International Nuclear Information System (INIS)
Prasad, R.
1975-01-01
Results of researches into Unified Field Theory over the past seven years are presented. The subject is dealt with in chapters entitled: the choice of affine connection, algebraic properties of the vector fields, field laws obtained from the affine connection based on the path integral method, application to quantum theory and cosmology, interpretation of physical theory in terms of geometry. (U.K.)
International Nuclear Information System (INIS)
Vollendorf, F.
1976-01-01
A theory is developed in which the gravitational as well as the electromagnetic field is described in a purely geometrical manner. In the case of a static central symmetric field Newton's law of gravitation and Schwarzschild's line element are derived by means of an action principle. The same principle leads to Fermat's law which defines the world lines of photons. (orig.) [de
Unitary unified field theories
International Nuclear Information System (INIS)
Sudarshan, E.C.G.
1976-01-01
This is an informal exposition of some recent developments. Starting with an examination of the universality of electromagnetic and weak interactions, the attempts at their unification are outlined. The theory of unitary renormalizable self-coupled vector mesons with dynamical sources is formulated for a general group. With masses introduced as variable parameters it is shown that the theory so defined is indeed unitary. Diagrammatic rules are developed in terms of a chosen set of fictitious particles. A number of special examples are outlined including a theory with strongly interacting vector and axial vector mesons and weak mesons. Applications to weak interactions of strange particles is briefly outlined. (Auth.)
Einstein's theory of unified fields
Tonnelat, Marie Antoinette
2014-01-01
First published in1966, here is presented a comprehensive overview of one of the most elusive scientific speculations by the pre-eminent genius of the 20th century. The theory is viewed by some scientists with deep suspicion, by others with optimism, but all agree that it represents an extreme challenge. As the author herself affirms, this work is not intended to be a complete treatise or 'didactic exposition' of the theory of unified fields, but rather a tool for further study, both by students and professional physicists. Dealing with all the major areas of research whic
Unified-field theory: yesterday, today, tomorrow
International Nuclear Information System (INIS)
Bergman, P.G.
1982-01-01
Beginning with the expounding of Einstein understanding of advantages and disadvantages of general relativity theory, the authors proceed to consideration of what the complete unified theory have to be according to Einstein. The four theories which can be considered as ''unified'', namely weyl and Calutsa ones, worked out a half of century ago, and twistor twisting and supersymmetry theories, nowadays attracting attention, are briefly described and discussed. The authors come to a conclusion that achievements in elementary-particle physics have to affect any future theory, that this theory has to explain the principle contradictions between classical and quantum field theories, and that finally it can lead to change of the modern space-time model as a four-dimensional variety
On the History of Unified Field Theories
Directory of Open Access Journals (Sweden)
Goenner Hubert F.M.
2004-01-01
Full Text Available This article is intended to give a review of the history of the classical aspects of unified field theories in the 20th century. It includes brief technical descriptions of the theories suggested, short biographical notes concerning the scientists involved, and an extensive bibliography. The present first installment covers the time span between 1914 and 1933, i.e., when Einstein was living and working in Berlin - with occasional digressions into other periods. Thus, the main theme is the unification of the electromagnetic and gravitational fields augmented by short-lived attempts to include the matter field described by Schrödinger's or Dirac's equations. While my focus lies on the conceptual development of the field, by also paying attention to the interaction of various schools of mathematicians with the research done by physicists, some prosopocraphical remarks are included.
New ideas about unified field theory
International Nuclear Information System (INIS)
Gleiser, M.
1986-01-01
An outline of the physical concepts evolution is given from the ancient philosophers to the present time. With qualitative explanations about the meaning of the theories that is the milestones of these concepts evolution, it mentions the ideas which lead the studies to the conception of a unified field theory. Chronologically, it has brief information about the ideas of Laplace (mechanical determinism), Maxwell (the field concept), Einsten (the space-time structure), Heisenberg and Schroedinger (the quantum mechanics), Dirac (the relativistic quantum and the antiparticles), Gell-Mann (the quarks), Weinberg-Salam (Weak interactions and eletromagnetic unification), H. Georgi and S. Glashon (strong interactions plus Weinberg-Salam), Kaluza-Klein (a fifth space-time coordinate), and Zumino-Weiss (supersymmetry and supergravity). (G.D.F.) [pt
Cosmotopological relation for a unified field theory
International Nuclear Information System (INIS)
Bij, J. J. van der
2007-01-01
I present an argument, based on the topology of the universe, why there are three generations of fermions. The argument implies a preferred unified gauge group of SU(5), but with SO(10) representations of the fermions. The breaking pattern SU(5)→SU(3)xSU(2)xU(1) is preferred over the pattern SU(5)→SU(4)xU(1). On the basis of the argument one expects an asymmetry in the early universe microwave data, which might have been detected already
New unified field theory based on the conformal group
Energy Technology Data Exchange (ETDEWEB)
Pessa, E [Rome Univ. (Italy). Ist. di Matematica
1980-10-01
Based on a six-dimensional generalization of Maxwell's equations, a new unified theory of the electromagnetic and gravitational field is developed. Additional space-time coordinates are interpreted only as mathematical tools in order to obtain a linear realization of the four-dimensional conformal group.
Schr"odinger's Unified Field Theory: Physics by Public Relations
Halpern, Paul
2009-05-01
We will explore the circumstances surrounding Erwin Schr"odinger's announcement in January 1947 that he had developed a comprehensive unified field theory of gravitation and electromagnetism. We will speculate on Schr"odinger's motivations for the mode and tone of his statements, consider the reaction of the international press within the context of the postwar era, and examine Einstein's response.
A geometrical foundation of a unified field theory
International Nuclear Information System (INIS)
Tauber, G.E.
1983-01-01
In a series of two little known papers Einstein and Mayer proposed a formalism by which they were able to obtain a theory of gravitation and electromagnetism similar to that of Kaluza and Klein. Instead of assuming, as these authors did, the existence of a five-dimensional continuum they assumed that at each point of space-time, regarded as a Riemannian space there exists a five-dimensional vector space. The purpose of this work is to generalize the approach of Einstein and Mayer to N dimensions and to lay the geometrical foundation of a possible unified field theory of gravitation with other fields. (Auth.)
Teleparallel Lagrange geometry and a unified field theory
Energy Technology Data Exchange (ETDEWEB)
Wanas, M I [Department of Astronomy, Faculty of Science, Cairo University, CTP of the British University in Egypt (BUE) (Egypt); Youssef, Nabil L; Sid-Ahmed, A M, E-mail: wanas@frcu.eun.eg, E-mail: nyoussef@frcu.eun.e, E-mail: nlyoussef2003@yahoo.f, E-mail: amrs@mailer.eun.e, E-mail: amrsidahmed@gmail.co [Department of Mathematics, Faculty of Science, Cairo University (Egypt)
2010-02-21
In this paper, we construct a field theory unifying gravity and electromagnetism in the context of extended absolute parallelism (EAP) geometry. This geometry combines, within its structure, the geometric richness of the tangent bundle and the mathematical simplicity of absolute parallelism (AP) geometry. The constructed field theory is a generalization of the generalized field theory (GFT) formulated by Mikhail and Wanas. The theory obtained is purely geometric. The horizontal (resp. vertical) field equations are derived by applying the Euler-Lagrange equations to an appropriate horizontal (resp. vertical) scalar Lagrangian. The symmetric part of the resulting horizontal (resp. vertical) field equations gives rise to a generalized form of Einstein's field equations in which the horizontal (resp. vertical) energy-momentum tensor is purely geometric. The skew-symmetric part of the resulting horizontal (resp. vertical) field equations gives rise to a generalized form of Maxwell equations in which the electromagnetic field is purely geometric. Some interesting special cases, which reveal the role of the nonlinear connection in the obtained field equations, are examined. Finally, the condition under which our constructed field equations reduce to the GFT is explicitly established.
Directory of Open Access Journals (Sweden)
Suhendro I.
2008-01-01
Full Text Available In this work, we attempt at constructing a comprehensive four-dimensional unified field theory of gravity, electromagnetism, and the non-Abelian Yang-Mills gauge field in which the gravitational, electromagnetic, and material spin fields are unified as intrinsic geometric objects of the space-time manifold $S_4$ via the connection, with the generalized non-Abelian Yang-Mills gauge field appearing in particular as a sub-field of the geometrized electromagnetic interaction.
A New Finslerian Unified Field Theory of Physical Interactions
Directory of Open Access Journals (Sweden)
Suhendro I.
2009-10-01
Full Text Available In this work, we shall present the foundational structure of a new unified field theory of physical interactions in a geometric world-space endowed with a new kind of Finslerian metric. The intrinsic non-metricity in the structure of our world-geometry may have direct, genuine connection with quantum mechanics, which is yet to be fully explored at present. Building upon some of the previous works of the Author, our ultimate aim here is yet another quantum theory of gravity (in just four space-time dimensions. Our resulting new theory appears to present us with a novel Eulerian (intrinsically motion-dependent world-geometry in which the physical fields originate.
Torsion tensor and covector in a unified field theory
International Nuclear Information System (INIS)
Chernikov, N.A.
1976-01-01
The Einstein unified field theory is used to solve a tensor equation to provide the unambiguous definition of affine connectedness. In the process of solving the Einstein equation limitations imposed by symmetry on the tensor and the torsion covector as well as on affine connectedness are elucidated. It is demonstrated that in a symmetric case the connectedness is unambiguously determined by the Einstein equation. By means of the Riemann geometry a formula for the torsion covector is derived. The equivalence of Einstein equations to those of the nonlinear Born-Infeld electrodynamics is proved
A Unified Field Theory of Gravity, Electromagnetism, and the Yang-Mills Gauge Field
Directory of Open Access Journals (Sweden)
Suhendro I.
2008-01-01
Full Text Available In this work, we attempt at constructing a comprehensive four-dimensional unified field theory of gravity, electromagnetism, and the non-Abelian Yang-Mills gauge field in which the gravitational, electromagnetic, and material spin fields are unified as intrinsic geometric objects of the space-time manifold S4 via the connection, with the general- ized non-Abelian Yang-Mills gauge field appearing in particular as a sub-field of the geometrized electromagnetic interaction.
Energy Technology Data Exchange (ETDEWEB)
Kubo, R; Takahashi, Y; Yokoyama, K
1975-01-01
In a wide class of neutral vector field theories, in which massive and massless fields are described in a unified way and a unique massless limit exists to quantum electrodynamics in covariant gauges, the commutability of the scale transformation and the massless limit is examined. It is shown that there occurs no anomaly with respect to the assignment for scale dimensions of relevant fields. Connection of scale transformation and gauge transformation is also discussed.
On the conformal transformation in *gλμ-unified field theory
International Nuclear Information System (INIS)
Lee, Il Young
1986-01-01
Chung gave the complete set of the general solutions of Einstein's equations in the Einstein's * g λμ -unified field theory for all classes and all possible indices of interia. In the present paper we shall investigate how the conformal transformation enforces the connection and give the complete relations between connections in * g λμ -unified field theory. Also we shall investigate how S λ is transformed by the conformal transformation and give conformally invariant connection. (Author)
Chung, Ding-Yu
2002-01-01
The unified theory of physics unifies various phenomena in our observable universe and other universes. The unified theory is based on the zero-energy universe and the space-object structures. Different universes in different developmental stages are the different expressions of the space-object structures. The unified theory is divided into five parts: the space-object structures, cosmology, the periodic table of elementary particles, the galaxy formation, and the extreme force field. The sp...
International Nuclear Information System (INIS)
Johnson, C.R.
1986-01-01
In a previous paper (paper I), we developed a method for finding the exact equations of structure and motion of multipole test particles in Einstein's unified field theory: the theory of the nonsymmetric field. In that paper we also applied the method and found in Einstein's unified field theory the equations of structure and motion of neutral pole-dipole test particles possessing no electromagnetic multipole moments. In a second paper (paper II), we applied the method and found in Einstein's unified field theory the exact equations of structure and motion of charged test particles possessing no magnetic monopole moments. In the present paper (paper III), we apply the method and find in Einstein's unified field theory the exact equations of structure and motion of charged test particles possessing magnetic monopole moments. It follows from the form of these equations of structure and motion that in general in Einstein's unified field theory a test particle possessing a magnetic monopole moment in a background electromagnetic field must also possess spin
International Nuclear Information System (INIS)
Johnson, C.R.
1985-01-01
We develop a method for finding the exact equations of structure and motion of multipole test particles in Einstein's unified field theory: the theory of the nonsymmetric field. The method is also applicable to Einstein's gravitational theory. Particles are represented by singularities in the field. The method is covariant at each step of the analysis. We also apply the method and find both in Einstein's unified field theory and in Einstein's gravitational theory the equations of structure and motion of neutral pole-dipole test particles possessing no electromagnetic multipole moments. In the case of Einstein's gravitational theory the results are the well-known equations of structure and motion of a neutral pole-dipole test particle in a given background gravitational field. In the case of Einstein's unified field theory the results are the same, providing we identify a certain symmetric second-rank tensor field appearing in Einstein's theory with the metric and gravitational field. We therefore discover not only the equations of structure and motion of a neutral test particle in Einstein's unified field theory, but we also discover what field in Einstein's theory plays the role of metric and gravitational field
Unified field theory on the basis of the projective theory of relativity
International Nuclear Information System (INIS)
Lessner, G.
1982-01-01
A unified field theory is developed on the basis of the five-dimensional vacuum equations R/sub munu/ = 0 in the projective theory of relativity. The four-dimensional field equations following from R/sub munu/ = 0 by projection are a generalized Einstein-Maxwell theory, for which the generalization is given by a scalar field. The particle concept based on these equations represents the intrinsic particle properties, which are the rest mass, or the energy in case of photons and neutrinos, the charge and the spin by integrals of the field distribution extended over spacelike hypersurfaces. The energy concept is based on Moller's energy-momentum complex. Moller's argument against his energy-momentum complex is discussed and refuted. The spin concept is derived from the axial symmetry of the field distribution. The stationary axially symmetric field is studied in detail. In the spherically symmetric static case the solutions of the field equations are given and investigated for their particle properties. It is shown that one and only one type of solution yields a good approach to the distribution of charge and rest mass in the proton. However, none of the spherically symmetric solutions represents the electron
Report on the state of research in the 5-dimensional projective unified field theory
International Nuclear Information System (INIS)
Schmutzer, Ernst
2009-01-01
The author presents a historical sketch of the projective relativity theory before and (with new qualitative arguments) after World War II. Then he treats the development of his Projective Unified Field Theory since 1957 up till now with applications to a closed cosmological model, with the result of a vanishing big bang and satisfying numerical cosmological parameters in good agreement with the experiments. (orig.)
DEFF Research Database (Denmark)
Wang, Wei; Zhao, Juan; Hu, Xiaoying
2017-01-01
All optical fields undergo random fluctuation and the underlying theory referred to as coherence and polarization of optical fields has played a fundamental role as an important manifestation of the random fluctuations of the electric fields. In this paper, we reviewed our recent theoretical...... and experimental work on the unified theory of polarization and coherence including coherence tensor wave, degree of coherence tensor, degree of generalized Stokes parameters, and their applications including coherence tensor holography and two-point resolution of polarimetric imaging....
Unified theory of gravitation, electromagnetism, and the Yang-Mills field
International Nuclear Information System (INIS)
Borchsenius, K.
1976-01-01
The recent modification and extension of Einstein's nonsymmetric unified field theory for gravitation and electromagnetism is generalized to include the Yang-Mills field theory. The generalization consists in assuming that the components of the linear connection and of the fundamental tensor are not ordinary c numbers but are matrices related to some unitary symmetry. As an example we consider the SU(2) case. The theory is applied to the gauge-covariant formulation of electrically and isotopically charged spin-1/2 field theories
Unified field theory: a search for unity in diversity
International Nuclear Information System (INIS)
Sudarshan, E.C.G.
1981-09-01
The study of the universe in which we find ourselves is part of the joys of the coming of age in the Asian tradition. At the periods of twilight in the transitions between night and day and between day and night we recite the gayatri which invokes the brilliance of light to inspire one. Further, this understanding is to be a unified whole encompassing the static and the dynamic. It is therefore appropriate that when we celebrate the Asian/Pacific American Heritage that we discuss the successes of the continuing efforts at unification of particle interactions. It is an adventure filled with successes along the way but by no means a finished adventure
Unified field theory with Einsteinian photons and heavy bosons as field quants
Energy Technology Data Exchange (ETDEWEB)
Treder, H J
1975-08-01
After discussing previously the classical electrodynamics which corresponds to the quantum electrodynamics with two sorts of photons (photons with zero rest mass and nonvanishing rest mass), the general field theory of a vector field A/sup v/ with two sorts if field quanta is given. It is shown that the postulate for the ''unity of the four-current'' determining the physical contents of this theory makes it possible to regard it as a classical ansatz of a unified theory of the electromagnetic and the weak interactions. From the ''unity of the currents'' results that the electrons are delta-like point-particles with a finite self-potential and finite field masses M = epsilon/sup 2//2 kc/sup -2/. The Compton wave-length of the heavy photons k/sup -1/ = h/mc has the meaning of an ''elementary length'' of the electromagnetic interactions and the rest mass m = khc/sup -1/ of these bosons is of the order of a baryon mass. (auth)
Self energies of the electron and photon in the unified space field theory
International Nuclear Information System (INIS)
Duong Van Phi, Nguyen Mong Giao.
1981-01-01
Self energies of the electron and photon are calculated in the second approximation of perturbation theory. The formalism of the field theory of interaction in the unified 8-dimensional space is used. The calculations are free of divergence the unitary condition is fulfilled. It is shown that the ''naked'' and physical masses of a free electron are identical. A similar result is obtained for a free photon. Some other effects are discussed [ru
On unified field theories, dynamical torsion and geometrical models: II
International Nuclear Information System (INIS)
Cirilo-Lombardo, D.J.
2011-01-01
We analyze in this letter the same space-time structure as that presented in our previous reference (Part. Nucl, Lett. 2010. V.7, No.5. P.299-307), but relaxing now the condition a priori of the existence of a potential for the torsion. We show through exact cosmological solutions from this model, where the geometry is Euclidean RxO 3 ∼ RxSU(2), the relation between the space-time geometry and the structure of the gauge group. Precisely this relation is directly connected with the relation of the spin and torsion fields. The solution of this model is explicitly compared with our previous ones and we find that: i) the torsion is not identified directly with the Yang-Mills type strength field, ii) there exists a compatibility condition connected with the identification of the gauge group with the geometric structure of the space-time: this fact leads to the identification between derivatives of the scale factor a with the components of the torsion in order to allow the Hosoya-Ogura ansatz (namely, the alignment of the isospin with the frame geometry of the space-time), and iii) of two possible structures of the torsion the 'tratorial' form (the only one studied here) forbid wormhole configurations, leading only to cosmological instanton space-time in eternal expansion
Dualities among one-time field theories with spin, emerging from a unifying two-time field theory
International Nuclear Information System (INIS)
Bars, Itzhak; Quelin, Guillaume
2008-01-01
The relation between two-time physics (2T-physics) and the ordinary one-time formulation of physics (1T-physics) is similar to the relation between a 3-dimensional object moving in a room and its multiple shadows moving on walls when projected from different perspectives. The multiple shadows as seen by observers stuck on the wall are analogous to the effects of the 2T-universe as experienced in ordinary 1T spacetime. In this paper we develop some of the quantitative aspects of this 2T to 1T relationship in the context of field theory. We discuss 2T field theory in d+2 dimensions and its shadows in the form of 1T field theories when the theory contains Klein-Gordon, Dirac and Yang-Mills fields, such as the standard model of particles and forces. We show that the shadow 1T field theories must have hidden relations among themselves. These relations take the form of dualities and hidden spacetime symmetries. A subset of the shadows are 1T field theories in different gravitational backgrounds (different space-times) such as the flat Minkowski spacetime, the Robertson-Walker expanding universe, AdS d-k xS k , and others, including singular ones. We explicitly construct the duality transformations among this conformally flat subset, and build the generators of their hidden SO(d,2) symmetry. The existence of such hidden relations among 1T field theories, which can be tested by both theory and experiment in 1T-physics, is part of the evidence for the underlying d+2 dimensional spacetime and the unifying 2T-physics structure
Relation of a unified quantum field theory of spinors to the structure of general relativity
International Nuclear Information System (INIS)
Kober, Martin
2009-01-01
Based on a unified quantum field theory of spinors assumed to describe all matter fields and their interactions we construct the space-time structure of general relativity according to a general connection within the corresponding spinor space. The tetrad field and the corresponding metric field are composed from a space-time dependent basis of spinors within the internal space of the fundamental matter field. Similar to twistor theory the Minkowski signature of the space-time metric is related to this spinor nature of elementary matter, if we assume the spinor space to be endowed with a symplectic structure. The equivalence principle and the property of background independence arise from the fact that all elementary fields are composed from the fundamental spinor field. This means that the structure of space-time according to general relativity seems to be a consequence of a fundamental theory of matter fields and not a presupposition as in the usual setting of relativistic quantum field theories.
Experimental status of unified theories
International Nuclear Information System (INIS)
Bilen'kij, S.M.
1979-01-01
A standard SU(2)xU(1) theory is discussed. It is based on an assumption that the left components of fields form doublets, and the rignt ones - singlets. From the weak interaction lagrangian an expression is obtained for the effective hamiltonian describing neutrino-lepton processes. The results of discussing the experimental status of the unified theories of weak and electromagnetic interactions are in agreement with the simplest version of the unified theories - the Weinberg-Salam theory. It has been noted that the accuracy of the experiments (not exceeding 20%) is insufficient and no information is available on diagonal terms of the hamiltonian
International Nuclear Information System (INIS)
Leite Lopes, J.
1998-04-01
In this work, we discuss the physical ideas which represents the basis for the unified gauge field model. Despite of the difficulties that we presently have for embodying in a natural manner muons and hadrons in that model, we have the feeling that we are on the way which seems to lead to the construction of a theory in which the Maxwell electromagnetic field and the Fermi weak interaction field are manifestations of a unique subjacent physical entity - the unified gauge fields. (author)
Discrete finite nilpotent Lie analogs: New models for unified gauge field theory
International Nuclear Information System (INIS)
Kornacker, K.
1978-01-01
To each finite dimensional real Lie algebra with integer structure constants there corresponds a countable family of discrete finite nilpotent Lie analogs. Each finite Lie analog maps exponentially onto a finite unipotent group G, and is isomorphic to the Lie algebra of G. Reformulation of quantum field theory in discrete finite form, utilizing nilpotent Lie analogs, should elminate all divergence problems even though some non-Abelian gauge symmetry may not be spontaneously broken. Preliminary results in the new finite representation theory indicate that a natural hierarchy of spontaneously broken symmetries can arise from a single unbroken non-Abelian gauge symmetry, and suggest the possibility of a new unified group theoretic interpretation for hadron colors and flavors
International Nuclear Information System (INIS)
Langacker, P.
1981-01-01
In this talk I discuss the present status of these theories and of their observational and experimental implications. In section II, I briefly review the standard SU 3 sup(c) x SU 2 x U 1 model of the strong and electroweak interactions. Although phenomenologically successful, the standard model leaves many questions unanswered. Some of these questions are addressed by grand unified theories, which are defined and discussed in Section III. The Georgi-Glashow SU 5 model is described, as are theories based on larger groups such as SO 10 , E 6 , or SO 16 . It is emphasized that there are many possible grand unified theories and that it is an experimental problem not only to test the basic ideas but to discriminate between models. (orig./HSI)
Direction: unified theory of interactions
International Nuclear Information System (INIS)
Valko, P.
1987-01-01
Briefly characterized are the individual theories, namely, the general relativity theory, the Kaluza-Klein theory, the Weyl theory, the unified theory of electromagnetic and weak interactions, the supergravity theory, and the superstring theory. The history is recalled of efforts aimed at creating a unified theory of interactions, and future prospects are outlined. (M.D.). 2 figs
Unified gauge theories with spontaneous symmetry breaking
International Nuclear Information System (INIS)
MacDowell, S.W.
1975-01-01
Unified gauge theories with spontaneous symmetry breaking are studied with a view to renormalize quantum field theory. Georgi-Glashow and Weinberg-Salam models to unify weak and electromagnetic interactions are discussed in detail. Gauge theories of strong interactions are also considered [pt
A model unified field equation
International Nuclear Information System (INIS)
Perring, J.K.; Skyrme, T.H.R.
1994-01-01
The classical solutions of a unified field theory in a two-dimensional space-time are considered. This system, a model of a interacting mesons and baryons, illustrates how the particle can be built from a wave-packet of mesons and how reciprocally the meson appears as a tightly bound combination of particle and antiparticle. (author). 6 refs
International Nuclear Information System (INIS)
Voros, J.
1995-01-01
The electromagnetic interaction in the Einstein-Infeld-Hoffmann (EIH) equations of motion for charged particles in Einstein's unified field theory (EUFT) is found to be automatically precluded by the conventional identification of the skew part of the fundamental tensor with the Faraday tensor. It is shown that an alternative identification, suggested by observations of Einstein, Bergmann and Papapetrou, would lead to the expected electromagnetic interaction, were it not for the intervention of an infelicitous (radiation) gauge. Therefore, an EIH analysis of EUFT is inconclusive as a test of the physical viability of the theory, and it follows that EUFT cannot be considered necessarily unphysical on the basis of such an analysis. It is concluded that, historically, Einstein's unified field theory was rejected for the wrong reason. 26 refs
International Nuclear Information System (INIS)
Rao, J.R.; Tiwari, R.N.
1974-01-01
A theorem on obtaining exact solutions for a particular field structure from those of vacuum field equations of general theory as well as from some simpler solutions of unified theories is derived. With the help of this result the most general solution for the particular field structure is developed from the already known simpler solutions. The physical implications of this theorem in relation to some of the parallel work of other authors is discussed. (author)
International Nuclear Information System (INIS)
Gross, D.J.
1985-01-01
String theories offer a way of realizing the potential of supersymmetry, Kaluza-Klein and much more. They represent a radical departure from ordinary quantum field theory, but in the direction of increased symmetry and structure. They are based on an enormous increase in the number of degrees of freedom, since in addition to fermionic coordinates and extra dimensions, the basic entities are extended one dimensional objects instead of points. Correspondingly the symmetry group is greatly enlarged, in a way that we are only beginning to comprehend. At the very least this extended symmetry contains the largest group of symmetries that can be contemplated within the framework of point field theories-those of ten-dimensional supergravity and super Yang-Mills theory. Types of string theories and the phenomenology to be expected from them are reviewed
International Nuclear Information System (INIS)
Ellis, J.
1982-01-01
The author gives an introduction to the construction of grand unified theories on the base of the SU(3)xSU(2)xU(1) model of the strong, weak, and electromagnetic interactions. Especially he discusses the proton decay, neutrino masses and oscillations, and cosmological implications in connection with grand unified theories. (orig./HSI)
International Nuclear Information System (INIS)
1981-01-01
Topics covered include: symmetric gauge theories; infinite lie algebras in physics; the mechanism for confinement in massive quark QCD; a search for possible composite models of quarks and leptons; the radiative structure of Fermion masses; fractional electric charge in QCD; heavy particle effects; Fermion mass heirarchies in theories of technicolor; statistical notions applied in the early universe; grand unification and cosmology - an environmental impact statement; first order phase transition in the early universe; the electric dipole moment of the neutron; cosmological constraints on Grand Unified Theories; and the consequences for CP invariance of instanton angles THETA in dynamically broken gauge theories. Individual items from this workshop were prepared separately for the data base
Energy Technology Data Exchange (ETDEWEB)
Múnera, Héctor A., E-mail: hmunera@hotmail.com [Centro Internacional de Física (CIF), Apartado Aéreo 4948, Bogotá, Colombia, South America (Colombia); Retired professor, Department of Physics, Universidad Nacional de Colombia, Bogotá, Colombia, South America (Colombia)
2016-07-07
It is postulated that there exists a fundamental energy-like fluid, which occupies the flat three-dimensional Euclidean space that contains our universe, and obeys the two basic laws of classical physics: conservation of linear momentum, and conservation of total energy; the fluid is described by the classical wave equation (CWE), which was Schrödinger’s first candidate to develop his quantum theory. Novel solutions for the CWE discovered twenty years ago are nonharmonic, inherently quantized, and universal in the sense of scale invariance, thus leading to quantization at all scales of the universe, from galactic clusters to the sub-quark world, and yielding a unified Lorentz-invariant quantum theory ab initio. Quingal solutions are isomorphic under both neo-Galilean and Lorentz transformations, and exhibit nother remarkable property: intrinsic unstability for large values of ℓ (a quantum number), thus limiting the size of each system at a given scale. Unstability and scale-invariance together lead to nested structures observed in our solar system; unstability may explain the small number of rows in the chemical periodic table, and nuclear unstability of nuclides beyond lead and bismuth. Quingal functions lend mathematical basis for Boscovich’s unified force (which is compatible with many pieces of evidence collected over the past century), and also yield a simple geometrical solution for the classical three-body problem, which is a useful model for electronic orbits in simple diatomic molecules. A testable prediction for the helicoidal-type force is suggested.
A unifying framework for ghost-free Lorentz-invariant Lagrangian field theories
Li, Wenliang
2018-04-01
We propose a framework for Lorentz-invariant Lagrangian field theories where Ostrogradsky's scalar ghosts could be absent. A key ingredient is the generalized Kronecker delta. The general Lagrangians are reformulated in the language of differential forms. The absence of higher order equations of motion for the scalar modes stems from the basic fact that every exact form is closed. The well-established Lagrangian theories for spin-0, spin-1, p-form, spin-2 fields have natural formulations in this framework. We also propose novel building blocks for Lagrangian field theories. Some of them are novel nonlinear derivative terms for spin-2 fields. It is nontrivial that Ostrogradsky's scalar ghosts are absent in these fully nonlinear theories.
International Nuclear Information System (INIS)
Rosner, J.L.
1987-01-01
This paper reports on a pedagogical introduction that attempts to unify the strong and electroweak interactions. Unifying groups discussed include SU(5), SO(10), and E 6 . Particular attention is paid to the questions of whether the low-energy gauge group (that accessible at accelerator experiments in the foreseeable future) extends beyond SU(3) x SU(2) L x U(1). Low-energy studies of neutral-current effects, direct production of gauge bosons, and new fermions all can shed light on this question. Brief remarks are made concerning the role of monopoles, cosmic strings, baryogenesis, supersymmetry, and higher dimensions in this program
Energy Technology Data Exchange (ETDEWEB)
1981-01-01
Topics covered include: symmetric gauge theories; infinite lie algebras in physics; the mechanism for confinement in massive quark QCD; a search for possible composite models of quarks and leptons; the radiative structure of Fermion masses; fractional electric charge in QCD; heavy particle effects; Fermion mass heirarchies in theories of technicolor; statistical notions applied in the early universe; grand unification and cosmology - an environmental impact statement; first order phase transition in the early universe; the electric dipole moment of the neutron; cosmological constraints on Grand Unified Theories; and the consequences for CP invariance of instanton angles THETA in dynamically broken gauge theories. Individual items from this workshop were prepared separately for the data base. (GHT)
Unified theory in the worldline approach
Directory of Open Access Journals (Sweden)
James P. Edwards
2015-11-01
Full Text Available We explore unified field theories based on the gauge groups SU(5 and SO(10 using the worldline approach for chiral fermions with a Wilson loop coupling to a background gauge field. Representing path ordering and chiral projection operators with functional integrals has previously reproduced the sum over the chiralities and representations of standard model particles in a compact way. This paper shows that for SU(5 the 5¯ and 10 representations – into which the Georgi–Glashow model places the left-handed fermionic content of the standard model – appear naturally and with the familiar chirality. We carry out the same analysis for flipped SU(5 and uncover a link to SO(10 unified theory. We pursue this by exploring the SO(10 theory in the same framework, the less established unified theory based on SU(6 and briefly consider the Pati–Salam model using SU(4×SU(2×SU(2.
Toward a Unified Communication Theory.
McMillan, Saundra
After discussing the nature of theory itself, the author explains her concept of the Unified Communication Theory, which rests on the assumption that there exists in all living structures a potential communication factor which is delimited by species and ontogeny. An organism develops "symbol fixation" at the level where its perceptual abilities…
Unified field theories, the early big bang, and the microwave background paradox
Stecker, F. W.
1979-01-01
It is suggested that a superunified field theory incorporating gravity and possessing asymptotic freedom could provide a solution to the paradox of the isotropy of the universal 3K background radiation. Thermal equilibrium could be established in this context through interactions occurring in a temporally indefinite preplanckian era.
The Simplest Unified Growth Theory
DEFF Research Database (Denmark)
Strulik, Holger; Weisdorf, Jacob Louis
This paper provides a unified growth theory, i.e. a model that explains the very long-run economic and demographic development path of industrialized economies, stretching from the pre-industrial era to present-day and beyond. Making strict use of Malthus' (1798) so-called preventive check...... hypothesis - that fertility rates vary inversely with the price of food - the current study offers a new and straightforward explanation for the demographic transition and the break with the Malthusian era. The current framework lends support to existing unified growth theories and is well in tune...
Unified theory of effective interaction
Energy Technology Data Exchange (ETDEWEB)
Takayanagi, Kazuo, E-mail: k-takaya@sophia.ac.jp
2016-09-15
We present a unified description of effective interaction theories in both algebraic and graphic representations. In our previous work, we have presented the Rayleigh–Schrödinger and Bloch perturbation theories in a unified fashion by introducing the main frame expansion of the effective interaction. In this work, we start also from the main frame expansion, and present various nonperturbative theories in a coherent manner, which include generalizations of the Brandow, Brillouin–Wigner, and Bloch–Horowitz theories on the formal side, and the extended Krenciglowa–Kuo and the extended Lee–Suzuki methods on the practical side. We thus establish a coherent and comprehensive description of both perturbative and nonperturbative theories on the basis of the main frame expansion.
International Nuclear Information System (INIS)
Wildermuth, K.; Tang, Y.C.
1977-01-01
The purpose of this monograph is to describe a microscopic nuclear theory which can be used to consider all low-energy nuclear phenomena from a unified viewpoint. In this theory, the Pauli principle is completely taken into account and translationally invariant wave functions are always employed. It can be utilized to study reactions initiated not only by nucleons but also by arbitrary composite particles
Energy Technology Data Exchange (ETDEWEB)
Heller, Marc Andre [Particle Theory and Cosmology Group, Department of Physics,Graduate School of Science, Tohoku University,Aoba-ku, Sendai 980-8578 (Japan); Ikeda, Noriaki [Department of Mathematical Sciences, Ritsumeikan University,Kusatsu, Shiga 525-8577 (Japan); Watamura, Satoshi [Particle Theory and Cosmology Group, Department of Physics,Graduate School of Science, Tohoku University,Aoba-ku, Sendai 980-8578 (Japan)
2017-02-15
We give a systematic derivation of the local expressions of the NS H-flux, geometric F- as well as non-geometric Q- and R-fluxes in terms of bivector β- and two-form B-potentials including vielbeins. They are obtained using a supergeometric method on QP-manifolds by twist of the standard Courant algebroid on the generalized tangent space without flux. Bianchi identities of the fluxes are easily deduced. We extend the discussion to the case of the double space and present a formulation of T-duality in terms of canonical transformations between graded symplectic manifolds. Thus, we find a unified description of geometric as well as non-geometric fluxes and T-duality transformations in double field theory. Finally, the construction is compared to the formerly introduced Poisson Courant algebroid, a Courant algebroid on a Poisson manifold, as a model for R-flux.
Unified description of structure and reactions: implementing the nuclear field theory program
International Nuclear Information System (INIS)
Broglia, R A; Bortignon, P F; Barranco, F; Vigezzi, E; Idini, A; Potel, G
2016-01-01
The modern theory of the atomic nucleus results from the merging of the liquid drop model of Niels Bohr and Fritz Kalckar, and of the shell model of Marie Goeppert Meyer and Hans Jensen. The first model contributed the concepts of collective excitations. The second, those of independent-particle motion. The unification of these apparently contradictory views in terms of the particle-vibration and particle-rotation couplings carried out by Aage Bohr and Ben Mottelson has allowed for an ever more complete, accurate and detailed description of nuclear structure. Nuclear field theory (NFT), developed by the Copenhagen–Buenos Aires collaboration, provided a powerful quantal embodiment of this unification. Reactions are not only at the basis of quantum mechanics (statistical interpretation, Max Born), but also the specific tools to probe the atomic nucleus. It is then natural that NFT is being extended to deal with processes which involve the continuum in an intrinsic fashion, so as to be able to treat them on an equal footing with those associated with bound states (structure). As a result, spectroscopic studies of transfer to continuum states could eventually make use of the NFT rules, properly extended to take care of recoil effects. In the present contribution we review the implementation of the NFT program of structure and reactions, setting special emphasis on open problems and outstanding predictions. (invited comment)
Finite Unified Theories and the Higgs boson
Heinemeyer, Sven; Zoupanos, George
2012-01-01
All-loop Finite Unified Theories (FUTs) are very interesting N = 1 supersymmetric Grand Unified Theories (GUTs) realising an old field theory dream, and moreover have a remarkable predictive power due to the required reduction of couplings. Based on this theoretical framework phenomenologically consistent FUTs have been constructed. Here we review two FUT models based on the SU(5) gauge group, which can be seen as special, restricted and thus very predictive versions of the MSSM. We show that from the requirement of correct prediction of quark masses and other experimental constraints a light Higgs-boson mass in the range M_h ~ 121 - 126 GeV is predicted, in striking agreement with recent experimental results from ATLAS and CMS. The model furthermore naturally predicts a relatively heavy spectrum with colored supersymmetric particles above ~ 1.5 TeV in agreement with the non-observation of those particles at the LHC.
Phenomenology of unified gauge theories
International Nuclear Information System (INIS)
Ellis, J.
1983-01-01
Part I of these lectures treats the standard Glashow-Weinberg-Salam model of weak and electromagnetic interactions, discussing in turn its basic structure and weak neutral currents, charged currents, mixing angles and CP violation, and the phenomenology of weak vector and Higgs bosons. Part II of the lectures discusses the structure of theories of dynamical symmetry breaking such as technicolour, phenomenological consequences, frustrations and alternatives. The third part of these lectures offers the standard menu of grand unified theories (GUTs) of the strong, weak and electromagnetic interactions, including an hors d'oeuvre of constraints on the parameters of the standard model, a main course of baryon number violating processes, and desserts which violate lepton number and CP. The fourth and final part goes through different attempts to remedy the inadequacies of previous theories by invoking supersymmetry and reaching out towards gravitation. (orig./HSI)
Quantum numbers of anti-grand-unified-theory Higgs fields from the quark-lepton spectrum
International Nuclear Information System (INIS)
Froggatt, C.D.; Nielsen, H.B.; Smith, D.J.
2002-01-01
A series of Higgs field quantum numbers in the anti-grand-unification model, based on the gauge group SMG 3 xU(1) f , is tested against the spectrum of quark and lepton masses and mixing angles. A more precise formulation of the statement that the couplings are assumed of order unity is given. It is found that the corrections coming from this more precise assumption do not contain factors of the order of the number of colors, N c =3, as one could have feared. We also include a combinatorial correction factor, taking account of the distinct internal orderings within the chain Feynman diagrams in our statistical estimates. Strictly speaking our model predicts that the uncertainty in its predictions and thus the accuracy of our fits should be ±60%. Many of the best fitting quantum numbers give a higher accuracy fit to the masses and mixing angles, although within the expected fluctuations in a χ 2 . This means that our fit is as good as it can possibly be
Cosmology and unified gauge theory
Oraifeartaigh, L.
1981-09-01
Theoretical points in common between cosmology and unified gauge theory (UGT) are reviewed, with attention given to areas of one which have proven useful for the other. The underlying principles for both theoretical frameworks are described, noting the differences in scale, i.e., 10 to the 25th cm in cosmology and 10 to the -15th cm for UGT. Cosmology has produced bounds on the number of existing neutrino species, and also on the mass of neutrinos, two factors of interest in particle physics. Electrons, protons, and neutrinos, having been spawned from the same massive leptons, each composed of three quarks, have been predicted to be present in equal numbers in the Universe by UGT, in line with necessities of cosmology. The Grand UGT also suggests specific time scales for proton decay, thus accounting for the observed baryon assymmetry.
The unified theory of nuclear reactions
International Nuclear Information System (INIS)
Tobocman, W.
A unified nuclear reaction theory is a formalism for the scattering reactions of many-body nuclear systems which is capable of describing both direct interaction and compound nucleus formation processes. The Feshbach projection operator formalism is the original unified nuclear reaction theory. An alternative unified nuclear reaction theory called the X-matrix formalism is described. The X-matrix formalism is a generalization of the Brown-de Dominicis formalism. It does not require projection operators and is readly applied to rearrangement collisions
Development of unified gauge theories: retrospect
International Nuclear Information System (INIS)
Lee, B.W.
1977-01-01
The construction and development of unified gauge theory of weak, electromagnetic, and strong interactions is reviewed. The Weinberg and Lee contributions to this study are mainly considered as personal recollections
International Nuclear Information System (INIS)
Lichtinger, Manfred
2010-01-01
In the first part of the book the author summarizes the present status of modern and classical physics and shows that the contemporary theories ans laws exhibit certain deficiencies and lead to inconsistencies. Partly these deficiencies are removed by relativity theories and quantum theories, but in the other part they concern also the modern theories of the special and general relativity, the big bang, the quantum mechanics, and the quantum gravity. So many objections exist against the relativity theories and the modern cosmology, in which the big bang occupies a central role. To resolve these inconsistencies the author has taken as goal and constructs for this in the second part of the book in a first step three extensions of the conventional GRT, a quantum gravitation theory, a unification of all interactions, and a systematic extension of Einstein's theory of gravitation to arbitrarily high-order nonlinear terms. In a second step he replaces the general relativity by to gravitational theories in the Minkowski space, which leave the special relativity theory unaffected.Because also they exhibit still certain deficiencies, he developes in a third step a ether gravitational theory, a renaissance of the classical light-ether theory, which he then extends finally to the everlasting field theory, which is able to solve nearly all problems presented in the first part of the book.
Introduction to gauge field theory
International Nuclear Information System (INIS)
Bailin, David; Love, Alexander
1986-01-01
The book is intended as an introduction to gauge field theory for the postgraduate student of theoretical particle physics. The topics discussed in the book include: path integrals, classical and quantum field theory, scattering amplitudes, feynman rules, renormalisation, gauge field theories, spontaneous symmetry breaking, grand unified theory, and field theories at finite temperature. (UK)
Constructing 5d orbifold grand unified theories from heterotic strings
International Nuclear Information System (INIS)
Kobayashi, Tatsuo; Raby, Stuart; Zhang Renjie
2004-01-01
A three-generation Pati-Salam model is constructed by compactifying the heterotic string on a particular T 6 /Z 6 Abelian symmetric orbifold with two discrete Wilson lines. The compactified space is taken to be the Lie algebra lattice G 2 -bar SU(3)-bar SO(4). When one dimension of the SO(4) lattice is large compared to the string scale, this model reproduces many features of a 5d SO(10) grand unified theory compactified on an S 1 /Z 2 orbifold. (Of course, with two large extra dimensions we can obtain a 6d SO(10) grand unified theory.) We identify the orbifold parities and other ingredients of the orbifold grand unified theories in the string model. Our construction provides a UV completion of orbifold grand unified theories, and gives new insights into both field theoretical and string theoretical constructions
Effective quantum field theories
International Nuclear Information System (INIS)
Georgi, H.M.
1993-01-01
The most appropriate description of particle interactions in the language of quantum field theory depends on the energy at which the interactions are studied; the description is in terms of an ''effective field theory'' that contains explicit reference only to those particles that are actually important at the energy being studied. The various themes of the article are: local quantum field theory, quantum electrodynamics, new physics, dimensional parameters and renormalizability, socio-dynamics of particle theory, spontaneously broken gauge theories, scale dependence, grand unified and effective field theories. 2 figs
Catastrophe Theory: A Unified Model for Educational Change.
Cryer, Patricia; Elton, Lewis
1990-01-01
Catastrophe Theory and Herzberg's theory of motivation at work was used to create a model of change that unifies and extends Lewin's two separate stage and force field models. This new model is used to analyze the behavior of academics as they adapt to the changing university environment. (Author/MLW)
A unifying theory The universe on a string
Greene, Brian
2006-01-01
Seventy-five years ago, Albert Einstein completed his unified field theory; but, as had happened before and would happen again, Einstein had to go bak to the drawing board. Much progress have been inspired, with the most recent advances coming from an approach called string theory. (1,5 page)
Canonical duality theory unified methodology for multidisciplinary study
Latorre, Vittorio; Ruan, Ning
2017-01-01
This book on canonical duality theory provides a comprehensive review of its philosophical origin, physics foundation, and mathematical statements in both finite- and infinite-dimensional spaces. A ground-breaking methodological theory, canonical duality theory can be used for modeling complex systems within a unified framework and for solving a large class of challenging problems in multidisciplinary fields in engineering, mathematics, and the sciences. This volume places a particular emphasis on canonical duality theory’s role in bridging the gap between non-convex analysis/mechanics and global optimization. With 18 total chapters written by experts in their fields, this volume provides a nonconventional theory for unified understanding of the fundamental difficulties in large deformation mechanics, bifurcation/chaos in nonlinear science, and the NP-hard problems in global optimization. Additionally, readers will find a unified methodology and powerful algorithms for solving challenging problems in comp...
Toward a Unified Theory of Human Reasoning.
Sternberg, Robert J.
1986-01-01
The goal of this unified theory of human reasoning is to specify what constitutes reasoning and to characterize the psychological distinction between inductive and deductive reasoning. The theory views reasoning as the controlled and mediated application of three processes (encoding, comparison and selective combination) to inferential rules. (JAZ)
Toward a Unified Consciousness Theory
Johnson, Richard H.
1977-01-01
The beginning of a holistic theory that can treat paranormal phenomena as normal human development is presented. Implications for counseling, counselor education, and counselor supervision are discussed. (Author)
Model of unified gauge fields; Le modele des champs de jauge unifies
Energy Technology Data Exchange (ETDEWEB)
Leite Lopes, J. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)
1998-04-01
In this work, we discuss the physical ideas which represents the basis for the unified gauge field model. Despite of the difficulties that we presently have for embodying in a natural manner muons and hadrons in that model, we have the feeling that we are on the way which seems to lead to the construction of a theory in which the Maxwell electromagnetic field and the Fermi weak interaction field are manifestations of a unique subjacent physical entity - the unified gauge fields. (author) 22 refs., 6 figs.
Unified strength theory and its applications
Yu, Mao-Hong
2004-01-01
This is a completely new theory dealing with the yield and failure of materials under multi-axial stresses. It provides a system of yield and failure criteria adopted for most materials, from metallic materials to rocks, concretes, soils, polymers etc. The Unified Strength Theory has been applied successfully to analyse the elastic limit, plastic limit capacities, the dynamic response behavior for some structures under static and moderate impulsive load, and may be implemented in some elasto-plastic finite element computer codes. The Unified Strength Theory is described in detail and by using this theory a series of results can be obtained. The Unified Strength Theory can improve the conservative Mohr-Coulomb Theory, and since intermediate principal stress is not taken into account in the Mohr-Coulomb theory and most experimental data is not pertainable to the Mohr-Coulomb Theory, a considerable economic benefit may be obtained. The book can also increase the effect of most commercial finite element computer ...
Location theory a unified approach
Nickel, Stefan
2006-01-01
Although modern location theory is now more than 90 years old, the focus of researchers in this area has been mainly problem oriented. However, a common theory, which keeps the essential characteristics of classical location models, is still missing.This monograph addresses this issue. A flexible location problem called the Ordered Median Problem (OMP) is introduced. For all three main subareas of location theory (continuous, network and discrete location) structural properties of the OMP are presented and solution approaches provided. Numerous illustrations and examples help the reader to bec
Covariant extensions and the nonsymmetric unified field
International Nuclear Information System (INIS)
Borchsenius, K.
1976-01-01
The problem of generally covariant extension of Lorentz invariant field equations, by means of covariant derivatives extracted from the nonsymmetric unified field, is considered. It is shown that the contracted curvature tensor can be expressed in terms of a covariant gauge derivative which contains the gauge derivative corresponding to minimal coupling, if the universal constant p, characterizing the nonsymmetric theory, is fixed in terms of Planck's constant and the elementary quantum of charge. By this choice the spinor representation of the linear connection becomes closely related to the spinor affinity used by Infeld and Van Der Waerden (Sitzungsber. Preuss. Akad. Wiss. Phys. Math. Kl.; 9:380 (1933)) in their generally covariant formulation of Dirac's equation. (author)
IDEA: A Unifying Theory for Evaluation Systems
DEFF Research Database (Denmark)
Bella, Giampaolo; Giustolisi, Rosario
2017-01-01
Secure systems for voting, exams, auctions and conference paper management are theorised to address the same problem, that of secure evaluations. In support of such a unifying theory comes a model for Secure Evaluation Systems (SES), which offers innovative common grounds to understand all four...
Geometric theory of fundamental interactions. Foundations of unified physics
International Nuclear Information System (INIS)
Pestov, A.B.
2012-01-01
We put forward an idea that regularities of unified physics are in a simple relation: everything in the concept of space and the concept of space in everything. With this hypothesis as a ground, a conceptual structure of a unified geometrical theory of fundamental interactions is created and deductive derivation of its main equations is produced. The formulated theory gives solution of the actual problems, provides opportunity to understand the origin and nature of physical fields, local internal symmetry, time, energy, spin, charge, confinement, dark energy and dark matter, thus conforming the existence of new physics in its unity
Effective quantum field theories
International Nuclear Information System (INIS)
Georgi, H.M.
1989-01-01
Certain dimensional parameters play a crucial role in the understanding of weak and strong interactions based on SU(2) x U(1) and SU(3) symmetry group theories and of grand unified theories (GUT's) based on SU(5). These parameters are the confinement scale of quantum chromodynamics and the breaking scales of SU(2) x U(1) and SU(5). The concepts of effective quantum field theories and renormalisability are discussed with reference to the economics and ethics of research. (U.K.)
A Unifying Theory of Biological Function.
van Hateren, J H
2017-01-01
A new theory that naturalizes biological function is explained and compared with earlier etiological and causal role theories. Etiological (or selected effects) theories explain functions from how they are caused over their evolutionary history. Causal role theories analyze how functional mechanisms serve the current capacities of their containing system. The new proposal unifies the key notions of both kinds of theories, but goes beyond them by explaining how functions in an organism can exist as factors with autonomous causal efficacy. The goal-directedness and normativity of functions exist in this strict sense as well. The theory depends on an internal physiological or neural process that mimics an organism's fitness, and modulates the organism's variability accordingly. The structure of the internal process can be subdivided into subprocesses that monitor specific functions in an organism. The theory matches well with each intuition on a previously published list of intuited ideas about biological functions, including intuitions that have posed difficulties for other theories.
Phenomenological aspects of unified theories
International Nuclear Information System (INIS)
Peccei, R.D.
1987-01-01
The author briefly discusses two new phenomena of recent interest, the 5/sup th/ force and variant axions. The former, for its elucidation, will require further gravitational experiments, but the author concludes that variant axions are now definitely rules out experimentally. Various aspects of superstring phenomenology are then addressed, including some of the generic predictions of superstrings and some of its generic problems. In particular, he discusses some of the phenomenological consequences of having an extra Z 0 boson and the circumstances under which this excitation is a genuine prediction of superstrings. Since it is likely that a more reliable relic of superstrings will be provided by the presence of superpartners at low energy (≤ TeV), he discusses some of the bounds for squarks and gluinos obtained at the SppS collider and the expectations for their production at the Tevatron. As a final topic, he touches upon some of the consequences that result from having the Fermi scale arise from an underlying theory. Some aspects of the composite Higgs model and of the strongly coupled standard model are briefly reviewed
Randomized central limit theorems: A unified theory.
Eliazar, Iddo; Klafter, Joseph
2010-08-01
The central limit theorems (CLTs) characterize the macroscopic statistical behavior of large ensembles of independent and identically distributed random variables. The CLTs assert that the universal probability laws governing ensembles' aggregate statistics are either Gaussian or Lévy, and that the universal probability laws governing ensembles' extreme statistics are Fréchet, Weibull, or Gumbel. The scaling schemes underlying the CLTs are deterministic-scaling all ensemble components by a common deterministic scale. However, there are "random environment" settings in which the underlying scaling schemes are stochastic-scaling the ensemble components by different random scales. Examples of such settings include Holtsmark's law for gravitational fields and the Stretched Exponential law for relaxation times. In this paper we establish a unified theory of randomized central limit theorems (RCLTs)-in which the deterministic CLT scaling schemes are replaced with stochastic scaling schemes-and present "randomized counterparts" to the classic CLTs. The RCLT scaling schemes are shown to be governed by Poisson processes with power-law statistics, and the RCLTs are shown to universally yield the Lévy, Fréchet, and Weibull probability laws.
Satterthwaite, W.H.; Kitaysky, A.S.; Hatch, Shyla A.; Piatt, John F.; Mangel, M.
2010-01-01
Question: Can field measurements of stress hormones help us to assess the prudent parent hypothesis in a long-lived seabird? Organism: Black-legged kittiwake, Rissa tridactyla. Location: Duck and Gull Islands, Cook Inlet, Alaska, Methods: We examined the statistical relationship between the stress hormone corticosterone and mortality in black-legged kittiwakes. We built a demographic model of the kittiwake life cycle to determine whether the mortality rates associated with persisting in a breeding attempt despite high corticosterone caused the birds to sacrifice more lifetime reproductive output than they gain from one year's breeding. Results: The probability of apparent mortality increased with corticosterone, suggesting some birds incurred increased mortality risk for the sake of breeding. For Duck Island (low reproductive success), it appears birds sacrificed more lifetime reproductive success than a prudent parent would. On Gull Island, it appears most but possibly not all birds were behaving in ways consistent with theory, although definitive statements require larger samples of highly stressed birds. ?? 2010 William H. Satterthwaite.
Neutrino mixing in a grand unified theory
International Nuclear Information System (INIS)
Milton, K.; Tanaka, K.
1980-01-01
Neutrino mixing in a grand unified theory in which the neutrino mass matrix is determined by the Gell-Mann-Ramond-Slansky mechanism was investigated. With an arbitrary real right-handed Majorana mass matrix which incorporates three neutrino mass scales, the effects of the up-quark mass matrix are found to be dominant and as a result no significant mixing of ν/sub e/ occurs, while ν/sub μ/ - ν/sub γ/ mixing can be substantial
Towards a unified theory of reciprocity.
Rosas, Alejandro
2012-02-01
In a unified theory of human reciprocity, the strong and weak forms are similar because neither is biologically altruistic and both require normative motivation to support cooperation. However, strong reciprocity is necessary to support cooperation in public goods games. It involves inflicting costs on defectors; and though the costs for punishers are recouped, recouping costs requires complex institutions that would not have emerged if weak reciprocity had been enough.
Cosmic strings in unified gauge theories
International Nuclear Information System (INIS)
Everett, A.E.
1981-01-01
Some spontaneously broken gauge theories can give rise to stringlike vacuum structures (vortices). It has been pointed out by Vilenkin that in grand unified theories these can be sufficiently massive to have cosmological implications, e.g., in explaining the formation of galaxies. The circumstances in which such structures occur are examined. They do not occur in the simplest grand unified theories, but can occur in some more elaborate models which have been proposed. The cross section for the scattering of elementary particles by strings is estimated. This is used to evaluate the effect of collisions on the dynamics of a collapsing circular string, with particular attention to the question of whether energy dissipation by collision can reduce the rate of formation of black holes by collapsed strings, which may be unacceptably large in models where strings occur. It is found that the effect of collisions is not important in the case of grand unified strings, although it can be important for lighter strings
Proton decay in grand unified theories
International Nuclear Information System (INIS)
Lucha, W.
1984-01-01
Interactions which violate the conservation of baryon and lepton number represent an intrinsic part of all grand unified theories (GUTs) of strong and electroweak interactions. These new interactions - predicted within the framework of GUTs - generate B and L violating four-fermion interactions via the exchange of superheavy particles which cannot be ascribed a well-defined baryon or lepton number. The effective coupling constant of these four-fermion interactions might be large enough to make the proton decay detectable by the present generation of experiments. In this review the basic concepts of conventional as well as supersymmetric GUTs relevant for proton decay are sketched. The baryon number violating sector of grand unified theories is discussed in more detail. Special emphasis is laid on the various selection rules arising as consequences of low-energy gauge invariance and supersymmetry for proton decay. These selection rules already determine the coarse pattern of the resulting decay modes and branching ratios without any reference to or detailed knowledge of the underlying grand unified theory. Finally the numerous theoretical predictions are summarized and confronted with experiment. (Author)
Reduction of parameters in Finite Unified Theories and the MSSM
Heinemeyer, Sven; Mondragón, Myriam; Tracas, Nicholas; Zoupanos, George
2018-02-01
The method of reduction of couplings developed by W. Zimmermann, combined with supersymmetry, can lead to realistic quantum field theories, where the gauge and Yukawa sectors are related. It is the basis to find all-loop Finite Unified Theories, where the β-function vanishes to all-loops in perturbation theory. It can also be applied to the Minimal Supersymmetric Standard Model, leading to a drastic reduction in the number of parameters. Both Finite Unified Theories and the reduced MSSM lead to successful predictions for the masses of the third generation of quarks and the Higgs boson, and also predict a heavy supersymmetric spectrum, consistent with the non-observation of supersymmetry so far.
LEP constraints on grand unified theories
International Nuclear Information System (INIS)
Sarkar, Utpal
1993-01-01
Recent developments on grand unified theories (GUTs) in the context of the LEP measurements of the coupling constants are reviewed. The three coupling constants at the electroweak scale have been measured at LEP quite precisely. One can allow these couplings to evolve with energy following the renormalization group equations for the various groups and find out whether all the coupling constants meet at any energy. It was pointed out that the minimal SU(5) grand unified theory fails to satisfy this test. However, various extensions of the theory are still allowed. These extensions include (i) supersymmetric SU(5) GUT, with some arbitrariness in the susy breaking scale arising from the threshold corrections, (ii) non-susy SU(5) GUTs with additional fermions as well as Higgs multiplets, which has masses of the order of TeV, and (iii) non-renormalizable effect of gravity with a fine tuned relation among the coupling constants at the unification energy. The LEP results also constrain GUTs with an intermediate symmetry breaking scale. By adjusting the intermediate symmetry breaking scale, one usually can have unification, but these theories get constrained. For example, the left-right symmetric theories coming from GUTs can be broken only at energies higher than about ∼10 10 GeV. This implies that if right handed gauge bosons are found at energies lower than this scale, then that will rule out the possibility of grand unification. Another recent interesting development on the subject, namely, low energy unification, is discussed in this context. All the coupling constants are unified at energies of the order of ∼10 8 GeV when they are embedded in an SU(15)GUT, with some particular symmetry breaking pattern. But even in this case the results of the intermediate symmetry breaking scale remain unchanged. (author). 16 refs., 3 figs
Introduction to Grand Unified Theories. 12
International Nuclear Information System (INIS)
Wali, K.C.
1989-01-01
This chapter presents an introduction into Grand Unified Theories. After a discussion of the general features to be expected in any such theory, and of the motivations for them, a detailed presentation of SU(5) theory is given. The group structures, particle multiplets, gauge and Higgs bosons are explained. The two stages of spontaneous symmetry breaking via the Higgs model, are calculated individually and in combination. Fermion mass matrices and relations between quark and lepton masses are derived. predictions of SU(5) theory, calculated using renormalization group methods, are derived. The chapter ends with discussions that bring together particle physics and cosmology, including the baryon asymmetry problem, phase transitions in the very early universe, and singularities like domain walls, vortex lines and monopoles. (author). 9 refs.; 4 figs.; 5 tabs
Nothing From Everything- A Unified Theory
Mehra, Vijay Kumar
2016-07-01
Nothing From Everything-A Unified Theory is a philosophical insight into principles of nature through principle of complementary spontaneity and principle of vertical continuity. This work is intended to explain various cosmological phenomena in light of behaviour of particles in range of their respective and relative speed of light. This theory explains creation of Universe from nothing or zero spacetime through scalar energy field collapsing into Higgs field resulting into giving mass to various particles. The energy particles taking origin from nothing while moving away from zero space-time would create space-time of their own order because energy/matter needs space to exist. The particles while moving away from zero space-time would end up in breaking symmetry of matter/energy at their mass infinity (highest possible mass of any particle, which is function of speed of spin). This break in symmetry would lead to curving of particles upon themselves and hence would lead to creation of antiparticles going back in time towards zero spacetime. Therefore the Universe could have been created by alternate layers of particles and antiparticles and also alternate layers of matter and antimatter with decelerating speed of light, which would lead to creation a closed and flat Universe. With increase in mass of Universe (creation of more and more Universe's matter from nothing), the gravitational force of Universe is bound to increase and hence with quantum by quantum increase in gravity, it would apply brakes on relative speed of photon/light out of its reference frame or designated space and hence speed of photon would decrease. If closed and flat Universe was created with decelerating speed of light, then such Universe is bound to contract back with accelerating speed of light which would have inverse impact on gravitational constant across various spacetime zones of Universe. And hence mass bodies would drift away spontaneously purely on basis and proportional to
Unifying Theories of Psychedelic Drug Effects
Directory of Open Access Journals (Sweden)
Link R. Swanson
2018-03-01
Full Text Available How do psychedelic drugs produce their characteristic range of acute effects in perception, emotion, cognition, and sense of self? How do these effects relate to the clinical efficacy of psychedelic-assisted therapies? Efforts to understand psychedelic phenomena date back more than a century in Western science. In this article I review theories of psychedelic drug effects and highlight key concepts which have endured over the last 125 years of psychedelic science. First, I describe the subjective phenomenology of acute psychedelic effects using the best available data. Next, I review late 19th-century and early 20th-century theories—model psychoses theory, filtration theory, and psychoanalytic theory—and highlight their shared features. I then briefly review recent findings on the neuropharmacology and neurophysiology of psychedelic drugs in humans. Finally, I describe recent theories of psychedelic drug effects which leverage 21st-century cognitive neuroscience frameworks—entropic brain theory, integrated information theory, and predictive processing—and point out key shared features that link back to earlier theories. I identify an abstract principle which cuts across many theories past and present: psychedelic drugs perturb universal brain processes that normally serve to constrain neural systems central to perception, emotion, cognition, and sense of self. I conclude that making an explicit effort to investigate the principles and mechanisms of psychedelic drug effects is a uniquely powerful way to iteratively develop and test unifying theories of brain function.
Unifying Theories of Psychedelic Drug Effects
Swanson, Link R.
2018-01-01
How do psychedelic drugs produce their characteristic range of acute effects in perception, emotion, cognition, and sense of self? How do these effects relate to the clinical efficacy of psychedelic-assisted therapies? Efforts to understand psychedelic phenomena date back more than a century in Western science. In this article I review theories of psychedelic drug effects and highlight key concepts which have endured over the last 125 years of psychedelic science. First, I describe the subjective phenomenology of acute psychedelic effects using the best available data. Next, I review late 19th-century and early 20th-century theories—model psychoses theory, filtration theory, and psychoanalytic theory—and highlight their shared features. I then briefly review recent findings on the neuropharmacology and neurophysiology of psychedelic drugs in humans. Finally, I describe recent theories of psychedelic drug effects which leverage 21st-century cognitive neuroscience frameworks—entropic brain theory, integrated information theory, and predictive processing—and point out key shared features that link back to earlier theories. I identify an abstract principle which cuts across many theories past and present: psychedelic drugs perturb universal brain processes that normally serve to constrain neural systems central to perception, emotion, cognition, and sense of self. I conclude that making an explicit effort to investigate the principles and mechanisms of psychedelic drug effects is a uniquely powerful way to iteratively develop and test unifying theories of brain function. PMID:29568270
Split Octonion electrodynamics and unified fields of dyons
International Nuclear Information System (INIS)
Bisht, P.S.
2004-01-01
Split octonion electrodynamics has been developed in terms of Zorn's vector matrix realization by reformulating electromagnetic potential, current, field tensor and other dynamical quantities. Corresponding field equation (Unified Maxwell's equations) and equation of motion have been reformulated by means of split octonion and its Zorn vector realization in unique, simpler and consistent manner. It has been shown that this theory reproduces the dyon field equations in the absence of gravito-dyons and vice versa
Higgsless grand unified theory breaking and trinification
International Nuclear Information System (INIS)
Carone, Christopher D.; Conroy, Justin M.
2004-01-01
Boundary conditions on an extra dimensional interval can be chosen to break bulk gauge symmetries and to reduce the rank of the gauge group. We consider this mechanism in models with gauge trinification. We determine the boundary conditions necessary to break the trinified gauge group directly down to that of the standard model. Working in an effective theory for the gauge-symmetry-breaking parameters on a boundary, we examine the limit in which the grand-unified theory-breaking-sector is Higgsless and show how one may obtain the low-energy particle content of the minimal supersymmetric standard model. We find that gauge unification is preserved in this scenario, and that the differential gauge coupling running is logarithmic above the scale of compactification. We compare the phenomenology of our model to that of four dimensional 'trinified' theories
Aspects of extra dimensional supersymmetric unified theories
International Nuclear Information System (INIS)
Fichet, S.
2011-09-01
The purpose of this work is to investigate Grand Unified Theories (GUTs) and to make the link with passed and upcoming experiments. The structure of this thesis is as follows. In the first chapter, we will briefly review the sequence of arguments leading to the Higgs mechanism, then to the different concepts underlying physics beyond the Standard Model, and to the paradigm of extra dimensional supersymmetric grand unified theories. At each level of the argumentation, we will mention the different solutions available. The second chapter introduces more formally supersymmetry and extra dimensions, focusing in particular on the aspects of symmetry breaking. Then, in the third chapter, we present in details the two frameworks of extra dimensional theories in which we worked, called supersymmetric gauge-Higgs unification (GHU) and holographic grand unification (HGU) as well as the developments and modifications we brought to them. The fourth chapter is devoted to the low energy viability of the GHU framework, as well as its phenomenological implications. The fifth chapter presents a more generic study of the property of GUT-scale degenerate Higgs mass matrix, common to both frameworks. Finally, the sixth chapter is devoted to the viability and phenomenological implications of the HGU framework, with special emphasis on lepton flavour violation. This quantitative study takes properly into account effects of matrix anarchy, as well as exact flavour observables. The results obtained should generalize, at least qualitatively, to any other model with similar localization and supersymmetry breaking features
Kamada, Kohei
2018-05-01
It has been considered that baryogenesis models without a generation of B -L asymmetry such as the GUT baryogenesis do not work since the asymmetry is washed out by the electroweak sphalerons. Here, we point out that helical hypermagnetic fields can be generated through the chiral magnetic effect with a chiral asymmetry generated in such baryogenesis models. The helical hypermagnetic fields then produce baryon asymmetry mainly at the electroweak symmetry breaking, which remains until today. Therefore, the baryogenesis models without B -L asymmetry can still be the origin of the present baryon asymmetry. In particular, if it can produce chiral asymmetry mainly carried by right-handed electrons of order of 10-3 in terms of the chemical potential to temperature ratio, the resultant present-day baryon asymmetry can be consistent with our Universe, although simple realizations of the GUT baryogenesis are hard to satisfy the condition. We also argue the way to overcome the difficulty in the GUT baryogenesis. The intergalactic magnetic fields with B0˜10-16 - 17 G and λ0˜10-2 - 3 pc are the smoking gun of the baryogenesis scenario as discussed before.
1999-11-08
In these lectures I will build up the concept of field theory using the language of Feynman diagrams. As a starting point, field theory in zero spacetime dimensions is used as a vehicle to develop all the necessary techniques: path integral, Feynman diagrams, Schwinger-Dyson equations, asymptotic series, effective action, renormalization etc. The theory is then extended to more dimensions, with emphasis on the combinatorial aspects of the diagrams rather than their particular mathematical structure. The concept of unitarity is used to, finally, arrive at the various Feynman rules in an actual, four-dimensional theory. The concept of gauge-invariance is developed, and the structure of a non-abelian gauge theory is discussed, again on the level of Feynman diagrams and Feynman rules.
Finite and Gauge-Yukawa unified theories: Theory and predictions
International Nuclear Information System (INIS)
Kobayashi, T.; Kubo, J.; Mondragon, M.; Zoupanos, G.
1999-01-01
All-loop Finite Unified Theories (FUTs) are very interesting N=1 GUTs in which a complete reduction of couplings has been achieved. FUTs realize an old field theoretical dream and have remarkable predictive power. Reduction of dimensionless couplings in N=1 GUTs is achieved by searching for renormalization group invariant (RGI) relations among them holding beyond the unification scale. Finiteness results from the fact that there exists RGI relations among dimensionless couplings that guarantee the vanishing of the β- functions in certain N=1 supersymmetric GUTS even to all orders. Recent developments in the soft supersymmetry breaking (SSB) sector of N=1 GUTs and FUTs lead to exact RGI relations also in this sector of the theories. Of particular interest is a RGI sum rule for the soft scalar masses holding to all orders. The characteristic features of SU(5) models that have been constructed based on the above tools are: a) the old agreement of the top quark prediction with the measured value remains unchanged, b) the lightest Higgs boson is predicted to be around 120 GeV, c) the s-spectrum starts above several hundreds of GeV
SO(10) supersymmetric grand unified theories
Dermisek, Radovan
The origin of the fermion mass hierarchy is one of the most challenging problems in elementary particle physics. In the standard model fermion masses and mixing angles are free parameters. Supersymmetric grand unified theories provide a beautiful framework for physics beyond the standard model. In addition to gauge coupling unification these theories provide relations between quark and lepton masses within families, and with additional family symmetry the hierarchy between families can be generated. We present a predictive SO(10) supersymmetric grand unified model with D 3 x U(1) family symmetry. The hierarchy in fermion masses is generated by the family symmetry breaking D 3 x U(1) → ZN → nothing. This model fits the low energy data in the charged fermion sector quite well. We discuss the prediction of this model for the proton lifetime in light of recent SuperKamiokande results and present a clear picture of the allowed spectra of supersymmetric particles. Finally, the detailed discussion of the Yukawa coupling unification of the third generation particles is provided. We find a narrow region is consistent with t, b, tau Yukawa unification for mu > 0 (suggested by b → sgamma and the anomalous magnetic moment of the muon) with A0 ˜ -1.9m16, m10 ˜ 1.4m16, m16 ≳ 1200 GeV and mu, M1/2 ˜ 100--500 GeV. Demanding Yukawa unification thus makes definite predictions for Higgs and sparticle masses.
Group theory for unified model building
International Nuclear Information System (INIS)
Slansky, R.
1981-01-01
The results gathered here on simple Lie algebras have been selected with attention to the needs of unified model builders who study Yang-Mills theories based on simple, local-symmetry groups that contain as a subgroup the SUsup(w) 2 x Usup(w) 1 x SUsup(c) 3 symmetry of the standard theory of electromagnetic, weak, and strong interactions. The major topics include, after a brief review of the standard model and its unification into a simple group, the use of Dynkin diagrams to analyze the structure of the group generators and to keep track of the weights (quantum numbers) of the representation vectors; an analysis of the subgroup structure of simple groups, including explicit coordinatizations of the projections in weight space; lists of representations, tensor products and branching rules for a number of simple groups; and other details about groups and their representations that are often helpful for surveying unified models, including vector-coupling coefficient calculations. Tabulations of representations, tensor products, and branching rules for E 6 , SO 10 , SU 6 , F 4 , SO 9 , SO 5 , SO 8 , SO 7 , SU 4 , E 7 , E 8 , SU 8 , SO 14 , SO 18 , SO 22 , and for completeness, SU 3 are included. (These tables may have other applications.) Group-theoretical techniques for analyzing symmetry breaking are described in detail and many examples are reviewed, including explicit parameterizations of mass matrices. (orig.)
Unified dark fluid in Brans-Dicke theory
International Nuclear Information System (INIS)
Tripathy, Sunil K.; Behera, Dipanjali; Mishra, Bivudutta
2015-01-01
Anisotropic dark energy cosmological models are constructed in the frame work of generalised Brans-Dicke theory with a self-interacting potential. A unified dark fluid characterised by a linear equation of state is considered as the source of dark energy. The shear scalar is considered to be proportional to the expansion scalar simulating an anisotropic relationship among the directional expansion rates. The dynamics of the universe in the presence of a unified dark fluid in anisotropic background have been discussed. The presence of an evolving scalar field makes it possible to get an accelerating phase of expansion even for a linear relationship among the directional Hubble rates. It is found that the anisotropy in expansion rates does not affect the scalar field, the self-interacting potential, but it controls the non-evolving part of the Brans-Dicke parameter. (orig.)
Supersymmetric grand unified theories and cosmology
International Nuclear Information System (INIS)
Lazarides, G.; Shafi, Q.
1983-01-01
By examining the behavior of supersymmetric grand unified theories (GUT's) in the very early universe we find two classes of realistic models. In one of them supersymmetry is broken at or near superheavy GUT scale. The cosmological implications of such models are expected to be similar to those of nonsupersymmetric GUT's. In the second class of models, the superheavy GUT scale is related to the supersymmetry-breaking scale in the manner of Witten. Two types of cosmological scenarios appear possible in this case, either with or without an intermediate (new) inflationary phase. They can be experimentally distinguished, since the former predicts an absence and the latter an observable number density of superheavy monopoles. A mechanism for generating baryon asymmetry in such models is pointed out
Preface to a GUT (Grand Unified Theory)
International Nuclear Information System (INIS)
Honig, W.
1982-01-01
A Grand Unified Theory (GUT) is proposed exhibiting relativistic invariance and based on a physical model for vacuum space consisting of the superposition of oppositely charged continuous fluids. Models for the photon, electron, neutrino, proton, etc., consist of separate unique variations in the relative densities of the fluids and their flow patterns. This GUT is also based on the use of transfinite axiomatic number forms and on a concept of metrical relativity which hopefully reconciles the many logical dichotomies in and between Special Relativity and Quantum Mechanics. These ideas result in a number of experimental proposals and predicted results which appear to be underivable from present paradigms, first among which is a physical model for the hidden variable of Quantum Mechanics. It is on these features that attention should rest. (Auth.)
Introduction to gauge field theory
International Nuclear Information System (INIS)
Bailin, D.; Love, A.
1986-01-01
This book provides a postgraduate level introduction to gauge field theory entirely from a path integral standpoint without any reliance on the more traditional method of canonical quantisation. The ideas are developed by quantising the self-interacting scalar field theory, and are then used to deal with all the gauge field theories relevant to particle physics, quantum electrodynamics, quantum chromodynamics, electroweak theory, grand unified theories, and field theories at non-zero temperature. The use of these theories to make precise experimental predictions requires the development of the renormalised theories. This book provides a knowledge of relativistic quantum mechanics, but not of quantum field theory. The topics covered form a foundation for a knowledge of modern relativistic quantum field theory, providing a comprehensive coverage with emphasis on the details of actual calculations rather than the phenomenology of the applications
Monopole charges in unified gauge theories
Chan Hong Mo
1981-01-01
Monopole charges, being global quantities, depend on the gauge group of a theory, which in turn is determined by the representations of all its fields. For example, chromodynamics in its present form when combined with electrodynamics has as its gauge group not SU(3)*U(1) but a 'smaller' group U(3). The specification of monopole charges for a theory can thus be quite intricate. The authors report the result of an investigation in several current gauge theories. Of particular interest is the possible existence in some theories of monopoles carrying multiplicative charges. As a by-product, some earlier assertions seem to be incorrect, are clarified. (16 refs).
In search for the unified theory of fundamental interactions
International Nuclear Information System (INIS)
Ansel'm, A.A.
1980-01-01
The problem of developing the unified theory of fundamental interactions is considered in a popular form. The fundamental interactions include interactions between really elementary particles (quarks and leptons) which are performed by strong, weak, electromagnetic and gravitational forces. The unified theory is based on the requirement of ''Local symmetry''. The problem on invariance of strong interaction theory to local isotopic transformation was proposed for the first time by Yang and Mills, who introduced fields, called compensating (they compensate additional members in the theory equations, appearing during local transformations) Quanta of these fields (calibrating bosons) are massless particles with a spin, equal to one. The bosons should have the mass different from zero in order to be the carriers of real strong and weak interactions. At present there exist two mechanisms, due to which the mentioned controdiction can be overcome. One of these mechanisms - spontaneous symmetry distortion, the other mechanism - ''non-escape'', or ''captivity'' of the particles. The main ideas of building the realistic model of strong interaction are briefly presented
Zeidler, Eberhard
This is the first volume of a modern introduction to quantum field theory which addresses both mathematicians and physicists ranging from advanced undergraduate students to professional scientists. The book tries to bridge the existing gap between the different languages used by mathematicians and physicists. For students of mathematics it is shown that detailed knowledge of the physical background helps to motivate the mathematical subjects and to discover interesting interrelationships between quite different mathematical topics. For students of physics, fairly advanced mathematics is presented, which is beyond the usual curriculum in physics. It is the author's goal to present the state of the art of realizing Einstein's dream of a unified theory for the four fundamental forces in the universe (gravitational, electromagnetic, strong, and weak interaction). From the reviews: "… Quantum field theory is one of the great intellectual edifices in the history of human thought. … This volume differs from othe...
Constraints on grand unified superstring theories
International Nuclear Information System (INIS)
Ellis, J.; Lopez, J.L.; Nanopoulos, D.V.; Houston Advanced Research Center
1990-01-01
We evaluate some constraints on the construction of grand unified superstring theories (GUSTs) using higher level Kac-Moody algebras on the world-sheet. In the most general formulation of the heterotic string in four dimensions, an analysis of the basic GUST model-building constraints, including a realistic hidden gauge group, reveals that there are no E 6 models and any SO(10) models can only exist at level-5. Also, any such SU(5) models can exist only for levels 4≤k≤19. These SO(10) and SU(5) models risk having many large, massless, phenomenologically troublesome representations. We also show that with a suitable hidden sector gauge group, it is possible to avoid free light fractionally charged particles, which are endemic to string derived models. We list all such groups and their representations for the flipped SU(5)xU(1) model. We conclude that a sufficiently binding hidden sector gauge group becomes a basic model-building constraint. (orig.)
On unified gauge theories with a stable proton
International Nuclear Information System (INIS)
Ogievetskij, V.I.; Tsejtlin, V.Yu.
1978-01-01
The unified gauge E 7 -theories are studied with proton stability insured by the Gell-Mann, Ramond and Slansky mechanism, but nonzero eigenvalues of a new conserved quasi-baryon number are admitted. It is shown that the requirement of at least minimal agreement of such theories with phenomenology fixes a restricted class of models. The basic properties and difficulties of these models are analyzed. The following common properties are characteristic for the models considered: absolute proton stability; availability of leptons with the 1 baryon charge; possibility of existence of quasi-baryon charge also for ordinary leptons; possibility of existence of lepton-quarks with a mass comparable with that of calibrating fields; necessity of using a great amount of the Higgs fields, in the representations of high dimension
The genesis of unified gauge theories
International Nuclear Information System (INIS)
Kibble, Tom
1993-01-01
The theoretical physics group at London's Imperial College in 1959 had three permanent faculty: Abdus Salam, his erstwhile thesis supervisor Paul Matthews, and John C.Taylor. I joined as a lecturer the following year. In those early days we had lots of visitors, both long- and short-term - Murray Gell-Mann, Ken Johnson, John Ward, Lowell Brown, Gordon Feldman and Steven Weinberg. About a year after I arrived we were transferred from the Mathematics to the Physics Department under the formidable Patrick (P.M.S.) Blackett. Having been brought up in the Cavendish Laboratory tradition under Lord Rutherford, Blackett was rather scornful of theoretical physicists, but he knew a good thing when he saw one and had persuaded Salam to join the rapidly expanding Physics Department. In 1960 field theory was widely regarded as very passé. It had had its triumphs: renormalization theory had made sense of divergences, and quantum electrodynamics had been magnificently vindicated. But field theory didn't seem to work for anything else, particularly not for the strong interactions, and was definitely out of fashion. There were, however, a few places in the world where field theory was still studied unashamedly. Imperial College was one. Harvard was certainly another; many of our visitors over the next few years were Julian Schwinger's students
The genesis of unified gauge theories
Energy Technology Data Exchange (ETDEWEB)
Kibble, Tom
1993-06-15
The theoretical physics group at London's Imperial College in 1959 had three permanent faculty: Abdus Salam, his erstwhile thesis supervisor Paul Matthews, and John C.Taylor. I joined as a lecturer the following year. In those early days we had lots of visitors, both long- and short-term - Murray Gell-Mann, Ken Johnson, John Ward, Lowell Brown, Gordon Feldman and Steven Weinberg. About a year after I arrived we were transferred from the Mathematics to the Physics Department under the formidable Patrick (P.M.S.) Blackett. Having been brought up in the Cavendish Laboratory tradition under Lord Rutherford, Blackett was rather scornful of theoretical physicists, but he knew a good thing when he saw one and had persuaded Salam to join the rapidly expanding Physics Department. In 1960 field theory was widely regarded as very passé. It had had its triumphs: renormalization theory had made sense of divergences, and quantum electrodynamics had been magnificently vindicated. But field theory didn't seem to work for anything else, particularly not for the strong interactions, and was definitely out of fashion. There were, however, a few places in the world where field theory was still studied unashamedly. Imperial College was one. Harvard was certainly another; many of our visitors over the next few years were Julian Schwinger's students.
Causal fermion systems as a candidate for a unified physical theory
International Nuclear Information System (INIS)
Finster, Felix; Kleiner, Johannes
2015-01-01
The theory of causal fermion systems is an approach to describe fundamental physics. Giving quantum mechanics, general relativity and quantum field theory as limiting cases, it is a candidate for a unified physical theory. We here give a non-technical introduction. (paper)
Causal fermion systems as a candidate for a unified physical theory
Finster, Felix; Kleiner, Johannes
2015-07-01
The theory of causal fermion systems is an approach to describe fundamental physics. Giving quantum mechanics, general relativity and quantum field theory as limiting cases, it is a candidate for a unified physical theory. We here give a non-technical introduction.
Supergravity and the quest for a unified theory
International Nuclear Information System (INIS)
Ferrara, S.
1995-01-01
The foundation of supergravity and research in its subsequent developments is described. Special emphasis is placed on the impact of supergravity on the search for a unified theory of fundamental interactions. (author)
Restrictions on SU(5) as a grand unified theory
International Nuclear Information System (INIS)
Shellard, R.C.
1984-01-01
Some restrictions imposed upon Grand Unified Theories by dynamical symetry breakdown are examined. They are shown that, in particular, theories SU(5) as symmetry group, with 3 or more fermion families undergo dynamical symmetry breakdown, and some of the fermions will acquire mass at the Grand Unified scale. On the other hand, the SO(10) group, with 3 families is free from this problem. (Author) [pt
Unified Maxwell-Einstein and Yang-Mills-Einstein supergravity theories in five dimensions
International Nuclear Information System (INIS)
Guenaydin, Murat; Zagermann, Marco
2003-01-01
Unified N = 2 Maxwell-Einstein supergravity theories (MESGTs) are supergravity theories in which all the vector fields, including the graviphoton, transform in an irreducible representation of a simple global symmetry group of the Lagrangian. As was established long time ago, in five dimensions there exist only four unified Maxwell-Einstein supergravity theories whose target manifolds are symmetric spaces. These theories are defined by the four simple euclidean Jordan algebras of degree three. In this paper, we show that, in addition to these four unified MESGTs with symmetric target spaces, there exist three infinite families of unified MESGTs as well as another exceptional one. These novel unified MESGTs are defined by non-compact (minkowskian) Jordan algebras, and their target spaces are in general neither symmetric nor homogeneous. The members of one of these three infinite families can be gauged in such a way as to obtain an infinite family of unified N = 2 Yang-Mills-Einstein supergravity theories, in which all vector fields transform in the adjoint representation of a simple gauge group of the type SU(N,1). The corresponding gaugings in the other two infinite families lead to Yang-Mills-Einstein supergravity theories coupled to tensor multiplets. (author)
The coherence problem with th Unified Neutral Theory of biodiversity
James S. Clark
2012-01-01
The Unified Neutral Theory of Biodiversity (UNTB), proposed as an alternative to niche theory, has been viewed as a theory that species coexist without niche differences, without fitness differences, or with equal probability of success. Support is claimed when models lacking species differences predict highly aggregated metrics, such as species abundance distributions...
A unified theory in higher dimensions
Energy Technology Data Exchange (ETDEWEB)
Kapetanakis, D. (National Research Centre for the Physical Sciences Democritos, Athens (Greece)); Zoupanos, G. (European Organization for Nuclear Research, Geneva (Switzerland))
1990-10-11
We present a grand unified model defined in ten dimensions and based on the group SO(13). The model is dimensionally reduced over the non-simply-connected space (Su(3)/U(1)xU(1))/Z{sub 2} giving in four dimensions the standard model. (orig.).
A unified theory in higher dimensions
International Nuclear Information System (INIS)
Kapetanakis, D.; Zoupanos, G.
1990-01-01
We present a grand unified model defined in ten dimensions and based on the group SO(13). The model is dimensionally reduced over the non-simply-connected space [Su(3)/U(1)xU(1)]/Z 2 giving in four dimensions the standard model. (orig.)
String fields, higher spins and number theory
Polyakov, Dimitri
2018-01-01
The book aims to analyze and explore deep and profound relations between string field theory, higher spin gauge theories and holography the disciplines that have been on the cutting edge of theoretical high energy physics and other fields. These intriguing relations and connections involve some profound ideas in number theory, which appear to be part of a unifying language to describe these connections.
Possible unifying effect of the dynamic theory
International Nuclear Information System (INIS)
Williams, P.E.
1983-05-01
This report presents the tentative results of recent research during which a neocoulombic electrostatic force of the form (k/r 2 )(1-lambda/r) exp(-lambda/r) was derived. This neocoulombic force offers a possible alternative explanation of nuclear phenomena without the necessity for postulating the existence of nuclear forces, and it allows the prediction of nuclear masses. The result is a view of physics in a five-dimensional manifold of space, time, and mass density in which the gauge field includes gravitational and electromagnetic components coupled by a single system of eight differential equations, quantum effects occur as the result of a restrictive assumption, and nuclear phenomena result from the new form for the electrostatic force. Also, the geometrical effect on the unit of action in quantum mechanics is presented, the self-energy of charged particles is calculated, and experimental tests of the theory are suggested
Relations between grand unified and monopole theories
International Nuclear Information System (INIS)
Olive, D.I.
1983-01-01
Two kinds of interrelationships between GUTs and monopole theories are discussed: how the duality conjectures could have a bearing on understanding GUTs, and how some of the mathematical technology used in monopole studies can yield simple (Dynkin) diagrammatic rules for some of the common GUT group theory calculations. A compact notation for semisimple Lie algebras is supplied by Dynkin diagrams. Minimal fundamental weights are seen to define minimal representations into which matter may be placed, and also define a special direction for the adjoint Higgs field. Minimal weights play a special role, therefore, both in defining matter multiplets and in symmetry breaking. After considering gauge groups G broken down to U(1) X K/Z (with K semisimple) by an adjoint representation (AR) Higgs, it is asked how the representations of G will look when decomposed into irreducible representations of U(1) X K, by proving two theorems as given. The point is pedagogical: using concepts like the Weyl group, practical calculations can be performed with simple Dynkin diagrams
Unifying the field: developing an integrative paradigm for behavior therapy.
Eifert, G H; Forsyth, J P; Schauss, S L
1993-06-01
The limitations of early conditioning models and treatments have led many behavior therapists to abandon conditioning principles and replace them with loosely defined cognitive theories and treatments. Systematic theory extensions to human behavior, using new concepts and processes derived from and built upon the basic principles, could have prevented the divisive debates over whether psychological dysfunctions are the results of conditioning or cognition and whether they should be treated with conditioning or cognitive techniques. Behavior therapy could also benefit from recent advances in experimental cognitive psychology that provide objective behavioral methods of studying dysfunctional processes. We suggest a unifying paradigm for explaining abnormal behavior that links and integrates different fields of study and processes that are frequently believed to be incompatible or antithetical such as biological vulnerability variables, learned behavioral repertoires, and that also links historical and current antecedents of the problem. An integrative paradigmatic behavioral approach may serve a unifying function in behavior therapy (a) by promoting an understanding of the dysfunctional processes involved in different disorders and (b) by helping clinicians conduct functional analyses that lead to theory-based, individualized, and effective treatments.
Gauge hierarchy problem in grand unified theories
International Nuclear Information System (INIS)
Alhendi, H.A.A.
1982-01-01
In grand unification schemes, several mass scales are to be introduced, with some of them much larger than all the others, to cope with experimental observations, in which elementary particles of higher masses require higher energy to observe them than elementary particles of lower masses. There have been controversial arguments in the literature on such hierarchical scale structure, when radiative corrections are taken into account. It has been asserted that the gauge hierarchy depends on the choice of the subtraction point (in the classical field space), of the four-point function at zero external momentum. It also has been asserted that the gauge hierarchy problem whenever it is possible to be maintained in one sector of particles, it also is possible to be maintained in the other sectors. These two problems have been studied in a prototype model, namely an 0(3)-model with two triplets of real scalar Higgs fields. Our analysis shows that, within ordinary perturbation theory, none of these two problems is quite correct
Unifying weak and electromagnetic forces in Weinberg-Salam theory
International Nuclear Information System (INIS)
Savoy, C.A.
1978-01-01
In this introduction to the ideas related to the unified gauge theories of the weak and electromagnetic interactions, we begin with the motivations for its basic principles. Then, the formalism is briefly developed, in particular the so-called Higgs mechanism. The advantages and the consequences of the (non-abelian) gauge invariance are emphasized, together with the experimental tests of the theory [fr
Unified kinetic theory in toroidal systems
International Nuclear Information System (INIS)
Hitchcock, D.A.; Hazeltine, R.D.
1980-12-01
The kinetic theory of toroidal systems has been characterized by two approaches: neoclassical theory which ignores instabilities and quasilinear theory which ignores collisions. In this paper we construct a kinetic theory for toroidal systems which includes both effects. This yields a pair of evolution equations; one for the spectrum and one for the distribution function. In addition, this theory yields a toroidal generalization of the usual collision operator which is shown to have many similar properties - conservation laws, H theorem - to the usual collision operator
Cosmological implications of grand unified theories
International Nuclear Information System (INIS)
Nanopoulos, D.V.
1982-01-01
These lectures, mainly devoted to the cosmological implications of GUTs, also include the essential ingredients of GUTs and some of their important applications to particle physics. Section 1 contains some basic points concerning the structure of the standard strong and electroweak interactions prior to grand unification. A detailed expose of GUTs is attempted in sect. 2, including their basci principles and their consequences for particle physics. The minimal, simplest GUT, SU 5 is analysed in some detail and it will be used throughout these lectures as the GUT prototype. Finally, sect. 3 contains the most important cosmological implications of GUTs, including baryon number generation in the early Universe (in rather lengthy detail), dissipative processes in the very early Universe, grand unified monopoles, etc. (orig./HSI)
Phase transitions at finite chemical potential in grand unified theories
International Nuclear Information System (INIS)
Bailin, D.; Love, A.
1984-01-01
We discuss the circumstances in which non-zero chemical potentials might prevent symmetry restoration in phase transitions in the early universe at grand unification or partial unification scales. The general arguments are illustrated by consideration of SO(10) and SU(5) grand unified theories. (orig.)
The Bjorken-Paschos relation in the unified gauge theory
International Nuclear Information System (INIS)
Oh, S.K.
1980-07-01
We have examined in the unified gauge theory with the integrally-charged quark model the Bjorken-Paschos relation within the impulse approximation of the parton picture. We find that the relation is valid for the forward scattering region and provides a reliable way to test the charge assignment of the quarks and the gluons. (author)
Towards a unified theory of task-specific motivation
De Brabander, Cornelis; Martens, Rob
2014-01-01
This study aims to integrate the current proliferation of motivation theories in a Unified Model of Task-specific Motivation (UMTM). According to this model readiness for action results from an interaction between four relatively independent types of valences that can be classified as affective or
Sfermion mass degeneracy, superconformal dynamics, and supersymmetric grand unified theories
International Nuclear Information System (INIS)
Kobayashi, Tatsuo; Noguchi, Tatsuya; Nakano, Hiroaki; Terao, Haruhiko
2002-01-01
We discuss issues in a scenario where hierarchical Yukawa couplings are generated through the strong dynamics of superconformal field theories (SCFTs). Independently of the mediation mechanism of supersymmetry breaking, the infrared convergence property of SCFTs can provide an interesting solution to the supersymmetric flavor problem; sfermion masses are suppressed around the decoupling scale of SCFTs and eventually become degenerate to some degree, thanks to family-independent radiative corrections governed by the gaugino masses of the minimal supersymmetric standard model (MSSM). We discuss under what conditions the degeneracy of the sfermion mass can be estimated in a simple manner. We also discuss the constraints from lepton flavor violations. We then explicitly study sfermion mass degeneracy within the framework of grand unified theories coupled to SCFTs. It is found that the degeneracy for right-handed sleptons becomes worse in the conventional SU(5) model than in the MSSM. On the other hand, in the flipped SU(5)xU(1) model, each right-handed lepton is still an SU(5) singlet, whereas the B-ino mass M 1 is determined by two independent gaugino masses of SU(5)xU(1). These two properties enable us to have an improved degeneracy for the right-handed sleptons. We also speculate on how further improvement can be obtained in the SCFT approach
Lie groups and grand unified theories
International Nuclear Information System (INIS)
Gubitoso, M.D.
1987-01-01
This work presents some concepts in group theory and Lie algebras and, at same time, shows a method to study and work with semisimple Lie groups, based on Dynkin diagrams. The aproach taken is not completely formal, but it presents the main points of the elaboration of the method, so its mathematical basis is designed with the purpose of making the reading not so cumbersome to those who are interested only in a general picture of the method and its usefulness. At the end it is shown a brief review of gauge theories and two grand-unification models based on SO(13) and E 7 gauge groups. (author) [pt
Towards a Grand Unified Theory of sports performance.
Glazier, Paul S
2017-12-01
Sports performance is generally considered to be governed by a range of interacting physiological, biomechanical, and psychological variables, amongst others. Despite sports performance being multi-factorial, however, the majority of performance-oriented sports science research has predominantly been monodisciplinary in nature, presumably due, at least in part, to the lack of a unifying theoretical framework required to integrate the various subdisciplines of sports science. In this target article, I propose a Grand Unified Theory (GUT) of sports performance-and, by elaboration, sports science-based around the constraints framework introduced originally by Newell (1986). A central tenet of this GUT is that, at both the intra- and inter-individual levels of analysis, patterns of coordination and control, which directly determine the performance outcome, emerge from the confluence of interacting organismic, environmental, and task constraints via the formation and self-organisation of coordinative structures. It is suggested that this GUT could be used to: foster interdisciplinary research collaborations; break down the silos that have developed in sports science and restore greater disciplinary balance to the field; promote a more holistic understanding of sports performance across all levels of analysis; increase explanatory power of applied research work; provide stronger rationale for data collection and variable selection; and direct the development of integrated performance monitoring technologies. This GUT could also provide a scientifically rigorous basis for integrating the subdisciplines of sports science in applied sports science support programmes adopted by high-performance agencies and national governing bodies for various individual and team sports. Copyright © 2017 Elsevier B.V. All rights reserved.
Z2 vortex strings in grand unified theories
International Nuclear Information System (INIS)
Olive, D.; Turok, N.
1982-01-01
Spontaneously broken gauge theories may display distinct vortex string solutions for the disconnected components of the exact gauge symmetry group. A type of Higgs mechanism thought to apply in grand unified theories as being responsible for fermion masses yields Z 2 vortex lines, irrespectively of the group. These could seed galaxy formation if the corresponding fermion masses are superheavy. More generally a Higgs mechanism producing Zsub(n) vortex strings is presented. (orig.)
String theory or field theory?
International Nuclear Information System (INIS)
Marshakov, A.V.
2002-01-01
The status of string theory is reviewed, and major recent developments - especially those in going beyond perturbation theory in the string theory and quantum field theory frameworks - are analyzed. This analysis helps better understand the role and place of experimental phenomena, it is emphasized that there are some insurmountable problems inherent in it - notably the impossibility to formulate the quantum theory of gravity on its basis - which prevent it from being a fundamental physical theory of the world of microscopic distances. It is this task, the creation of such a theory, which string theory, currently far from completion, is expected to solve. In spite of its somewhat vague current form, string theory has already led to a number of serious results and greatly contributed to progress in the understanding of quantum field theory. It is these developments, which are our concern in this review [ru
The outlooks of Helmholtz, Plank and Einstein on the unified physical theory
International Nuclear Information System (INIS)
Treder, G.Yu.
1982-01-01
The outlooks of Helmholtz, Planck and Einstein on the unified physical theory are exposed. Planck formulated the Einstein relativistic mechanics in the canonical form stemming from the suggested by Helmholtz approach that the principle of action is the unified formal principle of physics. Einstein and his companious proceeded from machroscopic fields in the attempts to prove the unified geometric field theory. The sense of Planck length as ''the smallest length in physics'' is determined, on the one hand, by the Heizenberg uncerntainty principle for the measurement process, and on the other hand by the universal proportionality between inertia and gravity. It results from geometrical nature and gravitational potential, i. e. from Einstein interpretation of the equivalence principle
A unified theory of quasibound states
Directory of Open Access Journals (Sweden)
Curt A. Moyer
2014-02-01
Full Text Available We report a formalism for the study of quasibound states, defined here broadly as those states having a connectedness to true bound states through the variation of some physical parameter. The theory admits quasibound states with real energies (stationary quasibound states and quantum resonances within the same framework, and makes a clean distinction between these states and those of the associated continuum. The approach taken here builds on our earlier work by clarifying several crucial points and extending the formalism to encompass a variety of continuous spectra, including those with degeneracies. The theory is illustrated by examining several cases pertinent to applications widely discussed in the literature. The related issue of observing stationary quasibound states also is addressed. We argue that the Adiabatic Theorem of quantum mechanics not only establishes the criteria necessary for their detection, but also engenders a method for assigning to them a level width that is sufficiently distinct from that of quantum resonances so as to allow the two to be differentiated experimentally.
Unified theory of interspecific allometric scaling
International Nuclear Information System (INIS)
Silva, Jafferson K L da; Barbosa, Lauro A; Silva, Paulo Roberto
2007-01-01
A general simple theory for the interspecific allometric scaling is developed in the d + 1-dimensional space (d biological lengths and a physiological time) of metabolic states of organisms. It is assumed that natural selection shaped the metabolic states in such a way that the mass and energy d + 1-densities are size-invariant quantities (independent of body mass). The different metabolic states (basal and maximum) are described by considering that the biological lengths and the physiological time are related by different transport processes of energy and mass. In the basal metabolism, transportation occurs by ballistic and diffusion processes. In d = 3, the 3/4 law occurs if the ballistic movement is the dominant process, while the 2/3 law appears when both transport processes are equivalent. Accelerated movement during the biological time is related to the maximum aerobic sustained metabolism, which is characterized by the scaling exponent 2d/(2d + 1) (6/7 in d = 3). The results are in good agreement with empirical data and a verifiable empirical prediction about the aorta blood velocity in maximum metabolic rate conditions is made. (fast track communication)
String theory or field theory?
International Nuclear Information System (INIS)
Marshakov, Andrei V
2002-01-01
The status of string theory is reviewed, and major recent developments - especially those in going beyond perturbation theory in the string theory and quantum field theory frameworks - are analyzed. This analysis helps better understand the role and place of string theory in the modern picture of the physical world. Even though quantum field theory describes a wide range of experimental phenomena, it is emphasized that there are some insurmountable problems inherent in it - notably the impossibility to formulate the quantum theory of gravity on its basis - which prevent it from being a fundamental physical theory of the world of microscopic distances. It is this task, the creation of such a theory, which string theory, currently far from completion, is expected to solve. In spite of its somewhat vague current form, string theory has already led to a number of serious results and greatly contributed to progress in the understanding of quantum field theory. It is these developments which are our concern in this review. (reviews of topical problems)
International Nuclear Information System (INIS)
Bergmann, P.G.
1980-01-01
A problem of construction of the unitary field theory is discussed. The preconditions of the theory are briefly described. The main attention is paid to the geometrical interpretation of physical fields. The meaning of the conceptions of diversity and exfoliation is elucidated. Two unitary field theories are described: the Weyl conformic geometry and Calitzy five-dimensioned theory. It is proposed to consider supersymmetrical theories as a new approach to the problem of a unitary field theory. It is noted that the supergravitational theories are really unitary theories, since the fields figuring there do not assume invariant expansion
Multiple growth regimes: Insights from unified growth theory
Galor, Oded
2007-01-01
Unified Growth Theory uncovers the forces that contributed to the existence of multiple growth regimes and the emergence of convergence clubs. It suggests that differential timing of take-offs from stagnation to growth segmented economies into three fundamental regimes: slow growing economies in a Malthusian regime, fast growing countries in a sustained growth regime, and economies in the transition between these regimes. In contrast to existing research that links regime switching thresholds...
Interacting diffusive unified dark energy and dark matter from scalar fields
Energy Technology Data Exchange (ETDEWEB)
Benisty, David; Guendelman, E.I. [Ben Gurion University of the Negev, Department of Physics, Beersheba (Israel)
2017-06-15
Here we generalize ideas of unified dark matter-dark energy in the context of two measure theories and of dynamical space time theories. In two measure theories one uses metric independent volume elements and this allows one to construct unified dark matter-dark energy, where the cosmological constant appears as an integration constant associated with the equation of motion of the measure fields. The dynamical space-time theories generalize the two measure theories by introducing a vector field whose equation of motion guarantees the conservation of a certain Energy Momentum tensor, which may be related, but in general is not the same as the gravitational Energy Momentum tensor. We propose two formulations of this idea: (I) by demanding that this vector field be the gradient of a scalar, (II) by considering the dynamical space field appearing in another part of the action. Then the dynamical space time theory becomes a theory of Diffusive Unified dark energy and dark matter. These generalizations produce non-conserved energy momentum tensors instead of conserved energy momentum tensors which leads at the end to a formulation of interacting DE-DM dust models in the form of a diffusive type interacting Unified dark energy and dark matter scenario. We solved analytically the theories for perturbative solution and asymptotic solution, and we show that the ΛCDM is a fixed point of these theories at large times. Also a preliminary argument as regards the good behavior of the theory at the quantum level is proposed for both theories. (orig.)
Toward a Unified Theory of Work: Organizational Simulations and Policy Analyses
National Research Council Canada - National Science Library
Vaughan, David
2002-01-01
.... This unified theory of work will connect theories of human traits and states, theories of task and job characteristics, theories of job/task performance, and perhaps theories of organizational behavior...
The free-energy principle: a unified brain theory?
Friston, Karl
2010-02-01
A free-energy principle has been proposed recently that accounts for action, perception and learning. This Review looks at some key brain theories in the biological (for example, neural Darwinism) and physical (for example, information theory and optimal control theory) sciences from the free-energy perspective. Crucially, one key theme runs through each of these theories - optimization. Furthermore, if we look closely at what is optimized, the same quantity keeps emerging, namely value (expected reward, expected utility) or its complement, surprise (prediction error, expected cost). This is the quantity that is optimized under the free-energy principle, which suggests that several global brain theories might be unified within a free-energy framework.
Violation of the Appelquist-Carazzone decoupling in a nonsupersymmetric grand unified theory
International Nuclear Information System (INIS)
Chankowski, Piotr H.; Wagner, Jakub
2008-01-01
We point out that in nonsupersymmetric grand unified theories, in which the SU(5) gauge symmetry is broken down to the standard model gauge group by a 24 Higgs multiplet the Appelquist-Carazzone decoupling is violated. This is because the SU(2) L Higgs triplet contained in the 24 acquires a dimension-full coupling to the SU(2) L Higgs doublets which is proportional to the grand unified symmetry breaking vacuum expectation value. As a result, at one-loop heavy gauge and Higgs fields contribution to tadpoles generates a vacuum expectation value of the triplet which is not suppressed for V→∞ and violates the custodial symmetry
Supersymmetric grand unified theories from quarks to strings via SUSY GUTs
Raby, Stuart
2017-01-01
These course-tested lectures provide a technical introduction to Supersymmetric Grand Unified Theories (SUSY GUTs), as well as a personal view on the topic by one of the pioneers in the field. While the Standard Model of Particle Physics is incredibly successful in describing the known universe it is, nevertheless, an incomplete theory with many free parameters and open issues. An elegant solution to all of these quandaries is the proposed theory of SUSY GUTs. In a GUT, quarks and leptons are related in a simple way by the unifying symmetry and their electric charges are quantized, further the relative strength of the strong, weak and electromagnetic forces are predicted. SUSY GUTs additionally provide a framework for understanding particle masses and offer candidates for dark matter. Finally, with the extension of SUSY GUTs to string theory, a quantum-mechanically consistent unification of the four known forces (including gravity) is obtained. The book is organized in three sections: the first section contai...
International Nuclear Information System (INIS)
Hwang, Jai-chan; Noh, Hyerim
2005-01-01
We present cosmological perturbation theory based on generalized gravity theories including string theory correction terms and a tachyonic complication. The classical evolution as well as the quantum generation processes in these varieties of gravity theories are presented in unified forms. These apply both to the scalar- and tensor-type perturbations. Analyses are made based on the curvature variable in two different gauge conditions often used in the literature in Einstein's gravity; these are the curvature variables in the comoving (or uniform-field) gauge and the zero-shear gauge. Applications to generalized slow-roll inflation and its consequent power spectra are derived in unified forms which include a wide range of inflationary scenarios based on Einstein's gravity and others
Field theories with subcanonical fields
International Nuclear Information System (INIS)
Bigi, I.I.Y.
1976-01-01
The properties of quantum field theories with spinor fields of dimension less than the canonical value of 3/2 are studied. As a starting point for the application of common perturbation theory we look for the linear version of these theories. A gange-interaction is introduced and with the aid of power counting the renormalizability of the theory is shown. It follows that in the case of a spinor-field with negative dimension renormalization can only be attained if the interaction has a further symmetry. By this symmetry the theory is determined in an unequivocal way. The gange-interaction introduced in the theory leads to a spontaneous breakdown of scale invariance whereby masses are produced. At the same time the spinor-field operators can now be separated in two orthogonal sections with opposite norm. It is proposed to use the section with negative (positive) norm to describe hadrons (leptons) respectively. (orig./WL) [de
Gauge coupling unification from unified theories in higher dimensions
International Nuclear Information System (INIS)
Hall, Lawrence J.; Nomura, Yasunori
2002-01-01
Higher dimensional grand unified theories, with gauge symmetry breaking by orbifold compactification, possess SU(5) breaking at fixed points, and do not automatically lead to tree-level gauge coupling unification. A new framework is introduced that guarantees precise unification--even the leading loop threshold corrections are predicted, although they are model dependent. Precise agreement with the experimental result, α s exp =0.117±0.002, occurs only for a unique theory, and gives α s KK =0.118±0.004±0.003. Remarkably, this unique theory is also the simplest, with SU(5) gauge interactions and two Higgs hypermultiplets propagating in a single extra dimension. This result is more successful and precise than that obtained from conventional supersymmetric grand unification, α s SGUT =0.130±0.004±Δ SGUT . There is a simultaneous solution to the three outstanding problems of 4D supersymmetric grand unified theories: a large mass splitting between Higgs doublets and their color triplet partners is forced, proton decay via dimension five operators is automatically forbidden, and the absence of fermion mass relations amongst light quarks and leptons is guaranteed, while preserving the successful m b /m τ relation. The theory necessarily has a strongly coupled top quark located on a fixed point and part of the lightest generation propagating in the bulk. The string and compactification scales are determined to be around 10 17 GeV and 10 15 GeV, respectively
Covariant Noncommutative Field Theory
Energy Technology Data Exchange (ETDEWEB)
Estrada-Jimenez, S [Licenciaturas en Fisica y en Matematicas, Facultad de Ingenieria, Universidad Autonoma de Chiapas Calle 4a Ote. Nte. 1428, Tuxtla Gutierrez, Chiapas (Mexico); Garcia-Compean, H [Departamento de Fisica, Centro de Investigacion y de Estudios Avanzados del IPN P.O. Box 14-740, 07000 Mexico D.F., Mexico and Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Monterrey Via del Conocimiento 201, Parque de Investigacion e Innovacion Tecnologica (PIIT) Autopista nueva al Aeropuerto km 9.5, Lote 1, Manzana 29, cp. 66600 Apodaca Nuevo Leon (Mexico); Obregon, O [Instituto de Fisica de la Universidad de Guanajuato P.O. Box E-143, 37150 Leon Gto. (Mexico); Ramirez, C [Facultad de Ciencias Fisico Matematicas, Universidad Autonoma de Puebla, P.O. Box 1364, 72000 Puebla (Mexico)
2008-07-02
The covariant approach to noncommutative field and gauge theories is revisited. In the process the formalism is applied to field theories invariant under diffeomorphisms. Local differentiable forms are defined in this context. The lagrangian and hamiltonian formalism is consistently introduced.
Covariant Noncommutative Field Theory
International Nuclear Information System (INIS)
Estrada-Jimenez, S.; Garcia-Compean, H.; Obregon, O.; Ramirez, C.
2008-01-01
The covariant approach to noncommutative field and gauge theories is revisited. In the process the formalism is applied to field theories invariant under diffeomorphisms. Local differentiable forms are defined in this context. The lagrangian and hamiltonian formalism is consistently introduced
Low-energy neutral current phenomenology and grand unified theories
International Nuclear Information System (INIS)
Del Aguila, F.; Mendez, A.
1981-01-01
We derive necessary and sufficient conditions to be satisfied by any expanded electroweak gauge model in order to reproduce the standard model low-energy neutral current predictions. These conditions imply several constraints on the neutral gauge boson masses and the quantum number assignments for the ordinary fermions. Using these conditions, we prove that the popular grand unified theories based on the gauge groups SO(10) and E6 can only accommodate trivial extensions of the standard model. As a consequence, if any of these grand unified models works at some energy scale, present low-energy neutral current phenomenology implies that the Z-boson must be produced with the expected mass and couplings to the ordinary fermions. Any additional neutral gauge boson (with the possible exception of very heavy ones) could only be produced in hadronic collisions and it would not decay in e + e - . (orig.)
Towards a Unified Theory of Health-Disease: I. Health as a complex model-object
Directory of Open Access Journals (Sweden)
Naomar Almeida-Filho
2013-06-01
Full Text Available Theory building is one of the most crucial challenges faced by basic, clinical and population research, which form the scientific foundations of health practices in contemporary societies. The objective of the study is to propose a Unified Theory of Health-Disease as a conceptual tool for modeling health-disease-care in the light of complexity approaches. With this aim, the epistemological basis of theoretical work in the health field and concepts related to complexity theory as concerned to health problems are discussed. Secondly, the concepts of model-object, multi-planes of occurrence, modes of health and disease-illness-sickness complex are introduced and integrated into a unified theoretical framework. Finally, in the light of recent epistemological developments, the concept of Health-Disease-Care Integrals is updated as a complex reference object fit for modeling health-related processes and phenomena.
Higgs, Top, and Bottom Mass Predictions in Finite Unified Theories
Heinemeyer, Sven; Zoupanos, George
2014-01-01
All-loop Finite Unified Theories (FUTs) are N = 1 supersymmetric Grand Unified Theories (GUTs) based on the principle of reduction of couplings, which have a remarkable predictive power. The reduction of couplings implies the existence of renormalization group invariant relations among them, which guarantee the vanishing of the beta functions at all orders in perturbation theory in particular N = 1 GUTs. In the soft breaking sector these relations imply the existence of a sum rule among the soft scalar masses. The confrontation of the predictions of a SU(5) FUT model with the top and bottom quark masses and other low-energy experimental constraints leads to a prediction of the light Higgs-boson mass in the rangeMh ∼ 121−126 GeV, in remarkable agreement with the discovery of the Higgs boson with a mass around ∼ 125.7 GeV. Also a relatively heavy spectrum with coloured supersymmetric particles above ∼ 1.5 TeV is predicted, consistent with the non-observation of those particles at the LHC.
Unified theory of the exciplex formation/dissipation.
Khokhlova, Svetlana S; Burshtein, Anatoly I
2010-11-04
The natural extension and reformulation of the unified theory (UT) proposed here makes it integro-differential and capable of describing the distant quenching of excitation by electron transfer, accompanied with contact but reversible exciplex formation. The numerical solution of the new UT equations allows specifying the kinetics of the fluorescence quenching and exciplex association/dissociation as well as those reactions' quantum yields. It was demonstrated that the distant electron transfer in either the normal or inverted Marcus regions screens the contact reaction of exciplex formation, especially at slow diffusion.
Softening the supersymmetric flavor problem in orbifold grand unified theories
International Nuclear Information System (INIS)
Kajiyama, Yuji; Terao, Haruhiko; Kubo, Jisuke
2004-01-01
The infrared attractive force of the bulk gauge interactions is applied to soften the supersymmetric flavor problem in the orbifold SU(5) grand unified theory of Kawamura. Then this force aligns in the infrared regime the soft supersymmetry breaking terms out of their anarchical disorder at a fundamental scale, in such a way that flavor-changing neutral currents as well as dangerous CP-violating phases are suppressed at low energies. It is found that this dynamical alignment is sufficiently good compared with the current experimental bounds, as long as the diagonalization matrices of the Yukawa couplings are CKM-like
International Nuclear Information System (INIS)
Bonara, L.; Cotta-Ramusino, P.; Rinaldi, M.
1987-01-01
It is well-known that type I and heterotic superstring theories have a zero mass spectrum which correspond to the field content of N=1 supergravity theory coupled to supersymmetric Yang-Mills theory in 10-D. The authors study the field theory ''per se'', in the hope that simple consistency requirements will determine the theory completely once one knows the field content inherited from string theory. The simplest consistency requirements are: N=1 supersymmetry; and absence of chiral anomalies. This is what the authors discuss in this paper here leaving undetermined the question of the range of validity of the resulting field theory. As is known, a model of N=1 supergravity (SUGRA) coupled to supersymmetric Yang-Mills (SYM) theory was known in the form given by Chapline and Manton. The coupling of SUGRA to SYM was determined by the definition of the ''field strength'' 3-form H in this paper
Franklin, Joel
2017-01-01
Classical field theory, which concerns the generation and interaction of fields, is a logical precursor to quantum field theory, and can be used to describe phenomena such as gravity and electromagnetism. Written for advanced undergraduates, and appropriate for graduate level classes, this book provides a comprehensive introduction to field theories, with a focus on their relativistic structural elements. Such structural notions enable a deeper understanding of Maxwell's equations, which lie at the heart of electromagnetism, and can also be applied to modern variants such as Chern–Simons and Born–Infeld. The structure of field theories and their physical predictions are illustrated with compelling examples, making this book perfect as a text in a dedicated field theory course, for self-study, or as a reference for those interested in classical field theory, advanced electromagnetism, or general relativity. Demonstrating a modern approach to model building, this text is also ideal for students of theoretic...
International Nuclear Information System (INIS)
Ryder, L.H.
1985-01-01
This introduction to the ideas and techniques of quantum field theory presents the material as simply as possible and is designed for graduate research students. After a brief survey of particle physics, the quantum theory of scalar and spinor fields and then of gauge fields, is developed. The emphasis throughout is on functional methods, which have played a large part in modern field theory. The book concludes with a bridge survey of ''topological'' objects in field theory and assumes a knowledge of quantum mechanics and special relativity
International Nuclear Information System (INIS)
Kaku, M.
1987-01-01
In this article, the authors summarize the rapid progress in constructing string field theory actions, such as the development of the covariant BRST theory. They also present the newer geometric formulation of string field theory, from which the BRST theory and the older light cone theory can be derived from first principles. This geometric formulation allows us to derive the complete field theory of strings from two geometric principles, in the same way that general relativity and Yang-Mills theory can be derived from two principles based on global and local symmetry. The geometric formalism therefore reduces string field theory to a problem of finding an invariant under a new local gauge group they call the universal string group (USG). Thus, string field theory is the gauge theory of the universal string group in much the same way that Yang-Mills theory is the gauge theory of SU(N). The geometric formulation places superstring theory on the same rigorous group theoretical level as general relativity and gauge theory
Algebraic conformal field theory
International Nuclear Information System (INIS)
Fuchs, J.; Nationaal Inst. voor Kernfysica en Hoge-Energiefysica
1991-11-01
Many conformal field theory features are special versions of structures which are present in arbitrary 2-dimensional quantum field theories. So it makes sense to describe 2-dimensional conformal field theories in context of algebraic theory of superselection sectors. While most of the results of the algebraic theory are rather abstract, conformal field theories offer the possibility to work out many formulae explicitly. In particular, one can construct the full algebra A-bar of global observables and the endomorphisms of A-bar which represent the superselection sectors. Some explicit results are presented for the level 1 so(N) WZW theories; the algebra A-bar is found to be the enveloping algebra of a Lie algebra L-bar which is an extension of the chiral symmetry algebra of the WZW theory. (author). 21 refs., 6 figs
Leptogenesis in unified theories with Type II see-saw
International Nuclear Information System (INIS)
Antusch, Stefan; King, Steve F.
2006-01-01
In some classes of flavour models based on unified theories with a type I see-saw mechanism, the prediction for the mass of the lightest right-handed neutrino is in conflict with the lower bound from the requirement of successful thermal leptogenesis. We investigate how lifting the absolute neutrino mass scale by adding a type II see-saw contribution proportional to the unit matrix can solve this problem. Generically, lifting the neutrino mass scale increases the prediction for the mass of the lightest right-handed neutrino while the decay asymmetry is enhanced and washout effects are reduced, relaxing the lower bound on the mass of the lightest right-handed neutrino from thermal leptogenesis. For instance in classes of unified theories where the lightest right-handed neutrino dominates the type I see-saw contribution, we find that thermal leptogenesis becomes possible if the neutrino mass scale is larger than about 0.15 eV, making this scenario testable by neutrinoless double beta decay experiments in the near future
Theory of thermoluminescence gamma dose response: The unified interaction model
International Nuclear Information System (INIS)
Horowitz, Y.S.
2001-01-01
We describe the development of a comprehensive theory of thermoluminescence (TL) dose response, the unified interaction model (UNIM). The UNIM is based on both radiation absorption stage and recombination stage mechanisms and can describe dose response for heavy charged particles (in the framework of the extended track interaction model - ETIM) as well as for isotropically ionising gamma rays and electrons (in the framework of the TC/LC geminate recombination model) in a unified and self-consistent conceptual and mathematical formalism. A theory of optical absorption dose response is also incorporated in the UNIM to describe the radiation absorption stage. The UNIM is applied to the dose response supralinearity characteristics of LiF:Mg,Ti and is especially and uniquely successful in explaining the ionisation density dependence of the supralinearity of composite peak 5 in TLD-100. The UNIM is demonstrated to be capable of explaining either qualitatively or quantitatively all of the major features of TL dose response with many of the variable parameters of the model strongly constrained by ancilliary optical absorption and sensitisation measurements
SSNTD-supersymmetry theory unifying cosmic and nucleonic matters
International Nuclear Information System (INIS)
Swarup, R.
2011-01-01
The SSNTD study instead of being an experimental observation recording rigid geometrical constructs as a consequence of interactions of nuclear radiation with matter really needs an innovation to equate their natural need to facilitate innumerable communication and transmission processes between nucleonic and cosmic matters in the want of quest for the search for the beginning of time and perfect symmetry of universe. It may found potential scientific astronomical base to illustrate the long imagined astrological criteria that the atoms of planets and the molecules consisting of heavy chemical elements of living species belonging to anatomic as well as unanatomic worlds all were cooked up out of higher elements in the nuclear furnaces of stars long ago. The development of nuclear track is prominent nature path making process due to natural radioactivity, cosmic rays etc. to feed the desired matter, field, energy as well as their derivative transfers for sustaining equilibrated growth of all entities in the universe. Nuclear tracks as quantum transporting roads constrain some symmetries of classical world and such anomalously broken symmetries play a crucial role in our present day theories of elementary particles and condensed matter physics. The anomalies, induced as the result of adiabatic change (phase operator associated with radiation field) during quantum evolution, are the manifestation of QFT with polar decomposition of annihilation and creation operators with unique choice. The existence of super symmetry could be ensured by a simultaneous existence of very massive superpartners of ordinary quantum particles-quarks, leptons and gluons namely quarkinos, leptinos and gluinos with astonished characters undetected so far. While diagramming the unification of forces with the temperature rise of the universe, one may ensure that at Planck temperature, all forces are unified under the aegis of a supergravity theory. At lower- T, the supersymmetry is broken giving
Five-dimensional projective unified theory and the principle of equivalence
International Nuclear Information System (INIS)
De Sabbata, V.; Gasperini, M.
1984-01-01
We investigate the physical consequences of a new five-dimensional projective theory unifying gravitation and electromagnetism. Solving the field equations in the linear approximation and in the static limit, we find that a celestial body would act as a source of a long-range scalar field, and that macroscopic test bodies with different internal structure would accelerate differently in the solar gravitational field; this seems to be in disagreement with the equivalence principle. To avoid this contradiction, we suggest a possible modification of the geometrical structure of the five-dimensional projective space
International Nuclear Information System (INIS)
Souza, Manoelito M. de
1997-01-01
We discuss the physical meaning and the geometric interpretation of implementation in classical field theories. The origin of infinities and other inconsistencies in field theories is traced to fields defined with support on the light cone; a finite and consistent field theory requires a light-cone generator as the field support. Then, we introduce a classical field theory with support on the light cone generators. It results on a description of discrete (point-like) interactions in terms of localized particle-like fields. We find the propagators of these particle-like fields and discuss their physical meaning, properties and consequences. They are conformally invariant, singularity-free, and describing a manifestly covariant (1 + 1)-dimensional dynamics in a (3 = 1) spacetime. Remarkably this conformal symmetry remains even for the propagation of a massive field in four spacetime dimensions. We apply this formalism to Classical electrodynamics and to the General Relativity Theory. The standard formalism with its distributed fields is retrieved in terms of spacetime average of the discrete field. Singularities are the by-products of the averaging process. This new formalism enlighten the meaning and the problem of field theory, and may allow a softer transition to a quantum theory. (author)
International Nuclear Information System (INIS)
Eloranta, E.
2003-11-01
The geophysical field theory includes the basic principles of electromagnetism, continuum mechanics, and potential theory upon which the computational modelling of geophysical phenomena is based on. Vector analysis is the main mathematical tool in the field analyses. Electrostatics, stationary electric current, magnetostatics, and electrodynamics form a central part of electromagnetism in geophysical field theory. Potential theory concerns especially gravity, but also electrostatics and magnetostatics. Solid state mechanics and fluid mechanics are central parts in continuum mechanics. Also the theories of elastic waves and rock mechanics belong to geophysical solid state mechanics. The theories of geohydrology and mass transport form one central field theory in geophysical fluid mechanics. Also heat transfer is included in continuum mechanics. (orig.)
Nonlocal continuum field theories
2002-01-01
Nonlocal continuum field theories are concerned with material bodies whose behavior at any interior point depends on the state of all other points in the body -- rather than only on an effective field resulting from these points -- in addition to its own state and the state of some calculable external field. Nonlocal field theory extends classical field theory by describing the responses of points within the medium by functionals rather than functions (the "constitutive relations" of classical field theory). Such considerations are already well known in solid-state physics, where the nonlocal interactions between the atoms are prevalent in determining the properties of the material. The tools developed for crystalline materials, however, do not lend themselves to analyzing amorphous materials, or materials in which imperfections are a major part of the structure. Nonlocal continuum theories, by contrast, can describe these materials faithfully at scales down to the lattice parameter. This book presents a unif...
Superspace conformal field theory
Energy Technology Data Exchange (ETDEWEB)
Quella, Thomas [Koeln Univ. (Germany). Inst. fuer Theoretische Physik; Schomerus, Volker [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2013-07-15
Conformal sigma models and WZW models on coset superspaces provide important examples of logarithmic conformal field theories. They possess many applications to problems in string and condensed matter theory. We review recent results and developments, including the general construction of WZW models on type I supergroups, the classification of conformal sigma models and their embedding into string theory.
Superspace conformal field theory
International Nuclear Information System (INIS)
Quella, Thomas
2013-07-01
Conformal sigma models and WZW models on coset superspaces provide important examples of logarithmic conformal field theories. They possess many applications to problems in string and condensed matter theory. We review recent results and developments, including the general construction of WZW models on type I supergroups, the classification of conformal sigma models and their embedding into string theory.
International Nuclear Information System (INIS)
Lucha, W.; Neufeld, H.
1986-01-01
We investigate the relation between finiteness of a four-dimensional quantum field theory and global supersymmetry. To this end we consider the most general quantum field theory and analyse the finiteness conditions resulting from the requirement of the absence of divergent contributions to the renormalizations of the parameters of the theory. In addition to the gauge bosons, both fermions and scalar bosons turn out to be a necessary ingredient in a non-trivial finite gauge theory. In all cases discussed, the supersymmetric theory restricted by two well-known constraints on the dimensionless couplings proves to be the unique solution of the finiteness conditions. (Author)
Flavor hierarchy in SO(10) grand unified theories via 5-dimensional wave-function localization
Kitano, Ryuichiro; Li, Tianjun
2003-06-01
A mechanism to generate fermion-mass hierarchy in SO(10) grand unified theories is considered. We find that the lopsided family structure, which is suitable to the large angle Mikheyev-Smirnov-Wolfenstein solution to solar neutrino oscillation, is realized without introducing extra matter fields if the hierarchy originates from the wave-function profile in an extra dimension. Unlike the Froggatt-Nielsen mechanism, the SO(10) breaking effect may directly contribute to the source of the hierarchy, i.e., the bulk mass terms. It naturally explains the difference of the hierarchical patterns between the quark and the lepton sectors. We also find the possibility of horizontal unification, in which three generations of matter fields are unified to a 3-dimensional representation of an SU(2) gauge group.
Flavor hierarchy in SO(10) grand unified theories via 5-dimensional wave-function localization
International Nuclear Information System (INIS)
Kitano, Ryuichiro; Li Tianjun
2003-01-01
A mechanism to generate fermion-mass hierarchy in SO(10) grand unified theories is considered. We find that the lopsided family structure, which is suitable to the large angle Mikheyev-Smirnov-Wolfenstein solution to solar neutrino oscillation, is realized without introducing extra matter fields if the hierarchy originates from the wave-function profile in an extra dimension. Unlike the Froggatt-Nielsen mechanism, the SO(10) breaking effect may directly contribute to the source of the hierarchy, i.e., the bulk mass terms. It naturally explains the difference of the hierarchical patterns between the quark and the lepton sectors. We also find the possibility of horizontal unification, in which three generations of matter fields are unified to a 3-dimensional representation of an SU(2) gauge group
Hyperfunction quantum field theory
International Nuclear Information System (INIS)
Nagamachi, S.; Mugibayashi, N.
1976-01-01
The quantum field theory in terms of Fourier hyperfunctions is constructed. The test function space for hyperfunctions does not contain C infinitely functios with compact support. In spite of this defect the support concept of H-valued Fourier hyperfunctions allows to formulate the locality axiom for hyperfunction quantum field theory. (orig.) [de
Sadovskii, Michael V
2013-01-01
This book discusses the main concepts of the Standard Model of elementary particles in a compact and straightforward way. The work illustrates the unity of modern theoretical physics by combining approaches and concepts of the quantum field theory and modern condensed matter theory. The inductive approach allows a deep understanding of ideas and methods used for solving problems in this field.
Energy Technology Data Exchange (ETDEWEB)
Bergshoeff, Eric A. [Centre for Theoretical Physics, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Hohm, Olaf [Simons Center for Geometry and Physics, Stony Brook University,Stony Brook, NY 11794-3636 (United States); Penas, Victor A. [Centre for Theoretical Physics, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Riccioni, Fabio [INFN - Sezione di Roma, Dipartimento di Fisica, Università di Roma “La Sapienza”,Piazzale Aldo Moro 2, 00185 Roma (Italy)
2016-06-06
We present the dual formulation of double field theory at the linearized level. This is a classically equivalent theory describing the duals of the dilaton, the Kalb-Ramond field and the graviton in a T-duality or O(D,D) covariant way. In agreement with previous proposals, the resulting theory encodes fields in mixed Young-tableau representations, combining them into an antisymmetric 4-tensor under O(D,D). In contrast to previous proposals, the theory also requires an antisymmetric 2-tensor and a singlet, which are not all pure gauge. The need for these additional fields is analogous to a similar phenomenon for “exotic' dualizations, and we clarify this by comparing with the dualizations of the component fields. We close with some speculative remarks on the significance of these observations for the full non-linear theory yet to be constructed.
International Nuclear Information System (INIS)
Douglas, Michael R.; Nekrasov, Nikita A.
2001-01-01
This article reviews the generalization of field theory to space-time with noncommuting coordinates, starting with the basics and covering most of the active directions of research. Such theories are now known to emerge from limits of M theory and string theory and to describe quantum Hall states. In the last few years they have been studied intensively, and many qualitatively new phenomena have been discovered, on both the classical and the quantum level
Equivalence of the degrees of freedom in a unified gravitational theory
International Nuclear Information System (INIS)
Halpern, L.; Stockholm Univ.
1986-01-01
A discussion of the nonuniqueness of physical laws and their invariance groups is illustrated by the construction of a physical theory (presented earlier) in which the law of motion of structureless and spinning particles is unified in the geometry of the manifold of the de Sitter group SO(3,2). The theory has the structure of a non-Abelian Kaluza-Klein theory with very special properties resulting from the topology and noncompactness of the groups. The physical interpretation of the field equation is discussed. The physical requirement of equivalence of the interaction of spinning and orbiting systems, generally unconsidered in related theories, is here taken into account by the structure of the theory. The possibility of deviations from predictions of general relativity exists. Generalizations of the theoretical structure to higher dimensional groups are outlined and open the possibility for observations. (author)
Equivalence of the degrees of freedom in a unified gravitational theory
International Nuclear Information System (INIS)
Halpern, L.
1985-01-01
A discussion of the non uniqueness of physical laws and their invariance groups is illustrated by the construction of a physical theory in which the law of motion of structureless and spinning particles is unified in the geometry of the manifold of the De Sitter group SO(3,2). The theory has the structure of a non Abelian Kaluza-Klein theory with very special properties resulting from the topology and non compactness of the groups. The physical interpretation of the field equations is discussed. The physical requirement of equivalence of the interaction of spinning and orbiting systems, generally unconsidered in related theories, is here taken into account by the structure of the theory. The possibility of deviations from predictions of general relativity exists. Generalizations of the theoretical structure to higher dimensional groups are outlined and open the possibility for observations. 21 refs
Baden Fuller, A J
2014-01-01
Engineering Field Theory focuses on the applications of field theory in gravitation, electrostatics, magnetism, electric current flow, conductive heat transfer, fluid flow, and seepage.The manuscript first ponders on electric flux, electrical materials, and flux function. Discussions focus on field intensity at the surface of a conductor, force on a charged surface, atomic properties, doublet and uniform field, flux tube and flux line, line charge and line sink, field of a surface charge, field intensity, flux density, permittivity, and Coulomb's law. The text then takes a look at gravitation
Some consequences of embedding heavy color in grand unified theories
International Nuclear Information System (INIS)
Elias, V.
1980-01-01
I show that ''standard'' embedding constraints cannot accommodate an empirically motivated value for the heavy-color (HC) momentum scale Λ/sub HC/ if the heavy-color group is SU(N>3). The heavy-color group can be SU(3), provided such constraints are relaxed in order to allow fermions to contribute differentially to SU(3)/sub HC/ and SU(3)/sub QCD/ β-functions (QCD=quantum chromodynamics). Theories successfully embedding G/sub HC/>SU(3) along with the known interactions are shown to require vastly reduced unification mass scales. As an example, empirically acceptable values for Λ/sub HC/, sin 2 theta/sub W/, and α/sub s/(m/sub W/) as well as a unification mass scale within an order of magnitude of Λ/sub HC/ are accommodated within very large models based on [SU(2n)] 4 unifying symmetry
Squark and slepton mass relations in grand unified theories
International Nuclear Information System (INIS)
Cheng, H.; Hall, L.J.
1995-01-01
In the minimal supersymmetric standard model, assuming universal scalar masses at large energies, there are four intragenerational relations between the masses of the squarks and sleptons for each light generation. In this paper we study the scalar mass relations which follow only from the assumption that at large energies there is a grand unified theory which leads to a significant prediction of the weak mixing angle. Two new intragenerational mass relations for each of the light generations are derived. In addition, a third mass relation is found which relates the Higgs boson masses, the masses of the third generation scalars, and the masses of the scalars of the lighter generations. Verification of a fourth mass relation, involving only the charged slepton masses, provides a signal for SO(10) unification
Pattern of neutrino mixing in grand unified theories
International Nuclear Information System (INIS)
Milton, K.; Tanaka, K.
1981-01-01
It was found previously in SO(10) grand unified theories that if the neutrinos have a Dirac mass and a right-handed Majorana mass (approx. 10 15 GeV) but no left-handed Majorana mass, there is small ν/sub e/ mixing but ν/sub μ/ - ν/sub tau/ mixing can be substantial. This problem is reexamined on the basis of a formalism that assumes that the up, down, lepton, and neutrino mass matrices arise from a single complex 10 and a single 126 Higgs boson. This formalism determines the Majorana mass matrix in terms of quark mass matrices. Adopting three different sets of quark mass matrices that produce acceptable fermion mass ratios and Cabbibo mixing produces results consistent with the above; however, in the optimum case, ν/sub e/ - ν/sub μ/ mixing can be of the order of the Cabbibo angle
Microcanonical quantum field theory
International Nuclear Information System (INIS)
Strominger, A.
1983-01-01
Euclidean quantum field theory is equivalent to the equilibrium statistical mechanics of classical fields in 4+1 dimensions at temperature h. It is well known in statistical mechanics that the theory of systems at fixed temperature is embedded within the more general and fundamental theory of systems at fixed energy. We therefore develop, in precise analogy, a fixed action (macrocanonical) formulation of quantum field theory. For the case of ordinary renormalizable field theories, we show (with one exception) that the microcanonical is entirely equivalent to the canonical formulation. That is, for some particular fixed value of the total action, the Green's functions of the microcanonical theory are equal, in the bulk limit, to those of the canonical theory. The microcanonical perturbation expansion is developed in some detail for lambdaphi 4 . The particular value of the action for which the two formulations are equivalent can be calculated to all orders in perturbation theory. We prove, using Lehmann's Theorem, that this value is one-half Planck unit per degree of freedom, if fermionic degrees of freedom are counted negatively. This is the 4+1 dimensional analog of the equipartition theorem. The one exception to this is supersymmetric theories. A microcanonical formulation exists if and only if supersymmetry is broken. In statistical mechanics and in field theory there are systems for which the canonical description is pathological, but the microcanonical is not. An example of such a field theory is found in one dimension. A semiclassical expansion of the microcanonical theory is well defined, while an expansion of the canonical theory is hoplessly divergent
Nonequilibrium quantum field theories
International Nuclear Information System (INIS)
Niemi, A.J.
1988-01-01
Combining the Feynman-Vernon influence functional formalism with the real-time formulation of finite-temperature quantum field theories we present a general approach to relativistic quantum field theories out of thermal equilibrium. We clarify the physical meaning of the additional fields encountered in the real-time formulation of quantum statistics and outline diagrammatic rules for perturbative nonequilibrium computations. We derive a generalization of Boltzmann's equation which gives a complete characterization of relativistic nonequilibrium phenomena. (orig.)
Supersymmetric gauge field theories
International Nuclear Information System (INIS)
Slavnov, A.A.
1976-01-01
The paper is dealing with the role of supersymmetric gauge theories in the quantum field theory. Methods of manipulating the theories as well as possibilities of their application in elementary particle physics are presented. In particular, the necessity is explained of a theory in which there is symmetry between Fermi and Bose fields, in other words, of the supersymmetric gauge theory for construction of a scheme for the Higgs particle connecting parameters of scalar mesons with those of the rest fields. The mechanism of supersymmetry breaking is discussed which makes it possible to remain the symmetric procedure of renormalization intact. The above mechanism of spontaneous symmetry breaking is applied to demonstrate possibilities of constructing models of weak and electromagnetic interactions which would be acceptable from the point of view of experiments. It is noted that the supersymmetric gauge theories represent a natural technique for description of vector-like models
Superforce the search for a grand unified theory of nature
Davies, Paul
1985-01-01
Many scientists believe we are on the verge of a "Theory of Everything" - a complete unification of all the fundamental forces and particles of nature. In this book, the physicist and author Paul Davies gives an account of the quest for a superforce that will explain how the physical universe is put together. The book describes the bewildering array of subatomic particles that have been discovered in recent years, and shows how their properties form abstract patterns and mathematical symmetries, hinting at deep linkages. It explains how the forces that act between these particles may require the existence of unseen extra dimensions of space, and why the latest bizarre theory suggests that the basic entities out of which all matter is built may not be particles at all, but strings. Aimed at the general reader, this account shows that a unified theory may be within our grasp, and that a single superforce may acmcount not only for the nature of matter, but even for the manner in which the universe came into exis...
Mandl, Franz
2010-01-01
Following on from the successful first (1984) and revised (1993) editions, this extended and revised text is designed as a short and simple introduction to quantum field theory for final year physics students and for postgraduate students beginning research in theoretical and experimental particle physics. The three main objectives of the book are to: Explain the basic physics and formalism of quantum field theory To make the reader proficient in theory calculations using Feynman diagrams To introduce the reader to gauge theories, which play a central role in elementary particle physic
WORKSHOP: Thermal field theory
Energy Technology Data Exchange (ETDEWEB)
Anon.
1989-04-15
The early history of the Universe is a crucial testing ground for theories of elementary particles. Speculative ideas about the constituents of matter and their interactions are reinforced if they are consistent with what we suppose happened near the beginning of time and discarded if they are not. The cosmological consequences of these theories are usually deduced using a general statistical approach called thermal field theory. Thus, 75 physicists from thirteen countries met in Cleveland, Ohio, last October for the first 'Workshop on Thermal Field Theories and their Applications'.
[Towards an unified theory of the universe basic forces ("the everything theory")].
Aguilar Peris, José
2004-01-01
Numerous efforts have been made in order to unify all the basic forces in nature. In 1967 the fusion of electromagnetic and weak forces was obtained and in 1973 a theoretical bridge between the electroweak and the strong forces have been constructed. This theory is waiting for experimental proofs in the CERN large hadron collider. The last stage would be "the everything theory", which includes the gravitational force. Only the so called superstring theory is a good candidate to overcome the incompatibility of the quantum mechanics and the general relativity, but this theory is not already achieved.
International Nuclear Information System (INIS)
Senjanovic, G.
1982-07-01
It is demonstrated that the spontaneous breakdown of CP invariance in grand unified theories requires the presence of intermediate mass scales. The simplest realization is provided by weakly broken left-right symmetry in the context of SU(2)sub(L) x SU(2)sub(R) x U(1)sub(B-L) model embedded in grand unified theories. (author)
International Nuclear Information System (INIS)
Mack, G.; Kalkreuter, T.; Palma, G.; Speh, M.
1992-05-01
Effective field theories encode the predictions of a quantum field theory at low energy. The effective theory has a fairly low utraviolet cutoff. As a result, loop corrections are small, at least if the effective action contains a term which is quadratic in the fields, and physical predictions can be read straight from the effective Lagrangean. Methods will be discussed how to compute an effective low energy action from a given fundamental action, either analytically or numerically, or by a combination of both methods. Basically, the idea is to integrate out the high frequency components of fields. This requires the choice of a 'blockspin', i.e. the specification af a low frequency field as a function of the fundamental fields. These blockspins will be fields of the effective field theory. The blockspin need not be a field of the same type as one of the fundamental fields, and it may be composite. Special features of blockspin in nonabelian gauge theories will be discussed in some detail. In analytical work and in multigrid updating schemes one needs interpolation kernels A from coarse to fine grid in addition to the averaging kernels C which determines the blockspin. A neural net strategy for finding optimal kernels is presented. Numerical methods are applicable to obtain actions of effective theories on lattices of finite volume. The special case of a 'lattice' with a single site (the constraint effective potential) is of particular interest. In a higgs model, the effective action reduces in this case to the free energy, considered as a function of a gauge covariant magnetization. Its shape determines the phase structure of the theory. Its loop expansion with and without gauge fields can be used to determine finite size corrections to numerical data. (orig.)
Algebraic quantum field theory
International Nuclear Information System (INIS)
Foroutan, A.
1996-12-01
The basic assumption that the complete information relevant for a relativistic, local quantum theory is contained in the net structure of the local observables of this theory results first of all in a concise formulation of the algebraic structure of the superselection theory and an intrinsic formulation of charge composition, charge conjugation and the statistics of an algebraic quantum field theory. In a next step, the locality of massive particles together with their spectral properties are wed for the formulation of a selection criterion which opens the access to the massive, non-abelian quantum gauge theories. The role of the electric charge as a superselection rule results in the introduction of charge classes which in term lead to a set of quantum states with optimum localization properties. Finally, the asymptotic observables of quantum electrodynamics are investigated within the framework of algebraic quantum field theory. (author)
A Field Theory with Curvature and Anticurvature
Directory of Open Access Journals (Sweden)
M. I. Wanas
2014-01-01
Full Text Available The present work is an attempt to construct a unified field theory in a space with curvature and anticurvature, the PAP-space. The theory is derived from an action principle and a Lagrangian density using a symmetric linear parameterized connection. Three different methods are used to explore physical contents of the theory obtained. Poisson’s equations for both material and charge distributions are obtained, as special cases, from the field equations of the theory. The theory is a pure geometric one in the sense that material distribution, charge distribution, gravitational and electromagnetic potentials, and other physical quantities are defined in terms of pure geometric objects of the structure used. In the case of pure gravity in free space, the spherical symmetric solution of the field equations gives the Schwarzschild exterior field. The weak equivalence principle is respected only in the case of pure gravity in free space; otherwise it is violated.
International Nuclear Information System (INIS)
Strominger, A.
1987-01-01
A gauge invariant cubic action describing bosonic closed string field theory is constructed. The gauge symmetries include local spacetime diffeomorphisms. The conventional closed string spectrum and trilinear couplings are reproduced after spontaneous symmetry breaking. The action S is constructed from the usual ''open string'' field of ghost number minus one half. It is given by the associator of the string field product which is non-vanishing because of associativity anomalies. S does not describe open string propagation because open string states associate and can thereby be shifted away. A field theory of closed and open strings can be obtained by adding to S the cubic open string action. (orig.)
International Nuclear Information System (INIS)
Leite Lopes, J.
1981-01-01
The book is intended to explain, in an elementary way, the basic notions and principles of gauge theories. Attention is centred on the Salem-Weinberg model of electro-weak interactions, as well as neutrino-lepton scattering and the parton model. Classical field theory, electromagnetic, Yang-Mills and gravitational gauge fields, weak interactions, Higgs mechanism and the SU(5) model of grand unification are also discussed. (U.K.)
Quaternionic quantum field theory
International Nuclear Information System (INIS)
Adler, S.L.
1986-01-01
In this paper the author describes a new kind of quantum mechanics or quantum field theory based on quaternions. Quaternionic quantum mechanics has a Schrodinger equation, a Dirac transformation theory, and a functional integral. Quaternionic quantum mechanics does not seem to have (except in the complex quantum mechanics specialization): A correspondence principle, and beyond this a commuting tensor product, asymptotic states, an S-matrix, a canonical formalism, coherent states or a Euclidean continuation. A new kind of quantum mechanics exists. There are many interesting formal questions to study, which should enable one to decide whether quaternionic quantum field theory is relevant for particle physics
International Nuclear Information System (INIS)
Pokorski, S.
1987-01-01
Quantum field theory forms the present theoretical framework for the understanding of the fundamental interactions of particle physics. This book examines gauge theories and their symmetries with an emphasis on their physical and technical aspects. The author discusses field-theoretical techniques and encourages the reader to perform many of the calculations presented. This book includes a brief introduction to perturbation theory, the renormalization programme, and the use of the renormalization group equation. Several topics of current research interest are covered, including chiral symmetry and its breaking, anomalies, and low energy effective lagrangians and some basics of supersymmetry
Finite temperature field theory
Das, Ashok
1997-01-01
This book discusses all three formalisms used in the study of finite temperature field theory, namely the imaginary time formalism, the closed time formalism and thermofield dynamics. Applications of the formalisms are worked out in detail. Gauge field theories and symmetry restoration at finite temperature are among the practical examples discussed in depth. The question of gauge dependence of the effective potential and the Nielsen identities are explained. The nonrestoration of some symmetries at high temperature (such as supersymmetry) and theories on nonsimply connected space-times are al
Interpolating string field theories
International Nuclear Information System (INIS)
Zwiebach, B.
1992-01-01
This paper reports that a minimal area problem imposing different length conditions on open and closed curves is shown to define a one-parameter family of covariant open-closed quantum string field theories. These interpolate from a recently proposed factorizable open-closed theory up to an extended version of Witten's open string field theory capable of incorporating on shell closed strings. The string diagrams of the latter define a new decomposition of the moduli spaces of Riemann surfaces with punctures and boundaries based on quadratic differentials with both first order and second order poles
Axiomatic conformal field theory
International Nuclear Information System (INIS)
Gaberdiel, M.R.; Goddard, P.
2000-01-01
A new rigourous approach to conformal field theory is presented. The basic objects are families of complex-valued amplitudes, which define a meromorphic conformal field theory (or chiral algebra) and which lead naturally to the definition of topological vector spaces, between which vertex operators act as continuous operators. In fact, in order to develop the theory, Moebius invariance rather than full conformal invariance is required but it is shown that every Moebius theory can be extended to a conformal theory by the construction of a Virasoro field. In this approach, a representation of a conformal field theory is naturally defined in terms of a family of amplitudes with appropriate analytic properties. It is shown that these amplitudes can also be derived from a suitable collection of states in the meromorphic theory. Zhu's algebra then appears naturally as the algebra of conditions which states defining highest weight representations must satisfy. The relationship of the representations of Zhu's algebra to the classification of highest weight representations is explained. (orig.)
Strings - Links between conformal field theory, gauge theory and gravity
International Nuclear Information System (INIS)
Troost, J.
2009-05-01
String theory is a candidate framework for unifying the gauge theories of interacting elementary particles with a quantum theory of gravity. The last years we have made considerable progress in understanding non-perturbative aspects of string theory, and in bringing string theory closer to experiment, via the search for the Standard Model within string theory, but also via phenomenological models inspired by the physics of strings. Despite these advances, many deep problems remain, amongst which a non-perturbative definition of string theory, a better understanding of holography, and the cosmological constant problem. My research has concentrated on various theoretical aspects of quantum theories of gravity, including holography, black holes physics and cosmology. In this Habilitation thesis I have laid bare many more links between conformal field theory, gauge theory and gravity. Most contributions were motivated by string theory, like the analysis of supersymmetry preserving states in compactified gauge theories and their relation to affine algebras, time-dependent aspects of the holographic map between quantum gravity in anti-de-Sitter space and conformal field theories in the bulk, the direct quantization of strings on black hole backgrounds, the embedding of the no-boundary proposal for a wave-function of the universe in string theory, a non-rational Verlinde formula and the construction of non-geometric solutions to supergravity
Genesis of unified models from Majorana-Weyl fields
International Nuclear Information System (INIS)
Budini, P.; Furlan, P.
1977-07-01
It is proposed that all forms of interaction arise from elementary interactions between Weyl-Majorana fields. Weak interactions due to the high masses of the intermediate bosons are practically identical to the elementary interactions. Strong and electromagnetic interactions arise at larger distance, where dynamic determines both masses and symmetry. In the frame of these ideas, Pati-Salam and Fritzsch-Minkowski type of unified models are constructed starting from eight Weyl-Majorana fields. Fractional charges for quarks, integer charges for lepton and regularization of q.e.d. arise naturally from the model. Unobserved transitions (μ→e + γ, p→ leptons) may be ascribed to properties of the elementary fields (handedness) rather than very high W masses
Unified connected theory of few-body reaction mechanisms in N-body scattering theory
Polyzou, W. N.; Redish, E. F.
1978-01-01
A unified treatment of different reaction mechanisms in nonrelativistic N-body scattering is presented. The theory is based on connected kernel integral equations that are expected to become compact for reasonable constraints on the potentials. The operators T/sub +-//sup ab/(A) are approximate transition operators that describe the scattering proceeding through an arbitrary reaction mechanism A. These operators are uniquely determined by a connected kernel equation and satisfy an optical theorem consistent with the choice of reaction mechanism. Connected kernel equations relating T/sub +-//sup ab/(A) to the full T/sub +-//sup ab/ allow correction of the approximate solutions for any ignored process to any order. This theory gives a unified treatment of all few-body reaction mechanisms with the same dynamic simplicity of a model calculation, but can include complicated reaction mechanisms involving overlapping configurations where it is difficult to formulate models.
Variational principle for the Bloch unified reaction theory
International Nuclear Information System (INIS)
MacDonald, W.; Rapheal, R.
1975-01-01
The unified reaction theory formulated by Claude Bloch uses a boundary value operator to write the Schroedinger equation for a scattering state as an inhomogeneous equation over the interaction region. As suggested by Lane and Robson, this equation can be solved by using a matrix representation on any set which is complete over the interaction volume. Lane and Robson have proposed, however, that a variational form of the Bloch equation can be used to obtain a ''best'' value for the S-matrix when a finite subset of this basis is used. The variational principle suggested by Lane and Robson, which gives a many-channel S-matrix different from the matrix solution on a finite basis, is considered first, and it is shown that the difference results from the fact that their variational principle is not, in fact, equivalent to the Bloch equation. Then a variational principle is presented which is fully equivalent to the Bloch form of the Schroedinger equation, and it is shown that the resulting S-matrix is the same as that obtained from the matrix solution of this equation. (U.S.)
Light grand unified theory triplets and Yukawa splitting
International Nuclear Information System (INIS)
Rakshit, Subhendu; Shadmi, Yael; Raz, Guy; Roy, Sourov
2004-01-01
Triplet-mediated proton decay in grand unified theories (GUTs) is usually suppressed by arranging a large triplet mass. Here we explore instead a mechanism for suppressing the couplings of the triplets to the first and second generations compared to the Yukawa couplings, so that the triplets can be light. This mechanism is based on a 'triplet symmetry' in the context of product-group GUTs. We study two possibilities. The first possibility, which requires the top Yukawa coupling to arise from a nonrenormalizable operator at the GUT scale, is that all triplet couplings to matter are negligible, so that the triplets can be at the weak scale, giving new evidence for grand unification. The second possibility is that some triplet couplings, and in particular Ttb and Tt-barl-bar, are equal to the corresponding Yukawa couplings. This would give a distinct signature of grand unification if the triplets were sufficiently light. However, we derive a model-independent bound on the triplet mass in this case, which is at least 10 6 GeV. Finally, we construct an explicit viable GUT model based on Yukawa splitting, with the triplets at 10 14 GeV, as required for coupling unification to work. This model requires no additional thresholds below the GUT scale
Theoretical physics. Field theory
International Nuclear Information System (INIS)
Landau, L.; Lifchitz, E.
2004-01-01
This book is the fifth French edition of the famous course written by Landau/Lifchitz and devoted to both the theory of electromagnetic fields and the gravity theory. The talk of the theory of electromagnetic fields is based on special relativity and relates to only the electrodynamics in vacuum and that of pointwise electric charges. On the basis of the fundamental notions of the principle of relativity and of relativistic mechanics, and by using variational principles, the authors develop the fundamental equations of the electromagnetic field, the wave equation and the processes of emission and propagation of light. The theory of gravitational fields, i.e. the general theory of relativity, is exposed in the last five chapters. The fundamentals of the tensor calculus and all that is related to it are progressively introduced just when needed (electromagnetic field tensor, energy-impulse tensor, or curve tensor...). The worldwide reputation of this book is generally allotted to clearness, to the simplicity and the rigorous logic of the demonstrations. (A.C.)
Unifying ecology and macroevolution with individual-based theory
Rosindell, James; Harmon, Luke J.; Etienne, Rampal S.
A contemporary goal in both ecology and evolutionary biology is to develop theory that transcends the boundary between the two disciplines, to understand phenomena that cannot be explained by either field in isolation. This is challenging because macroevolution typically uses lineage-based models,
Unified quantum theory of elastic and inelastic atomic scattering from a physisorbed monolayer solid
DEFF Research Database (Denmark)
Bruch, L. W.; Hansen, Flemming Yssing; Dammann, Bernd
2017-01-01
A unified quantum theory of the elastic and inelastic scattering of low energy He atoms by a physisorbed monolayer solid in the one-phonon approximation is given. It uses a time-dependent wave packet with phonon creation and annihilation components and has a self-consistent feedback between...... the wave functions for elastic and inelastic scattered atoms. An attenuation of diffraction scattering by inelastic processes thus is inherent in the theory. The atomic motion and monolayer vibrations in the harmonic approximation are treated quantum mechanically and unitarity is preserved. The evaluation...... of specific one-phonon events includes contributions from diffuse inelastic scattering in other phonon modes. Effects of thermally excited phonons are included using a mean field approximation. The theory is applied to an incommensurate Xe/Pt(111) monolayer (incident energy Ei = 4-16 meV), a commensurate Xe...
International Nuclear Information System (INIS)
Aref'eva, I.Ya.; Slavnov, A.A.
1981-01-01
This lecture is devoted to the discussion of gauge field theory permitting from the single point of view to describe all the interactions of elementary particles. The authors used electrodynamics and the Einstein theory of gravity to search for a renormgroup fixing a form of Lagrangian. It is shown that the gauge invariance added with the requirement of the minimum number of arbitraries in Lagrangian fixes unambigously the form of the electromagnetic interaction. The generalization of this construction for more complicate charge spaces results in the Yang-Mills theory. The interaction form in this theory is fixed with the relativity principle in the charge space. A quantum scheme of the Yang-Mills fields through the explicit separation of true dynamic variables is suggested. A comfortable relativistically invariant diagram technique for the calculation of a producing potential for the Green functions is described. The Ward generalized identities have been obtained and a procedure of the elimination of ultraviolet and infrared divergencies has been accomplished. Within the framework of QCD (quantum-chromodynamic) the phenomenon of the asymptotic freedom being the most successful prediction of the gauge theory of strong interactions was described. Working methods with QCD outside the framework of the perturbation theory have been described from a coupling constant. QCD is represented as a single theory possessing both the asymptotical freedom and the freedom retaining quarks [ru
Austerity and geometric structure of field theories
International Nuclear Information System (INIS)
Kheyfets, A.
1986-01-01
The relation between the austerity idea and the geometric structure of the three basic field theories - electrodynamics, Yang-Mills theory, and general relativity - is studied. One of the most significant manifestations of the austerity idea in field theories is thought to be expressed by the boundary of a boundary principle (BBP). The BBP says that almost all content of the field theories can be deduced from the topological identity of delta dot produced with delta = 0 used twice, at the 1-2-3-dimensional level (providing the homogeneous field equations), and at the 2-3-4-dimensional level (providing the conservation laws for the source currents). There are some difficulties in this line of thought due to the apparent lack of universality in application of the BBP to the three basic modern field theories above. This dissertation: (a) analyzes the difficulties by means of algebraic topology, integration theory, and modern differential geometry based on the concepts of principal bundles and Ehresmann connections: (b) extends the BBP to the unified Kaluza-Klein theory; (c) reformulates the inhomogeneous field equations and the BBP in terms of E. Cartan moment of rotation, in the way universal for the three theories and compatible with the original austerity idea; and (d) underlines the important role of the soldering structure on spacetime, and indicates that the future development of the austerity idea would involve the generalized theories
SU(2) x U(1) unified theory for charge, orbit and spin currents
International Nuclear Information System (INIS)
Jin Peiqing; Li Youquan; Zhang Fuchun
2006-01-01
Spin and charge currents in systems with Rashba or Dresselhaus spin-orbit couplings are formulated in a unified version of four-dimensional SU(2) x U(1) gauge theory, with U(1) being the Maxwell field and SU(2) being the Yang-Mills field. While the bare spin current is non-conserved, it is compensated by a contribution from the SU(2) gauge field, which gives rise to a spin torque in the spin transport, consistent with the semi-classical theory of Culcer et al. Orbit current is shown to be non-conserved in the presence of electromagnetic fields. Similar to the Maxwell field inducing forces on charge and charge current, we derive forces acting on spin and spin current induced by the Yang-Mills fields such as the Rashba and Dresselhaus fields and the sheer strain field. The spin density and spin current may be considered as a source generating Yang-Mills field in certain condensed matter systems
A Unifying Approach to Axiomatic Non-Expected Utility Theories: Correction and Comment
S.H. Chew; L.G. Epstein (Larry); P.P. Wakker (Peter)
1993-01-01
textabstractChew and Epstein attempted to provide a unifying axiomatic framework for a number of generalizations of expected utility theory. Wakker pointed out that Theorem A, on which the central unifying proposition is based, is false. In this note, we apply Segal′s result to prove that Theorem 2
A unifying approach to axiomatic non-expected utility theories: correction and comment
Hong, C.S.; Epstein, L.G.; Wakker, P.
1993-01-01
Chew and Epstein attempted to provide a unifying axiomatic framework for a number of generalizations of expected utility theory. Wakker pointed out that Theorem A, on which the central unifying proposition is based, is false. In this note, we apply Segal's result to prove that Theorem 2 is
Unified Gauge Theories and Reduction of Couplings: from Finiteness to Fuzzy Extra Dimensions
Directory of Open Access Journals (Sweden)
George Zoupanos
2008-02-01
Full Text Available Finite Unified Theories (FUTs are N = 1 supersymmetric Grand Unified Theories, which can be made all-loop finite, both in the dimensionless (gauge and Yukawa couplings and dimensionful (soft supersymmetry breaking terms sectors. This remarkable property, based on the reduction of couplings at the quantum level, provides a drastic reduction in the number of free parameters, which in turn leads to an accurate prediction of the top quark mass in the dimensionless sector, and predictions for the Higgs boson mass and the supersymmetric spectrum in the dimensionful sector. Here we examine the predictions of two such FUTs. Next we consider gauge theories defined in higher dimensions, where the extra dimensions form a fuzzy space (a finite matrix manifold. We reinterpret these gauge theories as four-dimensional theories with Kaluza-Klein modes. We then perform a generalized à la Forgacs-Manton dimensional reduction. We emphasize some striking features emerging such as (i the appearance of non-Abelian gauge theories in four dimensions starting from an Abelian gauge theory in higher dimensions, (ii the fact that the spontaneous symmetry breaking of the theory takes place entirely in the extra dimensions and (iii the renormalizability of the theory both in higher as well as in four dimensions. Then reversing the above approach we present a renormalizable four dimensional SU(N gauge theory with a suitable multiplet of scalar fields, which via spontaneous symmetry breaking dynamically develops extra dimensions in the form of a fuzzy sphere SN2. We explicitly find the tower of massive Kaluza-Klein modes consistent with an interpretation as gauge theory on M4 × S2, the scalars being interpreted as gauge fields on S2. Depending on the parameters of the model the low-energy gauge group can be SU(n, or broken further to SU(n1 × SU(n2 × U(1. Therefore the second picture justifies the first one in a renormalizable framework but in addition has the potential to
Eringen, A Cemal
1999-01-01
Microcontinuum field theories constitute an extension of classical field theories -- of elastic bodies, deformations, electromagnetism, and the like -- to microscopic spaces and short time scales. Material bodies are here viewed as collections of large numbers of deformable particles, much as each volume element of a fluid in statistical mechanics is viewed as consisting of a large number of small particles for which statistical laws are valid. Classical continuum theories are valid when the characteristic length associated with external forces or stimuli is much larger than any internal scale of the body under consideration. When the characteristic lengths are comparable, however, the response of the individual constituents becomes important, for example, in considering the fluid or elastic properties of blood, porous media, polymers, liquid crystals, slurries, and composite materials. This volume is concerned with the kinematics of microcontinua. It begins with a discussion of strain, stress tensors, balanc...
Parafermionic conformal field theory
International Nuclear Information System (INIS)
Kurak, V.
1989-09-01
Conformal parafermionic field theories are reviewed with emphasis on the computation of their OPE estructure constants. It is presented a simple computational of these for the Z(N) parafermions, unveilling their Lie algebra content. (A.C.A.S.) [pt
International Nuclear Information System (INIS)
Cadavid, A.C.
1989-01-01
The author constructs a non-Abelian field theory by gauging a Kac-Moody algebra, obtaining an infinite tower of interacting vector fields and associated ghosts, that obey slightly modified Feynman rules. She discusses the spontaneous symmetry breaking of such theory via the Higgs mechanism. If the Higgs particle lies in the Cartan subalgebra of the Kac-Moody algebra, the previously massless vectors acquire a mass spectrum that is linear in the Kac-Moody index and has additional fine structure depending on the associated Lie algebra. She proceeds to show that there is no obstacle in implementing the affine extension of supersymmetric Yang-Mills theories. The result is valid in four, six and ten space-time dimensions. Then the affine extension of supergravity is investigated. She discusses only the loop algebra since the affine extension of the super-Poincare algebra appears inconsistent. The construction of the affine supergravity theory is carried out by the group manifold method and leads to an action describing infinite towers of spin 2 and spin 3/2 fields that interact subject to the symmetries of the loop algebra. The equations of motion satisfy the usual consistency check. Finally, she postulates a theory in which both the vector and scalar fields lie in the loop algebra of SO(3). This theory has an expanded soliton sector, and corresponding to the original 't Hooft-Polyakov solitonic solutions she now finds an infinite family of exact, special solutions of the new equations. She also proposes a perturbation method for obtaining an arbitrary solution of those equations for each level of the affine index
Reformulation of the Salam-Weinberg unified theory of weak and electromagnetic interactions
International Nuclear Information System (INIS)
Khan, I.
1981-01-01
It is shown that the various fields (gauge potentials, etc.) in the Salam-Weinberg unified theory can be redefined such that i) the redefined fields are invariant under the SU 2 gauge transformations, ii) the original Lagrangian can be expressed entirely in terms of the redefined fields. The reformulated version of the Salam-Weinberg model has two first-class and six second-class constraints in contrast with the original version which has eight first-class constraints. This has the consequence that in the reformulated version the SU 2 x U 1 symmetry, which seems to be reduced to U 1 at the Lagrangian stage, is recovered for the algebra of charges when their Dirac brackets are identified with the commutators. It is suggested that the Salam-Weinberg model may be looked upon as an example of confined dichromatism. (author)
Unifying ecology and macroevolution with individual-based theory.
Rosindell, James; Harmon, Luke J; Etienne, Rampal S
2015-05-01
A contemporary goal in both ecology and evolutionary biology is to develop theory that transcends the boundary between the two disciplines, to understand phenomena that cannot be explained by either field in isolation. This is challenging because macroevolution typically uses lineage-based models, whereas ecology often focuses on individual organisms. Here, we develop a new parsimonious individual-based theory by adding mild selection to the neutral theory of biodiversity. We show that this model generates realistic phylogenies showing a slowdown in diversification and also improves on the ecological predictions of neutral theory by explaining the occurrence of very common species. Moreover, we find the distribution of individual fitness changes over time, with average fitness increasing at a pace that depends positively on community size. Consequently, large communities tend to produce fitter species than smaller communities. These findings have broad implications beyond biodiversity theory, potentially impacting, for example, invasion biology and paleontology. © 2015 The Authors. Ecology Letters published by John Wiley & Sons Ltd and CNRS.
International Nuclear Information System (INIS)
Efimov, G.V.
1976-01-01
The basic ideas for creating the theory of nonlocal interactions of a scalar one-component field are presented. Lagrangian describing a non-interacting field is the ordinary one so that non-interacting particles are described by standard methods of the Fock space. Form factors introduced have been chosen from a class of analytic functionals and quantized. Conditions of microcausality have been considered in detail. The convergence of all integrals corresponding to the arbitrary Feynman diagrams in spinor electrodynamics is guaranteed in the frame of the rules formulated. It is noted in conclusion that the spinor electrodynamics with nonlocal interaction contains no ultraviolet divergencies and satisfies all the requirements of the quantum field theory; in this sense it is mathematically more consistent than its local version
Eye growth and myopia development: Unifying theory and Matlab model.
Hung, George K; Mahadas, Kausalendra; Mohammad, Faisal
2016-03-01
The aim of this article is to present an updated unifying theory of the mechanisms underlying eye growth and myopia development. A series of model simulation programs were developed to illustrate the mechanism of eye growth regulation and myopia development. Two fundamental processes are presumed to govern the relationship between physiological optics and eye growth: genetically pre-programmed signaling and blur feedback. Cornea/lens is considered to have only a genetically pre-programmed component, whereas eye growth is considered to have both a genetically pre-programmed and a blur feedback component. Moreover, based on the Incremental Retinal-Defocus Theory (IRDT), the rate of change of blur size provides the direction for blur-driven regulation. The various factors affecting eye growth are shown in 5 simulations: (1 - unregulated eye growth): blur feedback is rendered ineffective, as in the case of form deprivation, so there is only genetically pre-programmed eye growth, generally resulting in myopia; (2 - regulated eye growth): blur feedback regulation demonstrates the emmetropization process, with abnormally excessive or reduced eye growth leading to myopia and hyperopia, respectively; (3 - repeated near-far viewing): simulation of large-to-small change in blur size as seen in the accommodative stimulus/response function, and via IRDT as well as nearwork-induced transient myopia (NITM), leading to the development of myopia; (4 - neurochemical bulk flow and diffusion): release of dopamine from the inner plexiform layer of the retina, and the subsequent diffusion and relay of neurochemical cascade show that a decrease in dopamine results in a reduction of proteoglycan synthesis rate, which leads to myopia; (5 - Simulink model): model of genetically pre-programmed signaling and blur feedback components that allows for different input functions to simulate experimental manipulations that result in hyperopia, emmetropia, and myopia. These model simulation programs
Toward a Unified Theory of Work: Organizational Simulations and Policy Analyses
National Research Council Canada - National Science Library
Vaughan, David
2002-01-01
.... The Department of Defense needs an integrated MPT planning and management system. We believe that a unified theory of work is needed to provide a framework and to guide and focus related research and development...
Molecular catalysis science: Perspective on unifying the fields of catalysis.
Ye, Rong; Hurlburt, Tyler J; Sabyrov, Kairat; Alayoglu, Selim; Somorjai, Gabor A
2016-05-10
Colloidal chemistry is used to control the size, shape, morphology, and composition of metal nanoparticles. Model catalysts as such are applied to catalytic transformations in the three types of catalysts: heterogeneous, homogeneous, and enzymatic. Real-time dynamics of oxidation state, coordination, and bonding of nanoparticle catalysts are put under the microscope using surface techniques such as sum-frequency generation vibrational spectroscopy and ambient pressure X-ray photoelectron spectroscopy under catalytically relevant conditions. It was demonstrated that catalytic behavior and trends are strongly tied to oxidation state, the coordination number and crystallographic orientation of metal sites, and bonding and orientation of surface adsorbates. It was also found that catalytic performance can be tuned by carefully designing and fabricating catalysts from the bottom up. Homogeneous and heterogeneous catalysts, and likely enzymes, behave similarly at the molecular level. Unifying the fields of catalysis is the key to achieving the goal of 100% selectivity in catalysis.
Holographic effective field theories
Energy Technology Data Exchange (ETDEWEB)
Martucci, Luca [Dipartimento di Fisica ed Astronomia “Galileo Galilei' , Università di Padova,and INFN - Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Zaffaroni, Alberto [Dipartimento di Fisica, Università di Milano-Bicocca,and INFN - Sezione di Milano-Bicocca, I-20126 Milano (Italy)
2016-06-28
We derive the four-dimensional low-energy effective field theory governing the moduli space of strongly coupled superconformal quiver gauge theories associated with D3-branes at Calabi-Yau conical singularities in the holographic regime of validity. We use the dual supergravity description provided by warped resolved conical geometries with mobile D3-branes. Information on the baryonic directions of the moduli space is also obtained by using wrapped Euclidean D3-branes. We illustrate our general results by discussing in detail their application to the Klebanov-Witten model.
Clifford algebra in finite quantum field theories
International Nuclear Information System (INIS)
Moser, M.
1997-12-01
We consider the most general power counting renormalizable and gauge invariant Lagrangean density L invariant with respect to some non-Abelian, compact, and semisimple gauge group G. The particle content of this quantum field theory consists of gauge vector bosons, real scalar bosons, fermions, and ghost fields. We assume that the ultimate grand unified theory needs no cutoff. This yields so-called finiteness conditions, resulting from the demand for finite physical quantities calculated by the bare Lagrangean. In lower loop order, necessary conditions for finiteness are thus vanishing beta functions for dimensionless couplings. The complexity of the finiteness conditions for a general quantum field theory makes the discussion of non-supersymmetric theories rather cumbersome. Recently, the F = 1 class of finite quantum field theories has been proposed embracing all supersymmetric theories. A special type of F = 1 theories proposed turns out to have Yukawa couplings which are equivalent to generators of a Clifford algebra representation. These algebraic structures are remarkable all the more than in the context of a well-known conjecture which states that finiteness is maybe related to global symmetries (such as supersymmetry) of the Lagrangean density. We can prove that supersymmetric theories can never be of this Clifford-type. It turns out that these Clifford algebra representations found recently are a consequence of certain invariances of the finiteness conditions resulting from a vanishing of the renormalization group β-function for the Yukawa couplings. We are able to exclude almost all such Clifford-like theories. (author)
International Nuclear Information System (INIS)
Skyrme, T.H.R.
1994-01-01
A unified field theory of mesons and their particle sources is proposed and considered in its classical aspects. The theory has static solutions of a singular nature, but finite energy, characterized by spin directions; the number of such entities is a rigorously conserved constant of motion; they interact with an external meson field through a derivative-type coupling with the spins, akin to the formalism of strong-coupling meson theory. There is a conserved current identifiable with isobaric spin, and another that may be related to hypercharge. The postulates include one constant of the dimensions of length, and another that is conjecture necessarily to have the value (h/2π)c, or perhaps 1/2(h/2π)c, in the quantized theory. (author). 5 refs
CERN. Geneva; CERN. Geneva
2001-01-01
Starting from the notion of path integrals as developed by Feynman, we discuss field theory in zero spacetime dimensions. The concepts of perturbation expansions, connected amplitudes, Feynman diagrams, classical solutions, renormalization and the effective action are developed. The model is extended to four spacetime dimensions, and the full Feynman rules for relativisitc scalar theory derived. The S matrix and the concept of unitarity are discussed, leading to the amputation rules for S matrix elements from considerations of unitarity. The rules are extended to include particles with spin-1/2 and spin-1. The high-energy behaviour of the theory is discussed as a method to derive the gauge symmetry of the various models.
Organization Theory: Bright Prospects for a Permanently Failing Field
P.P.M.A.R. Heugens (Pursey)
2008-01-01
textabstractOrganization theory is a paradoxical field of scientific inquiry. It has struggled for more than fifty years to develop a unified theory of organizational effectiveness under girded by a coherent set of assumptions, and it has thus far failed to produce one. Yet, by other standards it is
Fermion boson metamorphosis in field theory
International Nuclear Information System (INIS)
Ha, Y.K.
1982-01-01
In two-dimensional field theories many features are especially transparent if the Fermi fields are represented by non-local expressions of the Bose fields. Such a procedure is known as boson representation. Bilinear quantities appear in the Lagrangian of a fermion theory transform, however, as simple local expressions of the bosons so that the resulting theory may be written as a theory of bosons. Conversely, a theory of bosons may be transformed into an equivalent theory of fermions. Together they provide a basis for generating many interesting equivalences between theories of different types. In the present work a consistent scheme for constructing a canonical Fermi field in terms of a real scalar field is developed and such a procedure is valid and consistent with the tenets of quantum field theory is verified. A boson formulation offers a unifying theme in understanding the structure of many theories. This is illustrated by the boson formulation of a multifermion theory with chiral and internal symmetries. The nature of dynamical generation of mass when the theory undergoes boson transmutation and the preservation of continuous chiral symmetry in the massive case are examined. The dynamics of the system depends to a great extent on the specific number of fermions and different models of the same system can have very different properties. Many unusual symmetries of the fermion theory, such as hidden symmetry, duality and triality symmetries, are only manifest in the boson formulation. The underlying connections between some models with U(N) internal symmetry and another class of fermion models built with Majorana fermions which have O(2N) internal symmetry are uncovered
Introduction to string field theory
International Nuclear Information System (INIS)
Horowitz, G.T.
1989-01-01
A light cone gauge superstring field theory is constructed. The BRST approach is described discussing generalizations to yield gauge invariant free superstring field theory and interacting theory for superstrings. The interaction term is explicitly expressed in terms of first quantized oscillators. A purily cubic action for superstring field theory is also derived. (author)
Unified cosmology with scalar-tensor theory of gravity
Energy Technology Data Exchange (ETDEWEB)
Tajahmad, Behzad [Faculty of Physics, University of Tabriz, Tabriz (Iran, Islamic Republic of); Sanyal, Abhik Kumar [Jangipur College, Department of Physics, Murshidabad (India)
2017-04-15
Unlike the Noether symmetry, a metric independent general conserved current exists for non-minimally coupled scalar-tensor theory of gravity if the trace of the energy-momentum tensor vanishes. Thus, in the context of cosmology, a symmetry exists both in the early vacuum and radiation dominated era. For slow roll, symmetry is sacrificed, but at the end of early inflation, such a symmetry leads to a Friedmann-like radiation era. Late-time cosmic acceleration in the matter dominated era is realized in the absence of symmetry, in view of the same decayed and redshifted scalar field. Thus, unification of early inflation with late-time cosmic acceleration with a single scalar field may be realized. (orig.)
Towards a unified gauge theory of gravitational and strong interactions
International Nuclear Information System (INIS)
Hehl, F.W.; Sijacki, D.
1980-01-01
The space-time properties of leptons and hadrons is studied and it is found necessary to extend general relativity to the gauge theory based on the four-dimensional affine group. This group translates and deforms the tetrads of the locally Minkowskian space-time. Its conserved currents, momentum, and hypermomentum, act as sources in the two field equations of gravity. A Lagrangian quadratic in torsion and curvature allows for the propagation of two independent gauge fields: translational e-gravity mediated by the tetrad coefficients, and deformational GAMMA-gravity mediated by the connection coefficients. For macroscopic matter e-gravity coincides with general relativity up to the post-Newtonian approximation of fourth order. For microscopic matter GAMMA-gravity represents a strong Yang-Mills type interaction. In the linear approximation, for a static source, a confinement potential is found. (author)
Unified cosmology with scalar-tensor theory of gravity
International Nuclear Information System (INIS)
Tajahmad, Behzad; Sanyal, Abhik Kumar
2017-01-01
Unlike the Noether symmetry, a metric independent general conserved current exists for non-minimally coupled scalar-tensor theory of gravity if the trace of the energy-momentum tensor vanishes. Thus, in the context of cosmology, a symmetry exists both in the early vacuum and radiation dominated era. For slow roll, symmetry is sacrificed, but at the end of early inflation, such a symmetry leads to a Friedmann-like radiation era. Late-time cosmic acceleration in the matter dominated era is realized in the absence of symmetry, in view of the same decayed and redshifted scalar field. Thus, unification of early inflation with late-time cosmic acceleration with a single scalar field may be realized. (orig.)
Neutrino masses and large mixings as a indirect signature of grand unified theory
International Nuclear Information System (INIS)
Maekawa, Nobuhiro
2015-01-01
Grand unified theory (GUT) unifies not only three forces (electromagnetic force, strong force and weak force) but also quarks and leptons. As an experimental support for the unification of forces, it is well-known that three gauge couplings meet at a scale (the GUT scale). However, it is not so well-known that there is an experimental support even for the unification of matters (quarks and leptons). We explain the indirect support in this document and show that the important key is what the neutrino experiments have revealed for 20 years. Concretely, for the unification of matters in SU(5) GUT, various observed hierarchies of quark and lepton masses and mixings can be understood only from one assumption that '10 dimensional fields of SU(5) induce stronger hierarchy for the Yukawa couplings than 5-bar fields'. For this explanation, the knowledges on neutrino masses and mixings are critical. In the end, we comment E 6 unification in which the above assumption in the SU(5) GUT can be induced. (author)
International Nuclear Information System (INIS)
Sugama, H.
1999-08-01
The Lagrangian formulation of the gyrokinetic theory is generalized in order to describe the particles' dynamics as well as the self-consistent behavior of the electromagnetic fields. The gyrokinetic equation for the particle distribution function and the gyrokinetic Maxwell's equations for the electromagnetic fields are both derived from the variational principle for the Lagrangian consisting of the parts of particles, fields, and their interaction. In this generalized Lagrangian formulation, the energy conservation property for the total nonlinear gyrokinetic system of equations is directly shown from the Noether's theorem. This formulation can be utilized in order to derive the nonlinear gyrokinetic system of equations and the rigorously conserved total energy for fluctuations with arbitrary frequency. (author)
Unified Dark Matter scalar field models with fast transition
Energy Technology Data Exchange (ETDEWEB)
Bertacca, Daniele [Dipartimento di Fisica Galileo Galilei, Università di Padova, via F. Marzolo 8, I-35131 Padova (Italy); Bruni, Marco [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Portsmouth, PO1 3FX (United Kingdom); Piattella, Oliver F. [Department of Physics, Universidade Federal do Espírito Santo, avenida Ferrari 514, 29075-910, Vitória, ES (Brazil); Pietrobon, Davide, E-mail: daniele.bertacca@pd.infn.it, E-mail: marco.bruni@port.ac.uk, E-mail: oliver.piattella@gmail.com, E-mail: davide.pietrobon@jpl.nasa.gov [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, 91109 Pasadena CA U.S.A. (United States)
2011-02-01
We investigate the general properties of Unified Dark Matter (UDM) scalar field models with Lagrangians with a non-canonical kinetic term, looking specifically for models that can produce a fast transition between an early Einstein-de Sitter CDM-like era and a later Dark Energy like phase, similarly to the barotropic fluid UDM models in JCAP01(2010)014. However, while the background evolution can be very similar in the two cases, the perturbations are naturally adiabatic in fluid models, while in the scalar field case they are necessarily non-adiabatic. The new approach to building UDM Lagrangians proposed here allows to escape the common problem of the fine-tuning of the parameters which plague many UDM models. We analyse the properties of perturbations in our model, focusing on the the evolution of the effective speed of sound and that of the Jeans length. With this insight, we can set theoretical constraints on the parameters of the model, predicting sufficient conditions for the model to be viable. An interesting feature of our models is that what can be interpreted as w{sub DE} can be < −1 without violating the null energy conditions.
International Nuclear Information System (INIS)
Green, M.B.
1984-01-01
Superstring field theories are formulated in terms of light-cone-gauge superfields that are functionals of string coordinates chi(sigma) and theta(sigma). The formalism used preserves only the manifest SU(4) symmetry that corresponds to rotations among six of the eight transverse directions. In type I theories, which have one ten-dimensional supersymmetry and describe both open and closed strings, there are five interaction terms of two basic kinds. One kind is a breaking or joining interaction, which is a string generalization of a cubic Yang-Mills coupling. It is relevant to both the three open-string vertex and the open-string to closed-string transition vertex. The other kind is an exchange or crossing-over interaction, which is a string generalization of a cubic gravitational coupling. All the interactions can be uniquely determined by requiring continuity of the coordinates chi(sigma) and theta(sigma) (which implies local conservation of the conjugate momenta) and by imposing the global supersymmetry algebra. Specific local operators are identified for each of the two kinds of interactions. In type II theories, which have two ten-dimensional supersymmetries and contain closed strings only, the entire interaction hamiltonian consists of a single cubic vertex. The higher-order contact terms of the N=8 supergravity theory that arises in the low-energy limit give an effective description of the exchange of massive string modes. (orig.)
Karpilovsky, G
1989-01-01
This monograph gives a systematic account of certain important topics pertaining to field theory, including the central ideas, basic results and fundamental methods.Avoiding excessive technical detail, the book is intended for the student who has completed the equivalent of a standard first-year graduate algebra course. Thus it is assumed that the reader is familiar with basic ring-theoretic and group-theoretic concepts. A chapter on algebraic preliminaries is included, as well as a fairly large bibliography of works which are either directly relevant to the text or offer supplementary material of interest.
Higgs Effective Field Theories
2016-01-01
The main focus of this meeting is to present new theoretical advancements related to effective field theories, evaluate the impact of initial results from the LHC Run2, and discuss proposals for data interpretation/presentation during Run2. A crucial role of the meeting is to bring together theorists from different backgrounds and with different viewpoints and to extend bridges towards the experimental community. To this end, we would like to achieve a good balance between senior and junior speakers, enhancing the visibility of younger scientists while keeping some overview talks.
Radiative breaking of cosmologically acceptable grand unified theories
International Nuclear Information System (INIS)
Gato, B.; Leon, J.; Quiros, M.
1984-01-01
We present a cosmologically acceptable grand unified model where the breaking of SU(5) proceeds through radiative corrections induced by supergravity soft-breaking terms. The breaking scale is determined by dimensional transmutation. The model is compatible with the radiative breaking of SU(2)sub(L)xU(1)sub(Y) which provides an experimentally accessible low energy particle spectrum and small top quark mass. (orig.)
International Nuclear Information System (INIS)
Mancini, F.
1986-01-01
Theoretical physicists, coming from different countries, working on different areas, gathered at Positano: the Proceedings contain all the lectures delivered as well as contributed papers. Many areas of physics are represented, elementary particles in high energy physics, quantum relativity, quantum geometry, condensed matter physics, statistical mechanics; but all works are concerned with the use of the methods of quantum field theory. The first motivation of the meeting was to pay homage to a great physicist and a great friend; it was also an occasion in which theoretical physicists got together to discuss and to compare results in different fields. The meeting was very intimate; the relaxed atmosphere allowed constructive discussions and contributed to a positive exchange of ideas. (orig.)
Studies in quantum field theory
International Nuclear Information System (INIS)
Bender, C.M.; Mandula, J.E.; Shrauner, J.E.
1982-01-01
Washington University is currently conducting research in many areas of high energy theoretical and mathematical physics. These areas include: strong-coupling approximation; classical solutions of non-Abelian gauge theories; mean-field approximation in quantum field theory; path integral and coherent state representations in quantum field theory; lattice gauge calculations; the nature of perturbation theory in large orders; quark condensation in QCD; chiral symmetry breaking; the l/N expansion in quantum field theory; effective potential and action in quantum field theories, including QCD
Digestible quantum field theory
Smilga, Andrei
2017-01-01
This book gives an intermediate level treatment of quantum field theory, appropriate to a reader with a first degree in physics and a working knowledge of special relativity and quantum mechanics. It aims to give the reader some understanding of what QFT is all about, without delving deep into actual calculations of Feynman diagrams or similar. The author serves up a seven‐course menu, which begins with a brief introductory Aperitif. This is followed by the Hors d'oeuvres, which set the scene with a broad survey of the Universe, its theoretical description, and how the ideas of QFT developed during the last century. In the next course, the Art of Cooking, the author recaps on some basic facts of analytical mechanics, relativity, quantum mechanics and also presents some nutritious “extras” in mathematics (group theory at the elementary level) and in physics (theory of scattering). After these preparations, the reader should have a good appetite for the Entrées ‐ the central par t of the book where the...
A Simple But Effective Canonical Dual Theory Unified Algorithm for Global Optimization
Zhang, Jiapu
2011-01-01
Numerical global optimization methods are often very time consuming and could not be applied for high-dimensional nonconvex/nonsmooth optimization problems. Due to the nonconvexity/nonsmoothness, directly solving the primal problems sometimes is very difficult. This paper presents a very simple but very effective canonical duality theory (CDT) unified global optimization algorithm. This algorithm has convergence is proved in this paper. More important, for this CDT-unified algorithm, numerous...
Essential restriction on the symmetry of a unified theory for the case of massive gluons
International Nuclear Information System (INIS)
Mohapatra, N.; Pati, C.
1976-01-01
In unified gauge theories with massive 'color' gluons, the physical requirement of maintaining 'color' SU(3) as a global classification symmetry is shown to lead to the following restrictions: (i) the local unifying symmetry group must be of the form Gsub(flavor)xGsub(color); (ii) quarks are to be integer charged; (iii) the number of flavors is an integral multiple of the number of 'colors'. (Auth.)
A Unifying Theory of Biological Function
van Hateren, J. H.
2017-01-01
A new theory that naturalizes biological function is explained and compared with earlier etiological and causal role theories. Etiological (or selected effects) theories explain functions from how they are caused over their evolutionary history. Causal role theories analyze how functional mechanisms
The Unified Neutral Theory of Biodiversity and Biogeography at Age Ten
Rosindell, James; Hubbell, Stephen P.; Etienne, Rampal S.
A decade has now passed since Hubbell published The Unified Neutral Theory of Biodiversity and Biogeography. Neutral theory highlights the importance of dispersal limitation, speciation and ecological drift in the natural world and provides quantitative null models for assessing the role of
Oasis in the desert: weakly broken parity in grand unified theories
International Nuclear Information System (INIS)
Senjanovic, G.
1981-07-01
A discussion of low energy parity restoration in simple grand unified theories, such as SO(10), is presented. The consistency of phenomenological requirements and unification constraints is emphasized and various predictions of the theory are stressed, in particular: substantially lighter W and Z bosons than in the standard model and increased stability of the proton with tau/sub p/ approx. = 10 38 years
Logarithmic conformal field theory
Gainutdinov, Azat; Ridout, David; Runkel, Ingo
2013-12-01
Conformal field theory (CFT) has proven to be one of the richest and deepest subjects of modern theoretical and mathematical physics research, especially as regards statistical mechanics and string theory. It has also stimulated an enormous amount of activity in mathematics, shaping and building bridges between seemingly disparate fields through the study of vertex operator algebras, a (partial) axiomatisation of a chiral CFT. One can add to this that the successes of CFT, particularly when applied to statistical lattice models, have also served as an inspiration for mathematicians to develop entirely new fields: the Schramm-Loewner evolution and Smirnov's discrete complex analysis being notable examples. When the energy operator fails to be diagonalisable on the quantum state space, the CFT is said to be logarithmic. Consequently, a logarithmic CFT is one whose quantum space of states is constructed from a collection of representations which includes reducible but indecomposable ones. This qualifier arises because of the consequence that certain correlation functions will possess logarithmic singularities, something that contrasts with the familiar case of power law singularities. While such logarithmic singularities and reducible representations were noted by Rozansky and Saleur in their study of the U (1|1) Wess-Zumino-Witten model in 1992, the link between the non-diagonalisability of the energy operator and logarithmic singularities in correlators is usually ascribed to Gurarie's 1993 article (his paper also contains the first usage of the term 'logarithmic conformal field theory'). The class of CFTs that were under control at this time was quite small. In particular, an enormous amount of work from the statistical mechanics and string theory communities had produced a fairly detailed understanding of the (so-called) rational CFTs. However, physicists from both camps were well aware that applications from many diverse fields required significantly more
International Nuclear Information System (INIS)
Velasco, E.S.
1986-01-01
This dissertation deals with several topics of field theory. Chapter I is a brief outline of the work presented in the next chapters. In chapter II, the Gauss-Bonnet-Chern theorem for manifolds with boundary is computed using the path integral representation of the Witten index for supersymmetric quantum mechanical systems. In chapter III the action of N = 2 (Poincare) supergravity is obtained in terms of N = 1 superfields. In chapter IV, N = 2 supergravity coupled to the (abelian) vector multiplet is projected into N - 1 superspace. There, the resulting set of constraints is solved in terms of unconstrained prepotential and the action in terms of N = 1 superfields is constructed. In chapter V the set of constraints for N = 2 conformal supergravity is projected into N = 1 superspace and solved in terms of N = 1 conformal supergravity fields a d matter prepotentials. In chapter VI the role of magnetic monopoles in the phase structure of the change one fixed length abelian Higgs model ins the latticer is investigated using analytic and numerical methods. The technique of monopole suppression is used to determine the phase transition lines that are monopole driven. Finally in chapter VII, the role of the charge of the Higgs field in the abelian Higgs model in the lattice is investigated
Unified mass-action theory for virus neutralization and radioimmunology
International Nuclear Information System (INIS)
Trautman, R.
1976-01-01
All ideas implicit in the papers since 1953 involved in applying mass-action thermodynamics to antibody- antigen reactions are unified by the use of: (a) the intermediary concept of extent of reaction; (b) the concept of intrinsic association constant; (c) a statistical analysis for probable complexes; and (d) identification of the complex or complexes that contribute to the bioassay. Several general theoretical examples are given that show the limitations of linear interpretations of equilibrium data. Two practical examples from the literature illustrate foot-and-mouth disease virus and influenza virus neutralization. (Auth.)
The Intense World Theory – A Unifying Theory of the Neurobiology of Autism
Markram, Kamila; Markram, Henry
2010-01-01
Autism covers a wide spectrum of disorders for which there are many views, hypotheses and theories. Here we propose a unifying theory of autism, the Intense World Theory. The proposed neuropathology is hyper-functioning of local neural microcircuits, best characterized by hyper-reactivity and hyper-plasticity. Such hyper-functional microcircuits are speculated to become autonomous and memory trapped leading to the core cognitive consequences of hyper-perception, hyper-attention, hyper-memory and hyper-emotionality. The theory is centered on the neocortex and the amygdala, but could potentially be applied to all brain regions. The severity on each axis depends on the severity of the molecular syndrome expressed in different brain regions, which could uniquely shape the repertoire of symptoms of an autistic child. The progression of the disorder is proposed to be driven by overly strong reactions to experiences that drive the brain to a hyper-preference and overly selective state, which becomes more extreme with each new experience and may be particularly accelerated by emotionally charged experiences and trauma. This may lead to obsessively detailed information processing of fragments of the world and an involuntarily and systematic decoupling of the autist from what becomes a painfully intense world. The autistic is proposed to become trapped in a limited, but highly secure internal world with minimal extremes and surprises. We present the key studies that support this theory of autism, show how this theory can better explain past findings, and how it could resolve apparently conflicting data and interpretations. The theory also makes further predictions from the molecular to the behavioral levels, provides a treatment strategy and presents its own falsifying hypothesis. PMID:21191475
Theory of interacting quantum fields
International Nuclear Information System (INIS)
Rebenko, Alexei L.
2012-01-01
This monograph is devoted to the systematic presentation of foundations of the quantum field theory. Unlike numerous monographs devoted to this topic, a wide range of problems covered in this book are accompanied by their sufficiently clear interpretations and applications. An important significant feature of this monograph is the desire of the author to present mathematical problems of the quantum field theory with regard to new methods of the constructive and Euclidean field theory that appeared in the last thirty years of the 20 th century and are based on the rigorous mathematical apparatus of functional analysis, the theory of operators, and the theory of generalized functions. The monograph is useful for students, post-graduate students, and young scientists who desire to understand not only the formality of construction of the quantum field theory but also its essence and connection with the classical mechanics, relativistic classical field theory, quantum mechanics, group theory, and the theory of path integral formalism.
Topics in quantum field theory
International Nuclear Information System (INIS)
Svaiter, N.F.
2006-11-01
This paper presents some important aspects on quantum field theory, covering the following aspects: the triumph and limitations of the quantum field theory; the field theory in curved spaces - Hawking and Unruh-Davies effects; the problem of divergent theory of the zero-point; the problem of the spinning detector and the Trocheries-Takeno vacuum; the field theory at finite temperature - symmetry breaking and phase transition; the problem of the summability of the perturbative series and the perturbative expansion for the strong coupling; quantized fields in presence of classical macroscopic structures; the Parisi-Wu stochastic quantization method
Fractional Stochastic Field Theory
Honkonen, Juha
2018-02-01
Models describing evolution of physical, chemical, biological, social and financial processes are often formulated as differential equations with the understanding that they are large-scale equations for averages of quantities describing intrinsically random processes. Explicit account of randomness may lead to significant changes in the asymptotic behaviour (anomalous scaling) in such models especially in low spatial dimensions, which in many cases may be captured with the use of the renormalization group. Anomalous scaling and memory effects may also be introduced with the use of fractional derivatives and fractional noise. Construction of renormalized stochastic field theory with fractional derivatives and fractional noise in the underlying stochastic differential equations and master equations and the interplay between fluctuation-induced and built-in anomalous scaling behaviour is reviewed and discussed.
International Nuclear Information System (INIS)
Khoury, Justin
2013-01-01
Chameleons are light scalar fields with remarkable properties. Through the interplay of self-interactions and coupling to matter, chameleon particles have a mass that depends on the ambient matter density. The manifestation of the fifth force mediated by chameleons therefore depends sensitively on their environment, which makes for a rich phenomenology. In this paper, we review two recent results on chameleon phenomenology. The first result a pair of no-go theorems limiting the cosmological impact of chameleons and their generalizations: (i) the range of the chameleon force at cosmological density today can be at most ∼Mpc; (ii) the conformal factor relating Einstein- and Jordan-frame scale factors is essentially constant over the last Hubble time. These theorems imply that chameleons have negligible effect on the linear growth of structure, and cannot account for the observed cosmic acceleration except as some form of dark energy. The second result pertains to the quantum stability of chameleon theories. We show how requiring that quantum corrections be small, so as to allow reliable predictions of fifth forces, leads to an upper bound of m −3 ) 1/3 eV for gravitational strength coupling, whereas fifth force experiments place a lower bound of m > 0.0042 eV. An improvement of less than a factor of 2 in the range of fifth force experiments could test all classical chameleon field theories whose quantum corrections are well-controlled and couple to matter with nearly gravitational strength regardless of the specific form of the chameleon potential. (paper)
Introduction to unified theories of weak, electromagnetic and strong interactions - SU(5)
International Nuclear Information System (INIS)
Billoire, Alain; Morel, Andre.
1980-11-01
These notes correspond to a series of lectures given at Salay during winter 1979-1980. They are meant to be an introduction to the so-called grand unified theories of weak, electromagnetic and strong interactions. In a first part, we recall in a very elementary way the standard SU(2) model of electroweak interactions, putting the emphasis on the questions which are left open by this model and which unified theories help to answer. In part II, we explain in a systematic way how unified theories can be constructed, and develop the SU(5) model in great detail. Other models, like SO(10) and E 6 , are not presented, because SU(5) is the simplest one and has been subject to the deepest investigations up to now. Also it appears that most concepts and general results are not specific to any particular symmetry group [fr
Quantum field theory of fluids.
Gripaios, Ben; Sutherland, Dave
2015-02-20
The quantum theory of fields is largely based on studying perturbations around noninteracting, or free, field theories, which correspond to a collection of quantum-mechanical harmonic oscillators. The quantum theory of an ordinary fluid is "freer", in the sense that the noninteracting theory also contains an infinite collection of quantum-mechanical free particles, corresponding to vortex modes. By computing a variety of correlation functions at tree and loop level, we give evidence that a quantum perfect fluid can be consistently formulated as a low-energy, effective field theory. We speculate that the quantum behavior is radically different from both classical fluids and quantum fields.
Human genetics of infectious diseases: a unified theory
Casanova, Jean-Laurent; Abel, Laurent
2007-01-01
Since the early 1950s, the dominant paradigm in the human genetics of infectious diseases postulates that rare monogenic immunodeficiencies confer vulnerability to multiple infectious diseases (one gene, multiple infections), whereas common infections are associated with the polygenic inheritance of multiple susceptibility genes (one infection, multiple genes). Recent studies, since 1996 in particular, have challenged this view. A newly recognised group of primary immunodeficiencies predisposing the individual to a principal or single type of infection is emerging. In parallel, several common infections have been shown to reflect the inheritance of one major susceptibility gene, at least in some populations. This novel causal relationship (one gene, one infection) blurs the distinction between patient-based Mendelian genetics and population-based complex genetics, and provides a unified conceptual frame for exploring the molecular genetic basis of infectious diseases in humans. PMID:17255931
The quest of a unified theory of interactions
International Nuclear Information System (INIS)
Weingerg, St.; Hawking, St.; Mlodinow, L.; Lisi, G.; Weatherall, J.
2011-01-01
The unification of the 4 basic interactions is far from being achieved despite all the efforts made during decades. One theory states that unification is not possible unless to have the point of view of an observer outside the universe...This document is composed of 3 articles. In the first article, stakes, difficulties and the existing research axis of unification are presented. The second article is dedicated to the string theory that is the most promising according to scientists. In fact there are 5 string theories, each one explaining a limited range of phenomena. Nevertheless, string theories share common concepts called dualities, which made physicists think of a unique theory: the M theory that might lie behind the string theories. The third article presents a recent attempt of unification based on the E8 Lie group. Even if this E8 theory appears to be wrong, it will have shed light on deep geometrical relationships between particles that the real theory will have to explain. (A.C.)
A unified survival theory of the functioning of the hypocretinergic system.
Chase, Michael H
2013-10-01
This article advances the theory that the hypocretinergic (orexinergic) system initiates, coordinates, and maintains survival behaviors and survival-related processes (i.e., the Unified Survival Theory of the Functioning of the Hypocretinergic System or "Unified Hypocretinergic Survival Theory"). A priori presumptive support for the Unified Hypocretinergic Survival Theory emanates from the fact that neurons that contain hypocretin are located in the key executive central nervous system (CNS) site, the lateral hypothalamus, that for decades has been well-documented to govern core survival behaviors such as fight, flight, and food consumption. In addition, the hypocretinergic system exhibits the requisite morphological and electrophysiological capabilities to control survival behaviors and related processes. Complementary behavioral data demonstrate that all facets of "survival" are coordinated by the hypocretinergic system and that hypocretinergic directives are not promulgated except during survival behaviors. Importantly, it has been shown that survival behaviors are selectively impacted when the hypocretinergic system is impaired or rendered nonfunctional, whereas other behaviors are relatively unaffected. The Unified Hypocretinergic Survival Theory resolves the disparate, perplexing, and often paradoxical-appearing results of previous studies; it also provides a foundation for future hypothesis-driven basic science and clinical explorations of the hypocretinergic system.
Brewer, Gregory J
2010-03-01
Harman's free radical theory of aging posits that oxidized macromolecules accumulate with age to decrease function and shorten life-span. However, nutritional and genetic interventions to boost anti-oxidants have generally failed to increase life-span. Furthermore, the free radical theory fails to explain why exercise causes higher levels of oxyradical damage, but generally promotes healthy aging. The separate anti-aging paradigms of genetic or caloric reductions in the insulin signaling pathway is thought to slow the rate of living to reduce metabolism, but recent evidence from Westbrook and Bartke suggests metabolism actually increases in long-lived mice. To unify these disparate theories and data, here, we propose the epigenetic oxidative redox shift (EORS) theory of aging. According to EORS, sedentary behavior associated with age triggers an oxidized redox shift and impaired mitochondrial function. In order to maintain resting energy levels, aerobic glycolysis is upregulated by redox-sensitive transcription factors. As emphasized by DeGrey, the need to supply NAD(+) for glucose oxidation and maintain redox balance with impaired mitochondrial NADH oxidoreductase requires the upregulation of other oxidoreductases. In contrast to the 2% inefficiency of mitochondrial reduction of oxygen to the oxyradical, these other oxidoreductases enable glycolytic energy production with a deleterious 100% efficiency in generating oxyradicals. To avoid this catastrophic cycle, lactate dehydrogenase is upregulated at the expense of lactic acid acidosis. This metabolic shift is epigenetically enforced, as is insulin resistance to reduce mitochondrial turnover. The low mitochondrial capacity for efficient production of energy reinforces a downward spiral of more sedentary behavior leading to accelerated aging, increased organ failure with stress, impaired immune and vascular functions and brain aging. Several steps in the pathway are amenable to reversal for exit from the vicious
Towards a unified treatment of Yang-Mills and Higgs fields
International Nuclear Information System (INIS)
Balakrishna, B.S.; Guersey, F.; Wali, K.C.
1991-01-01
Starting from a noncommutative algebra scrA of the form scrC direct-product scrM, where scrC is the algebra of smooth functions on space-time and scrM is the algebra of nxn Hermitian matrices, we construct an exterior algebra of differential forms over scrA. We use the one-forms of this algebra to describe Yang-Mills and Higgs fields on a similar footing and construct a Lagrangian from its two-forms. We show how, in the resulting geometrical description, a Higgs potential that leads to spontaneous symmetry breaking arises naturally. We discuss the application of this formalism to the bosonic sectors of the standard electroweak theory and a grand-unified model based on SU(5)direct-product U(1)
Mixing angle theta and magnetic monopole in Weinberg's unified gauge theory
International Nuclear Information System (INIS)
Hsu, J.P.
1975-01-01
Gauge symmetry admits a local unit isovector and leads to the magnetic monopoles in Weinberg's unified theory. One predicts sin 2 theta = 1 / 2 for the mixing angle theta on the basis of Dirac's condition for charge quantization. This interesting result should be tested experimentally
Introduction to the gauge theories unifying the electromagnetic and weak interactions
International Nuclear Information System (INIS)
Pham Xuan-Yem.
An elementary introduction to unified gauge theories of electromagnetic and weak interactions is presented. The Goldstone theorem and the Higgs mechanism are discussed. The Weinberg-Salam model as well as the Georgi-Glashow ones are explained in details. One emphasizes on the experimental consequences of the Weinberg-Salam model (neutral current) [fr
Naturality in conformal field theory
International Nuclear Information System (INIS)
Moore, G.; Seiberg, N.
1989-01-01
We discuss constraints on the operator product coefficients in diagonal and nondiagonal rational conformal field theories. Nondiagonal modular invariants always arise from automorphisms of the fusion rule algebra or from extensions of the chiral algebra. Moreover, when the chiral algebra has been maximally extended a strong form of the naturality principle of field theory can be proven for rational conformal field theory: operator product coefficients vanish if and only if the corresponding fusion rules vanish; that is, if and only if the vanishing can be understood in terms of a symmetry. We illustrate these ideas with several examples. We also generalize our ideas about rational conformal field theories to a larger class of theories: 'quasi-rational conformal field theories' and we explore some of their properties. (orig.)
Fermion masses and Higgs physics in grand unified theories
Energy Technology Data Exchange (ETDEWEB)
Bhatti, Abdul Aziz
2010-03-12
The Standard model of particle physics is a very successful theory of strong weak and electromagnetic interactions. This theory is perturbative at sufficiently high energies and renormalizable thus it describes these interactions at quantum level. However it has a number of limitations, one being the fact that it has 28 free parameters assuming massive neutrinos. Within the Standard model these parameters can not be explained, however they can be accommodated in the standard theory. Particularly the masses of the fermions are not predicted by the theory. The existence of the neutrino masses can be regarded as the first glimpse of the physics beyond the standard model. In this thesis we have described the quark and lepton masses and mixings in context of non-SUSY SO(10) and four zero texture (FZT). In the four zero texture case the fermion masses and mixing can be related. We have made some predictions using tribimaximal mixing, the near tribimaximal (TBM) mixing and the triminimal parameterization. Our results show that under the TBM the neutrinos have normal, but weak hierarchy. Under near tribimaximal mixing and the triminimal parameterization we find that the neutrino masses in general increase, if the value of solar angle increases from its TBM value and vice versa. It appears that the neutrinos become more and more degenerate for solar angle values higher than TBM value and hierarchical for lower values of solar angle. We also briefly discuss neutrino parameters in the SUSY SO(10) theories. An overview of SUSY SO(10) theories and proton decay is also presented. (orig.)
Unified theory of ballooning instabilities and temperature gradient driven trapped ion modes
International Nuclear Information System (INIS)
Xu, X.Q.
1990-08-01
A unified theory of temperature gradient driven trapped ion modes and ballooning instabilities is developed using kinetic theory in banana regimes. All known results, such as electrostatic and purely magnetic trapped particle modes and ideal MHD ballooning modes (or shear Alfven waves) are readily derived from our single general dispersion relation. Several new results from ion-ion collision and trapped particle modification of ballooning modes are derived and discussed and the interrelationship between those modes is established. 24 refs
Self-Efficacy: Toward a Unifying Theory of Behavioral Change
Bandura, Albert
1977-01-01
This research presents an integrative theoretical framework to explain and to predict psychological changes achieved by different modes of treatment. This theory states that psychological procedures, whatever their form, alter the level and strength of "self-efficacy". (Editor/RK)
Inverted hierarchy and asymptotic freedom in grand unified supersymmetric theories
International Nuclear Information System (INIS)
Aratyn, H.
1983-01-01
The interrelation between an inverted hierarchy mechanism and asymptotic freedom in supersymmetric theories is analyzed in two models for which we performed a detailed analysis of the effective potentials and effective couplings. We find it difficult to accommodate an inverted hierarchy together with asymptotic freedom for the matter-Yukawa couplings. (orig.)
Inductive approach towards a phenomenologically more satisfactory unififed field theory
International Nuclear Information System (INIS)
Rayski, J.; Rayski, J.M. Jnr.
1985-01-01
A unified field theory constituting a fusion of the ideas of supersymmetries with general relativity and gauge theory is investigated. A Lagrangian formalism is constructed step by step; the last step consists in a marriage with Kaluza's idea of a multidimensional space-time. Our aim is not to achieve a full local supersymmetry in eleven dimensions, but rather to attain a compromise with the symmetries of the fundamental interactions either known phenomenologically, or only suspected to exist in nature
International Nuclear Information System (INIS)
Heinemann, K.; Ellison, J.A.
2015-01-01
We return to our study (2001) of invariant spin fields and spin tunes for polarized beams in storage rings but in contrast to the continuous-time treatment in this study, we now employ a discrete-time formalism, beginning with the Poincare maps of the continuous time formalism. We then substantially extend our toolset and generalize the notions of invariant spin field and invariant frame field. We revisit some old theorems and prove several theorems believed to be new. In particular we study two transformation rules, one of them known and the other new, where the former turns out to be an SO(3)-gauge transformation rule. We then apply the theory to the dynamics of spin-1/2 and spin-1 particle bunches and their density matrix functions, describing semiclassically the particle-spin content of bunches. Our approach thus unifies the spin-vector dynamics from the T-BMT equation with the spin-tensor dynamics and other dynamics. This unifying aspect of our approach relates the examples elegantly and uncovers relations between the various underlying dynamical systems in a transparent way. The particle motion is integrable but we now allow for nonlinear particle motion on each torus. Since this work is inspired by notions from the theory of bundles, we also provide insight into the underlying bundle-theoretic aspects of the well-established concepts of invariant spin field, spin tune and invariant frame field. Thus the group theoretical notion is exhibited. Since we neglect, as is usual, the Stern-Gerlach force, the underlying principal bundle is of product form so that we can present the theory in a fashion which does not use bundle theory. Nevertheless we occasionally mention the bundle-theoretic meaning of our concepts and we also mention the similarities with the geometrical approach to Yang-Mills Theory.
Energy Technology Data Exchange (ETDEWEB)
Heinemann, K.; Ellison, J.A. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Mathematics and Statistics; Barber, D.P.; Vogt, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2015-01-15
We return to our study (2001) of invariant spin fields and spin tunes for polarized beams in storage rings but in contrast to the continuous-time treatment in this study, we now employ a discrete-time formalism, beginning with the Poincare maps of the continuous time formalism. We then substantially extend our toolset and generalize the notions of invariant spin field and invariant frame field. We revisit some old theorems and prove several theorems believed to be new. In particular we study two transformation rules, one of them known and the other new, where the former turns out to be an SO(3)-gauge transformation rule. We then apply the theory to the dynamics of spin-1/2 and spin-1 particle bunches and their density matrix functions, describing semiclassically the particle-spin content of bunches. Our approach thus unifies the spin-vector dynamics from the T-BMT equation with the spin-tensor dynamics and other dynamics. This unifying aspect of our approach relates the examples elegantly and uncovers relations between the various underlying dynamical systems in a transparent way. The particle motion is integrable but we now allow for nonlinear particle motion on each torus. Since this work is inspired by notions from the theory of bundles, we also provide insight into the underlying bundle-theoretic aspects of the well-established concepts of invariant spin field, spin tune and invariant frame field. Thus the group theoretical notion is exhibited. Since we neglect, as is usual, the Stern-Gerlach force, the underlying principal bundle is of product form so that we can present the theory in a fashion which does not use bundle theory. Nevertheless we occasionally mention the bundle-theoretic meaning of our concepts and we also mention the similarities with the geometrical approach to Yang-Mills Theory.
Perturbation theory for quantized string fields
International Nuclear Information System (INIS)
Thorn, C.B.; Florida Univ., Gainesville
1987-01-01
We discuss the problem of gauge fixing in string field theory. We show that BRST invariance requires the gauge-fixed action to contain terms cubic in the ghost... of ghost of ghost fields. The final BRST invariant gauge-fixed action for the gauge b 0 A=0 is extremely simple: with the proper interpretation (as given in this article), it is essentially the one anticipated earlier in the work of Giddings, Martinec, and Witten in their analysis of the BRST invariant world-sheet approach to string theory. We derive the Feynman rules from this action and explain in detail how the sum over sufaces of the BRST first-quantized string is reproduced. This result depends crucially on the correct assignment for the Grassmann character of the string field and its ghost... of ghost of ghost string fields. If all these fields are unified in a single string field Φ containing all ghost numbers, the requirements is that Φ be uniformly Grassmann odd. Finally, we do some sample calculations which provide some simple checks on our general results. (orig.)
A unified theory for systems and cellular memory consolidation.
Dash, Pramod K; Hebert, April E; Runyan, Jason D
2004-04-01
The time-limited role of the hippocampus for explicit memory storage has been referred to as systems consolidation where learning-related changes occur first in the hippocampus followed by the gradual development of a more distributed memory trace in the neocortex. Recent experiments are beginning to show that learning induces plasticity-related molecular changes in the neocortex as well as in the hippocampus and with a similar time course. Present memory consolidation theories do not account for these findings. In this report, we present a theory (the C theory) that incorporates these new findings, provides an explanation for the length of time for hippocampal dependency, and that can account for the apparent longer consolidation periods in species with larger brains. This theory proposes that a process of cellular consolidation occurs in the hippocampus and in areas of the neocortex during and shortly after learning resulting in long-term memory storage in both areas. For a limited time, the hippocampus is necessary for memory retrieval, a process involving the coordinated reactivation of these areas. This reactivation is later mediated by longer extrahippocampal connectivity between areas. The delay in hippocampal-independent memory retrieval is the time it takes for gene products in these longer extrahippocampal projections to be transported from the soma to tagged synapses by slow axonal transport. This cellular transport event defines the period of hippocampal dependency and, thus, the duration of memory consolidation. The theoretical description for memory consolidation presented in this review provides alternative explanations for several experimental observations and presents a unification of the concepts of systems and cellular memory consolidation.
Advanced concepts in particle and field theory
Hübsch, Tristan
2015-01-01
Uniting the usually distinct areas of particle physics and quantum field theory, gravity and general relativity, this expansive and comprehensive textbook of fundamental and theoretical physics describes the quest to consolidate the basic building blocks of nature, by journeying through contemporary discoveries in the field, and analysing elementary particles and their interactions. Designed for advanced undergraduates and graduate students and abounding in worked examples and detailed derivations, as well as including historical anecdotes and philosophical and methodological perspectives, this textbook provides students with a unified understanding of all matter at the fundamental level. Topics range from gauge principles, particle decay and scattering cross-sections, the Higgs mechanism and mass generation, to spacetime geometries and supersymmetry. By combining historically separate areas of study and presenting them in a logically consistent manner, students will appreciate the underlying similarities and...
Field theory approach to gravitation
International Nuclear Information System (INIS)
Yilmaz, H.
1978-01-01
A number of authors considered the possibility of formulating a field-theory approach to gravitation with the claim that such an approach would uniquely lead to Einstein's theory of general relativity. In this article it is shown that the field theory approach is more generally applicable and uniqueness cannot be claimed. Theoretical and experimental reasons are given showing that the Einsteinian limit appears to be unviable
Methods of thermal field theory
Energy Technology Data Exchange (ETDEWEB)
Mallik, S [Saha Institute of Nuclear Physics, Calcutta (India)
1998-11-01
We introduce the basic ideas of thermal field theory and review its path integral formulation. We then discuss the problems of QCD theory at high and at low temperatures. At high temperature the naive perturbation expansion breaks down and is cured by resummation. We illustrate this improved perturbation expansion with the g{sup 2}{phi}{sup 4} theory and then sketch its application to find the gluon damping rate in QCD theory. At low temperature the hadronic phase is described systematically by the chiral perturbation theory. The results obtained from this theory for the quark and the gluon condensates are discussed. (author) 22 refs., 6 figs.
Introduction to quantum field theory
Alvarez-Gaumé, Luís
1994-01-01
The purpose of this lecture is to review some elementary aspects of Quantum Field Theory. From the necessity to introduce quantum fields once quantum mechanics and special relativity are put together, to some of the basic practical computational tools in the subject, including the canonical quantization of simple field theories, the derivation of Feynman rules, computation of cross sections and decay rates, some introductory remarks on the treatment of unstable states and the possible realization of symmetries in a general field theory. The audience is required to have a working knowledge of quantum mechanics and special relativity and it would also be desirable to know the rudiments of relativistic quantum mechanics.
Resonance energy transfer: The unified theory via vector spherical harmonics
Energy Technology Data Exchange (ETDEWEB)
Grinter, Roger, E-mail: r.grinter@uea.ac.uk; Jones, Garth A., E-mail: garth.jones@uea.ac.uk [School of Chemistry, University of East Anglia, Norwich NR4 7TJ (United Kingdom)
2016-08-21
In this work, we derive the well-established expression for the quantum amplitude associated with the resonance energy transfer (RET) process between a pair of molecules that are beyond wavefunction overlap. The novelty of this work is that the field of the mediating photon is described in terms of a spherical wave rather than a plane wave. The angular components of the field are constructed in terms of vector spherical harmonics while Hankel functions are used to define the radial component. This approach alleviates the problem of having to select physically correct solution from non-physical solutions, which seems to be inherent in plane wave derivations. The spherical coordinate system allows one to easily decompose the photon’s fields into longitudinal and transverse components and offers a natural way to analyse near-, intermediate-, and far-zone RET within the context of the relative orientation of the transition dipole moments for the two molecules.
Texture of fermion mass matrices in partially unified theories
International Nuclear Information System (INIS)
Dutta, B.; Texas Univ., Austin, TX; Nandi, S.; Texas Univ., Austin, TX
1996-01-01
We investigate the texture of fermion mass matrices in theories with partial unification (for example, SU(2) L x SU(2) R x SU(4) c ) at a scale of ∼ 10 12 GeV. Starting with the low energy values of the masses and the mixing angles, we find only two viable textures with at most four texture zeros. One of these corresponds to a somewhat modified Fritzsch textures. A theoretical derivation of these textures leads to new interesting relations among the masses and the mixing angles. 13 refs
On the use of statistical concepts in grand unified theories
International Nuclear Information System (INIS)
Dresden, M.
1982-01-01
The study raises the question-whether the use of traditional statistical mechanical concepts is legitimate in the early epochs of the development of the univese (from approx. equal to10 -40 s after the big bang, until about 10 -30 s). Several current procedures are examined in detail; the use of the equilibrium notion, the use of Boltzmann-like rate equations, the use of ideas from the theory of phase transitions. It is stressed that from the general viewpoint of statistical mechanics there is no convincing evidence that dynamical systems described by spontaneously broken gauge theories necessarily approach equilibrium. Techniques are suggested whereby this question might be approached. It is noted that the usual treatment by starting from the assumption of a homogeneous, isotropic universe is in principle incapable of discussing local non-equilibrium features. It is very questionable whether this assumption is valid for the epochs considered. Attention is called to the circumstance that if the phase transition picture is taken literally, the presence of both fermions and bosons indicates that a consistent treatment requires the existence of a critical line Tsub(c)(xi), rather than a critical temperature, xi is the ratio of the Fermi to Bose concentrations. This might well alter the qualitative picture of successive stages in the development of the universe. (orig.)
Elementary quantum field theory
International Nuclear Information System (INIS)
Thirring, W.; Henley, E.M.
1975-01-01
The first section of the book deals with the mathematical and physical description of a quantum field with the Bose-Einstein statistics and discusses observables, invariants of the field, and inner symmetries. The second section develops further methods for solvable interactions of a quantum field with static source. Section 3 explains with the aid of the Chew-Low model especially pion-nucleon scattering, static properties of nucleons, electromagnetic phenomena, and nuclear forces. (BJ/LN) [de
Some aspects of a unified approach to gauge, dual and Gribov theories
International Nuclear Information System (INIS)
Veneziano, G.
1976-01-01
Quantum chromodynamics (QCD) with Nsub(c) colours and Nsub(f) flavours is considered. Large N expansions for this theory are discussed and their advantages are pointed out, especially in relation to the possibility of unifying gauge, dual and Gribov theories of strong interactions. First it is recalled how the 1/Nsub(c) expansion of 't Hooft can be related to a dual loop expansion with a fixed coupling constant. The necessity for quarkless (purely gluonic) bound states to appear and their importance in maintaining confinement at higher orders in 1/Nsub(c) is pointed out. It is shown how non-orientable dual loops are reinterpreted in QCD and how a paradox appears when Nsub(f) is such that asymptotic freedom is lost. Some recent results of Cornwall and Tiktopoulos are analyzed in leading order in 1/Nsub(c). Then a 1/N expansion is introduced at rho equivalent to Nsub(f)/Nsub(c) fixed and it is shown how it is related to the hadronic topological expansion (TE). This allows an unambiguous definition of reggeon field theory concepts such as the bare pomeron and diffractive dissociation in QCD. The parameter rho is related to the clustering of hadronic final states into resonances. Decreasing rho corresponds to increasing cluster over gap size. Renormalization of the dual coupling constant as a function of rho is discussed and an apparent paradox is resolved. Some new light on the problem of f extinction in the TE is also shed. Finally, the approach is compared to other schemes trying to relate different aspects of hadron physics. (Auth.)
A Unified Theory of Melting, Crystallization and Glass Formation
DEFF Research Database (Denmark)
Cotterill, R. M. J.; Jensen, F. J.; Damgaard Kristensen, W.
1975-01-01
In recent years, dislocations have been involved in theories of melting, in models of the liquid state, and in calculations of the viscosity of glasses. Particularly noteworthy are the Mott-Gurney model of a liquid as a polycrystal with a grain size (i. e. a dislocation network size) of near......-atomic dimensions, and the demonstration by Kotze and Kuhlmann-Wilsdorf that the solid-liquid interfacial energy is proportional to the grain boundary energy for a number of elements. These developments suggest the possibility of a relatively simple picture of crystallization and glass formation. In the liquid...... state dislocations, at the saturation density, are in constant motion and the microscopic grain boundary structure that they form is constantly changing due to dislocation-dislocation interaction. As the liquid is cooled below the melting point the free energy favors the crystalline form and grains...
The Nonlinear Field Space Theory
Energy Technology Data Exchange (ETDEWEB)
Mielczarek, Jakub, E-mail: jakub.mielczarek@uj.edu.pl [Institute of Physics, Jagiellonian University, ul. Łojasiewicza 11, 30-348 Kraków (Poland); Trześniewski, Tomasz, E-mail: tbwbt@ift.uni.wroc.pl [Institute of Physics, Jagiellonian University, ul. Łojasiewicza 11, 30-348 Kraków (Poland); Institute for Theoretical Physics, University of Wrocław, pl. Borna 9, 50-204 Wrocław (Poland)
2016-08-10
In recent years the idea that not only the configuration space of particles, i.e. spacetime, but also the corresponding momentum space may have nontrivial geometry has attracted significant attention, especially in the context of quantum gravity. The aim of this letter is to extend this concept to the domain of field theories, by introducing field spaces (i.e. phase spaces of field values) that are not affine spaces. After discussing the motivation and general aspects of our approach we present a detailed analysis of the prototype (quantum) Nonlinear Field Space Theory of a scalar field on the Minkowski background. We show that the nonlinear structure of a field space leads to numerous interesting predictions, including: non-locality, generalization of the uncertainty relations, algebra deformations, constraining of the maximal occupation number, shifting of the vacuum energy and renormalization of the charge and speed of propagation of field excitations. Furthermore, a compact field space is a natural way to implement the “Principle of finiteness” of physical theories, which once motivated the Born–Infeld theory. Thus the presented framework has a variety of potential applications in the theories of fundamental interactions (e.g. quantum gravity), as well as in condensed matter physics (e.g. continuous spin chains), and can shed new light on the issue of divergences in quantum field theories.
The Nonlinear Field Space Theory
International Nuclear Information System (INIS)
Mielczarek, Jakub; Trześniewski, Tomasz
2016-01-01
In recent years the idea that not only the configuration space of particles, i.e. spacetime, but also the corresponding momentum space may have nontrivial geometry has attracted significant attention, especially in the context of quantum gravity. The aim of this letter is to extend this concept to the domain of field theories, by introducing field spaces (i.e. phase spaces of field values) that are not affine spaces. After discussing the motivation and general aspects of our approach we present a detailed analysis of the prototype (quantum) Nonlinear Field Space Theory of a scalar field on the Minkowski background. We show that the nonlinear structure of a field space leads to numerous interesting predictions, including: non-locality, generalization of the uncertainty relations, algebra deformations, constraining of the maximal occupation number, shifting of the vacuum energy and renormalization of the charge and speed of propagation of field excitations. Furthermore, a compact field space is a natural way to implement the “Principle of finiteness” of physical theories, which once motivated the Born–Infeld theory. Thus the presented framework has a variety of potential applications in the theories of fundamental interactions (e.g. quantum gravity), as well as in condensed matter physics (e.g. continuous spin chains), and can shed new light on the issue of divergences in quantum field theories.
Semiclassical methods in field theories
International Nuclear Information System (INIS)
Ventura, I.
1978-10-01
A new scheme is proposed for semi-classical quantization in field theory - the expansion about the charge (EAC) - which is developed within the canonical formalism. This method is suitable for quantizing theories that are invariant under global gauge transformations. It is used in the treatment of the non relativistic logarithmic theory that was proposed by Bialynicki-Birula and Mycielski - a theory we can formulate in any number of spatial dimensions. The non linear Schroedinger equation is also quantized by means of the EAC. The classical logarithmic theories - both, the non relativistic and the relativistic one - are studied in detail. It is shown that the Bohr-Sommerfeld quantization rule(BSQR) in field theory is, in many cases, equivalent to charge quantization. This rule is then applied to the massive Thirring Model and the logarithmic theories. The BSQR can be see as a simplified and non local version of the EAC [pt
A course on quantum field theory and local observables
International Nuclear Information System (INIS)
Schroer, Bert
1997-03-01
A monograph on Quantum Field Theory and Local Observables is presented, aiming to unify two presently largely disconnected branches of QFT, as follows: the standard (canonical, functional) approach which is mainly perturbative in the sense of an infinitesimal 'deformation' of free fields; nonperturbative constructions of low-dimensional models as the form factor-bootstrap approach (which for the time being is limited to factorable models in d=1+1 spacetime dimensions) and the non-Lagrangian constructions of conformal chiral QFT's
[Topics in field theory and string theory
International Nuclear Information System (INIS)
1990-01-01
In the past year, I have continued to investigate the relations between conformal field theories and lattice statistical mechanical models, and in particular have been studying two dimensional models coupled to quantum gravity. I have continued as well to consider possible extension of these results to higher dimensions and potential applications in other contexts
Proceedings of the 5. Jorge Andre Swieca Summer School Field Theory and Particle Physics
International Nuclear Information System (INIS)
Eboli, O.J.P.; Gomes, M.; Santoro, A.
1989-01-01
Lectures on quantum field theories and particle physics are presented. The part of quantum field theories contains: constrained dynamics; Schroedinger representation in field theory; application of this representation to quantum fields in a Robertson-Walker space-time; Berry connection; problem of construction and classification of conformal field theories; lattice models; two-dimensional S matrices and conformal field theory for unifying perspective of Yang-Baxter algebras; parasupersymmetric quantum mechanics; introduction to string field theory; three dimensional gravity and two-dimensional parafermionic model. The part of particle physics contains: collider physics; strong interactions and use of strings in strong interactions. (M.C.K.)
Introduction to quantum field theory
International Nuclear Information System (INIS)
Kazakov, D.I.
1988-01-01
The lectures appear to be a continuation to the introduction to elementary principles of the quantum field theory. The work is aimed at constructing the formalism of standard particle interaction model. Efforts are made to exceed the limits of the standard model in the quantum field theory context. Grand unification models including strong and electrical weak interactions, supersymmetric generalizations of the standard model and grand unification theories and, finally, supergravitation theories including gravitation interaction to the universal scheme, are considered. 3 refs.; 19 figs.; 2 tabs
The logarithmic conformal field theories
International Nuclear Information System (INIS)
Rahimi Tabar, M.R.; Aghamohammadi, A.; Khorrami, M.
1997-01-01
We study the correlation functions of logarithmic conformal field theories. First, assuming conformal invariance, we explicitly calculate two- and three-point functions. This calculation is done for the general case of more than one logarithmic field in a block, and more than one set of logarithmic fields. Then we show that one can regard the logarithmic field as a formal derivative of the ordinary field with respect to its conformal weight. This enables one to calculate any n-point function containing the logarithmic field in terms of ordinary n-point functions. Finally, we calculate the operator product expansion (OPE) coefficients of a logarithmic conformal field theory, and show that these can be obtained from the corresponding coefficients of ordinary conformal theory by a simple derivation. (orig.)
Minimal supersymmetric grand unified theory: Symmetry breaking and the particle spectrum
International Nuclear Information System (INIS)
Bajc, Borut; Melfo, Alejandra; Senjanovic, Goran; Vissani, Francesco
2004-01-01
We discuss in detail the symmetry breaking and related issues in the minimal renormalizable supersymmetric grand unified theory. We find all the possible patterns of symmetry breaking, compute the associated particle spectrum and study its impact on the physical scales of the theory. In particular, the complete mass matrices of the SU(2) doublets and the color triplets are computed in connection with the doublet-triplet splitting and the d=5 proton decay. We explicitly construct the two light Higgs doublets as a function of the Higgs superpotential parameters. This provides a framework for the analysis of phenomenological implications of the theory, to be carried out in a second paper
Unified formulation of the theory of nuclear reactions
International Nuclear Information System (INIS)
Bloch, C.
The determination of the scattering matrix in the theory of nuclear reactions is essentially equivalent to the construction of the Green function for the Schroedinger equation in the internal region of the configuration space with proper boundary conditions at the nuclear surface. This Green function can be expressed as the inverse of an operator involving the sum of the Hamiltonian and of a ''boundary value operator'' which is different from zero only on the nuclear surface where it has a singularity of the same kind as a Dirac function. A general operator expression for the scattering matrix is derived. This expression can be transformed into a matrix expression by introducing an arbitrary basis of orthonormal functions in the internal region. The Wigner-Eisenbud and the Peierls-Kapur formulations are obtained by an appropriate choice of the internal functions. When a large number of resonances contribute to the cross section, the expansion of the scattering matrix in terms of resonances of the compound system is not useful, and a more appropriate starting point can be obtained from a perturbation expansion of the scattering matrix which is easily derived from the general operator expression. A simple statistical assumption is proposed in order to determine the dominant terms in such an expansion. It leads to the optical model for the elastic scattering and to the direct interactions for the inelastic scattering
Lectures on matrix field theory
Ydri, Badis
2017-01-01
These lecture notes provide a systematic introduction to matrix models of quantum field theories with non-commutative and fuzzy geometries. The book initially focuses on the matrix formulation of non-commutative and fuzzy spaces, followed by a description of the non-perturbative treatment of the corresponding field theories. As an example, the phase structure of non-commutative phi-four theory is treated in great detail, with a separate chapter on the multitrace approach. The last chapter offers a general introduction to non-commutative gauge theories, while two appendices round out the text. Primarily written as a self-study guide for postgraduate students – with the aim of pedagogically introducing them to key analytical and numerical tools, as well as useful physical models in applications – these lecture notes will also benefit experienced researchers by providing a reference guide to the fundamentals of non-commutative field theory with an emphasis on matrix models and fuzzy geometries.
Energy Technology Data Exchange (ETDEWEB)
Maxfield, Travis [Enrico Fermi Institute, University of Chicago,Chicago, IL 60637 (United States); Robbins, Daniel [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy,Texas A& M University,College Station, TX 77843-4242 (United States); Sethi, Savdeep [Enrico Fermi Institute, University of Chicago,Chicago, IL 60637 (United States)
2016-11-28
Studying a quantum field theory involves a choice of space-time manifold and a choice of background for any global symmetries of the theory. We argue that many more choices are possible when specifying the background. In the context of branes in string theory, the additional data corresponds to a choice of supergravity tensor fluxes. We propose the existence of a landscape of field theory backgrounds, characterized by the space-time metric, global symmetry background and a choice of tensor fluxes. As evidence for this landscape, we study the supersymmetric six-dimensional (2,0) theory compactified to two dimensions. Different choices of metric and flux give rise to distinct two-dimensional theories, which can preserve differing amounts of supersymmetry.
International Nuclear Information System (INIS)
Kang, Kai; Qin, Shaojing; Wang, Chuilin
2011-01-01
We calculated numerically the localization length of one-dimensional Anderson model with diagonal disorder. For weak disorder, we showed that the localization length changes continuously as the energy changes from the band center to the boundary of the anomalous region near the band edge. We found that all the localization lengths for different disorder strengths and different energies collapse onto a single curve, which can be fitted by a simple equation. Thus the description of the perturbation theory and the band center anomaly were unified into this equation. -- Highlights: → We study the band center anomaly of one-dimensional Anderson localization. → We study numerically the Lyapunov exponent through a parametrization method of the transfer matrix. → We give a unified equation to describe the band center anomaly and perturbation theory.
Topological field theories and duality
International Nuclear Information System (INIS)
Stephany, J.; Universidad Simon Bolivar, Caracas
1996-05-01
Topologically non trivial effects appearing in the discussion of duality transformations in higher genus manifold are discussed in a simple example, and their relation with the properties of Topological Field Theories is established. (author). 16 refs
Finite-temperature field theory
International Nuclear Information System (INIS)
Kapusta, J.I.; Landshoff, P.V.
1989-01-01
Particle number is not conserved in relativistic theories although both lepton and baryon number are. Therefore when discussing the thermodynamics of a quantum field theory one uses the grand canonical formalism. The entropy S is maximised, keeping fixed the ensemble averages E and N of energy and lepton number. Two lagrange multipliers are introduced. (author)
A unified theory of development: a dialectic integration of nature and nurture.
Sameroff, Arnold
2010-01-01
The understanding of nature and nurture within developmental science has evolved with alternating ascendance of one or the other as primary explanations for individual differences in life course trajectories of success or failure. A dialectical perspective emphasizing the interconnectedness of individual and context is suggested to interpret the evolution of developmental science in similar terms to those necessary to explain the development of individual children. A unified theory of development is proposed to integrate personal change, context, regulation, and representational models of development.
Low energy gauge couplings in grand unified theories and high precision physics
International Nuclear Information System (INIS)
Lynn, B.W.
1993-09-01
I generalize the leading log relations between low energy SU(3) QCD , SU(2) rvec I and U(l) Y effective gauge couplings to include all one-loop threshold effects of matter fields in oblique vector self energy quantum corrections for both supersymmetric and non-supersymmetric SU(5) grand unified theories. These always involve an exactly conserved current from the unbroken SU(3) QCD x U(L) QED subgroup; this fact strongly constrains any non-decoupling of heavy states as well as the generic character of threshold effects. Relations between low energy gauge couplings depend on the details of the spectra of both the superheavy and low mass sectors; I display the common origin of the logs appropriate to superheavy matter states, which can be found with well known renormalization group techniques, and the combination of logs and polynomials appropriate for light matter states, which cannot. Relations between any two or all three low energy effective gauge couplings do not depend on the top quark or standard model Higgs' masses. Neither do they depend on neutral color singlet states such as other neutral color singlet Higgs' or higgsinos, neutrinos, zinos or photinos. Further, they do not depend on degenerate SU(5) matter representations, of either spin 0 or spin 1/2 of any mass; matter representations of SU(5) can affect such relations only if there is mass splitting within them. The b quark splitting from the τ and ν τ can affect the relation between gauge couplings for |q 2 | → m b 2 as can hadronic resonances and multi-hadron states for lower |q 2 |. New mass-split representations of light states, such as occur in supersymmetric theories, can also affect such relations
Low energy gauge couplings in grand unified theories and high precision physics
Energy Technology Data Exchange (ETDEWEB)
Lynn, B.W. [Stanford Univ., CA (United States). Dept. of Physics]|[Superconducting Super Collider Lab., Dallas, TX (United States)
1993-09-01
I generalize the leading log relations between low energy SU(3){sub QCD}, SU(2){sub {rvec I}} and U(l){sub Y} effective gauge couplings to include all one-loop threshold effects of matter fields in oblique vector self energy quantum corrections for both supersymmetric and non-supersymmetric SU(5) grand unified theories. These always involve an exactly conserved current from the unbroken SU(3){sub QCD} {times} U(L){sub QED} subgroup; this fact strongly constrains any non-decoupling of heavy states as well as the generic character of threshold effects. Relations between low energy gauge couplings depend on the details of the spectra of both the superheavy and low mass sectors; I display the common origin of the logs appropriate to superheavy matter states, which can be found with well known renormalization group techniques, and the combination of logs and polynomials appropriate for light matter states, which cannot. Relations between any two or all three low energy effective gauge couplings do not depend on the top quark or standard model Higgs` masses. Neither do they depend on neutral color singlet states such as other neutral color singlet Higgs` or higgsinos, neutrinos, zinos or photinos. Further, they do not depend on degenerate SU(5) matter representations, of either spin 0 or spin 1/2 of any mass; matter representations of SU(5) can affect such relations only if there is mass splitting within them. The b quark splitting from the {tau} and {nu}{sub {tau}} can affect the relation between gauge couplings for {vert_bar}q{sub 2}{vert_bar} {yields} m{sub b}{sup 2} as can hadronic resonances and multi-hadron states for lower {vert_bar}q{sub 2}{vert_bar}. New mass-split representations of light states, such as occur in supersymmetric theories, can also affect such relations.
Neural fields theory and applications
Graben, Peter; Potthast, Roland; Wright, James
2014-01-01
With this book, the editors present the first comprehensive collection in neural field studies, authored by leading scientists in the field - among them are two of the founding-fathers of neural field theory. Up to now, research results in the field have been disseminated across a number of distinct journals from mathematics, computational neuroscience, biophysics, cognitive science and others. Starting with a tutorial for novices in neural field studies, the book comprises chapters on emergent patterns, their phase transitions and evolution, on stochastic approaches, cortical development, cognition, robotics and computation, large-scale numerical simulations, the coupling of neural fields to the electroencephalogram and phase transitions in anesthesia. The intended readership are students and scientists in applied mathematics, theoretical physics, theoretical biology, and computational neuroscience. Neural field theory and its applications have a long-standing tradition in the mathematical and computational ...
On finite quantum field theories
International Nuclear Information System (INIS)
Rajpoot, S.; Taylor, J.G.
1984-01-01
The properties that make massless versions of N = 4 super Yang-Mills theory and a class of N = 2 supersymmetric theories finite are: (I) a universal coupling for the gauge and matter interactions, (II) anomaly-free representations to which the bosonic and fermionic matter belong, and (III) no charge renormalisation, i.e. β(g) = 0. It was conjectured that field theories constructed out of N = 1 matter multiplets are also finite if they too share the above properties. Explicit calculations have verified these theories to be finite up to two loops. The implications of the finiteness conditions for N = 1 finite field theories with SU(M) gauge symmetry are discussed. (orig.)
[Studies in quantum field theory
International Nuclear Information System (INIS)
1990-01-01
During the period 4/1/89--3/31/90 the theoretical physics group supported by Department of Energy Contract No. AC02-78ER04915.A015 and consisting of Professors Bender and Shrauner, Associate Professor Papanicolaou, Assistant Professor Ogilvie, and Senior Research Associate Visser has made progress in many areas of theoretical and mathematical physics. Professors Bender and Shrauner, Associate Professor Papanicolaou, Assistant Professor Ogilvie, and Research Associate Visser are currently conducting research in many areas of high energy theoretical and mathematical physics. These areas include: strong-coupling approximation; classical solutions of non-Abelian gauge theories; mean-field approximation in quantum field theory; path integral and coherent state representations in quantum field theory; lattice gauge calculations; the nature of perturbation theory in large order; quark condensation in QCD; chiral symmetry breaking; the 1/N expansion in quantum field theory; effective potential and action in quantum field theories, including OCD; studies of the early universe and inflation, and quantum gravity
International Nuclear Information System (INIS)
Ramond, P.
1987-01-01
We review the construction of the free equations of motion for open and closed strings in 26 dimensions, using the methods of the Florida Group. Differing from previous treatments, we argue that the constraint L 0 -anti L 0 =0 should not be imposed on all the fields of the closed string in the gauge invariant formalism; we show that it can be incorporated in the gauge invariant formalism at the price of being unable to extract the equations of motion from a Langrangian. We then describe our purely algebraic method to introduce interactions, which works equally well for open and closed strings. Quartic interactions are absent except in the Physical Gauge. Finally, we speculate on the role of the measure of the open string path functional. (orig.)
Bijeljic, B.
2008-05-01
This talk will describe and highlight the advantages offered by a methodology that unifies pore network modeling, CTRW theory and experiment in description of solute dispersion in porous media. Solute transport in a porous medium is characterized by the interplay of advection and diffusion (described by Peclet number, Pe) that cause spreading of solute particles. This spreading is traditionally described by dispersion coefficients, D, defined by σ 2 = 2Dt, where σ 2 is the variance of the solute position and t is the time. Using a pore-scale network model based on particle tracking, the rich Peclet- number dependence of dispersion coefficient is predicted from first principles and is shown to compare well with experimental data for restricted diffusion, transition, power-law and mechanical dispersion regimes in the asymptotic limit. In the asymptotic limit D is constant and can be used in an averaged advection-dispersion equation. However, it is highly important to recognize that, until the velocity field is fully sampled, the particle transport is non-Gaussian and D possesses temporal or spatial variation. Furthermore, temporal probability density functions (PDF) of tracer particles are studied in pore networks and an excellent agreement for the spectrum of transition times for particles from pore to pore is obtained between network model results and CTRW theory. Based on the truncated power-law interpretation of PDF-s, the physical origin of the power-law scaling of dispersion coefficient vs. Peclet number has been explained for unconsolidated porous media, sands and a number of sandstones, arriving at the same conclusion from numerical network modelling, analytic CTRW theory and experiment. Future directions for further applications of the methodology presented are discussed in relation to the scale- dependent solute dispersion and reactive transport. Significance of pre-asymptotic dispersion in porous media is addressed from pore-scale upwards and the impact
Quantum theory of noncommutative fields
International Nuclear Information System (INIS)
Carmona, J.M.; Cortes, J.L.; Gamboa, J.; Mendez, F.
2003-01-01
Generalizing the noncommutative harmonic oscillator construction, we propose a new extension of quantum field theory based on the concept of 'noncommutative fields'. Our description permits to break the usual particle-antiparticle degeneracy at the dispersion relation level and introduces naturally an ultraviolet and an infrared cutoff. Phenomenological bounds for these new energy scales are given. (author)
Search of unified theory of basic types of elementary particle interactions
International Nuclear Information System (INIS)
Anselm, A.
1981-01-01
Four types of forces are described (strong, weak, electromagnetic and gravitational) mediating the basic interactions of quarks and leptons, and attempts are reported of forming a unified theory of all basic interactions. The concepts are discussed, such as the theory symmetry (eg., invariance in relation to the Lorentz transformations) and isotopic symmetry (based on the interchangeability of particles in a given isotopic multiplet). Described are the gauge character of electromagnetic and gravitational interactions, the violation of the gauge symmetry and the mechanism of particle confinement. (H.S.)
Higgs mass scales and matter-antimatter oscillations in grand unified theories
International Nuclear Information System (INIS)
Senjanovic, G.
1982-01-01
A general discussion of mass scales in grand unified theories is presented, with special emphasis on Higgs scalars which mediate neutron-antineutron (n-anti n) and hydrogen-antihydrogen (H-anti H) oscillations. It is shown that the analogue of survival hypothesis for fermions naturally makes such particles superheavy, thus leading to unobservable lifetimes. If this hypothesis is relaxed, an interesting possibility of potentially observable n-anti n and H-anti H transitions, mutually related arises in the context of SU(5) theory with spontaneously broken B-L symmetry
On the possibility of magnetic monopoles lighter than 1/α Msub(x) in grand unified theories
International Nuclear Information System (INIS)
Scott, D.M.
1980-04-01
It is argued that in special cases monopoles may have masses significantly less than 1/αMsub(x) where Msub(x) is the mass of the heaviest vector boson in the grand unified theory under consideration. (author)
Toward finite quantum field theories
International Nuclear Information System (INIS)
Rajpoot, S.; Taylor, J.G.
1986-01-01
The properties that make the N=4 super Yang-Mills theory free from ultraviolet divergences are (i) a universal coupling for gauge and matter interactions, (ii) anomaly-free representations, (iii) no charge renormalization, and (iv) if masses are explicitly introduced into the theory, then these are required to satisfy the mass-squared supertrace sum rule Σsub(s=0.1/2)(-1)sup(2s+1)(2s+1)M 2 sub(s)=O. Finite N=2 theories are found to satisfy the above criteria. The missing member in this class of field theories are finite field theories consisting of N=1 superfields. These theories are discussed in the light of the above finiteness properties. In particular, the representations of all simple classical groups satisfying the anomaly-free and no-charge renormalization conditions for finite N=1 field theories are discussed. A consequence of these restrictions on the allowed representations is that an N=1 finite SU(5)-based model of strong and electroweak interactions can contain at most five conventional families of quarks and leptons, a constraint almost compatible with the one deduced from cosmological arguments. (author)
Modular groups in quantum field theory
International Nuclear Information System (INIS)
Borchers, H.-J.
2000-01-01
The author discusses the connection of Lagrangean quantum field theory, perturbation theory, the Lehmann-Symanzik-Zimmermann theory, Wightman's quantum field theory, the Euclidean quantum field theory, and the Araki-Haag-Kastler theory of local observables with modular groups. In this connection he considers the PCT-theorem, and the tensor product decomposition. (HSI)
Towards a unified picture for gauge and Higgs fields
International Nuclear Information System (INIS)
Mecklenburg, W.
1981-01-01
A scheme for a geometrical unification of gauge and Higgs fields, previously given for SU 2 , is generalized to include arbitrary semisimple gauge groups. Gauge and physical Higgs fields appear as different components of the same tensor in a high dimensional manifold, the higher dimensions being comprised by the group coordinates. Their respective inhomogeneous transformation behaviour is derived from the same principle. The number of Higgs fields is restricted. The form of the Higgs potential is fixed and the mass of the Higgs particle is predicted in terms of the vector boson mass. (author)
Generalized field theory of gravitation
International Nuclear Information System (INIS)
Yilmaz, H.
1976-01-01
It is shown that if, on empirical grounds, one rules out the existence of cosmic fields of Dicke-Brans (scalar) and Will Nordvedt (vector, tensor) type, then the most general experimentally viable and theoretically reasonable theory of gravitation seems to be a LAMBDA-dependent generalization of Einstein and Yilmez theories, which reduces to the former for LAMBDA=0 and to the latter for LAMBDA=1
Renormalization of topological field theory
International Nuclear Information System (INIS)
Birmingham, D.; Rakowski, M.; Thompson, G.
1988-11-01
One loop corrections to topological field theory in three and four dimensions are presented. By regularizing determinants, we compute the effective action and β-function in four dimensional topological Yang-Mills theory and find that the BRST symmetry is preserved. Moreover, the minima of the effective action still correspond to instanton configurations. In three dimensions, an analysis of the Chern-Simons theory shows that the topological nature of the theory is also preserved to this order. In addition, we find that this theory possesses an extra supersymmetry when quantized in the Landau gauge. Using dimensional regularization, we then study the Ward identities of the extended BRST symmetry in the three dimensional topological Yang-Mills-Higgs model. (author). 22 refs
A computational theory of visual receptive fields.
Lindeberg, Tony
2013-12-01
agreement are obtained for (i) spatial on-center/off-surround and off-center/on-surround receptive fields in the fovea and the LGN, (ii) simple cells with spatial directional preference in V1, (iii) spatio-chromatic double-opponent neurons in V1, (iv) space-time separable spatio-temporal receptive fields in the LGN and V1, and (v) non-separable space-time tilted receptive fields in V1, all within the same unified theory. In addition, the paper presents a more general framework for relating and interpreting these receptive fields conceptually and possibly predicting new receptive field profiles as well as for pre-wiring covariance under scaling, affine, and Galilean transformations into the representations of visual stimuli. This paper describes the basic structure of the necessity results concerning receptive field profiles regarding the mathematical foundation of the theory and outlines how the proposed theory could be used in further studies and modelling of biological vision. It is also shown how receptive field responses can be interpreted physically, as the superposition of relative variations of surface structure and illumination variations, given a logarithmic brightness scale, and how receptive field measurements will be invariant under multiplicative illumination variations and exposure control mechanisms.
Topics in conformal field theory
International Nuclear Information System (INIS)
Kiritsis, E.B.
1988-01-01
In this work two major topics in Conformal Field Theory are discussed. First a detailed investigation of N = 2 Superconformal theories is presented. The structure of the representations of the N = 2 superconformal algebras is investigated and the character formulae are calculated. The general structure of N = 2 superconformal theories is elucidated and the operator algebra of the minimal models is derived. The first minimal system is discussed in more detail. Second, applications of the conformal techniques are studied in the Ashkin-Teller model. The c = 1 as well as the c = 1/2 critical lines are discussed in detail
Differential algebras in field theory
International Nuclear Information System (INIS)
Stora, R.
1988-01-01
The applications of differential algebras, as mathematical tools, in field theory are reviewed. The Yang-Mills theories are recalled and the free bosonic string model is treated. Moreover, in the scope of the work, the following topics are discussed: the Faddeev Popov fixed action, in a Feynman like gauge; the structure of local anomalies, including the algebric and the topological theories; the problem of quantizing a degenerate state; and the zero mode problem, in the treatment of the bosonic string conformal gauge. The analysis leads to the conclusion that not much is known about situations where a non involutive distribution is involved
Geometry of lattice field theory
International Nuclear Information System (INIS)
Honan, T.J.
1986-01-01
Using some tools of algebraic topology, a general formalism for lattice field theory is presented. The lattice is taken to be a simplicial complex that is also a manifold and is referred to as a simplicial manifold. The fields on this lattice are cochains, that are called lattice forms to emphasize the connections with differential forms in the continuum. This connection provides a new bridge between lattice and continuum field theory. A metric can be put onto this simplicial manifold by assigning lengths to every link or I-simplex of the lattice. Regge calculus is a way of defining general relativity on this lattice. A geometric discussion of Regge calculus is presented. The Regge action, which is a discrete form of the Hilbert action, is derived from the Hilbert action using distribution valued forms. This is a new derivation that emphasizes the underlying geometry. Kramers-Wannier duality in statistical mechanics is discussed in this general setting. Nonlinear field theories, which include gauge theories and nonlinear sigma models are discussed in the continuum and then are put onto a lattice. The main new result here is the generalization to curved spacetime, which consists of making the theory compatible with Regge calculus
Phenomenology of noncommutative field theories
International Nuclear Information System (INIS)
Carone, C D
2006-01-01
Experimental limits on the violation of four-dimensional Lorentz invariance imply that noncommutativity among ordinary spacetime dimensions must be small. In this talk, I review the most stringent bounds on noncommutative field theories and suggest a possible means of evading them: noncommutativity may be restricted to extra, compactified spatial dimensions. Such theories have a number of interesting features, including Abelian gauge fields whose Kaluza-Klein excitations have self couplings. We consider six-dimensional QED in a noncommutative bulk, and discuss the collider signatures of the model
Gravitation and bilocal field theory
International Nuclear Information System (INIS)
Vollendorf, F.
1975-01-01
The starting point is the conjecture that a field theory of elementary particles can be constructed only in a bilocal version. Thus the 4-dimensional space time has to be replaced by the 8-dimensional manifold R 8 of all ordered pairs of space time events. With special reference to the Schwarzschild metric it is shown that the embedding of the time space into the manifold R 8 yields a description of the gravitational field. (orig.) [de
Statistical mechanics and field theory
International Nuclear Information System (INIS)
Samuel, S.A.
1979-05-01
Field theory methods are applied to statistical mechanics. Statistical systems are related to fermionic-like field theories through a path integral representation. Considered are the Ising model, the free-fermion model, and close-packed dimer problems on various lattices. Graphical calculational techniques are developed. They are powerful and yield a simple procedure to compute the vacuum expectation value of an arbitrary product of Ising spin variables. From a field theorist's point of view, this is the simplest most logical derivation of the Ising model partition function and correlation functions. This work promises to open a new area of physics research when the methods are used to approximate unsolved problems. By the above methods a new model named the 128 pseudo-free vertex model is solved. Statistical mechanics intuition is applied to field theories. It is shown that certain relativistic field theories are equivalent to classical interacting gases. Using this analogy many results are obtained, particularly for the Sine-Gordon field theory. Quark confinement is considered. Although not a proof of confinement, a logical, esthetic, and simple picture is presented of how confinement works. A key ingredient is the insight gained by using an analog statistical system consisting of a gas of macromolecules. This analogy allows the computation of Wilson loops in the presence of topological vortices and when symmetry breakdown occurs in the topological quantum number. Topological symmetry breakdown calculations are placed on approximately the same level of rigor as instanton calculations. The picture of confinement that emerges is similar to the dual Meissner type advocated by Mandelstam. Before topological symmetry breakdown, QCD has monopoles bound linearly together by three topological strings. Topological symmetry breakdown corresponds to a new phase where these monopoles are liberated. It is these liberated monopoles that confine quarks. 64 references
Dimensional analysis in field theory
International Nuclear Information System (INIS)
Stevenson, P.M.
1981-01-01
Dimensional Transmutation (the breakdown of scale invariance in field theories) is reconciled with the commonsense notions of Dimensional Analysis. This makes possible a discussion of the meaning of the Renormalisation Group equations, completely divorced from the technicalities of renormalisation. As illustrations, I describe some very farmiliar QCD results in these terms
Computers for lattice field theories
International Nuclear Information System (INIS)
Iwasaki, Y.
1994-01-01
Parallel computers dedicated to lattice field theories are reviewed with emphasis on the three recent projects, the Teraflops project in the US, the CP-PACS project in Japan and the 0.5-Teraflops project in the US. Some new commercial parallel computers are also discussed. Recent development of semiconductor technologies is briefly surveyed in relation to possible approaches toward Teraflops computers. (orig.)
Topics in quantum field theory
Dams, C.J.F.
2006-01-01
In this PhD-thesis some topics in quantum field theory are considered. The first chapter gives a background to these topics. The second chapter discusses renormalization. In particular it is shown how loop calculations can be performed when using the axial gauge fixing. Fermion creation and
Quantum field theory and parastatistics
International Nuclear Information System (INIS)
Ohnuki, Y.; Kamefuchi, S.
1982-01-01
This book is an introduction to the second quantization of the wave functions of particles obeying the parastatistics. After a general introduction to the canonical quantization for the case of paracommutation relations the nonrelativistic field theory is considered. Thereafter the extension to the relativistic range is discussed. Finally some special problems in connection with parafields are considered. (HSI)
Supercomputers and quantum field theory
International Nuclear Information System (INIS)
Creutz, M.
1985-01-01
A review is given of why recent simulations of lattice gauge theories have resulted in substantial demands from particle theorists for supercomputer time. These calculations have yielded first principle results on non-perturbative aspects of the strong interactions. An algorithm for simulating dynamical quark fields is discussed. 14 refs
Chiral symmetry and eta, eta' → 3π decays. Grand unified theories
International Nuclear Information System (INIS)
Roiesnel, C.
1982-11-01
Two different topics related to symmetry breaking are discussed. First the eta, eta' → 3π decays are presented. The amplitudes eta, eta' → 3π are calculated with the square root threshold singularity induced by the strong pion-pion final state interaction properly taken into account. It is shown that the eta' → 3π decay rate depends sensitively upon an improved treatment of the pseudoscalar nonet mass matrix. Then symmetry-breaking effects in grand unified theories are discussed. The threshold effects in a spontaneously broken gauge theory are studied. In particular a computation of the symmetry-breaking effects in the SU(5) grand unified theory including those of the breaking of SU(2)xU(1) is presented. As an application a precise value of the superheavy gauge boson mass Mx is given. It is possible in SU(5) to define a natural effective weak angle theta w(μ) for any scale μ, below as well as above Mw, and the predicted curve for sin 2 theta w(μ) is given [fr
Developments in superstring field theory
International Nuclear Information System (INIS)
Green, M.B.
1987-01-01
In this article the structure of superstring theories is outlined. The one-loop quantum superstring gauge anomalies are then described and it is shown that their absence leads to an interesting theory with gauge group SO(32). The one-loop infinities also cancel for this gauge group. The anomaly cancellation can be understood in terms of the low-energy effective supergravity-Yang-Mills field theory, from which it is shown that E 8 x E 8 is an equally good gauge group, which suggests that there should also be an interesting E 8 x E 8 superstring theory. A new type of superstring theory, known as the 'heterotic' string theory, which only describes strings with gauge groups E 8 x E 8 or SO(32) is described. Finally some very exciting prospects for obtaining a sensible description of four-dimensional physics from a ten-dimensional superstring theory with gauge group E 8 x E 8 is outlined. (author)
MEG studies prohibited muon decays to explore grand unified theories of elementary particles
International Nuclear Information System (INIS)
Mori, Toshinori
2009-01-01
The MEG experiment, designed and proposed by Japanese physicists, is being carried out at Paul Scherrer Institute (PSI) in Switzerland, in collaboration with physicists from Italy, Switzerland, Russia and U.S.A. The experiment will make an extensive search for a muon's two-body decay into an electron and a gamma ray, μ→eγ, which is prohibited in the Standard Model of elementary particles, to explore Supersymmetric Grand Unified Theories. This article gives a brief description of the MEG experiment with an emphasis on the innovative experimental techniques developed to achieve the unprecedented experimental sensitivity. (author)
Gauge field theories. 3. enl. ed.
International Nuclear Information System (INIS)
Frampton, Paul H.
2008-01-01
Gauge theories provide a unified framework to describe three of the four universal forces known so far: the quantum field theories of electromagnetism, the weak force and the strong force. They are an essential part of the so-called standard model of particles and matter. The first edition of this work was quickly adopted by universities and other institutions of higher learning around the world. Completely updated, this third edition continues to be an ideal reference on the subject. In total, more than a quarter of the content has been changed or added. The tried-and-tested logical structuring of the material on gauge invariance, quantization, and renormalization has been retained, while the chapters on electroweak interactions and model building have been revised. Completely new is the chapter on conformality. As in the past, Frampton emphasizes formalism rather than experiments and provides sufficient detail for readers wishing to do their own calculations or pursue theoretical physics research: - gauge invariance, - quantization, - renormalization, - electroweak forces, - renormalization group, - quantum chromodynamics, - model building, - conformality. (orig.)
International Nuclear Information System (INIS)
Vajskopf, V.F.
1982-01-01
The article deals with the history of the development of quantum electrodynamics since the date of publishing the work by P.A.M. Dirac ''The Quantum Theory of the Emission and Absorption of Radiation''. Classic ''before-Dirac'' electrodynamics related with the names of Maxwell, Lorenz, Hertz, is outlined. Work of Bohr and Rosenfeld is shown to clarify the physical sense of quantized field and to reveal the existence of uncertainties between the strengths of different fields. The article points to the significance of the article ''Quantum theory of radiation'' by E. Fermi which clearly describes the Dirac theory of radiation, relativistic wave equation and fundamentals of quantum electrodynamics. Shown is work on elimination of troubles related with the existence of states with negative kinetic energy or with negative mass. Hypothesis on the Dirac filled-in vacuum led to understanding of the existence of antiparticles and two unknown till then fundamental processes - pair production and annihilation. Ways of fighting against the infinite quantities in quantum electrodynamics are considered. Renormalization of the theory overcame all the infinities and gave a pattern for calculation of any processes of electron interactions with electromagnetic field to any desired accuracy
A New Semi-Symmetric Uniﬁed Field Theory of the Classical Fields of Gravity and Electromagnetism
Directory of Open Access Journals (Sweden)
Suhendro I.
2007-10-01
Full Text Available We attempt to present a classical theoretical framework in which the gravitational and electromagnetic fields are unified as intrinsic geometric objects in the space-time manifold. For this purpose, we first present the preliminary geometric considerations dealing with the metric differential geometry of Cartan connections. The unified field theory is then developed as an extension of the general theory of relativity based on a semi- symmetric Cartan connection which is meant to be as close as possible structurally to the symmetric connection of the Einstein-Riemann space-time.
Introduction to quantum field theory
Chang, Shau-Jin
1990-01-01
This book presents in a short volume the basics of quantum field theory and many body physics. The first part introduces the perturbative techniques without sophisticated apparatus and applies them to numerous problems including quantum electrodynamics (renormalization), Fermi and Bose gases, the Brueckner theory of nuclear system, liquid Helium and classical systems with noise. The material is clear, illustrative and the important points are stressed to help the reader get the understanding of what is crucial without overwhelming him with unnecessary detours or comments. The material in the s
Perturbative coherence in field theory
International Nuclear Information System (INIS)
Aldrovandi, R.; Kraenkel, R.A.
1987-01-01
A general condition for coherent quantization by perturbative methods is given, because the basic field equations of a fild theory are not always derivable from a Lagrangian. It's seen that non-lagrangian models way have well defined vertices, provided they satisfy what they call the 'coherence condition', which is less stringent than the condition for the existence of a Lagrangian. They note that Lagrangian theories are perturbatively coherent, in the sense that they have well defined vertices, and that they satisfy automatically that condition. (G.D.F.) [pt
Supersymmetric rings in field theory
International Nuclear Information System (INIS)
Blanco-Pillado, Jose J.; Redi, Michele
2006-01-01
We study the dynamics of BPS string-like objects obtained by lifting monopole and dyon solutions of N = 2 Super-Yang-Mills theory to five dimensions. We present exact traveling wave solutions which preserve half of the supersymmetries. Upon compactification this leads to macroscopic BPS rings in four dimensions in field theory. Due to the fact that the strings effectively move in six dimensions the same procedure can also be used to obtain rings in five dimensions by using the hidden dimension
Baal, Pierre Van
2014-01-01
""… a pleasant novelty that manages the impossible: a full course in field theory from a derivation of the Dirac equation to the standard electroweak theory in less than 200 pages. Moreover, the final chapter consists of a careful selection of assorted problems, which are original and either anticipate or detail some of the topics discussed in the bulk of the chapters. Instead of building a treatise out of a collection of lecture notes, the author took the complementary approach and constructed a course out of a number of well-known and classic treatises. The result is fresh and useful. … the
Gauge theories of Yang-Mills vector fields coupled to antisymmetric tensor fields
International Nuclear Information System (INIS)
Anco, Stephen C.
2003-01-01
A non-Abelian class of massless/massive nonlinear gauge theories of Yang-Mills vector potentials coupled to Freedman-Townsend antisymmetric tensor potentials is constructed in four space-time dimensions. These theories involve an extended Freedman-Townsend-type coupling between the vector and tensor fields, and a Chern-Simons mass term with the addition of a Higgs-type coupling of the tensor fields to the vector fields in the massive case. Geometrical, field theoretic, and algebraic aspects of the theories are discussed in detail. In particular, the geometrical structure mixes and unifies features of Yang-Mills theory and Freedman-Townsend theory formulated in terms of Lie algebra valued curvatures and connections associated to the fields and nonlinear field strengths. The theories arise from a general determination of all possible geometrical nonlinear deformations of linear Abelian gauge theory for one-form fields and two-form fields with an Abelian Chern-Simons mass term in four dimensions. For this type of deformation (with typical assumptions on the allowed form considered for terms in the gauge symmetries and field equations), an explicit classification of deformation terms at first-order is obtained, and uniqueness of deformation terms at all higher orders is proven. This leads to a uniqueness result for the non-Abelian class of theories constructed here
Density dependent hadron field theory
International Nuclear Information System (INIS)
Fuchs, C.; Lenske, H.; Wolter, H.H.
1995-01-01
A fully covariant approach to a density dependent hadron field theory is presented. The relation between in-medium NN interactions and field-theoretical meson-nucleon vertices is discussed. The medium dependence of nuclear interactions is described by a functional dependence of the meson-nucleon vertices on the baryon field operators. As a consequence, the Euler-Lagrange equations lead to baryon rearrangement self-energies which are not obtained when only a parametric dependence of the vertices on the density is assumed. It is shown that the approach is energy-momentum conserving and thermodynamically consistent. Solutions of the field equations are studied in the mean-field approximation. Descriptions of the medium dependence in terms of the baryon scalar and vector density are investigated. Applications to infinite nuclear matter and finite nuclei are discussed. Density dependent coupling constants obtained from Dirac-Brueckner calculations with the Bonn NN potentials are used. Results from Hartree calculations for energy spectra, binding energies, and charge density distributions of 16 O, 40,48 Ca, and 208 Pb are presented. Comparisons to data strongly support the importance of rearrangement in a relativistic density dependent field theory. Most striking is the simultaneous improvement of charge radii, charge densities, and binding energies. The results indicate the appearance of a new ''Coester line'' in the nuclear matter equation of state
Higher Curvature Gravity from Entanglement in Conformal Field Theories
Haehl, Felix M.; Hijano, Eliot; Parrikar, Onkar; Rabideau, Charles
2018-05-01
By generalizing different recent works to the context of higher curvature gravity, we provide a unifying framework for three related results: (i) If an asymptotically anti-de Sitter (AdS) spacetime computes the entanglement entropies of ball-shaped regions in a conformal field theory using a generalized Ryu-Takayanagi formula up to second order in state deformations around the vacuum, then the spacetime satisfies the correct gravitational equations of motion up to second order around the AdS background. (ii) The holographic dual of entanglement entropy in higher curvature theories of gravity is given by the Wald entropy plus a particular correction term involving extrinsic curvatures. (iii) Conformal field theory relative entropy is dual to gravitational canonical energy (also in higher curvature theories of gravity). Especially for the second point, our novel derivation of this previously known statement does not involve the Euclidean replica trick.
On unifying concepts in plasticity theory and related matters in numerical analysis
International Nuclear Information System (INIS)
Havner, K.S.
1977-01-01
This paper reviews a rate-independent theory (or class of theories) of multiple-mode plastic straining which unifies various constitutive equations of macroscopic solids and single crystals. Some consideration is given to the relationship between the multiple-mode theory and thermodynamic concepts; including physical aspects of finite distortion of metal crystals. Uniqueness criteria and related minimum principles in incremental (or 'rate-type') boundary value problems are presented for the general class at finite strain. Special circumstances (one being infinitesimal strain) are defined under which the uniqueness criteria assure convergence of a form of finite element approximation in the boundary value problem. Extensive reference is made to recently published work of Hill, Rice, Sewell and Havner. A symmetry postulate pertaining to the 'effective hardening moduli' plays a key role in the general theory. This postulate permits the adoption of Sewell's multiple-mode saddle function as a potential for stress and plastic mechanism rates and leads to the connection between uniqueness and (rate-type) minimum principles. The postulate has a remarkable consequence for application of a simple form of the theory to single crystals in the tensile test. At small strain this theory reduces to the classical Taylor hardening of crystals, which has had wide application in micromechanical calculations of crystalline aggregate models. At infinitesimal strain, and at finite strain when the two dominant principal stresses are everywhere tensile, additional minimum principles are given for the 'self-straining problem' which permit the independent variation of displacement and plastic mechanism rates
Dirac relaxation of the Israel junction conditions: Unified Randall-Sundrum brane theory
International Nuclear Information System (INIS)
Davidson, Aharon; Gurwich, Ilya
2006-01-01
Following Dirac's brane variation prescription, the brane must not be deformed during the variation process, or else the linearity of the variation may be lost. Alternatively, the variation of the brane is done, in a special Dirac frame, by varying the bulk coordinate system itself. Imposing appropriate Dirac-style boundary conditions on the constrained 'sandwiched' gravitational action, we show how Israel junction conditions get relaxed, but remarkably, all solutions of the original Israel equations are still respected. The Israel junction conditions are traded, in the Z 2 -symmetric case, for a generalized Regge-Teitelboim type equation (plus a local conservation law), and in the generic Z 2 -asymmetric case, for a pair of coupled Regge-Teitelboim equations. The Randall-Sundrum model and its derivatives, such as the Dvali-Gabadadze-Porrati and the Collins-Holdom models, get generalized accordingly. Furthermore, Randall-Sundrum and Regge-Teitelboim brane theories appear now to be two different faces of the one and the same unified brane theory. Within the framework of unified brane cosmology, we examine the dark matter/energy interpretation of the effective energy/momentum deviations from general relativity
Topological Field Theory of Time-Reversal Invariant Insulators
Energy Technology Data Exchange (ETDEWEB)
Qi, Xiao-Liang; Hughes, Taylor; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.
2010-03-19
We show that the fundamental time reversal invariant (TRI) insulator exists in 4 + 1 dimensions, where the effective field theory is described by the 4 + 1 dimensional Chern-Simons theory and the topological properties of the electronic structure is classified by the second Chern number. These topological properties are the natural generalizations of the time reversal breaking (TRB) quantum Hall insulator in 2 + 1 dimensions. The TRI quantum spin Hall insulator in 2 + 1 dimensions and the topological insulator in 3 + 1 dimension can be obtained as descendants from the fundamental TRI insulator in 4 + 1 dimensions through a dimensional reduction procedure. The effective topological field theory, and the Z{sub 2} topological classification for the TRI insulators in 2+1 and 3+1 dimensions are naturally obtained from this procedure. All physically measurable topological response functions of the TRI insulators are completely described by the effective topological field theory. Our effective topological field theory predicts a number of novel and measurable phenomena, the most striking of which is the topological magneto-electric effect, where an electric field generates a magnetic field in the same direction, with an universal constant of proportionality quantized in odd multiples of the fine structure constant {alpha} = e{sup 2}/hc. Finally, we present a general classification of all topological insulators in various dimensions, and describe them in terms of a unified topological Chern-Simons field theory in phase space.
Variational methods for field theories
Energy Technology Data Exchange (ETDEWEB)
Ben-Menahem, S.
1986-09-01
Four field theory models are studied: Periodic Quantum Electrodynamics (PQED) in (2 + 1) dimensions, free scalar field theory in (1 + 1) dimensions, the Quantum XY model in (1 + 1) dimensions, and the (1 + 1) dimensional Ising model in a transverse magnetic field. The last three parts deal exclusively with variational methods; the PQED part involves mainly the path-integral approach. The PQED calculation results in a better understanding of the connection between electric confinement through monopole screening, and confinement through tunneling between degenerate vacua. This includes a better quantitative agreement for the string tensions in the two approaches. Free field theory is used as a laboratory for a new variational blocking-truncation approximation, in which the high-frequency modes in a block are truncated to wave functions that depend on the slower background modes (Boron-Oppenheimer approximation). This ''adiabatic truncation'' method gives very accurate results for ground-state energy density and correlation functions. Various adiabatic schemes, with one variable kept per site and then two variables per site, are used. For the XY model, several trial wave functions for the ground state are explored, with an emphasis on the periodic Gaussian. A connection is established with the vortex Coulomb gas of the Euclidean path integral approach. The approximations used are taken from the realms of statistical mechanics (mean field approximation, transfer-matrix methods) and of quantum mechanics (iterative blocking schemes). In developing blocking schemes based on continuous variables, problems due to the periodicity of the model were solved. Our results exhibit an order-disorder phase transition. The transfer-matrix method is used to find a good (non-blocking) trial ground state for the Ising model in a transverse magnetic field in (1 + 1) dimensions.
Effective field theory dimensional regularization
International Nuclear Information System (INIS)
Lehmann, Dirk; Prezeau, Gary
2002-01-01
A Lorentz-covariant regularization scheme for effective field theories with an arbitrary number of propagating heavy and light particles is given. This regularization scheme leaves the low-energy analytic structure of Greens functions intact and preserves all the symmetries of the underlying Lagrangian. The power divergences of regularized loop integrals are controlled by the low-energy kinematic variables. Simple diagrammatic rules are derived for the regularization of arbitrary one-loop graphs and the generalization to higher loops is discussed
Effective field theory dimensional regularization
Lehmann, Dirk; Prézeau, Gary
2002-01-01
A Lorentz-covariant regularization scheme for effective field theories with an arbitrary number of propagating heavy and light particles is given. This regularization scheme leaves the low-energy analytic structure of Greens functions intact and preserves all the symmetries of the underlying Lagrangian. The power divergences of regularized loop integrals are controlled by the low-energy kinematic variables. Simple diagrammatic rules are derived for the regularization of arbitrary one-loop graphs and the generalization to higher loops is discussed.
Theory of field reversed configurations
International Nuclear Information System (INIS)
Steinhauer, L.C.
1990-01-01
This final report surveys the results of work conducted on the theory of field reversed configurations. This project has spanned ten years, beginning in early 1980. During this period, Spectra Technology was one of the leading contributors to the advances in understanding FRC. The report is organized into technical topic areas, FRC formation, equilibrium, stability, and transport. Included as an appendix are papers published in archival journals that were generated in the course of this report. 33 refs
Extending unified-theory-of-reinforcement neural networks to steady-state operant behavior.
Calvin, Olivia L; McDowell, J J
2016-06-01
The unified theory of reinforcement has been used to develop models of behavior over the last 20 years (Donahoe et al., 1993). Previous research has focused on the theory's concordance with the respondent behavior of humans and animals. In this experiment, neural networks were developed from the theory to extend the unified theory of reinforcement to operant behavior on single-alternative variable-interval schedules. This area of operant research was selected because previously developed neural networks could be applied to it without significant alteration. Previous research with humans and animals indicates that the pattern of their steady-state behavior is hyperbolic when plotted against the obtained rate of reinforcement (Herrnstein, 1970). A genetic algorithm was used in the first part of the experiment to determine parameter values for the neural networks, because values that were used in previous research did not result in a hyperbolic pattern of behavior. After finding these parameters, hyperbolic and other similar functions were fitted to the behavior produced by the neural networks. The form of the neural network's behavior was best described by an exponentiated hyperbola (McDowell, 1986; McLean and White, 1983; Wearden, 1981), which was derived from the generalized matching law (Baum, 1974). In post-hoc analyses the addition of a baseline rate of behavior significantly improved the fit of the exponentiated hyperbola and removed systematic residuals. The form of this function was consistent with human and animal behavior, but the estimated parameter values were not. Copyright © 2016 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Caldirola, P.; Recami, E.
1978-01-01
By assuming covariance of physical laws under (discrete) dilatations, strong and gravitational interactions have been described in a unified way. In terms of the (additional, discrete) ''dilatational'' degree of freedom, our cosmos as well as hadrons can be considered as different states of the same system, or rather as similar systems. Moreover, a discrete hierarchy can be defined of ''universes'' which are governed by force fields with strengths inversely proportional to the ''universe'' radii. Inside each ''universe'' an equivalence principle holds, so that its characteristic field can be geometrized there. It is thus easy to derive a whole ''numerology'', i.e. relations among numbers analogous to the so-called Weyl-Eddington-Dirac ''large numbers''. For instance, the ''Planck mass'' happens to be nothing but the (average) magnitude of the strong charge of the hadron quarks. However, our ''numerology'' connects the (gravitational) macrocosmos with the (strong) microcosmos, rather than with the electromagnetic ones (as, e.g., in Dirac's version). Einstein-type scaled equations (with ''cosmological'' term) are suggested for the hadron interior, which - incidentally - yield a (classical) quark confinement in a very natural way and are compatible with the ''asymptotic freedom''. At last, within a ''bi-scale'' theory, further equations are proposed that provide a priori a classical field theory of strong interactions (between different hadrons). The relevant sections are 5.2, 7 and 8. (author)
A course on quantum field theory and local observables
Energy Technology Data Exchange (ETDEWEB)
Schroer, Bert [Frankfurt Univ., Berlin (Germany). Inst. fuer Theoretische Physik
1997-03-01
A monograph on Quantum Field Theory and Local Observables is presented, aiming to unify two presently largely disconnected branches of QFT, as follows: the standard (canonical, functional) approach which is mainly perturbative in the sense of an infinitesimal `deformation` of free fields; nonperturbative constructions of low-dimensional models as the form factor-bootstrap approach (which for the time being is limited to factorable models in d=1+1 spacetime dimensions) and the non-Lagrangian constructions of conformal chiral QFT`s
Group field theory with noncommutative metric variables.
Baratin, Aristide; Oriti, Daniele
2010-11-26
We introduce a dual formulation of group field theories as a type of noncommutative field theories, making their simplicial geometry manifest. For Ooguri-type models, the Feynman amplitudes are simplicial path integrals for BF theories. We give a new definition of the Barrett-Crane model for gravity by imposing the simplicity constraints directly at the level of the group field theory action.
Braided quantum field theories and their symmetries
International Nuclear Information System (INIS)
Sasai, Yuya; Sasakura, Naoki
2007-01-01
Braided quantum field theories, proposed by Oeckl, can provide a framework for quantum field theories that possess Hopf algebra symmetries. In quantum field theories, symmetries lead to non-perturbative relations among correlation functions. We study Hopf algebra symmetries and such relations in the context of braided quantum field theories. We give the four algebraic conditions among Hopf algebra symmetries and braided quantum field theories that are required for the relations to hold. As concrete examples, we apply our analysis to the Poincare symmetries of two examples of noncommutative field theories. One is the effective quantum field theory of three-dimensional quantum gravity coupled to spinless particles formulated by Freidel and Livine, and the other is noncommutative field theory on the Moyal plane. We also comment on quantum field theory in κ-Minkowski spacetime. (author)
Introduction to conformal field theory. With applications to string theory
International Nuclear Information System (INIS)
Blumenhagen, Ralph; Plauschinn, Erik
2009-01-01
Based on class-tested notes, this text offers an introduction to Conformal Field Theory with a special emphasis on computational techniques of relevance for String Theory. It introduces Conformal Field Theory at a basic level, Kac-Moody algebras, one-loop partition functions, Superconformal Field Theories, Gepner Models and Boundary Conformal Field Theory. Eventually, the concept of orientifold constructions is explained in detail for the example of the bosonic string. In providing many detailed CFT calculations, this book is ideal for students and scientists intending to become acquainted with CFT techniques relevant for string theory but also for students and non-specialists from related fields. (orig.)
String field theory-inspired algebraic structures in gauge theories
International Nuclear Information System (INIS)
Zeitlin, Anton M.
2009-01-01
We consider gauge theories in a string field theory-inspired formalism. The constructed algebraic operations lead, in particular, to homotopy algebras of the related Batalin-Vilkovisky theories. We discuss an invariant description of the gauge fixing procedure and special algebraic features of gauge theories coupled to matter fields.
Renormalons in effective field theories
International Nuclear Information System (INIS)
Luke, M.; Manohar, A.V.; Savage, M.J.
1995-01-01
We investigate the high-order behavior of perturbative matching conditions in effective field theories. These series are typically badly divergent, and are not Borel summable due to infrared and ultraviolet renormalons which introduce ambiguities in defining the sum of the series. We argue that, when treated consistently, there is no physical significance to these ambiguities. Although nonperturbative matrix elements and matching conditions are in general ambiguous, the ambiguity in any physical observable is always higher order in 1/M than the theory has been defined. We discuss the implications for the recently noticed infrared renormalon in the pole mass of a heavy quark. We show that a ratio of form factors in exclusive Λ b decays (which is related to the pole mass) is free from renormalon ambiguities regardless of the mass used as the expansion parameter of heavy quark effective theory. The renormalon ambiguities also cancel in inclusive heavy hadron decays. Finally, we demonstrate the cancellation of renormalons in a four-Fermi effective theory obtained by integrating out a heavy colored scalar
Asymptotic behaviour in field theory
Energy Technology Data Exchange (ETDEWEB)
Banerjee, H.
1980-07-01
Asymptotic behaviour in field theory has been studied and the anomalies are pointed out in two specific cases, (i) the infrared and fixed angle high energy behaviour in the non-trivial case of the 'box' amplitude in a scalar-scalar theory and (ii) high energy behaviour of a sixth order Yang-Mills diagram. A set of rules are presented for writing down the precise leading infrared behaviour of an arbitrary generalised ladder diagram (GLD) in QED. These rules are the final result of a detailed analysis of the relevant amplitudes in the Feynman parameter space. The connection between the infrared and fixed angle high energy limits of generalised ladder diagrams is explained. It is argued that the same set of rules yield the fixed angle high energy limit.
Inverse bootstrapping conformal field theories
Li, Wenliang
2018-01-01
We propose a novel approach to study conformal field theories (CFTs) in general dimensions. In the conformal bootstrap program, one usually searches for consistent CFT data that satisfy crossing symmetry. In the new method, we reverse the logic and interpret manifestly crossing-symmetric functions as generating functions of conformal data. Physical CFTs can be obtained by scanning the space of crossing-symmetric functions. By truncating the fusion rules, we are able to concentrate on the low-lying operators and derive some approximate relations for their conformal data. It turns out that the free scalar theory, the 2d minimal model CFTs, the ϕ 4 Wilson-Fisher CFT, the Lee-Yang CFTs and the Ising CFTs are consistent with the universal relations from the minimal fusion rule ϕ 1 × ϕ 1 = I + ϕ 2 + T , where ϕ 1 , ϕ 2 are scalar operators, I is the identity operator and T is the stress tensor.
International Nuclear Information System (INIS)
Munera, H.A.; Yadigaroglu, G.
1988-01-01
The first part of the paper critically reviews some of the adopted and/or proposed probabilistic safety goals and criteria in several countries. Some of the difficulties identified are:- Lack of an adequate delimitation of the scope of the non-deterministic choice problem. Consequently, the main components of the problem-probabilities and consequences-are not clearly defined. As a further consequence there is no unified treatment, including notation and terminology, for concepts like risk, probability, frequency, utility, risk-aversion, limit-line, etc. - The theoretical justifications and/or implications of limit-lines are not always fully understood. As a result three very different classes of limit-lines have emerged. The theoretical limitations of limit-lines are not always fully realized, leading to an over-emphasis in that approach and thus preventing the development of alternative methodologies. In the second part of the paper theoretical methods are indicated to compare probability distributions already existing in other disciplines, and a unified methodology to formulate probabilistic safety criteria is briefly described. The proposed theory gives due consideration to the whole probability distribution, and contains both limit-line concepts and global risk indices. The latter can easily incorporate regulatory and/or societal value-judgements, for instance risk-aversion. (author)
Directory of Open Access Journals (Sweden)
Amanda N. Staufer
2018-03-01
Full Text Available In every age, philosophers deal with inquiries concerning musical meaning and the effect of music on the listener. Instead of answering the formidable question of musical meaning, this essay demonstrates the parallel aspects of three musical theories from ancient, Enlightenment, and modern times. Using the two criteria of musical formalism and Gestalt Theory, this essay systematically connects the philosophies of Aristoxenus of Tarentum, René Descartes, and Leonard Meyer. Musical formalism holds that music’s nature is innate, self-evident, able to be systematically deduced, and rational. According to formalism, musical meaning is defined by things objectively ‘there’ in the music, musical experience relies on cognition, and music is less a matter of sense than of mind. Gestalt Theory asserts that music is a unified totality—the whole gives meaning to the parts. This project demonstrates that three seemingly dissimilar musical philosophies include and prefigure the same foundational principles, although the theories reach different conclusions about musical meaning. In the research process, this essay utilizes documentary evidence. This essay concludes that the philosophies of Aristoxenus, Descartes, and Meyer are united by tendencies toward musical formalism and strands of the Gestalt view of music.
The utility of quantum field theory
International Nuclear Information System (INIS)
Dine, Michael
2001-01-01
This talk surveys a broad range of applications of quantum field theory, as well as some recent developments. The stress is on the notion of effective field theories. Topics include implications of neutrino mass and a possible small value of sin(2β), supersymmetric extensions of the standard model, the use of field theory to understand fundamental issues in string theory (the problem of multiple ground states and the question: does string theory predict low energy supersymmetry), and the use of string theory to solve problems in field theory. Also considered are a new type of field theory, and indications from black hole physics and the cosmological constant problem that effective field theories may not completely describe theories of gravity. (author)
Brewer, Gregory J.
2009-01-01
Harman’s free radical theory of aging posits that oxidized macromolecules accumulate with age to decrease function and shorten life-span. However, nutritional and genetic interventions to boost antioxidants have generally failed to increase life-span. Furthermore, the free radical theory fails to explain why exercise causes higher levels of oxyradical damage, but generally promotes healthy aging. The separate anti-aging paradigms of genetic or caloric reductions in the insulin signaling pathw...
Topics in low-dimensional field theory
International Nuclear Information System (INIS)
Crescimanno, M.J.
1991-01-01
Conformal field theory is a natural tool for understanding two- dimensional critical systems. This work presents results in the lagrangian approach to conformal field theory. The first sections are chiefly about a particular class of field theories called coset constructions and the last part is an exposition of the connection between two-dimensional conformal theory and a three-dimensional gauge theory whose lagrangian is the Chern-Simons density
A supersymmetric grand unified theory of flavour with PSL2(7)xSO(10)
International Nuclear Information System (INIS)
King, Stephen F.; Luhn, Christoph
2010-01-01
We construct a realistic Supersymmetric Grand Unified Theory of Flavour based on PSL 2 (7)xSO(10), where the quarks and leptons in the 16 of SO(10) are assigned to the complex triplet representation of PSL 2 (7), while the flavons are assigned to a combination of sextets and anti-triplets of PSL 2 (7). Using a D-term vacuum alignment mechanism, we require the flavon sextets of PSL 2 (7) to be aligned along the 3-3 direction leading to the third family Yukawa couplings, while the flavon anti-triplets describe the remaining Yukawa couplings. Other sextets are aligned along the neutrino flavour symmetry preserving directions leading to tri-bimaximal neutrino mixing via a type II see-saw mechanism, with predictions for neutrinoless double beta decay and cosmology.
Generalized Field Theory and Kasner universe
International Nuclear Information System (INIS)
Klotz, A.H.
1986-01-01
It is shown that the only Kasner-like solution of the Generalized Field Theory field equations with a nonzero electromagnetic field corresponds to an empty field geometry of the space-time. In this case, the electromagnetic field tensors of the theory coincide as could be expected from general considerations. 6 refs. (author)
Vertex operator algebras and conformal field theory
International Nuclear Information System (INIS)
Huang, Y.Z.
1992-01-01
This paper discusses conformal field theory, an important physical theory, describing both two-dimensional critical phenomena in condensed matter physics and classical motions of strings in string theory. The study of conformal field theory will deepen the understanding of these theories and will help to understand string theory conceptually. Besides its importance in physics, the beautiful and rich mathematical structure of conformal field theory has interested many mathematicians. New relations between different branches of mathematics, such as representations of infinite-dimensional Lie algebras and Lie groups, Riemann surfaces and algebraic curves, the Monster sporadic group, modular functions and modular forms, elliptic genera and elliptic cohomology, Calabi-Yau manifolds, tensor categories, and knot theory, are revealed in the study of conformal field theory. It is therefore believed that the study of the mathematics involved in conformal field theory will ultimately lead to new mathematical structures which would be important to both mathematics and physics
Unified path integral approach to theories of diffusion-influenced reactions
Prüstel, Thorsten; Meier-Schellersheim, Martin
2017-08-01
Building on mathematical similarities between quantum mechanics and theories of diffusion-influenced reactions, we develop a general approach for computational modeling of diffusion-influenced reactions that is capable of capturing not only the classical Smoluchowski picture but also alternative theories, as is here exemplified by a volume reactivity model. In particular, we prove the path decomposition expansion of various Green's functions describing the irreversible and reversible reaction of an isolated pair of molecules. To this end, we exploit a connection between boundary value and interaction potential problems with δ - and δ'-function perturbation. We employ a known path-integral-based summation of a perturbation series to derive a number of exact identities relating propagators and survival probabilities satisfying different boundary conditions in a unified and systematic manner. Furthermore, we show how the path decomposition expansion represents the propagator as a product of three factors in the Laplace domain that correspond to quantities figuring prominently in stochastic spatially resolved simulation algorithms. This analysis will thus be useful for the interpretation of current and the design of future algorithms. Finally, we discuss the relation between the general approach and the theory of Brownian functionals and calculate the mean residence time for the case of irreversible and reversible reactions.
International Nuclear Information System (INIS)
Hohm, Olaf; Zwiebach, Barton
2017-01-01
We review and develop the general properties of L_∞ algebras focusing on the gauge structure of the associated field theories. Motivated by the L_∞ homotopy Lie algebra of closed string field theory and the work of Roytenberg and Weinstein describing the Courant bracket in this language we investigate the L_∞ structure of general gauge invariant perturbative field theories. We sketch such formulations for non-abelian gauge theories, Einstein gravity, and for double field theory. We find that there is an L_∞ algebra for the gauge structure and a larger one for the full interacting field theory. Theories where the gauge structure is a strict Lie algebra often require the full L_∞ algebra for the interacting theory. The analysis suggests that L_∞ algebras provide a classification of perturbative gauge invariant classical field theories. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Quantum Field Theory in (0 + 1) Dimensions
Boozer, A. D.
2007-01-01
We show that many of the key ideas of quantum field theory can be illustrated simply and straightforwardly by using toy models in (0 + 1) dimensions. Because quantum field theory in (0 + 1) dimensions is equivalent to quantum mechanics, these models allow us to use techniques from quantum mechanics to gain insight into quantum field theory. In…
Large N field theories, string theory and gravity
Energy Technology Data Exchange (ETDEWEB)
Maldacena, J [Lyman Laboratory of Physics, Harvard University, Cambridge (United States)
2002-05-15
We describe the holographic correspondence between field theories and string/M theory, focusing on the relation between compactifications of string/ M theory on Anti-de Sitter spaces and conformal field theories. We review the background for this correspondence and discuss its motivations and the evidence for its correctness. We describe the main results that have been derived from the correspondence in the regime that the field theory is approximated by classical or semiclassical gravity. We focus on the case of the N = 4 supersymmetric gauge theory in four dimensions. These lecture notes are based on the Review written by O. Aharony, S. Gubser, J. Maldacena, H. Ooguri and Y. Oz. (author)
Hamiltonian Anomalies from Extended Field Theories
Monnier, Samuel
2015-09-01
We develop a proposal by Freed to see anomalous field theories as relative field theories, namely field theories taking value in a field theory in one dimension higher, the anomaly field theory. We show that when the anomaly field theory is extended down to codimension 2, familiar facts about Hamiltonian anomalies can be naturally recovered, such as the fact that the anomalous symmetry group admits only a projective representation on the Hilbert space, or that the latter is really an abelian bundle gerbe over the moduli space. We include in the discussion the case of non-invertible anomaly field theories, which is relevant to six-dimensional (2, 0) superconformal theories. In this case, we show that the Hamiltonian anomaly is characterized by a degree 2 non-abelian group cohomology class, associated to the non-abelian gerbe playing the role of the state space of the anomalous theory. We construct Dai-Freed theories, governing the anomalies of chiral fermionic theories, and Wess-Zumino theories, governing the anomalies of Wess-Zumino terms and self-dual field theories, as extended field theories down to codimension 2.
International Nuclear Information System (INIS)
Cheng Hung; Tsai Ercheng
1986-01-01
We give a correspondence formula which equates transition amplitudes in a quantum gauge field theory without ghost fields to those in a quantum theory with the gauge fields covariantly quantized and coupled to ghost fields. (orig.)
Gaussian processes and constructive scalar field theory
International Nuclear Information System (INIS)
Benfatto, G.; Nicolo, F.
1981-01-01
The last years have seen a very deep progress of constructive euclidean field theory, with many implications in the area of the random fields theory. The authors discuss an approach to super-renormalizable scalar field theories, which puts in particular evidence the connections with the theory of the Gaussian processes associated to the elliptic operators. The paper consists of two parts. Part I treats some problems in the theory of Gaussian processes which arise in the approach to the PHI 3 4 theory. Part II is devoted to the discussion of the ultraviolet stability in the PHI 3 4 theory. (Auth.)
Features of finite quantum field theories
International Nuclear Information System (INIS)
Boehm, M.; Denner, A.
1987-01-01
We analyse general features of finite quantum field theories. A quantum field theory is considered to be finite, if the corresponding renormalization constants evaluated in the dimensional regularization scheme are free from divergences in all orders of perturbation theory. We conclude that every finite renormalizable quantum field theory with fields of spin one or less must contain both scalar fields and fermion fields and nonabelian gauge fields. Some secific nonsupersymmetric models are found to be finite at the one- and two-loop level. (orig.)
Effective Field Theory on Manifolds with Boundary
Albert, Benjamin I.
In the monograph Renormalization and Effective Field Theory, Costello made two major advances in rigorous quantum field theory. Firstly, he gave an inductive position space renormalization procedure for constructing an effective field theory that is based on heat kernel regularization of the propagator. Secondly, he gave a rigorous formulation of quantum gauge theory within effective field theory that makes use of the BV formalism. In this work, we extend Costello's renormalization procedure to a class of manifolds with boundary and make preliminary steps towards extending his formulation of gauge theory to manifolds with boundary. In addition, we reorganize the presentation of the preexisting material, filling in details and strengthening the results.
Differential pseudoconnections and field theories
International Nuclear Information System (INIS)
Modugno, Marco; Ragionieri, Rodolfo; Stefani, Gianna
1981-01-01
Several general field theories have been successful in describing fundamental physical fields by a unique schema. Our purpose is to present the first step of an attempt based on differential pseudoconnections on jet bundles. In this paper we are dealing with the essential elements of such an approach and with the testing of a certain number of important examples. We define a 'differential pseudoconnection of order k' on a bundle p:E→M as a translation morphism on the affine bundle. Such concept is a generalization of usual connections. Then we study in the framework of jet spaces several important differential operators used in physics. In this context an interest arises naturally for the second order affine differential equations, called 'special'. Particular cases of special equations are both the geodesics equation (an ordinary equation) and any Kind of Laplace equation (a partial equation) even modified by the addition of physical terms. So special equations are candidate to fit a lot of fundamental physical fields
A superstring field theory for supergravity
Reid-Edwards, R. A.; Riccombeni, D. A.
2017-09-01
A covariant closed superstring field theory, equivalent to classical tendimensional Type II supergravity, is presented. The defining conformal field theory is the ambitwistor string worldsheet theory of Mason and Skinner. This theory is known to reproduce the scattering amplitudes of Cachazo, He and Yuan in which the scattering equations play an important role and the string field theory naturally incorporates these results. We investigate the operator formalism description of the ambitwsitor string and propose an action for the string field theory of the bosonic and supersymmetric theories. The correct linearised gauge symmetries and spacetime actions are explicitly reproduced and evidence is given that the action is correct to all orders. The focus is on the NeveuSchwarz sector and the explicit description of tree level perturbation theory about flat spacetime. Application of the string field theory to general supergravity backgrounds and the inclusion of the Ramond sector are briefly discussed.
International Nuclear Information System (INIS)
Koike, Hiroki; Kirimura, Kazuki; Yamaji, Kazuya; Kosaka, Shinya; Yamamoto, Akio
2018-01-01
A unified resonance self-shielding method, which can treat general sub-divided fuel regions, is developed for lattice physics calculations in reactor physics field. In a past study, a hybrid resonance treatment has been developed by theoretically integrating equivalence theory and ultra-fine-group slowing-down calculation. It can be applied to a wide range of neutron spectrum conditions including low moderator density ranges in severe accident states, as long as each fuel region is not sub-divided. In order to extend the method for radially and azimuthally sub-divided multi-region geometry, a new resonance treatment is established by incorporating the essence of sub-group method. The present method is composed of two-step flux calculation, i.e. 'coarse geometry + fine energy' (first step) and 'fine geometry + coarse energy' (second step) calculations. The first step corresponds to a hybrid model of the equivalence theory and the ultra-fine-group calculation, and the second step corresponds to the sub-group method. From the verification results, effective cross-sections by the new method show good agreement with the continuous energy Monte-Carlo results for various multi-region geometries including non-uniform fuel compositions and temperature distributions. The present method can accurately generate effective cross-sections with short computation time in general lattice physics calculations. (author)
Instantons in Lifshitz field theories
Energy Technology Data Exchange (ETDEWEB)
Fujimori, Toshiaki; Nitta, Muneto [Department of Physics, and Research and Education Center for Natural Sciences, Keio University, Hiyoshi 4-1-1, Yokohama, Kanagawa 223-8521 (Japan)
2015-10-05
BPS instantons are discussed in Lifshitz-type anisotropic field theories. We consider generalizations of the sigma model/Yang-Mills instantons in renormalizable higher dimensional models with the classical Lifshitz scaling invariance. In each model, BPS instanton equation takes the form of the gradient flow equations for “the superpotential” defining “the detailed balance condition”. The anisotropic Weyl rescaling and the coset space dimensional reduction are used to map rotationally symmetric instantons to vortices in two-dimensional anisotropic systems on the hyperbolic plane. As examples, we study anisotropic BPS baby Skyrmion 1+1 dimensions and BPS Skyrmion in 2+1 dimensions, for which we take Kähler 1-form and the Wess-Zumiono-Witten term as the superpotentials, respectively, and an anisotropic generalized Yang-Mills instanton in 4+1 dimensions, for which we take the Chern-Simons term as the superpotential.
Quantum field theory of universe
International Nuclear Information System (INIS)
Hosoya, Akio; Morikawa, Masahiro.
1988-08-01
As is well-known, the wave function of universe dictated by the Wheeler-DeWitt equation has a difficulty in its probabilistic interpretation. In order to overcome this difficulty, we explore a theoretical possibility of the second quantization of universe, following the same passage historically taken for the Klein-Gordon particles and the Nambu-Goto strings. It turns out that multiple production of universes is an inevitable consequence even if the initial state is nothing. The problematical interpretation of wave function of universe is circumvented by introducing an internal comoving model detector, which is an analogue of the DeWitt-Unruh detector in the quantum field theory in curved space-time. (author)
Quantum Field Theory A Modern Perspective
Parameswaran Nair, V
2005-01-01
Quantum field theory, which started with Paul Dirac’s work shortly after the discovery of quantum mechanics, has produced an impressive and important array of results. Quantum electrodynamics, with its extremely accurate and well-tested predictions, and the standard model of electroweak and chromodynamic (nuclear) forces are examples of successful theories. Field theory has also been applied to a variety of phenomena in condensed matter physics, including superconductivity, superfluidity and the quantum Hall effect. The concept of the renormalization group has given us a new perspective on field theory in general and on critical phenomena in particular. At this stage, a strong case can be made that quantum field theory is the mathematical and intellectual framework for describing and understanding all physical phenomena, except possibly for a quantum theory of gravity. Quantum Field Theory: A Modern Perspective presents Professor Nair’s view of certain topics in field theory loosely knit together as it gr...
N=1 field theory duality from M theory
International Nuclear Information System (INIS)
Schmaltz, M.; Sundrum, R.
1998-01-01
We investigate Seiberg close-quote s N=1 field theory duality for four-dimensional supersymmetric QCD with the M-theory 5-brane. We find that the M-theory configuration for the magnetic dual theory arises via a smooth deformation of the M-theory configuration for the electric theory. The creation of Dirichlet 4-branes as Neveu-Schwarz 5-branes are passed through each other in type IIA string theory is given an elegant derivation from M theory. copyright 1998 The American Physical Society
Matthews, Thomas J; Whittaker, Robert J
2014-01-01
Published in 2001, The Unified Neutral Theory of Biodiversity and Biogeography (UNTB) emphasizes the importance of stochastic processes in ecological community structure, and has challenged the traditional niche-based view of ecology. While neutral models have since been applied to a broad range of ecological and macroecological phenomena, the majority of research relating to neutral theory has focused exclusively on the species abundance distribution (SAD). Here, we synthesize the large body of work on neutral theory in the context of the species abundance distribution, with a particular focus on integrating ideas from neutral theory with traditional niche theory. First, we summarize the basic tenets of neutral theory; both in general and in the context of SADs. Second, we explore the issues associated with neutral theory and the SAD, such as complications with fitting and model comparison, the underlying assumptions of neutral models, and the difficultly of linking pattern to process. Third, we highlight the advances in understanding of SADs that have resulted from neutral theory and models. Finally, we focus consideration on recent developments aimed at unifying neutral- and niche-based approaches to ecology, with a particular emphasis on what this means for SAD theory, embracing, for instance, ideas of emergent neutrality and stochastic niche theory. We put forward the argument that the prospect of the unification of niche and neutral perspectives represents one of the most promising future avenues of neutral theory research. PMID:25360266
Matthews, Thomas J; Whittaker, Robert J
2014-06-01
Published in 2001, The Unified Neutral Theory of Biodiversity and Biogeography (UNTB) emphasizes the importance of stochastic processes in ecological community structure, and has challenged the traditional niche-based view of ecology. While neutral models have since been applied to a broad range of ecological and macroecological phenomena, the majority of research relating to neutral theory has focused exclusively on the species abundance distribution (SAD). Here, we synthesize the large body of work on neutral theory in the context of the species abundance distribution, with a particular focus on integrating ideas from neutral theory with traditional niche theory. First, we summarize the basic tenets of neutral theory; both in general and in the context of SADs. Second, we explore the issues associated with neutral theory and the SAD, such as complications with fitting and model comparison, the underlying assumptions of neutral models, and the difficultly of linking pattern to process. Third, we highlight the advances in understanding of SADs that have resulted from neutral theory and models. Finally, we focus consideration on recent developments aimed at unifying neutral- and niche-based approaches to ecology, with a particular emphasis on what this means for SAD theory, embracing, for instance, ideas of emergent neutrality and stochastic niche theory. We put forward the argument that the prospect of the unification of niche and neutral perspectives represents one of the most promising future avenues of neutral theory research.
Supersymmetric extensions of K field theories
Adam, C.; Queiruga, J. M.; Sanchez-Guillen, J.; Wereszczynski, A.
2012-02-01
We review the recently developed supersymmetric extensions of field theories with non-standard kinetic terms (so-called K field theories) in two an three dimensions. Further, we study the issue of topological defect formation in these supersymmetric theories. Specifically, we find supersymmetric K field theories which support topological kinks in 1+1 dimensions as well as supersymmetric extensions of the baby Skyrme model for arbitrary nonnegative potentials in 2+1 dimensions.
Families and degenerations of conformal field theories
Energy Technology Data Exchange (ETDEWEB)
Roggenkamp, D.
2004-09-01
In this work, moduli spaces of conformal field theories are investigated. In the first part, moduli spaces corresponding to current-current deformation of conformal field theories are constructed explicitly. For WZW models, they are described in detail, and sigma model realizations of the deformed WZW models are presented. The second part is devoted to the study of boundaries of moduli spaces of conformal field theories. For this purpose a notion of convergence of families of conformal field theories is introduced, which admits certain degenerated conformal field theories to occur as limits. To such a degeneration of conformal field theories, a degeneration of metric spaces together with additional geometric structures can be associated, which give rise to a geometric interpretation. Boundaries of moduli spaces of toroidal conformal field theories, orbifolds thereof and WZW models are analyzed. Furthermore, also the limit of the discrete family of Virasoro minimal models is investigated. (orig.)
Grand unified theory precursors and nontrivial fixed points in higher-dimensional gauge theories
International Nuclear Information System (INIS)
Dienes, Keith R.; Dudas, Emilian; Gherghetta, Tony
2003-01-01
Within the context of traditional logarithmic grand unification at M GUT ≅10 16 GeV, we show that it is nevertheless possible to observe certain GUT states such as X and Y gauge bosons at lower scales, perhaps even in the TeV range. We refer to such states as 'GUT precursors'. These states offer an interesting alternative possibility for new physics at the TeV scale, and could be used to directly probe GUT physics even though the scale of gauge coupling unification remains high. Our results also give rise to a Kaluza-Klein realization of nontrivial fixed points in higher-dimensional gauge theories
Modeling of Electromagnetic Fields in Parallel-Plane Structures: A Unified Contour-Integral Approach
Directory of Open Access Journals (Sweden)
M. Stumpf
2017-04-01
Full Text Available A unified reciprocity-based modeling approach for analyzing electromagnetic fields in dispersive parallel-plane structures of arbitrary shape is described. It is shown that the use of the reciprocity theorem of the time-convolution type leads to a global contour-integral interaction quantity from which novel both time- and frequency-domain numerical schemes can be arrived at. Applications of the numerical method concerning the time-domain radiated interference and susceptibility of parallel-plane structures are discussed and illustrated on numerical examples.
Integrable models in 1+1 dimensional quantum field theory
International Nuclear Information System (INIS)
Faddeev, Ludvig.
1982-09-01
The goal of this lecture is to present a unifying view on the exactly soluble models. There exist several reasons arguing in favor of the 1+1 dimensional models: every exact solution of a field-theoretical model can teach about the ability of quantum field theory to describe spectrum and scattering; some 1+1 d models have physical applications in the solid state theory. There are several ways to become acquainted with the methods of exactly soluble models: via classical statistical mechanics, via Bethe Ansatz, via inverse scattering method. Fundamental Poisson bracket relation FPR and/or fundamental commutation relations FCR play fundamental role. General classification of FPR is given with promizing generalizations to FCR
Morse theory interpretation of topological quantum field theories
International Nuclear Information System (INIS)
Labastida, J.M.F.
1989-01-01
Topological quantum field theories are interpreted as a generalized form of Morse theory. This interpretation is applied to formulate the simplest topological quantum field theory: Topological quantum mechanics. The only non-trivial topological invariant corresponding to this theory is computed and identified with the Euler characteristic. Using field theoretical methods this topological invariant is calculated in different ways and in the process a proof of the Gauss-Bonnet-Chern-Avez formula as well as some results of degenerate Morse theory are obtained. (orig.)
Kirjandusteoreetilise ühendvälja poole / Unified Theoretical Field Perspectives
Directory of Open Access Journals (Sweden)
Arne Merilai
2013-12-01
view, networks and methodologies. Thus, the in-depth study of literatures, avoiding shallow eclecticism and levelling synthesis, should be implemented within a comprehensive, unified meta-multi-theoretical field that integrates diverse paradigms and polylogical perspectives central to the humanities today. The theorisations may be exclusively collateral, have inclusive intersections or be more generally congenial. The use of one cluster does not exclude the consideration of others, even opposing ones. Although the comparative meta-theory, or general poetics, does not aim to erase inevitable and inspiring incoherencies, a synchronisation of meta-languages can often be achieved at the appropriate levels of description, even between analytical and continental language philosophy evident in pragmapoetics (q.v. Merilai 2003, 2007a, b. While the humanities encourage diversity, no scholar, however astute, is expected to have a full command of all relevant discourses within the whole polysystem; hence the need for shared synergies.
BRST field theory of relativistic particles
International Nuclear Information System (INIS)
Holten, J.W. van
1992-01-01
A generalization of BRST field theory is presented, based on wave operators for the fields constructed out of, but different from the BRST operator. The authors discuss their quantization, gauge fixing and the derivation of propagators. It is shown, that the generalized theories are relevant to relativistic particle theories in the Brink-Di Vecchia-Howe-Polyakov (BDHP) formulation, and argue that the same phenomenon holds in string theories. In particular it is shown, that the naive BRST formulation of the BDHP theory leads to trivial quantum field theories with vanishing correlation functions. (author). 22 refs
The Physical Renormalization of Quantum Field Theories
International Nuclear Information System (INIS)
Binger, Michael William.; Stanford U., Phys. Dept.; SLAC
2007-01-01
The profound revolutions in particle physics likely to emerge from current and future experiments motivates an improved understanding of the precise predictions of the Standard Model and new physics models. Higher order predictions in quantum field theories inevitably requires the renormalization procedure, which makes sensible predictions out of the naively divergent results of perturbation theory. Thus, a robust understanding of renormalization is crucial for identifying and interpreting the possible discovery of new physics. The results of this thesis represent a broad set of investigations in to the nature of renormalization. The author begins by motivating a more physical approach to renormalization based on gauge-invariant Green's functions. The resulting effective charges are first applied to gauge coupling unification. This approach provides an elegant formalism for understanding all threshold corrections, and the gauge couplings unify in a more physical manner compared to the usual methods. Next, the gauge-invariant three-gluon vertex is studied in detail, revealing an interesting and rich structure. The effective coupling for the three-gluon vertex, α(k 1 2 , k 2 2 , k 3 2 ), depends on three momentum scales and gives rise to an effective scale Q eff 2 (k 1 2 , k 2 2 , k 3 2 ) which governs the (sometimes surprising) behavior of the vertex. The effects of nonzero internal masses are important and have a complicated threshold and pseudo-threshold structure. The pinch-technique effective charge is also calculated to two-loops and several applications are discussed. The Higgs boson mass in Split Supersymmetry is calculated to two-loops, including all one-loop threshold effects, leading to a downward shift in the Higgs mass of a few GeV. Finally, the author discusses some ideas regarding the overall structure of perturbation theory. This thesis lays the foundation for a comprehensive multi-scale analytic renormalization scheme based on gauge-invariant Green
International Nuclear Information System (INIS)
Lipperheide, R.; Wille, U.
2006-01-01
A theory of spin-polarized electron transport in ferromagnet-semiconductor heterostructures, based on a unified semiclassical description of ballistic and diffusive transport in semiconductors, is outlined. The aim is to provide a framework for studying the interplay of spin relaxation and transport mechanism in spintronic devices. Transport inside the (nondegenerate) semiconductor is described in terms of a thermoballistic current, in which electrons move ballistically in the electric field arising from internal and external electrostatic potentials, and are thermalized at randomly distributed equilibration points. Spin relaxation is allowed to take place during the ballistic motion. For arbitrary potential profile and arbitrary values of the momentum and spin relaxation lengths, an integral equation for a spin transport function determining the spin polarization in the semiconductor is derived. For field-driven transport in a homogeneous semiconductor, the integral equation can be converted into a second-order differential equation that generalizes the spin drift-diffusion equation. The spin polarization in ferromagnet-semiconductor structures is obtained by matching the spin-resolved chemical potentials at the interfaces, with allowance for spin-selective interface resistances. Illustrative examples are considered
An introduction to effective field theory
International Nuclear Information System (INIS)
Donoghue, John F.
1999-01-01
In these lectures I describe the main ideas of effective field theory. These are first illustrated using QED and the linear sigma model as examples. Calculational techniques using both Feynman diagrams and dispersion relations are introduced. Within QCD, chiral perturbation theory is a complete effective field theory, and I give a guide to some calculations in the literature which illustrates key ideas. (author)
A philosophical approach to quantum field theory
Öttinger, Hans Christian
2015-01-01
This text presents an intuitive and robust mathematical image of fundamental particle physics based on a novel approach to quantum field theory, which is guided by four carefully motivated metaphysical postulates. In particular, the book explores a dissipative approach to quantum field theory, which is illustrated for scalar field theory and quantum electrodynamics, and proposes an attractive explanation of the Planck scale in quantum gravity. Offering a radically new perspective on this topic, the book focuses on the conceptual foundations of quantum field theory and ontological questions. It also suggests a new stochastic simulation technique in quantum field theory which is complementary to existing ones. Encouraging rigor in a field containing many mathematical subtleties and pitfalls this text is a helpful companion for students of physics and philosophers interested in quantum field theory, and it allows readers to gain an intuitive rather than a formal understanding.
Particles, fields and quantum theory
International Nuclear Information System (INIS)
Bongaarts, P.J.M.
1982-01-01
The author gives an introduction to the development of gauge theories of the fundamental interactions. Starting from classical mechanics and quantum mechanics the development of quantum electrodynamics and non-abelian gauge theories is described. (HSI)
A Unified Grand Tour of Theoretical Physics
Lawrie, Ian D
2002-01-01
A unified account of the principles of theoretical physics, A Unified Grand Tour of Theoretical Physics, Second Edition stresses the inter-relationships between areas that are usually treated as independent. The profound unifying influence of geometrical ideas, the powerful formal similarities between statistical mechanics and quantum field theory, and the ubiquitous role of symmetries in determining the essential structure of physical theories are emphasized throughout.This second edition conducts a grand tour of the fundamental theories that shape our modern understanding of the physical wor
Further Development of HS Field Theory
Abdurrahman, Abdulmajeed; Faridani, Jacqueline; Gassem, Mahmoud
2006-04-01
We present a systematic treatment of the HS Field theory of the open bosonic string and discuss its relationship to other full string field theories of the open bosonic string such as Witten's theory and the CVS theory. In the development of the HS field theory we encounter infinite dimensional matrices arising from the change of representation between the two theories, i.e., the HS field theory and the full string field theory. We give a general procedure of how to invert these gigantic matrices. The inversion of these matrices involves the computation of many infinite sums. We give the values of these sums and state their generalizations arising from considering higher order vertices (i.e., more than three strings) in string field theory. Moreover, we give a general procedure, on how to evaluate the generalized sums, that can be extended to many generic sums of similar properties. We also discuss the conformal operator connecting the HS field theory to that of the CVS string field theory.
Toward a gauge field theory of gravity.
Yilmaz, H.
Joint use of two differential identities (Bianchi and Freud) permits a gauge field theory of gravity in which the gravitational energy is localizable. The theory is compatible with quantum mechanics and is experimentally viable.
Towards weakly constrained double field theory
Directory of Open Access Journals (Sweden)
Kanghoon Lee
2016-08-01
Full Text Available We show that it is possible to construct a well-defined effective field theory incorporating string winding modes without using strong constraint in double field theory. We show that X-ray (Radon transform on a torus is well-suited for describing weakly constrained double fields, and any weakly constrained fields are represented as a sum of strongly constrained fields. Using inverse X-ray transform we define a novel binary operation which is compatible with the level matching constraint. Based on this formalism, we construct a consistent gauge transform and gauge invariant action without using strong constraint. We then discuss the relation of our result to the closed string field theory. Our construction suggests that there exists an effective field theory description for massless sector of closed string field theory on a torus in an associative truncation.
Issues of effective field theories with resonances
International Nuclear Information System (INIS)
Gegelia, J.; Japaridze, G.
2014-01-01
We address some issues of renormalization and symmetries of effective field theories with unstable particles - resonances. We also calculate anomalous contributions in the divergence of the singlet axial current in an effective field theory of massive SU(N) Yang-Mills fields interacting with fermions and discuss their possible relevance to the strong CP problem. (author)
Field theory and the Standard Model
Energy Technology Data Exchange (ETDEWEB)
Dudas, E [Orsay, LPT (France)
2014-07-01
This brief introduction to Quantum Field Theory and the Standard Model contains the basic building blocks of perturbation theory in quantum field theory, an elementary introduction to gauge theories and the basic classical and quantum features of the electroweak sector of the Standard Model. Some details are given for the theoretical bias concerning the Higgs mass limits, as well as on obscure features of the Standard Model which motivate new physics constructions.
Burst strength of tubing and casing based on twin shear unified strength theory.
Lin, Yuanhua; Deng, Kuanhai; Sun, Yongxing; Zeng, Dezhi; Liu, Wanying; Kong, Xiangwei; Singh, Ambrish
2014-01-01
The internal pressure strength of tubing and casing often cannot satisfy the design requirements in high pressure, high temperature and high H2S gas wells. Also, the practical safety coefficient of some wells is lower than the design standard according to the current API 5C3 standard, which brings some perplexity to the design. The ISO 10400: 2007 provides the model which can calculate the burst strength of tubing and casing better than API 5C3 standard, but the calculation accuracy is not desirable because about 50 percent predictive values are remarkably higher than real burst values. So, for the sake of improving strength design of tubing and casing, this paper deduces the plastic limit pressure of tubing and casing under internal pressure by applying the twin shear unified strength theory. According to the research of the influence rule of yield-to-tensile strength ratio and mechanical properties on the burst strength of tubing and casing, the more precise calculation model of tubing-casing's burst strength has been established with material hardening and intermediate principal stress. Numerical and experimental comparisons show that the new burst strength model is much closer to the real burst values than that of other models. The research results provide an important reference to optimize the tubing and casing design of deep and ultra-deep wells.
Unified symmetry-breaking theory of Bose-Einstein condensation in superfluids
International Nuclear Information System (INIS)
Olinto, A.C.
1991-01-01
The usual symmetry-breaking procedures for Bose condensed systems, namely, the Bogoliubov prescription, the symmetry-breaking term added to the Hamiltonian, and the canonical shift transformation are unified into a single formalism. By taking into account the condensate reservoir as a source and sink of excited particles, exact Ward identities are solved in the shielded-potential approximation. A relationship between the condensate density n 0 and the superfluid density n S is obtained in closed form. It is shown that the Bogoliubov prescription yields n 0 congruent n S and nU 0 much-lt |μ|, where n is the total density, U 0 the interaction constant, and μ the chemical potential. On the other hand, for the canonical shift transformation one has n 0 much-lt n S and nU 0 much-gt |μ|. The latter, applied to superfluid 4 He at saturated vapor pressure, gives excellent agreement between theory and experiment, without any adjustable parameter. The condensate density turns out to be strongly dependent on pressure as observed experimentally. The formalism provides in a natural way a consistent description of Bose systems in arbitrary D-dimensional space
International Nuclear Information System (INIS)
Dias, M.S.; Klein, D.M.
1997-01-01
Occipital plagiocephaly is characterized by both unilateral occipital flattening and ipsilateral frontal prominence with anterior deviation of the ipsilateral ear, yielding a characteristic parallelogram shape to the cranium. Radiographic changes in the lambdoid suture are often evident, but the lambdoid suture is usually patent over most or all of its length on skull X-rays and/or CT scans. Both lambdoid synostosis and deformational forces have been implicated as potentially causal in the pathogenesis of this deformity. We propose a unifying theory which incorporates a common pathogenesis for both deformational plagiocephaly and most cases of lambdoid ''synostosis''. According to this hypothesis, intrauterine and/or postnatal deformational forces are responsible for the primary calvarial deformation. These forces initially act in a reversible manner to produce the typical parallelogram-shaped skull deformity. How-ever, with continued deformation, more enduring secondary pathological changes may eventually occur in the lambdoid suture and basicranium which are more difficult to correct even if the offending deformational forces are subsequently removed or reversed. (authors)
Evolutionary game theory meets social science: is there a unifying rule for human cooperation?
Rosas, Alejandro
2010-05-21
Evolutionary game theory has shown that human cooperation thrives in different types of social interactions with a PD structure. Models treat the cooperative strategies within the different frameworks as discrete entities and sometimes even as contenders. Whereas strong reciprocity was acclaimed as superior to classic reciprocity for its ability to defeat defectors in public goods games, recent experiments and simulations show that costly punishment fails to promote cooperation in the IR and DR games, where classic reciprocity succeeds. My aim is to show that cooperative strategies across frameworks are capable of a unified treatment, for they are governed by a common underlying rule or norm. An analysis of the reputation and action rules that govern some representative cooperative strategies both in models and in economic experiments confirms that the different frameworks share a conditional action rule and several reputation rules. The common conditional rule contains an option between costly punishment and withholding benefits that provides alternative enforcement methods against defectors. Depending on the framework, individuals can switch to the appropriate strategy and method of enforcement. The stability of human cooperation looks more promising if one mechanism controls successful strategies across frameworks. Published by Elsevier Ltd.
Why empathy has a beneficial impact on others in medicine: Unifying theories
Directory of Open Access Journals (Sweden)
Jean eDecety
2015-01-01
Full Text Available The past decades have seen an explosion of studies on empathy in various academic domains including affective neuroscience, psychology, medicine, and economics. However, the volumes of research have almost exclusively focused on its evolutionary origins, development, and neurobiological bases, as well as how the experience of empathy is modulated by social context and interpersonal relationships. In the present paper, we examine a much less attended side of empathy: why it has a positive impact on others? After specifying what the construct of empathy encompasses, we briefly review the various effects of empathy on health outcomes in the domain of medicine. We then propose two non-mutually exclusive mechanistic explanations that contribute to explain the positive effects of physician empathy on patients. 1 The social baseline theory, building on social support research, proposes that the presence of other people helps individuals to conserve metabolically costly somatic and neural resources through the social regulation of emotion. 2 The free energy principle postulates that the brain optimizes a (free energy bound on surprise or its complement value to respond to environmental changes adaptively. These conceptualizations can be combined to provide a unifying integrative account of the benefits of physicians’ empathetic attitude on their patients and how it plays a role in healing beyond the mere effect of the therapeutic alliance.
Quantum field theory in gravitational background
International Nuclear Information System (INIS)
Narnhofer, H.
1986-01-01
The author suggests ignoring the influence of the quantum field on the gravitation as the first step to combine quantum field theory and gravitation theory, but to consider the gravitational field as fixed and thus study quantum field theory on a manifold. This subject evoked interest when thermal radiation of a black hole was predicted. The author concentrates on the free quantum field and can split the problem into two steps: the Weyl-algebra of the free field and the Wightman functional on the tangent space
Boundary effects on quantum field theories
International Nuclear Information System (INIS)
Lee, Tae Hoon
1991-01-01
Quantum field theory in the S 1 *R 3 space-time is simply described by the imaginary time formalism. We generalize Schwinger-DeWitt proper-time technique which is very useful in zero temperature field theories to this case. As an example we calculate the one-loop effective potential of the finite temperature scala field theory by this technique.(Author)
Analytic aspects of rational conformal field theories
International Nuclear Information System (INIS)
Kiritsis, E.B.; Lawrence Berkeley Lab., CA
1990-01-01
The problem of deriving linear differential equations for correlation functions of Rational Conformal Field Theories is considered. Techniques from the theory of fuchsian differential equations are used to show that knowledge of the central charge, dimensions of primary fields and fusion rules are enough to fix the differential equations for one- and two-point functions on the tours. Any other correlation function can be calculated along similar lines. The results settle the issue of 'exact solution' of rational conformal field theories. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Naruse, Makoto, E-mail: naruse@nict.go.jp [Photonic Network Research Institute, National Institute of Information and Communications Technology, 4-2-1 Nukui-kita, Koganei, Tokyo 184-8795 (Japan); Nanophotonics Research Center, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656 (Japan); Akahane, Kouichi; Yamamoto, Naokatsu [Photonic Network Research Institute, National Institute of Information and Communications Technology, 4-2-1 Nukui-kita, Koganei, Tokyo 184-8795 (Japan); Holmström, Petter [Laboratory of Photonics and Microwave Engineering, Royal Institute of Technology (KTH), SE-164 40 Kista (Sweden); Thylén, Lars [Laboratory of Photonics and Microwave Engineering, Royal Institute of Technology (KTH), SE-164 40 Kista (Sweden); Hewlett-Packard Laboratories, Palo Alto, California 94304 (United States); Huant, Serge [Institut Néel, CNRS and Université Joseph Fourier, 25 rue des Martyrs BP 166, 38042 Grenoble Cedex 9 (France); Ohtsu, Motoichi [Nanophotonics Research Center, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656 (Japan); Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656 (Japan)
2014-04-21
We theoretically and experimentally demonstrate energy transfer mediated by optical near-field interactions in a multi-layer InAs quantum dot (QD) structure composed of a single layer of larger dots and N layers of smaller ones. We construct a stochastic model in which optical near-field interactions that follow a Yukawa potential, QD size fluctuations, and temperature-dependent energy level broadening are unified, enabling us to examine device-architecture-dependent energy transfer efficiencies. The model results are consistent with the experiments. This study provides an insight into optical energy transfer involving inherent disorders in materials and paves the way to systematic design principles of nanophotonic devices that will allow optimized performance and the realization of designated functions.
International Nuclear Information System (INIS)
Naruse, Makoto; Akahane, Kouichi; Yamamoto, Naokatsu; Holmström, Petter; Thylén, Lars; Huant, Serge; Ohtsu, Motoichi
2014-01-01
We theoretically and experimentally demonstrate energy transfer mediated by optical near-field interactions in a multi-layer InAs quantum dot (QD) structure composed of a single layer of larger dots and N layers of smaller ones. We construct a stochastic model in which optical near-field interactions that follow a Yukawa potential, QD size fluctuations, and temperature-dependent energy level broadening are unified, enabling us to examine device-architecture-dependent energy transfer efficiencies. The model results are consistent with the experiments. This study provides an insight into optical energy transfer involving inherent disorders in materials and paves the way to systematic design principles of nanophotonic devices that will allow optimized performance and the realization of designated functions
The Four Elementary Forms of Sociality: Framework for a Unified Theory of Social Relations.
Fiske, Alan Page
1992-01-01
A theory is presented that postulates that people in all cultures use four relational models to generate most kinds of social interaction, evaluation, and affect. Ethnographic and field studies (n=19) have supported cultural variations on communal sharing; authority ranking; equality matching; and market pricing. (SLD)
Perigee: Zero, a Unified Theory of Cultural Heritage and Geological History
Davias, M. E.
2006-05-01
Perigee: Zero proposes a unified theory to solve enigmas haunting our cultural heritage and the Earth's geological history. We maintain the theory is simple and provable. We document the terraforming of the Earth by the cratering and accretive action of impacting comets and resulting ejecta, during events occurring at regular intervals over the past 15,000 years. Visual evidence of geomorphed landscape is presented using the perspective of high-resolution satellite imaging and DEM data. Correlation of these images with physical and historic evidence has proven supportive. Sections of the lithosphere have been lofted thousands of kilometers. Excised trenches have filled with water, or left as barren desert. Blankets of ejecta have overlain the continents and their inhabitants. The atmosphere was disrupted by the influx of dust and energy. Composed of hydrated silica, the comets have added a significant percentage of the water and unusually pure silicate (as sand and clay) now present on earth. Human history is immersed in these events. Oral and written works comprising much of the world's cultural heritage provide us with accounts of catastrophic damage visited upon Earth and its inhabitants. Those accounts describe mountains being moved, large expanses of the earth being swept clean - or replaced with open ocean, civilizations buried, years of darkness, the world flooded. Our forefathers invoked deities from the heavens, or perhaps giant kangaroos. We invoke impactors from the Taurid Complex, a simple and natural process, as most of its progenitor's mass may be missing. The damage to the earth is interpreted as the result of hundreds of grazing and nearly tangential impacts, suggesting decaying orbits of earth-captured cosmic bodies as a plausible solution. The events are seen occurring when the low point of the orbit -the perigee- reaches the earth's surface; in effect Perigee: Zero.
Conformal symmetry and the Higgs effect in the Einstein-Weinberg-Salam unified theory
International Nuclear Information System (INIS)
Pervushin, V.N.; Smirichinski, V.I.; Pawlowski, M.M.
1997-11-01
We consider the unification of the Einstein theory of gravity with a conformal invariant version of the standard model for electroweak interaction without the Higgs potential. In this theory, the evolution of the Universe and the elementary particle masses have one and the same cosmological origin. In the flat space limit, we get the σ-model version of the standard model. The cosmological consequences of such a unification are studied. The red shift formula and Hubble law are obtained under the conventional Friedmann assumption of homogeneous matter distribution. We show that the considered theory leads to a very small vacuum density of the Higgs field ρ Cosmic φ = 10 -34 ρ cr in contrast with the theory with the Higgs potential ρ Higgs φ =0 54 ρ cr . (author)
Singularity theory and N = 2 superconformal field theories
International Nuclear Information System (INIS)
Warner, N.P.
1989-01-01
The N = 2 superconformal field theories that appear at the fixed points of the renormalization group flows of Landau-Ginsburg models are discussed. Some of the techniques of singularity theory are employed to deduce properties of these superconformal theories. These ideas are then used to deduce the relationship between Calabi-Yau compactifications and tensored discrete series models. The chiral rings of general N = 2 superconformal theories are also described. 14 refs
A unified Fourier theory for time-of-flight PET data
International Nuclear Information System (INIS)
Li, Yusheng; Matej, Samuel; Metzler, Scott D
2016-01-01
Fully 3D time-of-flight (TOF) PET scanners offer the potential of previously unachievable image quality in clinical PET imaging. TOF measurements add another degree of redundancy for cylindrical PET scanners and make photon-limited TOF-PET imaging more robust than non-TOF PET imaging. The data space for 3D TOF-PET data is five-dimensional with two degrees of redundancy. Previously, consistency equations were used to characterize the redundancy of TOF-PET data. In this paper, we first derive two Fourier consistency equations and Fourier–John equation for 3D TOF PET based on the generalized projection-slice theorem; the three partial differential equations (PDEs) are the dual of the sinogram consistency equations and John’s equation. We then solve the three PDEs using the method of characteristics. The two degrees of entangled redundancy of the TOF-PET data can be explicitly elicited and exploited by the solutions of the PDEs along the characteristic curves, which gives a complete understanding of the rich structure of the 3D x-ray transform with TOF measurement. Fourier rebinning equations and other mapping equations among different types of PET data are special cases of the general solutions. We also obtain new Fourier rebinning and consistency equations (FORCEs) from other special cases of the general solutions, and thus we obtain a complete scheme to convert among different types of PET data: 3D TOF, 3D non-TOF, 2D TOF and 2D non-TOF data. The new FORCEs can be used as new Fourier-based rebinning algorithms for TOF-PET data reduction, inverse rebinnings for designing fast projectors, or consistency conditions for estimating missing data. Further, we give a geometric interpretation of the general solutions—the two families of characteristic curves can be obtained by respectively changing the azimuthal and co-polar angles of the biorthogonal coordinates in Fourier space. We conclude the unified Fourier theory by showing that the Fourier consistency equations
A unified Fourier theory for time-of-flight PET data.
Li, Yusheng; Matej, Samuel; Metzler, Scott D
2016-01-21
Fully 3D time-of-flight (TOF) PET scanners offer the potential of previously unachievable image quality in clinical PET imaging. TOF measurements add another degree of redundancy for cylindrical PET scanners and make photon-limited TOF-PET imaging more robust than non-TOF PET imaging. The data space for 3D TOF-PET data is five-dimensional with two degrees of redundancy. Previously, consistency equations were used to characterize the redundancy of TOF-PET data. In this paper, we first derive two Fourier consistency equations and Fourier-John equation for 3D TOF PET based on the generalized projection-slice theorem; the three partial differential equations (PDEs) are the dual of the sinogram consistency equations and John's equation. We then solve the three PDEs using the method of characteristics. The two degrees of entangled redundancy of the TOF-PET data can be explicitly elicited and exploited by the solutions of the PDEs along the characteristic curves, which gives a complete understanding of the rich structure of the 3D x-ray transform with TOF measurement. Fourier rebinning equations and other mapping equations among different types of PET data are special cases of the general solutions. We also obtain new Fourier rebinning and consistency equations (FORCEs) from other special cases of the general solutions, and thus we obtain a complete scheme to convert among different types of PET data: 3D TOF, 3D non-TOF, 2D TOF and 2D non-TOF data. The new FORCEs can be used as new Fourier-based rebinning algorithms for TOF-PET data reduction, inverse rebinnings for designing fast projectors, or consistency conditions for estimating missing data. Further, we give a geometric interpretation of the general solutions--the two families of characteristic curves can be obtained by respectively changing the azimuthal and co-polar angles of the biorthogonal coordinates in Fourier space. We conclude the unified Fourier theory by showing that the Fourier consistency equations are
Hyperunified field theory and gravitational gauge-geometry duality
International Nuclear Information System (INIS)
Wu, Yue-Liang
2018-01-01
A hyperunified field theory is built in detail based on the postulates of gauge invariance and coordinate independence along with the conformal scaling symmetry. All elementary particles are merged into a single hyper-spinor field and all basic forces are unified into a fundamental interaction governed by the hyper-spin gauge symmetry SP(1, D h - 1). The dimension D h of hyper-spacetime is conjectured to have a physical origin in correlation with the hyper-spin charge of elementary particles. The hyper-gravifield fiber bundle structure of biframe hyper-spacetime appears naturally with the globally flat Minkowski hyper-spacetime as a base spacetime and the locally flat hyper-gravifield spacetime as a fiber that is viewed as a dynamically emerged hyper-spacetime characterized by a non-commutative geometry. The gravitational origin of gauge symmetry is revealed with the hyper-gravifield that plays an essential role as a Goldstone-like field. The gauge-gravity and gravity-geometry correspondences bring about the gravitational gauge-geometry duality. The basic properties of hyperunified field theory and the issue on the fundamental scale are analyzed within the framework of quantum field theory, which allows us to describe the laws of nature in deriving the gauge gravitational equation with the conserved current and the geometric gravitational equations of Einstein-like type and beyond. (orig.)
Hyperunified field theory and gravitational gauge-geometry duality
Energy Technology Data Exchange (ETDEWEB)
Wu, Yue-Liang [International Centre for Theoretical Physics Asia-Pacific (ICTP-AP), Beijing (China); Chinese Academy of Sciences, Institute of Theoretical Physics, Beijing (China); University of Chinese Academy of Sciences (UCAS), Beijing (China)
2018-01-15
A hyperunified field theory is built in detail based on the postulates of gauge invariance and coordinate independence along with the conformal scaling symmetry. All elementary particles are merged into a single hyper-spinor field and all basic forces are unified into a fundamental interaction governed by the hyper-spin gauge symmetry SP(1, D{sub h} - 1). The dimension D{sub h} of hyper-spacetime is conjectured to have a physical origin in correlation with the hyper-spin charge of elementary particles. The hyper-gravifield fiber bundle structure of biframe hyper-spacetime appears naturally with the globally flat Minkowski hyper-spacetime as a base spacetime and the locally flat hyper-gravifield spacetime as a fiber that is viewed as a dynamically emerged hyper-spacetime characterized by a non-commutative geometry. The gravitational origin of gauge symmetry is revealed with the hyper-gravifield that plays an essential role as a Goldstone-like field. The gauge-gravity and gravity-geometry correspondences bring about the gravitational gauge-geometry duality. The basic properties of hyperunified field theory and the issue on the fundamental scale are analyzed within the framework of quantum field theory, which allows us to describe the laws of nature in deriving the gauge gravitational equation with the conserved current and the geometric gravitational equations of Einstein-like type and beyond. (orig.)
Hyperunified field theory and gravitational gauge-geometry duality
Wu, Yue-Liang
2018-01-01
A hyperunified field theory is built in detail based on the postulates of gauge invariance and coordinate independence along with the conformal scaling symmetry. All elementary particles are merged into a single hyper-spinor field and all basic forces are unified into a fundamental interaction governed by the hyper-spin gauge symmetry SP(1, D_h-1). The dimension D_h of hyper-spacetime is conjectured to have a physical origin in correlation with the hyper-spin charge of elementary particles. The hyper-gravifield fiber bundle structure of biframe hyper-spacetime appears naturally with the globally flat Minkowski hyper-spacetime as a base spacetime and the locally flat hyper-gravifield spacetime as a fiber that is viewed as a dynamically emerged hyper-spacetime characterized by a non-commutative geometry. The gravitational origin of gauge symmetry is revealed with the hyper-gravifield that plays an essential role as a Goldstone-like field. The gauge-gravity and gravity-geometry correspondences bring about the gravitational gauge-geometry duality. The basic properties of hyperunified field theory and the issue on the fundamental scale are analyzed within the framework of quantum field theory, which allows us to describe the laws of nature in deriving the gauge gravitational equation with the conserved current and the geometric gravitational equations of Einstein-like type and beyond.
Fotopoulou, Aikaterini
2014-03-01
Cognitive neuroscience, being more inclusive and ambitious in scope than cognitive neuropsychology, seems to have taken the place of the latter within the modern neurosciences. Nevertheless, recent advances in the neurosciences afford neuropsychology with epistemic possibilities that simply did not exist even 15 years ago. Human lesion studies still have an important role to play in shaping such possibilities, particularly when combined with other methods of enquiry. I first outline theoretical and methodological advances within the neurosciences that can inform and shape the rebirth of a dynamic, non-modular neuropsychology. I then use an influential computational theory of brain function, the free energy principle, to suggest an unified account of anosognosia for hemiplegia as a research example of the potential for transition from a modular, cognitive neuropsychology to a dynamic, computational and even restorative neuropsychology. These and many other adjectives that can flexibly, take the place of 'cognitive' next to 'neuropsychology' will hopefully designate the much needed rebirth and demarcation of a field, neuropsychology itself, that has somehow lost its place within the modern neurosciences and yet seems to have a unique and important role to play in the future understanding of the brain. © 2013 The British Psychological Society.
Field Extension by Galois Theory
Md Tauﬁq Nasseef
2017-01-01
Galois Theory, a wonderful part of mathematics with historical roots date back to the solution of cubic and quantic equations in the sixteenth century. However, beside understanding the roots of polynomials, Galois Theory also gave birth to many of the central concepts of modern algebra, including groups and ﬁelds. In particular, this theory is further great due to primarily for two factors: ﬁrst, its surprising link between the group theory and the roots of polynomials and second,the eleganc...
Operator algebras and conformal field theory
International Nuclear Information System (INIS)
Gabbiani, F.; Froehlich, J.
1993-01-01
We define and study two-dimensional, chiral conformal field theory by the methods of algebraic field theory. We start by characterizing the vacuum sectors of such theories and show that, under very general hypotheses, their algebras of local observables are isomorphic to the unique hyperfinite type III 1 factor. The conformal net determined by the algebras of local observables is proven to satisfy Haag duality. The representation of the Moebius group (and presumably of the entire Virasoro algebra) on the vacuum sector of a conformal field theory is uniquely determined by the Tomita-Takesaki modular operators associated with its vacuum state and its conformal net. We then develop the theory of Mebius covariant representations of a conformal net, using methods of Doplicher, Haag and Roberts. We apply our results to the representation theory of loop groups. Our analysis is motivated by the desire to find a 'background-independent' formulation of conformal field theories. (orig.)
Algebraic quantum field theory, perturbation theory, and the loop expansion
International Nuclear Information System (INIS)
Duetsch, M.; Fredenhagen, K.
2001-01-01
The perturbative treatment of quantum field theory is formulated within the framework of algebraic quantum field theory. We show that the algebra of interacting fields is additive, i.e. fully determined by its subalgebras associated to arbitrary small subregions of Minkowski space. We also give an algebraic formulation of the loop expansion by introducing a projective system A (n) of observables ''up to n loops'', where A (0) is the Poisson algebra of the classical field theory. Finally we give a local algebraic formulation for two cases of the quantum action principle and compare it with the usual formulation in terms of Green's functions. (orig.)
International Nuclear Information System (INIS)
Remler, E.A.
1977-01-01
A gauge-invariant version of the Wigner representation is used to relate relativistic mechanics, statistical mechanics, and quantum field theory in the context of the electrodynamics of scalar particles. A unified formulation of quantum field theory and statistical mechanics is developed which clarifies the physics interpretation of the single-particle Wigner function. A covariant form of Ehrenfest's theorem is derived. Classical electrodynamics is derived from quantum field theory after making a random-phase approximation. The validity of this approximation is discussed
From chaos to unification: U theory vs. M theory
International Nuclear Information System (INIS)
Ye, Fred Y.
2009-01-01
A unified physical theory called U theory, that is different from M theory, is defined and characterized. U theory, which includes spinor and twistor theory, loop quantum gravity, causal dynamical triangulations, E-infinity unification theory, and Clifford-Finslerian unifications, is based on physical tradition and experimental foundations. In contrast, M theory pays more attention to mathematical forms. While M theory is characterized by supersymmetry string theory, U theory is characterized by non-supersymmetry unified field theory.
Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models
Nojiri, Shin'Ichi; Odintsov, Sergei D.
2011-08-01
The classical generalization of general relativity is considered as the gravitational alternative for a unified description of the early-time inflation with late-time cosmic acceleration. The structure and cosmological properties of a number of modified theories, including traditional F(R) and Hořava-Lifshitz F(R) gravity, scalar-tensor theory, string-inspired and Gauss-Bonnet theory, non-local gravity, non-minimally coupled models, and power-counting renormalizable covariant gravity are discussed. Different representations of and relations between such theories are investigated. It is shown that some versions of the above theories may be consistent with local tests and may provide a qualitatively reasonable unified description of inflation with the dark energy epoch. The cosmological reconstruction of different modified gravities is provided in great detail. It is demonstrated that eventually any given universe evolution may be reconstructed for the theories under consideration, and the explicit reconstruction is applied to an accelerating spatially flat Friedmann-Robertson-Walker (FRW) universe. Special attention is paid to Lagrange multiplier constrained and conventional F(R) gravities, for latter F(R) theory, the effective ΛCDM era and phantom divide crossing acceleration are obtained. The occurrences of the Big Rip and other finite-time future singularities in modified gravity are reviewed along with their solutions via the addition of higher-derivative gravitational invariants.
Mathematical aspects of quantum field theories
Strobl, Thomas
2015-01-01
Despite its long history and stunning experimental successes, the mathematical foundation of perturbative quantum field theory is still a subject of ongoing research. This book aims at presenting some of the most recent advances in the field, and at reflecting the diversity of approaches and tools invented and currently employed. Both leading experts and comparative newcomers to the field present their latest findings, helping readers to gain a better understanding of not only quantum but also classical field theories. Though the book offers a valuable resource for mathematicians and physicists alike, the focus is more on mathematical developments. This volume consists of four parts: The first Part covers local aspects of perturbative quantum field theory, with an emphasis on the axiomatization of the algebra behind the operator product expansion. The second Part highlights Chern-Simons gauge theories, while the third examines (semi-)classical field theories. In closing, Part 4 addresses factorization homolo...
Topological defects in open string field theory
Kojita, Toshiko; Maccaferri, Carlo; Masuda, Toru; Schnabl, Martin
2018-04-01
We show how conformal field theory topological defects can relate solutions of open string field theory for different boundary conditions. To this end we generalize the results of Graham and Watts to include the action of defects on boundary condition changing fields. Special care is devoted to the general case when nontrivial multiplicities arise upon defect action. Surprisingly the fusion algebra of defects is realized on open string fields only up to a (star algebra) isomorphism.
Mean field theories and dual variation mathematical structures of the mesoscopic model
Suzuki, Takashi
2015-01-01
Mean field approximation has been adopted to describe macroscopic phenomena from microscopic overviews. It is still in progress; fluid mechanics, gauge theory, plasma physics, quantum chemistry, mathematical oncology, non-equilibirum thermodynamics. spite of such a wide range of scientific areas that are concerned with the mean field theory, a unified study of its mathematical structure has not been discussed explicitly in the open literature. The benefit of this point of view on nonlinear problems should have significant impact on future research, as will be seen from the underlying features of self-assembly or bottom-up self-organization which is to be illustrated in a unified way. The aim of this book is to formulate the variational and hierarchical aspects of the equations that arise in the mean field theory from macroscopic profiles to microscopic principles, from dynamics to equilibrium, and from biological models to models that arise from chemistry and physics.
Escudero, Adrián; Valladares, Fernando
2016-04-01
Functional traits are the center of recent attempts to unify key ecological theories on species coexistence and assembling in populations and communities. While the plethora of studies on the role of functional traits to explain patterns and dynamics of communities has rendered a complex picture due to the idiosyncrasies of each study system and approach, there is increasing evidence on their actual relevance when aspects such as different spatial scales, intraspecific variability and demography are considered.
Conformal invariant quantum field theory and composite field operators
International Nuclear Information System (INIS)
Kurak, V.
1976-01-01
The present status of conformal invariance in quantum field theory is reviewed from a non group theoretical point of view. Composite field operators dimensions are computed in some simple models and related to conformal symmetry
Holographic applications of logarithmic conformal field theories
Grumiller, D.; Riedler, W.; Rosseel, J.; Zojer, T.
2013-01-01
We review the relations between Jordan cells in various branches of physics, ranging from quantum mechanics to massive gravity theories. Our main focus is on holographic correspondences between critically tuned gravity theories in anti-de Sitter space and logarithmic conformal field theories in
Finiteness of quantum field theories and supersymmetry
International Nuclear Information System (INIS)
Lucha, W.; Neufeld, H.
1986-01-01
We study the consequences of finiteness for a general renormalizable quantum field theory by analysing the finiteness conditions resulting from the requirement of absence of divergent contributions to the renormalizations of the parameters of an arbitrary gauge theory. In all cases considered, the well-known two-loop finite supersymmetric theories prove to be the unique solution of the finiteness criterion. (Author)
Nonlinear Hebbian Learning as a Unifying Principle in Receptive Field Formation.
Brito, Carlos S N; Gerstner, Wulfram
2016-09-01
The development of sensory receptive fields has been modeled in the past by a variety of models including normative models such as sparse coding or independent component analysis and bottom-up models such as spike-timing dependent plasticity or the Bienenstock-Cooper-Munro model of synaptic plasticity. Here we show that the above variety of approaches can all be unified into a single common principle, namely nonlinear Hebbian learning. When nonlinear Hebbian learning is applied to natural images, receptive field shapes were strongly constrained by the input statistics and preprocessing, but exhibited only modest variation across different choices of nonlinearities in neuron models or synaptic plasticity rules. Neither overcompleteness nor sparse network activity are necessary for the development of localized receptive fields. The analysis of alternative sensory modalities such as auditory models or V2 development lead to the same conclusions. In all examples, receptive fields can be predicted a priori by reformulating an abstract model as nonlinear Hebbian learning. Thus nonlinear Hebbian learning and natural statistics can account for many aspects of receptive field formation across models and sensory modalities.
Nonlinear Hebbian Learning as a Unifying Principle in Receptive Field Formation.
Directory of Open Access Journals (Sweden)
Carlos S N Brito
2016-09-01
Full Text Available The development of sensory receptive fields has been modeled in the past by a variety of models including normative models such as sparse coding or independent component analysis and bottom-up models such as spike-timing dependent plasticity or the Bienenstock-Cooper-Munro model of synaptic plasticity. Here we show that the above variety of approaches can all be unified into a single common principle, namely nonlinear Hebbian learning. When nonlinear Hebbian learning is applied to natural images, receptive field shapes were strongly constrained by the input statistics and preprocessing, but exhibited only modest variation across different choices of nonlinearities in neuron models or synaptic plasticity rules. Neither overcompleteness nor sparse network activity are necessary for the development of localized receptive fields. The analysis of alternative sensory modalities such as auditory models or V2 development lead to the same conclusions. In all examples, receptive fields can be predicted a priori by reformulating an abstract model as nonlinear Hebbian learning. Thus nonlinear Hebbian learning and natural statistics can account for many aspects of receptive field formation across models and sensory modalities.
New results in topological field theory and Abelian gauge theory
International Nuclear Information System (INIS)
Thompson, G.
1995-10-01
These are the lecture notes of a set of lectures delivered at the 1995 Trieste summer school in June. I review some recent work on duality in four dimensional Maxwell theory on arbitrary four manifolds, as well as a new set of topological invariants known as the Seiberg-Witten invariants. Much of the necessary background material is given, including a crash course in topological field theory, cohomology of manifolds, topological gauge theory and the rudiments of four manifold theory. My main hope is to wet the readers appetite, so that he or she will wish to read the original works and perhaps to enter this field. (author). 41 refs, 5 figs
New results in topological field theory and Abelian gauge theory
Energy Technology Data Exchange (ETDEWEB)
Thompson, G
1995-10-01
These are the lecture notes of a set of lectures delivered at the 1995 Trieste summer school in June. I review some recent work on duality in four dimensional Maxwell theory on arbitrary four manifolds, as well as a new set of topological invariants known as the Seiberg-Witten invariants. Much of the necessary background material is given, including a crash course in topological field theory, cohomology of manifolds, topological gauge theory and the rudiments of four manifold theory. My main hope is to wet the readers appetite, so that he or she will wish to read the original works and perhaps to enter this field. (author). 41 refs, 5 figs.
Topological quantum field theory and four manifolds
Marino, Marcos
2005-01-01
The present book is the first of its kind in dealing with topological quantum field theories and their applications to topological aspects of four manifolds. It is not only unique for this reason but also because it contains sufficient introductory material that it can be read by mathematicians and theoretical physicists. On the one hand, it contains a chapter dealing with topological aspects of four manifolds, on the other hand it provides a full introduction to supersymmetry. The book constitutes an essential tool for researchers interested in the basics of topological quantum field theory, since these theories are introduced in detail from a general point of view. In addition, the book describes Donaldson theory and Seiberg-Witten theory, and provides all the details that have led to the connection between these theories using topological quantum field theory. It provides a full account of Witten’s magic formula relating Donaldson and Seiberg-Witten invariants. Furthermore, the book presents some of the ...
Statistical predictions from anarchic field theory landscapes
International Nuclear Information System (INIS)
Balasubramanian, Vijay; Boer, Jan de; Naqvi, Asad
2010-01-01
Consistent coupling of effective field theories with a quantum theory of gravity appears to require bounds on the rank of the gauge group and the amount of matter. We consider landscapes of field theories subject to such to boundedness constraints. We argue that appropriately 'coarse-grained' aspects of the randomly chosen field theory in such landscapes, such as the fraction of gauge groups with ranks in a given range, can be statistically predictable. To illustrate our point we show how the uniform measures on simple classes of N=1 quiver gauge theories localize in the vicinity of theories with certain typical structures. Generically, this approach would predict a high energy theory with very many gauge factors, with the high rank factors largely decoupled from the low rank factors if we require asymptotic freedom for the latter.
Wavelet-Based Quantum Field Theory
Directory of Open Access Journals (Sweden)
Mikhail V. Altaisky
2007-11-01
Full Text Available The Euclidean quantum field theory for the fields $phi_{Delta x}(x$, which depend on both the position $x$ and the resolution $Delta x$, constructed in SIGMA 2 (2006, 046, on the base of the continuous wavelet transform, is considered. The Feynman diagrams in such a theory become finite under the assumption there should be no scales in internal lines smaller than the minimal of scales of external lines. This regularisation agrees with the existing calculations of radiative corrections to the electron magnetic moment. The transition from the newly constructed theory to a standard Euclidean field theory is achieved by integration over the scale arguments.
Introduction to algebraic quantum field theory
International Nuclear Information System (INIS)
Horuzhy, S.S.
1990-01-01
This volume presents a systematic introduction to the algebraic approach to quantum field theory. The structure of the contents corresponds to the way the subject has advanced. It is shown how the algebraic approach has developed from the purely axiomatic theory of observables via superselection rules into the dynamical formalism of fields and observables. Chapter one discusses axioms and their consequences -many of which are now classical theorems- and deals, in general, with the axiomatic theory of local observable algebras. The absence of field concepts makes this theory incomplete and, in chapter two, superselection rules are shown to be the key to the reconstruction of fields from observables. Chapter three deals with the algebras of Wightman fields, first unbounded operator algebras, then Von Neumann field algebras (with a special section on wedge region algebras) and finally local algebras of free and generalised free fields. (author). 447 refs.; 4 figs
Quantum field theory for the gifted amateur
Lancaster, Tom
2014-01-01
Quantum field theory is arguably the most far-reaching and beautiful physical theory ever constructed, with aspects more stringently tested and verified to greater precision than any other theory in physics. Unfortunately, the subject has gained a notorious reputation for difficulty, with forbidding looking mathematics and a peculiar diagrammatic language described in an array of unforgiving, weighty textbooks aimed firmly at aspiring professionals. However, quantum field theory is too important, too beautiful, and too engaging to be restricted to the professionals. This book on quantum field theory is designed to be different. It is written by experimental physicists and aims to provide the interested amateur with a bridge from undergraduate physics to quantum field theory. The imagined reader is a gifted amateur, possessing a curious and adaptable mind, looking to be told an entertaining and intellectually stimulating story, but who will not feel patronised if a few mathematical niceties are spelled out in ...
An introduction to conformal field theory
International Nuclear Information System (INIS)
Zuber, J.B.
1995-01-01
The aim of these lectures is to present an introduction at a fairly elementary level to recent developments in two dimensional field theory, namely in conformal field theory. We shall see the importance of new structures related to infinite dimensional algebras: current algebras and Virasoro algebra. These topics will find physically relevant applications in the lectures by Shankar and Ian Affeck. (author)
Calculations in perturbative string field theory
International Nuclear Information System (INIS)
Thorn, C.B.
1987-01-01
The author discusses methods for evaluating the Feynman diagrams of string field theory, with particular emphasis on Witten's version of open string field theory. It is explained in some detail how the rules states by Giddings and Martinec for relating a given diagram to a Polyakov path integral emerge from the Feynman rules
Two problems in thermal field theory
Indian Academy of Sciences (India)
In this talk, I review recent progress made in two areas of thermal field theory. In par- ticular, I discuss various approaches for the calculation of the quark gluon plasma thermodynamical properties, and the problem of its photon production rate. Keywords. Thermal field theory; quark-gluon plasma. PACS Nos 11.10.Wx; 12.38.
Using field theory in hadron physics
International Nuclear Information System (INIS)
Abarbanel, H.D.I.
1978-03-01
Topics are covered on the connection of field theory and hadron physics. The renormalization group and infrared and ultraviolet limits of field theory, in particular quantum chromodynamics, spontaneous mass generation, color confinement, instantons, and the vacuum state in quantum chromodynamics are treated. 21 references
Using field theory in hadron physics
International Nuclear Information System (INIS)
Abarbanel, H.D.I.
1979-01-01
The author gives an introductory review about the development of applications of quantum field theory in hadron physics. Especially he discusses the renormalization group and the use of this group for the selection of a field theory. In this framework he compares quantum chromodynamics with quantum electrodynamics. Finally he discusses dynamic mass generation and quark confinement in the framework of quantum chromodynamics. (HSI) [de
On bounded and unbounded dynamics of the Hamiltonian system for unified scalar field cosmology
International Nuclear Information System (INIS)
Starkov, Konstantin E.
2016-01-01
This paper is devoted to the research of global dynamics for the Hamiltonian system formed by the unified scalar field cosmology. We prove that this system possesses only unbounded dynamics in the space of negative curvature. It is found the invariant domain filled only by unbounded dynamics for the space with positive curvature. Further, we construct a set of polytopes depending on the Hamiltonian level surface that contain all compact invariant sets. Besides, one invariant two dimensional plane is described. Finally, we establish nonchaoticity of dynamics in one special case. - Highlights: • Unbounded dynamics is stated in case of negative curvature. • Domain with unbounded dynamics is got in case of positive curvature. • Localization polytope for compact invariant sets is computed. • One two dimensional invariant plane is described. • Nonchaotic dynamics is stated in one special case.
On bounded and unbounded dynamics of the Hamiltonian system for unified scalar field cosmology
Energy Technology Data Exchange (ETDEWEB)
Starkov, Konstantin E., E-mail: kstarkov@ipn.mx
2016-05-27
This paper is devoted to the research of global dynamics for the Hamiltonian system formed by the unified scalar field cosmology. We prove that this system possesses only unbounded dynamics in the space of negative curvature. It is found the invariant domain filled only by unbounded dynamics for the space with positive curvature. Further, we construct a set of polytopes depending on the Hamiltonian level surface that contain all compact invariant sets. Besides, one invariant two dimensional plane is described. Finally, we establish nonchaoticity of dynamics in one special case. - Highlights: • Unbounded dynamics is stated in case of negative curvature. • Domain with unbounded dynamics is got in case of positive curvature. • Localization polytope for compact invariant sets is computed. • One two dimensional invariant plane is described. • Nonchaotic dynamics is stated in one special case.
Vacuum instability in scalar field theories
International Nuclear Information System (INIS)
McKane, A.J.
1978-09-01
Scalar field theories with an interaction of the form gphisup(N) have no stable vacuum state for some range of values of their coupling constant, g. This thesis reports calculations of vacuum instability in such theories. Using the idea that the tunnelling out of the vacuum state is described by the instanton solutions of the theory, the imaginary part of the vertex functions is calculated for the massless theory in the one-loop approximation, near the dimension dsub(c) = 2N/N-2, where the theory is just renormalisable. The calculation differs from previous treatments in that dimensional regularisation is used to control the ultra-violet divergences of the theory. In this way previous analytic calculations in conformally invariant field theories are extended to the case where the theory is almost conformally invariant, since it is now defined in dsub(c) - epsilon dimensions (epsilon > 0). (author)
International Nuclear Information System (INIS)
Degiovanni, P.
1990-01-01
We compute the modular properties of the possible genus-one characters of some Rational Conformal Field Theories starting from their fusion rules. We show that the possible choices of S matrices are indexed by some automorphisms of the fusion algebra. We also classify the modular invariant partition functions of these theories. This gives the complete list of modular invariant partition functions of Rational Conformal Field Theories with respect to the A N (1) level one algebra. (orig.)
Conformal field theories and critical phenomena
International Nuclear Information System (INIS)
Xu, Bowei
1993-01-01
In this article we present a brief review of the conformal symmetry and the two dimensional conformal quantum field theories. As concrete applications of the conformal theories to the critical phenomena in statistical systems, we calculate the value of central charge and the anomalous scale dimensions of the Z 2 symmetric quantum chain with boundary condition. The results are compatible with the prediction of the conformal field theories
Quantum Field Theory in a Semiotic Perspective
Günter Dosch, Hans; Sieroka, Norman
2005-01-01
Viewing physical theories as symbolic constructions came to the fore in the middle of the nineteenth century with the emancipation of the classical theory of the electromagnetic field from mechanics; most notably this happened through the work of Helmholtz, Hertz, Poincaré, and later Weyl. The epistemological problems that nourished this development are today highlighted within quantum field theory. The present essay starts off with a concise and non-technical outline of the firmly based aspects of relativistic quantum field theory, i.e. the very successful description of subnuclear phenomena. The particular methods, by which these different aspects have to be accessed, then get described as distinct facets of quantum field theory. The authors show how these different facets vary with respect to the relation between quantum fields and associated particles. Thus, by emphasising the respective role of various basic concepts involved, the authors claim that only a very general epistemic approach can properly ac...
The unified neutral theory of biodiversity: do the numbers add up?
Ricklefs, Robert E
2006-06-01
Hubbell's unified neutral theory is a zero-sum ecological drift model in which population sizes change at random in a process resembling genetic drift, eventually leading to extinction. Diversity is maintained within the community by speciation. Hubbell's model makes predictions about the distribution of species abundances within communities and the turnover of species from place to place (beta diversity). However, ecological drift cannot be tested adequately against these predictions without independent estimates of speciation rates, population sizes, and dispersal distances. A more practical prediction from ecological drift is that time to extinction of a population of size N is approximately 2N generations. I test this prediction here using data for passerine birds (Passeriformes). Waiting times to speciation and extinction were estimated from genetic divergence between sister populations and a lineage-through-time plot for endemic South American suboscine passerines. Population sizes were estimated from local counts of birds in two large forest plots extrapolated to the area of wet tropical forest in South America and from atlas data on European passerines. Waiting times to extinction (ca. 2 Ma) are much less than twice the product of average population size (4.0 and 14.4 x 10(6) individuals in South America and Europe) and generation length (five and three years) for songbirds, that is, 40 and 86 Ma, respectively. Thus, drift is too slow to account for turnover in regional avifaunas. Presumably, other processes, involving external drivers, such as climate and physiographic change, and internal drivers, such as evolutionary change in antagonistic interactions, predominate. Hubbell's model is historical and geographic, and his perspective importantly links local and regional process and pattern. Ecological reality can be added to the mix while retaining Hubbell's concept of continuity of communities in space and time.
Introduction to field theory of strings
International Nuclear Information System (INIS)
Kikkawa, K.
1987-01-01
The field theory of bosonic string is reviewed. First, theory is treated in a light-cone gauge. After a brief survey of the first quantized theory of free string, the second quantization is discussed. All possible interactions of strings are introduced based on a smoothness condition of work sheets swept out by strings. Perturbation theory is developed. Finally a possible way to the manifest covariant formalism is discussed
On the interplay between string theory and field theory
International Nuclear Information System (INIS)
Brunner, I.
1998-01-01
In this thesis, we have discussed various aspects of branes in string theory and M-theory. In chapter 2 we were able to construct six-dimensional chiral interacting eld theories from Hanany-Witten like brane setups. The field theory requirement that the anomalies cancel was reproduced by RR-charge conservation in the brane setup. The data of the Hanany-Witten setup, which consists of brane positions, was mapped to instanton data. The orbifold construction can be extended to D and E type singularities. In chapter 3 we discussed a matrix conjecture, which claims that M-theory in the light cone gauge is described by the quantum mechanics of D0 branes. Toroidal compactifications of M-theory have a description in terms of super Yang-Mills theory an the dual torus. For more than three compactified dimensions, more degrees of freedom have to be added. In some sense, the philosophy in this chapter is orthogonal to the previous chapter: Here, we want to get M-theory results from eld theory considerations, whereas in the previous chapter we obtained eld theory results by embedding the theories in string theory. Our main focus was on the compactification on T 6 , which leads to complications. Here, the Matrix model is again given by an eleven dimensional theory, not by a lower dimensional field theory. Other problems and possible resolutions of Matrix theory are discussed at the end of chapter 3. In the last chapter we considered M- and F-theory compactifications on Calabi-Yau fourfolds. After explaining some basics of fourfolds, we showed that the web of fourfolds is connected by singular transitions. The two manifolds which are connected by the transition are different resolutions of the same singular manifold. The resolution of the singularities can lead to a certain type of divisors, which lead to non-perturbative superpotentials, when branes wrap them. The vacua connected by the transitions can be physically very different. (orig.)
Schrodinger representation in renormalizable quantum field theory
International Nuclear Information System (INIS)
Symanzik, K.
1983-01-01
The problem of the Schrodinger representation arose from work on the Nambu-Goto Ansatz for integration over surfaces. Going beyond semiclassical approximation leads to two problems of nonrenormalizibility and of whether Dirichlet boundary conditions can be imposed on a ''Euclidean'' quantum field theory. The Schrodinger representation is constructed in a way where the principles of general renormalization theory can be refered to. The Schrodinger function of surface terms is studied, as well as behaviour at the boundary. The Schrodinger equation is derived. Completeness, unitarity, and computation of expectation values are considered. Extensions of these methods into other Bose field theories such as Fermi fields and Marjorana fields is straightforward
Local algebras in Euclidean quantum field theory
International Nuclear Information System (INIS)
Guerra, Francesco.
1975-06-01
The general structure of the local observable algebras of Euclidean quantum field theory is described, considering the very simple examples of the free scalar field, the vector meson field, and the electromagnetic field. The role of Markov properties, and the relations between Euclidean theory and Hamiltonian theory in Minkowski space-time are especially emphasized. No conflict appears between covariance (in the Euclidean sense) and locality (in the Markov sense) on one hand and positive definiteness of the metric on the other hand [fr
Aspects of affine Toda field theory
International Nuclear Information System (INIS)
Braden, H.W.; Corrigan, E.; Dorey, P.E.; Sasaki, R.
1990-05-01
The report is devoted to properties of the affine Toda field theory, the intention being to highlight a selection of curious properties that should be explicable in terms of the underlying group theory but for which in most cases there are no explanation. The motivation for exploring the ideas contained in this report came principally from the recent work of Zamolodchikov concerning the two dimensional Ising model at critical temperature perturbed by a magnetic field. Hollowood and Mansfield pointed out that since Toda field theory is conformal the perturbation considered by Zamolodchikov might well be best regarded as a perturbation of a Toda field theory. This work made it seem plausible that the theory sought by Zamolodchikov was actually affine E 8 Toda field theory. However, this connection required an imaginary value of the coupling constant. Investigations here concerning exact S-matrices use a perturbative approach based on real coupling and the results differ in various ways from those thought to correspond to perturbed conformal field theory. A further motivation is to explore the connection between conformal and perturbed conformal field theories in other contexts using similar ideas. (N.K.)
Mathematical aspects of quantum field theory
de Faria, Edson
2010-01-01
Over the last century quantum field theory has made a significant impact on the formulation and solution of mathematical problems and inspired powerful advances in pure mathematics. However, most accounts are written by physicists, and mathematicians struggle to find clear definitions and statements of the concepts involved. This graduate-level introduction presents the basic ideas and tools from quantum field theory to a mathematical audience. Topics include classical and quantum mechanics, classical field theory, quantization of classical fields, perturbative quantum field theory, renormalization, and the standard model. The material is also accessible to physicists seeking a better understanding of the mathematical background, providing the necessary tools from differential geometry on such topics as connections and gauge fields, vector and spinor bundles, symmetries and group representations.
Bookshelf (The Quantum Theory of Fields, La lumiere des neutrinos)
Energy Technology Data Exchange (ETDEWEB)
Anon.
1995-10-15
The Quantum Theory of Fields Volume 1: Foundations by Steven Weinberg, Cambridge University Press, 1995: Steven Weinberg is celebrated for his many contributions to quantum field theory and its applications to elementary particle physics - most notably, for developing the electroweak theory, the unified model of the electromagnetic and weak forces that forms part of the Standard Model that has explained essentially all accelerator data on the behaviour of elementary particles. This is the culmination of the developments in quantum field theory that started in the early days of quantum mechanics and came to maturity with the development of quantum electrodynamics in the late 1940s. Quantum field theory is the basic theoretical framework for research in particle physics as well as in many areas of condensed matter physics. No wonder the community has been waiting with anticipation for Weinberg's exposition of the subject in the form of a two-volume textbook - the more so since, despite the existence of many textbooks, few of them are written with the insight and detail that are needed for a thorough understanding. The community will not be disappointed, at least on the basis of this first volume - Volume 2 is due to appear next year. Volume 1 is 600 pages of meticulous exposition of the fundamentals of the subject, starting from a historical introduction and the canonical formulation of quantum field theory to modern path integral methods applied to the quantization of electrodynamics and a first discussion of renormaiization. In addition to a superb treatment of all the conventional topics there are numerous sections covering areas that are not normally emphasized, such as the subject of field redefinitions, higher-rank tensor fields and an unusually clear and thorough treatment of infrared effects. This is only the basics - Volume 2 promises to develop the subjects at the cutting edge of modern research such as Yang-Mills theory, the renormalization group, symmetry
Bookshelf (The Quantum Theory of Fields, La lumiere des neutrinos)
International Nuclear Information System (INIS)
Anon.
1995-01-01
The Quantum Theory of Fields Volume 1: Foundations by Steven Weinberg, Cambridge University Press, 1995: Steven Weinberg is celebrated for his many contributions to quantum field theory and its applications to elementary particle physics - most notably, for developing the electroweak theory, the unified model of the electromagnetic and weak forces that forms part of the Standard Model that has explained essentially all accelerator data on the behaviour of elementary particles. This is the culmination of the developments in quantum field theory that started in the early days of quantum mechanics and came to maturity with the development of quantum electrodynamics in the late 1940s. Quantum field theory is the basic theoretical framework for research in particle physics as well as in many areas of condensed matter physics. No wonder the community has been waiting with anticipation for Weinberg's exposition of the subject in the form of a two-volume textbook - the more so since, despite the existence of many textbooks, few of them are written with the insight and detail that are needed for a thorough understanding. The community will not be disappointed, at least on the basis of this first volume - Volume 2 is due to appear next year. Volume 1 is 600 pages of meticulous exposition of the fundamentals of the subject, starting from a historical introduction and the canonical formulation of quantum field theory to modern path integral methods applied to the quantization of electrodynamics and a first discussion of renormaiization. In addition to a superb treatment of all the conventional topics there are numerous sections covering areas that are not normally emphasized, such as the subject of field redefinitions, higher-rank tensor fields and an unusually clear and thorough treatment of infrared effects. This is only the basics - Volume 2 promises to develop the subjects at the cutting edge of modern research such as Yang-Mills theory, the renormalization group
Introduction to conformal field theory and string theory
International Nuclear Information System (INIS)
Dixon, L.J.
1989-12-01
These lectures are meant to provide a brief introduction to conformal field theory (CFT) and string theory for those with no prior exposure to the subjects. There are many excellent reviews already available, and most of these go in to much more detail than I will be able to here. 52 refs., 11 figs
Path integral quantization of parametrized field theory
International Nuclear Information System (INIS)
Varadarajan, Madhavan
2004-01-01
Free scalar field theory on a flat spacetime can be cast into a generally covariant form known as parametrized field theory in which the action is a functional of the scalar field as well as the embedding variables which describe arbitrary, in general curved, foliations of the flat spacetime. We construct the path integral quantization of parametrized field theory in order to analyze issues at the interface of quantum field theory and general covariance in a path integral context. We show that the measure in the Lorentzian path integral is nontrivial and is the analog of the Fradkin-Vilkovisky measure for quantum gravity. We construct Euclidean functional integrals in the generally covariant setting of parametrized field theory using key ideas of Schleich and show that our constructions imply the existence of nonstandard 'Wick rotations' of the standard free scalar field two-point function. We develop a framework to study the problem of time through computations of scalar field two-point functions. We illustrate our ideas through explicit computation for a time independent (1+1)-dimensional foliation. Although the problem of time seems to be absent in this simple example, the general case is still open. We discuss our results in the contexts of the path integral formulation of quantum gravity and the canonical quantization of parametrized field theory
Light-front quantization of field theory
Energy Technology Data Exchange (ETDEWEB)
Srivastava, Prem P. [Universidade do Estado, Rio de Janeiro, RJ (Brazil). Inst. de Fisica]|[Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)
1996-07-01
Some basic topics in Light-Front (LF) quantized field theory are reviewed. Poincare algebra and the LF spin operator are discussed. The local scalar field theory of the conventional framework is shown to correspond to a non-local Hamiltonian theory on the LF in view of the constraint equations on the phase space, which relate the bosonic condensates to the non-zero modes. This new ingredient is useful to describe the spontaneous symmetry breaking on the LF. The instability of the symmetric phase in two dimensional scalar theory when the coupling constant grows is shown in the LF theory renormalized to one loop order. Chern-Simons gauge theory, regarded to describe excitations with fractional statistics, is quantized in the light-cone gauge and a simple LF Hamiltonian obtained which may allow us to construct renormalized theory of anyons. (author). 20 refs.
Light-front quantization of field theory
International Nuclear Information System (INIS)
Srivastava, Prem P.
1996-07-01
Some basic topics in Light-Front (LF) quantized field theory are reviewed. Poincare algebra and the LF spin operator are discussed. The local scalar field theory of the conventional framework is shown to correspond to a non-local Hamiltonian theory on the LF in view of the constraint equations on the phase space, which relate the bosonic condensates to the non-zero modes. This new ingredient is useful to describe the spontaneous symmetry breaking on the LF. The instability of the symmetric phase in two dimensional scalar theory when the coupling constant grows is shown in the LF theory renormalized to one loop order. Chern-Simons gauge theory, regarded to describe excitations with fractional statistics, is quantized in the light-cone gauge and a simple LF Hamiltonian obtained which may allow us to construct renormalized theory of anyons. (author). 20 refs
Solving topological field theories on mapping tori
International Nuclear Information System (INIS)
Blau, M.; Jermyn, I.; Thompson, G.
1996-05-01
Using gauge theory and functional integral methods, we derive concrete expressions for the partition functions of BF theory and the U(1 modul 1) model of Rozansky and Saleur on Σ x S 1 , both directly and using equivalent two-dimensional theories. We also derive the partition function on a certain non-abelian generalization of the U(1 modul 1) model on mapping tori and hence obtain explicit expressions for the Ray-Singer torsion on these manifolds. Extensions of these results to BF and Chern-Simons theories on mapping tori are also discussed. The topological field theory actions of the equivalent two- dimensional theories we find have the interesting property of depending explicitly on the diffeomorphism defining the mapping torus while the quantum field theory is sensitive only to its isomorphism class defining the mapping torus as a smooth manifold. (author). 20 refs
Field theory of relativistic strings: I. Trees
International Nuclear Information System (INIS)
Kaku, M.; Kikkawa, K.
1985-01-01
The authors present an entirely new kind of field theory, a field theory quantized not at space-time points, but quantized along an extended set of multilocal points on a string. This represents a significant departure from the usual quantum field theory, whose free theory represents a definite set of elementary particles, because the field theory on relativistic strings can accommodate an infinite set of linearly rising Regge trajectories. In this paper, the authors (1) present canonical quantization and the Green's function of the free string, (2) introduce three-string interactions, (3) resolve the question of multiple counting, (4) complete the counting arguments for all N-point trees, and (5) introduce four-string interactions which yield a Yang-Mills structure when the zero-slope limit is taken
International Nuclear Information System (INIS)
Georgi, H.
1980-01-01
Unified gauge theories such as SU(5) of particle interactions are built on the colour SU(3) and SU(2) x U(1) gauge theories which apparently describe strong and weak and electromagnetic interactions at distances as small as 10 -16 cm. In this article the classical reasons for going beyond SU(3)xSU(2)xU(1) to a fully unified theory such as SU(5) are reviewed, and a new reason formulated. A class of imaginary worlds similar to our own is considered and it is shown that unification is possible only in ours. This suggests that the low-energy interactions are unique in that they are constructed to make unification possible. (author)
Moduli spaces of unitary conformal field theories
International Nuclear Information System (INIS)
Wendland, K.
2000-08-01
We investigate various features of moduli spaces of unitary conformal field theories. A geometric characterization of rational toroidal conformal field theories in arbitrary dimensions is presented and discussed in relation to singular tori and those with complex multiplication. We study the moduli space M 2 of unitary two-dimensional conformal field theories with central charge c = 2. All the 26 non-exceptional non-isolated irreducible components of M 2 are constructed that may be obtained by an orbifold procedure from toroidal theories. The parameter spaces and partition functions are calculated explicitly. All multicritical points and lines are determined, such that all but three of these 26 components are directly or indirectly connected to the space of toroidal theories in M 2 . Relating our results to those by Dixon, Ginsparg, Harvey on the classification of c = 3/2 superconformal field theories, we give geometric interpretations to all non-isolated orbifolds discussed by them and correct their statements on multicritical points within the moduli space of c = 3/2 superconformal field theories. In the main part of this work, we investigate the moduli space M of N = (4, 4) superconformal field theories with central charge c = 6. After a slight emendation of its global description we give generic partition functions for models contained in M. We explicitly determine the locations of various known models in the component of M associated to K3 surfaces
Mass corrections in string theory and lattice field theory
International Nuclear Information System (INIS)
Del Debbio, Luigi; Kerrane, Eoin; Russo, Rodolfo
2009-01-01
Kaluza-Klein (KK) compactifications of higher-dimensional Yang-Mills theories contain a number of 4-dimensional scalars corresponding to the internal components of the gauge field. While at tree level the scalar zero modes are massless, it is well known that quantum corrections make them massive. We compute these radiative corrections at 1 loop in an effective field theory framework, using the background field method and proper Schwinger-time regularization. In order to clarify the proper treatment of the sum over KK modes in the effective field theory approach, we consider the same problem in two different UV completions of Yang-Mills: string theory and lattice field theory. In both cases, when the compactification radius R is much bigger than the scale of the UV completion (R>>√(α ' ), a), we recover a mass renormalization that is independent of the UV scale and agrees with the one derived in the effective field theory approach. These results support the idea that the value of the mass corrections is, in this regime, universal for any UV completion that respects locality and gauge invariance. The string analysis suggests that this property holds also at higher loops. The lattice analysis suggests that the mass of the adjoint scalars appearing in N=2, 4 super Yang-Mills is highly suppressed, even if the lattice regularization breaks all supersymmetries explicitly. This is due to an interplay between the higher-dimensional gauge invariance and the degeneracy of bosonic and fermionic degrees of freedom.
de Albuquerque, Douglas F.; Fittipaldi, I. P.
1994-05-01
A unified effective-field renormalization-group framework (EFRG) for both quenched bond- and site-diluted Ising models is herein developed by extending recent works. The method, as in the previous works, follows up the same strategy of the mean-field renormalization-group scheme (MFRG), and is achieved by introducing an alternative way for constructing classical effective-field equations of state, based on rigorous Ising spin identities. The concentration dependence of the critical temperature, Tc(p), and the critical concentrations of magnetic atoms, pc, at which the transition temperature goes to zero, are evaluated for several two- and three-dimensional lattice structures. The obtained values of Tc and pc and the resulting phase diagrams for both bond and site cases are much more accurate than those estimated by the standard MFRG approach. Although preserving the same level of simplicity as the MFRG, it is shown that the present EFRG method, even by considering its simplest size-cluster version, provides results that correctly distinguishes those lattices that have the same coordination number, but differ in dimensionality or geometry.
Magnetic charge in an octonionic field theory
International Nuclear Information System (INIS)
Lassig, C.C.; Jashi, G.C.
1996-01-01
The violation of the Jacobi identity by the presence of magnetic charge is accommodated by using an explicitly nonassociative theory of octonionic fields. Lagrangian and Hamiltonian formalisms are constructed, and issues of the quantisation discussed. Finally an extension of these concepts to string theory is contemplated. The two main problems that seems to arise in this octonionic field theory are the difficulty of constructing an appropriate action to suit the desired equations of motion, and the failure to complete a Hamiltonian formalism and hence quantize the theory. 8 refs
High energy approximations in quantum field theory
International Nuclear Information System (INIS)
Orzalesi, C.A.
1975-01-01
New theoretical methods in hadron physics based on a high-energy perturbation theory are discussed. The approximated solutions to quantum field theory obtained by this method appear to be sufficiently simple and rich in structure to encourage hadron dynamics studies. Operator eikonal form for field - theoretic Green's functions is derived and discussion is held on how the eikonal perturbation theory is to be renormalized. This method is extended to massive quantum electrodynamics of scalar charged bosons. Possible developments and applications of this theory are given [pt
Playing with QCD I: effective field theories
International Nuclear Information System (INIS)
Fraga, Eduardo S.
2009-01-01
The building blocks of hadrons are quarks and gluons, although color is confined into singlet states. QCD is believed to be the fundamental theory of strong interactions. Its asymptotically free nature puts the vacuum out of reach for perturbation theory. The Lagrangian of QCD and the Feynman rules associated were built by using the Gauge Principle, starting from the quark matter fields and obtaining gluons as connections. A simpler, and sometimes necessary or complementary, approach is provided by effective field theories or effective models, especially when one has to deal with the nonperturbative sector of the theory. (author)
Abelian gauge theories with tensor gauge fields
International Nuclear Information System (INIS)
Kapuscik, E.
1984-01-01
Gauge fields of arbitrary tensor type are introduced. In curved space-time the gravitational field serves as a bridge joining different gauge fields. The theory of second order tensor gauge field is developed on the basis of close analogy to Maxwell electrodynamics. The notion of tensor current is introduced and an experimental test of its detection is proposed. The main result consists in a coupled set of field equations representing a generalization of Maxwell theory in which the Einstein equivalence principle is not satisfied. (author)
Darrason, Marie
2013-08-01
In the contemporary biomedical literature, every disease is considered genetic. This extension of the concept of genetic disease is usually interpreted either in a trivial or genocentrist sense, but it is never taken seriously as the expression of a genetic theory of disease. However, a group of French researchers defend the idea of a genetic theory of infectious diseases. By identifying four common genetic mechanisms (Mendelian predisposition to multiple infections, Mendelian predisposition to one infection, and major gene and polygenic predispositions), they attempt to unify infectious diseases from a genetic point of view. In this article, I analyze this explicit example of a genetic theory, which relies on mechanisms and is applied only to a specific category of diseases, what we call "a regional genetic theory." I have three aims: to prove that a genetic theory of disease can be devoid of genocentrism, to consider the possibility of a genetic theory applied to every disease, and to introduce two hypotheses about the form that such a genetic theory could take by distinguishing between a genetic theory of diseases and a genetic theory of Disease. Finally, I suggest that network medicine could be an interesting framework for a genetic theory of Disease.
Dynamical Mean Field Approximation Applied to Quantum Field Theory
Akerlund, Oscar; Georges, Antoine; Werner, Philipp
2013-12-04
We apply the Dynamical Mean Field (DMFT) approximation to the real, scalar phi^4 quantum field theory. By comparing to lattice Monte Carlo calculations, perturbation theory and standard mean field theory, we test the quality of the approximation in two, three, four and five dimensions. The quantities considered in these tests are the critical coupling for the transition to the ordered phase and the associated critical exponents nu and beta. We also map out the phase diagram in four dimensions. In two and three dimensions, DMFT incorrectly predicts a first order phase transition for all bare quartic couplings, which is problematic, because the second order nature of the phase transition of lattice phi^4-theory is crucial for taking the continuum limit. Nevertheless, by extrapolating the behaviour away from the phase transition, one can obtain critical couplings and critical exponents. They differ from those of mean field theory and are much closer to the correct values. In four dimensions the transition is sec...
Effective theories of single field inflation when heavy fields matter
Achucarro, Ana; Hardeman, Sjoerd; Palma, Gonzalo A; Patil, Subodh P
2012-01-01
We compute the low energy effective field theory (EFT) expansion for single-field inflationary models that descend from a parent theory containing multiple other scalar fields. By assuming that all other degrees of freedom in the parent theory are sufficiently massive relative to the inflaton, it is possible to derive an EFT valid to arbitrary order in perturbations, provided certain generalized adiabaticity conditions are respected. These conditions permit a consistent low energy EFT description even when the inflaton deviates off its adiabatic minimum along its slowly rolling trajectory. By generalizing the formalism that identifies the adiabatic mode with the Goldstone boson of this spontaneously broken time translational symmetry prior to the integration of the heavy fields, we show that this invariance of the parent theory dictates the entire non-perturbative structure of the descendent EFT. The couplings of this theory can be written entirely in terms of the reduced speed of sound of adiabatic perturbat...
Quantum field theory on toroidal topology: Algebraic structure and applications
Energy Technology Data Exchange (ETDEWEB)
Khanna, F.C., E-mail: khannaf@uvic.ca [Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2 (Canada); TRIUMF, Vancouver, BC, V6T 2A3 (Canada); Malbouisson, A.P.C., E-mail: adolfo@cbpf.br [Centro Brasileiro de Pesquisas Físicas/MCT, 22290-180, Rio de Janeiro, RJ (Brazil); Malbouisson, J.M.C., E-mail: jmalboui@ufba.br [Instituto de Física, Universidade Federal da Bahia, 40210-340, Salvador, BA (Brazil); Santana, A.E., E-mail: asantana@unb.br [International Center for Condensed Matter Physics, Instituto de Física, Universidade de Brasília, 70910-900, Brasília, DF (Brazil)
2014-06-01
The development of quantum theory on a torus has a long history, and can be traced back to the 1920s, with the attempts by Nordström, Kaluza and Klein to define a fourth spatial dimension with a finite size, being curved in the form of a torus, such that Einstein and Maxwell equations would be unified. Many developments were carried out considering cosmological problems in association with particle physics, leading to methods that are useful for areas of physics, in which size effects play an important role. This interest in finite size effect systems has been increasing rapidly over the last decades, due principally to experimental improvements. In this review, the foundations of compactified quantum field theory on a torus are presented in a unified way, in order to consider applications in particle and condensed matter physics. The theory on a torus Γ{sub D}{sup d}=(S{sup 1}){sup d}×R{sup D−d} is developed from a Lie-group representation and c{sup ∗}-algebra formalisms. As a first application, the quantum field theory at finite temperature, in its real- and imaginary-time versions, is addressed by focusing on its topological structure, the torus Γ{sub 4}{sup 1}. The toroidal quantum-field theory provides the basis for a consistent approach of spontaneous symmetry breaking driven by both temperature and spatial boundaries. Then the superconductivity in films, wires and grains are analyzed, leading to some results that are comparable with experiments. The Casimir effect is studied taking the electromagnetic and Dirac fields on a torus. In this case, the method of analysis is based on a generalized Bogoliubov transformation, that separates the Green function into two parts: one is associated with the empty space–time, while the other describes the impact of compactification. This provides a natural procedure for calculating the renormalized energy–momentum tensor. Self interacting four-fermion systems, described by the Gross–Neveu and Nambu
Quantum field theory on toroidal topology: Algebraic structure and applications
International Nuclear Information System (INIS)
Khanna, F.C.; Malbouisson, A.P.C.; Malbouisson, J.M.C.; Santana, A.E.
2014-01-01
The development of quantum theory on a torus has a long history, and can be traced back to the 1920s, with the attempts by Nordström, Kaluza and Klein to define a fourth spatial dimension with a finite size, being curved in the form of a torus, such that Einstein and Maxwell equations would be unified. Many developments were carried out considering cosmological problems in association with particle physics, leading to methods that are useful for areas of physics, in which size effects play an important role. This interest in finite size effect systems has been increasing rapidly over the last decades, due principally to experimental improvements. In this review, the foundations of compactified quantum field theory on a torus are presented in a unified way, in order to consider applications in particle and condensed matter physics. The theory on a torus Γ D d =(S 1 ) d ×R D−d is developed from a Lie-group representation and c ∗ -algebra formalisms. As a first application, the quantum field theory at finite temperature, in its real- and imaginary-time versions, is addressed by focusing on its topological structure, the torus Γ 4 1 . The toroidal quantum-field theory provides the basis for a consistent approach of spontaneous symmetry breaking driven by both temperature and spatial boundaries. Then the superconductivity in films, wires and grains are analyzed, leading to some results that are comparable with experiments. The Casimir effect is studied taking the electromagnetic and Dirac fields on a torus. In this case, the method of analysis is based on a generalized Bogoliubov transformation, that separates the Green function into two parts: one is associated with the empty space–time, while the other describes the impact of compactification. This provides a natural procedure for calculating the renormalized energy–momentum tensor. Self interacting four-fermion systems, described by the Gross–Neveu and Nambu–Jona-Lasinio models, are considered. Then
The algebra of space-time as basis of a quantum field theory of all fermions and interactions
International Nuclear Information System (INIS)
Wolf, A.K.
2005-01-01
In this thesis a construction of a grand unified theory on the base of algebras of vector fields on a Riemannian space-time is described. Hereby from the vector and covector fields a Clifford-geometrical algebra is generated. (HSI)
Introduction to classical and quantum field theory
International Nuclear Information System (INIS)
Ng, Tai-Kai
2009-01-01
This is the first introductory textbook on quantum field theory to be written from the point of view of condensed matter physics. As such, it presents the basic concepts and techniques of statistical field theory, clearly explaining how and why they are integrated into modern quantum (and classical) field theory, and includes the latest developments. Written by an expert in the field, with a broad experience in teaching and training, it manages to present such substantial topics as phases and phase transitions or solitons and instantons in an accessible and concise way. Divided into three parts, the first part covers fundamental physics and the mathematics background needed by students in order to enter the field, while the second part introduces more advanced concepts and techniques. Part III discusses applications of quantum field theory to a few basic problems. The emphasis here lies on how modern concepts of quantum field theory are embedded in these approaches, and also on the limitations of standard quantum field theory techniques in facing, 'real' physics problems. Throughout there are numerous end-of-chapter problems, and a free solutions manual is available for lecturers. (orig.)
Polynomial field theories and nonintegrability
International Nuclear Information System (INIS)
Euler, N.; Steeb, W.H.; Cyrus, K.
1990-01-01
The nonintegrability of the nonlinear field equation v ηξ = v 3 is studied with the help of the Painleve test. The condition at the resonance is discussed in detail. Particular solutions are given. (orig.)
Towards chaos criterion in quantum field theory
Kuvshinov, V. I.; Kuzmin, A. V.
2002-01-01
Chaos criterion for quantum field theory is proposed. Its correspondence with classical chaos criterion in semi-classical regime is shown. It is demonstrated for real scalar field that proposed chaos criterion can be used to investigate stability of classical solutions of field equations.
Effective field theory for NN interactions
International Nuclear Information System (INIS)
Tran Duy Khuong; Vo Hanh Phuc
2003-01-01
The effective field theory of NN interactions is formulated and the power counting appropriate to this case is reviewed. It is more subtle than in most effective field theories since in the limit that the S-wave NN scattering lengths go to infinity. It is governed by nontrivial fixed point. The leading two body terms in the effective field theory for nucleon self interactions are scale invariant and invariant under Wigner SU(4) spin-isospin symmetry in this limit. Higher body terms with no derivatives (i.e. three and four body terms) are automatically invariant under Wigner symmetry. (author)
Time independent mean-field theory
International Nuclear Information System (INIS)
Negele, J.W.
1980-02-01
The physical and theoretical motivations for the time-dependent mean-field theory are presented, and the successes and limitations of the time-dependent Hartree-Fock initial-vaue problem are reviewed. New theoretical developments are described in the treatment of two-body correlations and the formulation of a quantum mean-field theory of large-amplitude collective motion and tunneling decay. Finally, the mean-field theory is used to obtain new insights into the phenomenon of pion condensation in finite nuclei. 18 figures
Quantum Field Theory at non zero temperature
International Nuclear Information System (INIS)
Alvarez-Estrada, R.
1989-01-01
The formulations of the Φ 4 Quantum Field Theory and of Quantum Electrodynamics in I+d dimensions (d spatial dimensions) at non-zero temperature are reviewed. The behaviours of all those theories in the regime of large distances and high temperatures are surveyed. Only results are reported, all technicalities being omitted. The leading high-temperature contributions to correlation functions, to all perturbative orders, in those theories turn out to be also given by simpler theories, having much milder (superrenormalizable) ultraviolet behaviour and special mass renormalizations. In particular, the triviality/non-triviality issue for the Φ 4 theory in 1+3 dimensions is discussed briefly. (Author)
Relating c 0 conformal field theories
International Nuclear Information System (INIS)
Guruswamy, S.; Ludwig, A.W.W.
1998-03-01
A 'canonical mapping' is established between the c = -1 system of bosonic ghosts at the c = 2 complex scalar theory and, a similar mapping between the c = -2 system of fermionic ghosts and the c = 1 Dirac theory. The existence of this mapping is suggested by the identity of the characters of the respective theories. The respective c 0 theories share the same space of states, whereas the spaces of conformal fields are different. Upon this mapping from their c 0) complex scalar and the Dirac theories inherit hidden nonlocal sl(2) symmetries. (author)
Conformal techniques in string theory and string field theory
International Nuclear Information System (INIS)
Giddings, S.B.
1987-01-01
The application of some conformal and Riemann surface techniques to string theory and string field theory is described. First a brief review of Riemann surface techniques and of the Polyakov approach to string theory is presented. This is followed by a discussion of some features of string field theory and of its Feynman rules. Specifically, it is shown that the Feynman diagrams for Witten's string field theory respect modular invariance, and in particular give a triangulation of moduli space. The Polyakov formalism is then used to derive the Feynman rules that should follow from this theory upon gauge-fixing. It should also be possible to apply this derivation to deduce the Feynman rules for other gauge-fixed string field theories. Following this, Riemann surface techniques are turned to the problem of proving the equivalence of the Polyakov and light-cone formalisms. It is first shown that the light-cone diagrams triangulate moduli space. Then the Polyakov measure is worked out for these diagrams, and shown to equal that deduced from the light-cone gauge fixed formalism. Also presented is a short description of the comparison of physical states in the two formalisms. The equivalence of the two formalisms in particular constitutes a proof of the unitarity of the Polyakov framework for the closed bosonic string
Blockspin transformations for finite temperature field theories with gauge fields
International Nuclear Information System (INIS)
Kerres, U.
1996-08-01
A procedure is proposed to study quantum field theories at zero or at finite temperature by a sequence of real space renormalization group (RG) or blockspin transformations. They transform to effective theories on coarser and coarser lattices. The ultimate aim is to compute constraint effective potentials, i.e. the free energy as a function of suitable order parameters. From the free energy one can read off the thermodynamic behaviour of the theory, in particular the existence and nature of phase transitions. In a finite temperature field theory one begins with either one or a sequence of transformations which transform the original theory into an effective theory on a three-dimensional lattice. Its effective action has temperature dependent coefficients. Thereafter one may proceed with further blockspin transformations of the three-dimensional theory. Assuming a finite volume, this can in principle be continued until one ends with a lattice with a single site. Its effective action is the constraint effective potential. In each RG-step, an integral over the high frequency part of the field, also called the fluctuation field, has to be performed. This is done by perturbation theory. It requires the knowledge of bare fluctuation field propagators and of interpolation operators which enter into the vertices. A detailed examination of these quantities is presented for scalar fields, abelian gauge fields and for Higgs fields, finite temperature is admitted. The lattice perturbation theory is complicated because the bare lattice propagators are complicated. This is due to a partial loss of translation invariance in each step. Therefore the use of translation invariant cutoffs in place of a lattice is also discussed. In case of gauge fields this is only possible as a continuum version of the blockspin method. (orig.)
Conformal field theories and tensor categories. Proceedings
Energy Technology Data Exchange (ETDEWEB)
Bai, Chengming [Nankai Univ., Tianjin (China). Chern Institute of Mathematics; Fuchs, Juergen [Karlstad Univ. (Sweden). Theoretical Physics; Huang, Yi-Zhi [Rutgers Univ., Piscataway, NJ (United States). Dept. of Mathematics; Kong, Liang [Tsinghua Univ., Beijing (China). Inst. for Advanced Study; Runkel, Ingo; Schweigert, Christoph (eds.) [Hamburg Univ. (Germany). Dept. of Mathematics
2014-08-01
First book devoted completely to the mathematics of conformal field theories, tensor categories and their applications. Contributors include both mathematicians and physicists. Some long expository articles are especially suitable for beginners. The present volume is a collection of seven papers that are either based on the talks presented at the workshop ''Conformal field theories and tensor categories'' held June 13 to June 17, 2011 at the Beijing International Center for Mathematical Research, Peking University, or are extensions of the material presented in the talks at the workshop. These papers present new developments beyond rational conformal field theories and modular tensor categories and new applications in mathematics and physics. The topics covered include tensor categories from representation categories of Hopf algebras, applications of conformal field theories and tensor categories to topological phases and gapped systems, logarithmic conformal field theories and the corresponding non-semisimple tensor categories, and new developments in the representation theory of vertex operator algebras. Some of the papers contain detailed introductory material that is helpful for graduate students and researchers looking for an introduction to these research directions. The papers also discuss exciting recent developments in the area of conformal field theories, tensor categories and their applications and will be extremely useful for researchers working in these areas.
Conformal field theories and tensor categories. Proceedings
International Nuclear Information System (INIS)
Bai, Chengming; Fuchs, Juergen; Huang, Yi-Zhi; Kong, Liang; Runkel, Ingo; Schweigert, Christoph
2014-01-01
First book devoted completely to the mathematics of conformal field theories, tensor categories and their applications. Contributors include both mathematicians and physicists. Some long expository articles are especially suitable for beginners. The present volume is a collection of seven papers that are either based on the talks presented at the workshop ''Conformal field theories and tensor categories'' held June 13 to June 17, 2011 at the Beijing International Center for Mathematical Research, Peking University, or are extensions of the material presented in the talks at the workshop. These papers present new developments beyond rational conformal field theories and modular tensor categories and new applications in mathematics and physics. The topics covered include tensor categories from representation categories of Hopf algebras, applications of conformal field theories and tensor categories to topological phases and gapped systems, logarithmic conformal field theories and the corresponding non-semisimple tensor categories, and new developments in the representation theory of vertex operator algebras. Some of the papers contain detailed introductory material that is helpful for graduate students and researchers looking for an introduction to these research directions. The papers also discuss exciting recent developments in the area of conformal field theories, tensor categories and their applications and will be extremely useful for researchers working in these areas.
Metric quantum field theory: A preliminary look
International Nuclear Information System (INIS)
Watson, W.N.
1988-01-01
Spacetime coordinates are involved in uncertainty relations; spacetime itself appears to exhibit curvature. Could the continua associated with field variables exhibit curvature? This question, as well as the ideas that (a) difficulties with quantum theories of gravitation may be due to their formulation in an incorrect analogy with other quantum field theories, (b) spacetime variables should not be any more basic than others for describing physical phenomena, and (c) if field continua do not exhibit curvature, the reasons would be of interest, motivated the formulation of a theory of variable curvature and torsion in the electromagnetic four-potential's reciprocal space. Curvature and torsion equation completely analogous to those for a gauge theory of gravitation (the Einstein-Cartan-Sciama-Kibble theory) are assumed for this continuum. The interaction-Hamiltonian density of this theory, to a first approximation, implies that in addition to the Maxwell-Dirac field interaction of ordinary quantum electrodynamics, there should also be an interaction between Dirac-field vector and pseudovector currents unmediated by photons, as well as other interactions involving two or three Dirac-field currents interacting with the Maxwell field at single spacetime events. Calculations expressing Bhabha-scattering cross sections for incident beams with parallel spins differ from those of unmodified quantum electrodynamics by terms of first order in the gravitational constant of the theory, but the corresponding cross section for unpolarized incident beams differs from that of the unmodified theory only by terms of higher order in that constant. Undesirable features of the present theory include its nonrenormalizability, the obscurity of the meaning of its inverse field operator, and its being based on electrodynamics rather than electroweak dynamics
Thermo field dynamics: a quantum field theory at finite temperature
International Nuclear Information System (INIS)
Mancini, F.; Marinaro, M.; Matsumoto, H.
1988-01-01
A brief review of the theory of thermo field dynamics (TFD) is presented. TFD is introduced and developed by Umezawa and his coworkers at finite temperature. The most significant concept in TFD is that of a thermal vacuum which satisfies some conditions denoted as thermal state conditions. The TFD permits to reformulate theories at finite temperature. There is no need in an additional principle to determine particle distributions at T ≠ 0. Temperature and other macroscopic parameters are introduced in the definition of the vacuum state. All operator formalisms used in quantum field theory at T=0 are preserved, although the field degrees of freedom are doubled. 8 refs
Factorization algebras in quantum field theory
Costello, Kevin
2017-01-01
Factorization algebras are local-to-global objects that play a role in classical and quantum field theory which is similar to the role of sheaves in geometry: they conveniently organize complicated information. Their local structure encompasses examples like associative and vertex algebras; in these examples, their global structure encompasses Hochschild homology and conformal blocks. In this first volume, the authors develop the theory of factorization algebras in depth, but with a focus upon examples exhibiting their use in field theory, such as the recovery of a vertex algebra from a chiral conformal field theory and a quantum group from Abelian Chern-Simons theory. Expositions of the relevant background in homological algebra, sheaves and functional analysis are also included, thus making this book ideal for researchers and graduates working at the interface between mathematics and physics.