WorldWideScience

Sample records for unicellular marine algae

  1. Using the marine unicellular algae in biological monitoring

    OpenAIRE

    Kapkov V. I.; Shoshina E. V.; Belenikina O. A.

    2017-01-01

    The possibility of using marine unicellular algae from natural plankton community in biomonitoring of pollution by heavy metals has been investigated. Algae of different taxa from the Mediterranean Sea have been allocated to culture. In the laboratory the culture conditions – i. e. growth medium, temperature, photoperiod, level of artificial light and initial density – have been selected for every species. The impact of heavy metals (Hg, Cd, Cu, Pb) in the form of chloride salts on the growth...

  2. Using the marine unicellular algae in biological monitoring

    Directory of Open Access Journals (Sweden)

    Kapkov V. I.

    2017-06-01

    Full Text Available The possibility of using marine unicellular algae from natural plankton community in biomonitoring of pollution by heavy metals has been investigated. Algae of different taxa from the Mediterranean Sea have been allocated to culture. In the laboratory the culture conditions – i. e. growth medium, temperature, photoperiod, level of artificial light and initial density – have been selected for every species. The impact of heavy metals (Hg, Cd, Cu, Pb in the form of chloride salts on the growth of axenic algae culture has been studied in the modelling experiments. The unicellular marine algae have a very short life cycle, therefore it is possible to use them in the experiments of studying the effect of anthropogenic factors at cellular and population levels on the test-object. With biomonitoring pollution of marine environment by heavy metals and others dangerous toxicants, the major indicators of algae community condition are the cellular cycle and the condition of the photosynthetic apparatus of the cell. The subsequent lysis of cells under the influence of heavy metals leads to the excretion of secondary metabolites which can essentially affect the metal toxicity. The established scales of threshold and lethal concentration of heavy metals for algae of different taxon make it possible to use the ratio of sensitive and resistant species to heavy metals as biological markers when forecasting ecological consequences of pollution of the marine environment by heavy metals. Distinctions in the resistance of different taxon to heavy metals can result in implementing the strategy of selection of test-objects depending on the purposes of the research.

  3. Contribution of arsenic species in unicellular algae to the cycling of arsenic in marine ecosystems.

    Science.gov (United States)

    Duncan, Elliott G; Maher, William A; Foster, Simon D

    2015-01-06

    This review investigates the arsenic species produced by and found in marine unicellular algae to determine if unicellular algae contribute to the formation of arsenobetaine (AB) in higher marine organisms. A wide variety of arsenic species have been found in marine unicellular algae including inorganic species (mainly arsenate--As(V)), methylated species (mainly dimethylarsenate (DMA)), arsenoribosides (glycerol, phosphate, and sulfate) and metabolites (dimethylarsenoethanol (DMAE)). Subtle differences in arsenic species distributions exist between chlorophyte and heterokontophyte species with As(V) commonly found in water-soluble cell fractions of chlorophyte species, while DMA is more common in heterokontophyte species. Additionally, different arsenoriboside species are found in each phyla with glycerol and phosphate arsenoribosides produced by chlorophytes, whereas glycerol, phosphate, and sulfate arsenoribosides are produced by heterokontophytes, which is similar to existing data for marine macro-algae. Although arsenoribosides are the major arsenic species in many marine unicellular algal species, AB has not been detected in unicellular algae which supports the hypothesis that AB is formed in marine animals via the ingestion and further metabolism of arsenoribosides. The observation of significant DMAE concentrations in some unicellular algal cultures suggests that unicellular algae-based detritus contains arsenic species that can be further metabolized to form AB in higher marine organisms. Future research establishing how environmental variability influences the production of arsenic species by marine unicellular algae and what effect this has on arsenic cycling within marine food webs is essential to clarify the role of these organisms in marine arsenic cycling.

  4. Radiobiological and radioecological studies with the unicellular marine algae Acetabularia, Batophora and Dunaliella

    International Nuclear Information System (INIS)

    Bonotto, S.; Luttke, A.; Strack, S.; Kirchmann, R.; Hoursiangou, D.; Puiseux-Dao, S.

    1980-01-01

    The biological effects of X-rays on the unicellular marine algae Acetabularia mediterranea, Acetabularia peniculus and Batophora oerstedii were studied. Increasing doses of X-rays (0 to 150 kr) were shown to interfere with the main morphogenetic processes of these algae. Labelling experiments with 3 H-thymidine, 3 H-uridine and 3 H-leucine showed that X-rays (50 kr) provoked a strong reduction of DNA, RNA and protein synthesis in the chloroplasts of A. mediterranea. Radioecological studies were also performed showing that Acetabularia cells, grown in the presence of HTO, incorporate a significant amount of 3 H in the total nucleic acid and protein fraction. However, 3 H supplied to Acetabularia in the form of tritiated water was not accumulated. When organically bound 3 H was supplied to Acetabularia or to Dunaliella, a selective accumulation of some substances was observed. Thus the results of this study illustrate the impact of radiation on living organisms and the biological behaviour of 3 H in the aquatic system. (UK)

  5. Selective accumulation of organically bound tritium in the marine unicellular algae Dunaliella bioculata and Acetabularia mediterranea

    International Nuclear Information System (INIS)

    Strack, S.; Kirchmann, R.; Luettke, A.; Bonotto, S.

    1983-01-01

    The marine unicellular algae Dunaliella bioculata and Acetabularia mediterranea have been used to assess the importance of the radioactive contamination by 3 H bound to different organic molecules. We have studied the uptake of 10 different tritiated substances, which are precursors for the cells' main macromolecules: thymidine-methyl- 3 H, adenine-2- 3 H, uridine-5- 3 H, L-leucine-4- 3 H, glycine-2- 3 H, L-arginine-3.4- 3 H, L-aspartic acid-2.3- 3 H, L-phenylalanine-2.3- 3 H, D-glucose-2- 3 H and D-glucose-6- 3 H. Under our experimental conditions, all the tritiated organic molecules are taken up by both algal species. Their intracellular concentration may reach that of the external medium. However, some molecules are selectively accumulated: adenine and leucine in Dunaliella, adenine, arginine and glucose in Acetabularia. Increasing concentrations of adenine and leucine, supplied to the cultures of Dunaliella seem to be without effect on the growth of the algae. (author)

  6. Screening for unicellular algae as possible bioassay organisms for monitoring marine water samples.

    Science.gov (United States)

    Millán de Kuhn, Rosmary; Streb, Christine; Breiter, Roman; Richter, Peter; Neesse, Thomas; Häder, Donat-Peter

    2006-08-01

    ECOTOX is an automatic early warning system to monitor potential pollution of freshwater, municipal or industrial waste waters or aquatic ecosystems. It is based on a real time image analysis of the motility and orientation parameters of the unicellular, photosynthetic flagellate Euglena gracilis. In order to widen the use of the device to marine habitats and saline waters nine marine flagellates were evaluated as putative bioassay organisms, viz. Dunaliella salina, Dunaliella viridis, Dunaliella bardawil, Prorocentrum minimum Kattegat, P. minimum Lissabon, Tetraselmis suecica, Heterocapsa triquetra, Gyrodinium dorsum and Cryptomonas maculata. Because of their slow growth the last three strains were excluded from further evaluation. Selection criteria were ease of culture, density of cell suspension, stability of motility and gravitactic orientation. The sensitivity toward toxins was tested using copper(II) ions. The instrument allows the user to automatically determine effect-concentration (EC) curves from which the EC(50) values can be calculated. For the interpretation of the EC curves a sigmoid logistic model was proposed which proved to be satisfactory for all tested strains. The inhibition of the motility was considered as the most appropriate movement parameter as an endpoint. The Dunaliella species had the lowest sensitivity to copper with EC(50) values of 220, 198 and 176 mg/L for D. salina, D. bardawil and D. viridis, respectively, followed by T. suecica with an EC(50) value of 40 mg/L. The Prorocentrum species were found to be the most sensitive with an EC(50) value of 13.5 mg/L for P. minimum Lissabon and 7.5 mg/L for P. minimum Kattegat.

  7. Life-cycle and genome of OtV5, a large DNA virus of the pelagic marine unicellular green alga Ostreococcus tauri.

    Directory of Open Access Journals (Sweden)

    Evelyne Derelle

    Full Text Available Large DNA viruses are ubiquitous, infecting diverse organisms ranging from algae to man, and have probably evolved from an ancient common ancestor. In aquatic environments, such algal viruses control blooms and shape the evolution of biodiversity in phytoplankton, but little is known about their biological functions. We show that Ostreococcus tauri, the smallest known marine photosynthetic eukaryote, whose genome is completely characterized, is a host for large DNA viruses, and present an analysis of the life-cycle and 186,234 bp long linear genome of OtV5. OtV5 is a lytic phycodnavirus which unexpectedly does not degrade its host chromosomes before the host cell bursts. Analysis of its complete genome sequence confirmed that it lacks expected site-specific endonucleases, and revealed the presence of 16 genes whose predicted functions are novel to this group of viruses. OtV5 carries at least one predicted gene whose protein closely resembles its host counterpart and several other host-like sequences, suggesting that horizontal gene transfers between host and viral genomes may occur frequently on an evolutionary scale. Fifty seven percent of the 268 predicted proteins present no similarities with any known protein in Genbank, underlining the wealth of undiscovered biological diversity present in oceanic viruses, which are estimated to harbour 200Mt of carbon.

  8. Use of Unicellular Algae for Evaluation of Potential Aquatic Contaminants

    Science.gov (United States)

    1981-05-01

    well as long term effects on specific water bodies such as lakes and groundwater basins. Both the hydrazine propellants and the alternative jet fuels... freshwater bioassays was S. capricornutum. Initial investigations of marine waters used Dunaliella tertiolecta as the test organism but the differences in...AFAMRL-TR-80-85 USE OF UNICELLUAR ALGAE FOR EVALUATION OF POTENTIAL AQUATIC CONTAMINANTS JAN SCHERFIG PETER S. DIXON CAROL A. JUSTICE ALBERTO ACEVEDO

  9. Homogentisate phytyltransferase from the unicellular green alga Chlamydomonas reinhardtii.

    Science.gov (United States)

    Gálvez-Valdivieso, Gregorio; Cardeñosa, Rosa; Pineda, Manuel; Aguilar, Miguel

    2015-09-01

    Homogentisate phytyltransferase (HPT) (EC 2.5.1.-) catalyzes the first committed step of tocopherol biosynthesis in all photosynthetic organisms. This paper presents the molecular characterization and expression analysis of HPT1 gene, and a study on the accumulation of tocopherols under different environmental conditions in the unicellular green alga Chlamydomonas reinhardtii. The Chlamydomonas HPT1 protein conserves all the prenylphosphate- and divalent cation-binding sites that are found in polyprenyltransferases and all the amino acids that are essential for its catalytic activity. Its hydrophobicity profile confirms that HPT is a membrane-bound protein. Chlamydomonas genomic DNA analysis suggests that HPT is encoded by a single gene, HPT1, whose promoter region contains multiple motifs related to regulation by jasmonate, abscisic acid, low temperature and light, and an ATCTA motif presents in genes involved in tocopherol biosynthesis and some photosynthesis-related genes. Expression analysis revealed that HPT1 is strongly regulated by dark and low-temperature. Under the same treatments, α-tocopherol increased in cultures exposed to darkness or heat, whereas γ-tocopherol did it in low temperature. The regulatory expression pattern of HPT1 and the changes of tocopherol abundance support the idea that different tocopherols play specific functions, and suggest a role for γ-tocopherol in the adaptation to growth under low-temperature. Copyright © 2015 Elsevier GmbH. All rights reserved.

  10. Persistence and proliferation of some unicellular algae in drinking ...

    African Journals Online (AJOL)

    Drinking water systems have a complex structure and are characterised by the absence of light, the presence of disinfectants and by low levels of nutrients. Several kinds of bacteria, protozoa, algae and fungi can be found in tap water. Little is known about the ecology of algae in drinking water systems, although their ...

  11. Variation in growth rate in a natural assemblage of unicellular green soil algae

    NARCIS (Netherlands)

    Koelewijn, H.P.; De la Guerie, P.; Bell, G.

    2001-01-01

    Unicellular, motile, phototropic green algae were extracted from soil samples taken at metre intervals along a 25-m transect in a wheat field. The vegetative growth of 61 randomly selected isolates (henceforth called spores) was measured in dark and light conditions, and at high and low nutrient

  12. Biosynthesis of 3-Dimethylsulfoniopropionate in Marine Algae

    National Research Council Canada - National Science Library

    Rhodes, David

    2000-01-01

    ...) in marine algae, including identification of intermediates and enzymes of the pathway in the macroalgae Enteromorpha Intestinalis, and three diverse marine phytoplankton species; Tetraselmis sp...

  13. CHANGES IN CHLOROPHYLL A FLOURESCENCE AND PIGMENT RATIOS DURING DIFFERENT GROWTH PHASES OF A UNICELLULAR MARINE CHAETOCEROS (BACILLAROPHYCEAE) IN BATCH CULTURE

    Science.gov (United States)

    Interpretations of chlorophyll a fluorescence data are based largely on application with green algae and higher plants. This study evaluated the interpretation of fluorescence data for a unicellular marine diatom. Chaetoceros sp. was grown in 4-liter batch cultures on a 16:8, L:D...

  14. Active water transport in unicellular algae: where, why, and how.

    Science.gov (United States)

    Raven, John A; Doblin, Martina A

    2014-12-01

    The occurrence of active water transport (net transport against a free energy gradient) in photosynthetic organisms has been debated for several decades. Here, active water transport is considered in terms of its roles, where it is found, and the mechanisms by which it could occur. First there is a brief consideration of the possibility of active water transport into plant xylem in the generation of root pressure and the refilling of embolized xylem elements, and from an unsaturated atmosphere into terrestrial organisms living in habitats with limited availability of liquid water. There is then a more detailed consideration of volume and osmotic regulation in wall-less freshwater unicells, and the possibility of generation of buoyancy in marine phytoplankton such as large-celled diatoms. Calculations show that active water transport is a plausible mechanism to assist cells in upwards vertical movements, requires less energy than synthesis of low-density organic solutes, and potentially on a par with excluding certain ions from the vacuole. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Radio photosynthesis of some 14 C-labelled sugars using the unicellular green alga scenedesmus ACUTUS

    International Nuclear Information System (INIS)

    Barakat, M.F.; Farag, A.N.; Ragab, M.T.; El-Fouly, M.M.; El-Baz, F.K.

    1993-01-01

    Radiosynthesis has been carried out using the unicellular green alga scenedesmus acutus together with Na H 14 CO 3 solution as a carbon-14 source, in an ordinary photosynthesis chamber. The process is more easier and less laborious than the techniques involving the use of gaseous 14 CO 2 in a tight photosynthesis chamber. Uniformly labelled 14 C-glucose, 14 C-fructose and 14 C-sucrose have been prepared with specific activities of several micro curies per milli mole. The specific activity of the products was found to increase on increasing the photosynthesis time or the initial activity of the Na H 14 CO 3 solution used. 3 tabs

  16. Direct determination of cadmium in unicellular green algae by flameless atomic absorption

    International Nuclear Information System (INIS)

    Meisch, H.U.; Reinle, W.

    1977-01-01

    Cadmium is detectable without any disturbance by direct injection of Cd-containing microorganisms (unicellular green algae) into the graphite furnace of an atomic absorption instrument, if the decomposition temperature is increased to 700 0 C. This has been done without loss of the trace method by charging the input suspension with a 10 7 fold molar excess of (NH 4 ) 2 SO 4 . The precision of the uncomplicated method is compared to the results of Cd-analysis after HNO 3 -decomposition. (author)

  17. Repair in unicellular green algae under the chronic action of mutagenic factors

    International Nuclear Information System (INIS)

    Sergeeva, S.A.; Ptitsina, S.N.; Shevchenko, V.A.

    1986-01-01

    Repair of single-standed DNA breaks in different strains of unicellular green Chlamidomonas reinhardii algae under the chronic action of mutagenic factors after γ-radiation was studied. It is shown, that the highest DNA break repair efficiency is observed in M γ mt++ strain, resistant to radiation. Strains, sensitive to UV-rays, possess the same repair efficiency as a wild type strain. UVS-1 strain demonstrated a higher repair efficiency, than a wild type strain. All that gives evidence of the difference in Chlamidomonas reinhardii of repair ways, leading to repair of damages, induced by γ-radiation and UV-rays

  18. Biogenic Properties of Deep Waters from the Black Sea Reduction (Hydrogen Sulphide) Zone for Marine Algae

    OpenAIRE

    Polikarpov, Gennady G.; Lazorenko, Galina Е.; Тereschenko, Natalya N.

    2015-01-01

    Abstract Generalized data of biogenic properties investigations of the Black Sea deep waters from its reduction zone for marine algae are presented. It is shown on board and in laboratory that after pre-oxidation of hydrogen sulphide by intensive aeration of the deep waters lifted to the surface of the sea, they are ready to be used for cultivation of the Black Sea unicellular, planktonic, and multicellular, benthic, algae instead of artificial medium. Naturally balanced micro- and macroeleme...

  19. Newly-fixed carbon preferentially flows through starch in the unicellular alga Rhodella

    International Nuclear Information System (INIS)

    Kroen, W.K.; Ramus, J.S.

    1989-01-01

    Cells of the unicellular red alga Rhodella reticulata produce copious amounts of anionic extracellular polysaccharides. Previous experiments, comparing growing and non-growing cells, showed little difference in the pattern of initial 14 C partitioning, with a high percentage of label in starch. Short labelling periods, followed by chasing in unlabelled medium, showed rapid movement of carbon through the starch pool within the first 6 hrs, with an accompanying increase in both the protein and mucilage fractions. The overall pattern of carbon metabolism appears fixed throughout growth of the cells, with total carbon input changing with changing growth phase. As starch is extrachloroplastic in the red algae, input of fixed carbon directly into the starch pool may serve as a routing mechanism to direct subsequent carbon metabolism within the cell

  20. Adaptation of light-harvesting functions of unicellular green algae to different light qualities.

    Science.gov (United States)

    Ueno, Yoshifumi; Aikawa, Shimpei; Kondo, Akihiko; Akimoto, Seiji

    2018-05-28

    Oxygenic photosynthetic organisms perform photosynthesis efficiently by distributing captured light energy to photosystems (PSs) at an appropriate balance. Maintaining photosynthetic efficiency under changing light conditions requires modification of light-harvesting and energy-transfer processes. In the current study, we examined how green algae regulate their light-harvesting functions in response to different light qualities. We measured low-temperature time-resolved fluorescence spectra of unicellular green algae Chlamydomonas reinhardtii and Chlorella variabilis cells grown under different light qualities. By observing the delayed fluorescence spectra, we demonstrated that both types of green algae primarily modified the associations between light-harvesting chlorophyll protein complexes (LHCs) and PSs (PSII and PSI). Under blue light, Chlamydomonas transferred more energy from LHC to chlorophyll (Chl) located far from the PSII reaction center, while energy was transferred from LHC to PSI via different energy-transfer pathways in Chlorella. Under green light, both green algae exhibited enhanced energy transfer from LHCs to both PSs. Red light induced fluorescence quenching within PSs in Chlamydomonas and LHCs in Chlorella. In Chlorella, energy transfer from PSII to PSI appears to play an important role in balancing excitation between PSII and PSI.

  1. Dielectrophoresis of Tetraselmis sp., a unicellular green alga, in travelling electric fields analyzed using the RC model for a spheroid

    Directory of Open Access Journals (Sweden)

    Sakshin Bunthawin

    2011-10-01

    Full Text Available Dielectrophoresis of a unicellular green alga, Tetraselmis sp., in a travelling electric field was analyzed using an RC(resistor-capacitor-model, instead of the Laplace approach reported in our previous work. The model consists of resistorcapacitorpairs in series to represent the conductive and the capacitive properties of the shell and the inner part of the spheroid.The model is mathematically simpler than the Laplace model and the RC approach is experimentally superior because only thelower critical frequency [LCF] and cell translational speed are required to be measured experimentally. The effective compleximpedance of the spheroid was mathematically modeled to obtain the Clausius-Mossotti factor ([CMF] as a function of celldielectric properties. Spectra of dielectrophoretic velocity and the lower critical frequency of the marine green alga, Tetraselmissp. were investigated to determine cell dielectric properties using a manual curve-fitting method. Effects of arsenic at differentconcentrations on the cell were examined to verify the model. Arsenic severely decreases cytoplasmic conductance (cwhereas it increases membrane conductance (m. Effects were easily observable even at the lowest concentration of arsenicused experimentally (1 ppm. The method offers a practical means of manipulating small plant cells and for rapid screeningfor effects on the dielectric properties of cells of various applied experimental treatments.

  2. Cell death in the unicellular green alga Micrasterias upon H2O2 induction

    Science.gov (United States)

    Darehshouri, Anza; Affenzeller, Matthias; Lütz-Meindl, Ursula

    2010-01-01

    In the present study we investigate whether the unicellular green alga Micrasterias denticulata is capable of executing programmed cell death (PCD) upon experimental induction and by which morphological, molecular and physiological hallmarks it is characterized. This is particularly interesting as unicellular fresh water green algae growing in shallow bog ponds are exposed to extreme environmental conditions and the capability to perform PCD may provide an important strategy to guarantee survival of the population. The theoretically “immortal” alga Micrasterias is an ideal object for such investigations as it has served as a cell biological model system since many years and details on its growth properties, physiology and ultrastructure throughout the cell cycle are well known. Treatment with low concentrations of H2O2 known to induce PCD in other organisms resulted in severe ultrastructural changes of organelles as observed in TEM. These include deformation and partly disintegration of mitochondria, abnormal dilatation of cisternal rims of dictyosomes, the occurrence of multivesicular bodies, an increase in the number of ER compartments and slight condensation of chromatin. Additionally, a statistically significant increase in caspase-3-like activity could be detected which was abrogated by a caspase-3 inhibitor. Photosynthetic activity measured by fast chlorophyll fluorescence decreased as a consequence of H2O2 exposure whereas pigment composition, except of a reduction in carotenoids, was the same as in untreated controls. TUNEL positive staining and ladder-like degradation of DNA, both frequently regarded as PCD hallmark in higher plants could only be detected in dead Micrasterias cells. PMID:18950431

  3. Testing nanomaterial toxicity in unicellular eukaryotic algae and fish cell lines.

    Science.gov (United States)

    Kroll, Alexandra; Kühnel, Dana; Schirmer, Kristin

    2013-01-01

    Nanoecotoxicology as a sub-discipline of ecotoxicology aims to identify and predict effects elicited on ecosystems by nano-sized materials (NM). Two key groups of model organisms in this context are algae and fish. In this chapter, we present considerations for testing NM with respect to their impact on unicellular algae and cell lines derived from various organs of fish.Based on currently available literature on NM effects in unicellular algae and fish cell lines, and our own experience, we provide guidance on test design, including principle test considerations, materials, NM presentation to cells, exposure, bioavailability, and effect assessment. Assessment needs to be based on a meaningful choice of exposure scenario(s) related to the research question. As a first step, one needs to address whether effects of NMs are to be investigated under environmentally relevant or probable conditions, which may include processes such as agglomeration, or whether NM effects from mono-dispersed particles are of interest, which may require special steps to ensure stable NM suspension. Moreover, whether effects on cells are to be studied in the short- or long-term is important with regard to experimental design. Preparation of NM suspensions, which can be done in aqueous media different from the exposure medium, is addressed with regard to energy input, sterility (as required for algae and fish cell exposure) and particle purity.Specified for the two model systems, algae and fish cell lines, availability and choice of culture media are presented and discussed with regard to impact on NM behavior. Light, temperature, and agitation, which are variables during exposure, are discussed. We further provide guidance on the characterization of the NM in the chosen aqueous exposure media regarding size, zeta potential and electrophoretic mobility. The state of NM in exposure media is decisive for their bioavailability and therefore for potential particle effects. Therefore, we present

  4. Salicylhydroxamic acid (SHAM) inhibition of the DIC-pump in unicellular algae

    International Nuclear Information System (INIS)

    Goyal, A.; Tolbert, N.E.

    1989-01-01

    SHAM at 1 or 2 mM inhibits dissolved inorganic carbon (DIC) concentrating mechanisms in unicellular green algae as measured by photosynthetic oxygen evolution or by 14 C-inorganic carbon uptake (using silicone oil centrifugation techniques). This inhibition was reversed by high levels of DIC whereby the cells do not require the concentrating mechanism. SHAM inhibited the DIC-pump, which uses external CO 2 , in three species of algae, Dunaliella tertiolecta, Chlamydomonas reinhardtii, and Scenedesmus obliquus when adapted to low CO 2 and assayed around neutral pH. Scenedesmus adapted to air at pH 9.0 to use external HCO 3 - were not affected by SHAM. It is important to establish low optimum concentrations of SHAM, which varied with the algal species. The mechanism of SHAM inhibition of the CO 2 concentrating process is unknown. SHAM inhibits alternative respiration in these algae, but SHAM may also inhibit other reactions involving H + gradients or transporters associated with the DIC-pump

  5. The TOR Signaling Network in the Model Unicellular Green Alga Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    María Esther Pérez-Pérez

    2017-07-01

    Full Text Available Cell growth is tightly coupled to nutrient availability. The target of rapamycin (TOR kinase transmits nutritional and environmental cues to the cellular growth machinery. TOR functions in two distinct multiprotein complexes, termed TOR complex 1 (TORC1 and TOR complex 2 (TORC2. While the structure and functions of TORC1 are highly conserved in all eukaryotes, including algae and plants, TORC2 core proteins seem to be missing in photosynthetic organisms. TORC1 controls cell growth by promoting anabolic processes, including protein synthesis and ribosome biogenesis, and inhibiting catabolic processes such as autophagy. Recent studies identified rapamycin-sensitive TORC1 signaling regulating cell growth, autophagy, lipid metabolism, and central metabolic pathways in the model unicellular green alga Chlamydomonas reinhardtii. The central role that microalgae play in global biomass production, together with the high biotechnological potential of these organisms in biofuel production, has drawn attention to the study of proteins that regulate cell growth such as the TOR kinase. In this review we discuss the recent progress on TOR signaling in algae.

  6. The TOR Signaling Network in the Model Unicellular Green Alga Chlamydomonas reinhardtii.

    Science.gov (United States)

    Pérez-Pérez, María Esther; Couso, Inmaculada; Crespo, José L

    2017-07-12

    Cell growth is tightly coupled to nutrient availability. The target of rapamycin (TOR) kinase transmits nutritional and environmental cues to the cellular growth machinery. TOR functions in two distinct multiprotein complexes, termed TOR complex 1 (TORC1) and TOR complex 2 (TORC2). While the structure and functions of TORC1 are highly conserved in all eukaryotes, including algae and plants, TORC2 core proteins seem to be missing in photosynthetic organisms. TORC1 controls cell growth by promoting anabolic processes, including protein synthesis and ribosome biogenesis, and inhibiting catabolic processes such as autophagy. Recent studies identified rapamycin-sensitive TORC1 signaling regulating cell growth, autophagy, lipid metabolism, and central metabolic pathways in the model unicellular green alga Chlamydomonas reinhardtii . The central role that microalgae play in global biomass production, together with the high biotechnological potential of these organisms in biofuel production, has drawn attention to the study of proteins that regulate cell growth such as the TOR kinase. In this review we discuss the recent progress on TOR signaling in algae.

  7. Chromatin structure in the unicellular algae Olisthodiscus luteus, Crypthecodinium cohnii and Peridiniun balticum.

    Science.gov (United States)

    Rizzo, P J; Burghardt, R C

    1980-01-01

    Isolated nuclei of the unicellular alga Olisthodiscus luteus, the uninucleate dinoflagellate Crypthecodinium cohnii and the binucleate dinoflagellate Peridinium balticum were lysed and deposited on grids by the microcentrifugation technique. The ultrastructure of the released chromatin fibers was compared to that of mouse liver nuclei. Chromatin from nuclei of Olisthodiscus luteus and the "eukaryotic" nuclei of Peridinium balticum, appeared as linear arrays of regularly repeating subunits which were identical in size and morphology to mouse nucleosomes. In contrast, the chromatin fibers from Crypthecodinium cohnii nuclei appeared as smoothe threads with a diameter of about 6.5 nm. Nuclear preparations containing mixtures of "dinokaryotic" and "eukaryotic" nuclei of Peridinium balticum also contained smooth fibers which most likely originated from the dinokaryotic nuclei. These and other results demonstrating the presence of nucleosomes in lower eukaryotes suggest that the subunit structure of chromatin arose very early in the evolution of the eukaryotic cell.

  8. An update on the microRNAs and their targets in unicellular red alga porphyridium cruentum

    International Nuclear Information System (INIS)

    Barozai, M.Y.K.

    2018-01-01

    MicroRNAs (miRNAs) are small, non-coding and regulatory RNAs about approx 21 nucleotides in length. The miRNAs are reported in large number of higher eukaryotic plant species. But very little data of miRNAs in algae is available. Porphyridium cruentum is unicellular red alga famous as a source for polyunsaturated fatty acids, proteins and polysaccharide contents. The present study is aimed to update the microRNAs and their targets in this important algal species. A comparative genomics approach was applied to update the miRNAs in P. cruentum. This effort resulted in a total of 49 miRNAs belonging to 46 families in P. cruentum. Their precursor-miRNAs were observed with a range of 40 to 351 nucleotides (nt). The mature miRNA sequences showed a range of 17-24 nts. The minimum free energies by stem loop structures of these miRNAs are found with an average of -32 Kcalmol-1. A total of 13 targets, including important proteins like; Ribulose-1,5-bisphosphate carboxylase oxygenase, Light-harvesting complex I, Oxygen-evolving enhancer protein, Phycobiliproteins, Granule-bound starch synthase and Carbonic anhydrase were also predicted for these miRNAs. (author)

  9. Bromophenols in Marine Algae and Their Bioactivities

    DEFF Research Database (Denmark)

    Ming, Liu; Hansen, Poul Erik; Lin, Xiukun

    2011-01-01

    Marine algae contain various bromophenols that have been shown to possess a variety of biological activities, including antioxidant, antimicrobial, anticancer, anti-diabetic, and anti-thrombotic effects. Here, we briefly review the recent progress of these marine algal biomaterials, with respect...

  10. The genome of Cyanothece 51142, a unicellular diazotrophic cyanobacterium important in the marine nitrogen cycle

    Energy Technology Data Exchange (ETDEWEB)

    Welsh, Eric A.; Liberton, Michelle L.; Stockel, Jana; Loh, Thomas; Elvitigala, Thanura R.; Wang, Chunyan; Wollam, Aye; Fulton, Robert S.; Clifton, Sandra W.; Jacobs, Jon M.; Aurora, Rajeev; Ghosh, Bijoy K.; Sherman, Louis A.; Smith, Richard D.; Wilson, Richard K.; Pakrasi, Himadri B.

    2008-09-30

    Cyanobacteria are oxygenic photosynthetic bacteria that have significant roles in global biological carbon sequestration and oxygen production. They occupy a diverse range of habitats, from open ocean, to hot springs, deserts, and arctic waters. Cyanobacteria are known as the progenitors of the chloroplasts of plants and algae, and are the simplest known organisms to exhibit circadian behavior4. Cyanothece sp. ATCC 51142 is a unicellular marine cyanobacterium capable of N2-fixation, a process that is biochemically incompatible with oxygenic photosynthesis. To resolve this problem, Cyanothece performs photosynthesis during the day and nitrogen fixation at night, thus temporally separating these processes in the same cell. The genome of Cyanothece 51142 was completely sequenced and found to contain a unique arrangement of one large circular chromosome, four small plasmids, and one linear chromosome, the first report of such a linear element in a photosynthetic bacterium. Annotation of the Cyanothece genome was aided by the use of highthroughput proteomics data, enabling the reclassification of 25% of the proteins with no informative sequence homology. Phylogenetic analysis suggests that nitrogen fixation is an ancient process that arose early in evolution and has subsequently been lost in many cyanobacterial strains. In cyanobacterial cells, the circadian clock influences numerous processes, including carbohydrate synthesis, nitrogen fixation, photosynthesis, respiration, and the cell division cycle. During a diurnal period, Cyanothece cells actively accumulate and degrade different storage inclusion bodies for the products of photosynthesis and N2-fixation. This ability to utilize metabolic compartmentalization and energy storage makes Cyanothece an ideal system for bioenergy research, as well as studies of how a unicellular organism balances multiple, often incompatible, processes in the same cell.

  11. Phthalate esters in marine algae

    OpenAIRE

    Gezgin, Tuncay; Güven, Kasim Cemal; Akçin, Göksel

    2001-01-01

    Abstract o-Phthalate esters as diethyl phthalate, dibutyl phthalate, di-isobutyl phthalate and diethylhexyl phthalate were identified at surface and inner part of algae collected in the Bosphorus, as Ulva lactuca, Enteromorpha linza, Cystoseria barbata, Pterocladia capillaceaeand Ceramium rubrum. The same esters were also detected in seawater samples taken from the same area. Thus parallelism in pollution was noted between the algae and the surrounding seawater,

  12. Bioenergetic Strategy for the Biodegradation of p-Cresol by the Unicellular Green Alga Scenedesmus obliquus

    Science.gov (United States)

    Papazi, Aikaterini; Assimakopoulos, Konstantinos; Kotzabasis, Kiriakos

    2012-01-01

    Cultures from the unicellular green alga Scenedesmus obliquus biodegrade the toxic p-cresol (4-methylphenol) and use it as alternative carbon/energy source. The biodegradation procedure of p-cresol seems to be a two-step process. HPLC analyses indicate that the split of the methyl group (first step) that is possibly converted to methanol (increased methanol concentration in the growth medium), leading, according to our previous work, to changes in the molecular structure and function of the photosynthetic apparatus and therefore to microalgal biomass increase. The second step is the fission of the intermediately produced phenol. A higher p-cresol concentration results in a higher p-cresol biodegradation rate and a lower total p-cresol biodegradability. The first biodegradation step seems to be the most decisive for the effectiveness of the process, because methanol offers energy for the further biodegradation reactions. The absence of LHCII from the Scenedesmus mutant wt-lhc stopped the methanol effect and significantly reduced the p-cresol biodegradation (only 9%). The present contribution deals with an energy distribution between microalgal growth and p-cresol biodegradation, activated by p-cresol concentration. The simultaneous biomass increase with the detoxification of a toxic phenolic compound (p-cresol) could be a significant biotechnological aspect for further applications. PMID:23251641

  13. Respiratory-deficient mutants of the unicellular green alga Chlamydomonas: a review.

    Science.gov (United States)

    Salinas, Thalia; Larosa, Véronique; Cardol, Pierre; Maréchal-Drouard, Laurence; Remacle, Claire

    2014-05-01

    Genetic manipulation of the unicellular green alga Chlamydomonas reinhardtii is straightforward. Nuclear genes can be interrupted by insertional mutagenesis or targeted by RNA interference whereas random or site-directed mutagenesis allows the introduction of mutations in the mitochondrial genome. This, combined with a screen that easily allows discriminating respiratory-deficient mutants, makes Chlamydomonas a model system of choice to study mitochondria biology in photosynthetic organisms. Since the first description of Chlamydomonas respiratory-deficient mutants in 1977 by random mutagenesis, many other mutants affected in mitochondrial components have been characterized. These respiratory-deficient mutants increased our knowledge on function and assembly of the respiratory enzyme complexes. More recently some of these mutants allowed the study of mitochondrial gene expression processes poorly understood in Chlamydomonas. In this review, we update the data concerning the respiratory components with a special focus on the assembly factors identified on other organisms. In addition, we make an inventory of different mitochondrial respiratory mutants that are inactivated either on mitochondrial or nuclear genes. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  14. Light adaptation of the unicellular red alga, Cyanidioschyzon merolae, probed by time-resolved fluorescence spectroscopy.

    Science.gov (United States)

    Ueno, Yoshifumi; Aikawa, Shimpei; Kondo, Akihiko; Akimoto, Seiji

    2015-08-01

    Photosynthetic organisms change the quantity and/or quality of their pigment-protein complexes and the interactions among these complexes in response to light conditions. In the present study, we analyzed light adaptation of the unicellular red alga Cyanidioschyzon merolae, whose pigment composition is similar to that of cyanobacteria because its phycobilisomes (PBS) lack phycoerythrin. C. merolae were grown under different light qualities, and their responses were measured by steady-state absorption, steady-state fluorescence, and picosecond time-resolved fluorescence spectroscopies. Cells were cultivated under four monochromatic light-emitting diodes (blue, green, yellow, and red), and changes in pigment composition and energy transfer were observed. Cells grown under blue and green light increased their relative phycocyanin levels compared with cells cultured under white light. Energy-transfer processes to photosystem I (PSI) were sensitive to yellow and red light. The contribution of direct energy transfer from PBS to PSI increased only under yellow light, while red light induced a reduction in energy transfer from photosystem II to PSI and an increase in energy transfer from light-harvesting chlorophyll protein complex I to PSI. Differences in pigment composition, growth, and energy transfer under different light qualities are discussed.

  15. Uptake and distribution of technetium in several marine algae

    International Nuclear Information System (INIS)

    Bonotto, S.; Gerber, G.B.; Garten, C.T. Jr.; Vandecasteele, C.M.; Myttenaere, C.; Van Baelen, J.; Cogneau, M.; van der Ben, D.

    1983-01-01

    The uptake or chemical form of technetium in different marine algae (Acetabularia, Cystoseira, Fucus) has been examined and a simple model to explain the uptake of technetium in the unicellular alga, Acetabularia, has been conceptualized. At low concentrations in the external medium, Acetabularia can rapidly concentrate technetium. Concentration factors in excess of 400 can be attained after a time of about 3 weeks. At higher mass concentrations in the medium, uptake of technetium by Acetabularia becomes saturated resulting in a decreased concentration factor (approximately 10 after 4 weeks). Approximately 69% of the total radioactivity present in /sup 95m/Tc labelled Acetabularia is found in the cell cytosol. In Fucus vesiculosus, labelled with /sup 95m/Tc, a high percentage of technetium is present in soluble ionic forms while approximately 40% is bound, in this brown alga, in proteins and polysaccharides associated with cell walls. In the algal cytosol of Fucus vesiculosus, about 45% of the /sup 95m/Tc appears to be present as anionic TcO - 4 and the remainder is bound to small molecules. 8 references, 5 figures, 1 table

  16. Construction of a self-cloning system in the unicellular green alga Pseudochoricystis ellipsoidea.

    Science.gov (United States)

    Kasai, Yuki; Oshima, Kohei; Ikeda, Fukiko; Abe, Jun; Yoshimitsu, Yuya; Harayama, Shigeaki

    2015-01-01

    Microalgae have received considerable interest as a source of biofuel production. The unicellular green alga Pseudochoricystis ellipsoidea (non-validated scientific name) strain Obi appears to be suitable for large-scale cultivation in outdoor open ponds for biodiesel production because it accumulates lipids to more than 30 % of dry cell weight under nitrogen-depleted conditions. It also grows rapidly under acidic conditions at which most protozoan grazers of microalgae may not be tolerant. The lipid productivity of this alga could be improved using genetic engineering techniques; however, genetically modified organisms are the subject of regulation by specific laws. Therefore, the aim of this study was to develop a self-cloning-based positive selection system for the breeding of P. ellipsoidea. In this study, uracil auxotrophic mutants were isolated after the mutagenesis of P. ellipsoidea using either ultraviolet light or a transcription activator-like effector nuclease (TALEN) system. The cDNA of the uridine monophosphate synthase gene (PeUMPS) of P. ellipsoidea was cloned downstream of the promoter of either a beta-tubulin gene (PeTUBULIN1) or the gene for the small subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase (PeRBCS) to construct the pUT1 or pUT2 plasmid, respectively. These constructs were introduced into uracil auxotroph strains, and genetically complementary transformants were isolated successfully on minimal agar plates. Use of Noble agar as the solidifying agent was essential to avoid the development of false-positive colonies. It took more than 6 weeks for the formation of colonies of pUT1 transformants, whereas pUT2 transformants formed colonies in 2 weeks. Real-time PCR revealed that there were more PeUMPS transcripts in pUT2 transformants than in pUT1 transformants. Uracil synthesis (Ura(+)) transformants were also obtained using a gene cassette consisting solely of PeUMPS flanked by the PeRBCS promoter and terminator. A self

  17. Antioxidant Activity of Hawaiian Marine Algae

    Directory of Open Access Journals (Sweden)

    Anthony D. Wright

    2012-02-01

    Full Text Available Marine algae are known to contain a wide variety of bioactive compounds, many of which have commercial applications in pharmaceutical, medical, cosmetic, nutraceutical, food and agricultural industries. Natural antioxidants, found in many algae, are important bioactive compounds that play an important role against various diseases and ageing processes through protection of cells from oxidative damage. In this respect, relatively little is known about the bioactivity of Hawaiian algae that could be a potential natural source of such antioxidants. The total antioxidant activity of organic extracts of 37 algal samples, comprising of 30 species of Hawaiian algae from 27 different genera was determined. The activity was determined by employing the FRAP (Ferric Reducing Antioxidant Power assays. Of the algae tested, the extract of Turbinaria ornata was found to be the most active. Bioassay-guided fractionation of this extract led to the isolation of a variety of different carotenoids as the active principles. The major bioactive antioxidant compound was identified as the carotenoid fucoxanthin. These results show, for the first time, that numerous Hawaiian algae exhibit significant antioxidant activity, a property that could lead to their application in one of many useful healthcare or related products as well as in chemoprevention of a variety of diseases including cancer.

  18. Abscisic Acid Participates in the Control of Cell Cycle Initiation Through Heme Homeostasis in the Unicellular Red Alga Cyanidioschyzon merolae.

    Science.gov (United States)

    Kobayashi, Yuki; Ando, Hiroyuki; Hanaoka, Mitsumasa; Tanaka, Kan

    2016-05-01

    ABA is a phytohormone that is synthesized in response to abiotic stresses and other environmental changes, inducing various physiological responses. While ABA has been found in unicellular photosynthetic organisms, such as cyanobacteria and eukaryotic algae, its function in these organisms is poorly understood. Here, we found that ABA accumulated in the unicellular red alga Cyanidioschyzon merolae under conditions of salt stress and that the cell cycle G1/S transition was inhibited when ABA was added to the culture medium. A gene encoding heme-scavenging tryptophan-rich sensory protein-related protein (CmTSPO; CMS231C) was positively regulated by ABA, as in Arabidopsis, and CmTSPO bound heme in vitro. The intracellular content of total heme was increased by addition of ABA, but unfettered heme decreased, presumably due to scavenging by CmTSPO. The inhibition of DNA replication by ABA was negated by addition of heme to the culture medium. Thus, we propose a regulatory role for ABA and heme in algal cell cycle initiation. Finally, we found that a C. merolae mutant that is defective in ABA production was more susceptible to salt stress, indicating the importance of ABA to stress resistance in red algae. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Cultivation of macroscopic marine algae

    Energy Technology Data Exchange (ETDEWEB)

    Ryther, J.H.

    1982-11-01

    The red alga Gracilaria tikvahiae may be grown outdoors year-round in central Florida with yields averaging 35.5 g dry wt/m/sup 2/.day, greater than the most productive terrestrial plants. This occurs only when the plants are in a suspended culture, with vigorous aeration and an exchange of 25 or more culture volumes of enriched seawater per day, which is not cost-effective. A culture system was designed in which Gracilaria, stocked at a density of 2 kg wet wt/m/sup 2/, grows to double its biomass in one to two weeks; it is then harvested to its starting density, and anaerobically digested to methane. The biomass is soaked for 6 hours in the digester residue, storing enough nutrients for two weeks' growth in unenriched seawater. The methane is combusted for energy and the waste gas is fed to the culture to provide mixing and CO/sub 2/, eliminating the need for aeration and seawater exchange. The green alga Ulva lactuca, unlike Gracilaria, uses bicarbonate as a photosynthesis carbon source, and can grow at high pH, with little or no free CO/sub 2/. It can therefore produce higher yields than Gracilaria in low water exchange conditions. It is also more efficiently converted to methane than is Gracilaria, but cannot tolerate Florida's summer temperatures so cannot be grown year-round. Attempts are being made to locate or produce a high-temperature tolerant strain.

  20. Influence of ultraviolet irradiation on nutrient-gleaning capacity of two unicellular algae. [Anacystis nidulans and Chlorella vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, H D; Sharma, V; Bisaria, G P

    1975-01-01

    Two unicellular algae, viz., Anacystis nidulans and Chlorella vulgaris, growing in polluted effluents, were isolated in unialgal and bacteria free culture. They were mutagenically exposed to ultraviolet radiation and variant strains endowed with differing capacities for growth and nutrient-gleaning were successfully isolated as distinct clones on agar plates. One such clone each of the two species was tested further and found stable. While these variant strains grew more slowly than untreated controls, statistically significant differences with respect to phosphate and nitrate uptake were found between treated and control strains of the two species.

  1. Neutron activation analysis of several elements in the unicellular alga Cyanidium caldarium irradiated by α particles from neutron captured boron

    International Nuclear Information System (INIS)

    Yamaguchi, Shuho; Oota, Tadachika; Otani, Mayumi; Aso, Sueo

    1984-01-01

    The TRIGA MARK 2 atomic reactor was used not only for instrumental neutron activation analysis (INAA) but also as the irradiation source of α particles derived from the 10 B(n, α) 7 Li reaction for biological samples. The acidophilic and thermophilic unicellular alga (Cyanidium caldarium Geitler) was incubated for 20 hours after irradiation and then its elemental concentrations were analysed by INAA. An increase in the quantities of 56 Mn, 28 Al and 38 Cl, and a decrease of 27 Mg and 42 K were detected in the irradiated cells in contrast to non-irradiated cells. (author)

  2. Behaviour of technetium in marine algae

    International Nuclear Information System (INIS)

    Bonotto, S.; Kirchmann, R.; Van Baelen, J.; Hurtger, C.; Cogneau, M.; Van der Ben, D.; Verthe, C.; Bouquegneau, J.M.

    1985-01-01

    Uptake and distribution of technetium were studied in several green (Acetabularia acetabulum, Boergesenia forbesii, Ulva lactuca) and brown (Ascophyllum nodosum, Fucus serratus, Fucus spiralis and Fucus vesiculosus) marine algae. Technetium was supplied to the algae as Tc-95m-pertechnetate. Under laboratory conditions, the algae were capable of accumulating technetium, with the exception, however, of Boergesenia, which showed concentration factors (C.F.) comprised between 0.28 and 0.71. The concentration of technetium-99 in Fucus spiralis, collected along the Belgian coast, was measured by a radiochemical procedure. The intracellular distribution of technetium was studied by differential centrifugation in Acetabularia and by the puncturing technique in Boergesenia. The chemical forms of technetium penetrated into the cells were investigated by selective chemical extractions, molecular sieving and thin layer chromatography

  3. Behaviour of technetium in marine algae

    International Nuclear Information System (INIS)

    Bonotto, S.; Kirchmann, R.; Baelen, J. van; Hurtgen, C.; Cogneau, M.; Ben, D. van der; Verthe, C.; Bouquegneau, J.M.

    1986-01-01

    Uptake and distribution of technetium were studied in several green (Acetabularia acetabulum, Boergesenia forbesii, Ulva lactuca) and brown (Ascophyllum nodosum, Fucus serratus, Fucus spiralis and Fucus vesiculosus) marine algae. Technetium was supplied to the algae as Tc-95-pertechnetate. Under laboratory conditions, the algae were capable of accumulating technetium, with the exception, however, of Boergesenia, which showed concentration factors (C.F.) comprised between 0.28 and 0.71. The concentration of technetium-99 in Fucus spiralis, collected along the Belgian coast, was measured by a radiochemical procedure. The intracellular distribution of technetium was studied by differential centrifugation in Acetabularia and by the puncturing technique in Boergesenia. The chemical forms of technetium penetrated into the cells were investigated by selective chemical extractions, molecular sieving and thin layer chromatography. (author)

  4. Intracellular chromium localization and cell physiological response in the unicellular alga Micrasterias

    Science.gov (United States)

    Volland, Stefanie; Lütz, Cornelius; Michalke, Bernhard; Lütz-Meindl, Ursula

    2012-01-01

    Various contaminants like metals and heavy metals are constantly released into the environment by anthropogenic activities. The heavy metal chromium has a wide industrial use and exists in two stable oxidation states: trivalent and hexavalent. Chromium can cause harm to cell metabolism and development, when it is taken up by plants instead of necessary micronutrients such as for example iron. The uptake of Cr VI into plant cells has been reported to be an active process via carriers of essential anions, while the cation Cr III seems to be taken up inactively. Micrasterias denticulata, an unicellular green alga of the family Desmidiaceae is a well-studied cell biological model organism. Cr III and VI had inhibiting effects on its cell development, while cell division rates were only impaired by Cr VI. Transmission electron microscopy (TEM) revealed ultrastructural changes such as increased vacuolization, condensed cytoplasm and dark precipitations in the cell wall after 3 weeks of Cr VI treatment. Electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI) were applied to measure intracellular chromium distribution. Chromium was only detected after 3 weeks of 10 μM Cr VI treatment in electron dense precipitations found in bag-like structures along the inner side of the cell walls together with iron and elevated levels of oxygen, pointing toward an accumulation respectively extrusion of chromium in form of an iron–oxygen compound. Atomic emission spectroscopy (EMS) revealed that Micrasterias cells are able to accumulate considerable amounts of chromium and iron. During chromium treatment the Cr:Fe ratio shifted in favor of chromium, which implied that chromium may be taken up instead of iron. Significant and rapid increase of ROS production within the first 5 min of treatment confirms an active Cr VI uptake. SOD and CAT activity after Cr VI treatment did not show a response, while the glutathione pool determined by immuno-TEM decreased

  5. Intracellular chromium localization and cell physiological response in the unicellular alga Micrasterias

    Energy Technology Data Exchange (ETDEWEB)

    Volland, Stefanie, E-mail: Stefanie.Volland@stud.sbg.ac.at [Plant Physiology Division, Cell Biology Department, University of Salzburg, Hellbrunnerstr 34, 5020 Salzburg (Austria); Luetz, Cornelius, E-mail: cornelius.luetz@uibk.ac.at [Institute of Botany, University of Innsbruck, Sternwartestrasse 15, 6020 Innsbruck (Austria); Michalke, Bernhard, E-mail: bernhard.michalke@helmholtz-muenchen.de [Helmholtz Zentrum Muenchen, German Research Centre for Environmental Health, Institute of Ecological Chemistry, Ingolstaedter Landstrasse 1, 85764 Neuherberg (Germany); Luetz-Meindl, Ursula, E-mail: ursula.luetz-meindl@sbg.ac.at [Plant Physiology Division, Cell Biology Department, University of Salzburg, Hellbrunnerstr 34, 5020 Salzburg (Austria)

    2012-03-15

    Various contaminants like metals and heavy metals are constantly released into the environment by anthropogenic activities. The heavy metal chromium has a wide industrial use and exists in two stable oxidation states: trivalent and hexavalent. Chromium can cause harm to cell metabolism and development, when it is taken up by plants instead of necessary micronutrients such as for example iron. The uptake of Cr VI into plant cells has been reported to be an active process via carriers of essential anions, while the cation Cr III seems to be taken up inactively. Micrasterias denticulata, an unicellular green alga of the family Desmidiaceae is a well-studied cell biological model organism. Cr III and VI had inhibiting effects on its cell development, while cell division rates were only impaired by Cr VI. Transmission electron microscopy (TEM) revealed ultrastructural changes such as increased vacuolization, condensed cytoplasm and dark precipitations in the cell wall after 3 weeks of Cr VI treatment. Electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI) were applied to measure intracellular chromium distribution. Chromium was only detected after 3 weeks of 10 {mu}M Cr VI treatment in electron dense precipitations found in bag-like structures along the inner side of the cell walls together with iron and elevated levels of oxygen, pointing toward an accumulation respectively extrusion of chromium in form of an iron-oxygen compound. Atomic emission spectroscopy (EMS) revealed that Micrasterias cells are able to accumulate considerable amounts of chromium and iron. During chromium treatment the Cr:Fe ratio shifted in favor of chromium, which implied that chromium may be taken up instead of iron. Significant and rapid increase of ROS production within the first 5 min of treatment confirms an active Cr VI uptake. SOD and CAT activity after Cr VI treatment did not show a response, while the glutathione pool determined by immuno-TEM decreased

  6. Uptake of selenium by the unicellular green alga Chlamydomonas reinhardtii - effects induced by chronic exposure

    International Nuclear Information System (INIS)

    Morlon, H.; Fortin, C.; Pradines, C.; Floriani, M.; Grasset, G.; Adam, C.; Garnier-Laplace, J.

    2004-01-01

    79 Se is a long-lived radionuclide present in radioactive waste storages. The stable isotope selenium is an essential micro-nutrient that can act against oxidative damage. It is however well known for its bio-magnification potential and chemical toxicity to aquatic life. One of its particularity is to form oxyanions in freshwater ecosystems, which leads to specific behaviours towards biological membranes. Our study deals with the interactions between selenite -Se(IV)- and Chlamydomonas reinhardtii, a unicellular green alga representative of the freshwater phytoplankton community. Cells were exposed to selenite marked with Se 75 in well-known simple inorganic media. Short-term experiments (about one hour of exposure) were performed to better understand selenite transport (uptake kinetics and levels) and identify main factors influencing absorption (nutrients concentrations, pH). Long-term experiments (4 days of exposure) were performed (1) to evaluate the bioaccumulation considering environmentally relevant time scales, (2) to localize the intracellular selenium using EDAX-TEM and (3) to assess the toxicity of selenium as measured by growth impairment, ultrastructural changes, starch accumulation, and loss of pigment. Short-term experiments revealed a time-dependent linear absorption with an estimated absorbed flux of about 0.25 nmol.m -2 .nM -1 .h -1 . The absorption was proportional to ambient levels, except at very low concentrations (ca. 0.5 nM), were it was proportionally higher, suggesting that a specific but rapidly saturated transport could be used at those low concentrations. Selenite uptake was not dependent on phosphate nor carbonate concentrations. It was nevertheless inhibited by sulphate and nitrate, indicating that selenite could share common transporters with those nutrients. The accumulation was found to be maximum for intermediate pH around 7. EDAX-TEM analysis after long-term experiments revealed the presence of selenium in electron-dense granules

  7. Intracellular chromium localization and cell physiological response in the unicellular alga Micrasterias

    International Nuclear Information System (INIS)

    Volland, Stefanie; Lütz, Cornelius; Michalke, Bernhard; Lütz-Meindl, Ursula

    2012-01-01

    Various contaminants like metals and heavy metals are constantly released into the environment by anthropogenic activities. The heavy metal chromium has a wide industrial use and exists in two stable oxidation states: trivalent and hexavalent. Chromium can cause harm to cell metabolism and development, when it is taken up by plants instead of necessary micronutrients such as for example iron. The uptake of Cr VI into plant cells has been reported to be an active process via carriers of essential anions, while the cation Cr III seems to be taken up inactively. Micrasterias denticulata, an unicellular green alga of the family Desmidiaceae is a well-studied cell biological model organism. Cr III and VI had inhibiting effects on its cell development, while cell division rates were only impaired by Cr VI. Transmission electron microscopy (TEM) revealed ultrastructural changes such as increased vacuolization, condensed cytoplasm and dark precipitations in the cell wall after 3 weeks of Cr VI treatment. Electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI) were applied to measure intracellular chromium distribution. Chromium was only detected after 3 weeks of 10 μM Cr VI treatment in electron dense precipitations found in bag-like structures along the inner side of the cell walls together with iron and elevated levels of oxygen, pointing toward an accumulation respectively extrusion of chromium in form of an iron–oxygen compound. Atomic emission spectroscopy (EMS) revealed that Micrasterias cells are able to accumulate considerable amounts of chromium and iron. During chromium treatment the Cr:Fe ratio shifted in favor of chromium, which implied that chromium may be taken up instead of iron. Significant and rapid increase of ROS production within the first 5 min of treatment confirms an active Cr VI uptake. SOD and CAT activity after Cr VI treatment did not show a response, while the glutathione pool determined by immuno-TEM decreased

  8. Hyperaccumulation of radioactive isotopes by marine algae

    International Nuclear Information System (INIS)

    Ishii, Toshiaki; Hirano, Shigeki; Watabe, Teruhisa

    2003-01-01

    Hyperaccumlators are effective indicator organisms for monitoring marine pollution by heavy metals and artificial radionuclides. We found a green algae, Bryopsis maxima that hyperaccumulate a stable and radioactive isotopes such as Sr-90, Tc-99, Ba-138, Re-187, and Ra-226. B. maxima showed high concentration factors for heavy alkali earth metals like Ba and Ra, compared with other marine algae in Japan. Furthermore, this species had the highest concentrations for Tc-99 and Re-187. The accumulation and excretion patterns of Sr-85 and Tc-95m were examined by tracer experiments. The chemical states of Sr and Re in living B. maxima were analyzed by HPLC-ICP/MS, LC/MS, and X-ray absorption fine structure analysis using synchrotron radiation. (author)

  9. Selenium Uptake and Volatilization by Marine Algae

    Science.gov (United States)

    Luxem, Katja E.; Vriens, Bas; Wagner, Bettina; Behra, Renata; Winkel, Lenny H. E.

    2015-04-01

    Selenium (Se) is an essential trace nutrient for humans. An estimated one half to one billion people worldwide suffer from Se deficiency, which is due to low concentrations and bioavailability of Se in soils where crops are grown. It has been hypothesized that more than half of the atmospheric Se deposition to soils is derived from the marine system, where microorganisms methylate and volatilize Se. Based on model results from the late 1980s, the atmospheric flux of these biogenic volatile Se compounds is around 9 Gt/year, with two thirds coming from the marine biosphere. Algae, fungi, and bacteria are known to methylate Se. Although algal Se uptake, metabolism, and methylation influence the speciation and bioavailability of Se in the oceans, these processes have not been quantified under environmentally relevant conditions and are likely to differ among organisms. Therefore, we are investigating the uptake and methylation of the two main inorganic Se species (selenate and selenite) by three globally relevant microalgae: Phaeocystis globosa, the coccolithophorid Emiliania huxleyi, and the diatom Thalassiosira oceanica. Selenium uptake and methylation were quantified in a batch experiment, where parallel gas-tight microcosms in a climate chamber were coupled to a gas-trapping system. For E. huxleyi, selenite uptake was strongly dependent on aqueous phosphate concentrations, which agrees with prior evidence that selenite uptake by phosphate transporters is a significant Se source for marine algae. Selenate uptake was much lower than selenite uptake. The most important volatile Se compounds produced were dimethyl selenide, dimethyl diselenide, and dimethyl selenyl sulfide. Production rates of volatile Se species were larger with increasing intracellular Se concentration and in the decline phase of the alga. Similar experiments are being carried out with P. globosa and T. oceanica. Our results indicate that marine algae are important for the global cycling of Se

  10. Static allometry of unicellular green algae: scaling of cellular surface area and volume in the genus Micrasterias (Desmidiales).

    Science.gov (United States)

    Neustupa, J

    2016-02-01

    The surface area-to-volume ratio of cells is one of the key factors affecting fundamental biological processes and, thus, fitness of unicellular organisms. One of the general models for allometric increase in surface-to-volume scaling involves fractal-like elaboration of cellular surfaces. However, specific data illustrating this pattern in natural populations of the unicellular organisms have not previously been available. This study shows that unicellular green algae of the genus Micrasterias (Desmidiales) have positive allometric surface-to-volume scaling caused by changes in morphology of individual species, especially in the degree of cell lobulation. This allometric pattern was also detected within most of the cultured and natural populations analysed. Values of the allometric S:V scaling within individual populations were closely correlated to the phylogenetic structure of the clade. In addition, they were related to species-specific cellular morphology. Individual populations differed in their allometric patterns, and their position in the allometric space was strongly correlated with the degree of allometric S:V scaling. This result illustrates that allometric shape patterns are an important correlate of the capacity of individual populations to compensate for increases in their cell volumes by increasing the surface area. However, variation in allometric patterns was not associated with phylogenetic structure. This indicates that the position of the populations in the allometric space was not evolutionarily conserved and might be influenced by environmental factors. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  11. Role of marine algae in organic farming

    Digital Repository Service at National Institute of Oceanography (India)

    Pereira, N.; Verlecar, X.N.

    Division of Publication and Information, Indian Council of Medical Research, V. Ramalingaswami Bhawan, Ansari Nagar, New Delhi 110 029, India e - mail: encejain@yahoo.co.in Role of marine algae in organic far m ing As rightly outlined.... The Indi an Ocean, including its adjacent seas, extends over an area of about 73.44 ? 10 6 km 2 and the potential harvest of seaweeds from the Indian Ocean is about 870 thousand tonnes (wet weight) 3 . India could draw benefits from this marine...

  12. Interactions between arsenic species and marine algae

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, J.G.

    1978-01-01

    The arsenic concentration and speciation of marine algae varies widely, from 0.4 to 23 ng.mg/sup -1/, with significant differences in both total arsenic content and arsenic speciation occurring between algal classes. The Phaeophyceae contain more arsenic than other algal classes, and a greater proportion of the arsenic is organic. The concentration of inorganic arsenic is fairly constant in macro-algae, and may indicate a maximum level, with the excess being reduced and methylated. Phytoplankton take up As(V) readily, and incorporate a small percentage of it into the cell. The majority of the As(V) is reduced, methylated, and released to the surrounding media. The arsenic speciation in phytoplankton and Valonia also changes when As(V) is added to cultures. Arsenate and phosphate compete for uptake by algal cells. Arsenate inhibits primary production at concentrations as low as 5 ..mu..g.1/sup -1/ when the phosphate concentration is low. The inhibition is competitive. A phosphate enrichment of > 0.3 ..mu..M alleviates this inhibition; however, the As(V) stress causes an increase in the cell's phosphorus requirement. Arsenite is also toxic to phytoplankton at similar concentrations. Methylated arsenic species did not affect cell productivity, even at concentrations of 25 ..mu..g.1/sup -1/. Thus, the methylation of As(V) by the cell produces a stable, non-reactive compound which is nontoxic. The uptake and subsequent reduction and methylation of As(V) is a significant factor in determining the arsenic biogeochemistry of productive systems, and also the effect that the arsenic may have on algal productivity. Therefore, the role of marine algae in determining the arsenic speciation of marine systems cannot be ignored. (ERB)

  13. New records of marine algae in Vietnam

    Science.gov (United States)

    Le Hau, Nhu; Ly, Bui Minh; Van Huynh, Tran; Trung, Vo Thanh

    2015-06-01

    In May, 2013, a scientific expedition was organized by the Vietnam Academy of Science and Technology (VAST) and the Far Eastern Branch of the Russian Academy of Sciences (FEBRAS) through the frame of the VAST-FEBRAS International Collaboration Program. The expedition went along the coast of Vietnam from Quang Ninh to Kien Giang. The objective was to collect natural resources to investigate the biological and biochemical diversity of the territorial waters of Vietnam. Among the collected algae, six taxa are new records for the Vietnam algal flora. They are the red algae Titanophora pikeana (Dickie) Feldmann from Cu Lao Xanh Island, Laurencia natalensis Kylin from Tho Chu Island, Coelothrix irregularis (Harvey) Børgesen from Con Dao Island, the green algae Caulerpa oligophylla Montagne, Caulerpa andamanensis (W.R. Taylor) Draisma, Prudhomme et Sauvage from Phu Quy Island, and Caulerpa falcifolia Harvey & Bailey from Ly Son Island. The seaweed flora of Vietnam now counts 833 marine algal taxa, including 415 Rhodophyta, 147 Phaeophyceae, 183 Chlorophyta, and 88 Cyanobacteria.

  14. Recent Advances in Marine Algae Polysaccharides: Isolation, Structure, and Activities.

    Science.gov (United States)

    Xu, Shu-Ying; Huang, Xuesong; Cheong, Kit-Leong

    2017-12-13

    Marine algae have attracted a great deal of interest as excellent sources of nutrients. Polysaccharides are the main components in marine algae, hence a great deal of attention has been directed at isolation and characterization of marine algae polysaccharides because of their numerous health benefits. In this review, extraction and purification approaches and chemico-physical properties of marine algae polysaccharides (MAPs) are summarized. The biological activities, which include immunomodulatory, antitumor, antiviral, antioxidant, and hypolipidemic, are also discussed. Additionally, structure-function relationships are analyzed and summarized. MAPs' biological activities are closely correlated with their monosaccharide composition, molecular weights, linkage types, and chain conformation. In order to promote further exploitation and utilization of polysaccharides from marine algae for functional food and pharmaceutical areas, high efficiency, and low-cost polysaccharide extraction and purification methods, quality control, structure-function activity relationships, and specific mechanisms of MAPs activation need to be extensively investigated.

  15. Selenium Accumulation in Unicellular Green Alga Chlorella vulgaris and Its Effects on Antioxidant Enzymes and Content of Photosynthetic Pigments

    Science.gov (United States)

    Sun, Xian; Zhong, Yu; Huang, Zhi; Yang, Yufeng

    2014-01-01

    The aim of the present study was to investigate selenite effects in the unicellular green algae Chlorella vulgaris as a primary producer and the relationship with intracellular bioaccumulation. The effects of selenite were evaluated by measuring the effect of different selenite concentrations on algal growth during a 144 h exposure period. It was found that lower Se concentrations (≤75 mg L−1) positively promoted C. vulgaris growth and acted as antioxidant by inhibiting lipid peroxidation (LPO) and intracellular reactive oxygen species (ROS). The antioxidative effect was associated with an increase in guaiacol peroxidase (GPX), catalase (CAT), superoxide dismutase (SOD) and photosynthetic pigments. Meanwhile, significant increase in the cell growth rate and organic Se content was also detected in the algae. In contrast, these changes were opposite in C. vulgaris exposed to Se higher than 100 mg L−1. The antioxidation and toxicity appeared to be correlated to Se bioaccumulation, which suggests the appropriate concentration of Se in the media accumulation of C. vulgaris should be 75 mg L−1. Taken together, C. vulgaris possesses tolerance to Se, and Se-Chlorella could be developed as antioxidative food for aquaculture and human health. PMID:25375113

  16. Radiophotosynthesis of some 14C-labelled amino acids using the unicellular green alga Scenedesmus acutus

    International Nuclear Information System (INIS)

    Barakat, M.F.; Farag, A.N.; Ragab, M.T.; El-Fouly, M.M.; El-Baz, F.K.

    1990-01-01

    Radiophotosynthesis has been carried out using the unicellular green algea Scenedesmus acutus grown, as a substrate for preparing some carbon-14 labelled amino acids. Gaseous 14 CO 2 , in an air tight photosynthesis chamber or NaH 14 CO 3 solution, in an ordinary phtosynthesis chamber, were used as radioactive carbon sources. The yields, radiochemical yields and specific activities of the formed radioactive products are reported in both cases. The results obtained clearly showed the advantages of usingthe NaH 14 CO 3 method. In that case the process was by far less tedious. Moreover, the chemical and radiochemical yields of the formed amino acids were relatively much more higher than the values obtained on using 14 CO 2 in the tight photosynthesis chamber. (orig.) [de

  17. Evidence and analysis of radioresistance induced by protracted gamma irradiation of Chlorella pyrenoidosa chick, green unicellular alga

    International Nuclear Information System (INIS)

    Santier-Riviere, S.

    1984-06-01

    Chlorella cells, unicellular green algae, are a suitable living material to study radiosensitivity of eucaryotic cells after acute or protracted gamma irradiations. Cell survival and survival curves are taken as end-points. Methods of irradiation were defined taking in account interferences of the different factors which can intervene during the experimentation. Survival curves after protracted irradiation of Chlorella cell cultures in plateau-phase have a shape that can be explained by radioresistance. The population of surviving cells becomes radioresistant in front of protracted and acute irradiations, acute irradiation allowing us to analyze radioresistance. Radioresistance increases with the total dose of protracted irradiation. The decrease of radiosensitivity with aging of cells is not able to explain the phenomenon. It is not due to selection of radioresistance cells by protracted irradiation. All the cells get radioresistance. Radioresistance decreases with the time when protracted irradiation is suppressed. It is not found in offspring. It is not a mutation but perhaps the effect of a stimulation of repair processes, but not potentially lethal damage repair [fr

  18. Azoxystrobin-induced excessive reactive oxygen species (ROS) production and inhibition of photosynthesis in the unicellular green algae Chlorella vulgaris.

    Science.gov (United States)

    Liu, Lei; Zhu, Bin; Wang, Gao-Xue

    2015-05-01

    This study investigated the short-term toxicity of azoxystrobin (AZ), one of strobilurins used as an effective fungicidal agent to control the Asian soybean rust, on aquatic unicellular algae Chlorella vulgaris. The median percentile inhibition concentration (IC₅₀) of AZ for C. vulgaris was found to be 510 μg L(-1). We showed that the algal cells were obviously depressed or shrunk in 300 and 600 μg L(-1) AZ treatments by using the electron microscopy. Furthermore, 19, 75, and 300 μg L(-1) AZ treatments decreased the soluble protein content and chlorophyll concentrations in C. vulgaris and altered the energy-photosynthesis-related mRNA expression levels in 48- and 96-h exposure periods. Simultaneously, our results showed that AZ could increase the total antioxidant capacity (T-AOC) level and compromise superoxide dismutase (SOD), peroxidase (POD), glutathione S transferase (GST), glutathione peroxidase (GPx) activities, and glutathione (GSH) content. These situations might render C. vulgaris more vulnerable to oxidative damage. Overall, the present study indicated that AZ might be toxic to the growth of C. vulgaris, affect energy-photosynthesis-related mRNA expressions, and induce reactive oxygen species (ROS) overproduction in C. vulgaris.

  19. Accumulation of 210Po by benthic marine algae

    International Nuclear Information System (INIS)

    Gouvea, R.C.; Branco, M.E.C.; Santos, P.L.

    1988-01-01

    The accumulation of polonium 210 Po by various species of benthic marine seaweeds collected from 4 different points on the coast of Rio de Janeiro, showed variations by species and algal groups. The highest value found was in red alga, Plocamium brasiliensis followed by other organisms of the same group. In the group of the brown alga, the specie Sargassum stenophylum was outstanding. The Chlorophyta presented the lowest content of 210 Po. The algae collected in open sea, revealed greater concentration factors of 210 Po than the same species living in bays. The siliceous residue remaining after mineralization of the algae did not interfere with the detection of polonium. (author)

  20. The first symbiont-free genome sequence of marine red alga, Susabi-nori (Pyropia yezoensis.

    Directory of Open Access Journals (Sweden)

    Yoji Nakamura

    Full Text Available Nori, a marine red alga, is one of the most profitable mariculture crops in the world. However, the biological properties of this macroalga are poorly understood at the molecular level. In this study, we determined the draft genome sequence of susabi-nori (Pyropia yezoensis using next-generation sequencing platforms. For sequencing, thalli of P. yezoensis were washed to remove bacteria attached on the cell surface and enzymatically prepared as purified protoplasts. The assembled contig size of the P. yezoensis nuclear genome was approximately 43 megabases (Mb, which is an order of magnitude smaller than the previously estimated genome size. A total of 10,327 gene models were predicted and about 60% of the genes validated lack introns and the other genes have shorter introns compared to large-genome algae, which is consistent with the compact size of the P. yezoensis genome. A sequence homology search showed that 3,611 genes (35% are functionally unknown and only 2,069 gene groups are in common with those of the unicellular red alga, Cyanidioschyzon merolae. As color trait determinants of red algae, light-harvesting genes involved in the phycobilisome were predicted from the P. yezoensis nuclear genome. In particular, we found a second homolog of phycobilisome-degradation gene, which is usually chloroplast-encoded, possibly providing a novel target for color fading of susabi-nori in aquaculture. These findings shed light on unexplained features of macroalgal genes and genomes, and suggest that the genome of P. yezoensis is a promising model genome of marine red algae.

  1. The First Symbiont-Free Genome Sequence of Marine Red Alga, Susabi-nori (Pyropia yezoensis)

    Science.gov (United States)

    Nakamura, Yoji; Sasaki, Naobumi; Kobayashi, Masahiro; Ojima, Nobuhiko; Yasuike, Motoshige; Shigenobu, Yuya; Satomi, Masataka; Fukuma, Yoshiya; Shiwaku, Koji; Tsujimoto, Atsumi; Kobayashi, Takanori; Nakayama, Ichiro; Ito, Fuminari; Nakajima, Kazuhiro; Sano, Motohiko; Wada, Tokio; Kuhara, Satoru; Inouye, Kiyoshi; Gojobori, Takashi; Ikeo, Kazuho

    2013-01-01

    Nori, a marine red alga, is one of the most profitable mariculture crops in the world. However, the biological properties of this macroalga are poorly understood at the molecular level. In this study, we determined the draft genome sequence of susabi-nori (Pyropia yezoensis) using next-generation sequencing platforms. For sequencing, thalli of P. yezoensis were washed to remove bacteria attached on the cell surface and enzymatically prepared as purified protoplasts. The assembled contig size of the P. yezoensis nuclear genome was approximately 43 megabases (Mb), which is an order of magnitude smaller than the previously estimated genome size. A total of 10,327 gene models were predicted and about 60% of the genes validated lack introns and the other genes have shorter introns compared to large-genome algae, which is consistent with the compact size of the P. yezoensis genome. A sequence homology search showed that 3,611 genes (35%) are functionally unknown and only 2,069 gene groups are in common with those of the unicellular red alga, Cyanidioschyzon merolae. As color trait determinants of red algae, light-harvesting genes involved in the phycobilisome were predicted from the P. yezoensis nuclear genome. In particular, we found a second homolog of phycobilisome-degradation gene, which is usually chloroplast-encoded, possibly providing a novel target for color fading of susabi-nori in aquaculture. These findings shed light on unexplained features of macroalgal genes and genomes, and suggest that the genome of P. yezoensis is a promising model genome of marine red algae. PMID:23536760

  2. Potential biomedical applications of marine algae.

    Science.gov (United States)

    Wang, Hui-Min David; Li, Xiao-Chun; Lee, Duu-Jong; Chang, Jo-Shu

    2017-11-01

    Functional components extracted from algal biomass are widely used as dietary and health supplements with a variety of applications in food science and technology. In contrast, the applications of algae in dermal-related products have received much less attention, despite that algae also possess high potential for the uses in anti-infection, anti-aging, skin-whitening, and skin tumor treatments. This review, therefore, focuses on integrating studies on algae pertinent to human skin care, health and therapy. The active compounds in algae related to human skin treatments are mentioned and the possible mechanisms involved are described. The main purpose of this review is to identify serviceable algae functions in skin treatments to facilitate practical applications in this high-potential area. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. A screening method for cardiovascular active compounds in marine algae.

    Science.gov (United States)

    Agatonovic-Kustrin, S; Kustrin, E; Angove, M J; Morton, D W

    2018-05-18

    The interaction of bioactive compounds from ethanolic extracts of selected marine algae samples, separated on chromatographic plates, with nitric/nitrous acid was investigated. The nature of bioactive compounds in the marine algae extracts was characterised using UV absorption spectra before and after reaction with diluted nitric acid, and from the characteristic colour reaction after derivatization with anisaldehyde. It was found that diterpenes from Dictyota dichotoma, an edible brown algae, and sterols from green algae Caulerpa brachypus, bind nitric oxide and may act as a nitric oxide carrier. Although the carotenoid fucoxanthin, found in all brown marine algae also binds nitric oxide, the bonds between nitrogen and the fucoxanthin molecule are much stronger. Further studies are required to evaluate the effects of diterpenes from Dictyota dichotoma and sterols from green algae Caulerpa brachypus to see if they have beneficial cardiovascular effects. The method reported here should prove useful in screening large numbers of algae species for compounds with cardiovascular activity. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Combining of radionuclides with constituent materials of marine algae

    International Nuclear Information System (INIS)

    Nakamura, Ryoichi; Nakahara, Motokazu; Ishii, Toshiaki; Ueda, Taishi; Shimizu, Chiaki.

    1979-01-01

    The relations between the accumulation-elimination of radionuclides and the constituent materials of marine algae were studied to determine more precisely the mechanism of the radioactive contamination of marine organisms. This will increase the information about the behavior of radionuclides in marine organisms in relation to the environmental conditions (temperature, physico-chemical state of radioisotope, and so on) and the biological conditions (feeding habits, species, and so on). Eisenia contaminated by 137 Cs and 106 Ru- 106 Rh was fractionated by solvent extraction into 6 fractions. The largest portion of 137 Cs was in the boiling water fraction; 106 Ru- 106 Rh was most extracted by 24% KOH solution. Elution patterns by Sephadex G-100 gel-filtration of samples differed largely from each other, both among the 3 kinds of radionuclides and between the 2 species of the algae. Therefore, the accumulation of the radionuclides by the marine algae was proved to be not only due to a physical absorption to the surface of the algae but also to the biological combining of the radionuclides with the constituents of the algae. Furthermore, it was found that radionuclides which combine with a few constituents of alga are not eliminated equally. This is considered to be useful for the physiological analysis of elimination curves. (author)

  5. Effects of glufosinate on antioxidant enzymes, subcellular structure, and gene expression in the unicellular green alga Chlorella vulgaris.

    Science.gov (United States)

    Qian, Haifeng; Chen, Wei; Sheng, G Daniel; Xu, Xiaoyan; Liu, Weiping; Fu, Zhengwei

    2008-07-30

    Greater exposure to herbicide increases the likelihood of harmful effects in humans and the environment. Glufosinate, a non-selective herbicide, inhibits glutamine synthetase (GS) and thus blocks ammonium assimilation in plants. In the present study, the aquatic unicellular alga Chlorella vulgaris was chosen to assess the effects of acute glufosinate toxicity. We observed physiological changes during 12-96 h of exposure, and gene transcription during 6-48 h of exposure. Exposure to glufosinate increased malondialdehyde content by up to 2.73 times compared with the control, suggesting that there was some oxidative damage. Electron microscopy also showed that there were some chloroplast abnormalities in response to glufosinate. The activities of the antioxidant enzymes superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) also increased markedly in the presence of glufosinate. Maximum activities of SOD, POD, and CAT were 2.90, 2.91, and 2.48 times that of the control, respectively. These elevated activities may help alleviate oxidative damage. A real-time polymerase chain reaction (PCR) assay showed changes in transcript abundances of three photosynthetic genes, psaB, psbC, and rbcL. The results showed that glufosinate reduced the transcript abundances of the three genes after 12h exposure. The lowest abundances of psaB, psbC and rbcL transcripts in response to glufosinate exposure were 38%, 16% and 43% of those of the control, respectively. Our results demonstrate that glufosinate affects the activities of antioxidant enzymes, disrupts chloroplast ultrastructure, and reduces transcription of photosynthesis-related genes in C. vulgaris.

  6. The effect of ionizing radiation with different ionizing density on the uni-cellular Alga Micrasterias denticulate Breb

    International Nuclear Information System (INIS)

    Reubel, B.

    1982-01-01

    The uni-cellular green alga Micrasterias denticulata Breb is very suitable for cytological, ultrastructural investigations as well as for growth studies of cell populations because of its size and its specific cellular pattern. Therefore these cells were investigated for their cell-cycle-dependent reaction to different types of radiation, dose-rates and cumulated doses and compared with results from the literature on radiobiological effects on single cells. Different types of ionizing radiation were used such as gamma rays ( 60 Co, 241 Am), alpha rays ( 241 Am) neutrons ( 252 Cf and 14 MeV-neutrons from a particle-accelerator) and protons (20-MeV-protons from a particle-accelerator). Irradiation with low doses (gamma-, neutron irradiation) did not show any statistically significant results. No effects could be observed after alpha irradiation because of the alpha particles could not penetrate the mucus cover. Irradiation with gamma rays and protons showed statistically significant reversible and irreversible effects. The reversible effect appeared in a dose-dependent division-delay of the populations. The results from literature, cell-cycle observations and ultra-structural investigations point to a block in the G 2 -phase and prolongation of the S-phase. Irreversible irradiation damage is caused by neutron- and proton irradiation. In the first case the length of division delay shows no dose-dependence. In the second case the following cell-cycles are retarded. The dose-effect-curves of proton-irradiations with different dose-rates show a plateau at high doses, which seems to be effected by the turn-on of an additional repair-mechanism. (Author)

  7. Effects of glufosinate on antioxidant enzymes, subcellular structure, and gene expression in the unicellular green alga Chlorella vulgaris

    International Nuclear Information System (INIS)

    Qian Haifeng; Chen Wei; Sheng, G. Daniel; Xu Xiaoyan; Liu Weiping; Fu Zhengwei

    2008-01-01

    Greater exposure to herbicide increases the likelihood of harmful effects in humans and the environment. Glufosinate, a non-selective herbicide, inhibits glutamine synthetase (GS) and thus blocks ammonium assimilation in plants. In the present study, the aquatic unicellular alga Chlorella vulgaris was chosen to assess the effects of acute glufosinate toxicity. We observed physiological changes during 12-96 h of exposure, and gene transcription during 6-48 h of exposure. Exposure to glufosinate increased malondialdehyde content by up to 2.73 times compared with the control, suggesting that there was some oxidative damage. Electron microscopy also showed that there were some chloroplast abnormalities in response to glufosinate. The activities of the antioxidant enzymes superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) also increased markedly in the presence of glufosinate. Maximum activities of SOD, POD, and CAT were 2.90, 2.91, and 2.48 times that of the control, respectively. These elevated activities may help alleviate oxidative damage. A real-time polymerase chain reaction (PCR) assay showed changes in transcript abundances of three photosynthetic genes, psaB, psbC, and rbcL. The results showed that glufosinate reduced the transcript abundances of the three genes after 12 h exposure. The lowest abundances of psaB, psbC and rbcL transcripts in response to glufosinate exposure were 38%, 16% and 43% of those of the control, respectively. Our results demonstrate that glufosinate affects the activities of antioxidant enzymes, disrupts chloroplast ultrastructure, and reduces transcription of photosynthesis-related genes in C. vulgaris

  8. Effects of glufosinate on antioxidant enzymes, subcellular structure, and gene expression in the unicellular green alga Chlorella vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    Qian Haifeng; Chen Wei; Sheng, G. Daniel; Xu Xiaoyan; Liu Weiping [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Fu Zhengwei [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China)], E-mail: azwfu2003@yahoo.com.cn

    2008-07-30

    Greater exposure to herbicide increases the likelihood of harmful effects in humans and the environment. Glufosinate, a non-selective herbicide, inhibits glutamine synthetase (GS) and thus blocks ammonium assimilation in plants. In the present study, the aquatic unicellular alga Chlorella vulgaris was chosen to assess the effects of acute glufosinate toxicity. We observed physiological changes during 12-96 h of exposure, and gene transcription during 6-48 h of exposure. Exposure to glufosinate increased malondialdehyde content by up to 2.73 times compared with the control, suggesting that there was some oxidative damage. Electron microscopy also showed that there were some chloroplast abnormalities in response to glufosinate. The activities of the antioxidant enzymes superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) also increased markedly in the presence of glufosinate. Maximum activities of SOD, POD, and CAT were 2.90, 2.91, and 2.48 times that of the control, respectively. These elevated activities may help alleviate oxidative damage. A real-time polymerase chain reaction (PCR) assay showed changes in transcript abundances of three photosynthetic genes, psaB, psbC, and rbcL. The results showed that glufosinate reduced the transcript abundances of the three genes after 12 h exposure. The lowest abundances of psaB, psbC and rbcL transcripts in response to glufosinate exposure were 38%, 16% and 43% of those of the control, respectively. Our results demonstrate that glufosinate affects the activities of antioxidant enzymes, disrupts chloroplast ultrastructure, and reduces transcription of photosynthesis-related genes in C. vulgaris.

  9. Selenite -Se(4)- uptake mechanisms in the unicellular green alga Chlamydomonas reinhardtii: bioaccumulation and effects induced on growth and ultrastructure

    International Nuclear Information System (INIS)

    Morlon, H.

    2005-03-01

    Selenium is an essential element, but becomes very toxic at higher concentrations. It occurs in the environment at concentrations ranging from nM to μM and selenium pollution is a worldwide phenomenon. This works aims at improving the knowledge on the interactions between selenite - Se(IV) - and a freshwater phyto-planktonic organism: the unicellular green algae Chlamydomonas reinhardtii. The aim of the performed experiments were: i) to investigate selenite -Se(IV)- uptake mechanisms in C. reinhardtii, using Se 75 as a tracer in short term exposures ( -2 .nM -1 .h -1 . The uptake was proportional to ambient levels in a broad range of intermediate concentrations (from nM to μM). However, fluxes were higher at very low concentrations ( μM), suggesting that a high affinity but rapidly saturated transport mechanism could be used at low concentrations, in parallel with a low affinity mechanism that would only saturate at high concentrations (∼mM). The latter could involve transporters used by sulphate and nitrates, as suggested by the inhibition of selenite uptake by those element. Se(IV) speciation changes with pH did not induce significant effect on bioavailability. On the basis of the relationship between Se concentration and maximal cell density achieved, an EC50 of 80 μM ([64; 98]) was derived. No adaptation mechanism were observed as the same the same toxicity was quantified for Se-pre-exposed algae. Observations by TEM suggested chloroplasts as the first target of selenite cytotoxicity, with effects on the stroma, thylakoids and pyrenoids. At higher concentrations, we could observe an increase in the number and volume of starch grains. For the cell collected at 96 h, electron-dense granules were observed. Energy-dispersive X-ray microanalysis revealed that they contained selenium and were also rich in calcium and phosphorus. Finally, growth inhibition was highly correlated to the bioaccumulation of selenite. The latter was inhibited by increasing

  10. Transcriptional analysis of cell growth and morphogenesis in the unicellular green alga Micrasterias (Streptophyta, with emphasis on the role of expansin

    Directory of Open Access Journals (Sweden)

    Leliaert Frederik

    2011-09-01

    Full Text Available Abstract Background Streptophyte green algae share several characteristics of cell growth and cell wall formation with their relatives, the embryophytic land plants. The multilobed cell wall of Micrasterias denticulata that rebuilds symmetrically after cell division and consists of pectin and cellulose, makes this unicellular streptophyte alga an interesting model system to study the molecular controls on cell shape and cell wall formation in green plants. Results Genome-wide transcript expression profiling of synchronously growing cells identified 107 genes of which the expression correlated with the growth phase. Four transcripts showed high similarity to expansins that had not been examined previously in green algae. Phylogenetic analysis suggests that these genes are most closely related to the plant EXPANSIN A family, although their domain organization is very divergent. A GFP-tagged version of the expansin-resembling protein MdEXP2 localized to the cell wall and in Golgi-derived vesicles. Overexpression phenotypes ranged from lobe elongation to loss of growth polarity and planarity. These results indicate that MdEXP2 can alter the cell wall structure and, thus, might have a function related to that of land plant expansins during cell morphogenesis. Conclusions Our study demonstrates the potential of M. denticulata as a unicellular model system, in which cell growth mechanisms have been discovered similar to those in land plants. Additionally, evidence is provided that the evolutionary origins of many cell wall components and regulatory genes in embryophytes precede the colonization of land.

  11. Cycloartane triterpenes from marine green alga Cladophora fascicularis

    Science.gov (United States)

    Huang, Xinping; Zhu, Xiaobin; Deng, Liping; Deng, Zhiwei; Lin, Wenhan

    2006-12-01

    Six cycloartanes were isolated from ethanol extract of marine green alga Cladophora fascicularis by column chromatography. Procedure of isolation and description of these compounds are given in this paper. The structures were elucidated as (1). 24-hydroperoxycycloart-25- en-3β-ol; (2). cycloart-25-en-3β 24-diol; (3). 25-hydroperoxycycloart-23-en-3β-ol; (4). cycloart-23-en-3β, 25-diol; (5). cycloart-23, 25-dien-3β-ol; and (6). cycloart-24-en-3β-ol by spectroscopic (MS, ID and 2D NMR) data analysis. Cycloartane derivatives are widely distributed in terrestrial plants, but only few were obtained in the alga. All these compounds that have been isolated from terrestrial plants, were found in the marine alga for the first time.

  12. Radiokinetic study in betony marine algae

    International Nuclear Information System (INIS)

    Azevedo Gouvea, V. de.

    1981-01-01

    The influx and outflux kinetics of some radionuclides in algae of the Rio de Janeiro coastline, were studied in order to select bioindicators for radioactive contamination in aquatic media, due to the presence of Nuclear Power Stations. Bioassays of the concentration and loss of radionuclides such as 137 Cs, 51 Cr, 60 Co and 131 I were performed in 1000cm 3 aquarium under controlled laboratory conditions, using a single channel gamma counting system, to study the species of algae most frequently found in the region. The concentration and loss parameters for all the species and radionuclides studied were obtained from the normalized results. The loss parameters were computerwise adjusted using Powell's multiparametric method. (author)

  13. Bioactivity of marine organisms. Part 3. Screening of marine algae of Indian coast for biological activity

    Digital Repository Service at National Institute of Oceanography (India)

    Kamat, S.Y.; Wahidullah, S.; Naik, C.G.; DeSouza, L.; Jayasree, V.; Ambiye, V.; Bhakuni, D.S.; Goel, A.K.; Garg, H.S.; Srimal, R.C.

    Ethanolic extracts from Indian marine algae have been tested for anti-viral, anti-bacterial, anti-fungal, anti-fertility, hypoglycaemic and a wide range of pharmacological activities. Of 34 species investigated 17 appeared biologically active. Six...

  14. Phycobiliproteins: A Novel Green Tool from Marine Origin Blue-Green Algae and Red Algae.

    Science.gov (United States)

    Chandra, Rashmi; Parra, Roberto; Iqbal, Hafiz M N

    2017-01-01

    Marine species are comprising about a half of the whole global biodiversity; the sea offers an enormous resource for novel bioactive compounds. Several of the marine origin species show multifunctional bioactivities and characteristics that are useful for a discovery and/or reinvention of biologically active compounds. For millennia, marine species that includes cyanobacteria (blue-green algae) and red algae have been targeted to explore their enormous potential candidature status along with a wider spectrum of novel applications in bio- and non-bio sectors of the modern world. Among them, cyanobacteria are photosynthetic prokaryotes, phylogenetically a primitive group of Gramnegative prokaryotes, ranging from Arctic to Antarctic regions, capable of carrying out photosynthesis and nitrogen fixation. In the recent decade, a great deal of research attention has been paid on the pronouncement of bio-functional proteins along with novel peptides, vitamins, fine chemicals, renewable fuel and bioactive compounds, e.g., phycobiliproteins from marine species, cyanobacteria and red algae. Interestingly, they are extensively commercialized for natural colorants in food and cosmetics, antimicrobial, antioxidant, anti-inflammatory, neuroprotective, hepatoprotective agents and fluorescent neo-glycoproteins as probes for single particle fluorescence imaging fluorescent applications in clinical and immunological analysis. However, a comprehensive knowledge and technological base for augmenting their commercial utilities are lacking. Therefore, this paper will provide an overview of the phycobiliproteins-based research literature from marine cyanobacteria and red algae. This review is also focused towards analyzing global and commercial activities with application oriented-based research. Towards the end, the information is also given on the potential biotechnological and biomedical applications of phycobiliproteins. Copyright© Bentham Science Publishers; For any queries, please

  15. In the presence of fluoride, free Sc³⁺ is not a good predictor of Sc bioaccumulation by two unicellular algae: possible role of fluoro-complexes.

    Science.gov (United States)

    Crémazy, Anne; Campbell, Peter G C; Fortin, Claude

    2014-08-19

    We investigated the effect of fluoride complexation on scandium accumulation by two unicellular algae, Chlamydomonas reinhardtii and Pseudokirchneriella subcapitata. This trivalent metal was selected for its chemical similarities with aluminum and for its convenient radioisotope (Sc-46), which can be used as a tracer in short-term bioaccumulation studies. Scandium surface-bound concentrations (Sc(ads)) and uptake fluxes (J(int)) were estimated in the two algae over short-term (organisms.

  16. Study on the concentration and seasonal variation of inorganic elements in 35 species of marine algae

    DEFF Research Database (Denmark)

    Hou, Xiaolin; Yan, X.J.

    1998-01-01

    The concentrations of five major and 28 trace elements in 35 marine algae collected along the coast of China were determined by instrumental neutron activation analysis. The concentrations of halogens, rare earth elements and many transition metal elements in marine algae are remarkably higher than...... those in terrestrial plants. The concentration factors for 31 elements in all collected algae were calculated, those for tri- and tetra-valent elements were higher than those of the mono- and di-valent elements in marine algae. The biogeochemical characteristics of inorganic elements in marine algae...

  17. Origin of the polycomb repressive complex 2 and gene silencing by an E(z) homolog in the unicellular alga Chlamydomonas.

    Science.gov (United States)

    Shaver, Scott; Casas-Mollano, J Armando; Cerny, Ronald L; Cerutti, Heriberto

    2010-05-16

    Polycomb group proteins play an essential role in the maintenance of cell identity and the regulation of development in both animals and plants. The Polycomb Repressive Complex 2 (PRC2) is involved in the establishment of transcriptionally silent chromatin states, in part through its ability to methylate lysine 27 of histone H3 by the Enhancer of zeste [E(z)] subunit. The absence of PRC2 in unicellular model fungi and its function in the repression of genes vital for the development of higher eukaryotes led to the proposal that this complex may have evolved together with the emergence of multicellularity. However, we report here on the widespread presence of PRC2 core subunits in unicellular eukaryotes from the Opisthokonta, Chromalveolata and Archaeplastida supergroups. To gain insight on the role of PRC2 in single celled organisms, we characterized an E(z) homolog, EZH, in the green alga Chlamydomonas reinhardtii. RNAi-mediated suppression of EZH led to defects in the silencing of transgenes and retrotransposons as well as to a global increase in histone post-translational modifications associated with transcriptional activity, such as trimethylation of histone H3 lysine 4 and acetylation of histone H4. On the basis of the parsimony principle, our findings suggest that PRC2 appeared early in eukaryotic evolution, even perhaps in the last unicellular common ancestor of eukaryotes. One of the ancestral roles of PCR2 may have been in defense responses against intragenomic parasites such as transposable elements, prior to being co-opted for lineage specific functions like developmental regulation in multicellular eukaryotes.

  18. Dissolved organic nitrogen and carbon release by a marine unicellular diazotrophic cyanobacterium

    NARCIS (Netherlands)

    Benavides, M.; Agawin, N.S.R.; Aristegui, J.; Peene, J.; Stal, L.J.

    2013-01-01

    Dinitrogen (N-2) fixation rates may be underestimated when recently fixed N2 is released as dissolved organic nitrogen (DON). DON release (DONr) is substantial in the filamentous cyanobacterium Trichodesmium but has never been reported in unicellular diazotrophic cyanobacteria. We used axenic

  19. Dissolved organic nitrogen and carbon release by a marine unicellular diazotrophic cyanobacterium

    NARCIS (Netherlands)

    Benavides, M.; Agawin, N.S.R.; Aristegui, J.; Peene, J.; Stal, L.J.

    2013-01-01

    Dinitrogen (N2) fixation rates may be underestimated when recently fixed N2 is released as dissolved organic nitrogen (DON). DON release (DONr) is substantial in the filamentous cyanobacterium Trichodesmium but has never been reported in unicellular diazotrophic cyanobacteria. We used axenic

  20. Proteomic analysis of a model unicellular green alga, Chlamydomonas reinhardtii, during short-term exposure to irradiance stress reveals significant down regulation of several heat-shock proteins.

    Science.gov (United States)

    Mahong, Bancha; Roytrakul, Suttiruk; Phaonaklop, Narumon; Wongratana, Janewit; Yokthongwattana, Kittisak

    2012-03-01

    Oxygenic photosynthetic organisms often suffer from excessive irradiance, which cause harmful effects to the chloroplast proteins and lipids. Photoprotection and the photosystem II repair processes are the mechanisms that plants deploy to counteract the drastic effects from irradiance stress. Although the protective and repair mechanisms seemed to be similar in most plants, many species do confer different level of tolerance toward high light. Such diversity may originate from differences at the molecular level, i.e., perception of the light stress, signal transduction and expression of stress responsive genes. Comprehensive analysis of overall changes in the total pool of proteins in an organism can be performed using a proteomic approach. In this study, we employed 2-DE/LC-MS/MS-based comparative proteomic approach to analyze total proteins of the light sensitive model unicellular green alga Chlamydomonas reinhardtii in response to excessive irradiance. Results showed that among all the differentially expressed proteins, several heat-shock proteins and molecular chaperones were surprisingly down-regulated after 3-6 h of high light exposure. Discussions were made on the possible involvement of such down regulation and the light sensitive nature of this model alga.

  1. Anaerobic energy metabolism in unicellular photosynthetic eukaryotes.

    Science.gov (United States)

    Atteia, Ariane; van Lis, Robert; Tielens, Aloysius G M; Martin, William F

    2013-02-01

    Anaerobic metabolic pathways allow unicellular organisms to tolerate or colonize anoxic environments. Over the past ten years, genome sequencing projects have brought a new light on the extent of anaerobic metabolism in eukaryotes. A surprising development has been that free-living unicellular algae capable of photoautotrophic lifestyle are, in terms of their enzymatic repertoire, among the best equipped eukaryotes known when it comes to anaerobic energy metabolism. Some of these algae are marine organisms, common in the oceans, others are more typically soil inhabitants. All these species are important from the ecological (O(2)/CO(2) budget), biotechnological, and evolutionary perspectives. In the unicellular algae surveyed here, mixed-acid type fermentations are widespread while anaerobic respiration, which is more typical of eukaryotic heterotrophs, appears to be rare. The presence of a core anaerobic metabolism among the algae provides insights into its evolutionary origin, which traces to the eukaryote common ancestor. The predicted fermentative enzymes often exhibit an amino acid extension at the N-terminus, suggesting that these proteins might be compartmentalized in the cell, likely in the chloroplast or the mitochondrion. The green algae Chlamydomonas reinhardtii and Chlorella NC64 have the most extended set of fermentative enzymes reported so far. Among the eukaryotes with secondary plastids, the diatom Thalassiosira pseudonana has the most pronounced anaerobic capabilities as yet. From the standpoints of genomic, transcriptomic, and biochemical studies, anaerobic energy metabolism in C. reinhardtii remains the best characterized among photosynthetic protists. This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Dephosphorylation Pathway of D-myo-Inositol 1,4,5-trisphosphate in the Unicellular Green Alga Chlamydomonas eugametos

    NARCIS (Netherlands)

    Klerk, Hans; Himbergen, John A.J. van; Musgrave, Alan; Haastert, Peter J.M. van; Ende, Herman van den

    In vitro dephosphorylation of D-myo-inositol 1,4,5-trisphosphate [Ins(l,4,5)P-3] by vegetative cells, gametes and zygotes of the green alga Chlamydomonas eugametos was studied using a soluble cell fraction as enzyme source and labelled Ins(1,4,5)P-3 as substrate. This compound was dephosphorylated

  3. Cadmium accumulation by the marine red alga Porphyra umbilicalis

    Energy Technology Data Exchange (ETDEWEB)

    McLean, M.W.; Williamson, F.B.

    1977-01-01

    The characteristics of cadmium accumulation by the marine red alga Porphyra umbilicalis L. in culture are reported. The time course of uptake under various light conditions shows that cadmium is concentrated as the result of an on-going anabolic process and not as a consequence of a pH gradient as provided by photosynthesis. The effect of cycloheximide is in agreement with de novo protein synthesis being a prerequisite for cadmium accumulation. Autoradiography suggests a specific intracellular location for bound cadmium--apparently the nucleus.

  4. Radiophotosynthesis of some sup 14 C-labelled amino acids using the unicellular green alga Scenedesmus acutus

    Energy Technology Data Exchange (ETDEWEB)

    Barakat, M.F.; Farag, A.N.; Ragab, M.T. (Atomic Energy Establishment, Cairo (Egypt). Nuclear Chemistry Dept.); El-Fouly, M.M.; El-Baz, F.K. (National Research Centre, Cairo (Egypt). Botany Lab.)

    1990-01-01

    Radiophotosynthesis has been carried out using the unicellular green algea Scenedesmus acutus grown, as a substrate for preparing some carbon-14 labelled amino acids. Gaseous {sup 14}CO{sub 2}, in an air tight photosynthesis chamber or NaH{sup 14}CO{sub 3} solution, in an ordinary phtosynthesis chamber, were used as radioactive carbon sources. The yields, radiochemical yields and specific activities of the formed radioactive products are reported in both cases. The results obtained clearly showed the advantages of usingthe NaH{sup 14}CO{sub 3} method. In that case the process was by far less tedious. Moreover, the chemical and radiochemical yields of the formed amino acids were relatively much more higher than the values obtained on using {sup 14}CO{sub 2} in the tight photosynthesis chamber. (orig.).

  5. Antitumor effects of Marginisporum crassissimum (Rhodophyceae), a marine red alga.

    Science.gov (United States)

    Hiroishi, S; Sugie, K; Yoshida, T; Morimoto, J; Taniguchi, Y; Imai, S; Kurebayashi, J

    2001-06-26

    Marginisporum crassissimum (Yendo) Ganesan, a marine red alga found in the ordinal coastal sea around Japan, revealed antitumor (antimetastatic) effects in vitro and in vivo. In in vitro experiments, extracts of this alga inhibited not only the growth of several tumor cell lines, such as B16-BL6 (a mouse melanoma cell line), JYG-B (a mouse mammary carcinoma cell line) and KPL-1 (a human mammary carcinoma cell line), but also invasion of B16-BL6 cells in a culture system. In in vivo experiments, the lung metastasis of B16-BL6 cells inoculated to the tail vein of B57BL/6J mice was inhibited by intraperitoneal administration of an extract from the alga. In addition, life prolongation of B57BL/6J mice inoculated with B16-BL6 cells was also observed by the intraperitoneal administration of the extract. An effective substance showing B16-BL6 growth inhibition in vitro was partially purified by filtration and hydrophobic column chromatography, and was revealed to be sensitive to trypsin-digestion and heat-treatment. The molecular weight of the substance was greater than 100 kDa. This is the first study demonstrating antitumor (antimetastatic) effects of M. crassissimum.

  6. Marine algae as attractive source to skin care.

    Science.gov (United States)

    Berthon, Jean-Yves; Nachat-Kappes, Rachida; Bey, Mathieu; Cadoret, Jean-Paul; Renimel, Isabelle; Filaire, Edith

    2017-06-01

    As the largest organ in the human body, the skin has multiple functions of which one of the most important is the protection against various harmful stressors. The keratinised stratified epidermis and an underlying thick layer of collagen-rich dermal connective tissues are important components of the skin. The environmental stressors such as ultraviolet radiation (UVR) and pollution increase the levels of reactive oxygen species (ROS), contributing to clinical manifestations such as wrinkle formation and skin aging. Skin aging is related to the reduction of collagen production and decrease of several enzymatic activities including matrix metalloproteinases (MMPs), which degrade collagen structure in the dermis; and tissue inhibitor of metalloproteinases (TIMPs), which inhibit the action of MMPs. In addition to alterations of DNA, signal transduction pathways, immunology, UVR, and pollution activate cell surface receptors of keratinocytes and fibroblasts in the skin. This action leads to a breakdown of collagen in the extracellular matrix and a shutdown of new collagen synthesis. Therefore, an efficient antioxidants strategy is of major importance in dermis and epidermis layers. Marine resources have been recognised for their biologically active substances. Among these, marine algae are rich-sources of metabolites, which can be used to fight against oxidative stress and hence skin aging. These metabolites include, among others, mycosporine-like amino acids (MAAs), polysaccharides, sulphated polysaccharides, glucosyl glycerols, pigments, and polyphenols. This paper reviews the role of oxidative processes in skin damage and the action of the compounds from algae on the physiological processes to maintain skin health.

  7. Recomendations concerning technical research and development with the purpose to industrially exploit marine algae

    Energy Technology Data Exchange (ETDEWEB)

    Hahn-Haegerdal, B.

    1980-10-01

    This report formulates a proposal for a program for technical research and development concerning use of Marine algae.The report is based on a retrospective literature search, an inquiry to potential algae users and producers in Sweden, visits to and correspondence with scientists and industries in Sweden and abroad. Technical research and development concerning marine algae is needed within the following fields: -Development of new sorts of algae offering resistance to parasite and disease adoptation to cultivation and har- vesting systems,and high-yielding concerning technically interesting components. -Development of suitable cultivation systems for Swedish conditions. -Co-cultivation of fish, mussels, oysters and crustaceans with algae. -Development of harvesting systems. -Methane rotting. -Fatty acid/hydrocarbon production as an alternative to methane rotting. -Physical-chemical properties of marine polysaccharides in relation to their technical properties. -Marine algae as fodder supplement.

  8. Antibacterial activity of extracts of marine algae from the Red Sea of ...

    African Journals Online (AJOL)

    Antibacterial activity of extracts of marine algae from the Red Sea of Jeddah, Saudi Arabia. ... African Journal of Biotechnology ... The antibacterial activities of petroleum ether, diethyl ether, ethyl acetate and methanol extracts of marine algae belonging to the Chlorophyta, Phaeophyta and Rhodophyta were studied.

  9. Marine Algae as Source of Novel Antileishmanial Drugs: A Review

    Directory of Open Access Journals (Sweden)

    Lauve Rachel Tchokouaha Yamthe

    2017-10-01

    Full Text Available Leishmaniasis is a vector-borne neglected tropical disease caused by protozoan parasites of the Leishmania genus and transmitted by the female Phlebotomus and Lutzomyia sand flies. The currently prescribed therapies still rely on pentavalent antimonials, pentamidine, paromomycin, liposomal amphotericin B, and miltefosine. However, their low efficacy, long-course treatment regimen, high toxicity, adverse side effects, induction of parasite resistance and high cost require the need for better drugs given that antileishmanial vaccines may not be available in the near future. Although most drugs are still derived from terrestrial sources, the interest in marine organisms as a potential source of promising novel bioactive natural agents has increased in recent years. About 28,000 compounds of marine origin have been isolated with hundreds of new chemical entities. Recent trends in drug research from natural resources indicated the high interest of aquatic eukaryotic photosynthetic organisms, marine algae in the search for new chemical entities given their broad spectrum and high bioactivities including antileishmanial potential. This current review describes prepared extracts and compounds from marine macroalgae along with their antileishmanial activity and provides prospective insights for antileishmanial drug discovery.

  10. Antitumor activity of hierridin B, a cyanobacterial secondary metabolite found in both filamentous and unicellular marine strains.

    Directory of Open Access Journals (Sweden)

    Pedro N Leão

    Full Text Available Cyanobacteria are widely recognized as a valuable source of bioactive metabolites. The majority of such compounds have been isolated from so-called complex cyanobacteria, such as filamentous or colonial forms, which usually display a larger number of biosynthetic gene clusters in their genomes, when compared to free-living unicellular forms. Nevertheless, picocyanobacteria are also known to have potential to produce bioactive natural products. Here, we report the isolation of hierridin B from the marine picocyanobacterium Cyanobium sp. LEGE 06113. This compound had previously been isolated from the filamentous epiphytic cyanobacterium Phormidium ectocarpi SAG 60.90, and had been shown to possess antiplasmodial activity. A phylogenetic analysis of the 16S rRNA gene from both strains confirmed that these cyanobacteria derive from different evolutionary lineages. We further investigated the biological activity of hierridin B, and tested its cytotoxicity towards a panel of human cancer cell lines; it showed selective cytotoxicity towards HT-29 colon adenocarcinoma cells.

  11. Evidence for methane production by the marine algae Emiliania huxleyi

    Science.gov (United States)

    Lenhart, Katharina; Klintzsch, Thomas; Langer, Gerald; Nehrke, Gernot; Bunge, Michael; Schnell, Sylvia; Keppler, Frank

    2016-06-01

    Methane (CH4), an important greenhouse gas that affects radiation balance and consequently the earth's climate, still has uncertainties in its sinks and sources. The world's oceans are considered to be a source of CH4 to the atmosphere, although the biogeochemical processes involved in its formation are not fully understood. Several recent studies provided strong evidence of CH4 production in oxic marine and freshwaters, but its source is still a topic of debate. Studies of CH4 dynamics in surface waters of oceans and large lakes have concluded that pelagic CH4 supersaturation cannot be sustained either by lateral inputs from littoral or benthic inputs alone. However, regional and temporal oversaturation of surface waters occurs frequently. This comprises the observation of a CH4 oversaturating state within the surface mixed layer, sometimes also termed the "oceanic methane paradox". In this study we considered marine algae as a possible direct source of CH4. Therefore, the coccolithophore Emiliania huxleyi was grown under controlled laboratory conditions and supplemented with two 13C-labeled carbon substrates, namely bicarbonate and a position-specific 13C-labeled methionine (R-S-13CH3). The CH4 production was 0.7 µg particular organic carbon (POC) g-1 d-1, or 30 ng g-1 POC h-1. After supplementation of the cultures with the 13C-labeled substrate, the isotope label was observed in headspace CH4. Moreover, the absence of methanogenic archaea within the algal culture and the oxic conditions during CH4 formation suggest that the widespread marine algae Emiliania huxleyi might contribute to the observed spatially and temporally restricted CH4 oversaturation in ocean surface waters.

  12. Effects of sonication and advanced chemical oxidants on the unicellular green alga Dunaliella tertiolecta and cysts, larvae and adults of the brine shrimp Artemia salina: a prospective treatment to eradicate invasive organisms from ballast water.

    Science.gov (United States)

    Gavand, Meghana R; McClintock, James B; Amsler, Charles D; Peters, Robert W; Angus, Robert A

    2007-11-01

    Uptake and release of ship-borne ballast water is a major factor contributing to introductions of aquatic phytoplankton and invasive macroinvertebrates. Some invasive unicellular algae can cause harmful algal blooms and produce toxins that build up in food chains. Moreover, to date, few studies have compared the efficacy of ballast water treatments against different life history phases of aquatic macroinvertebrates. In the present study, the unicellular green alga Dunaliella tertiolecta, and three discrete life history phases of the brine shrimp Artemia salina, were independently used as model organisms to study the efficacy of sonication as well as the advanced oxidants, hydrogen peroxide and ozone, as potential ballast water treatments. Algal cells and brine shrimp cysts, nauplii, and adults were subjected to individual and combined treatments of sonication and advanced oxidants. Combined rather than individual treatments consistently yielded the highest levels of mortality in algal cells (100% over a 2 min exposure) and in brine shrimp (100% and 95% for larvae and adults, respectively, over a 2 min exposure). In contrast, mortality levels in brine shrimp cysts (66% over 2 min; increased to 92% over a 20 min exposure) were moderately high but consistently lower than that detected for larval or adult shrimp. Our results indicate that a combination of sonication and advanced chemical oxidants may be a promising method to eradicate aquatic unicellular algae and macroinvertebrates in ballast water.

  13. Effects of γ-rays on the survival of several unicellular green algae and the relation to saprobity

    International Nuclear Information System (INIS)

    Hamada, Jin; Saito, Masahiro; Bando, Tadashi; Ishida, M.R.

    1990-01-01

    The lethal effects of 60 Co-γ-rays on the cells of Chlamydomonas reinhardi Dangeard (Chlorophyceae) and four species of desmids (Charophyceae) such as Closterium acerosum Ehrenberg, Netrium digitus Ehrenberg, Closterium ehrenbergii Meneghini, and Pleurotaenium ehrenbergii de Bary were studied at their plateau phase. Wide variation in their response to γ-rays was observed. Among these algae. Cl.acerosum, which is the most tolerant against saprobity, showed the highest resistance to γ-rays. The values of D 37 for Cl.acerosum, N. digitus, Cl.ehrenbergii, Ch.reihardi and Pl.ehrenbergii were about 210Gy, 155Gy, 60Gy and 30Gy, respectively. Some relationship between the resistance to radiation and tolerance to saprobity existed among closely related species. (author)

  14. Marine Algae: a Source of Biomass for Biotechnological Applications.

    Science.gov (United States)

    Stengel, Dagmar B; Connan, Solène

    2015-01-01

    Biomass derived from marine microalgae and macroalgae is globally recognized as a source of valuable chemical constituents with applications in the agri-horticultural sector (including animal feeds and health and plant stimulants), as human food and food ingredients as well as in the nutraceutical, cosmeceutical, and pharmaceutical industries. Algal biomass supply of sufficient quality and quantity however remains a concern with increasing environmental pressures conflicting with the growing demand. Recent attempts in supplying consistent, safe and environmentally acceptable biomass through cultivation of (macro- and micro-) algal biomass have concentrated on characterizing natural variability in bioactives, and optimizing cultivated materials through strain selection and hybridization, as well as breeding and, more recently, genetic improvements of biomass. Biotechnological tools including metabolomics, transcriptomics, and genomics have recently been extended to algae but, in comparison to microbial or plant biomass, still remain underdeveloped. Current progress in algal biotechnology is driven by an increased demand for new sources of biomass due to several global challenges, new discoveries and technologies available as well as an increased global awareness of the many applications of algae. Algal diversity and complexity provides significant potential provided that shortages in suitable and safe biomass can be met, and consumer demands are matched by commercial investment in product development.

  15. TAXONOMY OF VISEAN MARINE CALCAREOUS ALGAE, FERNIE, BRITISH COLUMBIA (CANADA

    Directory of Open Access Journals (Sweden)

    BERNARD MAMET

    2006-11-01

    Full Text Available Reports a diverse microflora from the Late Viséan Opal Member, Fernie, Rocky Mountains, Canada.  A shallow-water limestone level yields forty identifiable taxa of green and red algae associated with  microproblematica.  Four  species are new :  Cabrieropora opalae, Cribrokamaena ferniensis, Koninckopora pachytheca and Moravammina ? enigmatica.  Inferred sedimentation is open marine, in normal salinity, from the middle part of the euphotic zone, within the fair-weather wave zone.  A semi-restricted lagoon located nearby provides floated calcispheres.  The high diversity is due to the excellent preservation of the thalli which were protected by a thin early coating of bacterial micrite. 

  16. Production of Biodiesel from Marine Algae to Mitigate Environmental Pollution

    International Nuclear Information System (INIS)

    Khan, A.M.; Obaid, M.; Sultana, R.

    2015-01-01

    This research article demonstrates the conversion of oily contents of marine macroalgae, namely Cystoseira indica and Scinia hatei to fatty acid methyl ester (FAME) through alkaline transesterification. The algae were dried, crushed and grinded into the powder form, which were analyzed for physical appearance, water content and particle size profile. The oily contents from these powdered algae were extracted by using different non-polar solvents like n-hexane, n-heptane, dichloromethane, diethyl ether and n-hexane: diethyl ether (1:1) mixture at small scale. The efficiency index of the solvent was developed based on the yield of the oily content and boiling point of these solvents, which showed that n-hexane: diethyl ether (1:1) mixture is the best solvent system for the extraction of oils. The yield of oily contents with respect to the dried algal weight was found to be 2.81 ± 0.43 percentage w/w and 3.10 ± 0.27 percentage w/w for C. indica and S. hatei respectively. These oily contents were subjected to physical and chemical analysis. The oily contents were converted into biodiesel by alkaline transesterification using potassium methoxide as catalyst which is prepared by dissolving KOH in methanol (0.5g/12 ml, 4.2 percentage w/v) in a separate flask. All the reactions were carried out under completely anhydrous conditions using silica as desiccant and with continuous stirring so that the reactants in two immiscible phases of oily contents and methanol were remain in contact. The yield of biodiesel was found to be 89.0 ± 0.51 percentage w/w (2.50 percentage w/w of dried alga) and 90.6 ± 0.36 percentage w/w (2.81 percentage w/w of dried alga) of biodiesel from C. indica and S. hatei respectively. Finally, biodiesel was characterized by gas chromatography and American Society for Testing and Materials (ASTM) as well as by European (EN) standards which were found to be in agreement with the standard values of biodiesel. (author)

  17. Extraction of alginate biopolymer present in marine alga sargassum filipendula and bioadsorption of metallic ions

    Directory of Open Access Journals (Sweden)

    Sirlei Jaiana Kleinübing

    2013-04-01

    Full Text Available This paper studies the bioadsorption of Pb2+, Cu2+, Cd2+ and Zn2+ ions by marine alga Sargassum filipendula and by the alginate biopolymer extracted from this alga. The objective is to evaluate the importance of this biopolymer in removing different metallic ions by the marine alga S. filipendula. In the equilibrium study, the same affinity order was observed for both bioadsorbents: Pb2+ > Cu2+ > Zn2+ > Cd2+. For Pb2+ and Cu2+ ions when the alginate is isolated and acting as bioadsorbents, adsorption capacities greater than those found for the alga were observed, indicating that it is the main component responsible for the removal of metallic ions. For Zn2+ and Cd2+ ions, greater bioadsorption capacities were observed for the alga, indicating that other functional groups of the alga, such as sulfates and amino, are also important in the bioadsorption of these ions.

  18. Cytotoxicity effects of water dispersible oxidized multiwalled carbon nanotubes on marine alga, Dunaliella tertiolecta

    International Nuclear Information System (INIS)

    Wei Liping; Thakkar, Megha; Chen Yuhong; Ntim, Susana Addo; Mitra, Somenath; Zhang Xueyan

    2010-01-01

    The multiwalled carbon nanotubes (MWNTs) are novel materials with many potential applications. The ecotoxicity of these materials is not well studied, but it is essential for environmental impact assessments. In this study a commercially available MWNT material was carboxylated by microwave assisted acid oxidation. This functionalized MWNT (f-MWNT) material was examined for toxicity effects using unicellular marine green alga Dunaliella tertiolecta. D. tertiolecta was exposed to f-MWNT which had been pre-equilibrated with culture media for 24 h. Substantial growth lag phase was observed at 5 and 10 mg L -1 f-MWNT, and the resulting 50% effective concentration (EC50) on 96-h growth was 0.82 ± 0.08 mg L -1 . During mid-exponential growth phase cytotoxicity was evidenced at 10 mg L -1 f-MWNT in 36% reduction in exponential growth rate, 88 mV more positive glutathione redox potential (indicative of oxidative stress), 5% and 22% reduction in photosystem II (PSII) quantum yield and functional cross section respectively, all relative to the control cultures. However, when the large f-MWNT aggregates in the media with 10 mg L -1 f-MWNT were removed by 0.2 μm filtration, D. tertiolecta did not show significant cytotoxicity effects in any of the above parameters. This suggests that the cytotoxicity effects originated predominately from the large f-MWNT aggregates. Analysis of the f-MWNT aggregation dynamics suggests active interaction between f-MWNT and algal cells or cell metabolites that promoted f-MWNT aggregation formation. The f-MWNT particles were also found absorbed on algal cell surface. The direct contact between f-MWNT and cell surface was likely responsible for reduced PSII functional cross section and oxidative stress during exponential growth.

  19. Association of thraustochytrids and fungi with living marine algae

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.; Nagarkar, S.; Raghukumar, S.

    only in C. clavulatum, Sargassum cinereum and Padina tetrastromatica whilst mycelial fungi occurred in all. Growth experiments in the laboratory indicated that the growth of thraustochytrids was inhibited on live algae, whereas killed algae supported...

  20. Acetic acid production from marine algae. Progress report No. 1, July 1--September 30, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Sanderson, J.E.; Augenstein, D.C.; Wise, D.L.

    1977-10-14

    Progress is reported in research designed to develop an economically competitive process for producing acetic acid from biomass for the purpose of sparing petroleum for other uses, to evaluate marine algae as a potential source of biomass, and to document the feasibility of running fermentations in fixed packed bed fermenters. It was demonstrated that marine algae can be fermented to acetic acid. Initial rates of up to 168 meq/1 day were observed. These rates are substantially in excess of the 47 meq/1 day used in the economic projections. Also, when using marine algae as a substrate, acid levels were generated equivalent to the highest reported with other substrates. It was also demonstrated that a 4-foot fixed packet bed fermenter may be operated with marine algae as a substrate at 20 percent solids or 200 meq/1.

  1. Marine Algae As A Prospective Source For Antidiabetic Compounds - A Brief Review.

    Science.gov (United States)

    Unnikrishnan, Pulikkaparambil Sasidharan; Jayasri, Mangalam Achuthananda

    2018-01-01

    Diabetes Mellitus (DM) is a metabolic disorder characterized by chronic hyperglycaemia, which is attributed to several life threatening complications including atherosclerosis, nephropathy, and retinopathy. The current therapies available for the management of DM mainly include oral antidiabetic drugs and insulin injections. However, continuous use of synthetic drugs provides lower healing with many side effects. Therefore, there is an urge for safe and efficient antidiabetic drugs for the management of DM. In the continuing search for effective antidiabetic drugs, marine algae (seaweeds) remains as a promising source with potent bioactivity. It is anticipated that the isolation, characterization, and pharmacological study of unexplored marine algae can be useful in the discovery of novel antidiabetic compounds with high biomedical value. Among marine algae, brown and red algae are reported to exhibit antidiabetic activity. Majority of the investigations on algal derived compounds controls the blood glucose levels through the inhbition of carbohydrate hydroloyzing enzymes and protein tyrosine phosphatase 1B enzymes, insulin sensitization, glucose uptake effect and other protective effects against diabetic complications. Based on the above perspective this review provides; profiles for various marine algae posessing antidiabetic activity. This study also highlights the therapeutic potential of compounds isolated from marine algae for the effective management of diabetes and its associated complications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Marinagarivorans algicola gen. nov., sp. nov., isolated from marine algae.

    Science.gov (United States)

    Guo, Ling-Yun; Li, Dong-Qi; Sang, Jin; Chen, Guan-Jun; Du, Zong-Jun

    2016-03-01

    Two novel agar-degrading, Gram-stain-negative, motile, heterotrophic, facultatively anaerobic and pale yellow-pigmented bacterial strains, designated Z1 T and JL1, were isolated from marine algae Gelidium amansii (Lamouroux) and Gracilaria verrucosa , respectively. Growth of the isolates was optimal at 28-30 °C, pH 7.0-7.5 and with 2-3 % (w/v) NaCl. Both strains contained Q-8 as the sole respiratory quinone. The major cellular fatty acids in strain Z1 T were C 18 : 1 ω7 c , C 16 : 0 and summed feature 3 (C 16 : 1 ω7 c and/or iso-C 15 : 0 2-OH). The predominant polar lipids in strain Z1 T were phosphatidylethanolamine, phosphatidylglycerol and an aminolipid. The genomic DNA G+C content of both strains was 45.1 mol%. Strains Z1 T and JL1 were closely related, with 99.9 % 16S rRNA gene sequence similarity. The average nucleotide identity (ANI) value between strains Z1 T and JL1 was 99.3 %. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strains Z1 T and JL1 form a distinct phyletic line within the class Gammaproteobacteria , with less than 92.3 % similarity to their closest relatives. Based on data from the current polyphasic study, the isolates are proposed to belong to a novel species of a new genus designated Marinagarivorans algicola gen. nov., sp. nov. The type strain of the type species is Z1 T ( = ATCC BAA-2617 T  = CICC 10859 T ).

  3. Concentration factors for Cs-137 in marine algae from Japanese coastal waters

    International Nuclear Information System (INIS)

    Tateda, Yutaka; Koyanagi, Taku.

    1994-01-01

    Concentration factors (CF: Bq·kg -1 in wet algae/Bq·kg -1 in filtered seawater) for Cs-137 in Japanese coastal algae, were investigated during 1984-1990. Cs-137/Cs (stable) atom ratios were also examined to clarify the distribution equilibrium of Cs-137 in marine algae and sea water. The CFs in marine algae were within the range of 5.4-92, and the geometric mean of CF was 28±2 (standard error) in Japanese coastal species. The CFs in edible species were within the range of 5.4-67, and the geometric means of CF was 26±4 (standard error). The values of Cs-137/Cs atom ratios in marine algae and sea water indicated that Cs-137 reached an equilibrium state in partition between algae and sea water. Therefore, the CF value obtained in the present study can be regarded as an equilibrated value. Our results showed that hte CF for Cs-137 in Japanese coastal algae were consistent with the Japanese guideline CFs, but were smaller than the recommended value by IAEA. (author)

  4. Pathway of /sup 14/Co/sub 2/ fixation in marine algae

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, G V; Karekar, M D [Shivaji Univ., Kolhapur (India). Dept. of Botany

    1973-08-01

    Marine plants have a different metabolic environment which is likely to affect pathways of CO/sub 2/ fixation. It has been observed that in marine alga, Ulva lactuca, during short term light fixation of /sup 14/CO/sub 2/, besides PGA, an appreciable amount of activity was located in aspartate. This curious observation can now be explained on the basis of Hatch, Slack and Kortschak pathway of CO/sub 2/ fixation. In order to trace pathways of /sup 14/CO/sub 2/ in marine algae, a wide variety of algal specimens were exposed to NaH/sup 14/CO/sub 3/ in light and the products were analyzed. The algae selected were Ulva lactuca, Sargassum ilicifolium, Sphacelaria sp., Padina tetrastromatica, Chaetomorpha media and Enteromorpha tubulosa. It has been found that the pathways of CO/sub 2/ in the above marine algae differ from the conventional pattern recorded in Chlorella. The early labelling of aspartate and its subsequent utilization indicates that HSK pathway is operative in the marine algae. Malate synthesis is inhibited due to the effect of saline environment on the activity of malic dehydrogenase. Appreciable label in PGA is suggestive of the fact that Calvin and Bassham pathway as well as the HSK route are simultaneously operating. (auth)

  5. Preliminary observations on the benthic marine algae of the Gorringe seabank (northeast Atlantic Ocean)

    Science.gov (United States)

    Tittley, Ian; da Silva Vaz Álvaro, Nuno Miguel; de Melo Azevedo Neto, Ana Isabel

    2014-06-01

    Examination of marine samples collected in 2006 from the Gettysburg and Ormonde seamounts on the Gorringe seabank southwest of Portugal has revealed 29 benthic Chlorophyta, Phaeophyceae (Ochrophyta), and Rhodophyta that were identified provisionally to genus and to species. Combining lists for the present and a previous expedition brings the total of algae thus far recorded to 48. The brown alga Zonaria tournefourtii and the red alga Cryptopleura ramosa were the most abundant species in the present collections. The kelp Laminaria ochroleuca was present only in the Gettysburg samples while Saccorhiza polyschides was observed only on the Ormonde seamount. Comparisons with the benthic marine algae recorded on seamounts in the mid-Atlantic Azores archipelago show features in common, notably kelp forests of L. ochroleuca at depths below 30 m and Z. tournefortii dominance in shallower waters.

  6. Diterpenes from the Marine Algae of the Genus Dictyota.

    Science.gov (United States)

    Chen, Jiayun; Li, Hong; Zhao, Zishuo; Xia, Xue; Li, Bo; Zhang, Jinrong; Yan, Xiaojun

    2018-05-11

    Species of the brown algae of the genus Dictyota are rich sources of bioactive secondary metabolites with diverse structural features. Excellent progress has been made in the discovery of diterpenes possessing broad chemical defensive activities from this genus. Most of these diterpenes exhibit significant biological activities, such as antiviral, cytotoxic and chemical defensive activities. In the present review, we summarized diterpenes isolated from the brown algae of the genus.

  7. Photobiological hydrogen production with the unicellular green alga Chlamydomonas reinhardtii under process engineering aspects; Photobiologische Wasserstoffproduktion mit der einzelligen Gruenalge Chlamydomonas reinhardtii unter verfahrenstechnischen Aspekten

    Energy Technology Data Exchange (ETDEWEB)

    Geier, Stephanie

    2011-07-01

    Hydrogen is of high interest as a clean and environmentally friendly energy source as its combustion only emits water and energy. However, currently hydrogen is produced in energy demanding processes by the consumption of fossil fuels. An alternative way of sustainable and non-polluting hydrogen production could be provided by use of photosynthetic active microalgae. Within this work, the photobiological hydrogen production with the unicellular green algae Chlamydomonas reinhardtii is investigated under the aspects of bioprocess-engineering and economics. Objectives are, besides the increase of the photochemical efficiency, the cultivation of the algae and subsequent hydrogen production under cost-free sunlight. It could be demonstrated that outdoor cultivation of C. reinhardtii is possible in Central Europe throughout the year by using e.g. waste heat. Similar cell numbers in the range from 1,2.10{sup 7} cells ml{sup -1} to 1,7.10{sup 7} cells ml{sup -1} could be achieved in closed photobioreactors of the type Photobioreactor Screening Module under controlled laboratory conditions and both continuous illumination (200 {mu}mol.m{sup -2}.s{sup -1}) and simulated outdoor conditions according to the light intensity of idealized summer day as well as in outdoor experiments (up to 2000 {mu}mol.m{sup -2}.s{sup -1}).The use of 10 % CO{sub 2} corresponding to the CO{sub 2} content in flue gas led to a doubling of cell numbers under continuous illumination to 4,2.10{sup 7} cells ml{sup -1}, compared to the reference culture bubbled with 3 % CO{sub 2}. A significant increase of cell numbers under the light profiles of an idealized summer day could not be achieved. The cultivation under the light profile of a winter day at 25 C reduced cell growth to 54 %, compared to the summer simulation. In open 30 L outdoor ponds, only 0,26.10{sup 7} cells ml{sup -1} could be achieved under photoheterotrophic conditions during the summer months, which corresponds to 20 % of the cell

  8. PIXE application for measurement of bioaccumulation of lead by marine micro-algae

    International Nuclear Information System (INIS)

    Iwata, Y.; Suzuki, M.

    2000-01-01

    Marine micro-algae (Nannochloropsis sp., and Phaeodactylum sp.,) were obtained from the Pacific Ocean of Iwate Pref., Japan and purely cultured in nutritive seawater as a culture solution. The culture size for algae was 10-250 ml and every apparatus was small and of low cost. Marine micro-algae were given in different culture solutions including Pb 2+ from 0.01 to 1.0 mg/l. The algae in 5 ml of the culture solution were collected on a polycarbonate filter (pore size: 1.0 μm) by suction filtration. The algae on the filter were subjected to PIXE analysis. Concentrations of Na, Mg, Si, P, S, Cl, K, Ca, Cr, Mn, Fe, Cu, Zn, Sr and Pb were simultaneously determined. PIXE can do multi-element analysis for a sample of below 1 mg. The quantity of lead in marine micro-algae increases in proportion to the Pb 2+ concentration in the culture solution. The concentration factor (wet weight base) for lead is given as 200±20 ml/g for Nannochloropsis sp. and 1900±400 ml/g for Phaeodactylum sp.. It is shown that PIXE is a powerful tool for the measurement of the bioaccumulation of trace elements. (author)

  9. Algae

    Czech Academy of Sciences Publication Activity Database

    Raven, John A.; Giordano, Mario

    2014-01-01

    Roč. 24, č. 13 (2014), s. 590-595 ISSN 0960-9822 Institutional support: RVO:61388971 Keywords : algae * life cycle * evolution Subject RIV: EE - Microbiology, Virology Impact factor: 9.571, year: 2014

  10. Accumulation of 95mTc by marine algae and sea urchin

    International Nuclear Information System (INIS)

    Nakamura, Ryoichi; Nakahara, Motokazu; Matsuba, Mitsue; Suzuki, Yuzuru

    1994-01-01

    It is necessary to investigate the accumulation of technetium by marine algae popular in Japan and it is also important to examine the contribution of food to the accumulation of the nuclide by sea urchin which grazes algae. In the laboratory tracer experiment, some species of algae and sea urchin were kept separately for 7 days in sea water containing 95m Tc (uptake experiment) and then transferred into non-radioactive sea water to be held for 28 days with the frequent renewal of the sea water (excretion experiment). No food was given during the uptake experiment to prevent the urchins from accumulating 95m Tc through food. Another experiment was done by feeding urchins with 95m Tc labeled algae in the non-radioactive sea water. Five species of brown algae showed CFs in the range of 900 and 35000 but CFs of green and red algae were 1-4. Sea urchin accumulated more 95m Tc through food (brown algae) than directly from sea water, so that the main pathway of technetium accumulation by sea urchin was estimated to be brown algae which were the most favorite food of the organism. (author)

  11. Preliminary results on accumulation and loss of artificial radionuclides in marine benthic algae

    International Nuclear Information System (INIS)

    Santos, P.L. dos; Santos Gouvea, R.C.; Gusmao Pedrini, A.

    1978-01-01

    The acummulation and the loss of artificial radionuclides in three species of marine benthic algae of the state of Rio de Janeiro were studied under laboratory conditions, so that a selection of biological indicators for radioctive contamination of the marine environment could be made. Medium concentration factors were calculated, the most significant figures being those obtained for the algae Pterocladia Capillacea (Gmelin) Bornet et Thuret (132+-40) p/ sub(131) I and Sargassum vulgares J. Agardh (19+-5) p/ 51 Cr [pt

  12. Dereplication and chemotaxonomical studies of marine algae of the Ochrophyta and Rhodophyta phyla.

    Science.gov (United States)

    Brkljača, Robert; Gӧker, Emrehan Semih; Urban, Sylvia

    2015-04-30

    Dereplication and chemotaxonomic studies of six marine algae of the Ochrophyta and one of the Rhodophyta phyla resulted in the detection of 22 separate compounds. All 16 secondary metabolites, including four new compounds (16-19), could be rapidly dereplicated using HPLC-NMR and HPLC-MS methodologies in conjunction with the MarinLit database. This study highlights the advantages of using NMR data (acquired via HPLC-NMR) for database searching and for the overall dereplication of natural products.

  13. Influences of marine sediment on the accumulation of radionuclides by green alga (Ulva pertusa)

    International Nuclear Information System (INIS)

    Nakamura, Ryoichi; Suzuki, Yuzuru; Ueda, Taiji

    1975-01-01

    Distribution of radionuclides ( 60 Co, 137 Cs, 95 Zr- 95 Nb and 106 Ru- 106 Rh) among green alga (Ulva pertusa), sea water and marine sediment were examined by radioisotope tracer experiment in order to estimate the influence of sediment on the accumulation of radionuclides by the alga. By the application of the compartment model to the experimental results, exponential formulas of distributions were obtained. Through comparison of the transfer coefficients of radionuclides calculated from the exponential formulas, the influence of the sediment on the accumulation of the radionuclides by the green alga was determined to be the largest for 60 Co, followed by 95 Zr- 95 Nb, 106 Ru- 106 Rh and 137 Cs in this order. The activity ratios of 95 Zr- 95 Nb and 106 Ru- 106 Rh calculated from the transfer coefficients are larger for the alga than for the sediment, inversely those of 60 Co and 137 Cs show higher values for the sediment than for the alga. Especially, in the case of 60 Co, the activity ratio for the sediment is approximately 20 times greater than that for the alga. Biological half lives in green alga estimated from the transfer coefficients were 10 days for 60 Co, 7 days for 137 Cs, 26 days for 95 Zr- 95 Nb and 24 days for 106 Ru- 106 Rh. (auth.)

  14. Distributions of radionuclides among green alga (Ulva pertusa), sea water and marine sediment

    International Nuclear Information System (INIS)

    Nakamura, Ryoichi; Suzuki, Yuzuru; Ueda, Taishi

    1976-01-01

    Distributions of radionuclides ( 60 Co, 137 Cs, 95 Zr- 95 Nb and 106 Ru- 106 Rh) among green alga (Ulva pertusa), sea water and marine sediment were examined by radioisotope tracer experiment in order to estimate the influence of sediment on the accumulation of radionuclides by the alga. By the application of the compartment model to the experimental results, exponential formulas of distributions were obtained. Through comparison of the transfer coefficients of radionuclides calculated from the exponential formulas, the influence of the sediment on the accumulation of the radionuclides by the green alga was determined to be the largest for 60 Co, followed by 95 Zr,- 95 Nb, 106 Ru- 106 Rh and 137 Cs in this order. The activity ratios of 95 Zr- 95 Nb and 106 Ru- 106 Rh calculated from the transfer coefficients are larger for the alga than for the sediment, inversely those of 60 Co and 137 Cs show higher values for the sediment than for the alga. Especially, in the case of 60 Co, the activity ratio for the sediment is approximately 20 times greater than that for the alga. Biological half lives in green alga estimated from the transfer coefficients were 10 days for 60 Co, 7 days for 137 Cs, 26 days for 95 Zr- 95 Nb and 24 days for 95 Zr- 95 Nb and 24 days for 106 Ru- 106 Rh. (auth.)

  15. Elimination of 2-chlorophenol from aqueous solutions by marine algae: Evidences of the mechanism of adsorption

    International Nuclear Information System (INIS)

    Cuizano, N.A.; Llanos, B.P.

    2009-01-01

    The mechanism of the removal of 2-chlorophenol onto the marine algae Lessonia nigrescens Bory and Macrocystis integrifolia Bory from aqueous solutions was investigated in batch experiments. The effect of the presence of metallic ions in the adsorptive process was evaluated. The results show that lead slightly increases the adsorption of 2-chlorophenol. This suggests two different types of adsorption of both types of pollutants by the two marine algae and a possible synergic effect. Scanning electron microscopy and energy dispersive X-ray analyses predominantly indicated a surface adsorption. Finally, the change in Gibbs free energy (ΔG 0 ) of the process was determined. The results show that the adsorption is not spontaneous for none of the algae. This also corroborates the absence of electrostatic interactions and the existence of a polar interaction in an unfavorable environment surrounded by hydroxyl groups. (author)

  16. Biosorption: An Interplay between Marine Algae and Potentially Toxic Elements—A Review

    Science.gov (United States)

    Bilal, Muhammad; Rasheed, Tahir; Raza, Ali; Nabeel, Faran

    2018-01-01

    In recent decades, environmental pollution has emerged as a core issue, around the globe, rendering it of fundamental concern to eco-toxicologists, environmental biologists, eco-chemists, pathologists, and researchers from other fields. The dissolution of polluting agents is a leading cause of environmental pollution of all key spheres including the hydrosphere, lithosphere, and biosphere, among others. The widespread occurrence of various pollutants including toxic heavy metals and other emerging hazardous contaminants is a serious concern. With increasing scientific knowledge, socioeconomic awareness, human health problems, and ecological apprehensions, people are more concerned about adverse health outcomes. Against this background, several removal methods have been proposed and implemented with the aim of addressing environmental pollution and sustainable and eco-friendly development. Among them, the biosorption of pollutants using naturally inspired sources, e.g., marine algae, has considerable advantages. In the past few years, marine algae have been extensively studied due to their natural origin, overall cost-effective ratio, and effectiveness against a broader pollutant range; thus, they are considered a potential alternative to the conventional methods used for environmental decontamination. Herein, an effort has been made to highlight the importance of marine algae as naturally inspired biosorbents and their role in biosorption. Biosorption mechanisms and factors affecting biosorption activities are also discussed in this review. The utilization of marine algae as a biosorbent for the removal of numerous potentially toxic elements has also been reviewed. PMID:29463058

  17. Biosorption: An Interplay between Marine Algae and Potentially Toxic Elements—A Review

    Directory of Open Access Journals (Sweden)

    Muhammad Bilal

    2018-02-01

    Full Text Available In recent decades, environmental pollution has emerged as a core issue, around the globe, rendering it of fundamental concern to eco-toxicologists, environmental biologists, eco-chemists, pathologists, and researchers from other fields. The dissolution of polluting agents is a leading cause of environmental pollution of all key spheres including the hydrosphere, lithosphere, and biosphere, among others. The widespread occurrence of various pollutants including toxic heavy metals and other emerging hazardous contaminants is a serious concern. With increasing scientific knowledge, socioeconomic awareness, human health problems, and ecological apprehensions, people are more concerned about adverse health outcomes. Against this background, several removal methods have been proposed and implemented with the aim of addressing environmental pollution and sustainable and eco-friendly development. Among them, the biosorption of pollutants using naturally inspired sources, e.g., marine algae, has considerable advantages. In the past few years, marine algae have been extensively studied due to their natural origin, overall cost-effective ratio, and effectiveness against a broader pollutant range; thus, they are considered a potential alternative to the conventional methods used for environmental decontamination. Herein, an effort has been made to highlight the importance of marine algae as naturally inspired biosorbents and their role in biosorption. Biosorption mechanisms and factors affecting biosorption activities are also discussed in this review. The utilization of marine algae as a biosorbent for the removal of numerous potentially toxic elements has also been reviewed.

  18. Biosorption: An Interplay between Marine Algae and Potentially Toxic Elements-A Review.

    Science.gov (United States)

    Bilal, Muhammad; Rasheed, Tahir; Sosa-Hernández, Juan Eduardo; Raza, Ali; Nabeel, Faran; Iqbal, Hafiz M N

    2018-02-19

    In recent decades, environmental pollution has emerged as a core issue, around the globe, rendering it of fundamental concern to eco-toxicologists, environmental biologists, eco-chemists, pathologists, and researchers from other fields. The dissolution of polluting agents is a leading cause of environmental pollution of all key spheres including the hydrosphere, lithosphere, and biosphere, among others. The widespread occurrence of various pollutants including toxic heavy metals and other emerging hazardous contaminants is a serious concern. With increasing scientific knowledge, socioeconomic awareness, human health problems, and ecological apprehensions, people are more concerned about adverse health outcomes. Against this background, several removal methods have been proposed and implemented with the aim of addressing environmental pollution and sustainable and eco-friendly development. Among them, the biosorption of pollutants using naturally inspired sources, e.g., marine algae, has considerable advantages. In the past few years, marine algae have been extensively studied due to their natural origin, overall cost-effective ratio, and effectiveness against a broader pollutant range; thus, they are considered a potential alternative to the conventional methods used for environmental decontamination. Herein, an effort has been made to highlight the importance of marine algae as naturally inspired biosorbents and their role in biosorption. Biosorption mechanisms and factors affecting biosorption activities are also discussed in this review. The utilization of marine algae as a biosorbent for the removal of numerous potentially toxic elements has also been reviewed.

  19. A novel ether-linked phytol-containing digalactosylglycerolipid in the marine green alga, Ulva pertusa

    International Nuclear Information System (INIS)

    Ishibashi, Yohei; Nagamatsu, Yusuke; Miyamoto, Tomofumi; Matsunaga, Naoyuki; Okino, Nozomu; Yamaguchi, Kuniko; Ito, Makoto

    2014-01-01

    Highlights: • Alkaline-resistant galactolipid, AEGL, was found in marine algae. • The sugar moiety of AEGL is identical to that of digalactosyldiacylglycerol. • AEGL is the first identified glycolipid that possesses an ether-linked phytol. • AEGL is ubiquitously distributed in green, red and brown marine algae. - Abstract: Galactosylglycerolipids (GGLs) and chlorophyll are characteristic components of chloroplast in photosynthetic organisms. Although chlorophyll is anchored to the thylakoid membrane by phytol (tetramethylhexadecenol), this isoprenoid alcohol has never been found as a constituent of GGLs. We here described a novel GGL, in which phytol was linked to the glycerol backbone via an ether linkage. This unique GGL was identified as an Alkaline-resistant and Endogalactosylceramidase (EGALC)-sensitive GlycoLipid (AEGL) in the marine green alga, Ulva pertusa. EGALC is an enzyme that is specific to the R-Galα/β1-6Galβ1-structure of galactolipids. The structure of U. pertusa AEGL was determined following its purification to 1-O-phytyl-3-O-Galα1-6Galβ1-sn-glycerol by mass spectrometric and nuclear magnetic resonance analyses. AEGLs were ubiquitously distributed in not only green, but also red and brown marine algae; however, they were rarely detected in terrestrial plants, eukaryotic phytoplankton, or cyanobacteria

  20. Acetic acid production from marine algae. Progress report No. 2, September 30--December 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    Preliminary results on the production of acetic acid from marine algae by anaerobic fermentation indicate that the rate is quite fast. First order rate constants of 0.77 day/sup -1/ were observed. This rate constant gives a half-life of less than one day. In other words, with a properly designed product removal system a five day retention time would yield 98% of theoretical conversion. Determination of the theoretical conversion of marine algae to acetic acid is the subject of much experimentation. The production of one acetic acid molecule (or equivalent in higher organic acids) for each three carbon atoms in the substrate has been achieved; but it is possible that with a mixed culture more than one acetic acid molecule may be produced for each three carbons in the substrate. Work is continuing to improve the yield of acetic acid from marine algae. Marine algae have been found to be rather low in carbon, but the carbon appears to be readily available for fermentation. It, therefore, lends itself to the production of higher value chemicals in relatively expensive equipment, where the rapid conversion rate is particularly cost effective. Fixed packed bed fermenters appear to be desirable for the production of liquid products which are inhibitory to the fermentation from coarse substrates. The inhibitory products may be removed from the fermentation by extraction during recirculation. This technique lends itself to either conventional processing or low capital processing of substrates which require long retention times.

  1. A novel ether-linked phytol-containing digalactosylglycerolipid in the marine green alga, Ulva pertusa

    Energy Technology Data Exchange (ETDEWEB)

    Ishibashi, Yohei; Nagamatsu, Yusuke [Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Miyamoto, Tomofumi [Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582 (Japan); Matsunaga, Naoyuki; Okino, Nozomu; Yamaguchi, Kuniko [Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Ito, Makoto, E-mail: makotoi@agr.kyushu-u.ac.jp [Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan)

    2014-10-03

    Highlights: • Alkaline-resistant galactolipid, AEGL, was found in marine algae. • The sugar moiety of AEGL is identical to that of digalactosyldiacylglycerol. • AEGL is the first identified glycolipid that possesses an ether-linked phytol. • AEGL is ubiquitously distributed in green, red and brown marine algae. - Abstract: Galactosylglycerolipids (GGLs) and chlorophyll are characteristic components of chloroplast in photosynthetic organisms. Although chlorophyll is anchored to the thylakoid membrane by phytol (tetramethylhexadecenol), this isoprenoid alcohol has never been found as a constituent of GGLs. We here described a novel GGL, in which phytol was linked to the glycerol backbone via an ether linkage. This unique GGL was identified as an Alkaline-resistant and Endogalactosylceramidase (EGALC)-sensitive GlycoLipid (AEGL) in the marine green alga, Ulva pertusa. EGALC is an enzyme that is specific to the R-Galα/β1-6Galβ1-structure of galactolipids. The structure of U. pertusa AEGL was determined following its purification to 1-O-phytyl-3-O-Galα1-6Galβ1-sn-glycerol by mass spectrometric and nuclear magnetic resonance analyses. AEGLs were ubiquitously distributed in not only green, but also red and brown marine algae; however, they were rarely detected in terrestrial plants, eukaryotic phytoplankton, or cyanobacteria.

  2. Does the cell radioresistance acquired by low dose-rate gamma irradiation depend on genetic factors or physiological changes. Study carried out on inactive cells of the unicellular green alga Chlorella pyrenoidosa CHICK

    International Nuclear Information System (INIS)

    Dettwiller, Pascale.

    1982-09-01

    Inactive cells of the unicellular green alga Chlorella pyrenoidosa CHICK were used to test the following hypothesis: the radioresistance acquired by these cells after irradiation at low dose rate (0.06 Gy/mn) is due to the selection or induction of radioresistant clones. Clone cultures were grown mainly from colonies exhibiting defects (high cell loss, slowed growth, pigment deficiency). Of thirty clones studied, three only of second and third separations possessed the radioresistance of their original population. On the basis of these results, backed up by a first experiment which shows the loss of cell radioresistance when continuous irradiation is stopped, the initial hypothesis may be dismissed and research directed towards changes relative to cell restoration processes by irradiation at low dose rates [fr

  3. Reparation in unicellular green algae during chronic exposure to the action of mutagenic factors. II. Restoration of single-stranded DNA breaks following exposure of Chlamydomonas reinchardii to gamma-irradiation

    International Nuclear Information System (INIS)

    Sergeeva, S.A.; Ptitsina, S.N.; Shevchenko, V.A.

    1986-01-01

    The restoration of single-stranded breaks in the DNA in different strains of unicellular green algae (chlamydomonads) during chronic exposure to the action of mutagenic factors following γ-irradiation was investigated. It was shown that the restoration of DNA breaks was most effective in the case of strain M γ/sup mt + /, which is resistant to radiation. Strains, that were sensitive to UV irradiation showed a similar order of DNA break restoration as the wild-type strain. Strain UVS-1 showed a higher level of restoration than the wild-type strain. The data indicated that chlamydomonads have different pathways of reparation, which lead to the restoration of breaks induced by γ-irradiation and UV-rays

  4. The small unicellular diazotrophic symbiont, UCYN-A, is a key player in the marine nitrogen cycle

    DEFF Research Database (Denmark)

    Martínez-Pérez, Clara; Mohr, Wiebke; Löscher, Carolin R

    2016-01-01

    to live in symbioses with specific eukaryotic algae. Single-cell analyses showed that both algae-UCYN-A symbioses actively fixed N2, contributing ∼20% to N2 fixation in the tropical North Atlantic, revealing their significance in this region. These symbioses had growth rates five to ten times higher than...

  5. Interactions between marine facultative epiphyte Chlamydomonas sp. (Chlamydomonadales, Chlorophyta) and ceramiaceaen algae (Rhodophyta).

    Science.gov (United States)

    Klochkova, Tatyana A; Cho, Ga Youn; Boo, Sung Min; Chung, Ki Wha; Kim, Song Ja; Kim, Gwang Hoon

    2008-07-01

    Previously unrecorded marine Chlamydomonas that grew epiphytic on ceramiaceaen algae was collected from the western coast of Korea and isolated into a unialgal culture. The isolate was subjected to 18S rDNA phylogenetic analysis as well as ultrastructure and life cycle studies. It had an affinity with the marine Chlamydomonas species and was less related to freshwater/terrestrial representatives of this genus. It had flagella shorter than the cell body two-layered cell wall with striated outer surface and abundant mucilaginous material beneath the innermost layer and no contractile vacuoles. This alga grew faster in mixed cultures with ceramiaceaen algae rather than in any tested unialgal culture condition; the cells looked healthier and zoosporangia and motile flagellated vegetative cells appeared more often. These results suggested that this Chlamydomonas might be a facultative epiphyte benefiting from its hosts. Several ceramiaceaen algae were tested as host plants. Meanwhile, cell deformation or collapse of the whole thallus was caused to Aglaothamnion byssoides, and preliminary study suggested that a substance released from Chlamydomonas caused the response. This is first report on harmful epiphytic interactions between Chlamydomonas species and red ceramiaceaen algae.

  6. Determining surface areas of marine alga cells by acid-base titration method.

    Science.gov (United States)

    Wang, X; Ma, Y; Su, Y

    1997-09-01

    A new method for determining the surface area of living marine alga cells was described. The method uses acid-base titration to measure the surface acid/base amount on the surface of alga cells and uses the BET (Brunauer, Emmett, and Teller) equation to estimate the maximum surface acid/base amount, assuming that hydrous cell walls have carbohydrates or other structural compounds which can behave like surface Brönsted acid-base sites due to coordination of environmental H2O molecules. The method was applied to 18 diverse alga species (including 7 diatoms, 2 flagellates, 8 green algae and 1 red alga) maintained in seawater cultures. For the species examined, the surface areas of individual cells ranged from 2.8 x 10(-8) m2 for Nannochloropsis oculata to 690 x 10(-8) m2 for Dunaliella viridis, specific surface areas from 1,030 m2.g-1 for Dunaliella salina to 28,900 m2.g-1 for Pyramidomonas sp. Measurement accuracy was 15.2%. Preliminary studies show that the method may be more promising and accurate than light/electron microscopic measurements for coarse estimation of the surface area of living algae.

  7. Combining of some trace elements with constituent materials of marine algae

    International Nuclear Information System (INIS)

    Nakamura, Ryoichi

    1981-01-01

    Two radionuclides ( 137 Cs and 106 Ru- 106 Rh) were extracted from a brown alg a (Eisenta bicyclis) into 5 solvents (Ethyl ethel, 80% Ethyl alcohol, boiled water, 0.2% NaOH and 24% KOH) in different proportions, suggesting that both radionuclides do not combine with fats and pigments, and that 137 Cs associates maybe with dextrans and monosaccharides, while, 106 Ru- 106 Rh mainly combines with the cell wall polysaccharides such as alginic acid and fucoidan. In order to obtain information from extracts of algae, gel filtration was carried out on 2 species of algae (Ulva pertusa and Eisenia bicyclis) using Sephadex G-100 and G-25. Gel filtration profile gave only one peak for 137 Cs, 2 for 106 Ru- 106 Rh and 125 I, and 3 for 60 Co corresponding to positions where saccharides of the algae appeared. As the result, it was found that different radionuclides combined with different constituent materials of an alga, to some extent. Gel filtration profiles of 125 I were compared with each other among several species of marine algae. They were different from one another among classes of green, brown and red algae, though they were similar in a class. Gel filtration profiles of 125 I were also varied between 2 chemical forms of 125 I (Na 125 I and Na 125 IO 3 ). (J.P.N.)

  8. Crystallization and preliminary X-ray diffraction analysis of HML, a lectin from the red marine alga Hypnea musciformis

    International Nuclear Information System (INIS)

    Nagano, Celso S.; Gallego del Sol, Francisca; Cavada, Benildo S.; Nascimento, Kyria Santiago Do; Nunes, Eudismar Vale; Sampaio, Alexandre H.; Calvete, Juan J.

    2005-01-01

    The crystallization and preliminary X-ray diffraction analysis of a red marine alga lectin isolated from H. musciformis is reported. HML, a lectin from the red marine alga Hypnea musciformis, defines a novel lectin family. Orthorhombic crystals of HML belonging to space group P2 1 2 1 2 1 grew within three weeks at 293 K using the hanging-drop vapour-diffusion method. A complete data set was collected at 2.4 Å resolution. HML is the first marine alga lectin to be crystallized

  9. Methane production from marine, green macro-algae

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, G.

    1983-01-01

    Fermentation studies have been carried out to produce methane from green algae native to Scandinavian water and suitable for large scale cultivation. Long term semi-continuous fermentations during mesophilic and thermophilic conditions were performed as well as batch fermentations in flasks and syringes. A mixed inoculum was prepared from sediments, rotting seaweed, sewage sludge and rumen contents. Methane production from the seaweed substrate, consisting of ground green algae without any nutrient additions, started immediately in this culture, mesophilicly as well as thermophilicly. Fermentations were carried out with retention times from 27 to 11 days and loading rates from 1.1 to 2.6 g volatile solids (VS added) per litre per day. In the mesophilic fermentation, gas yields were 250-350 ml CH/sub 4//g VS added and the VS-reduction was around 50-55% at all tested retention times and loading rates. The level of volatile fatty acids was very low in this system. In the thermophilic digestor, gas yields were somewhat lower although the VS-reduction was around 50% also in this systems. The VFA-levels were higher and the culture more sensitive to disturbances. Thus no advantages were found with the thermophilic fermentation. In mesophilic batch fermentations the gas production was rather rapid and almost completed after 12-15 days, in agreement with the continuous fermentations. The gas yields in batch experiments were high, 350-480 ml CH/sub 4//g VS added. (Refs. 20).

  10. Chemical Structures and Bioactivities of Sulfated Polysaccharides from Marine Algae

    Directory of Open Access Journals (Sweden)

    H. Stephen Ewart

    2011-02-01

    Full Text Available Sulfated polysaccharides and their lower molecular weight oligosaccharide derivatives from marine macroalgae have been shown to possess a variety of biological activities. The present paper will review the recent progress in research on the structural chemistry and the bioactivities of these marine algal biomaterials. In particular, it will provide an update on the structural chemistry of the major sulfated polysaccharides synthesized by seaweeds including the galactans (e.g., agarans and carrageenans, ulvans, and fucans. It will then review the recent findings on the anticoagulant/antithrombotic, antiviral, immuno-inflammatory, antilipidemic and antioxidant activities of sulfated polysaccharides and their potential for therapeutic application.

  11. Evaluation of Marine Algae Wakame (Undaria pinnatifida and Kombu (Laminaria digitata japonica as Food Supplements

    Directory of Open Access Journals (Sweden)

    Luciana Vallorani

    2004-01-01

    Full Text Available Crude proteins and their amino acid composition, -carotene, vitamins B1, B2, B6, niacin and minerals were determined in two edible brown marine algae (Phaeophyceae, Wakame (Undaria pinnatifida and Kombu (Laminaria digitata japonica. The amino acid scores for five key essential amino acids, frequently deficient in mixed human diet, and essential amino acid index were calculated. The results have shown the presence of all essential amino acids. The values of essential amino acid ratios of analysed algae exceed the ratios of reference proteins suggested by FAO/WHO/UNU, except for tryptophan, the first limiting amino acid in both analysed algae. Iodine, the most important component of sea vegetables is present in high amounts as well as the vitamins B1, B2, B6, niacin and β-carotene. The content of minerals was found high, while the presence of heavy metals was negligible.

  12. Subtidal marine algae of the Dwaraka Coast (Gujarat)

    Digital Repository Service at National Institute of Oceanography (India)

    Dhargalkar, V.K.; Deshmukhe, G.V.

    A total of 35 marine algal species were recorded during a survey of the subtidal flora of Dwaraka, Gujrat, India. Maximum number of species were found at 5-8 m depth. Red algal species were dominant (20), followed by green (8) and brwon (7...

  13. Docosahexaenoic acid production by the marine algae Crypthecodinium cohnii

    NARCIS (Netherlands)

    De Swaaf, M.E.

    2003-01-01

    This thesis focuses on the production of docosahexaenoic acid (DHA; 22:6), an w-3 polyunsaturated fatty acid with applications in foods and pharmaceuticals, by Crypthecodinium cohnii. This chloroplastless heterotrophic marine microalga has been studied since the end of the nineteenth century and has

  14. New records of benthic marine algae and Cyanobacteria for Costa Rica, and a comparison with other Central American countries

    Science.gov (United States)

    Bernecker, Andrea; Wehrtmann, Ingo S.

    2009-09-01

    We present the results of an intensive sampling program carried out from 2000 to 2007 along both coasts of Costa Rica, Central America. The presence of 44 species of benthic marine algae is reported for the first time for Costa Rica. Most of the new records are Rhodophyta (27 spp.), followed by Chlorophyta (15 spp.), and Heterokontophyta, Phaeophycea (2 spp.). Overall, the currently known marine flora of Costa Rica is comprised of 446 benthic marine algae and 24 Cyanobacteria. This species number is an under estimation, and will increase when species of benthic marine algae from taxonomic groups where only limited information is available (e.g., microfilamentous benthic marine algae, Cyanobacteria) are included. The Caribbean coast harbors considerably more benthic marine algae (318 spp.) than the Pacific coast (190 spp.); such a trend has been observed in all neighboring countries. Compared to other Central American countries, Costa Rica has the highest number of reported benthic marine algae; however, Panama may have a similarly high diversity after unpublished results from a Rhodophyta survey (Wysor, unpublished) are included. Sixty-two species have been found along both the Pacific and Caribbean coasts of Costa Rica; we discuss this result in relation to the emergence of the Central American Isthmus.

  15. Floristic account of the marine benthic algae from Jarvis Island and Kingman Reef, Line Islands, Central Pacific

    Directory of Open Access Journals (Sweden)

    Vroom, P.S.

    2012-05-01

    Full Text Available The marine benthic algae from Jarvis Island and Kingman Reef were identified from collections obtained from the Whippoorwill Expedition in 1924, the Itasca Expedition in 1935, the U.S. Coast Guard Cutter Taney in 1938, the Smithsonian Institution’s Pacific Ocean Biological Survey Program in 1964 and the U.S. National Oceanic and Atmospheric Administration’s Reef Assessment and Monitoring Program (RAMP in 2000, 2001, 2002, 2004 and 2006. A total of 124 species, representing 8 Cyanobacteria (blue-green algae, 82 Rhodophyta (red algae, 6 Heterokontophyta (brown algae and 28 Chlorophyta (green algae, are reported from both islands. Seventy-nine and 95 species of marine benthic algae are recorded from Jarvis Island and Kingman Reef, respectively. Of the 124 species, 77 species or 62% (4 blue-green algae, 57 red algae, 2 brown algae and 14 green algae have never before been reported from the 11 remote reefs, atolls and low islands comprising the Line Islands in the Central Pacific.

  16. Discovery of novel algae-degrading enzymes from marine bacteria

    DEFF Research Database (Denmark)

    Schultz-Johansen, Mikkel; Bech, Pernille Kjersgaard; Hennessy, Rosanna Catherine

    Algal cell wall polysaccharides, and their derived oligosaccharides, display a range of health beneficial bioactive properties. Enzymes capable of degrading algal polysaccharides into oligosaccharides may be used to produce biomolecules with new functionalities for the food and pharma industry....... Some marine bacteria are specialized in degrading algal biomass and secrete enzymes that can decompose the complex algal cell wall polysaccharides. In order to identify such bacteria and enzymatic activities, we have used a combination of traditional cultivation and isolation methods, bioinformatics...... and functional screening. This resulted in the discovery of a novel marine bacterium which displays a large enzymatic potential for degradation of red algal polysaccharides e.g. agar and carrageenan. In addition, we searched metagenome sequence data and identified new enzyme candidates for degradation...

  17. Photosynthetic electron transport in thylakoid preparations from two marine red algae (Rhodophyta).

    Science.gov (United States)

    Stewart, A C; Larkum, A W

    1983-01-01

    Thylakoid membrane preparations active in photosynthetic electron transport have been obtained from two marine red algae, Griffithsia monilis and Anotrichium tenue. High concentrations (0.5-1.0 M) of salts such as phosphate, citrate, succinate and tartrate stabilized functional binding of phycobilisomes to the membrane and also stabilized Photosystem II-catalysed electron-transport activity. High concentrations (1.0 M) of chloride and nitrate, or 30 mM-Tricine/NaOH buffer (pH 7.2) in the absence of salts, detached phycobilisomes and inhibited electron transport through Photosystem II. The O2-evolving system was identified as the electron-transport chain component that was inhibited under these conditions. Washing membranes with buffers containing 1.0-1.5 M-sorbitol and 5-50 mM concentrations of various salts removed the outer part of the phycobilisome but retained 30-70% of the allophycocyanin 'core' of the phycobilisome. These preparations were 30-70% active in O2 evolution compared with unwashed membranes. In the sensitivity of their O2-evolving apparatus to the composition of the medium in vitro, the red algae resembled blue-green algae and differed from other eukaryotic algae and higher plants. It is suggested that an environment of structured water may be essential for the functional integrity of Photosystem II in biliprotein-containing algae. PMID:6860312

  18. Acetic acid production from marine algae. Progress report No. 2, September 30 to December 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Sanderson, J E; Wise, D L

    1978-03-10

    Preliminary results on the production of acetic acid from marine algae by anaerobic fermentation indicates that the rate is quite fast. First order rate constants of 0.77 day/sup -1/ have been observed. This rate constant gives a half-life of less than one day. In other words, with a properly designed product removal system a five day retention time would yield 98% of theoretical conversion. Determination of the theoretical conversion of marine algae to acetic acid is the subject of much experimentation. The production of one acetic acid molecule (or equivalent in higher organic acids) for each three carbon atoms in the substrate has been achieved; but it is possible that with a mixed culture more than one acetic acid molecule may be produced for each three carbons in the substrate.

  19. The marine alga Gelidium amansii promotes the development and complexity of neuronal cytoarchitecture.

    Science.gov (United States)

    Hannan, Abdul; Kang, Ji-Young; Hong, Yong-Ki; Lee, Hyunsook; Choi, Jae-Suk; Choi, In Soon; Moon, Il Soo

    2013-01-01

    Neurotrophic factors are vital not only to support neuronal development but also to protect mature neurons from atrophy in neurodegenerative diseases. As an effort to explore natural sources that possess neurotrophic activity, we screened common marine algae for their neuritogenic activity in the developing rat hippocampal neurons in culture. Of the 22 seaweed species examined, ethanol extracts of Gelidium amansii (GAE) exhibited potent neuritogenic activity, followed by Undaria pinnatifida and Sargassum fulvellum extracts. The effects of GAE were dose dependent with an optimum concentration of 15 µg/mL. The GAE significantly promoted the initial neuronal differentiation from the stage I into the stage II and increased the indices of axonal and dendritic development such as the length, the numbers of primary processes, and branching frequencies by a minimum of twofold compared with the vehicle control. These results show that marine algae are promising candidates for neurotrophic potentials. Copyright © 2012 John Wiley & Sons, Ltd.

  20. The subunits analysis of R-phycoerythrin from marine red algae by ...

    African Journals Online (AJOL)

    Subunit components of R-phycoerythrins (R-PEs) prepared from five marine macro red algae were analyzed by sodium dodecyl sulfate -polyarylamide gel electrophoresis (SDS-PAGE) and by isoelectric focusing (IEF) in pH gradients range of 3.0 to 9.5, 2.5 to 5.0 and 4.0 to 6.5. Riboflavin was used to catalyze ...

  1. Effects of acute and sub-acute gamma radiation on photosynthetic release and respiration of three unicellular marine algae

    Energy Technology Data Exchange (ETDEWEB)

    Ehrhardt, J P

    1974-12-31

    Thesis. Lethal doses of irradiation are required before a 50% inactivation of the photosynthetic release is achieved. The chloroplasts, after this treatment, are one and a half times more resistant than the nucleus. The delayed effect is irreversible when it corresponds to a dose in excess of that necessary for the immediate 10% inhibition of the photosynthetic release. A decrease is observed in the respiration during several days after the occurrence of an intermediate increase. This behavior may be considered to be a consequence of the irreversible destruction of the mitochondrial sites. (FR)

  2. Dereplication and Chemotaxonomical Studies of Marine Algae of the Ochrophyta and Rhodophyta Phyla

    Directory of Open Access Journals (Sweden)

    Robert Brkljača

    2015-04-01

    Full Text Available Dereplication and chemotaxonomic studies of six marine algae of the Ochrophyta and one of the Rhodophyta phyla resulted in the detection of 22 separate compounds. All 16 secondary metabolites, including four new compounds (16–19, could be rapidly dereplicated using HPLC-NMR and HPLC-MS methodologies in conjunction with the MarinLit database. This study highlights the advantages of using NMR data (acquired via HPLC-NMR for database searching and for the overall dereplication of natural products.

  3. Occurrence of four species of algae in the marine water of Hong Kong.

    Science.gov (United States)

    Chai, Yemao; Deng, Wen-Jing; Qin, Xing; Xu, Xiangrong

    2017-11-30

    Harmful algal blooms (HABs) have broken out frequently throughout the world in recent decades; they are caused by the rapid multiplication of algal cells in near-coastal waters polluted with nitrogen and phosphorus and greatly affect the quality of marine water and human health. Over the past several decades, climate change and increasing environmental degradation have provided favourable growth conditions for certain phytoplankton species. Therefore, it is essential to rapidly identify and enumerate harmful marine algae to control these species. In this study, quantitative PCR (qPCR) was used to detect four representative species of HABs that are widespread in the marine water of Hong Kong, namely, Alexandrium catenella, Pseudo-nitzschia spp., Karenia mikimotoi and Heterosigma akashiwo. We applied qPCR with the dye SYBR Green to detect Alexandrium spp. and Pseudo-nitzschia spp. and used TaqMan probe for the enumeration of Karenia mikimotoi and Heterosigma akashiwo. The total genomic DNA of these algae from Hong Kong marine water was extracted successfully using the CTAB method, and for each kind of alga, we constructed a ten-fold series of recombinant plasmid solutions containing certain gene fragments of 18S rDNA and ITS1-5.8S-ITS2 as standard samples. Ten-fold dilutions of the DNA of known numbers of the extracted algal cells were also used to create an additional standard curve. In this way, the relationship between the cell number and the related plasmid copy number was established. The qPCR assay displayed high sensitivity in monitoring marine water samples in which the low concentrations of harmful algae were not detected accurately by traditional methods. The results showed that the cell numbers of the four species were all in low abundance. For Alexandrium catenella, the cell abundances at 12 sites ranged from 3.8×10 2 to 4.3×10 3 cellsL -1 , while H. akashiwo, K. mikimotoi and Pseudo-nitzschia ranged from 1.1×10 2 to 1.3×10 3 , from 23 to 6.5×10 2

  4. Evaluation of the contamination of marine algae (seaweed) from the St. Lawrence River and likely to be consumed by humans

    Energy Technology Data Exchange (ETDEWEB)

    Phaneuf, D.; Cote, I.; Dumas, P.; Ferron, L.A.; LeBlanc, A. [CHUQ, Sainte-Foy, Quebec (Canada). Centre de Toxicologie du Quebec

    1999-02-01

    The goal of the study was to assess the contamination of marine algae (seaweeds) growing in the St. Lawrence River estuary and Gulf of St. Lawrence and to evaluate the risks to human health from the consumption of these algae. Algae were collected by hand at low tide. A total of 10 sites on the north and south shores of the St. Lawrence as well as in Baie des Chaleurs were sampled. The most frequently collected species of algae were Fucus vesiculosus, Ascophyllum nodosum, Laminaria Longicruris, Palmaria palmata, Ulva lactuca, and Fucus distichus. Alga samples were analyzed for metals iodine, and organochlorines. A risk assessment was performed using risk factors. In general, concentrations in St. Lawrence algae were not very high. Consequently, health risks associated with these compounds in St. Lawrence algae were very low. Iodine concentration, on the other hand, could be of concern with regard to human health. Regular consumption of algae, especially of Laminaria sp., could result in levels of iodine sufficient to cause thyroid problems. For regular consumers, it would be preferable to choose species with low iodine concentrations, such as U. lactuca and P. palmata, in order to prevent potential problems. Furthermore, it would also be important to assess whether preparation for consumption or cooking affects the iodine content of algae. Algae consumption may also have beneficial health effects. Scientific literature has shown that it is a good source of fiber and vitamins, especially vitamin B{sub 12}.

  5. Lead (Pb heavy metal impacts in the green Ulva lactuca (Chlorophyceae marine algae

    Directory of Open Access Journals (Sweden)

    B. Saleh

    2016-05-01

    Full Text Available Toxicity of different lead (Pb (0, 2, 4 and 8 mg/L concentrations in the green Ulva lactuca (Chlorophyta marine algae at physiological level has been investigated 48 h after Pb treatment under laboratory conditions. Thalus algae damages followed Pb treatment as revealed by microscopy test showed that the 4 and 8 mg/L Pb caused morphological changes in cells viability; whereas, no effect observed at the lowest Pb applied concentration (2 mg/L. Data revealed that Pb stress caused reduction in most investigated physiological parameters i.e. Pigments content, osmotic potential and membrane stability index values. This decline in osmotic potential was significantly (p ≤ 0.001 different. Whereas, estimated electric conductivity (EC values increased significantly (p ≤ 0.001 as applied Pb concentration increased. The current study allowed somewhat to highlight and better understanding Pb impacts in U. lactuca algae. Thereby, the studied algae could be used as a useful bioindicator in Pb polluted ecosystems.

  6. Exotic harmful algae in marine ecosystems : an integrated biological-economic-legal analysis of impacts and policies

    NARCIS (Netherlands)

    van den Bergh, JCJM; Nunes, PALD; Dotinga, HM; Kooistra, WHCF; Vrieling, EG; Peperzak, L

    Harmful algal blooms (HABs) are the cause of important damages to marine living resources and human beings. HABs are generated by micro-algae. These marine species are primarily introduced through ballast water of ships and, to a lesser extent, through import of living fish, in particular shellfish.

  7. Instrumental neutron activation analysis study of elemental concentrations in some species of marine algae form different regions of Libyan coast

    International Nuclear Information System (INIS)

    Abugassa, I. O.; Al-Dalem, B. S.

    2012-12-01

    Algae are an ideal marine species to study responses to different environmental factors free complication inherent in research with more complex higher plants. One of the advantages of environmental study using algae is the possibility to achieve and observe many generations during relative short time period. Algae materials have been used as ecological and environmental indicators to monitor and control in many fields of study such as freshwater and marine ecosystems, soil fertility, industrial applications, etc. It also has been shown that algae assemblages could be used as indicators of clean or polluted water. Previous studies proved high sensitivity of the most algae towards changing of environmental conditions, especially as consequences of water pollution. Algae respond rapidly and predictably to a wide range of pollutants and potentially use full early warning signals of deteriorating conditions and possible causes. Because of their nutritional needs and their position at the base of aquatic food web, algae indicators provide relativity unique information concerning ecosystem conditions compared with commonly used animal indicators. In most cases ecologically relevant signals of ecosystem changes are being provided that can be used to distinguish acceptable from unacceptable environmental conditions. Algae indicators are also a cost-effective monitoring tool as well. (Author)

  8. Toxicity of selenite in the unicellular green alga Chlamydomonas reinhardtii: Comparison between effects at the population and sub-cellular level

    International Nuclear Information System (INIS)

    Morlon, Helene; Fortin, Claude; Floriani, Magali; Adam, Christelle; Garnier-Laplace, Jacqueline; Boudou, Alain

    2005-01-01

    The toxicity of selenium in aquatic ecosystems is mainly linked to its uptake and biotransformation by micro-organisms, and its subsequent transfer upwards into the food chain. Thus, organisms at low trophic level, such as algae, play a crucial role. The aim of our study was to investigate the biological effects of selenite on Chlamydomonas reinhardtii, both at the sub-cellular level (effect on ultrastructure) and at the population level (effect on growth). The cells were grown under batch culture conditions in well-defined media and exposed to waterborne selenite at concentrations up to 500 μM; i.e. up to lethal conditions. Based on the relationship between Se concentration and cell density achieved after a 96 h exposure period, an EC 50 of 80 μM with a 95% confidence interval ranging between 64 and 98 μM was derived. No adaptation mechanisms were observed: the same toxicity was quantified for algae pre-contaminated with Se. The inhibition of growth was linked to impairments observed at the sub-cellular level. The intensity of the ultrastructural damages caused by selenite exposure depended on the level and duration of exposure. Observations by TEM suggested chloroplasts as the first target of selenite cytotoxicity, with effects on the stroma, thylakoids and pyrenoids. At higher concentrations, we could observe an increase in the number and volume of starch grains. For cells collected at 96 h, electron-dense granules were observed. Energy-dispersive X-ray microanalysis revealed that these granules contained selenium and were also rich in calcium and phosphorus. This study confirms that the direct toxicity of selenite on the phytoplankton biomass is not likely to take place at concentrations found in the environment. At higher concentrations, the link between effects at the sub-cellular and population levels, the over-accumulation of starch, and the formation of dense granules containing selenium are reported for the first time in the literature for a

  9. The role of viruses in marine phytoplankton mortality

    NARCIS (Netherlands)

    Baudoux, Anne-Claire

    2007-01-01

    Unicellular algae (phytoplankton) form the basis of the marine foodchain and thus play a critical role in the ocean’s geochemical processes. It is thus somewhat surprising that the mechanisms driving their mortality are still not fully understood. Traditionally, grazing by microzooplankton and

  10. Removal of cadmium from aqueous solution using marine green algae, Ulva lactuca

    Directory of Open Access Journals (Sweden)

    Mohamed M. Ghoneim

    2014-01-01

    Full Text Available The present study aimed to evaluate the efficiency of marine algae for removal of metals from the aqueous solution. The green alga, Ulva lactuca, collected from the intertidal zone of the Suez Bay, northern part of the Red Sea was used to reduce cadmium levels from the aqueous solutions. The biosorption mechanisms of Cd2+ ions onto the algal tissues were examined using various analytical techniques: Fourier-transform infrared spectroscopy (FT-IR and Scanning electron microscopy (SEM. Results indicated that at the optimum pH value of 5.5; about 0.1 g of U. lactuca was enough to remove 99.2% of 10 mg L−1 Cd2+ at 30 °C in the aqueous solutions. The equilibrium data were well fitted with the Langmuir and Freundlich isotherms. The monolayer adsorption capacity was 29.1 mg g−1. The calculated RL and ‘n’ values have proved the favorability of cadmium adsorption onto U. lactuca. The desorption test revealed that HCl was the best for the elution of metals from the tested alga. In conclusion, the seaweed U. lactuca was the favorable alternative of cadmium removal from water.

  11. Eukaryotic Life Inhabits Rhodolith-forming Coralline Algae (Hapalidiales, Rhodophyta), Remarkable Marine Benthic Microhabitats

    Science.gov (United States)

    Krayesky-Self, Sherry; Schmidt, William E.; Phung, Delena; Henry, Caroline; Sauvage, Thomas; Camacho, Olga; Felgenhauer, Bruce E.; Fredericq, Suzanne

    2017-04-01

    Rhodoliths are benthic calcium carbonate nodules accreted by crustose coralline red algae which recently have been identified as useful indicators of biomineral changes resulting from global climate change and ocean acidification. This study highlights the discovery that the interior of rhodoliths are marine biodiversity hotspots that function as seedbanks and temporary reservoirs of previously unknown stages in the life history of ecologically important dinoflagellate and haptophyte microalgae. Whereas the studied rhodoliths originated from offshore deep bank pinnacles in the northwestern Gulf of Mexico, the present study opens the door to assess the universality of endolithic stages among bloom-forming microalgae spanning different phyla, some of public health concerns (Prorocentrum) in marine ecosystems worldwide.

  12. Marine algae as biomonitors for heavy metals accumulation at the Red Sea Sudanese coast

    International Nuclear Information System (INIS)

    Ali, A.Y.A.

    2007-09-01

    The concentration of heavy trace elements chromium, manganese, nickel, copper, zinc, cadmium, and lead was measured in three main groups of alage, green, brown and red from the Sudanese coastal water of the Red Sea at seven main locations. The analyses were performed using atomic absorption spectrophotometry and x-ray fluorescence. Based on the overall average concentration (ppm), manganese was the most abundant element, (range 22.64-144.77) followed by chromium (rang 8.40-14.51), zinc (range 5.82-14.23), nickel (range 4.27-6.48) copper (range 2.83-7.75) lead range (1.29-1.80) and cadmium (rang 0.05-0.15). On comparing samples results at all locations, the results showed that Sawakin locations (1) and (2) algae have a highest content of trace elements. The concentration of trace elements in marine algae at, Sawakin (1), Klanieb and Sawakin (2) shows the higher uptake of lead giving the average of 1.69, 1.70, and 1.80, respectively compared with other locations, where the lowest concentration of manganese is observed at Sawakin (1) (38.19 ppm) and Sawakin (2) (41.04 ppm) with relative excess of lead concentration (1.69 and 1.80 ppm). Data obtained in this study were treated using classical descriptive statistics to explain the measuring central tendency. Correlation coefficient was also used to examine the relationship of different elements. Upon comparing the elemental concentration of the Red Sea alage with published literature, marine algae collected from the study area showed relative agreement with data reported but Sawakin harbor can be considered as slightly contaminated area by heavy metals. The study showed that the red algae has higher uptake of trace elements studied than brown and green algae with some variations of metal concentrations in some species which were apparently related to the specific accumulation capacity of each particular species. These species suggest their suitability for utilization as biomonitor for heavy metals in the Red Sea coastal

  13. Marine algae as biomonitors for heavy metals accumulation at the Red Sea Sudanese coast

    Energy Technology Data Exchange (ETDEWEB)

    Ali, A Y.A. [Red Sea University, Department of Chemistry, Port Sudan (Sudan)

    2007-09-15

    The concentration of heavy trace elements chromium, manganese, nickel, copper, zinc, cadmium, and lead was measured in three main groups of alage, green, brown and red from the Sudanese coastal water of the Red Sea at seven main locations. The analyses were performed using atomic absorption spectrophotometry and x-ray fluorescence. Based on the overall average concentration (ppm), manganese was the most abundant element, (range 22.64-144.77) followed by chromium (rang 8.40-14.51), zinc (range 5.82-14.23), nickel (range 4.27-6.48) copper (range 2.83-7.75) lead range (1.29-1.80) and cadmium (rang 0.05-0.15). On comparing samples results at all locations, the results showed that Sawakin locations (1) and (2) algae have a highest content of trace elements. The concentration of trace elements in marine algae at, Sawakin (1), Klanieb and Sawakin (2) shows the higher uptake of lead giving the average of 1.69, 1.70, and 1.80, respectively compared with other locations, where the lowest concentration of manganese is observed at Sawakin (1) (38.19 ppm) and Sawakin (2) (41.04 ppm) with relative excess of lead concentration (1.69 and 1.80 ppm). Data obtained in this study were treated using classical descriptive statistics to explain the measuring central tendency. Correlation coefficient was also used to examine the relationship of different elements. Upon comparing the elemental concentration of the Red Sea alage with published literature, marine algae collected from the study area showed relative agreement with data reported but Sawakin harbor can be considered as slightly contaminated area by heavy metals. The study showed that the red algae has higher uptake of trace elements studied than brown and green algae with some variations of metal concentrations in some species which were apparently related to the specific accumulation capacity of each particular species. These species suggest their suitability for utilization as biomonitor for heavy metals in the Red Sea coastal

  14. Biotechnological Applications of Marine Enzymes From Algae, Bacteria, Fungi, and Sponges.

    Science.gov (United States)

    Parte, S; Sirisha, V L; D'Souza, J S

    Diversity is the hallmark of all life forms that inhabit the soil, air, water, and land. All these habitats pose their unique inherent challenges so as to breed the "fittest" creatures. Similarly, the biodiversity from the marine ecosystem has evolved unique properties due to challenging environment. These challenges include permafrost regions to hydrothermal vents, oceanic trenches to abyssal plains, fluctuating saline conditions, pH, temperature, light, atmospheric pressure, and the availability of nutrients. Oceans occupy 75% of the earth's surface and harbor most ancient and diverse forms of organisms (algae, bacteria, fungi, sponges, etc.), serving as an excellent source of natural bioactive molecules, novel therapeutic compounds, and enzymes. In this chapter, we introduce enzyme technology, its current state of the art, unique enzyme properties, and the biocatalytic potential of marine algal, bacterial, fungal, and sponge enzymes that have indeed boosted the Marine Biotechnology Industry. Researchers began exploring marine enzymes, and today they are preferred over the chemical catalysts for biotechnological applications and functions, encompassing various sectors, namely, domestic, industrial, commercial, and healthcare. Next, we summarize the plausible pros and cons: the challenges encountered in the process of discovery of the potent compounds and bioactive metabolites such as biocatalysts/enzymes of biomedical, therapeutic, biotechnological, and industrial significance. The field of Marine Enzyme Technology has recently assumed importance, and if it receives further boost, it could successfully substitute other chemical sources of enzymes useful for industrial and commercial purposes and may prove as a beneficial and ecofriendly option. With appropriate directions and encouragement, marine enzyme technology can sustain the rising demand for enzyme production while maintaining the ecological balance, provided any undesired exploitation of the marine

  15. Improvement of cytocompatibility of polylactide by filling with marine algae powder

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Tung-Yi [Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Yang, Ming-Chien, E-mail: myang@mail.ntust.edu.tw [Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Hsu, Yi-Chiang [Graduate Institute of Medical Science, College of Health Sciences, Chang Jung Christian University, Tainan 71101, Taiwan (China); Innovative Research Center of Medicine, College of Health Sciences, Chang Jung Christian University, Tainan 71101, Taiwan (China)

    2015-05-01

    This work evaluated the cytocompatibility, thermal and mechanical properties of composites of polylactide (PLA) and marine algae powder (MAP). To improve the thermal and mechanical properties of PLA–MAP composites, glycidyl methacrylate (GMA) was used as the compatibilizer for the blending of PLA and MAP. The PLA-g-GMA/MAP composites exhibited superior mechanical properties, attributing to higher compatibility between the polymer and MAP, comparing to PLA/MAP composites. The dispersion of MAP in the PLA-g-GMA matrix was highly homogeneous as a result of etherification. The lower melt torque of the PLA-g-GMA/MAP composites also made them more processable than PLA/MAP. To assess the cytocompatibility, normal human foreskin fibroblasts (FBs) were seeded onto each type of the composites. Results of FB proliferation, collagen production, and cytotoxicity assays indicated greater cytocompatibility for the PLA/MAP composites than for the PLA-g-GMA/MAP composites. Furthermore, both PLA/MAP and PLA-g-GMA/MAP composites were more cytocompatible than pure PLA. - Highlights: • PLA was grafted with GMA to form ether bond with marine algae powder (MAP). • Composites of PLA-g-GMA and MAP exhibited cytocompatibility with fibroblasts. • PLA-g-GMA/MAP composites exhibited mechanical properties superior to PLA/MAP. • PLA-g-GMA/MAP composites were more processable than PLA/MAP.

  16. Improvement of cytocompatibility of polylactide by filling with marine algae powder

    International Nuclear Information System (INIS)

    Wu, Tung-Yi; Yang, Ming-Chien; Hsu, Yi-Chiang

    2015-01-01

    This work evaluated the cytocompatibility, thermal and mechanical properties of composites of polylactide (PLA) and marine algae powder (MAP). To improve the thermal and mechanical properties of PLA–MAP composites, glycidyl methacrylate (GMA) was used as the compatibilizer for the blending of PLA and MAP. The PLA-g-GMA/MAP composites exhibited superior mechanical properties, attributing to higher compatibility between the polymer and MAP, comparing to PLA/MAP composites. The dispersion of MAP in the PLA-g-GMA matrix was highly homogeneous as a result of etherification. The lower melt torque of the PLA-g-GMA/MAP composites also made them more processable than PLA/MAP. To assess the cytocompatibility, normal human foreskin fibroblasts (FBs) were seeded onto each type of the composites. Results of FB proliferation, collagen production, and cytotoxicity assays indicated greater cytocompatibility for the PLA/MAP composites than for the PLA-g-GMA/MAP composites. Furthermore, both PLA/MAP and PLA-g-GMA/MAP composites were more cytocompatible than pure PLA. - Highlights: • PLA was grafted with GMA to form ether bond with marine algae powder (MAP). • Composites of PLA-g-GMA and MAP exhibited cytocompatibility with fibroblasts. • PLA-g-GMA/MAP composites exhibited mechanical properties superior to PLA/MAP. • PLA-g-GMA/MAP composites were more processable than PLA/MAP

  17. Overview on Biological Activities and Molecular Characteristics of Sulfated Polysaccharides from Marine Green Algae in Recent Years

    Science.gov (United States)

    Wang, Lingchong; Wang, Xiangyu; Wu, Hao; Liu, Rui

    2014-01-01

    Among the three main divisions of marine macroalgae (Chlorophyta, Phaeophyta and Rhodophyta), marine green algae are valuable sources of structurally diverse bioactive compounds and remain largely unexploited in nutraceutical and pharmaceutical areas. Recently, a great deal of interest has been developed to isolate novel sulfated polysaccharides (SPs) from marine green algae because of their numerous health beneficial effects. Green seaweeds are known to synthesize large quantities of SPs and are well established sources of these particularly interesting molecules such as ulvans from Ulva and Enteromorpha, sulfated rhamnans from Monostroma, sulfated arabinogalactans from Codium, sulfated galacotans from Caulerpa, and some special sulfated mannans from different species. These SPs exhibit many beneficial biological activities such as anticoagulant, antiviral, antioxidative, antitumor, immunomodulating, antihyperlipidemic and antihepatotoxic activities. Therefore, marine algae derived SPs have great potential for further development as healthy food and medical products. The present review focuses on SPs derived from marine green algae and presents an overview of the recent progress of determinations of their structural types and biological activities, especially their potential health benefits. PMID:25257786

  18. Evaluation of marine algae as a source of biogas in a two-stage anaerobic reactor system

    International Nuclear Information System (INIS)

    Vergara-Fernandez, Alberto; Vargas, Gisela; Alarcon, Nelson; Velasco, Antonio

    2008-01-01

    The marine algae are considered an important biomass source; however, their utilization as energy source is still low around the world. The technical feasibility of marine algae utilization as a source of renewable energy was studied to laboratory scale. The anaerobic digestion of Macrocystis pyrifera, Durvillea antarctica and their blend 1:1 (w/w) was evaluated in a two-phase anaerobic digestion system, which consisted of an anaerobic sequencing batch reactor (ASBR) and an upflow anaerobic filter (UAF). The results show that 70% of the total biogas produced in the system was generated in the UAF, and both algae species have similar biogas productions of 180.4(±1.5) mL g -1 dry algae d -1 , with a methane concentration around 65%. The same methane content was observed in biogas yield of algae blend; however, a lower biogas yield was obtained. In conclusion, either algae species or their blend can be utilized to produce methane gas in a two-phase digestion system

  19. Evaluation of marine algae as a source of biogas in a two-stage anaerobic reactor system

    Energy Technology Data Exchange (ETDEWEB)

    Vergara-Fernandez, Alberto; Vargas, Gisela [Escuela de Ingenieria Ambiental, Facultad de Ingenieria, Universidad Catolica de Temuco, Manuel Montt 56, Casilla 15-D, Temuco (Chile); Alarcon, Nelson [Departamento de Ingenieria Quimica, Facultad de Ingenieria y Ciencias Geologicas, Universidad Catolica del Norte (Chile); Velasco, Antonio [Centro Nacional de Investigacion y Capacitacion Ambiental del Instituto Nacional de Ecologia (CENICA-INE), Av. San Rafael Atlixco 186, Col. Vicentina, Del. Iztapalapa, 09340, Mexico, DF (Mexico)

    2008-04-15

    The marine algae are considered an important biomass source; however, their utilization as energy source is still low around the world. The technical feasibility of marine algae utilization as a source of renewable energy was studied to laboratory scale. The anaerobic digestion of Macrocystis pyrifera, Durvillea antarctica and their blend 1:1 (w/w) was evaluated in a two-phase anaerobic digestion system, which consisted of an anaerobic sequencing batch reactor (ASBR) and an upflow anaerobic filter (UAF). The results show that 70% of the total biogas produced in the system was generated in the UAF, and both algae species have similar biogas productions of 180.4({+-}1.5) mL g{sup -1} dry algae d{sup -1}, with a methane concentration around 65%. The same methane content was observed in biogas yield of algae blend; however, a lower biogas yield was obtained. In conclusion, either algae species or their blend can be utilized to produce methane gas in a two-phase digestion system. (author)

  20. Do You Know Our Marine Algae? A Marine Education Infusion Unit.

    Science.gov (United States)

    Butzow, John W.; Gregory, Charles J.

    Designed to provide teaching materials for middle school and junior high school teachers in northern New England, this marine education unit presents teacher-tested ideas and activities for use in the classroom and in field trips to the shore. Each unit includes ideas and activities drawn from a variety of content areas so that teachers of many…

  1. Structural characterization and Biological Activity of Sulfolipids from selected Marine Algae

    Directory of Open Access Journals (Sweden)

    El Baz, F. K.

    2013-12-01

    Full Text Available The sulfolipid classes (SLs in the total lipids of five species of marine algae, two species of Rhodophyta (Laurencia popillose, Galaxoura cylindriea, one species of Chlorophyta (Ulva fasciata, and two species of Phaeophyta (Dilophys fasciola, Taonia atomaria were separated and purified on DEAE-cellulose column chromatography. The SLs component was identified by IR, gas chromatography MS/MS and liquid chromatography MS/MS. The level of SLs contents va ried from 1.25% (in L. papillose to 11.82% (in D. fasciola of the total lipid contents. However, no significant differences in sulfate content (0.13 – 0.21% were observed among all these algae species. All SLs were characterized by high contents of palmitic acid (C 16:0, which ranged from 30.91% in G. cylindriea to 63.11% in T. atomatia. The main constitutes of algal sulfolipids were identified as sulfoquinovosyl-di-acylglycerol and sulfoquinovosyl acylglycerol. The sulfolipids of different algal species exhibited remarkable antiviral activity against herps simplex virus type 1 (HSV-1 with an IC50 ranging from 18.75 to 70. 2 μg mL–1. Moreover, algal sulfolipid inhibited the growth of the tumor cells of breast and liver human cancer cells with IC50 values ranging from 0.40 to 0.67 μg mL–1 for human breast adenocarcinoma cells (MCF7.Se separaron diferentes clases sulfolípidos (SL a partir de los lípidos totales de cinco especies de algas marinas: una especie de Chlorophyta (Ulva fasciata, dos especies de Phaeophyta (Dilophys fasciola, Taonia atomaria y dos especies de Rhodophyta (Laurencia popillose, Galaxoura cylindriea que se purificaron mediante cromatografía en columna de DEAE-celulosa. Los components de SLs fueron identificados por IR, cromatografía de gases MS/MS y cromatografía líquida MS/ MS. Los contenidos de SL en relación al total de lípidos varió de 1,25% (en L. papilosa al 11,82% (en D. fasciola. Sin embargo, no hay diferencias significativas en el contenido de sulfato

  2. Evaluation of Antioxidant Activity of Extracts of Marine Algae Halimeda tuna Collected from the Chabahar Bay

    Directory of Open Access Journals (Sweden)

    Ali Taheri

    2017-07-01

    Full Text Available Background and Objectives: Seaweeds are one of the richest sources of natural antioxidants. Antioxidants are main factors of free radical scavenging, which prevent from chronic diseases and food deterioration. These compounds can also be extracted from seaweeds. In this study, the antioxidant activity of the extracts from marine algae Halimeda tuna collected from the coast of Chabahar, was evaluated. Methods: This is an in vitro study. The antioxidant activity of methanol, chloroform, ethyl acetate, and n-hexanic extracts of the algae, were evaluated using three methods of DPPH, ferrous ion chelating activity, and reduction power methods. Data were analyzed by one-way ANOVA and Tukey test at the probability level of 95%. Results: In this study, the highest antioxidant capacity according to DPPH, was related to the chloroform extract (72.85% inhibition at the concentration of 1mg/ml. In the ferrous ion chelating activity, the highest percentage of chelating was allocated to the methanol extract (81.46%. Based on the data from the reduction power test, the highest reduction activity was related to the methanol extract with absorption of 0.553 (concentration, 1mg/ml. Conclusion: Based on the results of this research, the extracts of Halimeda tuna have the potential for application in medicine and pharmaceutical industry and must be confirmed by preclinical and clinical studies.

  3. Biosorption of copper by marine algae Gelidium and algal composite material in a packed bed column.

    Science.gov (United States)

    Vilar, Vítor J P; Botelho, Cidália M S; Loureiro, José M; Boaventura, Rui A R

    2008-09-01

    Marine algae Gelidium and algal composite material were investigated for the continuous removal of Cu(II) from aqueous solution in a packed bed column. The biosorption behaviour was studied during one sorption-desorption cycle of Cu(II) in the flow through column fed with 50 and 25 mg l(-1) of Cu(II) in aqueous solution, at pH 5.3, leading to a maximum uptake capacity of approximately 13 and 3 mg g(-1), respectively, for algae Gelidium and composite material. The breakthrough time decreases as the inlet copper concentration increases, for the same flow rate. The pH of the effluent decreases over the breakthrough time of copper ions, which indicates that ion exchange is one of the mechanisms involved in the biosorption process. Temperature has little influence on the metal uptake capacity and the increase of the ionic strength reduces the sorption capacity, decreasing the breakthrough time. Desorption using 0.1M HNO(3) solution was 100% effective. After two consecutive sorption-desorption cycles no changes in the uptake capacity of the composite material were observed. A mass transfer model including film and intraparticle resistances, and the equilibrium relationship, for adsorption and desorption, was successfully applied for the simulation of the biosorption column performance.

  4. Production of new cellulose nanomaterial from red algae marine biomass Gelidium elegans.

    Science.gov (United States)

    Chen, You Wei; Lee, Hwei Voon; Juan, Joon Ching; Phang, Siew-Moi

    2016-10-20

    Nanocellulose was successfully isolated from Gelidium elegans red algae marine biomass. The red algae fiber was treated in three stages namely alkalization, bleaching treatment and acid hydrolysis treatment. Morphological analysis was performed by field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). TEM results revealed that the isolated nanocellulose had the average diameter and length of 21.8±11.1nm and of 547.3±23.7nm, respectively. Fourier transform infrared (FTIR) spectroscopy proved that the non-cellulosic polysaccharides components were progressively removed during the chemically treatment, and the final derived materials composed of cellulose parent molecular structure. X-ray diffraction (XRD) study showed that the crystallinity of yielded product had been improved after each successive treatments subjected to the treated fiber. The prepared nano-dimensional cellulose demonstrated a network-like structure with higher crystallinity (73%) than that of untreated fiber (33%), and possessed of good thermal stability which is suitable for nanocomposite material. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Acetic acid production from marine algae. Progress report No. 3, January 1, 1978--March 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Sanderson, J.E.; Wise, D.L.

    1978-06-01

    The program for acetic acid production from marine algae has made significant progress in the current quarter. Some of the significant developments during this period are: (1) conversion of the available reducing equivalents in Chondrus crispus to organic acids has been carried to better than 80% completion; (2) thermophilic fermentations produce higher ratios of acetic acid to total acid than is the case for mesophilic fermentations (80% vs. 50%); (3) a membrane extraction process for removing organic acid products has been developed which has potential for commercial use; (4) a large scale fermentation was shown to convert over 50% of the available carbon in five days; (5) a reducing equivalents balance on the large scale fermentation was closed to with 96% of theoretical.

  6. Sesquiterpene and Acetogenin Derivatives from the Marine Red Alga Laurencia okamurai

    Directory of Open Access Journals (Sweden)

    Bin-Gui Wang

    2012-12-01

    Full Text Available In addition to 13 known compounds, four new bisabolane sesquiterpenes, okamurenes A–D (1–4, a new chamigrane derivative, okamurene E (5, and a new C12-acetogenin, okamuragenin (6, were isolated from the marine red alga Laurencia okamurai. The structures of these compounds were determined through detailed spectroscopic analyses. Of these, okamurenes A and B (1 and 2 are the first examples of bromobisabolane sesquiterpenes possessing a phenyl moiety among Laurencia-derived sesquiterpenes, while okamuragenin (6 was the first acetogenin aldehyde possessing a C12-carbon skeleton. Each of the isolated compounds was evaluated for the brine shrimp (Artemia salina lethal assay and 7-hydroxylaurene displayed potent lethality with LD50 1.8 μM.

  7. Halogenated Terpenes and a C15-Acetogenin from the Marine Red Alga Laurencia saitoi

    Directory of Open Access Journals (Sweden)

    Xiao-Ming Li

    2008-11-01

    Full Text Available Seven parguerane diterpenes: 15-bromo-2,7,19-triacetoxyparguer-9(11-en-16-ol (1, 15-bromo-2,7,16,19-tetraacetoxyparguer-9(11-ene (2, 15-bromo-2,19-diacetoxyparguer-9(11-en-7,16-diol (3, 15-bromo-2,16,19-triacetoxyparguer-9(11-en-7-ol (4, 15-bromo-2,16-diacetoxyparguer-9(11-en-7-ol (5, 15-bromoparguer-9(11-en-16-ol (6, 15-bromoparguer-7-en-16-ol (7, two polyether triterpenes: thyrsiferol (8 and thyrsiferyl 23-acetate (9, and one C15-acetogenin, neolaurallene (10, were isolated from a sample of marine red alga Laurencia saitoi collected off the coast of Yantai. Their structures were established by detailed NMR spectroscopic analysis and comparison with literature data.

  8. Cultivation of macroscopic marine algae and freshwater aquatic weeds. Progress report, May 1--December 31, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Ryther, J. H.

    1977-01-01

    Research was divided between basic physiological studies of the growth and nutrient-uptake kinetics of macroscopic marine algae and the more applied problems involved in the selection of species and the development of inexpensive, non-energy intensive culture methods for growing seaweeds and freshwater plants as a biomass source for conversion to energy. Best growth of the seaweeds occurs at low (0.1 to 1.0 ..mu..molar) concentration of major nutrients, with ammonia as a nitrogen source, with rapid exchange of the culture medium (residence time of 0.05 days or less). Of 43 species of seaweeds evaluated, representatives of the large red alga genus Gracilaria appear most promising with potential yields, in a highly intensive culture system under optimal conditions, of some 129 metric dry tons per hectare per year (about half of which is organic). Non-intensive culture methods have yielded one-third to one-half that figure. Unexplained periodicity of growth and overgrowth by epiphytes remain the most critical constraint to large-scale seaweed culture. Freshwater weed species in culture include water hyacinth (Eichhornia crassipes), duckweed (Lemna minor), and Hydrilla vertecillata, with yields to date averaging 15, 4, and 8 g dry wt/m/sup 2//day, respectively. However, these plants have not yet been grown through the winter, so average annual yields are expected to be lower. In contrast to the seaweeds, the freshwater plants grow well at high nutrient concentrations and slow culture volume exchange rates (residence time ca. 20 days or more). Experiments were initiated on the recycling of digester residues from the fermentation of the freshwater and marine plants as a possible nutrient source for growth of the same species.

  9. Ultrasound assisted methods for enhanced extraction of phycobiliproteins from marine macro-algae, Gelidium pusillum (Rhodophyta).

    Science.gov (United States)

    Mittal, Rochak; Tavanandi, Hrishikesh A; Mantri, Vaibhav A; Raghavarao, K S M S

    2017-09-01

    Extraction of phycobiliproteins (R-phycoerythrin, R-PE and R-phycocyanin, R-PC) from macro-algae is difficult due to the presence of large polysaccharides (agar, cellulose etc.) present in the cell wall which offer major hindrance for cell disruption. The present study is aimed at developing most suitable methodology for the primary extraction of R-PE and R-PC from marine macro-algae, Gelidium pusillum(Stackhouse) Le Jolis. Such extraction of phycobiliproteins by using ultrasonication and other conventional methods such as maceration, maceration in presence of liquid nitrogen, homogenization, and freezing and thawing (alone and in combinations) is reported for the first time. Standardization of ultrasonication for different parameters such as ultrasonication amplitude (60, 90 and 120µm) and ultrasonication time (1, 2, 4, 6, 8 and 10mins) at different temperatures (30, 35 and 40°C) was carried out. Kinetic parameters were estimated for extraction of phycobiliproteins by ultrasonication based on second order mass transfer kinetics. Based on calorimetric measurements, power, ultrasound intensity and acoustic power density were estimated to be 41.97W, 14.81W/cm 2 and 0.419W/cm 3 , respectively. Synergistic effect of ultrasonication was observed when employed in combination with other conventional primary extraction methods. Homogenization in combination with ultrasonication resulted in an enhancement in efficiency by 9.3% over homogenization alone. Similarly, maceration in combination with ultrasonication resulted in an enhancement in efficiency by 31% over maceration alone. Among all the methods employed, maceration in combination with ultrasonication resulted in the highest extraction efficiency of 77 and 93% for R-PE and R-PC, respectively followed by homogenization in combination with ultrasonication (69.6% for R-PE and 74.1% for R-PC). HPLC analysis was carried out in order to ensure that R-PE was present in the extract and remained intact even after processing

  10. The opportunities for obtaining of the biogas on methane fermentation from marine algae biomass and water plant biomass

    OpenAIRE

    Jachniak Ewa; Chmura Joanna; Kuglarz Mariusz; Wiktor Józef

    2018-01-01

    The aim of the research was to try to obtain of the biogas on a laboratory scale from marine algae biomass and water plant biomass. The research was conducted in 2016 year and samples were taken from the Polish coast of the Baltic Sea. In laboratory work, algae and plant species were first identified. The next, in order to subject them to methane fermentation processes and to obtain biogas,partial mechanical treatment of the biomass was conducted. Dry matter content and dry organic matter con...

  11. Antibacterial, antifungal and cytotoxic activities exhibited by endophytic fungi from the Brazilian marine red alga Bostrychia tenella (Ceramiales

    Directory of Open Access Journals (Sweden)

    Rafael de Felício

    Full Text Available Abstract Marine environment is one of the most important sources regarding natural products research. Besides, marine microorganisms have been denominated as a talented natural source for discovery of new leads. Although the association of macroalgae and fungi has been described regarding ecological issues, there is a lack of studies about marine seaweed endophytic fungi. In this context, the goal of this study was to evaluate cytotoxic, antifungal and antibacterial activities of endophytic fungi isolated from the Brazilian marine seaweed Bostrychia tenella (J.V. Lamouroux J. Agardh (Ceramiales, Rhodophyta. Forty-five endophytic microorganism strains were isolated from B. tenella. Crude extracts and organic fractions of ten selected strains were obtained after growth in rice medium. Samples were evaluated for cytotoxicity, antifungal and antibacterial assays. Penicillium strains showed positive results in a diversity of assays, and other five strains were active in at least one test. In addition, cytochalasin D was isolated from Xylaria sp. This alga is composed of a microbiological potential, since its endophytic strains exhibited remarkable biological properties. Moreover, cytochalasin D isolation has confirmed chemical potential of marine endophytic strains. This is the first study in which cultured fungi isolates from the Brazilian macroalga B. tenella were evaluated concerning biological properties. Results corroborated that this species could be a pharmaceutical source from marine environment. Furthermore, Acremonium implicatum is being firstly described as marine endophyte and Xylaria sp., Trichoderma atroviride and Nigrospora oryzae as marine seaweed endophytes. Thus, this work reports the first study relating detailed isolation, cultivation and biological evaluation (cytotoxic, antifungal and antibacterial of endophytes Penicillium decaturense and P. waksmanii from the Brazilian marine red alga B. tenella. We are also reporting the

  12. Assessment of the toxicity of the solid coating PV1 in a marine invironment, using biotests with algae, a rotifer and a bacteria

    NARCIS (Netherlands)

    Foekema, E.M.; Sneekes, A.C.

    2007-01-01

    The toxic potential of substances that may leach from the solid coating PV1 was tested using • the marine bacteria Vibrio fisheri in the Microtox® Basic test • the marine algae Skeletonema costatum in a 72h algal growth inhibition test • the marine rotifer Brachionus plicatilis in the 24 h ROTOX®

  13. Autophagy in unicellular eukaryotes

    NARCIS (Netherlands)

    Kiel, J.A.K.W.

    2010-01-01

    Cells need a constant supply of precursors to enable the production of macromolecules to sustain growth and survival. Unlike metazoans, unicellular eukaryotes depend exclusively on the extracellular medium for this supply. When environmental nutrients become depleted, existing cytoplasmic components

  14. In vitro antioxidant properties of sulfated polysaccharide from brown marine algae Sargassum tenerrimum

    Directory of Open Access Journals (Sweden)

    P. Vijayabaskar

    2012-10-01

    Full Text Available Objective: In the present study the physico chemical characteristics, total antioxidant capacity (TAC, reducing power and the free radical scavenging potentials (DPPH radical, ABTS, H2O2 radical of sulfated polysaccharide from marine brown algae Sargassum tenerrimum was investigated. Methods: The Sargassum tenerrimum seaweed, which have wide pharmaceutical application, were collected from the coastal region of Mandapam (Lat 09 ° 17 ’N, Long 79 ° 07 ’E, Tamil Nadu, India and evaluated for In vitro antioxidant properties. Results: The extract showed higher percentage of carbohydrate (8.20暲1.23% followed by sulphate (6.6暲1.42% and protein (0.86暲0.42%. The free radical scavenging potential was found to be higher in ABTS (70.33暲 2.33% followed by DPPH (64.66暲2.08% and H2O2 (61.56暲2.05%. the TAC was found to be 62.55暲 1.40%. The characterization of sulfated polysaccharide by FT-IR spectrum showed the presence of carboxyl, hydroxyl and sulfate groups. The structure of mobility was assed by agarose gel electrophoresis which showed highest mobility at higher pH values especially in buffer carbonate -bicarbonate (pH 10. The molecular weight of the sulfated polysaccharide was determined by gradient polyacrylamide gel electrophoresis which was found to be 40 kDa. Finally, GCMS analysis of sulfated polysaccharide from S. tenerrimum exhibited peaks corresponding to Benzenamine (31.67% and Aminocarb (21.45%. The overall results have established that the sulfated polysaccharide from S. tenerrimum could be used as a promising antioxidant agent. Conclusion: Physico-chemical analysis and elemental analysis of crude seaweed polysaccharide from Sargassum tenerrimum a brown algae elicited the antioxidant activity

  15. Vulnerability of marine habitats to the invasive green alga Caulerpa racemosa var. cylindracea within a marine protected area.

    Science.gov (United States)

    Katsanevakis, Stelios; Issaris, Yiannis; Poursanidis, Dimitris; Thessalou-Legaki, Maria

    2010-08-01

    The relative vulnerability of various habitat types to Caulerpa racemosa var. cylindracea invasion was investigated in the National Marine Park of Zakynthos (Ionian Sea, Greece). The density of C. racemosa fronds was modelled with generalized additive models for location, scale and shape (GAMLSS), based on an information theory approach. The species was present in as much as 33% of 748 randomly placed quadrats, which documents its aggressive establishment in the area. The probability of presence of the alga within randomly placed 20 x 20 cm quadrats was 83% on 'matte morte' (zones of fibrous remnants of a former Posidonia oceanica bed), 69% on rocky bottoms, 86% along the margins of P. oceanica meadows, 10% on sandy/muddy substrates, and 6% within P. oceanica meadows. The high frond density on 'matte morte' and rocky bottoms indicates their high vulnerability. The lowest frond density was observed within P. oceanica meadows. However, on the margins of P. oceanica meadows and within gaps in fragmented meadows relative high C. racemosa densities were observed. Such gaps within meadows represent spots of high vulnerability to C. racemosa invasion.

  16. The opportunities for obtaining of the biogas on methane fermentation from marine algae biomass and water plant biomass

    Directory of Open Access Journals (Sweden)

    Jachniak Ewa

    2018-01-01

    Full Text Available The aim of the research was to try to obtain of the biogas on a laboratory scale from marine algae biomass and water plant biomass. The research was conducted in 2016 year and samples were taken from the Polish coast of the Baltic Sea. In laboratory work, algae and plant species were first identified. The next, in order to subject them to methane fermentation processes and to obtain biogas,partial mechanical treatment of the biomass was conducted. Dry matter content and dry organic matter content were also determined. The research has shown different production of the biogas depending on the various species of the algae and plants. The percentage composition of the biogas was also determined (% CO2 and % CH4. In this research some kinds and species of algae and aquatic plants were distinguished: Scytosiphon cf. S. tortilis, Fucus vesiculosus, Cladophora, Audouinella, Potamogeton perfoliatus. Production of biogas from selected algae and water plants oscillated between 0.023 dm3·g-1 and 0.303 dm3·g-1. The highest content of the methane in biogas was obtained from the mixture of Ectocarpus from spring and autumn harvest (values oscillated from 80.7 % to 81.2 %, while the highest percentage share of carbon dioxide in the biogas was characterized by the mixture Fucus vesiculosus and Audouinella (22 %. Due to a small amount of the research in this field, more research is needed.

  17. Screening for antibacterial and antifungal activities in some marine algae from the Fujian coast of China with three different solvents

    Science.gov (United States)

    Zheng, Yi; Chen, Yin-Shan; Lu, Hai-Sheng

    2001-12-01

    Three different solvents viz ethanol, acetone and methanol-toluene (3:1) were used to extract antibiotics from 23 species of marine algae belonging to the Chlorophyta, Phaeophyta and Rhodophyta. Their crude extracts were tested for antibacterial and antifungal activities. Among them, the ethanol extract showed the strongest activity against the bacteria and fungi tested. Four species of the Rhodophyta ( Laurencia okamurai, Dasya scoparia, Grateloupia filicina and plocamium telfairiae) showed a wide spectrum of antibacterial activity. Every solvent extract from the four species was active against all the bacteria tested. The test bacterium Pseudomonas solancearum and the fungus Penicilium citrinum were most sensitive to the extracts of marine algae. In general, the extracts of seaweeds inhibited bacteria more strongly than fungi and species of the Rhodophyta showed the greatest activity against the bacteria and fungi tested.

  18. Advanced characterization of dissolved organic matter released by bloom-forming marine algae

    KAUST Repository

    Rehman, Zahid Ur

    2017-06-01

    Algal organic matter (AOM), produced by marine phytoplankton during bloom periods, may adversely affect the performance of membrane processes in seawater desalination. The polysaccharide fraction of AOM has been related to (bio)fouling in micro-filtration and ultrafiltration, and reverse osmosis membranes. However, so far, the chemical structure of the polysaccharides released by bloom-forming algae is not well understood. In this study, dissolved fraction of AOM produced by three algal species (Chaetoceros affinis, Nitzschia epithemoides and Hymenomonas spp.) was characterized using liquid chromatography–organic carbon detection (LC-OCD) and fluorescence spectroscopy. Chemical structure of polysaccharides isolated from the AOM solutions at stationary phase was analyzed using proton nuclear magnetic resonance (H-NMR). The results showed that production and composition of dissolved AOM varied depending on algal species and their growth stage. AOM was mainly composed of biopolymers (BP; i.e., polysaccharides and proteins [PN]), but some refractory substances were also present.H-NMR spectra confirmed the predominance of carbohydrates in all samples. Furthermore, similar fingerprints were observed for polysaccharides of two diatom species, which differed considerably from that of coccolithophores. Based on the findings of this study,H-NMR could be used as a method for analyzing chemical profiles of algal polysaccharides to enhance the understanding of their impact on membrane fouling.

  19. Radiolabelling studies on the lipid metabolism in the marine brown alga Dictyopteris membranacea

    International Nuclear Information System (INIS)

    Hofmann, M.; Eichenberger, W.

    1998-01-01

    The lipid metabolism of the marine brown alga D. membranacea was investigated using [2- 14 C]acetate, [1- 14 C]myristate, [1- 14 C]oleate and [1- 14 C]arachidonate as precursors. On incubation with [2- 14 C]acetate, 18:1 and 16:0 were the main products formed by de novo synthesis and incorporated into polar lipids. With all the exogenous substrates used, DGTA was strongly labelled and the subsequent rapid turnover of radioactivity suggested a key role for this lipid in the redistribution of acyl chains and most likely also in the biosynthesis of the eukaryotic galactolipids produced in the absence of PC. In the glycolipids a continuous accumulation of radioactivity was observed with all the substrates used. The labelling kinetics of molecular species of MGDG suggested the desaturation of 18:1 to 18:4 and of 20:4 (n-6) to 20:5 (n-3) acids on this lipid. Both PG and PE were primary acceptors of de novo synthesized fatty acids and exogenous [1- 14 C]oleate, but no evidence exists for a further processing of acyl chains on these lipids. TAG, although strongly labelled with all exogenous [1- 14 C]acids, was not labelled when [2- 14 C]acetate was used as a precursor indicating the flux of endogenous fatty acids to be different of that of exogenously supplied fatty acids. (author)

  20. Removal of malachite green by using an invasive marine alga Caulerpa racemosa var. cylindracea

    International Nuclear Information System (INIS)

    Bekci, Zehra; Seki, Yoldas; Cavas, Levent

    2009-01-01

    The biosorption of a cationic dye, malachite green oxalate (MG) from aqueous solution onto an invasive marine alga Caulerpa racemosa var. cylindracea (CRC) was investigated at different temperatures (298, 308 and 318 K). The dye adsorption onto CRC was confirmed by FTIR analysis. Equilibrium data were analyzed using Freundlich, Langmuir and Dubinin-Radushkevich (DR) equations. All of the isotherm parameters were calculated. The Freundlich model gave a better conformity than Langmuir equation. The mean free energy values (E) from DR isotherm were also estimated. In order to clarify the sorption kinetic, the fit of pseudo-first-order kinetic model, second-order kinetic model and intraparticle diffusion model were investigated. It was obtained that the biosorption process followed the pseudo-second-order rate kinetics. From thermodynamic studies the free energy changes were found to be -7.078, -9.848 and -10.864 kJ mol -1 for 298, 308 and 318 K, respectively. This implied the spontaneous nature of biosorption and the type of adsorption as physisorption. Activation energy value for MG sorption (E a ) was found to be 37.14 kJ mol -1 . It could be also derived that this result supported physisorption as a type of adsorption

  1. The Structure-Activity Relationship between Marine Algae Polysaccharides and Anti-Complement Activity

    Science.gov (United States)

    Jin, Weihua; Zhang, Wenjing; Liang, Hongze; Zhang, Quanbin

    2015-01-01

    In this study, 33 different polysaccharides were prepared to investigate the structure-activity relationships between the polysaccharides, mainly from marine algae, and anti-complement activity in the classical pathway. Factors considered included extraction methods, fractionations, molecular weight, molar ratio of galactose to fucose, sulfate, uronic acid (UA) content, linkage, branching, and the type of monosaccharide. It was shown that the larger the molecular weights, the better the activities. The molar ratio of galactose (Gal) to fucose (Fuc) was a positive factor at a concentration lower than 10 µg/mL, while it had no effect at a concentration more than 10 µg/mL. In addition, sulfate was necessary; however, the sulfate content, the sulfate pattern, linkage and branching had no effect at a concentration of more than 10 µg/mL. Moreover, the type of monosaccharide had no effect. Laminaran and UA fractions had no activity; however, they could reduce the activity by decreasing the effective concentration of the active composition when they were mixed with the active compositions. The effect of the extraction methods could not be determined. Finally, it was observed that sulfated galactofucan showed good anti-complement activity after separation. PMID:26712768

  2. Marine Algae as a Potential Source for Anti-Obesity Agents

    Directory of Open Access Journals (Sweden)

    Chu Wan-Loy

    2016-12-01

    Full Text Available Obesity is a major epidemic that poses a worldwide threat to human health, as it is also associated with metabolic syndrome, type 2 diabetes and cardiovascular disease. Therapeutic intervention through weight loss drugs, accompanied by diet and exercise, is one of the options for the treatment and management of obesity. However, the only approved anti-obesity drug currently available in the market is orlistat, a synthetic inhibitor of pancreatic lipase. Other anti-obesity drugs are still being evaluated at different stages of clinical trials, while some have been withdrawn due to their severe adverse effects. Thus, there is a need to look for new anti-obesity agents, especially from biological sources. Marine algae, especially seaweeds are a promising source of anti-obesity agents. Four major bioactive compounds from seaweeds which have the potential as anti-obesity agents are fucoxanthin, alginates, fucoidans and phlorotannins. The anti-obesity effects of such compounds are due to several mechanisms, which include the inhibition of lipid absorption and metabolism (e.g., fucoxanthin and fucoidans, effect on satiety feeling (e.g., alginates, and inhibition of adipocyte differentiation (e.g., fucoxanthin. Further studies, especially testing bioactive compounds in long-term human trials are required before any new anti-obesity drugs based on algal products can be developed.

  3. Checklist of the benthic marine and brackish Galician algae (NW Spain

    Directory of Open Access Journals (Sweden)

    Bárbara, Ignacio

    2005-06-01

    Full Text Available We present an annotated checklist of the benthic marine and brackish algae of the Galician coasts (Spain based on literature records and new collections. This checklist includes 618 species: 118 Cyanophyta, 296 Rhodophyta, 127 Ochrophyta, and 77 Chlorophyta. The number of specific, infraspecific taxa, and stages is 643: 121 Cyanophyta, 309 Rhodophyta, 135 Ochrophyta, and 79 Chlorophyta. Hyella caespitosa var. nitida, Calothrix fasciculata, Gracilariopsis longissima, Compsonema minutum, and Sphacelaria tribuloides are new records for Galicia, and there are also some new provincial records. We state the presence of each species for Lugo (Lu, A Coruña (Co, and Pontevedra (Po provinces. The number of species found in Galicia is high, since 85% of the species recorded for the warm-temperate NE Atlantic Ocean grow in Galicia. Biogeographical comments comparing the Galician data with the neighboring areas of Britain and Ireland, Basque coast, Portugal, southern Iberian Peninsula, Canary Islands and Atlantic coast of Morocco are given. Finally, we present lists of cold-temperate, warm-temperate, Lusitanic Province endemics, and alien species growing in Galicia.Se presenta una lista comentada de las especies de algas bentónicas marinas y salobres de la costa de Galicia (España basada en citas bibliográficas y nuevos datos de los autores. La lista contiene 618 especies: 118 Cyanophyta, 296 Rhodophyta, 127 Ochrophyta y 77 Chlorophyta. El número de taxa específicos e infraespecíficos asciende a 643: 121 Cyanophyta, 309 Rhodophyta, 135 Ochrophyta y 79 Chlorophyta. Hyella caespitosa var. nitida, Calothrix fasciculata, Gracilariopsis longissima, Compsonema minutum y Sphacelaria tribuloides son nuevas citas para Galicia, y algunas nuevas citas provinciales. Para cada especie se especifica su presencia en las provincias de Lugo (Lu, A Coruña (Co y Pontevedra (Po. El número de especies encontradas en Galicia es elevado, ya que se conocen el 85% de las

  4. Neurotoxic, cytotoxic, apoptotic and antiproliferative effects of some marine algae extracts on the NA2B cell line.

    Science.gov (United States)

    Kurt, O; Özdal-Kurt, F; Akçora, C M; Özkut, M; Tuğlu, M I

    2018-02-01

    Oxidative stress contributes to cancer pathologies and to apoptosis. Marine algae exhibit cytotoxic, antiproliferative and apoptotic effects; their metabolites have been used to treat many types of cancer. We investigated in culture extracts of Petalonia fascia, Jania longifurca and Halimeda tuna to determine their effects on mouse neuroblastoma cell line, NA2B. NA2B cells were treated with algae extracts, and the survival and proliferation of NA2B cells were assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The effects of algae extracts on oxidative stress in NA2B cells also were investigated using nitric oxide synthase (NOS) immunocytochemistry and apoptosis was assessed using terminal deoxynucleotidyl transferase dUTP nick end labeling. We observed significant neurite inhibition with moderate damage by the neurotoxicity-screening test (NST) at IC 50 dilutions of the extracts. MTT demonstrated that J. longifurca extracts were more toxic than P. fascia and H. tuna extracts. We found an increase of endothelial and inducible NOS immunostaining for oxidative stress and TUNEL analysis revealed increased apoptosis after application of extract. Our findings suggest that the algae we tested may have potential use for treatment of cancer.

  5. Extraction and PTP1B inhibitory activity of bromophenols from the marine red alga Symphyocladia latiuscula

    Science.gov (United States)

    Liu, Xu; Li, Xiaoming; Gao, Lixin; Cui, Chuanming; Li, Chunshun; Li, Jia; Wang, Bingui

    2011-05-01

    Previously, we had characterized several structurally interesting brominated phenols from the marine red alga Symphyocladia latiuscula collected from various sites. However, Phytochemical investigations on this species collected from the Weihai coastline of Shandong Province remains blank. Therefore, we characterized the chemical constituents of individuals of this species collected from the region. Eight bromophenols were isolated and identified. Using detailed spectroscopic techniques and comparisons with published data, these compounds were identified as 2,3-dibromo-4,5-dihydroxybenzyl methyl ether ( 1), 3,5-dibromo-4-hydroxybenzoic acid ( 2), 2,3,6-tribromo-4,5-dihydroxymethylbenzene ( 3), 2,3,6-tribromo-4,5-dihydroxybenzaldehyde ( 4), 2,3,6-tribromo-4,5-dihydroxybenzyl methyl ether ( 5), bis(2,3,6-tribromo-4,5-dihydroxyphenyl)methane ( 6), 1,2-bis(2,3,6-tribromo-4,5-dihydroxyphenyl)-ethane ( 7), and 1-(2,3,6-tribromo-4,5-dihydroxybenzyl)-pyrrolidin-2-one ( 8). Among these compounds, 1 and 2 were isolated for the first time from S. latiuscula. Each compound was evaluated on the ability to inhibit protein tyrosine phosphatase 1B (PTP1B), which is a potential therapeutic target in the treatment of type 2 diabetes. Bromophenols 5, 6, and 7 showed strong activities with IC50 values of 3.9, 4.3, and 3.5 μmol/L, respectively. This study provides further evidence that bromophenols are predominant among the chemical constituents of Symphyocladia, and that some of these compounds may be candidates for the development of anti-diabetes drugs.

  6. Synthesis of Biodiesel from the Oily Content of Marine Green Alga Ulva fasciata

    International Nuclear Information System (INIS)

    Khan, A. M.; Fatima, N.

    2015-01-01

    The present study is focused on the chemical transformation of oils derived from the marine green alga Ulva fasciata Delile to biodiesel. The transesterification of algal oil was performed with a variety of alcohols using Na metal and NaOH as catalysts. Transesterification of algal oil by mechanical stirring yielded significant biodiesel within an hour at 60 degree C with NaOH and at room temperature with Na metal. In addition, microwave irradiated transesterification produced significant amount of biodiesel with NaOH and Na metal within 1-5 minutes. However, reaction of sodium metal in microwave oven was highly exothermic and uncontrollable that could also damage the radiation source. The reactivity order of alcohols was found to be methanol > ethanol > benzyl alcohol > 1-propanol > 1-butanol > 1-pentanol > 1-hexanol > 2-propanol. Isopropyl alcohol was found to be least reactive due to steric hindrance. Benzyl alcohol was found to be more reactive than 1-propyl alcohol due to the electron withdrawing effect of benzene ring. The highest % conversion of FAME and FAEE were found to be 97% and 98% respectively using Na metal through mechanical stirring. Biodiesel production was confirmed by thin layer chromatography (TLC). Furthermore, the fuel properties including density, kinematics viscosity, high heating value, acid value, free fatty acid (%), cloud point and pour point of U. fasciata oil and all the esters were determined and compared with the standard limits of biodiesel. Fatty acid methyl, ethyl, 1-propyl, 2-propyl, 1-butyl, 1-pentyl and 1-hexyl esters showed the fuel properties within the biodiesel standard limits therefore all of them were considered as the substitute of biodiesel. On the other hand, the fuel properties of benzyl ester were found to be above the limits of biodiesel specifications and thus it could not be considered as biodiesel. This research article will be helpful to overcome the current challenges of energy crisis, global warming and

  7. Ten years of investigation on radioactive contamination of the marine environment. Incorporation, by marine algae and animals, of hydrogen-3 and other radionuclides present in effluents of nuclear or industrial origin

    International Nuclear Information System (INIS)

    Bonotto, S.; Colard, J.; Koch, G.; Kirchmann, R.; Strack, S.; Luettke, A.; Carraro, G.

    1981-01-01

    Several marine plants and animals were investigated for their capability of incorporating the main radionuclides present in selected effluents. Accumulation factors are reported for 3 H, 134 Cs, 136 Cs, 137 Cs, 58 Co, 60 Co, 54 Mn, 131 I 226 Ra and 124 Sb. Marine algae, which are involved in food chains leading to man, show the highest accumulation factors. The stable element composition of the alga Acetabularia was determined by gamma-activation analysis. The preferential accumulation of particular radionuclides by marine organisms suggests that they may have a significant role in the turnover rate of elements in the marine environment. (author)

  8. Natural Abundance 14C Content of Dibutyl Phthalate (DBP from Three Marine Algae

    Directory of Open Access Journals (Sweden)

    Kazuyo Ukai

    2006-11-01

    Full Text Available Abstract: Analysis of the natural abundance 14C content of dibutyl phthalate (DBP from two edible brown algae, Undaria pinnatifida and Laminaria japonica, and a green alga, Ulva sp., revealed that the DBP was naturally produced. The natural abundance 14C content of di-(2-ethylhexyl phthalate (DEHP obtained from the same algae was about 50-80% of the standard sample and the 14C content of the petrochemical (industrial products of DBP and DEHP were below the detection limit.

  9. Mass cultures of marine algae for energy farming in coastal deserts

    Science.gov (United States)

    Wagener, K.

    1983-09-01

    This paper provides a description of construction and subsequent operation of a seawater based system for biomass farming of micro-algae. Seawater was pumped through shallow artificial ponds located in coastal areas of Calabria, Italy. We describe pond construction, mixing procedure for micro algae mass cultures, optimization of the carbon and mineral nutrient budget, potential algal yields, methods for harvesting micro-algae, a source of energy to run the seawater pumps, and environmental variables of the pond system under subtropical conditions of Calabria, Italy.

  10. Response of marine and freshwater algae to nitric acid and elevated carbon dioxide levels simulating environmental effects of bolide impact

    Science.gov (United States)

    Boston, P. J.

    1988-01-01

    One of the intriguing facets of the Cretaceous-Tertiary extinction is the apparently selective pattern of mortality amongst taxa. Some groups of organisms were severely affected and some remained relatively unscathed as they went through the K/T boundary. While there is argument concerning the exact interpretation of the fossil record, one of the best documented extinctions at the Cretaceous-Tertiary boundary is that of the calcareous nannoplankton. These organisms include coccolithic algae and foraminiferans. Attempts to explain their decline at the K/T boundary center around chemistry which could affect their calcium carbonate shells while leaving their silica-shelled cousins less affected or unaffected. Two environmental consequences of an extraterrestrial body impact which were suggested are the production of large quantities of nitrogen oxides generated by the shock heating of the atmosphere and the possible rise in CO2 from the dissolution of CaCO3 shells. Both of these phenomena would acidify the upper layers of the oceans and bodies of freshwater not otherwise buffered. The effects of nitric acid, carbon dioxide, or both factors on the growth and reproduction of calcareous marine coccoliths and non-calcareous marine and freshwater species of algae were considered. These experiments demonstrate that nitric acid and carbon dioxide have significant effects on important aspects of the physiology and reproduction of modern algae representative of extinct taxa thought to have suffered significant declines at the Cretaceous-Tertiary boundary. Furthermore, calcareous species showed more marked effects than siliceous species and marine species tested were more sensitive than freshwater species.

  11. Biosorption of lead (II and copper (II by biomass of some marine algae

    Directory of Open Access Journals (Sweden)

    Chaisuksant, Y.

    2004-09-01

    Full Text Available Biosorption of heavy metal ions by algae is a potential technology for treating wastewater contaminated with heavy metals. Adsorption of lead (II and copper (II in aqueous solutions by some marine algae available in large quantities in Pattani Bay including Gracilaria fisheri, Ulva reticulata and Chaetomorpha sp. were investigated. The effect of pH on metal sorption of the algal biomass and the metal uptake capacity of the algal biomass comparing to that of synthetic adsorbents including activated carbon and siliga gel were studied by using batch equilibrium experiments. Each dried adsorbent was stirred in metal ions solutions with different pH or different concentration at room temperature for 24 hours and the residual metal ions were analysed using atomic absorption spectrophotometer. The initial concentrations of lead and copper ionswere 70 µg/l and 20 mg/l, respectively. It was found that the effect of pH on metal sorption was similar in each algal biomass. The metal uptake capacity increased as pH of the solution increased from 2.0 to 4.0 and reached a plateau at pH 5.0-7.0. The metal uptake capacities of each algal biomass were similar. At low concentrations of metal ions, the metal adsorption occurred rapidly while at higher metal concentration less metal adsorption by each algal biomass was observed. The metal adsorption of activated carbon and silica gel occurred gradually and was less than those of algal biomass. The equilibrium data of copper and lead ions fitted well to the Langmuir and Freundlich isotherm models. The maximum sorption capacity (Qm values (mean±SD of Chaetomorpha sp., U. reticulata, G. fisheri, activated carbon and silica gel for lead ions were 1.26±0.14, 1.19±0.14, 1.18±0.15, 1.14±0.11 and 1.15±0.12 mg/g, respectively. For copper adsorption, the Qm values for G. fisheri, U. reticulata and Chaetomorpha biomass were 15.87±1.03, 14.71±1.02 and 12.35± 1.03 mg/g, respectively. While those of activated carbon and

  12. Antibacterial activity of extracts of marine algae from the Red Sea of ...

    African Journals Online (AJOL)

    hanan

    2012-09-04

    Sep 4, 2012 ... bacteria (Bacillus subtilis, Methicillin-Resistant Staphylococcus aureus (MRSA) and Staphylococcus aureu) and ... algae have been shown to have antibacterial activity ..... of Sargassum Ilicifolium and Kappaphycus alvarezii.

  13. Potassium 4-(hydroxymethyl)-benzenosulfonate: a novel metabolite isolated from the marine red alga Bostrychia tenella (Rhodomelaceae, ceramiales); 4-(Hidroximetil)-Benzenossulfonato de potassio: metabolito inedito isolado da alga marinha Bostrychia tenella (Rhodomelaceae, ceramiales)

    Energy Technology Data Exchange (ETDEWEB)

    Felicio, Rafael de; Debonsi, Hosana Maria [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Ciencias Farmaceuticas. Dept. de Fisica e Quimica]. E-mail: hosana@fcfrp.usp.br; Yokoya, Nair Sumie [Instituto de Botanica de Sao Paulo, SP (Brazil). Secao de Ficologia

    2008-07-01

    Chemical investigation of the dichloromethane/methanol extract of the marine alga Bostrychia tenella has led to the isolation of two aromatic compounds, the new sulfate metabolite potassium 4-(hydroxymethyl)-benzenosulfonate (1) and the compound 1-methoxyphenethyl alcohol (2), described previously as a synthetic product. Their structures were determined by spectroscopic methods including NMR, MS, IR and by comparison with literature data. (author)

  14. Selection of bioindicators for 90-Sr among the benthic marine algae from the Saco do Piraquara de Fora, Angra dos Reis, RJ (preliminary results)

    International Nuclear Information System (INIS)

    Azevedo, H.L.P. de; Vianna, M.E.C.; Monteiro, D.; Fernandes, H.; Gusmao Pedrini, A. de

    1983-01-01

    With the aim of pre-selecting bioindicators for Sr-90 among the marine algae, monthly sampling in three different fixed locations, have benn done and strontium and calcium concentrations have been determined in the most abundant species of algae in the region of Angra dos Reis. In order to establish the influence of seasonal variations, the sea water salinity and strontium and calcium concentrations have also been analysed. (E.G.) [pt

  15. Growth-inhibitory effects of a mineralized extract from the red marine algae, Lithothamnion calcareum, on Ca2+-sensitive and Ca2+-resistant human colon carcinoma cells

    OpenAIRE

    Nadeem Aslam, Muhammad; Bhagavathula, Narasimharao; Paruchuri, Tejaswi; Hu, Xin; Chakrabarty, Subhas; Varani, James

    2009-01-01

    Proliferation and differentiation were assessed in a series of human colon carcinoma cell lines in response to a mineral-rich extract derived from the red marine algae, Lithothamnion calcareum. The extract contains 12% Ca2+, 1% Mg2+, and detectable amounts of 72 trace elements, but essentially no organic material. The red algae extract was as effective as inorganic Ca2+ alone in suppressing growth and inducing differentiation of colon carcinoma cells that are responsive to a physiological lev...

  16. Algas marinas bentónicas de la costa noroccidental de Guerrero, México Benthic marine algae of the west coast of Guerrero, Mexico

    Directory of Open Access Journals (Sweden)

    Luz Elena Mateo-Cid

    2012-12-01

    Full Text Available Se presentan los resultados de un estudio sobre algas marinas bentónicas en 7 localidades de la costa noroccidental de Guerrero, México. Se determinó la presencia de 163 especies de algas marinas. Se identificaron 17 especies de Cyanobacteria, 93 Rhodophyta, 28 Chlorophyta y 25 de Heterokontophyta. Se citan 54 registros nuevos para el litoral de Guerrero, 2 también nuevos, Myrionema strangulans Greville y Acrochaete ramosa (N.L.Gardner O'Kelly para la costa del Pacífico. Cada especie se acompaña de datos sobre su distribución en el área de estudio, su estado reproductivo, nivel de marea, hábitat, observaciones, epifitismo y número de herbario o de recolección. Se comparó la riqueza específica entre la estación climática de lluvias y la de secas. La división Rhodophyta dominó en términos de diversidad en relación con las 3 divisiones restantes. La ficoflora de la costa noroccidental de Guerrero es de afinidad tropical y más diversa en la época de secas.We present results on the study on benthic marine algae in 7 localities from the west coast of Guerrero, Mexico. We report 163 species: 17 Cyanobacteria, 93 Rhodophyta, 28 Chlorophyta and 25 Heterokontophyta. Fifty four are new records for Guerrero; while Myrionema strangulans Greville and Acrochaete ramosa (N.L.Gardner O'Kelly are new to the Pacific coast of Mexico. Each species includes data on its distribution, reproductive stages, tidal level, facies, epiphytism and herbarium's number. Species diversity was compared for 2 different climatic seasons. The Rhodophyta are dominant in terms of diversity in relation to the other groups. The algal flora of the northwest coast of Guerrero is tropical and the greatest diversity was found during dry seasons.

  17. The Suez Canal as a habitat and pathway for marine algae and seagrasses

    Science.gov (United States)

    Aleem, A. A.

    The Suez Canal supports a diversified benthic algal flora; 133 species of benthic algae are now known from the Canal, as compared with only 24 in 1924. The vertical and horizontal distribution of algae is considered in relation to hydrographic factors. The algae display zonation and 3-4 algal belts are distinguished on the Canal banks on buoys and pier supports. Associated fauna include Balanus amphitrite and Brachidontes variabilis, together with various hydroids, sponges, ascidians, asteroids, ophiuroids and crustaceans. Merceriella enigmatica thrives well in brackish water habitats. The algal flora in the Bitter Lakes resembles that in the Red Sea. The number of Red Sea species decreases from Suez to Port Said in the littoral zone. On the other hand, bottom algae predominantly belong to Red Sea flora. Thirty of the species of algae found belong to the Indo-Pacific flora; half of these are new records to the Canal. Several of these Indo-Pacific algae have recently become established in the Eastern Mediterranean, whereas only two of the Mediterranean macro-algal flora (viz. Caulerpa prolifera and Halopteris scoparia) have been found in the Gulf of Suez. Two seagrasses, Halopia ovalis and Thalassia hemprichii, are recorded for the first time in the Canal. Only Halophila stipulacea has found its way into the Mediterranean via the Suez Canal, but none of the Mediterranean seagrasses is found either in the Canal or in the Red Sea.

  18. A Comparative biochemical study on two marine endophytes, Bacterium SRCnm and Bacillus sp. JS, Isolated from red sea algae.

    Science.gov (United States)

    Ahmed, Eman Fadl; Hassan, Hossam Mokhtar; Rateb, Mostafa Ezzat; Abdel-Wahab, Noha; Sameer, Somayah; Aly Taie, Hanan Anwar; Abdel-Hameed, Mohammed Sayed; Hammouda, Ola

    2016-01-01

    Two marine endophytic bacteria were isolated from the Red Sea algae; a red alga; Acanthophora dendroides and the brown alga Sargassum sabrepandum. The isolates were identified based on their 16SrRNA sequences as Bacterium SRCnm and Bacillus sp. JS. The objective of this study was to investigate the potential anti-microbial and antioxidant activities of the extracts of the isolated bacteria grown in different nutrient conditions. Compared to amoxicillin (25μg/disk) and erythromycin (15μg/disk), the extracts of Bacterium SRCn min media II, III, IV and V were potent inhibitors of the gram-positive bacterium Sarcina maxima even at low concentrations. Also, the multidrug resistant Staphylococcus aureus(MRSA) was more sensitive to the metabolites produced in medium (II) of the same endophyte than erythromycin (15μg/disk). A moderate activity of the Bacillus sp. JS extracts of media I and II was obtained against the same pathogen. The total compounds (500ug/ml) of both isolated endophytes showed moderate antioxidant activities (48.9% and 46.1%, respectively). LC/MS analysis of the bacterial extracts was carried out to investigate the likely natural products produced. Cyclo(D-cis-Hyp-L-Leu), dihydrosphingosine and 2-Amino-1,3-hexadecanediol were identified in the fermentation medium of Bacterium SRCnm, whereas cyclo (D-Pro-L-Tyr) and cyclo (L-Leu-L-Pro) were the suggested compounds of Bacillus sp. JS.

  19. Levels, spatial variation and compartmentalization of trace elements in brown algae Cystoseira from marine protected areas of Crimea (Black Sea).

    Science.gov (United States)

    Kravtsova, Alexandra V; Milchakova, Nataliya A; Frontasyeva, Marina V

    2015-08-15

    Levels of Al, Sc, V, Co, Ni, As, Br, Rb, Sr, Ag, Sb, I, Cs, Ba, Th and U that were rarely or never studied, as well as the concentrations of classically investigated Mn, Fe and Zn in brown algae Cystoseira barbata C. Ag. and Cystoseira crinita (Desf.) Bory from the coastal waters of marine protected areas (Crimea, Black Sea), were determined using neutron activation analysis. Spatial variation and compartmentalization were studied for all 19 trace elements (TE). Concentrations of most TE were higher in "branches" than in "stems". Spatial variations of V, Co, Ni and Zn can be related to anthropogenic activities while Al, Sc, Fe, Rb, Cs, Th and U varied depending on chemical peculiarities of the coastal zone rocks. TE concentrations in C. crinita from marine protected areas near Tarkhankut peninsula and Cape Fiolent, identified as the most clean water areas, are submitted as the background concentrations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. TiO2 nanoparticles in the marine environment: Physical effects responsible for the toxicity on algae Phaeodactylum tricornutum.

    Science.gov (United States)

    Wang, Yixiang; Zhu, Xiaoshan; Lao, Yongmin; Lv, Xiaohui; Tao, Yi; Huang, Boming; Wang, Jiangxin; Zhou, Jin; Cai, Zhonghua

    2016-09-15

    Nanoscale titanium dioxide (nTiO2) has been widely used in cosmetics, catalysts, varnishes, etc., which is raising concerns about its potential hazards to the ecosystem, including the marine environment. In this study, the toxicological effect of nTiO2 on the marine phytoplankton Phaeodactylum tricornutum was carefully investigated. The results showed that nTiO2 at concentrations ≥20mg/L could significantly inhibit P. tricornutum growth. The 5-day EC50 of nTiO2 to P. tricornutum growth is 167.71mg/L. Interestingly, nTiO2 was found to exert its most severe inhibition effects on the first day of exposure, at a lower EC50 of 12.65mg/L. During the experiment, nTiO2 aggregates were found to entrap algae cells, which is likely responsible for the observed toxic effects. Direct physical effects such as cell wall damage from the algae entrapment were confirmed by flow cytometry and TEM imaging. Moreover, low indirect effects such as shading and oxidative stress were observed, which supported the idea that direct physical effects could be the dominant factor that causes nTiO2 toxicity in P. tricornutum. Our research provides direct evidence for the toxicological impact of nTiO2 on marine microalgae, which will help us to build a good understanding of the ecological risks of nanoparticles in the marine environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Non-destructive alpha-particle activation analysis of P, Cl, K and Ca in marine macro-alga samples using synthetic multielement reference material as comparative standard

    International Nuclear Information System (INIS)

    Iwata, Y.; Naitoh, H.; Suzuki, N.

    1992-01-01

    A Synthetic Reference Material (SyRM) composed with accurately known amounts of 12 elements has been prepared. The elemental composition of the SyRM is closely similar to that of marine macro-algae sample. The elemental composition of the SyRM was regulated by the starting materials used for the synthesis. The SyRM was used as a comparative standard for non-destructive alpha-particle activation analysis of marine macro-alga samples. P, Cl, K and Ca were determined simultaneously without correction for alpha range due to difference in the elemental composition between the analytical samples and the comparative standard. (author) 19 refs.; 4 tabs

  2. Screening of proteins based on macro-algae from West Java coast in Indonesian marine as a potential anti-aging agent

    Science.gov (United States)

    Putri, Arlina Prima; Dewi, Rizna Triana; Handayani, Aniek Sri; Harjanto, Sri; Chalid, Mochamad

    2018-02-01

    Algae has been known as one of the potential marine bio-resources that have been used in many fields such as bio-energy, food, pharmaceutical and medical applications. Study of macro-algae or seaweed for medicine application, in particular, highlights to empower their ingredients as a promising antioxidant like anti-aging agent due to their diversity in biological activity. The tropical climate of Indonesia with the highest marine biodiversity puts this country an auspicious source of numerous alga species as a novel antioxidant source. A Sample of 29 species of macroalgae has been collected from Coast of Pari Island as a part of Seribu Islands, Indonesia. Screening and extracting of aqueous tropical marine alga protein as a potential source for an antioxidant agent has been done by using 2,2-diphenyl-1-picrylhydrazyl scavenging method, and protein contents have been determined by Lowry method. Sample number 26 of the phylum Rhodophyta have 9.00±0.03 % protein content, which is potential for nutritional food in form of nutraceutical. That sample demonstrated the maximum DPPH scavenging activity 79.27±1.81 %. Moreover, crude extract from another species from phylum Rhodophyta had the very lower IC50 (3.4333±0.29 mg/ml) followed by Chlorophyta species (7.1069±1.78 mg/ml). In general, this study found that algae from phylum Rhodophyta possess a high content of protein, high activity towards free radical. Nevertheless, algae acquire the lowest IC50 value not only dominated by Rhodophyta but also from phylum Chlorophyta. The conclusion of this study leads to empowering high antioxidant activity algae as an anti-aging agent, which can be used in pharmaceutical applications. Therefore, the next study should be concerned on the properties of the algae which has been known to be suitable for pharmaceutical fields.

  3. Antiviral Potential of Algae Polysaccharides Isolated from Marine Sources: A Review

    Directory of Open Access Journals (Sweden)

    Azin Ahmadi

    2015-01-01

    Full Text Available From food to fertilizer, algal derived products are largely employed in assorted industries, including agricultural, biomedical, food, and pharmaceutical industries. Among different chemical compositions isolated from algae, polysaccharides are the most well-established compounds, which were subjected to a variety of studies due to extensive bioactivities. Over the past few decades, the promising results for antiviral potential of algae-derived polysaccharides have advocated them as inordinate candidates for pharmaceutical research. Numerous studies have isolated various algal polysaccharides possessing antiviral activities, including carrageenan, alginate, fucan, laminaran, and naviculan. In addition, different mechanisms of action have been reported for these polysaccharides, such as inhibiting the binding or internalization of virus into the host cells or suppressing DNA replication and protein synthesis. This review strives for compiling previous antiviral studies of algae-derived polysaccharides and their mechanism of action towards their development as natural antiviral agents for future investigations.

  4. Composition, nutritional aspects and effect on serum parameters of marine algae Ulva rigida.

    Science.gov (United States)

    Taboada, Cristina; Millán, Rosendo; Míguez, Isabel

    2010-02-01

    Algae are commonly consumed in Asia and have also gained popularity in Europe. However, data on the bioavailability of their components are limited. The present study was designed to determine the composition of Ulva rigida and the effects of inclusion of 10% of the algae in a standard diet for 4 weeks on nutritive value and serum parameters in order to consider the usefulness of Ulva as a dietary supplement. Ulva rigida is rich in protein, carbohydrates, fibre, vitamins and minerals and has a low lipid content. Analysis of the amino acid composition revealed good-quality protein. The algae were well accepted by experimental animals and did not significantly change nutritional parameters but reduced LDL cholesterol. Ulva rigida is an excellent source of nutrients and could improve a balanced diet. Further studies are required to research the potential of the seaweed as a natural source of bioactive compounds.

  5. Compositional Similarities and Differences between Transparent Exopolymer Particles (TEP) from two Marine Bacteria and two Marine Algae: Significance to Surface Biofouling

    KAUST Repository

    Li, Sheng

    2015-06-12

    Transparent-exopolymer-particles (TEP) have been recently identified as a significant contributor to surface biofouling, such as on reverse osmosis (RO) membranes. TEP research has mainly focused on algal TEP/TEP precursors while limited investigations have been conducted on those released by bacteria. In this study, TEP/TEP precursors derived from both algae and bacteria were isolated and then characterized to investigate their similarities and/or differences using various advanced analytical techniques, thus providing a better understanding of their potential effect on biofouling. Bacterial TEP/TEP precursors were isolated from two species of marine bacteria (Pseudidiomarina homiensis and Pseudoalteromonas atlantica) while algal TEP/TEP precursors were isolated from two marine algae species (Alexandrium tamarense and Chaetoceros affinis). Results indicated that both isolated bacterial and algal TEP/TEP precursors were associated with protein-like materials, and most TEP precursors were high-molecular-weight biopolymers. Furthermore all investigated algal and bacterial TEP/TEP precursors showed a lectin-like property, which can enable them to act as a chemical conditioning layer and to agglutinate bacteria. This property may enhance surface biofouling. However, both proton nuclear magnetic resonance (NMR) spectra and the nitrogen/carbon (N/C) ratios suggested that the algal TEP/TEP precursors contained much less protein content than the bacterial TEP/TEP precursors. This difference may influence their initial deposition and further development of surface biofouling.

  6. Evidence for methane production by marine algae (Emiliana huxleyi) and its implication for the methane paradox in oxic waters

    Science.gov (United States)

    Lenhart, K.; Klintzsch, T.; Langer, G.; Nehrke, G.; Bunge, M.; Schnell, S.; Keppler, F.

    2015-12-01

    Methane (CH4), an important greenhouse gas that affects radiation balance and consequently the earth's climate, still has uncertainties in its sinks and sources. The world's oceans are considered to be a source of CH4 to the atmosphere, although the biogeochemical processes involved in its formation are not fully understood. Several recent studies provided strong evidence of CH4 production in oxic marine and freshwaters but its source is still a topic of debate. Studies of CH4 dynamics in surface waters of oceans and large lakes have concluded that pelagic CH4 supersaturation cannot be sustained either by lateral inputs from littoral or benthic inputs alone. However, frequently regional and temporal oversaturation of surface waters occurs. This comprises the observation of a CH4 oversaturating state within the surface mixed layer, sometimes also termed the "oceanic methane paradox". In this study we considered marine algae as a possible direct source of CH4. Therefore, the coccolithophore Emiliania huxleyi was grown under controlled laboratory conditions and supplemented with two 13C-labelled carbon substrates, namely bicarbonate and a position-specific 13C-labelled methionine (R-S-13CH3). The CH4 production was 0.7 μg POC g-1 d-1, or 30 ng g-1 POC h-1. After supplementation of the cultures with the 13C labelled substrate, the isotope label was observed in headspace-CH4. Moreover, the absence of methanogenic archaea within the algal culture and the oxic conditions during CH4 formation suggest that marine algae such as Emiliania huxleyi contribute to the observed spatial and temporal restricted CH4 oversaturation in ocean surface waters.

  7. Arsenic content in certain marine brown algae and mangroves from Goa coast

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, Ch.K.; Chinnaraj, S.; Inamdar, S.N.; Untawale, A.G.

    (CF less than 1). In brown algae organic As is accounted for about 75-90% of total, but in S. Cinereum and Sphacelaria furcigera about 50-60% inorganic As is noted. Basal thallus and reproductive organs of S. cinereum have higher concentration of total...

  8. Fungal parasites of the marine green algae, @iCladophora@@ and @iRhizoclonium@@

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.

    fungi could not be cultured on artificial media. The species of @iLabyrinthula@@ required cholesterol (0.001%) for growth on artificial medium. Most of these parasites were host specific and they could not be cross inoculated on other algae or even other...

  9. OBS ervations on the vegetative propagation of the marine alga, Gelidiella acerosa (Forssk) Feldmann and Hamel

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, P.P.S.; Tarwadi, S.J.; Chauhan, V.D.

    of this the present work on the vegetative propagation of the alga was planned. The cultures of the vegetative cut pieces of a frond of the species were grown in different culture media. The culture media were of sea water enriched with inorganic nutrient...

  10. Levels, spatial variation and compartmentalization of trace elements in brown algae Cystoseira from marine protected areas of Crimea (Black Sea)

    International Nuclear Information System (INIS)

    Kravtsova, Alexandra V.; Milchakova, Nataliya A.; Frontasyeva, Marina V.

    2015-01-01

    Highlights: • 19 trace elements were determined in Cystoseira spp. from marine protected areas. • Levels of 10 elements were lower than reported data for Black Sea Cystoseira spp. • Concentrations of most trace elements were higher in “branches” than in “stems”. • Spatial variations of V, Co, Ni and Zn can be related to anthropogenic activities. • Al, Sc, Fe, Rb, Cs, Th, U varied depending on geological composition of the coast. - Abstract: Levels of Al, Sc, V, Co, Ni, As, Br, Rb, Sr, Ag, Sb, I, Cs, Ba, Th and U that were rarely or never studied, as well as the concentrations of classically investigated Mn, Fe and Zn in brown algae Cystoseira barbata C. Ag. and Cystoseira crinita (Desf.) Bory from the coastal waters of marine protected areas (Crimea, Black Sea), were determined using neutron activation analysis. Spatial variation and compartmentalization were studied for all 19 trace elements (TE). Concentrations of most TE were higher in “branches” than in “stems”. Spatial variations of V, Co, Ni and Zn can be related to anthropogenic activities while Al, Sc, Fe, Rb, Cs, Th and U varied depending on chemical peculiarities of the coastal zone rocks. TE concentrations in C. crinita from marine protected areas near Tarkhankut peninsula and Cape Fiolent, identified as the most clean water areas, are submitted as the background concentrations

  11. Sterol patterns of cultured zooxanthellae isolated from marine invertebrates: Synthesis of gorgosterol and 23-desmethylgorgosterol by aposymbiotic algae.

    Science.gov (United States)

    Withers, N W; Kokke, W C; Fenical, W; Djerassi, C

    1982-06-01

    QUANTITATIVE STEROL COMPOSITIONS OF CULTURED ZOOXANTHELLAE ISOLATED FROM VARIOUS PACIFIC AND ATLANTIC INVERTEBRATE HOSTS: Zoanthus sociatus (a zoanthid), Oculina diffusa (a scleractian coral), Tridacna gigas (a giant clam), Melibe pilosa (a nudibranch), and Aiptasia pulchella (a sea anemone) are reported. The results clearly demonstrate large differences in sterol patterns of zooxanthellae and that there is no obvious relationship between the taxonomic affiliation of the host and the sterol pattern of its isolated symbiont. The sterols of the zooxanthellae of O. diffusa (Cnidaria) and T. gigas (Mollusca) are qualitatively equivalent. Based on the structures of the two major free sterols synthesized by each alga, the zooxanthellae from different hosts were separated into three distinct groups. It was also found that an aposymbiotic alga can synthesize the unique marine sterols gorgosterol and 23-desmethylgorgosterol. Most of the sterols were identified by using mass spectroscopy and 360-MHz proton magnetic resonance. Spectroscopic data are reported for four novel sterols-(23,24R)-dimethyl-5alpha-cholest-(22E)-en-3beta-o l, 23-methyl-5alpha-cholest-22E-en-3beta-ol, cholesta-5,14-dien-3beta-ol, and 4alpha-methyl-5alpha-cholesta-8(14)-24-dien-3beta-ol.

  12. Contributions to the study of the marine algae inhabiting Umluj Seashore, Red Sea

    Directory of Open Access Journals (Sweden)

    Ibraheem Borie Mohammad Ibraheem

    2014-12-01

    Full Text Available The marine algal flora of the Umluj city received no attention about the marine macroalgae. In this paper a total of 19 species are reported for the first time as occurring in the Umluj coast of Saudi Arabia. These species related to Chlorophyta (1, Phaeophyceae (6 and Rhodophyceae (12.

  13. Data set for extraction and transesterification of bio-oil from Stoechospermum marginatum, a brown marine algae

    Directory of Open Access Journals (Sweden)

    Hariram Venkatesan

    2017-10-01

    Full Text Available The article presents the experimental data on the extraction and transesterification of bio-oil derived from Stoechospermum marginatum, a brown macro marine algae. The samples were collected from Mandapam region, Gulf of Mannar, Tamil Nadu, India. The bio-oil was extracted using Soxhlet technique with a lipid extraction efficiency of 24.4%. Single stage transesterification was adopted due to lower free fatty acid content. The yield of biodiesel was optimized by varying the process parameters. The obtained data showed the optimum process parameters as reaction time 90 min, reaction temperature 65 °C, catalyst concentration 0.50 g and 8:1 M ratio. Furthermore, the data pertaining to the physio-chemical properties of the derived algal biodiesel were also presented.

  14. Data set for extraction and transesterification of bio-oil from Stoechospermum marginatum, a brown marine algae.

    Science.gov (United States)

    Venkatesan, Hariram; Godwin, John J; Sivamani, Seralathan

    2017-10-01

    The article presents the experimental data on the extraction and transesterification of bio-oil derived from Stoechospermum marginatum, a brown macro marine algae. The samples were collected from Mandapam region, Gulf of Mannar, Tamil Nadu, India. The bio-oil was extracted using Soxhlet technique with a lipid extraction efficiency of 24.4%. Single stage transesterification was adopted due to lower free fatty acid content. The yield of biodiesel was optimized by varying the process parameters. The obtained data showed the optimum process parameters as reaction time 90 min, reaction temperature 65 °C, catalyst concentration 0.50 g and 8:1 M ratio. Furthermore, the data pertaining to the physio-chemical properties of the derived algal biodiesel were also presented.

  15. Green energy from marine algae: biogas production and composition from the anaerobic digestion of Irish seaweed species.

    Science.gov (United States)

    Vanegas, C H; Bartlett, J

    2013-01-01

    Marine algae have emerged as an alternative feedstock for the production of a number of renewable fuels, including biogas. In addition to energy potential, other characteristics make them attractive as an energy source, including their ability to absorb carbon dioxide (CO2), higher productivity rates than land-based crops and the lack of water use or land competition. For Ireland, biofuels from marine algae can play an important role by reducing imports of fossil fuels as well as providing the necessary energy in rural communities. In this study, five potential seaweed species common in Irish waters, Saccorhiza polyschides, Ulva sp., Laminaria digitata, Fucus serratus and Saccharina latissima, were co-digested individually with bovine slurry. Batch reactors of 120ml and 1000ml were set up and incubated at 35 degrees C to investigate their suitability for production of biogas. Digesters fed with S. latissima produced the maximum methane yield (335 ml g volatile solids(-1) (g(VS)(-1) followed by S. polyschides with 255 ml g(VS)(-1). L. digitata produced 246ml g(VS)(-1) and the lowest yields were from the green seaweed Ulva sp. 191ml g(VS)(-1). The methane and CO2 percentages ranged between 50-72% and 10-45%, respectively. The results demonstrated that the seaweed species investigated are good feedstocks candidates for the production of biogas and methane as a source of energy. Their use on a large-scale process will require further investigation to increase yields and reduce production costs.

  16. Trace metal concentration in some marine algae of the Maharashtra coast (India)

    Digital Repository Service at National Institute of Oceanography (India)

    Agadi, V.V.; Bhosle, N.B.; Untawale, A.G.

    74 marine algal species representing Chlorophyta, Phaeophyta and Rhodophyta from ten different stations along the Maharashtra Coast were analysed for the concentration of Mn, Fe, Co, Ni, Cu, Zn and Pb Concentration varies with species and also from...

  17. Growth-inhibitory effects of a mineralized extract from the red marine algae, Lithothamnion calcareum, on Ca(2+)-sensitive and Ca(2+)-resistant human colon carcinoma cells.

    Science.gov (United States)

    Aslam, Muhammad Nadeem; Bhagavathula, Narasimharao; Paruchuri, Tejaswi; Hu, Xin; Chakrabarty, Subhas; Varani, James

    2009-10-08

    Proliferation and differentiation were assessed in a series of human colon carcinoma cell lines in response to a mineral-rich extract derived from the red marine algae, Lithothamnion calcareum. The extract contains 12% Ca2+, 1% Mg2+, and detectable amounts of 72 trace elements, but essentially no organic material. The red algae extract was as effective as inorganic Ca2+ alone in suppressing growth and inducing differentiation of colon carcinoma cells that are responsive to a physiological level of extracellular Ca2+ (1.4mM). However, with cells that are resistant to Ca2+ alone, the extract was still able to reduce proliferation and stimulate differentiation.

  18. Growth-inhibitory effects of a mineralized extract from the red marine algae, Lithothamnion calcareum, on Ca2+-sensitive and Ca2+-resistant human colon carcinoma cells

    Science.gov (United States)

    Nadeem Aslam, Muhammad; Bhagavathula, Narasimharao; Paruchuri, Tejaswi; Hu, Xin; Chakrabarty, Subhas; Varani, James

    2009-01-01

    Proliferation and differentiation were assessed in a series of human colon carcinoma cell lines in response to a mineral-rich extract derived from the red marine algae, Lithothamnion calcareum. The extract contains 12% Ca2+, 1% Mg2+, and detectable amounts of 72 trace elements, but essentially no organic material. The red algae extract was as effective as inorganic Ca2+ alone in suppressing growth and inducing differentiation of colon carcinoma cells that are responsive to a physiological level of extracellular Ca2+ (1.4 mM). However, with cells that are resistant to Ca2+ alone, the extract was still able to reduce proliferation and stimulate differentiation. PMID:19394137

  19. Application of Plackett–Burman design for the high production of some valuable metabolites in marine alga Nannochloropsis oculata

    Directory of Open Access Journals (Sweden)

    Mostafa M. El-Sheekh

    2016-03-01

    Full Text Available Microalgae have efficient nutritional influence to obtain high survival growth and quality of fish larvae and to promote the growth of brine shrimp. In this work the Plackett–Burman statistical design was applied to specify which nutrient factor(s optimize the nutritional contents [protein, carbohydrate, β-carotene, ascorbic acid and free radical scavenging activity (DPPH] in the marine alga Nannochloropsis oculata used in aquaculture to maximize marine hatchery production. N. oculata was cultured on F/2 medium (as control to reach its maximum growth. The obtained results showed that the maximum growth, chlorophyll-a,b and carotenoid contents were attained after 10 days. The contents of all studied parameters in N. oculata grown on the optimized medium after10 days increased significantly (P ⩽ 0.1 than those on control with low concentration of PO4 (2.5 g l−1 and with high concentration of NO3 (112.5 g l−1 except for cell numbers and DPPH. Significant increases in the protein, carbohydrate, ascorbic acid, β-carotene and DPPH in Artemia franciscana enriched with N. oculata cultured on the newly optimized medium were observed.

  20. Quorum Sensing Inhibition by Asparagopsis taxiformis, a Marine Macro Alga: Separation of the Compound that Interrupts Bacterial Communication

    Directory of Open Access Journals (Sweden)

    Anton Hartmann

    2013-01-01

    Full Text Available The majority of the marine algal species, though completing their life cycle in seawater, are rarely susceptible to fouling, making them an important source of quorum sensing (QS inhibitory substances. The separation and characterization of QS inhibitors are crucial for any potential application. Thirty marine macroalgae were tested for QS inhibition activity by using Chromobacterium violaceum CV026 as the reporter strain, and among them, Asparagopsis taxiformis showed antibacterial, as well as antiquorum, sensing activities. Cinnamaldehyde (75 mM and methanol were used as positive and negative controls, respectively. The antiquorum sensing activity of A. taxiformis was further confirmed using the sensor strain, Serratia liquefaciens MG44, having green fluorescent protein (gfp. Methanolic extract of the alga was fractionated by solid phase extraction (SPE, and each fraction was tested for QS inhibition. Two types of activities were observed—zone of clearance (antibacterial activity and zone of inhibition with or without finger-like projections (QS inhibition. Out of five SPE cartridges, Bond Elut PH showed clear separation of these two fractions. The Ion Cyclotron Resonance Fourier Transformation Mass Spectrometer (ICR-FT/MS analysis of the fractions further supported the bioassay results. The presence of strong QS inhibitory compound in A. taxiformis indicates its potential use in antifouling preparations.

  1. Identifying the interacting roles of stressors in driving the global loss of canopy-forming to mat-forming algae in marine ecosystems.

    Science.gov (United States)

    Strain, Elisabeth M A; Thomson, Russell J; Micheli, Fiorenza; Mancuso, Francesco P; Airoldi, Laura

    2014-11-01

    Identifying the type and strength of interactions between local anthropogenic and other stressors can help to set achievable management targets for degraded marine ecosystems and support their resilience by identifying local actions. We undertook a meta-analysis, using data from 118 studies to test the hypothesis that ongoing global declines in the dominant habitat along temperate rocky coastlines, forests of canopy-forming algae and/or their replacement by mat-forming algae are driven by the nonadditive interactions between local anthropogenic stressors that can be addressed through management actions (fishing, heavy metal pollution, nutrient enrichment and high sediment loads) and other stressors (presence of competitors or grazers, removal of canopy algae, limiting or excessive light, low or high salinity, increasing temperature, high wave exposure and high UV or CO2 ), not as easily amenable to management actions. In general, the cumulative effects of local anthropogenic and other stressors had negative effects on the growth and survival of canopy-forming algae. Conversely, the growth or survival of mat-forming algae was either unaffected or significantly enhanced by the same pairs of stressors. Contrary to our predictions, the majority of interactions between stressors were additive. There were however synergistic interactions between nutrient enrichment and heavy metals, the presence of competitors, low light and increasing temperature, leading to amplified negative effects on canopy-forming algae. There were also synergistic interactions between nutrient enrichment and increasing CO2 and temperature leading to amplified positive effects on mat-forming algae. Our review of the current literature shows that management of nutrient levels, rather than fishing, heavy metal pollution or high sediment loads, would provide the greatest opportunity for preventing the shift from canopy to mat-forming algae, particularly in enclosed bays or estuaries because of the

  2. Oxygen and the light-dark cycle of nitrogenase activity in two unicellular cyanobacteria

    NARCIS (Netherlands)

    Compaore, J.; Stal, L.J.

    2010-01-01

    Cyanobacteria capable of fixing dinitrogen exhibit various strategies to protect nitrogenase from inactivation by oxygen. The marine Crocosphaera watsonii WH8501 and the terrestrial Gloeothece sp. PCC6909 are unicellular diazotrophic cyanobacteria that are capable of aerobic nitrogen fixation. These

  3. Report on intercomparison IAEA/AG-B-1 of radionuclide measurements in marine algae sample

    International Nuclear Information System (INIS)

    1985-09-01

    This report includes results of the intercomparison exercise organized to enable analysts involved in measurements to check the analytical performance of their measuring methods on homogeneous seaweed material and also to establish reference values for radionuclides 40 K, 54 Mn, 58 Co, 60 Co, 65 Zn, 134 Cs, 137 Cs, 90 Sr, 99 Tc, 238 Pu, 239+240 Pu, 241 Am, 238 U, 230 Th, 226 Ra, 210 Pb, 210 Po, 232 Th, 228 Ra and 228 Th for the advantage of all those who need well-characterized standard material for calibration purposes. The sample of the brown alga Fucus vesiculosus from the coastal area of the Southwest Baltic near the Swedish nuclear plant at Barseback was made available for intercalibration in 47 laboratories in 26 countries. The results were obtained by gamma spectrometry, alpha spectrometry and beta counting

  4. Screening and isolation of the algicidal compounds from marine green alga Ulva intestinalis

    Science.gov (United States)

    Sun, Xue; Jin, Haoliang; Zhang, Lin; Hu, Wei; Li, Yahe; Xu, Nianjun

    2016-07-01

    Twenty species of seaweed were collected from the coast of Zhejiang, China, extracted with ethanol, and screened for algicidal activity against red tide microalgae Heterosigma akashiwo and Prorocentrum micans. Inhibitory effects of fresh and dried tißsues of green alga Ulva intestinalis were assessed and the main algicidal compounds were isolated, purified, and identified. Five seaweed species, U. intestinalis, U. fasciata, Grateloupia romosissima, Chondria crassicaulis, and Gracilariopsis lemaneiformis, were investigated for their algicidal activities. Fresh tissues of 8.0 and 16.0 mg/mL of U. intestinalis dissolved in media significantly inhibited growth of H. akashiwo and P. micans, respectively. Dried tissue and ethyl acetate (EtOAc) extracts of U. intestinalis at greater than 1.2 and 0.04 mg/mL, respectively, were fatal to H. akashiwo, while its water and EtOAc extracts in excess of 0.96 and 0.32 mg/mL, respectively, were lethal to P. micans. Three algicidal compounds in the EtOAc extracts were identified as 15-ethoxy-(6z,9z,12z)-hexadecatrienoic acid (I), (6E,9E,12E)-(2-acetoxy- β-D-glucose)-octadecatrienoic acid ester (II) and hexadecanoic acid (III). Of these, compound II displayed the most potent algicidal activity with IC50 values of 4.9 and 14.1 µg/mL for H. akashiwo and P. micans, respectively. Compound I showed moderate algicidal activity with IC50 values of 13.4 and 24.7 µg/mL for H. akashiwo and P. micans, respectively. These findings suggested that certain macroalgae or products therefrom could be used as effective biological control agents against red tide algae.

  5. Screening of marine algae (Padina sp. from the Lengeh Port, Persian Gulf for antibacterial and antifungal activities

    Directory of Open Access Journals (Sweden)

    Azadeh Taherpour

    2016-09-01

    Full Text Available Objective: To evaluate the antibacterial efficacy of different solvent extracts of Padina sp. against selected human pathogenic bacteria and fungi species such as Escherichia coli, Shigella sp., Staphylococcus aureus (S. aureus, Pseudomonas aeruginosa, Aspergillus flavus and Candida albicans. Methods: Various solvents including methanol, ethyl acetate, chloroform and hexane were used to acquire crude extracts from marine algae Padina sp. After crude preparation, antibacterial and antifungal activities were screened against clinically important human pathogenic bacteria using disc and well diffusion methods. For all the bacterial species used in this research, minimum inhibitory concentration was undertaken considering various solvent extracts of Padina sp. To ensure the accuracy of experiments, a positive control was also included. Results: Confirmed that hexane is the best solvent to extract antimicrobial agents from Padina sp. Among selected bacteria, S. aureus was the most sensitive test microorganism. While, all other microorganisms showed resistance against methanol, ethyl acetate, chloroform extracts. In fact, by increasing concentration of hexane extract, inhibition of S. aureus growth or antimicrobial activity was increased. Growth inhibition zone in well method showed better results compared to disc diffusion method. The minimum inhibitory concentration and minimum bactericidal concentration of hexane extract were 15 and 30 mg/mL against S. aureus, respectively. All Padina sp. extracts did not reveal any antifungal activities against fungi species in this study. Conclusions: Brown algae extracts showed sufficient antibacterial properties against S. aureus. Therefore, Padina sp. in this research can be a good candidate to design and manufacture novel antibacterial agents used in pharmaceutical industries.

  6. Biosorption of cesium by native and chemically modified biomass of marine algae: introduce the new biosorbents for biotechnology applications

    International Nuclear Information System (INIS)

    Jalali-Rad, R.; Ghafourian, H.; Asef, Y.; Dalir, S.T.; Sahafipour, M.H.; Gharanjik, B.M.

    2004-01-01

    Biosorption batch experiments were conducted to determine the cesium binding ability of native biomass and chemically modified biosorbents derived from marine algae, namely ferrocyanide algal sorbents type 1 and type 2 (FASs1 and FASs2). The applicability of the Langmuir and Freundlich isotherms for representation of the experimental data was investigated. The cesium sorption performances of the various types of sorbents were compared using the maximum capacities (q max values) obtained from fitting the Langmuir isotherm to the values calculated from the sorption experiments, which FASs type 1 and type 2 showed better sorption performances for cesium. FASs1 and FASs2 derived from formaldehyde and glutaraldehyde crosslinked Padina australis exhibited lower sorption capacities than those prepared from the non-crosslinked one. Most of the cesium ions were bound to FASs1, derived from Sargassum glaucescens and P. australis, in <2 min and equilibrium reached within the first 30 min of contact. Biosorption of cesium by FASs1 derived from P. australis and Cystoseria indica was constantly occurred at a wide range of pH, between 1 and 10, and the highest removal took place at pH 4. The presence of sodium and potassium at 0.5 and 1 mM did not inhibit cesium biosorption by algae biomass. The maximum cesium uptake was acquired using the large particles of FAS2 originated from S. glaucescens (2-4 mm). Desorption of cesium from the metal-laden FASs1 (from P. australis, S. glaucescens and Dictyota indica) was completely achieved applying 0.5 and 1 M NaOH and KOH, although the cesium sorption capacity of the biosorbents (from C. indica and S. glaucescens) decreased by 46-51% after 9 sorption-desorption cycles

  7. Biosorption of cesium by native and chemically modified biomass of marine algae: introduce the new biosorbents for biotechnology applications

    Energy Technology Data Exchange (ETDEWEB)

    Jalali-Rad, R. [Department of Biotechnology, Nuclear Research Center, Atomic Energy Organization of Iran, Tehran (Iran, Islamic Republic of)]. E-mail: rjalali@aeoi.org.ir; Ghafourian, H. [Department of Biotechnology, Nuclear Research Center, Atomic Energy Organization of Iran, Tehran (Iran, Islamic Republic of); Asef, Y. [Department of Biotechnology, Nuclear Research Center, Atomic Energy Organization of Iran, Tehran (Iran, Islamic Republic of); Dalir, S.T. [Department of Biotechnology, Nuclear Research Center, Atomic Energy Organization of Iran, Tehran (Iran, Islamic Republic of); Sahafipour, M.H. [Department of Biotechnology, Nuclear Research Center, Atomic Energy Organization of Iran, Tehran (Iran, Islamic Republic of); Gharanjik, B.M. [Offshore Fisheries Research Center, Chabahar (Iran, Islamic Republic of)

    2004-12-10

    Biosorption batch experiments were conducted to determine the cesium binding ability of native biomass and chemically modified biosorbents derived from marine algae, namely ferrocyanide algal sorbents type 1 and type 2 (FASs1 and FASs2). The applicability of the Langmuir and Freundlich isotherms for representation of the experimental data was investigated. The cesium sorption performances of the various types of sorbents were compared using the maximum capacities (q{sub max} values) obtained from fitting the Langmuir isotherm to the values calculated from the sorption experiments, which FASs type 1 and type 2 showed better sorption performances for cesium. FASs1 and FASs2 derived from formaldehyde and glutaraldehyde crosslinked Padina australis exhibited lower sorption capacities than those prepared from the non-crosslinked one. Most of the cesium ions were bound to FASs1, derived from Sargassum glaucescens and P. australis, in <2 min and equilibrium reached within the first 30 min of contact. Biosorption of cesium by FASs1 derived from P. australis and Cystoseria indica was constantly occurred at a wide range of pH, between 1 and 10, and the highest removal took place at pH 4. The presence of sodium and potassium at 0.5 and 1 mM did not inhibit cesium biosorption by algae biomass. The maximum cesium uptake was acquired using the large particles of FAS2 originated from S. glaucescens (2-4 mm). Desorption of cesium from the metal-laden FASs1 (from P. australis, S. glaucescens and Dictyota indica) was completely achieved applying 0.5 and 1 M NaOH and KOH, although the cesium sorption capacity of the biosorbents (from C. indica and S. glaucescens) decreased by 46-51% after 9 sorption-desorption cycles.

  8. Cars will be fed on algae

    International Nuclear Information System (INIS)

    Peltier, G.

    2012-01-01

    The development of the first and second generations of bio-fuels has led to a rise in food prices and the carbon balance sheet is less good than expected. Great hopes have been put on unicellular algae for they can synthesize oils, sugar and even hydrogen and the competition with food production is far less harsh than with actual bio-fuels. Moreover, when you grow micro-algae, the loss of water through evaporation is less important than in the case of intensive farm cultures. In 2009 10.000 tonnes of micro-algae were produced worldwide, they were mainly used for the production of fish food and of complements for humane food (fat acids and antioxidants). Different research programs concern unicellular algae: they aim at modifying micro-algae genetically in order to give them a higher productivity or to make them produce an oil more adapted for motor fuel or more easily recoverable. (A.C.)

  9. Photographic images of benthic coral, algae and invertebrate species in marine habitats and subhabitats around offshore islets in the main Hawaiian Islands, April 2 - September 20, 2007 (NODC Accession 0043046)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The marine algae, invertebrate and fish communities were surveyed at ten islet or offshore island sites in the Main Hawaiian Islands in the vicinity of Lanai, (Puu...

  10. ANTIBACTERIAL ACTIVITY OF BENTHIC MARINE ALGAE EXTRACTS FROM THE MEDITERRANEAN COAST OF MOROCCO

    Directory of Open Access Journals (Sweden)

    Hanaâ Zbakh

    2012-08-01

    Full Text Available Marine organisms are potentially prolific sources of highly bioactive secondary metabolites that might represent useful leads in the development of new pharmaceutical agents. The Moroccan marine biodiversity including macroalgae remains partially unexplored in term of their potential bioactivities. Antibacterial activity of methanolic extracts from 20 species of macroalgae (9 Chlorophyta, 3 Phaeophyta and 8 Rhodophyta collected from Moroccan Mediterranean coasts was evaluated against Escherichia coli, Staphylococcus aureus and Enterococcus faecalis. The extracts of the studied Rhodophyceae inhibited considerably the growth of the three tested bacterial strains and gave inhibition zones between 20 and 24 mm. The results indicate that these species of seaweed present a significant capacity of antibacterial activities, which makes them interesting for screening for natural products.

  11. Analysis of the action of X-rays on the multiplication of a unicellular chlorophyllous organism: the chlorophycee scenesdesmus crassus chod (1961)

    International Nuclear Information System (INIS)

    Gilet, R.; Ozenda, P.

    1961-01-01

    The technique of growing cultures on agar-agar has made it possible to obtain on single cultures results which had previously been acquired on populations of unicellular algae in a liquid medium. (authors) [fr

  12. New α-Glucosidase Inhibitory Triterpenic Acid from Marine Macro Green Alga Codium dwarkense Boergs

    Directory of Open Access Journals (Sweden)

    Liaqat Ali

    2015-07-01

    Full Text Available The marine ecosystem has been a key resource for secondary metabolites with promising biological roles. In the current study, bioassay-guided phytochemical investigations were carried out to assess the presence of enzyme inhibitory chemical constituents from the methanolic extract of marine green alga—Codium dwarkense. The bioactive fractions were further subjected to chromatographic separations, which resulted in the isolation of a new triterpenic acid; dwarkenoic acid (1 and the known sterols; androst-5-en-3β-ol (2, stigmasta-5,25-dien-3β,7α-diol (3, ergosta-5,25-dien-3β-ol (4, 7-hydroxystigmasta-4,25-dien-3-one-7-O-β-d-fucopyranoside (5, 7-hydroxystigmasta-4,25-dien-3-one (6, and stigmasta-5,25-dien-3β-ol (7. The structure elucidation of the new compound was carried out by combined mass spectrometry and 1D (1H and 13C and 2D (HSQC, HMBC, COSY, and NOESY NMR spectroscopic data. The sub-fractions and pure constituents were assayed for enzymatic inhibition of alpha-glucosidase. Compound 1 showed significant inhibition at all concentrations. Compounds 2, 3, 5, and 7 exhibited a dose-dependent response, whereas compounds 4–6 showed moderate inhibition. Utilizing such marine-derived biological resources could lead to drug discoveries related to anti-diabetics.

  13. Biochars derived from wasted marine macro-algae (Saccharina japonica and Sargassum fusiforme) and their potential for heavy metal removal in aqueous solution.

    Science.gov (United States)

    Poo, Kyung-Min; Son, Eun-Bi; Chang, Jae-Soo; Ren, Xianghao; Choi, Yun-Jung; Chae, Kyu-Jung

    2018-01-15

    For the purpose of reusing wasted marine macro-algae generated during cultivation, harvesting, processing and selling processes, biochars derived from Saccharina japonica (known as kelp) and Sargassum fusiforme (known as hijikia) were characterized and their removal capacities for Cu, Cd, and Zn in aqueous solution were assessed. Feedstocks, S. japonica, S. fusiforme, and also pinewood sawdust as a control, were pyrolyzed at 250, 400, 500, 600 and 700 °C. In evaluating heavy metal removal capacities, SJB (S. japonica biochar) showed the best performance, with removal efficiencies of more than 98% for the three heavy metals when pyrolyzed at over 400 °C. SFB (S. fusiforme biochar) also showed good potential as an adsorbent, with removal efficiencies for the three heavy metals of more than 86% when pyrolyzed at over 500 °C. On the contrary, the maximum removal efficiencies of PSB (pinewood sawdust biochar) were 81%, 46%, and 47% for Cu, Cd, and Zn, respectively, even at 700 °C, the highest pyrolysis temperature. This demonstrates that marine macro-algae were advantageous in terms of production energy for removing heavy metals even at relatively low pyrolysis temperatures, compared with PSB. The excellent heavy metal adsorption capacities of marine macro-algae biochars were considered due to their higher pH and more oxygen-containing functional groups, although the specific surface areas of SJB and SFB were significantly lower than that of PSB. This research confirmed that the use of marine macro-algae as a heavy metal adsorbent was suitable not only in the removal of heavy metals, but also in terms of resource recycling and energy efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Detection of Genetic Variations in Marine Algae Ulva lactuca (Chlorophyta Induced by Heavy Metal Pollutants

    Directory of Open Access Journals (Sweden)

    Basel Saleh

    2015-09-01

    Full Text Available Ulva lactuca (Chlorophyta green macroalgae has been successfully used as bioindicator for heavy metals pollution in ecosystems. Random amplified microsatellite polymorphism (RAMP marker was employed to investigate genetic DNA pattern variability in green U. lactuca 5 days after exposure to Cu, Pb, Cd and Zn heavy metals stress. Genomic template stability (GTS% value was employed as a qualitative DNA changes measurement based on RAMP technique. In this respect, estimated GTS% value was recorded to be 65.215, 64.630, 59.835 and 59.250% for Pb, Cu, Cd and Zn treatment, respectively. Moreover, genetic similarity (GS induced by the above heavy metals was also evaluated to measure genetic distance between algae treated plants and their respective control. In this respect, estimated GS values generated by RAMP marker ranged between 0.576 (between control and Zn treatment - 0.969 (for both case; between Pb and Cu and between Cd and Zn treatment with an average of 0.842. Based upon data presented herein based on variant bands number (VB, GTS% and GS values; the present study could be suggested that Pb and Cu followed similar tendency at genomic DNA changes. Similar finding was also observed with Cd and Zn ions. Thereby, RAMP marker successfully highlighted DNA change patterns induced by heavy metals stress.

  15. Evaluation of the Marine Algae Gracilaria and its Activated Carbon for the Adsorption of Ni(II from Wastewater

    Directory of Open Access Journals (Sweden)

    A. Esmaeili

    2011-01-01

    Full Text Available The batch removal of Ni2+ from aqueous solution and wastewater using marine dried (MD red algae Gracilaria and its activated carbon (AC was studied. For these experiments, adsorption of Ni2+ was used to form two biomasses of AC and MD. Both methods used different pH values, biomass and initial concentration of Ni2+. Subsequently adsorption models and kinetic studies were carried out. The maximum efficiencies of Ni2+ removal were 83.55% and 99.04% for MD and AC respectively developed from it. The experimental adsorption data were fitted to the Langmuir adsorption model. The nickel(II uptake by the biosorbents was best described by pseudo-second order rate model. The kinetic studies showed that the heavy metal uptake was observed more rapidly by the AC with compared to MD. AC method developed from MD biomass exhibited higher biosorption capacity. Adsorption capacity is related to the pH of solution, pH 5.0 is optimal for nickel. The maximum efficiencies of Ni2+ removal were for AC method. The capacity is related to the pH of solution, pH 5.0 is optimal for nickel. The equilibrium adsorption data are correlated by Langmuir isotherm equation. The adsorption kinetic data can be described by the second order kinetic models

  16. Aryl sulfate formation in sea urchins (Strongylocentrotus droebachiensis) ingesting marine algae (Fucus distichus) containing 2,6-dimethylnapthalene

    International Nuclear Information System (INIS)

    Malins, D.C.; Roubal, W.T.

    1982-01-01

    The metabolism of tritiated 2,6-dimethylnapthalene (2,6-DMN) was studied in sea urchins (Strongylocentrotus droebachiensis) feeding on marine algae (Fucus distichus). The Fucus accumulated this hydrocarbon from sea water without converting it to metabolites. Most of the tritium accumulated by the sea urchins (e.g., 70.8% after 3 days) from feeding on 2,6-DMN-exposed Fucus was present in the exoskeleton (shell and spines). Moreover, after 3 days feeding, about 90% of the tritium in the total metabolite fraction of the gonads and digestive tract of the sea urchin was present as sulfate derivatives. These metabolites were identified through hydrolysis with aryl sulfatase, followed by thin-layer chromatography of the products. After 14 days of feeding, the tritium associated with the sulfate derivatives decreased in the gonads and digestive tract to 61 and 65%, respectively, of the total metabolite fraction. Hydroxy compounds from sulfatase hydrolysis were chromatographed using multiple elutions with toluene. The hydroxy isomers were separated and the R/sub f/ values were compared to those of pure reference compounds. The data indicated that 80% of the 2,6-dimethylnaphtyl sulfate contained the sulfate on the 1 and/or 3 position of the aromatic ring. Moreover, 6-methyl-2-naphthalenemethanol was not detected, which implies that sea urchins, unlike fish, metabolize alkyl-substituted aromatic hydrocarbons primarily through aromatic ring oxidations

  17. Preparation and certification of hijiki reference material, NMIJ CRM 7405-a, from the edible marine algae hijiki (Hizikia fusiforme).

    Science.gov (United States)

    Narukawa, Tomohiro; Inagaki, Kazumi; Zhu, Yanbei; Kuroiwa, Takayoshi; Narushima, Izumi; Chiba, Koichi; Hioki, Akiharu

    2012-02-01

    A certified reference material, NMIJ CRM 7405-a, for the determination of trace elements and As(V) in algae was developed from the edible marine hijiki (Hizikia fusiforme) and certified by the National Metrology Institute of Japan (NMIJ), the National Institute of Advanced Industrial Science and Technology (AIST). Hijiki was collected from the Pacific coast in the Kanto area of Japan, and was washed, dried, powdered, and homogenized. The hijiki powder was placed in 400 bottles (ca. 20 g each). The concentrations of 18 trace elements and As(V) were determined by two to four independent analytical techniques, including (ID)ICP-(HR)MS, ICP-OES, GFAAS, and HPLC-ICP-MS using calibration solutions prepared from the elemental standard solution of Japan calibration service system (JCSS) and the NMIJ CRM As(V) solution, and whose concentrations are certified and SI traceable. The uncertainties of all the measurements and preparation procedures were evaluated. The values of 18 trace elements and As(V) in the CRM were certified with uncertainty (k = 2).

  18. [Kinetics of uptake of phosphates and nitrates by marine multicellular algae Gelidium latifolium (Grev.) Born. et Thur].

    Science.gov (United States)

    Silkin, V A; Chubchikova, I N

    2007-01-01

    We studied nonstationary kinetics of the uptake of phosphates and nitrates by the red marine algae Gelidium latifolium (Grev.) Born et Thur. and calculated constants of the Michaelis-Menten equation for these elements. In the area of 0-3 microM, the kinetics of phosphate consumption had the following coefficients: maximum rate of uptake 0.8 micromol/(g x h), constant of half-saturation 1.745 microM. For nitrate nitrogen at 0-30 microM, an adaptive strategy of uptake kinetics was noted with change of the equation parameters with time: after 1 h, the maximum rate of uptake was 5.1 micromol/(g x h) and constant of half-saturation 19 gM, while within 2 h, the maximum rate of uptake significantly increased. This could be related to the synthesis of nitrate reductase. Coupled with the uptake of nitrates, nonstationary kinetics of the release of nitrates in the surrounding medium had a one-peak pattern: the maximum concentration of nitrites in the medium and the time of its achievement increased with the initial concentration of nitrates. The maximum concentration of nitrites was 6 to 14% of the initial concentration in the medium.

  19. MF/UF rejection and fouling potential of algal organic matter from bloom-forming marine and freshwater algae

    KAUST Repository

    Villacorte, Loreen O.

    2015-07-01

    Pretreatment with microfiltration (MF) or ultrafiltration (UF) membranes has been proposed for seawater reverse osmosis (SWRO) plants to address operational issues associated with algal blooms. Here, we investigated the MF/UF rejection and fouling potential of algal organic matter (AOM) released by common species of bloom-forming marine (Alexandrium tamarense and Chaetoceros affinis) and freshwater (Microcystis sp.) algae. Batch culture monitoring of the three algal species illustrated varying growth pattern, cell concentration, AOM released and membrane fouling potential. The high membrane fouling potential of the cultures can be directly associated (R2>0.85) with AOM such as transparent exopolymer particle (TEP) while no apparent relationship with algal cell concentration was observed. The AOM comprised mainly biopolymers (e.g., polysaccharides and proteins) and low molecular weight organic compounds (e.g., humic-like substances). The former were largely rejected by MF/UF membranes while the latter were poorly rejected. MF (0.4μm and 0.1μm pore size) rejected 14%-56% of biopolymers while conventional UF (100kDa) and tight UF (10kDa) rejected up to 83% and 97%, respectively. The retention of AOM resulted in a rapid increase in trans-membrane pressure (δP) over time, characterised by pore blocking followed by cake filtration with enhanced compression as illustrated by an exponential progression of δP. © 2015 Elsevier B.V.

  20. Cultivation of macroscopic marine algae and freshwater aquatic weeds. Progress report, May 1-December 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Ryther, J. H.

    1979-01-01

    Studies were continued during 1977 to 1978 on the growth and yields in culture of the red seaweed Gracilaria tikvahiae. Partial control of epiphytes was achieved by nutrient removal, shading, and/or biological agents. For the first time, a single clone of the alga was grown continuously throughout the year without replacement. Yields in large (2600 1) aluminum tanks averaged 21.4 g dry weight/m/sup 2/.day, equivalent to 31 tons/acre.year (15.5 ash-free dry wt tons/acre.year). Growth of Gracilaria and other seaweeds in Vexar-mesh baskets in natural habitats and in the oceanic waters of a power plant cooling water intake canal were unsuccessful. Productivity of the freshwater macrophytes Lemna minor (common duckweed), Eichhornia crassipes (water hyacinth), and Hydrilla verticillata have now been measured throughout the year with mean yields of 3.7, 24.2 and 4.2 g dry weight/m/sup 2/.day (5.4, 35.3, and 6.1 dry tons/acre.year) respectively. Yields of duckweed and water hyacinths in the Harbor Branch Foundation culture units have averaged roughly three times those of the same species growing in highly-eutrophic natural environments. The yields of several other species of freshwater plants were investigated. Only the pennywort (Hydrocotyle umbellata) appears to approach the productivity of water hyacinth on the basis of preliminary measurements. Chopped water hyacinths and unprocessed Gracilaria have both been successfully fermented to methane in anaerobic digesters and the liquid digester residues recycled to produce more of the same plants.

  1. Edematogenic activity of a sulfated galactan from the red marine algae Gelidium crinale.

    Science.gov (United States)

    Assreuy, Ana Maria Sampaio; Amorim, Renata Morais Ferreira; Brizeno, Luiz André Cavalcante; de Paulo Pereira, Lívia; de Sousa, Albertina Antonielly Sydney; Aragão, Gislei Frota; Pereira, Maria Gonçalves

    2012-09-01

    The red algae Gelidium crinale (Turner) Gaillon (Gelidiaceae), encountered along the Southeast and Northeast Brazilian sea coast, contains a sulfated galactan presenting a similar saccharide backbone compared to λ carrageenan. Inflammatory effects of other galactans were reported, but not for that obtained from G. crinale (SG-Gc). To investigate the in vivo edematogenic effect of SG-Gc in comparison to λ carrageenan. SG-Gc was isolated by ion exchange chromatography. Paw edema was induced by subcutaneous (s.c.) intraplantar injection of SG-Gc or λ carrageenan and evaluated by hydroplethysmometry. Data were expressed as the increase in paw volume subtracted from the basal volume or area under curve-AUC. To investigate the participation of early and late-phase inflammatory mediators, rats were treated with pyrilamine, compound 48/80, indomethacin, NG-nitro-L-arginine methyl ester (L-NAME), or pentoxifylline before SG-Gc. SG-Gc edematogenic effect was initiated at 0.5 h, peaked at 2 h (1.26 ± 0.05 mL) and lasted until 6 h (0.21 ± 0.03 mL), whereas the carrageenan-induced edema started at 1 h. The first phase (1-3 h) of SG-Gc-induced edema was 176 ± 15 (AUC) versus carrageenan (114.5 ± 14), whereas the second phase (3-5 h) was 95 ± 12 (AUC) versus carrageenan (117.5 ± 11). Treatment with compound 48/80, pyrilamine, indomethacin, L-NAME, and pentoxifylline inhibited the effect of SG-Gc by 32, 40, 69, 72, and 49%, respectively. SG-Gc and λ carrageenan induce different profile of inflammatory response in the paw edema model, that involves histamine, cytokines, prostaglandins, and nitric oxide (NO), but with different degree of participation.

  2. Characterisation of algal organic matter produced by bloom-forming marine and freshwater algae

    KAUST Repository

    Villacorte, Loreen O.

    2015-04-01

    Algal blooms can seriously affect the operation of water treatment processes including low pressure (micro- and ultra-filtration) and high pressure (nanofiltration and reverse osmosis) membranes mainly due to accumulation of algal-derived organic matter (AOM). In this study, the different components of AOM extracted from three common species of bloom-forming algae (Alexandrium tamarense, Chaetoceros affinis and Microcystis sp.) were characterised employing various analytical techniques, such as liquid chromatography - organic carbon detection, fluorescence spectroscopy, fourier transform infrared spectroscopy, alcian blue staining and lectin staining coupled with laser scanning microscopy to indentify its composition and force measurement using atomic force microscopy to measure its stickiness. Batch culture monitoring of the three algal species illustrated varying characteristics in terms of growth pattern, cell concentration and AOM release. The AOM produced by the three algal species comprised mainly biopolymers (e.g., polysaccharides and proteins) but some refractory compounds (e.g., humic-like substances) and other low molecular weight acid and neutral compounds were also found. Biopolymers containing fucose and sulphated functional groups were found in all AOM samples while the presence of other functional groups varied between different species. A large majority (>80%) of the acidic polysaccharide components (in terms of transparent exopolymer particles) were found in the colloidal size range (<0.4μm). The relative stickiness of AOM substantially varied between algal species and that the cohesion between AOM-coated surfaces was much stronger than the adhesion of AOM on AOM-free surfaces. Overall, the composition as well as the physico-chemical characteristics (e.g., stickiness) of AOM will likely dictate the severity of fouling in membrane systems during algal blooms.

  3. Unicellular cyanobacteria with a new mode of life: the lack of photosynthetic oxygen evolution allows nitrogen fixation to proceed.

    Science.gov (United States)

    Bothe, Hermann; Tripp, H James; Zehr, Jonathan P

    2010-10-01

    Some unicellular N(2)-fixing cyanobacteria have recently been found to lack a functional photosystem II of photosynthesis. Such organisms, provisionally termed UCYN-A, of the oceanic picoplanktion are major contributors to the global marine N-input by N(2)-fixation. Since their photosystem II is inactive, they can perform N(2)-fixation during the day. UCYN-A organisms cannot be cultivated as yet. Their genomic analysis indicates that they lack genes coding for enzymes of the Calvin cycle, the tricarboxylic acid cycle and for the biosynthesis of several amino acids. The carbon source in the ocean that allows them to thrive in such high abundance has not been identified. Their genomic analysis implies that they metabolize organic carbon by a new mode of life. These unicellular N(2)-fixing cyanobacteria of the oceanic picoplankton are evolutionarily related to spheroid bodies present in diatoms of the family Epithemiaceae, such as Rhopalodia gibba. More recently, spheroid bodies were ultimately proven to be related to cyanobacteria and to express nitrogenase. They have been reported to be completely inactive in all photosynthetic reactions despite the presence of thylakoids. Sequence data show that R. gibba and its spheroid bodies are an evolutionarily young symbiosis that might serve as a model system to unravel early events in the evolution of chloroplasts. The cell metabolism of UCYN-A and the spheroid bodies may be related to that of the acetate photoassimilating green alga Chlamydobotrys.

  4. Selenite -Se(4)- uptake mechanisms in the unicellular green alga Chlamydomonas reinhardtii: bioaccumulation and effects induced on growth and ultrastructure; Mecanismes de prise en charge du selenite - Se(4)-chez l'algue verte unicellulaire Chlamydomonas reinhardtii. Bioaccumulation et effets induits sur la croissance et l'ultrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Morlon, H

    2005-03-15

    Selenium is an essential element, but becomes very toxic at higher concentrations. It occurs in the environment at concentrations ranging from nM to {mu}M and selenium pollution is a worldwide phenomenon. This works aims at improving the knowledge on the interactions between selenite - Se(IV) - and a freshwater phyto-planktonic organism: the unicellular green algae Chlamydomonas reinhardtii. The aim of the performed experiments were: i) to investigate selenite -Se(IV)- uptake mechanisms in C. reinhardtii, using Se{sup 75} as a tracer in short term exposures (<1 h); ii) to assess selenite toxicity as measured with growth impairment and ultrastructural damage (with EDAX-TEM analysis), using long term exposures (96 h) to stable selenite; iii) to evaluate the bioaccumulation capacity of selenite and its potential links with toxicity. Short-term experiments revealed a negligible adsorption and a time-dependent linear absorption with an estimated absorbed flux of about 0.2 nmol.m{sup -2}.nM{sup -1}.h{sup -1}. The uptake was proportional to ambient levels in a broad range of intermediate concentrations (from nM to {mu}M). However, fluxes were higher at very low concentrations (< nM), and decrease with increasing high concentrations ( > {mu}M), suggesting that a high affinity but rapidly saturated transport mechanism could be used at low concentrations, in parallel with a low affinity mechanism that would only saturate at high concentrations ({approx}mM). The latter could involve transporters used by sulphate and nitrates, as suggested by the inhibition of selenite uptake by those element. Se(IV) speciation changes with pH did not induce significant effect on bioavailability. On the basis of the relationship between Se concentration and maximal cell density achieved, an EC50 of 80 {mu}M ([64; 98]) was derived. No adaptation mechanism were observed as the same the same toxicity was quantified for Se-pre-exposed algae. Observations by TEM suggested chloroplasts as the first

  5. The study of photoresponses of unicellular motile microalgae by Doppler spectrometry

    International Nuclear Information System (INIS)

    Vlasenko, V.V.

    2004-01-01

    Quasielastic light scattering is used to investigate the mechanism of photosensory transduction in the unicellular motile algae. It is shown that cells of these species have the different reactions on the effect of a laser beam. The intensity modulations of the scattering beam from the cell motion and flagellar beating are directly detected

  6. Trophic strategies of unicellular plankton

    DEFF Research Database (Denmark)

    Chakraborty, Subhendu; Nielsen, Lasse Tor; Andersen, Ken Haste

    2017-01-01

    . To this end, we develop and calibrate a trait-based model for unicellular planktonic organisms characterized by four traits: cell size and investments in phototrophy, nutrient uptake, and phagotrophy. We use the model to predict how optimal trophic strategies depend on cell size under various environmental...... unicellulars are colimited by organic carbon and nutrients, and only large photoautotrophs and smaller mixotrophs are nutrient limited; (2) trophic strategy is bottom-up selected by the environment, while optimal size is top-down selected by predation. The focus on cell size and trophic strategies facilitates......Unicellular plankton employ trophic strategies ranging from pure photoautotrophs over mixotrophy to obligate heterotrophs (phagotrophs), with cell sizes from 10-8 to 1 μg C. A full understanding of how trophic strategy and cell size depend on resource environment and predation is lacking...

  7. Virus Resistance Is Not Costly in a Marine Alga Evolving under Multiple Environmental Stressors

    Directory of Open Access Journals (Sweden)

    Sarah E. Heath

    2017-03-01

    Full Text Available Viruses are important evolutionary drivers of host ecology and evolution. The marine picoplankton Ostreococcus tauri has three known resistance types that arise in response to infection with the Phycodnavirus OtV5: susceptible cells (S that lyse following viral entry and replication; resistant cells (R that are refractory to viral entry; and resistant producers (RP that do not all lyse but maintain some viruses within the population. To test for evolutionary costs of maintaining antiviral resistance, we examined whether O. tauri populations composed of each resistance type differed in their evolutionary responses to several environmental drivers (lower light, lower salt, lower phosphate and a changing environment in the absence of viruses for approximately 200 generations. We did not detect a cost of resistance as measured by life-history traits (population growth rate, cell size and cell chlorophyll content and competitive ability. Specifically, all R and RP populations remained resistant to OtV5 lysis for the entire 200-generation experiment, whereas lysis occurred in all S populations, suggesting that resistance is not costly to maintain even when direct selection for resistance was removed, or that there could be a genetic constraint preventing return to a susceptible resistance type. Following evolution, all S population densities dropped when inoculated with OtV5, but not to zero, indicating that lysis was incomplete, and that some cells may have gained a resistance mutation over the evolution experiment. These findings suggest that maintaining resistance in the absence of viruses was not costly.

  8. Removal of toxic chromium from aqueous solution, wastewater and saline water by marine red alga Pterocladia capillacea and its activated carbon

    Directory of Open Access Journals (Sweden)

    Ahmed El Nemr

    2015-01-01

    Full Text Available Pterocladia capillacea, a red marine macroalgae, was tested for its ability to remove toxic hexavalent chromium from aqueous solution. A new activated carbon obtained from P. capillacea via acid dehydration was also investigated as an adsorbent for toxic chromium. The experiments were conducted to study the effect of important parameters such as pH, chromium concentration and adsorbent weight. Batch equilibrium tests at different pH conditions showed that at pH 1.0, a maximum chromium uptake was observed for both inactivated dried red alga P. capillacea and its activated carbon. The maximum sorption capacities for dried red alga and its activated carbon were about 12 and 66 mgg−1, respectively, as calculated by Langmuir model. The ability of inactivated red alga P. capillacea and developed activated carbon to remove chromium from synthetic sea water, natural sea water and wastewater was investigated as well. Different isotherm models were used to analyze the experimental data and the models parameters were evaluated. This study showed that the activated carbon developed from red alga P. capillacea is a promising activated carbon for removal of toxic chromium.

  9. Uptake of heavy metals by the marine algae Padina gymnospora from Sepetiba Bay (RJ, Brazil) through radiotracers

    International Nuclear Information System (INIS)

    Magalhaes, V.F. de.

    1991-01-01

    The accumulation and the loss of 210 Pb, 51 Cr and 65 Zn by the alga Padina gymnospora is studied through radiotracer experiments. The evaluation of the alga as a bio indicator of these heavy metals pollution is presented. The use of this seaweed species to study the transfer of Pb, Cr, and Zn through the food chain is discussed. (M.A.C.)

  10. Rumen bacterial community evaluated by 454 pyrosequencing and terminal restriction fragment length polymorphism analyses in dairy sheep fed marine algae.

    Science.gov (United States)

    Castro-Carrera, T; Toral, P G; Frutos, P; McEwan, N R; Hervás, G; Abecia, L; Pinloche, E; Girdwood, S E; Belenguer, A

    2014-03-01

    Developing novel strategies to increase the content of bioactive unsaturated fatty acids (FA) in ruminant-derived products requires a deeper understanding of rumen biohydrogenation and bacteria involved in this process. Although high-throughput pyrosequencing may allow for a great coverage of bacterial diversity, it has hardly been used to investigate the microbiology of ruminal FA metabolism. In this experiment, 454 pyrosequencing and a molecular fingerprinting technique (terminal restriction fragment length polymorphism; T-RFLP) were used concurrently to assess the effect of diet supplementation with marine algae (MA) on the rumen bacterial community of dairy sheep. Eleven lactating ewes were divided in 2 lots and offered a total mixed ration based on alfalfa hay and concentrate (40:60), supplemented with 0 (control) or 8 (MA) g of MA/kg of dry matter. After 54 d on treatments, animals were slaughtered and samples of rumen content and fluid were collected separately for microbial analysis. Pyrosequencing yielded a greater coverage of bacterial diversity than T-RFLP and allowed the identification of low abundant populations. Conversely, both molecular approaches pointed to similar conclusions and showed that relevant changes due to MA addition were observed within the major ruminal phyla, namely Bacteroidetes, Firmicutes, and Proteobacteria. Decreases in the abundance of unclassified Bacteroidales, Porphyromonadaceae, and Ruminococcaceae and increases in as-yet uncultured species of the family Succinivibrionaceae, might be related to a potential role of these groups in different pathways of rumen FA metabolism. Diet supplementation with MA, however, had no effect on the relative abundance of Butyrivibrio and Pseudobutyrivibrio genera. In addition, results from both 454 pyrosequencing and T-RFLP indicate that the effect of MA was rather consistent in rumen content or fluid samples, despite inherent differences between these fractions in their bacterial composition

  11. Evaluation of zinc oxide nanoparticles toxicity on marine algae chlorella vulgaris through flow cytometric, cytotoxicity and oxidative stress analysis.

    Science.gov (United States)

    Suman, T Y; Radhika Rajasree, S R; Kirubagaran, R

    2015-03-01

    The increasing industrial use of nanomaterials during the last decades poses a potential threat to the environment and in particular to organisms living in the aquatic environment. In the present study, the toxicity of zinc oxide nanoparticles (ZnO NPs) was investigated in Marine algae Chlorella vulgaris (C. vulgaris). High zinc dissociation from ZnONPs, releasing ionic zinc in seawater, is a potential route for zinc assimilation and ZnONPs toxicity. To examine the mechanism of toxicity, C. vulgaris were treated with 50mg/L, 100mg/L, 200mg/L and 300 mg/L ZnO NPs for 24h and 72h. The detailed cytotoxicity assay showed a substantial reduction in the viability dependent on dose and exposure. Further, flow cytometry revealed the significant reduction in C. vulgaris viable cells to higher ZnO NPs. Significant reductions in LDH level were noted for ZnO NPs at 300 mg/L concentration. The activity of antioxidant enzyme superoxide dismutase (SOD) significantly increased in the C. vulgaris exposed to 200mg/L and 300 mg/L ZnO NPs. The content of non-enzymatic antioxidant glutathione (GSH) significantly decreased in the groups with a ZnO NPs concentration of higher than 100mg/L. The level of lipid peroxidation (LPO) was found to increase as the ZnO NPs dose increased. The FT-IR analyses suggested surface chemical interaction between nanoparticles and algal cells. The substantial morphological changes and cell wall damage were confirmed through microscopic analyses (FESEM and CM). Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Potential role of marine algae extract on 3T3-L1 cell proliferation and differentiation: an in vitro approach

    Directory of Open Access Journals (Sweden)

    Soundharrajan Ilavenil

    Full Text Available BACKGROUND: From ancient times, marine algae have emerged as alternative medicine and foods, contains the rich source of natural products like proteins, vitamins, and secondary metabolites, especially Chlorella vulgaris (C. vulgaris contains numerous anti-inflammatory, antioxidants and wound healing substances. Type 2 diabetes mellitus is closely associated with adipogenesis and their factors. Hence, we aimed to investigate the chemical constituents and adipo-genic modulatory properties of C. vulgaris in 3T3-L1 pre-adipocytes. RESULTS: We analysed chemical constituents in ethanolic extract of C. vulgaris (EECV by LC-MS. Results revealed that the EECV contains few triterpenoids and saponin compounds. Further, the effect of EECV on lipid accumulation along with genes and proteins expressions which are associated with adipogenesis and lipogenesis were evaluated using oil red O staining, qPCR and western blot techniques. The data indicated that that EECV treatment increased differentiation and lipid accumulation in 3T3-L1 cells, which indicates positive regulation of adipogenic and lipogenic activity. These increases were associated with up-regulation of PPAR-γ2, C/EBP-α, adiponectin, FAS, and leptin mRNA and protein expressions. Also, EECV treatments increased the concentration of glycerol releases as compared with control cells. Troglitazone is a PPAR-γ agonist that stimulates the PPAR-y2, adiponectin, and GLUT-4 expressions. Similarly, EECV treatments significantly upregulated PPAR-γ2, adiponectin, GLUT-4 expressions and glucose utilization. Further, EECV treatment decreased AMPK-α expression as compared with control and metformin treated cells. CONCLUSION: The present research findings confirmed that the EECV effectively modulates the lipid accumulation and differentiation in 3T3-L1 cells through AMPK-α mediated signalling pathway.

  13. Optimization of direct solvent lipid extraction kinetics on marine trebouxiophycean alga by central composite design – Bioenergy perspective

    International Nuclear Information System (INIS)

    Mathimani, Thangavel; Uma, Lakshmanan; Prabaharan, Dharmar

    2017-01-01

    Highlights: • Direct solvent extraction is an appropriate pretreatment for marine C. vulgaris. • 2:1 chloroform/methanol, 1:5 DCW/solvent, 65 °C and 120 min time are optimal variables. • Favorable R"2, Prob > F, F value and desirability ratio for all models was observed. • Precision and compatibility of the optimized process suit well with Picochlorum sp. • Fuel properties of biodiesel comply ASTM, EN and ISO standards. - Abstract: This present work compares various pretreatment techniques, single/binary solvent system, biomass drying methods and biomass particle sizes to ascertain effective lipid extraction process for marine trebouxiophycean microalga Chlorella vulgaris BDUG 91771. Of the tested methods, homogenization or direct solvent extraction (DSE) pretreatment, chloroform/methanol binary solvent system, and ≤600 µm particle size extracted maximum lipid of 22.1% irrespective of different biomass drying methods. Further, considering low energy consumption and industrial feasibility, optimization of DSE process kinetics was performed by central composite design. According to central composite design, high lipid recovery was attained with 2:1 chloroform/methanol ratio, 1:5 dry cell weight/solvent ratio, 65 °C temperature, 120 min reaction time, and it was highly validated by regression analysis, coefficient determination, F-value, coefficient variation, desirability ratio of the models. It is noteworthy that, the optimized DSE process was compatible with another trebouxiophycean alga Picochlorum sp. BDUG 91281 through biological and technical replicates. In a bioenergy outlook, fuel properties of C. vulgaris BDUG 91771 biodiesel such as degree of unsaturation (69.03), long chain saturation factor (2.49), cold filter plugging point (−9.75 °C), cloud point (8.1 °C), pour point (0.66 °C), saponification value (248.2 mg KOH/g), acid value (0.51 mg KOH/g), ash content (0.019%), insoluble impurities (0.022 g/kg) and viscosity (4.1 cSt) comply ASTM

  14. Formation and mosaicity of coccolith segment calcite of the marine algae Emiliania huxleyi.

    Science.gov (United States)

    Yin, Xiaofei; Ziegler, Andreas; Kelm, Klemens; Hoffmann, Ramona; Watermeyer, Philipp; Alexa, Patrick; Villinger, Clarissa; Rupp, Ulrich; Schlüter, Lothar; Reusch, Thorsten B H; Griesshaber, Erika; Walther, Paul; Schmahl, Wolfgang W

    2018-02-01

    Coccolithophores belong to the most abundant calcium carbonate mineralizing organisms. Coccolithophore biomineralization is a complex and highly regulated process, resulting in a product that strongly differs in its intricate morphology from the abiogenically produced mineral equivalent. Moreover, unlike extracellularly formed biological carbonate hard tissues, coccolith calcite is neither a hybrid composite, nor is it distinguished by a hierarchical microstructure. This is remarkable as the key to optimizing crystalline biomaterials for mechanical strength and toughness lies in the composite nature of the biological hard tissue and the utilization of specific microstructures. To obtain insight into the pathway of biomineralization of Emiliania huxleyi coccoliths, we examine intracrystalline nanostructural features of the coccolith calcite in combination with cell ultrastructural observations related to the formation of the calcite in the coccolith vesicle within the cell. With TEM diffraction and annular dark-field imaging, we prove the presence of planar imperfections in the calcite crystals such as planar mosaic block boundaries. As only minor misorientations occur, we attribute them to dislocation networks creating small-angle boundaries. Intracrystalline occluded biopolymers are not observed. Hence, in E. huxleyi calcite mosaicity is not caused by occluded biopolymers, as it is the case in extracellularly formed hard tissues of marine invertebrates, but by planar defects and dislocations which are typical for crystals formed by classical ion-by-ion growth mechanisms. Using cryo-preparation techniques for SEM and TEM, we found that the membrane of the coccolith vesicle and the outer membrane of the nuclear envelope are in tight proximity, with a well-controlled constant gap of ~4 nm between them. We describe this conspicuous connection as a not yet described interorganelle junction, the "nuclear envelope junction". The narrow gap of this junction likely

  15. Fatty acid composition and bacterial community changes in the rumen fluid of lactating sheep fed sunflower oil plus incremental levels of marine algae.

    Science.gov (United States)

    Toral, P G; Belenguer, A; Shingfield, K J; Hervás, G; Toivonen, V; Frutos, P

    2012-02-01

    Supplementation of ruminant diets with plant oils and marine lipids is an effective strategy for lowering saturated fatty acid (FA) content and increasing the concentration of cis-9,trans-11 conjugated linoleic acid and long-chain n-3 FA in ruminant milk. However, changes in populations of ruminal microorganisms associated with altered biohydrogenation of dietary unsaturated FA are not well characterized. Twenty-five lactating Assaf ewes were allocated at random to 1 of 5 treatments composed of dehydrated alfalfa hay and concentrates containing no additional lipid (control), or supplemented with 25 g of sunflower oil and 0 (SO), 8 (SOMA(1)), 16 (SOMA(2)), or 24 (SOMA(3)) g of marine algae/kg of diet dry matter. On d 28 on diet, samples of rumen fluid were collected for lipid analysis and microbial DNA extraction. Appearance and identification of biohydrogenation intermediates was determined based on complementary gas chromatography and Ag+-HPLC analysis of FA methyl esters. Total bacteria and the Butyrivibrio group were studied in microbial DNA by terminal RFLP analysis, and real-time PCR was used to quantify the known Butyrivibrio bacteria that produce trans-11 18:1 or 18:0. Dietary supplements of sunflower oil alone or in combination with marine algae altered the FA profile of rumen fluid, which was associated with changes in populations of specific bacteria. Inclusion of marine algae in diets containing sunflower oil resulted in the accumulation of trans 18:1 and 10-O-18:0 and a marked decrease in 18:0 concentrations in rumen fluid. At the highest levels of supplementation (SOMA(2) and SOMA(3)), marine algae also promoted a shift in ruminal biohydrogenation pathways toward the formation of trans-10 18:1 at the expense of trans-11 18:1. Changes in the concentration of biohydrogenation intermediates were not accompanied by significant variations in the abundance of known cultivated ruminal bacteria capable of hydrogenating unsaturated FA. However, certain

  16. Genomics of Volvocine Algae

    Science.gov (United States)

    Umen, James G.; Olson, Bradley J.S.C.

    2015-01-01

    Volvocine algae are a group of chlorophytes that together comprise a unique model for evolutionary and developmental biology. The species Chlamydomonas reinhardtii and Volvox carteri represent extremes in morphological diversity within the Volvocine clade. Chlamydomonas is unicellular and reflects the ancestral state of the group, while Volvox is multicellular and has evolved numerous innovations including germ-soma differentiation, sexual dimorphism, and complex morphogenetic patterning. The Chlamydomonas genome sequence has shed light on several areas of eukaryotic cell biology, metabolism and evolution, while the Volvox genome sequence has enabled a comparison with Chlamydomonas that reveals some of the underlying changes that enabled its transition to multicellularity, but also underscores the subtlety of this transition. Many of the tools and resources are in place to further develop Volvocine algae as a model for evolutionary genomics. PMID:25883411

  17. New α-Pyridones with Quorum-Sensing Inhibitory Activity from Diversity-Enhanced Extracts of a Streptomyces sp. Derived from Marine Algae.

    Science.gov (United States)

    Du, Yuqi; Sun, Jian; Gong, Qianhong; Wang, Yi; Fu, Peng; Zhu, Weiming

    2018-02-28

    Four new α-pyrones (1-4) and eight known analogues (5-12) were identified from the secondary metabolites of Streptomyces sp. OUCMDZ-3436 derived from the marine green algae Enteromorpha prolifera. Seven new α-pyridones (14-20) were constructed by diversity-oriented synthesis, which has been an effective approach to expanding the chemical space of natural-product-like compounds. Compounds 16, 17, 19, and 20 were found to have inhibitory effect on the gene expression controlled by quorum sensing in Pseudomonas aeruginosa QSIS-lasI.

  18. Thraustochytrid and fungal component of marine detritus. 1. Field studies on decomposition of the brown alga Sargassum cinereum J. Ag.

    Digital Repository Service at National Institute of Oceanography (India)

    Sathe-Pathak, V.; Raghukumar, S.; Raghukumar, C.; Sharma, S.

    Thraustochytrid protists and fungi were isolated and enumerated in culture from detritus of the brown alga Sargassum cinereum. Both groups occurred epi- and endobiontically in the detritus. The thraustochytrid Labyrinthuloides minuta occurred...

  19. Influence of cactus mucilage and marine brown algae extract on the compressive strength and durability of concrete

    Directory of Open Access Journals (Sweden)

    Hernández, E. F.

    2016-03-01

    Full Text Available This paper presents the mechanical performance and durability of concrete with water/cement (w/c ratios of 0.30 and 0.60 containing cactus mucilage and brown marine seaweed extract solutions (at 0.5° Brix concentrations. Cylindrical specimens (100 mm x 200 mm were cast and moist-cured for 0 and 28 days. Compressive strength, rapid chloride permeability, and chloride diffusion tests were conducted to evaluate all of the concrete mixes at the ages of 60 and 120 days. In addition, accelerated carbonation tests were carried out on specimens at the age of 180 days by exposure to 23 °C, 60% RH and at 4.4% CO2 for 120 days. The compressive strength results showed that only one concrete mix with admixtures increased in strength compared to the control. Regarding the rapid chloride permeability, chloride diffusion and carbonation, the results indicated that the durability of concretes containing organic additions was enhanced compared to the control.Este trabajo presenta el comportamiento mecánico y de durabilidad de concretos con relaciones agua/cemento de 0.30 y 0.60, conteniendo soluciones de mucílago de nopal y extracto de algas marinas cafés (0.5 °Brix de concentración. Especímenes cilíndricos (100 mm x 200 mm fueron elaborados y curados en húmedo por 0 y 28 días. Se evaluó la resistencia a la compresión, permeabilidad rápida y difusión de cloruros a los 60 y 120 días de edad. Adicionalmente, se realizaron pruebas de carbonatación acelerada en especímenes con 180 días de edad, expuestos a 23 °C, 60% HR y 4.4% de CO2 por 120 días. Los resultados de resistencia a la compresión muestran que únicamente una mezcla de concreto con adición orgánica incrementó su resistencia con respecto al control. Con respecto a la permeabilidad rápida a cloruros, difusión de cloruros y carbonatación, los resultados indican que la durabilidad de los concretos que contenían adiciones orgánicas fue mejorada con respecto al control.

  20. A report of a galactan from marine alga Gelidium crinale with in vivo anti-inflammatory and antinociceptive effects.

    Science.gov (United States)

    de Sousa, Albertina A S; Benevides, Norma M B; de Freitas Pires, Alana; Fiúza, Felipe P; Queiroz, Maria G R; Morais, Thamires M F; Pereira, Maria G; Assreuy, Ana M S

    2013-04-01

    The sulfated galactan of the red marine alga Gelidium crinale (SG-Gc) was purified by ion exchange chromatography and tested by intravenous (i.v.) route in rodent experimental models of inflammation and nociception. The anti-inflammatory activity of SG-Gc (0.01, 0.1 and 1 mg/kg) was evaluated in the model of rat paw edema induced by different inflammatory stimuli, while SG-Gc (0.1, 1 and 10 mg/kg) antinociceptive effect was assessed in models of nociception/hyperalgesia elicited by chemical (formalin test), thermal (hot plate), and mechanical (von Frey) stimuli in mice. In addition, the toxicity was evaluated after rat treatment with SG-Gc (1 mg/kg; i.v.) during 10 days, followed by analysis of the wet weight of animal's body/organs and hematological/biochemical parameters. Sulfated galactan of G. crinale inhibited the time course of dextran-induced paw edema, at all doses, showing maximal effect at 1 mg/kg (42%) and that induced by carrageenan at 0.01 (18%) and 1 mg/kg (20%), but was ineffective on the edema elicited by zymosan. At the highest dose, SG-Gc also inhibited the paw edema induced by histamine (49%), compound 48/80 (32%), and phospholipase A(2) (44%). Sulfated galactan of G. crinale inhibited both neurogenic and inflammatory phases of the formalin test, at all doses, and at 10 mg/kg, the animals flinch reaction in the von Frey test in the 1st and 3rd h by 19 and 26%, respectively. Additionally, SG-Gc treatment was well tolerated by animals. In conclusion, SG-Gc presents anti-inflammatory effect involving the inhibition of histamine and arachidonic acid metabolites and also antinociceptive activity, especially the inflammatory pain with participation of the opioid system. © 2011 The Authors Fundamental and Clinical Pharmacology © 2011 Société Française de Pharmacologie et de Thérapeutique.

  1. α-Glucosidase and Protein Tyrosine Phosphatase 1B Inhibitory Activity of Plastoquinones from Marine Brown Alga Sargassum serratifolium

    Directory of Open Access Journals (Sweden)

    Md. Yousof Ali

    2017-12-01

    Full Text Available Sargassum serratifolium C. Agardh (Phaeophyceae, Fucales is a marine brown alga that belongs to the family Sargassaceae. It is widely distributed throughout coastal areas of Korea and Japan. S. serratifolium has been found to contain high concentrations of plastoquinones, which have strong anti-cancer, anti-inflammatory, antioxidant, and neuroprotective activity. This study aims to investigate the anti-diabetic activity of S. serratifolium and its major constituents through inhibition of protein tyrosine phosphatase 1B (PTP1B, α-glucosidase, and ONOO−-mediated albumin nitration. S. serratifolium ethanolic extract and fractions exhibited broad PTP1B and α-glucosidase inhibitory activity (IC50, 1.83~7.04 and 3.16~24.16 µg/mL for PTP1B and α-glucosidase, respectively. In an attempt to identify bioactive compounds, three plastoquinones (sargahydroquinoic acid, sargachromenol and sargaquinoic acid were isolated from the active n-hexane fraction of S. serratifolium. All three plastoquinones exhibited dose-dependent inhibitory activity against PTP1B in the IC50 range of 5.14–14.15 µM, while sargachromenol and sargaquinoic acid showed dose-dependent inhibitory activity against α-glucosidase (IC50 42.41 ± 3.09 and 96.17 ± 3.48 µM, respectively. In the kinetic study of PTP1B enzyme inhibition, sargahydroquinoic acid and sargaquinoic acid led to mixed-type inhibition, whereas sargachromenol displayed noncompetitive-type inhibition. Moreover, plastoquinones dose-dependently inhibited ONOO−-mediated albumin nitration. Docking simulations of these plastoquinones demonstrated negative binding energies and close proximity to residues in the binding pocket of PTP1B and α-glucosidase, indicating that these plastoquinones have high affinity and tight binding capacity towards the active site of the enzymes. These results demonstrate that S. serratifolium and its major plastoquinones may have the potential as functional food ingredients for the

  2. Preliminary identification of unicellular algal genus by using combined confocal resonance Raman spectroscopy with PCA and DPLS analysis

    Science.gov (United States)

    He, Shixuan; Xie, Wanyi; Zhang, Ping; Fang, Shaoxi; Li, Zhe; Tang, Peng; Gao, Xia; Guo, Jinsong; Tlili, Chaker; Wang, Deqiang

    2018-02-01

    The analysis of algae and dominant alga plays important roles in ecological and environmental fields since it can be used to forecast water bloom and control its potential deleterious effects. Herein, we combine in vivo confocal resonance Raman spectroscopy with multivariate analysis methods to preliminary identify the three algal genera in water blooms at unicellular scale. Statistical analysis of characteristic Raman peaks demonstrates that certain shifts and different normalized intensities, resulting from composition of different carotenoids, exist in Raman spectra of three algal cells. Principal component analysis (PCA) scores and corresponding loading weights show some differences from Raman spectral characteristics which are caused by vibrations of carotenoids in unicellular algae. Then, discriminant partial least squares (DPLS) classification method is used to verify the effectiveness of algal identification with confocal resonance Raman spectroscopy. Our results show that confocal resonance Raman spectroscopy combined with PCA and DPLS could handle the preliminary identification of dominant alga for forecasting and controlling of water blooms.

  3. Peroxide scavenging potential of ultraviolet-B-absorbing mycosporine-like amino acids isolated from a marine red alga Bryocladia sp.

    Directory of Open Access Journals (Sweden)

    Vinod K Kannaujiya

    2014-06-01

    Full Text Available Ultraviolet-B (UV-B; 280-315 nm-absorbing mycosporine-like amino acids (MAAs were extracted and purified from a marine red alga Bryocladia sp. by using high performance liquid chromatography. We have detected four MAAs having retention times 3.23, 2.94, 3.56 and 2.67 min with absorbance maxima (λmax at 323, 328, 335 and 340 nm respectively. The effect of UV-B on the induction of these MAAs was studied. In comparison to control, there was 3 - 22 % induction of MAAs after 12 and 24 h of UV-B exposure. Apart from MAAs, other pigments such as chl a, carotenoids and total proteins were inversely affected by UV-B irradiation. In addition, peroxide scavenging potential of these MAAs were also investigated. With 2 mM hydrogen peroxide (H2O2 concentration, only <5 % of MAAs were found to be affected. However, with the increased H2O2, 40-60 % decline in the MAAs concentration with a corresponding peak shifting towards the blue wavelength was recorded. In addition, most of the MAAs were found to be reacting slowly with increasing H2O2 (upto 10 mM concentration after an incubation period of 5 and 30 min, which indicates the remarkable scavenging potential and stability of MAAs against oxidative stress. Thus, the isolated MAAs from marine red alga Bryocladia sp. may act as an efficient peroxide scavenger.

  4. Marine Bacteria from Danish Coastal Waters Show Antifouling Activity against the Marine Fouling Bacterium Pseudoalteromonas sp. Strain S91 and Zoospores of the Green Alga Ulva australis Independent of Bacteriocidal Activity

    DEFF Research Database (Denmark)

    Bernbom, Nete; Ng, Yoke Yin; Kjelleberg, Staffan

    2011-01-01

    , representing the major taxonomic groups, different seasons, and isolation strategies, were tested for antiadhesive effect against the marine biofilm-forming bacterium Pseudoalteromonas sp. strain S91 and zoospores of the green alga Ulva australis. The antiadhesive effects were assessed by quantifying...... the number of strain S91 or Ulva spores attaching to a preformed biofilm of each of the 22 strains. The strongest antifouling activity was found in Pseudoalteromonas strains. Biofilms of Pseudoalteromonas piscicida, Pseudoalteromonas tunicata, and Pseudoalteromonas ulvae prevented Pseudoalteromonas S91 from...

  5. Seasonal variations in halides in marine brown algae from Porbandar and Okha coasts (NW coast of India)

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, Ch.K.; Singbal, S.Y.S.

    :F ratio was higher in reproductive stage indicating that algae tend to accumulate Br compared to F during this stage than at early and senescent stages; though Br level in ambient medium is not a limiting factor. Matrix analysis of DPEF (differential...

  6. Serpins in unicellular Eukarya, Archaea, and Bacteria:

    DEFF Research Database (Denmark)

    Roberts, T.H.; Hejgaard, Jørn; Saunders, N.F.W

    2004-01-01

    , where serpins were found in only 4 of 13 genera, and Bacteria, in only 9 of 56 genera. The serpins from unicellular organisms appear to be phylogenetically distinct from all of the clades of higher eukaryotic serpins. Most of the sequences from unicellular organisms have the characteristics...

  7. Aqueous Extracts of the Marine Brown Alga Lobophora variegata Inhibit HIV-1 Infection at the Level of Virus Entry into Cells

    KAUST Repository

    Kremb, Stephan

    2014-08-21

    In recent years, marine algae have emerged as a rich and promising source of molecules with potent activities against various human pathogens. The widely distributed brown alga Lobophora variegata that is often associated with tropical coral reefs exerts strong antibacterial and antiprotozoal effects, but so far has not been associated with specific anti-viral activities. This study investigated potential HIV-1 inhibitory activity of L. variegata collected from different geographical regions, using a cell-based full replication HIV-1 reporter assay. Aqueous L. variegata extracts showed strong inhibitory effects on several HIV-1 strains, including drug-resistant and primary HIV-1 isolates, and protected even primary cells (PBMC) from HIV-1-infection. Anti-viral potency was related to ecological factors and showed clear differences depending on light exposition or epiphyte growth. Assays addressing early events of the HIV-1 replication cycle indicated that L. variegata extracts inhibited entry of HIV-1 into cells at a pre-fusion step possibly by impeding mobility of virus particles. Further characterization of the aqueous extract demonstrated that even high doses had only moderate effects on viability of cultured and primary cells (PBMCs). Imaging-based techniques revealed extract effects on the plasma membrane and actin filaments as well as induction of apoptosis at concentrations exceeding EC50 of anti-HIV-1 activity by more than 400 fold. In summary, we show for the first time that L. variegata extracts inhibit HIV-1 entry, thereby suggesting this alga as promising source for the development of novel HIV-1 inhibitors.

  8. Induction of the synthesis of bioactive compounds of the marine alga Tetraselmis tetrathele (West) Butcher grown under salinity stress

    OpenAIRE

    Hala Yassin El-Kassas; Mostafa M. El-Sheekh

    2016-01-01

    This work aims at the induction of the synthesis bioactive compounds in microalgae which are used in aquacultures. Experiments were done using Tetraselmis tetrathele in batch culture for 8 days under different salinity levels. The growth of the alga at salinity 20 ppm was increased by fivefold and synthesis of carotenoids by 20-fold in comparison to the controlled. Increasing NaCl concentration resulted in increasing the fatty acid accumulation in T. tetrathele cells. Saturated fatty acids we...

  9. Effect of Diterpenes Isolated of the Marine Alga Canistrocarpus cervicornis against Some Toxic Effects of the Venom of the Bothrops jararaca Snake

    Directory of Open Access Journals (Sweden)

    Thaisa Francielle Souza Domingos

    2015-02-01

    Full Text Available Snake venoms are composed of a complex mixture of active proteins and peptides which induce a wide range of toxic effects. Envenomation by Bothrops jararaca venom results in hemorrhage, edema, pain, tissue necrosis and hemolysis. In this work, the effect of a mixture of two secodolastane diterpenes (linearol/isolinearol, previously isolated from the Brazilian marine brown alga, Canistrocarpus cervicornis, was evaluated against some of the toxic effects induced by B. jararaca venom. The mixture of diterpenes was dissolved in dimethylsulfoxide and incubated with venom for 30 min at room temperature, and then several in vivo (hemorrhage, edema and lethality and in vitro (hemolysis, plasma clotting and proteolysis assays were performed. The diterpenes inhibited hemolysis, proteolysis and hemorrhage, but failed to inhibit clotting and edema induced by B. jararaca venom. Moreover, diterpenes partially protected mice from lethality caused by B. jararaca venom. The search for natural inhibitors of B. jararaca venom in C. cervicornis algae is a relevant subject, since seaweeds are a rich and powerful source of active molecules which are as yet but poorly explored. Our results suggest that these diterpenes have the potential to be used against Bothropic envenomation accidents or to improve traditional treatments for snake bites.

  10. Crouania pumila sp. nov. (Callithamniaceae: Rhodophyta, a new species of marine red algae from the Seaflower International Biosphere Reserve, Caribbean Colombia

    Directory of Open Access Journals (Sweden)

    Brigitte Gavio

    2013-09-01

    Full Text Available In the Colombian Caribbean, the marine macroalgal flora of the Seaflower International Biosphere Reserve has been little studied, despite its ecological importance. Historical records have reported only 201 macroalgae species within its area of almost 350 000km². However, recent surveys have shown a diversity of small algae previously overlooked. With the aim to determine the macroalgal diversity in the Reserve, we undertook field surveys in different ecosystems: coral reefs, seagrass beds, and rocky and sandy substrates, at different depths, from intertidal to 37m. During these field surveys, we collected a small described species belonging to the genus Crouania (Callithamniaceae, Rhodophyta, Crouania pumila sp. nov. that is decribed in this paper. This new species was distinguished from other species of the genus by a distinctive suite of traits including its diminutive size (to only 3.5mm in length, its decumbent, slightly calcified habit (epiphytic on other algae, its ramisympodial branching, the ecorticate main axes, and the elongate shape of the terminal cells of the cortical filaments. The observations were provided for both female (cystocarpic and tetrasporangiate thalli; however, male thalli were not seen. Further studies have to be undertaken in this Reserve in order to carry out other macroalgal analysis and descriptions.

  11. Crouania pumila sp. nov. (Callithamniaceae: Rhodophyta), a new species of marine red algae from the Seaflower International Biosphere Reserve, Caribbean Colombia.

    Science.gov (United States)

    Gavio, Brigitte; Reyes-Gómez, Viviana P; Wynne, Michael J

    2013-09-01

    In the Colombian Caribbean, the marine macroalgal flora of the Seaflower International Biosphere Reserve has been little studied, despite its ecological importance. Historical records have reported only 201 macroalgae species within its area of almost 350,000 km2. However, recent surveys have shown a diversity of small algae previously overlooked. With the aim to determine the macroalgal diversity in the Reserve, we undertook field surveys in different ecosystems: coral reefs, seagrass beds, and rocky and sandy substrates, at different depths, from intertidal to 37 m. During these field surveys, we collected a small described species belonging to the genus Crouania (Callithamniaceae, Rhodophyta), Crouania pumila sp. nov. that is decribed in this paper. This new species was distinguished from other species of the genus by a distinctive suite of traits including its diminutive size (to only 3.5 mm in length), its decumbent, slightly calcified habit (epiphytic on other algae), its ramisympodial branching, the ecorticate main axes, and the elongate shape of the terminal cells of the cortical filaments. The observations were provided for both female (cystocarpic) and tetrasporangiate thalli; however, male thalli were not seen. Further studies have to be undertaken in this Reserve in order to carry out other macroalgal analysis and descriptions.

  12. Studies on 232Th and 238U levels in marine algae collected from the coast of Niigata Prefecture

    International Nuclear Information System (INIS)

    Kato, Kenji; Tonouchi, Shigemasa; Maruta, Fumiyuki; Ebata, Hidekazu

    2001-01-01

    To evaluate the properties of algae to concentrate radioactive elements, 14 species of algae like Sargassum were collected in the Prefecture and analyzed for their 232 Th and 238 U levels with Yokogawa HP4500 ICP-MS apparatus. The places of collection included those near the water discharge of an atomic power station. Mean 232 Th and 238 U levels were found to be 120 and 260 ng/g dry wt, respectively, and Phaeophyta showed more than several times higher 238 U level than Chlorophyta and Rhodophyta. There was no clear difference in 232 Th levels. No difference between places of collection was observed in Sargassum 232 Th or 238 U level. Adsorption of 232 Th particle to and incorporation of soluble 238 U into algae body were suggested. Mean 232 Th and 238 U radioactivities were found 73 and 510 μBq/g wet wt, respectively, and the respective annual committed effective doses, 0.2 and 0.3 μSv, calculated from those values were confirmed to be enough lower than the annual public dose limit, 1 mSv. (K.H.)

  13. Induction of the synthesis of bioactive compounds of the marine alga Tetraselmis tetrathele (West Butcher grown under salinity stress

    Directory of Open Access Journals (Sweden)

    Hala Yassin El-Kassas

    2016-12-01

    Full Text Available This work aims at the induction of the synthesis bioactive compounds in microalgae which are used in aquacultures. Experiments were done using Tetraselmis tetrathele in batch culture for 8 days under different salinity levels. The growth of the alga at salinity 20 ppm was increased by fivefold and synthesis of carotenoids by 20-fold in comparison to the controlled. Increasing NaCl concentration resulted in increasing the fatty acid accumulation in T. tetrathele cells. Saturated fatty acids were the main constituent in the fatty acid methyl esters (FAMEs (3.48 mg/g at salinity 25 ppm. The predominated fatty acids were tridecylic, myristic and pentadecanoic which have potential antimicrobial activities. GC–MS analyses of the alga acetone extract grown under different NaCl concentrations were established. The results showed the presence of 18 bioactive compounds: 9-octadecenamide; in addition to the different esters of some fatty acids: hexanedioic, 1,2-cyclohexanedicarboxylic, phthalic, oleanitrile, hexanedioic and 1,2-cyclohexanedicarboxylic (71.5%; 64.9%; 55.4%; 49.6%; 18.7%; 25.2% and 14.5%, respectively. The study suggested that the alga biosynthesized various bioactive compounds under different salinity levels as defense mechanisms. Accordingly, the growth of T. tetrathele under salinity stress before being used in aquacultures is recommended.

  14. Studies on {sup 232}Th and {sup 238}U levels in marine algae collected from the coast of Niigata Prefecture

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Kenji; Tonouchi, Shigemasa; Maruta, Fumiyuki; Ebata, Hidekazu [Niigata Prefectural Inst. of Public Health and Environmental Sciences (Japan)

    2001-12-01

    To evaluate the properties of algae to concentrate radioactive elements, 14 species of algae like Sargassum were collected in the Prefecture and analyzed for their {sup 232}Th and {sup 238}U levels with Yokogawa HP4500 ICP-MS apparatus. The places of collection included those near the water discharge of an atomic power station. Mean {sup 232}Th and {sup 238}U levels were found to be 120 and 260 ng/g dry wt, respectively, and Phaeophyta showed more than several times higher {sup 238}U level than Chlorophyta and Rhodophyta. There was no clear difference in {sup 232}Th levels. No difference between places of collection was observed in Sargassum {sup 232}Th or {sup 238}U level. Adsorption of {sup 232}Th particle to and incorporation of soluble {sup 238}U into algae body were suggested. Mean {sup 232}Th and {sup 238}U radioactivities were found 73 and 510 {mu}Bq/g wet wt, respectively, and the respective annual committed effective doses, 0.2 and 0.3 {mu}Sv, calculated from those values were confirmed to be enough lower than the annual public dose limit, 1 mSv. (K.H.)

  15. Bioactivity and Applications of Sulphated Polysaccharides from Marine Microalgae

    Directory of Open Access Journals (Sweden)

    Rui Manuel Santos Costa de Morais

    2013-01-01

    Full Text Available Marine microalgae have been used for a long time as food for humans, such as Arthrospira (formerly, Spirulina, and for animals in aquaculture. The biomass of these microalgae and the compounds they produce have been shown to possess several biological applications with numerous health benefits. The present review puts up-to-date the research on the biological activities and applications of polysaccharides, active biocompounds synthesized by marine unicellular algae, which are, most of the times, released into the surrounding medium (exo- or extracellular polysaccharides, EPS. It goes through the most studied activities of sulphated polysaccharides (sPS or their derivatives, but also highlights lesser known applications as hypolipidaemic or hypoglycaemic, or as biolubricant agents and drag-reducers. Therefore, the great potentials of sPS from marine microalgae to be used as nutraceuticals, therapeutic agents, cosmetics, or in other areas, such as engineering, are approached in this review.

  16. {sup 127}I and {sup 129}I/{sup 127}I isotopic ratio in marine alga Fucus virsoides from the North Adriatic Sea

    Energy Technology Data Exchange (ETDEWEB)

    Osterc, Andrej [Department of Environmental Sciences, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Stibilj, Vekoslava [Department of Environmental Sciences, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia)], E-mail: vekoslava.stibilj@ijs.si

    2008-04-15

    The only stable iodine isotope is {sup 127}I and the natural {sup 129}I/{sup 127}I ratio in the biosphere has increased from 10{sup -15}-10{sup -14} to 10{sup -10}-10{sup -9}, mainly due to emissions from nuclear fuel reprocessing plants. In Europe they are located at La Hague (France) and Sellafield (England), where the ratio of {sup 129}I/{sup 127}I is up to 10{sup -4}. The marine environment, i.e. the oceans, is the major source of iodine with average concentrations of around 60 {mu}g L{sup -1} iodine in seawater. Brown algae accumulate iodine at high levels of up to 1.0% of dry weight, and therefore they are an ideal bioindicator for studying the levels of {sup 127}I and {sup 129}I in the marine environment. A radiochemical neutron activation analysis (RNAA) method, developed at our laboratory, was used for {sup 129}I determination in the brown alga Fucus virsoides (Donati) J. Agardh, and the same technique of RNAA was used for total {sup 127}I determination. The samples were collected along the coast of the Gulf of Trieste and the West coast of Istria in the North Adriatic Sea in the period from 2005 to 2006. Values of the {sup 129}I/{sup 127}I ratio up to 10{sup -9} were found, which is in agreement with the present average global distribution of {sup 129}I. The levels of stable iodine found were in the range from 235 to 506 {mu}g g{sup -1} and the levels of {sup 129}I from 1.7 to 7.3 x 10{sup -3} Bq kg{sup -1} (2.6-10.9 x 10{sup -7} {mu}g g{sup -1}), on a dry matter basis.

  17. Composición química y actividad antioxidante del alga marina roja Bryothamnion triquetrum (S.G.Gmelin Howe Chemical composition and antioxidant activity of the red marine algae Bryothamnion triquetrum (S.G.Gmelin Howe

    Directory of Open Access Journals (Sweden)

    Alexis Vidal

    2006-12-01

    Full Text Available En la actualidad existe un marcado interés por la búsqueda de antioxidantes de fuentes naturales, incluidas las algas marinas. El objetivo de este trabajo fue evaluar la composición química y propiedades antioxidantes del alga Bryothamnion triquetrum. Se estudió la composición centesimal y de minerales, identificación de ácidos grasos y sustancias antioxidantes. La composición centesimal es la siguiente: Proteínas (9,5%, Lípidos (1,3%, Carbohidratos (5,9%, Fibras (10,2% y Cenizas (43%. Los resultados de la actividad antioxidante para las diferentes metodologías empleadas fueron: atrapamiento de radicales DPPH• (38%, 4 mg de liofilizado, beta-Caroteno-Linoleico (12%, 4 mg de liofilizado, actividad atrapadora de radicales O2•- (CI50 0,36 mg/mL, de radicales OH• (CI50 2,11 mg/mL y unión al Fe (CI50 0,37 mg/mL. Las propiedades antioxidantes de esta alga parecen explicarse por la capacidad atrapadora de radicales libres, particularmente relacionada con mecanismos de dismutación de radicales O2•-, inactivación de radicales OH• y quelación de Fe. En trabajos previos se identificaron ácidos cinámicos y fenólicos como moléculas que pudieran explicar la actividad antioxidante, sin embargo adicionalmente se debe considerar un efecto sumatorio y/o sinérgico de otros componentes antioxidantes del extracto, como los descritos en este trabajo, incluidos minerales, carotenoides y vitamina C.An increasing interest has been growing during the past years for the search of natural origin antioxidants, particularly those from marine algae. In this context, the main objective of current research was to evaluate the chemical composition and some antioxidant properties of the aqueous extract of the seaweed Bryothamnion triquetrum. The extracts contains: Proteins (9.5%, Lipids (1.3%, Carbohydrates (5.9%, Fibers (10.2% and Ashes (43%. In current approach, the following results were obtained for the different procedures assessed: DPPH

  18. Marine botany. Second edition

    International Nuclear Information System (INIS)

    Dawes, C.J.

    1998-01-01

    Marine plants are a diverse group that include unicellular algae, seaweeds, seagrasses, salt marshes, and mangrove forests. They carry out a variety of ecological functions and serve as the primary producers in coastal wetlands and oceanic waters. The theme that connects such a wide variety of plants is their ecology, which was also emphasized in the 1981 edition. The goal of this revision is to present taxonomic, physiological, chemical, and ecological aspects of marine plants, their adaptations, and how abiotic and biotic factors interact in their communities. The data are presented in a concise, comparative manner in order to identify similarities and differences between communities such as salt marsh and mangroves or subtidal seaweeds and seagrasses. To accomplish this, the text is organized into five chapters that introduce the marine habitats, consider abiotic and biotic factors, and anthropogenic influences on the communities followed by seven chapters that deal with microalgae, seaweeds, salt marshes, mangroves, seagrasses, and coral reefs. Two appendixes are included; one presents simple field techniques and the other is a summary of seaweed uses

  19. Chaetopyranin, a benzaldehyde derivative, and other related metabolites from Chaetomium globosum, an endophytic fungus derived from the marine red alga Polysiphonia urceolata.

    Science.gov (United States)

    Wang, Song; Li, Xiao-Ming; Teuscher, Franka; Li, Dong-Li; Diesel, Arnulf; Ebel, Rainer; Proksch, Peter; Wang, Bin-Gui

    2006-11-01

    Cultivation of the endophytic fungus Chaetomium globosum, which was isolated from the inner tissue of the marine red alga Polysiphonia urceolata, resulted in the isolation of chaetopyranin (1), a new benzaldehyde secondary metabolite. Ten known compounds were also isolated, including two benzaldehyde congeners, 2-(2',3-epoxy-1',3'-heptadienyl)-6-hydroxy-5-(3-methyl-2-butenyl)benzaldehyde (2) and isotetrahydroauroglaucin (3), two anthraquinone derivatives, erythroglaucin (4) and parietin (5), five asperentin derivatives including asperentin (6, also known as cladosporin), 5'-hydroxy-asperentin-8-methylether (7), asperentin-8-methyl ether (8), 4'-hydroxyasperentin (9), and 5'-hydroxyasperentin (10), and the prenylated diketopiperazine congener neoechinulin A (11). The structures of these compounds were determined on the basis of their spectroscopic data analysis (1H, 13C, 1H-1H COSY, HMQC, and HMBC NMR, as well as low- and high-resolution mass experiments). To our knowledge, compound 1 represents the first example of a 2H-benzopyran derivative of marine algal-derived fungi as well as of the fungal genus Chaetomium. Each isolate was tested for its DPPH (1,1-diphenyl-2-picrylhydrazyl) radical-scavenging property. Compounds 1-4 were found to have moderate activity. Chaetopyranin (1) also exhibited moderate to weak cytotoxic activity toward several tumor cell lines.

  20. Bystander effects in unicellular organisms

    International Nuclear Information System (INIS)

    DeVeaux, Linda C.; Durtschi, Lynn S.; Case, Jonathan G.; Wells, Douglas P.

    2006-01-01

    Radiation-induced bystander effects have been seen in mammalian cells from diverse origins. These effects can be transmitted through the medium to cells not present at the time of irradiation. We have developed an assay for detecting bystander effects in the unicellular eukaryote, the fission yeast Schizosaccharomyces pombe. This assay allows maximal exposure of unirradiated cells to cells that have received electron beam irradiation. S. pombe cells were irradiated with 16-18 MeV electrons from a pulsed electron LINAC. When survival of the irradiated cells decreased to approximately 50%, forward-mutation to 2-deoxy-D-glucose resistance increased in the unirradiated bystander cells. Further increase in dose had no additional effect on this increase. In order to detect this response, it was necessary for the irradiated cell/unirradiated cell ratio to be high. Other cellular stresses, such as heat treatment, UV irradiation, and bleomycin exposure, also caused a detectable response in untreated cells grown with the treated cells. We discuss evolutionary implications of these results

  1. Bystander effects in unicellular organisms

    Energy Technology Data Exchange (ETDEWEB)

    DeVeaux, Linda C. [Idaho Accelerator Center, Campus Box 8263, Idaho State University, Pocatello, ID 83209 (United States) and Department of Biological Sciences, Campus Box 8007, Idaho State University, Pocatello, ID 83209 (United States)]. E-mail: develind@isu.edu; Durtschi, Lynn S. [Department of Biological Sciences, Campus Box 8007, Idaho State University, Pocatello, ID 83209 (United States); Case, Jonathan G. [Department of Physics, Campus Box 8106, Idaho State University, Pocatello, ID 83209 (United States); Wells, Douglas P. [Department of Physics, Campus Box 8106, Idaho State University, Pocatello, ID 83209 (United States)

    2006-05-11

    Radiation-induced bystander effects have been seen in mammalian cells from diverse origins. These effects can be transmitted through the medium to cells not present at the time of irradiation. We have developed an assay for detecting bystander effects in the unicellular eukaryote, the fission yeast Schizosaccharomyces pombe. This assay allows maximal exposure of unirradiated cells to cells that have received electron beam irradiation. S. pombe cells were irradiated with 16-18 MeV electrons from a pulsed electron LINAC. When survival of the irradiated cells decreased to approximately 50%, forward-mutation to 2-deoxy-D-glucose resistance increased in the unirradiated bystander cells. Further increase in dose had no additional effect on this increase. In order to detect this response, it was necessary for the irradiated cell/unirradiated cell ratio to be high. Other cellular stresses, such as heat treatment, UV irradiation, and bleomycin exposure, also caused a detectable response in untreated cells grown with the treated cells. We discuss evolutionary implications of these results.

  2. Bystander effects in unicellular organisms.

    Science.gov (United States)

    DeVeaux, Linda C; Durtschi, Lynn S; Case, Jonathan G; Wells, Douglas P

    2006-05-11

    Radiation-induced bystander effects have been seen in mammalian cells from diverse origins. These effects can be transmitted through the medium to cells not present at the time of irradiation. We have developed an assay for detecting bystander effects in the unicellular eukaryote, the fission yeast Schizosaccharomyces pombe. This assay allows maximal exposure of unirradiated cells to cells that have received electron beam irradiation. S. pombe cells were irradiated with 16-18 MeV electrons from a pulsed electron LINAC. When survival of the irradiated cells decreased to approximately 50%, forward-mutation to 2-deoxy-d-glucose resistance increased in the unirradiated bystander cells. Further increase in dose had no additional effect on this increase. In order to detect this response, it was necessary for the irradiated cell/unirradiated cell ratio to be high. Other cellular stresses, such as heat treatment, UV irradiation, and bleomycin exposure, also caused a detectable response in untreated cells grown with the treated cells. We discuss evolutionary implications of these results.

  3. Identification and Functional Characterization of Genes Encoding Omega-3 Polyunsaturated Fatty Acid Biosynthetic Activities from Unicellular Microalgae

    Directory of Open Access Journals (Sweden)

    Royah Vaezi

    2013-12-01

    Full Text Available In order to identify novel genes encoding enzymes involved in the biosynthesis of nutritionally important omega-3 long chain polyunsaturated fatty acids, a database search was carried out in the genomes of the unicellular photoautotrophic green alga Ostreococcus RCC809 and cold-water diatom Fragilariopsis cylindrus. The search led to the identification of two putative “front-end” desaturases (Δ6 and Δ4 from Ostreococcus RCC809 and one Δ6-elongase from F. cylindrus. Heterologous expression of putative open reading frames (ORFs in yeast revealed that the encoded enzyme activities efficiently convert their respective substrates: 54.1% conversion of α-linolenic acid for Δ6-desaturase, 15.1% conversion of 22:5n-3 for Δ4-desaturase and 38.1% conversion of γ-linolenic acid for Δ6-elongase. The Δ6-desaturase from Ostreococcus RCC809 displays a very strong substrate preference resulting in the predominant synthesis of stearidonic acid (C18:4Δ6,9,12,15. These data confirm the functional characterization of omega-3 long chain polyunsaturated fatty acid biosynthetic genes from these two species which have until now not been investigated for such activities. The identification of these new genes will also serve to expand the repertoire of activities available for metabolically engineering the omega-3 trait in heterologous hosts as well as providing better insights into the synthesis of eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA in marine microalgae.

  4. Isolation of stigmast-5,24-dien-3-ol from marine brown algae Sargassum tenerrimum and its antipredatory activity

    Digital Repository Service at National Institute of Oceanography (India)

    Majik, M.S.; Adel, H.; Shirodkar, D.; Tilvi, S.; Furtado, J.

    In recent years many sterols with potent biological activity have been identified from marine sources. Here we report the isolation of stigmast-5,24-dien-3-ol (fucosterol) as a major metabolite from the bioactive hexane-fraction of Sargassum...

  5. Method 445.0 In Vitro Determination of Chlorophyll a and Pheophytin ain Marine and Freshwater Algae by Fluorescence

    Science.gov (United States)

    This method provides a procedure for low level determination of chlorophyll a (chl a) and its magnesium free derivative, pheophytin a (pheo a), in marine and freshwater phytoplankton using fluorescence detection.(1,2) Phaeophorbides present in the sample are determined collective...

  6. The effect of buffering dairy cow diets with limestone, calcareous marine algae, or sodium bicarbonate on ruminal pH profiles, production responses, and rumen fermentation.

    Science.gov (United States)

    Cruywagen, C W; Taylor, S; Beya, M M; Calitz, T

    2015-08-01

    Six ruminally cannulated Holstein cows were used to evaluate the effect of 2 dietary buffers on rumen pH, milk production, milk composition, and rumen fermentation parameters. A high concentrate total mixed ration [35.2% forage dry matter (DM)], formulated to be potentially acidotic, was used to construct 3 dietary treatments in which calcareous marine algae (calcified remains of the seaweed Lithothamnium calcareum) was compared with limestone (control) and sodium bicarbonate plus limestone. One basal diet was formulated and the treatment diets contained either 0.4% of dietary DM as Acid Buf, a calcified marine algae product (AB treatment), or 0.8% of dietary DM as sodium bicarbonate and 0.37% as limestone (BC treatment), or 0.35% of dietary DM as limestone [control (CON) treatment]. Cows were randomly allocated to treatments according to a double 3×3 Latin square design, with 3 treatments and 3 periods. The total experimental period was 66 d during which each cow received each treatment for a period of 15 d before the data collection period of 7 d. Rumen fluid was collected to determine volatile fatty acids, lactic acid, and ammonia concentrations. Rumen pH was monitored every 10min for 2 consecutive days using a portable data logging system fitted with in-dwelling electrodes. Milk samples were analyzed for solid and mineral contents. The effect of treatment on acidity was clearly visible, especially from the period from midday to midnight when rumen pH dropped below 5.5 for a longer period of time (13 h) in the CON treatment than in the BC (8.7 h) and AB (4 h) treatments. Daily milk, 4% fat-corrected milk, and energy-corrected milk yields differed among treatments, with AB being the highest, followed by BC and CON. Both buffers increased milk fat content. Treatment had no effect on milk protein content, but protein yield was increased in the AB treatment. Total rumen volatile fatty acids and acetate concentrations were higher and propionate was lower in the AB

  7. A vanadium-dependent bromoperoxidase in the marine red alga Kappaphycus alvarezii (Doty) Doty displays clear substrate specificity.

    Science.gov (United States)

    Kamenarska, Zornitsa; Taniguchi, Tomokazu; Ohsawa, Noboru; Hiraoka, Masanori; Itoh, Nobuya

    2007-05-01

    Bromoperoxidase activity was initially detected in marine macroalgae belonging to the Solieriaceae family (Gigartinales, Rhodophyta), including Solieria robusta (Greville) Kylin, Eucheuma serra J. Agardh and Kappaphycus alvarezii (Doty) Doty, which are important industrial sources of the polysaccharide carrageenan. Notably, the purification of bromoperoxidase was difficult because due to the coexistence of viscoid polysaccharides. The activity of the partially purified enzyme was dependent on the vanadate ion, and displayed a distinct substrate spectrum from that of previously reported vanadium-dependent bromoperoxidases of marine macroalgae. The enzyme was specific for Br- and I- ions and inactive toward F- and Cl-. The K(m) values for Br- and H2O2 were 2.5x10(-3) M and 8.5x10(-5) M, respectively. The halogenated product, dibromoacetaldehyde, that accumulated in K. alvarezii was additionally determined.

  8. Quantitative analysis of mycosporine-like amino acids in marine algae by capillary electrophoresis with diode-array detection

    Science.gov (United States)

    Hartmann, Anja; Murauer, Adele; Ganzera, Markus

    2017-01-01

    Marine species have evolved a variety of physical or chemical strategies to diminish damage from elevated environmental ultraviolet radiation. Mycosporine-like amino acids, a group of widely distributed small water soluble compounds, are biologically relevant because of their photo-protective potential. In addition, presumed antioxidant and skin protective strategies raise the interest for possible medicinal and cosmetic applications. In this study the first CE method for the quantification of mycosporine-like amino acids in marine species is presented. A borate buffer system consisting of 30 mM sodium tetraborate in water at a pH-value of 10.3 enabled the baseline separation of five MAAs, namely palythine, mycosporine-serinol, asterina-330, shinorine and porphyra-334, in 27 min. Separation voltage, temperature and detection wavelength were 25 kV, 25 °C and 320 nm, respectively. The optimized method was fully validated and applied for the quantitative determination of MAAs in the marine macroalgae Palmaria palmata, Porphyra umbilicalis, and Porphyra sp., as well as the lichen Lichina pygmaea. PMID:28213175

  9. Bacterial Diversity Associated with the Coccolithophorid Algae Emiliania huxleyi and Coccolithus pelagicus f. braarudii

    Directory of Open Access Journals (Sweden)

    David H. Green

    2015-01-01

    Full Text Available Coccolithophores are unicellular calcifying marine phytoplankton that can form large and conspicuous blooms in the oceans and make significant contributions to oceanic carbon cycling and atmospheric CO2 regulation. Despite their importance, the bacterial diversity associated with these algae has not been explored for ecological or biotechnological reasons. Bacterial membership of Emiliania huxleyi and Coccolithus pelagicus f. braarudii cultures was assessed using cultivation and cultivation-independent methods. The communities were species rich compared to other phytoplankton cultures. Community analysis identified specific taxa which cooccur in all cultures (Marinobacter and Marivita. Hydrocarbon-degrading bacteria were found in all cultures. The presence of Acidobacteria, Acidimicrobidae, Schlegelella, and Thermomonas was unprecedented but were potentially explained by calcification associated with coccolith production. One strain of Acidobacteria was cultivated and is closely related to a marine Acidobacteria isolated from a sponge. From this assessment of the bacterial diversity of coccolithophores, a number of biotechnological opportunities are evident, from bioprospecting for novel taxa such as Acidobacteria to helping understand the relationship between obligate hydrocarbonoclastic bacteria occurrence with phytoplankton and to revealing bacterial taxa that have a specific association with algae and may be suitable candidates as a means to improve the efficiency of mass algal cultivation.

  10. Anti-photoaging activity and inhibition of matrix metalloproteinase (MMP) by marine red alga, Corallina pilulifera methanol extract

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Bo Mi [Department of Chemistry, Pukyoung National University, Busan 608-737 (Korea, Republic of); Qian Zhongji [Marine Bioprocess Research Center, Pukyong National University, Busan 608-737 (Korea, Republic of); Kim, Moon-Moo [Department of Chemistry, Dong-Eui University, Busan 614-714 (Korea, Republic of); Nam, Ki Wan [Department of Marine Biology, Pukyong National University, Busan 608-737 (Korea, Republic of); Kim, Se-Kwon [Department of Chemistry, Pukyoung National University, Busan 608-737 (Korea, Republic of); Marine Bioprocess Research Center, Pukyong National University, Busan 608-737 (Korea, Republic of)], E-mail: sknkim@pknu.ac.kr

    2009-02-15

    Matrix metalloproteinases (MMPs), a key component in photoaging of the skin due to exposure to ultraviolet A, appear to be increased by UV-irradiation-associated generation of reactive oxygen species (ROS). In this study, the alga Corallina pilulifera methanol (CPM) extract has been shown to exert a potent antioxidant activity and protective effect on UVA-induced oxidative stress of human dermal fibroblast (HDF) cell. Antioxidant evaluated by various antioxidant assays. These include reducing power, total antioxidant, DPPH radical scavenging, hydroxyl radical scavenging and protective effect on DNA damage caused by hydroxyl radicals generated. Further, the ROS level was detected using a fluorescence probe, 2',7'-dichlorofluorescein diacetate (DCFH-DA), which could be converted to highly fluorescent dichlorofluorescein (DCF) with the presence of intracellular ROS on HT-1080 cells. Those various antioxidant activities were compared to standard antioxidants such as {alpha}-tocopherol. In addition, the in vitro activities of MMP-2 and MMP-9 in HDF cell were inhibited by C. pilulifera methanol extract dose dependently by using gelatin zymography method. The results obtained in the present study suggested that the C. pilulifera methanol extract may be a potential source of natural anti-photoaging.

  11. Anti-photoaging activity and inhibition of matrix metalloproteinase (MMP) by marine red alga, Corallina pilulifera methanol extract

    Science.gov (United States)

    Ryu, BoMi; Qian, Zhong-Ji; Kim, Moon-Moo; Nam, Ki Wan; Kim, Se-Kwon

    2009-02-01

    Matrix metalloproteinases (MMPs), a key component in photoaging of the skin due to exposure to ultraviolet A, appear to be increased by UV-irradiation-associated generation of reactive oxygen species (ROS). In this study, the alga Corallina pilulifera methanol (CPM) extract has been shown to exert a potent antioxidant activity and protective effect on UVA-induced oxidative stress of human dermal fibroblast (HDF) cell. Antioxidant evaluated by various antioxidant assays. These include reducing power, total antioxidant, DPPH radical scavenging, hydroxyl radical scavenging and protective effect on DNA damage caused by hydroxyl radicals generated. Further, the ROS level was detected using a fluorescence probe, 2',7'-dichlorofluorescein diacetate (DCFH-DA), which could be converted to highly fluorescent dichlorofluorescein (DCF) with the presence of intracellular ROS on HT-1080 cells. Those various antioxidant activities were compared to standard antioxidants such as α-tocopherol. In addition, the in vitro activities of MMP-2 and MMP-9 in HDF cell were inhibited by C. pilulifera methanol extract dose dependently by using gelatin zymography method. The results obtained in the present study suggested that the C. pilulifera methanol extract may be a potential source of natural anti-photoaging.

  12. Anti-photoaging activity and inhibition of matrix metalloproteinase (MMP) by marine red alga, Corallina pilulifera methanol extract

    International Nuclear Information System (INIS)

    Ryu, Bo Mi; Qian Zhongji; Kim, Moon-Moo; Nam, Ki Wan; Kim, Se-Kwon

    2009-01-01

    Matrix metalloproteinases (MMPs), a key component in photoaging of the skin due to exposure to ultraviolet A, appear to be increased by UV-irradiation-associated generation of reactive oxygen species (ROS). In this study, the alga Corallina pilulifera methanol (CPM) extract has been shown to exert a potent antioxidant activity and protective effect on UVA-induced oxidative stress of human dermal fibroblast (HDF) cell. Antioxidant evaluated by various antioxidant assays. These include reducing power, total antioxidant, DPPH radical scavenging, hydroxyl radical scavenging and protective effect on DNA damage caused by hydroxyl radicals generated. Further, the ROS level was detected using a fluorescence probe, 2',7'-dichlorofluorescein diacetate (DCFH-DA), which could be converted to highly fluorescent dichlorofluorescein (DCF) with the presence of intracellular ROS on HT-1080 cells. Those various antioxidant activities were compared to standard antioxidants such as α-tocopherol. In addition, the in vitro activities of MMP-2 and MMP-9 in HDF cell were inhibited by C. pilulifera methanol extract dose dependently by using gelatin zymography method. The results obtained in the present study suggested that the C. pilulifera methanol extract may be a potential source of natural anti-photoaging

  13. Isolation and Identification of a Flavone Apigenin from Marine Red Alga with Antinociceptive and Anti-Inflammatory Activities

    Directory of Open Access Journals (Sweden)

    Gihan A. El Shoubaky

    2016-01-01

    Full Text Available Physicochemical investigation of the red alga Acanthophora spicifera (Vahl Borgesen, collected from Al-Shoaiba coast, Red Sea, Saudi Arabia, led to the isolation of a flavone from the algal tissue with acetone. Preparative chromatography on silica gel thin-layer chromatography was used for the separation of the flavone and eluted with the methanol:chloroform:ethyl acetate (1:7:2 solvent system. The physicochemical analyses infrared, mass spectra, and ultraviolet spectra in addition to shift reagents (NaOMe, NaOAc, NaOAc + H 3 BO 3 , AlCl 3 , and AlCl 3 + HCl were used for the identification and elucidation of the structure of the flavone compound (4,5,7-trihydroxy flavonoids. The flavone compound was identified as apigenin bycomparing its physicochemical data with those in the literature. Analgesic and anti-inflammatory activities of apigenin were evaluated. Apigenin showed promising analgesic and anti-inflammatory activities in the hot plate test and writhing test in mice as well as tail-immersion tests and carrageenan-induced paw edema and cotton pellet-induced granuloma formation in rats. It is concluded that apigenin possesses potent analgesic, anti-inflammatory, and antiproliferative activities, which might be due to the inhibition of PGE 2 as well as proinflammatory cytokines such as interleukin-1β, interleukin-6, and tumor necrosis factor- α.

  14. Cultivation of macroscopic marine algae and freshwater aquatic weeds. Progress report, May 1, 1976--December 1, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Ryther, J. H.

    1977-02-01

    Progress is summarized in the research, which has been divided, scientifically and geographically, into two parts. The first, carried out at the Woods Hole Oceanographic Institution, consisted of studies of the basic biology, physiology, biochemistry, and nutrition of certain species of seaweeds that were already established in culture. These were the red algae (Rhodophyta), Neoagardhiella baileyi and Gracilaria foliifera. These species are of existing or potential commercial value. The other phase of the work, carried out at the Harbor Branch Foundation Laboratory, Ft. Pierce, Florida, consisted of three parts: (1) As many species of seaweeds as possible were collected from local Florida waters and screened for their growth potential under natural sunlight and temperatures but in artificial culture systems. A standard growth assay procedure and physical system was developed. Species to be screened for their growth potential are being evaluated at different times of the year to determine whether they are suitable for cultivation throughout the year. (2) Cultures of several, if possible, but of at least one species of seaweed were maintained throughout the year to measure sustained, annual productivity so as to obtain a better understanding of the potential annual yield of seaweed biomass. (3) The development and evaluation of new, non-energy intensive and non-labor intensive seaweed culture methods that might find application in large-scale plantations, and that would be energy cost-effective, is the third phase.

  15. Dose assessment for marine biota and humans from discharge of 131I to the marine environment and uptake by algae in Sydney, Australia

    International Nuclear Information System (INIS)

    Veliscek Carolan, Jessica; Hughes, Catherine E.; Hoffmann, Emmy L.

    2011-01-01

    Iodine-131 reaches the marine environment through its excretion to the sewer by nuclear medicine patients followed by discharge through coastal and deepwater outfalls. 131 I has been detected in macroalgae, which bio-accumulate iodine, growing near the coastal outfall of Cronulla sewage treatment plant (STP) since 1995. During this study, 131 I levels in liquid effluent and sludge from three Sydney STPs as well as in macroalgae (Ulva sp. and Ecklonia radiata) growing near their shoreline outfalls were measured. Concentration factors of 176 for Ulva sp. and 526 for E. radiata were derived. Radiation dose rates to marine biota from 131 I discharged to coastal waters calculated using the ERICA dose assessment tool were below the ERICA screening level of 10 μGy/hr. Radiation dose rates to humans from immersion in seawater or consumption of Ulva sp. containing 131 I were three and two orders of magnitude below the IAEA screening level of 10 μSv/year, respectively.

  16. Determination of Chemical Constituents of the Marine Pulmonate ...

    African Journals Online (AJOL)

    Conclusion: All the isolated compounds are being reported here for Paraoncidium reevesii for the ... Province, China, and feed on organic detritus and unicellular algae in the surface mud. A series of compounds have been reported from the.

  17. The Study of Algae

    Science.gov (United States)

    Rushforth, Samuel R.

    1977-01-01

    Included in this introduction to the study of algae are drawings of commonly encountered freshwater algae, a summary of the importance of algae, descriptions of the seven major groups of algae, and techniques for collection and study of algae. (CS)

  18. Viral infection of the marine alga Emiliania huxleyi triggers lipidome remodeling and induces the production of highly saturated triacylglycerol.

    Science.gov (United States)

    Malitsky, Sergey; Ziv, Carmit; Rosenwasser, Shilo; Zheng, Shuning; Schatz, Daniella; Porat, Ziv; Ben-Dor, Shifra; Aharoni, Asaph; Vardi, Assaf

    2016-04-01

    Viruses that infect marine photosynthetic microorganisms are major ecological and evolutionary drivers of microbial food webs, estimated to turn over more than a quarter of the total photosynthetically fixed carbon. Viral infection of the bloom-forming microalga Emiliania huxleyi induces the rapid remodeling of host primary metabolism, targeted towards fatty acid metabolism. We applied a liquid chromatography-mass spectrometry (LC-MS)-based lipidomics approach combined with imaging flow cytometry and gene expression profiling to explore the impact of viral-induced metabolic reprogramming on lipid composition. Lytic viral infection led to remodeling of the cellular lipidome, by predominantly inducing the biosynthesis of highly saturated triacylglycerols (TAGs), coupled with a significant accumulation of neutral lipids within lipid droplets. Furthermore, TAGs were found to be a major component (77%) of the lipidome of isolated virions. Interestingly, viral-induced TAGs were significantly more saturated than TAGs produced under nitrogen starvation. This study highlights TAGs as major products of the viral-induced metabolic reprogramming during the host-virus interaction and indicates a selective mode of membrane recruitment during viral assembly, possibly by budding of the virus from specialized subcellular compartments. These findings provide novel insights into the role of viruses infecting microalgae in regulating metabolism and energy transfer in the marine environment and suggest their possible biotechnological application in biofuel production. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  19. Soil algae

    African Journals Online (AJOL)

    Timothy Ademakinwa

    Also, the importance of algae in soil formation and soil fertility improvement cannot be over ... The presence of nitrogen fixing microalgae (Nostoc azollae) in the top soil of both vegetable ..... dung, fish food and dirty water from fish ponds on.

  20. A molecular phylogeny of the marine red algae (Rhodophyta) based on the nuclear small-subunit rRNA gene.

    Science.gov (United States)

    Ragan, M A; Bird, C J; Rice, E L; Gutell, R R; Murphy, C A; Singh, R K

    1994-01-01

    A phylogeny of marine Rhodophyta has been inferred by a number of methods from nucleotide sequences of nuclear genes encoding small subunit rRNA from 39 species in 15 orders. Sequence divergences are relatively large, especially among bangiophytes and even among congeners in this group. Subclass Bangiophycidae appears polyphyletic, encompassing at least three lineages, with Porphyridiales distributed between two of these. Subclass Florideophycidae is monophyletic, with Hildenbrandiales, Corallinales, Ahnfeltiales, and a close association of Nemaliales, Acrochaetiales, and Palmariales forming the four deepest branches. Cermiales may represent a convergence of vegetative and reproductive morphologies, as family Ceramiaceae is at best weakly related to the rest of the order, and one of its members appears to be allied to Gelidiales. Except for Gigartinales, for which more data are required, the other florideophyte orders appear distinct and taxonomically justified. A good correlation was observed with taxonomy based on pit-plug ultrastructure. Tests under maximum-likelihood and parsimony of alternative phylogenies based on structure and chemistry refuted suggestions that Acrochaetiales is the most primitive florideophyte order and that Gelidiales and Hildenbrandiales are sister groups. PMID:8041780

  1. Chlamydomonas reinhardtii: the model of choice to study mitochondria from unicellular photosynthetic organisms.

    Science.gov (United States)

    Funes, Soledad; Franzén, Lars-Gunnar; González-Halphen, Diego

    2007-01-01

    Chlamydomonas reinhardtii is a model organism to study photosynthesis, cellular division, flagellar biogenesis, and, more recently, mitochondrial function. It has distinct advantages in comparison to higher plants because it is unicellular, haploid, and amenable to tetrad analysis, and its three genomes are subject to specific transformation. It also has the possibility to grow either photoautotrophically or heterotrophically on acetate, making the assembly of the photosynthetic machinery not essential for cell viability. Methods developed allow the isolation of C. reinhardtii mitochondria free of thylakoid contaminants. We review the general procedures used for the biochemical characterization of mitochondria from this green alga.

  2. A mineral-rich extract from the red marine algae Lithothamnion calcareum preserves bone structure and function in female mice on a Western-style diet.

    Science.gov (United States)

    Aslam, Muhammad Nadeem; Kreider, Jaclynn M; Paruchuri, Tejaswi; Bhagavathula, Narasimharao; DaSilva, Marissa; Zernicke, Ronald F; Goldstein, Steven A; Varani, James

    2010-04-01

    The purpose of this study was to determine whether a mineral-rich extract derived from the red marine algae Lithothamnion calcareum could be used as a dietary supplement for prevention of bone mineral loss. Sixty C57BL/6 mice were divided into three groups based on diet: the first group received a high-fat Western-style diet (HFWD), the second group was fed the same HFWD along with the mineral-rich extract included as a dietary supplement, and the third group was used as a control and was fed a low-fat rodent chow diet (AIN76A). Mice were maintained on the respective diets for 15 months. Then, long bones (femora and tibiae) from both males and females were analyzed by three-dimensional micro-computed tomography (micro-CT) and (bones from female mice) concomitantly assessed in bone strength studies. Tartrate-resistant acid phosphatase (TRAP), osteocalcin, and N-terminal peptide of type I procollagen (PINP) were assessed in plasma samples obtained from female mice at the time of sacrifice. To summarize, female mice on the HFWD had reduced bone mineralization and reduced bone strength relative to female mice on the low-fat chow diet. The bone defects in female mice on the HFWD were overcome in the presence of the mineral-rich supplement. In fact, female mice receiving the mineral-rich supplement in the HFWD had better bone structure/function than did female mice on the low-fat chow diet. Female mice on the mineral-supplemented HFWD had higher plasma levels of TRAP than mice of the other groups. There were no differences in the other two markers. Male mice showed little diet-specific differences by micro-CT.

  3. Dipeptides from the red alga Acanthopora spicifera

    Digital Repository Service at National Institute of Oceanography (India)

    Wahidullah, S.; De; Kamat, S.Y.

    An investigation of red alga Acanthophora spicifera afforded the known peptide, aurantiamide acetate and a new diastereoisomer of this dipeptide (dia-aurantiamide acetate). This is a first report of aurantiamide acetate from a marine source...

  4. Marine Bacteria from Danish Coastal Waters Show Antifouling Activity against the Marine Fouling Bacterium Pseudoalteromonas sp. Strain S91 and Zoospores of the Green Alga Ulva australis Independent of Bacteriocidal Activity▿†

    Science.gov (United States)

    Bernbom, Nete; Ng, Yoke Yin; Kjelleberg, Staffan; Harder, Tilmann; Gram, Lone

    2011-01-01

    The aims of this study were to determine if marine bacteria from Danish coastal waters produce antifouling compounds and if antifouling bacteria could be ascribed to specific niches or seasons. We further assess if antibacterial effect is a good proxy for antifouling activity. We isolated 110 bacteria with anti-Vibrio activity from different sample types and locations during a 1-year sampling from Danish coastal waters. The strains were identified as Pseudoalteromonas, Phaeobacter, and Vibrionaceae based on phenotypic tests and partial 16S rRNA gene sequence similarity. The numbers of bioactive bacteria were significantly higher in warmer than in colder months. While some species were isolated at all sampling locations, others were niche specific. We repeatedly isolated Phaeobacter gallaeciensis at surfaces from one site and Pseudoalteromonas tunicata at two others. Twenty-two strains, representing the major taxonomic groups, different seasons, and isolation strategies, were tested for antiadhesive effect against the marine biofilm-forming bacterium Pseudoalteromonas sp. strain S91 and zoospores of the green alga Ulva australis. The antiadhesive effects were assessed by quantifying the number of strain S91 or Ulva spores attaching to a preformed biofilm of each of the 22 strains. The strongest antifouling activity was found in Pseudoalteromonas strains. Biofilms of Pseudoalteromonas piscicida, Pseudoalteromonas tunicata, and Pseudoalteromonas ulvae prevented Pseudoalteromonas S91 from attaching to steel surfaces. P. piscicida killed S91 bacteria in the suspension cultures, whereas P. tunicata and P. ulvae did not; however, they did prevent adhesion by nonbactericidal mechanism(s). Seven Pseudoalteromonas species, including P. piscicida and P. tunicata, reduced the number of settling Ulva zoospores to less than 10% of the number settling on control surfaces. The antifouling alpP gene was detected only in P. tunicata strains (with purple and yellow pigmentation), so

  5. The use of Design of Experiments and Response Surface Methodology to optimize biomass and lipid production by the oleaginous marine green alga, Nannochloropsis gaditana in response to light intensity, inoculum size and CO2.

    Science.gov (United States)

    Hallenbeck, Patrick C; Grogger, Melanie; Mraz, Megan; Veverka, Donald

    2015-05-01

    Biodiesel produced from microalgal lipids is being considered as a potential source of renewable energy. However, a number of hurdles will have to be overcome if such a process is to become practical. One important factor is the volumetric production of biomass and lipid that can be achieved. The marine alga Nannochloropsis gaditana is under study since it is known to be highly oleaginous and has a number of other attractive properties. Factors that might be important in biomass and lipid production by this alga are light intensity, inoculum size and CO2. Here we have carried out for the first time a RSM-DOE study of the influence of these important culture variables and define conditions that maximize biomass production, lipid content (BODIPY® fluorescence) and total lipid production. Moreover, flow cytometry allowed the examination on a cellular level of changes that occur in cellular populations as they age and accumulate lipids. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Can the primary algae production be measured precisely?

    International Nuclear Information System (INIS)

    Olesen, M.; Lundsgaard, C.

    1996-01-01

    Algae production in seawater is extremely important as a basic link in marine food chains. Evaluation of the algae quantity is based on 14CO 2 tracer techniques while natural circulation and light absorption in seawater is taken insufficiently into account. Algae production can vary by 500% in similar nourishment conditions, but varying water mixing conditions. (EG)

  7. Sphagnum-dominated bog systems are highly effective yet variable sources of bio-available iron to marine waters.

    Science.gov (United States)

    Krachler, Regina; Krachler, Rudolf F; Wallner, Gabriele; Steier, Peter; El Abiead, Yasin; Wiesinger, Hubert; Jirsa, Franz; Keppler, Bernhard K

    2016-06-15

    Iron is a micronutrient of particular interest as low levels of iron limit primary production of phytoplankton and carbon fluxes in extended regions of the world's oceans. Sphagnum-peatland runoff is extraordinarily rich in dissolved humic-bound iron. Given that several of the world's largest wetlands are Sphagnum-dominated peatlands, this ecosystem type may serve as one of the major sources of iron to the ocean. Here, we studied five near-coastal creeks in North Scotland using freshwater/seawater mixing experiments of natural creek water and synthetic seawater based on a (59)Fe radiotracer technique combined with isotopic characterization of dissolved organic carbon by Accelerator Mass Spectrometry. Three of the creeks meander through healthy Sphagnum-dominated peat bogs and the two others through modified peatlands which have been subject to artificial drainage for centuries. The results revealed that, at the time of sampling (August 16-24, 2014), the creeks that run through modified peatlands delivered 11-15μg iron per liter creek water to seawater, whereas the creeks that run through intact peatlands delivered 350-470μg iron per liter creek water to seawater. To find out whether this humic-bound iron is bio-available to marine algae, we performed algal growth tests using the unicellular flagellated marine prymnesiophyte Diacronema lutheri and the unicellular marine green alga Chlorella salina, respectively. In both cases, the riverine humic material provided a highly bio-available source of iron to the marine algae. These results add a new item to the list of ecosystem services of Sphagnum-peatlands. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Algae Resources

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-01

    Algae are highly efficient at producing biomass, and they can be found all over the planet. Many use sunlight and nutrients to create biomass, which contain key components—including lipids, proteins, and carbohydrates— that can be converted and upgraded to a variety of biofuels and products. A functional algal biofuels production system requires resources such as suitable land and climate, sustainable management of water resources, a supplemental carbon dioxide (CO2) supply, and other nutrients (e.g., nitrogen and phosphorus). Algae can be an attractive feedstock for many locations in the United States because their diversity allows for highpotential biomass yields in a variety of climates and environments. Depending on the strain, algae can grow by using fresh, saline, or brackish water from surface water sources, groundwater, or seawater. Additionally, they can grow in water from second-use sources such as treated industrial wastewater; municipal, agricultural, or aquaculture wastewater; or produced water generated from oil and gas drilling operations.

  9. Identifying Aspects of the Post-Transcriptional Program Governing the Proteome of the Green Alga Micromonas pusilla

    Energy Technology Data Exchange (ETDEWEB)

    Waltman, Peter H.; Guo, Jian; Reistetter, Emily Nahas; Purvine, Samuel; Ansong, Charles K.; van Baren, Marijke J.; Wong, Chee-Hong; Wei, Chia-Lin; Smith, Richard D.; Callister, Stephen J.; Stuart, Joshua M.; Worden, Alexandra Z.; Mills, Ken

    2016-07-19

    Micromonas is a unicellular green alga that belongs to the prasinophytes, a sister lineage to land plants. This picoeukaryotic (<2 μm diameter) alga is widespread in the marine environment but still not understood at the cellular level. Here, we examine the mRNA and protein level changes that take place over the course of the day-night cycle using mid-exponential nutrient replete cultures of Micromonas pusilla CCMP1545 grown and analyzed in biological triplicate. During the experiment, samples were collected at key transition points during the diel for evaluation using high-throughput LC-MS proteomics. We also sequenced matched mRNA samples from the same time points, using pair-ended directional Illumina RNA-Seq to investigate the dynamics and relationship between the mRNA and protein expression programs of M. pusilla. Similar to a prior study of the marine cyanobacterium Prochlorococcus, we found significant divergence in the mRNA and proteomics expression dynamics in response to the light:dark cycle. Additionally, expressional responses of genes and the proteins they encoded could also be variable within the same metabolic pathway, such as the oxygenic photosynthesis pathway. A regression framework was used to predict protein levels using both mRNA expression and gene-specific sequence-based features. Several features in the genome sequence were found to influence protein abundance including the codon usage and the length of the 3’ UTR. Collectively, our studies provide insights into the regulation of the proteome over a diel as relationships between the transcriptional and translational programs in the widespread marine green alga Micromonas.

  10. Aging and immortality in unicellular species.

    Science.gov (United States)

    Florea, Michael

    2017-10-01

    It has been historically thought that in conditions that permit growth, most unicellular species do not to age. This was particularly thought to be the case for symmetrically dividing species, as such species lack a clear distinction between the soma and the germline. Despite this, studies of the symmetrically dividing species Escherichia coli and Schizosaccharomyces pombe have recently started to challenge this notion. They indicate that E. coli and S. pombe do age, but only when subjected to environmental stress. If true, this suggests that aging may be widespread among microbial species in general, and that studying aging in microbes may inform other long-standing questions in aging. This review examines the recent evidence for and against replicative aging in symmetrically dividing unicellular organisms, the mechanisms that underlie aging, why aging evolved in these species, and how microbial aging fits into the context of other questions in aging. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Seasonal variations in Na, K, Mg and Ca charge balance in marine brown algae from Saurashtra Coast (NW coast of India)

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, Ch.K.; Singbal, S.Y.S.

    ) strongly correlated with Cl content suggesting that these cations were balanced by chloride ions. Divalent cations (Ca + Mg) seem to be balanced by the anion sulphate. Ash content of the algae was accounted by these major cations and anions. Charge...

  12. Macroecology of unicellular organisms - patterns and processes.

    Science.gov (United States)

    Soininen, Janne

    2012-02-01

    Macroecology examines the relationship between organisms and their environment at large spatial (and temporal) scales. Typically, macroecologists explain the large-scale patterns of abundance, distribution and diversity. Despite the difficulties in sampling and characterizing microbial diversity, macroecologists have recently also been interested in unicellular organisms. Here, I review the current advances made in microbial macroecology, as well as discuss related ecosystem functions. Overall, it seems that microorganisms suit surprisingly well to known species abundance distributions and show positive relationship between distribution and adundance. Microbial species-area and distance-decay relationships tend to be weaker than for macroorganisms, but nonetheless significant. Few findings on altitudinal gradients in unicellular taxa seem to differ greatly from corresponding findings for larger taxa, whereas latitudinal gradients among microorganisms have either been clearly evident or absent depending on the context. Literature also strongly emphasizes the role of spatial scale for the patterns of diversity and suggests that patterns are affected by species traits as well as ecosystem characteristics. Finally, I discuss the large role of local biotic and abiotic variables driving the community assembly in unicellular taxa and eventually dictating how multiple ecosystem processes are performed. Present review highlights the fact that most microorganisms may not differ fundamentally from larger taxa in their large-scale distribution patterns. Yet, review also shows that many aspects of microbial macroecology are still relatively poorly understood and specific patterns depend on focal taxa and ecosystem concerned. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  13. Transcriptome-Based Identification of the Desiccation Response Genes in Marine Red Algae Pyropia tenera (Rhodophyta) and Enhancement of Abiotic Stress Tolerance by PtDRG2 in Chlamydomonas.

    Science.gov (United States)

    Im, Sungoh; Lee, Ha-Nul; Jung, Hyun Shin; Yang, Sunghwan; Park, Eun-Jeong; Hwang, Mi Sook; Jeong, Won-Joong; Choi, Dong-Woog

    2017-06-01

    Pyropia tenera (Kjellman) are marine red algae that grow in the intertidal zone and lose more than 90% of water during hibernal low tides every day. In order to identify the desiccation response gene (DRG) in P. tenera, we generated 1,444,210 transcriptome sequences using the 454-FLX platform from the gametophyte under control and desiccation conditions. De novo assembly of the transcriptome reads generated 13,170 contigs, covering about 12 Mbp. We selected 1160 differentially expressed genes (DEGs) in response to desiccation stress based on reads per kilobase per million reads (RPKM) expression values. As shown in green higher plants, DEGs under desiccation are composed of two groups of genes for gene regulation networks and functional proteins for carbohydrate metabolism, membrane perturbation, compatible solutes, and specific proteins similar to higher plants. DEGs that show no significant homology with known sequences in public databases were selected as DRGs in P. tenera. PtDRG2 encodes a novel polypeptide of 159 amino acid residues locating chloroplast. When PtDRG2 was overexpressed in Chlamydomonas, the PtDRG2 confer mannitol and salt tolerance in transgenic cells. These results suggest that Pyropia may possess novel genes that differ from green plants, although the desiccation tolerance mechanism in red algae is similar to those of higher green plants. These transcriptome sequences will facilitate future studies to understand the common processes and novel mechanisms involved in desiccation stress tolerance in red algae.

  14. Programmed cell death in trypanosomatids and other unicellular organisms.

    Science.gov (United States)

    Debrabant, Alain; Lee, Nancy; Bertholet, Sylvie; Duncan, Robert; Nakhasi, Hira L

    2003-03-01

    In multicellular organisms, cellular growth and development can be controlled by programmed cell death (PCD), which is defined by a sequence of regulated events. However, PCD is thought to have evolved not only to regulate growth and development in multicellular organisms but also to have a functional role in the biology of unicellular organisms. In protozoan parasites and in other unicellular organisms, features of PCD similar to those in multicellular organisms have been reported, suggesting some commonality in the PCD pathway between unicellular and multicellular organisms. However, more extensive studies are needed to fully characterise the PCD pathway and to define the factors that control PCD in the unicellular organisms. The understanding of the PCD pathway in unicellular organisms could delineate the evolutionary origin of this pathway. Further characterisation of the PCD pathway in the unicellular parasites could provide information regarding their pathogenesis, which could be exploited to target new drugs to limit their growth and treat the disease they cause.

  15. Mitochondrial uncoupling proteins in unicellular eukaryotes.

    Science.gov (United States)

    Jarmuszkiewicz, Wieslawa; Woyda-Ploszczyca, Andrzej; Antos-Krzeminska, Nina; Sluse, Francis E

    2010-01-01

    Uncoupling proteins (UCPs) are members of the mitochondrial anion carrier protein family that are present in the mitochondrial inner membrane and mediate free fatty acid (FFA)-activated, purine nucleotide (PN)-inhibited proton conductance. Since 1999, the presence of UCPs has been demonstrated in some non-photosynthesising unicellular eukaryotes, including amoeboid and parasite protists, as well as in non-fermentative yeast and filamentous fungi. In the mitochondria of these organisms, UCP activity is revealed upon FFA-induced, PN-inhibited stimulation of resting respiration and a decrease in membrane potential, which are accompanied by a decrease in membranous ubiquinone (Q) reduction level. UCPs in unicellular eukaryotes are able to divert energy from oxidative phosphorylation and thus compete for a proton electrochemical gradient with ATP synthase. Our recent work indicates that membranous Q is a metabolic sensor that might utilise its redox state to release the PN inhibition of UCP-mediated mitochondrial uncoupling under conditions of phosphorylation and resting respiration. The action of reduced Q (QH2) could allow higher or complete activation of UCP. As this regulatory feature was demonstrated for microorganism UCPs (A. castellanii UCP), plant and mammalian UCP1 analogues, and UCP1 in brown adipose tissue, the process could involve all UCPs. Here, we discuss the functional connection and physiological role of UCP and alternative oxidase, two main energy-dissipating systems in the plant-type mitochondrial respiratory chain of unicellular eukaryotes, including the control of cellular energy balance as well as preventive action against the production of reactive oxygen species. Copyright © 2009 Elsevier B.V. All rights reserved.

  16. Apoptosis in unicellular organisms: mechanisms and evolution.

    Science.gov (United States)

    Gordeeva, A V; Labas, Y A; Zvyagilskaya, R A

    2004-10-01

    Data about the programmed death (apoptosis) in unicellular organisms, from bacteria to ciliates, are discussed. Firstly apoptosis appeared in lower eukaryotes, but its mechanisms in these organisms are different from the classical apoptosis. During evolution, the apoptotic process has been improving gradually, with reactive oxygen species and Ca2+ playing an essential role in triggering apoptosis. All eukaryotic organisms have apoptosis inhibitors, which might be introduced by viruses. In the course of evolution, caspases and apoptosis-inducing factor appeared before other apoptotic proteins, with so-called death receptors being the last among them. The functional analogs of eukaryotic apoptotic proteins take parts in the programmed death of bacteria.

  17. Recovery of soil unicellular eukaryotes: an efficiency and activity analysis on the single cell level.

    Science.gov (United States)

    Lentendu, Guillaume; Hübschmann, Thomas; Müller, Susann; Dunker, Susanne; Buscot, François; Wilhelm, Christian

    2013-12-01

    Eukaryotic unicellular organisms are an important part of the soil microbial community, but they are often neglected in soil functional microbial diversity analysis, principally due to the absence of specific investigation methods in the special soil environment. In this study we used a method based on high-density centrifugation to specifically isolate intact algal and yeast cells, with the aim to analyze them with flow cytometry and sort them for further molecular analysis such as deep sequencing. Recovery efficiency was tested at low abundance levels that fit those in natural environments (10(4) to 10(6) cells per g soil). Five algae and five yeast morphospecies isolated from soil were used for the testing. Recovery efficiency was between 1.5 to 43.16% and 2 to 30.2%, respectively, and was dependent on soil type for three of the algae. Control treatments without soil showed that the majority of cells were lost due to the method itself (58% and 55.8% respectively). However, the cell extraction technique did not much compromise cell vitality because a fluorescein di-acetate assay indicated high viability percentages (73.3% and 97.2% of cells, respectively). The low abundant algae and yeast morphospecies recovered from soil were cytometrically analyzed and sorted. Following, their DNA was isolated and amplified using specific primers. The developed workflow enables isolation and enrichment of intact autotrophic and heterotrophic soil unicellular eukaryotes from natural environments for subsequent application of deep sequencing technologies. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Structure and organization of phycobilisomes on membranes of the red alga Porphyridium cruentum

    NARCIS (Netherlands)

    Arteni, Ana A.; Liu, Lu-Ning; Aartsma, Thijs J.; Zhang, Yu-Zhong; Zhou, Bai-Cheng; Boekema, Egbert J.

    In the present work, electron microscopy and single particle averaging was performed to investigate the supramolecular architecture of hemiellipsoidal phycobilisomes from the unicellular red alga Porphyridium cruentum. The dimensions were measured as 60 x 41 x 34 nm (length x width x height) for

  19. Not in your usual Top 10: protists that infect plants and algae.

    Science.gov (United States)

    Schwelm, Arne; Badstöber, Julia; Bulman, Simon; Desoignies, Nicolas; Etemadi, Mohammad; Falloon, Richard E; Gachon, Claire M M; Legreve, Anne; Lukeš, Julius; Merz, Ueli; Nenarokova, Anna; Strittmatter, Martina; Sullivan, Brooke K; Neuhauser, Sigrid

    2018-04-01

    Fungi, nematodes and oomycetes belong to the most prominent eukaryotic plant pathogenic organisms. Unicellular organisms from other eukaryotic lineages, commonly addressed as protists, also infect plants. This review provides an introduction to plant pathogenic protists, including algae infecting oomycetes, and their current state of research. © 2017 THE AUTHORS. MOLECULAR PLANT PATHOLOGY PUBLISHED BY BRITISH SOCIETY FOR PLANT PATHOLOGY AND JOHN WILEY & SONS LTD.

  20. Notes on the marine algae of the International Biosphere Reserve Seaflower, Caribbean Colombia VI: New records of Phaeophyceae from Old Providence and Santa Catalina.

    Directory of Open Access Journals (Sweden)

    Viviana Patricia Reyes-Gómez

    2017-05-01

    Full Text Available Two species of brown algae (Phaeophyceae, Bachelotia antilarum (Grunow Gerloff and Dictyota humifusa Hörnig, Schnetter & Coppejans, are reported for the first time for the Archipelago of San Andrés, Old Providence and Sainte Cataline, part of the International Biosphere Reserve Seaflower.

  1. Differences in species richness patterns between unicellular and multicellular organisms.

    Science.gov (United States)

    Hillebrand, Helmut; Watermann, Frank; Karez, Rolf; Berninger, Ulrike-G

    2001-01-01

    For unicellular organisms, a lack of effects of local species richness on ecosystem function has been proposed due to their locally high species richness and their ubiquitous distribution. High dispersal ability and high individual numbers may enable unicellular taxa to occur everywhere. Using our own and published data sets on uni- and multicellular organisms, we conducted thorough statistical analyses to test whether (1) unicellular taxa show higher relative local species richness compared to multicellular taxa, (2) unicellular taxa show lower slopes of the species:area relationships and species:individuals relationships, and (3) the species composition of unicellular taxa is less influenced by geographic distance compared to multicellular taxa. We found higher local species richness compared to the global species pool for unicellular organisms than for metazoan taxa. The difference was significant if global species richness was conservatively estimated but not if extrapolated, and therefore higher richness estimates were used. Both microalgae and protozoans showed lower slopes between species richness and sample size (area or individuals) compared to macrozoobenthos, also indicating higher local species richness for unicellular taxa. The similarity of species composition of both benthic diatoms and ciliates decreased with increasing geographic distance. This indicated restricted dispersal ability of protists and the absence of ubiquity. However, a steeper slope between similarity and distance was found for polychaetes and corals, suggesting a stronger effect of distance on the dispersal of metazoans compared to unicellular taxa. In conclusion, we found partly different species richness patterns among uni- and multicellular eukaryotes, but no strict ubiquity of unicellular taxa. Therefore, the effect of local unicellular species richness on ecosystem function has to be reanalyzed. Macroecological patterns suggested for multicellular organisms may differ in

  2. Efficacy of marine green alga Ulva fasciata extract on the management of shrimp bacterial diseases Eficacia del extracto del alga marina verde Ulva fasciata sobre el manejo de las enfermedades bacterianas en camarones

    Directory of Open Access Journals (Sweden)

    Joseph Selvin

    2011-07-01

    Full Text Available Secondary metabolites of the green algae, Ulva fasciata, were tested to determine the efficacy of controlling shrimp bacterial pathogens. Exploratory experiments indicated that an intermediate dose (1 g kg-1 of shrimp of Ulva in the diet was highly effective at controlling bacterial pathogens of shrimp, as compared to lower (500 mg kg-1 and higher (1.5 g kg-1 doses. The pilot experiments evaluated the percent of relative protection afforded shrimps treated with Ulva diet and faced with various concentrations of bacterial pathogen. The survival of shrimps treated with Ulva diet was significant (P Metabolites secundario de algas verdes Ulva fasciata fue probado para determinar la eficacia de controlar el camarón pathogens bacterial. Las conclusiones de experimentos exploratorios indicaron que la dosis mediana (1 g kg-1 de camarón de dieta Ulva era sumamente eficaz en el control de pathogens bacterial de camarón cuando comparado al más abajo (500 mg kg-1 y más alto (1,5 g kg-1 dosis. En los experimentos pilotos, la protección de pariente de por ciento de camarones trató con la dieta Ulva y desafió con varias concentraciones de bacterial patógeno fueron evaluados. La supervivencia de camarones trató con la dieta Ulva era significativo (P < 0,01. Basado en las conclusiones presentes, podría ser deducido que U. verde fasciata puede ser una fuente excelente para desarrollar la comida potente medicinal para la dirección de enfermedad de camarón.

  3. Green Algae and the Origins of Multicellularity in the Plant Kingdom

    Science.gov (United States)

    Umen, James G.

    2014-01-01

    The green lineage of chlorophyte algae and streptophytes form a large and diverse clade with multiple independent transitions to produce multicellular and/or macroscopically complex organization. In this review, I focus on two of the best-studied multicellular groups of green algae: charophytes and volvocines. Charophyte algae are the closest relatives of land plants and encompass the transition from unicellularity to simple multicellularity. Many of the innovations present in land plants have their roots in the cell and developmental biology of charophyte algae. Volvocine algae evolved an independent route to multicellularity that is captured by a graded series of increasing cell-type specialization and developmental complexity. The study of volvocine algae has provided unprecedented insights into the innovations required to achieve multicellularity. PMID:25324214

  4. The Capsaspora genome reveals a complex unicellular prehistory of animals.

    Science.gov (United States)

    Suga, Hiroshi; Chen, Zehua; de Mendoza, Alex; Sebé-Pedrós, Arnau; Brown, Matthew W; Kramer, Eric; Carr, Martin; Kerner, Pierre; Vervoort, Michel; Sánchez-Pons, Núria; Torruella, Guifré; Derelle, Romain; Manning, Gerard; Lang, B Franz; Russ, Carsten; Haas, Brian J; Roger, Andrew J; Nusbaum, Chad; Ruiz-Trillo, Iñaki

    2013-01-01

    To reconstruct the evolutionary origin of multicellular animals from their unicellular ancestors, the genome sequences of diverse unicellular relatives are essential. However, only the genome of the choanoflagellate Monosiga brevicollis has been reported to date. Here we completely sequence the genome of the filasterean Capsaspora owczarzaki, the closest known unicellular relative of metazoans besides choanoflagellates. Analyses of this genome alter our understanding of the molecular complexity of metazoans' unicellular ancestors showing that they had a richer repertoire of proteins involved in cell adhesion and transcriptional regulation than previously inferred only with the choanoflagellate genome. Some of these proteins were secondarily lost in choanoflagellates. In contrast, most intercellular signalling systems controlling development evolved later concomitant with the emergence of the first metazoans. We propose that the acquisition of these metazoan-specific developmental systems and the co-option of pre-existing genes drove the evolutionary transition from unicellular protists to metazoans.

  5. Inorganic phosphate uptake in unicellular eukaryotes.

    Science.gov (United States)

    Dick, Claudia F; Dos-Santos, André L A; Meyer-Fernandes, José R

    2014-07-01

    Inorganic phosphate (Pi) is an essential nutrient for all organisms. The route of Pi utilization begins with Pi transport across the plasma membrane. Here, we analyzed the gene sequences and compared the biochemical profiles, including kinetic and modulator parameters, of Pi transporters in unicellular eukaryotes. The objective of this review is to evaluate the recent findings regarding Pi uptake mechanisms in microorganisms, such as the fungi Neurospora crassa and Saccharomyces cerevisiae and the parasite protozoans Trypanosoma cruzi, Trypanosoma rangeli, Leishmania infantum and Plasmodium falciparum. Pi uptake is the key step of Pi homeostasis and in the subsequent signaling event in eukaryotic microorganisms. Biochemical and structural studies are important for clarifying mechanisms of Pi homeostasis, as well as Pi sensor and downstream pathways, and raise possibilities for future studies in this field. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Changes of the elemental distributions in marine diatoms as a reporter of sample preparation artefacts. A nuclear microscopy application

    International Nuclear Information System (INIS)

    Godinho, R.M.; Cabrita, M.T.; Alves, L.C.; Pinheiro, T.

    2015-01-01

    Studies of the elemental composition of whole marine diatoms cells have high interest as they constitute a direct measurement of environmental changes, and allow anticipating consequences of anthropogenic alterations to organisms, ecosystems and global marine geochemical cycles. Nuclear microscopy is a powerful tool allowing direct measurement of whole cells giving qualitative imaging of distribution, and quantitative determination of intracellular concentration. Major obstacles to the analysis of marine microalgae are high medium salinity and the recurrent presence of extracellular exudates produced by algae to maintain colonies in natural media and in vitro. The objective of this paper was to optimize the methodology of sample preparation of marine unicellular algae for elemental analysis with nuclear microscopy, allowing further studies on cellular response to metals. Primary cultures of Coscinodiscus wailesii maintained in vitro were used to optimize protocols for elemental analysis with nuclear microscopy techniques. Adequate cell preparation procedures to isolate the cells from media components and exudates were established. The use of chemical agents proved to be inappropriate for elemental determination and for intracellular morphological analysis. The assessment of morphology and elemental partitioning in cell compartments obtained with nuclear microscopy techniques enabled to infer their function in natural environment and imbalances in exposure condition. Exposure to metal affected C. wailesii morphology and internal elemental distribution

  7. Changes of the elemental distributions in marine diatoms as a reporter of sample preparation artefacts. A nuclear microscopy application

    Energy Technology Data Exchange (ETDEWEB)

    Godinho, R.M. [Instituto de Bioengenharia e Biociências, Instituto Superior Técnico, Universidade de Lisboa, Lisboa (Portugal); Instituto Português do Mar e da Atmosfera, Lisboa (Portugal); Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Porto (Portugal); Cabrita, M.T. [Instituto Português do Mar e da Atmosfera, Lisboa (Portugal); Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Porto (Portugal); Alves, L.C. [Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Sacavém (Portugal); Pinheiro, T., E-mail: murmur@ctn.ist.utl.pt [Instituto de Bioengenharia e Biociências, Instituto Superior Técnico, Universidade de Lisboa, Lisboa (Portugal)

    2015-04-01

    Studies of the elemental composition of whole marine diatoms cells have high interest as they constitute a direct measurement of environmental changes, and allow anticipating consequences of anthropogenic alterations to organisms, ecosystems and global marine geochemical cycles. Nuclear microscopy is a powerful tool allowing direct measurement of whole cells giving qualitative imaging of distribution, and quantitative determination of intracellular concentration. Major obstacles to the analysis of marine microalgae are high medium salinity and the recurrent presence of extracellular exudates produced by algae to maintain colonies in natural media and in vitro. The objective of this paper was to optimize the methodology of sample preparation of marine unicellular algae for elemental analysis with nuclear microscopy, allowing further studies on cellular response to metals. Primary cultures of Coscinodiscus wailesii maintained in vitro were used to optimize protocols for elemental analysis with nuclear microscopy techniques. Adequate cell preparation procedures to isolate the cells from media components and exudates were established. The use of chemical agents proved to be inappropriate for elemental determination and for intracellular morphological analysis. The assessment of morphology and elemental partitioning in cell compartments obtained with nuclear microscopy techniques enabled to infer their function in natural environment and imbalances in exposure condition. Exposure to metal affected C. wailesii morphology and internal elemental distribution.

  8. Varioloid A, a new indolyl-6,10b-dihydro-5aH-[1]benzofuro[2,3-b]indole derivative from the marine alga-derived endophytic fungus Paecilomyces variotii EN-291

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    2016-09-01

    Full Text Available A new indolyl-6,10b-dihydro-5aH-[1]benzofuro[2,3-b]indole derivative, varioloid A (1, was isolated from the marine alga-derived endophytic fungus Paecilomyces variotii EN-291. Its structure was elucidated on the basis of extensive analysis of 1D and 2D NMR data and the absolute configuration was determined by time-dependent density functional theory-electronic circular dichroism (TDDFT-ECD calculations. A similar compound, whose planar structure was previously described but the relative and absolute configurations and 13C NMR data were not reported, was also identified and was tentatively named as varioloid B (2. Both compounds 1 and 2 exhibited cytotoxicity against A549, HCT116, and HepG2 cell lines, with IC50 values ranging from 2.6 to 8.2 µg/mL.

  9. Varioloid A, a new indolyl-6,10b-dihydro-5aH-[1]benzofuro[2,3-b]indole derivative from the marine alga-derived endophytic fungus Paecilomyces variotii EN-291.

    Science.gov (United States)

    Zhang, Peng; Li, Xiao-Ming; Mao, Xin-Xin; Mándi, Attila; Kurtán, Tibor; Wang, Bin-Gui

    2016-01-01

    A new indolyl-6,10b-dihydro-5a H -[1]benzofuro[2,3- b ]indole derivative, varioloid A ( 1 ), was isolated from the marine alga-derived endophytic fungus Paecilomyces variotii EN-291. Its structure was elucidated on the basis of extensive analysis of 1D and 2D NMR data and the absolute configuration was determined by time-dependent density functional theory-electronic circular dichroism (TDDFT-ECD) calculations. A similar compound, whose planar structure was previously described but the relative and absolute configurations and 13 C NMR data were not reported, was also identified and was tentatively named as varioloid B ( 2 ). Both compounds 1 and 2 exhibited cytotoxicity against A549, HCT116, and HepG2 cell lines, with IC 50 values ranging from 2.6 to 8.2 µg/mL.

  10. Identifying Aspects of the Post-Transcriptional Program Governing the Proteome of the Green Alga Micromonas pusilla.

    Directory of Open Access Journals (Sweden)

    Peter H Waltman

    Full Text Available Micromonas is a unicellular motile alga within the Prasinophyceae, a green algal group that is related to land plants. This picoeukaryote (<2 μm diameter is widespread in the marine environment but is not well understood at the cellular level. Here, we examine shifts in mRNA and protein expression over the course of the day-night cycle using triplicated mid-exponential, nutrient replete cultures of Micromonas pusilla CCMP1545. Samples were collected at key transition points during the diel cycle for evaluation using high-throughput LC-MS proteomics. In conjunction, matched mRNA samples from the same time points were sequenced using pair-ended directional Illumina RNA-Seq to investigate the dynamics and relationship between the mRNA and protein expression programs of M. pusilla. Similar to a prior study of the marine cyanobacterium Prochlorococcus, we found significant divergence in the mRNA and proteomics expression dynamics in response to the light:dark cycle. Additionally, expressional responses of genes and the proteins they encoded could also be variable within the same metabolic pathway, such as we observed in the oxygenic photosynthesis pathway. A regression framework was used to predict protein levels from both mRNA expression and gene-specific sequence-based features. Several features in the genome sequence were found to influence protein abundance including codon usage as well as 3' UTR length and structure. Collectively, our studies provide insights into the regulation of the proteome over a diel cycle as well as the relationships between transcriptional and translational programs in the widespread marine green alga Micromonas.

  11. Sphagnum-dominated bog systems are highly effective yet variable sources of bio-available iron to marine waters

    International Nuclear Information System (INIS)

    Krachler, Regina; Krachler, Rudolf F.; Wallner, Gabriele; Steier, Peter; El Abiead, Yasin; Wiesinger, Hubert; Jirsa, Franz; Keppler, Bernhard K.

    2016-01-01

    Iron is a micronutrient of particular interest as low levels of iron limit primary production of phytoplankton and carbon fluxes in extended regions of the world's oceans. Sphagnum-peatland runoff is extraordinarily rich in dissolved humic-bound iron. Given that several of the world's largest wetlands are Sphagnum-dominated peatlands, this ecosystem type may serve as one of the major sources of iron to the ocean. Here, we studied five near-coastal creeks in North Scotland using freshwater/seawater mixing experiments of natural creek water and synthetic seawater based on a "5"9Fe radiotracer technique combined with isotopic characterization of dissolved organic carbon by Accelerator Mass Spectrometry. Three of the creeks meander through healthy Sphagnum-dominated peat bogs and the two others through modified peatlands which have been subject to artificial drainage for centuries. The results revealed that, at the time of sampling (August 16–24, 2014), the creeks that run through modified peatlands delivered 11–15 μg iron per liter creek water to seawater, whereas the creeks that run through intact peatlands delivered 350–470 μg iron per liter creek water to seawater. To find out whether this humic-bound iron is bio-available to marine algae, we performed algal growth tests using the unicellular flagellated marine prymnesiophyte Diacronema lutheri and the unicellular marine green alga Chlorella salina, respectively. In both cases, the riverine humic material provided a highly bio-available source of iron to the marine algae. These results add a new item to the list of ecosystem services of Sphagnum-peatlands. - Highlights: • We report that peat-bogs are sources of bio-available iron to marine algae. • This iron is effectively chelated with aquatic humic acids. • The radiocarbon age of the iron-carrying aquatic humic acids was up to 550 years. • Analysis was focused on mixing experiments of iron-rich creek water with seawater. • Drained peatlands with

  12. Sphagnum-dominated bog systems are highly effective yet variable sources of bio-available iron to marine waters

    Energy Technology Data Exchange (ETDEWEB)

    Krachler, Regina, E-mail: regina.krachler@univie.ac.at [Institute of Inorganic Chemistry, University of Vienna, Währingerstraße 42, 1090 Vienna (Austria); Krachler, Rudolf F.; Wallner, Gabriele [Institute of Inorganic Chemistry, University of Vienna, Währingerstraße 42, 1090 Vienna (Austria); Steier, Peter [Isotope Research and Nuclear Physics, University of Vienna, Währingerstraße 17, 1090 Vienna (Austria); El Abiead, Yasin; Wiesinger, Hubert [Institute of Inorganic Chemistry, University of Vienna, Währingerstraße 42, 1090 Vienna (Austria); Jirsa, Franz [Institute of Inorganic Chemistry, University of Vienna, Währingerstraße 42, 1090 Vienna (Austria); University of Johannesburg, Department of Zoology, P. O. Box 524, Auckland Park 2006 (South Africa); Keppler, Bernhard K. [Institute of Inorganic Chemistry, University of Vienna, Währingerstraße 42, 1090 Vienna (Austria)

    2016-06-15

    Iron is a micronutrient of particular interest as low levels of iron limit primary production of phytoplankton and carbon fluxes in extended regions of the world's oceans. Sphagnum-peatland runoff is extraordinarily rich in dissolved humic-bound iron. Given that several of the world's largest wetlands are Sphagnum-dominated peatlands, this ecosystem type may serve as one of the major sources of iron to the ocean. Here, we studied five near-coastal creeks in North Scotland using freshwater/seawater mixing experiments of natural creek water and synthetic seawater based on a {sup 59}Fe radiotracer technique combined with isotopic characterization of dissolved organic carbon by Accelerator Mass Spectrometry. Three of the creeks meander through healthy Sphagnum-dominated peat bogs and the two others through modified peatlands which have been subject to artificial drainage for centuries. The results revealed that, at the time of sampling (August 16–24, 2014), the creeks that run through modified peatlands delivered 11–15 μg iron per liter creek water to seawater, whereas the creeks that run through intact peatlands delivered 350–470 μg iron per liter creek water to seawater. To find out whether this humic-bound iron is bio-available to marine algae, we performed algal growth tests using the unicellular flagellated marine prymnesiophyte Diacronema lutheri and the unicellular marine green alga Chlorella salina, respectively. In both cases, the riverine humic material provided a highly bio-available source of iron to the marine algae. These results add a new item to the list of ecosystem services of Sphagnum-peatlands. - Highlights: • We report that peat-bogs are sources of bio-available iron to marine algae. • This iron is effectively chelated with aquatic humic acids. • The radiocarbon age of the iron-carrying aquatic humic acids was up to 550 years. • Analysis was focused on mixing experiments of iron-rich creek water with seawater. • Drained

  13. Imaging the Dynamics of Cell Wall Polymer Deposition in the Unicellular Model Plant, Penium margaritaceum.

    Science.gov (United States)

    Domozych, David; Lietz, Anna; Patten, Molly; Singer, Emily; Tinaz, Berke; Raimundo, Sandra C

    2017-01-01

    The unicellular green alga, Penium margaritaceum, represents a novel and valuable model organism for elucidating cell wall dynamics in plants. This organism's cell wall contains several polymers that are highly similar to those found in the primary cell walls of land plants. Penium is easily grown in laboratory culture and is effectively manipulated in various experimental protocols including microplate assays and correlative microscopy. Most importantly, Penium can be live labeled with cell wall-specific antibodies or other probes and returned to culture where specific cell wall developmental events can be monitored. Additionally, live cells can be rapidly cryo-fixed and cell wall surface microarchitecture can be observed with variable pressure scanning electron microscopy. Here, we describe the methodology for maintaining Penium for experimental cell wall enzyme studies.

  14. Biomineralization of unicellular organisms: an unusual membrane biochemistry for the production of inorganic nano- and microstructures.

    Science.gov (United States)

    Bäuerlein, Edmund

    2003-02-10

    With evolution, Nature has ingeniously succeeded in giving rise to an impressive variety of inorganic structures. Every organism that synthesizes biogenic minerals does so in a form that is unique to that species. This biomineralization is apparently biologically controlled. It is thus expected that both the synthesis and the form of every specific biogenic mineral is genetically determined and controlled. An investigation of the mechanism of biomineralization has only become possible with the development of modern methods in molecular biology. Unicellular organisms such as magnetic bacteria, calcareous algae, and diatoms, all of which are amongst the simplest forms of life, are particularly suited to be investigated by these methods. Crystals and composites of proteins and amorphous inorganic polymers are formed as complex structures within these organisms; these structures are not known in conventional inorganic chemistry.

  15. Status and strategies for marine biodiversity of Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Untawale, A.G.

    The status of marine biodiversity and factors responsible for the degradation and loss of marine biodiversity are discussed. Goa has abundant marine wealth. Phytoplankton, marine algae, manglicolous fungi, seagrasses, mangrove flora and other...

  16. The biology of marine plants

    National Research Council Canada - National Science Library

    Dring, M.J

    1982-01-01

    Since over 90% of the species of marine plants are algae, most of the book is devoted to the marine representatives of this group, with examples from all oceans and coasts of the world where detailed work has been done...

  17. Compound-specific amino acid δ15N patterns in marine algae: Tracer potential for cyanobacterial vs. eukaryotic organic nitrogen sources in the ocean

    Science.gov (United States)

    McCarthy, Matthew D.; Lehman, Jennifer; Kudela, Raphael

    2013-02-01

    Stable nitrogen isotopic analysis of individual amino acids (δ15N-AA) has unique potential to elucidate the complexities of food webs, track heterotrophic transformations, and understand diagenesis of organic nitrogen (ON). While δ15N-AA patterns of autotrophs have been shown to be generally similar, prior work has also suggested that differences may exist between cyanobacteria and eukaryotic algae. However, δ15N-AA patterns in differing oceanic algal groups have never been closely examined. The overarching goals of this study were first to establish a more quantitative understanding of algal δ15N-AA patterns, and second to examine whether δ15N-AA patterns have potential as a new tracer for distinguishing prokaryotic vs. eukaryotic N sources. We measured δ15N-AA from prokaryotic and eukaryotic phytoplankton cultures and used a complementary set of statistical approaches (simple normalization, regression-derived fractionation factors, and multivariate analyses) to test for variations. A generally similar δ15N-AA pattern was confirmed for all algae, however significant AA-specific variation was also consistently identified between the two groups. The relative δ15N fractionation of Glx (glutamine + glutamic acid combined) vs. total proteinaceous N appeared substantially different, which we hypothesize could be related to differing enzymatic forms. In addition, the several other AA (most notably glycine and leucine) appeared to have strong biomarker potential. Finally, we observed that overall patterns of δ15N values in algae correspond well with the Trophic vs. Source-AA division now commonly used to describe variable AA δ15N changes with trophic transfer, suggesting a common mechanistic basis. Overall, these results show that autotrophic δ15N-AA patterns can differ between major algal evolutionary groupings for many AA. The statistically significant multivariate results represent a first approach for testing ideas about relative eukaryotic vs. prokaryotic

  18. Formation of algae growth constitutive relations for improved algae modeling.

    Energy Technology Data Exchange (ETDEWEB)

    Gharagozloo, Patricia E.; Drewry, Jessica Louise.

    2013-01-01

    This SAND report summarizes research conducted as a part of a two year Laboratory Directed Research and Development (LDRD) project to improve our abilities to model algal cultivation. Algae-based biofuels have generated much excitement due to their potentially large oil yield from relatively small land use and without interfering with the food or water supply. Algae mitigate atmospheric CO2 through metabolism. Efficient production of algal biofuels could reduce dependence on foreign oil by providing a domestic renewable energy source. Important factors controlling algal productivity include temperature, nutrient concentrations, salinity, pH, and the light-to-biomass conversion rate. Computational models allow for inexpensive predictions of algae growth kinetics in these non-ideal conditions for various bioreactor sizes and geometries without the need for multiple expensive measurement setups. However, these models need to be calibrated for each algal strain. In this work, we conduct a parametric study of key marine algae strains and apply the findings to a computational model.

  19. Use of a nanoplanktonic alga as a test organism in marine molysmology. Some responses of Dunaliella Bioculata Butcher 1959 to gamma irradiation and to chromium and cadmium contamination

    International Nuclear Information System (INIS)

    Peneda-Saraiva, M.C.

    1975-01-01

    Some response of a nanoplanktonic alga, Dunaliella bioculata to gamma irradiation ( 60 Co) and to heavy metal contamination, (chromium and cadmium) used either at strong concentrations (stable isotopes) or as tracers ( 51 Cr) and ( 109 Cd) were studied. The average variation of several biological functions under the effect of these agents was followed: mitotic activity, culture development, cell volume, chlorophyll a and protein concentrations per cell per unit volume (μm 3 ), respiratory and photosynthetic activities, ultrastructure or cytological aspect of the algae. Concentration factors were investigated in cases of contamination. The method used include standard digital counting with a Thoma cell or a particle counter coupled to an amplitude analyser, volume estimation using the hematocrit, pigment determination by acetone extraction, protein determination by the Nessler method. The polarographic method of dissolved oxygen measurement was adapted for successive respiration and photosynthesis experiments on the material concerned. Any Cr and Cd incorporated by Dunaliella bioculata were determined after splitting of the cells and separation of the membranes from the cell contents. The quantity of metal present was measured on each fraction by atomic absorption spectrophotometry [fr

  20. Evaluation of the activated carbon prepared from the algae ...

    African Journals Online (AJOL)

    Evaluation of the activated carbon prepared from the algae Gracilaria for the biosorption of Cu(II) from aqueous solutions. ... African Journal of Biotechnology ... This study shows the benefit of using activated carbon from marine red algae as a low cost sorbent for the removal of copper from aqueous solution wastewater.

  1. Chemical examination of the brown alga Stoechospermum marginatum (C. Agardh)

    Digital Repository Service at National Institute of Oceanography (India)

    Wahidullah, S.; DeSouza, L.; Kamat, S.Y.

    The crude methalonic extract of marine algae Stoechospermum marginatum from west coast of India was found to have spasmolytic activity. Search for the pharmacologically active compounds led to the isolation of steroids, fatty acids and an ester...

  2. Chromosome organizaton in simple and complex unicellular organisms.

    Science.gov (United States)

    O'Sullivan, Justin M

    2011-01-01

    The genomes of unicellular organisms form complex 3-dimensional structures. This spatial organization is hypothesized to have a significant role in genomic function. Spatial organization is not limited solely to the three-dimensional folding of the chromosome(s) in genomes but also includes genome positioning, and the folding and compartmentalization of any additional genetic material (e.g. episomes) present within complex genomes. In this comment, I will highlight similarities in the spatial organization of eukaryotic and prokaryotic unicellular genomes.

  3. Biological toxicity of lanthanide elements on algae.

    Science.gov (United States)

    Tai, Peidong; Zhao, Qing; Su, Dan; Li, Peijun; Stagnitti, Frank

    2010-08-01

    The biological toxicity of lanthanides on marine monocellular algae was investigated. The specific objective of this research was to establish the relationship between the abundance in the seawater of lanthanides and their biological toxicities on marine monocellular algae. The results showed that all single lanthanides had similar toxic effects on Skeletonema costatum. High concentrations of lanthanides (29.04+/-0.61 micromol L(-1)) resulted in 50% reduction in growth of algae compared to the controls (0 micromol L(-1)) after 96 h (96 h-EC50). The biological toxicity of 13 lanthanides on marine monocellular algae was unrelated with the abundance of different lanthanide elements in nature, and the "Harkins rule" was not appropriate for the lanthanides. A mixed solution that contained equivalent concentrations of each lanthanide element had the same inhibition effect on algae cells as each individual lanthanide element at the same total concentration. This phenomenon is unique compared to the groups of other elements in the periodic table. Hence, we speculate that the monocellular organisms might not be able to sufficiently differentiate between the almost chemically identical lanthanide elements. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  4. Development of Green Fuels From Algae - The University of Tulsa

    Energy Technology Data Exchange (ETDEWEB)

    Crunkleton, Daniel; Price, Geoffrey; Johannes, Tyler; Cremaschi, Selen

    2012-12-03

    The general public has become increasingly aware of the pitfalls encountered with the continued reliance on fossil fuels in the industrialized world. In response, the scientific community is in the process of developing non-fossil fuel technologies that can supply adequate energy while also being environmentally friendly. In this project, we concentrate on green fuels which we define as those capable of being produced from renewable and sustainable resources in a way that is compatible with the current transportation fuel infrastructure. One route to green fuels that has received relatively little attention begins with algae as a feedstock. Algae are a diverse group of aquatic, photosynthetic organisms, generally categorized as either macroalgae (i.e. seaweed) or microalgae. Microalgae constitute a spectacularly diverse group of prokaryotic and eukaryotic unicellular organisms and account for approximately 50% of global organic carbon fixation. The PI's have subdivided the proposed research program into three main research areas, all of which are essential to the development of commercially viable algae fuels compatible with current energy infrastructure. In the fuel development focus, catalytic cracking reactions of algae oils is optimized. In the species development project, genetic engineering is used to create microalgae strains that are capable of high-level hydrocarbon production. For the modeling effort, the construction of multi-scaled models of algae production was prioritized, including integrating small-scale hydrodynamic models of algae production and reactor design and large-scale design optimization models.

  5. Downsides and benefits of unicellularity in budding yeast

    Science.gov (United States)

    Balazsi, Gabor; Chen, Lin; Kuzdzal-Fick, Jennie

    Yeast cells that do not separate after cell division form clumps. Clumping was shown to aid utilization of certain sugars, but its effects in stressful conditions are unknown. Generally speaking, what are the costs and benefits of unicellularity versus clumping multicellularity in normal and stressful conditions? To address this question, we evolved clumping yeast towards unicellularity by continuously propagating only those cells that remain suspended in liquid culture after settling. Whole-genome sequencing indicated that mutations in the AMN1 (antagonist of mitotic exit network) gene underlie the changes from clumping to unicellular phenotypes in these evolved yeast cells. Simple models predict that clumping should hinder growth in normal conditions while being protective in stress. Accordingly, we find experimentally that yeast clumps are more resistant to freeze/thaw, hydrogen peroxide, and ethanol stressors than their unicellular counterparts. On the other hand, unicellularity seems to be advantageous in normal conditions. Overall, these results reveal the downsides and benefits of unicellularity in different environmental conditions and uncover its genetic bases in yeast. This research was supported by the NIH Director's New Innovator Award Program (1DP2 OD006481-01), by NSF/IOS 1021675 and the Laufer Center for Physical & Quantitative Biology.

  6. A review of the taxonomical and ecological studies on Netherlands’ Algae

    NARCIS (Netherlands)

    Koster, Joséphine Th.

    1939-01-01

    The earliest account of the Netherlands’ Algae appeared in 1781 in D. de Gorter, Flora VII Prov. Belgii foederati indigen. Here, however, in the Algae lichens and liverworts have been incorporated. The true Algae, of which 35 are enumerated, are principally marine, though also aërophytical and

  7. Pathways of Lipid Metabolism in Marine Algae, Co-Expression Network, Bottlenecks and Candidate Genes for Enhanced Production of EPA and DHA in Species of Chromista

    Directory of Open Access Journals (Sweden)

    Alice Mühlroth

    2013-11-01

    Full Text Available The importance of n-3 long chain polyunsaturated fatty acids (LC-PUFAs for human health has received more focus the last decades, and the global consumption of n-3 LC-PUFA has increased. Seafood, the natural n-3 LC-PUFA source, is harvested beyond a sustainable capacity, and it is therefore imperative to develop alternative n-3 LC-PUFA sources for both eicosapentaenoic acid (EPA, 20:5n-3 and docosahexaenoic acid (DHA, 22:6n-3. Genera of algae such as Nannochloropsis, Schizochytrium, Isochrysis and Phaedactylum within the kingdom Chromista have received attention due to their ability to produce n-3 LC-PUFAs. Knowledge of LC-PUFA synthesis and its regulation in algae at the molecular level is fragmentary and represents a bottleneck for attempts to enhance the n-3 LC-PUFA levels for industrial production. In the present review, Phaeodactylum tricornutum has been used to exemplify the synthesis and compartmentalization of n-3 LC-PUFAs. Based on recent transcriptome data a co-expression network of 106 genes involved in lipid metabolism has been created. Together with recent molecular biological and metabolic studies, a model pathway for n-3 LC-PUFA synthesis in P. tricornutum has been proposed, and is compared to industrialized species of Chromista. Limitations of the n-3 LC-PUFA synthesis by enzymes such as thioesterases, elongases, acyl-CoA synthetases and acyltransferases are discussed and metabolic bottlenecks are hypothesized such as the supply of the acetyl-CoA and NADPH. A future industrialization will depend on optimization of chemical compositions and increased biomass production, which can be achieved by exploitation of the physiological potential, by selective breeding and by genetic engineering.

  8. In vitro vascular effects produced by crude aqueous extract of green marine algae, Cladophora patentiramea (Mont.) Kützing, in aorta from normotensive rats.

    Science.gov (United States)

    Lim, Yee-Ling; Mok, Shiueh-Lian

    2010-01-01

    To investigate the antihypertensive activity of aqueous extracts obtained from Malaysian coastal seaweeds and to determine the pharmacological mechanisms of the extracts on rat aorta in vitro. The antihypertensive activity of 11 species of seaweeds (5 brown, 1 red and 5 green algae) were tested by cumulative addition of the extracts to phenylephrine (PE)-precontracted Wistar-Kyoto (WKY) aortic rings in in vitro isometric contraction studies. Mechanisms for vasorelaxant effect were investigated in the presence of various antagonists. Of the 11 species tested, 2 showed a vasorelaxant effect. Further investigation of the mechanisms of action of the aqueous extract of green alga, Cladophora patentiramea (AECP),showed that the vascular relaxant effect was endothelium- and concentration-dependent. A maximum relaxation of 45.8 +/- 4.6% (n = 8, p < 0.001) was obtained at 0.1 mg/ml of extract, after which the response was found to reduce in a concentration-dependent manner to 15.7 +/- 4.9% (n = 8, p < 0.001) at the highest extract concentration tested. Pretreatment of endothelium-intact aortic rings with Nomega-nitro-L-arginine methyl ester (L-NAME, 30 microM), (1)H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 10 microM) and methylene blue (100 microM) resulted in a complete blockade of AECP-induced vasorelaxation. However, the relaxant effects of the extract were not blocked by atropine (1 microM), indomethacin (10 microM) and glibenclamide (10 microM), although the maximum relaxant responses were enhanced in the presence of glibenclamide. Our data showed that the in vitro vascular relaxant effect of AECPwas mediated through endothelium-dependent nitric oxide-cGMP pathway, and was not associated with the release of vasodilator prostaglandins, activation of muscarinic receptors, or ATP-sensitive potassium channels opening. Copyright 2010 S. Karger AG, Basel.

  9. Influence of the quantity and quality of light on photosynthetic periodicity in coral endosymbiotic algae.

    Directory of Open Access Journals (Sweden)

    Michal Sorek

    Full Text Available Symbiotic corals, which are benthic organisms intimately linked with their environment, have evolved many ways to deal with fluctuations in the local marine environment. One possible coping mechanism is the endogenous circadian clock, which is characterized as free running, maintaining a ~24 h periodicity of circuits under constant stimuli or in the absence of external cues. The quantity and quality of light were found to be the most influential factors governing the endogenous clock for plants and algae. Unicellular dinoflagellate algae are among the best examples of organisms that exhibit circadian clocks using light as the dominant signal. This study is the first to examine the effects of light intensity and quality on the rhythmicity of photosynthesis in the symbiotic dinoflagellate Symbiodinium sp., both as a free-living organism and in symbiosis with the coral Stylophora pistillata. Oxygen production measurements in Symbiodinium cultures exhibited rhythmicity with a periodicity of approximately 24 h under constant high light (LL, whereas under medium and low light, the cycle time increased. Exposing Symbiodinium cultures and corals to spectral light revealed different effects of blue and red light on the photosynthetic rhythm, specifically shortening or increasing the cycle time respectively. These findings suggest that the photosynthetic rhythm is entrained by different light cues, which are wired to an endogenous circadian clock. Furthermore, we provide evidence that mRNA expression was higher under blue light for two potential cryptochrome genes and higher under red light for a phytochrome gene isolated from Symbiodinium. These results offer the first evidence of the impact of the intensity and quality of light on the photosynthetic rhythm in algal cells living freely or as part of a symbiotic association. Our results indicate the presence of a circadian oscillator in Symbiodinium governing the photosynthetic apparatus through a light

  10. Method 446.0: In Vitro Determination of Chlorophylls a, b, c + c and Pheopigments in 1 2Marine And Freshwater Algae by Visible Spectrophotometry

    Science.gov (United States)

    This method provides a procedure for determination of chlorophylls a (chl a), b (chl b), c + c 1 2 (chl c + c ) and pheopigments of chlorophyll a (pheo a) 1 2 found in marine and freshwater phytoplankton. Chlorophyllide a is determined as chl a. Visible wavelength spectrophotomet...

  11. Magnetic separation of algae

    Science.gov (United States)

    Nath, Pulak; Twary, Scott N.

    2016-04-26

    Described herein are methods and systems for harvesting, collecting, separating and/or dewatering algae using iron based salts combined with a magnetic field gradient to separate algae from an aqueous solution.

  12. Blue-Green Algae

    Science.gov (United States)

    ... that taking a specific blue-green algae product (Super Blue-Green Algae, Cell Tech, Klamath Falls, OR) ... system. Premenstrual syndrome (PMS). Depression. Digestion. Heart disease. Memory. Wound healing. Other conditions. More evidence is needed ...

  13. Anaerobic Degradation of Marine Algae, Seagrass and Tropical Climbing Vines to Produce a Renewable Energy Source and the Analysis of Their Anaerobic Microbial Communities

    Science.gov (United States)

    2013-01-01

    specific mechanisms and enzymes as a result of their complex structure. For these reasons there have been searches for other biomasses that may...Te’o, V., Saul, D., Morgan, H. 1999. Molecular diversity of thermophilic cellulolytic and hemicellulolytic bacteria. Microbiology Ecology, 28:99-110...lyase genes from deep-sea strains of Vibrio and Agarivorans and characterization of a new Vibrio enzyme . Marine Biotechnology, 12:526-533. Ugwu, C

  14. Inhibitory effect of a Brazilian marine brown alga Spatoglossum schröederi on biological activities of Lachesis muta snake venom

    Directory of Open Access Journals (Sweden)

    Thaisa Francielle Souza Domingos

    2012-04-01

    Full Text Available The ability of crude extracts of the brown seaweed Spatoglossum schröederi to counteract some of the biological activities of Lachesis muta snake venom was evaluated. In vitro assays showed that only the extract of S. schröederi prepared in ethyl acetate was able to inhibit the clotting of fibrinogen induced by L. muta venom. On the other hand, all extracts were able to inhibit partially the hemolysis caused by venom and those prepared in dichloromethane or ethyl acetate fully neutralized the proteolysis and hemorrhage produced by the venom. Moreover, the dichloromethane or ethyl acetate extracts inhibited the hemolysis induced by an isolated phospholipase A2 from L. muta venom, called LM-PLA2-I. In contrast, the hexane extract failed to protect mice from hemorrhage or to inhibit proteolysis and clotting. These results show that the polarity of the solvent used to prepare the extracts of S. schröederi algae influenced the potency of the inhibitory effect of the biological activities induced by L. muta venom. Thus, the seaweed S. schröederi may be a promising source of natural inhibitors of the enzymes involved in biological activities of L. muta venom.

  15. Bibliographic checklist of the marine benthic algae of Central Polynesia in the Pacific Ocean (Excluding Hawai‘i and French Polynesia

    Directory of Open Access Journals (Sweden)

    Tsuda, R.T.

    2013-04-01

    Full Text Available The Polynesian algal bibliographic checklist is based on records from past references for American Samoa and Samoa (380 spp., Cook Islands (111 spp., Johnston Atoll (190 spp., Line Islands (250 spp., Niue (3 spp., Phoenix Islands (193 spp., Pitcairn Islands (23 spp., Tokelau (1 sp., Tonga (109 spp., Wake Atoll (121 spp. and Wallis and Futuna (191 spp. and consists of three sections. The first section (I. Classification provides a listing of classes, orders, and families of the 238 genera of Polynesian algae. The second section (II. Species-Reference Index provides an alphabetized listing of the 667 named algal species under the four Phyla, i.e., Cyanobacteria (68 species, Rhodophyta (373 species, Ochrophyta (59 species and Chlorophyta (167 species with the applicable reference citations for each island or atoll. Brief taxonomic or nomenclatural notes are provided, when appropriate, for selected species. The third section (III. Island-Reference Index provides a chronological listing of all published references for the respective island or atoll in each island group. The complete references for all citations in the text are provided in the Reference section.

  16. Factors Affecting the Mating Competence in the Unicellular Green Alga Chlamydomonas eugametos (Volvocales)

    Czech Academy of Sciences Publication Activity Database

    Zachleder, Vilém; Hendrychová, Jana; Bišová, Kateřina; Kubín, Štěpán

    2002-01-01

    Roč. 47, č. 1 (2002), s. 69-72 ISSN 0015-5632 R&D Projects: GA ČR GA204/97/0576; GA AV ČR IAC5020012 Institutional research plan: CEZ:AV0Z5020903 Keywords : routineli * prepared * gametes Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.979, year: 2002

  17. Bioenergetic reprogramming plasticity under nitrogen depletion by the unicellular green alga Scenedesmus obliquus.

    Science.gov (United States)

    Papazi, Aikaterini; Korelidou, Anna; Andronis, Efthimios; Parasyri, Athina; Stamatis, Nikolaos; Kotzabasis, Kiriakos

    2018-03-01

    Simultaneous nitrogen depletion and 3,4-dichlorophenol addition induce a bioenergetic microalgal reprogramming, through strong Cyt b 6 f synthesis, that quench excess electrons from dichlorophenol's biodegradation to an overactivated photosynthetic electron flow and H 2 -productivity. Cellular energy management includes "rational" planning and operation of energy production and energy consumption units. Microalgae seem to have the ability to calculate their energy reserves and select the most profitable bioenergetic pathways. Under oxygenic mixotrophic conditions, microalgae invest the exogenously supplied carbon source (glucose) to biomass increase. If 3,4-dichlorophenol is added in the culture medium, then glucose is invested more to biodegradation rather than to growth. The biodegradation yield is enhanced in nitrogen-depleted conditions, because of an increase in the starch accumulation and a delay in the establishment of oxygen-depleted conditions in a closed system. In nitrogen-depleted conditions, starch cannot be invested in PSII-dependent and PSII-independent pathways for H 2 -production, mainly because of a strong decrease of the cytochrome b 6 f complex of the photosynthetic electron flow. For this reason, it seems more profitable for the microalga under these conditions to direct the metabolism to the synthesis of lipids as cellular energy reserves. Nitrogen-depleted conditions with exogenously supplied 3,4-dichlorophenol induce reprogramming of the microalgal bioenergetic strategy. Cytochrome b 6 f is strongly synthesized (mainly through catabolism of polyamines) to manage the electron bypass from the dichlorophenol biodegradation procedure to the photosynthetic electron flow (at the level of PQ pool) and consequently through cytochrome b 6 f and PSI to hydrogenase and H 2 -production. All the above showed that the selection of the appropriate cultivation conditions is the key for the manipulation of microalgal bioenergetic strategy that leads to different metabolic products and paves the way for a future microalgal "smart" biotechnology.

  18. Cell growth and protein synthesis of unicellular green alga Chlamydomonas in heavy water

    International Nuclear Information System (INIS)

    Ishida, M.R.

    1983-01-01

    The effects of heavy water on the cell growth and protein synthesis of the photoautotrophically growing Chlamydomonas cells were studied. The growth rate of the cells is inversely proportional to the concentrations of heavy water. The cells can barely live in 90% heavy water, but they die in 99.85% heavy water within a few days. Incorporation of 14 Cleucine into cells is markedly stimulated by heavy water of various concentrations between 30 and 99.85% in the case of the short time incubation. Contrary to this, in the long time incubation as several days, heavy water inhibits the protein synthesis. Such two modes of the protein synthetic activities are dependent upon the incubation time of the cells grown photoautotrophically in the heavy water media. (author)

  19. Interspecific variation in total phenolic content in temperate brown algae

    Directory of Open Access Journals (Sweden)

    Anna Maria Mannino

    2017-09-01

    Full Text Available Marine algae synthesize secondary metabolites such as polyphenols that function as defense and protection mechanisms. Among brown algae, Fucales and Dictyotales (Phaeophyceae contain the highest levels of phenolic compounds, mainly phlorotannins, that play multiple roles. Four temperate brown algae (Cystoseira amentacea, Cystoseira compressa, Dictyopteris polypodioides and Padina pavonica were studied for total phenolic contents. Total phenolic content was determined colorimetrically with the Folin-Ciocalteu reagent. Significant differences in total phenolic content were observed between leathery and sheetlike algae and also within each morphological group. Among the four species, the sheet-like alga D. polypodioides, living in the upper infralittoral zone, showed the highest concentration of phenolic compounds. These results are in agreement with the hypothesis that total phenolic content in temperate brown algae is influenced by a combination of several factors, such as growth form, depth, and exposition to solar radiation.

  20. Marine renewable energies. When researchers consider the ocean as an energy source. Offshore wind power. The thermal energy of seas, a solar resource to be no longer neglected. Lipid biofuels production by micro-algae

    International Nuclear Information System (INIS)

    Ruer, J.; Gauthier, M.; Zaharia, R.; Cadoret, J.P.

    2008-01-01

    In the present day context of search for renewable energy sources, it is surprising that the oceans energy, potentially enormous, is poorly taken into consideration with respect to the other renewable energy sources, while France has been a pioneer in this domain with the construction of the Rance tidal power plant in the 1960's, and still in operation today. However, the scientific community, and in particular the IFREMER institute in France, is developing R and D programs on marine energy technologies. On the other hand, the development of wind power is growing up rapidly with a worldwide installed capacity exceeding today 94000 MW and supplying 3% of the electricity consumed in Europe. The development of offshore wind farms represents today 1122 MW and should grow up very fast in the coming years. The ocean is also a huge reservoir of thermal energy which can be exploited to generate electricity and desalinated water. Finally, the cultivation of micro-algae for the enhanced production of lipids may be a more ecological alternative to the terrestrial production of biofuels, strongly criticized today for its long term environmental impacts. (J.S.)

  1. Carotenoids in Marine Animals

    OpenAIRE

    Maoka, Takashi

    2011-01-01

    Marine animals contain various carotenoids that show structural diversity. These marine animals accumulate carotenoids from foods such as algae and other animals and modify them through metabolic reactions. Many of the carotenoids present in marine animals are metabolites of β-carotene, fucoxanthin, peridinin, diatoxanthin, alloxanthin, and astaxanthin, etc. Carotenoids found in these animals provide the food chain as well as metabolic pathways. In the present review, I will describe marine a...

  2. Motility, Force Generation, and Energy Consumption of Unicellular Parasites.

    Science.gov (United States)

    Hochstetter, Axel; Pfohl, Thomas

    2016-07-01

    Motility is a key factor for pathogenicity of unicellular parasites, enabling them to infiltrate and evade host cells, and perform several of their life-cycle events. State-of-the-art methods of motility analysis rely on a combination of optical tweezers with high-resolution microscopy and microfluidics. With this technology, propulsion forces, energies, and power generation can be determined so as to shed light on the motion mechanisms, chemotactic behavior, and specific survival strategies of unicellular parasites. With these new tools in hand, we can elucidate the mechanisms of motility and force generation of unicellular parasites, and identify ways to manipulate and eventually inhibit them. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Marine Microalgae with Anti-Cancer Properties.

    Science.gov (United States)

    Martínez Andrade, Kevin A; Lauritano, Chiara; Romano, Giovanna; Ianora, Adrianna

    2018-05-15

    Cancer is the leading cause of death globally and finding new therapeutic agents for cancer treatment remains a major challenge in the pursuit for a cure. This paper presents an overview on microalgae with anti-cancer activities. Microalgae are eukaryotic unicellular plants that contribute up to 40% of global primary productivity. They are excellent sources of pigments, lipids, carotenoids, omega-3 fatty acids, polysaccharides, vitamins and other fine chemicals, and there is an increasing demand for their use as nutraceuticals and food supplements. Some microalgae are also reported as having anti-cancer activity. In this review, we report the microalgal species that have shown anti-cancer properties, the cancer cell lines affected by algae and the concentrations of compounds/extracts tested to induce arrest of cell growth. We also report the mediums used for growing microalgae that showed anti-cancer activity and compare the bioactivity of these microalgae with marine anticancer drugs already on the market and in phase III clinical trials. Finally, we discuss why some microalgae can be promising sources of anti-cancer compounds for future development.

  4. Novel Metabolic Attributes of the Genus Cyanothece, Comprising a Group of Unicellular Nitrogen-Fixing Cyanobacteria

    Science.gov (United States)

    Bandyopadhyay, Anindita; Elvitigala, Thanura; Welsh, Eric; Stöckel, Jana; Liberton, Michelle; Min, Hongtao; Sherman, Louis A.; Pakrasi, Himadri B.

    2011-01-01

    ABSTRACT The genus Cyanothece comprises unicellular cyanobacteria that are morphologically diverse and ecologically versatile. Studies over the last decade have established members of this genus to be important components of the marine ecosystem, contributing significantly to the nitrogen and carbon cycle. System-level studies of Cyanothece sp. ATCC 51142, a prototypic member of this group, revealed many interesting metabolic attributes. To identify the metabolic traits that define this class of cyanobacteria, five additional Cyanothece strains were sequenced to completion. The presence of a large, contiguous nitrogenase gene cluster and the ability to carry out aerobic nitrogen fixation distinguish Cyanothece as a genus of unicellular, aerobic nitrogen-fixing cyanobacteria. Cyanothece cells can create an anoxic intracellular environment at night, allowing oxygen-sensitive processes to take place in these oxygenic organisms. Large carbohydrate reserves accumulate in the cells during the day, ensuring sufficient energy for the processes that require the anoxic phase of the cells. Our study indicates that this genus maintains a plastic genome, incorporating new metabolic capabilities while simultaneously retaining archaic metabolic traits, a unique combination which provides the flexibility to adapt to various ecological and environmental conditions. Rearrangement of the nitrogenase cluster in Cyanothece sp. strain 7425 and the concomitant loss of its aerobic nitrogen-fixing ability suggest that a similar mechanism might have been at play in cyanobacterial strains that eventually lost their nitrogen-fixing ability. PMID:21972240

  5. Molecular analysis of the replication program in unicellular model organisms.

    Science.gov (United States)

    Raghuraman, M K; Brewer, Bonita J

    2010-01-01

    Eukaryotes have long been reported to show temporal programs of replication, different portions of the genome being replicated at different times in S phase, with the added possibility of developmentally regulated changes in this pattern depending on species and cell type. Unicellular model organisms, primarily the budding yeast Saccharomyces cerevisiae, have been central to our current understanding of the mechanisms underlying the regulation of replication origins and the temporal program of replication in particular. But what exactly is a temporal program of replication, and how might it arise? In this article, we explore this question, drawing again on the wealth of experimental information in unicellular model organisms.

  6. What do unicellular organisms teach us about DNA methylation?

    Science.gov (United States)

    Harony, Hala; Ankri, Serge

    2008-05-01

    DNA methylation is an epigenetic hallmark that has been studied intensively in mammals and plants. However, knowledge of this phenomenon in unicellular organisms is scanty. Examining epigenetic regulation, and more specifically DNA methylation, in these organisms represents a unique opportunity to better understand their biology. The determination of their methylation status is often complicated by the presence of several differentiation stages in their life cycle. This article focuses on some recent advances that have revealed the unexpected nature of the epigenetic determinants present in protozoa. The role of the enigmatic DNA methyltransferase Dnmt2 in unicellular organisms is discussed.

  7. Novel metabolic attributes of the genus cyanothece, comprising a group of unicellular nitrogen-fixing Cyanothece.

    Science.gov (United States)

    Bandyopadhyay, Anindita; Elvitigala, Thanura; Welsh, Eric; Stöckel, Jana; Liberton, Michelle; Min, Hongtao; Sherman, Louis A; Pakrasi, Himadri B

    2011-01-01

    The genus Cyanothece comprises unicellular cyanobacteria that are morphologically diverse and ecologically versatile. Studies over the last decade have established members of this genus to be important components of the marine ecosystem, contributing significantly to the nitrogen and carbon cycle. System-level studies of Cyanothece sp. ATCC 51142, a prototypic member of this group, revealed many interesting metabolic attributes. To identify the metabolic traits that define this class of cyanobacteria, five additional Cyanothece strains were sequenced to completion. The presence of a large, contiguous nitrogenase gene cluster and the ability to carry out aerobic nitrogen fixation distinguish Cyanothece as a genus of unicellular, aerobic nitrogen-fixing cyanobacteria. Cyanothece cells can create an anoxic intracellular environment at night, allowing oxygen-sensitive processes to take place in these oxygenic organisms. Large carbohydrate reserves accumulate in the cells during the day, ensuring sufficient energy for the processes that require the anoxic phase of the cells. Our study indicates that this genus maintains a plastic genome, incorporating new metabolic capabilities while simultaneously retaining archaic metabolic traits, a unique combination which provides the flexibility to adapt to various ecological and environmental conditions. Rearrangement of the nitrogenase cluster in Cyanothece sp. strain 7425 and the concomitant loss of its aerobic nitrogen-fixing ability suggest that a similar mechanism might have been at play in cyanobacterial strains that eventually lost their nitrogen-fixing ability. The unicellular cyanobacterial genus Cyanothece has significant roles in the nitrogen cycle in aquatic and terrestrial environments. Cyanothece sp. ATCC 51142 was extensively studied over the last decade and has emerged as an important model photosynthetic microbe for bioenergy production. To expand our understanding of the distinctive metabolic capabilities of

  8. Factors controlling induction of reproduction in algae--review: the text.

    Science.gov (United States)

    Agrawal, S C

    2012-09-01

    This review surveys on the influence of different environmental factors like light (intensity, quality, photoperiod), temperature, season, nutrients (inorganic, organic), biotic factors (algal extracellular products, bacterial association, animals grazing), osmotic stress, pH of the medium, wave motion and mechanical shock, pollution, and radiations (UV, X-rays, gamma radiation) on the induction (or inhibition) of algal reproduction like cell division in unicellular algae, and formation of zoospores, aplanospores, akinetes, cysts, antheridia, oogonia, zygospores, etc.

  9. Paleolatitudinal Gradients in Marine Phytoplankton Composition and Cell Size

    Science.gov (United States)

    Henderiks, J.; Bordiga, M.; Bartol, M.; Šupraha, L.

    2014-12-01

    Coccolithophores, a prominent group of marine calcifying unicellular algae, are widely studied in context of current and past climate change. We know that marine phytoplankton are sensitive to climatic changes, but the complex interplay of several processes such as warming, changes in nutrient content, and ocean acidification, makes future scenarios difficult to predict. Some taxa may be more susceptible to environmental perturbations than others, as evidenced by significantly different species-specific sensitivities observed in laboratory experiments. However, short-term plastic responses may not translate into longer-term climatic adaptation, nor should we readily extrapolate the behavior of single strains in the laboratory to natural, multi-species assemblages and their interactions in the ocean. The extensive fossil record of coccolithophores (in the form of coccoliths) reveals high morphological and taxonomic diversity and allows reconstructing the cell size of individual taxonomic groups. In a suite of deep-sea drilling sites from the Atlantic Ocean, we document distinct latitudinal gradients in phytoplankton composition and cell size across major climate transitions of the late Eocene - earliest Oligocene, and the middle - late Miocene. With these data we test hypotheses of species migration, phenotypic evolution, as well as the rates of species extinction and speciation in relation to concurrent paleoenvironmental changes during the Cenozoic.

  10. Green Algae as Model Organisms for Biological Fluid Dynamics

    Science.gov (United States)

    Goldstein, Raymond E.

    2015-01-01

    In the past decade, the volvocine green algae, spanning from the unicellular Chlamydomonas to multicellular Volvox, have emerged as model organisms for a number of problems in biological fluid dynamics. These include flagellar propulsion, nutrient uptake by swimming organisms, hydrodynamic interactions mediated by walls, collective dynamics and transport within suspensions of microswimmers, the mechanism of phototaxis, and the stochastic dynamics of flagellar synchronization. Green algae are well suited to the study of such problems because of their range of sizes (from 10 μm to several millimeters), their geometric regularity, the ease with which they can be cultured, and the availability of many mutants that allow for connections between molecular details and organism-level behavior. This review summarizes these recent developments and highlights promising future directions in the study of biological fluid dynamics, especially in the context of evolutionary biology, that can take advantage of these remarkable organisms.

  11. The role of UV-B radiation in aquatic and terrestrial ecosystems - an experimental and functional analysis of the evolution of UV-absorbing componist.

    NARCIS (Netherlands)

    Rozema, J.; Bjorn, L.O.; Bornman, J.F.; Gaberscik, A.; Hader, D.P.; Trost, T.; Germ, M.; Klisch, M.; Groniger, A.; Sinha, R.P.; Lebert, M.; He, Y.Y.; Buffoni-Hall, R.; Bakker, N.; van de Staaij, J.W.M.; Meijkamp, B.B.

    2002-01-01

    We analysed and compared the functioning of UV-B screening pigments in plants from marine, fresh water and terrestrial ecosystems, along the evolutionary line of cyanobacteria, unicellular algae, primitive multicellular algae, charophycean algae, lichens, mosses and higher plants, including

  12. Preliminary study on the responses of three marine algae, Ulva pertusa (Chlorophyta), Gelidium amansii (Rhodophyta) and Sargassum enerve (Phaeophyta), to nitrogen source and its availability

    Science.gov (United States)

    Liu, Dongyan; Amy, Pickering; Sun, Jun

    2004-04-01

    An experiment was designed to select economically valuable macroalga species with high nutrient uptake rates. Such species cultured on a large scale could be a potential solution to eutrophication. Three macroalgae species, Ulva pertusa (Chlorophyta), Gelidium amansii (Rhodophyta) and Sargassum enerve (Phaeophyta), were chosen for the experiment because of their economic values and availability. Control and four nitrogen concentrations were achieved by adding NH{4/+} and NO{3/-}. The results indicate that the fresh weights of all species increase faster than that of control after 5 d culture. The fresh weight of Ulva pertusa increases fastest among the 3 species. However, different species show different responses to nitrogen source and its availability. They also show the advantage of using NH{4/+} than using NO{3/-}. U. pertusa grows best and shows higher capability of removing nitrogen at 200µmolL-1, but it has lower economical value. G. amansii has higher economical value but lower capability of removing nitrogen at 200 µmolL-1. The capability of nitrogen assimilation of S. enerve is higher than that of G. amansii at 200µmolL -1, but the former’s increase of fresh weight is lower than those of other two species. Then present preliminary study demonstrates that it is possible to use macroalgae as biofilters and further development of this approach could provide biologically valuable information on the source, fate, and transport of N in marine ecosystems. Caution is needed should we extrapolate these findings to natural environments.

  13. Comparison of Protein Extracts from Various Unicellular Green Sources

    NARCIS (Netherlands)

    Teuling, Emma; Wierenga, Peter A.; Schrama, Johan W.; Gruppen, Harry

    2017-01-01

    Photosynthetic unicellular organisms are considered as promising alternative protein sources. The aim of this study is to understand the extent to which these green sources differ with respect to their gross composition and how these differences affect the final protein isolate. Using mild isolation

  14. Compositional patterns in the genomes of unicellular eukaryotes.

    Science.gov (United States)

    Costantini, Maria; Alvarez-Valin, Fernando; Costantini, Susan; Cammarano, Rosalia; Bernardi, Giorgio

    2013-11-05

    The genomes of multicellular eukaryotes are compartmentalized in mosaics of isochores, large and fairly homogeneous stretches of DNA that belong to a small number of families characterized by different average GC levels, by different gene concentration (that increase with GC), different chromatin structures, different replication timing in the cell cycle, and other different properties. A question raised by these basic results concerns how far back in evolution the compartmentalized organization of the eukaryotic genomes arose. In the present work we approached this problem by studying the compositional organization of the genomes from the unicellular eukaryotes for which full sequences are available, the sample used being representative. The average GC levels of the genomes from unicellular eukaryotes cover an extremely wide range (19%-60% GC) and the compositional patterns of individual genomes are extremely different but all genomes tested show a compositional compartmentalization. The average GC range of the genomes of unicellular eukaryotes is very broad (as broad as that of prokaryotes) and individual compositional patterns cover a very broad range from very narrow to very complex. Both features are not surprising for organisms that are very far from each other both in terms of phylogenetic distances and of environmental life conditions. Most importantly, all genomes tested, a representative sample of all supergroups of unicellular eukaryotes, are compositionally compartmentalized, a major difference with prokaryotes.

  15. Effect of different dietary concentrations of brown marine algae (Sargassum dentifebium prepared by different methods on plasma and yolk lipid profiles, yolk total carotene and lutein plus zeaxanthin of laying hens

    Directory of Open Access Journals (Sweden)

    Ahmed A. El-Deek

    2012-10-01

    Full Text Available The effect of different concentrations (0%, 3% and 6% of brown marine algae (BMA, Sargassum dentifebium prepared according to different methods (sun-dried, SBMA; boiled, BBMA; autoclaved, ABMA on plasma and yolk lipid profiles, carotene, and lutein plus zeaxanthin in egg yolks was studied in hens aged from 23 to 42 weeks (30 hens per treatment. We determined the fatty acid profiles in BMA and in the egg yolk of hens fed different levels of BMA prepared according to different methods. In addition, plasma and yolk lipid profiles, yolk total carotene, and lutein plus zeaxanthin were determined at week 42 of age. Plasma and yolk cholesterol were significantly lower in groups fed diets containing either 3% or 6% BMA than in the control group, but high-density lipoprotein (HDL significantly decreased as BMA concentration increased. There was a significant similar decline in yolk triglycerides with inclusion of either 3% or 6% BMA in the laying hen diet. Palmitic acid was the main saturated fatty acid (SFA found in BMA and oleic acid (omega-9 and linoleic acid (omega-6 were the main unsaturated fatty acids (UFA, while there was a significant increase in palmitic acid in egg yolk when BMA was included at 6%. There was a significant increase in oleic acid (omega-9 when feed containing 3% BMA was given compared to the control group, but this decreased with a further increase in BMA. Linoleic acid (omega-6 also significantly decreased with inclusion of either 3% or 6% BMA. There was a significant increase in total carotene and lutein plus zeaxanthin in the laying hen eggs as a result of feeding diets containing 3% and 6% BMA.

  16. Induction of Phase Variation Events in the Life Cycle of the Marine Coccolithophorid Emiliania huxleyi

    Science.gov (United States)

    Laguna, Richard; Romo, Jesus; Read, Betsy A.; Wahlund, Thomas M.

    2001-01-01

    Emiliania huxleyi is a unicellular marine alga that is considered to be the world's major producer of calcite. The life cycle of this alga is complex and is distinguished by its ability to synthesize exquisitely sculptured calcium carbonate cell coverings known as coccoliths. These structures have been targeted by materials scientists for applications relating to the chemistry of biomedical materials, robust membranes for high-temperature separation technology, lightweight ceramics, and semiconductor design. To date, however, the molecular and biochemical events controlling coccolith production have not been determined. In addition, little is known about the life cycle of E. huxleyi and the environmental and physiological signals triggering phase switching between the diploid and haploid life cycle stages. We have developed laboratory methods for inducing phase variation between the haploid (S-cell) and diploid (C-cell) life cycle stages of E. huxleyi. Plating E. huxleyi C cells on solid media was shown to induce phase switching from the C-cell to the S-cell life cycle stage, the latter of which has been maintained for over 2 years under these conditions. Pure cultures of S cells were obtained for the first time. Laboratory conditions for inducing phase switching from the haploid stage to the diploid stage were also established. Regeneration of the C-cell stage from pure cultures of S cells followed a predictable pattern involving formation of large aggregations of S cells and the subsequent production of cultures consisting predominantly of diploid C cells. These results demonstrate the ability to manipulate the life cycle of E. huxleyi under controlled laboratory conditions, providing us with powerful tools for the development of genetic techniques for analysis of coccolithogenesis and for investigating the complex life cycle of this important marine alga. PMID:11525973

  17. Algae Derived Biofuel

    Energy Technology Data Exchange (ETDEWEB)

    Jahan, Kauser [Rowan Univ., Glassboro, NJ (United States)

    2015-03-31

    One of the most promising fuel alternatives is algae biodiesel. Algae reproduce quickly, produce oils more efficiently than crop plants, and require relatively few nutrients for growth. These nutrients can potentially be derived from inexpensive waste sources such as flue gas and wastewater, providing a mutual benefit of helping to mitigate carbon dioxide waste. Algae can also be grown on land unsuitable for agricultural purposes, eliminating competition with food sources. This project focused on cultivating select algae species under various environmental conditions to optimize oil yield. Membrane studies were also conducted to transfer carbon di-oxide more efficiently. An LCA study was also conducted to investigate the energy intensive steps in algae cultivation.

  18. Evaluation of filamentous green algae as feedstocks for biofuel production.

    Science.gov (United States)

    Zhang, Wei; Zhao, Yonggang; Cui, Binjie; Wang, Hui; Liu, Tianzhong

    2016-11-01

    Compared with unicellular microalgae, filamentous algae have high resistance to grazer-predation and low-cost recovery in large-scale production. Green algae, as the most diverse group of algae, included numerous filamentous genera and species. In this study, records of filamentous genera and species in green algae were firstly censused and classified. Then, seven filamentous strains subordinated in different genera were cultivated in bubbled-column to investigate their growth rate and energy molecular (lipid and starch) capacity. Four strains including Stigeoclonium sp., Oedogonium nodulosum, Hormidium sp. and Zygnema extenue were screened out due to their robust growth. And they all could accumulate triacylglycerols and starch in their biomass, but with different capacity. After nitrogen starvation, Hormidium sp. and Oedogonium nodulosum respectively exhibited high capacity of lipid (45.38% in dry weight) and starch (46.19% in dry weight) accumulation, which could be of high potential as feedstocks for biodiesel and bioethanol production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Marine flora of Nicobar group of islands in Anadman Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Jagtap, T.G.

    The marine flora of 4 islands comprised 66 species of marine algae, 7 of seagrasses, and 10 of mangroves. Maximum number of marine algae (6) and mangroves (9) were reported from Great Nicobar Island, whereas more (7) species of seagrasses were...

  20. Marine biotechnology: Opportunities for India

    Digital Repository Service at National Institute of Oceanography (India)

    Chandramohan, D.

    manipulation is now reality. High yielding, fast growing and disease resistant strains of fish, shellfish and algae will boost the aquaculture industry. There may be a solution for all the problems of waste disposal in the marine environment. Considering...

  1. Bioremediation of Heavy Metal by Algae

    Directory of Open Access Journals (Sweden)

    Seema Dwivedi

    2012-07-01

    Full Text Available Instead of using mainly bacteria, it is also possible to use mainly algae to clean wastewater because many of the pollutant sources in wastewater are also food sources for algae. Nitrates and phosphates are common components of plant fertilizers for plants. Like plants, algae need large quantities of nitrates and phosphates to support their fast cell cycles. Certain heavy metals are also important for the normal functioning of algae. These include iron (for photosynthesis, and chromium (for metabolism. Because marine environments are normally scarce in these metals, some marine algae especially have developed efficient mechanisms to gather these heavy metals from the environment and take them up. These natural processes can also be used to remove certain heavy metals from the environment. The use of algae has several advantages over normal bacteria-based bioremediation processes. One major advantage in the removal of pollutants is that this is a process that under light conditions does not need oxygen. Instead, as pollutants are taken up and digested, oxygen is added while carbon dioxide is removed. Hence, phytoremediation could potentially be coupled with carbon sequestration. Additionally, because phytoremediation does not rely on fouling processes, odors are much less a problem. Microalgae, in particular, have been recognized as suitable vectors for detoxification and have emerged as a potential low-cost alternative to physicochemical treatments. Uptake of metals by living microalgae occurs in two steps: one takes place rapidly and is essentially independent of cell metabolism – “adsorption” onto the cell surface. The other one is lengthy and relies on cell metabolism – “absorption” or “intracellular uptake.” Nonviable cells have also been successfully used in metal removal from contaminated sites. Some of the technologies in heavy metal removals, such as High Rate Algal Ponds and Algal Turf Scrubber, have been justified for

  2. Study on the distribution and chemism of medium- and long-lived radionuclides in relation to corresponding microelements in the marine environment, algae and sediment on the Romanian cost. Part of a coordinated programme on marine radioactivity studies

    International Nuclear Information System (INIS)

    Georgescu, I.

    1976-09-01

    Comprehensive baseline data on various radionuclides as well as trace elements are presented for sea water, sediments and marine organisms collected from the Romanian coast of the Black Sea. Similar data are also presented for the samples collected along the Danube River. While no artificial radionuclide was found in the Black Sea water collected at 200m depth, where the anerobic condition prevails, the bottom sediment at the same station contained 137 Cs and other radionuclides. These results suggest that some precipitation process, most probably related to the occurrence of H 2 S, is taking place at this depth. The occurrence of divalent as well as trivalent iron in the bottom sediments proves possible reduction of various metals in this layer. In the Danube water some activation products such as 54 Mn, 60 Co, 65 Zn etc. were found in addition to the fission products radionuclides found normally in fallout. This finding may be related to the radioactive effluent release into the river

  3. Carotenoids in Marine Animals

    Science.gov (United States)

    Maoka, Takashi

    2011-01-01

    Marine animals contain various carotenoids that show structural diversity. These marine animals accumulate carotenoids from foods such as algae and other animals and modify them through metabolic reactions. Many of the carotenoids present in marine animals are metabolites of β-carotene, fucoxanthin, peridinin, diatoxanthin, alloxanthin, and astaxanthin, etc. Carotenoids found in these animals provide the food chain as well as metabolic pathways. In the present review, I will describe marine animal carotenoids from natural product chemistry, metabolism, food chain, and chemosystematic viewpoints, and also describe new structural carotenoids isolated from marine animals over the last decade. PMID:21566799

  4. Molecular analysis of the replication program in unicellular model organisms

    OpenAIRE

    Raghuraman, M. K.; Brewer, Bonita J.

    2010-01-01

    Eukaryotes have long been reported to show temporal programs of replication, different portions of the genome being replicated at different times in S phase, with the added possibility of developmentally regulated changes in this pattern depending on species and cell type. Unicellular model organisms, primarily the budding yeast Saccharomyces cerevisiae, have been central to our current understanding of the mechanisms underlying the regulation of replication origins and the temporal program o...

  5. Single Cell Genomics and Transcriptomics for Unicellular Eukaryotes

    Energy Technology Data Exchange (ETDEWEB)

    Ciobanu, Doina; Clum, Alicia; Singh, Vasanth; Salamov, Asaf; Han, James; Copeland, Alex; Grigoriev, Igor; James, Timothy; Singer, Steven; Woyke, Tanja; Malmstrom, Rex; Cheng, Jan-Fang

    2014-03-14

    Despite their small size, unicellular eukaryotes have complex genomes with a high degree of plasticity that allow them to adapt quickly to environmental changes. Unicellular eukaryotes live with prokaryotes and higher eukaryotes, frequently in symbiotic or parasitic niches. To this day their contribution to the dynamics of the environmental communities remains to be understood. Unfortunately, the vast majority of eukaryotic microorganisms are either uncultured or unculturable, making genome sequencing impossible using traditional approaches. We have developed an approach to isolate unicellular eukaryotes of interest from environmental samples, and to sequence and analyze their genomes and transcriptomes. We have tested our methods with six species: an uncharacterized protist from cellulose-enriched compost identified as Platyophrya, a close relative of P. vorax; the fungus Metschnikowia bicuspidate, a parasite of water flea Daphnia; the mycoparasitic fungi Piptocephalis cylindrospora, a parasite of Cokeromyces and Mucor; Caulochytrium protosteloides, a parasite of Sordaria; Rozella allomycis, a parasite of the water mold Allomyces; and the microalgae Chlamydomonas reinhardtii. Here, we present the four components of our approach: pre-sequencing methods, sequence analysis for single cell genome assembly, sequence analysis of single cell transcriptomes, and genome annotation. This technology has the potential to uncover the complexity of single cell eukaryotes and their role in the environmental samples.

  6. On the paradigm of altruistic suicide in the unicellular world.

    Science.gov (United States)

    Nedelcu, Aurora M; Driscoll, William W; Durand, Pierre M; Herron, Matthew D; Rashidi, Armin

    2011-01-01

    Altruistic suicide is best known in the context of programmed cell death (PCD) in multicellular individuals, which is understood as an adaptive process that contributes to the development and functionality of the organism. After the realization that PCD-like processes can also be induced in single-celled lineages, the paradigm of altruistic cell death has been extended to include these active cell death processes in unicellular organisms. Here, we critically evaluate the current conceptual framework and the experimental data used to support the notion of altruistic suicide in unicellular lineages, and propose new perspectives. We argue that importing the paradigm of altruistic cell death from multicellular organisms to explain active death in unicellular lineages has the potential to limit the types of questions we ask, thus biasing our understanding of the nature, origin, and maintenance of this trait. We also emphasize the need to distinguish between the benefits and the adaptive role of a trait. Lastly, we provide an alternative framework that allows for the possibility that active death in single-celled organisms is a maladaptive trait maintained as a byproduct of selection on pro-survival functions, but that could-under conditions in which kin/group selection can act-be co-opted into an altruistic trait. © 2010 The Author(s). Evolution© 2010 The Society for the Study of Evolution.

  7. Multimodal sensorimotor system in unicellular zoospores of a fungus.

    Science.gov (United States)

    Swafford, Andrew J M; Oakley, Todd H

    2018-01-19

    Complex sensory systems often underlie critical behaviors, including avoiding predators and locating prey, mates and shelter. Multisensory systems that control motor behavior even appear in unicellular eukaryotes, such as Chlamydomonas , which are important laboratory models for sensory biology. However, we know of no unicellular opisthokonts that control motor behavior using a multimodal sensory system. Therefore, existing single-celled models for multimodal sensorimotor integration are very distantly related to animals. Here, we describe a multisensory system that controls the motor function of unicellular fungal zoospores. We found that zoospores of Allomyces arbusculus exhibit both phototaxis and chemotaxis. Furthermore, we report that closely related Allomyces species respond to either the chemical or the light stimuli presented in this study, not both, and likely do not share this multisensory system. This diversity of sensory systems within Allomyces provides a rare example of a comparative framework that can be used to examine the evolution of sensory systems following the gain/loss of available sensory modalities. The tractability of Allomyces and related fungi as laboratory organisms will facilitate detailed mechanistic investigations into the genetic underpinnings of novel photosensory systems, and how multisensory systems may have functioned in early opisthokonts before multicellularity allowed for the evolution of specialized cell types. © 2018. Published by The Company of Biologists Ltd.

  8. Metazoan-like signaling in a unicellular receptor tyrosine kinase

    Directory of Open Access Journals (Sweden)

    Schultheiss Kira P

    2013-02-01

    Full Text Available Abstract Background Receptor tyrosine kinases (RTKs are crucial components of signal transduction systems in multicellular animals. Surprisingly, numerous RTKs have been identified in the genomes of unicellular choanoflagellates and other protists. Here, we report the first biochemical study of a unicellular RTK, namely RTKB2 from Monosiga brevicollis. Results We cloned, expressed, and purified the RTKB2 kinase, and showed that it is enzymatically active. The activity of RTKB2 is controlled by autophosphorylation, as in metazoan RTKs. RTKB2 possesses six copies of a unique domain (designated RM2 in its C-terminal tail. An isolated RM2 domain (or a synthetic peptide derived from the RM2 sequence served as a substrate for RTKB2 kinase. When phosphorylated, the RM2 domain bound to the Src homology 2 domain of MbSrc1 from M. brevicollis. NMR structural studies of the RM2 domain indicated that it is disordered in solution. Conclusions Our results are consistent with a model in which RTKB2 activation stimulates receptor autophosphorylation within the RM2 domains. This leads to recruitment of Src-like kinases (and potentially other M. brevicollis proteins and further phosphorylation, which may serve to increase or dampen downstream signals. Thus, crucial features of signal transduction circuitry were established prior to the evolution of metazoans from their unicellular ancestors.

  9. Determination of the individual electrical and transport properties of the plasmalemma and the tonoplast of the giant marine alga Ventricaria ventricosa by means of the integrated perfusion/charge-pulse technique: evidence for a multifolded tonoplast.

    Science.gov (United States)

    Ryser, C; Wang, J; Mimietz, S; Zimmermann, U

    1999-03-15

    The charge-pulse relaxation spectrum of nonperfused and perfused (turgescent) cells of the giant marine alga Ventricaria ventricosa showed two main exponential decays with time constants of approximately 0.1 msec and 10 msec, respectively, when the cells were bathed in artificial sea water (pH 8). Variation of the external pH did not change the relaxation pattern (in contrast to other giant marine algae). Addition of nystatin (a membrane-impermeable and pore-forming antibiotic) to the vacuolar perfusion solution resulted in the disappearance of the slow exponential, whereas external nystatin decreased dramatically the time constant of the fast one. This indicated (by analogy to corresponding experiments with Valonia utricularis, J. Wang, I. Spiess, C. Ryser, U. Zimmermann, J. Membrane Biol. 157: 311-321, 1997) that the fast relaxation must be assigned to the RC-properties of the plasmalemma and the slow one to those of the tonoplast. Consistent with this, external variation of [K+]o or of [Cl-]o as well as external addition of K+- or Cl--channel/carrier inhibitors (TEA, Ba2+, DIDS) affected only the fast relaxation, but not the slow one. In contrast, addition of these inhibitors to the vacuolar perfusion solution had no measurable effect on the charge-pulse relaxation spectrum. The analysis of the data in terms of the "two membrane model" showed that K+- and (to a smaller extent) Cl--conducting elements dominated the plasmalemma conductance. The analysis of the charge-pulse relaxation spectra also yielded the following area-specific data for the capacitance and the conductance for the plasmalemma and tonoplast (by assuming that both membranes have a planar surface): (plasmalemma) Cp = 0.82 * 10(-2) F m-2, Rp = 1.69 * 10(-2) Omega m2, Gp = 5.9 * 10(4) mS m-2, (tonoplast) Ct = 7. 1 * 10(-2) F m-2, Rt = 14.9 * 10(-2) Omega m2 and Gt = 0.67 * 10(4) mS m-2. The electrical data for the tonoplast show that (in contrast to the literature) the area-specific membrane

  10. Genome-wide analysis of putative peroxiredoxin in unicellular and filamentous cyanobacteria.

    Science.gov (United States)

    Cui, Hongli; Wang, Yipeng; Wang, Yinchu; Qin, Song

    2012-11-16

    Cyanobacteria are photoautotrophic prokaryotes with wide variations in genome sizes and ecological habitats. Peroxiredoxin (PRX) is an important protein that plays essential roles in protecting own cells against reactive oxygen species (ROS). PRXs have been identified from mammals, fungi and higher plants. However, knowledge on cyanobacterial PRXs still remains obscure. With the availability of 37 sequenced cyanobacterial genomes, we performed a comprehensive comparative analysis of PRXs and explored their diversity, distribution, domain structure and evolution. Overall 244 putative prx genes were identified, which were abundant in filamentous diazotrophic cyanobacteria, Acaryochloris marina MBIC 11017, and unicellular cyanobacteria inhabiting freshwater and hot-springs, while poor in all Prochlorococcus and marine Synechococcus strains. Among these putative genes, 25 open reading frames (ORFs) encoding hypothetical proteins were identified as prx gene family members and the others were already annotated as prx genes. All 244 putative PRXs were classified into five major subfamilies (1-Cys, 2-Cys, BCP, PRX5_like, and PRX-like) according to their domain structures. The catalytic motifs of the cyanobacterial PRXs were similar to those of eukaryotic PRXs and highly conserved in all but the PRX-like subfamily. Classical motif (CXXC) of thioredoxin was detected in protein sequences from the PRX-like subfamily. Phylogenetic tree constructed of catalytic domains coincided well with the domain structures of PRXs and the phylogenies based on 16s rRNA. The distribution of genes encoding PRXs in different unicellular and filamentous cyanobacteria especially those sub-families like PRX-like or 1-Cys PRX correlate with the genome size, eco-physiology, and physiological properties of the organisms. Cyanobacterial and eukaryotic PRXs share similar conserved motifs, indicating that cyanobacteria adopt similar catalytic mechanisms as eukaryotes. All cyanobacterial PRX proteins

  11. Biofuels and algae

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    Bio-fuels based on micro-algae are promising, their licensing for being used in plane fuels in a mix containing 50% of fossil kerosene is expected in the coming months. In United-States research on bio-fuels has been made more important since 2006 when 2 policies were launched: 'Advanced energy initiative' and 'Twenty-in-ten', the latter aiming to develop alternative fuels. In Europe less investment has been made concerning micro-algae fuels but research programs were launched in Spain, United-Kingdom and France. In France 3 important projects were launched: SHAMASH (2006-2010) whose aim is to produce lipidic fuels from micro-algae, ALGOHUB (2008-2013) whose aim is to use micro-algae as a raw material for humane and animal food, medicine and cosmetics, SYMBIOSE (2009-2011) whose aim is the optimization of the production of methane through the anaerobic digestion of micro-algae, SALINALGUE (2010-2016) whose aim is to grow micro-algae for the production of bio-energies and bio-products. (A.C.)

  12. Biogeochemical cycling of metals in freshwater algae from Manaus and Carajas, Brazil

    International Nuclear Information System (INIS)

    Konhauser, K.O.; Fyfe, W.S.

    1993-01-01

    Freshwater algae were analyzed in different riverine environments in Manaus and Carajas, Brazil. Filamentous algae from both locations were characterized by enhanced levels of a wide array of heavy metals. A comparison of the two main rivers in the Manaus area indicated that the algal samples from the solute-rich waters of the Rio Solimoes consistently contained higher metal concentrations than in the solute-deficient waters of the Rio Negro. A similar relationship also existed between algal samples collected from forested regions relative to adjacent deforested regions in the Carajas area. In the Rio Negro, diatoms were shown to be the most prolific eucaryotic microorganisms found in the study area. These siliceous algae were found adhering to a variety of submerged solid substrates, including wood, rocks, and leaves. The abundance of these unicellular micro-organisms suggested that the dissolved silicon levels of the Rio Negro were influenced by biological activity

  13. Radiotracer experiments with benthic marine algae

    International Nuclear Information System (INIS)

    Zattera, A.; Bernhard, M.; Galli, C.

    1975-01-01

    Procedures for experiments on the uptake and loss of radionuclides are described. Pre-experimental handling and laboratory maintenance and the influence of the most important experimental parameters (light, pH, etc.) on radionuclide uptake and loss are discussed. The effects of stable element content, chelators and physico-chemical states of the stable element on the uptake and loss of radionuclides are reviewed using pertinent examples. (author)

  14. Thraustochytrid fungi associated with marine algae

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.

    Many of the diatoms collected from Arabian Sea were found to harbour thraustochytrid fungi on them. The fungus was identified as Ulkenia visurgensis and it could be grown on pine pollen in seawater. The fungus never infected healthy growing cultures...

  15. (a red alga) against Jurkat and molt-4 human cancer cell lines

    African Journals Online (AJOL)

    hope&shola

    2010-10-04

    Oct 4, 2010 ... 2The Persian Gulf Tropical and Infectious Disease Research Center, Bushehr University of ... active substances from various marine algae, however ... algal clarified crude extract was sterilized by millipore filter with 0.22.

  16. Label-free quantitative analysis of the casein kinase 2-responsive phosphoproteome of the marine minimal model species Ostreococcus tauri.

    Science.gov (United States)

    Le Bihan, Thierry; Hindle, Matthew; Martin, Sarah F; Barrios-Llerena, Martin E; Krahmer, Johanna; Kis, Katalin; Millar, Andrew J; van Ooijen, Gerben

    2015-12-01

    Casein kinase 2 (CK2) is a protein kinase that phosphorylates a plethora of cellular target proteins involved in processes including DNA repair, cell cycle control, and circadian timekeeping. CK2 is functionally conserved across eukaryotes, although the substrate proteins identified in a range of complex tissues are often different. The marine alga Ostreococcus tauri is a unicellular eukaryotic model organism ideally suited to efficiently study generic roles of CK2 in the cellular circadian clock. Overexpression of CK2 leads to a slow circadian rhythm, verifying functional conservation of CK2 in timekeeping. The proteome was analysed in wild-type and CK2-overexpressing algae at dawn and dusk, revealing that differential abundance of the global proteome across the day is largely unaffected by overexpression. However, CK2 activity contributed more strongly to timekeeping at dusk than at dawn. The phosphoproteome of a CK2 overexpression line and cells treated with CK2 inhibitor was therefore analysed and compared to control cells at dusk. We report an extensive catalogue of 447 unique CK2-responsive differential phosphopeptide motifs to inform future studies into CK2 activity in the circadian clock of more complex tissues. All MS data have been deposited in the ProteomeXchange with identifier PXD000975 (http://proteomecentral.proteomexchange.org/dataset/PXD000975). © 2015 The Authors. PROTEOMICS Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Lipid metabolism and potentials of biofuel and high added-value oil production in red algae.

    Science.gov (United States)

    Sato, Naoki; Moriyama, Takashi; Mori, Natsumi; Toyoshima, Masakazu

    2017-04-01

    Biomass production is currently explored in microalgae, macroalgae and land plants. Microalgal biofuel development has been performed mostly in green algae. In the Japanese tradition, macrophytic red algae such as Pyropia yezoensis and Gelidium crinale have been utilized as food and industrial materials. Researches on the utilization of unicellular red microalgae such as Cyanidioschyzon merolae and Porphyridium purpureum started only quite recently. Red algae have relatively large plastid genomes harboring more than 200 protein-coding genes that support the biosynthetic capacity of the plastid. Engineering the plastid genome is a unique potential of red microalgae. In addition, large-scale growth facilities of P. purpureum have been developed for industrial production of biofuels. C. merolae has been studied as a model alga for cell and molecular biological analyses with its completely determined genomes and transformation techniques. Its acidic and warm habitat makes it easy to grow this alga axenically in large scales. Its potential as a biofuel producer is recently documented under nitrogen-limited conditions. Metabolic pathways of the accumulation of starch and triacylglycerol and the enzymes involved therein are being elucidated. Engineering these regulatory mechanisms will open a possibility of exploiting the full capability of production of biofuel and high added-value oil. In the present review, we will describe the characteristics and potential of these algae as biotechnological seeds.

  18. The Green Berry Consortia of the Sippewissett Salt Marsh: Millimeter-Sized Aggregates of Diazotrophic Unicellular Cyanobacteria.

    Science.gov (United States)

    Wilbanks, Elizabeth G; Salman-Carvalho, Verena; Jaekel, Ulrike; Humphrey, Parris T; Eisen, Jonathan A; Buckley, Daniel H; Zinder, Stephen H

    2017-01-01

    Microbial interactions driving key biogeochemical fluxes often occur within multispecies consortia that form spatially heterogeneous microenvironments. Here, we describe the "green berry" consortia of the Sippewissett salt marsh (Falmouth, MA, United States): millimeter-sized aggregates dominated by an uncultured, diazotrophic unicellular cyanobacterium of the order Chroococcales (termed GB-CYN1). We show that GB-CYN1 is closely related to Crocosphaera watsonii (UCYN-B) and " Candidatus Atelocyanobacterium thalassa" (UCYN-A), two groups of unicellular diazotrophic cyanobacteria that play an important role in marine primary production. Other green berry consortium members include pennate diatoms and putative heterotrophic bacteria from the Alphaproteobacteria and Bacteroidetes . Tight coupling was observed between photosynthetic oxygen production and heterotrophic respiration. When illuminated, the green berries became supersaturated with oxygen. From the metagenome, we observed that GB-CYN1 encodes photosystem II genes and thus has the metabolic potential for oxygen production unlike UCYN-A. In darkness, respiratory activity rapidly depleted oxygen creating anoxia within the aggregates. Metagenomic data revealed a suite of nitrogen fixation genes encoded by GB-CYN1, and nitrogenase activity was confirmed at the whole-aggregate level by acetylene reduction assays. Metagenome reads homologous to marker genes for denitrification were observed and suggest that heterotrophic denitrifiers might co-occur in the green berries, although the physiology and activity of facultative anaerobes in these aggregates remains uncharacterized. Nitrogen fixation in the surface ocean was long thought to be driven by filamentous cyanobacterial aggregates, though recent work has demonstrated the importance of unicellular diazotrophic cyanobacteria (UCYN) from the order Chroococcales. The green berries serve as a useful contrast to studies of open ocean UCYN and may provide a tractable

  19. Centrins in unicellular organisms: functional diversity and specialization.

    Science.gov (United States)

    Zhang, Yu; He, Cynthia Y

    2012-07-01

    Centrins (also known as caltractins) are conserved, EF hand-containing proteins ubiquitously found in eukaryotes. Similar to calmodulins, the calcium-binding EF hands in centrins fold into two structurally similar domains separated by an alpha-helical linker region, shaping like a dumbbell. The small size (15-22 kDa) and domain organization of centrins and their functional diversity/specialization make them an ideal system to study protein structure-function relationship. Here, we review the work on centrins with a focus on their structures and functions characterized in unicellular organisms.

  20. Chemical constituents of the red alga @iAcanthophora spicifera@@

    Digital Repository Service at National Institute of Oceanography (India)

    Wahidullah, S.; DeSouza, L.; Kamat, S.Y.

    Analysis of the petroleum-wither and chloroform extracts of the marine red alga @iAcanthophora spicifera@@ led to the isolation of a sterol, cholesterol, fatty acids, stearic, palmitic, behenic (C@d22@@) and arachidic acids (C@d20@@) and a fatty...

  1. Oxytocic principle of red alga @iAmphiroa fragilissima@@

    Digital Repository Service at National Institute of Oceanography (India)

    Wahidullah, S.; De; Das, B.; Patnaik, G.K.

    The crude aqueous methanolic extract of the marine red alga @iAmphiroa fragilissima@@ has been reported as exhibiting oxytocic and spasmogenic activity at a dose of 50 ~kg/ml. The activity is located in the water soluble fraction and has been found...

  2. Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri

    Energy Technology Data Exchange (ETDEWEB)

    Prochnik, Simon E.; Umen, James; Nedelcu, Aurora; Hallmann, Armin; Miller, Stephen M.; Nishii, Ichiro; Ferris, Patrick; Kuo, Alan; Mitros, Therese; Fritz-Laylin, Lillian K.; Hellsten, Uffe; Chapman, Jarrod; Simakov, Oleg; Rensing, Stefan A.; Terry, Astrid; Pangilinan, Jasmyn; Kapitonov, Vladimir; Jurka, Jerzy; Salamov, Asaf; Shapiro, Harris; Schmutz, Jeremy; Grimwood, Jane; Lindquist, Erika; Lucas, Susan; Grigoriev, Igor V.; Schmitt, Rudiger; Kirk, David; Rokhsar, Daniel S.

    2010-07-01

    Analysis of the Volvox carteri genome reveals that this green alga's increased organismal complexity and multicellularity are associated with modifications in protein families shared with its unicellular ancestor, and not with large-scale innovations in protein coding capacity. The multicellular green alga Volvox carteri and its morphologically diverse close relatives (the volvocine algae) are uniquely suited for investigating the evolution of multicellularity and development. We sequenced the 138 Mb genome of V. carteri and compared its {approx}14,500 predicted proteins to those of its unicellular relative, Chlamydomonas reinhardtii. Despite fundamental differences in organismal complexity and life history, the two species have similar protein-coding potentials, and few species-specific protein-coding gene predictions. Interestingly, volvocine algal-specific proteins are enriched in Volvox, including those associated with an expanded and highly compartmentalized extracellular matrix. Our analysis shows that increases in organismal complexity can be associated with modifications of lineage-specific proteins rather than large-scale invention of protein-coding capacity.

  3. Comparison of Protein Extracts from Various Unicellular Green Sources.

    Science.gov (United States)

    Teuling, Emma; Wierenga, Peter A; Schrama, Johan W; Gruppen, Harry

    2017-09-13

    Photosynthetic unicellular organisms are considered as promising alternative protein sources. The aim of this study is to understand the extent to which these green sources differ with respect to their gross composition and how these differences affect the final protein isolate. Using mild isolation techniques, proteins were extracted and isolated from four different unicellular sources (Arthrospira (spirulina) maxima, Nannochloropsis gaditana, Tetraselmis impellucida, and Scenedesmus dimorphus). Despite differences in protein contents of the sources (27-62% w/w) and in protein extractability (17-74% w/w), final protein isolates were obtained that had similar protein contents (62-77% w/w) and protein yields (3-9% w/w). Protein solubility as a function of pH was different between the sources and in ionic strength dependency, especially at pH < 4.0. Overall, the characterization and extraction protocol used allows a relatively fast and well-described isolation of purified proteins from novel protein sources.

  4. Les algues sont-elles une ressource marine à exploiter pour développer durablement l’espace caribéen ? Can algae be a sea resource to be exploited to have a sustainable development of Caribbean?

    Directory of Open Access Journals (Sweden)

    Sophie Litzler

    2010-12-01

    Full Text Available L’algue est une ressource marine peu étudiée par la géographie ; elle offre pourtant des potentialités de développement économique. Les macro-algues cultivées à des fins alimentaires sont une alternative à la pêche. Les micro-algues constituent une biomasse valorisable : molécule pharmaceutique, Oméga 3 et biocarburants. De ces différents usages naît la question suivante : les algues sont-elles une ressource marine à exploiter pour développer durablement les territoires de la zone intertropicale ? Nous présenterons tout d’abord l’algoculture à l’échelle mondiale en soulignant le faible poids de cette activité dans le bassin caribéen. Puis nous montrerons que l’algoculture s’inscrit dans un processus de développement durable en assurant un revenu à des communautés rurales (Petites Antilles. Enfin, dans une approche comparative (États-Unis, nous verrons que l’espace caribéen est une région de projets et d’aménagements durables qui a des atouts pour développer l’algoculture : exposition solaire, hautes températures, proximité de la recherche américaine.Algae as sea resource have not been largely explored in Geography, yet it offers the potential for economic development. Macro-algae are cultivated for food purposes and they can substitute for fishing. Micro-algae can be valued as biomass: “nutraceutics”, Omega 3, biofuel. These various utilizations raise a question: are algae a key to a sustainable development in intertropical islands? We shall present Algaculture on a global scale, while emphasizing its low importance in the Caribbean. Then we shall show how algaculture can be part of a process of sustainable development by providing revenue to rural communities (Lesser Antilles. Finally, in a comparative approach (with the US, we shall see that the Caribbean Region has a number of assets for algaculture that make it suitable for sustainable projects and infrastructures: solar exposure

  5. Accumulation of uranium by filamentous green algae under natural environmental conditions

    International Nuclear Information System (INIS)

    Aleissa, K.A.; Shabana, El-Said K.; Al-Masoud, F.L.S.

    2004-01-01

    The capacity of algae to concentrate uranium under natural environmental conditions is measured by a-spectrometry. Spirogyra, a filamentous green fresh-water alga, has concentrated uranium from a surface concrete ponds with elevated uranium levels (140-1140 ppb). The concentration factors (CFs) ranged from 8.9-67 with an average value of 22. Cladophora spp, a filamentous green marine alga has concentrated uranium from the marine water with a concentration factor ranged from 220-280. The average concentration factor was 250. The factors affecting the sorption process are discussed in detail. (author)

  6. Analysis of the action of X-rays on the multiplication of a unicellular chlorophyllous organism: the chlorophycee scenesdesmus crassus chod (1961); Analyse de l'action des rayons X sur la multiplication d'un organisme chlorophyllien unicellulaire: la chlorophycee scenesdesmus crassus chod (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Gilet, R; Ozenda, P [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1961-07-01

    The technique of growing cultures on agar-agar has made it possible to obtain on single cultures results which had previously been acquired on populations of unicellular algae in a liquid medium. (authors) [French] La technique de culture sur gelose a permis une analyse a l'echelle individuelle des resultats precedemment acquis sur des populations d'algues unicellulaires en milieu liquide. (auteurs)

  7. Prospective Source of Antimicrobial Compounds From Pigment Produced by Bacteria associated with Brown Alga ( Phaeophyceae ) Isolated from Karimunjawa island, Indonesia

    Science.gov (United States)

    Lunggani, A. T.; Darmanto, Y. S.; Radjasa, O. K.; Sabdono, A.

    2018-02-01

    Brown algae or Phaeophyceae characterized by their natural pigments that differ from other important algal classes. Several publications proves that brown algae - associated bacteria have great potential in developing marine pharmaceutical industry since they are capable to synthesized numerous bioactive metabolite compounds. However the potency of marine pigmented microbes associated with brown alga to produce natural pigments and antimicrobials has been less studied. Marine pigmented bacteria associated with brown algae collected from Karimunjawa Island were successfully isolated and screened for antimicrobial activity. The aim of this research was evaluated of the antimicrobial activity of pigments extracted from culturable marine pigmented bacteria on some pathogenic bacteria and yeast. The results showed that all isolates had antimicrobial activity and could be prospectively developed as antimicrobial agent producing pigments. The 6 marine pigmented bacteria was identified to genus level as Pseudoalteromonas, Sphingomonas, Serratia, Paracoccus, Vibrio.

  8. Winter-summer succession of unicellular eukaryotes in a meso-eutrophic coastal system.

    Science.gov (United States)

    Christaki, Urania; Kormas, Konstantinos A; Genitsaris, Savvas; Georges, Clément; Sime-Ngando, Télesphore; Viscogliosi, Eric; Monchy, Sébastien

    2014-01-01

    The objective of this study was to explore the succession of planktonic unicellular eukaryotes by means of 18S rRNA gene tag pyrosequencing in the eastern English Channel (EEC) during the winter to summer transition. The 59 most representative (>0.1%, representing altogether 95% of total reads), unique operational taxonomic units (OTUs) from all samples belonged to 18 known high-level taxonomic groups and 1 unaffiliated clade. The five most abundant OTUs (69.2% of total reads) belonged to Dinophyceae, Cercozoa, Haptophyceae, marine alveolate group I, and Fungi. Cluster and network analysis between samples distinguished the winter, the pre-bloom, the Phaeocystis globosa bloom and the post-bloom early summer conditions. The OTUs-based network revealed that P. globosa showed a relatively low number of connections-most of them negative-with all other OTUs. Fungi were linked to all major taxonomic groups, except Dinophyceae. Cercozoa mostly co-occurred with the Fungi, the Bacillariophyceae and several of the miscellaneous OTUs. This study provided a more detailed exploration into the planktonic succession pattern of the EEC due to its increased depth of taxonomic sampling over previous efforts based on classical monitoring observations. Data analysis implied that the food web concept in a coastal system based on predator-prey (e.g. grazer-phytoplankton) relationships is just a part of the ecological picture; and those organisms exploiting a variety of strategies, such as saprotrophy and parasitism, are persistent and abundant members of the community.

  9. Massive expansion of the calpain gene family in unicellular eukaryotes

    Directory of Open Access Journals (Sweden)

    Zhao Sen

    2012-09-01

    Full Text Available Abstract Background Calpains are Ca2+-dependent cysteine proteases that participate in a range of crucial cellular processes. Dysfunction of these enzymes may cause, for instance, life-threatening diseases in humans, the loss of sex determination in nematodes and embryo lethality in plants. Although the calpain family is well characterized in animal and plant model organisms, there is a great lack of knowledge about these genes in unicellular eukaryote species (i.e. protists. Here, we study the distribution and evolution of calpain genes in a wide range of eukaryote genomes from major branches in the tree of life. Results Our investigations reveal 24 types of protein domains that are combined with the calpain-specific catalytic domain CysPc. In total we identify 41 different calpain domain architectures, 28 of these domain combinations have not been previously described. Based on our phylogenetic inferences, we propose that at least four calpain variants were established in the early evolution of eukaryotes, most likely before the radiation of all the major supergroups of eukaryotes. Many domains associated with eukaryotic calpain genes can be found among eubacteria or archaebacteria but never in combination with the CysPc domain. Conclusions The analyses presented here show that ancient modules present in prokaryotes, and a few de novo eukaryote domains, have been assembled into many novel domain combinations along the evolutionary history of eukaryotes. Some of the new calpain genes show a narrow distribution in a few branches in the tree of life, likely representing lineage-specific innovations. Hence, the functionally important classical calpain genes found among humans and vertebrates make up only a tiny fraction of the calpain family. In fact, a massive expansion of the calpain family occurred by domain shuffling among unicellular eukaryotes and contributed to a wealth of functionally different genes.

  10. Massive expansion of the calpain gene family in unicellular eukaryotes.

    Science.gov (United States)

    Zhao, Sen; Liang, Zhe; Demko, Viktor; Wilson, Robert; Johansen, Wenche; Olsen, Odd-Arne; Shalchian-Tabrizi, Kamran

    2012-09-29

    Calpains are Ca2+-dependent cysteine proteases that participate in a range of crucial cellular processes. Dysfunction of these enzymes may cause, for instance, life-threatening diseases in humans, the loss of sex determination in nematodes and embryo lethality in plants. Although the calpain family is well characterized in animal and plant model organisms, there is a great lack of knowledge about these genes in unicellular eukaryote species (i.e. protists). Here, we study the distribution and evolution of calpain genes in a wide range of eukaryote genomes from major branches in the tree of life. Our investigations reveal 24 types of protein domains that are combined with the calpain-specific catalytic domain CysPc. In total we identify 41 different calpain domain architectures, 28 of these domain combinations have not been previously described. Based on our phylogenetic inferences, we propose that at least four calpain variants were established in the early evolution of eukaryotes, most likely before the radiation of all the major supergroups of eukaryotes. Many domains associated with eukaryotic calpain genes can be found among eubacteria or archaebacteria but never in combination with the CysPc domain. The analyses presented here show that ancient modules present in prokaryotes, and a few de novo eukaryote domains, have been assembled into many novel domain combinations along the evolutionary history of eukaryotes. Some of the new calpain genes show a narrow distribution in a few branches in the tree of life, likely representing lineage-specific innovations. Hence, the functionally important classical calpain genes found among humans and vertebrates make up only a tiny fraction of the calpain family. In fact, a massive expansion of the calpain family occurred by domain shuffling among unicellular eukaryotes and contributed to a wealth of functionally different genes.

  11. Genome-wide analysis of putative peroxiredoxin in unicellular and filamentous cyanobacteria

    Directory of Open Access Journals (Sweden)

    Cui Hongli

    2012-11-01

    Full Text Available Abstract Background Cyanobacteria are photoautotrophic prokaryotes with wide variations in genome sizes and ecological habitats. Peroxiredoxin (PRX is an important protein that plays essential roles in protecting own cells against reactive oxygen species (ROS. PRXs have been identified from mammals, fungi and higher plants. However, knowledge on cyanobacterial PRXs still remains obscure. With the availability of 37 sequenced cyanobacterial genomes, we performed a comprehensive comparative analysis of PRXs and explored their diversity, distribution, domain structure and evolution. Results Overall 244 putative prx genes were identified, which were abundant in filamentous diazotrophic cyanobacteria, Acaryochloris marina MBIC 11017, and unicellular cyanobacteria inhabiting freshwater and hot-springs, while poor in all Prochlorococcus and marine Synechococcus strains. Among these putative genes, 25 open reading frames (ORFs encoding hypothetical proteins were identified as prx gene family members and the others were already annotated as prx genes. All 244 putative PRXs were classified into five major subfamilies (1-Cys, 2-Cys, BCP, PRX5_like, and PRX-like according to their domain structures. The catalytic motifs of the cyanobacterial PRXs were similar to those of eukaryotic PRXs and highly conserved in all but the PRX-like subfamily. Classical motif (CXXC of thioredoxin was detected in protein sequences from the PRX-like subfamily. Phylogenetic tree constructed of catalytic domains coincided well with the domain structures of PRXs and the phylogenies based on 16s rRNA. Conclusions The distribution of genes encoding PRXs in different unicellular and filamentous cyanobacteria especially those sub-families like PRX-like or 1-Cys PRX correlate with the genome size, eco-physiology, and physiological properties of the organisms. Cyanobacterial and eukaryotic PRXs share similar conserved motifs, indicating that cyanobacteria adopt similar catalytic

  12. Métodos de cultura de algas do plancton marinho: estudos realizados nas regiões de Cananéia e de Ubatuba, SP Culture methods of planktonic marine alrae: studies in Cananéia and Ubatuba regions

    Directory of Open Access Journals (Sweden)

    Armando A. H Vieira

    1977-12-01

    Full Text Available The study of algae culture collected in Brazilian waters was proposed due to the lack of literature on the subject: an attempt was made to develop a methodology to obtain algae culture and its purification. Several species were isolated from samples collected a Ubatuba and Cananéia (São Paulo (Lat. 23º30'S - Long. 45º06'W and Lat. 25º01'S - Long. 47º54'W by means of phytoplankton net and Van Dorn bottle. The following isolation techniques were employed after washing and concentration: glass capillary, inoculation of mixed cultures on Petri dishes with solid medium and positive phototropism. The isolated algae were kept in five different mediuns. Washing techniques were tested (centrifugation, "filter tubes" and re-isolation , antibiotics and ultra violet radiation to obtain unialgal bacteria-free cultures were employed to obtain pure cultures. Five différents antibiotics, mixed in différents concentrations, were employed during several periods of expositions. The re-isolation proved to be the best method to obtain the purification of the cultures.

  13. The Effect of DNA and Sodium Cholate Dispersed Single-Walled Carbon Nano tubes on the Green Algae Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Williams, R.M.; Cox, Z.; Dolash, B.D.; Sooter, L.J.; Williams, R.M.; Taylor, H.K.; Thomas, J.

    2014-01-01

    Increasing use of single-walled carbon nano tubes (SWCNTs) will lead to their increased release into the environment. Previous work has shown negative effects of SWCNT on growth and survival of model organisms. The aim of the current study was to determine the effect of SWCNT well-dispersed by either DNA or sodium cholate (SC) on the unicellular green algae Chlamydomonas reinhardtii in stagnant water conditions. Growth measurements were taken up to ten days for algae treated with varied levels of DNA:SWCNT or SC:SWCNT or controls, and chlorophyll content after 10 days was determined. Results show no effect on either growth or chlorophyll content of algae at any concentration or duration. This is in contradiction to prior work showing toxicity of SWCNT to environmental model organisms.

  14. Will marine productivity wane?

    Science.gov (United States)

    Laufkötter, Charlotte; Gruber, Nicolas

    2018-03-01

    If marine algae are impaired severely by global climate change, the resulting reduction in marine primary production would strongly affect marine life and the ocean's biological pump that sequesters substantial amounts of atmospheric carbon dioxide in the ocean's interior. Most studies, including the latest generation of Earth system models, project only moderate global decreases in biological production until 2100 (1, 2), suggesting that these concerns are unwarranted. But on page 1139 of this issue, Moore et al. (3) show that this conclusion might be shortsighted and that there may be much larger long-term changes in ocean productivity than previously appreciated.

  15. [MiRNA system in unicellular eukaryotes and its evolutionary implications].

    Science.gov (United States)

    Zhang, Yan-Qiong; Wen, Jian-Fan

    2010-02-01

    microRNAs (miRNAs) in higher multicellular eukaryotes have been extensively studied in recent years. Great progresses have also been achieved for miRNAs in unicellular eukaryotes. All these studies not only enrich our knowledge about the complex expression regulation system in diverse organisms, but also have evolutionary significance for understanding the origin of this system. In this review, Authors summarize the recent advance in the studies of miRNA in unicellular eukaryotes, including that on the most primitive unicellular eukaryote--Giardia. The origin and evolution of miRNA system is also discussed.

  16. Signaling mechanisms of apoptosis-like programmed cell death in unicellular eukaryotes.

    Science.gov (United States)

    Shemarova, Irina V

    2010-04-01

    In unicellular eukaryotes, apoptosis-like cell death occurs during development, aging and reproduction, and can be induced by environmental stresses and exposure to toxic agents. The essence of the apoptotic machinery in unicellular organisms is similar to that in mammals, but the apoptotic signal network is less complex and of more ancient origin. The review summarizes current data about key apoptotic proteins and mechanisms of the transduction of apoptotic signals by caspase-like proteases and mitochondrial apoptogenic proteins in unicellular eukaryotes. The roles of receptor-dependent and receptor-independent caspase cascades are reviewed. 2010 Elsevier Inc. All rights reserved.

  17. Effects of non-steroidal anti-inflammatory drugs on cyanobacteria and algae in laboratory strains and in natural algal assemblages.

    Science.gov (United States)

    Bácsi, István; B-Béres, Viktória; Kókai, Zsuzsanna; Gonda, Sándor; Novák, Zoltán; Nagy, Sándor Alex; Vasas, Gábor

    2016-05-01

    In recent years measurable concentrations of non-steroidal anti-inflammatory drugs (NSAIDs) have been shown in the aquatic environment as a result of increasing human consumption. Effects of five frequently used non-steroidal anti-inflammatory drugs (diclofenac, diflunisal, ibuprofen, mefenamic acid and piroxicam in 0.1 mg ml(-1) concentration) in batch cultures of cyanobacteria (Synechococcus elongatus, Microcystis aeruginosa, Cylindrospermopsis raciborskii), and eukaryotic algae (Desmodesmus communis, Haematococcus pluvialis, Cryptomonas ovata) were studied. Furthermore, the effects of the same concentrations of NSAIDs were investigated in natural algal assemblages in microcosms. According to the changes of chlorophyll-a content, unicellular cyanobacteria seemed to be more tolerant to NSAIDs than eukaryotic algae in laboratory experiments. Growth of eukaryotic algae was reduced by all drugs, the cryptomonad C. ovata was the most sensitive to NSAIDs, while the flagellated green alga H. pluvialis was more sensitive than the non-motile green alga D. communis. NSAID treatments had weaker impact in the natural assemblages dominated by cyanobacteria than in the ones dominated by eukaryotic algae, confirming the results of laboratory experiments. Diversity and number of functional groups did not change notably in cyanobacteria dominated assemblages, while they decreased significantly in eukaryotic algae dominated ones compared to controls. The results highlight that cyanobacteria (especially unicellular ones) are less sensitive to the studied, mostly hardly degradable NSAIDs, which suggest that their accumulation in water bodies may contribute to the expansion of cyanobacterial mass productions in appropriate environmental circumstances by pushing back eukaryotic algae. Thus, these contaminants require special attention during wastewater treatment and monitoring of surface waters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Origin of land plants: Do conjugating green algae hold the key?

    Directory of Open Access Journals (Sweden)

    Melkonian Michael

    2011-04-01

    Full Text Available Abstract Background The terrestrial habitat was colonized by the ancestors of modern land plants about 500 to 470 million years ago. Today it is widely accepted that land plants (embryophytes evolved from streptophyte algae, also referred to as charophycean algae. The streptophyte algae are a paraphyletic group of green algae, ranging from unicellular flagellates to morphologically complex forms such as the stoneworts (Charales. For a better understanding of the evolution of land plants, it is of prime importance to identify the streptophyte algae that are the sister-group to the embryophytes. The Charales, the Coleochaetales or more recently the Zygnematales have been considered to be the sister group of the embryophytes However, despite many years of phylogenetic studies, this question has not been resolved and remains controversial. Results Here, we use a large data set of nuclear-encoded genes (129 proteins from 40 green plant taxa (Viridiplantae including 21 embryophytes and six streptophyte algae, representing all major streptophyte algal lineages, to investigate the phylogenetic relationships of streptophyte algae and embryophytes. Our phylogenetic analyses indicate that either the Zygnematales or a clade consisting of the Zygnematales and the Coleochaetales are the sister group to embryophytes. Conclusions Our analyses support the notion that the Charales are not the closest living relatives of embryophytes. Instead, the Zygnematales or a clade consisting of Zygnematales and Coleochaetales are most likely the sister group of embryophytes. Although this result is in agreement with a previously published phylogenetic study of chloroplast genomes, additional data are needed to confirm this conclusion. A Zygnematales/embryophyte sister group relationship has important implications for early land plant evolution. If substantiated, it should allow us to address important questions regarding the primary adaptations of viridiplants during the

  19. Effects of Selenite on Unicellular Green Microalga Chlorella pyrenoidosa: Bioaccumulation of Selenium, Enhancement of Photosynthetic Pigments, and Amino Acid Production.

    Science.gov (United States)

    Zhong, Yu; Cheng, Jay J

    2017-12-20

    Microalgae were studied as function bioaccumulators of selenium (Se) for food and feed supplement. To investigate the bioaccumulation of Se and its effects on the unicellular green alga Chlorella pyrenoidosa, the algal growth curve, fluorescence parameters, antioxidant enzyme activity, and fatty acid and amino acid profiles were examined. We found that Se at low concentrations (≤40 mg L -1 ) positively promoted algal growth and inhibited lipid peroxidation and intracellular reactive oxygen species. The antioxidative effect was associated with an increase in the levels of glutathione peroxidase, catalase, linolenic acid, and photosynthetic pigments. Meanwhile, a significant increase in amino acid and organic Se content was also detected in the microalgae. In contrast, we found opposite effects in C. pyrenoidosa exposed to >60 mg L -1 Se. The antioxidation and toxicity appeared to be correlated with the bioaccumulation of excess Se. These results provide a better understanding of the effect of Se on green microalgae, which may help in the development of new technological applications for the production of Se-enriched biomass from microalgae.

  20. Bioactivity of marine organisms. 6. Antiviral evaluation of marine algal extracts from the Indian coast

    Digital Repository Service at National Institute of Oceanography (India)

    Kamat, S.Y.; Wahidullah, S.; DeSouza, L.; Naik, C.G.; Ambiye, V.; Bhakuni, D.S.; Goel, A.K.; Garg, H.S.; Srimal, R.C.

    Ethanolic extracts of Indian marine algae belonging to the Rhodophyceae, Phaeophyceae and Chlorophyceae were tested for anti-semiliki Forest (SFV), Ranikhet Disease (RDV) and Vaccinia (VV) viruses. In the primary screening of 31 seaweeds, 17...

  1. Selenium content in the blood serum and urine of ewes receiving selenium-enriched unicellular alga Chlorella

    Czech Academy of Sciences Publication Activity Database

    Trávníček, J.; Písek, I.; Herzig, I.; Doucha, Jiří; Kvíčala, J.; Kroupová, V.; Rodinová, H.

    2007-01-01

    Roč. 52, - (2007), s. 42-48 ISSN 0375-8427 Grant - others:GA ČR(CZ) GD523/03/H076 Program:GD Institutional research plan: CEZ:AV0Z50200510 Source of funding: V - iné verejné zdroje Keywords : sodium selenite * organically bound selenium * ewes Subject RIV: EE - Microbiology, Virology Impact factor: 0.645, year: 2007

  2. On the assessment of the productivity of suspension cultures of unicellular green algae at defined light conditions

    Energy Technology Data Exchange (ETDEWEB)

    Seiss, U; Borns, E; Boehm, H

    1985-01-01

    A description is given of the possibility of a comparison of the production between different suspension cultures of microalgae at equal and defined light conditions. For this, a variant of the turbidostat technique is used by which with the acid of a phototransistor and the filter combination of red filter/opal glass filter a chlorophyll-equivalent signal is applied for control. The equal light conditions are compared and set by the preparation of the respective absorption profiles. From this one can derive the mean level of irradiation within the suspension cultures and use it as the reference value for the light conditions. By this technique it is possible to set equal light conditions in suspension cultures independent of the given cell sizes, cell shapes and dry matter contents.

  3. Metabolic responses and β-carotene production by the unicellular green alga Dunaliella salina exposed to leaf extracts

    Directory of Open Access Journals (Sweden)

    Alireza Einali

    Full Text Available ABSTRACT The present work investigated the effects of aqueous extracts of eucalyptus ( Eucalyptus globulus and elderberry ( Sambucus ebulus leaves on β-carotene productivity in Dunaliella salina, a green microalga. Leaf extracts from eucalyptus have greater amounts of phenolics and flavonoids, as well as greater ferric reducing antioxidant potential than elderberry. The extracts of both species greatly inhibited growth of algal suspensions. However, chlorophyll and β-carotene concentration increased in cells treated with leaf extracts, and the highest values were detected in 1 % eucalyptus and 2 % elderberry extracts. Fresh weight, total sugar, and protein content significantly increased following exposure of cells to different doses of leaf extracts. However, in doses containing more than 2 % eucalyptus, the upward trend for total sugar and protein ceased and remained statistically unchanged. These results suggest that metabolic modifications enable D. salina cells to tolerate the stress induced by the leaf extracts through allocating carbon flux to the synthesis of osmolytes and putative antioxidant molecules (e.g. sugars and β-carotene. Therefore, the use of leaf extracts holds potential to be a promising and effective way to improve D. salina cultivation for β-carotene production and other biotechnological and industrial applications.

  4. A transthylakoid proton gradient and inhibitors induce a non-photochemical fluorescence quenching in unicellular algae Nannochloropsis sp.

    Science.gov (United States)

    Cao, Shaona; Zhang, Xiaowen; Xu, Dong; Fan, Xiao; Mou, Shanli; Wang, Yitao; Ye, Naihao; Wang, Wenqi

    2013-05-02

    Non-photochemical quenching (NPQ) of chlorophyll fluorescence is thought to be an indicator of an essential regulation and photoprotection mechanism against high-light stress in photosynthetic organisms. In this report, special chemicals were used to perturb the kinetics of the ΔpH build-up and the xanthophyll cycle (XC) in Nannochloropsis sp. We found that NPQ was stimulated rapidly on exposure to high light and relaxed rapidly in darkness. The ΔpH could be obligatory for NPQ and ΔpH alone was not sufficient to induce NPQ. The XC, being strictly mediated by ΔpH, was also essential for NPQ. The results demonstrate that the mechanism of NPQ in Nannochloropsis sp. resembled that of diatoms. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  5. Unicellular cyanobacteria synechocystis accommodate heterotrophic bacteria with varied enzymatic and metal resistance properties

    Digital Repository Service at National Institute of Oceanography (India)

    Anas, A.; Sageer, S.; Jasmin, C.; Vijayan, V.; Pavanan, P.; Athiyanathil, S.; Nair, S.

    unicellular cyanobacterium Synechocystis sp. that came from a heavy metal contaminated region of Cochin estuary, southwest coast of India. Based on 16S rRNA gene sequence similarities, the heterotrophic bacteria were grouped into three phyla: namely...

  6. Electromagnetic response of the protective pellicle of different unicellular microalgae

    Science.gov (United States)

    Inchaussandague, Marina E.; Skigin, Diana C.; Tolivia, Analía.; Fuertes Vila, Isabel; Conforti, Visitación

    2014-03-01

    Euglenoids are unicellular aquatic organisms. These microalgae show a typical surface structure that distinguishes them from the other protists. Most cells are naked and bounded by a plasma membrane surrounded by a pellicle formed by overlapping bands. It is well known that all terrestrial and aquatic organisms are exposed to UV-A and UV-B radiation. This radiation is potentially harmful to life and since it can penetrate up to 12 meters in the water, it can reduce survival, growth and production of phytoplankton. However, the organisms have developed numerous protection mechanisms intended to reduce such damage, such as the production of pigments and other repair mechanisms. However, the possible protection that could provide the first barriers before entering into the cell has not been explored yet. In this paper we investigate, from an electromagnetic point of view, the role played by the pellicle of euglenoids in the protection of the cell against UV radiation. To do so, we investigate the electromagnetic response of different species that exhibit different behaviors against the UV radiation. We solve the diffraction problem by using the Chandezon Method and obtain the reflectance of the pellicle for the UV wavelengths. The results show that the corrugated pellicle could contribute to increase the reflectance, thus reducing the penetration of the UV radiation within the cell and therefore, minimizing the damage and increasing the survival of these organisms.

  7. Biodegradation of Dimethyl Phthalate by Freshwater Unicellular Cyanobacteria.

    Science.gov (United States)

    Zhang, Xiaohui; Liu, Lincong; Zhang, Siping; Pan, Yan; Li, Jing; Pan, Hongwei; Xu, Shiguo; Luo, Feng

    2016-01-01

    The biodegradation characteristics of dimethyl phthalate (DMP) by three freshwater unicellular organisms were investigated in this study. The findings revealed that all the organisms were capable of metabolizing DMP; among them, Cyanothece sp. PCC7822 achieved the highest degradation efficiency. Lower concentration of DMP supported the growth of the Cyanobacteria; however, with the increase of DMP concentration growth of Cyanobacteria was inhibited remarkably. Phthalic acid (PA) was detected to be an intermediate degradation product of DMP and accumulated in the culture solution. The optimal initial pH value for the degradation was detected to be 9.0, which mitigated the decrease of pH resulting from the production of PA. The optimum temperature for DMP degradation of the three species of organisms is 30°C. After 72 hours' incubation, no more than 11.8% of the residual of DMP aggregated in Cyanobacteria cells while majority of DMP remained in the medium. Moreover, esterase was induced by DMP and the activity kept increasing during the degradation process. This suggested that esterase could assist in the degradation of DMP.

  8. Biodegradation of Dimethyl Phthalate by Freshwater Unicellular Cyanobacteria

    Science.gov (United States)

    Zhang, Xiaohui; Liu, Lincong; Zhang, Siping; Pan, Yan; Li, Jing; Pan, Hongwei

    2016-01-01

    The biodegradation characteristics of dimethyl phthalate (DMP) by three freshwater unicellular organisms were investigated in this study. The findings revealed that all the organisms were capable of metabolizing DMP; among them, Cyanothece sp. PCC7822 achieved the highest degradation efficiency. Lower concentration of DMP supported the growth of the Cyanobacteria; however, with the increase of DMP concentration growth of Cyanobacteria was inhibited remarkably. Phthalic acid (PA) was detected to be an intermediate degradation product of DMP and accumulated in the culture solution. The optimal initial pH value for the degradation was detected to be 9.0, which mitigated the decrease of pH resulting from the production of PA. The optimum temperature for DMP degradation of the three species of organisms is 30°C. After 72 hours' incubation, no more than 11.8% of the residual of DMP aggregated in Cyanobacteria cells while majority of DMP remained in the medium. Moreover, esterase was induced by DMP and the activity kept increasing during the degradation process. This suggested that esterase could assist in the degradation of DMP. PMID:28078293

  9. Decreased abundance of crustose coralline algae due to ocean acidification

    Science.gov (United States)

    Kuffner, Ilsa B.; Andersson, Andreas J; Jokiel, Paul L.; Rodgers, Ku'ulei S.; Mackenzie, Fred T.

    2008-01-01

    Owing to anthropogenic emissions, atmospheric concentrations of carbon dioxide could almost double between 2006 and 2100 according to business-as-usual carbon dioxide emission scenarios1. Because the ocean absorbs carbon dioxide from the atmosphere2, 3, 4, increasing atmospheric carbon dioxide concentrations will lead to increasing dissolved inorganic carbon and carbon dioxide in surface ocean waters, and hence acidification and lower carbonate saturation states2, 5. As a consequence, it has been suggested that marine calcifying organisms, for example corals, coralline algae, molluscs and foraminifera, will have difficulties producing their skeletons and shells at current rates6, 7, with potentially severe implications for marine ecosystems, including coral reefs6, 8, 9, 10, 11. Here we report a seven-week experiment exploring the effects of ocean acidification on crustose coralline algae, a cosmopolitan group of calcifying algae that is ecologically important in most shallow-water habitats12, 13, 14. Six outdoor mesocosms were continuously supplied with sea water from the adjacent reef and manipulated to simulate conditions of either ambient or elevated seawater carbon dioxide concentrations. The recruitment rate and growth of crustose coralline algae were severely inhibited in the elevated carbon dioxide mesocosms. Our findings suggest that ocean acidification due to human activities could cause significant change to benthic community structure in shallow-warm-water carbonate ecosystems.

  10. Anti-Phytopathogenic Activities of Macro-Algae Extracts

    Directory of Open Access Journals (Sweden)

    Ingrid Ramírez

    2011-05-01

    Full Text Available Aqueous and ethanolic extracts obtained from nine Chilean marine macro-algae collected at different seasons were examined in vitro and in vivo for properties that reduce the growth of plant pathogens or decrease the injury severity of plant foliar tissues following pathogen infection. Particular crude aqueous or organic extracts showed effects on the growth of pathogenic bacteria whereas others displayed important effects against pathogenic fungi or viruses, either by inhibiting fungal mycelia growth or by reducing the disease symptoms in leaves caused by pathogen challenge. Organic extracts obtained from the brown-alga Lessonia trabeculata inhibited bacterial growth and reduced both the number and size of the necrotic lesion in tomato leaves following infection with Botrytis cinerea. Aqueous and ethanolic extracts from the red-alga Gracillaria chilensis prevent the growth of Phytophthora cinnamomi, showing a response which depends on doses and collecting-time. Similarly, aqueous and ethanolic extracts from the brown-alga Durvillaea antarctica were able to diminish the damage caused by tobacco mosaic virus (TMV in tobacco leaves, and the aqueous procedure is, in addition, more effective and seasonally independent. These results suggest that macro-algae contain compounds with different chemical properties which could be considered for controlling specific plant pathogens.

  11. Genome-wide comparative analysis of metacaspases in unicellular and filamentous cyanobacteria

    Directory of Open Access Journals (Sweden)

    Qin Song

    2010-03-01

    Full Text Available Abstract Background Cyanobacteria are an ancient group of photoautotrophic prokaryotes with wide variations in genome size and ecological habitat. Metacaspases (MCAs are cysteine proteinases that have sequence homology to caspases and play essential roles in programmed cell death (PCD. MCAs have been identified in several prokaryotes, fungi and plants; however, knowledge about cyanobacterial metacaspases still remains obscure. With the availability of sequenced genomes of 33 cyanobacteria, we perform a comparative analysis of metacaspases and explore their distribution, domain structure and evolution. Results A total of 58 putative MCAs were identified, which are abundant in filamentous diazotrophic cyanobacteria and Acaryochloris marina MBIC 11017 and absent in all Prochlorococcus and marine Synechococcus strains, except Synechococcus sp. PCC 7002. The Cys-His dyad of caspase superfamily is conserved, while mutations (Tyr in place of His and Ser/Asn/Gln/Gly instead of Cys are also detected in some cyanobacteria. MCAs can be classified into two major families (α and β based on the additional domain structure. Ten types and a total of 276 additional domains were identified, most of which involves in signal transduction. Apoptotic related NACHT domain was also found in two cyanobacterial MCAs. Phylogenetic tree of MCA catalytic P20 domains coincides well with the domain structure and the phylogenies based on 16s rRNA. Conclusions The existence and quantity of MCA genes in unicellular and filamentous cyanobacteria are a function of the genome size and ecological habitat. MCAs of family α and β seem to evolve separately and the recruitment of WD40 additional domain occurs later than the divergence of the two families. In this study, a general framework of sequence-structure-function connections for the metacaspases has been revealed, which may provide new targets for function investigation.

  12. Method 447.0 - Determination of Chlorophylls a and b and Identification of Other Pigments of Interest in Marine and Freshwater Algae Using High Performance Liquid Chromatography with Visible Wavelength Detection

    Science.gov (United States)

    This method provides a procedure for determination of chlorophylls a (chl a) and b (chl b) found in marine and freshwater phytoplankton. Reversed phase high performance liquid chromatography (HPLC) with detection at 440 nm is used to separate the pigments from a complex pigment ...

  13. Shewanella algae in acute gastroenteritis

    Directory of Open Access Journals (Sweden)

    S Dey

    2015-01-01

    Full Text Available Shewanella algae is an emerging bacteria rarely implicated as a human pathogen. Previously reported cases of S. algae have mainly been associated with direct contact with seawater. Here we report the isolation of S. algae as the sole etiological agent from a patient suffering from acute gastroenteritis with bloody diarrhoea. The bacterium was identified by automated identification system and 16S rRNA gene sequence analysis. Our report highlights the importance of looking for the relatively rare aetiological agents in clinical samples that does not yield common pathogens. It also underscores the usefulness of automated systems in identification of rare pathogens.

  14. Spatiotemporal associations of reservoir nutrient characteristics and the invasive, harmful alga Prymnesium parvum in West Texas

    Science.gov (United States)

    VanLandeghem, Matthew M.; Farooqi, Mukhtar; Southard, Greg M.; Patino, Reynaldo

    2015-01-01

    Golden alga (Prymnesium parvum) is a harmful alga that has caused ecological and economic harm in freshwater and marine systems worldwide. In inland systems of North America, toxic blooms have nearly eliminated fish populations in some systems. Modifying nutrient profiles through alterations to land or water use may be a viable alternative for golden alga control in reservoirs. The main objective of this study was to improve our understanding of the nutrient dynamics that influence golden alga bloom formation and toxicity in west Texas reservoirs. We examined eight sites in the Upper Colorado River basin, Texas: three impacted reservoirs that have experienced repeated golden alga blooms; two reference reservoirs where golden alga is present but nontoxic; and three confluence sites downstream of the impacted and reference sites. Total, inorganic, and organic nitrogen and phosphorus and their ratios were quantified monthly along with golden alga abundance and ichthyotoxicity between December 2010 and July 2011. Blooms persisted for several months at the impacted sites, which were characterized by high organic nitrogen and low inorganic nitrogen. At impacted sites, abundance was positively associated with inorganic phosphorus and bloom termination coincided with increases in inorganic nitrogen and decreases in inorganic phosphorus in late spring. Management of both inorganic and organic forms of nutrients may create conditions in reservoirs unfavorable to golden alga.

  15. Transgenic algae engineered for higher performance

    Science.gov (United States)

    Unkefer, Pat J; Anderson, Penelope S; Knight, Thomas J

    2014-10-21

    The present disclosure relates to transgenic algae having increased growth characteristics, and methods of increasing growth characteristics of algae. In particular, the disclosure relates to transgenic algae comprising a glutamine phenylpyruvate transaminase transgene and to transgenic algae comprising a glutamine phenylpyruvate transaminase transgene and a glutamine synthetase.

  16. Unicellular organisms with an appetite for oil; Einzeller auf Oeldiaet

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Tim

    2010-07-01

    Bacteria can live on almost anything - some even on oil. Friedrich Widdel, Director at the Max Planck Institute for Marine Microbiology, is studying microbes that break down oil hydrocarbons without oxygen, deep down in the sediment. Could they be useful in oil spills? (orig.)

  17. Dinitrogen fixation in a unicellular chlorophyll d-containing cyanobacterium

    NARCIS (Netherlands)

    Pfreundt, U.; Stal, L.J.; Voss, B.; Hess, W.R.

    2012-01-01

    Marine cyanobacteria of the genus Acaryochloris are the only known organisms that use chlorophyll d as a photosynthetic pigment. However, based on chemical sediment analyses, chlorophyll d has been recognized to be widespread in oceanic and lacustrine environments. Therefore it is highly relevant to

  18. TOXICITY PROPENSITIES OF SOME MARINE AND FRESH-WATERALGAE AS THEIR CHEMICAL DEFENSE

    OpenAIRE

    ORHAN, İlkay; WISESPONGPAND, Puntip; ATICI, Tahir; ŞENER, Bilge

    2003-01-01

    Five species of the marine brown-algae, namely Halopteris scoparia (L.) Sauvagau, Padina vickersiae Hoyt, Dictyota dichotoma (Huds) Lam., Scinaia furcellata L., and Sargassum natans (L.) J. Meyer, a species of the marine green-alga, Ulva lactuca L., a species of the sea grass, Posidonia oceanica L., six species of fresh-water green-algae, namely Vaucheria sessilis (Vauch.) De Candolle, Zygnema pectinatum (Vauch.) C.A. Agardh, Maugeotia sp. (C.A. Agardh) Wittrock, Cladophora fracta (Dilw.) Kti...

  19. Lifespan metabolic potential of the unicellular organisms expressed by Boltzmann constant, absolute temperature and proton mass

    Science.gov (United States)

    Atanasov, Atanas Todorov

    2016-12-01

    The unicellular organisms and phages are the first appeared fundamental living organisms on the Earth. The total metabolic energy (Els, J) of these organisms can be expressed by their lifespan metabolic potential (Als, J/kg) and body mass (M, kg): Els =Als M. In this study we found a different expression - by Boltzmann's constant (k, J/K), nucleon mass (mp+, kg) of protons (and neutrons), body mass (M, kg) of organism or mass (Ms) of biomolecules (proteins, nucleotides, polysaccharides and lipids) building organism, and the absolute temperature (T, K). The found equations are: Els= (M/mp+)kT for phages and Els=(Ms/mp+)kT for the unicellular organisms. From these equations the lifespan metabolic potential can be expressed as: Als=Els/M= (k/mp+)T for phages and Als=Els/M= (k/3.3mp+)T for unicellular organisms. The temperature-normated lifespan metabolic potential (Als/T, J/K.kg) is equals to the ratio between Boltzmann's constant and nucleon mass: Als/T=k/mp+ for phages and Als/T=k/3.3mp+ for unicellular organisms. The numerical value of the k/mp+ ratio is equals to 8.254×103 J/K.kg, and the numerical value of k/3.3mp+ ratio is equal to 2.497×103 J/K.kg. These values of temperature-normated lifespan metabolic potential could be considered fundamental for the unicellular organisms.

  20. Algae biotechnology: products and processes

    National Research Council Canada - National Science Library

    Bux, F; Chisti, Yusuf

    2016-01-01

    This book examines the utilization of algae for the development of useful products and processes with the emphasis towards green technologies and processes, and the requirements to make these viable...

  1. Algae: America's Pathway to Independence

    National Research Council Canada - National Science Library

    Custer, James

    2007-01-01

    .... Oil dependency is an unacceptable risk to U.S. national strategy. This paper advocates independence from foreign oil by converting the national transportation fleet to biodiesel derived from algae...

  2. Reviews and syntheses: Calculating the global contribution of coralline algae to total carbon burial

    Science.gov (United States)

    van der Heijden, L. H.; Kamenos, N. A.

    2015-11-01

    The ongoing increase in anthropogenic carbon dioxide (CO2) emissions is changing the global marine environment and is causing warming and acidification of the oceans. Reduction of CO2 to a sustainable level is required to avoid further marine change. Many studies investigate the potential of marine carbon sinks (e.g. seagrass) to mitigate anthropogenic emissions, however, information on storage by coralline algae and the beds they create is scant. Calcifying photosynthetic organisms, including coralline algae, can act as a CO2 sink via photosynthesis and CaCO3 dissolution and act as a CO2 source during respiration and CaCO3 production on short-term timescales. Long-term carbon storage potential might come from the accumulation of coralline algae deposits over geological timescales. Here, the carbon storage potential of coralline algae is assessed using meta-analysis of their global organic and inorganic carbon production and the processes involved in this metabolism. Net organic and inorganic production were estimated at 330 g C m-2 yr-1 and 900 g CaCO3 m-2 yr-1 respectively giving global organic/inorganic C production of 0.7/1.8 × 109 t C yr-1. Calcium carbonate production by free-living/crustose coralline algae (CCA) corresponded to a sediment accretion of 70/450 mm kyr-1. Using this potential carbon storage for coralline algae, the global production of free-living algae/CCA was 0.4/1.2 × 109 t C yr-1 suggesting a total potential carbon sink of 1.6 × 109 tonnes per year. Coralline algae therefore have production rates similar to mangroves, salt marshes and seagrasses representing an as yet unquantified but significant carbon store, however, further empirical investigations are needed to determine the dynamics and stability of that store.

  3. Characteristics of Red Algae Bioplastics/Latex Blends under Tension

    Directory of Open Access Journals (Sweden)

    M. Nizar Machmud

    2013-10-01

    Full Text Available Cassava, corn, sago and the other food crops have been commonly used as raw materials to produce green plastics. However, plastics produced from such crops cannot be tailored to fit a particular requirement due to their poor water resistance and mechanical properties. Nowadays, researchers are hence looking to get alternative raw materials from the other sustainable resources to produce plastics. Their recent published studies have reported that marine red algae, that has been already widely used as a raw material for producing biofuels, is one of the potential algae crops that can be turned into plastics. In this work, Eucheuma Cottonii, that is one of the red alga crops, was used as raw material to produce plastics by using a filtration technique. Selected latex of Artocarpus altilis and Calostropis gigantea was separately then blended with bioplastics derived from the red algae, to replace use of glycerol as plasticizer. Role of the glycerol and the selected latex on physical and mechanical properties of the red algae bioplastics obtained under a tensile test performed at room temperature are discussed. Tensile strength of some starch-based plastics collected from some recent references is also presented in this paperDoi: 10.12777/ijse.5.2.81-88 [How to cite this article: Machmud, M.N., Fahmi, R.,  Abdullah, R., and Kokarkin, C.  (2013. Characteristics of Red Algae Bioplastics/Latex Blends under Tension. International Journal of Science and Engineering, 5(2,81-88. Doi: 10.12777/ijse.5.2.81-88

  4. Scenario studies for algae production

    OpenAIRE

    Slegers, P.M.

    2014-01-01

    Microalgae are a promising biomass for the biobased economy to produce food, feed, fuel, chemicals and materials. So far, large-scale production of algae is limited and as a result estimates on the performance of such large systems are scarce. There is a need to estimate large-scale biomass productivity and energy consumption, while considering the uncertainty and complexity in such large-scale systems. In this thesis frameworks are developed to assess 1) the productivity during algae culti...

  5. Medicinal compounds of Marine origin | Pandey | Journal of ...

    African Journals Online (AJOL)

    Medicinal compounds of Marine origin. ... Furthermore, the oceans are also the source of chemically inimitable natural products that are mainly ... The lifesaving drugs are mainly found abundantly in microorganisms, algae and invertebrates, ...

  6. Pacific Island Network Marine Fish Monitoring Dataset - Transects

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The benthic marine community in the Pacific Island Network (PACN) is a complex ecologic system and a diverse taxonomic environment, including algae and corals and...

  7. Profiling of lipid and glycogen accumulations under different growth conditions in the sulfothermophilic red alga Galdieria sulphuraria.

    Science.gov (United States)

    Sakurai, Toshihiro; Aoki, Motohide; Ju, Xiaohui; Ueda, Tatsuya; Nakamura, Yasunori; Fujiwara, Shoko; Umemura, Tomonari; Tsuzuki, Mikio; Minoda, Ayumi

    2016-01-01

    The unicellular red alga Galdieria sulphuraria grows efficiently and produces a large amount of biomass in acidic conditions at high temperatures. It has great potential to produce biofuels and other beneficial compounds without becoming contaminated with other organisms. In G. sulphuraria, biomass measurements and glycogen and lipid analyses demonstrated that the amounts and compositions of glycogen and lipids differed when cells were grown under autotrophic, mixotrophic, and heterotrophic conditions. Maximum biomass production was obtained in the mixotrophic culture. High amounts of glycogen were obtained in the mixotrophic cultures, while the amounts of neutral lipids were similar between mixotrophic and heterotrophic cultures. The amounts of neutral lipids were highest in red algae, including thermophiles. Glycogen structure and fatty acids compositions largely depended on the growth conditions. Copyright © 2015. Published by Elsevier Ltd.

  8. Repair rather than segregation of damage is the optimal unicellular aging strategy.

    Science.gov (United States)

    Clegg, Robert J; Dyson, Rosemary J; Kreft, Jan-Ulrich

    2014-08-16

    How aging, being unfavourable for the individual, can evolve is one of the fundamental problems of biology. Evidence for aging in unicellular organisms is far from conclusive. Some studies found aging even in symmetrically dividing unicellular species; others did not find aging in the same, or in different, unicellular species, or only under stress. Mathematical models suggested that segregation of non-genetic damage, as an aging strategy, would increase fitness. However, these models failed to consider repair as an alternative strategy or did not properly account for the benefits of repair. We used a new and improved individual-based model to examine rigorously the effect of a range of aging strategies on fitness in various environments. Repair of damage emerges as the best strategy despite its fitness costs, since it immediately increases growth rate. There is an optimal investment in repair that outperforms damage segregation in well-mixed, lasting and benign environments over a wide range of parameter values. Damage segregation becomes beneficial, and only in combination with repair, when three factors are combined: (i) the rate of damage accumulation is high, (ii) damage is toxic and (iii) efficiency of repair is low. In contrast to previous models, our model predicts that unicellular organisms should have active mechanisms to repair damage rather than age by segregating damage. Indeed, as predicted, all organisms have evolved active mechanisms of repair whilst aging in unicellular organisms is absent or minimal under benign conditions, apart from microorganisms with a different ecology, inhabiting short-lived environments strongly favouring early reproduction rather than longevity. Aging confers no fitness advantage for unicellular organisms in lasting environments under benign conditions, since repair of non-genetic damage is better than damage segregation.

  9. The Unicellular State as a Point Source in a Quantum Biological System

    Directory of Open Access Journals (Sweden)

    John S. Torday

    2016-05-01

    Full Text Available A point source is the central and most important point or place for any group of cohering phenomena. Evolutionary development presumes that biological processes are sequentially linked, but neither directed from, nor centralized within, any specific biologic structure or stage. However, such an epigenomic entity exists and its transforming effects can be understood through the obligatory recapitulation of all eukaryotic lifeforms through a zygotic unicellular phase. This requisite biological conjunction can now be properly assessed as the focal point of reconciliation between biology and quantum phenomena, illustrated by deconvoluting complex physiologic traits back to their unicellular origins.

  10. Effectiveness of an anti-algal compound in eliminating an aquatic unicellular harmful algal Phaeocystis globosa

    Directory of Open Access Journals (Sweden)

    Huajun eZhang

    2016-04-01

    Full Text Available Phaeocystis globosa blooms can have negative effects on higher trophic levels in the marine ecosystem and consequently influence human activities. Strain KA22, identified as the bacterium Hahella, was isolated from coastal surface water and used to control P. globosa growth. A methanol extract from the bacteral cells showed strong algicidal activity. After purification, the compound showed a similar structure to prodigiosin when identified with Q-Exactive Orbitrap MS and nuclear magnetic resonance spectra. The compound showed algicidal activity against P. globosa with a 50% Lethal Dose (LD50 of 2.24 μg/mL. The prodigiosin was stable under heat and acid environment, and it could be degraded under alkaline environment and natural light condition. The growth rates of strain KA22 was fast in 2216E medium and the content of prodigiosin in this medium was more than 70 μg/mL after 16 h incubation. The compound showed particularly strong algicidal activity against Prorocentrum donghaiense, P. globosa and Heterosigma akashiwo, but having little effect on three other phytoplankton species tested. The results of our research could increase our knowledge on harmful algal bloom control compound and lead to further study on the mechanisms of the lysis effect on harmful algae.

  11. Evolution of Individuality: A Case Study in the Volvocine Green Algae

    Directory of Open Access Journals (Sweden)

    Erik R. Hanschen

    2017-01-01

    Full Text Available While numerous criteria have been proposed in definitions of biological individuality, it is not clear whether these criteria reflect the evolutionary processes that underlie transitions in individuality. We consider the evolution of individuality during the transition from unicellular to multicellular life. We assume that “individuality” (however it is defined has changed in the volvocine green algae lineage during the transition from single cells, to simple multicellular colonies with four to one hundred cells, to more complex multicellular organisms with thousands of differentiated cells. We map traits associated with the various proposed individuality criteria onto volvocine algae species thought to be similar to ancestral forms arising during this transition in individuality. We find that the fulfillment of some criteria, such as genetic homogeneity and genetic uniqueness, do not change across species, while traits underpinning other aspects of individuality, including degrees of integration, group-level fitness and adaptation, and group indivisibility, change dramatically. We observe that different kinds of individuals likely exist at different levels of organization (cell and group in the same species of algae. Future research should focus on the causes and consequences of variation in individuality.

  12. Algae-Based Carbon Sequestration

    Science.gov (United States)

    Haoyang, Cai

    2018-03-01

    Our civilization is facing a series of environmental problems, including global warming and climate change, which are caused by the accumulation of green house gases in the atmosphere. This article will briefly analyze the current global warming problem and propose a method that we apply algae cultivation to absorb carbon and use shellfish to sequestrate it. Despite the importance of decreasing CO2 emissions or developing carbon-free energy sources, carbon sequestration should be a key issue, since the amount of carbon dioxide that already exists in the atmosphere is great enough to cause global warming. Algae cultivation would be a good choice because they have high metabolism rates and provides shellfish with abundant food that contains carbon. Shellfish’s shells, which are difficult to be decomposed, are reliable storage of carbon, compared to dead organisms like trees and algae. The amount of carbon that can be sequestrated by shellfish is considerable. However, the sequestrating rate of algae and shellfish is not high enough to affect the global climate. Research on algae and shellfish cultivation, including gene technology that aims to create “super plants” and “super shellfish”, is decisive to the solution. Perhaps the baton of history will shift to gene technology, from nuclear physics that has lost appropriate international environment after the end of the Cold War. Gene technology is vital to human survival.

  13. Algae in fish feed: performances and fatty acid metabolism in juvenile Atlantic Salmon.

    Directory of Open Access Journals (Sweden)

    Fernando Norambuena

    Full Text Available Algae are at the base of the aquatic food chain, producing the food resources that fish are adapted to consume. Previous studies have proven that the inclusion of small amounts (<10% of the diet of algae in fish feed (aquafeed resulted in positive effects in growth performance and feed utilisation efficiency. Marine algae have also been shown to possess functional activities, helping in the mediation of lipid metabolism, and therefore are increasingly studied in human and animal nutrition. The aim of this study was to assess the potentials of two commercially available algae derived products (dry algae meal, Verdemin (derived from Ulva ohnoi and Rosamin (derived from diatom Entomoneis spp. for their possible inclusion into diet of Atlantic Salmon (Salmo salar. Fish performances, feed efficiency, lipid metabolism and final product quality were assessed to investigated the potential of the two algae products (in isolation at two inclusion levels, 2.5% and 5%, or in combination, in experimental diets specifically formulated with low fish meal and fish oil content. The results indicate that inclusion of algae product Verdemin and Rosamin at level of 2.5 and 5.0% did not cause any major positive, nor negative, effect in Atlantic Salmon growth and feed efficiency. An increase in the omega-3 long-chain polyunsaturated fatty acid (n-3 LC-PUFA content in whole body of fish fed 5% Rosamin was observed.

  14. Feeding preferences and the nutritional value of tropical algae for the abalone Haliotis asinina.

    Directory of Open Access Journals (Sweden)

    Alex R Angell

    Full Text Available Understanding the feeding preferences of abalone (high-value marine herbivores is integral to new species development in aquaculture because of the expected link between preference and performance. Performance relates directly to the nutritional value of algae--or any feedstock--which in turn is driven by the amino acid content and profile, and specifically the content of the limiting essential amino acids. However, the relationship between feeding preferences, consumption and amino acid content of algae have rarely been simultaneously investigated for abalone, and never for the emerging target species Haliotis asinina. Here we found that the tropical H. asinina had strong and consistent preferences for the red alga Hypnea pannosa and the green alga Ulva flexuosa, but no overarching relationship between protein content (sum of amino acids and preference existed. For example, preferred Hypnea and Ulva had distinctly different protein contents (12.64 vs. 2.99 g 100 g(-1 and the protein-rich Asparagopsis taxiformis (>15 g 100 g(-1 of dry weight was one of the least preferred algae. The limiting amino acid in all algae was methionine, followed by histidine or lysine. Furthermore we demonstrated that preferences can largely be removed using carrageenan as a binder for dried alga, most likely acting as a feeding attractant or stimulant. The apparent decoupling between feeding preference and algal nutritive values may be due to a trade off between nutritive values and grazing deterrence associated with physical and chemical properties.

  15. Feeding Preferences and the Nutritional Value of Tropical Algae for the Abalone Haliotis asinina

    Science.gov (United States)

    Angell, Alex R.; Pirozzi, Igor; de Nys, Rocky; Paul, Nicholas A.

    2012-01-01

    Understanding the feeding preferences of abalone (high-value marine herbivores) is integral to new species development in aquaculture because of the expected link between preference and performance. Performance relates directly to the nutritional value of algae – or any feedstock – which in turn is driven by the amino acid content and profile, and specifically the content of the limiting essential amino acids. However, the relationship between feeding preferences, consumption and amino acid content of algae have rarely been simultaneously investigated for abalone, and never for the emerging target species Haliotis asinina. Here we found that the tropical H. asinina had strong and consistent preferences for the red alga Hypnea pannosa and the green alga Ulva flexuosa, but no overarching relationship between protein content (sum of amino acids) and preference existed. For example, preferred Hypnea and Ulva had distinctly different protein contents (12.64 vs. 2.99 g 100 g−1) and the protein-rich Asparagopsis taxiformis (>15 g 100 g−1 of dry weight) was one of the least preferred algae. The limiting amino acid in all algae was methionine, followed by histidine or lysine. Furthermore we demonstrated that preferences can largely be removed using carrageenan as a binder for dried alga, most likely acting as a feeding attractant or stimulant. The apparent decoupling between feeding preference and algal nutritive values may be due to a trade off between nutritive values and grazing deterrence associated with physical and chemical properties. PMID:22719967

  16. The mitochondrial genome of Grateloupia taiwanensis (Halymeniaceae, Rhodophyta) and comparative mitochondrial genomics of red algae.

    Science.gov (United States)

    DePriest, Michael S; Bhattacharya, Debashish; López-Bautista, Juan M

    2014-10-01

    Although red algae are economically highly valuable for their gelatinous cell wall compounds as well as being integral parts of marine benthic habitats, very little genome data are currently available. We present mitochondrial genome sequence data from the red alga Grateloupia taiwanensis S.-M. Lin & H.-Y. Liang. Comprising 28,906 nucleotide positions, the mitochondrial genome contig contains 25 protein-coding genes and 24 transfer RNA genes. It is highly similar to other red algal genomes in gene content as well as overall structure. An intron in the cox1 gene was found to be shared by G. taiwanensis and Grateloupia angusta (Okamura) S. Kawaguchi & H. W. Wang. We also used whole-genome alignments to compare G. taiwanensis to different groups of red algae, and these results are consistent with the currently accepted phylogeny of Rhodophyta. © 2014 Marine Biological Laboratory.

  17. Purification and partial characterization of haloperoxidase from fresh water algae Cladophora glomerata.

    Science.gov (United States)

    Verdel, E F; Kline, P C; Wani, S; Woods, A E

    2000-02-01

    Many haloperoxidases have been purified from diverse organisms, including lichen, fungi, bacteria, and marine algae. In this study a haloperoxidase was purified from the fresh water algae, Cladophora glomerata, by homogenization and centrifugation, ammonium sulfate fractionation, ion-exchange and gel filtration chromatography. Molecular weight was determined by SDS-PAGE and by size exclusion HPLC and found to be approximately 43 kDa. The isoelectric point was determined to be approximately 8.1 by isoelectric focusing. The UV spectrum of the peroxidase showed a strong absorbance in the Soret band indicating a heme protein, unlike vanadium-dependent haloperoxidases from marine algae. Fresh water algal haloperoxidase catalyzed the iodination of tyrosine at a pH of 3.1. This haloperoxidase also catalyzes the oxidation of guaiacol and oxidation of iodide as well as catalyzing a peroxide-dependent reaction in both the presence and absence of chloride and bromide ions.

  18. Occurrence of C35-C45 polyprenols in filamentous and unicellular cyanobacteria

    NARCIS (Netherlands)

    Bauersachs, T.; Schouten, S.; Compaore, J.; Stal, L.J.; Sinninghe Damsté, J.S.

    2010-01-01

    Polyprenols, regular (head-to-tail) isoprenoid alcohols with 7–9 prenyl units, were tentatively identified in several cultivated cyanobacteria. Heptaprenol (C35), octaprenol (C40) and a suite of nonaprenols (C45) were present in unicellular and filamentous non-heterocystous cyanobacteria, while they

  19. Competition and facilitation between unicellular nitrogen-fixing cyanobacteria and non-nitrogen-fixing phytoplankton species

    NARCIS (Netherlands)

    Agawin, N.S.; Rabouille, S.; Veldhuis, M.; Servatius, L.; Hol, S.; van Overzee, H.M.J.; Huisman, J.

    2007-01-01

    Abstract: Recent discoveries show that small unicellular nitrogen-fixing cyanobacteria are more widespread than previously thought and can make major contributions to the nitrogen budget of the oceans. We combined theory and experiments to investigate competition for nitrogen and light between these

  20. Occurrence of C35-C45 polyprenols in filamentous and unicellular cyanobacteria

    NARCIS (Netherlands)

    Bauersachs, T.; Schouten, S.; Compaoré, J.; Stal, L.J.; Sinninghe Damsté, J.S.

    2010-01-01

    Polyprenols, regular (head-to-tail) isoprenoid alcohols with 7-9 prenyl units, were tentatively identified in several cultivated cyanobacteria Heptaprenol (C35), octaprenol (C40) and a suite of nonaprenols (C45) were present in unicellular and filamentous non-heterocystous cyanobacteria, while they

  1. Fabrication of living soft matter by symbiotic growth of unicellular microorganisms

    NARCIS (Netherlands)

    Das, Anupam A.K.; Bovill, James; Ayesh, Maram; Stoyanov, Simeon D.; Paunov, Vesselin N.

    2016-01-01

    We report the fabrication of living soft matter made as a result of the symbiotic relationship of two unicellular microorganisms. The material is composed of bacterial cellulose produced in situ by acetobacter (Acetobacter aceti NCIMB 8132) in the presence of photosynthetic microalgae

  2. Complex multicellular functions at a unicellular eukaryote level: Learning, memory, and immunity.

    Science.gov (United States)

    Csaba, György

    2017-06-01

    According to experimental data, eukaryote unicellulars are able to learn, have immunity and memory. Learning is carried out in a very primitive form, and the memory is not neural but an epigenetic one. However, this epigenetic memory, which is well justified by the presence and manifestation of hormonal imprinting, is strong and permanent in the life of cell and also in its progenies. This memory is epigenetically executed by the alteration and fixation of methylation pattern of genes without changes in base sequences. The immunity of unicellulars is based on self/non-self discrimination, which leads to the destruction of non-self invaders and utilization of them as nourishment (by phagocytosis). The tools of learning, memory, and immunity of unicellulars are uniformly found in plasma membrane receptors, which formed under the effect of dynamic receptor pattern generation, suggested by Koch et al., and this is the basis of hormonal imprinting, by which the encounter between a chemical substance and the cell is specifically memorized. The receptors and imprinting are also used in the later steps of evolution up to mammals (including man) in each mentioned functions. This means that learning, memory, and immunity can be deduced to a unicellular eukaryote level.

  3. Dominance of unicellular cyanobacteria in the diazotrophic community in the Atlantic Ocean

    NARCIS (Netherlands)

    Agawin, N.S.R.; Benavides, M.; Busquets, A.; Ferriol, P.; Stal, L.J.; Aristegui, J.

    2014-01-01

    ABSTRACT: The horizontal and vertical distribution of representatives of diazotrophic unicellular cyanobacteria was investigated in the subtropical northeast Atlantic Ocean (28.87 to 42.00°N; 9.01 to 20.02°W). Samples from stations encompassing different water conditions (from oceanic oligotrophic

  4. Dominance of unicellular cyanobacteria in the diazotrophic community in the Atlantic Ocean

    NARCIS (Netherlands)

    Agawin, N.S.R.; Benavides, M.; Busquets, A.; Ferriol, P.; Stal, L.J.; Arístegui, J.

    2014-01-01

    The horizontal and vertical distribution of representatives of diazotrophic unicellular cyanobacteria was investigated in the subtropical northeast Atlantic Ocean (28.87 to 42.00°N; 9.01 to 20.02°W). Samples from stations encompassing different water conditions (from oceanic oligotrophic waters to

  5. Origin of marine planktonic cyanobacteria.

    Science.gov (United States)

    Sánchez-Baracaldo, Patricia

    2015-12-01

    Marine planktonic cyanobacteria contributed to the widespread oxygenation of the oceans towards the end of the Pre-Cambrian and their evolutionary origin represents a key transition in the geochemical evolution of the Earth surface. Little is known, however, about the evolutionary events that led to the appearance of marine planktonic cyanobacteria. I present here phylogenomic (135 proteins and two ribosomal RNAs), Bayesian relaxed molecular clock (18 proteins, SSU and LSU) and Bayesian stochastic character mapping analyses from 131 cyanobacteria genomes with the aim to unravel key evolutionary steps involved in the origin of marine planktonic cyanobacteria. While filamentous cell types evolved early on at around 2,600-2,300 Mya and likely dominated microbial mats in benthic environments for most of the Proterozoic (2,500-542 Mya), marine planktonic cyanobacteria evolved towards the end of the Proterozoic and early Phanerozoic. Crown groups of modern terrestrial and/or benthic coastal cyanobacteria appeared during the late Paleoproterozoic to early Mesoproterozoic. Decrease in cell diameter and loss of filamentous forms contributed to the evolution of unicellular planktonic lineages during the middle of the Mesoproterozoic (1,600-1,000 Mya) in freshwater environments. This study shows that marine planktonic cyanobacteria evolved from benthic marine and some diverged from freshwater ancestors during the Neoproterozoic (1,000-542 Mya).

  6. Adsorption of copper onto char derived macro alga, Undaria pinnatifida

    International Nuclear Information System (INIS)

    Cho, Hye Jung; Ko, Jeong Huy; Heo, Hyeon Su; Park, Hye Jin; BAe, Yoon Ju; Kim, Jung Hwan; Park, Young-Kwon

    2010-01-01

    Full text: A release of heavy metals into the environment by industrial activities raises much environmental problems because they tend to remain indefinitely, circulating and eventually accumulating throughout the food chain. Copper is essential to human life and health but, like all heavy metals, is potentially toxic as well. The excessive intakes of copper result in its accumulation in the liver and produce gastrointestinal problems, kidney damage, anemia, and continued inhalation of copper-containing sprays is linked with an increase in lung cancer among exposed people. Consequently, we need to eliminate the copper in drinking water. Also, growth rates of marine macro algae far exceed those of terrestrial biomass, without water limitations, so annual primary production rates are higher for the major marine macro algae than for most terrestrial biomass. According to these reasons, we try to use the macro alga, Undaria pinnatifida. Adsorption of heavy metals is one of the possible technologies involved in the removal of toxic metals from industrial waste streams and mining waste water using low-cost adsorbents. In recent years, many low-cost adsorbents such as seaweeds, activated carbon, etc. have been investigated, but the char by macro alga, Undaria pinnatifida, have not proven to be the most effective and promising substrates. The aim of this study is to remove copper from its aqueous solution by Undaria pinnatifida char for various parameters like pH, contact time, and Cu(II) concentration. The adsorption capacity of Cu(II) by Undaria pinnatifida char was investigated as a function of pH, contact time, and Cu(II) concentration at room temperature. And it was verified using equilibrium studies. (author)

  7. Effects of herbivore grazing on the physiognomy of the coralline alga ...

    African Journals Online (AJOL)

    Effects of herbivore grazing on the physiognomy of the coralline alga Spongites yendoi and on associated competitive interactions. ... overlapping distributions between strongly interacting species along a broad geographical gradient is not just a significant feature of the ecology of terrestrial, but also of marine ecosystems.

  8. Evaluation of in vitro antiviral activity of a brown alga ( Cystoseira ...

    African Journals Online (AJOL)

    The hot water extract of a brown marine alga, Cystoseira myrica, from the Persian Gulf was evaluated as an antiviral compound against KOS strain of HSV-1 in cell culture. The extract exhibited antiviral activity against herpes simplex virus type 1 (HSV-1) not only during absorption of virus to the cells, but also on post ...

  9. Algae Bloom in a Lake

    Directory of Open Access Journals (Sweden)

    David Sanabria

    2008-01-01

    Full Text Available The objective of this paper is to determine the likelihood of an algae bloom in a particular lake located in upstate New York. The growth of algae in this lake is caused by a high concentration of phosphorous that diffuses to the surface of the lake. Our calculations, based on Fick's Law, are used to create a mathematical model of the driving force of diffusion for phosphorous. Empirical observations are also used to predict whether the concentration of phosphorous will diffuse to the surface of this lake within a specified time and under specified conditions.

  10. Indigenous algae: Potential factories for biodiesel production

    CSIR Research Space (South Africa)

    Maharajh, Dheepak M

    2008-11-01

    Full Text Available advantages. Approximately 30% of South African environments favourable for isolating algae have been sampled. Samples were enriched, purified and assessed for lipid content, resulting in a database of indigenous algae. Positive isolates were grown under...

  11. Microscopic Gardens: A Close Look at Algae.

    Science.gov (United States)

    Foote, Mary Ann

    1983-01-01

    Describes classroom activities using algae, including demonstration of eutrophication, examination of mating strains, and activities with Euglena. Includes on algal morphology/physiology, types of algae, and field sources for collecting these organisms. (JN)

  12. Subcellular Sequestration and Impact of Heavy Metals on the Ultrastructure and Physiology of the Multicellular Freshwater Alga Desmidium swartzii

    Directory of Open Access Journals (Sweden)

    Ancuela Andosch

    2015-05-01

    Full Text Available Due to modern life with increasing traffic, industrial production and agricultural practices, high amounts of heavy metals enter ecosystems and pollute soil and water. As a result, metals can be accumulated in plants and particularly in algae inhabiting peat bogs of low pH and high air humidity. In the present study, we investigated the impact and intracellular targets of aluminum, copper, cadmium, chromium VI and zinc on the filamentous green alga Desmidium swartzii, which is an important biomass producer in acid peat bogs. By means of transmission electron microscopy (TEM and electron energy loss spectroscopy (EELS it is shown that all metals examined are taken up into Desmidium readily, where they are sequestered in cell walls and/or intracellular compartments. They cause effects on cell ultrastructure to different degrees and additionally disturb photosynthetic activity and biomass production. Our study shows a clear correlation between toxicity of a metal and the ability of the algae to compartmentalize it intracellularly. Cadmium and chromium, which are not compartmentalized, exert the most toxic effects. In addition, this study shows that the filamentous alga Desmidium reacts more sensitively to aluminum and zinc when compared to its unicellular relative Micrasterias, indicating a severe threat to the ecosystem.

  13. Competition and facilitation between the marine nitrogen-fixing cyanobacterium Cyanothece and its associated bacterial community

    NARCIS (Netherlands)

    Brauer, Verena S; Stomp, Maayke; Bouvier, Thierry; Fouilland, Eric; Leboulanger, Christophe; Confurius-Guns, Veronique; Weissing, Franz J; Stal, Lucas J; Huisman, Jef

    2015-01-01

    N2-fixing cyanobacteria represent a major source of new nitrogen and carbon for marine microbial communities, but little is known about their ecological interactions with associated microbiota. In this study we investigated the interactions between the unicellular N2-fixing cyanobacterium Cyanothece

  14. Characterization of Light and Nitrogen Regulated Gene Expression Pathways in Marine Diatoms

    Science.gov (United States)

    1992-12-31

    DNA and cDNA from the seagrass Zostera marina and marine unicellular chlorophyte Dunaliella tertiolecta, using oligonucleotide primers based on...availability of carbon skeletons from photosynthesis may also function in the modulation of gene expression in diatoms. FCP abundance did not exhibit any

  15. Metabolic studies with NMR spectroscopy of the alga Dunaliella salina trapped within agarose beads.

    Science.gov (United States)

    Bental, M; Pick, U; Avron, M; Degani, H

    1990-02-22

    A technique for the entrapment of the unicellular algae Dunaliella salina in agarose beads and their perfusion during NMR measurements is presented. The trapped cells maintained their ability to proliferate under normal growth conditions, and remained viable and stable under steady-state conditions for long periods during NMR measurements. Following osmotic shock in the dark, prominent changes were observed in the intracellular level of ATP and polyphosphates, but little to no changes in the intracellular pH or orthoposphate content. When cells were subjected to hyperosmotic shock, the ATP level decreased. The content of NMR-visible polyphosphates decreased as well, presumably due to the production of longer, NMR-invisible structures. Following hypoosmotic shock, the ATP content increased and longer polyphosphates were broken down to shorter, more mobile polymers.

  16. Role of Diatoms in marine biofouling

    Digital Repository Service at National Institute of Oceanography (India)

    Anil, A; Patil, J.S..; Mitbavkar, S.; DeCosta, P.M.; DeSilva, S.; Hegde, S.; Naik, R.

    . Ltd., New Delhi, pp. 293-6. de Nys, R., Leya, T., Maximilien, R., Afsar, A., Nair, P. S. R. & Steinberg, P. D. 1996. The need for standardized broad scale bioassay testing: a case study using the red alga Laurencia rigida. Biofouling 10:213-24. de...-1 Content-Type text/plain; charset=ISO-8859-1 Recent Advances on Applied Aspects of Indian Marine Algae with Reference to Global Scenario, Volume 1, A. Tewari (Ed.), 2006 Central Salt & Marine Chemicals Research Institute Role of Diatoms...

  17. Algae. LC Science Tracer Bullet.

    Science.gov (United States)

    Niskern, Diana, Comp.

    The plants and plantlike organisms informally grouped together as algae show great diversity of form and size and occur in a wide variety of habitats. These extremely important photosynthesizers are also economically significant. For example, some species contaminate water supplies; others provide food for aquatic animals and for man; still others…

  18. Scenario studies for algae production

    NARCIS (Netherlands)

    Slegers, P.M.

    2014-01-01

    Microalgae are a promising biomass for the biobased economy to produce food, feed, fuel, chemicals and materials. So far, large-scale production of algae is limited and as a result estimates on the performance of such large systems are scarce. There is a need to estimate large-scale biomass

  19. Shewanella alga bacteremia in two patients with lower leg ulcers

    DEFF Research Database (Denmark)

    Domínguez, H.; Vogel, Birte Fonnesbech; Gram, Lone

    1996-01-01

    of infection. Both patients survived; however, one of them had extensive myonecrosis, while the other patient had an uncomplicated course. The strains were initially believed to be Shewanella putrefaciens on the basis of key characteristics and results of the API 20NE identification system (bioMerieux, Marcy l......The first Danish cases of Shewanella alga bacteremia in two patients with chronic lower leg ulcers are reported. Both patients were admitted to the hospital during the same month of a very warm summer and had been exposed to the same marine environment, thereby suggesting the same source...

  20. Green Algae from Coal Bed Methane Ponds as a Source of Fertilizer for Economically Important Plants of Montana

    Science.gov (United States)

    Ogunsakin, O. R.; Apple, M. E.; Zhou, X.; Peyton, B.

    2016-12-01

    The Tongue River Basin of northeastern Wyoming and southeastern Montana is the location of natural gas reserves and coal bed methane (CBM) acreage. Although the water that emanates from CBM extraction varies with site, it is generally of higher quality than the waters produced by conventional oil and gas wells, in part because it is low in volatile organic compounds. However, since CBM water contains dissolved solids, including sodium (Na), bicarbonate (HCO3) and chloride (Cl) ions, the water must be treated before it can be discharged into the river or wetlands, or used for stock ponds or irrigation. Several ponds have been constructed to serve as a holding facility for CBM water. Algae from the CBM ponds of the Tongue River Basin have the potential to be utilized as fertilizer on economically important plants of Montana. Two very important crop plants of Montana are wheat, Triticum aestivum, and potatoes, Solanum tuberosum. To explore this potential, isolates of unicellular green algae (Chlorella sp.) from the CBM ponds were cultured in aerated vessels with Bold's Basic Growth Medium and natural and/or supplemental light. Algal biomass was condensed in and collected from a valved funnel, after which cell density was determined via light microscopy and a hemacytometer. Algal/water slurries with known nutrient contents were added to seedlings of hard winter wheat, T.aestivum, grown in a greenhouse for three months before harves. When compared to wheat provided with just water, or with water and a commercially available fertilizer, the wheat fertilized with algae had a higher chlorophyll content, more tillers (side shoots), and a higher ratio of influorescences (groups of flowers) per stem. In a related experiment, Ranger Russet seed potatoes, S. tuberosum were given just water, water and Hoagland's nutrient solution, or water with algae in order to compare aboveground growth and potato production among the treatments. The results of this study suggest that

  1. Macro algae as substrate for biogas production

    DEFF Research Database (Denmark)

    Møller, Henrik; Sarker, Shiplu; Gautam, Dhan Prasad

    Algae as a substrate for biogas is superior to other crops since it has a much higher yield of biomass per unit area and since algae grows in the seawater there will be no competition with food production on agricultural lands. So far, the progress in treating different groups of algae as a source...... of energy is promising. In this study 5 different algae types were tested for biogas potential and two algae were subsequent used for co-digestion with manure. Green seaweed, Ulva lactuca and brown seaweed Laminaria digitata was co-digested with cattle manure at mesophilic and thermophilic condition...

  2. How 5000 independent rowers coordinate their strokes in order to row into the sunlight: Phototaxis in the multicellular green alga Volvox

    Directory of Open Access Journals (Sweden)

    Matsunaga Shigeru

    2010-07-01

    Full Text Available Abstract Background The evolution of multicellular motile organisms from unicellular ancestors required the utilization of previously evolved tactic behavior in a multicellular context. Volvocine green algae are uniquely suited for studying tactic responses during the transition to multicellularity because they range in complexity from unicellular to multicellular genera. Phototactic responses are essential for these flagellates because they need to orientate themselves to receive sufficient light for photosynthesis, but how does a multicellular organism accomplish phototaxis without any known direct communication among cells? Several aspects of the photoresponse have previously been analyzed in volvocine algae, particularly in the unicellular alga Chlamydomonas. Results In this study, the phototactic behavior in the spheroidal, multicellular volvocine green alga Volvox rousseletii (Volvocales, Chlorophyta was analyzed. In response to light stimuli, not only did the flagella waveform and beat frequency change, but the effective stroke was reversed. Moreover, there was a photoresponse gradient from the anterior to the posterior pole of the spheroid, and only cells of the anterior hemisphere showed an effective response. The latter caused a reverse of the fluid flow that was confined to the anterior hemisphere. The responsiveness to light is consistent with an anterior-to-posterior size gradient of eyespots. At the posterior pole, the eyespots are tiny or absent, making the corresponding cells appear to be blind. Pulsed light stimulation of an immobilized spheroid was used to simulate the light fluctuation experienced by a rotating spheroid during phototaxis. The results demonstrated that in free-swimming spheroids, only those cells of the anterior hemisphere that face toward the light source reverse the beating direction in the presence of illumination; this behavior results in phototactic turning. Moreover, positive phototaxis is facilitated by

  3. First freshwater coralline alga and the role of local features in a major biome transition.

    Science.gov (United States)

    Žuljević, A; Kaleb, S; Peña, V; Despalatović, M; Cvitković, I; De Clerck, O; Le Gall, L; Falace, A; Vita, F; Braga, Juan C; Antolić, B

    2016-01-21

    Coralline red algae are significant components of sea bottom and up to now considered as exclusively marine species. Here we present the first coralline alga from a freshwater environment, found in the Cetina River (Adriatic Sea watershed). The alga is fully adapted to freshwater, as attested by reproductive structures, sporelings, and an inability to survive brackish conditions. Morphological and molecular phylogenetic analyses reveal the species belongs to Pneophyllum and is described as P. cetinaensis sp. nov. The marine-freshwater transition most probably occurred during the last glaciation. The brackish-water ancestor was preadapted to osmotic stress and rapid changes in water salinity and temperature. The particular characteristics of the karst Cetina River, such as hard water enriched with dissolved calcium carbonate and a pH similar to the marine environment, favoured colonization of the river by a marine species. The upstream advance and dispersal is facilitated by exceptionally pronounced zoochory by freshwater gastropods. Pneophyllum cetinaensis defies the paradigm of Corallinales as an exclusively marine group.

  4. Predicting the risk of toxic blooms of golden alga from cell abundance and environmental covariates

    Science.gov (United States)

    Patino, Reynaldo; VanLandeghem, Matthew M.; Denny, Shawn

    2016-01-01

    Golden alga (Prymnesium parvum) is a toxic haptophyte that has caused considerable ecological damage to marine and inland aquatic ecosystems worldwide. Studies focused primarily on laboratory cultures have indicated that toxicity is poorly correlated with the abundance of golden alga cells. This relationship, however, has not been rigorously evaluated in the field where environmental conditions are much different. The ability to predict toxicity using readily measured environmental variables and golden alga abundance would allow managers rapid assessments of ichthyotoxicity potential without laboratory bioassay confirmation, which requires additional resources to accomplish. To assess the potential utility of these relationships, several a priori models relating lethal levels of golden alga ichthyotoxicity to golden alga abundance and environmental covariates were constructed. Model parameters were estimated using archived data from four river basins in Texas and New Mexico (Colorado, Brazos, Red, Pecos). Model predictive ability was quantified using cross-validation, sensitivity, and specificity, and the relative ranking of environmental covariate models was determined by Akaike Information Criterion values and Akaike weights. Overall, abundance was a generally good predictor of ichthyotoxicity as cross validation of golden alga abundance-only models ranged from ∼ 80% to ∼ 90% (leave-one-out cross-validation). Environmental covariates improved predictions, especially the ability to predict lethally toxic events (i.e., increased sensitivity), and top-ranked environmental covariate models differed among the four basins. These associations may be useful for monitoring as well as understanding the abiotic factors that influence toxicity during blooms.

  5. Pressurized thermal and hydrothermal decomposition of algae, wood chip residue, and grape marc: A comparative study

    International Nuclear Information System (INIS)

    Subagyono, Dirgarini J.N.; Marshall, Marc; Jackson, W. Roy; Chaffee, Alan L.

    2015-01-01

    Pressurized thermal decomposition of two marine algae, Pinus radiata chip residue and grape marc using high temperature, high pressure reactions has been studied. The yields and composition of the products obtained from liquefactions under CO of a mixture of biomass and H 2 O (with or without catalyst) were compared with products from liquefaction of dry biomass under N 2 , at different temperatures, gas pressures and for CO runs, water to biomass ratios. Thermochemical reactions of algae produced significantly higher dichloromethane solubles and generally higher product yields to oil and asphaltene than Pinus radiata and grape marc under the reaction conditions used. Furthermore, the biofuels derived from algae contained significant concentrations of aliphatic hydrocarbons as opposed to those from radiata pine and grape marc which were richer in aromatic compounds. The possibility of air transport fuel production from algae thus appears to have considerable advantages over that from radiata pine and grape marc. - Highlights: • Liquefaction of algae gave more oil than that of Pinus radiata and grape marc. • Reactions under CO/H 2 O produced higher yields of oil than N 2 . • Water to biomass ratio had little effect on the yields. • Bio-oil from algae contained substantial amounts of aliphatic hydrocarbons. • Pinus radiata oil was low in N but high in O

  6. Algae in fish feed: performances and fatty acid metabolism in juvenile Atlantic Salmon.

    Science.gov (United States)

    Norambuena, Fernando; Hermon, Karen; Skrzypczyk, Vanessa; Emery, James A; Sharon, Yoni; Beard, Alastair; Turchini, Giovanni M

    2015-01-01

    Algae are at the base of the aquatic food chain, producing the food resources that fish are adapted to consume. Previous studies have proven that the inclusion of small amounts (fish feed (aquafeed) resulted in positive effects in growth performance and feed utilisation efficiency. Marine algae have also been shown to possess functional activities, helping in the mediation of lipid metabolism, and therefore are increasingly studied in human and animal nutrition. The aim of this study was to assess the potentials of two commercially available algae derived products (dry algae meal), Verdemin (derived from Ulva ohnoi) and Rosamin (derived from diatom Entomoneis spp.) for their possible inclusion into diet of Atlantic Salmon (Salmo salar). Fish performances, feed efficiency, lipid metabolism and final product quality were assessed to investigated the potential of the two algae products (in isolation at two inclusion levels, 2.5% and 5%, or in combination), in experimental diets specifically formulated with low fish meal and fish oil content. The results indicate that inclusion of algae product Verdemin and Rosamin at level of 2.5 and 5.0% did not cause any major positive, nor negative, effect in Atlantic Salmon growth and feed efficiency. An increase in the omega-3 long-chain polyunsaturated fatty acid (n-3 LC-PUFA) content in whole body of fish fed 5% Rosamin was observed.

  7. A Cytotoxic Hydroperoxy Sterol from the Brown Alga, Nizamuddinia Zanardinii

    Directory of Open Access Journals (Sweden)

    Abdolhossein Rustaiyan

    2013-03-01

    Full Text Available Background:The marine environment is a unique source of bioactive natural products, of which Nizamuddinia zanardinii is an important brown algae distributed in Oman Sea. Literature revealed that there is no report on phytochemistry and pharmacology of this valuable algae.Methods:Bioguided fractionation of the methanolic extract of Nizamuddinia zanardinii, collected from Oman Sea, led to the isolation of a hydroperoxy sterol. Its structure was determined by analysis of the spectroscopic data as 24-hydroperoxy-24-vinyl cholesterol (HVC. In vitro cytotoxic activity of this compound was evaluated against HT29, MCF7, A549, HepG2 and MDBK cell lines.Results:Although 24(R-hydroproxy-24-vinylcholesterol has been previously reported from Sargassum and Padina species, it is the first report on the presence of this compound from N. zanardinii. This compound exhibited cytotoxicity in all cell lines (IC50, 3.62, 9.09, 17.96, 32.31 and 37.31 μg/mL respectively. HVC was also evaluated for apoptotic activity and demonstrated positive results in terminal deoxynucleotidyl transferase dUTP Nick End labeling (TUNEL assay suggesting it a candidate for further apoptotic studies.Conclusions:Nizamuddinia zanardinii, a remarkable brown algae of Oman Sea, is a good source of hydroproxy sterols with promising cytotoxic on various cell lines particularly human colon adenocarcinoma.

  8. Uncoupling proteins (UCP) in unicellular eukaryotes: true UCPs or UCP1-like acting proteins?

    Science.gov (United States)

    Luévano-Martínez, Luis Alberto

    2012-04-05

    Uncoupling proteins belong to the superfamily of mitochondrial anion carriers. They are apparently present throughout the Eukarya domain in which only some members have an established physiological function, i.e. UCP1 from brown adipose tissue is involved in non-shivering thermogenesis. However, the proteins responsible for the phenotype observed in unicellular organisms have not been characterized. In this report we analyzed functional evidence concerning unicellular UCPs and found that true UCPs are restricted to some taxonomical groups while proteins conferring a UCP1-like phenotype to fungi and most protists are the result of a promiscuous activity exerted by other mitochondrial anion carriers. We describe a possible evolutionary route followed by these proteins by which they acquire this promiscuous mechanism. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  9. Thyrotropin (TSH) regulates triiodothyronine (T3) production in the unicellular Tetrahymena.

    Science.gov (United States)

    Csaba, G; Pállinger, Eva

    2011-09-01

    The aim of the experiments was to study the regulation of triiodothyronine (T3) production in the unicellular Tetrahymena. Untreated and troph-hormone treated specimen were prepared and in different timepoints T3 content was measured and compared by immunocytochemical flow cytometry. 0.1 or 0.001 IU TSH in tryptone-yeast medium stimulated T3 synthesis at 10, 20, 30 min, but does not stimulate after 1 h. The overlapping gonadotropic hormone (GTH) also did it, however only at 10 min. In Losina salt solution (physiological for Tetrahymena) the effect was weaker, however outer amino acid source was not absolutely needed for the production of the hormone. The results show that the TSH regulation of thyroid hormone synthesis (storage, secretion) and troph-hormone overlap can be deduced to a unicellular level. This may allow the hypothesis that the endocrine mechanisms proved at a low level of phylogeny are preserved for the higher ranked organisms.

  10. Antifungal activity of methanolic extracts of four Algerian marine ...

    African Journals Online (AJOL)

    cmi

    2012-05-15

    May 15, 2012 ... and antifungal activities of the extracts of marine algae from southern coast of India. Botanica marina. 40: 507-515. Patra JK, Patra AP, Mahapatra NK, Thatoi HN, Das S, Sahu, RK, Swain. GC (2009). Antimicrobial activity of organic solvent extracts of three marine macroalgae from Chilika Lake, Orissa, India.

  11. Symbiodinium transcriptomes: genome insights into the dinoflagellate symbionts of reef-building corals.

    KAUST Repository

    Bayer, Till; Aranda, Manuel; Sunagawa, Shinichi; Yum, Lauren K; Desalvo, Michael K; Lindquist, Erika; Coffroth, Mary Alice; Voolstra, Christian R.; Medina, Mó nica

    2012-01-01

    Dinoflagellates are unicellular algae that are ubiquitously abundant in aquatic environments. Species of the genus Symbiodinium form symbiotic relationships with reef-building corals and other marine invertebrates. Despite their ecologic importance

  12. Bioethanol Production from Indigenous Algae

    Directory of Open Access Journals (Sweden)

    Madhuka Roy

    2015-02-01

    Full Text Available Enhanced rate of fossil fuel extraction is likely to deplete limited natural resources over short period of time. So search for alternative fuel is only the way to overcome this problem of upcoming energy crisis. In this aspect biofuel is a sustainable option. Agricultural lands cannot be compromised for biofuel production due to the requirement of food for the increasing population. Certain species of algae can produce ethanol during anaerobic fermentation and thus serve as a direct source for bioethanol production. The high content of complex carbohydrates entrapped in the cell wall of the microalgae makes it essential to incorporate a pre-treatment stage to release and convert these complex carbohydrates into simple sugars prior to the fermentation process. There have been researches on production of bioethanol from a particular species of algae, but this work was an attempt to produce bioethanol from easily available indigenous algae. Acid hydrolysis was carried out as pre-treatment. Gas Chromatographic analysis showed that 5 days’ fermentation by baker’s yeast had yielded 93% pure bioethanol. The fuel characterization of the bioethanol with respect to gasoline showed comparable and quite satisfactory results for its use as an alternative fuel.DOI: http://dx.doi.org/10.3126/ije.v4i1.12182International Journal of Environment Volume-4, Issue-1, Dec-Feb 2014/15, page: 112-120  

  13. Bio diesel production from algae

    International Nuclear Information System (INIS)

    Khola, G.; Ghazala, B.

    2011-01-01

    Algae appear to be an emerging source of biomass for bio diesel that has the potential to completely displace fossil fuel. Two thirds of earth's surface is covered with water, thus alga e would truly be renewable option of great potential for global energy needs. This study discusses specific and comparative bio diesel quantitative potential of Cladophora sp., also highlighting its biomass (after oil extraction), pH and sediments (glycerine, water and pigments) quantitative properties. Comparison of Cladophora sp., with Oedogonium sp., and Spirogyra sp., (Hossain et al., 2008) shows that Cladophora sp., produce higher quantity of bio diesel than Spirogyra sp., whereas biomass and sediments were higher than the both algal specimens in comparison to the results obtained by earlier workers. No prominent difference in pH of bio diesel was found. In Pakistan this is a first step towards bio diesel production from algae. Results indicate that Cladophora sp., provide a reasonable quantity of bio diesel, its greater biomass after oil extraction and sediments make it a better option for bio diesel production than the comparing species. (author)

  14. Effect of Engineered Nanoparticles on Exopolymeric Substances Release from Marine Phytoplankton

    OpenAIRE

    Chiu, Meng-Hsuen; Khan, Zafir A.; Garcia, Santiago G.; Le, Andre D.; Kagiri, Agnes; Ramos, Javier; Tsai, Shih-Ming; Drobenaire, Hunter W.; Santschi, Peter H.; Quigg, Antonietta; Chin, Wei-Chun

    2017-01-01

    Engineered nanoparticles (ENPs), products from modern nanotechnologies, can potentially impact the marine environment to pose serious threats to marine ecosystems. However, the cellular responses of marine phytoplankton to ENPs are still not well established. Here, we investigate four different diatom species (Odontella mobiliensis, Skeletonema grethae, Phaeodactylum tricornutum, Thalassiosira pseudonana) and one green algae (Dunaliella tertiolecta) for their extracellular polymeric substance...

  15. Antifouling Compounds from Marine Macroalgae.

    Science.gov (United States)

    Dahms, Hans Uwe; Dobretsov, Sergey

    2017-08-28

    Marine macroalgae produce a wide variety of biologically-active metabolites that have been developed into commercial products, such as antibiotics, immunosuppressive, anti-inflammatory, cytotoxic agents, and cosmetic products. Many marine algae remain clean over longer periods of time, suggesting their strong antifouling potential. Isolation of biogenic compounds and the determination of their structure could provide leads for the development of environmentally-friendly antifouling paints. Isolated substances with potent antifouling activity belong to fatty acids, lipopeptides, amides, alkaloids, lactones, steroids, terpenoids, and pyrroles. It is unclear as yet to what extent symbiotic microorganisms are involved in the synthesis of these compounds. Algal secondary metabolites have the potential to be produced commercially using genetic and metabolic engineering techniques. This review provides an overview of publications from 2010 to February 2017 about antifouling activity of green, brown, and red algae. Some researchers were focusing on antifouling compounds of brown macroalgae, while metabolites of green algae received less attention. Several studies tested antifouling activity against bacteria, microalgae and invertebrates, but in only a few studies was the quorum sensing inhibitory activity of marine macroalgae tested. Rarely, antifouling compounds from macroalgae were isolated and tested in an ecologically-relevant way.

  16. The Determination of Marine Biotoxins in Seafood

    NARCIS (Netherlands)

    Gerssen, Arjen; Klijnstra, Mirjam D.

    2017-01-01

    Marine biotoxins are natural toxins produced by specific algae species. These toxins can accumulate in seafood such as mussels, oysters and fish. Consumption of contaminated seafood may lead to severe intoxication such as memory loss, paralysis, diarrhoea and even death. In order to protect

  17. Red algae and their use in papermaking.

    Science.gov (United States)

    Seo, Yung-Bum; Lee, Youn-Woo; Lee, Chun-Han; You, Hack-Chul

    2010-04-01

    Gelidialian red algae, that contain rhizoidal filaments, except the family Gelidiellaceae were processed to make bleached pulps, which can be used as raw materials for papermaking. Red algae consist of rhizoidal filaments, cortical cells usually reddish in color, and medullary cells filled with mucilaginous carbohydrates. Red algae pulp consists of mostly rhizoidal filaments. Red algae pulp of high brightness can be produced by extracting mucilaginous carbohydrates after heating the algae in an aqueous medium and subsequently treating the extracted with bleaching chemicals. In this study, we prepared paper samples from bleached pulps obtained from two red algae species (Gelidium amansii and Gelidium corneum) and compared their properties to those of bleached wood chemical pulps. Copyright 2009 Elsevier Ltd. All rights reserved.

  18. Alternative photosynthetic electron transport pathways during anaerobiosis in the green alga Chlamydomonas reinhardtii.

    Science.gov (United States)

    Hemschemeier, Anja; Happe, Thomas

    2011-08-01

    Oxygenic photosynthesis uses light as energy source to generate an oxidant powerful enough to oxidize water into oxygen, electrons and protons. Upon linear electron transport, electrons extracted from water are used to reduce NADP(+) to NADPH. The oxygen molecule has been integrated into the cellular metabolism, both as the most efficient electron acceptor during respiratory electron transport and as oxidant and/or "substrate" in a number of biosynthetic pathways. Though photosynthesis of higher plants, algae and cyanobacteria produces oxygen, there are conditions under which this type of photosynthesis operates under hypoxic or anaerobic conditions. In the unicellular green alga Chlamydomonas reinhardtii, this condition is induced by sulfur deficiency, and it results in the production of molecular hydrogen. Research on this biotechnologically relevant phenomenon has contributed largely to new insights into additional pathways of photosynthetic electron transport, which extend the former concept of linear electron flow by far. This review summarizes the recent knowledge about various electron sources and sinks of oxygenic photosynthesis besides water and NADP(+) in the context of their contribution to hydrogen photoproduction by C. reinhardtii. This article is part of a Special Issue entitled: Regulation of Electron Transport in Chloroplasts. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Cellulose powder from Cladophora sp. algae.

    Science.gov (United States)

    Ek, R; Gustafsson, C; Nutt, A; Iversen, T; Nyström, C

    1998-01-01

    The surface are and crystallinity was measured on a cellulose powder made from Cladophora sp. algae. The algae cellulose powder was found to have a very high surface area (63.4 m2/g, N2 gas adsorption) and build up of cellulose with a high crystallinity (approximately 100%, solid state NMR). The high surface area was confirmed by calculations from atomic force microscope imaging of microfibrils from Cladophora sp. algae.

  20. Algae-production in the desert

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrand, H.

    1988-11-01

    The company Koor Food Ltd. (Israel) developed in co-operation with the Weizmann-Institute (Israel) a production-plant for the industrial cultivation of algae in the desert area of Elat. For almost a year now, they succeed in harvesting large amounts of algae material with the help of the intensive sun and the Red Sea water. The alga Dunaliella with the natural US -carotine, as well as the alga Spirulina with the high content of protein find their market in the food-, cosmetic- and pharma-industry. This article will give a survey of a yet here unusual project.