright) surface-of-section plots. A regime was found where the nonlinear resonances were clearly separated by KAM [Kolmogorov-Arnold-Mosher] curves. The structure of the observed island chains was explained. The condition for the destruction of KAM curves and the onset of strong chaos was derived, using Chirikov island overlap criterion, and shown qualitatively to depend both on the canonical angular momentum and geometry of the device. After a brief discussion of the adiabatic regime the paper goes on to explore the degenerate regime that sets in at higher values of angular momenta. In this regime, the unperturbed Hamiltonian can be approximated as two uncoupled linear oscillators. In this case, the system is near-integrable, except in cases of a universal resonance, which results in large island structures, due to the smallness of nonlinear terms, which bound the resonance. The linear force constants, dominant in this regime, were derived and the geometry for a large one-to-one resonance identified. The above analysis showed good agreement with numerical simulations and was able to explain characteristic features of the dynamics
Analytic regularization of uniform cubic B-spline deformation fields.
Shackleford, James A; Yang, Qi; Lourenço, Ana M; Shusharina, Nadya; Kandasamy, Nagarajan; Sharp, Gregory C
2012-01-01
Image registration is inherently ill-posed, and lacks a unique solution. In the context of medical applications, it is desirable to avoid solutions that describe physically unsound deformations within the patient anatomy. Among the accepted methods of regularizing non-rigid image registration to provide solutions applicable to medical practice is the penalty of thin-plate bending energy. In this paper, we develop an exact, analytic method for computing the bending energy of a three-dimensional B-spline deformation field as a quadratic matrix operation on the spline coefficient values. Results presented on ten thoracic case studies indicate the analytic solution is between 61-1371x faster than a numerical central differencing solution.
Generation of uniform magnetic field using a spheroidal helical coil structure
International Nuclear Information System (INIS)
Öztürk, Yavuz; Aktaş, Bekir
2016-01-01
Uniformity of magnetic fields are of great importance especially in magnetic resonance studies, namely in magnetic resonance spectroscopy applications (NMR, FMR, ESR, EPR etc.) and magnetic resonance imaging applications (MRI, FMRI). Field uniformity is also required in some other applications such as eddy current probes, magnetometers, magnetic traps, particle counters etc. Here we proposed a coil winding regime, which follows the surface of a spheroid (an ellipsoid of rotation); in light of previous theoretical studies suggesting perfect uniformity for a constant ampere per turn in the axial direction thereof. We demonstrated our theoretical results from finite element calculations suggesting 0.15% of field uniformity for the proposed structure, which we called a Spheroidal Helical Coil. (paper)
Bauer, Rita A.; Kelemen, Lóránd; Nakano, Masami; Totsuka, Atsushi; Zrínyi, Miklós
2015-10-01
We have presented the first direct observation of electric field induced rotation of epoxy based polymer rotors. Polymer disks, hollow cylinders and gears were prepared in few micrometer dimensions as rotors. Electrorotation of these sub-millimeter sized tools was studied under uniform dc electric field. The effects of shape, size and thickness were investigated. The novel epoxy based micro devices show intensive spinning in a uniform dc electric field. The rotational speed of micron-sized polymer rotors can be conveniently tuned in a wide range (between 300 and 3000 rpm) by the electric field intensity, opening new perspectives for their use in several MEMS applications.
International Nuclear Information System (INIS)
Bauer, Rita A; Zrínyi, Miklós; Kelemen, Lóránd; Nakano, Masami; Totsuka, Atsushi
2015-01-01
We have presented the first direct observation of electric field induced rotation of epoxy based polymer rotors. Polymer disks, hollow cylinders and gears were prepared in few micrometer dimensions as rotors. Electrorotation of these sub-millimeter sized tools was studied under uniform dc electric field. The effects of shape, size and thickness were investigated. The novel epoxy based micro devices show intensive spinning in a uniform dc electric field. The rotational speed of micron-sized polymer rotors can be conveniently tuned in a wide range (between 300 and 3000 rpm) by the electric field intensity, opening new perspectives for their use in several MEMS applications. (paper)
Droplet rotation model apply in steam uniform flow and gravitational field
International Nuclear Information System (INIS)
Zhang Jinyi; Bo Hanliang; Sun Yuliang; Wang Dazhong
2012-01-01
The mechanism droplet movement behavior and the qualitative description of droplet trajectory in the steam uniform flow field in the gravitational field were researched with droplet rotation model. According to the mechanism of gravitational field and uniform flow fields, the effects on droplets movement were analyzed and the importance of lift forces was also discussed. Finally, a general trajectory and mechanism of the droplets movement was derived which lays the groundwork for the qualitative analysis of the single-drop model and could be general enough to be used in many applications. (authors)
Liquid-metal flow in a rectangular duct with a non-uniform magnetic field
International Nuclear Information System (INIS)
Walker, J.S.
1986-04-01
This paper treats liquid-metal flow in rectangular ducts with thin conducting walls. A transverse magnetic field changes from a uniform strength upstream to a weaker uniform strength downstream. The Hartmann number and the interaction parameter are assumed to be large, while the magnetic Reynolds number is assumed to be small. If the magnetic field changes gradually over a long duct length, the velocity and pressure are nearly uniform in each cross section and the flow differs slightly from locally fully developed flow. If the magnetic field changes more abruptly over a shorter duct length, the velocity and pressure are much larger near the walls parallel to the magnetic field than in the central part of duct. Solutions for the pressure drops due to the magnetic field change are presented
ERATO-code analysis of vacuum magnetic field oscillations in JT-60 divertor configuration
International Nuclear Information System (INIS)
Ozeki, Takahisa; Tokuda, Shinji; Tsunematsu, Toshihide; Ishida, Shinichi; Neyatani, Yuzuru; Itami, Kiyoshi; Azumi, Masafumi
1989-07-01
Magnetic field oscillations caused by external kink instabilities are numerically studied by using the ideal MHD stability code ERATO-J. Dependence of a spatial distribution of their amplitude and phase on aspect-ratio, beta-poloidal, shaping of conducting shell and divertor/limiter configurations is examined in detail. In the low aspect ratio plasma, the amplitude of magnetic oscillations in the inner side of the torus is larger than that in the outer. On the contrary, as the poloidal beta increases, the amplitude in the outer side of the torus becomes larger than that in the inner. In the divertor configuration, the amplitude of oscillations reduces near the X-point and the phase is locally modulated. The coherent magnetic oscillations observed in JT-60 agree well with the theoretical results, where the vacuum vessel is assumed to be an ideal conducting shell. The non-uniformity of the poloidal distribution observed in JT-60 can be explained by the combined effects of the finite beta, the X-point and the shape of shell. (author)
Liu, Chong; Dobrynin, Danil; Fridman, Alexander
2014-06-25
In this study, we report experimental results on fast ICCD imaging of development of nanosecond-pulsed dielectric barrier discharge (DBD) in atmospheric air and spectroscopic measurements of electric field in the discharge. Uniformity of the discharge images obtained with nanosecond exposure times were analyzed using chi-square test. The results indicate that DBD uniformity strongly depends on applied (global) electric field in the discharge gap, and is a threshold phenomenon. We show that in the case of strong overvoltage on the discharge gap (provided by fast rise times), there is transition from filamentary to uniform DBD mode which correlates to the corresponding decrease of maximum local electric field in the discharge.
Below-threshold harmonic generation from strong non-uniform fields
Yavuz, I.
2017-10-01
Strong-field photoemission below the ionization threshold is a rich/complex region where atomic emission and harmonic generation may coexist. We studied the mechanism of below-threshold harmonics (BTH) from spatially non-uniform local fields near the metallic nanostructures. Discrete harmonics are generated due to the broken inversion symmetry, suggesting enriched coherent emission in the vuv frequency range. Through the numerical solution of the time-dependent Schrödinger equation, we investigate wavelength and intensity dependence of BTH. Wavelength dependence identifies counter-regular resonances; individual contributions from the multi-photon emission and channel-closing effects due to quantum path interferences. In order to understand the underlying mechanism of BTH, we devised a generalized semi-classical model, including the influence of Coulomb and non-uniform field interactions. As in uniform fields, Coulomb potential in non-uniform fields is the determinant of BTH; we observed that the generation of BTH are due to returning trajectories with negative energies. Due to large distance effectiveness of the non-uniformity, only long trajectories are noticeably affected.
Smoothing and instability with magnetic field in a non-uniformly laser-irradiated planar target
International Nuclear Information System (INIS)
Bell, A.R.; Epperlein, E.M.
1986-01-01
Calculations are presented of the magneto-hydrodynamic response of a planar target to non-uniformities in energy deposition by a laser. The amplitude of the non-uniformities are assumed small and the equations are linearised in small perturbations about the solution for steady planar ablation driven by uniform laser energy deposition. The grad(n)xgrad(T) magnetic field source is included, along with Nernst convection and the Righi-Leduc heat flow. The magnetic field is shown to give a small increase in smoothing. A source term for magnetic field is included to simulate the effects of the Weibel instability. The instability is not strong enough to overcome the smoothing processes under the present assumptions. (author)
Analysis and Optimization for Uniformity of Magnetic Field Driving the Giant Magnetostriction
International Nuclear Information System (INIS)
Wang, L; Ye, H; Liu, Y T; Yao, S M
2006-01-01
Giant magnetostriction actuator based on material Tb0.27Dy0.73Fe2 and electromagnetic transform has characteristics of high frequency response, large output power and etc, but it has a high demand for the uniformity of magnetic field driver and magnetic intensity. Object to the problem, a multi-scale external concavity structure is proposed, by means of inducting the hollow column coil structure, building the model of coil magnetic distribution and analyzing by finite element analysis method. The analysis results show that uniformity of the model magnetic field is dependent upon magnetic intensity and scales, and the boundary condition of material. As the scale increases, magnetic uniformity is enhanced, but the magnetic intensity is decreased. Taking consideration both of magnetic field distribution and magnetic intensity, threescale structure is determined as optimum structure
Power deposition by neutral beam injected fast ions in field-reversed configurations
International Nuclear Information System (INIS)
Takahashi, Toshiki; Kato, Takayuki; Kondoh, Yoshiomi; Iwasaka, Naotaka
2004-04-01
Effects of Coulomb collisions on neutral beam (NB) injected fast ions into Field-Reversed Configuration (FRC) plasmas are investigated by calculating the single particle orbits, where the ions are subject to the slowing down and pitch angle collisions. The Monte-Carlo method is used for the pitch angle scattering, and the friction term is added to the equation of motion to show effects of slowing down collision such as the deposited power profile. Calculation parameters used are relevant to the NB injection on the FRC Injection Experiment (FIX) device. It is found that the dominant local power deposition occurs in the open field region between the X-point and the mirror point because of a concentration of fast ions and a longer duration travel at the mirror reflection point. In the present calculation, the maximum deposited power to the FRC plasma is about 10% of the injected power. Although the pitch angle scattering by Coulomb collision destroys the mirror confinement of NB injected fast ions, this effect is found negligible. The loss mechanism due to non-adiabatic fast ion motion, which is intrinsic in non-uniform FRC plasmas, affects much greater than the pitch angle scattering by Coulomb collision. (author)
A method for real time detecting of non-uniform magnetic field
Marusenkov, Andriy
2015-04-01
The principle of measuring magnetic signatures for observing diverse objects is widely used in Near Surface work (unexploded ordnance (UXO); engineering & environmental; archaeology) and security and vehicle detection systems as well. As a rule, the magnitude of the signals to be measured is much lower than that of the quasi-uniform Earth magnetic field. Usually magnetometers for these purposes contain two or more spatially separated sensors to estimate the full tensor gradient of the magnetic field or, more frequently, only partial gradient components. The both types (scalar and vector) of magnetic sensors could be used. The identity of the scale factors and proper alignment of the sensitivity axes of the vector sensors are very important for deep suppression of the ambient field and detection of weak target signals. As a rule, the periodical calibration procedure is used to keep matching sensors' parameters as close as possible. In the present report we propose the technique for detection magnetic anomalies, which is almost insensitive to imperfect matching of the sensors. This method based on the idea that the difference signals between two sensors are considerably different when the instrument is rotated or moved in uniform and non-uniform fields. Due to the misfit of calibration parameters the difference signal observed at the rotation in the uniform field is similar to the total signal - the sum of the signals of both sensors. Zero change of the difference and total signals is expected, if the instrument moves in the uniform field along a straight line. In contrast, the same move in the non-uniform field produces some response of each of the sensors. In case one measures dB/dx and moves along x direction, the sensors signals is shifted in time with the lag proportional to the distance between sensors and the speed of move. It means that the difference signal looks like derivative of the total signal at move in the non-uniform field. So, using quite simple
International Nuclear Information System (INIS)
Niu, Keishiro; Shimojo, Takashi.
1978-02-01
Increase in kinetic energy of a charged particle, affected by an electrostatic wave propagating perpendicularly to a uniform magnetic field, is obtained for both the initial and later stages. Detrapping time of the particle from the potential dent of the electrostatic wave and energy increase during trapping of the particle is analytically derived. Numerical simulations are carried out to support theoretical results. (auth.)
Kenjeres, S.
2008-01-01
The paper reports on a comprehensive mathematical model for simulations of blood flow under the presence of strong non-uniform magnetic fields. The model consists of a set of Navier–Stokes equations accounting for the Lorentz and magnetisation forces, and a simplified set of Maxwell’s equations
DEFF Research Database (Denmark)
Si, Haiqing; Shen, Wen Zhong; Zhu, Wei Jun
2013-01-01
Acoustic propagation in the presence of a non-uniform mean flow is studied numerically by using two different acoustic propagating models, which solve linearized Euler equations (LEE) and acoustic perturbation equations (APE). As noise induced by turbulent flows often propagates from near field t...
International Nuclear Information System (INIS)
Bouchard, A.M.
1994-01-01
This report discusses the following topics: Bloch oscillations and other dynamical phenomena of electrons in semiconductor superlattices; solvable dynamical model of an electron in a one-dimensional aperiodic lattice subject to a uniform electric field; and quantum dynamical phenomena of electrons in aperiodic semiconductor superlattices
Electric field of not completely symmetric systems earthed sphere-uniformly charged dielectric plan
International Nuclear Information System (INIS)
Vila, F.
1994-07-01
In this paper we study theoretically the electric field in the not completely symmetric system, earthed metallic sphere-uniformly charged dielectric plan, for sphere surface points situated in the plan that contains sphere's center and vertical symmetry axe of dielectric plan. (author). 11 refs, 1 fig
Irregular wave functions of a hydrogen atom in a uniform magnetic field
Wintgen, D.; Hoenig, A.
1989-01-01
The highly excited irregular wave functions of a hydrogen atom in a uniform magnetic field are investigated analytically, with wave function scarring by periodic orbits considered quantitatively. The results obtained confirm that the contributions of closed classical orbits to the spatial wave functions vanish in the semiclassical limit. Their disappearance, however, is slow. This discussion is illustrated by numerical examples.
Zhao, Zhili; Zhang, Honghai; Zheng, Huai; Liu, Sheng
2018-03-01
In light-emitting diode (LED) array illumination (e.g. LED backlighting), obtainment of high uniformity in the harsh condition of the large distance height ratio (DHR), extended source and near field is a key as well as challenging issue. In this study, we present a new reversing freeform lens design algorithm based on the illuminance distribution function (IDF) instead of the traditional light intensity distribution, which allows uniform LED illumination in the above mentioned harsh conditions. IDF of freeform lens can be obtained by the proposed mathematical method, considering the effects of large DHR, extended source and near field target at the same time. In order to prove the claims, a slim direct-lit LED backlighting with DHR equal to 4 is designed. In comparison with the traditional lenses, illuminance uniformity of LED backlighting with the new lens increases significantly from 0.45 to 0.84, and CV(RMSE) decreases dramatically from 0.24 to 0.03 in the harsh condition. Meanwhile, luminance uniformity of LED backlighting with the new lens is obtained as high as 0.92 at the condition of extended source and near field. This new method provides a practical and effective way to solve the problem of large DHR, extended source and near field for LED array illumination.
Polarization of spin-1 particles without an anomalous magnetic moment in a uniform magnetic field
Silenko, Alexander J.
2008-01-01
The polarization operator projections onto four directions remain unchanged for spin-1 particles without an anomalous magnetic moment in a uniform magnetic field. The approximate conservation of the polarization operator projections onto the horizontal axes of the cylindrical coordinate system takes place.
Hung, Yung-Jr; Huang, Yung-Jui; Chang, Hsuan-Chen; Lee, Kuei-Yi; Lee, San-Liang
2014-01-01
A fabrication strategy is proposed to enable precise coverage of as-grown carbon nanotube (CNT) mats atop vertically aligned silicon nanowire (VA-SiNW) bundles in order to realize a uniform bundle array of CNT-SiNW heterojunctions over a large sample area. No obvious electrical degradation of as-fabricated SiNWs is observed according to the measured current-voltage characteristic of a two-terminal single-nanowire device. Bundle arrangement of CNT-SiNW heterojunctions is optimized to relax the electrostatic screening effect and to maximize the field enhancement factor. As a result, superior field emission performance and relatively stable emission current over 12 h is obtained. A bright and uniform fluorescent radiation is observed from CNT-SiNW-based field emitters regardless of its bundle periodicity, verifying the existence of high-density and efficient field emitters on the proposed CNT-SiNW bundle arrays.
Correspondence between classical and quantum chaos for hydrogen in a uniform magnetic field
Energy Technology Data Exchange (ETDEWEB)
Harada, A; Hasegawa, H [Kyoto Univ. (Japan). Dept. of Physics
1983-06-01
It is shown, by numerical computations, that the classical and the quantal critical energy of a hydrogen atom in a uniform magnetic field, characterising the onset of irregular motions, approximately coincide. This result is obtained by applying a simple scaling property of the classical Hamiltonian, valid only for Lsub(z)=O (the angular momentum component along the field vanishes), to the numerically deduced relative areas of the irregular region of Poincare surfaces of section.
Image restoration from non-uniform magnetic field influence for direct Fourier NMR imaging
International Nuclear Information System (INIS)
Sekihara, K.; Kuroda, M.; Kohno, H.
1984-01-01
A new technique is proposed for NMR image restoration from the influence of main magnetic field non-uniformities. This technique is applicable to direct Fourier NMR imaging. The mathematical basis and details of this technique are fully described. Modification to include image restoration from non-linear field gradient influence is also presented. Computer simulation demonstrates the effectiveness of this technique for both Fourier zeugmatography and spin-warp imaging. (author)
International Nuclear Information System (INIS)
EOz, E.; Myers, C.E.; Edwards, M.R.; Berlinger, B.; Brooks, A.; Cohen, S.A.
2011-01-01
The Princeton Field-Reversed Configuration (PFRC) experiment employs an odd-parity rotating magnetic field (RMFo) current drive and plasma heating system to form and sustain high-β plasmas. For radial confinement, an array of coaxial, internal, passive, flux-conserving (FC) rings applies magnetic pressure to the plasma while still allowing radio-frequency RMF o from external coils to reach the plasma. The 3 ms pulse duration of the present experiment is limited by the skin time (τ fc ) of its room-temperature copper FC rings. To explore plasma phenomena with longer characteristic times, the pulse duration of the next-generation PFRC-2 device will exceed 100 ms, necessitating FC rings with τ fc > 300 ms. In this paper we review the physics of internal, discrete, passive FCs and describe the evolution of the PFRC's FC array. We then detail new experiments that have produced higher performance FC rings that contain embedded high-temperature superconducting (HTS) tapes. Several HTS tape winding configurations have been studied and a wide range of extended skin times, from 0.4 s to over 10 3 s, has been achieved. The new FC rings must carry up to 3 kA of current to balance the expected PFRC-2 plasma pressure, so the dependence of the HTS-FC critical current on the winding configuration and temperature was also studied. From these experiments, the key HTS-FC design considerations have been identified and HTS-FC rings with the desired performance characteristics have been produced.
Non-potential Field Formation in the X-shaped Quadrupole Magnetic Field Configuration
Energy Technology Data Exchange (ETDEWEB)
Kawabata, Y.; Shimizu, T. [Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Inoue, S., E-mail: kawabata.yusuke@ac.jaxa.jp [Max-Planck-Institute for Solar System Research, Justus-von-Liebig-Weg 3 D-37077 Göttingen (Germany)
2017-06-20
Some types of solar flares are observed in X-shaped quadrupolar field configuration. To understand the magnetic energy storage in such a region, we studied non-potential field formation in an X-shaped quadrupolar field region formed in the active region NOAA 11967, which produced three X-shaped M-class flares on 2014 February 2. Nonlinear force-free field modeling was applied to a time series of vector magnetic field maps from the Solar Optical Telescope on board Hinode and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory . Our analysis of the temporal three-dimensional magnetic field evolution shows that the sufficient free energy had already been stored more than 10 hr before the occurrence of the first M-class flare and that the storage was observed in a localized region. In this localized region, quasi-separatrix layers (QSLs) started to develop gradually from 9 hr before the first M-class flare. One of the flare ribbons that appeared in the first M-class flare was co-spatial with the location of the QSLs, suggesting that the formation of the QSLs is important in the process of energy release. These QSLs do not appear in the potential field calculation, indicating that they were created by the non-potential field. The formation of the QSLs was associated with the transverse photospheric motion of the pre-emerged flux and the emergence of a new flux. This observation indicates that the occurrence of the flares requires the formation of QSLs in the non-potential field in which free magnetic energy is stored in advance.
Internal magnetic field measurements in a translating field-reversed configuration
International Nuclear Information System (INIS)
Armstrong, W.T.; Chrien, R.E.; McKenna, K.F.; Rej, D.J.; Sherwood, E.G.; Siemon, R.E.; Tuszewski, M.
1984-01-01
Magnetic field probes have been employed to study the internal field structure of Field-Reversed Configurations (FRCs) translating past the probes in the FRX-C/T device. Internal closed flux surfaces can be studied in this manner with minimal perturbation because of the rapid transit of the plasma (translational velocity v/sub z/ approx. 10 cm/μs). Data have been taken using a low-field (5 kG), 5-mtorr-D 2 gas-puff mode of operation in the FRC source coil which yields an initial plasma density of approx. 1 x 10 15 cm -3 and x/sub s/ approx. 0.04. FRCs translate from the approx. 25 cm radius source coil into a 20 cm radius metal translation vessel. Two translation conditions are studied: (1) translation into a 4 kG guide field (matched guide-field case), resulting in similar plasma parameters but with x/sub s/ approx. .45, and (2) translation into a 1 kG guide field (reduced guide-field case), resulting in expansion of the FRC to conditions of density approx. 3 x 10 14 , external field B 0 approx. 2 kG and x/sub s/ approx. 0.7. The expected reversed B/sub z/ structure is observed in both cases. However, the field measurements indicate a possible sideways offset of the FRC from the machine axis in the matched case. There is also evidence of island structure in the reduced guide-field case. Fluctuating levels of B/sub theta/ are ovserved with amplitudes less than or equal to B 0 /3 in both cases. Field measurements on the FRC symmetry axis in the reduced guide-field case indicate β on the separatrix of β/sub s/ approx. = 0.3 (indexed to the external field) has been achieved. This decrease of β/sub s/ with increased x/sub s/ is expected, and desirable for improved plasma confinement
International Nuclear Information System (INIS)
Newton, A.A.
1986-01-01
Field-reversed configurations (FRC) and theta pinches with trapped reversed bias field are essentially the same magnetic confinement systems using closed magnetic field lines inside an open-ended magnetic flux tube. A simple model of joule heating and parallel electron thermal conduction along the open flux lines to an external heat sink gives the electron temperature as Tsub(e)(eV) approx.= 0.05 Bsup(2/3)(G)Lsup(1/3)(cm), where B is the magnetic field and L is the coil length. This model appears to agree with measurements from present FRC experiments and past theta-pinch experiments which cover a range of 40-900 eV. The energy balance in the model is dominated by (a) parallel electron thermal conduction along the open field lines which has a steep temperature dependence, Q is proportional to Tsub(e)sup(7/2), and (b) the assumed rapid perpendicular transport in the plasma bulk which, in experiments to date, may be due to the small number of ion gyroradii across the plasma. (author)
Constantinides, E. D.; Marhefka, R. J.
1994-01-01
A uniform geometrical optics (UGO) and an extended uniform geometrical theory of diffraction (EUTD) are developed for evaluating high frequency electromagnetic (EM) fields within transition regions associated with a two and three dimensional smooth caustic of reflected rays and a composite shadow boundary formed by the caustic termination or the confluence of the caustic with the reflection shadow boundary (RSB). The UGO is a uniform version of the classic geometrical optics (GO). It retains the simple ray optical expressions of classic GO and employs a new set of uniform reflection coefficients. The UGO also includes a uniform version of the complex GO ray field that exists on the dark side of the smooth caustic. The EUTD is an extension of the classic uniform geometrical theory of diffraction (UTD) and accounts for the non-ray optical behavior of the UGO reflected field near caustics by using a two-variable transition function in the expressions for the edge diffraction coefficients. It also uniformly recovers the classic UTD behavior of the edge diffracted field outside the composite shadow boundary transition region. The approach employed for constructing the UGO/EUTD solution is based on a spatial domain physical optics (PO) radiation integral representation for the fields which is then reduced using uniform asymptotic procedures. The UGO/EUTD analysis is also employed to investigate the far-zone RCS problem of plane wave scattering from two and three dimensional polynomial defined surfaces, and uniform reflection, zero-curvature, and edge diffraction coefficients are derived. Numerical results for the scattering and diffraction from cubic and fourth order polynomial strips are also shown and the UGO/EUTD solution is validated by comparison to an independent moment method (MM) solution. The UGO/EUTD solution is also compared with the classic GO/UTD solution. The failure of the classic techniques near caustics and composite shadow boundaries is clearly
International Nuclear Information System (INIS)
Liu, Chong; Dobrynin, Danil; Fridman, Alexander
2014-01-01
In this study, we report experimental results on fast intensified charge-coupled device (ICCD) imaging of the development of nanosecond-pulsed dielectric barrier discharge (DBD) in atmospheric air and spectroscopic measurements of the electric field in the discharge. The uniformity of the discharge images obtained with nanosecond exposure times was analysed using chi-square test. The results indicate that DBD uniformity strongly depends on the applied (global) electric field in the discharge gap, which is a threshold phenomenon. We show that in the case of strong overvoltage on the discharge gap (provided by fast rise times), there is a transition from filamentary to uniform DBD mode that correlates to the corresponding decrease of the maximum local electric field in the discharge. (fast track communication)
Liu, Chong; Dobrynin, Danil; Fridman, Alexander
2014-01-01
In this study, we report experimental results on fast ICCD imaging of development of nanosecond-pulsed dielectric barrier discharge (DBD) in atmospheric air and spectroscopic measurements of electric field in the discharge. Uniformity of the discharge images obtained with nanosecond exposure times were analyzed using chi-square test. The results indicate that DBD uniformity strongly depends on applied (global) electric field in the discharge gap, and is a threshold phenomenon. We show that in the case of strong overvoltage on the discharge gap (provided by fast rise times), there is transition from filamentary to uniform DBD mode which correlates to the corresponding decrease of maximum local electric field in the discharge. PMID:25071294
Los Alamos field-reversed configuration (FRC) research
Energy Technology Data Exchange (ETDEWEB)
Armstrong, W.T.; Bartsch, R.R.; Cochrane, J.C.; Linford, R.K.; Lipson, J.; McKenna, K.F.; Platts, D.A.; Sherwood, E.G.; Siemon, R.E.; Tuszewski, M.
1981-01-01
Recent experimental results are discussed for a compact toroid produced by a field-reversed theta-pinch and containing purely poloidal magnetic fields. The confinement time is found to vary inversely with the ion gyro-radius and to be approximately independent of ion temperature for fixed gyro-radius. Within a coil of fixed radius, the plasmoid major radius R was varied by approx. 30% and the confinement appears to scale as R/sup 2/. A semi-empirical formation model has been formulated that predicts reasonably well the plasma parameters as magnetic field and fill pressure are varied in present experiments. The model is used to predict parameters in larger devices under construction.
Los Alamos field-reversed configuration (FRC) research
International Nuclear Information System (INIS)
Armstrong, W.T.; Bartsch, R.R.; Cochrane, J.C.; Linford, R.K.; Lipson, J.; McKenna, K.F.; Platts, D.A.; Sherwood, E.G.; Siemon, R.E.; Tuszewski, M.
1981-01-01
Recent experimental results are discussed for a compact toroid produced by a field-reversed theta-pinch and containing purely poloidal magnetic fields. The confinement time is found to vary inversely with the ion gyro-radius and to be approximately independent of ion temperature for fixed gyro-radius. Within a coil of fixed radius, the plasmoid major radius R was varied by approx. 30% and the confinement appears to scale as R 2 . A semi-empirical formation model has been formulated that predicts reasonably well the plasma parameters as magnetic field and fill pressure are varied in present experiments. The model is used to predict parameters in larger devices under construction
Orbits of two electrons released from rest in a uniform transverse magnetic field
Mungan, Carl E.
2018-03-01
Two identical charged particles released from rest repel each other radially. A uniform perpendicular magnetic field will then cause their trajectories to curve into a flower petal pattern. The orbit of each particle is approximately circular with a long period for a strong magnetic field, whereas it becomes a figure-eight for a weak magnetic field with each lobe completed in a cyclotron period. For example, such radially bound motions arise for two-dimensional electron gases. The level of treatment is appropriate for an undergraduate calculus-based electromagnetism course.
Directory of Open Access Journals (Sweden)
Narottam Maity
2016-01-01
Full Text Available Reflection of longitudinal displacement waves in a generalized thermoelastic half space under the action of uniform magnetic field has been investigated. The magnetic field is applied in such a direction that the problem can be considered as a two-dimensional one. The discussion is based on the three theories of generalized thermoelasticity: Lord-Shulman (L-S, Green-Lindsay (G-L, and Green-Naghdi (G-N with energy dissipation. We compute the possible wave velocities for different models. Amplitude ratios have been presented. The effects of magnetic field on various subjects of interest are discussed and shown graphically.
Control of field uniformity for a large superconducting storage ring magnet
International Nuclear Information System (INIS)
Danby, G.T.; Jackson, J.W.
1994-01-01
A 1.45 Tesla, 14.2 meter diameter ''superferric'' magnet is in an advanced stage of construction at BNL. This magnet will be used to store muons for a planned ultra-precise measurement of their anomalous magnetic moment g-2. This measurement requires a magnetic field uniformity of 1 PPM with a knowledge of the field over the muon orbits to 0.1 PPM. The methods built into the design to produce ultra-high field uniformity will be described. Large deviations from the ideal circularly symmetric uniform shape of the iron flux path are required to accommodate transfer lines and superconducting current leads, as well as apparatus for beam injection. Shimming methods to correct for the perturbations due to these large holes will be presented. The pole pieces consist of 36 closely fitting 10 degree arc sections butted together to produce a very good approximation to a continuous 360 degree ring magnet. However, in the cast of a possible quench of the superconducting coils, significant eddy currents will be induced which will circulate within the confines of each 10 degree pole piece. At the great precision required, these eddy currents may leave very small but significant aberrations in the field even after they decay away, because of slight changes in the orientation of the magnetization. Surface coil possibilities to correct for this effect will be described
International Nuclear Information System (INIS)
Kenjeres, Sasa
2008-01-01
The paper reports on a comprehensive mathematical model for simulations of blood flow under the presence of strong non-uniform magnetic fields. The model consists of a set of Navier-Stokes equations accounting for the Lorentz and magnetisation forces, and a simplified set of Maxwell's equations (Biot-Savart/Ampere's law) for treating the imposed magnetic fields. The relevant hydrodynamic and electromagnetic properties of human blood were taken from the literature. The model is then validated for different test cases ranging from a simple cylindrical geometry to real-life right-coronary arteries in humans. The time-dependency of the wall-shear-stress for different stenosis growth rates and the effects of the imposed strong non-uniform magnetic fields on the blood flow pattern are presented and analysed. It is concluded that an imposed non-uniform magnetic field can create significant changes in the secondary flow patterns, thus making it possible to use this technique for optimisations of targeted drug delivery
Electrorotation of novel electroactive polymer composites in uniform DC and AC electric fields
International Nuclear Information System (INIS)
Zrinyi, Miklós; Nakano, Masami; Tsujita, Teppei
2012-01-01
Novel electroactive polymer composites have been developed that could spin in uniform DC and AC electric fields. The angular displacement as well as rotation of polymer disks around an axis that is perpendicular to the direction of the applied electric field was studied. It was found that the dynamics of the polymer rotor is very complex. Depending on the strength of the static DC field, three regimes have been observed: no rotation occurs below a critical threshold field intensity, oscillatory motion takes place just above this value and continuous rotation can be observed above the critical threshold field intensity. It was also found that low frequency AC fields could also induce angular deformation. (paper)
International Nuclear Information System (INIS)
Temperley, D.J.
1976-01-01
In this paper we consider fully developed, laminar, unidirectional flow of uniformly conducting, incompressible fluid through a rectangular duct of uniform cross-section. An externally applied magnetic field acts parallel to one pair of opposite walls and induced velocity and magnetic fields are generated in a direction parallel to the axis of the duct. The governing equations and boundary conditions for the latter fields are introduced and study is then concentrated on the special case of a duct having all walls non-conducting. For values of the Hartmann number M>>1, classical asymptotic analysis reveals the leading terms in the expansions of the induced fields in all key regions, with the exception of certain boundary layers near the corners of the duct. The order of magnitude of the affect of the latter layers on the flow-rate is discussed and closed-form solutions are obtained for the induced fields near the corners of the duct. Attempts were made to formulate a concise Principle of Minimum Singularity to enable the correct choice of eigen functions for the various field components in the boundary layers on the walls parallel to the applied field. It was found, however, that these components are best found by taking the outer expansion of the closed-form solution in those boundary-layers near the corners of the duct where classical asymptotic analysis is not applicable. (author)
Determining and uniformly estimating the gauge potential corresponding to a given gauge field on M4
International Nuclear Information System (INIS)
Mostow, M.; Shnider, S.; Ben-Gurion Univ. of the Negev, Beersheba
1986-01-01
In an earlier paper on the field copy problem, we proved that there exists a generic set of connections (gauge potentials) on a principle bundle with a semi-simple structure group over a four-dimensional base manifold for which the connection is uniquely determined by its curvature (gauge field). We conjectured that there exists a smaller, but still generic, set of connections for which the curvature map sending a connection to its curvature admits a continuous inverse with respect to the appropriate function space topologies. The conjecture says, in other words, that restricting to certain generic curvature 2-forms, one can determine and uniformly estimate the connection and its derivatives from the curvature and uniform estimates of its derivatives. In this Letter we give an affirmative answer to the conjecture and show, moreover, that the set of such connections contains an open dense set in the Whitney C ∞ topology. (orig.)
Classical understanding of electron vortex beams in a uniform magnetic field
Energy Technology Data Exchange (ETDEWEB)
Han, Yeong Deok [Department of Computer Science and Engineering, Woosuk University, Wanju, Cheonbuk, 565-701 (Korea, Republic of); Choi, Taeseung, E-mail: tschoi@swu.ac.kr [Division of Applied Food System, College of Natural Science, Seoul Women' s University, Seoul 139-774 (Korea, Republic of); School of Computational Sciences, Korea Institute for Advanced Study, Seoul 130-012 (Korea, Republic of)
2017-04-25
Recently, interesting observations on electron vortex beams have been made. We propose a classical model that shows vortex-like motion due to suitably-synchronized motion of each electron's cyclotron motion in a uniform magnetic field. It is shown that some basic features of electron vortex beams in a uniform magnetic field, such as azimuthal currents, the relation between energy and kinetic angular momentum, and the parallel-axis theorem are understandable by using this classical model. We also show that the time-dependence of kinetic angular momentum of electron vortex beams could be understood as an effect of a specific nonuniform distribution of classical electrons. - Highlights: • A classical model for electron vortex beams is proposed. • The basic features of azimuthal currents could be understood by using this model. • The kinetic angular momentum of electron vortex beams is intuitively understandable.
Equivalent (uniform) square field sizes of flattening filter free photon beams
Lechner, Wolfgang; Kuess, Peter; Georg, Dietmar; Palmans, Hugo
2017-10-01
Various types of treatment units, such as CyberKnife, TomoTherapy and C-arm linear accelerators (LINACs) are operated using flattening filter free (FFF) photon beams. Their reference dosimetry, however, is currently based on codes of practice that provide data which were primarily developed and tested for high-energy photon beams with flattening filter (WFF). The aim of this work was to introduce equivalent uniform square field sizes of FFF beams to serve as a basis of a unified reference dosimetry procedure applicable to all aforementioned FFF machines. For this purpose, in-house determined experimental data together with published data of the ratio of doses at depths of 20 cm and 10 cm in water (D 20,10) were used to characterize the depth dose distribution of 6 and 10 MV WFF and FFF beams. These data were analyzed for field sizes ranging from 2 × 2 cm2 to 40 × 40 cm2. A scatter function that takes the lateral profiles of the individual beams into account was fitted to the experimental data. The lateral profiles of the WFF beams were assumed to be uniform, while those of the FFF beams were approximated using fourth or sixth order polynomials. The scatter functions of the FFF beams were recalculated using a uniform lateral profile (the same as the physical profile of the WFF beams), and are henceforth denoted as virtual uniform FFF beams (VUFFF). The field sizes of the VUFFF beams having the same scatter contribution as the corresponding FFF beams at a given field size were defined as the equivalent uniform square field (EQUSF) size. Data from four different LINACs with 18 different beams in total, as well as a CyberKnife beam, were analyzed. The average values of EQUSFs over all investigated LINACs of the conventional 10 × 10 cm2 reference fields of 6 MV and 10 MV FFF beams for C-arm LINACs and machine-specific reference fields for CyberKnife and TomoTherapy were 9.5 cm, 9 cm, 5.0 cm and 6.5 cm respectively. The
Formation of Field-reversed-Configuration Plasma with Punctuated-betatron-orbit Electrons
International Nuclear Information System (INIS)
Welch, D.R.; Cohen, S.A.; Genoni, T.C.; Glasser, A.H.
2010-01-01
We describe ab initio, self-consistent, 3D, fully electromagnetic numerical simulations of current drive and field-reversed-configuration plasma formation by odd-parity rotating magnetic fields (RMFo). Magnetic-separatrix formation and field reversal are attained from an initial mirror configuration. A population of punctuated-betatron-orbit electrons, generated by the RMFo, carries the majority of the field-normal azimuthal electrical current responsible for field reversal. Appreciable current and plasma pressure exist outside the magnetic separatrix whose shape is modulated by the RMFo phase. The predicted plasma density and electron energy distribution compare favorably with RMFo experiments.
Influence of Non-uniform Temperature Field on Spectra of Fibre Bragg Grating
International Nuclear Information System (INIS)
Yan, Zhou; Xing-Fang, He; Xiao-Yong, Fang; Jie, Yuan; Li-Qun, Yin; Mao-Sheng, Cao
2009-01-01
We simulate the spectrum characteristics of fibre Bragg grating (FBG) with non-uniform temperature using the transmission matrix method, and the results are analysed. It is found that firstly the modulated coefficient of average refractive index is a very important parameter that influences the spectrum characteristic of the fibre Bragg grating, and secondly the spectrum curves are different in different temperature fields at the same parameter. Hence, we can determine the metrical temperature by analysing the spectrum of fibre Bragg grating
RF Magnetic Field Uniformity of Rectangular Planar Coils for Resonance Imaging
2016-02-04
magnetic, potassium chlorate , nuclear quadrupole resonance, uniform field, coil, surface coil I. INTRODUCTION QR is a magnetic resonance phenomenon...material that will be used is this investigation is potassium chlorate (KCLO3). This paper utilizes the NQR signals detection from KCLO3 to determine the...frequency of potassium chlorate (KCLO3), and matched to a 50 ohm input impedance using L-network circuit of capacitors. Fig.1 shows a diagram of the
Hard and soft supersymmetry breaking for ‘graphinos’ in uniform magnetic fields
International Nuclear Information System (INIS)
Hernández-Ortíz, S; Raya, A; Murguía, G
2012-01-01
Using irreducible and reducible representations of the Dirac matrices, we study the two- and four-component quantum mechanical supersymmetric (SUSY) theories for ultrarelativistic fermions in (2 + 1) dimensions (‘graphinos’) in a background uniform magnetic field perpendicular to their plane of motion. We then consider ordinary and parity-violating mass terms and identify the former as a soft SUSY breaking term and the latter as the hard SUSY breaking one. (paper)
Design and construction of a uniform magnetic field generator for a 32 channel cosmic ray detector
Herrera-Guzman, K. N.; Gutierrez-Sanchez, R. A.; Felix, J.; Arceo, L. J.; Araujo, C.
2017-10-01
The trajectory of a particle can be measured if some points of its track are known. This is applied to any kind of particle, including cosmic rays. We have designed and built a device for this purpose. We present the design, construction and characterization of a uniform magnetic field generator system in a finite volume. An array of Cerenkov detectors will be placed inside of it for determining the cosmic rays charge and to reconstruct their trajectories.
Flux loss during the equilibrium phase of field-reversed configurations
International Nuclear Information System (INIS)
Tuszewski, M.; Armstrong, W.T.; Bartsch, R.R.; Chrien, R.E.; Cochrane, J.C. Jr.; Kewish, R.W. Jr.; Klingner, P.; Linford, R.K.; McKenna, K.F.; Rej, D.J.; Sherwood, E.G.; Siemon, R.E.
1982-01-01
Field-reversed configurations are consistently formed at low filling pressures in the FRX-C device, with decay time of the trapped flux after formation much larger than the stable period. This contrasts with previous experimental observations
Flux loss during the equilibrium phase of field-reversed configurations
Energy Technology Data Exchange (ETDEWEB)
Tuszewski, M.; Armstrong, W.T.; Bartsch, R.R.; Chrien, R.E.; Cochrane, J.C. Jr.; Kewish, R.W. Jr.; Klingner, P.; Linford, R.K.; McKenna, K.F.; Rej, D.J.; Sherwood, E.G.; Siemon, R.E.
1982-10-01
Field-reversed configurations are consistently formed at low filling pressures in the FRX-C device, with decay time of the trapped flux after formation much larger than the stable period. This contrasts with previous experimental observations.
Theoretical and experimental studies of field-reversed configurations
International Nuclear Information System (INIS)
Chrien, R.E.; Hugrass, W.N.; Armstrong, W.T.
1986-01-01
The FRX-C/T formation region has been enlarged in diameter by 50%, and quasi-steady cusp coils have been installed to compare tearing and non-tearing formation. FRCs with significantly larger poloidal flux (≤8 mWb) and s (≤4) have been formed. However, their flux confinement was degraded compared with earlier FRX-C results. The n = 2 rotational instability has been completely suppressed on translated FRCs in FRX-C/T. Nearly equal stabilization thresholds were observed for straight and helical quadrupole fields, in contrast with another experiment
Theoretical and experimental studies of field-reversed configurations
Energy Technology Data Exchange (ETDEWEB)
Chrien, R.E.; Hugrass, W.N.; Armstrong, W.T.; Caramana, E.J.; Lewis, H.R.; Linford, R.K.; Ling, K.M.; McKenna, K.F.; Rej, D.J.; Schwarzmeier, J.L.
1986-01-01
The FRX-C/T formation region has been enlarged in diameter by 50%, and quasi-steady cusp coils have been installed to compare tearing and non-tearing formation. FRCs with significantly larger poloidal flux (less than or equal to8 mWb) and s (less than or equal to4) have been formed. However, their flux confinement was degraded compared with earlier FRX-C results. The n = 2 rotational instability has been completely suppressed on translated FRCs in FRX-C/T. Nearly equal stabilization thresholds were observed for straight and helical quadrupole fields, in contrast with another experiment.
Photoionization microscopy of Rydberg hydrogen atom in a non-uniform electrical field
International Nuclear Information System (INIS)
Cheng Shao-Hao; Wang De-Hua; Chen Zhao-Hang; Chen Qiang
2016-01-01
In this paper, we investigate the photoionization microscopy of the Rydberg hydrogen atom in a gradient electric field for the first time. The observed oscillatory patterns in the photoionization microscopy are explained within the framework of the semiclassical theory, which can be considered as a manifestation of interference between various electron trajectories arriving at a given point on the detector plane. In contrast with the photoionization microscopy in the uniform electric field, the trajectories of the ionized electron in the gradient electric field will become chaotic. An infinite set of different electron trajectories can arrive at a given point on the detector plane, which makes the interference pattern of the electron probability density distribution extremely complicated. Our calculation results suggest that the oscillatory pattern in the electron probability density distribution depends sensitively on the electric field gradient, the scaled energy and the position of the detector plane. Through our research, we predict that the interference pattern in the electron probability density distribution can be observed in an actual photoionization microscopy experiment once the external electric field strength and the position of the electron detector plane are reasonable. This study provides some references for the future experimental research on the photoionization microscopy of the Rydberg atom in the non-uniform external fields. (paper)
Particle-in-cell simulations of collisionless magnetic reconnection with a non-uniform guide field
International Nuclear Information System (INIS)
Wilson, F.; Neukirch, T.; Harrison, M. G.; Hesse, M.; Stark, C. R.
2016-01-01
Results are presented of a first study of collisionless magnetic reconnection starting from a recently found exact nonlinear force-free Vlasov–Maxwell equilibrium. The initial state has a Harris sheet magnetic field profile in one direction and a non-uniform guide field in a second direction, resulting in a spatially constant magnetic field strength as well as a constant initial plasma density and plasma pressure. It is found that the reconnection process initially resembles guide field reconnection, but that a gradual transition to anti-parallel reconnection happens as the system evolves. The time evolution of a number of plasma parameters is investigated, and the results are compared with simulations starting from a Harris sheet equilibrium and a Harris sheet plus constant guide field equilibrium.
Observation of tilt asymmetries in field-reversed configurations
International Nuclear Information System (INIS)
Tuszewski, M.; Barnes, D.C.; Klingner, P.; Ng, Chung.
1989-01-01
In recent years, part of the experimental effort on the FRX-C/LSM device has been devoted to understanding why good FRC confinement is observed only in a narrow window of the operating parameter space (fill pressures less than 5 mtorr and bias fields less than 0.8--0.9 kG). The transition from good to bad confinement has been shown for some time to correlate with strong axial shocks, suggesting a formation or stability problem. More recently, FRC magnetic asymmetries have been observed whenever the confinement was poor. To gain further understanding, a 64-coil probe array was built, and data from over 700 discharges were collected during the summer of 1989. We summarize in this paper the results of a preliminary analysis of these data. 5 refs., 4 figs
Fokker-Planck equation in the presence of a uniform magnetic field
Energy Technology Data Exchange (ETDEWEB)
Dong, Chao, E-mail: chaodong@iphy.ac.cn [Center for Plasma Theory and Computation, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Department of Nuclear Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Zhang, Wenlu [Center for Plasma Theory and Computation, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Li, Ding, E-mail: dli@ustc.edu.cn [Center for Plasma Theory and Computation, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Department of Modern Physics, University of Science and Technology of China, Anhui Hefei 230026 (China)
2016-08-15
The Fokker-Planck equation in the presence of a uniform magnetic field is derived which has the same form as the case of no magnetic field but with different Fokker-Planck coefficients. The coefficients are calculated explicitly within the binary collision model, which are free from infinite sums of Bessel functions. They can be used to investigate relaxation and transport phenomena conveniently. The kinetic equation is also manipulated into the Landau form from which it is straightforward to compare with previous results and prove the conservation laws.
Fokker-Planck equation in the presence of a uniform magnetic field
International Nuclear Information System (INIS)
Dong, Chao; Zhang, Wenlu; Li, Ding
2016-01-01
The Fokker-Planck equation in the presence of a uniform magnetic field is derived which has the same form as the case of no magnetic field but with different Fokker-Planck coefficients. The coefficients are calculated explicitly within the binary collision model, which are free from infinite sums of Bessel functions. They can be used to investigate relaxation and transport phenomena conveniently. The kinetic equation is also manipulated into the Landau form from which it is straightforward to compare with previous results and prove the conservation laws.
Gravitational collapse of dark energy field configurations and supermassive black hole formation
International Nuclear Information System (INIS)
Jhalani, V.; Kharkwal, H.; Singh, A.
2016-01-01
Dark energy is the dominant component of the total energy density of our Universe. The primary interaction of dark energy with the rest of the Universe is gravitational. It is therefore important to understand the gravitational dynamics of dark energy. Since dark energy is a low-energy phenomenon from the perspective of particle physics and field theory, a fundamental approach based on fields in curved space should be sufficient to understand the current dynamics of dark energy. Here, we take a field theory approach to dark energy. We discuss the evolution equations for a generic dark energy field in curved space-time and then discuss the gravitational collapse for dark energy field configurations. We describe the 3 + 1 BSSN formalism to study the gravitational collapse of fields for any general potential for the fields and apply this formalism to models of dark energy motivated by particle physics considerations. We solve the resulting equations for the time evolution of field configurations and the dynamics of space-time. Our results show that gravitational collapse of dark energy field configurations occurs and must be considered in any complete picture of our Universe. We also demonstrate the black hole formation as a result of the gravitational collapse of the dark energy field configurations. The black holes produced by the collapse of dark energy fields are in the supermassive black hole category with the masses of these black holes being comparable to the masses of black holes at the centers of galaxies.
Gravitational collapse of dark energy field configurations and supermassive black hole formation
Energy Technology Data Exchange (ETDEWEB)
Jhalani, V.; Kharkwal, H.; Singh, A., E-mail: anupamsingh.iitk@gmail.com [L. N. Mittal Institute of Information Technology, Physics Department (India)
2016-11-15
Dark energy is the dominant component of the total energy density of our Universe. The primary interaction of dark energy with the rest of the Universe is gravitational. It is therefore important to understand the gravitational dynamics of dark energy. Since dark energy is a low-energy phenomenon from the perspective of particle physics and field theory, a fundamental approach based on fields in curved space should be sufficient to understand the current dynamics of dark energy. Here, we take a field theory approach to dark energy. We discuss the evolution equations for a generic dark energy field in curved space-time and then discuss the gravitational collapse for dark energy field configurations. We describe the 3 + 1 BSSN formalism to study the gravitational collapse of fields for any general potential for the fields and apply this formalism to models of dark energy motivated by particle physics considerations. We solve the resulting equations for the time evolution of field configurations and the dynamics of space-time. Our results show that gravitational collapse of dark energy field configurations occurs and must be considered in any complete picture of our Universe. We also demonstrate the black hole formation as a result of the gravitational collapse of the dark energy field configurations. The black holes produced by the collapse of dark energy fields are in the supermassive black hole category with the masses of these black holes being comparable to the masses of black holes at the centers of galaxies.
Design of a new large s field reversed configuration experiment
International Nuclear Information System (INIS)
Hoffman, A.L.; Slough, J.T.
1986-01-01
The present TRX facility utilizes programmed formation techniques to form s = 2 plasmas in a 20 cm diameter by 1 m long plasma tube. LSX will have an 80 cm diameter by 4 m long plasma tube and will employ the same programmed formation techniques as TRX. This should result in s = 8 plasmas and FRC flux and energy lifetimes in the msec range if the presently measured scaling persists. LSX will be initially restricted to an external field of 7.5 kG, and typical plasma conditions will be 300 eV electron and ion temperatures and electron or ion densities of about 2x10/sup 15/ cm/sup -3/. The low voltage formation techniques developed in TRX-2 (Eθ /sub values of about 100 volts/cm) will also be employed on LSX, so that relatively low voltage power supplies can be utilized. A modified form of second half cycle circuitry is planned to replace the function of a large reverse bias capacitor bank. The increase in total power supply efficiency allows the primary magnet energy storage to be less that 1 MJ
Dynamic rheological properties of viscoelastic magnetic fluids in uniform magnetic fields
International Nuclear Information System (INIS)
Yamaguchi, Hiroshi; Niu Xiaodong; Ye Xiaojiang; Li Mingjun; Iwamoto, Yuhiro
2012-01-01
The dynamic rheological properties of viscoelastic magnetic fluids in externally applied uniform magnetic fields are investigated by a laboratory-made cone-plate rheometer in this study. In particular, the effects of the magnetic field on the viscoelastic properties (the complex dynamic modulus) of the viscoelastic magnetic fluids are studied. In the investigation, three viscoelastic magnetic fluids are made by mixing a magnetic fluid and a viscoelastic fluid with different mass ratios. As a supplementation to the experimental investigation, a theoretical analysis is also presented. The present study shows that the viscosity and elasticity of the viscoelastic magnetic fluids are significantly influenced by the magnetic field and the concentrations of the magnetic particles in the test fluids. Theoretical analysis qualitatively explains the present findings. - Highlights: ► The dynamic rheological properties of the viscoelastic magnetic fluids in uniform magnetic fields are investigated. ► Both the magnetic field strength and the concentration of the magnetic particles in the fluids have significant effects on the viscosity and elasticity of the viscoelastic magnetic fluids. ► Theoretical prediction and analysis qualitatively explains the present findings.
New method for solving inductive electric fields in the non-uniformly conducting ionosphere
Directory of Open Access Journals (Sweden)
H. Vanhamäki
2006-10-01
Full Text Available We present a new calculation method for solving inductive electric fields in the ionosphere. The time series of the potential part of the ionospheric electric field, together with the Hall and Pedersen conductances serves as the input to this method. The output is the time series of the induced rotational part of the ionospheric electric field. The calculation method works in the time-domain and can be used with non-uniform, time-dependent conductances. In addition, no particular symmetry requirements are imposed on the input potential electric field. The presented method makes use of special non-local vector basis functions called the Cartesian Elementary Current Systems (CECS. This vector basis offers a convenient way of representing curl-free and divergence-free parts of 2-dimensional vector fields and makes it possible to solve the induction problem using simple linear algebra. The new calculation method is validated by comparing it with previously published results for Alfvén wave reflection from a uniformly conducting ionosphere.
New method for solving inductive electric fields in the non-uniformly conducting ionosphere
Vanhamäki, H.; Amm, O.; Viljanen, A.
2006-10-01
We present a new calculation method for solving inductive electric fields in the ionosphere. The time series of the potential part of the ionospheric electric field, together with the Hall and Pedersen conductances serves as the input to this method. The output is the time series of the induced rotational part of the ionospheric electric field. The calculation method works in the time-domain and can be used with non-uniform, time-dependent conductances. In addition, no particular symmetry requirements are imposed on the input potential electric field. The presented method makes use of special non-local vector basis functions called the Cartesian Elementary Current Systems (CECS). This vector basis offers a convenient way of representing curl-free and divergence-free parts of 2-dimensional vector fields and makes it possible to solve the induction problem using simple linear algebra. The new calculation method is validated by comparing it with previously published results for Alfvén wave reflection from a uniformly conducting ionosphere.
Flux loss and heating during the formation of a field-reversed configuration
International Nuclear Information System (INIS)
Sgro, A.G.; Armstrong, W.T.; Lipson, J.; Tuszewski, M.G.; Cochrane, J.C.
1982-01-01
The simulated time evolution of magnetic field profiles and trapped flux in a field-reversed configuration, when compared with the experiment, implies that the rapid decay of the initial reversed flux is due to a resistivity that is anomalously enhanced over its classical value. A tenuous plasma between the field-reversed configuration and the wall carries a significant fraction of the current, and about half of the anomalous Joule heating must be deposited directly in the ions in order to calculate the correct ion temperature. The fractional flux retention is most sensitive to an increase of applied bias field
Investigation of uniformity field generated from freeform lens with UV LED exposure system
Ciou, F. Y.; Chen, Y. C.; Pan, C. T.; Lin, P. H.; Lin, P. H.; Hsu, F. T.
2015-03-01
In the exposure process, the intensity and uniformity of light in the exposure area directly influenced the precision of products. UV-LED (Ultraviolet Light-Emitting Diode) exposure system was established to reduce the radiation leakage and increase the energy efficiency for energy saving. It is a trend that conventional mercury lamp could be replaced with UV-LED exposure system. This study was based on the law of conservation of energy and law of refraction of optical field distributing on the target plane. With these, a freeform lens with uniform light field of main exposure area could be designed. The light outside the exposure area could be concentrated into the area to improve the intensity of light. The refraction index and UV transmittance of Polydimethylsiloxane (PDMS) is 1.43 at 385 nm wavelength and 85-90%, respectively. The PDMS was used to fabricate the optics lens for UV-LEDs. The average illumination and the uniformity could be obtained by increasing the number of UV-LEDs and the spacing of different arrangement modes. After exposure process with PDMS lens, about 5% inaccuracy was obtained. Comparing to 10% inaccuracy of general exposure system, it shows that it is available to replace conventional exposure lamp with using UV-LEDs.
Current limitation and formation of plasma double layers in a non-uniform magnetic field
International Nuclear Information System (INIS)
Plamondon, R.; Teichmann, J.; Torven, S.
1986-07-01
Formation of strong double layers has been observed experimentally in a magnetised plasma column maintained by a plasma source. The magnetic field is approximately axially homogenous except in a region at the anode where the electric current flows into a magnetic mirror. The double layer has a stationary position only in the region of non-uniform magnetic field or at the aperture separating the source and the plasma column. It is characterized by a negative differential resistance in the current-voltage characteristic of the device. The parameter space,where the double layer exists, has been studied as well as the corresponding potential profiles and fluctuation spectra. The electric current and the axial electric field are oppositely directed between the plasma source and a potential minimum which is formed in the region of inhomogeneous magnetic field. Electron reflection by the resulting potential barrier is found to be an important current limitation mechanism. (authors)
Uniform magnetic field in the bending magneto for the compact proton synchrotron
Tokura, S; Miyauchi, Y; Nakajima, S; Arakawa, M
2003-01-01
Radiation therapy using high-energy protons is a very effective method of cancer treatment. To attain the necessary beam energy for cancer therapy using a very compact synchrotron, the magnetic field of the normal-conductive bending magnet must be excited up to 3-5 T. However, increasing the field up to 4 T produces a sextupole component in the field. The sextupole component can be reduced by changing the geometry of the coil, but establishing the optimal geometry is very time-consuming. A new optimization method has been developed to establish the uniform field in the bending magnet. As a result, the optimal geometry is obtained with less calculation time. (author)
Two-dimensional hydrodynamics of uniform ion plasma in electrostatic field
International Nuclear Information System (INIS)
Mahdieh, M. H.; Gavili, A.
2005-01-01
Two-dimensional hydrodynamics of ion extraction from uniform quasi-neutral plasma, in electrostatic field has been simulated numerically. Experimentally, tunable pulsed lasers produce non-uniform plasma through stepwise photo-excitation and photo-ionization or multi-photo-ionization processes. Poisson's equation was solved simultaneously with the equations of mass, and momentum, assuming the Maxwell-Boltzmann distribution for electrons. In the calculation, the initial density profile at the boundaries has been assumed to be very steep for the ion plasma. In these calculations dynamics of electric potential and the ions density were assessed. The ion extraction time was also estimated from the calculation. The knowledge of spatial distribution of the ions across the cathode is very important for the practical purposes. In this simulation, the spatial distribution of the ion current density across the cathode as well as its temporal distribution was calculated
International Nuclear Information System (INIS)
Oka, Tetsuo; Ichiju, Kana; Higa, Kazuya; Fukui, Satoshi; Ogawa, Jun; Sato, Takao; Yokoyama, Kazuya; Nakamura, Takashi
2017-01-01
Various experimental attempts have been made to obtain a uniform magnetic field in the space between face-to-face HTS bulk magnets that could possibly be utilized as NMR magnets. In general, the magnetic fields emitted from the magnetic pole surfaces containing HTS bulk magnets are characterized as non-uniform field distributions. Since the NMR magnets require highly uniform magnetic-field spaces, it has been assumed to be difficult to form uniform magnetic-field spaces between magnetic poles placed face-to-face. The authors modified the shapes of the magnetic-field distribution from convex to concave by attaching ferromagnetic iron plates to the pole surfaces. The magnets were then set face-to-face with various gaps of 30-70 mm, and the experimental data on magnetic-field uniformity was precisely measured in the space. In order to detect the NMR signals, the target performance for uniformity was set as 1,500 ppm throughout the 4-mm span on the x-axis, which is equivalent to performance in the past when the world's first detection of NMR signals was observed in the bore of hollow-type HTS bulk magnets. When we combined the concave and convex field distributions to compensate the uneven field distributions, the data of the best uniformity reached 358 ppm and 493 ppm in the 30 mm and 50 mm gaps, respectively, which exceeded the target value for the purpose of detecting the NMR signals within the space. Furthermore, it was shown that the field distributions change from concave to convex shape without any change at 1.1 T in the range from 7 to 11 mm in the 30-mm gap, indicating that the distributions are uniform. This suggests the possibility that the uniform magnetic-field space between the HTS bulk magnets set face-to-face expands. (author)
Vortex configuration in the presence of local magnetic field and locally applied stress
International Nuclear Information System (INIS)
Wissberg, Shai; Kremen, Anna; Shperber, Yishai; Kalisky, Beena
2017-01-01
Highlights: • We discuss different ways to determine vortex configuration using a scanning SQUID. • We determined the vortex configuration by approaching the sample during cooling. • We observed an accumulation of vortices when contact was made with the sample. • We show how we can manipulate local vortex configuration using contact. - Abstract: Vortex configuration is determined by the repulsive interaction, which becomes dominant with increasing vortex density, by the pinning potential, and by other considerations such as the local magnetic fields, currents flowing in the sample, or as we showed recently, by local stress applied on the sample. In this work we describe different ways to control vortex configuration using scanning SQUID microscopy.
Vortex configuration in the presence of local magnetic field and locally applied stress
Energy Technology Data Exchange (ETDEWEB)
Wissberg, Shai; Kremen, Anna; Shperber, Yishai; Kalisky, Beena, E-mail: beena@biu.ac.il
2017-02-15
Highlights: • We discuss different ways to determine vortex configuration using a scanning SQUID. • We determined the vortex configuration by approaching the sample during cooling. • We observed an accumulation of vortices when contact was made with the sample. • We show how we can manipulate local vortex configuration using contact. - Abstract: Vortex configuration is determined by the repulsive interaction, which becomes dominant with increasing vortex density, by the pinning potential, and by other considerations such as the local magnetic fields, currents flowing in the sample, or as we showed recently, by local stress applied on the sample. In this work we describe different ways to control vortex configuration using scanning SQUID microscopy.
International Nuclear Information System (INIS)
Galilo, Bogdan V.; Nedelko, Sergei N.
2011-01-01
The one-loop quark contribution to the QCD effective potential for the homogeneous Abelian gluon field in the presence of an external strong electromagnetic field is evaluated. The structure of extrema of the potential as a function of the angles between chromoelectric, chromomagnetic, and electromagnetic fields is analyzed. In this setup, the electromagnetic field is considered as an external one while the gluon field represents domain structured nonperturbative gluon configurations related to the QCD vacuum in the confinement phase. Two particularly interesting gluon configurations, (anti-)self-dual and crossed orthogonal chromomagnetic and chromoelectric fields, are discussed specifically. Within this simplified framework it is shown that the strong electromagnetic fields can play a catalyzing role for a deconfinement transition. At the qualitative level, the present consideration can be seen as a highly simplified study of an impact of the electromagnetic fields generated in relativistic heavy ion collisions on the strongly interacting hadronic matter.
Energy Technology Data Exchange (ETDEWEB)
Hod, Shahar [The Ruppin Academic Center, Emeq Hefer (Israel); The Hadassah Academic College, Jerusalem (Israel)
2017-12-15
It has recently been demonstrated that asymptotically flat neutral reflecting stars are characterized by an intriguing no-hair property. In particular, it has been proved that these horizonless compact objects cannot support spatially regular static matter configurations made of scalar (spin-0) fields, vector (spin-1) fields and tensor (spin-2) fields. In the present paper we shall explicitly prove that spherically symmetric compact reflecting stars can support stationary (rather than static) bound-state massive scalar fields in their exterior spacetime regions. To this end, we solve analytically the Klein-Gordon wave equation for a linearized scalar field of mass μ and proper frequency ω in the curved background of a spherically symmetric compact reflecting star of mass M and radius R{sub s}. It is proved that the regime of existence of these stationary composed star-field configurations is characterized by the simple inequalities 1 - 2M/R{sub s} < (ω/μ){sup 2} < 1. Interestingly, in the regime M/R{sub s} << 1 of weakly self-gravitating stars we derive a remarkably compact analytical equation for the discrete spectrum {ω(M,R_s, μ)}{sup n=∞}{sub n=1} of resonant oscillation frequencies which characterize the stationary composed compact-reflecting-star-linearized-massive-scalar-field configurations. Finally, we verify the accuracy of the analytically derived resonance formula of the composed star-field configurations with direct numerical computations. (orig.)
Electrical field excitation in non-uniform plasma by a modulated electron beam
International Nuclear Information System (INIS)
Anisimov, I.O.; Borisov, O.A.
2000-01-01
Excitation of electric fields due to a modulated electron beam in a warm non-uniform plasma is treated for weak beams in warm plasma. It is shown that the maximum electric field magnitude that is reached near the local plasma resonance point depends significantly on the direction of the electron stream motion. In collisional plasma the magnitude of the Langmuir wave that propagates to the subcritical plasma also depends on the direction of the electron stream motion. The motion of the modulated electron stream front results in beatings between oscillations on the modulation frequency and on the local electron plasma frequencies at the initial moment. Later these beatings damp in the supercritical plasma, whereas in the subcritical plasma they are transformed into spatial beatings between the field of the modulated electron stream and the excited Langmuir wave. (orig.)
2> for a scalar field in 2D black holes: A new uniform approximation
International Nuclear Information System (INIS)
Frolov, V.; Sushkov, S.V.; Zelnikov, A.
2003-01-01
We study nonconformal quantum scalar fields and averages of their local observables (such as 2 > ren and μν > ren ) in the spacetime of a two-dimensional black hole. In order to get an analytical approximation for these expressions the WKB approximation is often used. We demonstrate that at the horizon the WKB approximation is violated for a nonconformal field, that is, when the field mass or/and the parameter of nonminimal coupling does not vanish. We propose a new 'uniform approximation' which solves this problem. We use this approximation to obtain an improved analytical approximation for 2 > ren in the two-dimensional black hole geometry. We compare the results obtained with numerical calculations
Nonconformal scalar field in uniform isotropic space and the method of Hamiltonian diagonalization
International Nuclear Information System (INIS)
Pavlov, Yu.V.
2001-01-01
One diagonalized metric Hamiltonian of scalar field with arbitrary relation with curvature in N-dimensional uniform isotropic space. One derived spectrum of energies of the appropriate quasi-particles. One calculated energy of quasi-particle appropriate to the canonical Hamiltonian diagonal shape. One structured a modified tensor of energy-pulse with the following features. In case of conformal scalar field it coincides with the metric tensor of energy-pulse. When it is diagonalized the energies of the appropriate particles of nonconformal field are equal to oscillation frequency and the number of such particles produced in non-stationary metric is the finite one. It is shown that Hamiltonian calculated on the basis of the modified tensor of energy-pulse may be derived as a canonical one at certain selection of variables [ru
International Nuclear Information System (INIS)
Kim, Hee Reyoung; Park, Jon Ho; Kim, Jong Man; Nam, Ho Yoon; Choi, Jong Hyun
2001-01-01
Magnetic field has many effects on the hydraulic pressure drop of fluids with high electrical conductivity. The theoretical solution about MHD pressure drop is sought for the uniform current density model with simplified physical geometry. Using the MHD equation in the rectangular duct of the sodium liquid flow under a transverse magnetic field, the electrical potential is sought in terms of the duct geometry and the electrical parameters of the liquid metal and duct material. By the product of the induced current inside the liquid metal and transverse magnetic field, the pressure gradients is found as a function of the duct size and the electrical conductivity of the liquid metal. The theoretically predicted pressure drop is compared with experimental results on the change of flow velocity and magnetic flux density
International Nuclear Information System (INIS)
Yanez, R.; Dempsey, J. F.
2007-01-01
We present studies in support of the development of a magnetic resonance imaging (MRI) guided intensity modulated radiation therapy (IMRT) device for the treatment of cancer patients. Fast and accurate computation of the absorbed ionizing radiation dose delivered in the presence of the MRI magnetic field are required for clinical implementation. The fast Monte Carlo simulation code DPM, optimized for radiotherapy treatment planning, is modified to simulate absorbed doses in uniform, static magnetic fields, and benchmarked against PENELOPE. Simulations of dose deposition in inhomogeneous phantoms in which a low density material is sandwiched in water shows that a lower MRI field strength (0.3 T) is to prefer in order to avoid dose build-up near material boundaries. (authors)
Equations for effective nuclear fields taking account of 2p2h configurations
International Nuclear Information System (INIS)
Kamerdzhiev, S.P.
1977-01-01
Equations taking into account 1p1h and 2p2h configurations were obta+ned by means of effective fields in the nucleus. The consideration is restricted by the even-even Fermi system only with particle-hole interaction and by the first order with respect to an external field, which corresponds to the case of an even-even nucleus without pairing in a weak external field. The principal results of the investigation are as follows: a set of equations for effective fields V 2 and V 4 is obtained by the Green function method; the solutxon of the set makes it possible to consider 1p1h and 2p2h configurations consecutively and dispense with the Hartree-Fock self-consistence. The equations for V 2 and V 4 can be used to obtain quantum equations taking into account 2p2h configurations and their effect on 1p1h states. Allowance for integration regions far removed from the Fermi surface results in the appearance of the V 4 0 seed portion in the V 4 effective field. Taking into account 2p2h configurations at V 4 0 not equal to 0 changes the form of the seed multipole operator of a nucleus; a new term appears in the expression for transition probability. As a rule, the V 4 0 value was neglected in investigations dealing with the 2p2h configuration
International Nuclear Information System (INIS)
Marzec, J.; Pawlowski, Z.
1982-01-01
The work describes the construction of a proportional counter with a uniform electric field in the zone of avalanche multiplication of electrons. It has been shown that in this counter filled with Penning's mixtures Ne+Ar+CO 2 , Ne+CH 4 and Ar+C 2 H 2 , much higher resolutions are obtained than in typical cylindrical counters. In the counter described filled with a mixture of Ne+1%CH 4 , a resolution of fwhm=10.5% has been obtained for E=5.9 keV. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Marzec, J.; Pawlowski, Z. (Politechnika Warszawska (Poland). Inst. Radioelektroniki)
1982-09-15
The work describes the construction of a proportional counter with a uniform electric field in the zone of avalanche multiplication of electrons. It has been shown that in this counter filled with Penning's mixtures Ne+Ar+CO/sub 2/, Ne+CH/sub 4/ and Ar+C/sub 2/H/sub 2/, much higher resolutions are obtained than in typical cylindrical counters. In the counter described filled with a mixture of Ne+1%CH/sub 4/, a resolution of fwhm=10.5% has been obtained for E=5.9 keV.
Bikson, Marom; Inoue, Masashi; Akiyama, Hiroki; Deans, Jackie K; Fox, John E; Miyakawa, Hiroyoshi; Jefferys, John G R
2004-05-15
The effects of uniform steady state (DC) extracellular electric fields on neuronal excitability were characterized in rat hippocampal slices using field, intracellular and voltage-sensitive dye recordings. Small electric fields (tips of basal and apical dendrites. The polarization was biphasic in the mid-apical dendrites; there was a time-dependent shift in the polarity reversal site. DC fields altered the thresholds of action potentials evoked by orthodromic stimulation, and shifted their initiation site along the apical dendrites. Large electric fields could trigger neuronal firing and epileptiform activity, and induce long-term (>1 s) changes in neuronal excitability. Electric fields perpendicular to the apical-dendritic axis did not induce somatic polarization, but did modulate orthodromic responses, indicating an effect on afferents. These results demonstrate that DC fields can modulate neuronal excitability in a time-dependent manner, with no clear threshold, as a result of interactions between neuronal compartments, the non-linear properties of the cell membrane, and effects on afferents.
Wright, Pauliina; Suilamo, Sami; Lindholm, Paula; Kulmala, Jarmo
2014-08-01
In postmastectomy radiotherapy (PMRT), the dose coverage of the planning target volume (PTV) with additional margins, including the chest wall, supraclavicular, interpectoral, internal mammary and axillar level I-III lymph nodes, is often compromised. Electron fields may improve the medial dose coverage while maintaining organ at risk (OAR) doses at an acceptable level, but at the cost of hot and cold spots at the electron and photon field junction. To improve PMRT dose coverage and uniformity, an isocentric technique combining tangential intensity-modulated (IM)RT fields with one medial electron field was implemented. For 10 postmastectomy patients isocentric IMRT with electron plans were created and compared with a standard electron/photon mix and a standard tangent technique. PTV dose uniformity was evaluated based on the tolerance range (TR), i.e. the ratio of the standard deviation to the mean dose, a dice similarity coefficient (DSC) and the 90% isodose coverage and the hot spot volumes. OAR and contralateral breast doses were also recorded. IMRT with electrons significantly improved the PTV dose homogeneity and conformity based on the TR and DSC values when compared with the standard electron/photon and tangent technique (p < 0.02). The 90% isodose coverage improved to 86% compared with 82% and 80% for the standard techniques (p < 0.02). Compared with the standard electron/photon mix, IMRT smoothed the dose gradient in the electron and photon field junction and the volumes receiving a dose of 110% or more were reduced by a third. For all three strategies, the OAR and contralateral breast doses were within clinically tolerable limits. Based on these results two-field IMRT combined with an electron field is a suitable strategy for PMRT.
Demonstration of motion control of ZrO2 microparticles in uniform/non-uniform electric field
Onishi, Genki; Trung, Ngo Nguyen Chi; Matsutani, Naoto; Nakayama, Tadachika; Suzuki, Tsuneo; Suematsu, Hisayuki; Niihara, Koichi
2018-02-01
This study aims to elucidate the mechanism that drives dielectric microparticles under an electric field. The driving of microstructures is affected by various electrical phenomena occurring at the same time such as surface potential, polarization, and electrostatic force. It makes the clarification of the driving mechanism challenging. A simple experimental system was used to observe the behavior of spherical ZrO2 microparticles in a nonaqueous solution under an electric field. The results suggest that the mechanism that drives the ZrO2 microparticles under an electric field involved the combination of an electric image force, a gradient force, and the contact charging phenomenon. A method is proposed to control the motion of micro- and nanostructures in further study and applications.
Uniform field loop-gap resonator and rectangular TEU02 for aqueous sample EPR at 94 GHz
Sidabras, Jason W.; Sarna, Tadeusz; Mett, Richard R.; Hyde, James S.
2017-09-01
In this work we present the design and implementation of two uniform-field resonators: a seven-loop-six-gap loop-gap resonator (LGR) and a rectangular TEU02 cavity resonator. Each resonator has uniform-field-producing end-sections. These resonators have been designed for electron paramagnetic resonance (EPR) of aqueous samples at 94 GHz. The LGR geometry employs low-loss Rexolite end-sections to improve the field homogeneity over a 3 mm sample region-of-interest from near-cosine distribution to 90% uniform. The LGR was designed to accommodate large degassable Polytetrafluorethylen (PTFE) tubes (0.81 mm O.D.; 0.25 mm I.D.) for aqueous samples. Additionally, field modulation slots are designed for uniform 100 kHz field modulation incident at the sample. Experiments using a point sample of lithium phthalocyanine (LiPC) were performed to measure both the uniformity of the microwave magnetic field and 100 kHz field modulation, and confirm simulations. The rectangular TEU02 cavity resonator employs over-sized end-sections with sample shielding to provide an 87% uniform field for a 0.1 × 2 × 6 mm3 sample geometry. An evanescent slotted window was designed for light access to irradiate 90% of the sample volume. A novel dual-slot iris was used to minimize microwave magnetic field perturbations and maintain cross-sectional uniformity. Practical EPR experiments using the application of light irradiated rose bengal (4,5,6,7-tetrachloro-2‧,4‧,5‧,7‧-tetraiodofluorescein) were performed in the TEU02 cavity. The implementation of these geometries providing a practical designs for uniform field resonators that continue resonator advancements towards quantitative EPR spectroscopy.
International Nuclear Information System (INIS)
Murakami, Ryuji; Sugahara, Takeshi; Baba, Yuji; Yamashita, Yasuyuki
2003-01-01
We devised a uniform compensation method to improve dose distribution using the field within a field technique in T-shaped irradiation for esophageal cancer. Isodose curves and dose volume histograms (DVH) of the esophagus in the treatment volume were examined in ten patients treated for esophageal cancers. For the DVH analysis, the prescription dose was 40 Gy to the center of the treatment volume, and the volume ratio of the esophagus receiving within ±5% of the prescription dose (38-42 Gy) was regarded as an index of dose homogeneity (V±5%). The peak dose in the conventional antero-posterior opposed fields irradiation existed at the clavicular level, and the 90% isodose curve crossing the esophagus almost corresponded to the top level of the aortic arch. When 40 Gy is irradiated, the maximum dose of the esophagus and V±5% were 45.55±0.55 Gy and 59.7±13.2% respectively. The dose distribution of the esophagus became relatively homogeneous when a 10% dose was added using the field within a field technique to the area under the bottom level of the aortic arch, and the maximum dose and V±5% were 42.53±0.94 Gy and 91.7±7.1% respectively. A 10% and more overdose area existed at the clavicular level in the conventional antero-posterior opposed fields irradiation. A relatively homogeneous dose distribution could be obtained using the field within a field technique. (author)
Molecular response to a time-independent non-uniform magnetic-field
International Nuclear Information System (INIS)
Faglioni, F.; Ligabue, A.; Pelloni, S.; Soncini, A.; Lazzeretti, P.
2004-01-01
The response of a molecule to a static inhomogeneous magnetic-field is rationalized via multipole magnetic susceptibilities and induced magnetic multipole and anapole moments. The energy of the molecule interacting with the external field is expressed as a Taylor series in the powers of the field and its gradient at the origin of the coordinate system. It involves magnetic multipole tensors of increasing rank, which can be evaluated via quantum mechanical approaches. An electronic energy shift is caused by the feed-back interaction between the induced magnetic dipole moment and the external magnetic field, and between the induced magnetic quadrupole moment and the gradient of the magnetic field. It is shown that, for a static magnetic field with uniform gradient, the magnetic quadrupole moment is origin-dependent, but the total interaction energy and the induced magnetic dipole are invariant to a translation of the coordinate system. The formal advantages of a Geertsen approach to third- and fourth-rank mixed-multipole susceptibilities are discussed
Influence of magnetic field configuration on magnetohydrodynamic waves in Earth's core
Knezek, Nicholas; Buffett, Bruce
2018-04-01
We develop a numerical model to study magnetohydrodynamic waves in a thin layer of stratified fluid near the surface of Earth's core. Past studies have been limited to using simple background magnetic field configurations. However, the choice of field distribution can dramatically affect the structure and frequency of the waves. To permit a more general treatment of background magnetic field and layer stratification, we combine finite volume and Fourier methods to describe the wave motions. We validate our model by comparisons to previous studies and examine the influence of background magnetic field configuration on two types of magnetohydrodynamic waves. We show that the structure of zonal Magnetic-Archimedes-Coriolis (MAC) waves for a dipole background field is unstable to small perturbations of the field strength in the equatorial region. Modifications to the wave structures are computed for a range of field configurations. In addition, we show that non-zonal MAC waves are trapped near the equator for realistic magnetic field distributions, and that their latitudinal extent depends upon the distribution of magnetic field strength at the CMB.
The Study of Spherical Cores with a Toroidal Magnetic Field Configuration
Energy Technology Data Exchange (ETDEWEB)
Gholipour, Mahmoud [Research Institute for Astronomy and Astrophysics of Maragha (RIAAM)—Maragha, P.O. Box 55134-441 (Iran, Islamic Republic of)
2017-04-01
Observational studies of the magnetic fields in molecular clouds have significantly improved the theoretical models developed for the structure and evolution of dense clouds and for the star formation process as well. The recent observational analyses on some cores indicate that there is a power-law relationship between magnetic field and density in the molecular clouds. In this study, we consider the stability of spherical cores with a toroidal magnetic field configuration in the molecular clouds. For this purpose, we model a spherical core that is in magnetostatic equilibrium. Herein, we propose an equation of density structure, which is a modified form of the isothermal Lane–Emden equation in the presence of the toroidal magnetic field. The proposed equation describes the effect of the toroidal magnetic field on the cloud structure and the mass cloud. Furthermore, we found an upper limit for this configuration of magnetic field in the molecular clouds. Then, the virial theorem is used to consider the cloud evolution leading to an equation in order to obtain the lower limit of the field strength in the molecular cloud. However, the results show that the field strength of the toroidal configuration has an important effect on the cloud structure, whose upper limit is related to the central density and field gradient. The obtained results address some regions of clouds where the cloud decomposition or star formation can be seen.
International Nuclear Information System (INIS)
Main, J.; Wunner, G.
1997-01-01
Applying closed-orbit theory to the recurrence spectra of the hydrogen atom in a magnetic field, one can interpret most, but not all, structures semiclassically in terms of closed classical orbits. In particular, conventional closed-orbit theory fails near bifurcations of orbits where semiclassical amplitudes exhibit unphysical divergences. Here we analyze the role of ghost orbits living in complex phase space. The ghosts can explain resonance structures in the spectra of the hydrogen atom in a magnetic field at positions where no real orbits exist. For three different types of catastrophes, viz. fold, cusp, and butterfly catastrophes, we construct uniform semiclassical approximations and demonstrate that these solutions are completely determined by classical parameters of the real orbits and complex ghosts. copyright 1997 The American Physical Society
International Nuclear Information System (INIS)
Zhao, She Xu; Lee, Kang Yong
2007-01-01
This paper presents the dynamic magnetoelastic stress intensity factors of a Yoffe-type moving crack at the interface between two dissimilar soft ferromagnetic elastic half-planes. The solids are subjected to a uniform in-plane magnetic field and the crack is opened by internal normal and shear tractions. The problem is considered within the framework of linear magnetoelasticity. By application of the Fourier integral transform, the mixed boundary problem is reduced to a pair of integral equations of the second kind with Cauchy-type singularities. The singular integral equations are solved by means of a Jacobi polynomial expansion method. For a particular case, closed-form solutions are obtained. It is shown that the magnetoelastic stress intensity factors depend on the moving velocity of the crack, the magnetic field and the magnetoelastic properties of the materials
International Nuclear Information System (INIS)
Sharma, P.; Zhang, X.
2006-01-01
The failure of classical elasticity to address dislocation behavior spatially close to its core and (in Lorentz-type fashion) near the speed of sound is well known. In gauge field theory of defects, the latter are not postulated a priori in an ad hoc fashion rather defects such as dislocations arise naturally as a consequence of broken translational symmetry exhibiting solutions that are physically meaningful (e.g., removal of divergence of stress and the natural emergence of a core making redundant the artificial cut-off radius). In the present work we present the gauge field theoretic solution to the problem of a uniformly moving screw dislocation. Apart from the formal derivations, we show that stress divergence at the core of the dislocation is removed at all time and (consistent with atomistic simulations), supersonic states are found to be admissible
High magnetic field uniformity superconducting magnet for a movable polarized target
International Nuclear Information System (INIS)
Anishchenko, N.G.; Bartenev, V.D.; Blinov, N.A.
1998-01-01
The superconducting polarizing magnet was constructed for movable polarized target (MPT) with working volume 200 mm long and 30 mm in diameter. The magnet provides a polarizing magnetic field up to 6 T with the uniformity of 4.5 x 10 -4 in the working volume of the target. The magnet windings are made of a NbTi wire, impregnated with the epoxy resin and placed in the horizontal cryostat with 'warm' aperture diameter of 96 mm. The design and technology of the magnet winding are described. Results of the magnetic field map measurements using a NMR-magnetometer are given. The MPT set-up is installed in the beam line of polarized neutrons produced by break-up of polarized deuterons extracted from the Synchrophasotron of the Laboratory of High Energies (LHE), JINR, Dubna
Squeeze behavior of magnetorheological fluids under constant volume and uniform magnetic field
International Nuclear Information System (INIS)
Guo, Chaoyang; Gong, Xinglong; Xuan, Shouhu; Yan, Qifan; Ruan, Xiaohui
2013-01-01
In this work the experimental investigation of magnetorheological fluids in squeeze mode has been carried out under constant volume with a self-developed device. The magnetorheological fluids were forced to move in all directions in a horizontal plane as the two flat surfaces came together. A pair of Helmholtz coils was used to generate a uniform magnetic field in the compression gap. The normal forces within the gap were systematically studied for different magnetic field, squeeze velocity, particle concentration, viscosity of carrier fluid and initial gap distance. Two regions of behavior were obtained from the normal force versus gap distance curve: elastic deformation and plastic flow. A power law fitting was appropriate for the relation between the normal force and the gap in the plastic flow. The index of the power law was smaller than that predicted by the continuum theory, possibly due to the squeeze strengthening effect and the sealing effect. (paper)
Uniform angular overlap model interpretation of the crystal field effect in U(5+) fluoride compounds
Energy Technology Data Exchange (ETDEWEB)
Gajek, Z.; Mulak, J. (W. Trzebiatowski Inst. of Low Temperature and Structure Research, Polish Academy of Sciences, Wroclaw (Poland))
1990-11-01
The uniform interpretation of the crystal field effect in three different U(5+) fluoride compounds: CsUF{sub 6}, {alpha}-UF{sub 5} and {beta}-UF{sub 5} within the angular overlap model (AOM) is given. Some characteristic relations between the AOM parameters and their distance dependencies resulting from ab initio calculations are introduced and examined from a phenomenological point of view. The traditional simplest approach with only one independent parameter, i.e. e{sub {sigma}} with e{sub {pi}}:e{sub {sigma}} = 0.32 and e{sub {delta}} = 0, is shown to provide a consistent interpretation of the crystal field effect of the whole class of the compounds. The parameters obtained for one compound are easily and successfully extrapolated to others. The specificity and importance of the e{sub {delta}} parameter for 5f{sup 1} systems is discussed. (orig.).
Dynamically assisted Schwinger effect beyond the spatially-uniform-field approximation
Aleksandrov, I. A.; Plunien, G.; Shabaev, V. M.
2018-06-01
We investigate the phenomenon of electron-positron pair production from vacuum in the presence of a strong electric field superimposed by a weak but fast varying pulse which substantially increases the total particle yield. We employ a nonperturbative numerical technique and perform the calculations beyond the spatially-uniform-field approximation, i.e., dipole approximation, taking into account the coordinate dependence of the fast component. The analysis of the main characteristics of the pair-production process (momentum spectra of particles and total amount of pairs) reveals a number of important features which are absent within the previously used approximation. In particular, the structure of the momentum distribution is modified both qualitatively and quantitatively, and the total number of pairs created as well as the enhancement factor due to dynamical assistance become significantly smaller.
Reversed-field pinch configuration with minimum energy and finite beta
International Nuclear Information System (INIS)
Zhang Peng
1989-01-01
The reversed-field pinch (RFP) configuration has been studied for the case of finite beta. Suydam's condition and the sufficient criterion have been used to examine this configuration. Results of numerical calculations show that the critical value of the pinch parameter Θ for the appearance of the reverse toroidal field increases as the β-value increases. The critical value of Θ for the helical state increases with β as well. Suydam's and Robinson's stability regions increase and shift towards higher values of Θ with increasing β. Theoretical results for finite β coincide with recent RFP experimental results
Attention operates uniformly throughout the classical receptive field and the surround
Verhoef, Bram-Ernst; Maunsell, John HR
2016-01-01
Shifting attention among visual stimuli at different locations modulates neuronal responses in heterogeneous ways, depending on where those stimuli lie within the receptive fields of neurons. Yet how attention interacts with the receptive-field structure of cortical neurons remains unclear. We measured neuronal responses in area V4 while monkeys shifted their attention among stimuli placed in different locations within and around neuronal receptive fields. We found that attention interacts uniformly with the spatially-varying excitation and suppression associated with the receptive field. This interaction explained the large variability in attention modulation across neurons, and a non-additive relationship among stimulus selectivity, stimulus-induced suppression and attention modulation that has not been previously described. A spatially-tuned normalization model precisely accounted for all observed attention modulations and for the spatial summation properties of neurons. These results provide a unified account of spatial summation and attention-related modulation across both the classical receptive field and the surround. DOI: http://dx.doi.org/10.7554/eLife.17256.001 PMID:27547989
Formation of field reversed configurations in a slow, multi-turn coil system: Appendix B
International Nuclear Information System (INIS)
Slough, J.T.; Hoffman, A.L.
1987-01-01
A previous field-reversed theta pinch, TRX-1, has been modified by replacing the single turn main compression coil with an array of three-turn coils. Field reversed configurations (FRCs) have been formed at relatively low values of azimuthal electric field, where ohmic dissipation and axial compressive heating are substituted for the radial shock heating which is dominant in high voltage theta pinches. The longer magnetic field risetime has allowed various controls to be applied to the formation timing, so that the axial implosion can be made to coincide with the peak of the applied magnetic field. This 'programmed formation' control results in maximum plasma heating, and minimizes the formation dynamics
Hydra phantom applicability for carrying out tests of field uniformity in gamma cameras
International Nuclear Information System (INIS)
Aragao Filho, Geraldo L.; Oliveira, Alex C.H.
2014-01-01
Nuclear Medicine is a medical modality that makes use of radioactive material 'in vivo' in humans, making them a temporary radioactive source. The radiation emitted by the patient's body is detected by a specific equipment, called a gamma camera, creates an image showing the spatial and temporal biodistribution of radioactive material administered to the patient. Therefore, it's of fundamental importance a number of specific measures to make sure that procedure be satisfactory, called quality control. To Nuclear Medicine, quality control of gamma camera has the purpose of ensuring accurate scintillographic imaging, truthful and reliable for the diagnosis, guaranteeing visibility and clarity of details of structures, and also to determine the frequency and the need for preventive maintenance of equipment. To ensure the quality control of the gamma camera it's necessary to use some simulators, called phantom, used in Nuclear Medicine to evaluate system performance, system calibration and simulation of injuries. The goal of this study was to validate a new simulator for nuclear medicine, the Hydra phantom. The phantom was initially built for construction of calibration curves used in radiotherapy planning and quality control in CT. It has similar characteristics to specific phantoms in nuclear medicine, containing inserts and water area. Those inserts are regionally sourced materials, many of them are already used in the literature and based on information about density and interaction of radiation with matter. To verify its efficiency in quality control in Nuclear Medicine, was performed a test for uniformity field, one of the main tests performed daily, so we can verify the ability of the gamma camera to reproduce a uniform distribution of the administered activity in the phantom, been analysed qualitatively, through the image, and quantitatively, through values established for Central Field Of View (CFOV) and Useful Field Of View (UFOV). Also, was evaluated their
Plasma current sustained by fusion charged particles in a field reversed configuration
International Nuclear Information System (INIS)
Berk, H.L.; Momota, H.; Tajima, T.
1987-04-01
The distribution of energetic charged particles generated by thermonuclear fusion reactions in a field reversed configuration (FRC) are studied analytically and numerically. A fraction of the charged fusion products escapes directly while the others are trapped to form a directed particle flow parallel to the plasma current. It is shown that the resultant current density produced by these fusion charged particles can be comparable to background plasma current density that produces the original field reversed configuration in a D- 3 He reactor. Self-consistent equilibria arising from the currents of the background plasma and proton fusion products are constructed where the Larmor radius of the fusion product is of arbitrary size. Reactor relevant parameters are examined, such as how the fusion reactivity rate varies as a result of supporting the pressure associated with the fusion products. We also model the synchrotron emission from various pressure profiles and quantitatively show how synchrotron losses vary with different pressure profiles in an FRC configuration
International Nuclear Information System (INIS)
Tsakadze, E.L.; Ostrikov, K.; Tsakadze, Z.L.; Vladimirov, S.V.; Xu, S.
2004-01-01
Radial and axial distributions of magnetic fields in a low-frequency (∼460 kHz) inductively coupled plasma source with two internal crossed planar rf current sheets are reported. The internal antenna configuration comprises two orthogonal sets of eight alternately reconnected parallel and equidistant copper litz wires in quartz enclosures and generates three magnetic (H z , H r , and H φ ) and two electric (E φ and E r ) field components at the fundamental frequency. The measurements have been performed in rarefied and dense plasmas generated in the electrostatic (E) and electromagnetic (H) discharge modes using two miniature magnetic probes. It is shown that the radial uniformity and depth of the rf power deposition can be improved as compared with conventional sources of inductively coupled plasmas with external flat spiral ('pancake') antennas. Relatively deeper rf power deposition in the plasma source results in more uniform profiles of the optical emission intensity, which indicates on the improvement of the plasma uniformity over large chamber volumes. The results of the numerical modeling of the radial magnetic field profiles are found in a reasonable agreement with the experimental data
International Nuclear Information System (INIS)
Magara, T.
2010-01-01
In order to understand the configuration of magnetic field producing a solar penumbral microjet that was recently discovered by Hinode, we performed a magnetohydrodynamic simulation reproducing a dynamic process of how that configuration is formed in a modeled solar penumbral region. A horizontal magnetic flux tube representing a penumbral filament is placed in a stratified atmosphere containing the background magnetic field that is directed in a relatively vertical direction. Between the flux tube and the background field there forms the intermediate region in which the magnetic field has a transitional configuration, and the simulation shows that in the intermediate region magnetic reconnection occurs to produce a clear jet-like structure as suggested by observations. The result that a continuous distribution of magnetic field in three-dimensional space gives birth to the intermediate region producing a jet presents a new view about the mechanism of a penumbral microjet, compared to a simplistic view that two field lines, one of which represents a penumbral filament and the other the background field, interact together to produce a jet. We also discuss the role of the intermediate region in protecting the structure of a penumbral filament subject to microjets.
SHIELDING OF A UNIFORM ALTERNATING MAGNETIC FIELD USING A CIRCULAR PASSIVE LOOP
Directory of Open Access Journals (Sweden)
V. S. Grinchenko
2015-04-01
Full Text Available The magnetic and electromagnetic shields are used to reduce the magnetic field in local spaces. Usually these shields are implemented in the form of a box or a cylinder. At the same time the magnetic field reduction in local spaces by means of passive loops is not considered in detail yet. So, the present study considers shielding capabilities of a circular passive loop. The authors have performed an analytical and numerical modeling of a process of a uniform harmonic magnetic field shielding. The simulated results permit to find out the spatial distribution of the shielded magnetic field. Dependencies of shielding effectiveness on the passive loop radius and cross-section are determined. Moreover, the non-monotonic behavior of the loop radius dependence is shown. We have substantiated that the shielded volume of a circular passive loop is advisable to limit by the sphere with a half loop radius. Presented results give parameters of the circular passive loop that reduces the rms value of the magnetic flux density by 30 %.
Improvement of Lighting Uniformity and Phosphor Life in Field Emission Lamps Using Carbon Nanocoils
Directory of Open Access Journals (Sweden)
Kun-Ju Chung
2015-01-01
Full Text Available The lighting performances and phosphor degradation in field emission lamps (FELs with two different kinds of cathode materials—multiwalled carbon nanotubes (MWCNTs and carbon nanocoils (CNCs—were compared. The MWCNTs and CNCs were selectively synthesized on 304 stainless steel wire substrates dip-coated with nanosized Pd catalysts by controlling the growth temperature in thermal chemical vapor deposition, and the film uniformity can be optimized by adjusting the growth time. FELs were successfully fabricated by assembling these cathode filaments with a glass bulb-type anode. The FEL with the CNC cathode showed much higher lighting uniformity and light-spot density and a lower current at the same voltage than that with the MWCNT cathode filament, and its best luminous efficiency was as high as 75 lm/W at 8 kV. We also found that, for P22, the phosphor degradation can be effectively suppressed by replacing MWCNTs with CNCs in the cathode, due to the much larger total bright spot area and hence much lower current density loading on the anode.
Highly Uniform Carbon Nanotube Field-Effect Transistors and Medium Scale Integrated Circuits.
Chen, Bingyan; Zhang, Panpan; Ding, Li; Han, Jie; Qiu, Song; Li, Qingwen; Zhang, Zhiyong; Peng, Lian-Mao
2016-08-10
Top-gated p-type field-effect transistors (FETs) have been fabricated in batch based on carbon nanotube (CNT) network thin films prepared from CNT solution and present high yield and highly uniform performance with small threshold voltage distribution with standard deviation of 34 mV. According to the property of FETs, various logical and arithmetical gates, shifters, and d-latch circuits were designed and demonstrated with rail-to-rail output. In particular, a 4-bit adder consisting of 140 p-type CNT FETs was demonstrated with higher packing density and lower supply voltage than other published integrated circuits based on CNT films, which indicates that CNT based integrated circuits can reach to medium scale. In addition, a 2-bit multiplier has been realized for the first time. Benefitted from the high uniformity and suitable threshold voltage of CNT FETs, all of the fabricated circuits based on CNT FETs can be driven by a single voltage as small as 2 V.
International Nuclear Information System (INIS)
Fuentes, N.O.; Sakanaka, P.H.
1990-01-01
Field-reversed configuration equilibria are studied by solving the Grad-Shafranov equation. A multiple coil system (main coil and end mirrors) is considered to simulate the coil geometry of CNEA device. First results are presented for computed two-dimensional FRC equilibria produced varying the mirror coil current with two different mirror lenghts. (Author)
Lawton, R. M.
1976-01-01
An analysis of magnetic fields in the Orbiter Payload Bay resulting from the present grounding configuration (structure return) was presented and the amount of improvement that would result from installing wire returns for the three dc power buses was determined. Ac and dc magnetic fields at five points in a cross-section of the bay are calculated for both grounding configurations. Y and Z components of the field at each point are derived in terms of a constant coefficient and the current amplitude of each bus. The dc loads assumed are 100 Amperes for each bus. The ac noise current used is a spectrum 6 db higher than the Orbiter equipment limit for narrowband conducted emissions. It was concluded that installing return wiring to provide a single point ground for the dc Buses in the Payload Bay would reduce the ac and dc magnetic field intensity by approximately 30 db.
International Nuclear Information System (INIS)
Onofri, M.; Malara, F.
2013-01-01
Compressible magnetohydrodynamics simulations of the reversed-field pinch (RFP) are presented. Previous simulations of the RFP, including density and pressure evolution, showed that a stationary state with a reversed toroidal magnetic field could not be obtained, contrary to the results produced with numerical codes neglecting density and pressure dynamics. The simulations described in the present paper show that including density and pressure evolution, a stationary RFP configuration can be obtained if the resistivity has a radial profile steeply increasing close to the wall. Such resistivity profile is more realistic than a uniform resistivity, since the temperature at the wall is lower than in the plasma core
Helical magnetic axis configuration combined with l = 1 and weak l = -1 torsatron fields
International Nuclear Information System (INIS)
Kikuchi, Hitoshi; Saito, Katsunori; Gesso, Hirokazu; Shiina, Shoichi
1989-01-01
The superposition of a relatively weak l = -1 torsatron field on a main l = 1 torsatron field leads to the improvement of the confinement properties due to the formation of a local magnetic well, which results from the local curvature of the helical magnetic axis with a larger excursion in the major radius direction. This l±1 helical magnetic axis system has a comparatively simple, compact coil structure. Here the vacuum configuration properties of l = ±1 system are described. (author)
The levels of the first excited configuration of one-electron ions in intensive alternating field
International Nuclear Information System (INIS)
Klimchitskaya, G.L.
1984-01-01
The relativistic generalization of the quasi-energy method is applied for the calculation of the influence of spatjally-homogeneous electric field with the periodic time dependence on the energy levels of the first excited configuration of one-electron multiply charged ions. The dependence is found of the corresponding quasi-energy levels on the amplitude and frequency of intensive external field which wholly mixes the levels of fine structure
Comparing different stimulus configurations for population receptive field mapping in human fMRI
Directory of Open Access Journals (Sweden)
Ivan eAlvarez
2015-02-01
Full Text Available Population receptive field (pRF mapping is a widely used approach to measuring aggregate human visual receptive field properties by recording non-invasive signals using functional MRI. Despite growing interest, no study to date has systematically investigated the effects of different stimulus configurations on pRF estimates from human visual cortex. Here we compared the effects of three different stimulus configurations on a model-based approach to pRF estimation: size-invariant bars and eccentricity-scaled bars defined in Cartesian coordinates and traveling along the cardinal axes, and a novel simultaneous ‘wedge and ring’ stimulus defined in polar coordinates, systematically covering polar and eccentricity axes. We found that the presence or absence of eccentricity scaling had a significant effect on goodness of fit and pRF size estimates. Further, variability in pRF size estimates was directly influenced by stimulus configuration, particularly for higher visual areas including V5/MT+. Finally, we compared eccentricity estimation between phase-encoded and model-based pRF approaches. We observed a tendency for more peripheral eccentricity estimates using phase-encoded methods, independent of stimulus size. We conclude that both eccentricity scaling and polar rather than Cartesian stimulus configuration are important considerations for optimal experimental design in pRF mapping. While all stimulus configurations produce adequate estimates, simultaneous wedge and ring stimulation produced higher fit reliability, with a significant advantage in reduced acquisition time.
CFRX, a one-and-a-quarter-dimensional transport code for field-reversed configuration studies
International Nuclear Information System (INIS)
Hsiao Mingyuan
1989-01-01
A one-and-a-quarter-dimensional transport code, which includes radial as well as some two-dimensional effects for field-reversed configurations, is described. The set of transport equations is transformed to a set of new independent and dependent variables and is solved as a coupled initial-boundary value problem. The code simulation includes both the closed and open field regions. The axial effects incorporated include global axial force balance, axial losses in the open field region, and flux surface averaging over the closed field region. A typical example of the code results is also given. (orig.)
International Nuclear Information System (INIS)
Macnab, A. I. D.; Milroy, R. D.; Kim, C. C.; Sovinec, C. R.
2007-01-01
End-shorting of the open field lines that surround a field-reversed configuration (FRC) is believed to contribute to its observed rotation. In this study, nonlinear extended magnetohydrodynamics (MHD) simulations were performed that detail the end-shorting process and the resulting spin-up of the FRC. The tangential component of the electric field E T is set to zero at the axial boundaries in an extended MHD model that includes the Hall and ∇P e terms. This shorting of the electric field leads to the generation of toroidal fields on the open field lines, which apply a torque leading to a rotation of the ions on the open field lines. The FRC then gains angular momentum through a viscous transfer from the open field line region. In addition, it is shown that spin-up is still induced when insulating boundaries are assumed
Behaviour of laser-produced plasma in a uniform magnetic field
International Nuclear Information System (INIS)
Okada, Shigefumi; Sato, Kohnosuke; Sekiguchi, Tadashi.
1979-11-01
A column of a laser-produced plasma is successfully made in a uniform magnetic field. The radius of the column increases and then decreases (bouncing motion). On the surface of this plasma column, where the steep density gradient exists with the scale length shorter than the ion Larmor radius, an azimuthal modulation appears in the plasma luminosity. This is indicative of the flute-like instability with the azimuthal wave number; k sub(perpendicular) -- 4 x 10 3 B sup(0.8) (in the MKSA system of units). The dispersion equation based on the linearized Vlasov equation with the local approximation is derived and the occurrence of the lower-hybrid-drift instability is predicted. A fairly good agreement between the theory and experiments is seen. (author)
Bremsstrahlung emission coefficient of a plasma in a uniform magnetic field
International Nuclear Information System (INIS)
Pangborn, R.J.
1976-01-01
The leading (electron-ion, dipole) contribution to the bremsstrahlung spectrum of a Maxwellian plasma in a constant, uniform magnetic field is calculated. The plasma is assumed infinite and fully ionized. A simpler, more direct derivation of Kirchoff's Law for anisotropic media is presented. The plasma dispersion relation is then found using previously obtained expressions for the conductivity tensor (accurate to first order in collisional effects). From the dispersion the collisional damping, assumed small, is obtained and by means of Kirchoff's Law an expression for the bremsstrahlung emission coefficient is written. No terms of order (kappa 2 lambda 2 0 ) or higher are included. For wave frequencies large compared with the plasma and electron cyclotron frequencies (ω 2 much greater than ω 2 rho, ω 2 much greater than Ω 3 ) an expansion of the exact result is given accurate to fourth order in Ω/ω and ω rho/ω. The result is found to disagree with previous high frequency expressions. Analysis of the exact expression reveals that for certain frequencies and directions of propagation the emission spectrum exhibits a resonance quality. The results are presented in such fashion that for various magnetic field strengths the frequency of the resonant emission at arbitrary angle relative to the field is easily obtained. These phenomena arise due to the influence of the magnetic fieldon the dielectric properties of the plasma and not because of its effect on the binary collision process. A physical explanation of the results is presented
Oscillations of oblate drop between heterogeneous plates under uniform electric field
Kashina, M. A.; Alabuzhev, A. A.
2018-01-01
The forced oscillations of the incompressible fluid drop under the action of the uniform electric field are considered. In equilibrium, the drop has the form of a circular cylinder bounded axially by the parallel solid planes; the contact angle is right. An incompressible fluid of different density surrounds the drop. The external electric field acts as an external force that causes motion of the contact line. In order to describe this contact line motion, the modified Hocking boundary condition is applied: the velocity of the contact line is proportional to the deviation of the contact angle and the speed of the fast relaxation processes, whose frequency is proportional to twice the frequency of the electric field. The case of heterogeneous plates is investigated. We assume that the Hocking parameter depends on the polar angle in this case. The function describing the change in the coefficient of the interaction between the plate and the fluid (the contact line) is expanded in a series of the Laplace operator eigenfunctions.
Configurational entropy of polar glass formers and the effect of electric field on glass transition
Energy Technology Data Exchange (ETDEWEB)
Matyushov, Dmitry V., E-mail: dmitrym@asu.edu [Department of Physics and School of Molecular Sciences, Arizona State University, P.O. Box 871504, Tempe, Arizona 85287 (United States)
2016-07-21
A model of low-temperature polar liquids is constructed that accounts for the configurational heat capacity, entropy, and the effect of a strong electric field on the glass transition. The model is based on the Padé-truncated perturbation expansions of the liquid state theory. Depending on parameters, it accommodates an ideal glass transition of vanishing configurational entropy and its avoidance, with a square-root divergent enumeration function at the point of its termination. A composite density-temperature parameter ρ{sup γ}/T, often used to represent combined pressure and temperature data, follows from the model. The theory is in good agreement with the experimental data for excess (over the crystal state) thermodynamics of molecular glass formers. We suggest that the Kauzmann entropy crisis might be a signature of vanishing configurational entropy of a subset of degrees of freedom, multipolar rotations in our model. This scenario has observable consequences: (i) a dynamical crossover of the relaxation time and (ii) the fragility index defined by the ratio of the excess heat capacity and excess entropy at the glass transition. The Kauzmann temperature of vanishing configurational entropy and the corresponding glass transition temperature shift upward when the electric field is applied. The temperature shift scales quadratically with the field strength.
Configurational entropy of polar glass formers and the effect of electric field on glass transition.
Matyushov, Dmitry V
2016-07-21
A model of low-temperature polar liquids is constructed that accounts for the configurational heat capacity, entropy, and the effect of a strong electric field on the glass transition. The model is based on the Padé-truncated perturbation expansions of the liquid state theory. Depending on parameters, it accommodates an ideal glass transition of vanishing configurational entropy and its avoidance, with a square-root divergent enumeration function at the point of its termination. A composite density-temperature parameter ρ(γ)/T, often used to represent combined pressure and temperature data, follows from the model. The theory is in good agreement with the experimental data for excess (over the crystal state) thermodynamics of molecular glass formers. We suggest that the Kauzmann entropy crisis might be a signature of vanishing configurational entropy of a subset of degrees of freedom, multipolar rotations in our model. This scenario has observable consequences: (i) a dynamical crossover of the relaxation time and (ii) the fragility index defined by the ratio of the excess heat capacity and excess entropy at the glass transition. The Kauzmann temperature of vanishing configurational entropy and the corresponding glass transition temperature shift upward when the electric field is applied. The temperature shift scales quadratically with the field strength.
PARTIAL ERUPTION OF A FILAMENT WITH TWISTING NON-UNIFORM FIELDS
International Nuclear Information System (INIS)
Bi, Yi; Jiang, Yunchun; Yang, Jiayan; Xiang, Yongyuan; Cai, Yunfang; Liu, Weiwei
2015-01-01
The eruption of a filament in a kinklike fashion is often regarded as a signature of kink instability. However, the kink instability threshold for the filament’s magnetic structure is not widely understood. Using Hα observations from the New Vacuum Solar Telescope, we present a partial eruptive filament. During the eruption, the filament thread appeared to split from its middle and to break out in a kinklike fashion. In this period, the remaining filament material stayed below and erupted without the kinking motion later on. The coronal magnetic field lines associated with the filament are obtained from nonlinear force-free field extrapolations using the twelve-minute-cadence vector magnetograms of the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamic Observatory. We studied the extrapolated field lines passing through the magnetic dips which are in good agreement with the observed filament. The field lines are non-uniformly twisted and appear to be composed of two twisted flux ropes winding around each other. One of them has a higher twist than the other, and the flux rope with the higher twist has its dips aligned with the kinking eruptive thread at the beginning of its eruption. Before the eruption, moreover, the flux rope with the higher twist was found to expand with an approximately constant field twist. In addition, the helicity flux maps deduced from the HMI magnetograms show that some helicity is injected into the overlying magnetic arcade, but no significant helicity is injected into the flux ropes. Accordingly, we suggest that the highly twisted flux rope became kink unstable when the instability threshold declined with the expansion of the flux rope
International Nuclear Information System (INIS)
Ida, K.; Yoshinuma, M.; Yokoyama, M.
2005-01-01
Control of the radial electric field, E γ , is considered to be important in helical plasmas, because the radial electric field and its shear are expected to reduce neoclassical and anomalous transport, respectively. In general, the radial electric field can be controlled by changing the collisionality, and positive or negative electric field have been obtained by decreasing or increasing the electron density, respectively. Although the sign of the radial electric field can be controlled by changing the collisionality, modification of the magnetic field is required to achieve further control of the radial electric field, especially producing a strong radial electric field shear. In the Large Helical Device (LHD) the radial electric field profiles are shown to be controlled by the modification of the magnetic field by 1) changing the radial profile of the helical ripples, ε h , 2) creating a magnetic island with an external perturbation field coil and 3) changing the local island divertor coil current. (author)
International Nuclear Information System (INIS)
Ida, K.; Yoshinuma, M.; Yokoyama, M.
2005-01-01
Control of the radial electric field, E r , is considered to be important in helical plasmas, because the radial electric field and its shear are expected to reduce neoclassical and anomalous transport, respectively. In general, the radial electric field can be controlled by changing the collisionality, and positive or negative electric fields have been obtained by decreasing or increasing the electron density, respectively. Although the sign of the radial electric field can be controlled by changing the collisionality, modification of the magnetic field is required to achieve further control of the radial electric field, especially to produce a strong radial electric field shear. In the Large Helical Device (LHD) the radial electric field profiles are shown to be controlled by the modification of the magnetic field by (1) changing the radial profile of the effective helical ripples, ε h (2) creating a magnetic island with an external perturbation field coil and (3) changing the local island divertor coil current
Energy Technology Data Exchange (ETDEWEB)
Walstrom, Peter Lowell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-08-07
A numerical algorithm for computing the field components B_{r} and B_{z} and their r and z derivatives with open boundaries in cylindrical coordinates for radially thin solenoids with uniform current density is described in this note. An algorithm for computing the vector potential A_{θ} is also described. For the convenience of the reader, derivations of the final expressions from their defining integrals are given in detail, since their derivations are not all easily found in textbooks. Numerical calculations are based on evaluation of complete elliptic integrals using the Bulirsch algorithm cel. The (apparently) new feature of the algorithms described in this note applies to cases where the field point is outside of the bore of the solenoid and the field-point radius approaches the solenoid radius. Since the elliptic integrals of the third kind normally used in computing B_{z} and A_{θ} become infinite in this region of parameter space, fields for points with the axial coordinate z outside of the ends of the solenoid and near the solenoid radius are treated by use of elliptic integrals of the third kind of modified argument, derived by use of an addition theorem. Also, the algorithms also avoid the numerical difficulties the textbook solutions have for points near the axis arising from explicit factors of 1/r or 1/r^{2} in the some of the expressions.
Particle-confinement criteria for axisymmetric field-reversed magnetic configurations
International Nuclear Information System (INIS)
Hsiao, M.Y.; Miley, G.H.
1984-01-01
Based on two constants of motion, H and Psub(theta), where H is the total energy of a particle and Psub(theta) is its canonical angular momentum, particle confinement criteria are derived which impose constraints on H and Psub(theta). With no electric field at the ends of field-reversed magnetic configurations, confinement criteria for closed-field and absolute confinements are obtained explicitly, including both lower and upper bounds of Psub(theta)/q, where q is the charge of the species considered, for a class of Hill's vortex field-reversed magnetic configurations. The commonly used criterion for the Hamiltonian, H 0 Psub(theta), where ω 0 is identical to qB 0 /mc, is deduced from a more general form as a special case. In this special case, it is found necessary to impose a new criterion, -B 0 R 2 sub(w)/2c 0 is the vacuum field, which reduces the confinement region in (H,Psub(theta)) space. With the presence of electric fields at the ends of field-reversed magnetic configurations, confinement criteria are obtained for two interesting cases. In addition to lower and upper bounds of H, both lower and upper bounds of Psub(theta)/q are found. For axially confined particles, the lower bound of Psub(theta)/q reduces the confinement region in (H,Psub(theta)) space and represents a new criterion. These results can be applied to calculations for field-reversed mirrors and field-reversed theta pinches. (author)
Fedosin, Sergey G.
2018-01-01
For the relativistic uniform system with an invariant mass density the exact expressions are determined for the potentials and strengths of the gravitational field, the energy of particles and fields. It is shown that, as in the classical case for bodies with a constant mass density, in the system with a zero vector potential of the gravitational field, the energy of the particles, associated with the scalar field potential, is twice as large in the absolute value as the energy defined by the...
International Nuclear Information System (INIS)
Jiang Feng; Yang Jun; Ye Suisheng
2000-01-01
The filter house structure is designed using similarity laws showing that the filter house structure causes a non-uniform flow field. The flow field is also measured experimentally. The air flow field is analyzed for different conditions. The results show that: (1) The HEPA filters affect the dispersion of the air flow; (2) The appropriate angle for air input to the rectifier satisfies the requirements for uniform air flow for the test conditions; (3) The rectifier has little influence on the air flow for operating conditions
Label-Free Alignment of Nonmagnetic Particles in a Small Uniform Magnetic Field.
Wang, Zhaomeng; Wang, Ying; Wu, Rui Ge; Wang, Z P; Ramanujan, R V
2018-01-01
Label-free manipulation of biological entities can minimize damage, increase viability and improve efficiency of subsequent analysis. Understanding the mechanism of interaction between magnetic and nonmagnetic particles in an inverse ferrofluid can provide a mechanism of label-free manipulation of such entities in a uniform magnetic field. The magnetic force, induced by relative magnetic susceptibility difference between nonmagnetic particles and surrounding magnetic particles as well as particle-particle interaction were studied. Label-free alignment of nonmagnetic particles can be achieved by higher magnetic field strength (Ba), smaller particle spacing (R), larger particle size (rp1), and higher relative magnetic permeability difference between particle and the surrounding fluid (Rμr). Rμr can be used to predict the direction of the magnetic force between both magnetic and nonmagnetic particles. A sandwich structure, containing alternate layers of magnetic and nonmagnetic particle chains, was studied. This work can be used for manipulation of nonmagnetic particles in lab-on-a-chip applications.
Ionization from short-range potential under action of electromagnetic field of complex configuration
Rodionov, V N; Kravtsova, G A
2002-01-01
The transcendental equation for the complex energy is obtained on the basis of the exactly solvable 3D model of the short-acting potential and the Green time function in the intensive electromagnetic field, constituting the combination of the constant magnetic field and the circular-polarization wave field. The electron quasistationary states parameters in the delta-potential with an account of the action of the intensive external field of complex configuration are calculated. The problem on the possibility of stabilizing the bound states decay of the spinor and scalar particles through the intensive magnetic field is clarified. It is established that the obtained results regime the reexamination of the accepted notion on the stabilizing role of the strong magnetic field by the atoms ionization
Trask, Erik Harold
The plasma parameters and characteristics of the Irvine Field-Reversed Configuration (IFRC) are summarized in this thesis. Particular emphasis is placed on the development of the different diagnostics used to make measurements in the experiment, as well as the measurements themselves. Whenever possible, actual measurements are used in lieu of theoretical or analytical fits to data. Analysis of magnetic probes (B-dots) comprises the bulk of what is known about the IFRC. From these B-dot probes, the magnetic field structure in a two dimensional plane at constant toroidal position has been determined, and has been found to be consistent with a field-reversed configuration. Peak reversed fields of approximately 250 Gauss have been observed. Further analyses have been developed to extract information from the magnetic field structure, including components of the electric field, the current density, and plasma pressure in the same two dimensional plane. Electric field magnitudes reach 600 V/m, concurrent with current densities greater than 105 Amps/m2 and thermal pressures over 200 Pa. Spectroscopic analysis of hydrogen lines has been done to make estimates of the electron temperature, while spectroscopic measurements of the Doppler broadening of the Halpha line31 have allowed an estimate of the ion temperature. Particle losses out one axial end plane measured by an array of Faraday cups quantify the how well the configuration traps particles. Spectral information derived from B-dot probes indicates that there is substantial power present at frequencies lying between the hydrogen cyclotron and mean gyrofrequency. These various measurements are used to find the following parameters that characterize the Irvine FRC: (1) Electromagnetic and thermal stored energies as functions of time. (2) Power balance, including input power from the field coils, resistive heating, power lost by particle transport and radiation, and particle and energy confinement times. (3) Strong
International Nuclear Information System (INIS)
Sergeev, V.A.; Malkov, M.; Mursula, K.
1993-01-01
This paper describes tests done on one model system for studying the magnetic field in the magneotail, called the isotropic boundary algorithm method. The tail field lines map into the ionosphere, and there have been two direct methods applied to study tail fields, one a global model, and the other a local model. The global models are so broad in scope that they have a hard time dealing with specific field configurations at some time and some location. Local models rely upon field measurements being simultaneously available over a large region of space to study simultaneously the field configurations. In general this is either very fortuitous or very expensive. The isotropic boundary algorithm method relys upon measuring energetic particles, here protons with energies greater than 30 keV, in the isotropic boundary at low altitudes and interpreting them as representing the boundary between stochastic and adiabatic particle motion regions in the equatorial tail current sheet. The authors have correlated particle measurements by NOAA spacecraft to study the isotropic boundary, with magnetic measurements of tail magnetic fields by the geostationary GOES 2 spacecraft. Positive correlations are observed
FIREBIRD - a conceptual design of a field reversed configuration compact torus fusion reactor (CTFR)
International Nuclear Information System (INIS)
Raman, R.; Zubrin, R.M.
1987-01-01
This paper is a summary of the work carried out by the Nuclear Engineering 512 design team at the University of Washington on a conceptual design study of a Compact-Torus (Field-Reversed) Fusion Reactor Configuration (CTFR). The primary objective of the study was to develop a reactor design that strived for high engineering power density, modest recirculating power and competitive cost of electrical power. A Conceptual design was developed for a translating field-reversed configuration reactor; based on the Physics developed by Tuszewski and Lindford at LANL and by Hoffman and Milroy at MSNW. Furthermore, it also appears possible to operate a simplified form of this reactor using a pure D-D fuel cycle after an initial D-T ignition ramp to reach the advanced fuel operating regime. One optimistic reactor so designed has a length of about 35 meters, producing a net electrical power of about 375 MWe
Formation of a field reversed configuration for magnetic and electrostatic confinement of plasma
Rostoker, Norman; Binderbauer, Michl
2003-12-16
A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.
Field-reversed configuration produced by a linear theta-pinch, Tupa-1
International Nuclear Information System (INIS)
Kayama, M.E.; Boeckelmann, H.K.; Sakanaka, P.H.; Machida, M.
1987-01-01
The formation of field reversed configuration, FRC, in one meter mirrorless linear theta-pinch device Tupa-I was observed. This configuration was studied during the first half magnetic cycle of ringing main bank discharge using magnetic probes. The separatrix radius by the exclude flux probe and the ion temperature by visible spectroscopy were measured. The plasma dynamics was observed by the image converter camera. A clear indication of the formation of FRC due to reconnection of the antiparallel bias to the main field and a fast reconnection, less than 0.2 microsec, that is explained in terms of forced reconnection driven by the Kruskal-Schwarzschild instability, are also observed. (author) [pt
High pressure studies of configuration interaction and crystal field effects in Sm2+
International Nuclear Information System (INIS)
Shen, Y.; Bray, K.L.
1998-01-01
Full text: Divalent rare earth ions are interesting luminescence centres because of the low energy of the excited 4f n-1 5d 1 configuration relative to the 4f n ground configuration. The low energy difference between these two configurations leads to two principle effects which distinguish the luminescence properties of divalent rare earth ions from those of trivalent rare earth ions. First, a significant amount of 5d state mixing into the electronic states of the 4f n configuration occurs and second, the thermal activation barrier to 4f n → 4f n-1 5d 1 crossing is greatly reduced. The first effect introduces opposite parity character into the emitting levels of divalent rare earth ions and acts to shorten lifetimes and increase f-f luminescence intensity, while the second effect acts to enhance thermal quenching of 4f n excited electronic states closest in energy to the 4f n-1 5d 1 configuration. The interaction between the 4f n and 4f n-1 5d 1 configurations and crystal field properties are typically studied by considering the luminescence properties of divalent rare earth ions in a series of host crystals. We are currently developing a new approach, based on high pressure luminescence spectroscopy, for understanding con-figuration interaction and crystal field properties of divalent rare earth ions. The strategy of our approach is to use high pressure as a tool of structural perturbation. By applying hydrostatic pressure to solids, we have an opportunity to continuously vary the nearest neighbour coordination environment of divalent rare earth dopants. Our general goal is to correlate pressure-induced changes in local structure with pressure-induced changes in luminescence properties in an attempt to better understand structure-property-composition relations in solid state luminescent materials. In this paper we present recent results on Sm 2+ in a series of MFCl (M = Sr, Ba, Ca) host lattices. Luminescence spectra and decay properties as a function of
High Fidelity Modeling of Field-Reversed Configuration (FRC) Thrusters (Briefing Charts)
2017-05-24
THRUSTERS (Briefing Charts) Robert Martin , Eder Sousa, Jonathan Tran Air Force Research Laboratory (AFMC) AFRL/RQRS 1 Ara Drive Edwards AFB, CA 93524... Martin N/A HIGH FIDELITY MODELING OF FIELD-REVERSED CONFIGURATION (FRC) THRUSTERS Robert Martin1, Eder Sousa2, Jonathan Tran2 1AIR FORCE RESEARCH...Distribution is unlimited. PA Clearance No. 17314 MARTIN , SOUSA, TRAN (AFRL/RQRS) DISTRIBUTION A - APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA
International Nuclear Information System (INIS)
Warner, R.C.; Joshi, G.C.
1979-01-01
A simple rule is presented for calculating the contributions to the interaction potentials between constituent particles for a family of multiquark states, due to the presence of a semi-classical gauge field configuration which exists in a single SU(2) subgroup of colour SU(3). In multiquark states beyond the baryon many-body potential terms are found. The static (Wilson loop) limit is sufficient to elucidate the dependence of the potential on the colour structure of the multiquark state
Translation of field-reversed configurations in the FRX C/T experiment
International Nuclear Information System (INIS)
Rej, D.J.; Armstrong, W.T.; Chrien, R.E.
1984-01-01
One of the unique features inherent to compact toroids is the potential ability to translate the plasma along its geometric axis. CT translation has proven useful in reactor design studies, and has been the focus of several experimental investigations. In this paper, we report on the initial results from translation experiments performed with the field-reversed configuration (FRC) plasmas generated in the FRX-C/T device
Translation of field-reversed configurations in the FRX C/T experiment
Energy Technology Data Exchange (ETDEWEB)
Rej, D.J.; Armstrong, W.T.; Chrien, R.E.; Klingner, P.L.; Linford, R.K.; McKenna, K.F.; Milroy, R.D.; Sherwood, E.G.; Siemon, R.E.; Tuszewski, M.
1984-01-01
One of the unique features inherent to compact toroids is the potential ability to translate the plasma along its geometric axis. CT translation has proven useful in reactor design studies, and has been the focus of several experimental investigations. In this paper, we report on the initial results from translation experiments performed with the field-reversed configuration (FRC) plasmas generated in the FRX-C/T device.
Final report for the field-reversed configuration power plant critical-issue scoping study
Energy Technology Data Exchange (ETDEWEB)
Santarius, John F.; Mogahed, Elsayed A.; Emmert, Gilbert A.; Khater, Hesham Y.; Nguyen, Canh N.; Ryzhkov, Sergei V.; Stubna, Michael D.; Steinhauer, Loren C.; Miley, George H.
2001-03-01
This report describes research in which a team from the Universities of Wisconsin, Washington, and Illinois performed a scoping study of critical issues for field-reversed configuration (FRC) power plants. The key tasks for this research were (1) systems analysis of deuterium-tritium (D-T) FRC fusion power plants, and (2) conceptual design of the blanket and shield module for an FRC fusion core.
Electron density and temperature profile diagnostics for C-2 field reversed configuration plasmas
Energy Technology Data Exchange (ETDEWEB)
Deng, B. H.; Kinley, J. S.; Schroeder, J. [Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States)
2012-10-15
The 9-point Thomson scattering diagnostic system for the C-2 field reversed configuration plasmas is improved and the measured electron temperature profiles are consistent with theoretical expectations. Rayleigh scattering revealed a finite line width of the ruby laser emission, which complicates density calibration. Taking advantage of the plasma wobble motion, density profile reconstruction accuracy from the 6-chord two-color CO{sub 2}/HeNe interferometer data is improved.
Ohm close-quote s law for plasmas in reversed field pinch configuration
International Nuclear Information System (INIS)
Martines, E.; Vallone, F.
1997-01-01
An analytical relationship between current density and applied electric field in reversed field pinch (RFP) plasmas has been derived in the framework of the kinetic dynamo theory, that is assuming a radial field-aligned momentum transport caused by the magnetic field stochasticity. This Ohm close-quote s law yields current density profiles with a poloidal current density at the edge which can sustain the magnetic field configuration against resistive diffusion. The dependence of the loop voltage on plasma current and other plasma parameters for RFP experiments has been obtained. The results of the theoretical work have been compared with experimental data from the RFX experiment, and a good agreement has been found. copyright 1997 The American Physical Society
A model of the open magnetosphere. [with field configuration based on Chapman-Ferraro theory
Kan, J. R.; Akasofu, S.-I.
1974-01-01
The Chapman-Ferraro image method is extended to construct an idealized model of the open magnetosphere that responds to a change of the interplanetary field direction as well as to a change of the field magnitude or of the solar wind momentum flux. The magnetopause of the present model is an infinite plane surface having a normal field component distribution that is consistent with the merging theory. An upper limit on the inward displacement of the magnetopause following a southward turning of the interplanetary field is obtained. The results are in fair agreement with a single event reported by Aubry et al. (1971). The model determines the field configuration and the total magnetic flux connecting the magnetosphere to interplanetary space.
International Nuclear Information System (INIS)
Liu, Z; Liu, Q; Wang, Z D
2016-01-01
This paper concerns pre-breakdown phenomena, including streamer characteristics from a fundamental perspective and partial discharge (PD) measurements from an industrial perspective, in a hydrocarbon insulating liquid. The aim was to investigate the possible changes of the liquid’s streamer and PD characteristics and their correlations when the uniformity of the AC electric field varies. In the experiments, a plane-to-plane electrode system incorporating a needle protrusion was used in addition to a needle-to-plane electrode system. When the applied electric field became more uniform, fewer radial branches occurred and streamer propagation towards the ground electrode was enhanced. The transition from streamer propagation dominated breakdown in divergent fields to streamer initiation dominated breakdown in uniform fields was evidenced. Relationships between streamer and PD characteristics were established, which were found to be electric field dependent. PD of the same apparent charge would indicate longer streamers if the electric field is more uniform. (paper)
Exploring field-of-view non-uniformities produced by a hand-held spectroradiometer
Directory of Open Access Journals (Sweden)
Tamir Caras
2011-01-01
Full Text Available The shape of a spectroradiometer’s field of view (FOV affects the way spectral measurements are acquired. Knowing this property is a prerequisite for the correct use of the spectrometer. If the substrate is heterogeneous, the ability to accurately know what is being measured depends on knowing the FOV location, shape, spectral and spatial sensitivity. The GER1500 is a hand-held spectrometer with a fixed lens light entry slit and has a laser guide that allows control over the target by positioning the entire unit. In the current study, the FOV of the GER1500 was mapped and analysed. The spectral and spatial non-uniformities of the FOV were examined and were found to be spectrally independent. The relationship between the FOV and the built-in laser guide was tested and found to have a linear displacement dependent on the distance to the target. This allows an accurate prediction of the actual FOV position. A correction method to improve the agreement between the expected and measured reflectance over heterogeneous targets was developed and validated. The methods described are applicable and may be of use with other hand-held spectroradiometers.
Non-uniform Solar Temperature Field on Large Aperture, Fully-Steerable Telescope Structure
Liu, Yan
2016-09-01
In this study, a 110-m fully steerable radio telescope was used as an analysis platform and the integral parametric finite element model of the antenna structure was built in the ANSYS thermal analysis module. The boundary conditions of periodic air temperature, solar radiation, long-wave radiation shadows of the surrounding environment, etc. were computed at 30 min intervals under a cloudless sky on a summer day, i.e., worstcase climate conditions. The transient structural temperatures were then analyzed under a period of several days of sunshine with a rational initial structural temperature distribution until the whole set of structural temperatures converged to the results obtained the day before. The non-uniform temperature field distribution of the entire structure and the main reflector surface RMS were acquired according to changes in pitch and azimuth angle over the observation period. Variations in the solar cooker effect over time and spatial distributions in the secondary reflector were observed to elucidate the mechanism of the effect. The results presented here not only provide valuable realtime data for the design, construction, sensor arrangement and thermal deformation control of actuators but also provide a troubleshooting reference for existing actuators.
Directory of Open Access Journals (Sweden)
Rau R.
2002-01-01
Full Text Available Nineteen-channel EEGs were recorded from the scalp surface of 30 healthy subjects (16 males and 14 females, mean age: 34 years, SD: 11.7 years at rest and under trains of intermittent photic stimulation (IPS at rates of 5, 10 and 20 Hz. Digitalized data were submitted to spectral analysis with fast fourier transformation providing the basis for the computation of global field power (GFP. For quantification, GFP values in the frequency ranges of 5, 10 and 20 Hz at rest were divided by the corresponding data obtained under IPS. All subjects showed a photic driving effect at each rate of stimulation. GFP data were normally distributed, whereas ratios from photic driving effect data showed no uniform behavior due to high interindividual variability. Suppression of alpha-power after IPS with 10 Hz was observed in about 70% of the volunteers. In contrast, ratios of alpha-power were unequivocal in all subjects: IPS at 20 Hz always led to a suppression of alpha-power. Dividing alpha-GFP with 20-Hz IPS by alpha-GFP at rest (R = alpha-GFP IPS/alpha-GFPrest thus resulted in ratios lower than 1. We conclude that ratios from GFP data with 20-Hz IPS may provide a suitable paradigm for further investigations.
Fully developed liquid-metal flow in multiple rectangular ducts in a strong uniform magnetic field
International Nuclear Information System (INIS)
Molokov, S.
1993-01-01
Fully developed liquid-metal flow in a straight rectangular duct with thin conducting walls is investigated. The duct is divided into a number of rectangular channels by electrically conducting dividing walls. A strong uniform magnetic field is applied parallel to the outer side walls and dividing walls and perpendicular to the top and the bottom walls. The analysis of the flow is performed by means of matched asymptotics at large values of the Hartmann number M. The asymptotic solution obtained is valid for arbitrary wall conductance ratio of the side walls and dividing walls, provided the top and bottom walls are much better conductors than the Hartmann layers. The influence of the Hartmann number, wall conductance ratio, number of channels and duct geometry on pressure losses and flow distribution is investigated. If the Hartmann number is high, the volume flux is carried by the core, occupying the bulk of the fluid and by thin layers with thickness of order M -1/2 . In some of the layers, however, the flow is reversed. As the number of channels increases the flow in the channels close to the centre approaches a Hartmann-type flow with no jets at the side walls. Estimation of pressure-drop increase in radial ducts of a self-cooled liquid-metal blanket with respect to flow in a single duct with walls of the same wall conductance ratio gives an upper limit of 30%. (author). 13 refs., 10 figs., 1 tab
A highly nonlinear differentially 4 uniform power mapping that permutes fields of even degree
DEFF Research Database (Denmark)
Leander, Gregor; Bracken, Carl
2010-01-01
Functions with low differential uniformity can be used as the s-boxes of symmetric cryptosystems as they have good resistance to differential attacks. The AES (Advanced Encryption Standard) uses a differentially 4 uniform function called the inverse function. Any function used in a symmetric...
The separatrix radius measurement of field-reversed configuration plasma in FRX-L
International Nuclear Information System (INIS)
Zhang, Shouyin; Tejero, Erik M.; Taccetti, Jose Martin; Wurden, Glen A.; Intrator, Thomas; Waganaar, William J.
2004-01-01
Magnetic pick-up coils and single turn flux loops are installed on the FRX-L device. The combination of the two measurements provides the excluded flux radius that approximates the separatrix radius of the field-reversed configuration plasma. Arrays of similar probes are used to map out local magnetic field dynamics beyond both ends of the theta-coil confinement region to help understand the effects of cusp locations on flux trapping during the FRC formation process. Details on the probe design and system calibrations are presented. The overall system calibration of excluded flux radius measurement is examined by replacing FRC plasma with a known radius aluminum conductor cylinder.
International Nuclear Information System (INIS)
Iguchi, H.; Ida, K.; Yamada, H.
1994-01-01
Radial particle transport has been experimentally studied in the low-aspect-ratio heliotron/torsatron device CHS. A non-diffusive outward particle flow (inverse pinch) is observed in the magnetic configuration with the magnetic axis shifted outward, while an inward pinch, like in tokamaks, is observed with the magnetic axis shifted inward. This change in the direction of anomalous particle flow is not due to the reversal of temperature gradient nor the radial electric field. The observation suggests that the particle pinch velocity is sensitive to the magnetic field structure. (author)
Energy Technology Data Exchange (ETDEWEB)
Coppi, B., E-mail: coppi@mit.edu [Massachusetts Institute of Technology (United States)
2017-03-15
The radiation emission from Shining Black Holes is most frequently observed to have nonthermal features. It is therefore appropriate to consider relevant collective processes in plasmas surrounding black holes that contain high energy particles with nonthermal distributions in momentum space. A fluid description with significant temperature anisotropies is the simplest relevant approach. These anisotropies are shown to have a critical influence on: (a) the existence and characteristics of stationary plasma and field ring configurations, (b) the excitation of “thermo-gravitational modes” driven by temperature anisotropies and gradients that involve gravity and rotation, (c) the generation of magnetic fields over macroscopic scale distances, and (d) the transport of angular momentum.
Design and field configuration for a 14.4 GHz ECR ion source in Kolkata
International Nuclear Information System (INIS)
Rashid, M.H.; Bose, D.K.; Mallik, C.; Bhandari, R.K.
2001-01-01
The K500 cyclotron under construction will be capable of accelerating ions like O 6+ , Ne 4+ , Ar 16+ , Kr 27+ etc. We aim to get ∼200 euA maximum intensity of the extracted beam of O 6+ from the ion source and decided to have >2B ECR magnetic field on the cylindrical surface and the injection ends of the plasma chamber (P Ch) and slightly less than this at the extraction end. The success of the high field operation of ECRs at other places (U-AECR at LBL) suggests generation of proper magnetic field configuration for the 14.4 GHz microwave heating. The absolute composite magnetic field have been evaluated due to the coils (C1,C2) at the two ends and a -ve coil (NC) at the mid-length and a Halbach type sextupole (PM-Hex)
ELF field in the proximity of complex power line configuration measurement procedures
International Nuclear Information System (INIS)
Benes, M.; Comelli, M.; Villalta, R.
2006-01-01
The issue of how to measure magnetic induction fields generated by various power line configurations, when there are several power lines that run across the same exposure area, has become a matter of interest and study within the Regional Environment Protection Agency of Friuli Venezia Giulia. In classifying the various power line typologies the definition of double circuit line was given: in this instance the magnetic field is determined by knowing the electrical and geometric parameters of the line. In the case of independent lines instead, the field is undetermined. It is therefore pointed out how, in the latter case, extracting projected information from a set of measurements of the magnetic field alone is impossible. Making measurements throughout the territory of service has in several cases offered the opportunity to define standard operational procedures. (authors)
International Nuclear Information System (INIS)
Wroe, Andrew; Clasie, Ben; Kooy, Hanne; Flanz, Jay; Schulte, Reinhard; Rosenfeld, Anatoly
2009-01-01
Purpose: Microdosimetric measurements were performed at Massachusetts General Hospital, Boston, MA, to assess the dose equivalent external to passively delivered proton fields for various clinical treatment scenarios. Methods and Materials: Treatment fields evaluated included a prostate cancer field, cranial and spinal medulloblastoma fields, ocular melanoma field, and a field for an intracranial stereotactic treatment. Measurements were completed with patient-specific configurations of clinically relevant treatment settings using a silicon-on-insulator microdosimeter placed on the surface of and at various depths within a homogeneous Lucite phantom. The dose equivalent and average quality factor were assessed as a function of both lateral displacement from the treatment field edge and distance downstream of the beam's distal edge. Results: Dose-equivalent value range was 8.3-0.3 mSv/Gy (2.5-60-cm lateral displacement) for a typical prostate cancer field, 10.8-0.58 mSv/Gy (2.5-40-cm lateral displacement) for the cranial medulloblastoma field, 2.5-0.58 mSv/Gy (5-20-cm lateral displacement) for the spinal medulloblastoma field, and 0.5-0.08 mSv/Gy (2.5-10-cm lateral displacement) for the ocular melanoma field. Measurements of external field dose equivalent for the stereotactic field case showed differences as high as 50% depending on the modality of beam collimation. Average quality factors derived from this work ranged from 2-7, with the value dependent on the position within the phantom in relation to the primary beam. Conclusions: This work provides a valuable and clinically relevant comparison of the external field dose equivalents for various passively scattered proton treatment fields
Rovang, D C; Lamppa, D C; Cuneo, M E; Owen, A C; McKenney, J; Johnson, D W; Radovich, S; Kaye, R J; McBride, R D; Alexander, C S; Awe, T J; Slutz, S A; Sefkow, A B; Haill, T A; Jones, P A; Argo, J W; Dalton, D G; Robertson, G K; Waisman, E M; Sinars, D B; Meissner, J; Milhous, M; Nguyen, D N; Mielke, C H
2014-12-01
Sandia has successfully integrated the capability to apply uniform, high magnetic fields (10-30 T) to high energy density experiments on the Z facility. This system uses an 8-mF, 15-kV capacitor bank to drive large-bore (5 cm diameter), high-inductance (1-3 mH) multi-turn, multi-layer electromagnets that slowly magnetize the conductive targets used on Z over several milliseconds (time to peak field of 2-7 ms). This system was commissioned in February 2013 and has been used successfully to magnetize more than 30 experiments up to 10 T that have produced exciting and surprising physics results. These experiments used split-magnet topologies to maintain diagnostic lines of sight to the target. We describe the design, integration, and operation of the pulsed coil system into the challenging and harsh environment of the Z Machine. We also describe our plans and designs for achieving fields up to 20 T with a reduced-gap split-magnet configuration, and up to 30 T with a solid magnet configuration in pursuit of the Magnetized Liner Inertial Fusion concept.
Ekroos, Johan; Jakobsson, Anna; Wideen, Joel; Herbertsson, Lina; Rundlöf, Maj; Smith, Henrik G
2015-10-01
Bumble bee abundance in agricultural landscapes is known to decrease with increasing distance from seminatural grasslands, but whether the pollination of bumble-bee-pollinated wild plants shows a similar pattern is less well known. In addition, the relative effects of landscape composition (landscape heterogeneity) and landscape configuration (distance from seminatural grassland) on wild plant pollination, and the interaction between these landscape effects, have not been studied using landscape-level replication. We performed a field experiment to disentangle these landscape effects on the pollination of a native herb, the sticky catchfly (Lychnis viscaria), while accounting for the proportion of oilseed rape across landscapes and the local abundance of bee forage flowers. We measured pollen limitation (the degree to which seed set is pollen-limited), seed set, and seed set stability using potted plants placed in landscapes that differed in heterogeneity (composition) and distance from seminatural grassland (configuration). Pollen limitation and seed set in individual plants did not respond to landscape composition, landscape configuration, or proportion of oilseed rape. Instead, seed set increased with increasing local bee forage flower cover. However, we found within-plant variability in pollen limitation and seed set to increase with increasing distance from seminatural pasture. Our results suggest that average within-plant levels of pollen limitation and seed set respond less swiftly than the within-plant variability in pollen limitation and seed set to changes in landscape configuration. Although landscape effects on pollination were less important than predicted, we conclude that landscape configuration and local habitat characteristics play larger roles than landscape composition in the pollination of L. viscaria.
International Nuclear Information System (INIS)
Glasser, A.H.; Cohen, S.A.
2001-01-01
The trajectories of individual electrons are studied numerically in a 3D, prolate, FRC [field-reversed configuration] equilibrium magnetic geometry with added small-amplitude, slowly rotating, odd-parity magnetic fields (RMFos). RMFos cause electron heating by toroidal acceleration near the O-point line and by field-parallel acceleration away from it, both followed by scattering from magnetic-field inhomogeneities. Electrons accelerated along the O-point line move antiparallel to the FRC's current and attain average toroidal angular speeds near that of the RMFo, independent of the sense of RMFo rotation. A conserved transformed Hamiltonian, dependent on electron energy and RMFo sense, controls electron flux-surface coordinate
Inviscid evolution of large amplitude filaments in a uniform gravity field
Energy Technology Data Exchange (ETDEWEB)
Angus, J. R. [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (United States); Krasheninnikov, S. I. [University of California, San Diego, La Jolla, California 92093 (United States); National Research Nuclear University “MEPhl” Kashirskoe sh., 31, 115563 Moscow (Russian Federation)
2014-11-15
The inviscid evolution of localized density stratifications under the influence of a uniform gravity field in a homogeneous, ambient background is studied. The fluid is assumed to be incompressible, and the stratification, or filament, is assumed to be initially isotropic and at rest. It is shown that the center of mass energy can be related to the center of mass position in a form analogous to that of a solid object in a gravity field g by introducing an effective gravity field g{sub eff}, which is less than g due to energy that goes into the background and into non-center of mass motion of the filament. During the early stages of the evolution, g{sub eff} is constant in time and can be determined from the solution of a 1D differential equation that depends on the initial, radially varying density profile of the filament. For small amplitude filaments such that ρ{sub 0} ≪ 1, where ρ{sub 0} is the relative amplitude of the filament to the background, the early stage g{sub eff} scales linearly with ρ{sub 0}, but as ρ{sub 0}→∞, g{sub eff}→g and is thus independent of ρ{sub 0}. Fully nonlinear simulations are performed for the evolution of Gaussian filaments, and it is found that the time t{sub max}, which is defined as the time for the center of mass velocity to reach its maximum value U{sub max}, occurs very soon after the constant acceleration phase and so U{sub max}≈g{sub eff}(t=0)t{sub max}. The simulation results show that U{sub max}∼1/t{sub max}∼√(ρ{sub 0}) for ρ{sub 0} ≪ 1, in agreement with theory and results from previous authors, but that U{sub max} and t{sub max} both scale approximately with √(ρ{sub 0}) for ρ{sub 0} ≫ 1. The fact that U{sub max} and t{sub max} have the same scaling with ρ{sub 0} for large amplitude filaments is in agreement with the theory presented in this paper.
Interaction of Fast Ions with Global Plasma Modes in the C-2 Field Reversed Configuration Experiment
Smirnov, Artem; Dettrick, Sean; Clary, Ryan; Korepanov, Sergey; Thompson, Matthew; Trask, Erik; Tuszewski, Michel
2012-10-01
A high-confinement operating regime [1] with plasma lifetimes significantly exceeding past empirical scaling laws was recently obtained by combining plasma gun edge biasing and tangential Neutral Beam Injection (NBI) in the C-2 field-reversed configuration (FRC) experiment [2, 3]. We present experimental and computational results on the interaction of fast ions with the n=2 rotational and n=1 wobble modes in the C-2 FRC. It is found that the n=2 mode is similar to quadrupole magnetic fields in its detrimental effect on the fast ion transport due to symmetry breaking. The plasma gun generates an inward radial electric field, thus stabilizing the n=2 rotational instability without applying the quadrupole magnetic fields. The resultant FRCs are nearly axisymmetric, which enables fast ion confinement. The NBI further suppresses the n=2 mode, improves the plasma confinement characteristics, and increases the plasma configuration lifetime [4]. The n=1 wobble mode has relatively little effect on the fast ion transport, likely due to the approximate axisymmetry about the displaced plasma column. [4pt] [1] M. Tuszewski et al., Phys. Rev. Lett. 108, 255008 (2012).[0pt] [2] M. Binderbauer et al., Phys. Rev. Lett. 105, 045003 (2010).[0pt] [3] H.Y. Guo et al., Phys. Plasmas 18, 056110 (2011).[0pt] [4] M. Tuszewski et al., Phys. Plasmas 19, 056108 (2012)
Directory of Open Access Journals (Sweden)
Paul Pierce
2017-08-01
Full Text Available Despite the impressive growth of smart city initiatives worldwide, an organizational theory of smart city has yet to be developed, and we lack models addressing the unprecedented organizational and management challenges that emerge in smart city contexts. Traditional models are often of little use, because smart cities pursue different goals than traditional organizations, are based on networked, cross-boundary activity systems, rely on distributed innovation processes, and imply adaptive policy-making. Complex combinations of factors may lead to vicious or virtuous cycles in smart city initiatives, but we know very little about how these factors may be identified and mapped. Based on an inductive study of a set of primary and secondary sources, we develop a framework for the configurational analysis of smart cities viewed as place-specific organizational fields. This framework identifies five key dimensions in the configurations of smart city fields; these five dimensions are mapped through five sub-frameworks, which can be used both separately as well as for an integrated analysis. Our contribution is conceived to support longitudinal studies, natural experiments and comparative analyses on smart city fields, and to improve our understanding of how different combinations of factors affect the capability of smart innovations to translate into city resilience, sustainability and quality of life. In addition, our results suggest that new forms of place-based entrepreneurship constitute the engine that allows for the dynamic collaboration between government, citizens and research centers in successful smart city organizational fields.
Non-uniform current distribution in a force-cooled superconductor under changing magnetic field
International Nuclear Information System (INIS)
Koizumi, Norikiyo
2000-02-01
Strands in a large current force-cooled superconductor, referred to a CICC (cable-in-conduit conductor) hereafter, are coated with formvar (insulated layer) or chrome plating (high resistive layer) to reduce coupling current loss due to magnetic field variation. The author first carried out an experiment of the large superconducting coil consisting of such CICCs for demonstration of their applicability to a large superconducting coil. These CICCs exhibited instability, i.e. the normal zone propagation with thermal runaway (quench), at 1/20 and 1/5 of the expected conductor critical currents, respectively. The author constructed the database of this instability and studies its reason through experimental and theoretical investigations and then finds such instability is caused as a result of non-uniform current distribution in the conductor. Joule heating loss at electrical connections at the ends of the conductor should be small. Therefore, the strands in the CICC are electrically connected from each other with low resistance there. Circulation current is induced in the loop composed of the strands electrically connected at the ends of the conductor if its leakage magnetic flux is not completely vanished. The non-uniform current distribution is caused as a result of superimposition of the circulation and transport currents. The strand carrying large current becomes the normal state when it reaches or approaches to its critical current. Thus, the strands are twisted in order to vanish the leakage magnetic flux. The instability due to the current imbalance was not observed in the middle-scale coil (an element coil, such as a single double-pancake, of a large superconducting coil) consisting of the conductor in which the formvar-coated strands were twisted as above-mentioned. Consequently, it was believed that the leakage magnetic flux could be vanished by the normal twisting. However, the magnetic field increases in a large coil as a result of piling element coils
Park, Yong Min; Kim, Byeong Hee; Seo, Young Ho
2016-06-01
This paper presents a selective aluminum anodization technique for the fabrication of microstructures covered by nanoscale dome structures. It is possible to fabricate bulging microstructures, utilizing the different growth rates of anodic aluminum oxide in non-uniform electric fields, because the growth rate of anodic aluminum oxide depends on the intensity of electric field, or current density. After anodizing under a non-uniform electric field, bulging microstructures covered by nanostructures were fabricated by removing the residual aluminum layer. The non-uniform electric field induced by insulative micropatterns was estimated by computational simulations and verified experimentally. Utilizing computational simulations, the intensity profile of the electric field was calculated according to the ratio of height and width of the insulative micropatterns. To compare computational simulation results and experimental results, insulative micropatterns were fabricated using SU-8 photoresist. The results verified that the shape of the bottom topology of anodic alumina was strongly dependent on the intensity profile of the applied electric field, or current density. The one-step fabrication of nanostructure-covered microstructures can be applied to various fields, such as nano-biochip and nano-optics, owing to its simplicity and cost effectiveness.
Effect of temperature on the uniform field breakdown strength of electronegative gases
International Nuclear Information System (INIS)
Christophorou, L.G.; Mathis, R.A.; Hunter, S.R.; Carter, J.G.
1987-03-01
In general, the electron attachment rate constant, k/sub a/ ( ,Υ), as a function of the mean electron energy and temperature Υ for electronegative gases which attach electrons nondissociatively decreases greatly with Υ from room temperature to Υ ≤ 600K, while that for electronegative gases which attach electrons dissociatively increases with increasing Υ. Based on recent studies in our laboratory on k/sub a/ ( ,Υ), we investigated the variation with Υ (∼295-575K) of the uniform field breakdown strength, (E/N)/sub lim/, for three classes of electronegative gases: (a) gases such as c-C 4 F 8 (and c-C 4 F 6 , 1-C 3 F 6 ) which attach strongly low-energy (≤ 1 eV) electrons nondissociatively and for which k/sub a/ ( ,Υ), decreases precipitously with Υ above ambient; (b) gases such as C 2 F 6 and CF 3 Cl which attach electrons exclusively dissociatively and whose k/sub a/ ( ,Υ) increases with Υ; and (c) gases such as C 3 F 8 and n-C 4 F 10 which attach electrons both nondissociatively and dissociatively over a common low-energy range and whose k/sub a/ ( ,Υ) first decreases and then increases with Υ above ambient. The (E/N)/sub lim/(Υ) has been found to decrease significantly with Υ for (a), to decrease slowly with Υ for (c), and to increase slightly with Υ for (b). These changes in (E/N)/sub lim/ follow those in k/sub a/ ( ,Υ). A similar behavior is expected for other electronegative gaseous dielectrics in the respective three groups
Rowland, D. R.
2007-01-01
The physical analysis of a uniformly accelerating point charge provides a rich problem to explore in advanced courses in electrodynamics and relativity since it brings together fundamental concepts in relation to electromagnetic radiation, Einstein's equivalence principle and the inertial mass of field energy in ways that reveal subtleties in each…
de Brito, P. E.; Nazareno, H. N.
2007-01-01
In the present work we treat the problem of a particle in a uniform magnetic field along the symmetric gauge, so chosen since the wavefunctions present the required cylindrical symmetry. It is our understanding that by means of this work we can make a contribution to the teaching of the present subject, as well as encourage students to use…
International Nuclear Information System (INIS)
Beriya, Z.R.; Gogashvili, G.E.; Nanobashvili, S.I.
1992-01-01
The investigation was aimed at studying the characteristics and properties of plasma injected from independent stationary SHF source into an open magnetic trap of mirror geometry within a wide range of change in the experimental conditions. The investigations were primarily based on measurements of the distribution of charged particles in a plasma along the trap and on the dependence of the concentration on plasma production conditions in a SHF source. It is shown that the aggregate of the experimental data enables a conclusion that independent of SHF plasma can be succesfully used for filling on open magnetic trap of mirror configuration with plasma
Experiments of spheromak and reversed field configuration in 2m theta pinch
International Nuclear Information System (INIS)
Nogi, Y.; Shimamura, S.; Ogura, H.; Osanai, Y.; Saito, K.; Shiina, S.; Yoshimura, H.
1981-01-01
Since the z-current produces the paramagnetic field near the electrodes, the spheromak formation is more difficult in the straight bias field. In order to help the reconnection at the coil ends, the cusp bias coils are added to both ends of the straight coil. Then the spheromak configuration is formed and the plasma is confined for 5 to 10 μs. On the other hand, the RFC continues for about 30 μs in case of the straight bias field. The confinement time is limited by the rotational instability. Although the start time of the instability is not clear, the elongation of the plasma is detected in 15 to 20 μs after the RFC is formed. The period of the rotation is slightly different every shot. Detailed study of the instability is being pursued
Plasma-gun-assisted field-reversed configuration formation in a conical θ-pinch
Energy Technology Data Exchange (ETDEWEB)
Weber, T. E., E-mail: tweber@lanl.gov; Intrator, T. P. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Smith, R. J. [Department of Aeronautics and Astronautics, University of Washington, Seattle, Washington 98195 (United States)
2015-04-15
Injection of plasma via an annular array of coaxial plasma guns during the pre-ionization phase of field-reversed configuration (FRC) formation is shown to catalyze the bulk ionization of a neutral gas prefill in the presence of a strong axial magnetic field and change the character of outward flux flow during field-reversal from a convective process to a much slower resistive diffusion process. This approach has been found to significantly improve FRC formation in a conical θ-pinch, resulting in a ∼350% increase in trapped flux at typical operating conditions, an expansion of accessible formation parameter space to lower densities and higher temperatures, and a reduction or elimination of several deleterious effects associated with the pre-ionization phase.
Plasma-gun-assisted field-reversed configuration formation in a conical θ-pinch
Weber, T. E.; Intrator, T. P.; Smith, R. J.
2015-04-01
Injection of plasma via an annular array of coaxial plasma guns during the pre-ionization phase of field-reversed configuration (FRC) formation is shown to catalyze the bulk ionization of a neutral gas prefill in the presence of a strong axial magnetic field and change the character of outward flux flow during field-reversal from a convective process to a much slower resistive diffusion process. This approach has been found to significantly improve FRC formation in a conical θ-pinch, resulting in a ˜350% increase in trapped flux at typical operating conditions, an expansion of accessible formation parameter space to lower densities and higher temperatures, and a reduction or elimination of several deleterious effects associated with the pre-ionization phase.
Tilt stability and compression heating studies of field-reversed configurations
International Nuclear Information System (INIS)
Rej, D.J.; Tuszewski, M.; Barnes, D.C.; Barnes, G.A.; Chrien, R.E.; Siemon, R.E.; Taggart, D.P.; Webster, R.B.; Wright, B.L.; Milroy, R.D.; Crawford, E.A.; Slough, J.T.; Steinhauer, L.C.; Bailey, A.D.; Baron, M.H.; Cobb, J.W.; Staudenmeier, J.L.; Sugimoto, S.; Takahashi, T.
1990-01-01
The first observations of internal tilt instabilities in field-reversed configurations (FRCs) are reported. Detailed comparisons with theory establish that data from an array of external magnetic probes are signatures of these destructive plasma instabilities. This work reconciles theory and experiments and suggests that grossly stable FRCs are restricted to very kinetic and elongated plasmas. Self-consistent three-dimensional numerical simulations demonstrate tilt stabilization by the addition of a beam ion component. High-power compression heating experiments with stable equilibrium FRCs are also reported. Plasmas formed in a tapered theta-pinch coil have been translated along a guide magnetic field into a new single-turn compression coil where the external field is increased up to 7 times the initial value in 55 μs. Substantial heating is observed accompanied by a decrease in confinement time. 17 refs
International Nuclear Information System (INIS)
Segre, S. E.
2001-01-01
The known analytic expressions for the evolution of the polarization of electromagnetic waves propagating in a plasma with uniformly sheared magnetic field are extended to the case where the shear is not constant. Exact analytic expressions are found for the case when the space variations of the medium are such that the magnetic field components and the plasma density satisfy a particular condition (eq. 13), possibly in a convenient reference frame of polarization space [it
International Nuclear Information System (INIS)
Zhao, X.G.; Chen, S.G.
1992-01-01
In this paper, the energy spectrum and the wave functions for a tight-binding Bloch electron on coupled chains under the action of both uniform electric and magnetic fields are studied in detail. Exact results are obtained for the case when the coupling between chains is large by using the perturbation theory, from which it is found that the spectrum is that of two interspaced Stark ladders. The magnetic field dependence of the energy spectrum is also discussed
Tenhunen, Mikko; Nyman, Heidi; Strengell, Satu; Vaalavirta, Leila
2009-10-01
Isocentric treatment technique is a standard method in photon radiotherapy with the primary advantage of requiring only a single patient set-up procedure for multiple fields. However, in electron treatments the size of the standard applicators does not generally allow to use an isocentric treatment technique. In this work we have modified and dosimetrically tested electron applicators for isocentric treatments in combination with photons. An isocentric treatment technique with photons and electrons for postmastectomy radiation therapy (PMRT) has been developed with special emphasis on improving the dose uniformity in the field gap area. Standard electron applicators of two Varian Clinac 2100CD linear accelerators were shortened by 10cm allowing isocentric treatments of 90cmelectron fields. Shortened applicators were commissioned and configured for the electron calculation algorithm of the treatment planning system. The field arrangement of PMRT was modified by combining three photon field segments with different gaps and overlaps with the electron field to improve dose uniformity. The developed technique and two other methods for PMRT were compared with each other in the group of 20 patients. Depth dose characteristics of the shortened applicators remained unchanged from those of the standard applicators. Penumbrae were broadened by 0-3mm depending on electron energy and depth as the air gap was increased from 5cm (standard applicator at SSD=100cm) to 10cm (shortened applicator at SSD=95cm). The dose calculation performance of the modified applicators at 95cmelectron dose calculation algorithm of the treatment planning system (Varian Eclipse). The modified isocentric treatment technique for PMRT was superior than the traditional two-dimensional technique. However, with the tangential photon fields without electrons the even better dose uniformity within PTV could be achieved but with increased irradiation of healthy tissues (lung, heart, and contralateral breast
Field-reversed configuration translation studies in FRX-C/T
International Nuclear Information System (INIS)
Chrien, R.E.; Armstrong, W.T.; Klingner, P.L.; Linford, R.K.; McKenna, K.F.; Rej, D.J.; Sherwood, E.G.; Siemon, R.E.; Tuszewski, M.
1984-01-01
Field-Reversed Configuration (FRC) translation is being studied in the FRX-C/T device. The main goals of this experiment are to demonstrate translation into a dc field region with minimal losses and to study modification of the equilibrium profiles of the FRC by varying x/sub s/, the ratio of separatrix radius (r/sub s/) to conducting wall radius (r/sub w/), through translation. FRC's are formed with a range of densities (1→5 x 10/sup 15/ cm/sup -3/) and x/sub s/ (0.35→0.55) in the FRX-C source, configured as a slightly conical theta pinch coil (r/sub w/ increases from 0.22 m to 0.28 m in four steps over 2 m). In 10→40 μs after formation, the FRC enters a 0.20-m radius stainless steel vessel with a dc field up to 8 kG. The translation velocity varies from 5→12 cm/μs and is typically about one-half the FRC Alfven velocity
Experimental profile evolution of a high-density field-reversed configuration
International Nuclear Information System (INIS)
Ruden, E. L.; Zhang, Shouyin; Intrator, T. P.; Wurden, G. A.
2006-01-01
A field-reversed configuration (FRC) gains angular momentum over time, eventually resulting in an n=2 rotational instability (invariant under rotation by π) terminating confinement. To study this, a laser interferometer probes the time history of line integrated plasma density along eight chords of the high-density (∼10 17 cm -3 ) field-reversed configuration experiment with a liner. Abel and tomographic inversions provide density profiles during the FRC's azimuthally symmetric phase, and over a period when the rotational mode has saturated and rotates with a roughly fixed profile, respectively. During the latter part of the symmetric phase, the FRC approximates a magnetohydrodynamic (MHD) equilibrium, allowing the axial magnetic-field profile to be calculated from pressure balance. Basic FRC properties such as temperature and poloidal flux are then inferred. The subsequent two-dimensional n=2 density profiles provide angular momentum information needed to set bounds on prior values of the stability relevant parameter α (rotational to ion diamagnetic drift frequency ratio), in addition to a view of plasma kinematics useful for benchmarking plasma models of higher order than MHD
A configurable component-based software system for magnetic field measurements
Energy Technology Data Exchange (ETDEWEB)
Nogiec, J.M.; DiMarco, J.; Kotelnikov, S.; Trombly-Freytag, K.; Walbridge, D.; Tartaglia, M.; /Fermilab
2005-09-01
A new software system to test accelerator magnets has been developed at Fermilab. The magnetic measurement technique involved employs a single stretched wire to measure alignment parameters and magnetic field strength. The software for the system is built on top of a flexible component-based framework, which allows for easy reconfiguration and runtime modification. Various user interface, data acquisition, analysis, and data persistence components can be configured to form different measurement systems that are tailored to specific requirements (e.g., involving magnet type or test stand). The system can also be configured with various measurement sequences or tests, each of them controlled by a dedicated script. It is capable of working interactively as well as executing a preselected sequence of tests. Each test can be parameterized to fit the specific magnet type or test stand requirements. The system has been designed with portability in mind and is capable of working on various platforms, such as Linux, Solaris, and Windows. It can be configured to use a local data acquisition subsystem or a remote data acquisition computer, such as a VME processor running VxWorks. All hardware-oriented components have been developed with a simulation option that allows for running and testing measurements in the absence of data acquisition hardware.
International Nuclear Information System (INIS)
Thode, L.E.; Kwan, T.J.T.
1984-01-01
Microwave generation from a virtual cathode system is investigated using two-dimensional particle-in-cell simulation. In the typical virtual cathode geometry, the electron beam diode is separated from the output waveguide by a ground plane which is a thin foil or screen. By lowering the diode impedance sufficiently, it is possible to form a virtual cathode in the waveguide region a short distance from the ground plane. In this configuration two mechanisms can lead to microwave generation: 1) electron bunching due to reflection between the real and virtual cathode and 2) electron bunching due to virtual cathode oscillation. Both mechanisms are typically present, but it appears possible to make one mechanism dominant by adjusting the output waveguide radius. Although such a configuration might generate 1-10 GW output, electron deposition into the ground plane, waveguide wall, and output window causes breakdown. To overcome these disadvantages, the authors have investigated a configuration with no ground plane coupled with the use of an inhomogeneous external magnetic field and waveguide wall
Configuration of the magnetic field and reconstruction of Pangaea in the Permian period.
Westphal, M
1977-05-12
The virtual geomagnetic poles of Laurasia and Gondwanaland in the Carboniferous and Permian periods diverge significantly when these continents are reassembled according to the fit calculated by Bullard et al. Two interpretations have been offered: Briden et al. explain these divergences by a magnetic field configuration very different from that of a geocentric axial dipole; Irving (and private communication), Van der Voo and French(4) suggest a different reconstruction and it is shown here that these two interpretations are not incompatible and that the first may help the second.
Superposed epoch analysis of pressure and magnetic field configuration changes in the plasma sheet
International Nuclear Information System (INIS)
Kistler, L.M.; Moebius, E.; Baumjohann, W.; Nagai, T.
1993-01-01
The authors report on an analysis of pressure and magnetic configuration within the plasma sheet following the initiation of substorm events. They have constructed this time dependent picture by using an epoch analysis of data from the AMPTE/IRM spacecraft. This analysis procedure can be used to construct a unified picture of events, provided they are reproducible, from a statistical analysis of a series of point measurements. The authors first determine the time dependent pressure changes in the plasma sheet. With some simplifying assumptions they then determine the z dependence of the pressure profiles, and from this distribution determine how field lines in the plasma sheet map to the neutral sheet
Tearing relaxation and the globalization of transport in field-reversed configurations
International Nuclear Information System (INIS)
Steinhauer, Loren; Barnes, D. C.
2009-01-01
Tearing instability of field-reversed configurations (FRC) is investigated using the method of neighboring equilibria. It is shown that the conducting wall position in experiment lies very close to the location needed for tearing stability. This strongly suggests that vigorous but benign tearing modes, acting globally, are the engine of continual self-organization in FRCs, i.e., tearing relaxation. It also explains the ''profile consistency'' and anomalous loss rate of magnetic flux. In effect, tearing globalizes the effect of edge-driven transport.
Induced charge of spherical dust particle on plasma-facing wall in non-uniform electric field
International Nuclear Information System (INIS)
Tomita, Y.; Smirnov, R.; Zhu, S.
2005-01-01
Induced charge of a spherical dust particle on a plasma-facing wall is investigated analytically, where non-uniform electric field is applied externally. The one-dimensional non-uniform electrostatic potential is approximated by the polynomial of the normal coordinate toward the wall. The bipolar coordinate is introduced to solve the Laplace equation of the induced electrostatic potential. The boundary condition at the dust surface determines the unknown coefficients of the general solution of the Laplace equation for the induced potential. From the obtained potential the surface induced charge can be calculated. This result allows estimating the effect of the surrounding plasma, which shields the induced charge. (author)
Energy Technology Data Exchange (ETDEWEB)
Schussler, F [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires
1965-09-01
After a brief survey of the interest of a multichannel beta spectrometer for studying decay schemes of short lived nuclides (30 seconds minimum, the theoretically well known characteristics of uniform magnetic field analyser (image of a large source, transmission and resolution) are briefly remembered. In the second part, the apparatus built as a result of these calculations is described. This apparatus allows the determination of beta spectra by simultaneous determination of the beta spectra in coincidence with four gamma rays predetermined in the gamma spectrum of the studied nuclide. Finally, in the last part, the experimental characteristics of the spectrometer (calibration in energy and transmission) and the first measurement of beta spectra ({sup 155}Sm) and of coincidences ({sup 24}Na), are given. (author) [French] Apres avoir brievement souligne l'interet pratique que presente un spectrometre multivoies pour l'etude des schemas de desintegration des corps radioactifs de courtes periodes (30 secondes au maximum), l'auteur effectue un rappel des caracteristiques theoriques bien connues d'un analyseur magnetique a champ uniforme (image d'une source etendue) calcul de la transmission et du pouvoir de resolution. Une deuxieme partie est consacree a la description de l'appareil realise d'apres ces calculs. Cet appareil permet le releve des spectres beta par detection, simultanee de dix groupes d'electrons d'energies differentes; il permet egalement le releve simultane des spectres beta en coincidence avec quatre rayonnements gammas preselectionnes a l'avance dans le spectre gamma du corps etudie. Dans une derniere partie enfin, sont donnees les caracteristiques experimentales du spectrometre (etalonnage en energie et en transmission) ainsi que les premiers resultats des etudes de spectre beta ({sup 155}Sm) et de coincidence ({sup 24}Na). (auteur)
Formation of magnetic islands due to field perturbations in toroidal stellarator configurations
International Nuclear Information System (INIS)
Lee, D.K.; Harris, J.H.; Lee, G.S.
1990-06-01
An explicit formulation is developed to determine the width of a magnetic island separatrix generated by magnetic field perturbations in a general toroidal stellarator geometry. A conventional method is employed to recast the analysis in a magnetic flux coordinate system without using any simplifying approximations. The island width is seen to be proportional to the square root of the Fourier harmonic of B ρ /B ζ that is in resonance with the rational value of the rotational transform, where B ρ and B ζ are contravariant normal and toroidal components of the perturbed magnetic field, respectively. The procedure, which is based on a representation of three-dimensional flux surfaces by double Fourier series, allows rapid and fairly accurate calculation of the island widths in real vacuum field configurations, without the need to follow field lines through numerical integration of the field line equations. Numerical results of the island width obtained in the flux coordinate representation for the Advanced Toroidal Facility agree closely with those determined from Poincare puncture points obtained by following field lines. 22 refs., 5 tabs
International Nuclear Information System (INIS)
Chen, Deshen; Qian, Hongliang; Wang, Huajie; Zhang, Gang; Fan, Feng; Shen, Shizhao
2017-01-01
Highlights: • Solar non-uniform temperature field test of a telescope’s reflector is conducted initially. • Time-varying distribution regularities are analyzed contrastively. • Simulation methods are proposed involving environmental factors and self-shadowing. • Refined discrimination method for the shadow distribution is put forward. • Validity of simulation methods is evaluated with the experimental data. - Abstract: To improve the ability of deep-space exploration, many astronomers around the world are actively engaged in the construction of large-aperture and high-precision radio telescopes. The temperature effect is one of three main factors affecting the reflector accuracy of radio telescopes. To study the daily non-uniform temperature field of the main reflector, experimental studies are first carried out with a 3-m-aperture radio telescope model. According to the test results for 16 working conditions, the distribution rule and time-varying regularity of the daily temperature field are summarized initially. Next, theoretical methods for the temperature field of the main reflector are studied considering multiple environmental parameters and self-shadows. Finally, the validity of the theoretical methods is evaluated with test results. The experimental study demonstrates that the non-uniform temperature distribution of the main reflector truly exists and should not be overlooked, and that the theoretical methods for the reflector temperature field proposed in this paper are effective. The research methods and conclusions can provide valuable references for thermal design, monitoring and control of similar high-precision radio telescopes.
International Nuclear Information System (INIS)
Khotimah, Siti Nurul; Viridi, Sparisoma; Widayani
2017-01-01
Magnetic and electric fields can cause a charged particle to form interesting trajectories. In general, each trajectory is discussed separately in university physics textbooks for undergraduate students. In this work, a solution of a charged particle moving in a uniform electric field at right angles to a uniform magnetic field (uniform crossed electric and magnetic fields) is reported; it is limited to particle motion in a plane. Specific solutions and their trajectories are obtained only by varying the initial particle velocity. The result shows five basic trajectory patterns, i.e., straight line, sinusoid-like, cycloid, cycloid-like with oscillation, and circle-like. The region of each trajectory is also mapped in the initial velocity space of the particle. This paper is intended for undergraduate students and describes further the trajectories of a charged particle through the regions of electric and magnetic fields influenced by initial condition of the particle, where electromagnetic radiation of an accelerated particle is not considered. (paper)
International Nuclear Information System (INIS)
Shams, A.; Roelofs, F.; Komen, E.M.J.; Baglietto, E.
2013-01-01
Highlights: ► Quasi direct numerical simulations (q-DNS) of a pebble bed configuration has been performed. ► This q-DNS database may serve as a reference for the validation of different turbulence modeling approaches. ► A wide range of qualitative and quantitative data throughout the computational domain has been generated. ► Results for mean, RMS and covariance of velocity field are extensively reported in this paper. -- Abstract: High temperature reactors (HTR) are being considered for deployment around the world because of their excellent safety features. The fuel is embedded in a graphite moderator and can sustain very high temperatures. However, the appearance of hot spots in the pebble bed cores of HTR's may affect the integrity of the pebbles. A good prediction of the flow and heat transport in such a pebble bed core is a challenge for available turbulence models and such models need to be validated. In the present article, quasi direct numerical simulations (q-DNS) of a pebble bed configuration are reported, which may serve as a reference for the validation of different turbulence modeling approaches. Such approaches can be used in order to perform calculations for a randomly arranged pebble bed. Simulations are performed at a Reynolds number of 3088, based on pebble diameter, with a porosity level of 0.42. Detailed flow analyses have shown complex physics flow behavior and make this case challenging for turbulence model validation. Hence, a wide range of qualitative and quantitative data for velocity and temperature field have been extracted for this benchmark. In the present article (part I), results related to the flow field (mean, RMS and covariance of velocity) are documented and discussed in detail. Moreover, the discussion regarding the temperature field will be published in a separate article
Nieves-Chinchilla, T.; Vourlidas, A.; Raymond, J. C.; Linton, M. G.; Al-haddad, N.; Savani, N. P.; Szabo, A.; Hidalgo, M. A.
2018-02-01
The magnetic topology, structure, and geometry of the magnetic obstacles embedded within interplanetary coronal mass ejections (ICMEs) are not yet fully and consistently described by in situ models and reconstruction techniques. The main goal of this work is to better understand the status of the internal magnetic field of ICMEs and to explore in situ signatures to identify clues to develop a more accurate and reliable in situ analytical models. We take advantage of more than 20 years of Wind observations of transients at 1 AU to compile a comprehensive database of ICMEs through three solar cycles, from 1995 to 2015. The catalog is publicly available at wind.gsfc.nasa.gov and is fully described in this article. We identify and collect the properties of 337 ICMEs, of which 298 show organized magnetic field signatures. To allow for departures from idealized magnetic configurations, we introduce the term "magnetic obstacle" (MO) to signify the possibility of more complex configurations. To quantify the asymmetry of the magnetic field strength profile within these events, we introduce the distortion parameter (DiP) and calculate the expansion velocity within the magnetic obstacle. Circular-cylindrical geometry is assumed when the magnetic field strength displays a symmetric profile. We perform a statistical study of these two parameters and find that only 35% of the events show symmetric magnetic profiles and a low enough expansion velocity to be compatible with the assumption of an idealized cylindrical static flux rope, and that 41% of the events do not show the expected relationship between expansion and magnetic field compression in the front, with the maximum magnetic field closer to the first encounter of the spacecraft with the magnetic obstacle; 18% show contractions ( i.e. apparent negative expansion velocity), and 30% show magnetic field compression in the back. We derive an empirical relation between DiP and expansion velocity that is the first step toward
Effect of a uniform magnetic field on dielectric two-phase bubbly flows using the level set method
International Nuclear Information System (INIS)
Ansari, M.R.; Hadidi, A.; Nimvari, M.E.
2012-01-01
In this study, the behavior of a single bubble in a dielectric viscous fluid under a uniform magnetic field has been simulated numerically using the Level Set method in two-phase bubbly flow. The two-phase bubbly flow was considered to be laminar and homogeneous. Deformation of the bubble was considered to be due to buoyancy and magnetic forces induced from the external applied magnetic field. A computer code was developed to solve the problem using the flow field, the interface of two phases, and the magnetic field. The Finite Volume method was applied using the SIMPLE algorithm to discretize the governing equations. Using this algorithm enables us to calculate the pressure parameter, which has been eliminated by previous researchers because of the complexity of the two-phase flow. The finite difference method was used to solve the magnetic field equation. The results outlined in the present study agree well with the existing experimental data and numerical results. These results show that the magnetic field affects and controls the shape, size, velocity, and location of the bubble. - Highlights: ►A bubble behavior was simulated numerically. ► A single bubble behavior was considered in a dielectric viscous fluid. ► A uniform magnetic field is used to study a bubble behavior. ► Deformation of the bubble was considered using the Level Set method. ► The magnetic field affects the shape, size, velocity, and location of the bubble.
International Nuclear Information System (INIS)
Yambe, Kiyoyuki; Inomoto, Michiaki; Okada, Shigefumi; Kobayashi, Yuka; Asai, Tomohiko
2008-01-01
The effects of an internal structure on the equilibrium of a field-reversed configuration (FRC) plasma sustained by rotating magnetic field is investigated by using detailed electrostatic probe measurements in the FRC Injection Experiment apparatus [S. Okada, et al., Nucl. Fusion. 45, 1094 (2005)]. An internal structure installed axially on the geometrical axis, which simulates Ohmic transformer or external toroidal field coils on the FRC device, brings about substantial changes in plasma density profile. The internal structure generates steep density-gradients not only on the inner side but on the outer side of the torus. The radial electric field is observed to sustain the ion thermal pressure-gradient in the FRC without the internal structure; however, the radial electric field is not sufficient to sustain the increased ion thermal pressure-gradient in the FRC with the internal structure. Spontaneously driven azimuthal ion flow will be accountable for the imbalance of the radial pressure which is modified by the internal structure.
THE MAGNETIC FIELD OF L1544. I. NEAR-INFRARED POLARIMETRY AND THE NON-UNIFORM ENVELOPE
Energy Technology Data Exchange (ETDEWEB)
Clemens, Dan P. [Institute for Astrophysical Research, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Tassis, K. [Department of Physics and ITCP, University of Crete, 71003, Heraklion (Greece); Goldsmith, Paul F., E-mail: clemens@bu.edu, E-mail: tassis@physics.uoc.gr, E-mail: paul.f.goldsmith@jpl.nasa.gov [Jet Propulsion Laboratory, M/S 169-504, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)
2016-12-20
The magnetic field ( B -field) of the starless dark cloud L1544 has been studied using near-infrared (NIR) background starlight polarimetry (BSP) and archival data in order to characterize the properties of the plane-of-sky B -field. NIR linear polarization measurements of over 1700 stars were obtained in the H band and 201 of these were also measured in the K band. The NIR BSP properties are correlated with reddening, as traced using the Rayleigh–Jeans color excess ( H – M ) method, and with thermal dust emission from the L1544 cloud and envelope seen in Herschel maps. The NIR polarization position angles change at the location of the cloud and exhibit their lowest dispersion there, offering strong evidence that NIR polarization traces the plane-of-sky B -field of L1544. In this paper, the uniformity of the plane-of-sky B -field in the envelope region of L1544 is quantitatively assessed. This allows evaluation of the approach of assuming uniform field geometry when measuring relative mass-to-flux ratios in the cloud envelope and core based on averaging of the radio Zeeman observations in the envelope, as done by Crutcher et al. In L1544, the NIR BSP shows the envelope B -field to be significantly non-uniform and likely not suitable for averaging Zeeman properties without treating intrinsic variations. Deeper analyses of the NIR BSP and related data sets, including estimates of the B -field strength and testing how it varies with position and gas density, are the subjects of later papers in this series.
Self-dual configurations in Abelian Higgs models with k-generalized gauge field dynamics
Energy Technology Data Exchange (ETDEWEB)
Casana, R.; Cavalcante, A. [Departamento de Física, Universidade Federal do Maranhão,65080-805, São Luís, Maranhão (Brazil); Hora, E. da [Departamento de Física, Universidade Federal do Maranhão,65080-805, São Luís, Maranhão (Brazil); Coordenadoria Interdisciplinar de Ciência e Tecnologia, Universidade Federal do Maranhão,65080-805, São Luís, Maranhão (Brazil)
2016-12-14
We have shown the existence of self-dual solutions in new Maxwell-Higgs scenarios where the gauge field possesses a k-generalized dynamic, i.e., the kinetic term of gauge field is a highly nonlinear function of F{sub μν}F{sup μν}. We have implemented our proposal by means of a k-generalized model displaying the spontaneous symmetry breaking phenomenon. We implement consistently the Bogomol’nyi-Prasad-Sommerfield formalism providing highly nonlinear self-dual equations whose solutions are electrically neutral possessing total energy proportional to the magnetic flux. Among the infinite set of possible configurations, we have found families of k-generalized models whose self-dual equations have a form mathematically similar to the ones arising in the Maxwell-Higgs or Chern-Simons-Higgs models. Furthermore, we have verified that our proposal also supports infinite twinlike models with |ϕ|{sup 4}-potential or |ϕ|{sup 6}-potential. With the aim to show explicitly that the BPS equations are able to provide well-behaved configurations, we have considered a test model in order to study axially symmetric vortices. By depending of the self-dual potential, we have shown that the k-generalized model is able to produce solutions that for long distances have a exponential decay (as Abrikosov-Nielsen-Olesen vortices) or have a power-law decay (characterizing delocalized vortices). In all cases, we observe that the generalization modifies the vortex core size, the magnetic field amplitude and the bosonic masses but the total energy remains proportional to the quantized magnetic flux.
Quasi-direct numerical simulation of a pebble bed configuration, Part-II: Temperature field analysis
International Nuclear Information System (INIS)
Shams, A.; Roelofs, F.; Komen, E.M.J.; Baglietto, E.
2013-01-01
Highlights: ► Quasi direct numerical simulations (q-DNSs) of a pebble bed configuration have been performed. ► This q-DNS database may serve as a reference for the validation of different turbulence modeling approaches. ► A wide range of qualitative and quantitative data throughout the computational domain has been generated. ► Results for mean, RMS of temperature and respective turbulent heat fluxes are extensively reported in this paper. -- Abstract: Good prediction of the flow and heat transfer phenomena in the pebble bed core of a high temperature reactor (HTR) is a challenge for available turbulence models, which still require to be validated. While experimental data are generally desirable in this validation process, due to the complex geometric configuration and measurement difficulties, a very limited amount of data is currently available. On the other hand, direct numerical simulation (DNS) is considered an accurate simulation technique, which may serve as an alternative for validating turbulence models. In the framework of the present study, quasi-direct numerical simulation (q-DNS) of a single face cubic centered pebble bed is performed, which will serve as a reference for the validation of different turbulence modeling approaches in order to perform calculations for a randomly arranged pebble bed. These simulations were performed at a Reynolds number of 3088, based on pebble diameter, with a porosity level of 0.42. Results related to flow field (mean, RMS and covariance of velocity) have been presented in Part-I, whereas, in the present article, we focus our attention to the analysis of the temperature field. A wide range of qualitative and quantitative data for the thermal field (mean, RMS and turbulent heat flux) has been generated
Directory of Open Access Journals (Sweden)
Chakraborty S.
2002-01-01
Full Text Available The flow of a viscous incompressible electrically conducting fluid on a continuous moving flat plate in presence of uniform transverse magnetic field, is studied. The flat plate which is continuously moving in its own plane with a constant speed is considered to be isothermally heated. Assuming the fluid viscosity as an inverse linear function of temperature, the nature of fluid velocity and temperature in presence of uniform magnetic field are shown for changing viscosity parameter at different layers of the medium. Numerical solutions are obtained by using Runge-Kutta and Shooting method. The coefficient of skin friction and the rate of heat transfer are calculated at different viscosity parameter and Prandt l number. .
Interactive ultrasonic field simulations for complex non-destructive testing configurations
International Nuclear Information System (INIS)
Chouh, Hamza
2016-01-01
In order to fulfill increasing reliability and safety requirements, non-destructive testing techniques are constantly evolving and so does their complexity. Consequently, simulation is an essential part of their design. We developed a tool for the simulation of the ultrasonic field radiated by any planar probes into non-destructive testing configurations involving meshed geometries without prominent edges, isotropic and anisotropic, homogeneous and heterogeneous materials, and wave trajectories that can include reflections and transmissions. We approximate the ultrasonic wave fronts by using polynomial interpolators that are local to ultrasonic ray pencils. They are obtained using a surface research algorithm based on pencil tracing and successive subdivisions. Their interpolators enable the computation of the necessary quantities for the impulse responses on each point of a sampling of the transducer surface that fulfills the Shannon criterion. By doing so, we can compute a global impulse response which, when convolved with the excitation signal of the transducer, results in the ultrasonic field. The usage of task parallelism and of SIMD instructions on the most computationally expensive steps yields an important performance boost. Finally, we developed a tool for progressive visualization of field images. It benefits from an image reconstruction technique and schedules field computations in order to accelerate convergence towards the final image. (author) [fr
Rethermalization of a field-reversed configuration plasma in translation experiments
International Nuclear Information System (INIS)
Himura, H.; Okada, S.; Sugimoto, S.; Goto, S.
1995-01-01
A translation experiment of field-reversed configuration (FRC) plasma is performed on the FIX machine [Shiokawa and Goto, Phys. Fluids B 5, 534 (1993)]. The translated FRC bounces between magnetic mirror fields at both ends of a confinement region. The plasma loses some of its axial kinetic energy when it is reflected by the magnetic mirror field, and eventually settles down in the confinement region. In this reflection process, the plasma temperature rises significantly. Such plasma rethermalization has been observed in OCT-L1 experiments [Ito et al., Phys. Fluids 30, 168 (1987)], but rarely in FRX-C/T experiments [Rej et al., Phys. Fluids 29, 852 (1986)]. It is found that the rethermalization depends on the relation between the plasma temperature and the translation velocity. The rethermalization occurs only in the case where the translation velocity exceeds the sound velocity. This result implies the rethermalization is caused by a shock wave induced within the FRC when the plasma is reflected by the magnetic mirror field. copyright 1995 American Institute of Physics
Field configurations for small deviations of the integral filling factors in IQHE
International Nuclear Information System (INIS)
Cabo, A.; Castineiras, J.; Gonzalez, R.; Penaranda, S.
1990-07-01
A numerical solution of the effective Maxwell equations of the IQHE is presented. It corresponds to inhomogeneous electromagnetic field distributions appearing after a small constant magnetic field is added to a 2D-electron gas sheet when the density exactly fills an integral number of Landau levels. It follows that the Chern-Simons terms of the Maxwell equation transform the applied magnetic field into an equivalent homogeneous charge density. The numerical value of this density is exactly the one which is needed to furnish complete filling at the new value of the total magnetic field. The system then reacts tending to screen the effective charge density by removing charge from the sample edges. It is interesting that for the selected parameter values here, reflecting the current experimental situations, the system response is able to approximately establish an integral filling factor in the central portion of the sheet. Then, at least a small plateau is predicted to occur in pure samples at zero temperature. It also follows that the current distribution is unsymmetric under the inversion, as opposed to the configuration associated to a flow of a net Hall current at integral filling factors. (author). 8 refs, 4 figs
International Nuclear Information System (INIS)
Cremaschini, Claudio; Miller, John C.; Tessarotto, Massimo
2011-01-01
A kinetic treatment is developed for collisionless magnetized plasmas occurring in high-temperature, low-density astrophysical accretion disks, such as are thought to be present in some radiatively inefficient accretion flows onto black holes. Quasi-stationary configurations are investigated, within the framework of a Vlasov-Maxwell description. The plasma is taken to be axisymmetric and subject to the action of slowly time-varying gravitational and electromagnetic fields. The magnetic field is assumed to be characterized by a family of locally nested but open magnetic surfaces. The slow collisionless dynamics of these plasmas is investigated, yielding a reduced gyrokinetic Vlasov equation for the kinetic distribution function. For doing this, an asymptotic quasi-stationary solution is first determined, represented by a generalized bi-Maxwellian distribution expressed in terms of the relevant adiabatic invariants. The existence of the solution is shown to depend on having suitable kinetic constraints and conditions leading to particle trapping phenomena. With this solution, one can treat temperature anisotropy, toroidal and poloidal flow velocities, and finite Larmor-radius effects. An asymptotic expansion for the distribution function permits analytic evaluation of all the relevant fluid fields. Basic theoretical features of the solution and their astrophysical implications are discussed. As an application, the possibility of describing the dynamics of slowly time-varying accretion flows and the self-generation of magnetic field by means of a ''kinetic dynamo effect'' are discussed. Both effects are shown to be related to intrinsically kinetic physical mechanisms.
Steady-state configurations of Dzyaloshinskii domain walls driven by field and current
Energy Technology Data Exchange (ETDEWEB)
Sánchez-Tejerina, L., E-mail: luis.st@ee.uva.es [Departamento de Electricidad y Electrónica, Facultad de Ciencias, Universidad de Valladolid, 47011 Valladolid (Spain); Departamento de Física Aplicada, Facultad de Ciencias, Universidad de Salamanca, 37011 Salamanca (Spain); Alejos, O. [Departamento de Electricidad y Electrónica, Facultad de Ciencias, Universidad de Valladolid, 47011 Valladolid (Spain); Martínez, E. [Departamento de Física Aplicada, Facultad de Ciencias, Universidad de Salamanca, 37011 Salamanca (Spain)
2017-02-01
The dynamics of Dzyaloshinskii domain walls (DDW) in ultrathin ferromagnetic strips with perpendicular magnetic anisotropy, for different values of both perpendicular field and longitudinal current excitation associated to the Spin-Hall effect, has been studied, taking into account different values of the interfacial Dzyaloshinskii-Moriya interaction (DMI). This study has been carried out with the help of the q-Φ one-dimensional model and micromagnetic simulations. We have found that Walker breakdown may be avoided by applying a certain threshold current, even though the inverse effect is also possible. We have also found that, for particular values of field and current, the magnetization within the DDW experiences an abrupt change of orientation, which provokes a change on the contribution of current to the terminal DDW velocity. This effect disappears for sufficiently strong DMI, as it is expected from the model. - Highlights: • Steady-state configurations of Dzyaloshinskii domain walls driven by field and current have been reported. • Field-like torques and Slonczewskii-like torques due to spin-orbit interactions have been considered. • The response is associated with the rotation of the domain wall inner magnetization. • An asymmetric behavior arising from the existence of degenerate states is shown. • The asymmetry results in different travelled distances and/or terminal speeds.
Steady-state configurations of Dzyaloshinskii domain walls driven by field and current
International Nuclear Information System (INIS)
Sánchez-Tejerina, L.; Alejos, O.; Martínez, E.
2017-01-01
The dynamics of Dzyaloshinskii domain walls (DDW) in ultrathin ferromagnetic strips with perpendicular magnetic anisotropy, for different values of both perpendicular field and longitudinal current excitation associated to the Spin-Hall effect, has been studied, taking into account different values of the interfacial Dzyaloshinskii-Moriya interaction (DMI). This study has been carried out with the help of the q-Φ one-dimensional model and micromagnetic simulations. We have found that Walker breakdown may be avoided by applying a certain threshold current, even though the inverse effect is also possible. We have also found that, for particular values of field and current, the magnetization within the DDW experiences an abrupt change of orientation, which provokes a change on the contribution of current to the terminal DDW velocity. This effect disappears for sufficiently strong DMI, as it is expected from the model. - Highlights: • Steady-state configurations of Dzyaloshinskii domain walls driven by field and current have been reported. • Field-like torques and Slonczewskii-like torques due to spin-orbit interactions have been considered. • The response is associated with the rotation of the domain wall inner magnetization. • An asymmetric behavior arising from the existence of degenerate states is shown. • The asymmetry results in different travelled distances and/or terminal speeds.
On the Pressure of a Neutron Gas Interacting with the Non-Uniform Magnetic Field of a Neutron Star
Skobelev, V. V.
2018-04-01
On the basis of simple arguments, practically not going beyond the scope of an undergraduate course in general physics, we estimate the additional pressure (at zero temperature) of degenerate neutron matter due to its interaction with the non-uniform magnetic field of a neutron star. This work has methodological and possibly scientific value as an intuitive application of the content of such a course to a solution of topical problems of astrophysics.
Davidson, R C; Majeski, R; Qin, H; Shvets, G
2001-01-01
This paper describes the design concept for a compact Paul trap experimental configuration that fully simulates the collective processes and nonlinear transverse dynamics of an intense charged particle beam that propagates over large distances through a periodic quadrupole magnetic field. To summarize, a long nonneutral plasma column (L>=r sub p) is confined axially by applied DC voltages V[circ]=const. on end cylinders at z=+-L, and transverse confinement is provided by segmented cylindrical electrodes (at radius r sub w) with applied oscillatory voltages +-V sub 0 (t) over 90 deg. segments. Because the transverse focusing force is similar in waveform to that produced by a discrete set of periodic quadrupole magnets in a frame moving with the beam, the Paul trap configuration offers the possibility of simulating intense beam propagation in a compact experimental facility. The nominal operating parameters in the experimental design are: barium ions (A=137); plasma column length 2L=2 m; wall radius r sub w =10...
Kinetic Effects on the Stability Properties of Field-reversed Configurations: I. Linear Stability
Energy Technology Data Exchange (ETDEWEB)
Elena V. Belova; Ronald C. Davidson; Hantao Ji; Masaaki Yamada
2003-01-28
New computational results are presented which advance the understanding of the stability properties of the Field-Reversed Configuration (FRC). We present results of hybrid and two-fluid (Hall-MHD) simulations of prolate FRCs. The n = 1 tilt instability mechanism and growth rate reduction mechanisms are investigated in detail including resonant particle effects, finite Larmor radius and Hall stabilization, and profile effects. It is shown that the Hall effect determines the mode rotation and the change in the linear mode structure in the kinetic regime; however, the reduction in the growth rate is mostly due to finite Larmor radius effects. Resonant wave-particle interactions are studied as a function of (a) elongation, (b) the kinetic parameter S*, which is proportional to the ratio of the separatrix radius to the thermal ion Larmor radius, and (c) the separatrix shape. It is demonstrated that, contrary to the usually assumed stochasticity of the ion orbits in the FRC, a large fraction of the orbits are regular in long configurations when S* is small. A stochasticity condition is found, and a scaling with the S* parameter is presented. Resonant particle effects are shown to maintain the instability in the large gyroradius regime regardless of the separatrix shape.
Advanced Biasing Experiments on the C-2 Field-Reversed Configuration Device
Thompson, Matthew; Korepanov, Sergey; Garate, Eusebio; Yang, Xiaokang; Gota, Hiroshi; Douglass, Jon; Allfrey, Ian; Valentine, Travis; Uchizono, Nolan; TAE Team
2014-10-01
The C-2 experiment seeks to study the evolution, heating and sustainment effects of neutral beam injection on field-reversed configuration (FRC) plasmas. Recently, substantial improvements in plasma performance were achieved through the application of edge biasing with coaxial plasma guns located in the divertors. Edge biasing provides rotation control that reduces instabilities and E × B shear that improves confinement. Typically, the plasma gun arcs are run at ~ 10 MW for the entire shot duration (~ 5 ms), which will become unsustainable as the plasma duration increases. We have conducted several advanced biasing experiments with reduced-average-power plasma gun operating modes and alternative biasing cathodes in an effort to develop an effective biasing scenario applicable to steady state FRC plasmas. Early results show that several techniques can potentially provide effective, long-duration edge biasing.
International Nuclear Information System (INIS)
Qerushi, Artan; Rostoker, Norman
2002-01-01
In a previous paper [N. Rostoker and A. Qerushi, Phys. Plasmas 9, 3057 (2002)] it was shown that a complete description of equilibria of field reversed configurations with rotation can be obtained by solving a generalized Grad-Shafranov equation for the flux function. In this paper we show how to solve this equation in the case of one space dimension and many ion species. The following fusion fuels are considered: D-T, D-He 3 , and p-B 11 . Using a Green's function the generalized Grad-Shafranov equation is converted to an equivalent integral equation. The integral equation can be solved by iteration. Approximate analytic solutions for a plasma with many ion species are found. They are used as starting trial functions of the iterations. They turn out to be so close to the true solutions that only a few iterations are needed
International Nuclear Information System (INIS)
Qerushi, Artan; Rostoker, Norman
2003-01-01
In a previous paper [N. Rostoker and A. Qerushi, Phys. Plasmas 9, 3057 (2002)] a generalized Grad-Shafranov equation for the plasma flux function was derived which provides a complete description of equilibria of field reversed configurations with rotation. In this paper this fundamental equation is solved for two space dimensions and many ion species. The following fusion fuels are considered: D-T, D-He 3 , and p-B 11 . Using periodic boundary conditions the original differential equation is converted to an equivalent integral equation which involves a Green's function. The integral equation is solved by iteration. Approximate solutions are found for all the fusion fuels considered using a two-dimensional equilibrium model for one type of ion [A. Qerushi and N. Rostoker, Phys. Plasmas 9, 5001 (2002)]. They are used as starting trial functions of the iterations. They turn out to be so close to the real solutions that only a few iterations are needed
Field-Reversed Configuration Formation Scheme Utilizing a Spheromak and Solenoid Induction
International Nuclear Information System (INIS)
Gerhardt, S.P.; Belova, E.V.; Yamada, M.; Ji, H.; Ren, Y.; McGeehan, B.; Inomoto, M.
2008-01-01
A new field-reversed configuration (FRC) formation technique is described, where a spheromak transitions to a FRC with inductive current drive. The transition is accomplished only in argon and krypton plasmas, where low-n kink modes are suppressed; spheromaks with a lighter majority species, such as neon and helium, either display a terminal tilt-mode, or an n=2 kink instability, both resulting in discharge termination. The stability of argon and krypton plasmas through the transition is attributed to the rapid magnetic diffusion of the currents that drive the kink-instability. The decay of helicity during the transition is consistent with that expected from resistivity. This observation indicates a new scheme to form a FRC plasma, provided stability to low-n modes is maintained, as well as a unique situation where the FRC is a preferred state
Field-Reversed Configuration Power Plant Critical-Issue Scoping Study
Energy Technology Data Exchange (ETDEWEB)
Santarius, J. F.; Mogahed, E. A.; Emmert, G. A.; Khater, H. Y.; Nguyen, C. N.; Ryzhkov, S. V.; Stubna, M. D.
2000-03-31
A team from the Universities of Wisconsin, Washington, and Illinois performed an engineering scoping study of critical issues for field-reversed configuration (FRC) power plants. The key tasks for this research were (1) systems analysis for deuterium-tritium (D-T) FRC fusion power plants, and (2) conceptual design of the blanket and shield module for an FRC fusion core. For the engineering conceptual design of the fusion core, the project team focused on intermediate-term technology. For example, one decision was to use steele structure. The FRC systems analysis led to a fusion power plant with attractive features including modest size, cylindrical symmetry, good thermal efficiency (52%), relatively easy maintenance, and a high ratio of electric power to fusion core mass, indicating that it would have favorable economics.
Field-Reversed Configuration Power Plant Critical-Issue Scoping Study
International Nuclear Information System (INIS)
Santarius, J. F.; Mogahed, E. A.; Emmert, G. A.; Khater, H. Y.; Nguyen, C. N.; Ryzhkov, S. V.; Stubna, M. D.
2000-01-01
A team from the Universities of Wisconsin, Washington, and Illinois performed an engineering scoping study of critical issues for field-reversed configuration (FRC) power plants. The key tasks for this research were (1) systems analysis for deuterium-tritium (D-T) FRC fusion power plants, and (2) conceptual design of the blanket and shield module for an FRC fusion core. For the engineering conceptual design of the fusion core, the project team focused on intermediate-term technology. For example, one decision was to use steele structure. The FRC systems analysis led to a fusion power plant with attractive features including modest size, cylindrical symmetry, good thermal efficiency (52%), relatively easy maintenance, and a high ratio of electric power to fusion core mass, indicating that it would have favorable economics
One-dimensional modeling of plasma diffusion in field reversed configurations
International Nuclear Information System (INIS)
Hamasaki, S.; Krall, N.A.
1986-03-01
Over the past several years, a picture has emerged of transport in field reversed configuration (FRC) which explains many, though not all, of the loss phenomena observed in that device. That picture is complicated by the geometry, which includes both magnetically connected and magnetically isolated regions, and by the transport process, which includes a substantial contribution from short wavelength, fast time scale processes. This paper extends our previous work on this topic by carrying a one-dimensional model as far as it can be carried, in terms of goemetrical and physical consistency, and isolates the difference between the model and experiment as coming from phenomena beyond the scope of 1-D anomalous transport
Profile relaxation and tilt instability in a field-reversed configuration
International Nuclear Information System (INIS)
Ohtani, H.; Horiuchi, R.; Sato, T.
2003-01-01
The profile relaxation from a magnetic hydrodynamic (MHD) profile to a kinetic equilibrium in field-reversed configurations (FRCs) is investigated by two-dimensional electromagnetic particle simulation. The radial oscillation takes place in order to relax an excess energy in the MHD profile, and the system spontaneously relaxes toward a kinetic equilibrium. In this kinetic equilibrium, the hollow electron current profile is realized as a result of the combined effects of the single particle orbits and the ion finite Larmor radius, and the ion current profile becomes peaked due to the effect of the ion meandering motion. Three-dimensional full electromagnetic particle simulation is also performed to study the stability of these kinetic equilibrium against the tilt mode. The growth rate of the tilt instability is reduced by the kinetic effects. It is found that the stabilization effect of tilt mode becomes much distinct when the current density changes from the peaked profile to the hollow one. (author)
Profile relaxation and tilt instability in a field-reversed configuration
International Nuclear Information System (INIS)
Ohtani, H.; Horiuchi, R.; Sato, T.
2002-10-01
The profile relaxation from a magnetohydrodynamic (MHD) profile to a kinetic equilibrium in field-reversed configurations (FRCs) is investigated by two-dimensional electromagnetic particle simulation. The radial oscillation takes place in order to relax an excess energy in the MHD profile, and the system spontaneously relaxes toward a kinetic equilibrium. In this kinetic equilibrium, the hollow electron current profile is realized as a result of the combined effects of the single particle orbits and the ion finite Larmor radius, and the ion current profile becomes peaked due to the effect of the ion meandering motion. Three-dimensional full electromagnetic particle simulation is also performed to study the stability of these kinetic equilibrium against the tilt mode. The growth rate of the tilt instability is reduced by the kinetic effects. It is found that the stabilization effect of tilt mode becomes much distinct when the current density changes from the peaked profile to the hollow one. (author)
Profile relaxation and tilt instability in a field-reversed configuration
International Nuclear Information System (INIS)
Ohtani, H.; Horiuchi, R.; Sato, T.
2002-01-01
The profile relaxation from a magnetichydrodynamic (MHD) profile to a kinetic equilibrium in field-reversed configurations (FRCs) in investigated by two-dimensional electromagnetic particle simulation. The radial oscillation takes place in order to relax an excess energy in the MHD profile, and the system spontaneously relaxes toward a kinetic equilibrium. In this kinetic equilibrium, the hollow electron current profile is realized as a result of the combined effects of the single particle orbits and the ion finite Larmor radius, and the ion current profile becomes peaked due to the effect of the ion meandering motion. Three-dimensional full electromagnetic particle simulations is also performed to study the stability of these kinetic equilibrium against the tilt mode. The growth rate of the tilt instability is reduced by the kinetic is effects. It is found that the stabilization effect of tilt mode becomes much distinct when the current density changes from the peaked profile to the hollow one. (author)
Positional stability of field-reversed-configurations in the presence of resistive walls
Energy Technology Data Exchange (ETDEWEB)
Rath, N., E-mail: nrath@trialphanenergy.com; Onofri, M.; Barnes, D. C. [Tri Alpha Energy, P.O. Box 7010, Rancho Santa Margarita, California 92688-7010 (United States)
2016-06-15
We show that in a field-reversed-configuration, the plasma is unstable to either transverse or axial rigid displacement, but never to both. Driving forces are found to be parallel to the direction of displacement with no orthogonal components. Furthermore, we demonstrate that the properties of a resistive wall (geometry and resistivity) in the vicinity of the plasma do not affect whether the plasma is stable or unstable, but in the case of an unstable system determine the instability growth rate. Depending on the properties of the wall, the instability growth is dominated by plasma inertia (and not affected by wall resistivity) or dominated by ohmic dissipation of wall eddy currents (and thus proportional to the wall resistivity).
Detection and Analysis of X Ray Emission from the Princeton-Field-Reversed Configuration (PFRC-2)
Bosh, Alexandra; Swanson, Charles; Jandovitz, Peter; Cohen, Samuel
2016-10-01
The PFRC is an odd-parity rotating-magnetic-field-driven field-reversed-configuration magnetic confinement experiment. Studying X rays produced via electron Bremsstrahlung with neutral particles is crucial to the further understanding of the energy and particle confinement of the PFRC. The data on the x rays are collected using a detector system comprised of two, spatially scannable Amptek XR-100 CR detectors and a Amptek XR-100 SDD detector that view the plasma column at two axial locations, one in the divertor and one near the axial midplane. These provide X-ray energy and arrival-time information. (Data analysis requires measurement of each detector's efficiency, a parameter that is modified by window transmission. Detector calibrations were performed with a custom-made X-ray tube that impinged 1-microamp 1-5 kV electron beams onto a carbon target.) From the analyzed data, the average electron energy, effective temperature, and electron density can be extracted. Spatial scans then allow the FRC's internal energy to be measured. We present recent measurements of the Bremsstrahlung spectrum from 0.8 to 6 keV and the inferred electron temperature in the PFRC device as functions of heating power, magnetic field and fill gas pressure. This work was supported, in part, by DOE Contract Number DE-AC02-09CH11466.
Suaza, Y. A.; Laroze, D.; Fulla, M. R.; Marín, J. H.
2018-05-01
The D2+ molecular complex fundamental properties in a uniform and multi-hilled semiconductor quantum ribbon under orthogonal electric and magnetic fields are theoretically studied. The energy structure is calculated by using adiabatic approximation combined with diagonalization procedure. The D2+ energy structure is more strongly controlled by the geometrical structural hills than the Coulomb interaction. The formation of vibrational and rotational states is discussed. Aharanov-Bohm oscillation patterns linked to rotational states as well as the D2+ molecular complex stability are highly sensitive to the number of hills while electric field breaks the electron rotational symmetry and removes the energy degeneration between low-lying states.
Liquid-metal flow through a thin-walled elbow in a plane perpendicular to a uniform magnetic field
International Nuclear Information System (INIS)
Walker, J.S.
1986-04-01
This paper presents analytical solutions for the liquid-metal flow through two straight pipes connected by a smooth elbow with the same inside radius. The pipes and the elbow lie in a plane which is perpendicular to a uniform, applied magnetic field. The strength of the magnetic field is assumed to be sufficiently strong that inertial and viscous effects are negligible. This assumption is appropriate for the liquid-lithium flow in the blanket of a magnetic confinement fusion reactor, such as a tokamak. The pipes and the elbow have thin metal walls
FRC [field-reversed configuration] translation studies on FRX-C/LSM
International Nuclear Information System (INIS)
Rej, D.; Barnes, G.; Baron, M.
1989-01-01
In preparation for upcoming compression-heating experiments, field-reversed configurations (FRCs) have been translated out of the FRX-C/LSM θ-pinch source, and into the 0.4-m-id, 6.7-m-long translation region formerly used on FRX-C/T. Unlike earlier experiments FRCs are generated without magnetic tearing in the larger FRX-C/LSM source (nominal coil id = 0.70 m, length = 2 m); larger, lower-energy-density FRCs are formed: r/sub s/ ≅ 0.17 m, B/sub ext/ ≅ 0.35 T, ≅ 7 /times/ 10 20 m/sup /minus/3/ and T/sub e/ + T/sub i/ ≅ 400 eV. An initial 3-mtorr D 2 pressure is introduced by either static or puff fill. Asymmetric fields from auxiliary end coils (used for non-tearing formation) provide the accelerating force on the FRC, thereby eliminating the need for a conical θ-pinch coil. An important feature is the abrupt 44% decrease in the flux-conserving wall radius at the transition between the θ-pinch and translation region, similar to that in the compressor. In this paper we review a variety of issues addressed by the recent translation experiments: translation dynamics; translation through a modulated magnetic field; stabilization of the n = 2 rotational instability by weak helical quadrupole fields; and confinement properties. Results from internal magnetic field measurements in translating FRCs may be found in a companion paper. 10 refs., 5 figs
Radial electric field and ion parallel flow in the quasi-symmetric and Mirror configurations of HSX
Kumar, S. T. A.; Dobbins, T. J.; Talmadge, J. N.; Wilcox, R. S.; Anderson, D. T.
2018-05-01
The radial electric field and the ion mean parallel flow are obtained in the helically symmetric experiment stellarator from toroidal flow measurements of C+6 ion at two locations on a flux surface, using the Pfirsch–Schlüter effect. Results from the standard quasi-helically symmetric magnetic configuration are compared with those from the Mirror configuration where the quasi-symmetry is deliberately degraded using auxiliary coils. For similar injected power, the quasi-symmetric configuration is observed to have significantly lower flows while the experimental observations from the Mirror geometry are in better agreement with neoclassical calculations. Indications are that the radial electric field near the core of the quasi-symmetric configuration may be governed by non-neoclassical processes.
International Nuclear Information System (INIS)
Malmberg, Jenny-Ann
2003-06-01
It is relatively straightforward to establish equilibrium in magnetically confined plasmas, but the plasma is frequently susceptible to a variety of instabilities that are driven by the free energy in the magnetic field or in the pressure gradient. These unstable modes exhibit effects that affect the particle, momentum and heat confinement properties of the configuration. Studies of the dynamics of several of the most important modes are the subject of this thesis. The studies are carried out on plasmas in the reversed field pinch (RFP) configuration. One phenomenon commonly observed in RFPs is mode wall locking. The localized nature of these phase- and wall locked structures results in localized power loads on the wall which are detrimental for confinement. A detailed study of the wall locked mode phenomenon is performed based on magnetic measurements from three RFP devices. The two possible mechanisms for wall locking are investigated. Locking as a result of tearing modes interacting with a static field error and locking due to the presence of a non-ideal boundary. The characteristics of the wall locked mode are qualitatively similar in a device with a conducting shell system (TPE-RX) compared to a device with a resistive shell (Extrap T2). A theoretical model is used for evaluating the threshold values for wall locking due to eddy currents in the vacuum vessel in these devices. A good correlation with experiment is observed for the conducting shell device. The possibility of successfully sustaining discharges in a resistive shell RFP is introduced in the recently rebuilt device Extrap T2R. Fast spontaneous mode rotation is observed, resulting in low magnetic fluctuations, low loop voltage and improved confinement. Wall locking is rarely observed. The low tearing mode amplitudes allow for the theoretically predicted internal non-resonant on-axis resistive wall modes to be observed. These modes have not previously been distinguished due to the formation of wall
Schneider, Daniel; Schoof, Ephraim; Tschukin, Oleg; Reiter, Andreas; Herrmann, Christoph; Schwab, Felix; Selzer, Michael; Nestler, Britta
2018-03-01
Computational models based on the phase-field method have become an essential tool in material science and physics in order to investigate materials with complex microstructures. The models typically operate on a mesoscopic length scale resolving structural changes of the material and provide valuable information about the evolution of microstructures and mechanical property relations. For many interesting and important phenomena, such as martensitic phase transformation, mechanical driving forces play an important role in the evolution of microstructures. In order to investigate such physical processes, an accurate calculation of the stresses and the strain energy in the transition region is indispensable. We recall a multiphase-field elasticity model based on the force balance and the Hadamard jump condition at the interface. We show the quantitative characteristics of the model by comparing the stresses, strains and configurational forces with theoretical predictions in two-phase cases and with results from sharp interface calculations in a multiphase case. As an application, we choose the martensitic phase transformation process in multigrain systems and demonstrate the influence of the local homogenization scheme within the transition regions on the resulting microstructures.
Numerical Study of Field-reversed Configurations: The Formation and Ion Spin-up
International Nuclear Information System (INIS)
Belova, E.V.; Davidson, R.C.; Ji, H.; Yamada, M.; Cothran, C.D.; Brown, M.R.; Schaffer, M.J.
2005-01-01
Results of three-dimensional numerical simulations of field-reversed configurations (FRCs) are presented. Emphasis of this work is on the nonlinear evolution of magnetohydrodynamic (MHD) instabilities in kinetic FRCs, and the new FRC formation method by counter-helicity spheromak merging. Kinetic simulations show nonlinear saturation of the n = 1 tilt mode, where n is the toroidal mode number. The n = 2 and n = 3 rotational modes are observed to grow during the nonlinear phase of the tilt instability due to the ion spin-up in the toroidal direction. The ion toroidal spin-up is shown to be related to the resistive decay of the internal flux, and the resulting loss of particle confinement. Three-dimensional MHD simulations of counter-helicity spheromak merging and FRC formation show good qualitative agreement with results from the SSX-FRC experiment. The simulations show formation of an FRC in about 20-30 Alfven times for typical experimental parameters. The growth rate of the n = 1 tilt mode is shown to be significantly reduced compared to the MHD growth rate due to the large plasma viscosity and field-line-tying effects
International Nuclear Information System (INIS)
Matsuzawa, Yoshiki; Asai, Tomohiko; Takahashi, Tsutomu; Takahashi, Toshiki
2008-01-01
A field-reversed configuration (FRC) plasma was translated into a weakly ionized plasma and the effects of heating and particle buildup of the FRC plasma due to the background neutral particles and plasma injection in the translation process were investigated. Improvement of the particle and poloidal flux confinements and delay of onset of n=2 rotational instability were observed in the translation process. It was found that the internal structure of the plasma pressure (plasma temperature and density) at the separatrix and field null was deformed by the particle injection. FRC plasma translation through the background particles was equivalent to an end-on particle beam injection to the FRC plasma. Particles and energy were supplied during the translation. The results obtained for the phenomena of particle supply and plasma heating were also supported by the results of two-dimensional particle simulation. The effects of background particle injection appear to be a promising process for the regeneration of translation kinetic energy to plasma internal energy
Power deposition by neutral beam injected fast ions in field-reversed configurations
International Nuclear Information System (INIS)
Takahashi, Toshiki; Kato, Takayuki; Kondoh, Yoshiomi; Iwasawa, Naotaka
2004-01-01
The effects of Coulomb collisions on neutral beam (NB) injected fast ions into field-reversed configuration (FRC) plasmas are investigated by calculating the single particle orbits, where the ions are subject to the slowing-down and pitch-angle collisions. The Monte Carlo method is used for the pitch-angle scattering, and the friction term is added to the equation of motion to show the effects of the slowing-down collision, such as the deposited power profile. The calculation parameters used are relevant to the NB injection on the FRC injection experiment device [T. Asai, Y. Suzuki, T. Yoneda, F. Kodera, M. Okubo, and S. Goto, Phys. Plasmas 7, 2294 (2000)]. It is found that the dominant local power deposition occurs in the open field region between the X point and the mirror point because of a concentration of fast ions and a longer duration travel at the mirror reflection point. In the present calculation, the maximum deposited power to the FRC plasma is about 10% of the injected power. Although the pitch-angle scattering by Coulomb collision destroys the mirror confinement of NB injected fast ions, this effect is found to be negligible. The loss mechanism due to nonadiabatic fast ion motion, which is intrinsic in nonuniform FRC plasmas, has a much greater effect than the pitch-angle scattering by Coulomb collision
International Nuclear Information System (INIS)
Zavgorodni, S.F.; Beckham, W.A.; Roos, D.E.
1996-01-01
The planning problems presented by abutting electron fields are well recognised. Junctioning electron fields with large hinge angle compounds the problems because of the creation of closely situated 'hot' and 'cold' spots. The technique involving a compensated superficial x-ray (SXR) field to treat the junction region between electron fields was developed and used in a particular clinical case (treatment of a squamous cell carcinoma of the forehead/scalp). The SXR beam parameters were chosen and the compensator was designed to make the SXR field complementary to the electron fields. Application of a compensated SXR field eliminated 'cold' spots in the junction region and minimised 'hot' spots to (110%). In the clinical case discusses the 'hot' spots due to the SXR field would not appear because of increased attenuation of the soft x-rays in bone. The technique proposed produces uniform dose distribution up to 3 cm deep and can be considered as an additional tool for dealing with electron fields junctioning problems. (author)
International Nuclear Information System (INIS)
Ayala, Alejandro; Bashir, Adnan; Gutierrez, Enif; Raya, Alfredo; Sanchez, Angel
2010-01-01
We study chiral symmetry breaking for relativistic fermions, described by a parity-violating Lagrangian in 2+1-dimensions, in the presence of a heat bath and a uniform external magnetic field. Working within their four-component formalism allows for the inclusion of both parity-even and -odd mass terms. Therefore, we can define two types of fermion antifermion condensates. For a given value of the magnetic field, there exist two different critical temperatures which would render one of these condensates identically zero, while the other would survive. Our analysis is completely general: it requires no particular simplifying hierarchy among the energy scales involved, namely, bare masses, field strength, and temperature. However, we do reproduce some earlier results, obtained or anticipated in literature, corresponding to special kinematical regimes for the parity conserving case. Relating the chiral condensate to the one-loop effective Lagrangian, we also obtain the magnetization and the pair production rate for different fermion species in a uniform electric field through the replacement B→-iE.
Effects of uniform dc electric fields on multiphoton ionization of cesium atoms
International Nuclear Information System (INIS)
Klots, C.E.; Compton, R.N.
1985-01-01
Multiphoton ionization of cesium atoms shows pronounced two-photon resonances at the nd states and, to a much smaller extent, at the ns states. A dc electric field augments the ns resonances and, for a complementary reason, induces resonances at the np and nf levels. A scaling law for field-induced signals, as a function of principal quantum number, is reported. Field ionization of high Rydberg states is also conveniently studied and quantified with our technique
Jin, Weiliang; Messina, Riccardo; Rodriguez, Alejandro W
2017-06-26
Radiative heat transfer between uniform plates is bounded by the narrow range and limited contribution of surface waves. Using a combination of analytical calculations and numerical gradient-based optimization, we show that such a limitation can be overcome in complicated multilayer geometries, allowing the scattering and coupling rates of slab resonances to be altered over a broad range of evanescent wavevectors. We conclude that while the radiative flux between two inhomogeneous slabs can only be weakly enhanced, the flux between a dipolar particle and an inhomogeneous slab-proportional to the local density of states-can be orders of magnitude larger, albeit at the expense of increased frequency selectivity. A brief discussion of hyperbolic metamaterials shows that they provide far less enhancement than optimized inhomogeneous slabs.
Optimal Value of Series Capacitors for Uniform Field Distribution in Transmission Line MRI Coils
DEFF Research Database (Denmark)
Zhurbenko, Vitaliy
2016-01-01
Transmission lines are often used as coils in high field magnetic resonance imaging (MRI). Due to the distributed nature of transmission lines, coils based on them produce inhomogeneous field. This work investigates application of series capacitors to improve field homogeneity along the coil....... The equations for optimal values of evenly distributed capacitors are derived and expressed in terms of the implemented transmission line parameters.The achieved magnetic field homogeneity is estimated under quasistatic approximation and compared to the regular transmission line resonator. Finally, a more...... practical case of a microstrip line coil with two series capacitors is considered....
International Nuclear Information System (INIS)
Crebbin, K.C.
1985-05-01
Uniform magnetic field perturbations cause a closed orbit distortion in a circular accelerator. If the magnetic guide field is non-linear these perturbations can also cause a Nu shift in the betatron oscillations. Such a shift in radial Nu values has been observed in the Bevalac while studying the low energy resonant extraction system. In the Bevalac, the radial perturbation comes from the quadrants being magnetically about 0.8% longer than 90 0 . The normal effect of this type of perturbation is a radial closed orbit shift and orbit distortion. The Nu shift, associated with this type of perturbation in the presence of a non-linear guide field, is discussed in this paper. A method of handling the non-linear n values is discussed as well as the mechanism for the associated Nu shift. Computer calculations are compared to measurements. 2 refs., 4 figs
International Nuclear Information System (INIS)
Golota, V.I.; Zavada, L.M.; Kotyukov, O.V.; Kudin, D.V.; Rodionov, S.V.; Pis'menetskoj, A.S.; Dotsenko, Yu.V.
2010-01-01
The barrierless gas discharge of negative polarity with strongly non-uniform distribution of electrical field in the methanol and ethanol vapour was studied. It is shown that level of methanol and ethanol conversion depended from power consumed by the discharge and exposition time for gas mixture in discharge zone. The condition for deep conversion of the methanol and ethanol vapours were determined. The water and carbon dioxide are the end products for the methanol and ethanol conversion. Formaldehyde and formic acid are the intermediates products in the conversion of methanol. And ethanol has a number of different compounds, including acetic acid, acetaldehyde, etc.
Energy Technology Data Exchange (ETDEWEB)
Lee, Myoung-Jae [Department of Physics, Hanyang University, Seoul 04763 (Korea, Republic of); Research Institute for Natural Sciences, Hanyang University, Seoul 04763 (Korea, Republic of); Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr [Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588 (Korea, Republic of); Department of Electrical and Computer Engineering, MC 0407, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0407 (United States)
2016-12-01
Highlights: • The mode conversion characteristics of hybrid surface waves are investigated in a magneto dusty plasma slab. • Upper- and lower-hybrid waves are found for the symmetric mode when the magnetic field is parallel to the slab surfaces. • The hybrid property of the surface waves disappears for the anti-symmetric mode. • The variations of the surface hybrid waves with the change of field and geometric configurations are also discussed. - Abstract: We explore the mode conversion characteristics of electrostatic hybrid surface waves due to the magnetic field orientation in a magnetoplasma slab. We obtain the dispersion relations for the symmetric and anti-symmetric modes of hybrid surface waves for two different magnetic field configurations: parallel and perpendicular. For the parallel magnetic field configuration, we have found that the symmetric mode propagates as upper- and lower-hybrid waves. However, the hybrid characteristics disappear and two non-hybrid waves are produced for the anti-symmetric mode. For the perpendicular magnetic field configuration, however, the anti-symmetric mode propagates as the upper- and lower-hybrid waves and the symmetric mode produces two non-hybrid branches of waves.
International Nuclear Information System (INIS)
Lee, Myoung-Jae; Jung, Young-Dae
2016-01-01
Highlights: • The mode conversion characteristics of hybrid surface waves are investigated in a magneto dusty plasma slab. • Upper- and lower-hybrid waves are found for the symmetric mode when the magnetic field is parallel to the slab surfaces. • The hybrid property of the surface waves disappears for the anti-symmetric mode. • The variations of the surface hybrid waves with the change of field and geometric configurations are also discussed. - Abstract: We explore the mode conversion characteristics of electrostatic hybrid surface waves due to the magnetic field orientation in a magnetoplasma slab. We obtain the dispersion relations for the symmetric and anti-symmetric modes of hybrid surface waves for two different magnetic field configurations: parallel and perpendicular. For the parallel magnetic field configuration, we have found that the symmetric mode propagates as upper- and lower-hybrid waves. However, the hybrid characteristics disappear and two non-hybrid waves are produced for the anti-symmetric mode. For the perpendicular magnetic field configuration, however, the anti-symmetric mode propagates as the upper- and lower-hybrid waves and the symmetric mode produces two non-hybrid branches of waves.
Simulation study of self-sustainment mechanism in reversed-field pinch configuration
International Nuclear Information System (INIS)
Kusano, Kanya; Sato, Tetsuya.
1989-09-01
3D magnetohydrodynamic (MHD) simulations are carried out in order to reveal the fundamental mechanism of the self-sustainment process in the reversed-field pinch plasma. It is confirmed that the RFP configuration is sustained in a cyclic process, where the MHD relaxation phase and the resistive diffusion phase appear cyclically and alternatively. In the MHD relaxation process, the RFP plasma approaches a Taylor's minimum energy state, but it departs from there in the diffusion process. In other words, since MHD relaxation processes periodically release excess magnetic energy accumulated in the resistive diffusion phase, RFP plasma can stay in the neighborhood of the minimum energy state. The mechanism of this cyclic process is disclosed. Namely, when at least two ideal kink (m = 1) modes becomes unstable, MHD relaxation can take place. This is because the MHD relaxation progresses through nonlinear reconnection of the m = 0 mode, which is driven by nonlinear coupling between the unstable kink modes. Therefore, self-sustainment processes can be achieved by the nonlinear effects of essentially the m = 0 and 1 modes. The quantitative dependence of the relaxation-diffusion cycle on the aspect ratio of the device is considered along with its dependence on the magnetic Reynolds, number. These results are consistent with recent experiments and indicate that a coherent oscillation, which is often observed in experiments, is necessary for self-sustainment. The influence of self-sustainment processes on particle confinement is briefly discussed. (author)
Equilibrium paradigm for field-reversed configurations and application to experiments
International Nuclear Information System (INIS)
Steinhauer, Loren C.; Intrator, T. P.
2009-01-01
Fresh insights on field-reversed configurations (FRCs) are incorporated in a new paradigm for equilibria. In particular four new or unappreciated properties are accounted for: an empirically based scrape-off layer thickness; a new, more accurate axial force balance relation; viscous force regularity at the O-point; and the broken-surface effect. The new paradigm corrects glaring defects of previous models (rigid rotor, Hill's vortex). Further, the new paradigm is simple enough to be easily used as an interpretive tool despite the limited data suite in most experiments. It is applied to the newly enhanced FRC data compendium, a database of 69 records from 15 facilities. Several important observations and corrections on the previous understanding of FRCs follow, three of which stand out. (1) The traditional axial force balance ('average-β' relation) gives an inaccurate scaling with the separatrix-to-wall radius ratio. (2) The improved equilibrium paradigm yields separatrix particle transport rates of 3-5 m 2 /s for 'best confinement' examples; this is a factor of three lower than crude 'bulk' estimates commonly used. (3) The transport compared to the Bohm rate shows a great deal of scatter (40% scatter/mean ratio), i.e., 'Bohm' is not a useful representation for transport scaling.
Energy Technology Data Exchange (ETDEWEB)
Yamada, Masaaki [Princeton Plasma Physics Laboratory, Princeton University Princeton, New Jersey USA (United States)
2016-03-25
This paper briefly reviews a compact toroid reactor concept that addresses critical issues for forming, stabilizing and sustaining a field reversed configuration (FRC) with the use of plasma merging, plasma shaping, conducting shells, neutral beam injection (NBI). In this concept, an FRC plasma is generated by the merging of counter-helicity spheromaks produced by inductive discharges and sustained by the use of neutral beam injection (NBI). Plasma shaping, conducting shells, and the NBI would provide stabilization to global MHD modes. Although a specific FRC reactor design is outside the scope of the present paper, an example of a promising FRC reactor program is summarized based on the previously developed SPIRIT (Self-organized Plasmas by Induction, Reconnection and Injection Techniques) concept in order to connect this concept to the recently achieved the High Performance FRC plasmas obtained by Tri Alpha Energy [Binderbauer et al, Phys. Plasmas 22,056110, (2015)]. This paper includes a brief summary of the previous concept paper by M. Yamada et al, Plasma Fusion Res. 2, 004 (2007) and the recent experimental results from MRX.
International Nuclear Information System (INIS)
Rostoker, Norman; Qerushi, Artan
2002-01-01
Self-consistent solutions of the Vlasov-Maxwell equations are obtained. They involve rigid rotor distributions. This selection is justified on physical grounds. For this selection the Vlasov equation can be replaced by moment equations which terminate without any additional assumptions. For one-dimensional equilibria with one type of ion these equations have exact solutions. A complete equilibrium solution appropriate to a field reversed configuration with rotation can be obtained by solving a generalized Grad-Shafranov equation for the flux function. From this solution all other physical quantities can be determined. A Green's function method is developed to solve this equation, which provides a basis for an iterative solution. This method has the advantage that at every iteration the boundary conditions are satisfied. In this paper cylindrical geometry with one space dimension and one type of ion is considered, where analytic solutions are available. The convergence of the Green's function method is established. For this nonlinear problem there is usually more than one solution for completely specified boundary conditions (bifurcation). The present method selects one solution. It is applicable to equilibria with many ion species and to two dimensions
Overview of C-2W Field-Reversed Configuration Experimental Program
Gota, H.; Binderbauer, M. W.; Tajima, T.; Putvinski, S.; Tuszewski, M.; Dettrick, S.; Korepanov, S.; Romero, J.; Smirnov, A.; Song, Y.; Thompson, M. C.; van Drie, A.; Yang, X.; Ivanov, A. A.; TAE Team
2017-10-01
Tri Alpha Energy's research has been devoted to producing a high temperature, stable, long-lived field-reversed configuration (FRC) plasma state by neutral-beam injection (NBI) and edge biasing/control. C-2U experiments have demonstrated drastic improvements in particle and energy confinement properties of FRC's, and the plasma performance obtained via 10 MW NBI has achieved plasma sustainment of up to 5 ms and plasma (diamagnetism) lifetimes of 10 + ms. The emerging confinement scaling, whereby electron energy confinement time is proportional to a positive power of the electron temperature, is very attractive for higher energy plasma confinement; accordingly, verification of the observed Te scaling law will be a key future research objective. The new experimental device, C-2W (now also called ``Norman''), has the following key subsystem upgrades from C-2U: (i) higher injected power, optimum energies, and extended pulse duration of the NBI system; (ii) installation of inner divertors with upgraded edge-biasing systems; (iii) fast external equilibrium/mirror-coil current ramp-up capability; and (iv) installation of trim/saddle coils for active feedback control of the FRC plasma. This paper will review highlights of the C-2W program.
Equilibrium configurations of the conducting liquid surface in a nonuniform electric field
Zubarev, N. M.; Zubareva, O. V.
2011-01-01
Possible equilibrium configurations of the free surface of a conducting liquid deformed by a nonuniform external electric field are investigated. The liquid rests on an electrode that has the shape of a dihedral angle formed by two intersecting equipotential half-planes (conducting wedge). It is assumed that the problem has plane symmetry: the surface is invariant under shift along the edge of the dihedral angle. A one-parametric family of exact solutions for the shape of the surface is found in which the opening angle of the region above the wedge serves as a parameter. The solutions are valid when the pressure difference between the inside and outside of the liquid is zero. For an arbitrary pressure difference, approximate solutions to the problem are constructed and it is demonstrated the approximation error is small. It is found that, when the potential difference exceeds a certain threshold value, equilibrium solutions are absent. In this case, the region occupied by the liquid disintegrates, the disintegration scenario depending on the opening angle.
International Nuclear Information System (INIS)
Yagi, Y.; Maejima, Y.; Zollino, G.
2001-01-01
Confinement characteristics of the TPE series reversed field pinch (RFP) machines, TPE-1RM15, TPE-1RM20 and TPE-1RM20mod, at Electrotechnical Laboratory (ETL) are summarized. Especially data are synthesized in respect to the effects of the different boundary structures of the machines, where shell proximity and overlapped poloidal shell gaps by the multi-layered shell structure are featured. Comparison of the experimental results is shown in terms of the characteristics of magnetic fluctuations, global confinement properties in general, operation capability of the improved confinement in high pinch parameter (Q) discharges and locked mode events. Linear growth rate of the unstable modes as a function of the shell distance is numerically simulated. Understandings of RFP plasma physics have also made progress by the most recent intensive experiments on correlation studies between fast electrons and dynamo activities and measurement of the plasma and mode rotation. TPE-1RM20mod was shutdown in December 1996 and new RFP experiment has started in TPE-RX from March 1998. The new machine also succeeds the concept of the shell configuration of the TPE-1RM20. (author)
Measurements of Plasma Power Losses in the C-2 Field-Reversed Configuration Experiment
Korepanov, Sergey; Smirnov, Artem; Garate, Eusebio; Donin, Alexandr; Kondakov, Alexey; Singatulin, Shavkat
2013-10-01
A high-confinement operating regime with plasma lifetimes significantly exceeding past empirical scaling laws was recently obtained by combining plasma gun edge biasing and tangential Neutral Beam Injection in the C-2 field-reversed configuration (FRC) experiment. To analyze the power balance in C-2, two new diagnostic instruments - the pyroelectric (PE) and infrared (IR) bolometers - were developed. The PE bolometer, designed to operate in the incident power density range from 0.1-100 W/cm2, is used to measure the radial power loss, which is dominated by charge-exchange neutrals and radiation. The IR bolometer, which measures power irradiated onto a thin metal foil inserted in the plasma, is designed for the power density range from 0.5-5 kW/cm2. The IR bolometer is used to measure the axial power loss from the plasma near the end divertors. The maximum measurable pulse duration of ~ 10 ms is limited by the heat capacitance of the IR detector. Both detectors have time resolution of about 10-100 μs and were calibrated in absolute units using a high power neutral beam. We present the results of first direct measurements of axial and radial plasma power losses in C-2.
1.4D quasistatic profile model of transport in a field-reversed configuration (FRC)
International Nuclear Information System (INIS)
Steinhauer, L.C.
1990-01-01
Global confinement models are useful for determining how a given transport mechanism (dependent on local parameters) translates into global confinement times. Such models are also useful for inferring the overall magnitudes of transport rates, and limited information about their spatial profiles. They are especially important in a field reversed configuration (FRC) where the equilibrium and transport rates are so intimately coupled, and where the flux loss time is such an important factor. An earlier global FRC confinement model, sometimes called QUASI, was based on the assumption of a quasi-steady equilibrium. The equilibrium was assumed to have square-ends with some features of 2D equilibria: (1) equal pressure on inner and outer branches of the flux lines; and (2) average-beta relation. Models of this type have been called 1-1/4D transport models. The same general approach has now been applied in a straightforward way to an equilibrium with realistic axial structure. This might be called a 1.4D quasisteady transport model. The assumed axial structure can be that of an analytic equilibrium, or a more complicated computed equilibrium as desired. The example used here is an elongated Hill's vortex equilibrium. As will be shown later, the equilibrium is reflected by two integral quantities that appear in the quasistatic diffusion equation
Formation of Field Reversed Configuration (FRC on the Yingguang-I device
Directory of Open Access Journals (Sweden)
Qizhi Sun
2017-09-01
Full Text Available As a hybrid approach to realizing fusion energy, Magnetized Target Fusion (MTF based on the Field Reversed Configuration (FRC, which has the plasma density and confinement time in the range between magnetic and inertial confinement fusion, has been recently widely pursued around the world. To investigate the formation and confinement of the FRC plasma injector for MTF, the Yingguang-I, which is an FRC test device and contains a multi-bank program-discharged pulsed power sub-system, was constructed at the Institute of Fluid Physics (IFP, China. This paper presents the pulsed power components and their parameters of the device in detail, then gives a brief description of progress in experiments of FRC formation. Experimental results of the pulsed power sub-system show that the peak current/magnetic field of 110 kA/0.3 T, 10 kA/1.2 T and 1.7 MA/3.4 T were achieved in the bias, mirror and θ-pinch circuits with quarter cycle of 80 μs, 700 μs and 3.8 μs respectively. The induced electric field in the neutral gas was greater than 0.25 kV/cm when the ionization bank was charged to 70 kV. With H2 gas of 8 Pa, the plasma target of density 1016 cm−3, separatrix radius 4 cm, half-length 17 cm, equilibrium temperature 200 eV and lifetime 3 μs (approximately the half pulse width of the reversed field have been obtained through the θ-pinch method when the bias, mirror, ionization and θ-pinch banks were charged to 5 kV, 5 kV, 55 kV and ±45 kV respectively. The images from the high-speed end-on framing camera demonstrate the formation processes of FRC and some features agree well with the results with the two-dimension magneto hydrodynamics code (2D-MHD.
International Nuclear Information System (INIS)
Andreozzi, J; Zhang, R; Glaser, A; Pogue, B; Jarvis, L; Williams, B; Gladstone, D
2015-01-01
Purpose: To evaluate treatment field heterogeneity resulting from gantry angle choice in total skin electron beam therapy (TSEBT) following a modified Stanford dual-field technique, and determine a relationship between source to surface distance (SSD) and optimized gantry angle spread. Methods: Cherenkov imaging was used to image 62 treatment fields on a sheet of 1.2m x 2.2m x 1.2cm polyethylene following standard TSEBT setup at our institution (6 MeV, 888 MU/min, no spoiler, SSD=441cm), where gantry angles spanned from 239.5° to 300.5° at 1° increments. Average Cherenkov intensity and coefficient of variation in the region of interest were compared for the set of composite Cherenkov images created by summing all unique combinations of angle pairs to simulate dual-field treatment. The angle pair which produced the lowest coefficient of variation was further studied using an ionization chamber. The experiment was repeated at SSD=300cm, and SSD=370.5cm. Cherenkov imaging was also implemented during TSEBT of three patients. Results: The most uniform treatment region from a symmetric angle spread was achieved using gantry angles +/−17.5° about the horizontal axis at SSD=441cm, +/−18.5° at SSD=370.5cm, and +/−19.5° at SSD=300cm. Ionization chamber measurements comparing the original treatment spread (+/−14.5°) and the optimized angle pair (+/−17.5°) at SSD=441cm showed no significant deviation (r=0.999) in percent depth dose curves, and chamber measurements from nine locations within the field showed an improvement in dose uniformity from 24.41% to 9.75%. Ionization chamber measurements correlated strongly (r=0.981) with Cherenkov intensity measured concurrently on the flat Plastic Water phantom. Patient images and TLD results also showed modest uniformity improvements. Conclusion: A decreasing linear relationship between optimal angle spread and SSD was observed. Cherenkov imaging offers a new method of rapidly analyzing and optimizing TSEBT setup
A design approach to achieving the field uniformity requirements for the SSC dipole magnets
International Nuclear Information System (INIS)
Pavlik, D.; Krefta, M.P.; Johnson, D.C.
1991-01-01
This work describes a design approach for the calculation of the magnetic field quality in the SSC dipole magnets. A description of different analytical techniques including two and three dimensional finite element, finite difference and closed form methods is presented. Their application to the field quality problem is discussed showing how each can be relevant to a portion of the problem. Sources of field quality error and their impact on magnet operation are presented. Included are geometric variations of the conductors, yoke and collar, variabilities in material properties, persistent currents, saturation effects and the influence of boundary conditions. An approach to integrating the analytical methods and codes into a comprehensive design plan and set of manufacturing specifications is described
Macroscopic spin-orbit coupling in non-uniform magnetic fields
Energy Technology Data Exchange (ETDEWEB)
Tabat, N.; Edelman, H. S.; Song, D. [Semaphore Scientific, Inc., St. Cloud, Minnesota 56301 (United States); Vogt, T. [Department of Electrical and Computer Engineering, St. Cloud State University, St. Cloud, Minnesota 56301 (United States)
2015-03-02
Translational dynamics of aggregated magnetic nano-particles placed in a rotating external magnetic field is described. It is observed and explained that aggregates that spin within a radially decreasing field strength must execute an orbital motion of their center of mass in a sense that counters their spin rotation. This orbital motion is tightly coupled to the spin dynamics of the aggregates. An analytical model for the canonical variables describing the orbital motion is derived and shown to be in good agreement with the measured values.
Macroscopic spin-orbit coupling in non-uniform magnetic fields
International Nuclear Information System (INIS)
Tabat, N.; Edelman, H. S.; Song, D.; Vogt, T.
2015-01-01
Translational dynamics of aggregated magnetic nano-particles placed in a rotating external magnetic field is described. It is observed and explained that aggregates that spin within a radially decreasing field strength must execute an orbital motion of their center of mass in a sense that counters their spin rotation. This orbital motion is tightly coupled to the spin dynamics of the aggregates. An analytical model for the canonical variables describing the orbital motion is derived and shown to be in good agreement with the measured values
Equilibrium state analysis of a nonneutral plasma under a uniform magnetic field
International Nuclear Information System (INIS)
Fernandez, J.E.; Molinari, V.G.; Sumini, M.A.
1990-01-01
By recourse to the Boltzmann H-theorem, the existence of a thermodynamic equilibrium state has been proved for a nonneutral plasma under an external magnetic field. The equation describing the density profile of ions or electrons has been found. The density equation has been numerically solved for a generic magnetic field and plasma frequency, giving a parametric limit for the confinement region. An appropriate change of variable allows to approximate the density equation whose analytical solution has been found. The approximated density closely fits the numerical solution of the original equation. (Author)
International Nuclear Information System (INIS)
Stuchlik, Zdenek; Kolos, Martin
2016-01-01
To test the role of large-scale magnetic fields in accretion processes, we study the dynamics of the charged test particles in the vicinity of a black hole immersed into an asymptotically uniform magnetic field. Using the Hamiltonian formalism of the charged particle dynamics, we examine chaotic scattering in the effective potential related to the black hole gravitational field combined with the uniform magnetic field. Energy interchange between the translational and oscillatory modes of the charged particle dynamics provides a mechanism for charged particle acceleration along the magnetic field lines. This energy transmutation is an attribute of the chaotic charged particle dynamics in the combined gravitational and magnetic fields only, the black hole rotation is not necessary for such charged particle acceleration. The chaotic scatter can cause a transition to the motion along the magnetic field lines with small radius of the Larmor motion or vanishing Larmor radius, when the speed of the particle translational motion is largest and it can be ultra-relativistic. We discuss the consequences of the model of ionization of test particles forming a neutral accretion disc, or heavy ions following off-equatorial circular orbits, and we explore the fate of heavy charged test particles after ionization where no kick of heavy ions is assumed and only the switch-on effect of the magnetic field is relevant. We demonstrate that acceleration and escape of the ionized particles can be efficient along the Kerr black hole symmetry axis parallel to the magnetic field lines. We show that a strong acceleration of the ionized particles to ultra-relativistic velocities is preferred in the direction close to the magnetic field lines. Therefore, the process of ionization of Keplerian discs around the Kerr black holes can serve as a model of relativistic jets. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Stuchlik, Zdenek; Kolos, Martin [Silesian University in Opava, Faculty of Philosophy and Science, Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Opava (Czech Republic)
2016-01-15
To test the role of large-scale magnetic fields in accretion processes, we study the dynamics of the charged test particles in the vicinity of a black hole immersed into an asymptotically uniform magnetic field. Using the Hamiltonian formalism of the charged particle dynamics, we examine chaotic scattering in the effective potential related to the black hole gravitational field combined with the uniform magnetic field. Energy interchange between the translational and oscillatory modes of the charged particle dynamics provides a mechanism for charged particle acceleration along the magnetic field lines. This energy transmutation is an attribute of the chaotic charged particle dynamics in the combined gravitational and magnetic fields only, the black hole rotation is not necessary for such charged particle acceleration. The chaotic scatter can cause a transition to the motion along the magnetic field lines with small radius of the Larmor motion or vanishing Larmor radius, when the speed of the particle translational motion is largest and it can be ultra-relativistic. We discuss the consequences of the model of ionization of test particles forming a neutral accretion disc, or heavy ions following off-equatorial circular orbits, and we explore the fate of heavy charged test particles after ionization where no kick of heavy ions is assumed and only the switch-on effect of the magnetic field is relevant. We demonstrate that acceleration and escape of the ionized particles can be efficient along the Kerr black hole symmetry axis parallel to the magnetic field lines. We show that a strong acceleration of the ionized particles to ultra-relativistic velocities is preferred in the direction close to the magnetic field lines. Therefore, the process of ionization of Keplerian discs around the Kerr black holes can serve as a model of relativistic jets. (orig.)
Czech Academy of Sciences Publication Activity Database
Donátová, M.; Karban, P.; Doležel, Ivo; Ulrych, B.
2009-01-01
Roč. 85, č. 4 (2009), s. 16-18 ISSN 0033-2097 R&D Projects: GA ČR(CZ) GA102/07/0496 Institutional research plan: CEZ:AV0Z20570509 Keywords : induction heating * integrodifferential model * electromagnetic field Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.196, year: 2009
Hydrogen atom in a uniform electromagnetic field as an anharmonic oscillator
International Nuclear Information System (INIS)
Kibler, M.; Negadi, T.
1984-01-01
This work establishes, by means of the Kustaanheimo-Stiefel transformation, a connection between two branches of theoretical physics which are, in present times, the object of numerous studies: the quantum mechanics of anharmonic oscillators and of the hydrogen atom in a (strong) homogeneous and constant electromagnetic field
Motion of a Charged Particle in a Constant and Uniform Electromagnetic Field
Ladino, L. A.; Rondón, S. H.; Orduz, P.
2015-01-01
This paper focuses on the use of software developed by the authors that allows the visualization of the motion of a charged particle under the influence of magnetic and electric fields in 3D, at a level suitable for introductory physics courses. The software offers the possibility of studying a great number of physical situations that can…
Nogueira d'Eurydice, Marcel; Galvosas, Petrik
2014-11-01
Single-sided NMR systems are becoming a relevant tool in industry and laboratory environments due to their low cost, low maintenance and capacity to evaluate quantity and quality of hydrogen based materials. The performance of such devices has improved significantly over the last decade, providing increased field homogeneity, field strength and even controlled static field gradients. For a class of these devices, the configuration of the permanent magnets provides a linear variation of the magnetic field and can be used in diffusion measurements. However, magnet design depends directly on its application and, according to the purpose, the field homogeneity may significantly be compromised. This may prevent the determination of diffusion properties of fluids based on the natural inhomogeneity of the field using known techniques. This work introduces a new approach that extends the applicability of diffusion-editing CPMG experiments to NMR devices with highly inhomogeneous magnetic fields, which do not vary linearly in space. Herein, we propose a method to determine a custom diffusion kernel based on the gradient distribution, which can be seen as a signature of each NMR device. This new diffusion kernel is then utilised in the 2D inverse Laplace transform (2D ILT) in order to determine diffusion-relaxation correlation maps of homogeneous multi-phasic fluids. The experiments were performed using NMR MObile Lateral Explore (MOLE), which is a single-sided NMR device designed to maximise the volume at the sweet spot with enhanced depth penetration. Copyright © 2014 Elsevier Inc. All rights reserved.
Hamiltonian term for a uniform dc electric field under the adiabatic approximation
Siu, Zhuo Bin; Jalil, Mansoor B. A.; Tan, Seng Ghee
2018-02-01
In this work, we show that the disorder-free Kubo formula for the nonequilibrium value of an observable due to a dc electric field, represented by Exx ̂ in the Hamiltonian, can be interpreted as the standard time-independent theory response of the observable due to a time- and position-independent perturbation HMF. We derive the explicit expression for HMF and show that it originates from the adiabatic approximation to Kubo formula and the time-independent perturbation theory, as well as the Sundaram-Niu wave-packet formalism, we show that HMF reproduces the effect of the E field, i.e., Exx ̂ , up to the first order. This replacement suggests the emergence of a spin current term that is not captured by the standard Kubo formula spin current calculation. We illustrate this via the exemplary spin current for the heavy-hole spin-3/2 Luttinger system.
International Nuclear Information System (INIS)
Petri, Anna Raquel
2013-01-01
In this work are presented data of Townsend first ionization coefficient, α, in pure isobutane, obtained with a parallel plate chamber of resistive anode, for the reduced electric field range of 140 Td up to 230 Td. The adopted method is based on a new version of the Pulsed Townsend Technique, where the primary ionization is produced by the incidence of nitrogen pulsed laser beam in an aluminum electrode (cathode). The glass anode of high resistivity (ρ = 2 x 10 12 Ω.cm) protects the detector against sparks. To validate the method, the α values were determined by comparing the ionization and avalanche electric currents in nitrogen, gas widely studied with well-established data in literature. This technique was successfully extended to obtain α parameters in pure isobutane. The presence of effects related to spatial charge, recombination and ohmic drop across the resistive anode was investigated by varying laser pulse repetition rate, its intensity and applied electric field. Of these secondary processes, only the ohmic drop was relevant and the reduced electric field values were corrected for it. The first Townsend coefficients obtained are compatible, within the experimental errors, with those determined with Magboltz 2 program versions 7.1 e 8.6. (author)
Theoretical study of a weakly ionised gas in a uniform constant electric field
International Nuclear Information System (INIS)
Segur, Pierre.
1974-01-01
The collision operators of the Boltzmann equation are expressed in terms of the transition probabilities for a Lorentz gas and inelastic type collisions in the case of conservation and non-conservation of the initial number of particles. These operators are approximately expressed when the mass ratio of the present particles is weak. The expressions obtained are valid for any particle distribution functions. A series expansion in spherical harmonics is effected for these operators. The Boltzmann equation is then solved for the case of a steady homogeneous medium when the electric field effect is lower than that of collisions. A resolving method is then proposed for the case where the electric field and collisions play comparable roles. Analytical expressions are given for the distribution functions in terms of asymptotic solutions valid for any type of cross section. A steady heterogenous medium is then studied by a direct numerical solution of the Boltzmann equation, for high values of the electric field/ pressure ratio. The existence of a single lattice of characteristic directions is established as well as a distribution function representing in phase space a band structure characteristic of the presence of inelastic collisions. The electron motion is simulated using a Monte-Carlo method. The calculations being effected in helium, a bibliography of the cross sections for this gas is given [fr
Longitudinal effects of near-uniform beam-wall wake fields
International Nuclear Information System (INIS)
Ruggiero, A.G.; Talmann, R.
1979-01-01
Several theories have been developed in the past to explain longitudinal instabilities of individual bunches in particle accelerators and storage rings. But they are less than satisfactory because in one way or another they rely on some mathematical approximation of doubtful physical meaning. Here, the basic physical model is simplified in order to help to understand a little better the physics involved. Initially, the motion of two particles executing phase oscillations in the same bunch under the influence of the wake field generated by the other is investigated. This motion is stable and bounded even for the case of a slowly varying wake field. But the distortions of the trajectories can, nevertheless, be significant and can be interpreted as bunch lengthening and widening. These models generalized to an N particle model. If the wake field is constant, the equations are simple enough that it is possible to solve exactly for the intensity-limited, self-consistent, longitudinal particle distribution. It is not necessary to solve, or even introduce, the Vlasov equation. These models exhibit effects like dipole and quadrupole oscillations and bunch lengthening, in qualitative agreement with observed behavior, but no attempt has been made at quantitative comparison with observation
Compact toroid injection fueling in a large field-reversed configuration
Asai, T.; Matsumoto, T.; Roche, T.; Allfrey, I.; Gota, H.; Sekiguchi, J.; Edo, T.; Garate, E.; Takahashi, Ts.; Binderbauer, M.; Tajima, T.
2017-07-01
A repetitively driven compact toroid (CT) injector has been developed for the large field-reversed configuration (FRC) facility of the C-2/C-2U, primarily for particle refueling. A CT is formed and injected by a magnetized coaxial plasma gun (MCPG) exclusively developed for the C-2/C-2U FRC. To refuel the particles of long-lived FRCs, multiple CT injections are required. Thus, a multi-stage discharge circuit was developed for a multi-pulsed CT injection. The drive frequency of this system can be adjusted up to 1 kHz and the number of CT shots per injector is two; the system can be further upgraded for a larger number of injection pulses. The developed MCPG can achieve a supersonic ejection velocity in the range of ~100 km s-1. The key plasma parameters of electron density, electron temperature and the number of particles are ~5 × 1021 m-3, ~30 eV and 0.5-1.0 × 1019, respectively. In this project, single- and double-pulsed counter CT injection fueling were conducted on the C-2/C-2U facility by two CT injectors. The CT injectors were mounted 1 m apart in the vicinity of the mid-plane. To avoid disruptive perturbation on the FRC, the CT injectors were operated at the lower limit of the particle inventory. The experiments demonstrated successful refueling with a significant density build-up of 20-30% of the FRC particle inventory per single CT injection without any deleterious effects on the C-2/C-2U FRC.
Usage Frequency of Product Configuration Systems Relative to Integrations and Fields of Application
DEFF Research Database (Denmark)
Shafiee, Sara; Kristjansdottir, Katrin; Hvam, Lars
2017-01-01
Product Configuration Systems (PCS) are automatic solutions that can support and facilitate the sales and engineering processes. PCSs have recently attracted increased attention both from the researches and practitioners. There are variety of challenges reported in the literature as consequences...
International Nuclear Information System (INIS)
Hirata, A.; Wake, K.; Watanabe, S.; Taki, M.
2009-01-01
The present study quantified the in situ electric field and induced current density in anatomically based numeric Japanese male and female models for exposure to extremely low-frequency magnetic fields. A quasi-static FDTD method was applied to analyse this problem. The computational results obtained herein reveal that the 99. percentile value of the in situ electric field in the nerve tissue and the current density averaged over an area of 1 cm 2 of the nerve tissue (excluding non-nerve tissues in the averaging region) in the female models were less than 35 and 25%, respectively. These induced quantities in the Japanese models were smaller than those for European models reported in a previous study, which is mainly due to the difference in cross-sectional area of the body. (authors)
Experimental and theoretical study of breakdown mechanisms in a gas in an uniform electric field
International Nuclear Information System (INIS)
Bayle, Pierre.
1975-01-01
The theoretical study of breakdown mechanisms in a gas with an applied electric field has been made on the basis of a deterministic model built on continuity equations governing the evolution of electronic and ionic densities. With this purpose, the breakdown formation has been simulated in electronegative gases (air, oxygen) taking into account the space charge effects on initial applied electric field, the electronic emission on the cathode by photonic or ionic impact, the delayed electrons processes (attachment, detachment) and charge exchange processes. Without space charge, the influence of photoionization in the gas on the electronic and ionic population has been pointed out in a discharge in nitrogen. Then the problem of external electrode discharges has been approached for the study of plasma visualization pannel cells, and the fundamental role of the charges deposed on dielectrics has been manifested. In the experimental study, the discharge formation has been analysed in rare gases and nitrogen for high over voltages (more than 100%) and for pressures of about hundred torrs. Using high-speed cinematographic techniques, the discharge propagation has been studied with a one nanosecond time resolution. The ultra-fast propagation zone of anode-directed streamer has been linked with the intervention of distance ionization process. The arrival of the streamers on the anode induces the beginning of an ionization front propagating towards the cathode [fr
Experimental and theoretical study of breakdown mechanisms in a gas in an uniform electric field
Energy Technology Data Exchange (ETDEWEB)
Bayle, P
1975-01-01
The theoretical study of breakdown mechanisms in a gas with an applied electric field has been made on the basis of a deterministic model built on continuity equations governing the evolution of electronic and ionic densities. With this purpose, the breakdown formation has been simulated in electronegative gases (air, oxygen) taking into account the space charge effects on initial applied electric field, the electronic emission on the cathode by photonic or ionic impact, the delayed electrons processes (attachment, detachment) and charge exchange processes. Without space charge, the influence of photoionization in the gas on the electronic and ionic population has been pointed out in a discharge in nitrogen. Then the problem of external electrode discharges has been approached for the study of plasma visualization pannel cells, and the fundamental role of the charges deposed on dielectrics has been manifested. In the experimental study, the discharge formation has been analysed in rare gases and nitrogen for high over voltages (more than 100%) and for pressures of about hundred torrs. Using high-speed cinematographic techniques, the discharge propagation has been studied with a one nanosecond time resolution. The ultra-fast propagation zone of anode-directed streamer has been linked with the intervention of distance ionization process. The arrival of the streamers on the anode induces the beginning of an ionization front propagating towards the cathode.
Evidence from optical polarisation for a galactic-scale uniform magnetic field in M104
International Nuclear Information System (INIS)
Scarrott, S.M.; White, C.; Pallister, W.S.; Solinger, A.B.
1977-01-01
A map is presented of the linear optical polarisation of the Sombrero Galaxy (M104) that gives clear evidence for the existence of a magnetic field that maintains the same projected direction over an estimated volume of some 10 3 kpc 3 . Detailed knowledge of the polarisation pattern in a nebula is stated to be a powerful tool for further understanding of a nebula. The observations described were made with the 1 m telescope of the Wise Observatory, Israel, during May 1976 using the B waveband of the UBV system, together with a polarimeter and a 4 cm electronographic camera. Measurements were made at 1000 points within the galaxy. The map is superimposed on a photograph of M104, and its main features are described. It is stated that there is little doubt that the observed polarisation pattern was due to the scattering and extinction of light by statistically aligned dust grains. The alignment of the grains is most probably due to magnetic effects, and unless some unexpected mechanism is occurring the grains must be magnetically aligned. The findings are discussed. It is stated that the fact that scattering from aligned grains is occurring makes M104 a likely candidate for the observation of circular polarisation, and such an observation would tend to confirm the interpretation of the linear polarisation. It seems that the observations are concerned with the most extensive homogeneous magnetic field so far observed and it is tempting to speculate that it may be primordial in origin. (U.K.)
International Nuclear Information System (INIS)
Fernades, R.; Smith, R.A.
1977-01-01
Conceptual design configurations of D-shaped toroidal field coils applicable to the TNS program are studied under the action of the toroidal field loading condition and the vertical field loading condition, but not the fault condition. Although the analysis is specific to an 8 Tesla design using a niobium titanium superconductor, the results can be extended to a coil with a different conductor material and subjected to a field of different magnitude provided the condition of linear elasticity is not violated. The analysis technique used is the finite element method, with three dimensional finite elements defined in the ANSYS computer code, and supplemented by closed form analytical solutions
Dynamics of Equilibrium Points in a Uniformly Rotating Second-Order and Degree Gravitational Field
Feng, Jinglang; Hou, Xiyun
2017-07-01
Using tools such as periodic orbits and invariant manifolds, the global dynamics around equilibrium points (EPs) in a rotating second-order and degree gravitational field are studied. For EPs on the long axis, planar and vertical periodic families are computed, and their stability properties are investigated. Invariant manifolds are also computed, and their relation to the first-order resonances is briefly discussed. For EPs on the short axis, planar and vertical periodic families are studied, with special emphasis on the genealogy of the planar periodic families. Our studies show that the global dynamics around EPs are highly similar to those around libration points in the circular restricted three-body problem, such as spatial halo orbits, invariant manifolds, and the genealogy of planar periodic families.
Dynamics of Equilibrium Points in a Uniformly Rotating Second-Order and Degree Gravitational Field
International Nuclear Information System (INIS)
Feng, Jinglang; Hou, Xiyun
2017-01-01
Using tools such as periodic orbits and invariant manifolds, the global dynamics around equilibrium points (EPs) in a rotating second-order and degree gravitational field are studied. For EPs on the long axis, planar and vertical periodic families are computed, and their stability properties are investigated. Invariant manifolds are also computed, and their relation to the first-order resonances is briefly discussed. For EPs on the short axis, planar and vertical periodic families are studied, with special emphasis on the genealogy of the planar periodic families. Our studies show that the global dynamics around EPs are highly similar to those around libration points in the circular restricted three-body problem, such as spatial halo orbits, invariant manifolds, and the genealogy of planar periodic families.
Dynamics of Equilibrium Points in a Uniformly Rotating Second-Order and Degree Gravitational Field
Energy Technology Data Exchange (ETDEWEB)
Feng, Jinglang; Hou, Xiyun, E-mail: jinglang@nju.edu.cn, E-mail: silence@nju.edu.cn [School of Astronomy and Space Science, Nanjing University, 210093 (China)
2017-07-01
Using tools such as periodic orbits and invariant manifolds, the global dynamics around equilibrium points (EPs) in a rotating second-order and degree gravitational field are studied. For EPs on the long axis, planar and vertical periodic families are computed, and their stability properties are investigated. Invariant manifolds are also computed, and their relation to the first-order resonances is briefly discussed. For EPs on the short axis, planar and vertical periodic families are studied, with special emphasis on the genealogy of the planar periodic families. Our studies show that the global dynamics around EPs are highly similar to those around libration points in the circular restricted three-body problem, such as spatial halo orbits, invariant manifolds, and the genealogy of planar periodic families.
International Nuclear Information System (INIS)
Scheid, Matthias; Bercioux, Dario; Richter, Klaus
2007-01-01
We consider the possibility to employ a quantum wire realized in a two-dimensional electron gas (2DEG) as a spin ratchet. We show that a net spin current without accompanying net charge transport can be induced in the nonlinear regime by an unbiased external driving via an ac voltage applied between the contacts at the ends of the quantum wire. To achieve this, we make use of the coupling of the electron spin to inhomogeneous magnetic fields created by ferromagnetic stripes patterned on the semiconductor heterostructure that harbors the 2DEG. Using recursive Green function techniques, we numerically study two different set-ups, consisting of one and two ferromagnetic stripes, respectively
The acoustic field of a point source in a uniform boundary layer over an impedance plane
Zorumski, W. E.; Willshire, W. L., Jr.
1986-01-01
The acoustic field of a point source in a boundary layer above an impedance plane is investigated anatytically using Obukhov quasi-potential functions, extending the normal-mode theory of Chunchuzov (1984) to account for the effects of finite ground-plane impedance and source height. The solution is found to be asymptotic to the surface-wave term studies by Wenzel (1974) in the limit of vanishing wind speed, suggesting that normal-mode theory can be used to model the effects of an atmospheric boundary layer on infrasonic sound radiation. Model predictions are derived for noise-generation data obtained by Willshire (1985) at the Medicine Bow wind-turbine facility. Long-range downwind propagation is found to behave as a cylindrical wave, with attention proportional to the wind speed, the boundary-layer displacement thickness, the real part of the ground admittance, and the square of the frequency.
Verweij, A P
1998-01-01
Electrical measurements on samples of superconducting cables are usually performed in order to determine the critical current $I_c$ and the n-value, assuming that the voltage U at the transition from the superconducting to the normal state follows the power law, U\\sim($I/I_c$)$^n$. An accurate measurement of $I_c$ and n demands, first of all, good control of temperature and field, and precise measurement of current and voltage. The critical current and n-value of a cable are influenced by the self-field of the cable, an effect that has to be known in order to compare the electrical characteristics of the cable with those of the strands from which it is made. The effect of the self-field is dealt with taking into account the orientation and magnitude of the applied field and the n-value of the strands. An important source of inaccuracy is related to the distribution of the currents among the strands. Non-uniform distributions, mainly caused by non-equal resistances of the connections between the strands of the...
Klinkusch, Stefan; Tremblay, Jean Christophe
2016-05-14
In this contribution, we introduce a method for simulating dissipative, ultrafast many-electron dynamics in intense laser fields. The method is based on the norm-conserving stochastic unraveling of the dissipative Liouville-von Neumann equation in its Lindblad form. The N-electron wave functions sampling the density matrix are represented in the basis of singly excited configuration state functions. The interaction with an external laser field is treated variationally and the response of the electronic density is included to all orders in this basis. The coupling to an external environment is included via relaxation operators inducing transition between the configuration state functions. Single electron ionization is represented by irreversible transition operators from the ionizing states to an auxiliary continuum state. The method finds its efficiency in the representation of the operators in the interaction picture, where the resolution-of-identity is used to reduce the size of the Hamiltonian eigenstate basis. The zeroth-order eigenstates can be obtained either at the configuration interaction singles level or from a time-dependent density functional theory reference calculation. The latter offers an alternative to explicitly time-dependent density functional theory which has the advantage of remaining strictly valid for strong field excitations while improving the description of the correlation as compared to configuration interaction singles. The method is tested on a well-characterized toy system, the excitation of the low-lying charge transfer state in LiCN.
Energy Technology Data Exchange (ETDEWEB)
Klinkusch, Stefan; Tremblay, Jean Christophe [Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, D-14195 Berlin (Germany)
2016-05-14
In this contribution, we introduce a method for simulating dissipative, ultrafast many-electron dynamics in intense laser fields. The method is based on the norm-conserving stochastic unraveling of the dissipative Liouville-von Neumann equation in its Lindblad form. The N-electron wave functions sampling the density matrix are represented in the basis of singly excited configuration state functions. The interaction with an external laser field is treated variationally and the response of the electronic density is included to all orders in this basis. The coupling to an external environment is included via relaxation operators inducing transition between the configuration state functions. Single electron ionization is represented by irreversible transition operators from the ionizing states to an auxiliary continuum state. The method finds its efficiency in the representation of the operators in the interaction picture, where the resolution-of-identity is used to reduce the size of the Hamiltonian eigenstate basis. The zeroth-order eigenstates can be obtained either at the configuration interaction singles level or from a time-dependent density functional theory reference calculation. The latter offers an alternative to explicitly time-dependent density functional theory which has the advantage of remaining strictly valid for strong field excitations while improving the description of the correlation as compared to configuration interaction singles. The method is tested on a well-characterized toy system, the excitation of the low-lying charge transfer state in LiCN.
International Nuclear Information System (INIS)
Shimizu, A.; Okamura, S.; Isobe, M.; Suzuki, C.; Nishimura, S.; Watari, T.; Matsuoka, K.
2002-08-01
A design of the modular coil system for CHS-qa has been made for the plasma configuration '2b32' with the aspect ratio 3.2. The magnetic field strength and the major radius are 1.5 T and 1.5 m, respectively. The normal component of magnetic field produced by the modular coils is minimized on the plasma boundary to obtain the optimum coil design. We put engineering constraint on the distance between adjacent modular coils and the radius of coil curvature. The dependence of the residual normal component of the field on these conditions is examined, and the realistic values for them are selected. Additional coils to control various properties of the magnetic field configuration (the rotational transform, the magnetic well depth, etc.) have been designed and a flexibility of the magnetic field configuration is realized. For the case that the rotational transform crosses the low-order rational value resulting in magnetic islands, the residues of islands are evaluated with which a further improvement of coil design can be made to eliminate magnetic islands. (author)
Zhang, Yuning; Du, Xiaoze
2015-09-01
Predictions of the propagation of the acoustic waves in bubbly liquids is of great importance for bubble dynamics and related applications (e.g. sonochemistry, sonochemical reactor design, biomedical engineering). In the present paper, an approach for modeling the propagation of the acoustic waves in dilute bubbly liquids is proposed through considering the non-uniform pressure field outside the bubbles. This approach is validated through comparing with available experimental data in the literature. Comparing with the previous models, our approach mainly improves the predictions of the attenuation of acoustic waves in the regions with large kR0 (k is the wave number and R0 is the equilibrium bubble radius). Stability of the oscillating bubbles under acoustic excitation are also quantitatively discussed based on the analytical solution. Copyright © 2015 Elsevier B.V. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Hramov, Alexander E., E-mail: aeh@nonlin.sgu.r [Faculty of Nonlinear Processes, Saratov State University, 83, Astrakhanskaya, Saratov, 410012 (Russian Federation); Koronovskii, Alexey A., E-mail: alkor@nonlin.sgu.r [Faculty of Nonlinear Processes, Saratov State University, 83, Astrakhanskaya, Saratov, 410012 (Russian Federation); Kurkin, Semen, E-mail: KurkinSA@nonlin.sgu.r [Faculty of Nonlinear Processes, Saratov State University, 83, Astrakhanskaya, Saratov, 410012 (Russian Federation)
2010-07-05
In this Letter the results of theoretical investigations of the chaotic microwave oscillator based on the electron beam with a virtual cathode are presented. Nonlinear non-stationary processes in these electron systems are studied by means of numerical analysis of 2.5D model. It was discovered that the non-uniform external magnetic field value controls the dynamical regime of oscillations in the virtual cathode oscillator. The processes of the chaotization of output microwave radiation are described and interpreted from the point of view of the formation and interaction of electron structures (bunches) in the electron beams. The numerical results have shown that the investigated electron system with virtual cathode could be considered as a promising controlled source of wideband chaotic oscillations in the microwave range.
Rau, R; Raschka, C; Koch, H J
2001-01-01
19-channel-EEGs were recorded from scalp surface of 30 healthy subjects (16m, 14f, mean age: 34 ys, SD: 11.7 ys) at rest and under IPS (Intermittent Photic Stimulation) at rates of 5, 10 and 20 Hertz (Hz). Digitalized data underwent spectral analysis with fast fourier transfomation (FFT) yielding the basis for the computation of global field power (GFP). For quantification GFP values in the frequency ranges of 5, 10 and 20 Hz at rest were divided by the corresponding data gained under IPS. While ratios from PDE data showed no stable parameter due to high interindividual variability, ratios of alpha-power turned out to be uniform in all subjects: IPS at 20 Hz always led to a suppression of alpha-power. Dividing alpha-GFP at rest by alpha-GFP under 20-Hz IPS thus resulted in a ratio paradigma.
Asner, A
1985-01-01
Compensation of the magnetization current induced sextupole error at LHC injection field by short lumped permanent sextupole magnets, incorporated into the end configuration of superconducting dipoles
Augmentation of Explicit Spatial Configurations by Knowledge-Based Inference on Geometric Fields
Directory of Open Access Journals (Sweden)
Dan Tappan
2009-04-01
Full Text Available A spatial configuration of a rudimentary, static, realworld scene with known objects (animals and properties (positions and orientations contains a wealth of syntactic and semantic spatial information that can contribute to a computational understanding far beyond what its quantitative details alone convey. This work presents an approach that (1 quantitatively represents what a configuration explicitly states, (2 integrates this information with implicit, commonsense background knowledge of its objects and properties, (3 infers additional, contextually appropriate, commonsense spatial information from and about their interrelationships, and (4 augments the original representation with this combined information. A semantic network represents explicit, quantitative information in a configuration. An inheritance-based knowledge base of relevant concepts supplies implicit, qualitative background knowledge to support semantic interpretation. Together, these structures provide a simple, nondeductive, constraint-based, geometric logical formalism to infer substantial implicit knowledge for intrinsic and deictic frames of spatial reference.
International Nuclear Information System (INIS)
Largenton, R.
2012-01-01
This research thesis aimed at developing a model based on scale change to assess more precisely the distribution of local thermo-mechanical fields within a heterogeneous medium as MOX fuel. The analysis method is a non-uniform transformation field analysis (NTFA) which is adapted to the problem of scale change in presence of a coupling between dissipative and elastic effects. More precisely, the author addressed the development of a NTFA model based on specific three-phase and three-dimensional microstructures which are typical of the MOX fuel in an in-service operation. The first part proposes an overview of knowledge and use of MOX. It recalls the context and the industrial problematic associated with this fuel: operating principles for a 900 MWe PWR, fuel fabrication processes, fuel morphologies and structural and microstructural consequences. It addresses local mechanisms within each phase during irradiation, and presents the approach methodology regarding scale change. The second part reports the representation and analysis in complete fields of multiphase particle-based composites (MOX type) in order to determine the representative elementary volume and the local behaviour of each phase. The third part reports the extension of the NTFA approach to 3D aspects, free deformations, ageing and optimization. The last part compares the NTFA approach with the incremental two-phase and three-phase Mori-Tanaka models
Closed-Form Algorithm for 3-D Near-Field OFDM Signal Localization under Uniform Circular Array.
Su, Xiaolong; Liu, Zhen; Chen, Xin; Wei, Xizhang
2018-01-14
Due to its widespread application in communications, radar, etc., the orthogonal frequency division multiplexing (OFDM) signal has become increasingly urgent in the field of localization. Under uniform circular array (UCA) and near-field conditions, this paper presents a closed-form algorithm based on phase difference for estimating the three-dimensional (3-D) location (azimuth angle, elevation angle, and range) of the OFDM signal. In the algorithm, considering that it is difficult to distinguish the frequency of the OFDM signal's subcarriers and the phase-based method is always affected by errors of the frequency estimation, this paper employs sparse representation (SR) to obtain the super-resolution frequencies and the corresponding phases of subcarriers. Further, as the phase differences of the adjacent sensors including azimuth angle, elevation angle and range parameters can be expressed as indefinite equations, the near-field OFDM signal's 3-D location is obtained by employing the least square method, where the phase differences are based on the average of the estimated subcarriers. Finally, the performance of the proposed algorithm is demonstrated by several simulations.
DEFF Research Database (Denmark)
Thomsen, Peter Poulsen; Nielsen, Christian; Lund, Morten
This study suggests applying the lenses of Activity Systems Theory and Representation Theory in relation to the study of business models. It examines the link between the 71 business model configurations identified by Taran et al. (2016) and performance measures through the mechanisms of value dr...
International Nuclear Information System (INIS)
Leznov, A.N.
1994-01-01
A general method for the construction of solutions of the d'Alamberian and double d'Alamberian (harmonic and bi-harmonic) equations with local dependence of arbitrary functions upon two independent arguments is proposed. The connection between solutions of this kind and self-dual configurations of gauge fields having no singularities is established. 5 refs
Energy Technology Data Exchange (ETDEWEB)
Mohammadpourfard, M., E-mail: Mohammadpour@azaruniv.edu [Department of Mechanical Engineering, Azarbaijan Shahid Madani University, Tabriz 53751-71379 (Iran, Islamic Republic of); Aminfar, H., E-mail: hh_aminfar@tabrizu.ac.ir [Faculty of Mechanical Engineering, University of Tabriz, Tabriz (Iran, Islamic Republic of); Khajeh, K., E-mail: khajeh.k.2005@gmail.com [Faculty of Mechanical Engineering, University of Tabriz, Tabriz (Iran, Islamic Republic of)
2014-04-01
In this paper, the concentration polarization phenomena in a two dimensional tube under steady state conditions containing ferrofluid (blood and 4 vol% Fe{sub 3}O{sub 4}) is reported in the presence of non-uniform magnetic field. Lumen-wall model has been used for solving the mass transport equation. Hemodynamics parameters such as flow rate, viscosity, wall shear stress (WSS) and the macromolecules surface concentration which accumulate on the blood vessel wall, influenced the formation and progression of atherosclerosis disease. Effective parameters on the low density lipoprotein (LDL) surface concentration (LSC) such as: the wall filtration velocity, inlet Reynolds number and WSS under applied non-uniform magnetic field have been examined. Numerical solution of governing equations of the flow field have been obtained by using the single-phase model and the control volume technique. Magnetic field is generated by an electric current going through a thin and straight wire oriented perpendicular to the tube. Results show WSS in the vicinity of magnetic field source increased and LSC decreased along the wall. - Highlights: • In this paper the concentration polarization phenomena of blood flow is reported in the presence of non-uniform magnetic field. • In presence of non-uniform magnetic field LSC will decrease along the wall due to the increasing the velocity gradients near the magnetic source. • When non-uniform magnetic field intensity increases, LSC along the wall becomes lower. • Non-uniform magnetic field can affects the flow more in low Reynolds numbers.
Tahmasebibirgani, Mohammad Javad; Maskani, Reza; Behrooz, Mohammad Ali; Zabihzadeh, Mansour; Shahbazian, Hojatollah; Fatahiasl, Jafar; Chegeni, Nahid
2017-04-01
In radiotherapy, megaelectron volt (MeV) electrons are employed for treatment of superficial cancers. Magnetic fields can be used for deflection and deformation of the electron flow. A magnetic field is composed of non-uniform permanent magnets. The primary electrons are not mono-energetic and completely parallel. Calculation of electron beam deflection requires using complex mathematical methods. In this study, a device was made to apply a magnetic field to an electron beam and the path of electrons was simulated in the magnetic field using finite element method. A mini-applicator equipped with two neodymium permanent magnets was designed that enables tuning the distance between magnets. This device was placed in a standard applicator of Varian 2100 CD linear accelerator. The mini-applicator was simulated in CST Studio finite element software. Deflection angle and displacement of the electron beam was calculated after passing through the magnetic field. By determining a 2 to 5cm distance between two poles, various intensities of transverse magnetic field was created. The accelerator head was turned so that the deflected electrons became vertical to the water surface. To measure the displacement of the electron beam, EBT2 GafChromic films were employed. After being exposed, the films were scanned using HP G3010 reflection scanner and their optical density was extracted using programming in MATLAB environment. Displacement of the electron beam was compared with results of simulation after applying the magnetic field. Simulation results of the magnetic field showed good agreement with measured values. Maximum deflection angle for a 12 MeV beam was 32.9° and minimum deflection for 15 MeV was 12.1°. Measurement with the film showed precision of simulation in predicting the amount of displacement in the electron beam. A magnetic mini-applicator was made and simulated using finite element method. Deflection angle and displacement of electron beam were calculated. With
DEFF Research Database (Denmark)
Tsakadze, Erekle; Ostrikov, K.N.; Tsakadze, Z.L.
2004-01-01
) discharge modes using two miniature magnetic probes. It is shown that the radial uniformity and depth of the rf power deposition can be improved as compared with conventional sources of inductively coupled plasmas with external flat spiral ("pancake") antennas. Relatively deeper rf power deposition...... in the plasma source results in more uniform profiles of the optical emission intensity, which indicates on the improvement of the plasma uniformity over large chamber volumes. The results of the numerical modeling of the radial magnetic field profiles are found in a reasonable agreement with the experimental...
Lin, Munan; Liu, Ming; Zhu, Guanghui; Wang, Yanpeng; Shi, Peiyun; Sun, Xuan
2017-08-01
A high voltage pulse generator based on a silicon-controlled rectifier has been designed and implemented for a field reversed configuration experiment. A critical damping circuit is used in the generator to produce the desired pulse waveform. Depending on the load, the rise time of the output trigger signal can be less than 1 μs, and the peak amplitudes of trigger voltage and current are up to 8 kV and 85 A in a single output. The output voltage can be easily adjusted by changing the voltage on a capacitor of the generator. In addition, the generator integrates an electrically floating heater circuit so it is capable of triggering either pseudosparks (TDI-type hydrogen thyratron) or ignitrons. Details of the circuits and their implementation are described in the paper. The trigger generator has successfully controlled the discharging sequence of the pulsed power supply for a field reversed configuration experiment.
Abdullah, M.; Butt, Asma Rashid; Raza, Nauman; Alshomrani, Ali Saleh; Alzahrani, A. K.
2018-01-01
The magneto hydrodynamic blood flow in the presence of magnetic particles through a circular cylinder is investigated. To calculate the impact of externally applied uniform magnetic field, the blood is electrically charged. Initially the fluid and circular cylinder is at rest but at time t =0+ , the cylinder starts to oscillate along its axis with velocity fsin (Ωt) . To obtain the mathematical model of blood flow with fractional derivatives Caputo fractional operator is employed. The solutions for the velocities of blood and magnetic particles are procured semi analytically by using Laplace transformation method. The inverse Laplace transform has been calculated numerically by using MATHCAD computer software. The obtained results of velocities are presented in Laplace domain in terms of modified Bessel function I0 (·) . The obtained results satisfied all imposed initial and boundary conditions. The hybrid technique that is employed here less computational effort and time cost as compared to other techniques used in literature. As the limiting cases of our results the solutions of the flow model with ordinary derivatives has been procured. Finally, the impact of Reynolds number Re, fractional parameter α and Hartmann number Ha is analyzed and portrayed through graphs. It is worthy to pointing out that fractional derivatives brings remarkable differences as compared to ordinary derivatives. It also has been observed that velocity of blood and magnetic particles is weaker under the effect of transverse magnetic field.
International Nuclear Information System (INIS)
Brito, P E de; Nazareno, H N
2007-01-01
In the present work we treat the problem of a particle in a uniform magnetic field along the symmetric gauge, so chosen since the wavefunctions present the required cylindrical symmetry. It is our understanding that by means of this work we can make a contribution to the teaching of the present subject, as well as encourage students to use computer algebra systems in solving problems of quantum mechanics. We obtained the degeneracy of the spectrum of eigenvalues in a very clear way. Through the use of a computer algebra system we show graphs of the probability density associated with different eigenvalues as well as compare such functions for some degenerate states, which helps us to visualize the physics of the problem. We also present a semiclassical model which gives a physical insight regarding the paradoxical fact that eigenfunctions associated with opposite angular momenta and different energy eigenvalues have the same probability density. Finally, by solving the time-dependent Schroedinger equation we obtain the time evolution of a wave packet that at time zero was considered to be localized in a definite region of the lattice. The centroid of such a packet performs an orbit similar to that obtained in the classical treatment of a particle in a magnetic field
International Nuclear Information System (INIS)
Clemente, R.A.; Grillo, C.E.
1984-01-01
It is shown that elongated field-reversed configurations based on the Maschke--Hernegger solution of the Grad--Shafranov equation are unstable to internal tilting. The particle transport properties across the flux surfaces of such a model are also considered in the limit of large elongation of the separatrix. An estimation of the time of confinement of particles in terms of classical conductivity, which is lower than previous estimates, is given
Ekroos, Johan; Jakobsson, Anna; Wideen, Joel; Herbertsson, Lina; Rundlof, Maj; Smith, Henrik G.
2015-01-01
Bumble bee abundance in agricultural landscapes is known to decrease with increasing distance from seminatural grasslands, but whether the pollination of bumble-bee-pollinated wild plants shows a similar pattern is less well known. In addition, the relative effects of landscape composition (landscape heterogeneity) and landscape configuration (distance from seminatural grassland) on wild plant pollination, and the interaction between these landscape effects, have not been studied using landsc...
Orozco Suárez, D.; Asensio Ramos, A.; Trujillo Bueno, J.
2014-06-01
Context. Determining the magnetic field vector in quiescent solar prominences is possible by interpreting the Hanle and Zeeman effects in spectral lines. However, observational measurements are scarce and lack high spatial resolution. Aims: We determine the magnetic field vector configuration along a quiescent solar prominence by interpreting spectropolarimetric measurements in the He i 1083.0 nm triplet obtained with the Tenerife Infrared Polarimeter installed at the German Vacuum Tower Telescope of the Observatorio del Teide. Methods: The He i 1083.0 nm triplet Stokes profiles were analyzed with an inversion code that takes the physics responsible for the polarization signals in this triplet into account. The results are put into a solar context with the help of extreme ultraviolet observations taken with the Solar Dynamic Observatory and the Solar Terrestrial Relations Observatory satellites. Results: For the most probable magnetic field vector configuration, the analysis depicts a mean field strength of 7 gauss. We do not find local variations in the field strength except that the field is, on average, lower in the prominence body than in the prominence feet, where the field strength reaches ~25 gauss. The averaged magnetic field inclination with respect to the local vertical is ~77°. The acute angle of the magnetic field vector with the prominence main axis is 24° for the sinistral chirality case and 58° for the dextral chirality. These inferences are in rough agreement with previous results obtained from the analysis of data acquired with lower spatial resolutions. A movie is available in electronic form at http://www.aanda.org
Resonant effects on the low frequency vlasov stability of axisymmetric field reversed configurations
International Nuclear Information System (INIS)
Finn, J.M.; Sudan, R.N.
We investigate the effect of particle resonances on low frequency MHD modes in field-reversed geometries, e.g., an ion ring. It is shown that, for sufficiently high field reversal, modes which are hydromagnetically stable can be driven unstable by ion resonances. The stabilizing effect of a toroidal magnetic field is discussed
International Nuclear Information System (INIS)
Herve, Patrick
1975-01-01
This is a theoretical study of an electrically viscous fluid flowing in a straight rectangular cross section channel, a wall of which, infinitely conducting, is placed perpendicularly to the direction of a uniform magnetic induction field. The three other walls of the channel being electrically insulating, remain motionless. Formulas giving velocity distribution law in the straight section of the flow in relation to the Hartmann's number, curves illustrating the accelerating effect produced across the whole section, by the application of the magnetic induction field, and example for the distribution of the electric current lines in case of a square section are given [fr
The effect of hexapole and vertical fields on α-particle confinement in heliotron configurations
International Nuclear Information System (INIS)
Isaev, M.Yu.; Watanabe, K.Y.; Yokoyama, M.; Yamazaki, K.
2003-03-01
Collisionless mono-energetic α-particle confinement in three-dimensional magnetic fields obtained from the magnetic coils of the Large Helical Device (LHD) is calculated. It is found that the inward shift of magnetic axis due to the vertical field improves the α-particle confinement. In contrast to the vertical field, both large positive and negative hexapole fields do not improve the confinement. The study of the β effect and Mercier criterion calculations for different hexapole fields are also presented. (author)
Sheftman, D; Gupta, D; Roche, T; Thompson, M C; Giammanco, F; Conti, F; Marsili, P; Moreno, C D
2016-11-01
Knowledge and control of the axial outflow of plasma particles and energy along open-magnetic-field lines are of crucial importance to the stability and longevity of the advanced beam-driven field-reversed configuration plasma. An overview of the diagnostic methods used to perform measurements on the open field line plasma on C-2U is presented, including passive Doppler impurity spectroscopy, microwave interferometry, and triple Langmuir probe measurements. Results of these measurements provide the jet ion temperature and axial velocity, electron density, and high frequency density fluctuations.
International Nuclear Information System (INIS)
Hsiao, Ming-Yuan; Werley, K.A.; Ling, Kuok-Mee.
1988-05-01
A one-and-a-quarter-dimensional transport code, which includes radial as well as some two-dimensional effects for field-reversed configurations, is described. The set of transport equations is transformed to a set of new independent and dependent variables and is solved as a coupled initial-boundary value problem. The code simulation includes both the closed and open field regions. The axial effects incorporated include global axial force balance, axial losses in the open field region, and flux surface averaging over the closed field region. Input, output, and structure of the code are described in detail. A typical example of the code results is also given. 20 refs., 21 figs., 7 tabs
Energy Technology Data Exchange (ETDEWEB)
Van de Wyer, Nicolas; Schram, Christophe [von Karman Institute For Fluids Dynamic (Belgium); Van Dyck, Dries; Dierckx, Marc [Belgian Nuclear Research Center (Belgium)
2015-07-01
SCK.CEN, the Belgian Nuclear Research Center, is developing MYRRHA, a generation IV liquid metal cooled nuclear research reactor. As the liquid metal coolant is opaque to light, normal visual feedback during fuel manipulations is not available and must therefore be replaced by a system that is not hindered by the opacity of the coolant. In this respect ultrasonic based instrumentation is under development at SCK.CEN to provide feedback during operations under liquid metal. One of the tasks that will be tackled using ultrasound is the detection and localization of a potentially lost fuel assembly. In this application, the distance between ultrasonic sensor and target may be as large as 2.5 m. At these distances, non uniform velocity and temperature fields in the liquid metal potentially influence the propagation of the ultrasonic signals, affecting the performance of the ultrasonic systems. In this paper, we investigate how relevant temperature and velocity gradients inside the liquid metal influence the propagation of ultrasonic waves. The effect of temperature and velocity gradients are simulated by means of a newly developed numerical ray-tracing model. The performance of the model is validated by dedicated water experiments. The setup is capable of creating velocity and temperature gradients representative for MYRRHA conditions. Once validated in water, the same model is used to make predictions for the effect of gradients in the MYRRHA liquid metal environment. (authors)
Energy Technology Data Exchange (ETDEWEB)
Javed, Tariq [Department of Mathematics and Statistics, FBAS, International Islamic University, Islamabad 44000 (Pakistan); Mehmood, Z., E-mail: rajaziafat@yahoo.com [Department of Mathematics and Statistics, FBAS, International Islamic University, Islamabad 44000 (Pakistan); Abbas, Z. [Department of Mathematics, The Islamia University, Bahawalpur (Pakistan)
2017-02-01
This article contains numerical results for free convection through square enclosure enclosing ferrofluid saturated porous medium when uniform magnetic field is applied upon the flow along x-axis. Heat is provided through bottom wall and a square blockage placed near left or right bottom corner of enclosure as a heat source. Left and right vertical boundaries of the cavity are considered insulated while upper wall is taken cold. The problem is modelled in terms of system of nonlinear partial differential equations. Finite element method has been adopted to compute numerical simulations of mathematical problem for wide range of pertinent flow parameters including Rayleigh number, Hartman number, Darcy number and Prandtl number. Analysis of results reveals that the strength of streamline circulation is an increasing function of Darcy and Prandtl number where convection heat transfer is dominant for large values of these parameters whereas increase in Hartman number has opposite effects on isotherms and streamline circulations. Thermal conductivity and hence local heat transfer rate of fluid gets increased when ferroparticles are introduced in the fluid. Average Nusselt number increases with increase in Darcy and Rayleigh numbers while it is decreases when Hartman number is increased.
International Nuclear Information System (INIS)
Javed, Tariq; Mehmood, Z.; Abbas, Z.
2017-01-01
This article contains numerical results for free convection through square enclosure enclosing ferrofluid saturated porous medium when uniform magnetic field is applied upon the flow along x-axis. Heat is provided through bottom wall and a square blockage placed near left or right bottom corner of enclosure as a heat source. Left and right vertical boundaries of the cavity are considered insulated while upper wall is taken cold. The problem is modelled in terms of system of nonlinear partial differential equations. Finite element method has been adopted to compute numerical simulations of mathematical problem for wide range of pertinent flow parameters including Rayleigh number, Hartman number, Darcy number and Prandtl number. Analysis of results reveals that the strength of streamline circulation is an increasing function of Darcy and Prandtl number where convection heat transfer is dominant for large values of these parameters whereas increase in Hartman number has opposite effects on isotherms and streamline circulations. Thermal conductivity and hence local heat transfer rate of fluid gets increased when ferroparticles are introduced in the fluid. Average Nusselt number increases with increase in Darcy and Rayleigh numbers while it is decreases when Hartman number is increased.
Improvement of the growth and yield of lettuce plants by elf sinusoidal non-uniform magnetic fields
International Nuclear Information System (INIS)
Souzal, A. De; Gonzalez, L.M.; Sueirol, L.; Peralta, O.; Liceal, L.; Porras, E.; Gilart, F.
2008-01-01
Influence of pre-sowing magnetic treatments on plant growth and final yield of lettuce (cv. Black Seeded Simpson) were studied under organoponic conditions. Lettuce seeds were exposed to full-wave rectified sinusoidal non-uniform magnetic fields (MFs) induced by an electromagnet at 120 mT(rms) for 3 min, 160 mT(rms) for 1 min and to 160 mT (rms) for 5 min. Non-treated seeds were considered as controls. Plants were grown in experimental stonemasons (25.2 m2) of an organoponic and cultivated according to standard agricultural practices. During nursery and vegetative growth stages, samples were collected at regular intervals for seedling growth assessment and growth rate analyses. At physiological maturity, the plants were harvested from each stonemason and the final yield and yield parameters were determined. In the nursery stage, the magnetic treatments induced a significant increase of root length and shoot height in plants derived from magnetically-treated seeds. In the vegetative stage, the relative growth rates of plants derived from magnetically-exposed seeds were greater than those shown by the control plants. At maturity stage, all magnetic treatments increased significantly (p<0.05) the plant height, the leaf area per plant, the final yield per area and the fresh mass per plant in comparison with the controls. Pre-sowing magnetic treatments would enhance the growth and final yield of lettuce crop
International Nuclear Information System (INIS)
Kyuregyan, A. S.
2010-01-01
Numerical simulation of origination and evolution of streamers in Si is performed for the first time. It is assumed that an external electric field E 0 is constant and uniform, the avalanche and streamer are axially symmetric, and background electrons and holes are absent. The calculations have been performed in the context of the diffusion-drift approximation with impact and tunneling ionization, Auger recombination, and electron-hole scattering taken into account. The most realistic values of the ionization and recombination rates, diffusion coefficients, and drift mobilities of electrons and holes have been used. It is shown that the features of evolution of avalanches and streamers are generally consistent with the result obtained previously for a hypothetic semiconductor with equal kinetic coefficients for electrons and holes. Asymmetry of these coefficients (mostly, the impact-ionization coefficients) manifests itself only at the initial stage of evolution. However, with time, two exponentially self-similar streamers are formed, differing only in the sign of charge of fronts and directions of their propagation. Empirical dependences of the main parameters of streamers on E 0 in the range of 0.34-0.75 MV/cm have been derived for this most important stage of evolution.
Breakdown characteristics of SF6/N2 in severely non-uniform electric fields at low temperatures
Wang, Y.; Gao, Z. W.; Li, G. X.; Zhu, X. C.; Yu, C. L.; Liang, J. Q.; Li, L.
2018-01-01
SF6 has good electrical insulating properties, which is widely used as an insulating medium of GIS, GIL and other electrical equipment. However, the reliability of electrical equipments´ insulated gas is greatly challenged in cold areas, since SF6 more readily liquefies. To solve the problem, SF6 can be mixed with N2 to maintain the insulating properties, and reduce its liquefaction temperature. Such practice has certain application prospect. In this paper, a breakdown experimental platform was built to study the insulating property of SF6/N2 at low temperature, wherein the temperature of the platform can be adjusted. A severely non-uniform electric field was generated by a rod-plate electrode. The breakdown characteristics of SF6/N2 with different mixing proportions at low pressures and low temperatures were measured. The result showed that the mixed gas was not liquefied within the temperature range. Temperature had insignificant influence on the insulating property thereof. The result in the paper has certain guiding significance for applying SF6/N2 mixed gas in high latitude areas.
Ferdous, Farhana; Moore, Keith Diaz
2015-03-01
This article focuses on the important, facilitating role architectural design plays in social interaction within long-term care facilities (LTCFs) serving people with dementia. Here, we apply space syntax, a set of theories and techniques for the analysis of spatial configurations, as an objective measure of environmental characteristics. Almost 150 rounds of behavioral observations were collected in the social spaces of 3 LTCFs. Using the visibility and proximity metrics of space syntax, the locations of occurrence of various social activities in relation to the furniture and spatial layout on architectural floor plans have been identified. The results did not confirm the space syntax hypothesis that spaces with greater visibility and proximity promote more social interaction. Further analysis revealed that when in settings with better visibility and accessibility, the residents were more likely to engage in low levels of interaction. High-level social interactions actually were more likely to occur in settings providing greater privacy (eg, less visibility and accessibility). The findings suggest an important nuance that architectural configuration factors impact not only the likelihood but also the type of conversations likely to occur in certain locations. This would have implications for both design and staff training on how best to utilize social spaces for therapeutic effect, particularly within the context of person-centered care. © The Author(s) 2014.
Orthopedic and interventional applications at low field MRI with horizontally open configuration
International Nuclear Information System (INIS)
Koskinen, S.K.; Parkkola, R.K.; Karhu, J.; Komu, M.E.S.; Kormano, M.J.
1997-01-01
The recently introduced horizontally open configuration imagers allow imaging of knee, hip or shoulder during whole range of motion, which is not possible in conventional MR imagers. Special joint motion devices can be used to provide accurate and reproducible studies. In cervical spine, functional MR imaging may be useful in evaluating alarligament stability in patients with late sequelae of a whiplash injury, and in patients with rheumatoid arthritis who are clinically suspected of having a cervical myelopathy or superior migration of the odontoid process. In shoulder, full range of motion abduction study may be helpful in assessing the supraspinatus tendon impingement. To evaluate patellofemoral malalignment, quadriceps loading is recommended since associated contracting muscles and related soft tissue structures can be evaluated. The position of the femoral head relative to the acetabulum during different positions can be assessed. Open-configuration scanners provide an access to patients during scanning procedure, and therefore permit interventional procedures to be monitored with MRI. Such interventions include aspiration cytology/biopsy and different drainage procedures. (orig.) [de
Huang, Y. C.; Lyu, L. H.
2014-12-01
Magnetic reconfiguration/reconnection plays an important role on energy and plasma transport in the space plasma. It is known that magnetic field lines on two sides of a tangential discontinuity can connect to each other only at a neutral point, where the strength of the magnetic field is equal to zero. Thus, the standard reconnection picture with magnetic field lines intersecting at the neutral point is not applicable to the component reconnection events observed at the magnetopause and in the solar corona. In our early study (Yu, Lyu, & Wu, 2011), we have shown that annihilation of magnetic field near a thin current sheet can lead to the formation of normal magnetic field component (normal to the current sheet) to break the frozen-in condition and to accelerate the reconnected plasma flux, even without the presence of a neutral point. In this study, we examine whether or not a generation, rather than annihilation, of magnetic field in a nun-uniform thin current sheet can also lead to reconnection of plasma flux. Our results indicate that a non-uniform enhancement of electric current can yield formation of field-aligned currents. The normal-component magnetic field generated by the field-aligned currents can yield reconnection of plasma flux just outside the current-enhancement region. The particle motion that can lead to non-uniform enhancement of electric currents will be discussed.
Energy Technology Data Exchange (ETDEWEB)
Arsenyev, S. A.; Koryagin, S. A., E-mail: koryagin@appl.sci-nnov.ru [Russian Academy of Sciences, Institute of Applied Physics (Russian Federation)
2012-06-15
A classical analysis is presented of the electromagnetic radiation emitted by positive-energy electrons performing bound motion in the Coulomb field of a nucleus at rest in a strong uniform magnetic field. Bounded trajectories exist and span a wide range of velocity directions near the nucleus (compared to free trajectories with similar energies) when the electron Larmor radius is smaller than the distance at which the electron-nucleus Coulomb interaction energy is equal to the mechanical energy of an electron. The required conditions occur in magnetic white dwarf photospheres and have been achieved in experiments on production of antihydrogen. Under these conditions, the radiant power per unit volume emitted by positive-energy bound electrons is much higher than the analogous characteristic of bremsstrahlung (in particular, in thermal equilibrium) at frequencies that are below the electron cyclotron frequency but higher than the inverse transit time through the interaction region in a close collision in the absence of a magnetic field. The quantum energy discreteness of positive-energy bound states restricts the radiation from an ensemble of bound electrons (e.g., in thermal equilibrium) to nonoverlapping spectral lines, while continuum radiative transfer is dominated by linearly polarized bremsstrahlung.
Magnetic field configurations associated with polarity intrusion in a solar active region
International Nuclear Information System (INIS)
Low, B.C.
1982-01-01
This paper presents a new class of exact solutions describing the non-linear force-free-field above a spatially localized photospheric bipolar magnetic region. An essential feature is the variation in all three Cartesian directions and this could not be modelled adequately with previously known symmetric force-free fields. Sequences of force-free fields are constructed and analyzed to simulate the slow growth of a pair of spots on the photosphere. The acis connecting the spots executes roational motion, distorting the photospheric neutral line separating fluxes of opposite signs. We show directly from the analytic solutions that the resulting reversal of the positions of the spots relative to the background field is associated with (i) the creation of magnetic free energy, (ii) the severe shearing of localized low-lying loops in the vicinity where the photospheric transverse field aligns with the photospheric neutral line, and (iii) the emergence and disappearance of flux from the photosphere at these highly stressed regions. The model relates theoretically for the first time these different magnetic field features that have been suggested by observation and theoretical considerations to be flare precursors. A general formula, based on the virial theorem, is also given for the free energy of a force-free field, strictly in terms of the field value at the photosphere. This formula has obvious practical application. (orig.)
Probabilistic uniformities of uniform spaces
Energy Technology Data Exchange (ETDEWEB)
Rodriguez Lopez, J.; Romaguera, S.; Sanchis, M.
2017-07-01
The theory of metric spaces in the fuzzy context has shown to be an interesting area of study not only from a theoretical point of view but also for its applications. Nevertheless, it is usual to consider these spaces as classical topological or uniform spaces and there are not too many results about constructing fuzzy topological structures starting from a fuzzy metric. Maybe, H/{sup o}hle was the first to show how to construct a probabilistic uniformity and a Lowen uniformity from a probabilistic pseudometric /cite{Hohle78,Hohle82a}. His method can be directly translated to the context of fuzzy metrics and allows to characterize the categories of probabilistic uniform spaces or Lowen uniform spaces by means of certain families of fuzzy pseudometrics /cite{RL}. On the other hand, other different fuzzy uniformities can be constructed in a fuzzy metric space: a Hutton $[0,1]$-quasi-uniformity /cite{GGPV06}; a fuzzifiying uniformity /cite{YueShi10}, etc. The paper /cite{GGRLRo} gives a study of several methods of endowing a fuzzy pseudometric space with a probabilistic uniformity and a Hutton $[0,1]$-quasi-uniformity. In 2010, J. Guti/'errez Garc/'{/i}a, S. Romaguera and M. Sanchis /cite{GGRoSanchis10} proved that the category of uniform spaces is isomorphic to a category formed by sets endowed with a fuzzy uniform structure, i. e. a family of fuzzy pseudometrics satisfying certain conditions. We will show here that, by means of this isomorphism, we can obtain several methods to endow a uniform space with a probabilistic uniformity. Furthermore, these constructions allow to obtain a factorization of some functors introduced in /cite{GGRoSanchis10}. (Author)
DEFF Research Database (Denmark)
Thomsen, Peter; Nielsen, Christian; Lund, Morten
. Findings – Our findings illustrate the process of translating business models to KPIs. This is achieved by translating the identified business model configuration to a set of value drivers that are then translated to KPIs. Our data illustrates difficulties in narrowing down the amount of KPIs...... to a reasonable amount and how applying the main storyline and focusing on key value drivers are mechanisms that support this process. Research limitations/implications – This study explores the notions of linking KPIs to distinct ways of creating value. Some difficulties are found in generalizing the results due...... to lack of cross-industry datapoints. Practical implications – Managers need a decision support tool that can provide inspiration for which KPIs that in total best support the value creation mechanisms of their firm. Instead of choosing KPIs from random lists, the KPIs suggested through the 5V ontology...
Investigation of different magnetic field configurations using an electrical, modular Zeeman slower
Energy Technology Data Exchange (ETDEWEB)
Ohayon, Ben; Ron, Guy, E-mail: gron@racah.phys.huji.ac.il [Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem 91904 (Israel)
2015-10-15
We present a method of constructing an automatically reconfigurable, modular, electronic Zeeman slower, which is remotely controlled. This setup is used to investigate the ability of different magnetic field profiles to slow thermal atoms to the capture velocity of a magneto-optical-trap. We show that a simple numerical optimization process yields better results than the commonly used approach for deciding on the appropriate field and comes close to the optimum field, found by utilizing a fast feedback loop which uses a genetic algorithm. Our new numerical method is easily adaptable to a variety of existing slower designs and may be beneficial where feedback is unavailable.
High energy pair production in arbitrary configuration of intense electromagnetic fields
International Nuclear Information System (INIS)
Ayasli, S.; Hacinliyan, A.
1978-01-01
The photon attenuation coefficient for pair production in intense electric and magnetic fields of arbitrary confiquration is derived. The results are applied to a cascade calculation of electromagnetic processes in pulsars. (author)
International Nuclear Information System (INIS)
Takahashi, Toshiki; Kondoh, Yoshiomi; Hirano, Yoichi; Asai, Tomohiko; Takahashi, Tsutomu; Mizuguchi, Naoki; Tomita, Yukihiro
2006-01-01
The numerical analysis of neutron beam injection (NBI) is carried out to keep the stationary conditions of the field-reversed configuration (FRC) plasma. The ionization process of neutron beam was reproduced by the Monte Carlo method. A confinement of 15 keV beam ion was investigated using the sharp of stormer region obtained by the position and velocity at a moment of ionization. The relation between the external magnetic field B ex [T] and radius of machine r w [m] was shown by B ex = 0.1 r w -3/4 . The power imparted to plasma was estimated by beam ion orbital calculation. The confinement coefficient of beam ion was lost by re-charge-exchange reaction with deuterium; this fact was discovered at first. In order to keep the configuration of plasma under the conditions of 0.2 T of the external magnetic field, 0.4 m of radius, and 100 eV ion temperature, about 17 MW/m NBI power is needed. (S.Y.)
Plasma grid design for optimized filter field configuration for the NBI test facility ELISE
International Nuclear Information System (INIS)
Nocentini, R.; Gutser, R.; Heinemann, B.; Froeschle, M.; Riedl, R.
2009-01-01
Maintenance-free RF sources for negative hydrogen ions with moderate extraction areas (100-200 cm 2 ) have been successfully developed in the last years at IPP Garching in the test facilities BATMAN and MANITU. A facility with larger extraction area (1000 cm 2 ), ELISE, is being designed with a 'half-size' ITER-like extraction system, pulsed ion acceleration up to 60 kV for 10 s and plasma generation up to 1 h. Due to the large size of the source, the magnetic filter field (FF) cannot be produced solely by permanent magnets. Therefore, an additional magnetic field produced by current flowing through the plasma grid (PG current) is required. The filter field homogeneity and the interaction with the electron suppression magnetic field have been studied in detail by finite element method (FEM) during the ELISE design phase. Significant improvements regarding the field homogeneity have been introduced compared to the ITER reference design. Also, for the same PG current a 50% higher field in front of the grid has been achieved by optimizing the plasma grid geometry. Hollow spaces have been introduced in the plasma grid for a more homogeneous PG current distribution. The introduction of hollow spaces also allows the insertion of permanent magnets in the plasma grid.
Energy Technology Data Exchange (ETDEWEB)
Itagaki, H.; Inomoto, M. [Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan); Asai, T.; Takahashi, Ts. [College of Science and Technology, Nihon University, 1-8-14 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan)
2014-03-15
Active control of destructive rotational instability in a high-beta field-reversed configuration (FRC) plasma was demonstrated by using double-sided plasmoid injection technique. The elliptical deformation of the FRC's cross section was mitigated as a result of substantial suppression of spontaneous spin-up by the plasmoid injection. It was found that the injected plasmoid provided better stability against the rotational mode, suggesting that the compensation of the FRC's decaying magnetic flux might help to suppress its spin-up.
Orthopedic and interventional applications at low field MRI with horizontally open configuration
Energy Technology Data Exchange (ETDEWEB)
Koskinen, S.K.; Parkkola, R.K.; Karhu, J.; Komu, M.E.S.; Kormano, M.J. [Diagnostic Radiology, Turku Univ. Hospital (Finland)
1997-10-01
The recently introduced horizontally open configuration imagers allow imaging of knee, hip or shoulder during whole range of motion, which is not possible in conventional MR imagers. Special joint motion devices can be used to provide accurate and reproducible studies. In cervical spine, functional MR imaging may be useful in evaluating alarligament stability in patients with late sequelae of a whiplash injury, and in patients with rheumatoid arthritis who are clinically suspected of having a cervical myelopathy or superior migration of the odontoid process. In shoulder, full range of motion abduction study may be helpful in assessing the supraspinatus tendon impingement. To evaluate patellofemoral malalignment, quadriceps loading is recommended since associated contracting muscles and related soft tissue structures can be evaluated. The position of the femoral head relative to the acetabulum during different positions can be assessed. Open-configuration scanners provide an access to patients during scanning procedure, and therefore permit interventional procedures to be monitored with MRI. Such interventions include aspiration cytology/biopsy and different drainage procedures. (orig.) [Deutsch] Die kuerzlich eingefuehrten bildgebenden Systeme mit horizontal offener Konfiguration ermoeglichen die Darstellung von Knie, Huefte oder Schulter ueber den gesamten Bewegungsbereich, war bisher mit konventionellen MR-Systemen nicht moeglich. Fuer genauere und reproduzierbare Untersuchungen koennen spezielle Gelenkbewegungsgeraete verwendet werden. Bei der Halswirbelsaeule kann die funktionelle NMR-Darstellung im Hinblick auf die Beurteilung der Stabilitaet der Ligamenta alaria bei Patienten mit Spaetfolgen eines Schleudertraumas und bei Patienten mit rheumatoider Arthritis von Nutzen sein, wenn klinisch eine zervikale Myelopathie oder superiore migration des Dens axis vermutet wird. Bei der Schulter kann eine Abduktionsstudie des vollen Bewegungsbereichs bei der Beurteilung
International Nuclear Information System (INIS)
Velasco-Martínez, D; Kunold, A; Cardoso, J L; Ibarra-Sierra, V G; Sandoval-Santana, J C
2014-01-01
In this paper we introduce an alternative approach to studying the motion of a planar charged particle subject to a static uniform magnetic field. It is well known that an electric charge under a uniform magnetic field has a planar motion if its initial velocity is perpendicular to the magnetic field. Although some constants of motion (CsM), as the energy and the angular momentum, have been widely discussed for this system, others have been neglected. We find that the angular momentum, the generator of the magnetic translations and the magnetic Laplace–Runge–Lenz vector are CsM for this particular system. We show also that these three quantities form an orthogonal basis of vectors. The present work addresses many aspects of the motion of a charged particle in a magnetic field that should be useful for students and tutors of the classical mechanics courses at the senior undergraduate level. (paper)
Energy Technology Data Exchange (ETDEWEB)
Nishida, T. [College of Science and Technology, Nihon University, 1-8 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Kiguchi, T. [College of Science and Technology, Nihon University, 1-8 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Asai, T. [College of Science and Technology, Nihon University, 1-8 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan)]. E-mail: asai@phys.cst.nihon-u.ac.jp; Takahashi, T. [College of Science and Technology, Nihon University, 1-8 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Matsuzawa, Y. [College of Science and Technology, Nihon University, 1-8 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Okano, T. [College of Science and Technology, Nihon University, 1-8 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Nogi, Y. [College of Science and Technology, Nihon University, 1-8 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan)
2006-11-15
We have tested a field-reversed configuration (FRC) formation with a spheromak injection for the first time. In this method, initial pre-ionized plasma is injected as a magnetized spheromak-like plasmoid into the discharge chamber prior to main field reversal. The FRC plasma with an electron density of 1.3 x 10{sup 21} m{sup -3}, a separatrix radius of 0.04 m and a plasma length of 0.8 m was produced successfully in initial background plasma of about 1.6 x 10{sup 19} m{sup -3} by spheromak injection. The density is about one third of the conventional formed by the z-ionized method.
International Nuclear Information System (INIS)
Valor, A.; Heenen, P.-H.; Bonche, P.
2000-01-01
We present in this paper the general framework of a method which permits to restore the rotational and particle number symmetries of wave functions obtained in Skyrme HF + BCS calculations. This restoration is nothing but a projection of mean-field intrinsic wave functions onto good particle number and good angular momentum. The method allows us also to mix projected wave functions. Such a configuration mixing is discussed for sets of HF + BCS intrinsic states generated in constrained calculations with suitable collective variables. This procedure gives collective states which are eigenstates of the particle number and the angular momentum operators and between which transition probabilities are calculated. An application to 24 Mg is presented, with mean-field wave functions generated by axial quadrupole constraints. Theoretical spectra and transition probabilities are compared to the experiment
International Nuclear Information System (INIS)
Lee, V.D.
1987-01-01
The Fusion Engineering Design Center (FEDC) is part of a national design team that is developing the conceptual design of the Compact Ignition Tokamak (CIT). To achieve a compact device with the minimum major radius, a vertical preload system is being developed to react the vertical separating force normally carried by the inboard leg of the toroidal field (TF) coils. The preload system is in the form of a hydraulic press. Challenges in the design include the development of hydraulic and structural systems for very large force requirements, which could interface with the CIT machine, while allowing maximum access to the top, bottom, and radial periphery of the machine. Maximum access is necessary for maintenance, diagnostics, instrumentation, and control systems. Materials used in the design must function in the nuclear environment and in the presence of high magnetic fields. This paper presents the configuration development of the hydraulic press used to vertically preload the CIT device
[(Re)configuration of the nursing field in the new state (1937-1945)].
Barreira, Ieda de Alencar; Baptista, Suely de Souza
2002-01-01
The subject of this study is the changes the nursing field went through during the period called Novo Estado. Analyze the nursing environment in the Federal Capital during the period mentioned; discuss the effects of the influence of the Catholic Church and nurses of the American government in the Brazilian nursing environment. Documents obtained from the Documentation Center in Anna Nery/UFRJ School of Nursing and from literature on the topic. The interpretation of the findings was based on the Theory of the Social World by Pierre Bourdieu. Results showed deep changes in terms of professional education, labor market and institutionalization of the nursing assistance in a period (after the World War II) in which the Catholic Church and the United States had increased their power and influence. This new context determined the reconfiguration of the identity of Brazilian nurses and of the nursing field.
Energy Technology Data Exchange (ETDEWEB)
Mierau, Anna; Weiland, Thomas [Technische Universitaet Darmstadt (DE). Institut fuer Theorie Elektromagnetischer Felder (TEMF); Schnizer, Pierre; Fischer, Egbert [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Akishin, Pavel [JINR, Dubna (Russian Federation)
2010-07-01
The heavy ion synchrotron SIS100, the core component of the Facility of Antiproton and Ion Research will accelerate high current ion beams of up to U{sup 27+}. For operating such a machine the static and transient magnetic field quality must be fully understood. This is also necessary to keep the beam losses well below acceptable limits and to prepare a sound strategy for high resolution magnetic measurements and data analysis. Challenging preconditions to perform such work are to find a proper description for the non. Cartesian symmetry of the magnets, most important for curved dipoles with elliptical apertures. We describe the parameterisation methods using elliptic and toroidal multipoles and summarise comparing the calculated to the measured field quality.
International Nuclear Information System (INIS)
Siemon, R.E.; Armstrong, W.T.; Chrien, R.E.
1985-01-01
Theoretical studies of FRC stability and transport are summarized. Finite Larmor radius theories are shown to be unreliable for explaining the experimentally observed stability to tilting. Control of the n=2 rotational instability has been demonstrated in two-dimensional hybrid code simulations, and the stability appears to be described within MHD if the nearly square equilibria that result from quadrupole fields are taken into account. Simulations of the lower hybrid drift instability in parameter regimes relevant to experiments show good agreement with a non-local theory of the instability. A 1.5-dimensional transport code shows agreement with the energy confinement time but disagreement with the flux loss time observed in FRX-C. The process of FRC translation in which the plasma is formed, translated into a DC solenoid and trapped by magnetic mirrors, has been studied in the FRX-C/T experiment. Efficient transfer of particles, energy and internal magnetic flux are observed with no enhancement of loss processes over in-situ FRC experiments. The axial velocity of the FRC can be estimated reasonably well with a simple model based on conservation of energy. Internal magnetic field probing during translation shows the expected structure of poloidal field and a complex distribution of generally weak toroidal fields. Measurements of radiated power indicate that radiation is a small fraction of the total plasma power loss (typically 8%). Translation has facilitated scaling studies of confinement over a wider range of parameters than were achieved by in-situ FRX-C experiments. For example, the variable xsub(s), the ratio of the separatrix radius to the metal wall radius, has been increased to about 0.7 by allowing the FRC to expand during translation. In all cases, particle confinement times agree within a factor of two with predictions by models that assume a lower hybrid drift resistivity. However, for the conditions studied there are indications that the experimental
Directory of Open Access Journals (Sweden)
Mai Lu
Full Text Available Stimulation of deeper brain structures by transcranial magnetic stimulation (TMS plays a role in the study of reward and motivation mechanisms, which may be beneficial in the treatment of several neurological and psychiatric disorders. However, electric field distributions induced in the brain by deep transcranial magnetic stimulation (dTMS are still unknown. In this paper, the double cone coil, H-coil and Halo-circular assembly (HCA coil which have been proposed for dTMS have been numerically designed. The distributions of magnetic flux density, induced electric field in an anatomically based realistic head model by applying the dTMS coils were numerically calculated by the impedance method. Results were compared with that of standard figure-of-eight (Fo8 coil. Simulation results show that double cone, H- and HCA coils have significantly deep field penetration compared to the conventional Fo8 coil, at the expense of induced higher and wider spread electrical fields in superficial cortical regions. Double cone and HCA coils have better ability to stimulate deep brain subregions compared to that of the H-coil. In the mean time, both double cone and HCA coils increase risk for optical nerve excitation. Our results suggest although the dTMS coils offer new tool with potential for both research and clinical applications for psychiatric and neurological disorders associated with dysfunctions of deep brain regions, the selection of the most suitable coil settings for a specific clinical application should be based on a balanced evaluation between stimulation depth and focality.
Aarseth, Iselin; Mjelde, Rolf; Breivik, Asbjørn Johan; Huismans, Ritske; Faleide, Jan Inge
2016-04-01
The Barents Sea is underlain by at least two different basement domains; the Caledonian in the west and the Timanian in the east. The transition between these two domains is not well constrained and contrasting interpretations have been published recently. Interpretations of new high-quality magnetic data covering most of the SW Barents Sea has challenged the Late Paleozoic basin configurations in the western and central Barents Sea as outlined in previous studies. Two regional ocean bottom seismic (OBS) profiles were acquired in 2014. This new dataset crosses the two major directions of Caledonian deformation proposed by different authors: N-S direction and SW-NE direction. Of particular importance are the high velocity anomalies related to Caledonian eclogites, revealing the location of Caledonian suture zones in the northern Barents Sea. One of the main objectives with this project is to locate the main Caledonian suture in the western Barents Sea, as well as the possible Barentsia-Baltica suture postulated further eastwards. The collapse of the Caledonian mountain range predominantly along these suture zones is expected to be tightly linked to the deposition of large thicknesses of Devonian erosional products, and later rifting is expected to be influenced by inheritance of Caledonian trends. The P-wave travel-time modelling is done by use of a combined ray-tracing and inversion scheme, and gravity- and magnetic modelling will be used to augment the seismic model. The preliminary results indicate high P-wave velocities (mostly over 4 km/s) close to the seafloor as well as high velocity (around 6 km/s) zones at shallow depths which are interpreted as volcanic sills. The crustal transects reveal areas of complex geology and velocity inversions. A low seismic impedance contrast between the sedimentary section and top crystalline basement makes identification of this interface uncertain. Depth to Moho mostly lies around 30 km, except in an area of rapid change in
Production of field-reversed configurations with a magnetized coaxial plasma gun
International Nuclear Information System (INIS)
Jarboe, T.R.; Henins, I.; Hoida, H.W.; Linford, R.K.; Marshali, J.; Platts, D.A.; Sherwood, A.R.
1980-01-01
Compact toroids were generated which can be made to come to rest in a cylindrical resistive flux conserver. They are observed to rotate so that their major axis is perpendicular to the axis of the flux conserver. Subsequently they appear to remain stationary and decay with a time constant of about 100 μs. We have also generated compact toroids in an oblate geometry which remain aligned with the axis of the flux conserver and decay with a time constant of 150 μs. The magnetic field reconnection time for compact toroid formation is measured in the latter case to be much shorter than the decay time
Production of field-reversed configurations with a magnetized coaxial plasma gun
Energy Technology Data Exchange (ETDEWEB)
Jarboe, T.R.; Henins, I.; Hoida, H.W.; Linford, R.K.; Marshali, J.; Platts, D.A.; Sherwood, A.R.
1980-01-01
Compact toroids were generated which can be made to come to rest in a cylindrical resistive flux conserver. They are observed to rotate so that their major axis is perpendicular to the axis of the flux conserver. Subsequently they appear to remain stationary and decay with a time constant of about 100 ..mu..s. We have also generated compact toroids in an oblate geometry which remain aligned with the axis of the flux conserver and decay with a time constant of 150 ..mu..s. The magnetic field reconnection time for compact toroid formation is measured in the latter case to be much shorter than the decay time.
Energy Technology Data Exchange (ETDEWEB)
Dutta, Paramita; Karmakar, S. N. [Condensed Matter Physics Division, Saha Institute of Nuclear Physics, Sector-I, Block-AF, Bidhannagar, Kolkata-700 064 (India); Maiti, Santanu K., E-mail: santanu.maiti@isical.ac.in [Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 Barrackpore Trunk Road, Kolkata-700 108 (India)
2014-09-15
Electric field induced localization properties of a tight-binding ladder network in presence of backbone sites are investigated. Based on Green's function formalism we numerically calculate two-terminal transport together with density of states for different arrangements of atomic sites in the ladder and its backbone. Our results lead to a possibility of getting multiple mobility edges which essentially plays a switching action between a completely opaque to fully or partly conducting region upon the variation of system Fermi energy, and thus, support in fabricating mesoscopic or DNA-based switching devices.
Formation of a field-reversed configuration by coalescence of spheromaks
International Nuclear Information System (INIS)
Dasgupta, B.; Sato, Tetsuya; Hayashi, Takaya; Watanabe, Kunihiko; Watanabe, Tomohiko
1995-01-01
We present a numerical simulation of the slow formation of FRC by the merging of two spheromaks with opposite toroidal fluxes. A rather important feature of such a method of formation of FRC should be made explicit. A spheromak is basically a Taylor minimum energy state. On the other hand the FRC with its single component poloidal magnetic field and high plasma beta is decidedly far away from a Taylor state. So a numerical simulation of this process, besides demonstrating the feasibility of such FRC formation, is expected to show the traits in the process of transition from a Taylor state to a non-Taylor state. 5 refs., 2 figs., 1 tab
International Nuclear Information System (INIS)
Selvamanickam, V; Guevara, A; Zhang, Y; Kesgin, I; Xie, Y; Carota, G; Chen, Y; Dackow, J; Zhang, Y; Zuev, Y; Cantoni, C; Goyal, A; Coulter, J; Civale, L
2010-01-01
The influence of Zr doping in (Gd, Y)-Ba-Cu-O ((Gd, Y)BCO) tapes made by metal-organic chemical vapor deposition has been studied with a specific objective of uniform and reproducible enhancement in in-field critical current (I c ) over long lengths. 50 m long tapes with 7.5 and 10 at.% Zr doping in 1 μm thick (Gd, Y)BCO films have been found to exhibit a sharply enhanced peak in I c in the orientation of field parallel to the c-axis and retain 28% of their self-field I c value at 77 K and 1 T. BaZrO 3 (BZO) nanocolumn density in the cross-sectional microstructure was found to increase with increasing Zr addition. The end segments of the 50 m long tapes were found to display nearly identical angular dependence of critical current at 77 K and 1 T, indicative of the uniformity in in-field performance over this length. A 610 m long tape was fabricated with 10% Zr doping and a 130 m segment showed a 3.2% uniformity in critical current measured every meter in the orientation of B || c-axis. A retention factor of 36% of the zero-field I c value measured at 0.52 T over the 130 m is consistent with that obtained in short samples.
Energy Technology Data Exchange (ETDEWEB)
Selvamanickam, V; Guevara, A; Zhang, Y; Kesgin, I [Texas Center for Superconductivity and Department of Mechanical Engineering, University of Houston, Houston, TX 77059 (United States); Xie, Y; Carota, G; Chen, Y; Dackow, J [SuperPower Incorporated, 450 Duane Avenue Schenectady, NY 12304 (United States); Zhang, Y; Zuev, Y; Cantoni, C; Goyal, A [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Coulter, J; Civale, L [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)
2010-01-15
The influence of Zr doping in (Gd, Y)-Ba-Cu-O ((Gd, Y)BCO) tapes made by metal-organic chemical vapor deposition has been studied with a specific objective of uniform and reproducible enhancement in in-field critical current (I{sub c}) over long lengths. 50 m long tapes with 7.5 and 10 at.% Zr doping in 1 {mu}m thick (Gd, Y)BCO films have been found to exhibit a sharply enhanced peak in I{sub c} in the orientation of field parallel to the c-axis and retain 28% of their self-field I{sub c} value at 77 K and 1 T. BaZrO{sub 3} (BZO) nanocolumn density in the cross-sectional microstructure was found to increase with increasing Zr addition. The end segments of the 50 m long tapes were found to display nearly identical angular dependence of critical current at 77 K and 1 T, indicative of the uniformity in in-field performance over this length. A 610 m long tape was fabricated with 10% Zr doping and a 130 m segment showed a 3.2% uniformity in critical current measured every meter in the orientation of B || c-axis. A retention factor of 36% of the zero-field I{sub c} value measured at 0.52 T over the 130 m is consistent with that obtained in short samples.
Energy Technology Data Exchange (ETDEWEB)
Selvamanickam, V. [SuperPower Incorporated, Schenectady, New York; Guevara, A. [University of Houston, Houston; Zhang, Y. [University of Houston, Houston; Kesign, I. [University of Houston, Houston; Xie, Y. Y. [SuperPower Incorporated, Schenectady, New York; Carota, G. [SuperPower Incorporated, Schenectady, New York; Chen, Y. [SuperPower Incorporated, Schenectady, New York; Dackow, J. [SuperPower Incorporated, Schenectady, New York; Zhang, Yifei [ORNL; Zuev, Yuri L [ORNL; Cantoni, Claudia [ORNL; Goyal, Amit [ORNL; Coulter, J. [Los Alamos National Laboratory (LANL); Civale, L. [Los Alamos National Laboratory (LANL)
2010-01-01
The influence of Zr doping in (Gd, Y)-Ba-Cu-O ((Gd, Y)BCO) tapes made by metal-organic chemical vapor deposition has been studied with a specific objective of uniform and reproducible enhancement in in-field critical current (I{sub c}) over long lengths. 50 m long tapes with 7.5 and 10 at.% Zr doping in 1 {mu}m thick (Gd, Y)BCO films have been found to exhibit a sharply enhanced peak in I{sub c} in the orientation of field parallel to the c-axis and retain 28% of their self-field I{sub c} value at 77 K and 1 T. BaZrO{sub 3} (BZO) nanocolumn density in the cross-sectional microstructure was found to increase with increasing Zr addition. The end segments of the 50 m long tapes were found to display nearly identical angular dependence of critical current at 77 K and 1 T, indicative of the uniformity in in-field performance over this length. A 610 m long tape was fabricated with 10% Zr doping and a 130 m segment showed a 3.2% uniformity in critical current measured every meter in the orientation of {beta} {parallel} c-axis. A retention factor of 36% of the zero-field I{sub c} value measured at 0.52 T over the 130 m is consistent with that obtained in short samples.
Energy Technology Data Exchange (ETDEWEB)
Bliaux, T; Durand, J P; Giraud-Carrier, C; Merard, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1963-07-01
First, the method for tracing on 'Teledeltos' paper magnetic induction lines (by analogy with electrical equipotential lines) in order to obtain rapid and qualitative results, is recalled. Then the authors present, computed from the law of Biot and Savart, the values of radial and tangential components of the magnetic induction. These results are presented under the form of abaci for a configuration of parallel conductors in a rotational symmetry. Each configuration is defined by the number of conductors 1 {<=} N {<=} 12 and by the the radius R of the circle. The domain of computation of the value of the magnetic induction at point M (r, {theta}) is limited by symmetry in a sector defined by 0 {<=} r {<=} 2,5*R and 0 {<=} {theta} {<=} {theta}{sub max}. (authors) [French] Apres un rappel du trace sur papier semi-conducteur 'Teledeltos' des lignes d'induction magnetique (par analogie avec des lignes equipotentielles electriques), methode rapide qui donne des resultats qualitatifs, les auteurs presentent sous forme d'abaques les valeurs des composantes radiale et tangentielle de l'induction magnetique calculees par la loi de Biot et Savart, pour une configuration de conducteurs paralleles dans une symetrie axiale de revolution. La configuration est definie par le nombre N de conducteurs [1 {<=} N {<=} 12] et par le rayon R du cercle de repartition des conducteurs. Le point courant M (r, {theta}) est limite, pour des raisons de symetrie, dans un secteur defini par [0 {<=} r {<=} 2,5*R] et 0 {<=} {theta} {<=} {theta}{sub max}. (auteurs)
International Nuclear Information System (INIS)
Lee, V.D.
1987-01-01
The Fusion Engineering Design Center (FEDC) is part of a national design team that is developing the conceptual design of the Compact Ignition Tokamak (CIT). To achieve a compact device with the minimum major radius, a vertical preload system is being developed to react the vertical separating force normally carried by the inboard leg of the toroidal field (TF) coils. The preload system is in the form of a hydraulic press. Challenges in the design include the development of hydraulic and structural systems for very large force requirements, which could interface with the CIT machine, while allowing maximum access to the top, bottom, and radial periphery of the machine. Maximum access is necessary for maintenance, diagnostics, instrumentation, and control systems. Materials used in the design must function in the nuclear environment and in the presence of high magnetic fields. The structural system developed is an arrangement in which the CIT device is installed in the jaws of the press. Large built-up beams above and below the CIT span the machine and deliver the vertical force to the center cylinder formed by the inboard legs of the TF coils. During the conceptual design study, the vertical force requirement has ranged between 25,000 and 52,000 t. The access requirement on top and bottom limits the width of the spanning beams. Nonmagnetic steel materials are also required because of operation in the high magnetic fields. In the hydraulic system design for the press, several options are being explored. These range from small-diameter jacks operating at very high pressure [228 MPa (33 ksi)] to large-diameter jacks operating at pressures up to 69 MPa (10 ksi). Configurations with various locations for the hydraulic cylinders have also been explored. The nuclear environment and maintenance requirements are factors that affect cylinder location. This paper presents the configuration development of the hydraulic press used to vertically preload the CIT device
Energy Technology Data Exchange (ETDEWEB)
Siemon, R.E.; Armstrong, W.T.; Chrien, R.E.; Klingner, P.L.; Linford, R.K.; McKenna, K.F.; Rej, D.J.; Schwarzmeier, J.L.; Sgro, A.; Sherwood, E.G.
1984-08-01
Theoretical studies of FRC stability and tranport are summarized. Finite Larmor radius theories are shown to be unreliable for explaining the experimentally observed stability to tilting. Control of the n=2 rotational instability has been demonstrated in 2-dimensional hybrid-code simulations, and the stability appears to be described within MHD if the nearly square equilibria that result from quadrupole fields are taken into account. Simulations of the lower-hybrid-drift instability in parameter regimes relevant to experiments show good agreement with a nonlocal theory of the instability. A 1.5-dimensional transport code shows agreement with the energy confinement time but disagreement with the flux loss time observed in FRX-C. The process of FRC translation in which the plasma is formed, translated into a dc solenoid, and trapped by magnetic mirrors has been studied in the FRX-C/T experiment.
International Nuclear Information System (INIS)
Siemon, R.E.; Armstrong, W.T.; Chrien, R.E.
1984-08-01
Theoretical studies of FRC stability and tranport are summarized. Finite Larmor radius theories are shown to be unreliable for explaining the experimentally observed stability to tilting. Control of the n=2 rotational instability has been demonstrated in 2-dimensional hybrid-code simulations, and the stability appears to be described within MHD if the nearly square equilibria that result from quadrupole fields are taken into account. Simulations of the lower-hybrid-drift instability in parameter regimes relevant to experiments show good agreement with a nonlocal theory of the instability. A 1.5-dimensional transport code shows agreement with the energy confinement time but disagreement with the flux loss time observed in FRX-C. The process of FRC translation in which the plasma is formed, translated into a dc solenoid, and trapped by magnetic mirrors has been studied in the FRX-C/T experiment
Linear kinetic stability of a field-reversed configuration with two ion components
International Nuclear Information System (INIS)
Staudenmeier, J.L.; Barnes, D.C.; Lewis, H.R.
1990-01-01
It has been suggested that a small fraction of non-axis encircling high energy ions may be sufficient to stabilize the tilt mode in a large s FRC. Experimental alteration of the ion distribution function in this manner might be achieved by rf heating the tail of the distribution function or by neutral beam injection. A linear Vlasov-fluid eigenfunction-eigenfrequency approach was used to investigate possible stabilization of the tilt mode by a high energy component. The ion distribution function is modeled as the sum of two Maxwellians with separate temperatures and no ion flow velocity. The cold component has a thermal s = 7, where s is the approximate number of ion gyroradii contained between the field null and the separatrix. The temperature ratio of the hot component to the cold component (T H /T T ) was varied from 2 to 100. Global hot particle fractions (n H ) up to ∼ .5 were used in the computations
International Nuclear Information System (INIS)
Santiago, M.A.M.
1987-01-01
A review of the problem of growth rate calculations for tearing modes in field reversed Θ-pinches is presented. Its shown that in the several experimental data, the methods used for analysing the plasma with a global finite resistivity has a better quantitative agreement than the boundary layer analysis. A comparative study taking into account the m = 1 resistive kindmode and the m = 2 mode, which is more dangerous for the survey of rotational instabilities of the plasma column is done. It can see that the imaginary component of the eigenfrequency, which determinates the growth rate, has a good agreement with the experimental data and the real component is different from the rotational frequency as it has been measured in some experiments. (author) [pt
Onset of a Large Ejective Solar Eruption from a Typical Coronal-jet-base Field Configuration
Energy Technology Data Exchange (ETDEWEB)
Joshi, Navin Chandra; Magara, Tetsuya; Moon, Yong-Jae [School of Space Research, Kyung Hee University, Yongin, Gyeonggi-Do, 446-701 (Korea, Republic of); Sterling, Alphonse C.; Moore, Ronald L., E-mail: navin@khu.ac.kr, E-mail: njoshi98@gmail.com [NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States)
2017-08-10
Utilizing multiwavelength observations and magnetic field data from the Solar Dynamics Observatory ( SDO )/Atmospheric Imaging Assembly (AIA), SDO /Helioseismic and Magnetic Imager (HMI), the Geostationary Operational Environmental Satellite ( GOES ), and RHESSI , we investigate a large-scale ejective solar eruption of 2014 December 18 from active region NOAA 12241. This event produced a distinctive “three-ribbon” flare, having two parallel ribbons corresponding to the ribbons of a standard two-ribbon flare, and a larger-scale third quasi-circular ribbon offset from the other two. There are two components to this eruptive event. First, a flux rope forms above a strong-field polarity inversion line and erupts and grows as the parallel ribbons turn on, grow, and spread apart from that polarity inversion line; this evolution is consistent with the mechanism of tether-cutting reconnection for eruptions. Second, the eruption of the arcade that has the erupting flux rope in its core undergoes magnetic reconnection at the null point of a fan dome that envelops the erupting arcade, resulting in formation of the quasi-circular ribbon; this is consistent with the breakout reconnection mechanism for eruptions. We find that the parallel ribbons begin well before (∼12 minutes) the onset of the circular ribbon, indicating that tether-cutting reconnection (or a non-ideal MHD instability) initiated this event, rather than breakout reconnection. The overall setup for this large-scale eruption (diameter of the circular ribbon ∼10{sup 5} km) is analogous to that of coronal jets (base size ∼10{sup 4} km), many of which, according to recent findings, result from eruptions of small-scale “minifilaments.” Thus these findings confirm that eruptions of sheared-core magnetic arcades seated in fan–spine null-point magnetic topology happen on a wide range of size scales on the Sun.
International Nuclear Information System (INIS)
Asbury, L.; Luttrell, L.; Lake, D.
1989-01-01
In order to achieve uniform dose distribution in intact breast treatments, wedges can be employed. This paper will describe a custom compensator made from brass chips used in conjunction with a leveled beam and a custom cast to treat breast shapes that are less suited to a standard wedge set up. Materials and design, dosimetry, criteria, efficacy and results will be described
Feasibility study of microwave electron heating on the C-2 field-reversed configuration device
International Nuclear Information System (INIS)
Yang, Xiaokang; Ceccherini, Francesco; Dettrick, Sean; Binderbauer, Michl; Koehn, Alf; Petrov, Yuri
2015-01-01
Different microwave heating scenarios for the C-2 plasmas have been investigated recently with use of both the Genray ray-racing code and the IPF-FDMC full-wave code, and the study was focused on the excitation of the electron Bernstein wave (EBW) with O-mode launch. For a given antenna position on C-2 and the fixed 2D plasma density and equilibrium field profiles, simulations have been done for six selected frequencies (2.45 GHz, 5 GHz, 8 GHz, 18 GHz, 28 GHz, and 50 GHz). Launch angles have been optimized for each case in order to achieve high coupling efficiencies to the EBW by the O-X-B mode conversion process and high power deposition. Results show that among those six frequencies, the case of 8 GHz is the most promising scenario, which has both high mode conversion efficiency (90%) and the relatively deeper power deposition
Configuration and debug of field programmable gate arrays using MATLAB[reg)/SIMULINK[reg
International Nuclear Information System (INIS)
Grout, I; Ryan, J; O'Shea, T
2005-01-01
Increasingly, the need to seamlessly link high-level behavioural descriptions of electronic hardware for modelling and simulation purposes to the final application hardware highlights the gap between the high-level behavioural descriptions of the required circuit functionality (considering here digital logic) in commonly used mathematical modelling tools, and the hardware description languages such as VHDL and Verilog-HDL. In this paper, the linking of a MATLAB[reg] model for digital algorithm for implementation on a programmable logic device for design synthesis from the MATLAB[reg] model into VHDL is discussed. This VHDL model is itself synthesised and downloaded to the target Field Programmable Gate Array, for normal operation and also for design debug purposes. To demonstrate this, a circuit architecture mapped from a SIMULINK[reg] model is presented. The rationale is for a seamless interface between the initial algorithm development and the target hardware, enabling the hardware to be debugged and compared to the simulated model from a single interface for use with by a non-expert in the programmable logic and hardware description language use
International Nuclear Information System (INIS)
Yamada, Masaaki; JI, Hantao; Gerhardt, Stefan P.; Belova, Elena V.; Davidson, Ronald C.; Mikkelsen, David R.
2007-01-01
A comprehensive research concept, known as SPIRIT, is described for the investigation of the formation, stability, and sustainment of oblate field reversed configurations (FRCs). This concept, whose name stands for Self-organized Plasma with Induction, Reconnection, and Injection Techniques (SPIRIT), allows for the study of FRC stability properties on time scales much longer than the energy confinement time. Counter-helicity merging of inductively formed spheromaks is utilized to form large-flux FRCs. These FRCs are sustained by neutral beam injection with the initial aid of compact ohmic solenoids. Stability to n=1 tilt/shift modes is provided by plasma shaping and conducting shells. Stability to n ≥ 2 co-interchange modes is achieved by a distribution of high-energy non-thermal ions provided by the neutral beam. The combination of plasma shaping, conducting shells, current sustainment, and the non-thermal beam component are expected to lead to a configuration with stability to all global MHD modes, a regime recently discovered through hybrid-MHD simulation using the HYM code. An experimental test of the concept, utilizing the existing Magnetic Reconnection Experiment (MRX) facility, is described. Initial experiments in MRX have confirmed the viability of the SPIRIT concept, and calculations indicate that the confinement of high-energy ions in MRX should be sufficient to test the SPIRIT concept. (author)
International Nuclear Information System (INIS)
Takaku, Yuichi; Hamada, Shigeo
1996-01-01
A system of collisionless neutral gas contained in a rigid vessel is considered as a simple model of reflection of field-reversed configuration (FRC) plasma by a magnetic mirror. The rebound coefficient of the system is calculated as a function of the incident speed of the vessel normalized by the thermal velocity of the gas before reflection. The coefficient is compared with experimental data of FIX (Osaka U.) and FRX-C/T(Los Alamos N.L.). Agreement is good for this simple model. Interesting is that the rebound coefficient takes the smallest value (∼0.365) as the incident speed tends to zero and approaches unity as it tends to infinity. This behavior is reverse to that expected for a system with collision dominated fluid instead of collisionless gas. By examining the rebound coefficient, therefore, it could be successfully inferred whether the ion mean free path in each experiment was longer or shorter than the plasma length. (author)
Impacts of field of view configuration of Cross-track Infrared Sounder on clear-sky observations.
Wang, Likun; Chen, Yong; Han, Yong
2016-09-01
Hyperspectral infrared radiance measurements from satellite sensors contain valuable information on atmospheric temperature and humidity profiles and greenhouse gases, and therefore are directly assimilated into numerical weather prediction (NWP) models as inputs for weather forecasting. However, data assimilations in current operational NWP models still mainly rely on cloud-free observations due to the challenge of simulating cloud-contaminated radiances when using hyperspectral radiances. The limited spatial coverage of the 3×3 field of views (FOVs) in one field of regard (FOR) (i.e., spatial gap among FOVs) as well as relatively large footprint size (14 km) in current Cross-track Infrared Sounder (CrIS) instruments limits the amount of clear-sky observations. This study explores the potential impacts of future CrIS FOV configuration (including FOV size and spatial coverage) on the amount of clear-sky observations by simulation experiments. The radiance measurements and cloud mask products (VCM) from the Visible Infrared Imager Radiometer Suite (VIIRS) are used to simulate CrIS clear-sky observation under different FOV configurations. The results indicate that, given the same FOV coverage (e.g., 3×3), the percentage of clear-sky FOVs and the percentage of clear-sky FORs (that contain at least one clear-sky FOV) both increase as the FOV size decreases. In particular, if the CrIS FOV size were reduced from 14 km to 7 km, the percentage of clear-sky FOVs increases from 9.02% to 13.51% and the percentage of clear-sky FORs increases from 18.24% to 27.51%. Given the same FOV size but with increasing FOV coverage in each FOR, the clear-sky FOV observations increases proportionally with the increasing sampling FOVs. Both reducing FOV size and increasing FOV coverage can result in more clear-sky FORs, which benefit data utilization of NWP data assimilation.
International Nuclear Information System (INIS)
Takahashi, Toshiki; Inoue, Koji; Ishizuka, Takashi; Kondoh, Yoshiomi; Iwasawa, Naotaka
2004-02-01
Losses of neutral beam (NB) injected fast ions from the confinement region of a Field-Reversed Configuration (FRC) with a strong magnetic mirror are numerically analyzed for parameters relevant to NB injection experiments on the FIX (FRC injection experiment) device [T. Asai et al., Phys. Plasmas 7, 2294 (2000)]. Ionization processes of beam particles are calculated by the Monte Carlo method. The confinement of beam ions is discussed with the concept of accessible regions that restrict the ion excursion and are determined from two constants of motion, the kinetic energy and canonical angular momentum, in the case of an axisymmetric and a steady state FRC without an electrostatic field. From the calculation of the accessible regions, it is found that all the fast ions suffer from the orbit loss on the wall surface and/or the end loss. Single particle orbits are also calculated to find a difference of confinement properties from the results by employing the accessible regions. The magnetic moment is observed to show non-adiabatic motions of the beam ions, which cause a gradual orbit loss on the wall even in a case that a strong magnetic mirror is applied. The results show that the correlation of the magnetic moment disappears as the fast ions experience the density gradient around the separatrix surface and the field-null points. (author)
Papadopoulos, Gerassimos A.; Pavlides, Spyros B.
1992-10-01
New field observations of the seismic intensity distribution of the large (M s = 7.4) South Aegean (Amorgos) earthquake of 9 July 1956 are presented. Interpretations based on local ground conditions, structural properties of buildings and peculiarities of the rupture process lead to a re-evaluation of the macroseismic field configuration. This, together with the aftershock epicentral distribution, quite well defines the earthquake rupture zone, which trends NE-SW and coincides with the Amorgos Astypalea trough. The lateral extent of the rupture zone, however, is about 40% smaller than that predicted for Aegean earthquakes of M s = 7.4. This discrepancy could be attributed to sea-bottom topography changes, which seem to control the rupture terminations, and to relatively high stressdrop with respect to other Aegean earthquakes. Fault plane solutions obtained by several authors indicate either mainly normal faulting with a significant right-lateral strike-slip component or predominantly strike-slip motion. The neotectonism of Amorgos Island, based on new field observations, aerial photograph analysis and fault mechanisms, is consistent with the dip-slip interpretation. The neotectonic master fault of Amorgos and the 1956 seismic faulting appear to belong to the same tectonic phase (NE-SW strike and a southeasterly dip). However, the significant right-lateral strike-slip component supports the idea that the Amorgos region deviates from the simple description for pure extension in back-arc conditions.
Energy Technology Data Exchange (ETDEWEB)
Osin, D.; Schindler, T., E-mail: dosin@trialphaenergy.com [Tri Alpha Energy, Inc., P.O. Box 7010, Rancho Santa Margarita, California 92688-7010 (United States)
2016-11-15
A dual wavelength imaging system has been developed and installed on C-2U to capture 2D images of a He jet in the Scrape-Off Layer (SOL) of an advanced beam-driven Field-Reversed Configuration (FRC) plasma. The system was designed to optically split two identical images and pass them through 1 nm FWHM filters. Dual wavelength images are focused adjacent on a large format CCD chip and recorded simultaneously with a time resolution down to 10 μs using a gated micro-channel plate. The relatively compact optical system images a 10 cm plasma region with a spatial resolution of 0.2 cm and can be used in a harsh environment with high electro-magnetic noise and high magnetic field. The dual wavelength imaging system provides 2D images of either electron density or temperature by observing spectral line pairs emitted by He jet atoms in the SOL. A large field of view, combined with good space and time resolution of the imaging system, allows visualization of macro-flows in the SOL. First 2D images of the electron density and temperature observed in the SOL of the C-2U FRC are presented.
Adeniyan, A.,
2013-01-01
The numerical investigation of a stagnation point boundary layer flow , mass and heat transfer of a steady two dimensional , incompressible , viscous electrically conducting, chemically reacting laminar fluid over a vertical convectively heated , electrically neutral flat plate exposed to a transverse uniform magnetic field has been carried out to examine the influence of the simultaneous presence of the effects of a convective boundary condition, chemical reaction, heat transfer and suctio...
Energy Technology Data Exchange (ETDEWEB)
Bornatto, P.; Funchal, M.; Bruning, F.; Toledo, H.; Lyra, J.; Fernandes, T.; Toledo, F.; Marciao, C., E-mail: pricila_bornatto@yahoo.com.br [Hospital Erasto Gaertner (LPCC), Curitiba, PR (Brazil). Departamento de Radioterapia
2014-08-15
The purpose of this study is to evaluate the calculation of dose distribution AAA (Varian Medical Systems) for fields with non-uniform fluences considering heterogeneity correction. Five different phantoms were used with different density materials. These phantoms were scanned in the CT BrightSpeed (©GE Healthcare) upon the array of detectors MAPCHECK2 TM (Sun Nuclear Corporation) and irradiated in a linear accelerator 600 CD (Varian Medical Systems) 6MV and rate dose 400MU/min with isocentric setup. The fluences used were exported from IMRT plans, calculated by ECLIPSE™ planning system (Varian Medical Systems), and a 10x10 cm{sup 2} field to assess the heterogeneity correction for uniform fluence. The measured dose distribution was compared to the calculated by Gamma analysis with approval criteria of 3% / 3 mm and 10% threshold. The evaluation was performed using the software SNCPatient (Sun Nuclear Corporation) and considering absolute dose normalized at maximum. The phantoms best performers were those with low density materials, with an average of 99.2% approval. Already phantoms with plates of higher density material presented various fluences below 95% of the points approved. The average value reached 94.3%. It was observed a dependency between fluency and approved percentage points, whereas for the same fluency, 100% of the points have been approved in all phantoms. The approval criteria for IMRT plans recommended in most centers is 3% / 3mm with at least 95% of points approved, it can be concluded that, under these conditions, the IMRT plans with heterogeneity correction can be performed , however the quality control must be careful because the difficulty of the system to accurately predict the dose distribution in certain situations. (author)
Molokov, S. Y.; Allen, J. E.
Magnetohydrodynamic (MHD) flows of viscous incompressible fluid in strong magnetic fields parallel to a free surface of fluid are investigated. The problem of flow in an open channel due to a moving side wall in uniform magnetic field is considered, and treated by means of matched asymptotic expansions method. The flow region is divided into various subregions and leading terms of asymptotic expansions as M tends towards infinity (M is the Hartmann number) of solutions of correspondent problems in each subregion are obtained. An exact analytic solution of equations governing the free-surface layer of thickness of order M to the minus 1/2 power is obtained.
Energy Technology Data Exchange (ETDEWEB)
Matsumoto, T., E-mail: cstd14003@g.nihon-u.ac.jp; Sekiguchi, J.; Asai, T. [College of Science and Technology, Nihon University, 1-8-14 Kanda, Chiyoda-ku, Tokyo 1018308 (Japan); Gota, H.; Garate, E.; Allfrey, I.; Valentine, T.; Morehouse, M.; Roche, T.; Kinley, J.; Aefsky, S.; Cordero, M.; Waggoner, W.; Binderbauer, M. [Tri Alpha Energy, Inc., P.O. Box 7010 Rancho Santa Margarita, California 92688 (United States); Tajima, T. [Tri Alpha Energy, Inc., P.O. Box 7010 Rancho Santa Margarita, California 92688 (United States); Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States)
2016-05-15
A compact toroid (CT) injector was developed for the C-2 device, primarily for refueling of field-reversed configurations. The CTs are formed by a magnetized coaxial plasma gun (MCPG), which consists of coaxial cylindrical electrodes and a bias coil for creating a magnetic field. First, a plasma ring is generated by a discharge between the electrodes and is accelerated by Lorenz self-force. Then, the plasma ring is captured by an interlinkage flux (poloidal flux). Finally, the fully formed CT is ejected from the MCPG. The MCPG described herein has two gas injection ports that are arranged tangentially on the outer electrode. A tungsten-coated inner electrode has a head which can be replaced with a longer one to extend the length of the acceleration region for the CT. The developed MCPG has achieved supersonic CT velocities of ∼100 km/s. Plasma parameters for electron density, electron temperature, and the number of particles are ∼5 × 10{sup 21} m{sup −3}, ∼40 eV, and 0.5–1.0 × 10{sup 19}, respectively.
International Nuclear Information System (INIS)
Belova, E.V.; Davidson, R.C.; Ji, H.; Yamada, M.; Cothran, C.D.; Brown, M.R.; Schaffer, M.J.
2004-01-01
Results of three-dimensional numerical simulations of field-reversed configurations (FRCs) are presented. Emphasis of this work is on the nonlinear evolution of magnetohydrodynamic (MHD) instabilities in kinetic FRCs and the new FRC formation method by the counter-helicity spheromak merging. Kinetic simulations show nonlinear saturation of the n = 1 tilt mode, where n is the toroidal mode number. The n = 2 and n = 3 rotational modes are observed to grow during the nonlinear phase of the tilt instability due to the ion spin-up in the toroidal direction. The ion toroidal spin-up is shown to be related to the resistive decay of the internal flux, and the resulting loss of particle confinement. Three-dimensional MHD simulations of counter-helicity spheromak merging and FRC formation show good agreement with results from the SSX-FRC experiment. Simulations show formation of an FRC in about 30 Alfven times for typical experimental parameters. The growth rate of the n = 1 tilt mode is shown to be significantly reduced compared to the MHD growth rate due to the large plasma viscosity and field-line-tying effects
Matsumoto, T; Sekiguchi, J; Asai, T; Gota, H; Garate, E; Allfrey, I; Valentine, T; Morehouse, M; Roche, T; Kinley, J; Aefsky, S; Cordero, M; Waggoner, W; Binderbauer, M; Tajima, T
2016-05-01
A compact toroid (CT) injector was developed for the C-2 device, primarily for refueling of field-reversed configurations. The CTs are formed by a magnetized coaxial plasma gun (MCPG), which consists of coaxial cylindrical electrodes and a bias coil for creating a magnetic field. First, a plasma ring is generated by a discharge between the electrodes and is accelerated by Lorenz self-force. Then, the plasma ring is captured by an interlinkage flux (poloidal flux). Finally, the fully formed CT is ejected from the MCPG. The MCPG described herein has two gas injection ports that are arranged tangentially on the outer electrode. A tungsten-coated inner electrode has a head which can be replaced with a longer one to extend the length of the acceleration region for the CT. The developed MCPG has achieved supersonic CT velocities of ∼100 km/s. Plasma parameters for electron density, electron temperature, and the number of particles are ∼5 × 10(21) m(-3), ∼40 eV, and 0.5-1.0 × 10(19), respectively.
The 2013 February 17 Sunquake in the Context of the Active Region's Magnetic Field Configuration
Energy Technology Data Exchange (ETDEWEB)
Green, L. M.; Valori, G.; Zuccarello, F. P.; Matthews, S. A. [Mullard Space Science Laboratory, UCL, Holmbury St. Mary, Dorking, Surrey, RH5 6NT (United Kingdom); Zharkov, S. [Department of Physics and Mathematics, University of Hull, Hull, HU6 7RX (United Kingdom); Guglielmino, S. L. [Dipartimento di Fisica e Astronomia—Sezione Astrofisica, Università degli Studi di Catania, Via S. Sofia 78, I-95123 Catania (Italy)
2017-11-01
Sunquakes are created by the hydrodynamic response of the lower atmosphere to a sudden deposition of energy and momentum. In this study, we investigate a sunquake that occurred in NOAA active region 11675 on 2013 February 17. Observations of the corona, chromosphere, and photosphere are brought together for the first time with a nonlinear force-free model of the active region’s magnetic field in order to probe the magnetic environment in which the sunquake was initiated. We find that the sunquake was associated with the destabilization of a flux rope and an associated M-class GOES flare. Active region 11675 was in its emergence phase at the time of the sunquake and photospheric motions caused by the emergence heavily modified the flux rope and its associated quasi-separatrix layers, eventually triggering the flux rope’s instability. The flux rope was surrounded by an extended envelope of field lines rooted in a small area at the approximate position of the sunquake. We argue that the configuration of the envelope, by interacting with the expanding flux rope, created a “magnetic lens” that may have focussed energy on one particular location of the photosphere, creating the necessary conditions for the initiation of the sunquake.
International Nuclear Information System (INIS)
Matsumoto, T.; Sekiguchi, J.; Asai, T.; Gota, H.; Garate, E.; Allfrey, I.; Valentine, T.; Morehouse, M.; Roche, T.; Kinley, J.; Aefsky, S.; Cordero, M.; Waggoner, W.; Binderbauer, M.; Tajima, T.
2016-01-01
A compact toroid (CT) injector was developed for the C-2 device, primarily for refueling of field-reversed configurations. The CTs are formed by a magnetized coaxial plasma gun (MCPG), which consists of coaxial cylindrical electrodes and a bias coil for creating a magnetic field. First, a plasma ring is generated by a discharge between the electrodes and is accelerated by Lorenz self-force. Then, the plasma ring is captured by an interlinkage flux (poloidal flux). Finally, the fully formed CT is ejected from the MCPG. The MCPG described herein has two gas injection ports that are arranged tangentially on the outer electrode. A tungsten-coated inner electrode has a head which can be replaced with a longer one to extend the length of the acceleration region for the CT. The developed MCPG has achieved supersonic CT velocities of ∼100 km/s. Plasma parameters for electron density, electron temperature, and the number of particles are ∼5 × 10"2"1 m"−"3, ∼40 eV, and 0.5–1.0 × 10"1"9, respectively.
Hariri, Saman; Mokhtari, Mojtaba; Gerdroodbary, M. Barzegar; Fallah, Keivan
2017-02-01
In this article, a three-dimensional numerical investigation is performed to study the effect of a magnetic field on a ferrofluid inside a tube. This study comprehensively analyzes the influence of a non-uniform magnetic field in the heat transfer of a tube while a ferrofluid (water with 0.86 vol% nanoparticles (Fe3O4) is let flow. The SIMPLEC algorithm is used for obtaining the flow and heat transfer inside the tube. The influence of various parameters, such as concentration of nanoparticles, intensity of the magnetic field, wire distance and Reynolds number, on the heat transfer is investigated. According to the obtained results, the presence of a non-uniform magnetic field significantly increases the Nusselt number (more than 300%) inside the tube. Also, the magnetic field induced by the parallel wire affects the average velocity of the ferrofluid and forms two strong eddies in the tube. Our findings show that the diffusion also raises as the concentration of the nanoparticle is increased.
A thick-walled sphere rotating in a uniform magnetic field: The next step to de-spin a space object
Nurge, Mark A.; Youngquist, Robert C.; Caracciolo, Ryan A.; Peck, Mason; Leve, Frederick A.
2017-08-01
Modeling the interaction between a moving conductor and a static magnetic field is critical to understanding the operation of induction motors, eddy current braking, and the dynamics of satellites moving through Earth's magnetic field. Here, we develop the case of a thick-walled sphere rotating in a uniform magnetic field, which is the simplest, non-trivial, magneto-statics problem that leads to complete closed-form expressions for the resulting potentials, fields, and currents. This solution requires knowledge of all of Maxwell's time independent equations, scalar and vector potential equations, and the Lorentz force law. The paper presents four cases and their associated experimental results, making this topic appropriate for an advanced student lab project.
Energy Technology Data Exchange (ETDEWEB)
Maity, S., E-mail: susantamaiti@gmail.com [Department of Mathematics, National Institute of Technology, Arunachal Pradesh, Yupia, Papumpare 791112 (India); Singh, S.K. [Engineering Mechanics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India); Kumar, A.V. [Department of Mathematics, National Institute of Technology, Arunachal Pradesh, Yupia, Papumpare 791112 (India)
2016-12-01
Three dimensional flow of thin Casson liquid film over a porous unsteady stretching sheet is investigated under assumption of initial uniform film thickness. The effects of the uniform transverse magnetic field, suction and injection are also considered for investigation. The nonlinear governing set of equations and film evolution equation are solved analytically by using singular perturbation technique. It is found that the film thickness decreases with the increasing values of the Casson parameter. The Hartmann number and porosity parameter resist the film thinning process. It is also observed that the film thickness increases with the increasing values of the suction velocity whereas it decreases for increasing values of the injection velocity at the stretching surface.
Nonimaging reflectors for efficient uniform illumination.
Gordon, J M; Kashin, P; Rabl, A
1992-10-01
Nonimaging reflectors that are an extension of the design principle that was developed for compound parabolic concentrator type devices are proposed for illumination applications. The optical designs presented offer maximal lighting efficiency while they retain sharp angular control of the radiation and highly uniform flux densities on distant target planes. Our results are presented for symmetrical configurations in two dimensions (troughlike reflectors) for flat and for tubular sources. For fields of view of practical interest (half-angle in the 30-60 degrees range), these devices can achieve minimum-tomaximum intensity ratios of 0.7, while they remain compact and incur low reflective losses.
Fast imaging diagnostics on the C-2U advanced beam-driven field-reversed configuration device
Energy Technology Data Exchange (ETDEWEB)
Granstedt, E. M., E-mail: egranstedt@trialphaenergy.com; Petrov, P.; Knapp, K.; Cordero, M.; Patel, V. [Tri Alpha Energy, P.O. Box 7010, Rancho Santa Margarita, California 92688 (United States)
2016-11-15
The C-2U device employed neutral beam injection, end-biasing, and various particle fueling techniques to sustain a Field-Reversed Configuration (FRC) plasma. As part of the diagnostic suite, two fast imaging instruments with radial and nearly axial plasma views were developed using a common camera platform. To achieve the necessary viewing geometry, imaging lenses were mounted behind re-entrant viewports attached to welded bellows. During gettering, the vacuum optics were retracted and isolated behind a gate valve permitting their removal if cleaning was necessary. The axial view incorporated a stainless-steel mirror in a protective cap assembly attached to the vacuum-side of the viewport. For each system, a custom lens-based, high-throughput optical periscope was designed to relay the plasma image about half a meter to a high-speed camera. Each instrument also contained a remote-controlled filter wheel, set between shots to isolate a particular hydrogen or impurity emission line. The design of the camera platform, imaging performance, and sample data for each view is presented.
International Nuclear Information System (INIS)
Crawford, E.A.
1992-01-01
Soft x-ray pinhole imaging has proven to be an exceptionally useful diagnostic for qualitative observation of impurity radiation from field reversed configuration plasmas. We used a four frame device, similar in design to those discussed in an earlier paper [E. A. Crawford, D. P. Taggart, and A. D. Bailey III, Rev. Sci. Instrum. 61, 2795 (1990)] as a routine diagnostic during the last six months of the Large s Experiment (LSX) program. Our camera is an improvement over earlier implementations in several significant aspects. It was designed and used from the onset of the LSX experiments with a video frame capture system so that an instant visual record of the shot was available to the machine operator as well as facilitating quantitative interpretation of intensity information recorded in the images. The camera was installed in the end region of the LSX on axis approximately 5.5 m from the plasma midplane. Experience with bolometers on LSX showed serious problems with ''particle dumps'' at the axial location at various times during the plasma discharge. Therefore, the initial implementation of the camera included an effective magnetic sweeper assembly. Overall performance of the camera, video capture system, and sweeper is discussed
International Nuclear Information System (INIS)
Pourmehran, O.; Rahimi-Gorji, M.; Gorji-Bandpy, M.; Gorji, T.B.
2015-01-01
Drug delivery technologies are an important area within biomedicine. Targeted drug delivery aims to reduce the undesired side effects of drug usage by directing or capturing the active agents near a desired site within the body. Herein, a numerical investigation of magnetic drug targeting (MDT) using aerosol drugs named polystyrene particle (PMS40) in human lung is presented considering one-way coupling on the transport and capture of the magnetic particle. A realistic 3D geometry based on CT scan images is provided for CFD simulation. An external non-uniform magnetic field is applied. Parametric investigation is conducted and the influence of particle diameter, magnetic source position, and magnetic number (Mn) on the deposition efficiency and particle behavior is reported. According to the results, the magnetic field increased deposition efficiency of particles in a target region, the efficiency of deposition and MDT technique has a direct relation with increasing the particle diameter for magnetic number of 1 Tesla (T) and lower (Mn≤1(T)). Also it can be seen that there is an inverse relation between the particle diameter and deposition efficiency when Mn is more than 1 (T). - Highlights: • A realistic 3D geometry of human tracheobronchial airway based on CT scan image. • External non-uniform magnetic field applied to target the magnetic drug career. • Lagrangian particle tracking using discrete phase model applied. • The efficiency of deposition is dependent of magnetic number and particle diameter
Energy Technology Data Exchange (ETDEWEB)
Pourmehran, O., E-mail: oveis87@yahoo.com; Rahimi-Gorji, M.; Gorji-Bandpy, M., E-mail: gorji@nit.ac.ir; Gorji, T.B.
2015-11-01
Drug delivery technologies are an important area within biomedicine. Targeted drug delivery aims to reduce the undesired side effects of drug usage by directing or capturing the active agents near a desired site within the body. Herein, a numerical investigation of magnetic drug targeting (MDT) using aerosol drugs named polystyrene particle (PMS40) in human lung is presented considering one-way coupling on the transport and capture of the magnetic particle. A realistic 3D geometry based on CT scan images is provided for CFD simulation. An external non-uniform magnetic field is applied. Parametric investigation is conducted and the influence of particle diameter, magnetic source position, and magnetic number (Mn) on the deposition efficiency and particle behavior is reported. According to the results, the magnetic field increased deposition efficiency of particles in a target region, the efficiency of deposition and MDT technique has a direct relation with increasing the particle diameter for magnetic number of 1 Tesla (T) and lower (Mn≤1(T)). Also it can be seen that there is an inverse relation between the particle diameter and deposition efficiency when Mn is more than 1 (T). - Highlights: • A realistic 3D geometry of human tracheobronchial airway based on CT scan image. • External non-uniform magnetic field applied to target the magnetic drug career. • Lagrangian particle tracking using discrete phase model applied. • The efficiency of deposition is dependent of magnetic number and particle diameter.
International Nuclear Information System (INIS)
Reass, W.A.; Miera, D.A.; Wurden, G.A.
1997-01-01
This paper presents the initial electrical and mechanical design of two phase-locked 30 Megawatt RMS, 150 kHz oscillator systems used for current drive and plasma sustainment of the ''Translation, Confinement, and Sustainment'' (TCS) field reversed configuration (FRC) plasma. By the application of orthogonally-placed saddle coils on the surface of the glass vacuum vessel, the phase-controlled rotating magnetic field perturbation will induce an electric field in the plasma which should counter the intrinsic ohmic decay of the plasma, and maintain the FRC. Each system utilizes a bank of 6 parallel magnetically beamed ML8618 triodes. These devices are rated at 250 Amperes cathode current and a 45 kV plate voltage. An advantage of the magnetically beamed triode is their extreme efficiency, requiring only 2.5 kW of filament and a few amps and a few kV of grid drive. Each 3.5 uH saddle coil is configured with an adjustable tank circuit (for tuning). Assuming no losses and a nominal 18 kV plate voltage, the tubes can circulate about 30 kV and 9 kA (pk to pk) in the saddle coil antenna, a circulating power of over 33 megawatts RMS. On each cycle the tubes can kick in up to 1500 Amperes, providing a robust phase control. DC high-voltage from the tubes is isolated from the saddle coil antennas and tank circuits by a 1:1 coaxial air-core balun transformer. To control the ML8618's phase and amplitude, fast 150 Ampere ''totem-pole'' grid drivers, an ''on'' hot-deck and an ''off'' hot-deck are utilized. The hot-decks use up to 6 each 3CPX1500A7 slotted radial beam triodes. By adjusting the conduction angle, amplitude may be regulated, with inter-pulse timing, phase angle can be controlled. A central feedback timing chassis monitors each systems' saddle coil antenna and appropriately derives each systems timing signals. Fiber-optic cables are used to isolate between the control room timing chassis and the remote power oscillator system. Complete system design detail will be
International Nuclear Information System (INIS)
Niksic, T.; Vretenar, D.; Ring, P.
2006-01-01
The framework of relativistic self-consistent mean-field models is extended to include correlations related to the restoration of broken symmetries and to fluctuations of collective variables. The generator coordinate method is used to perform configuration mixing of angular-momentum and particle-number projected relativistic wave functions. The geometry is restricted to axially symmetric shapes, and the intrinsic wave functions are generated from the solutions of the relativistic mean-field+Lipkin-Nogami BCS equations, with a constraint on the mass quadrupole moment. The model employs a relativistic point-coupling (contact) nucleon-nucleon effective interaction in the particle-hole channel, and a density-independent δ-interaction in the pairing channel. Illustrative calculations are performed for 24 Mg, 32 S, and 36 Ar, and compared with results obtained employing the model developed in the first part of this work, i.e., without particle-number projection, as well as with the corresponding nonrelativistic models based on Skyrme and Gogny effective interactions
International Nuclear Information System (INIS)
Lerche, I.; Low, B.C.
1977-01-01
A theoretical model of quiescent prominences in the form of an infinite vertical sheet is presented. Self-consistent solutions are obtained by integrating simultaneously the set of nonlinear equations of magnetostatic equilibrium and thermal balance. The basic features of the models are: (1) The prominence matter is confined to a sheet and supported against gravity by a bowed magnetic field. (2) The thermal flux is channelled along magnetic field lines. (3) The thermal flux is everywhere balanced by Low's (1975) hypothetical heat sink which is proportional to the local density. (4) A constant component of the magnetic field along the length of the prominence shields the cool plasma from the hot surrounding. It is assumed that the prominence plasma emits more radiation than it absorbes from the radiation fields of the photosphere, chromosphere and corona, and the above hypothetical heat sink is interpreted to represent the amount of radiative loss that must be balanced by a nonradiative energy input. Using a central density and temperature of 10 11 particles cm -3 and 5000 K respectively, a magnetic field strength between 2 to 10 gauss and a thermal conductivity that varies linearly with temperature, the physical properties implied by the model are discussed. The analytic treatment can also be carried out for a class of more complex thermal conductivities. These models provide a useful starting point for investigating the combined requirements of magnetostatic equilibrium and thermal balance in the quiescent prominence. (Auth.)
International Nuclear Information System (INIS)
Bender, M.; Heenen, P.H.; Bonche, P.; Duguet, T.
2003-01-01
We study shape coexistence and low-energy excitation spectra in neutron-deficient Pb isotopes using configuration mixing of angular-momentum and particle-number projected self-consistent mean-field states. The same Skyrme interaction SLy6 is used everywhere in connection with a density-dependent zero-range pairing force. (orig.)
DEFF Research Database (Denmark)
Celestinos, Adrian; Nielsen, Sofus Birkedal
2008-01-01
The sound field produced by loudspeakers at low frequencies in small- and medium-size rectangular listening rooms is highly nonuniform due to the multiple reflections and diffractions of sound on the walls and different objects in the room. A new method, called controlled acoustic bass system (CA......-frequency range. CABS has been simulated and measured in two different standard listening rooms with satisfactory results....
You, Shihu; Xu, Yun; Wu, Zhangwen; Hou, Qing; Guo, Chengjun
2014-12-01
In the present work, Monte Carlo simulations were employed to study the characteristics of the dose distribution of high energy electron beam in the presence of uniform transverse magnetic field. The simulations carried out the transport processes of the 30 MeV electron beam in the homogeneous water phantom with different magnetic field. It was found that the dose distribution of the 30 MeV electron beam had changed significantly because of the magnetic field. The result showed that the range of the electron beam was decreased obviously and it formed a very high dose peak at the end of the range, and the ratio of maximum dose to the dose of the surface was greatly increased. The results of this study demonstrated that we could change the depth dose distribution of electron beam which is analogous to the heavy ion by modulating the energy of the electron and magnetic field. It means that using magnetic fields in conjunction with electron radiation therapy has great application prospect, but it also has brought new challenges for the research of dose algorithm.
Energy Technology Data Exchange (ETDEWEB)
Granovsky, Alexander A., E-mail: alex.granovsky@gmail.com [Firefly project, Moscow, 117593 Moscow (Russian Federation)
2015-12-21
We present a new, very efficient semi-numerical approach for the computation of state-specific nuclear gradients of a generic state-averaged multi-configuration self consistent field wavefunction. Our approach eliminates the costly coupled-perturbed multi-configuration Hartree-Fock step as well as the associated integral transformation stage. The details of the implementation within the Firefly quantum chemistry package are discussed and several sample applications are given. The new approach is routinely applicable to geometry optimization of molecular systems with 1000+ basis functions using a standalone multi-core workstation.
International Nuclear Information System (INIS)
Granovsky, Alexander A.
2015-01-01
We present a new, very efficient semi-numerical approach for the computation of state-specific nuclear gradients of a generic state-averaged multi-configuration self consistent field wavefunction. Our approach eliminates the costly coupled-perturbed multi-configuration Hartree-Fock step as well as the associated integral transformation stage. The details of the implementation within the Firefly quantum chemistry package are discussed and several sample applications are given. The new approach is routinely applicable to geometry optimization of molecular systems with 1000+ basis functions using a standalone multi-core workstation
Granovsky, Alexander A
2015-12-21
We present a new, very efficient semi-numerical approach for the computation of state-specific nuclear gradients of a generic state-averaged multi-configuration self consistent field wavefunction. Our approach eliminates the costly coupled-perturbed multi-configuration Hartree-Fock step as well as the associated integral transformation stage. The details of the implementation within the Firefly quantum chemistry package are discussed and several sample applications are given. The new approach is routinely applicable to geometry optimization of molecular systems with 1000+ basis functions using a standalone multi-core workstation.
Energy Technology Data Exchange (ETDEWEB)
Aragao Filho, Geraldo L., E-mail: geraldo_lemos10@hotmail.com [Centro de Medicina Nuclear de Pernambuco (CEMUPE), Recife, PE (Brazil); Oliveira, Alex C.H., E-mail: oliveira_ach@yahoo.com [Universidade Federal de Pernambuco (DEN/UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear; Lopes Filho, Ferdinand J.; Vieira, Jose W., E-mail: ferdinand.lopes@oi.com.br, E-mail: jose-wilson59@live.com [Instituto Federal de Pernambuco (IFPE), Recife, PE (Brazil)
2014-07-01
Nuclear Medicine is a medical modality that makes use of radioactive material 'in vivo' in humans, making them a temporary radioactive source. The radiation emitted by the patient's body is detected by a specific equipment, called a gamma camera, creates an image showing the spatial and temporal biodistribution of radioactive material administered to the patient. Therefore, it's of fundamental importance a number of specific measures to make sure that procedure be satisfactory, called quality control. To Nuclear Medicine, quality control of gamma camera has the purpose of ensuring accurate scintillographic imaging, truthful and reliable for the diagnosis, guaranteeing visibility and clarity of details of structures, and also to determine the frequency and the need for preventive maintenance of equipment. To ensure the quality control of the gamma camera it's necessary to use some simulators, called phantom, used in Nuclear Medicine to evaluate system performance, system calibration and simulation of injuries. The goal of this study was to validate a new simulator for nuclear medicine, the Hydra phantom. The phantom was initially built for construction of calibration curves used in radiotherapy planning and quality control in CT. It has similar characteristics to specific phantoms in nuclear medicine, containing inserts and water area. Those inserts are regionally sourced materials, many of them are already used in the literature and based on information about density and interaction of radiation with matter. To verify its efficiency in quality control in Nuclear Medicine, was performed a test for uniformity field, one of the main tests performed daily, so we can verify the ability of the gamma camera to reproduce a uniform distribution of the administered activity in the phantom, been analysed qualitatively, through the image, and quantitatively, through values established for Central Field Of View (CFOV) and Useful Field Of View (UFOV
International Nuclear Information System (INIS)
Oliveira, M.A.B. de.
1984-01-01
We present our investigations on the problems of non-causality of propagation, at the c-number level, of four spin 3/2 theories in the Schroedinger form employing the minimum number of eight components, in interaction with a constant magnetic field. Analyzing first the basic formulations of free particle spin 3/2 relativistic wave equations, we deduze, extending to spin 3/2 Dirac's ''spin 1/2 factorization'' of the mas condition, a new eight-component relativistic wave equation in the Schroedinger form for this spin and prove its relativistic invariance. We demostrate explicitly that the entire content of the Rarita-Schwinger (RS) theory for spin 3/2 can be written in the form of two Dirac-Like wave equations. We demonstrate that our wave equation for spin 3/2 cab indeed be deduzed from a modified RS theory wherein both Hamiltonians above referred to are taken hermitian. We also establish, in a transparent maner, the equivalences existing between the formalisms of RS, Belinfante and Hurley-Sudarshan for spin 3/2. We investigate the c-number problem of the stationary state eigevalues of the spin 3/2 Hamiltonians in a constant external magnetic field, in the four theories in the Schoedinger form with eight components, those of Moldauer and Case (deduzed from TS theory), of Weaver, Hammer and Good. (autor) [pt
Generating Long Scale-Length Plasma Jets Embedded in a Uniform, Multi-Tesla Magnetic-Field
Manuel, Mario; Kuranz, Carolyn; Rasmus, Alex; Klein, Sallee; Fein, Jeff; Belancourt, Patrick; Drake, R. P.; Pollock, Brad; Hazi, Andrew; Park, Jaebum; Williams, Jackson; Chen, Hui
2013-10-01
Collimated plasma jets emerge in many classes of astrophysical objects and are of great interest to explore in the laboratory. In many cases, these astrophysical jets exist within a background magnetic field where the magnetic pressure approaches the plasma pressure. Recent experiments performed at the Jupiter Laser Facility utilized a custom-designed solenoid to generate the multi-tesla fields necessary to achieve proper magnetization of the plasma. Time-gated interferometry, Schlieren imaging, and proton radiography were used to characterize jet evolution and collimation under varying degrees of magnetization. Experimental results will be presented and discussed. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, grant number DE-NA0001840, by the National Laser User Facility Program, grant number DE-NA0000850, by the Predictive Sciences Academic Alliances Program in NNSA-ASC, grant number DEFC52-08NA28616, and by NASA through Einstein Postdoctoral Fellowship grant number PF3-140111 awarded by the Chandra X-ray Center, which is operated by the Smithsonian Astrophysical Observatory for NASA under contract NAS8-03060.
Bauschlicher, C. W., Jr.; Yarkony, D. R.
1980-01-01
A previously reported multi-configuration self-consistent field (MCSCF) algorithm based on the generalized Brillouin theorem is extended in order to treat the excited states of polar molecules. In particular, the algorithm takes into account the proper treatment of nonorthogonality in the space of single excitations and invokes, when necessary, a constrained optimization procedure to prevent the variational collapse of excited states. In addition, a configuration selection scheme (suitable for use in conjunction with extended configuration interaction methods) is proposed for the MCSCF procedure. The algorithm is used to study the low-lying singlet states of BeO, a system which has not previously been studied using an MCSCF procedure. MCSCF wave functions are obtained for three 1 Sigma + and two 1 Pi states. The 1 Sigma + results are juxtaposed with comparable results for MgO in order to assess the generality of the description presented here.
International Nuclear Information System (INIS)
Bezi Javan, Masoud
2012-01-01
We present electronic and optical properties of the hydrogen terminated gallium arsenide nanoparticles using time dependent density functional theory (TD-DFT). The electronic and optical properties of the GaAs nanoparticles were calculated at presence of the uniform external electric field in the range from 0 to 0.51 V/Å. The induced electric filed can decrease the HOMO–LUMO gap of the nanoparticles and the mount of these reductions increases with gain of the electric field strength. -- Highlights: ► HOMO–LUMO gap of the nanoparticles is significantly more than GaAs bulk band gap. ► HOMO–LUMO gap of the nanoparticles decreases with increase of the nanoparticles size. ► External electric filed decrease the HOMO–LUMO gap of the nanoparticles. ► Dipole moment of nanoparticles increases with gain of the electric field strength. ► Absorption peaks of GaAs nanoparticles shows red shift with applying electric field.
Lishev, S.; Schiesko, L.; Wünderlich, D.; Fantz, U.
2017-08-01
The study provides results for the influence of the filter field topology on the plasma parameters in the RF prototype negative ion source for ITER NBI. A previously developed 2D fluid plasma model of the prototype source was extended towards accounting for the particles and energy losses along the magnetic field lines and the presence of a magnetic field in the driver which is the case at the BATMAN and ELISE test-beds. The effect of the magnetic field in the driver is shown for the magnetic field configuration of the prototype source (i.e. a magnetic field produced by an external magnet frame) by comparison of plasma parameters without and with the magnetic field in the driver and for different axial positions of the filter. Since the ELISE-like magnetic field (i.e. a magnetic field produced by a current flowing through the plasma grid) is a new feature planned to be installed at the BATMAN test-bed, its effect on the discharge structure was studied for different strengths of the magnetic field. The obtained results show for both configurations of the magnetic filter the same main features in the patterns of the plasma parameters in the expansion chamber: a strong axial drop of the electron temperature and the formation of a groove accompanied with accumulation of electrons in front of the plasma grid. The presence of a magnetic field in the driver has a local impact on the plasma parameters: the formation of a second groove of the electron temperature in the case of BATMAN (due to the reversed direction of the filter field in the driver) and a strong asymmetry of the electron density. Accounting for the additional losses in the third dimension suppresses the drifts across the magnetic field and, thus, the variations of the electron density in the expansion chamber are less pronounced.
International Nuclear Information System (INIS)
Osman, H; Castle, G S P; Adamiak, K; Fan, H T; Simmer, J
2015-01-01
The charge on a liquid droplet is a critical parameter that needs to be determined to accurately predict the behaviour of the droplet in many electrostatic applications, for example, electrostatic painting and ink-jet printing. The charge depends on many factors, such as the liquid conductivity, droplet and ligament radii, ligament length, droplet shape, electric field intensity, space charge, the presence of adjacent ligaments and previously formed droplets. In this paper, a 2D axisymmetric model is presented which can be used to predict the electric charge on a conductive spherical droplet ejected from a single ligament directly supplied with high voltage. It was found that the droplet charging levels for the case of isolated electrified ligaments are as much as 60 times higher than that in the case of ligaments connected to a planar high voltage electrode. It is suggested that practical atomization systems lie somewhere between these two extremes and that a better model was achieved by developing a 3D approximation of a linear array of ligaments connected to an electrode having variable width. The effect on droplet charge and its radius was estimated for several cases of different boundary conditions. (paper)
Isabelle dipole and quadrupole coil configurations
International Nuclear Information System (INIS)
Dahl, P.F.; Hahn, H.
1980-01-01
The coil configurations of the ISABELLE dipole and quadrupole magnets have been reviewed and a number of improvements were suggested for incorporation into the final design. The coil designs are basically single layer multiple block approximations to cosine current distributions, wound from a high aspect ratio non-keystoned braided conductor. The blocks are separated by knife-edge wedges to maximize the quench propagation velocity. The current density variation is obtained by an appropriate distribution of the spacer turns and, to a lesser degree, by the wedge locations. The use of inert turns is necessary to minimize the peak field enhancement both in the ends and in the two dimensional section. Schemes for deriving turns distributions yielding harmonic coefficients satisfying the stringent ISABELLE tolerances on field uniformity, while allowing for simplicity in winding and taking into account quench propagation considerations, will be discussed, as well as our approach to the coil end configuration
Directory of Open Access Journals (Sweden)
Α. Bairaktari
2013-10-01
Full Text Available In this paper nanocomposite samples of epoxy resin and TiO2 nanoparticles were investigated with water droplets on their surface. A uniform electric field was applied and the behaviour of the water droplets was observed. Parameters that were studied were the water conductivity, the droplet volume, the number of droplets and the droplet positioning with respect to (w.r.t. the electrodes. All above mentioned parameters influence the flashover voltage of the samples. It is to be noted that – at least in some cases – the water droplet positioning w.r.t. the electrodes was more important in determining the flashover voltage than the droplet volume.
Ames Optimized TCA Configuration
Cliff, Susan E.; Reuther, James J.; Hicks, Raymond M.
1999-01-01
Configuration design at Ames was carried out with the SYN87-SB (single block) Euler code using a 193 x 49 x 65 C-H grid. The Euler solver is coupled to the constrained (NPSOL) and the unconstrained (QNMDIF) optimization packages. Since the single block grid is able to model only wing-body configurations, the nacelle/diverter effects were included in the optimization process by SYN87's option to superimpose the nacelle/diverter interference pressures on the wing. These interference pressures were calculated using the AIRPLANE code. AIRPLANE is an Euler solver that uses a unstructured tetrahedral mesh and is capable of computations about arbitrary complete configurations. In addition, the buoyancy effects of the nacelle/diverters were also included in the design process by imposing the pressure field obtained during the design process onto the triangulated surfaces of the nacelle/diverter mesh generated by AIRPLANE. The interference pressures and nacelle buoyancy effects are added to the final forces after each flow field calculation. Full details of the (recently enhanced) ghost nacelle capability are given in a related talk. The pseudo nacelle corrections were greatly improved during this design cycle. During the Ref H and Cycle 1 design activities, the nacelles were only translated and pitched. In the cycle 2 design effort the nacelles can translate vertically, and pitch to accommodate the changes in the lower surface geometry. The diverter heights (between their leading and trailing edges) were modified during design as the shape of the lower wing changed, with the drag of the diverter changing accordingly. Both adjoint and finite difference gradients were used during optimization. The adjoint-based gradients were found to give good direction in the design space for configurations near the starting point, but as the design approached a minimum, the finite difference gradients were found to be more accurate. Use of finite difference gradients was limited by the
International Nuclear Information System (INIS)
Hirata, Akimasa; Takano, Yukinori; Fujiwara, Osamu; Kamimura, Yoshitsugu
2010-01-01
The present study quantified the volume-averaged in situ electric field in nerve tissues of anatomically based numeric Japanese male and female models for exposure to extremely low-frequency electric and magnetic fields. A quasi-static finite-difference time-domain method was applied to analyze this problem. The motivation of our investigation is that the dependence of the electric field induced in nerve tissue on the averaging volume/distance is not clear, while a cubical volume of 5 x 5 x 5 mm 3 or a straight-line segment of 5 mm is suggested in some documents. The influence of non-nerve tissue surrounding nerve tissue is also discussed by considering three algorithms for calculating the averaged in situ electric field in nerve tissue. The computational results obtained herein reveal that the volume-averaged electric field in the nerve tissue decreases with the averaging volume. In addition, the 99th percentile value of the volume-averaged in situ electric field in nerve tissue is more stable than that of the maximal value for different averaging volume. When including non-nerve tissue surrounding nerve tissue in the averaging volume, the resultant in situ electric fields were not so dependent on the averaging volume as compared to the case excluding non-nerve tissue. In situ electric fields averaged over a distance of 5 mm were comparable or larger than that for a 5 x 5 x 5 mm 3 cube depending on the algorithm, nerve tissue considered and exposure scenarios. (note)
International Nuclear Information System (INIS)
Biswal, S.; Pattnaik, B.K.
1996-01-01
Commencement of the Couette flow in Oldroyd liquid has been studied in the presence of a uniform transverse magnetic field with heat sources/sinks. Constitutive equations of motion and energy have been formulated and solved with the aid of Galerkin technique. Expressions for velocity, temperature, skin frictions and rates of heat transfer are obtained. With Fortran language, the values of velocity, temperature, shear-stresses at the lower and upper plates and the rates of heat transfer at the plates have been evaluated after necessary computations. The results have been shown by graphs and tables for different values of various parameters like R, R c , P m , t, n, P r , E and S. Velocity and temperature distribution are shown by graphs while the values of shear-stresses and Nusselts numbers at the plates are entered in tables. It is observed that the flow is sensitive to the interactions of heat source/sink, elasticity of the fluid and the imposed magnetic field strength. The amount of heat energy propagated during this process of non-Newtonian flow varies appreciably with R, S and P r . The heat absorbing sink or the heat generating source influences the temperature field to a great extent. (author)
Energy Technology Data Exchange (ETDEWEB)
Li, F.-C., E-mail: lifch@hit.edu.cn; Sutevski, D.; Smolentsev, S.; Abdou, M.
2013-11-15
Highlights: • An indirect DP measurement approach for high-temperature LM MHD flow is developed. • Experiments and numerical simulations of PbLi MHD flow are performed. • Characteristics of DP in LM MHD flow under fringing magnetic field are studied. • Pressure distributions in LM MHD flow at entry and exit of magnet are different. -- Abstract: Experiments and three-dimensional (3D) numerical simulations are performed to investigate the magnetohydrodynamic (MHD) characteristics of liquid metal (LM) flows of molten lead-lithium (PbLi) eutectic alloy in an electrically conducting circular duct subjected to a transverse non-uniform (fringing) magnetic field. An indirect measurement approach for differential pressure in high temperature LM PbLi is first developed, and then detailed data on pressure drop in this PbLi MHD flow are measured. The obtained experimental results for the pressure distribution are in good agreement with numerical simulations. Using the numerical simulation results, the 3D effects caused by fringing magnetic field on the LM flow are illustrated via distributions for the axial pressure gradients and transverse pressure differences. It has been verified that a simple approach for estimation of pressure drop in LM MHD flow in a fringing magnetic field proposed by Miyazaki et al. [22] i.e., a simple integral of pressure gradient along the fringing field zone using a quasi-fully-developed flow assumption, is also applicable to the conditions of the present experiment providing the magnetic interaction parameter is large enough. Furthermore, for two different sections of the LM flow at the entry to and at the exit from the magnet, it is found that the pressure distributions in the duct cross sections in these two regions are different.
International Nuclear Information System (INIS)
Frank, Anna; Bugrov, Sergey; Markov, Vladimir
2009-01-01
Results are presented from studies of the formation of current sheets during exciting a current aligned with the X line of the 3D magnetic configuration, in the CS-3D device. Enhancement of the guide field (parallel to the X line) was directly observed for the first time, on the basis of magnetic measurements. After the current sheet formation, the guide field inside the sheet exceeds its initial value, as well as the field outside. It is convincingly demonstrated that an enhancement of the guide field is due to its transportation by plasma flows on the early stage of the sheet formation. The in-plane plasma currents, which produce the excess guide field, are comparable to the total current along the X line that initiates the sheet itself.
MELIDEO DANIELE; BARALDI Daniele
2016-01-01
The accumulation of a flammable cloud in an enclosure due to accidental leaks is one of the potential accident scenarios related to the indoor use of hydrogen and fuel cell technologies. Indoor accident configurations involves a wide range of scales, depending on the site and the type of hydrogen technology: a hydrogen dispenser in a warehouse (for hydrogen powered forklifts), a hydrogen powered vehicle in a garage, a fuel cell or hydrogen storage in a cabinet or in a section of a container (...
International Nuclear Information System (INIS)
Suzuki, Yukihisa; Okada, Shigefumi; Goto, Seiichi
2003-01-01
Modification of the magnetic field structure in the vicinity of the x-points and changes of the separatrix shape are investigated under the pressure effects due to an edge-layer plasma together with a mirror field by the two-dimensional (2-D) MHD equilibrium solutions of field-reversed configuration (FRC) obtained from the Grad-Shafranov equation. To explore the coupling pressure effects caused by edge-layer plasma and mirror field, the equilibrium calculations are performed by the combinations of several values of mirror ratio (R m ) and of edge-layer width (δ), respectively. A summary of results for present study is as follows. In the condition of weak mirror field (1.0 m m > 1.6, ψ=0 surface never opens up for any δ. These original results make it clear that large magnetic curvature produced by the strong mirror field enhances the magnetic stress around the x-point, so that the ends of FRC are effectively sustained by this enhanced magnetic stress, which counteracts the edge-layer plasma pressure effect. (author)
International Nuclear Information System (INIS)
Watanabe, Tamaki; Tokuda, Noboru; Tomizawa, Masahito; Arakaki, Yoshitsugu; Machida, Shinji; Mori, Yoshiharu; Shibuya, Shinji
1997-01-01
Since accelerating beam intensity is enormous in the JHF synchrotron, even small beam losses during the slow extraction leads to unacceptable level of radiation. We set a criterion such that tolerable beam loss in the slow extraction process should be less than 1% of the averaged beam current of 10 μA. We have examined the field configurations of the electrostatic septum and the massless septum magnet, respectively. The calculations of electrostatic and magnetic fields were carried out by the computer code POISSON. (author)
Rudolf, Andreas; Walther, Thomas
2012-11-01
We report on the realization of an excited-state Faraday anomalous dispersion optical filter (ESFADOF) edge filter based on the 5P(3/2)→8D(5/2) transition in rubidium. A maximum transmission of 81% has been achieved. This high transmission is only possible by utilizing a special configuration of magnetic fields taken from accelerator physics to provide a strong homogeneous magnetic field of approximately 6000 G across the vapor cell. The two resulting steep transmission edges are separated by more than 13 GHz, enabling its application in remote sensing.
International Nuclear Information System (INIS)
Kang, Sang Mo; Mannoor, Madhusoodanan; Maniyeri, Ranjith Maniyeri
2016-01-01
This paper presents two-dimensional direct numerical simulations to explore the effect of the Reynolds number on the Dielectrophoretic (DEP) motion of a pair of freely suspended particles in an unbounded viscous fluid under an external uniform electric field. Accordingly, the electric potential is obtained by solving the Maxwell'00s equation with a great sudden change in the electric conductivity at the particle-fluid interface and then the Maxwell stress tensor is integrated to determine the DEP force exerted on each particle. The fluid flow and particle movement, on the other hand, are predicted by solving the continuity and Navier-Stokes equations together with the kinetic equations. Numerical simulations are carried out using a finite volume approach, composed of a sharp interface method for the electric potential and a direct-forcing immersed-boundary method for the fluid flow. Through the simulations, it is found that both particles with the same sign of the conductivity revolve and eventually align themselves in a line with the electric field. With different signs, to the contrary, they revolve in the reverse way and eventually become lined up at a right angle with the electric field. The DEP motion also depends significantly on the Reynolds number defined based on the external electric field for all the combinations of the conductivity signs. When the Reynolds number is approximately below Re cr ≈ 0.1, the DEP motion becomes independent of the Reynolds number and thus can be exactly predicted by the no-inertia solver that neglects all the inertial and convective effects. With increasing Reynolds number above the critical number, on the other hand, the particles trace larger trajectories and thus take longer time during their revolution to the eventual in-line alignment.
Energy Technology Data Exchange (ETDEWEB)
Kang, Sang Mo; Mannoor, Madhusoodanan [Dong-A University, Busan (Korea, Republic of); Maniyeri, Ranjith Maniyeri [National Institute of Technology Karnataka, Mangalore (India)
2016-07-15
This paper presents two-dimensional direct numerical simulations to explore the effect of the Reynolds number on the Dielectrophoretic (DEP) motion of a pair of freely suspended particles in an unbounded viscous fluid under an external uniform electric field. Accordingly, the electric potential is obtained by solving the Maxwell'00s equation with a great sudden change in the electric conductivity at the particle-fluid interface and then the Maxwell stress tensor is integrated to determine the DEP force exerted on each particle. The fluid flow and particle movement, on the other hand, are predicted by solving the continuity and Navier-Stokes equations together with the kinetic equations. Numerical simulations are carried out using a finite volume approach, composed of a sharp interface method for the electric potential and a direct-forcing immersed-boundary method for the fluid flow. Through the simulations, it is found that both particles with the same sign of the conductivity revolve and eventually align themselves in a line with the electric field. With different signs, to the contrary, they revolve in the reverse way and eventually become lined up at a right angle with the electric field. The DEP motion also depends significantly on the Reynolds number defined based on the external electric field for all the combinations of the conductivity signs. When the Reynolds number is approximately below Re{sub cr} ≈ 0.1, the DEP motion becomes independent of the Reynolds number and thus can be exactly predicted by the no-inertia solver that neglects all the inertial and convective effects. With increasing Reynolds number above the critical number, on the other hand, the particles trace larger trajectories and thus take longer time during their revolution to the eventual in-line alignment.
Vassiliev, O. N.
2014-12-01
We propose a model of the radiation-induced bystander effect based on an analogy with magnetic systems. The main benefit of this approach is that it allowed us to apply powerful methods of statistical mechanics. The model exploits the similarity between how spin-spin interactions result in correlations of spin states in ferromagnets, and how signalling from a damaged cell reduces chances of survival of neighbour cells, resulting in correlated cell states. At the root of the model is a classical Hamiltonian, similar to that of an Ising ferromagnet with long-range interactions. The formalism is developed in the framework of the Mean Field Theory. It is applied to modelling tissue response in a uniform radiation field. In this case the results are remarkably simple and at the same time nontrivial. They include cell survival curves, expressions for the tumour control probability and effects of fractionation. The model extends beyond of what is normally considered as bystander effects. It offers an insight into low-dose hypersensitivity and into mechanisms behind threshold doses for deterministic effects.
International Nuclear Information System (INIS)
Belinsky, Moisey I.
2014-01-01
Highlights: • Distorted spin configurations determine field behavior of the variable chiralities. • Distortions change spin chiralities, intermediate M 12 ± and staggered magnetization. • Magnetizations, distorted vector and scalar chiralities are strongly correlated. • Distorted V 3 , Cu 3 nanomagnets possess large vector chirality in the ground state in B ⊥ . • Chiralities and distortions in EPR, INS and NMR spectra were considered. - Abstract: Correlated spin configurations, magnetizations, frustration, vector κ ¯ z and scalar χ ¯ chiralities are considered for distorted V ‾ 3 , /Cu 3 / anisotropic DM nanomagnets in transverse B x ‖X and longitudinal B‖Z fields. Different planar configurations in the ground and excited states of distorted nanomagnets in B x determine different field behavior of the vector chiralities and the degenerate frustration in these states correlated with the M ~ 12 ± (B x ) intermediate spin (IS) magnetization which describes the S 12 characteristics, χ=0. Distortion results in the reduced κ ¯ z <1 chirality in the ground distorted configuration and in the maximum κ z =±1 in the excited states with the planar 120° configurations at avoided level crossing. In B‖Z, distorted longitudinal spin-collinear configurations are characterized by the reduced degenerate frustration, out-of-plane staggered and IS M ~ 12 ± (B z ) magnetizations, and in-plane toroidal moments, correlated with the κ ¯ z , χ ¯ chiralities, χ ¯ =±|κ ¯ z |. The chiralities and IS magnetization in EPR, INS and NMR spectra are considered. The quantitative correlations describe variable spin chirality, frustration and field manipulation of chiralities in nanomagnets
K Basins Field Verification Program
International Nuclear Information System (INIS)
Booth, H.W.
1994-01-01
The Field Verification Program establishes a uniform and systematic process to ensure that technical information depicted on selected engineering drawings accurately reflects the actual existing physical configuration. This document defines the Field Verification Program necessary to perform the field walkdown and inspection process that identifies the physical configuration of the systems required to support the mission objectives of K Basins. This program is intended to provide an accurate accounting of the actual field configuration by documenting the as-found information on a controlled drawing
Morpurgo, Simone
2007-01-01
The principles of symmetry and group theory are applied to the zero-order wavefunctions associated with the strong-field t[subscript 2g][superscript 2] configuration and their symmetry-adapted linear combinations (SALC) associated with the generated energy terms are derived. This approach will enable students to better understand the use of…